
Resource efficient Communication
in network-based Reconfigurable

on-chip Systems

Dissertation
zum Erlangen des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)
in der Wissenschaftsdisziplin

Technische Informatik

eingereicht an der
Mathematisch-naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Philipp Mahr

Potsdam, den 11.06.2012

This work is licensed under a Creative Commons License:
Attribution - Noncommercial - Share Alike 3.0 Germany
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2012/5991/
URN urn:nbn:de:kobv:517-opus-59914
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59914

Betreuer:
Prof. Dr. Christophe Bobda

Gutachter:
Prof. Dr. Christophe Bobda
Prof. Dr. Christian Haubelt
Prof. Dr. Dietmar Tutsch

Prüfungskommission:
Prof. Dr. Ulrike Lucke
Prof. Dr. Christian Haubelt
Prof. Dr. Christophe Bobda
Prof. Dr. Helmut Asche
Prof. Dr. Tiziana Magaria
Prof. Dr. Klaus Rebensburg
Prof. Dr. Torsten Schaub
Prof. Dr. Bettina Schnor
Prof. Dr. Michael Gössel

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbständig verfasst und keine
anderen als die angegebenen Hilfsmittel benutzt habe. Die Dissertation ist bisher keiner
anderen Fakultät vorgelegt worden. Weiterhin erkläre ich, dass ich bisher kein Promo-
tionsverfahren erfolglos beendet habe und dass eine Aberkennung eines bereits erworbenen
Doktorgrades nicht vorliegt.

Potsdam, den 11.06.2012 .
(Philipp Mahr)

Danksagung

Sowohl für die finanzielle Unterstützung als auch für die Möglichkeit zum Austausch mit
anderen Forschern bedanke ich mich bei der Deutsche Forschungsgemeinschaft (DFG), die
das AMoC Projektes (Adaptive Multiprocessor-on-Chip) finanzierte.

Meinem Doktorvater Christophe Bobda danke ich für seine Unterstützung und die
vielfältigen Entwicklungsmöglichkeiten.

Den weiteren Gutachtern Christian Haubelt, Michael Hübner und Dietmar Tutsch
danke ich für die Bereitschaft meine Arbeit zu lesen.

Meinen Kollegen Ali Zarezadeh, Felix Mühlbauer, Kevin Cheng, Lars Middendorf und
Robert Hartmann danke ich für die fruchtbare Zusammenarbeit und Hilfestellung bei den
vielfältigen Problemen, die im Unialltag auftreten. Weiterhin gilt mein Dank Benjamin
Andres, Steffen Christgau, Max Frohberg, Sebastian Fudickar, Martin Gebser, Kerstin
Rießelmann, Jens Rohrlack, Christian Spruch und Sebastian Taube für die Unterstützung
und Zusammenarbeit.

Christian Haubelt und Tobias Schubert danke ich für die wissenschaftliche Zusamme-
narbeit während und auch nach ihrer Zeit in Potsdam.

Besonderen Dank möchte ich Jasper Nöllner für die Korrektur und intensive Beschäf-
tigung mit einem ihm fremden Forschungsgebiet aussprechen.

Schlussendlich danke ich meiner Familie, meiner Freundin, meinen Freunden und der
Musik für die ununterbrochene Unterstützung.

Kurzzusammenfassung

Die Leistungsfähigkeit rekonfigurierbarer Rechensysteme steigt kontinuierlich
und ermöglicht damit die parallele Ausführung von immer mehr und immer
größeren Anwendungen. Die Vielfalt an Anwendungen macht es allerdings
unmöglich ein optimales Kommunikationsnetzwerk zu entwickeln, welches die
Anforderung jeder denkbaren Anwendung berücksichtigt. Die Performanz des
rekonfigurierbaren Rechensystems sinkt. Das Kommunikationsnetzwerk ist je-
doch nicht der einzige Teil des Systems, der Einfluss auf die Kommunikation-
sperformanz nimmt. Die Ressourcenverwaltung des Systems beeinflusst durch
die Platzierung der Anwendungen die Latenz zwischen Kommunikationspart-
nern und die Kommunikationslast im Netzwerk. Kommunikationsprotokolle
beeinträchtigen die Performanz der Kommunikation durch Daten und Rechen-
overhead, die ebenso zu erhöhter Netzwerklast sowie Ressourcenanforderungen
führen.

In einem ganzheitlichen Kommunikationsansatz wird nicht nur das Kommu-
nikationsnetzwerk berücksichtigt, sondern außerdem Ressourcenverwaltung,
Kommunikationsprotokolle und die anderweitige Verwendung vorhandener,
temporär ungenutzter Kommunikationsressourcen. Durch Einbeziehung dieser
Aspekte während Entwurfs- und Laufzeit und durch Optimierung unter Berück-
sichtigung der Kommunikationsanforderungen, wird eine ressourceneneffizien-
tere Kommunikation erreicht. Ausführliche Evaluationen zeigen, dass eine
ganzheitliche Betrachtung von Kommunikationsfaktoren, Verbesserungen von
Performanz und Flexibilität erzielt.

Abstract

The constantly growing capacity of reconfigurable devices allows simultaneous
execution of complex applications on those devices. The mere diversity of ap-
plications deems it impossible to design an interconnection network matching
the requirements of every possible application perfectly, leading to suboptimal
performance in many cases. However, the architecture of the interconnection
network is not the only aspect affecting performance of communication. The
resource manager places applications on the device and therefore influences
latency between communicating partners and overall network load. Com-
munication protocols affect performance by introducing data and processing
overhead putting higher load on the network and increasing resource demand.

Approaching communication holistically not only considers the architecture
of the interconnect, but communication-aware resource management, commu-
nication protocols and resource usage just as well. Incorporation of different
parts of a reconfigurable system during design- and runtime and optimizing
them with respect to communication demand results in more resource effi-
cient communication. Extensive evaluation shows enhanced performance and
flexibility, if communication on reconfigurable devices is regarded in a holistic
fashion.

List of abbreviations

ASIP Application Specific Processor
ASMO Average Size Module Only
ASP Answer Set Programming
CFB Configurable Function Blocks
CLB Configurable Logic Blocks
CMC Configurable Memory Controller
CPLD Complex Programmable Logic Devices
DFT Discrete Fourier Transformation
DSP Domain Specific Processor
DyNoC Dynamic Network-on-Chip
EDF Earliest Deadline First
FFT Fast Fourier Transformation
FPGA Field-Programmable Gate Arrays
FSL Fast Simplex Link
GPP General Purpose Processor
LMF Largest Module First
LMO Largest Module Only
LTF Largest Task First
LUT Look-Up Table
MAC Multiply-Accumulate
MPI Message Passing Interface
NoC Network-on-Chip
PAL Programmable Array Logics
PE Processing Elements
PLA Programmable Logic Arrays
PLD Programmable Logic Devices
RD Reconfigurable Device
RCU Reconfigurable Unit
SMF Smallest Module First
SMO Smallest Module Only
SVD Singular Value Decomposition

Contents

Contents

1 Introduction 17

1.1 Assumption and scientific challenges . 20

1.2 Organization of thesis . 22

2 Reconfigurable computing systems 24

2.1 Abstract hardware architecture of a reconfigurable computing systems . . . 24

2.2 Reconfigurable logic devices . 25

2.2.1 From simple PLDs to FPGAs . 26

2.2.2 Coarse-grained reconfigurable devices 28

2.2.3 Reconfigurability . 30

2.3 Resource management of reconfigurable devices 31

2.3.1 Placement . 33

2.3.2 Temporal planning . 34

2.4 Interconnection networks and communication protocols of reconfigurable
devices . 35

2.4.1 Bus-based interconnection network 35

2.4.2 Networks-on-Chip . 36

2.4.3 Communication protocols . 38

2.5 Discussion . 39

2.6 Chapter conclusion . 40

3 Scheduling on NoC-based reconfigurable architectures 42

3.1 Basic scheduler . 43

3.1.1 Placement . 45

3.1.2 Temporal planning . 46

3.2 Integrated module selection . 47

3.2.1 Module selection strategies . 48

3.2.2 Extended scheduling algorithm . 49

3.2.3 Evaluation . 51

3.3 Relocation of tasks . 54

3.3.1 Relocation strategies . 55

xv

Contents

3.3.2 Extended scheduling algorithm . 57
3.3.3 Evaluation . 57

3.4 Influence of dynamic placement on path length 61
3.5 Off-line spatial planning with ASP . 62

3.5.1 Problem solving . 63
3.5.2 Evaluation . 65

3.6 Chapter conclusion . 69

4 Resource efficient DyNoC architecture 70

4.1 System architecture . 70
4.2 Router . 71

4.2.1 Router Architecture . 72
4.2.2 Evaluation . 76

4.3 Processing element . 80
4.3.1 Architecture . 81
4.3.2 Evaluation . 83

4.4 Chapter conclusion . 85

5 High-level communication in reconfigurable on-chip systems 86

5.1 Structure and Functionality . 87
5.2 Evaluation . 89

5.2.1 Benchmarks . 89
5.2.2 Case study . 90

5.3 Chapter conclusion . 92

6 Conclusion and outlook 93

Author’s Publications 96

Bibliography 98

List of Figures 106

List of Tables 108

xvi

1 Introduction

In 1971 Intel introduced the first commercial microprocessor with 2300 transistors, the
Intel 4004. Since this historic release, transistor count on processors increased rapidly
and doubled every two years, leading to today’s high-end microprocessors like the Intel
Xeon E7-8870 [37] with 2600 million transistors. The increasing amount of transistors
integrated on one die led to the emergence of several processor classes providing different
ways to process applications. Two main means to characterize different processors classes
are flexibility and performance as shown for four common processor types in Figure 1
[33, 9].

Figure 1: Performance vs. Flexibility of processor classes

General Purpose Processors: General Purpose Processor (GPP) are able to compute
any kind of task. The concept of a GPP was presented by John von Neumann
[69] in 1945 and became the foundation of modern microprocessors. Computations
are executed by a fixed (general purpose) data-path which carries out a stream of
instructions to perform calculations sequentially (temporal computing). Because
GPPs can execute any kind of algorithm, they trade flexibility for performance.

Domain Specific Processors: Domain Specific Processor (DSP) are tailored to a specific
class of algorithms. Like GPPs they execute a stream of instructions but their data-
path is optimized to increased performance for common operations of the algorithm
class. A common DSP is the digital signal processor which is used for applications

1 Introduction

involved in image processing, multimedia or telecommunication. The specialization
of DSPs increases performance but does not allow the implementation of algorithms
other than those for which it was optimized and therefore is less flexible.

Application Specific Processors: Application Specific Processor (ASIP) are even fur-
ther tailored to specific applications compared to DSPs. The processor is designed
for a particular application by implementing the application completely in hard-
ware. No stream of instructions are present as the operations of the application
are implemented in hardware directly, allowing for optimized (parallel) execution
compared to GPPs and DSPs. While ASIPs do use spatial computing and therefore
offer high performance they are only usable for the one application they are designed
for, thus having very limited flexibility.

Reconfigurable Devices: A Reconfigurable Device (RD) allows adaption to the appli-
cation during runtime by modifying its spatial structure. The RD is customized to
a particular application containing only the needed operations, therefore reaching
performance close to ASIPs. Unlike a static ASIP modifying the spatial structure
of the RD by loading new configurations during runtime is similar to loading new
software modules onto a GPP and enables RDs having flexibility close to GPPs.

While GPPs offer a high degree of flexibility due to their ability to compute any kind of
task, they do not offer much performance in contrast to the other processor classes. Flex-
ibility is achieved by adapting the application to the hardware which subsequently runs
through fixed stages like Instruction Fetch, Instruction Decode or Execution. In contrast,
ASIPs offer high performance because they are optimized for a particular application and
the hardware is adapted to the application. Due to the dynamic of loading new configu-
rations on the RD during runtime and the adaption of the hardware to the application,
reconfigurable devices can offer both flexibility and performance. A simplified view at
the architecture of a reconfigurable device (see Figure 2) shows computational resources
connected to an interconnection network (communication resources). While the com-
putational resources needs to adapt to the applications’ computational requirements, the
communication resources need to adapt to the applications’ communication requirements.

A general goal when designing a network for communication is to design it at minimum
costs while still fully satisfying performance requirements [13]. So, in the design of in-
terconnection networks the applications’ communication requirements like the number of

18

Figure 2: Reconfigurable device with computational resources (dark gray) and communi-
cation resources (light gray) with two loaded applications A1 and A2 and a not
yet loaded application A3.

communication partners, bandwidth or latency are of major interest in order to design a
network which achieves high performance [17]. However, the mere diversity of applications
deems it impossible to design an interconnection network matching the requirements of
each and every application perfectly hence leading to suboptimal performance from the
start.

On RDs efficient communication cannot be achieved when relying solely on the design
of the interconnection network architecture. Communication protocols affect performance
by introducing data and processing overhead producing higher network load and resource
demand, but offering increased flexibility on the other hand. Applications can be posi-
tioned freely on the RD. The location were an application is placed on the RD in respect
to its communication partners (like peripherals) has influence on the performance of both
the interconnection network and the application. Longer communication paths lead to
longer latencies and an (overall) higher network load [1]. So, communication at runtime
need to be considered in order to achieve efficient data exchange between communication
partners. Furthermore, the high resource and area demand of flexible interconnection
networks on RDs limits resources available to speed-up computations thus impacting per-
formance of applications.

19

1 Introduction

Approaching communication holistically considers not only the architecture of the in-
terconnect, but also (i) communication-aware resource management, (ii) communication
protocols and (iii) resource usage just as well. By incorporating different parts of the
reconfigurable system during design- and runtime with respect to communication require-
ments, a resource efficient communication can be achieved.

1.1 Assumption and scientific challenges

The following thesis states the goal of my work.

By optimizing resource management and usage of communication protocols
and network resources, and by incorporating these into the applications’ commu-
nication requirements, resource efficient communication can be achieved. It can
be shown, that this holistic communication approach leads to higher performance
and flexibility of network-based reconfigurable systems compared to approaches
focusing solely on the architecture of the interconnection network.

Confirming this thesis is done in three parts considering different aspects of resource
efficient communication. Extensive evaluation will show that performance and flexibility
enhancements can be reached with the help of the concepts and techniques developed here.

Communication-aware resource management

Resource management of the RD at runtime is an important aspect of the reconfigurable
systems and is similar to the parts of an operating system managing the underlying sys-
tem resources. On a RD, the resource manager determines when (temporal planning)
and where (spatial planning) to execute an application, which directly influences system
performance. A simulator of an on-line runtime manager is presented and several op-
timizations are evaluated with regard to device utilization and communication distance
(Chapter 3).

Dynamic Network-on-Chip architecture

It is not possible to design a runtime manager without a deeper understanding of the
targeted reconfigurable architecture. In this part, the implementation of a Dynamic

20

1.1 Assumption and scientific challenges

Network-on-Chip is presented. The reconfiguration capabilities of the architecture are
evaluated and methods to enhance flexibility and performance by using the available
communication (and computational) resources are given. An FPGA-based prototype im-
plementation allows detailed evaluation of the proposed methods (Chapter 4).

Communication protocol

Up until now primarily hardware-based implementations of applications for the used re-
configurable architecture were considered. Finally, the view on the system is broadened
by extending the Dynamic Network-on-Chip architecture to support GPPs allowing ap-
plications to be constructed from software and/or hardware. For efficient communication
between applications running on GPPs a high-level communication protocol is adjusted to
the requirements of reconfigurable network-based multiprocessor systems on-chip (Chap-
ter 5).

All these partial aspects show, that enhancements in flexibility and performance can be
achieved through a resource efficient communication approach. The above aspects face
several challenges to be solved.

Problems and challenges in communication-aware resource management

The dynamic behavior of loading new configurations on the RD during runtime has in-
fluence on the devices’ free space, utilization, network load and fragmentation. With the
overall goals being the maximization of acceptance of applications and the minimization
of communication distance, methods for optimizing on-line temporal and spatial planning
need to be found and evaluated.

Communication-aware temporal and spatial planning uses methods to approximate the
path between sender and receiver on network-based RDs. Depending on the configuration
of the device, the concrete communication path from sender to receiver changes during
runtime, e. g. due to another application loaded in between sender and receiver. The
precise path need to be considered to get information about realistic communication
demands and to evaluate the quality of dynamic routing.

Spatial resource planning uses approximation algorithms to find solutions, because the
planning problem is NP-hard. In order to evaluate the quality of the approximation al-

21

1 Introduction

gorithm, the optimal solution need to be known for comparison. Due to the complexity
of the problem it is not possible to calculate the optimal solution in most cases. The
challenge is therefore to find the best possible solution in a feasible amount of time.

Problems and challenges in Dynamic Network-on-Chip architectures

In Dynamic Network-on-Chip architectures, efficient resource usage is of major interest.
Configurations covering both computation and network resources result in suboptimal
resource usage as network resources remain unused when covered by a configuration. The
challenge here is to find methods to utilize the network resources inside a configuration and
to achieve an optimal cooperation in terms of computation and communication. These
methods have to be implemented in order to evaluate their operability.

Problems and challenges in Communication protocol

For multiprocessor systems, like super computers, many widely accepted communication
protocols exist. An adaption to on-chip multiprocessor systems is obvious, as the com-
munication requirements are similar. However, the adaption of communication protocols
to on-chip multiprocessor systems is not straight forward as system abilities differ. Com-
pared to multiprocessor systems, resources of on-chip systems are limited. Especially
on-chip memory are sparsely available and the performance of on-chip processors is lower
compared to the performance of processors in a multiprocessor system. The task at hand
is to develop a communication protocol with low memory footprint and computational
overhead.

1.2 Organization of thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the abstract resource
model for adaptive on-chip multiprocessor systems used in this paper. In order to un-
derstand reconfigurability a brief introduction to relevant state-of-the-art reconfigurable
devices, interconnection networks and resource managers is given. After this introductory
chapter, the following chapters are devoted to resource efficient communication. First of
all, in chapter 3 the implementation of an on-line resource manager is presented and meth-
ods to enhance performance and flexibility, specifically integrated module selection and

22

1.2 Organization of thesis

relocation of tasks are evaluated. Furthermore, the results obtained by the on-line spatial
planner are compared with an optimal (off-line) spatial planner. In chapter 4 the per-
spective is shifted from management of reconfigurable devices to the actual device itself.
A resource efficient reconfigurable router is presented being usable as a network router
as well as an additional resource for computation. Furthermore, an adaptive processing
element for the calculation of the fast fourier transform algorithm is described. Process-
ing elements of reconfigurable devices are not limited to pure hardware implementations
like the processing element for the calculation of the fast fourier transform, but can also
be implementations of general purpose processors. A communication protocol based on
the message passing interface is presented in chapter 5, allowing flexible communication
between programmable processors. Finally chapter 6 concludes this work and gives an
outlook on follow-up research.

23

2 Reconfigurable computing systems

2 Reconfigurable computing systems

In this chapter the state of the art relevant for this work is given. Beginning with the
description of an abstract hardware architecture for adaptive on-chip multiprocessor sys-
tems, different aspects of reconfigurable computing systems are introduced. Basics of
resource management, reconfigurable logic devices, interconnection networks are covered
and corresponding research work by others is presented.

2.1 Abstract hardware architecture of a reconfigurable computing

systems

In this section the abstract resource model for a reconfigurable computing systems is de-
scribed. Such a system needs to be able to (i) adapt to the application and (ii) execute
several different applications simultaneously. Thus, the underlying hardware architecture
needs to be able to change depending on the computational and communication demands
and constraints of the applications. RDs offer the option to adapt the underlying archi-
tecture to the applications’ needs. Applications or tasks are implemented by modules on
a reconfigurable system.

Modules consist of processors (Pr), memory (Mem), local interconnects and/or hard-
ware accelerators (Hw). Each module has access to further global resources like peripher-
als (I/O) and external memory (Ex. Mem) like RAM, ROM or HDDs. Peripherals make
data exchange between modules and the outside world available. UART, USB, Ethernet,
WI-FI, Video I/Os, Audio I/Os or Digital Analog Converters are common examples of
peripherals. Global resources are located around the RD to allow separate data storage
and/or access to peripherals from independent modules.

Figure 3 shows several modules mi on a RD. External memory and peripherals are
arranged at the borders of the RD. Modules are interconnected using a global inter-
connection network and have access to all global resources. Note that it is possible to
include I/O (I/O Ctrlr.) or memory controllers (Mem. Ctrlr.) inside a module to set up
privileged access. In this case these resources are not available to other modules.

This abstract resource model is regarded as the base model of the reconfigurable com-
puting architecture used in this thesis. The model is refined in following chapters and an
actual architecture is presented.

24

2.2 Reconfigurable logic devices

Figure 3: Hardware infrastructure of a reconfigurable computing system with n + 1
modules

The following section gives an overview on reconfigurable logic devices in order to
understand how such devices enforce reconfiguration on hardware level and how different
approaches used by different reconfigurable devices deal with the involved issues.

2.2 Reconfigurable logic devices

The concept of reconfigurable computing was introduced by Gerald Estrin in the late 50s.
The Fixed Plus Variable Structure Computer [24, 25] was the practical realization of this
concept. It used a fixed part holding a general purpose processor, a variable part and a
supervisory control part to coordinate operations between the fixed and the variable part.
Configuration was done manually by replacing basic building blocks on the variable part.
Two different types of building blocks were available: one for signal inversion, amplification
or high-speed storage and the other one for combinatorics. Up to 36 building blocks could
be inserted into the variable part and connection between them was done by a wiring

25

2 Reconfigurable computing systems

harness allowing the configuration of the Fixed Plus Variable Structure Computer. The
technology at that time made the use of the Fixed Plus Variable Structure Computer
difficult. A lot of effort was required to implement applications in the first place and to
reconfigure the device manually later [9].

Over the last two decades, progress in the field of reconfigurable devices was amazing
and reconfigurable computing is widely used. Numerous workshops and conferences deal
with this topic [9]. Basically, reconfigurable logic devices belong in one of two classes —
fine-grained and coarse-grained devices [33, 30].

Fine-grained reconfigurable devices like Field-Programmable Gate Arrays (FPGA) use
single-bit Configurable Logic Blocks (CLB). Coarse-grain devices provide reconfiguration
on function level using word-level Configurable Function Blocks (CFB). While fine-grain
reconfigurable hardware has the benefit of high flexibility, coarse-grain reconfigurable
hardware trades-off some flexibility for a potentially higher degree of optimization in
terms of area and power. Coarse-grain architectures need significantly less time to perform
reconfigurations and the amount of reconfiguration data is much lower compared to fine-
grained architectures [33, 68].

2.2.1 From simple PLDs to FPGAs

Programmable Logic Devices (PLD) like Programmable Logic Arrays (PLA)s, Programmable
Array Logics (PAL)s, Complex Programmable Logic Devices (CPLD)s and FPGAs are
commonly used devices when a flexible hardware structure is asked for [9]. All these
devices belong to the fine-grained RD class.

PAL/PLA PALs and PLAs are the simplest programmable devices and are used to
implement combinatorial logic circuits. They can implement any boolean functions in a
disjunctive form by connecting an AND-plane to an OR-plane (see figure 4).

PLAs were introduced by Texas Instruments in 1970 [5] and allow programming of both
the AND- and OR-plane. In contrast, PALs (introduced in 1978 by Monolithic Memories)
only feature programability of the AND-plane with the OR-plane being fixed, so making
PALs a subclass of PLAs [9]. Both PLAs and PALs use fuses to cut connections according
to the desired boolean function. To program the device once (and for all), fuses are blown
after fabrication by using high currents (antifuse technology). The main drawback of PALs

26

2.2 Reconfigurable logic devices

Figure 4: Programmable Logic Array [38]

and PLAs is their limited capacity due to the quick growth of the AND- and OR-planes,
depending on the amount of inputs to the planes.

CPLD PALs and PLAs are only available in small sizes, equivalent to a few hundred
gates. In order to create bigger circuits CPLDs can be used. CPLDs extend the concept
of programmable AND/OR-planes by using additional I/O blocks and a programmable
interconnect.

Figure 5 shows the structure of a CPLD using PAL-like blocks with additional regis-
ters, a programmable interconnect and I/O blocks. The registers, PAL-like blocks and
I/Os can be interconnected freely. Areas, where CPLDs find common usage are power-up
sequencing, system configuration, I/O expansion or interface bridging (glue logic). Many
CPLDs have a non-volatile configuration memory, thus the CPLD can start processing im-
mediately on start-up. However, these devices are still too small for applications requiring
large gate counts.

FPGA FPGAs were introduced in 1985 by Xilinx and can be used to implement ap-
plications requiring large gate counts. Similar to CPLDs FPGAs have I/O blocks and a
programmable interconnect, but use CLBs 1 instead of PAL-like blocks (see Figure 6). The

1CLB is a term used by Xilinx

27

2 Reconfigurable computing systems

Figure 5: CPLD structure [38]

configurable logic blocks consists of a set of logic cells which typically consists of a Look-Up
Table (LUT), a one-bit register and a full adder. In contrast to CPLDs the programmable
interconnect of FPGAs is of finer granularity connecting individual logic blocks instead
of the large PAL-like blocks. There are different process technologies used for manufac-
turing FPGAs resulting in different types of programmability: one-time programmability,
in-system programmability, and reprogrammability. FPGAs using SRAM-based process
technology offer in-system reprogrammability, an important ability in order to perform
(partial) dynamic reconfiguration.

State-of-the-art FPGAs furthermore have specialized functional blocks like memories,
digital signal processing elements, fast I/Os, microprocessors or on-chip memory con-
trollers. These blocks normally provide word-level functions like 32-bit wide on-chip
memory or 25× 18 multipliers [75].

Large FPGAs, like the Altera Stratix-IV use more than 2 billion transistors [45] making
them suitable to implement complex systems on chip.

2.2.2 Coarse-grained reconfigurable devices

With FPGAs any kind of function can be implemented. This is possible because of
the fine-granularity of the logic blocks and the flexible programmable interconnect which
connects these blocks. The interconnect is also one of the main limitations of FPGA per-

28

2.2 Reconfigurable logic devices

Figure 6: FPGA structure [38]

formance, as it uses up to 90% of the chip area [43]. Coarse-grained reconfigurable devices
use word-level CFBs and therefore need less interconnections. CFBs are able to execute
few operations like multiplications, additions or subtractions and there interconnection is
realized with switching matrices or dedicated buses [9].

Pact XPP-III The Pact XPP-III [54] architecture is an example of a commercial coarse-
grained reconfigurable architecture (Figure 7).

The XPP-III (eXtreme Processing Platform) core consists of an array of different
processing array elements (PAEs) and a communication network for data and events.
Function PAEs (16-bit general purpose processor kernels) are used to execute control-
flow dominated irregular program code, whereas regular streaming algorithms like matrix
transformation or FIR-filters are executed on the dataflow array of the architecture using
ALU- and RAM/IO-PAEs. ALU-PAEs contain a configurable unit for basic arithmetic
and logical operations. RAM-PAEs are very similar to the ALU-PAEs, but replace the
arithmetic logic unit with a dual-ported SRAM and an I/O interface. Horizontal and
vertical routing connections for point-to-point connections between PAEs are used with
different data-width for data and events. Besides the horizontal and vertical connections
an additional configuration network exists, which allows runtime reconfiguration of the
PAEs. Configuration words are send to its correct row and column addresses, where they
are stored in the configuration register of a PAE. When configuring only one PAE, one

29

2 Reconfigurable computing systems

Figure 7: XPP-III core structure [54]

configuration word is needed, but with the configuration of many PAEs a larger config-
uration word is required. Thus, the configuration time is equivalent to the amount of
configuration words [53].

Many more coarse-grained reconfigurable architectures exist (see for instance [67, 49,
62, 22, 44, 14]). In [33] an overview of several architectures can be found.

2.2.3 Reconfigurability

Some of the presented reconfigurable devices, especially SRAM-based FPGAs and coarse-
grain architectures like the XPP-III, allow the implementation of tasks, like small video
filters or complex video decoders, during runtime. The ability to reconfigure the chip
during runtime enables the design of dynamically reconfigurable hardware systems that
can adapt themselves to the current set of tasks for better performance. Further benefits
of this capability are a reduced power consumption and a more efficient use of the available
board space [72]. Tasks can be implemented using the whole RD (full reconfiguration)or
only a part of the device (partial reconfiguration).

30

2.3 Resource management of reconfigurable devices

As an example for partial reconfiguration, consider an automotive infotainment sys-
tem providing numerous services like audio and/or visual entertainment, video games,
automotive navigation, location-based services or internet access. These tasks vary in
computational and communication demand. Using a partial reconfigurable system allows
execution of such tasks with high performance, while maintaining flexibility by implement-
ing several different tasks in parallel. The system automatically adapts to the users’ needs
by reconfiguring the underlying hardware device with corresponding implementations of
tasks [29].

In a partially reconfigurable device an Reconfigurable Unit (RCU) is the smallest frac-
tion (or frame) available to be (re)configured. In the XPP-III RCUs are the ALU-PAEs
and RAM-PAEs. This makes the XPP-III a heterogeneous RD consisting of different
types of RCUs. Homogeneous devices on the other hand feature structurally identical
RCUs. In FPGAs the size of a single RCU differs, depending on device family and size.
In the Xilinx Virtex family FPGAs, a group of configurable logic blocks forms an RCU.
The Virtex-2 FPGAs for instance allow partial reconfiguration of an array of 8 by 8 CLBs
in XC2V40 devices and 112 by 104 CLBs in the XC2V8000. Meanwhile the newer Virtex-4
can be configured in 1 by 16 CLBs independent of the device’s size [42].

In order to manage reconfigurations of the underlying resources a runtime resource
manager is needed. Steiger et al. [64, 63] consider resource management the centerpiece
of a reconfigurable operating system.

2.3 Resource management of reconfigurable devices

With the ability to execute several tasks simultaneously it is important to determine where
the task should be placed on the reconfigurable device. This operation is called placement
or allocation of resources. When considering timing constraints due to deadlines, either
soft or hard, for the tasks has to be carried out in order to calculate the moment the
tasks’ execution is started temporal planning. However, the time at which tasks arrive is
not known a priori. In Figure 8 the general architecture of a reconfigurable computing
platform is shown.

The resource manager is needed to administrate the (re-)configurations of the RD ac-
cording to incoming tasks and their requirements and consists of three parts: the temporal
planner, the placer, and the loader implementing the task on the device.

31

2 Reconfigurable computing systems

Figure 8: Architecture of reconfigurable computing platform

Tasks are implemented by pre-synthesized modules which are the actual hardware sit-
uated on the RD. A start time can only be assigned to a task, if its module can be
placed on the device and the task can be executed prior to its deadline. Therefore, a
strong nexus between temporal planning and placement of tasks exists. Together, both
placement and temporal planning steps are called scheduling in the course of this thesis
corresponding to scheduling in operating systems. Application placement is an important
aspect of scheduling in certain multiprocessor systems, like large-scale, shared-memory
non-uniform memory access multiprocessors [12]. Thus, an interrelationship between
scheduling on multiprocessor systems and reconfigurable devices exist. Yet, in multipro-
cessor systems tasks are often executed on several different resources (processors), while
in reconfigurable devices all tasks share the same adaptable surface.

Scheduling can be done on- or off-line. On-line scheduling handles the tasks arriving
one-by-one and the schedule is calculated based on the list of known tasks one after
another during runtime. Only a subset of the whole task set is known which might result
in suboptimal scheduling decisions. Off-line scheduling on the other hand considers the
whole set of tasks and is therefore able to find optimal solutions. However, the off-line
placement problem is already NP-hard.

32

2.3 Resource management of reconfigurable devices

2.3.1 Placement

Most publications on managing the resources of RDs focus on temporal planning and/or
placement. These papers can be divided into off- and on-line methods targeting homoge-
neous or heterogeneous reconfigurable devices. For the computation of task placements
basically two steps are performed: (i) managing allocatable free space and (ii) finding a
viable placement in this available space.

Bazargan et al. [6] take credit for being one of the first groups of authors to introduce
on-line placement algorithms for two-dimensional homogeneous reconfigurable devices.
Their algorithms partitions the free space and maintains a set of maximally free rectangles
leading to a quadratic size of the set of free rectangles. A rectangle is chosen from the set
of free rectangles by using a cost function considering the area of the free rectangles. The
selected rectangle is then split into two smaller rectangles of free space which are added to
the list of free rectangles. Alternatively, a method for partitioning the free-space into only
O(n) rectangles using heuristics is proposed which in comparison gives worse results in
terms of task rejections, if considering the same task set. Steiger et al. [64] improved the
Bazargan’s O(n) partitioner by delaying the split decision of the resulting free rectangles
after a module has been placed. Handa and Vemuri [32] showed that free space in the
form of maximal empty rectangles can be managed more efficiently by using the staircase
data structure.

In [3] an algorithm considering routing-conscious placement is presented, which man-
ages the allocatable space in O(n log n) using plane sweep methods from computational
geometry.The decision where to optimally place a module in the allocatable free space is
calculated using weighted communication costs instead of computing the size of the free
rectangles. Another approach to placement was presented by Eiche et al. [23]. By us-
ing a discrete hopfield neuronal network, an on-line placer for heterogeneous devices was
implemented. The neural network outperforms the older SUF fit placement algorithm
presented in [40].

When placing modules on a reconfigurable device the available free space becomes frag-
mented as tasks finish, which can lead to a higher rejection rate of tasks, even though
the total amount of allocatable space is higher then the spatial requirements of an incom-
ing task. [26] presents a defragmentation approach for one-dimensional heterogeneous
reconfigurable devices in a no-break fashion. By copying one module at a time and then

33

2 Reconfigurable computing systems

relocating the running computation to the copied module. Results highlighted that the
presented approach leads to allocatable space up to 50% larger. In [61] Tabero et al.
present a metric to estimate the degree of fragmentation of a reconfigurable device by
analyzing the free space. Heuristics to decide when and how to perform defragmenta-
tion of the device are presented. In [66] this work is extended and the metric is used to
implement a fragmentation-based heuristic to find a viable location in the available free
space.

Danne and Stühmeier [19] introduced an off-line placement algorithm considering geo-
metrical task variants. Tasks are modeled as three dimensional boxes constituted by their
width, height and execution time. Modified heuristic methods from floorplanning are
applied to select the task variants leading to better solutions for the placement problem.
Belaid et al. [7] presented an off-line placer for heterogeneous devices formulating the
placement problem as a constrained optimization problem taking task preemption and
reconfiguration overhead into regard.

2.3.2 Temporal planning

With execution time and deadlines of tasks, temporal planning becomes a necessity in
order to fulfill timing requirements. In [64] different strategies for temporal planning are
explored. Normalized planning considering both spatial and temporal aspects of tasks
are combined with weighting coefficients and the optimal values of these coefficients are
determined. Overall, best results are obtained when considering early deadlines first.
Also a non-linear combination of deadline and task size had been considered, but resulted
in worse outcomes. Danne et al. [18] considered off-line temporal planning of periodic
real-time tasks and adapted the global Earliest Deadline First (EDF) approach used in
real-time operating systems to homogeneous reconfigurable hardware devices. Two pre-
emptive algorithms, EDF-First-k-Fit and EDF-Next-Fit, are presented and the influence
of reconfiguration overhead was evaluated. Results show that reconfiguration times of
smaller scale than task computation time causes only minor losses in performance.

34

2.4 Interconnection networks and communication protocols of reconfigurable devices

2.4 Interconnection networks and communication protocols of

reconfigurable devices

With placement and temporal planning of tasks at runtime it is not known a priori where
and when a task is placed. It is important, that ongoing interconnections e. g. between
modules of tasks and peripherals or external memories are kept and new interconnections
are established. The communication infrastructure and protocols of RDs therefore have
to be adaptive.

In [9] communication approaches were categorized depending on the way the commu-
nication is realized. Direct communication, communication over third party, bus-based
communication, circuit switching and Network-on-Chip (NoC)-based communication are
all feasible communication schemes for RDs. However, bus-based communication and
NoCs are the dominant schemes in research communities [8]. While buses offer low la-
tency, they do not scale well and are therefore a good solution for a limited number of
modules only. NoCs provide far better scalability and are regarded the most viable solu-
tion for large chips using many modules, but introduce high and variable latencies [59].
Next, the implementation of a bus-bused interconnection network and NoC architectures
is presented.

2.4.1 Bus-based interconnection network

The RMBoC (Reconfigurable Multiple Bus-on-Chip) communication architecture target-
ing FPGAs is presented in [2]. Figure 9 shows the simplified architecture consisting of
several switches locally attached to modules. Multiple segmented buses are used to con-
nect the switches and allow each module to dynamically access the bus and establish
communication with other modules (1-D circuit switching).

This slot-based communication approach is closely related to the reconfiguration capa-
bilities of the Xilinx Virtex-2 architecture which allows 1-dimensional partial reconfigura-
tion [56]. More recent FPGAs like Virtex-4 FPGAs allow tile-based partial reconfiguration
and are therefore better suited for the implementation of 2-D communication approaches
like with NoCs.

35

2 Reconfigurable computing systems

Figure 9: RMBoC architecture

2.4.2 Networks-on-Chip

Several reconfigurable architectures using Networks-on-Chip as the main communication
paradigm exist [55, 20, 35, 39, 10, 70]. A NoC is basically constructed from a set of routers
relaying data from source to destination.

Devaux et al. [20] implemented a fat-tree NoC using dynamically reconfigurable routers
called R2NoC. Each router contains a partial reconfigurable region which implements the
dynamic communication links. Depending on the configuration of the reconfigurable re-
gion, the in and outputs are (statically) connected and a dedicated connection is estab-
lished between source and destination modules using circuit switching.

Yet another NoC relying on circuit switching, is the PNoC [35]. In this design, each
router has its own subnet. A collection of processing elements in each of those subnets
allows frequently communicating tasks implemented by modules to be placed within the
same subnet. The routers are implemented in a static manner and only their routing
tables are updated as modules are removed or added.

The configurable Network-on-Chip CoNoChi [55] uses virtual cut-through switching
of packets. Routers have four equal full-duplex links connecting to the modules at the
upper, lower, left and right side of the router. The RD is splitted into a fixed number
of tiles which can be of one of four types. Figure 10 shows an exemplary configuration
and the four tile types. The CoNoChi architecture makes placement of modules with
different sizes possible. The communication infrastructure dynamically adapts and unused
routers are deleted to decrease communication latency and to reuse computational and

36

2.4 Interconnection networks and communication protocols of reconfigurable devices

communication resources previously occupied by routers. In contrast, the router resources
of R2NoC and PNoC are static and cannot be removed. Thus, CoNoChi offers a higher
degree of modularity [56].

Figure 10: CoNoChi architecture [56]

The Dynamic Network-on-Chip (DyNoC) architecture was presented by Bobda et al.
in [10, 11]. The basic state without any modules placed appears and behaves like a
normal network-on-chip consisting of Processing Elements (PE)s and routers. Processing
elements access the network via corresponding routers. In contrast to a normal NoC, the
PEs of the DyNoC can also communicate with their nearest neighbors using direct links.
This allows the aggregation of several PEs creating a rectangular module to compute a
complex task. PEs inside a module do not need to use the communication resources of the
network in between for communication, but use their direct links instead. The advantage

37

2 Reconfigurable computing systems

of this hybrid communication scheme is a gain in flexibility. Figure 11 shows the DyNoC
system architecture, whereas four modules from three different tasks are covering several
PEs and routers.

Figure 11: DyNoC system architecture

2.4.3 Communication protocols

Closely related to the architecture of the interconnection network are communication
protocols, which define the formats and rules for exchanging messages over the network.
Protocols are implemented in hardware and/or software and cover one or more layers
of abstraction. Different layers provide different services, like routing, flow control or
synchronized communication. Research in this area mainly differs in its focus on particular
layers.

The network layer S-XY dynamic routing protocol [11] for the DyNoC adapts routes
between communication partners in order to surround obstructing modules in the path

38

2.5 Discussion

of the packet. S-XY is implemented in the router of the DyNoC and operates in three
different modes. In normal XY mode (N-XY), XY routing is applied. Packets are first send
first send horizontally to the correct X-coordinate and then vertically to the Y-coordinate.
Surround horizontal mode (SH-XY) is entered when an obstacle left or right of the packet
needs to be surrounded. The last available mode is surround vertical (SV-XY) and is
executed when an obstacle to the upper or lower direction is detected. Because modules
are surrounded by a ring of router in a DyNoC it could be shown that with a very high
probability S-XY routing is deadlock free by proving that there is always a path from
the source of the packet to its destination and that the packet will reach its destination
after a fixed number of steps [10]. Available work on high layer protocols often provides
communication interfaces for applications [60, 46, 28]. Different concepts like synchronous,
asynchronous or buffered communication, depending on the underlying architecture of the
computational and communication resources, are offered and can be directly accessed in
the applications’ source code. Some projects consider high level protocol implementations
in both software and hardware to realize uniform communication between hardware and
software processing modules [71].

2.5 Discussion

As seen in the previous sections, published literature on reconfigurable systems is vast and
reaches into multiple research fields. An important field of research is communication,
especially as communication is a main factor limiting cost, area, power and performance
of systems [17].

Many publications on communication in reconfigurable system focus on the architec-
ture of the interconnection network and aim at developing an efficient communication
infrastructure. The network resources of the RD need to provide a high degree of flexibil-
ity, in order to handle the changing requirements due to dynamic partial reconfigurations
[55, 35, 50]. NoCs are most prominently considered as the interconnection network for
reconfigurable devices and certain network aspects like quality of service [27] or buffer
sizes [16, 51, 4] are taken into account during design. However, in many cases resource
usage of the interconnection network is not optimal because communication resources do
not adapt to the applications’ communication and/or computational resource demand

39

2 Reconfigurable computing systems

[35, 20, 56, 11]. Therefore, methods for efficient resource usage have to be considered in
the design of interconnection networks.

Protocols managing the communication on RDs generally target specific architectures,
the S-XY routing algorithm of [11] is directly implemented in the hardware of the router,
for example. Higher layer RD communication protocols enable flexible communication
between applications. Most high layer protocols for on-chip systems can not be adapted
to the applications’ needs [60, 46, 28, 71] and therefore have a higher memory demand and
reduced performance in comparison to adaptable protocols. Hence, flexible and adaptable
high-level communication protocols have to be considered in reconfigurable systems.

Only few publications on communication consider resource management of reconfig-
urable devices during runtime. Most works on resource management focus on optimizing
device utilization [64, 23, 26, 61, 18] of the RD, but do not consider communication as
a performance factor. Communication-aware on-line temporal and spatial planning offer
possibilities to improve performance, e. g. by reducing the network load and path length
due to communication-aware scheduling [3, 65, 41]. However, this methods have to be
further investigated and evaluated.

In this work a holistic approach on applications’ communication with reconfigurable
systems during design time and runtime is presented, which increases performance and
flexibility through resource efficient management of communication demands.

2.6 Chapter conclusion

This chapter gave an overview of research aspects in the field of reconfigurable computing
systems. An abstract hardware architecture of a reconfigurable multiprocessor systems
was introduces as the basic resource model used in this work. Several actual reconfig-
urable devices with different complexities, performance characteristics, granularity and
reconfiguration capabilities were described. A brief overview of state-of-the-art intercon-
nection networks and communication protocols for reconfigurable devices has been given.
Finally, a resource manager for the management of reconfigurable devices was introduced
with the main job being temporal planning and placement of tasks.

The placement of tasks directly influences the volume of communication traffic, so task
scheduling should be communication aware to efficiently use the communication resources
of the reconfigurable device. Shorter communication path lead to an overall higher system

40

2.6 Chapter conclusion

performance, as latency between sender and receiver as well as the network load are
reduced. Yet, most scheduling algorithms consider the calculation of viable allocations
only and do not comprise finding an optimal placement in regard to communication.

The next chapter presents methods to improve performance of a communication-aware
on-line scheduling algorithm. Furthermore, a communication-aware off-line placement
algorithm using declarative problem solving is introduced and compared to the on-line
variant.

41

3 Scheduling on NoC-based reconfigurable architectures

3 Scheduling on NoC-based reconfigurable

architectures

This chapter describes communication-aware scheduling of tasks on reconfigurable devices
using a NoC-based communication infrastructure. While this paper focuses on the com-
munication between tasks and/or I/Os at the devices’ border, scheduling on RDs has not
only to provide minimized communication distance as an optimization goal, but aims for
maximal device utilization, as well. The approach of this work is to determine time and
area, i. e. when and where to place a task on the RD in a fashion to meet the following
objectives:

1. The amount of placed tasks out of a task set is maximized and in turn minimizes
rejection rates.

2. Communication distances (path length) between communication partners are short-
ened to a minimum.

The first objective ensures, that the maximum number of tasks out of a task set is
executed, while the second objective minimizes path length between sender and receiver.
Both goals are strongly related to placement as well as temporal planning. The research
presented in this chapter firstly extends a basic on-line scheduler to increase the amount of
placed tasks and to lower communication distances between tasks and secondly compares
the results of the on-line placer with the optimal results calculated by an off-line placer.
Rejection rate of a task set and path length (hop count) are the main metrics used for
evaluation. Placement and temporal planning on reconfigurable devices are dependent on
the architecture of the device and the used task model. Knowledge on the communication
and configuration capabilities of the device is crucial: The size of the reconfigurable
regions, as well as the time needed to reconfigure a region and the interconnection network
have to be considered to fully exploit the capabilities of the reconfigurable device by a
scheduling algorithm. For the thesis at hand, the DyNoC architecture for the dynamic
interconnection of reconfigurable modules in a mesh network was used (see Chapter 2.4.2).

Tasks are built up out of one or more components communicating with each other or
with I/Os at the devices’ edge. An exemplary task is the MPEG-4 part 10 video compres-
sion algorithm. It performs several consecutive steps like discrete cosine transformation
(DCT), entropy coding or quantization. Each of these steps is dependent on at least one

42

3.1 Basic scheduler

other step or an external data source or sink. The steps are modeled as components of
the MPEG-4 task with intra-task dependencies.

3.1 Basic scheduler

This section is an extended version of [MCHB11]. Tasks have a set of components each
consisting of at least one implementation in the form of a rectangular module covering
a fixed amount of reconfigurable units. The relations between tasks, components and
modules are defined as follows:

A task consists of at least one component.

Definition 1 (Task-Component-Relation) For each task ti ∈ T , a non empty set Ci

of components cj ∈ Ci exist.

Each component has at least one input and output communication link.

Definition 2 (Component-Component-Relation) For each component cj ∈ Ci, a
set of communication partners or points cpk ∈ CPj exist.

Each communication partner or point cpk ∈ CPj is associated with the communication
requirements average bandwidth bak, the communication distance cdk and the attribute
srk which marks the communication partner as a sender or receiver. Besides components,
also memories or I/Os positioned around the RD can be communication partners, which
are called interfaces.

Definition 3 (Component-Module-Relation) For each component cj ∈ Ci, a non
empty set Mj of modules mk ∈Mj exist.

With each module mk ∈Mj of a component cj ∈ Ci of a task ti a width wk and height
hk and a worst-case execution time ejk is associated. Thus, when considering several
modules differing in area requirements and execution time, the selection of a modules
need to be made prior to placement and temporal planning.

Definition 4 (Feasible Module Selection) A feasible module selection assigns a mod-
ule mk ∈Mj to each component cj ∈ Ci of task ti, so that a feasible schedule exist.

43

3 Scheduling on NoC-based reconfigurable architectures

A feasible schedule has to consider both spatial and temporal aspects meaning a place-
ment on the device as well as a start time (temporal planning) for a task have to be
found.

Definition 5 (Feasible Schedule) A feasible schedule exist, when placement and tem-
poral planning for the task exist.

The issues of placement and temporal planning are firmly related; a feasible start time
cannot be assigned without considering the placement of the tasks’ modules.

Definition 6 (Feasible Placement) Presuming, a set Mp of already placed modules
ml ∈ Mp on a device with size (Ax, Ay) is given. With all modules ml ∈ Mp an origin
xl, yl and the required space wl, hl of the modules is associated. A feasible spatial planning
for a newly arriving task ti at time ai with the components cj ∈ Ci, the selected modules
mk and the required space wk, hk of each module mk exist, if for each mk a position xk, yk
on the reconfigurable device can be found satisfying the following conditions:

I) xk + wk ≤ Ax ∧ yk + hk ≤ Ay

II) ∀ml ∈Mp:

[(xl + wl) ≤ xk ∨ (xk + wk) ≤ xl]∧

[(yl + hl) ≤ yk ∨ (yk + hk) ≤ yl]

As soon as a feasible placement for the selected module mk ∈Mj has been determined,
a start time si ≤ ai can be assigned to the task ti. Modules of tasks having finished
execution are removed from the RD, i. e., M ′

p = Mp \ mk. Only when the task finishes
prior its deadline di a feasible temporal planning exist.

Definition 7 (Feasible Temporal Planing) A feasible temporal planning assigns a task
ti a start time si, so that si + ei + oi < di holds true.

ei is the expected execution time of a task ti and oi contains the amount of configuration
overhead.

Up next, the implementation of a basic scheduler follows.

44

3.1 Basic scheduler

3.1.1 Placement

Placement generally includes two steps, management of free space (partitioner) and fitting
the application in this space (fitter). The partitioner keeps track of available free space
on the device, while the fitter selects an area inside this free space depending on selection
strategy. The research at hand is based on the routing-conscious, dynamic placement
algorithm by Ahmadinia et al. [3]. This algorithm can be computed in θ(n log n) time and
considers manhattan distance between modules to select optimal placement. In contrast
to [6, 63, 66], the algorithm by [3] manages free space by storing the location of occupied
spaces and finding a placement for a single point instead of searching completely through
all free rectangles. This is done by shrinking the reconfigurable device of an area A =

(0, 0, Ax, Ay) and simultaneously blowing up the already placed modules mp ∈Mp by half
of the width wj/2 and half of the height hj/2 of the module yet to be placed mj. Equation
1 shrinks the area of the reconfigurable device A and Equation 2 blows the modules up.

A′ = (
wj

2
,
hj
2
, Ax −

wj

2
, Ay −

hj
2

) (1)

m′
p = (x′p, y

′
p, w

′
p, h

′
p) (2)

Equation 3 and 4 calculates the new x and y position x′p and y′p of a placed module on
the shrunken reconfigurable device A′.

x′p = max(xp −
wj

2
,
wj

2
) (3)

y′p = max(yp −
hj
2
,
hj
2

) (4)

Equations 5 and 6 determines the updated width w′
p and height h′p of the already placed

module.

w′
p = min(wp + wj,W − wj) (5)

h′p = min(hp + hj, H − hj) (6)

45

3 Scheduling on NoC-based reconfigurable architectures

In the end, all possible positions for mj are reduced to points instead of rectangles. The
fitter then selects a point location from the available free space. The points immediately
on the edge of the chip are of particular interest, as they preserve the structure of free space
in good shape. The contours of the free space are computed using the CUR algorithm
(contour of union of rectangles) [31] known from computational geometry. It performs
plane sweeps and uses segmentation trees as data structures. The optimal point for the
module in the available free space is found by minimizing the manhattan distance between
communication points.

3.1.2 Temporal planning

If a feasible placement for a task has been calculated and the task ti meets its deadline di
(feasible temporal planning) the task is accepted and placed on the reconfigurable device.

When considering multiple tasks with different area requirements, execution times,
deadlines and arrival times, one has to order these tasks in a priority queue according to
their specific requirements. Placement of the task of highest priority is then calculated
first and, if a feasible placement exists, the task is loaded on the RD. Next the task of
second highest priority is considered for placement, and so on. Steiger et al. [64] have
shown that sorting the tasks according to their deadline leads to better results compared
to ordering according to size. This sorting process is an adaption of the well known EDF
dynamic scheduling algorithm for real-time systems. Furthermore, an currently unplaceble
task is put on hold and the computation continues with the next task in queue. Danne
[18] called this the EDF-NF (Next-Fit) algorithm and presented a schedulability test for
periodic task sets. The Next-Fit strategy can place and execute tasks out-of-order, thus
allowing a better utilization of the reconfigurable device. The work at hand uses the
EDF-NF algorithm.

The following sections extends and optimizes the basic scheduler trying to maximize
device utilization as well as minimizing communication distance between communication
partners. Module selection is considered the first optimization necessary, focusing on
device utilization.

46

3.2 Integrated module selection

3.2 Integrated module selection

The selection of a module from a set of modules implementing the same functionality but
having different constraints poses the first issue to turn to. Research on the matter was
published in [MCHB11] and this section is a derivation of this paper.

Tasks can be computed by different implementations (modules) of a component vary-
ing in size, execution time and communication overhead: Computing an Fast Fourier
Transformation (FFT), for instance, involves the butterfly operation. A N -point Discrete
Fourier Transformation (DFT) needs log2(N) stages with N/2 radix-2-butterflies per
stage. Viable FFT implementations need to calculate one radix-2-butterfly operation
at minimum, covering the area a, or at most N/2 butterflies covering an area of roughly
a ·N/2. This does not consider the area needed for communication. Thus the execution
time of a N -point DFT varies when done on different modules. The largest implementa-
tion computes N/2 butterflies in parallel and is about N/2 times faster then the smallest
one. Other tasks, as present in image processing, sort algorithms or applications using
the Monte Carlo method show a similar behavior. The availability of several modules of
different characteristic implementing the very same component of a task, does not only
expand the design space for static designs, but also for dynamic implementations like
Dynamic Networks-on-Chip. In particular, selecting the best fitted module has impact
on both schedulability and optimality of an implementation.

In Figure 12 the tasks t1, t2, t3 and t4 with one component per task are placed on
a DyNoC. Task t5 has one component implemented by two modules m1 and m2. The
modules differ in size and execution time with m1 having the shorter execution time but
covering a larger area of the RD.

A feasible placement of t5 is only possible with module m2, as m1 excels the available
space. Still, the execution time of m2 must not excess the deadline of t5. Module selec-
tion is an extension to temporal planning and placement steps and is integrated in the
scheduler.

This section only considers tasks consisting of one component in order to evaluate
the achievable performance through integrated temporal planning, module selection and
placement. The problem definition for integrated temporal planning, module selection
and placement reads as follows:

47

3 Scheduling on NoC-based reconfigurable architectures

Figure 12: Module selection of task t5

Definition 8 (Integrated temporal planning, module selection and placement)

Given a set T of tasks ti ∈ T with arrival times ai, components Ci and associated modules
mj ∈ Mj ⊂ Mi. For each component cj ∈ Ci selects a module mj ∈ Mj in such a way
that a feasible schedule for the maximal number of tasks ti exists.

3.2.1 Module selection strategies

State-of-the-art on-line schedulers only consider one module per task. With the avail-
ability of several modules able to execute a particular task, a fitting module has to be
selected during runtime. Selecting the right module is crucial when considering device
utilization and rejection rates. A solid module selection strategy should be dynamic in
order to allow adaption to the current utilization of the device and timing requirements
of the task. Another advantage of having multiple modules per task is the possibility to
use other modules, if the initially chosen one cannot be scheduled.

Dynamic Module Selection The Largest Module First (LMF) heuristic picks the mod-
ule with the largest area requirement first. When the largest module can not be placed,
because free space is not big enough, the second largest module is chosen. The LMF is
invoked over and over again until a feasible placement for the task has been found or the

48

3.2 Integrated module selection

execution time of the chosen module exceeds the deadline. This strategy tries to compute
a task as fast as possible.

Smallest Module First (SMF) is the counter part to LMF and considers the module
with the smallest area requirements first. When the runtime of this module conflicts with
the given deadline of the task, the next largest module is chosen until the smallest possible
module is found which meets the deadline. This strategy tries to maximize free space by
using only the smallest operable module.

Static Module Selection While dynamic selection heuristics allow the adaption to
the device state or timing by selecting smaller (slower) or larger (faster) modules, static
heuristics preselect a module for placement at compile time and do not take other modules
for a task into account. The following static module selection heuristics are discussed as
a comparison to dynamic heuristics.

Largest Module Only (LMO) considers the module with the largest area requirement
only.

Smallest Module Only (SMO) heuristic chooses the module with the smallest area re-
quirement which meets the deadline di.

Average Size Module Only (ASMO) just picks the module of overall average size.

Module selection is integrated in the basic scheduler as an extension. Pseudo code for
this extended scheduler is given next considering only tasks with one component.

3.2.2 Extended scheduling algorithm

The scheduler handles tasks by managing them in different lists according to their current
state. When a task arrives it is put in the TFLOATING list and the scheduler is called.
TFLOATING holds all plannable tasks and sorts them by means of the EDF-Next-Fit tem-
poral planning algorithm. The first task ti of the list is checked for feasibility. A task
is considered feasible, if there is at least one module for each component meeting the
deadline ti.deadline of the task. If the task is not feasible, it is rejected and put into the
TREJECTED list. A module mj of a feasible task is selected according to the module selec-
tion strategy and the placer (spatial planning) is invoked. If placement is successful, the
task is loaded on the device and put onto the TRUNNING list, otherwise the next module
of the task is chosen depending on the module selection strategy. If no feasible module

49

3 Scheduling on NoC-based reconfigurable architectures

can be placed, the next task is considered (next fit) and ti is put back in TFLOATING

again. It might be possible to schedule the task at later point.

Algorithm 1 Scheduling with module selection
success← FALSE
k ← 0
Sort(TFLOATING)
while (k <= next_fit) do

ti ← Pop(TFLOATING)
cj ← ti.Ci

Ms ← cj .Mj

if (time() +Ms.MinRuntime() < ti.deadline) then
while (not success and Ms 6= ∅) do

mk ← SelectModule(Ms)
success← Placement(ti, cj ,mk)

end while
if (success) then

ti.start_time← time
ti.state← RUNNING
TRUNNING ← ti ∪ TRUNNING

else
ti.state← FLOATING
TFLOATING ← ti ∪ TFLOATING

end if
else

ti.state← REJECTED
TREJECTED ← ti ∪ TREJECTED

end if
k ← k + 1

end while

Algorithm 1 shows the pseudo code of one run of the scheduler. The algorithm has an
overall complexity of O(n log n). In [3], Ahmadinia et al. showed the placement algorithm
to be of a complexity of O(n log n). All other steps of the scheduling algorithm, like the
ordering of tasks in a priority queue, are simply accessing and sorting lists taking O(n)

or O(n log n) steps respectively. Thus, the overall complexity of the scheduling algorithm
remains in the O(n log n) domain. The scheduler is integrated in a simulation environment
and is implemented in the Python programming language.

50

3.2 Integrated module selection

3.2.3 Evaluation

The performance of the module selection strategies is evaluated using the percentage
of rejected tasks and the communication distance. All task sets are evaluated using
EDF-Next-Fit scheduling with next-fit values of k ∈ {0, 1, 3, 10,∞} and a device size of
100 × 100. No precedence of tasks is considered, as only the influence of dynamically
selecting modules is evaluated.

Several task sets of different degrees of device utilization were benchmarked and three
representative task sets featuring high utilization were chosen. Each task set TS1, TS2
and TS3 contains 500 tasks with one component per task. All modules were created
by generating one rectangular base module with random dimensions between 4 and 32
for width w and height h and a random runtime between 16 and 48 time steps. This
module serves as the derivative source for all other modules of the task by changing the
size and calculating the runtime depending on the change of size, e. g. a module with
half the area demand runs for double the time. The deadline of the task was randomly
chosen, the only constraint being all modules of the task were able to meet the deadline.
Arrival times of tasks were randomly chosen between 0 and 500 time steps and each task
uses randomly chosen input and output interfaces at the border of the device. The main
difference between the task sets TS1, TS2 and TS3 is the amount of modules per task. A
task in TS1 has seven modules, while a task in TS3 only has three modules.

Table 1 shows the rejection rate of the three task sets. TS1 has seven modules per task
ranging from 0.04% to 54.8% of the device size. Dynamic module selection using LMF
leads to no task rejections in TS1, while SMF, the runner-up, comes out at a rejection rate
of 3.8% in comparison. If enabling out-of-order placement by increasing k, the difference
between all strategies shrinks, but still LMF gives the best results. For TS2 and TS3
less modules per task were available, limiting the selection flexibility and resulting in an
overall worse rejection rate of the module selection strategies.

Both LMF and SMF heuristics outperform the static strategies in almost all cases.
While the LMF strategy has no tasks rejected in TS1, with TS2 and TS3 the reconfigurable
hardware becomes saturated and the situation changes. LMF basically behaves as follows.
First larger modules are placed and the free space between the large modules is filled-up
with smaller modules. When a large module finishes, a module with at most the size of
the finished module can be placed. Generally, the newly placed module will be smaller

51

3 Scheduling on NoC-based reconfigurable architectures

Table 1: Rejection rate for three task sets and varied next-fit value k

Task Set k LMF LMO SMF SMO ASMO

0 0.0% 20.6% 3.8% 11.4% 12.6%
TS1 1 0.0% 14.8% 2.0% 9.4% 10.4%
0.04% - 3 0.2% 11.8% 0.2% 8.6% 8.6%
54.8% 5 0.4% 10.4% 1.0% 9.0% 9.0%
7 modules 10 1.4% 7.0% 2.0% 9.0% 9.0%

∞ 1.8% 7.2% 4.2% 9.0% 9.0%

0 0.8% 17.4% 7.6% 11.2% 13.8%
TS2 1 0.2% 11.8% 4.8% 10.2% 10.2%
0.04% - 3 0.4% 6.6% 3.6% 8.8% 8.8%
36.0% 5 0.6% 5.4% 2.0% 8.8% 8.8%
5 modules 10 2.4% 4.0% 3.8% 8.8% 8.8%

∞ 3.4% 7.6% 6.8% 8.8% 8.8%

0 12.8% 24.0% 17.6% 17.6% 18.6%
TS3 1 9.4% 18.0% 13.0% 15.2% 15.2%
0.09% - 3 6.6% 12.8% 10.6% 14.8% 14.8%
16.0% 5 5.8% 10.2% 9.2% 14.8% 14.8%
3 modules 10 7.8% 9.8% 10.8% 14.8% 14.8%

∞ 7.8% 10.2% 11.2% 14.8% 14.8%

creating a small area of free space which in turn can be filled by smaller modules, if
available. SMF running in saturated state has finishing modules create small areas of
free space allowing the placement of only small and smaller modules and thus leading to
a higher device fragmentation, which leads to a higher rejection rate. Additionally, the
available time frame between task arrival and latest execution start time is significant
shorter compared to LMF, limiting possible start times.

Dynamic module selection offer a chance to lower rejection rate compared to static
strategies. The influence of these strategies on communication distance is evaluated next
by using the manhattan distance as metric.

The influence of module selection on average manhattan distance per task differs de-
pendent on strategy, illustrated in Figure 2. Basically speaking, the lower the rejection
rate (higher device utilization), the longer the communication distance will be. More
tasks are placed on the device minimizing the chance of having free space with a short

52

3.2 Integrated module selection

Table 2: Rejection rate and average manhattan distance for module selection heuristics
for k = 0

Task Set Heuristic Rejection Rate Manhatten Distance [hops]

LMF 0.0% 136.0
TS1 LMO 20.6% 104.4
0.04% - 54.8% SMF 3.8% 113.8
7 modules SMO 11.4% 112.2

ASMO 12.6% 111.1

LMF 0.8% 134.7
TS2 LMO 17.4% 110.7
0.04% - 36.0% SMF 7.6% 116.2
5 modules SMO 11.2% 110.7

ASMO 13.8% 109.4

LMF 12.8% 126.1
TS3 LMO 24.0% 114.0
0.09% - 16.0% SMF 17.6% 111.2
3 modules SMO 17.6% 113.8

ASMO 18.0% 113.8

manhattan distances. Results from LMF suggests the same, as it has the largest average
manhattan distance and the lowest rejection rate for all task sets. SMF on the other hand
showed a low average manhattan distance while providing a good device utilization, only
surpassed by LMF. Modules-to-place are significantly smaller with SMF and free space
is higher fragmented making it overall easier to place tasks closer to their communication
partners compared to LMF.

Module selection allows the resource manager to adapt the tasks to the device state by
considering several implementations differing in runtime and size. The next section pro-
vides a strategy to improve the on-line scheduler with respect to communication distance
and rejection rate by allowing task preemption and enabling relocation of tasks during
runtime.

53

3 Scheduling on NoC-based reconfigurable architectures

3.3 Relocation of tasks

This section is a modified version of [MBed]. The actual device state with a set of placed
tasks can lead to suboptimal placements for new tasks in terms of communication distance.
Tasks cannot be located at their optimal position due to other task occupying the area
or the lack of free space.

Figure 13 (left) shows the placement of four tasks t1 to t4 with one component per
task implemented by a module. Tasks t1 and t3 are located optimally with minimal
communication distances regarding their communication partners at the border of the
device (marked by colored arrows), whereas tasks t2 and t4 are not placed optimally. The
right side of Figure 13 shows a placement later in time with task t1 removed and t2 and
t4 relocated, leading to optimal placements. for t2 and t4. The communication distance
between communication partners has been reduced to a minimum.

Figure 13: Relocation of modules m2 and m4 after m1 was removed on a Dynamic
Network-on-Chip

Reducing communication distance in a network-based reconfigurable device means low-
ered latency and network load and therefore increased performance for both computation
and communication. Relocation of tasks during runtime allows the optimization of place-
ments by reducing communication distance in regard to the communication partners of
placed tasks. The definition of relocation used in this work is as follows:

54

3.3 Relocation of tasks

Definition 9 (Relocation) Select a feasible set of tasks Tr from the set of placed tasks
Tp and relocate these tasks, so that the communication distance cdr of the tasks in Tr is
minimized.

The several consecutive steps necessary to relocate tasks are topic of the next section.

3.3.1 Relocation strategies

In order to enforce relocation of tasks some consecutive steps have to be executed at
the time of relocation. First, the set of placed tasks is searched for a potential subset of
tasks. Secondly, the selected tasks are sorted following an ordering strategy and finally the
ordered tasks are placed one after another. The final placement step is a simple call of the
placement algorithm introduced in section since the goal of minimizing communication
distance remains the same. Thus, this step is not described here and only the moment of
relocation, the selection of tasks and the sorting of task are discussed.

Relocation timing Two different strategies when to relocated tasks seem applicable,
triggered relocation and periodic relocation. The former triggers the execution of reloca-
tion, whenever an event like rejection of a task, completion of a (certain) task (see Figure
13), or crossing of a communication bound occurs. The latter runs relocation whenever a
fixed number of time steps ts has passed.

Relocation selection Selecting the tasks for relocation is of major interest for the cause
and several approaches exist. An important criterion is the existence of a feasible schedule
for each selected task so that only tasks are selected for which an feasible temporal and
spatial planning exists. The temporal overhead oi introduced by relocation can deny tasks
to finish execution before its deadline di, because si + ei + oi > di. Definition 10 ensures
the existence of a feasible temporal planning and that the task can be resumed when
placeable. This definition does not guarantee that feasible placement (spatial planning)
exists for each task in Tr.

Definition 10 (Weak Feasible Relocation Selection) Given a set Tp ⊂ T of placed
tasks. A feasible relocation selection assigns tasks tr ∈ Tp to Tr ⊆ Tp, so that a feasible
temporal planning for all tr ∈ Tr exist with oi ≥ 0.

55

3 Scheduling on NoC-based reconfigurable architectures

In contrast Definition 11 demands a feasible schedule to exist.

Definition 11 (Strong Feasible Relocation Selection) Given a set Tp ⊂ T of placed
tasks. A feasible relocation selection assigns tasks tr ∈ Tp to Tr ⊆ Tp, so that a feasible
schedule for all tr ∈ Tr exist with oi ≥ 0.

Because the placer does only consider tasks one after another even if several tasks are
selected at once for relocation, feasible placement for all tasks cannot be guaranteed.
During relocation the placement of tasks (and the free space) is changed compared to the
original placement, this can result in device states with feasible temporal planning for a
task, but spatial planning failing. In Figure 14 three tasks t1, t2 and t3 with corresponding
modules m1, m2 and m3 are placed on a DyNoC. The arrival times of the tasks are
a1 < a2 < a3 and the deadlines are d3 < d2 < d1. The tasks ti are placed at their time of
arrival ai and all tasks are selected for relocation {t1, t2, t3} ∈ Tr

Figure 14: Weak feasible relocation selection of tasks

The ordering of tasks has influence on the extend of performing successful task relo-
cations. For instance, consider sorting of the relocation selection Tr by their deadlines
di. Task t3 will be selected first and located at its optimal position. However, due to the
fragmentation of free space, task t2 can not be successfully placed anymore. There is no
guarantee for a feasible schedule for all selected tasks. If sorting the tasks by their size
wi · hi though, task t2 is placed first and allows successful placement of all three tasks.
So, sorting of the relocation selection directly influences relocation results.

56

3.3 Relocation of tasks

Relocation ordering Two sorting schemes focused on deadlines and task sizes are con-
sidered here to sort the relocation selection. The Largest Task First (LTF) heuristic sorts
tasks by their area requirements and considers the largest task first. This strategy at-
tempts to optimize placement by placing larger tasks first in order to keep the allocatable
free space as defragmented as possible. Additionally, sorting by deadlines with the EDF
strategy is considered.

3.3.2 Extended scheduling algorithm

The pseudo code of the scheduling algorithm with module selection given in Chapter 3.2.2
is extended to support periodic relocation (see Algorithm 2). Also tasks with multiple
components are considered here. Therefore the auxiliary variable successComponent is
introduced, which stores the success of components’ placements of a task. When and only
if all components can be placed successfully, the placement is regarded executable for the
task, the task is started and put into the TRUNNING list.

3.3.3 Evaluation

Performance of the relocation strategies is evaluated using the percentage of rejected
tasks and the average path length of a task by varying periodicity of relocation as well as
overhead. Results are interpreted considering the average task runtime and slack time2

A synthetic task set TS4 containing 200 tasks with one component and one module
each was created for evaluation. Runtime ei of the tasks is between 16 and 32 time
steps ts with an average of 24 ts. The average slack time of a task ti ∈ TS4 is 2.7 · ei
which is about 65 ts. The deadlines are generated depending on the randomly generated
arrival times and runtimes and each task is able to meet its deadline. Device size is
100 × 100 and module size ranges between 0.064% and 6.25% of the device size. Each
component has one input and one output communication partner at the border of the
device. These communication partners are randomly chosen out of all points at the edge.
TS4 is evaluated using EDF-Next-Fit scheduling with a fixed next-fit value of k = 3. Only
periodic relocation is considered.

2Slack time is the temporal difference between deadline, time when the task is ready to be executed and
runtime. Slack time is also known as laxity

57

3 Scheduling on NoC-based reconfigurable architectures

Algorithm 2 Scheduling with periodic relocation
k ← 0
Sort(TFLOATING)
PeriodRelocateTasks(TRUNNING, period, time())
while (k <= next_fit) do

successTask ← TRUE
ti ← Pop(TFLOATING)
Ch ← ti.Ci

while (Ch 6= ∅) do
cj ← Pop(Ch)
Ms ← cj .Mj

if (time() +Ms.MinRuntime() < ti.deadline) then
successComponent← FALSE
while (not successComponent and Ms 6= ∅) do

mk ← SelectModule(Ms)
successComponent← Placement(ti, cj ,mk)

end while
successTask ← successTask and successComponent

else
ti.state← REJECTED
TREJECTED ← ti ∪ TREJECTED

EXIT
end if

end while
if (successTask) then

ti.start_time← time
ti.state← RUNNING
TRUNNING ← ti ∪ TRUNNING

else
ti.state← FLOATING
TFLOATING ← ti ∪ TFLOATING

end if
k ← k + 1

end while

58

3.3 Relocation of tasks

Relocation overhead and periodicity of relocation are varied and for each combination
a data point consisting of manhattan distance and rejection rate is generated. The static
overhead is modified from 0 to 7 time steps which corresponds to 0% to almost 30% of
the average task runtime. Periodicity is varied by starting relocation every ts, and then
up to every 49 time steps which is about two times of the average runtime of a task.
Without relocation TS4 saturates the device so that 5% of the tasks are rejected. The
average manhattan communication path in this case has a hop count of 128.

Figure 15: Periodic relocation with LTF

For LTF heuristic Figure 15 and for EDF Figure 16 show the rejection rate and path
length of TS4 under variation of relocation overhead and periodicity.

Periodic relocation under LTF lowers the average path length of TS4 for all simulated
parameters. Carrying out relocation every time step ts leads to an increased rejection rate
when considering overheads larger then 16% of the average task runtime (oi ≥ 4) because
task variation of consecutive task selections is lower for small period values. Each time a
task is relocated, the overhead oi is added to the tasks finishing time. So, the relocation
selection Tr is dependent on the periodicity. For a period between 3 and 13 time steps
which corresponds to 12.5–54% of the average runtime of a task both the path length
and rejection rate show better results compared to a simulation of TS4 with relocation
disabled. For a relocation overhead of oi = 3 and a period of 3 the average path length is
reduced by 23% and the rejection rate is lowered from 5% to 2%.

The EDF sorting heuristic behaves similar in regard to results obtained by LTF as
shown in Figure 16. Again a minimum between period 3 and 5 for both rejection rate

59

3 Scheduling on NoC-based reconfigurable architectures

Figure 16: Periodic relocation with EDF

and path length exist. The path length is reduced by 25% and the rejection rate changes
from 5% to 1,5% when considering a small relocation overhead.

Both LTF and EDF relocation strategies improve the scheduler, but overall EDF shows
slightly better results for TS4.

Figure 17: Periodic relocation with large overheads

As relocation overhead is dependent on different properties like hardware architecture,
task preemption strategy and network load, the influence of higher overheads should be
examined in order to determine overhead bounds. In Figure 17, overhead is increased
so that the relocation of a task exceeds the deadline (overhead=112). In this case no
relocation is executed and results are identical to the results without relocation, as given
in Figures 16 and 15. A relocation overhead of about 58% of the average task runtime

60

3.4 Influence of dynamic placement on path length

or 20% of the slack time (overhead=14) still leads to a lowered average path length for
periods of up to 100 ts.

Relocation offers the possibility to increase system performance by decreasing rejection
rate and communication distance.

3.4 Influence of dynamic placement on path length

Up to now, communication distance was calculated using manhattan distance; the dis-
tance between two points is calculated by the sum of the absolute differences of their
coordinates. Manhattan distance approximates the actual path length. Because of the
dynamic placement and removal of tasks, communication paths can be blocked by mod-
ules so that the absolute differences of coordinates cannot be applied to determine the
actual path length. In [10, 11, 9] the Surrounding-XY routing algorithm (S-XY) for Dy-
namic Networks-on-Chips was described. It is used here to determine the correct path.
The communication overhead in hop counts is calculated by comparing the manhatten
distance with the weighted average S-XY distance. By using the weighted average, the
influence of dynamic placement on communication distance is taken into account. Task
placement on the device changes over time and so the ideal routes from sender to receiver,
as calculated by the S-XY routing algorithm, vary.

In Figure 18 an example for S-XY routing is depicted. While t1 is placed so that
each communication partner of t1 is on the optimal path, t2 is not placed optimally.
Additionally, t1 presents an obstacle for the communication of t2 as a path around t1, c2,m1

has to be taken. The hop count from source to sink of t2 is 10 using manhattan distance
and increases to 14 when S-XY routing is used to route packets.

Table 3 shows the difference between path lengths using manhattan distance and S-XY
routing. The actual hop count for task sets TS1, TS2, TS3 and TS4 is determined with
S-XY routing. For task set TS4, periodic relocation was used (with EDF sorting, overhead
oi = 3 and a period of 3) and for TS1-TS3 the LMF heuristic was used and the next-fit
value k was set to 0.

The influence of module selection strategies on the actual distance is given in Table 4.

Both dynamic module selection strategies, SMF and LMF, increase path length due
to the usage of dynamic S-XY routing. The increase again is about 16%. LMO has the

61

3 Scheduling on NoC-based reconfigurable architectures

Figure 18: Path length using S-XY routing

lowest increase and overall path length, but also the highest rejection rate (see Table 2).
At lower device utilization, tasks can be placed closer to their optimal location leading
to shorter communication paths and a lower dynamic routing overhead. Overall, S-XY
routing introduces an increase in path length of 7.85% to 17.58% for the given task sets
at an average of about 16% compared to manhattan distance.

3.5 Off-line spatial planning with ASP

In the previous sections communication-aware on-line scheduling algorithms have been
considered and results for several task sets were given. With the on-line approach a
feasible placement can be found in θ(n log n) time for each task dealt with one after the
other.

In Figure 19 an overall optimal placement for tasks t1 and t2 is given. Compared to
the placement seen in Figure 18, where only t1 is placed optimal, the total path length is

62

3.5 Off-line spatial planning with ASP

Table 3: Comparison of path length calculated with manhattan distance and average S-
XY routing distance for TS1, TS2, TS3 and TS4

Tasks Set Manhatten Distance [hops] Avg. S-XY Distance [hops] Increase [%]

TS1 136.00 159.75 15.98
TS2 134.66 156.86 16.49
TS3 126.06 146.99 16.60
TS4 119.57 138.03 15.43

Table 4: Influence of module selection strategy on path length for TS1

Heuristic Manhatten Distance [hops] Avg. S-XY Distance [hops] Increase [%]

LMF 136.00 159.75 15.98
SMF 113.80 131.51 15.55
LM0 104.41 112.61 7.85
SM0 112.24 131.98 17.58
ASM0 111.10 130.54 17.49

reduced by 4 hops when considering communication distance. t2 now has a path length of
2 hops while the path length of t1 is increased by 5 hops to 14 hops. This means, the total
path length is reduced by 16%. While an optimal placement for one task can be achieved
by the on-line scheduler, an optimal allocation for a set of tasks needs to consider all tasks
before actual placement. Unfortunately, finding the optimal placement for a set of tasks
poses an NP-hard problem [57].

This chapter introduces an off-line placer for homogeneous and heterogeneous reconfig-
urable devices in order to determine the optimal placement. Arrival times ai, start times
si, execution times ei and deadlines di of tasks are not considered here.

3.5.1 Problem solving

The declarative problem solving paradigm Answer Set Programming (ASP) is used to
find optimal placements. ASP, similar to boolean satisfiability, takes advantage of highly
effective boolean constraint technology and offers a simple modeling language. Basically,

63

3 Scheduling on NoC-based reconfigurable architectures

Figure 19: Optimal placement

ASP encodes the problem as a logic program such that its set of answers represents
the solutions from which the optimal solution can be picked. The Potsdam Answer Set
Solving Collection (Potassco) [58] is used to model, ground and solve the problem. Similar
to the on-line placer, the goal is to place a task such that the path length, the manhattan
distance between communication points of a task, is minimized and the maximum number
of tasks are placed. The modeling of the goal is shown in the following five rules.

#maximize{place(Task, Component)@2}.

With the maximize rule the number of placement of tasks considering all components
is maximized. The minimize rules minimize the communication distance between the
components of a task (distx and disty) and between components and interfaces at the
border of the device (distinterfacex and distinterfacey).

64

3.5 Off-line spatial planning with ASP

#minimize{distx(Task, Component, Component2, X)@1}.

#minimize{disty(Task, Component, Component2, Y)@1}.

#minimize{distinterfacex(Task, Component,X)@1}.

#minimize{distinterfacey(Task, Component, Y)@1}.

The maximize rule has a priority of 2 and is prioritized higher.

3.5.2 Evaluation

Runtime In this section the influence of device utilization and the amount of commu-
nication points per task on the runtime of the off-line placer is evaluated. All tests were
performed on a PC using an Intel Core2Duo E8500 with 2GByte of RAM. Table 5 shows
the results for the placement of a varying number of tasks on a 50× 50 homogeneous de-
vice. Each task consisted of one component with one module of size 7× 13. The amount
of tasks to be placed was increased one by one for every test case and the time to calculate
the optimal answer is given. The amount of interfaces (IF) per task was varied from 0 to
2 in order to evaluate the influence of communication between tasks and communication
points at the border of the device. The communication points were identical for all tasks
and positioned at 0/25 for IF1 and 49/25 for IF2 respectively.

In each test case answers were found, but only when a time is given, the ASP solver
was able to find the optimal solution. In all other cases, a feasible solution was found.
With IF0 no communication points were considered thus only the maximize (placement)
rule is used as the objective function. Up to 21 tasks can be placed on the device at most.
Thus, there is no solution for placing 22 tasks and the solver timed out after running more
than 8 hours. However, the last answer found actually was the optimal answer, but the
solver was not able to conclude that no better answer exists.

In all test cases for IF1 and IF2, at least a feasible solution was found by the ASP solver.
With one or two interfaces in the mix, the problem becomes harder, as the minimize
(communication) rules are additionally considered as objective functions. However, in
all cases for IF0, IF1 and IF2 the maximal possible amount of tasks were placed on the
device, so that the maximize (placement) rule was met. It remained open, if the found
feasible answers were in fact the optimal ones, as eventually the solver always ran out of
memory.

65

3 Scheduling on NoC-based reconfigurable architectures

Table 5: Off-line placer runtime

#Task Time [s] Utilization [%]
IF0 IF1 IF2

1 0.015 0.350 1.850 3.64
2 0.230 91.950 76.890 7.28
3 0.330 75.750 1927.230 10.09
4 0.015 1521.910 solution found 14.56
5 0.430 940.780 solution found 18.20
6 0.560 2555.550 solution found 21.84
7 0.680 solution found solution found 25.48
8 0.790 solution found solution found 29.12
9 1.330 solution found solution found 32.76
10 1.130 solution found solution found 36.40
11 1.430 solution found solution found 40.04
12 2.060 solution found solution found 43.68
13 2.080 solution found solution found 47.32
14 3.290 solution found solution found 50.96
15 6.010 solution found solution found 54.60
16 21.250 solution found solution found 58.24
17 45.150 solution found solution found 61.88
18 232.730 solution found solution found 65.52
19 504.440 solution found solution found 69.16
20 525.590 solution found solution found 72.80
21 328.280 solution found solution found 76.44
22 time-out solution found solution found 80.08

Comparison with on-line placer After showing that the ASP off-line placer is able
to determine answers (even if they are not the optimal ones), it appears interesting to
compare these answers with the on-line placement algorithm and to evaluate the quality of
the answers. A task set was derived from real world hardware components using synthesis
results for a Virtex-4 FX100 FPGA. In Table 6 the tasks ti of task set TS5 with their
components ci can be referenced. Each component has one module with width and height
w and h as well as communication partners In and Out. The device size was limited to
50× 50 and Ipc1 to Ipc3 describe different basic image processing cores.

66

3.5 Off-line spatial planning with ASP

Table 6: Task set TS5 with six tasks each consisting of up to four components

Task ti Component ci Name #Slices Size w/h In Out

t0 c0 Bayer2RGB 734 8/10 0/25 c1
c1 MJPEG_Encoder 4182 20/22 c0 c2
c2 Ethernet 650 8/10 c1 49/25

t1 c0 Ipc1 489 6/8 25/0 c1
c1 Ipc2 2721 16/18 c0 c2
c2 MJPEG_Encoder 4182 20/22 c1 c3
c3 Ethernet 650 8/10 c2 25/49

t2 c0 Bayer2RGB 734 8/10 0/25 c1
c1 Integral_Sum 532 8/8 c0 c2
c2 Ipc2 2721 16/18 c1 c3
c3 VGA_Out 85 2/4 c2 0/0

t3 c0 MJPEG_Decoder 8825 30/30 0/20 c1
c1 Ipc3 44 2/4 c0 c2
c2 VGA_Out 85 2/4 c1 0/0

t4 c0 AES128 7639 28/28 49/0 49/0

t5 c0 AC97_Cntrlr 467 6/8 49/49 49/49

Because the on-line placer allocates tasks one after the other, the results vary depending
on the order of the tasks. Hence, the order was randomized and results of ten placer runs
were generated. The next-fit value was fixed to k = 3. Table 7 shows the results.

Dependent on task ordering, between two and four tasks could be placed leading to a
device utilization of 26% to 68%. On an average, 2.8 tasks could be placed at a manhattan
distance of 121.3 hops and a device utilization of 55%. The influence of the task order on
the results especially emerges from the first three rows of Table 7 where tasks T0, T3 and
T5 had been placed in different succession. The average manhattan distance per task in
row two 7 is 47% higher than the corresponding distance in row one yielding an increase
of about 38 hops per task, whereas device utilization is the same.

The off-line placer on the other hand found a feasible solution, but was not able to
determine the optimal solution as it ran out of memory. However, the provided solution
still surpasses the best results of the on-line placer. Table 8 shows the results in comparison

67

3 Scheduling on NoC-based reconfigurable architectures

Table 7: Results of on-line placer for TS5

#Task Tasks Manhatten Distance [hops] Utilization [%]

3 T3, T0, T5 81.0 56
3 T3, T5, T0 119.7 56
3 T5, T3, T0 123.7 56
2 T5, T0 136.5 26
3 T1, T5, T0 125.7 60
3 T5, T3, T1 126.3 66
3 T3, T1, T5 85.0 66
3 T4, T0, T5 113.7 57
3 T1, T4, T5 126.7 68
2 T5, T1 174.5 36

to the on-line placer considering the number of placed tasks, manhattan distance per task
and device utilization.

Table 8: Comparison of on-line and off-line placer for TS5

Placer Tasks Manhatten distance [hops] Utilization [%]

Off-line T1, T2, T3, T5 99 83
On-line (best) T3, T1, T5 85 66
On-line (worst) T5, T0 136.5 26
On-line (average) - 121.3 55

While the off-line placer is able to place an additional task and therefore has an increased
device utilization of about 25%, the average manhattan distance per task is increased by
16%. Because the tasks consists of one or more components, the manhattan distance
has to be considered per component or per connection and not per task in order to
get realistic results. The manhattan distance for tasks with many components can be
significantly higher compared to tasks with only one component, even if the distance
per connection is smaller. So, when looking at the average communication distance per
connection (communication with interfaces and communication between components) the
off-line placer is able to place an additional task t2 with four components and eight
connections. The manhattan distance per connections is only increased by 4%.

68

3.6 Chapter conclusion

Comparison of the off-line and on-line placer emphasizes the large potential for im-
provement of the on-line placer. Integrated module selection and relocation discussed in
this chapter are two methods to increase performance of the on-line scheduler.

3.6 Chapter conclusion

In this chapter communication-aware scheduling of tasks on a reconfigurable device has
been presented. A basic on-line scheduler was extended by integrated module selection and
task relocation during runtime. Reduced rejection rates and communication distances of
tasks resulted in increased performance. Furthermore, the influence of dynamic placement
and removal of tasks on the actual path length was evaluated and the on-line placement
step was compared with an off-line placer in order to evaluate the quality of the on-line
method. The problem of calculating the optimal placement for a given task set is NP-hard
so instead of calculating the optimal placement, in most test cases only a feasible solution
was calculated. However, these solutions still surpass the on-line placer.

This chapter has taken a first step towards more resource efficient communication by
looking at concepts to increase performance of the reconfigurable system at runtime. In
the following chapter the architecture of the reconfigurable device used in this work and
the supportive usage of the computational and communication resources is described.

69

4 Resource efficient DyNoC architecture

4 Resource efficient DyNoC architecture

The previous chapter covered improvements to resource management of a network-based
reconfigurable system. However, the actual architecture of such a system was not de-
scribed in detail. In this chapter the DyNoC architecture is explained and example imple-
mentations focusing on communication and resource usage of both router and processing
element are presented.

4.1 System architecture

Figure 20: DyNoC system overview with three tasks implemented by three modules and
a resource manager

In Figure 20 the system overview of the DyNoC is depicted showing reconfigurable
device and resource manager. The DyNoC is a Network-on-Chip whose structure can be
changed dynamically at runtime. It is build up of processing elements and corresponding
routers. All routers are connected to neighboring routers in north, south, east and west
direction and are used to establish a packet-based communication network between PEs,

70

4.2 Router

I/Os or memory. Tasks are implemented in the form of modules covering at least one
processing element, but can also cover several PEs and routers, as visualized in Figure 20.
Modules can always access the packet-based network using the top right router. However,
communication inside a module uses horizontal and vertical direct-links between PEs
instead, resulting in a hybrid communication scheme and the disadvantage of routers
inside modules being unused resources.

Because communication between modules is established at runtime and the configura-
tion of the DyNoC architecture is not known a priori, all-time reachability of all modules
and pins of the network has to be ensured. This is achieved by having a ring of routers
surrounding each placed module [9]. All modules need to be synthesized in this manner.
Additional information about the DyNoC can be found in [9, 10, 11].

With this chapter focusing on resource efficient communication, the data exchange
between PEs inside a module, between modules, as well as resource usage is examined in
detail and implementations of a processing element and a router are presented.

4.2 Router

This chapter is a modified version of [MB10]. As mentioned before, the modules of
a DyNoC can cover several routers and PEs. Inside a module, direct wiring between
PEs is the main communication scheme. Only one router is used to access the packet-
based network while the other routers inside the module remain inactive. Obviously,
communication is not resource efficient in this regard. This chapter prospects how to use
these available router resources inside modules and briefly describes data exchange over
packet-based networks.

Routers generally feature three main components. A crossbar-switch which connects
multiple inputs to multiple outputs, a set of buffers to temporarily store packets or parts of
packets and a controller managing the forwarding of packets according to their destination.
In Figure 21 a generic router and these components are shown.

Several options to utilize these components as additional resources in a DyNoC come
to mind: First, the crossbar-switch could be used as an additional communication re-
source between PEs. Second, buffers could serve as random accessible memories, e. g.
implementing lookup-tables. Third, the controller could be replaced by a small proces-
sor running all control functionality as software thus enhancing the router capabilities to

71

4 Resource efficient DyNoC architecture

Figure 21: Router architecture with five inputs and outputs

those of a co-processor. While a co-processor would provide great flexibility, it also has
some major drawbacks. Besides the resources lost for implementation of the processor,
additional memory to store instructions is needed (when in router mode) yielding higher
demand of area. Reconfiguration in this case would be performed by exchanging soft-
ware making the process more complex, while increasing the amount of reconfiguration
data and time significantly. Due to these considerations, the co-processor approach is not
further explored in this work.

The following sections present a flexible and reconfigurable router exploiting crossbar-
switch and buffers as additional resources to increase performance in DyNoC systems.

4.2.1 Router Architecture

In Figure 22 a simplified view of the proposed reconfigurable router architecture is given.
The input channels for the local, east and south port and the output channels for the

72

4.2 Router

local and south port can be seen. Compared to a generic router (see Figure 21), the
main differences of the reconfigurable design are the extended control logic to manage the
different configurations (configuration controller) and the capability to randomly access
input buffers (memory management). Additionally, the routing protocol has been en-
hanced to adapt to the changing application placement of DyNoCs by implementing the
S-XY routing algorithm (see Section 4.2.1) with router guiding. Router guiding further
improves the performance of S-XY routing by guiding packets around modules.

Figure 22: Simplified reconfigurable router architecture

The router can either provide router functionality or can be used as a resource inside
a module running the following configuration modes: the buffers serve as a lookup table
or as write- and readable memory or the switching matrix can be used for intra module
communication by enabling a fixed path between PEs.

The buffers assigned to the (input) ports east, west, south and north are accessed like
dual-ported RAM (DPRAM). The input port of DPRAM is designated as a writing port
and is connected to the local port on the one hand and to the neighboring routers on the

73

4 Resource efficient DyNoC architecture

other. So these buffers can be written to by the local PE, if used as a resource inside
a module and by neighboring routers, if in basic network mode. The second port of the
DPRAM is used for reading buffers and is connected to the crossbar switch. The buffers
are controlled by a Configurable Memory Controller (CMC) which manages the different
access modes.

The different buffer access modes are explained in the following. In LUT mode, a 8-,
16- or 32-bit word can be looked up, so that a computation is replaced by a simple read
during runtime. To fully utilize the limited amount of available memory four 8-bit words,
respectively two 16-bit words can be stored in one 32-bit memory column. All the words
to lookup have to be written to memory during configuration. The LUT mode supports
read bursts. When in RAM mode, the buffers of the router are used as write- and readable
memory — an address followed by a 32-bit data word is sent form the local PE for writing,
while only an address is sent for reading.

The east, west, south and north buffers of the router are provided as contiguous memory
(virtual memory) to the attached PE. As a read/write in LUT or RAM mode is initiated,
a memory management unit (MMU) is used to calculate the actual physical addresses
from the virtual ones and then addresses the corresponding CMC of the buffer. Up to
four physically fragmented buffers of one router can be used as one contiguous memory
resource by the local PE to simplify external access to the buffers. Because configuration
is initiated over the local port using configuration packets the path from PE to router is
fixed and the local buffer of the router can not be used as a resource inside a module, but
provides FIFO implementation only. All five ports (local, east, west, south and north)
of the router are 32-bit wide and all five buffers allow simultaneous reads and writes.
The corresponding controllers operate independently and in parallel, both critical for low
latency.

A dedicated path between routers inside a module (intra module communication) can be
established by fixing the in and outputs of the switching matrix and corresponding ports,
so that no routing and switch allocation is required. Data can be send directly between
two non-neighboring PEs inside a module increasing complexity of modules. This feature
is called tunneling, as a fixed path between two PEs is created.

In basic operation mode the router is used for packet routing through the network and
operates by the concept of wormhole switching (or wormhole flow control). Wormhole

74

4.2 Router

switching offers some advantages over other switching techniques like cut-through, store-
and-forward or circuit switching. While cut-through and store-and-forward switching
allocate buffers and channel bandwidth to packets, wormhole switching allocates both of
these resources to smaller pieces of a packets called flits (flow control digits) resulting
in an overall smaller footprint of the router. Circuit switching on the other hand is
a bufferless switching technique. Circuits between two elements are established before
actual communication happens. Circuit switching raises some drawbacks in reconfigurable
designs though, like long communication delay or the exclusive use of chip space [9, 21].

Figure 23: Module using reconfigurable routers as memory resource

Figure 23 points out an exemplary mapping of a module using reconfigurable routers as
resources. Only six of these routers can be used as resources inside the module, the other
six routers are part of the all-time reachability ring around the module and are dedicated to

75

4 Resource efficient DyNoC architecture

packet-based communication. In the state shown, the routers provide additional memory
for the local PEs.

Reconfiguration Reconfiguration is triggered by configuration packets send over the
local channel to the router. Reconfiguring the router takes less than 32-bits, as this is
enough to distinguish between several coarse-grain configurations. In LUT mode however,
the lookup results need to be written to memory during configuration, significantly in-
creasing the amount of configuration data. Accessing the router resources always involves
three kinds of packets. They are either configuration packets, memory access packets
(LUT, RAM) or (basic) communication packets. An adaptive header is used which con-
sists of a static part and a configuration-dependent part. The static part is used to
differ between configuration packets, memory access packets and communication packets,
while the configuration-dependent part of the header holds information about packet size,
address, configuration type or tunneling source and destination port. The header of com-
munication packets holds information about size and destination. The information of the
configuration packets is stored in configuration control registers inside the router.

When a configuration is triggered, it has to be guaranteed that no packets present in
the buffers of the router are erased. Packets in memory need to be processed before the
memory can be configured. Simultaneously, router guiding is enabled to lock the port to
neighboring routers which then send packets around the busy router.

4.2.2 Evaluation

Evaluation of the configurable router is done in terms of area, size and latencies. A case
study shows the feasibility of this resource usage by means of a real life example.

Synthesis Results For purpose of comparison two routers have been implemented: a
generic five port router (Generic Router) using wormhole switching and XY routing and
a reconfigurable router (Reconfig. Router) using wormhole switching and S-XY routing.
Both routers were implemented using Handel-C, whereas special coding techniques and a
self-made compiler introduced by Middendorf et al. [48] came to use. In table 9 differences
between the routers are shown. Synthesis results are given for a Xilinx Virtex 5 LX110
FPGA using Xilinx XST synthesis.

76

4.2 Router

Table 9: Synthesis results of routers for Xilinx Virtex 5 LX110 FPGA

Slice LUTs Slice Registers Frequency [MHz]

Reconfig.Router 3994 (5%) 2246 (3%) 113.1
Generic Router 2701 (3%) 1542 (2%) 176.7

Each of the five buffers of the router has 1024 bits (32 × 32-bit) of memory. Com-
pared to the generic router the reconfigurable router occupies about 48% more LUTs
and 45% more registers, which leads to a total increase of about 47%. This increase in
size compared to the generic router implementation is caused by the extended control
logic for configuration and random memory access, as well as the implementation of the
S-XY routing algorithm which is more costly than XY routing. Also, a 32-bit 1-to-4
demultiplexer is needed to access all input port buffers over the local port.

Timings The time needed to configure the router is low, one of the advantages of coarse-
grain reconfiguration. In Table 10 all timings in number of cycles are given including
timings for processing and reconfiguration.

Equation 7 describes the amount of time TCONF needed for every configuration. No
packet is supposed to be destroyed during reconfiguration, so packets in memory need to
be routed before the buffer can be configured; this is indicated by TRESET . This value
is strongly related to packet size and current network load. An amount of time TSETUP

is required to read the first header flit, extract all necessary information and update the
configuration control registers. TGUIDE is the time used for activating or deactivating
router guiding.

TCONF = TRESET + TSETUP + TGUIDE (7)

TCONF specifies the basic time for every configuration. For the different modes config-
uration time varies indicated by TTTC (see Equation 8). TLUT is the time needed to fill
the memory with i 32-bit words in LUT mode and TRAM the time to configure the router
for RAM mode. Apparently switching to RAM mode does not introduce an additional
overhead. TCOMM is the number of cycles taken to set up the router for communication
by enabling tunneling mode or basic router mode.

77

4 Resource efficient DyNoC architecture

Table 10: Router Timings

Min. # Cycles Max. # Cycles

TLUT 3 5

TRAM 0

TCOMM 1

TGUIDE 1

TRESET 4 traffic and size dependent

TSETUP 2

TLOOKUP 5 · i 6 · i

TWRITE 3 5

TREAD 4 6

TPAY LOAD i

TROUTING 1 3 (obstacle)

TTTC = TCONF +

TLUT

TRAM

TCOMM

(8)

In equation 9 the time needed by the local PE to access the router TTTA is given. Again,
a time TSETUP is needed to read the first header flit and to check if reconfiguration needs
to be performed. Additionally all necessary information is extracted from the header flit
(packet size and destination). Timings for looking up words TLOOKUP and for random
access of the memory TWRITE and TREAD are listed, whereas a burst mode is currently
only available for look-ups (see Table 10). When in basic communication mode, the time
for calculating the route and switching of data is given by TROUTING + TPAY LOAD, the
latter is dependent on the amount of user data i. For tunneling TROUTING is zero, as the
switching matrix is fixed during configuration time and no route has to be calculated.

78

4.2 Router

TTTA = TSETUP +

TLOOKUP

TWRITE

TREAD

TROUTING + TPAY LOAD

(9)

Case Study A 3× 3 DyNoC was implemented on a Xilinx Virtex 5 LX110 FPGA using
configurable routers and MicroBlaze [73] soft-core processors as processing elements. The
processors are clocked at a frequency of 125MHz and were connected to the routers
running at 50MHz using an asynchronous Fast Simplex Link (FSL) direct link. However,
in this case study only one router and MicroBlaze of the 3× 3 DyNoC is considered and
the LUT mode of the router is evaluated by comparing the time to calculate the value of
a sine using the MicroBlaze processor, to the time to lookup the result using the buffers
of the router as a LUT. Taylor series are used to approximate the values of the sine in
the domain [0, π/4]. To calculate the sine for other values, periodicity and symmetry of
the sine can be used. The series is calculated for the first four terms and is accuracy to
about five decimals.

Table 11: Comparison of lookup and computation of the sine signal

Cycles (@125MHz) Speedup

MicroBlaze 17954 1
Lookup + Conf. 1115 16,1
MicroBlaze + FPU 583 30,8
Lookup 57 315

The calculation time necessary with a MicroBlaze processor is compared to the lookup
of the sine value with a router by using a hardware timer to measure the amounts of
cycles. The hardware timer was attached to the MicroBlaze using FSL. Results are given
in table 11 showing the speedup in relation to the computation by a MicroBlaze with and
without additional floating point unit (FPU). Also a lookup including prior configuration
of the router with 64×32-bit words is given. Looking up results is significantly faster than
calculating the results in this case. Using buffers as lookup tables is efficiently feasible and

79

4 Resource efficient DyNoC architecture

incorporating routers inside a module as resources provides a way to increase performance
of the system.

4.3 Processing element

In chapter 2 the abstract resource model for a reconfigurable computing systems was de-
scribed, whereas modules were constructed from processors, memories, local interconnects
and/or hardware accelerators. In a DyNoC each module is based on processing elements
(and routers). Processing elements can be of different types, among them general purpose
processors, domain specific processors and hardware accelerators being the most common
in DyNoCs. In the previous case study the MicroBlaze GPP was used as a PE. In
contrast, the implementation of a hardware accelerator for Multiply-Accumulate (MAC)
operations is illustrated in this section. MAC is a common operation used by matrix
multiplication, FFT and finite impulse response filters (FIR) and is shown in Equation
10. In this work only the Fast Fourier Transformation algorithm is implemented.

a = b+ c · d (10)

The FFT was published by Cooley and Tukey in 1965 [15] and is an algorithm to
calculate the discrete fourier transformation which transforms values of a function in the
time domain to the corresponding values in the frequency domain using the divide and
conquer paradigm. A radix-2 FFT calculates n output words from n input words in
log2(n) stages while at each stage n

2
butterfly operations are executed. The butterfly

operation is shown in Equation 11 with the trigonometric constants ω being the so called
twiddle factors (Equation 12).

y0 = x0 + x1ω
k, y1 = x0 − x1ωk (11)

ω = exp

(
−2πi

n

)
(12)

80

4.3 Processing element

4.3.1 Architecture

Figure 24 depicts a simplified representation of a scalable reconfigurable processing ele-
ment. The PE’s four main components are MAC-element, local memory, crossbar switch
and control logic (configuration and data-flow controller).

Figure 24: Simplified processing element architecture with five inputs and outputs for the
calculation of the FFT algorithm

Input data for the calculation of the FFT is sent over the packet-based network to the
processing element. After processing of the input data the results are sent back using the
packet-based network. Besides input values for the FFT, twiddle factors are needed for
the calculation. A radix-2 FFT with 1024 input words uses 512 twiddle factors. These
complex input and ω values need to be stored in local memory of the PE prior to the
calculation. When both input data and twiddle factors are available, the PE calculates
each stage of the FFT one after another.

When m PEs are joined to calculate the FFT in cooperation, a direct connection
between neighboring PEs has to be established by means of the crossbar switches. In this
setting the twiddle factors are send to each PE of the module and the input data is splitted
equally between the PEs. Each processing element calculates n

2m
butterfly operations per

stage and forwards the results at stage log2(n)− log2(m) and onwards to other PEs of the

81

4 Resource efficient DyNoC architecture

module for calculation of subsequent stages. After the successful calculation of the final
stage, the results are sent out by the network router of the module.

Figure 25 shows the data flow from input to output for the calculation of a 16-point-FFT
with four PEs.

Figure 25: FFT data flow on a module consisting of four PEs for 16 input words

Figure 26 shows module shapes created by interconnecting several PEs in different
ways. Note that only the router of the packet-based network interacting with the module
is present in the figure.

Usage of router resources The previous chapter proposed to use routers inside a mod-
ule as additional resource. The implementation of the processing element discussed here
does not incorporate this concept. However, several possibilities exist to support the cal-
culation of the FFT by using routers inside of modules. The buffers of the router offer a

82

4.3 Processing element

Figure 26: Different shapes of modules build-up of four PEs

way to extend the local memories of PEs. For once, this can lead to PEs being able to
compute FFTs with more input words and furthermore it allows PEs to be constructed
with less local memory, reducing the resource demand of the PE. The switching matrix
of the router inside a module can be used to exchange intermediate values between (non-
neighboring) PEs. During the calculation of each FFT stage the communication path
between PEs can be adapted, leading to faster intra module communication.

Reconfiguration Similar to the configuration of the router, the processing element is
configured by a configuration word with less than 32 bits. Only information about the
amount of input words, the designated position of the PE inside a module and the connec-
tion to the neighboring PEs are relevant and required for configuration. So, local memory,
MAC element, data flow controller and crossbar switch are configured according to the
configuration word.

4.3.2 Evaluation

This section evaluates the performance of the scalable processing element at the calcula-
tion of the FFT algorithm by checking synthesis results and case study results comparing
the PE to a PC-based system.

Synthesis Results Synthesis results of a Virtex 5 LX110T FPGA are listed in Table
12. Each PE needs to store the twiddle factors ω and input values for each butterfly

83

4 Resource efficient DyNoC architecture

operation. Six 32-bit wide dual-ported RAMs were connected together to build three 64-
bit wide dual-port memories to store the complex twiddle factors, as well as the complex
input and output values of the butterfly operations.

Table 12: Synthesis results of PE for Xilinx Virtex 5 LX110 FPGA

Slice LUTs Slice Registers DSP48E BRAM (36kBit) Frequency [MHz]

8952 (12%) 4058 (6%) 8 6 89

In addition, 128-bit wide direct connections between the PEs were used to communicate
with neighboring PEs in order to transfer two complex values in parallel. This leads to
large crossbar switches due to the high resource demand of multiplexers but also offers
high bandwidth leading to enhanced performance of the PE.

Case Study The performance of the processing element was evaluated by calculating
the FFT for varying amounts of input data and PEs. Up to four processing elements
were used to calculate the FFT for 16 to 1024 input values. A MicroBlaze processor was
used to configure the PEs and a hardware counter came to use for precise measurement
of timings. Table 13 shows the results of this setup.

Table 13: Computation time and speed-up of the FFT algorithm with several processing
elements and varying amount of input data

N-point FFT 1 PE [ns] 2 PEs [ns] 4 PEs [ns] GPP [ns]

16 4660 (1) 4760 (0.98) 5020(0.93) 22178 (0.21)
32 6300 (1) 6006(1.05) 6020 (1.05) 21629 (0.29)
64 9220 (1) 7960 (1.16) 7420 (1.24) 25077 (0.36)
128 15020 (1) 11520 (1.30) 9700 (1.54) 25534 (0.58)
256 27200 (1) 18600 (1.46) 13900 (1.96) 29410 (0.92)
512 53500 (1) 33360 (1.60) 22260 (2.40) 33833 (1.58)
1024 110500 (1) 64760 (1.71) 39580 (2.79) 49207 (2.24)

For an FFT with 1024 points a speed-up of 2.79 was achieved when using four PEs
instead of one. Because communication between processing elements is a limiting factor,
communication overhead reduces the theoretically possible speed-up. Compared to the

84

4.4 Chapter conclusion

results of an AMD Phenom II X6 processor clocked at 3.2GHz the PEs provide a solid
speed-up. However, larger amounts of input values shrink the advantage of the PEs due
to the resulting communication overhead. Note that the Phenom was running Linux and
the GNU scientific library (GSL) for the calculation of the FFT.

4.4 Chapter conclusion

In this chapter an implementation of the DyNoC architecture was discussed and the
communication and computational resources in form of routers and processing elements
were introduced.

The flexible DyNoC router can be configured to reuse the buffers or switching matrix
of the router for computation and communication inside a module. Evaluation of the
router in terms of area and timings was given and a case study encouraged the usage of
the router to increase performance.

With the implementation of a scalable and configurable processing element for the FFT
algorithm modules can be build-up from neighboring processing elements. Evaluation
showed that a speed-up of 2.79 for the calculation of a 1024-FFT can be achieved when
letting four processing elements cooperate, compared to the calculation using only one
PE.

The chapter focused on flexibility and performance enhancements of reconfigurable sys-
tems by efficient usage of the communication and computational resources. The following
chapter explores efficient high-level communication. A high-level communication pro-
tocol for general purpose processors is presented allowing flexible and resource efficient
communication on network-based reconfigurable on-chip systems.

85

5 High-level communication in reconfigurable on-chip systems

5 High-level communication in reconfigurable on-chip

systems

Up until now this paper focused on communication between applications or tasks imple-
mented as hardware-only processing elements. Programmable general purpose processors
running software were only considered marginally. However, irregular control-flow dom-
inated applications are best implemented in software, while data-flow dominated algo-
rithms, like the fast-fourier-transformation presented in the previous chapter, can be effi-
ciently implemented as dedicated hardware. The Pact XPP-III architecture for instance
combines coarse-grain reconfigurable logic blocks with some programmable processors [54].
In a DyNoC design, processing elements can also be programmable processors. In order
for programmable processors to communicate, a protocol, which on the hand provides an
interface for applications and on the other hand provides access to the interconnection
network, is vital. The software protocol must be lightweight to fit in the limited amount
of memory available on-chip and should not introduce significant computing overhead.

Message Passing Interface (MPI) [47] is a well known interface suited for communica-
tion in multiprocessor systems. A programmer basically calls send and receive functions
to communicate with other processors among the system. MPI is commonly used in su-
per computers or computer clusters and supports different communication operations like
point-to-point, broadcast, or scatter and gather. The use of many MPI functions leads
to the necessity of a large library. This can become a severe problem in on-chip multi-
processor systems, due to the limited amount of available on-chip memory — especially
so in FPGA-based systems. Ensuring that most data accesses are satisfied from on-chip
memory is a critical problem, as the cost of an off-chip access can be very high [52, 34].
A configurable library for reconfigurable on-chip systems tackles this problem by includ-
ing only low-level functions for the currently required interconnection networks and the
needed MPI functionality. Such a library was implemented and named SoC-MPI.

The following sections are a modified version of [MLIB08] and structure and features
of the SoC-MPI library as well as results are given. The SoC-MPI library is not limited
to a certain interconnection network, like the one of the Dynamic Network on-Chip is,
but supports different interconnection networks like buses, stars and rings. It provides a
generic approach to high-level communication in on-chip multiprocessor systems.

86

5.1 Structure and Functionality

5.1 Structure and Functionality

In order to achieve flexibility the library allows the adaption to the applications’ needs and
to the interconnection network. For this purpose it is split into a Network Independent
Layer (NInL) and a Network Dependent Layer (NDeL). Figure 27 displays the structure
of the SoC-MPI library.

Figure 27: SoC-MPI Layer Structure

The MPI functions are implemented in the Network Independent Layer. The Network
Dependent Layer holds the basic communication functions and implements the drivers for
the aspired interconnection network. Also conversion of MPI specific ranks to hardware
addresses and vice versa is done in this layer.

Due to the separation of the library into network dependent and independent parts, it
is possible to port the library to different platforms within a minimal amount of time. The
SoC-MPI library supports a subset of the MPI-1 standard. All available MPI functions
are listed in Table 14.

It is possible to have several interconnection networks and different communication
schemes in one MPI session. The programmable processing elements do not need to

87

5 High-level communication in reconfigurable on-chip systems

Table 14: Supported MPI functions

Function Description

MPI_Init Initializes SoC-MPI
MPI_Finalize Cleans up SoC-MPI
MPI_Comm_rank Gets the own MPI_RANK
MPI_Comm_size Gets the size of the set of nodes
MPI_Send Sends a message
MPI_RSend Sends in ready mode
MPI_BSend Sends in buffered mode
MPI_SSend Sends in synchronous mode
MPI_Recv Receives a message
MPI_SendRecv Combines a Send and a Recv call in one call
MPI_Gather Collect multiple message segments into one
MPI_Scatter Delivers message segments to multiple receiver
MPI_Barrier For synchronizing a set of nodes
MPI_Bcast Broadcasts a message to a set of nodes
MPI_Wtime Provides a timer
MPI_Wtick Gets resolution of the timer
MPI_Pack Packs multiple messages in one
MPI_Unpack Unpacks one message to multiple ones

support every interconnection network and specific message passing operation like buffered
or non-blocking send (Figure 28). The library is configurable to keep it small and precisely
tailored according to requirements. The configuration phase is splitted in a global and a
local part. The global configuration is done for each interconnect network in the system.
The hardware addresses of each processing element in the network is defined and further
requirements and features like the maximum packet size of the network or hardware
supported features are specified. The local configuration is done for each processing
element of the interconnect; during the local configuration the MPI ranks of the processing
nodes are set and the connected network addresses and required parameters like memory
addresses are determined.

88

5.2 Evaluation

Figure 28: Simplified SoC-MPI Configuration Scheme

5.2 Evaluation

For the evaluation of the SoC-MPI library several benchmarks and a case study were
carried out. The library currently supports four interconnection networks: FSL, PLB
bus, a star network and a ring. The smallest version of the library uses 11056 bytes
when implementing a star topology as the communication network and the minimal set
of needed MPI functions. The current full version has a size of 16124 bytes. This version
supports four different network types and the MPI functions as seen in table 14. In both
cases compiler optimization was deactivated.

5.2.1 Benchmarks

The SoC-MPI library is evaluated using Intel MPI Benchmarks 3.1 [36], which is the
successor of the Pallas MPI Benchmarks. The PingPong, SendRecv, Gather, Scatter and
Bcast micro benchmarks were carried out on a Xilinx ML-403 evaluation platform [74]
equipped with a Virtex 4 FPGA. Three MicroBlaze soft-core processors [73] with 2 kBytes
cache each are connected together via a star network using FSL direct links. Due to the
limited amount of on-chip memory, the program data for each MicroBlaze is located in
local on-chip Block RAM, while instruction data is stored in off-chip memory. The system
is running at 100MHz.

89

5 High-level communication in reconfigurable on-chip systems

Figure 29: Benchmark Results of SoC-MPI using Intel MPI Benchmarks 3.1

In Figure 29 the results of the five micro benchmarks are shown. MPI_Wtime was
used to measure the time of each benchmark. A packet consists of 5 byte header data and
the actual MPI message, at a maximum length of 251 bytes here. MPI messages larger
than 251 bytes need to be split into multiple messages introducing additional overhead.
This is apparent from the small bandwidth drop between 128 and 256 bytes MPI message
length. Not all benchmarks could be performed completely, again due to limited on-chip
memory.

5.2.2 Case study

In order to test the SoC-MPI library working with a real life application, Singular Value
Decomposition (SVD) was implemented. SVD executes the factorization of am×nmatrix
A into a product A = U×Σ×V T , where U is an m×n real unitary matrix, Σ is an m×n
rectangular diagonal matrix with non negative real numbers on the diagonal, and V T is
the conjugate transpose of an n ×m real unitary matrix. The positive diagonal entries
of Σ are the singular values of A. SVD has many important scientific and engineering
applications. However, for very large matrices, as it is the case in information retrieval,
computation is very time consuming.

90

5.2 Evaluation

Figure 30: Star Network for Singular Value Decomposition with five MicroBlaze process-
ing elements

Table 15: Benchmark Results of the SVD Implementation in

Matrices 1 PE [ms] 2 PEs [ms] 4 PEs [ms]

16 x 200 25 26 32
32 x 200 93 75 76
64 x 200 - 239 199

The singular value decomposition for real matrices was implemented on a ML-310 eval-
uation platform [76] with number of MicroBlaze soft-core processors varying from two
to five. One master processor (PE master) distributes the data to the computing nodes
(PE comp.). The master node therefore has direct access to an external memory. All
processors are connected together via a star router, each computing node has additional
cache for storing data. In Figure 30 the system used for the case study is depicted.
The size of the SoC-MPI library in this case study is 13584 bytes using the MPI_Init,
MPI_Finalize, MPI_Wtime, MPI_Send, MPI_Receive and MPI_Barrier func-
tions. The total amount of slices needed for the system with five MicroBlazes was 12343
Slice LUTs (90%) and almost all BRAM (94%) of the FPGA.

91

5 High-level communication in reconfigurable on-chip systems

The results of the case study are shown in Table 15 for n × m matrices varying from
(16× 200) to (128× 200) and computing nodes varying from one to four. In each case a
master node is present and the maximum number of columns assigned to each processor
is limited to 32 in order to fit block matrices to the local memory. The performance
increases by use of multiple processors for large matrices. However, approximately 9000
cycles for sending a 128 byte packet with a MicroBlaze processor was measured, leading
to the conclusion that communication with MicroBlaze limits performance.

5.3 Chapter conclusion

This chapter introduced the SoC-MPI communication library to handle high-level commu-
nication between programmable processors. The library implements a subset of the MPI
standard and is configurable in terms of the used underlying interconnection networks and
actually necessary MPI functionality allowing adaption to the applications’ needs. This
flexibility in usage allows more efficient communication between programmable processors
due to low computational overhead and memory footprint.

The chapter concludes the considerations on the main aspects of holistic resource effi-
cient communication in reconfigurable on-chip systems and is followed by summary and
outlook next.

92

6 Conclusion and outlook

This thesis explored a holistic approach to communication in network-based reconfigurable
on-chip systems. By incorporating and optimizing different parts of the reconfigurable
system during design and runtime a resource efficient communication is achieved resulting
in increased flexibility and performance. The resource manager, the architecture of the in-
terconnection network, communication protocols as well as communication resource usage
were pointed out as the most important communication-related parts of a reconfigurable
system.

Communication-aware resource management

Starting from a basic communication-aware on-line scheduler, the resource manager of a
reconfigurable device was extended to support module selection and relocation of tasks.
Module selection allows the resource manager adaption of the device usage to the applica-
tion by considering different implementations of the application. Several module selection
strategies considering size and execution time of modules have been implemented and
evaluated leading to a reduced rejection rate and increased system performance. The sec-
ond extension, relocation of tasks at runtime, provides a way to optimize the placement of
tasks to reduce the actual communication distance between communication partners. Se-
lection of tasks for relocation, reordering of the selected tasks and subsequent replacement
have been taken into regard. Evaluation showed up to 25% reduction in communication
distance and a decrease from 5% to 1,5% in rejection rate for the presented benchmarks,
resulting in increased performance.

Manhattan distance is a metric used for approximating communication distance. In a
Dynamic Network-on-Chip, large modules are build-up of several processing elements and
routers and therefore create obstacles for packets traveling through the network. The real
communication length was calculated using the S-XY dynamic routing algorithm. This
resulted in an average 17% increase of hops compared to manhattan distance for the run
benchmarks.

Finally, the on-line placement step of the basic communication-aware scheduler was
compared to a communication-aware off-line placer implemented in the declarative prob-
lem solving paradigm ASP. ASP enables the calculation of optimal communication-aware

93

6 Conclusion and outlook

placements and raises device utilization by at least 25% for the used task set.

Dynamic Network-on-Chip architecture

Next, an actual implementation of a DyNoC consisting mainly of router and processing
elements was described. Resources inside the router can be used for computation and
communication inside modules. The buffers and switching matrix allow the storage of
data and extended interconnection inside a module by connecting non neighboring pro-
cessing elements, resulting in flexible router usage and increased performance of modules.
For the DyNoC different types of processing elements are possible and this thesis only
explored an implementation of the FFT algorithm. Multiple PEs can be joined together,
to form a module capable of parallel execution of several FFT calculations. For 1024 input
words a speed-up factor of 2.79 when using four PEs compared to one could be achieved.

Communication protocol

The final section of the paper illustrated a high-level communication protocol which allows
communication between software-programmable processing elements in a DyNoC system.
The communication protocol uses the message passing communication paradigm. A sub-
set of the MPI standard was implemented and is provided in the form of a configurable
and lightweight library, called SoC-MPI. This flexible library offers low protocol overhead
and therefore provides efficient high-level communication in network-based reconfigurable
on-chip systems.

All these insights support the thesis of the work given in chapter 1. Overall, results
show that performance and flexibility enhancements can be achieved by resource efficient
communication. Of course, there is still potential to further increase flexibility and per-
formance.

Future versions of the resource manager will include enhancements of communication-
aware task relocation by optimized selection of the relocation task set for specific relo-
cation of individual tasks. The relocation of a task also makes relocating data of that
task necessary. This aspect is strongly related to task preemption strategy. Follow-up
research will consider different kinds of preemption and strategies for relocation of data.

94

Furthermore, the on-line scheduler has to be extended to support heterogeneous archi-
tectures which would allow more precise modeling of reconfigurable devices. The ASP
implementation of the off-line placer already support heterogeneous structures but has
to be improved to find optimal solution in most cases. Therefore, on the one hand the
solver parameters have to be tweaked and on the other hand the implementation has to
be optimized towards a reduced set of answers.

Future developments of the DyNoC architecture will consider the integration of the
router in modules and evaluation with real-world applications. New methods for reduc-
ing resource demand of the router and increase usability inside modules have to found.
Finally, a DyNoC should consist of both hardware-based processing elements and pro-
grammable processors. For uniform communication between hardware and software PEs,
both elements should support the message passing interface.

In summary, this thesis covers an approach to resource efficient communication in re-
configurable systems by incorporating the resource manager, the architecture of the in-
terconnection network, the communication protocols and communication resource usage.
Evaluation of the proposed methods led to increased performance and flexibility of the sys-
tem. While this thesis presented a holistic approach to communication in reconfigurable
systems, more research is required to improve the presented concepts and techniques.
Hence, this work should motivate further research in the exciting area of communication
in reconfigurable systems.

95

Author’s Publications

Author’s Publications

[BMAI10] C. Bobda, P. Mahr, B. Andres, and H. Ishebabi. Application-driven archi-
tecture synthesis of on-chip Multiprocessor systems. In Waleed W. Smari
and John P. McIntire, editors, High Performance Computing and Simulation
(HPCS), pages 591–598. IEEE, 2010.

[HMMB10] R. Hartmann, F. Al Machot, P. Mahr, and C. Bobda. Camera-based system
for tracking and position estimation of humans. In Design and Architectures
for Signal and Image Processing (DASIP), pages 62–67. IEEE, 2010.

[IMB08a] H. Ishebabi, P. Mahr, and C. Bobda. Automatic Synthesis of Multiproces-
sor Systems From Parallel Programs under Preemptive Scheduling. In In-
ternational Conference on ReConFigurable Computing and FPGAs, Cancun,
Mexico, December 2008.

[IMB08b] H. Ishebabi, P. Mahr, and C. Bobda. Makespan Minimization in Automatic
Synthesis of Multiprocessor Systems from Parallel Programs. In IEEE In-
ternational Conference on Field-Programmable Technology, Taipei, Taiwan,
December 2008.

[IMB+09] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub. Application of
ASP for Automatic Synthesis of Flexible Multiprocessor Systems from Par-
allel Programs. In Proceedings of the 10th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR ’09), volume 5753 of
Lecture Notes in Computer Science, pages 598–603. Springer, 2009.

[MAIB09] P. Mahr, B. Andres, H. Ishebabi, and C. Bobda. A Design Methodology
for Reconfigurable Heterogeneous Architectures. In Many-Core and Reconfig-
urable Supercomputing Conference 2009 (MRSC’09), Berlin, Germany, March
2009.

[MB10] P. Mahr and C. Bobda. Reconfigurable Router for Dynamic Networks-on-
Chip. In RSP’2010: Proceedings of the 2010 IEEE/IFIP International Sym-
posium on Rapid System Prototyping, Fairfax, Virginia, USA, 2010.

[MBed] P. Mahr and C. Bobda. Reducing communication costs on Dynamic
Networks-on-Chip through runtime relocation of tasks. In IEEE International

96

Author’s Publications

Symposium on Field-Programmable Custom Computing Machines (FCCM
2012), Toronto, Canada, 2012, submitted.

[MCHB11] P. Mahr, S. Christgau, C. Haubelt, and C. Bobda. Integrated Temporal
Planning, Module Selection and Placement of Tasks for Dynamic Networks-
on-Chip. In Reconfigurable Architectures Workshop (RAW 2011), Ancorage,
Alaska, USA, 2011.

[MHB09] P. Mahr, A. Heine, and C. Bobda. On-chip transactional memory system for
FPGAs using TCC model. In Proceedings of the 6th FPGAworld Conference,
FPGAworld ’09, pages 39–43. ACM, 2009.

[MIL+08] P. Mahr, H. Ishebabi, C. Loerchner, M. Metzner, and C. Bobda. Automated
Design Approach for On-Chip Multiprocessor Systems. In Proceedings of the
5th FPGAworld Conference, FPGAworld ’08, September 2008.

[MKZB10] P. Mahr, M. Krebs, C. Zemko, and C. Bobda. Transparent Energy Metering
in Smart Living Environments. In 3. Deutscher AAL Kongress 2010, Berlin,
Germany, January 2010.

[MLIB08] P. Mahr, C. Lorchner, H. Ishebabi, and C. Bobda. SoC-MPI: A Flexible Mes-
sage Passing Library for Multiprocessor Systems-on-Chips. In International
Conference on ReConFigurable Computing and FPGAs, pages 187–192. IEEE
Computer Society, 2008.

97

Bibliography

Bibliography

[1] A. Agarwal. Limits on interconnection network performance. Parallel and Distributed
Systems, IEEE Transactions on, 2(4):398–412, 1991.

[2] A. Ahmadinia, C. Bobda, J. Ding, M. Majer, and J. Teich. A practical approach
for circuit routing on dynamic reconfigurable devices. In In: Proceedings of the 16th
IEEE International Workshop on Rapid System Prototyping, pages 84–90, 2005.

[3] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. C. van der Veen. Optimal Free-
Space Management and Routing-Conscious Dynamic Placement for Reconfigurable
Devices. IEEE Trans. Comput., 56(5):673–680, 2007.

[4] A. Ahmadinia and A. Shahrabi. A Highly Adaptive and Efficient Router Architecture
for Network-on-Chip. Comput. J., 54:1295–1307, August 2011.

[5] K. Andres. A Texas Instruments Application Report: MOS programmable logic
arrays, 1970.

[6] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast Template Placement for Recon-
figurable Computing Systems. In IEEE Design and Test of Computers, pages 68–83,
2000.

[7] I. Belaid, F. Muller, and M. Benjemaa. New three-level resource management en-
hancing quality of offline hardware task placement on FPGA. International Journal
on Reconfigurable Compututing, 2010:4:1–4:20, January 2010.

[8] L. Benini and G. De Micheli. Networks on Chips: A New SoC Paradigm. IEEE
Computer, 35:70–78, 2002.

[9] C. Bobda. Introduction to Reconfigurable Computing: Architectures, Algorithms, and
Applications. Springer Publishing Company, Incorporated, 2007.

[10] C. Bobda and A. Ahmadinia. Dynamic Interconnection of Reconfigurable Modules
on Reconfigurable Devices. IEEE Design and Test of Computers, 22:443–451, 2005.

[11] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. P. Fekete, and J. van der Veen.
DyNoC: A dynamic infrastructure for communication in dynamically reconfigurable
devices. In International Conference on Field Programmable Logic and Applications
2005 (FPL 2005), pages 153–158, 2005.

98

Bibliography

[12] T. Brecht. On the importance of parallel application placement in NUMA mul-
tiprocessors. In In SEDMS IV. Symposium on Experiences with Distributed and
Multiprocessor Systems, pages 1–18, 1993.

[13] W. Chou. Problems in the design of data communications networks. SIGCOMM
Comput. Commun. Rev., 4:1–6, April 1974.

[14] Y. Chou, P. Pillai, H. Schmit, and J. P. Shen. PipeRench implementation of the
instruction path coprocessor. In Proceedings of the 33rd annual ACM/IEEE inter-
national symposium on Microarchitecture, MICRO 33, pages 147–158. ACM, 2000.

[15] J. Cooley and J. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[16] R. Dafali and J-Ph. Diguet. Self-Adaptive Network Interface (SANI): Local Compo-
nent of a NoC Configuration Manager. In International Conference on Reconfigurable
Computing and FPGAs, pages 296–301, 2009.

[17] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., 2003.

[18] K. Danne and M. Platzner. An EDF schedulability test for periodic tasks on re-
configurable hardware devices. In LCTES ’06: Proceedings of the 2006 ACM SIG-
PLAN/SIGBED conference on Language, compilers, and tool support for embedded
systems, pages 93–102. ACM, 2006.

[19] K. Danne and S. Stühmeier. Off-Line Placement of Tasks onto Reconfigurable Hard-
ware Considering Geometrical Task Variants. IFIP International Federation for In-
formation Processing, 184, 2005.

[20] L. Devaux, S. Pillement, D. Chillet, and D. Demigny. R2NoC: Dynamically Recon-
figurable Routers for Flexible Networks on Chip. In Viktor K. Prasanna, Jürgen
Becker, and René Cumplido, editors, ReConFig, pages 376–381. IEEE Computer
Society, 2010.

[21] J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An Engineering
Approach. Morgan Kaufmann Publishers Inc., 2002.

[22] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - Reconfigurable Pipelined
Datapath. In Proceedings of the 6th International Workshop on Field-Programmable
Logic, Smart Applications, New Paradigms and Compilers, pages 126–135. Springer-
Verlag, 1996.

99

Bibliography

[23] A. Eiche, D. Chillet, S. Pillement, and O. Sentieys. Task placement for dynamic
and partial reconfigurable architecture. In DASIP ’2010: Proceedings of the 2010
Conference on Design & Architectures for Signal & Image Processing, pages 642–
649. IEEE Press, 2010.

[24] G. Estrin. Organization of computer systems: the fixed plus variable structure com-
puter. In Papers presented at the May 3-5, 1960, western joint IRE-AIEE-ACM
computer conference, IRE-AIEE-ACM ’60 (Western), pages 33–40. ACM, 1960.

[25] G. Estrin, B. Bussell, R. Turn, and J. Bibb. Parallel Processing in a Restructurable
Computer System. Electronic Computers, IEEE Transactions on, pages 747–755,
December 2006.

[26] S. P. Fekete, T. Kamphans, N. Schweer, C. Tessars, J. C. van der Veen, J. Angermeier,
D. Koch, and J. Teich. No-break dynamic defragmentation of reconfigurable devices.
In International Conference on Field Programmable Logic and Applications (FPL
2008), pages 113–118, September 2008.

[27] A. Ferrer, S. Parkes, and P. Mendham. Quality of Service in NoC for Reconfigurable
Space Applications. In Proceedings of the 2009 NASA/ESA Conference on Adaptive
Hardware and Systems, AHS ’09, pages 482–487. IEEE Computer Society, 2009.

[28] P. Francesco, P. Antonio, and P. Marchal. Flexible Hardware/Software Support
for Message Passing on a Distributed Shared Memory Architecture. In DATE ’05:
Proceedings of the conference on Design, Automation and Test in Europe, pages 736–
741. IEEE Computer Society, 2005.

[29] B. Glas, A. Klimm, O. Sander, K. D. Müller-Glaser, and J. Becker. A self adap-
tive interfacing concept for consumer device integration into automotive entities. In
IPDPS, pages 1–6. IEEE, 2008.

[30] Maya B. Gokhlae and Paul S. Graham. Reconfigurable Computing: Accelerationg
computation with Field-Programmable Gate Arrays. Springer Publishing Company,
Incorporated, 2005.

[31] R. H. Güting. An optimal contour algorithm for iso-oriented rectangles. J. Algo-
rithms, 5:303–326, September 1984.

[32] M. Handa and R. Vemuri. An Efficient Algorithm for Finding Empty Space For
Online FPGA Placement. In DAC’04: Proceedings of the 41st Design Automation
Conference, 2004.

100

Bibliography

[33] R. Hartenstein. A decade of reconfigurable computing: a visionary retrospective. In
DATE ’01: Proceedings of the conference on Design, automation and test in Europe,
pages 642–649. IEEE Press, 2001.

[34] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative Ap-
proach. Morgan Kaufmann, fourth edition, 2007.

[35] C. Hilton and B. Nelson. PNoC: a flexible circuit-switched NoC for FPGA-based
systems. Computers and Digital Techniques, IEE Proceedings -, 153(3):181–188, May
2006.

[36] Intel. Intel R© MPI Benchmark. http://software.intel.com/en-us/articles/

intel-mpi-benchmarks/, 01/17/12.

[37] Intel. Intel R© Xeon R© Processor E7-8870. http://ark.intel.com/

products/53580/Intel-Xeon-Processor-E7-8870-%2830M-Cache-2_40-GHz-6_

40-GTs-Intel-QPI%29, 12/09/2011.

[38] ivcblog. Logic devices. http://beta.ivc.no/blog/2011/03/30/logic-devices/,
08/22/2011.

[39] S. Jovanović, C. Tanougast, C. Bobda, and S. Weber. CuNoC: A dynamic scal-
able communication structure for dynamically reconfigurable FPGAs. Microprocess.
Microsyst., 33(1):24–36, 2009.

[40] M. Koester, M. Porrmann, and H. Kalte. Task placement for heterogeneous recon-
figurable architectures. In IEEE International Conference on Field-Programmable
Technology, pages 43–50, 2005.

[41] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev. A Communication Aware On-
line Task Scheduling Algorithm for FPGA-Based Partially Reconfigurable Systems.
In Proceedings of the 2010 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM ’10, pages 65–68. IEEE Com-
puter Society, 2010.

[42] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford. Invited Paper: En-
hanced Architectures, Design Methodologies and CAD Tools for Dynamic Reconfig-
uration of Xilinx FPGAs. In International Conference on Field Programmable Logic
and Applications (FPL 2006), pages 1–6. IEEE, 2006.

[43] Z. Marrakchi, H. Mrabet, U. Farooq, and H. Mehrez. FPGA interconnect topologies
exploration. Int. J. Reconfig. Comput., 2009:6:2–6:2, January 2009.

101

http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-%2830M-Cache-2_40-GHz-6_40-GTs-Intel-QPI%29
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-%2830M-Cache-2_40-GHz-6_40-GTs-Intel-QPI%29
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-%2830M-Cache-2_40-GHz-6_40-GTs-Intel-QPI%29
http://beta.ivc.no/blog/2011/03/30/logic-devices/

Bibliography

[44] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings. A recon-
figurable arithmetic array for multimedia applications. In Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field programmable gate arrays,
FPGA ’99, pages 135–143. ACM, 1999.

[45] C. Maxfield. Altera’s new 40nm FPGAs - 2.5 billion transistors! http:

//www.eetimes.com/electronics-products/fpga-pld-products/4104287/

Altera-s-new-40nm-FPGAs--2-5-billion-transistors-, 08/24/2011.

[46] T. P. McMahon and A. Skjellum. eMPI/eMPICH: Embedding MPI. In MPIDC ’96:
Proceedings of the Second MPI Developers Conference, page 180. IEEE Computer
Society, 1996.

[47] Message Passing Forum. MPI: A Message-Passing Interface Standard. Technical
report, 1994.

[48] L. Middendorf and C. Bobda. Declarative Programming with Handel-C. In ERSA ’10
International Conference on Engineering of Reconfigurable Systems and Algorithms,
2010.

[49] T. Miyamori and K. Olukotun. REMARC (abstract): reconfigurable multimedia
array coprocessor. In Proceedings of the 1998 ACM/SIGDA sixth international sym-
posium on Field programmable gate arrays, FPGA ’98, pages 261–. ACM, 1998.

[50] M. Modarressi, H. Sarbazi-Azad, and A. Tavakkol. An efficient dynamically reconfig-
urable on-chip network architecture. In Proceedings of the 47th Design Automation
Conference, DAC ’10, pages 166–169. ACM, 2010.

[51] C. Nicopoulos, V. Narayanan, and C. R. Das. Network-on-Chip: A Holistic Design
Exploration. Springer Sceince + Buisness Mesia, 2009.

[52] O. Ozturk, M. Kandemir, G. Chen, M. J. Irwin, and M. Karakoy. Customized on-
chip memories for embedded chip multiprocessors. In ASP-DAC ’05: Proceedings of
the 2005 conference on Asia South Pacific design automation, pages 743–748. ACM,
2005.

[53] Pact. Reconfiguration on XPP-III Processors: White Paper. http://www.pactxpp.
com/download/XPP-III_reconfiguration_WP.pdf, 10/25/2011.

[54] Pact. XPP-iii processor overview: White paper. http://www.pactxpp.com/

download/XPP-III_overview_WP.pdf, 08/29/2011.

102

http://www.eetimes.com/electronics-products/fpga-pld-products/4104287/Altera-s-new-40nm-FPGAs--2-5-billion-transistors-
http://www.eetimes.com/electronics-products/fpga-pld-products/4104287/Altera-s-new-40nm-FPGAs--2-5-billion-transistors-
http://www.eetimes.com/electronics-products/fpga-pld-products/4104287/Altera-s-new-40nm-FPGAs--2-5-billion-transistors-
http://www.pactxpp.com/download/XPP-III_reconfiguration_WP.pdf
http://www.pactxpp.com/download/XPP-III_reconfiguration_WP.pdf
http://www.pactxpp.com/download/XPP-III_overview_WP.pdf
http://www.pactxpp.com/download/XPP-III_overview_WP.pdf

Bibliography

[55] T. Pionteck, C. Albrecht, and R. Koch. A dynamically reconfigurable packet-switched
Network-on-Chip. In Proceedings of the conference on Design, automation and test in
Europe: Proceedings, DATE ’06, pages 136–137. European Design and Automation
Association, 2006.

[56] T. Pionteck, C. Albrecht, R. Koch, E. Maehle, M. Hübner, and J. Becker. Commu-
nication Architectures for Dynamically Reconfigurable FPGA Designs. In IPDPS,
pages 1–8. IEEE, 2007.

[57] M. Platzner, J. Teich, and N. Wehn. Dynamically Reconfigurable Systems: Archi-
tectures, Design Methods and Applications. Springer Publishing Company, Incorpo-
rated, 1st edition, 2010.

[58] Potassco. A User’s Guide to gringo, clasp, clingo and iclingo. http://dfn.dl.

sourceforge.net/project/potassco/potassco_guide/2010-10-04/guide.pdf,
09/07/2011.

[59] T. D. Richardson, C. Nicopoulos, D. Park, V. Narayanan, J. Xie, C. Das, and V. De-
galahal. A Hybrid SoC Interconnect with Dynamic TDMA-Based Transaction-Less
Buses and On-Chip Networks. In VLSID ’06: Proceedings of the 19th International
Conference on VLSI Design held jointly with 5th International Conference on Em-
bedded Systems Design, pages 657–664. IEEE Computer Society, 2006.

[60] M. Saldaña and P. Chow. TMD-MPI: An MPI Implementation for Multiple Proces-
sors Across Multiple FPGAs. In International Conference on Field Programmable
Logic and Applications 2006 (FPL 2006), pages 1–6, 2006.

[61] J. Septién, H. Mecha, D. Mozos, and J. Tabero. 2D defragmentation heuristics for
hardware multitasking on reconfigurable devices. In IEEE Reconfigurable Workshop
(RAW), Proceedings of the International Parallel and Distributed Processing Sympo-
sium, 2006.

[62] H. Singh, G. Lu, E. Filho, R. Maestre, M. Lee, F. Kurdahi, and N. Bagherzadeh.
MorphoSys: case study of a reconfigurable computing system targeting multimedia
applications. In Proceedings of the 37th Annual Design Automation Conference, DAC
’00, pages 573–578. ACM, 2000.

[63] C. Steiger, H. Walder, and M. Platzner. Operating Systems for Reconfigurable Em-
bedded Platforms: Online Scheduling of Real-Time Tasks. IEEE Trans. Comput.,
53(11):1393–1407, 2004.

103

http://dfn.dl.sourceforge.net/project/potassco/potassco_guide/2010-10-04/guide.pdf
http://dfn.dl.sourceforge.net/project/potassco/potassco_guide/2010-10-04/guide.pdf

Bibliography

[64] C. Steiger, H. Walder, M. Platzner, and L. Thiele. Online Scheduling and Placement
of Real-time Tasks to Partially Reconfigurable Devices. In In: Proceedings of the
24th International Real-Time Systems Symposium, Cancun, pages 224–235, 2003.

[65] J. Suh, D. Kang, and S. P. Crago. A Communication Scheduling Algorithm for Multi-
FPGA Systems. In Proceedings of the 2000 IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM ’00, pages 299–. IEEE Computer Society, 2000.

[66] J. Tabero, J. Septién, H. Mecha, and D. Mozos. A Low Fragmentation Heuristic for
Task Placement in 2D RTR HW Management. In Jürgen Becker, Marco Platzner,
and Serge Vernalde, editors, Field Programmable Logic and Applications (FPL 2004),
volume 3203 of Lecture Notes in Computer Science, pages 241–250. Springer, 2004.

[67] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann,
P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. Evaluation of the Raw Microprocessor: An
Exposed-Wire-Delay Architecture for ILP and Streams. In Proceedings of the 31st an-
nual international symposium on Computer architecture, ISCA ’04. IEEE Computer
Society, 2004.

[68] S. Vassiliadis and D. Soudris. Fine- and Coarse-Grain Reconfigurable Computing.
Springer Publishing Company, Incorporated, 2007.

[69] J. von Neumann. First Draft of a Report on the EDVAC. IEEE Ann. Hist. Comput.,
15:27–75, October 1993.

[70] X. Wang and S. Thota. Design and Implementation of a Resource-Efficient Com-
munication Architecture for Multiprocessors on FPGAs. In Proceedings of the 2008
International Conference on Reconfigurable Computing and FPGAs, pages 25–30.
IEEE Computer Society, 2008.

[71] J. A. Williams, I. Syed, J. Wu, and N. W. Bergmann. A Reconfigurable Cluster-
on-Chip Architecture with MPI Communication Layer. In FCCM ’06: Proceedings
of the 14th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 350–352. IEEE Computer Society, 2006.

[72] Xilinx. Difference-Based Partial Reconfiguration. http://www.xilinx.com/

support/documentation/application_notes/xapp290.pdf, 10/25/2011.

[73] Xilinx. Microblaze soft processor core. http://www.xilinx.com/products/design_
resources/proc_central/microblaze.htm, 01/17/12.

104

http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm

Bibliography

[74] Xilinx. ML403 Evaluation Platform Documentation. www.xilinx.com/products/

boards/ml403/docs.htm, 01/17/12.

[75] Xilinx. Virtex-6 FPGA DSP48E1 Slice. http://www.xilinx.com/support/

documentation/user_guides/ug369.pdf, 08/24/2011.

[76] Xilinx. Xilinx ML310 Documentation and Tutorials. http://www.xilinx.com/

products/boards/ml310/current/, 01/17/12.

105

www.xilinx.com/products/boards/ml403/docs.htm
www.xilinx.com/products/boards/ml403/docs.htm
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/products/boards/ml310/current/
http://www.xilinx.com/products/boards/ml310/current/

List of Figures

List of Figures

1 Performance vs. Flexibility of processor classes 17

2 Reconfigurable device with computational resources (dark gray) and com-
munication resources (light gray) with two loaded applications A1 and A2
and a not yet loaded application A3. 19

3 Hardware infrastructure of a reconfigurable computing system with n + 1

modules . 25

4 Programmable Logic Array . 27

5 CPLD structure . 28

6 FPGA structure . 29

7 XPP-III core structure . 30

8 Architecture of reconfigurable computing platform 32

9 RMBoC architecture . 36

10 CoNoChi architecture . 37

11 DyNoC system architecture . 38

12 Module selection of task t5 . 48

13 Relocation of modules m2 and m4 after m1 was removed on a Dynamic
Network-on-Chip . 54

14 Weak feasible relocation selection of tasks 56

15 Periodic relocation with LTF . 59

16 Periodic relocation with EDF . 60

17 Periodic relocation with large overheads 60

18 Path length using S-XY routing . 62

19 Optimal placement . 64

20 DyNoC system overview with three tasks implemented by three modules
and a resource manager . 70

21 Router architecture with five inputs and outputs 72

22 Simplified reconfigurable router architecture 73

23 Module using reconfigurable routers as memory resource 75

24 Simplified processing element architecture with five inputs and outputs for
the calculation of the FFT algorithm . 81

25 FFT data flow on a module consisting of four PEs for 16 input words . . . 82

106

List of Figures

26 Different shapes of modules build-up of four PEs 83
27 SoC-MPI Layer Structure . 87
28 Simplified SoC-MPI Configuration Scheme 89
29 Benchmark Results of SoC-MPI using Intel MPI Benchmarks 3.1 90
30 Star Network for Singular Value Decomposition with five MicroBlaze pro-

cessing elements . 91

107

List of Tables

List of Tables

1 Rejection rate for three task sets and varied next-fit value k 52
2 Rejection rate and average manhattan distance for module selection heuris-

tics for k = 0 . 53
3 Comparison of path length calculated with manhattan distance and average

S-XY routing distance for TS1, TS2, TS3 and TS4 63
4 Influence of module selection strategy on path length for TS1 63
5 Off-line placer runtime . 66
6 Task set TS5 with six tasks each consisting of up to four components . . . 67
7 Results of on-line placer for TS5 . 68
8 Comparison of on-line and off-line placer for TS5 68
9 Synthesis results of routers for Xilinx Virtex 5 LX110 FPGA 77
10 Router Timings . 78
11 Comparison of lookup and computation of the sine signal 79
12 Synthesis results of PE for Xilinx Virtex 5 LX110 FPGA 84
13 Computation time and speed-up of the FFT algorithm with several pro-

cessing elements and varying amount of input data 84
14 Supported MPI functions . 88
15 Benchmark Results of the SVD Implementation in 91

108

	Title
	Imprint

	Kurzzusammenfassung
	Abstract
	List of abbreviations
	Contents
	Introduction
	Assumption and scientific challenges
	Organization of thesis

	Reconfigurable computing systems
	Abstract hardware architecture of a reconfigurable computing systems
	Reconfigurable logic devices
	From simple PLDs to FPGAs
	Coarse-grained reconfigurable devices
	Reconfigurability

	Resource management of reconfigurable devices
	Placement
	Temporal planning

	Interconnection networks and communication protocols of reconfigurable devices
	Bus-based interconnection network
	Networks-on-Chip
	Communication protocols

	Discussion
	Chapter conclusion

	Scheduling on NoC-based reconfigurable architectures
	Basic scheduler
	Placement
	Temporal planning

	Integrated module selection
	Module selection strategies
	Extended scheduling algorithm
	Evaluation

	Relocation of tasks
	Relocation strategies
	Extended scheduling algorithm
	Evaluation

	Influence of dynamic placement on path length
	Off-line spatial planning with ASP
	Problem solving
	Evaluation

	Chapter conclusion

	Resource efficient DyNoC architecture
	System architecture
	Router
	Router Architecture
	Evaluation

	Processing element
	Architecture
	Evaluation

	Chapter conclusion

	High-level communication in reconfigurable on-chip systems
	Structure and Functionality
	Evaluation
	Benchmarks
	Case study

	Chapter conclusion

	Conclusion and outlook
	Author's Publications
	Bibliography
	List of Figures
	List of Tables

