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Abstract

This thesis contains several theoretical studies on optomechanical systems,

i.e. physical devices where mechanical degrees of freedom are coupled with

optical cavity modes. This optomechanical interaction, mediated by radiation

pressure, can be exploited for cooling and controlling mechanical resonators

in a quantum regime.

The goal of this thesis is to propose several new ideas for preparing meso-

scopic mechanical systems (of the order of 1015 atoms) into highly non-classical

states. In particular we have shown new methods for preparing optomechani-

cal pure states, squeezed states and entangled states. At the same time, proce-

dures for experimentally detecting these quantum effects have been proposed.

In particular, a quantitative measure of non classicality has been defined in

terms of the negativity of phase space quasi-distributions. An operational al-

gorithm for experimentally estimating the non-classicality of quantum states

has been proposed and successfully applied in a quantum optics experiment.

The research has been performed with relatively advanced mathematical

tools related to differential equations with periodic coefficients, classical and

quantum Bochner’s theorems and semidefinite programming. Nevertheless the

physics of the problems and the experimental feasibility of the results have

been the main priorities.
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Introduction

What is quantum optomechanics?

The aim of this thesis is to theoretically investigate the possibility of induc-

ing and observing quantum effects in mesoscopic mechanical systems. Most

of the investigation is focused on the prototypical experimental scenario of a

mechanical resonator coupled to quantum light modes. The study of this kind

of setting became in the last decades a very flourishing research field called

quantum optomechanics [6, 7]. Probably the main question that strongly mo-

tivates the scientific effort in this field is the following: at which mass and

length scales do mechanical systems behave according to quantum mechanics

rather than to classical mechanics? This question can be interpreted in two

different ways which are both interesting and stimulating. One point of view

is to better understand some fundamental aspects of quantum mechanics, in

particular the controversial origin of decoherence or more generally the tran-

sition from the quantum to the classical world. On the other hand, one can

look at the same question more pragmatically as a technical challenge to push

the limits of quantum controllability over larger and larger systems. This sec-

ond point of view can be well expressed by quoting A. Zeilinger: “The border

between classical and quantum phenomena is just a question of money” [8].

In any case, whatever it is the philosophical approach, the previous question

is worth being tackled and the aim of thesis is to give a contribution to this

challenge by providing new methods for preparing and rigorously detecting

macroscopic quantum states of mechanical degrees of freedom.

One of the more interesting and promising ways in which a mechanical

system can interact with an optical or microwave field is via the phenomenon

of radiation pressure. The simple reflection of a light beam on a mechanical

system can transfer a very weak momentum to it. This was assumed for

the first time by Kepler in order to justify the characteristic bending of the

tails of comets and later theoretically established within the framework of
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Maxwell equations [11]. From a classical point of view, the radiation pressure

interaction is nowadays well known and also conveniently applied: see for

example the recently launched spacecraft IKAROS making use of the solar

pressure as main propulsion [10].

Probably the first intersection of the concept of radiation pressure with

quantum mechanics can be traced back to a Gedankenexperiment proposed by

Einstein in 1909 [12] where, for the first time, the concept of single quanta

of light exchanging momentum with a moving membrane was prophetically

introduced. Much later, in 1970, Braginsky studied the quantum fundamental

limits that radiation pressure induces when sensing mechanical motion with

light [13]. However, only in the last twenty years, thanks to the theoretical

background of quantum optics and to the experimental progress in micro and

nano-technologies, the research field of optomechanics strongly emerged and

acquired the large scientific attention that it has in our days [6, 7]. After several

pioneering theoretical ideas related to mechanical Kerr effects [14, 15], photon

number measurements [16], laser cooling [17] and mechanical superpositions

[18], many experiments where done involving micro and nano-mechanical res-

onators controlled closer and closer to their quantum regime [19, 20, 21, 22, 23].

Only very recently one of the most exciting quest in the context of quantum

optomechanics has been reached by several experimental groups: the cool-

ing of a mesoscopic mechanical resonator down to its quantum ground state

[24, 25, 26]. The present experimental ability to achieve high level of mechan-

ical purity and control is opening the road to many other research directions

like non-classical state preparation [27], quantum transducers [30], optome-

chanical entanglement [28, 29] etc.. It is exactly this relatively short distance

between theoretical ideas and experiments, together with the wide range of

possible applications, what makes the field of quantum optomechanics partic-

ularly lively and attractive.

Structure of the thesis

This is a cumulative thesis and it is structured in the following way: two in-

troductory chapters, five attached publications [1, 2, 3, 4, 5] (in their original

layout) and a final discussion. The first two chapters have the role of intro-

ducing the reader to the main concepts and methods of this thesis. The first

chapter is an introduction to the theory of optomechanics, setting the stage

for a quantum mechanical description of these devices. The second chapter

contains a brief overview of mathematical methods used within the various
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publications: phase space methods, classical and quantum Bochner’s theo-

rems and differential equations with periodic coefficients. The publications

are attached in a chronological order with respect to their submission date. In

the conclusion all the publications are schematically summarized and followed

by a general discussion connecting the different results and giving the global

motivation of the thesis.
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Chapter 1

Quantum theory of

optomechanics

1.1 Fabry-Pérot cavity with a moving mirror

The canonical model of an optomechanical device is an optical cavity where

one mirror is fixed while the other one is free to move in a harmonic poten-

tial (see Fig. 1.1). One of the optical modes is driven with a laser and the

light inside the cavity will push the mirror due to radiation pressure. At the

same time, any movement of the mirror will change the length of the cavity

modulating the phase of the light. It is the combination of these two mech-

anisms that, if used in a convenient way, can generate a very rich variety of

optomechanical phenomena. Real experimental devices reproducing exactly

this structure have been realized [22], but many other configurations are also

possible: optomechanical micro-toroids [21, 23], optical cavities with vibrating

Figure 1.1: Typical model of an optomechanical system. A cavity mode of

frequency ωa is driven by a laser. The light mode interacts via radiation

pressure with the mechanical motion of the right mirror. The mirror oscillates

in a harmonic potential of frequency ωb.
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Figure 1.2: Experimental examples of optomechanical systems. On the left a

micro-toroidal realization of an optomechanical system [21, 23]. On the right

a micro-mirror attached to a cantilever [22] as in the scheme of Fig. 1.1.

membranes [32], spheres in optical tweezers [31], etc.. Even if experimentally

very different (see e.g. Fig. 1.2), all the mentioned devices can be theoretically

described by the same basic model of Fig. 1.1.

1.1.1 Coherent dynamics

In a quantum mechanical picture of the setup, the laser driven optical mode

and the mechanical motion of the mirror are formally described by two har-

monic oscillators of frequencies ωa and ωb with respective creation and anni-

hilation operators a, a† and b, b† obeying bosonic commutation rules [a, a†] =

[b, b†] = 1. Since we are dealing with harmonic modes, all the theoretical for-

malism will be essentially the one generally used in quantum optics. It can be

shown [33] that, if ωb is much smaller than the free spectral range of the op-

tical cavity, the dynamics of the system is well approximated by the following

Hamiltonian:

H = ~ωaa†a+ ~ωbb†b− ~ga†a(b+ b†) + E(ae−iωlt + a†eiωlt), (1.1)

where the first two terms represent the energy of the optical and mechanical

modes, the third term is the interaction potential and the last one describes

the coherent driving of a laser of frequency ωl.

By direct inspection of the third term we can recognize a potential of the

form −Fq, where q = (b + b†)/
√

2 is the position operator of the mirror and

F a force pushing the mirror to the right with a modulus proportional to

the intensity ~ωaa†a of the light. This is the standard non-linear radiation

pressure interaction that is at the basis of every optomechanical device.

The coupling constant g depends non-trivially on the experimental appa-

ratus and it is usually determined via a direct measurement. However in the
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particular setup of Fig. 1.1, this coupling can be indirectly estimated [33]:

g = ωa
L

√
2~
mωb

where L is the length of the cavity and m is the effective mass of

the mechanical mode. In general the coupling constant is very small g << ωb,

nevertheless strong effective couplings can be achieved via strong laser pump-

ing, i.e. E >> ωb.

1.1.2 Dissipative dynamics

The previous Hamiltonian is a good description of the coherent dynamics how-

ever both the optical and the mechanical modes will be subject to decoherence

and these non unitary processes should also be included in the description of

the system. In the Schrödinger picture, dissipation and decoherence can be

taken into account with a master equation [34] describing the evolution of the

density operator:

ρ̇ = − i
~

[H, ρ]

+κ(na + 1)(2aρa† − a†aρ− ρa†a) + κna(2a
†ρa− aa†ρ− ρaa†)

+γ(nb + 1)(2bρb† − b†bρ− ρb†b) + γnb(2b
†ρb− bb†ρ− ρbb†), (1.2)

where the first line corresponds to the unitary Schrödinger equation while

the second and third lines are responsible for the dissipative processes of the

optical and mechanical modes respectively. The constants κ and γ are the

optical and mechanical decay rates, while nx = [exp( ~ωx
kBT

)− 1]−1 are the bath

mean occupation numbers at the respective frequencies and at temperature T .

In the previous master equation the dissipative structure of the mechanical

mode is assumed to be the same of the optical mode. This is a justified

approximation if we are dealing with good mechanical quality factors ωb >> γ.

A more realistic model for the mechanical decoherence is that of quantum

Brownian motion [34] where the symmetry between the mechanical position

operator q = (b+b†)
√

2 and the momentum operator p = i(b†−b)
√

2 is broken.

This symmetry breaking is motivated by the classical intuition that mechanical

friction and noise are invariant for spatial translations and are related only to

the velocity of the system. More rigorously, from a microscopic model of a

large bath of harmonic oscillators coupled to the mechanical mirror, a quantum

analogue of classical Langevin equations can be derived well reproducing the

mechanical dissipation and decoherence [34, 29]. This is a set of Heisenberg

equations of motion of the system operators that can be used in place of the
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previous master equation:

q̇ = ωb p, (1.3)

ṗ = −ωb q − 2γ p+ ga†a+ ξ, (1.4)

ȧ = −(κ+ iωa)a+ i
√

2gaq + Ee−iωlt +
√

2κain, (1.5)

where ξ and ain are noise operators modeling the sources of mechanical and op-

tical fluctuations. These noise operators are assumed to be Gaussian, i.e. com-

pletely described by their first and second order correlation functions which

are

〈ξ(t)〉 = 〈ain(t)〉 = 0, (1.6)

〈ξ(t)ξ(t′)〉 = 2γ[(2nb + 1)δ(t− t′) + i
d

dt
δ(t− t′)], (1.7)

〈ain(t)†ain(t′)〉 = (na + 1)δ(t− t′), (1.8)

〈ain(t)ain(t′)†〉 = δ(t− t′), (1.9)

and all the other second order correlations are zero.

In the limit of ωm →∞, these quantum Langevin equations become equiv-

alent to the master equation (1.2). Both the Schrödinger and Heisenberg pic-

ture approaches introduced in this section are used as starting points in most

of the publications included in this thesis.



Chapter 2

Mathematical tools

This chapter contains an introductory overview of the main mathematical

methods which have been used in the attached publications.

2.1 The Wigner function

The Wigner function [34, 35, 36, 37] is a mathematical description of a quan-

tum state that is particularly convenient in quantum optics, optomechanics

and more generally each time the system under investigation is described in

terms of continuous variable operators like position and momentum. The main

idea is to associate to a quantum state something similar to a phase space dis-

tribution. The Wigner function is the closest quantum analogue of a phase

space density in the sense that it is a phase-space function that contains all

the information that we can have about a quantum state. However, differently

form its classical counterpart, the Wigner function can have negative values

in some small phase space regions at the quantum scale of ~. It is exactly the

negativity of this function that it is often used as a figure of merit of “quan-

tumness” of a state. The intuition is that, whenever the Wigner function is

positive, this could be interpreted as a classical probability distribution asso-

ciated to a system described in terms of classical canonical coordinates. The

negativity of the Wigner function can then be used as a reasonable criterion

to distinguish classical states from non-classical ones.

Formally, given N quantum systems, if we define a vector containing the

position and momentum operators R = (q1, p1, q2, p2, ...qN , pN )T we can ex-

press the canonical commutation relations in matrix form

[Rk, Rl] = iσk,l , (2.1)
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where σ is the 2N × 2N symplectic matrix given by

σ =
N⊕

k=1

(
0 1

−1 0

)
. (2.2)

Given this vector R of canonical operators, one can introduce a family of

displacement or Weyl operators [36, 37]:

Dξ = eiξ
T σR, ξ ∈ R2N . (2.3)

Through these operators one can apply to the density matrix ρ a quantum

analogue of the Fourier transform:

χ(ξ) = Tr(ρDξ). (2.4)

The function χ(ξ) is called quantum characteristic function and it shares many

properties with its classical counterpart, e.g.:

χ(0) = 1, (2.5)

1

(2π)N

∫
|χ(ξ)|2dξ ≤ 1, (2.6)

where the last integral is equal to 1 if and only if the state ρ is pure. The

characteristic function maps each operator to a unique function in L2 however,

if we want something which is analogous to a probability distribution in a phase

space, we need the inverse Fourier transform of it:

W (r) =
1

(2π)2N

∫
χ(ξ)e−iξ

T σrdξ, (2.7)

which is called the Wigner function.

2.1.1 Gaussian states and covariance matrices

A quantum state ρ is defined to be Gaussian if its characteristic function

(or equivalently its Wigner function) is a Gaussian. Given the displacement

vector d = Tr{ρR}, and the symmetrically ordered covariance matrix Vk,l =

Tr{ρ[Rk − dk, Rl − dl]+}, the most general Gaussian characteristic function

can be written as:

χ(ξ) = e−
1
4
(σξ)TV σξ+idT σξ, (2.8)

where the first moments d and the second moments V completely characterize

the state. From the definition (2.7), the associated Wigner function will also

be Gaussian and equal to [36, 37]:

W (r) = π−N |V |− 1
2 e−(r−d)

T σTV −1σ(r−d), (2.9)
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where |V | is the determinant of the covariance matrix. Not every Gaussian

function can be a Wigner function of a physical state. The Heisenberg principle

implies the following constraint [36, 37] on the correlation matrix

V + iσ ≥ 0. (2.10)

We have seen that through the Wigner function one can have a rigorous

and complete phase space representation of a quantum state ρ. In general,

however, it is difficult to compute how the Wigner function behaves when

general quantum operations are applied to ρ. This problem is much easier if

we consider only Gaussian operations, which are the transformations mapping

Gaussian states into Gaussian states. Since a Gaussian state is determined by

its first and second moments we can completely define a Gaussian operation

via its effect on the correlation matrix V and on the displacement vector d.

Since strongly driven optomechanical systems evolve according to a Gaussian

dissipative dynamic, this formalism based only on first and second moments is

particularly convenient and it is indeed heavily used in many of the attached

publications.

2.2 Classical and quantum Bochner’s theorems

Classical [40] and quantum [38, 39] Bochner’s theorems are the two main math-

ematical tools used in the publication Directly estimating non-classicality [3].

They are related to characteristic functions and they answer to the following

two questions:

1. How can we test if a characteristic function corresponds to a positive

Wigner function?

2. How can we test if a characteristic function corresponds to a physical

quantum state (i.e. to a positive density matrix)?

Theorem 1 (Classical Bochner’s theorem [40]). A characteristic function χ(ξ)

is the Fourier transform of a positive function (e.g. the Wigner function) if and

only if, for every m ∈ N and for every set of real vectors T = (ξ1, ξ2, . . . , ξm),

the m×m matrix M (0) with entries

M
(0)
k,l = χ(ξk − ξl) (2.11)

is positive semidefinite, i.e. M (0) ≥ 0.
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Figure 2.1: Example of a Wigner function of a non-classical state (b). By

measuring position and momentum distributions only (a), classical and quan-

tum Bochner’s theorems allow to certify the negativity of the Wigner funciton.

This figure is taken from [3].

Theorem 2 (Quantum Bochner’s theorem [38, 39]). A characteristic function

χ(ξ) is the the quantum Fourier transform of a positive operator (e.g. a density

matrix) if and only if, for every m ∈ N and for every set of real vectors

T = (ξ1, ξ2, . . . , ξm), the m×m matrix M (1) with entries

M
(1)
k,l = χ(ξk − ξl)e−iξk·σξl/2 (2.12)

is positive semidefinite, i.e. M (1) ≥ 0.

As we have already anticipated, Wigner functions can take negative values.

As a consequence, every quantum state must have a characteristic function

satisfying the quantum Bochner’s theorem but not necessarily the positivity

condition given in the classical version of theorem. This means that a violation

of the semi-positivity of the matrix M (0) given in Eq. (2.11) provides a valid

and rigorous test for the negativity of the Wigner function. This test has

been used in the publication Directly measuring non-classicality [3] in order

to certify and to quantify the non-classicality of continuous variable quantum

states (see Fig. 2.1).

2.3 Differential equations with periodic coefficients

In the publications Gently modulating optomechanical systems [2] and Opto

and electro-mechanical entanglement improved by modulation [5], a scheme

similar to the one introduced in the previous chapter (see Eq. (1.1)) has been
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analyzed where the amplitude E of the driving laser is not constant but it has

some periodic time dependence E(t) = E(t + τ) with period τ > 0. For this

reason several differential equations with periodic coefficients appears in the

equations of motion of the optomechanical system.

In this section we explicitly analyze, abstracting from the original physi-

cal situation, the mathematical properties of differential equations with time

periodic coefficients [41]. Consider a linear first-order system,

ẋ(t) = B(t)x(t), (2.13)

where x(·) is a time dependent vector with n components and B(·) is some

complex square matrix with entries dependent on t ≥ t0 with some t0 > 0.

Then the linear first-order system has a unique solution for x(t0) = x0 for all

times t > t0. The principal matrix solution is the solution of

Ṗ (t, t0) = B(t)P (t, t0), (2.14)

with P (t, t0) = 1. The solution to the inhomogeneous system ẋ(t) = B(t)x(t)+

g(t), with initial condition x(t0) = x0 is given by

x(t) = P (t, t0)x0 +

∫ t

t0

dsP (t, s)g(s). (2.15)

Theorem 3 (Floquet’s theorem [41]). If B(.) is periodic, B(t) = B(t + τ)

for some τ > 0 for all t ≥ t0, then the principal matrix solution has the

form P (t, t0) = X(t, t0)e
(t−t0)Y (t0), where the matrices X(., .) and Y (.) are

τ -periodic in all their arguments and X(t0, t0) = 1.

The eigenvalues λi of the matrix Y are known as Floquet exponents. A

negative value of λ = maxj re(λj) implies asymptotic periodic solutions:

Theorem 4 (Asymptotic periodicity). For stable systems, if both B(.) and

g(.) are τ -periodic then, for t− t0 > 1 we have

‖x(t+ τ)− x(t)‖ ≤ eλ(t−t0)mcn (t− t0 + τ)n−1

×
(

2‖x0‖+ τ max
v∈I
‖g(v)‖

)
,

(2.16)

where n is the dimension of the vector space, I = [0, τ ], m = maxt,t′∈I ‖X(t, t′)‖
and c = maxu∈I ‖W (u)‖ ‖W−1(u)‖, where W (u) is a similarity transformation

that brings Y (u) to a Jordan form. Here the norm ‖.‖ is the one induced by
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the Euclidean vector norm. (For a proof of this theorem see the appendix of

the preprint version of [2]).

This final result on asymptotic periodicity of differential equations is used

in the following publications to theoretically predict the emergence of periodic

limit cycles in modulated optomechanical systems [2, 5].



Chapter 3

Quantum effects in

optomechanical systems
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Abstract

The search for experimental demonstrations of the quantum behavior of macroscopic
mechanical resonators is a fastly growing field of investigation and recent results
suggest that the generation of quantum states of resonators with a mass at the
microgram scale is within reach. In this chapter we give an overview of two important
topics within this research field: cooling to the motional ground state, and the
generation of entanglement involving mechanical, optical and atomic degrees of
freedom. We focus on optomechanical systems where the resonator is coupled to
one or more driven cavity modes by the radiation pressure interaction. We show
that robust stationary entanglement between the mechanical resonator and the
output fields of the cavity can be generated, and that this entanglement can be
transferred to atomic ensembles placed within the cavity. These results show that
optomechanical devices are interesting candidates for the realization of quantum
memories and interfaces for continuous variable quantum communication networks.

Key words: radiation pressure, optical cavities, micromechanical systems,
optomechanical devices, ground state cooling, quantum entanglement, atomic
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1 Introduction

Mechanical resonators at the micro- and nano-meter scale are widely employed
for a large variety of applications, more commonly as sensors or actuators in
integrated electrical, optical, and opto-electronical systems [1,2,3,4]. Modifica-
tions of the resonator motion can be detected with high sensitivity by looking
at the radiation (or electric current) which interacted with the resonator. For
example, small masses can be detected by measuring the frequency shift in-
duced on the resonator, while tiny displacements (or weak forces inducing such
displacements) can be measured by detecting the corresponding phase shift of
the light interacting with it [2]. The resonators are always subject to thermal
noise, which is due to the coupling with internal and/or external degrees of
freedom and is one of the main factors limiting the sensitivity of these devices.
However, due to the progress in nanofabrication techniques, the mechanical
quality factor Qm (which quantifies this undesired coupling to environmental
degrees of freedom) is steadily improving, suggesting that in the near future
these devices will reach the regime in which their sensitivity is limited by the
ultimate quantum limits set by the Heisenberg principle. The importance of
the limits imposed by quantum mechanics on the resonator motion was first
pointed out by Braginsky and coworkers [5] in the completely different con-
text of massive resonators employed in the detection of gravitational waves
[6]. However, in recent years the quest for the experimental demonstration
of genuine quantum states of macroscopic mechanical resonators has spread
well beyond the gravitational wave physics community and has attracted a

2



wide interest. In fact, the detection of an unambiguous signature of the quan-
tum behavior of a macroscopic oscillator, with a mass at least of the order of
a microgram, would shed further light onto the quantum-classical boundary
problem [7]. In fact, nothing in the principles of quantum mechanics prevents
macroscopic systems to be prepared in genuine quantum states. However, it
is not yet clear how far one can go in this direction [8], and a complete un-
derstanding of how classical behavior emerges from the quantum substrate re-
quires the design and the implementation of dedicated experiments. Examples
of this kind are single-particle interference of macro-molecules [9], the demon-
stration of entanglement between collective spins of atomic ensembles [10],
and of entanglement in Josephson-junction qubits [11]. For what concerns me-
chanical resonators, the experimental efforts are currently focusing on cooling
them down to their motional ground state [2]. This goal has not been achieved
yet, but promising results in this direction have been obtained in different
setups [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31], involving
different examples of mechanical resonators coupled either to radiative or to
electrical degrees of freedom. Ground state cooling of microgram-scale res-
onators seems to be within reach, as already suggested by various theoretical
proposals [32,33,34,35,36,37,38,39,40,41,42,43] which showed how a mechan-
ical oscillator can be coupled to another system so that the latter can act
as an effective zero-temperature reservoir. In the first part of this chapter
we shall review the problem of ground state cooling of a mechanical res-
onator, by focusing onto the case where the role of effective zero-temperature
“fridge” is played by an optical cavity mode, coupled to the resonator by ra-
diation pressure. In this case this interaction can be exploited for cooling in
two different ways: i) back-action, or self-cooling [33,39,40,41,42,43] in which
the off-resonant operation of the cavity results in a retarded back action on
the mechanical system and hence in a “self”-modification of its dynamics
[14,17,18,20,21,23,24,25,26,27,29,30,31]; ii) cold-damping quantum feedback,
where the oscillator position is measured through a phase-sensitive detection
of the cavity output and the resulting photocurrent is used for a real-time
correction of the dynamics [12,16,19,22,28]. We shall compare the two ap-
proaches and see that while back-action cooling is optimized in the good cavity
limit where the resonator frequency is larger than the cavity bandwidth, cold
damping is preferable in the opposite regime of larger cavity bandwidths [41].
It should be noticed that the model Hamiltonian based on radiation pres-
sure coupling between an optical cavity mode and one movable cavity mirror
is quite general and immediately extendible to other situations, such as the
toroidal microcavities of Refs. [20,25], the capacitively coupled systems of
Refs. [23,27] and even atomic condensate systems [44].

From the theory side, the generation of other examples of quantum states of
a micro-mechanical resonator has been also considered. The most relevant ex-
amples are given by squeezed and resonator-field (or atoms) entangled states.
Squeezed states of nano-mechanical resonators [45] are potentially useful for
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surpassing the standard quantum limit for position and force detection [5], and
could be generated in different ways, either by coupling to a qubit [46], or by
measurement and feedback schemes [36,47]. Entanglement is instead the char-
acteristic element of quantum theory, because it is responsible for correlations
between observables that cannot be understood on the basis of local realistic
theories [48]. For this reason, there has been an increasing interest in establish-
ing the conditions under which entanglement between macroscopic objects can
arise. Relevant experimental demonstration in this directions are given by the
entanglement between collective spins of atomic ensembles [10], and between
Josephson-junction qubits [11]. Then, starting from the proposal of Ref. [49] in
which two mirrors of a ring cavity are entangled by the radiation pressure of the
cavity mode, many proposals involved nano- and micro-mechanical resonators,
eventually entangled with other systems. One could entangle a nanomechanical
oscillator with a Cooper-pair box [50], while Ref. [51] studied how to entangle
an array of nanomechanical oscillators. Further proposals suggested to entan-
gle two charge qubits [52] or two Josephson junctions [53] via nanomechanical
resonators, or to entangle two nanomechanical resonators via trapped ions
[54], Cooper pair boxes [55], or dc-SQUIDS [56]. More recently, schemes for
entangling a superconducting coplanar waveguide field with a nanomechanical
resonator, either via a Cooper pair box within the waveguide [57], or via direct
capacitive coupling [58], have been proposed. After Ref. [49], other optome-
chanical systems have been proposed for entangling optical and/or mechanical
modes by means of the radiation pressure interaction. Ref. [59] considered two
mirrors of two different cavities illuminated with entangled light beams, while
Refs. [60,61,62,63] considered different examples of double-cavity systems in
which entanglement either between different mechanical modes, or between
a cavity mode and a vibrational mode of a cavity mirror have been studied.
Refs. [64,65] considered the simplest scheme capable of generating stationary
optomechanical entanglement, i.e., a single Fabry-Perot cavity either with one
[64], or both [65], movable mirrors.

In the second part of the chapter we shall focus on the generation of stationary
entanglement by starting from the Fabry-Perot model of Ref. [64], which is re-
markable for its simplicity and robustness against temperature, and extend its
study in various directions. In fact, entangled optomechanical systems could
be profitably used for the realization of quantum communication networks,
in which the mechanical modes play the role of local nodes where quantum
information can be stored and retrieved, and optical modes carry this informa-
tion between the nodes. Refs. [66,67,68] proposed a scheme of this kind, based
on free-space light modes scattered by a single reflecting mirror, which could
allow the implementation of continuous variable (CV) quantum teleportation
[66], quantum telecloning [67], and entanglement swapping [68]. Therefore, any
quantum communication application involves traveling output modes rather
than intracavity ones, and it is important to study how the optomechanical
entanglement generated within the cavity is transferred to the output field.

4



Furthermore, by considering the output field, one can adopt a multiplexing
approach because, by means of spectral filters, one can always select many dif-
ferent traveling output modes originating from a single intracavity mode. One
can therefore manipulate a multipartite system, eventually possessing mul-
tipartite entanglement. We shall develop a general theory showing how the
entanglement between the mechanical resonator and optical output modes
can be properly defined and calculated [69]. We shall see that, together with
its output field, the single Fabry-Perot cavity system of Ref. [64] represents
the “cavity version” of the free-space scheme of Refs. [66,67]. In fact, as it
happens in this latter scheme, all the relevant dynamics induced by radia-
tion pressure interaction is carried by the two output modes corresponding
to the first Stokes and anti-Stokes sidebands of the driving laser. In particu-
lar, the optomechanical entanglement with the intracavity mode is optimally
transferred to the output Stokes sideband mode, which is however robustly en-
tangled also with the anti-Stokes output mode. We shall see that the present
Fabry-Perot cavity system is preferable with respect to the free space model
of Refs. [66,67], because entanglement is achievable in a much more accessi-
ble experimental parameter region. We shall then extend the analysis to the
case of a doubly-driven cavity mode. We shall see that a peculiar parameter
regime exists where the optomechanical system, owing to the combined ac-
tion of the two driven modes, is always stable and is characterized by robust
entanglement between the resonator and the cavity output fields.

In the last Section we shall investigate the possibility to couple and entangle in
a robust way optomechanical systems to atomic ensembles, in order to achieve
a strongly-coupled hybrid multipartite system [70,71]. We shall see that this
is indeed possible, especially when the atomic ensemble is resonant with the
Stokes sideband induced by the resonator motion. Such hybrid systems might
represent an important candidate for the realization of CV quantum interfaces
within CV quantum information networks.

2 Cavity optomechanics via radiation pressure

The simplest cavity optomechanical system consists of a Fabry-Perot cavity
with one heavy, fixed mirror through which a laser of frequency ωl drives a
cavity mode, and another light end-mirror of mass m (typically in the micro
or nanogram range), free to oscillate at some mechanical frequency ωm. Our
treatment is however valid also for other cavity geometries in which one has an
optical mode coupled by radiation pressure to a mechanical degree of freedom.
A notable example is provided by silica toroidal optical microcavities which
are coupled to radial vibrational modes of the supporting structure [20,72].
Radiation pressure typically excites several mechanical degrees of freedom of
the system with different resonant frequencies. However, a single mechanical

5



mode can be considered when a bandpass filter in the detection scheme is used
[73] and coupling between the different vibrational modes can be neglected.
One has to consider more than one mechanical mode only when two close
mechanical resonances fall within the detection bandwidth (see Ref. [74] for
the effect of a nearby mechanical mode on cooling and entanglement). The
Hamiltonian of the system describes two harmonic oscillators coupled via the
radiation pressure interaction, and reads [75]

H = ~ωca
†a +

1

2
~ωm(p

2 + q2)− ~G0a
†aq + i~E(a†e−iωlt − aeiωlt). (1)

The first term describes the energy of the cavity mode, with lowering operator
a ([a, a†] = 1), frequency ωc (and therefore detuned by ∆0 = ωc − ωl from the
laser), and decay rate κ. The second term gives the energy of the mechanical
mode, described by dimensionless position and momentum operators q and p
([q, p] = i). The third term is the radiation-pressure coupling of rate G0 =

(ωc/L)
√
~/mωm, where m is the effective mass of the mechanical mode [73],

and L is an effective length that depends upon the cavity geometry: it coincides
with the cavity length in the Fabry-Perot case, and with the toroid radius
in the case of Refs. [20,72]. The last term describes the input driving by a
laser with frequency ωl, where E is related to the input laser power P by

|E| =
√
2Pκ/~ωl. One can adopt the single cavity mode description of Eq. (1)

as long as one drives only one cavity mode and the mechanical frequency ωm

is much smaller than the cavity free spectral range FSR ∼ c/2L. In this case,
in fact, scattering of photons from the driven mode into other cavity modes
is negligible [76].

2.1 Langevin equations formalism

The dynamics are also determined by the fluctuation-dissipation processes af-
fecting both the optical and the mechanical mode. They can be taken into
account in a fully consistent way [75] by considering the following set of non-
linear QLE (quantum Langevin equations), written in a frame rotating at
ωl

q̇=ωmp, (2)

ṗ=−ωmq − γmp+G0a
†a + ξ, (3)

ȧ=−(κ + i∆0)a+ iG0aq + E +
√
2κain. (4)

The mechanical mode is affected by a viscous force with damping rate γm
and by a Brownian stochastic force with zero mean value ξ(t), possessing the
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correlation function [75,77]

〈ξ(t)ξ(t′)〉 = γm
ωm

∫
dω

2π
e−iω(t−t′)ω

[
coth

(
~ω

2kBT0

)
+ 1

]
, (5)

where kB is the Boltzmann constant and T0 is the temperature of the reservoir
of the micromechanical oscillator. The correlation function and the commuta-
tor of the Gaussian stochastic force ξ(t) are not proportional to a Dirac delta
and therefore ξ(t) is a non-Markovian stochastic process. This fact guaran-
tees that the QLE of Eqs. (2)-(4) preserve the correct commutation relations
between operators during the time evolution [75]. However, a Markovian de-
scription of the symmetrized correlations of ξ(t) is justified in two different
limits, which are both met in typical experimental situations: i) not too low
temperatures kBT0/~ωm ≫ 1, which for typical values is satisfied even at cryo-
genic temperatures; ii) high mechanical quality factor Q = ωm/γm → ∞ [78],
which is an important condition for the observation of quantum effects on the
mechanical resonator. In this case the correlation function of Eq. (5) can be
approximated as

〈ξ(t)ξ(t′)〉 ≃ γm

[
(2n0 + 1)δ(t− t′) + i

δ′(t− t′)

ωm

]
, (6)

where n0 = (exp{~ωm/kBT0} − 1)−1 is the mean thermal excitation number
of the resonator and δ′(t− t′) denotes the derivative of the Dirac delta.

The cavity mode amplitude instead decays at the rate κ and is affected by the
vacuum radiation input noise ain(t), whose correlation functions are given by
[79]

〈ain(t)ain,†(t′)〉= [N(ωc) + 1] δ(t− t′). (7)

〈ain,†(t)ain(t′)〉=N(ωc)δ(t− t′), (8)

where N(ωc) = (exp{~ωc/kBT0} − 1)−1 is the equilibrium mean thermal pho-
ton number. At optical frequencies ~ωc/kBT0 ≫ 1 and therefore N(ωc) ≃ 0,
so that only the correlation function of Eq. (7) is relevant.

Equations (2)-(4) are not easy to analyze owing to the nonlinearity. However,
one can proceed with a linearization of operators around the steady state. The
semiclassical steady state is characterized by an intracavity field amplitude αs

(|αs| ≫ 1), and a new equilibrium position for the oscillator, displaced by qs.
The parameters αs and qs are the solutions of the nonlinear algebraic equations
obtained by factorizing Eqs. (2)-(4) and setting the time derivatives to zero:
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qs =
G0|αs|2
ωm

, (9)

αs =
E

κ+ i∆
, (10)

where the latter equation is in fact the nonlinear equation determining αs,
since the effective cavity detuning ∆, including radiation pressure effects, is
given by [80]

∆ = ∆0 −
G2

0|αs|2
ωm

. (11)

Rewriting each Heisenberg operator of Eqs. (2)-(4) as the c-number steady
state value plus an additional fluctuation operator with zero mean value, one
gets the exact QLE for the fluctuations

δq̇=ωmδp, (12)

δṗ=−ωmδq − γmδp+G0

(
αsδa

† + α∗
sδa

)
+ δa†δa+ ξ, (13)

δȧ=−(κ + i∆)δa+ iG0 (αs + δa) δq +
√
2κain. (14)

Since we have assumed |αs| ≫ 1, one can safely neglect the nonlinear terms
δa†δa and δaδq in the equations above, and get the linearized QLE

δq̇=ωmδp, (15)

δṗ=−ωmδq − γmδp +GδX + ξ, (16)

δẊ =−κδX +∆δY +
√
2κX in, (17)

δẎ =−κδY −∆δX +Gδq +
√
2κY in. (18)

Here we have chosen the phase reference of the cavity field so that αs is real and
positive, we have defined the cavity field quadratures δX ≡ (δa+δa†)/

√
2 and

δY ≡ (δa− δa†)/i
√
2 and the corresponding Hermitian input noise operators

X in ≡ (ain + ain,†)/
√
2 and Y in ≡ (ain − ain,†)/i

√
2. The linearized QLE

show that the mechanical mode is coupled to the cavity mode quadrature
fluctuations by the effective optomechanical coupling

G = G0αs

√
2 =

2ωc

L

√
Pκ

mωmωl (κ2 +∆2)
, (19)

which can be made very large by increasing the intracavity amplitude αs.
Notice that together with the condition ωm ≪ c/L which is required for the
single cavity mode description, |αs| ≫ 1 is the only assumption required by
the linearized approach. This is in contrast with the perturbative approaches
described in [40], where a reduced master equation of the mechanical resonator
is derived under the weak-coupling assumption G ≪ ωm.
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2.2 Stability analysis

The stability analysis can be performed on the linearized set of equations
Eqs. (2)-(4) by using the Routh-Hurwitz criterion [81]. Two conditions are
obtained

s1=2γmκ
{[
κ2 + (ωm −∆)2

] [
κ2 + (ωm +∆)2

]
(20)

+ γm
[
(γm + 2κ)

(
κ2 +∆2

)
+ 2κω2

m

]}
+∆ωmG

2 (γm + 2κ)2 > 0, (21)

s2=ωm

(
κ2 +∆2

)
−G2∆ > 0. (22)

The violation of the first condition, s1 < 0, indicates instability in the domain
of blue-detuned laser (∆ < 0) and it corresponds to the emergence of a self-
sustained oscillation regime where the mirror effective damping rate vanishes.
In this regime, the laser field energy leaks into field harmonics at frequencies
ωl±rωm (r = 1, 2...) and also feeds the mirror coherent oscillations. A complex
multistable regime can emerge as described in [82]. The violation of the second
condition s2 < 0 indicates the emergence of the well-known effect of bistable
behavior observed in [83] and occurs only for positive detunings (∆ > 0). In
the following we restrict our analysis to positive detunings in the stable regime
where both s1 and s2 conditions are fulfilled. A parametric plot showing the
domain of stability in the red-detuning regime ∆ > 0 is shown in Fig. 1 where
we have plotted the stability parameter

η = 1− G2∆

ωm (κ2 +∆2)
. (23)

Negative values of η indicate the emergence of instability. We have chosen
the following set of parameters which will be used extensively throughout the
chapter and which is denoted by p0=(ωm, Qm, m, L, λc, T0) = (2π × 10 MHz,
105, 30 ng, 0.5 mm, 1064 nm, 0.6 K). These values are comparable to those
used in recent experiments [17,18,19,24,25,26,30,31].

2.3 Covariance matrix and logarithmic negativity

The mechanical and intracavity optical mode form a bipartite continuous vari-
able (CV) system. We are interested in the properties of its steady state which,
due to the linearized treatment and to the Gaussian nature of the noise op-
erators, is a zero-mean Gaussian state, completely characterized by its sym-
metrized covariance matrix (CM). The latter is given by the 4×4 matrix with
elements

Vlm =
〈ul (∞)um (∞) + um (∞) ul (∞)〉

2
, (24)
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Fig. 1. Stability condition in the red-detuning region. (a) Contour plot of the stabil-
ity parameter η of Eq. (23) as a function of input power P and normalized detuning
∆/ωm. The parameter set p0=(ωm, Qm,m,L, λc, T0) = (2π × 10 MHz, 105, 30 ng,
0.5 mm, 1064 nm, 0.6 K has been used, together with F = 8× 104 (corresponding
to κ = 0.37ωm). The blue area corresponds to the unstable regime. (b) Stability
parameter η versus P and the normalized cavity decay rate κ/ωm at ∆ = ωm.

where um(∞) is the asymptotic value of the m-th component of the vector of
quadrature fluctuations

u(t) = (δq(t), δp(t), δX(t), δY (t))⊺ . (25)

Its time evolution is given by Eqs. (15)-(18), which can be rewritten in compact
form as

d

dt
u(t) = Au(t) + v(t), (26)

with A the drift matrix

A =




0 ωm 0 0

−ωm −γm G 0

0 0 −κ ∆

G 0 −∆ −κ




, (27)

and v(t) the vector of noises

v(t) =
(
0, ξ(t),

√
2κX in(t),

√
2κY in(t)

)⊺
. (28)

The steady state CM can be determined by solving the Lyapunov equation

AV + VA⊺ = −D, (29)
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where D is the 4×4 diffusion matrix which characterizes the noise correlations
and is defined by the relation 〈nl (t)nm (t′) + nm (t′)nl (t)〉 /2 = Dlmδ(t − t′).
Using Eqs. (6)-(7), D can be written as

D = diag[0, γm (2n0 + 1) , κ, κ]. (30)

Eq. (29) is a linear equation for V and it can be straightforwardly solved, but
the general exact expression is very cumbersome and will not be reported here.

The CM allows to calculate also the entanglement of the steady state. We
adopt as entanglement measure the logarithmic negativity EN , which is de-
fined as [84]

EN = max[0,− ln 2η−]. (31)

Here η− ≡ 2−1/2
[
Σ(V)− [Σ(V)2 − 4 detV]1/2

]1/2
and Σ(V) ≡ detV1+detV2−

2 detVc, with V1,V2 and Vc being 2× 2 block matrices of

V ≡




V1 Vc

VT
c V2


 . (32)

A bimodal Gaussian state is entangled if and only if η− < 1/2, which is
equivalent to Simon’s necessary and sufficient entanglement non-positive par-
tial transpose criterion for Gaussian states [85], which can be written as
4 detV < Σ(V) − 1/4. Logarithmic negativity is a convenient entanglement
measure because it is the only one which can always be explicitly computed
and it is also additive. The drawback of EN is that, differently from the en-
tanglement of formation and the distillable entanglement, it is not strongly
super-additive and therefore it cannot be used to provide lower-bound esti-
mates of the entanglement of a generic state by evaluating the entanglement
of Gaussian state with the same correlation matrix [86]. This fact however is
not important in our case because the steady state of the system is Gaussian
within the validity limit of our linearization procedure.

3 Ground state cooling

The steady state CM V determines also the mean energy of the mechanical
resonator, which is given by

U =
~ωm

2

[〈
δq2

〉
+
〈
δp2

〉]
=

~ωm

2
[V11 + V22] ≡ ~ωm

(
n +

1

2

)
, (33)

where n = (exp{~ωm/kBT} − 1)−1 is the occupancy corresponding to a bath
temperature T . Obviously, in the absence of coupling to the cavity field it is
n = n0, where n0 corresponds to the actual temperature of the environment T0.
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Fig. 2. Setup for feedback cooling (cold damping). The cavity output field is homo-
dyne detected (thus acquiring information about the mirror position) and a force
proportional to its derivative is fed back to the mirror.

The optomechanical coupling with the cavity mode can be used to ’engineer’
an effective bath of much lower temperature T ≪ T0, so that the mechanical
resonator is cooled. Let us see when it is possible to reach the ideal condition
n ≪ 1, which corresponds to ground state cooling.

3.1 Feedback cooling

A simple way for cooling an object is to continuously detect its momentum
and apply ‘corrective kicks’ that continuously reduce it eventually to zero
[32,35,36]. This is the idea of feedback cooling illustrated in Fig. 2 where
the mirror position is detected via phase-sensitive homodyne detection of the
cavity output field and a force proportional to the time derivative of the output
signal (thus to the velocity) is fed back to it. By Fourier transforming Eq. (18)
one obtains

δY (ω) =
G(κ− iω)

(κ− iω)2 +∆2
δq(ω) + noise terms, (34)

which shows that the intracavity phase-quadrature is sensitive to the mirror
motion and moreover its optimal sensitivity is reached at resonance, when
∆ = 0. In this latter condition δX(ω) is not sensitive to the mirror motion,
suggesting that the strongest feedback effect is obtained by detecting the out-
put phase-quadrature Y out and feeding it back to the resonator.
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3.1.1 Phase quadrature feedback

As a consequence we set ∆ = 0 and add a feedback force in Eq. (16) so that

δṗ = −ωmδq − γmδp+GδX + ξ −
∫ t

−∞
dsg(t− s)δY est(s), (35)

where Y est(s) is the estimated intracavity phase-quadrature, which, using
input-output relations [79] and focusing onto the ideal scenario of perfect
detection, is given by

δY est(t) =
Y out(t)√

2κ
= δY (t)− Y in(t)√

2κ
. (36)

The filter function g(t) is a causal kernel and g(ω) is its Fourier transform.
We choose a simple standard derivative high-pass filter

g(t) = gcd
d

dt

[
θ(t)ωfbe

−ωfbt
]

g(ω) =
−iωgcd

1− iω/ωfb

, (37)

so that ω−1
fb plays the role of the time delay of the feedback loop, and gcd > 0

is the feedback gain. The ideal derivative limit is obtained when ωfb → ∞,
implying g(ω) = −iωgcd and therefore g(t) = gcdδ

′(t). In this limit the feedback
force is equal (apart from an additional noise term) to −gcdδẎ which, due to
Eq. (34), is an additional viscous force −(gcdG/κ)δq̇ only in the bad cavity
limit κ ≫ ωm, γm.

One can solve the Langevin equations supplemented with the feedback term
in the Fourier domain. In fact, the two steady state oscillator variances 〈δq2〉
and 〈δp2〉 can be expressed by the following frequency integrals

〈
δq2

〉
=
∫ ∞

−∞

dω

2π
Scd
q (ω),

〈
δp2

〉
=
∫ ∞

−∞

dω

2π

ω2

ω2
m

Scd
q (ω), (38)

where Scd
q (ω) is the position noise spectrum. Its explicit expression is given by

Scd
q (ω) = |χcd

eff(ω)|2[Sth(ω) + Srp(ω) + Sfb(ω)], (39)

where the thermal, radiation pressure and feedback-induced contributions are
respectively given by

Sth(ω)=
γmω

ωm
coth

(
~ω

2kBT0

)
, (40)

Srp(ω)=
G2κ

κ2 + ω2
, (41)

Sfb(ω)=
|g(ω)|2
4κ

(42)
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and χcd
eff (ω) is the susceptibility of the mechanical oscillator modified by the

feedback

χcd
eff (ω) = ωm

[
ω2
m − ω2 − iωγm +

g(ω)Gωm

κ− iω

]−1

. (43)

This effective susceptibility contains the relevant physics of cold damping. In
fact it can be rewritten as the susceptibility of an harmonic oscillator with
effective (frequency-dependent) damping and oscillation frequency. The modi-
fication of resonance frequency (optical spring effect [21,36]) is typically small
for the chosen parameter regime (ωm ≃ 1 MHz) and the only relevant effect
of feedback is the modification of the mechanical damping which, in the case
of the choice of Eq. (37), is given by

γeff,cd
m (ω) = γm +

gcdGωmωfb(κωfb − ω2)

(κ2 + ω2)(ω2
fb + ω2)

. (44)

This expression shows that the damping of the oscillator may be significantly
increased due to the combined action of feedback and of radiation pressure
coupling to the field. In the ideal limit of instantaneous feedback and of a bad
cavity, κ, ωfb ≫ ωm, γm, effective damping is frequency-independent and given
by γeff,cd

m ≃ γm + gcdGωm/κ = γm(1 + g2), where we have defined the scaled,
dimensionless feedback gain g2 ≡ gcdGωm/κγm [36].

The presence of cold-damping feedback also modifies the stability conditions.
The Routh-Hurwitz criteria are equivalent to the conditions that all the poles
of the effective susceptibility of Eq. (43) are in the lower complex half-plane.
For the choice of Eq. (37) there is only one non-trivial stability condition,
which reads

scd =
[
γmκωfb + gcdGωmωfb + ω2

m(κ + ωfb)
]
[(κ+ γm)(κ+ ωfb)(γm + ωfb)

+γmω
2
m − gcdGωmωfb

]
− κω2

mωfb(κ + γm + ωfb)
2 > 0. (45)

This condition shows that the system may become unstable for large gain
and finite feedback delay-time and cavity bandwidth because in this limit the
feedback force can be out-of-phase with the oscillator motion and become an
accelerating rather than a viscous force [41].

The performance of cold-damping feedback for reaching ground state cooling
is analyzed in detail in Ref. [41], which shows that the optimal parameter
regime is κ ≫ ωfb ∼ ωm ≫ γm, which correspond to a bad-cavity limit and a
finite-bandwidth feedback, i.e., with a feedback delay-time comparable to the
resonator frequency. One gets in this case
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〈
δq2

〉
≃
[
1 + g2 +

ω2
fb

ω2
m

]−1 [
g22
4ζ

+

(
n0 +

1

2
+

ζ

4

)(
1 +

ω2
m

ω2
fb

)]
(46)

〈
δp2

〉
≃
[
1 + g2 +

ω2
m

ω2
fb

]−1 [
g22
4ζ

(
1 +

g2γmωfb

ω2
m

)

+

(
n0 +

1

2
+

ζ

4

)(
1 +

ω2
m

ω2
fb

+
g2γm
ωfb

)]
, (47)

where we have defined the scaled dimensionless input power ζ = 2G2/κγm.
These two expressions show that with cold-damping feedback, 〈δq2〉 6= 〈δp2〉,
i.e., energy equipartition does not hold anymore. The best cooling regime is
achieved for ωfb ∼ 3ωm and g2 ≃ ξ (i.e. gcd ≃ 2G/ωm), i.e. for large but
finite feedback gain [35,36,41]. This is consistent with the fact that stability
imposes an upper bound to the feedback gain when κ and ωfb are finite.
The optimal cooling regime for cold damping is illustrated in Fig. 3a, where
n is plotted versus the feedback gain gcd and the input power P , at fixed
κ = 5ωm (bad-cavity condition) and ωfb = 3.5ωm. Fig. 3b instead explicitly
shows the violation of the equipartition condition even in this regime close to
ground state (the feedback gain is fixed at the value gcd = 1.2): the resonator
is in a position-squeezed thermal state corresponding to a very low effective
temperature.

3.1.2 Generalized quadrature feedback

The above analysis shows that cold-damping feedback better cools the me-
chanical resonator when the feedback is not instantaneous and therefore the
feedback force is not a simple viscous force. This suggests that one can further
optimize feedback cooling by considering a generalized estimated quadrature
which is a combination of phase and amplitude field quadratures. In fact one
may expect that in the optimal regime, the information provided by the am-
plitude quadrature Xout(t) is also useful.

Therefore, in order to optimize cooling via feedback, we apply a feedback force
involving a generalized estimated quadrature

δY est
θ (t) =

Y out(t) cos θ +Xout(t) sin θ√
2κ

, (48)

which is a linear combination of Y out(t) and Xout(t) and where θ is a detection
phase which has to be optimized. The adoption of the new estimated quadra-
ture leads to three effects: i) a modification of the expression for χcd

eff (ω) of
Eq. (43) where g(ω) is replaced by g(ω) cos θ; ii) a consequent reduction of the
feedback-induced shot noise term Sfb(ω); iii) a reduction of radiation pressure
noise. In fact, the radiation pressure and feedback-induced noise contributions
become
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Fig. 3. Feedback cooling. (a) Contour plot of n as a function of P and gcd. The
parameters are p0, κ = 5ωm and ωfb = 3.5ωm. (b) Illustration of the violation of
energy equipartition around the optimal cooling regime. Parameters as before with
gcd = 1.2. (c) n versus the phase of the generalized quadrature θ for two sets of gcd
and P: the (upper) blue curve corresponds to gcd = 0.8 and P = 20 mW, while the
(lower) red curve corresponds to gcd = 1.2 and P = 50 mW. (d) Comparison of n
versus the input power P between the case of standard cold damping feedback θ = 0
(upper red curve) and at a generalized detected quadrature with phase θ = 0.13π
(lower blue curve). Parameters as before, with gcd = 1.2.

Sθ
rp(ω)=

G2κ

κ2 + ω2

∣∣∣∣∣1−
g(ω) sin θ

2Gκ
(κ + iω)

∣∣∣∣∣

2

, (49)

Sθ
fb(ω)=

|g(ω)|2
4κ

cos2 θ. (50)

An improvement over the standard cold-damping feedback scheme can be
obtained when the shot noise reduction effect predominates over the reduction
of the effective damping due to feedback. This can be seen in Fig. (3c) where
for two different choices for gcd and P, the occupancy n is plotted versus θ. For
one of these optimal phases, θopt = 0.13π, we plot in Fig. (3d) n as a function of
P and compare it with the results of the standard phase quadrature feedback
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to conclude that improvement via detection of a rotated output quadrature is
indeed possible.

3.2 Back-action cooling

In analogy with well-known methods of atom and ion cooling [87,88], one
can also think of cooling the mechanical resonator by exploiting its coherent
coupling to a fast decaying system which provides an additional dissipation
channel and thus cooling. In the present situation, radiation pressure couples
the resonator with the cavity mode and the fast decaying channel is provided
by the cavity photon loss rate κ. An equivalent description of the process can
be given in terms of dynamical backaction [5,33]: the cavity reacts with a delay
to the mirror motion and induces correlations between the radiation pressure
force and the Brownian motion that lead to cooling or amplification, depending
on the laser detuning. A quantitative description is provided by considering
scattering of laser photons into the motional sidebands induced by the mirror
motion (see Fig. 4) [39,40,41]. Stokes (red) and anti-Stokes (blue) sidebands
are generated in the cavity at frequencies ωl±ωm. Laser photons are scattered
by the moving oscillator into the two sidebands with rates

A± =
G2κ

2
[
κ2 + (∆± ωm)

2
] , (51)

simultaneously with the absorption (Stokes, A+) or emission (anti-Stokes, A−)
of vibrational phonons. The inequality A− > A+ leads to a decrease in the
oscillator phonon occupation number and thus to cooling. Eq. (51) shows that
this occurs when ∆ > 0 and that an effective optical cooling rate,

Γ = A− − A+ =
2G2∆ωmκ

[κ2 + (ωm −∆)2] [κ2 + (ωm +∆)2]
, (52)

can be defined, providing a measure of the coupling rate of the resonator
with the effective zero-temperature environment represented by the decaying
cavity mode. Since the mechanical damping rate γm is the coupling rate with
the thermal reservoir of the resonator, one can already estimate that, when
Γ ≫ γm, the mechanical oscillator is cooled at the new temperature T ≃
(γm/Γ)T0.

One can perform a more precise and rigorous derivation of the cooling rate
and steady state occupancy by using Eq. (33). The position and momentum
variances can be in fact obtained by solving Eq. (29) or, equivalently, by
solving the linearized QLE in the Fourier domain and integrating the resulting
noise spectra. The result of these calculations, in the limit of large mechanical
quality factor Qm, reads
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Fig. 4. Setup for cavity backaction cooling. Optical sidebands are scattered unevenly
by the moving mirror. When the anti-Stokes sideband is resonant with the cavity
(∆ = ωm), an effective flow of energy from the mirror out of the cavity leads to an
effective cooling.

〈
δp2

〉
=

1

γm + Γ

{
A+ + A−

2
+ γmn0

(
1 +

Γ

2κ

)}
, (53)

〈
δq2

〉
=

1

γm + Γ

{
a
A+ + A−

2
+

γmn0

η

(
1 +

Γ

2κ
b
)}

, (54)

where η is given by Eq. (23),

a=
κ2 +∆2 + ηω2

m

η (κ2 +∆2 + ω2
m)

, (55)

b=
2 (∆2 − κ2)− ω2

m

κ2 +∆2
. (56)

In the perturbative limit ωm ≫ n0γm, G and κ ≫ γm, G, Eqs. (53)-(54) sim-
plify to 〈δq2〉 ≃ 〈δp2〉 ≃ n + 1/2, with n ≃ [γmn0 + A+] / [γm + Γ], which
reproduces the result of [39,40]. This indicates that ground state cooling is
reachable when γmn0 < Γ and provided that the radiation pressure noise con-
tribution A+/Γ ≃ κ2/ (4ω2

m) is also small. The optical damping rate Γ can
be increased by cranking up the input cavity power and thus G. However,
when one considers the limitations imposed by the stability condition η > 0,
one finds that there is an upper bound for G and consequently Γ. This is
shown in Figs. 5a-5c, where one sees that for the chosen parameter regime
p0, optimal cooling is achieved for ∆ ≃ ωm (when the anti-Stokes sideband is
resonant with the cavity, as expected), and in a moderate good-cavity condi-
tion, κ/ωm ≃ 0.2. Fig. 5b shows that close to this optimal cooling condition,
equipartition is soon violated when the input power (and therefore the effective
coupling G) is further increased: the position variance becomes much larger
than the momentum variance and it is divergent at the bistability threshold
(see Eq. (54)).
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Fig. 5. Back action cooling. (a) Contour plot of n versus ∆/ωm and P. The parame-
ters are p0 and κ = 0.37ωm. Optimal cooling is seen to emerge around ∆ = ωm. (b)
For large P extra shot-noise is fed-back into the position variance and the mirror
thermalizes in a state where the equipartition theorem does not hold. (c) Con-
tour plot of n vs. κ/ωm and P for ∆ = ωm. Optimal cooling is achieved around
κ ≃ 0.2× ωm. (d) Fidelity between the mirror and intracavity states in the cooling
regime as a function of increasing intensity G/ωm with different values of κ/ωm = 0.2
(red line), 0.5 (blue), 1 (green) and 2 (yellow).

3.3 Readout of the mechanical resonator state

Eq. (34) shows that the cavity output is sensitive to the resonator position.
Therefore, after an appropriate calibration, the cavity output noise power
spectrum provides a direct measurement of the position noise spectrum Sq(ω)
which, when integrated over ω, yields the value of the position variance (see
Eq. (38)). In many experiments [16,17,18,19,20,21,22,23,24,26], this value is
employed to estimate the final effective temperature of the cooled resonator
by assuming energy equipartition 〈δp2〉 ≃ 〈δq2〉 so that n ≃ 〈δq2〉 − 1/2.
However, as we have seen above (see Eqs. (46), (47), (53), (54)), equipartition
does not generally hold and one should rather estimate 〈δp2〉 from Sq(ω) using
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Eq. (38), or directly measure independently the resonator momentum. A dif-
ferent and more direct way of measuring the resonator temperature, borrowed
from trapped-ion experiments [88], has been demonstrated in [25]: if the two
motional sidebands are well resolved and detected via heterodyne measure-
ment, the height of the two sideband peaks is proportional to n and to n+ 1,
so that one can directly measure the occupancy n from the comparison of the
two peaks.

However, one should devise a scheme capable of reconstructing the complete
quantum state of the resonator from the cavity output light, which is the only
accessible degree of freedom carrying out information about it. In fact, the full
reconstruction of the quantum state of the resonator is a necessary condition
for the unambiguous demonstration of the quantum behavior of the mechanical
resonator, as for example stationary entanglement, which will be discussed in
the following. A scheme of this kind has been proposed in [64], based on
the transfer of the resonator state onto the output field of an additional, fast-
decaying, “probe” cavity mode. In fact, the annihilation operator of this probe
cavity mode, ap, obeys an equation analogous to the linearization of Eq. (14),

δȧp = −(κp + i∆p)δap + iGpαpδq +
√
2κ2a

in
p (t), (57)

where κp, ∆p, Gp, αp, and ainp (t) are respectively the decay rate, the effective
detuning, the coupling, the intracavity field amplitude, and the input noise
of the probe cavity mode. The presence of the probe mode affects the system
dynamics, but if the driving of the probe mode is much weaker so that |αp| ≪
|αs|, the back-action of the probe mode on the resonator can be neglected.
If one chooses parameters so that ∆p = ωm ≫ kp, Gp|αp|, one can rewrite
Eq. (57) in the frame rotating at ∆p = ωm for the slow variables δõ(t) ≡
δo(t) exp{iωmt} and neglect fast oscillating terms, so to get

δ ˙̃ap = −κpδãp + i
Gpαp√

2
δb̃+

√
2κpã

in
p (t), (58)

where δb = (iδp + δq)/
√
2 is the mechanical annihilation operator. Finally, if

κp ≫ Gp|αp|/
√
2, the probe mode adiabatically follows the resonator dynamics

and one has

δãp ≃ i
Gpαp

κp

√
2
δb̃+

√
2

κp
ãinp (t). (59)

The input-output relation ãoutp =
√
2κpδãp − ãinp [79] implies

ãoutp = i
Gpαp√

κp

δb̃+ ãinp (t), (60)

showing that, in the chosen parameter regime, the output light of the probe
mode gives a direct measurement of the resonator dynamics. With an appro-
priate calibration and applying standard quantum tomographic techniques

20



[89] to this output field, one can therefore reconstruct the quantum state of
the resonator.

An alternative way to detect the resonator state by means of state transfer
onto an optical mode, which does not require an additional probe mode, can
be devised by appropriately exploiting the strong coupling regime. In this
second example state transfer is realized in a transient regime soon after the
preparation of the desired resonator state. One sets the cavity onto resonance
∆ = 0 so that the system is always stable, and then strongly increases the
input power in order to make the coupling G very large, G ≫ κ, n0γm. Under
these conditions, coherent evolution driven by radiation pressure dominates
and one has state swapping from the mechanical resonator onto the intracavity
mode in a time tswap ≃ π/2G so that the cavity mode state reproduces the
resonator state with a fidelity very close to unity. The fidelity of the swap can
be computed and reads

F =
[√

det (V1 + V2) + (detV1 − 1/4) (detV2 − 1/4)

−
√
(detV1 − 1/4) (detV2 − 1/4)

]−1

, (61)

where V1,V2 are the block matrices in Eq. (32). The resulting fidelity under
realistic conditions is plotted in Fig. (5d) as a function of G/ωm for κ/ωm =
0.2 , 0.5, 1 and 2. One can see that the fidelity is close to unity around the
optimal cooling regime and that in this regime both the mechanical resonator
and intracavity field thermalize in the same state. Under this condition one
can reconstruct the quantum state of the mechanical mode from the detection
of the cavity output.

4 Entanglement generation with a single driven cavity mode

As discussed in the introduction, a cavity coupled to a mechanical degree of
freedom is capable of producing entanglement between the mechanical and
the optical modes and also purely optical entanglement between the induced
motional sidebands. In the following we elucidate the physical origins of this
entanglement and analyze its magnitude and temperature robustness. More-
over, we analyze its use as a quantum-communication network resource in
which the mechanical modes play the role of local nodes that store quantum
information and optical modes carry this information among nodes. To this
purpose we apply a multiplexing approach that allows one, by means of spec-
tral filters, to select many traveling output modes originating from a single
intracavity field.
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4.1 Intracavity optomechanical entanglement

Entanglement can be easily evaluated and quantified using the logarithmic
negativity of Eq. (31), which requires the knowledge of the CM of the system of
interest. For the steady state of the intracavity field-resonator system, the CM
is determined in a straightforward way by the solution of Eq. (29). However,
before discussing the general result we try to give an intuitive idea of how
robust optomechanical entanglement can be generated, by using the sideband
picture. Using the mechanical annihilation operator δb introduced in the above
section, the linearized QLE of Eqs. (15)-(18) can be rewritten as

δ ˙̃b=−γm
2

(
δb̃− δb̃†e2iωmt

)
+
√
γmb

in + i
G

2

(
δã†ei(∆+ωm)t + δãei(ωm−∆)t

)
,(62)

δ ˙̃a=−κδã + i
G

2

(
δb̃†ei(∆+ωm)t + δb̃ei(∆−ωm)t

)
+
√
2κãin. (63)

We have introduced the tilded slowly evolving operators δb̃(t) = δb(t)eiωmt,
δã(t) = δa(t)ei∆t, and the noises ãin(t) = ain(t)ei∆t and bin(t) = ξ(t)eiωmt/

√
2.

The input noise ãin(t) possesses the same correlation function as ain(t), while
the Brownian noise bin(t) in the limit of large mechanical frequency ωm ac-
quires “optical-like” correlation functions 〈bin,†(t)bin(t′)〉 = n0δ(t − t′) and
〈bin(t)bin,†(t′)〉 = [n0 + 1] δ(t − t′) [90]. Eqs. (62)-(63) show that the cavity
mode and mechanical resonator are coupled by radiation pressure via two
kinds of interactions: i) a down-conversion process with interaction Hamilto-
nian δb̃†δã† + δãδb̃, which is modulated by a factor oscillating at ωm + ∆; ii)
a beam-splitter-like process with interaction Hamiltonian δb̃†δã+ δã†δb̃, mod-
ulated by a factor oscillating at ωm −∆. Therefore, by tuning the cavity into
resonance with either the Stokes sideband of the driving laser, ∆ = −ωm, or
the anti-Stokes sideband of the driving laser, ∆ = ωm, one can resonantly
enhance one of the two processes. In the rotating wave approximation (RWA),
which is justified in the limit of ωm ≫ G, κ, the off-resonant interaction oscil-
lates very fast with respect to the timescales of interest and can be neglected.
Therefore, in the RWA regime, when one chooses ∆ = −ωm, the radiation pres-
sure induces a down-conversion process, which is known to generate bipartite
CV entanglement. Instead when one chooses ∆ = ωm, the dominant process
is the beam-splitter-like interaction, which is not able to generate optome-
chanical entanglement starting from classical input states [91], as in this case.
This argument leads to the conclusion that, in the RWA limit ωm ≫ G, κ, the
best regime for optomechanical entanglement is when the laser is blue-detuned
from the cavity resonance ∆ = −ωm and down-conversion is enhanced. How-
ever, this argument is valid only in the RWA limit and it is strongly limited by
the stability conditions, which rather force to work in the opposite regime of a
red-detuned laser. In fact, the stability condition of Eq. (20) in the RWA limit
∆ = −ωm ≫ κ, γm, simplifies to G <

√
2κγm. Since one needs small mechani-
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cal dissipation rate γm in order to see quantum effects, this means a very low
maximum value for G. The logarithmic negativity EN is an increasing func-
tion of the effective optomechanical coupling G (as expected) and therefore
the stability condition puts a strong upper bound also on EN . It is possible
to prove that the following bound on EN exists [69]

EN ≤ ln

[
1 +G/

√
2κγm

1 + n0

]
, (64)

showing that EN ≤ ln 2 and above all that entanglement is extremely fragile
with respect to temperature in the blue-detuned case because, due to the
stability constraints, EN vanishes as soon as n0 ≥ 1.

This suggests that, due to instability, one can find significant intracavity op-
tomechanical entanglement, which is also robust against temperature, only far
from the RWA regime, in the strong coupling regime in the region with positive

∆, because Eq. (22) allows for higher values of the coupling (G <
√
κ2 + ω2

m

when ∆ = ωm). This is confirmed by Fig. 6a, where the exact EN calculated
from the solution of Eq. (29) is plotted versus the normalized detuning ∆/ωm

and the normalized effective optomechanical coupling G/ωm. One sees that
EN reaches significant values close to the bistability threshold; moreover it is
possible to see that such intracavity entanglement is robust against thermal
noise because it survives up to reservoir temperatures around 20 K [64]. It
is also interesting to compare the conditions for optimal entanglement and
cooling in this regime where the cavity is resonant with the anti-Stokes side-
band. In Fig. 6b, n is plotted versus the same variables in the same parameter
region. One can see that, while good entanglement is accompanied by good
cooling, optimal entanglement is achieved for the largest possible coupling
G allowed by the stability condition. This condition is far from the optimal
cooling regime, which does not require very large G because otherwise the
radiation pressure noise contribution and consequently the position variance
become too large (see Eq. (54) and Fig. 5) [69].

4.2 Entanglement with output modes

Let us now define and evaluate the entanglement of the mechanical resonator
with the fields at the cavity output, which may represent an essential tool
for the future integration of micromechanical resonators as quantum memo-
ries within quantum information networks. The intracavity field δa(t) and its
output are related by the usual input-output relation [79]

aout(t) =
√
2κδa(t)− ain(t), (65)
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Fig. 6. Intracavity entanglement and cooling in the red-detuned regime. (a) Contour
plot of logarithmic negativity of the field-mirror system at the steady state as a
function of G/ωm and ∆/ωm for the parameters p0 and κ = ωm. (b) n in the same
parameter region: the plot shows that optimal cooling and optimal entanglement
are both achieved close to ∆/ωm ≃ 1. However, optimal cooling is obtained for
smaller values of G/ωm with respect to entanglement.

where the output field possesses the same correlation functions of the optical
input field ain(t) and the same commutation relation, i.e., the only nonzero

commutator is
[
aout(t), aout(t′)†

]
= δ(t− t′). From the continuous output field

aout(t) one can extract many independent optical modes, by selecting different
time intervals or equivalently, different frequency intervals (see e.g. [92]). One
can define a generic set of N output modes by means of the corresponding
annihilation operators

aoutk (t) =
∫ t

−∞
dsgk(t− s)aout(s), k = 1, . . . N, (66)

where gk(s) is the causal filter function defining the k-th output mode. These

annihilation operators describeN independent optical modes when
[
aoutj (t), aoutk (t)†

]
=

δjk, which is verified when

∫ ∞

0
dsgj(s)

∗gk(s) = δjk, (67)

i.e., the N filter functions gk(t) form an orthonormal set of square-integrable
functions in [0,∞). The situation can be equivalently described in the fre-
quency domain: taking the Fourier transform of Eq. (66), one has

ãoutk (ω) =
∫ ∞

−∞

dt√
2π

aoutk (t)eiωt =
√
2πg̃k(ω)a

out(ω), (68)
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where g̃k(ω) is the Fourier transform of the filter function. An explicit example
of an orthonormal set of filter functions is given by

gk(t) =
θ(t)− θ(t− τ)√

τ
e−iΩkt, (69)

(θ denotes the Heavyside step function) provided that Ωk and τ satisfy the
condition

Ωj − Ωk =
2π

τ
p, integer p. (70)

These functions describe a set of independent optical modes, each centered
around the frequency Ωk and with time duration τ , i.e., frequency bandwidth
∼ 1/τ , since

g̃k(ω) =

√
τ

2π
ei(ω−Ωk)τ/2

sin [(ω − Ωk)τ/2]

(ω − Ωk)τ/2
. (71)

When the central frequencies differ by an integer multiple of 2π/τ , the cor-
responding modes are independent due to the destructive interference of the
oscillating parts of the spectrum.

The entanglement between the output modes defined above and the mechan-
ical mode is fully determined by the corresponding (2N + 2)× (2N + 2) CM,
which is defined by

Vout
ij (t) =

1

2

〈
uout
i (t)uout

j (t) + uout
j (t)uout

i (t)
〉
, (72)

where

uout(t) =
(
δq(t), δp(t), Xout

1 (t), Y out
1 (t), . . . , Xout

N (t), Y out
N (t)

)T
(73)

is the vector formed by the mechanical position and momentum fluctua-
tions and by the amplitude (Xout

k (t) =
[
aoutk (t) + aoutk (t)†

]
/
√
2), and phase

(Y out
k (t) =

[
aoutk (t)− aoutk (t)†

]
/i
√
2) quadratures of the N output modes. The

vector uout(t) properly describes N+1 independent CV bosonic modes, and in
particular the mechanical resonator is independent of (i.e., it commutes with)
the N optical output modes because the latter depend upon the output field
at former times only (s < t). From the intracavity CM and Eqs. (65),(66), and
(72) one can determine the (N + 1)× (N + 1) CM matrix Vout at the steady
state [69].

Let us first consider the case when we select and detect only one mode at the
cavity output. Just to fix the ideas, we choose the mode specified by the filter
function of Eqs. (69) and (71), with central frequency Ω and bandwidth τ−1.
Straightforward choices for this output mode are a mode centered either at
the cavity frequency, Ω = ωc−ωl, or at the driving laser frequency, Ω = 0 (we
are in the rotating frame and therefore all frequencies are referred to the laser
frequency ωl), and with a bandwidth of the order of the cavity bandwidth

25



Fig. 7. Resonator-output field entanglement when the central frequency of the
output mode is swept around the laser frequency. Parameters are p0, ∆ = ωm,
G = ωm/2 and κ = ωm. The entanglement is optimized when the output mode
coincides with the Stokes sideband of the laser (Ω = −ωm), with the appropriate

bandwidth (ǫ ≃ 10, corresponding to τγeffm ≃ 1). For smaller ǫ, the selected output
mode mixes Stokes and anti-Stokes photons and the entanglement is weak, while
for larger ǫ only a fraction of the sideband is selected and part of the quantum
correlations are lost. In the inset the robustness of Stokes-mirror EN with respect
to temperature is shown.

τ−1 ≃ κ. However, as discussed above, the motion of the mechanical resonator
generates Stokes and anti-Stokes motional sidebands, consequently modifying
the cavity output spectrum.

In order to determine the output optical mode which is better entangled with
the mechanical resonator, we study the logarithmic negativity EN associated
with the output CM Vout (for N = 1) as a function of the central frequency of
the mode Ω and its bandwidth τ−1, at the same parameter region considered
in the previous subsection, p0 and ∆ = ωm, where intracavity entanglement
is optimal. The results are shown in Fig. 7, where EN is plotted versus Ω/ωm

at different values of ε = τωm. If ε . 1, i.e., the bandwidth of the detected
mode is larger than ωm, the detector does not resolve the motional sidebands,
and EN has a value (roughly equal to that of the intracavity case) which
does not essentially depend upon the central frequency. For smaller band-
widths (larger ε), the sidebands are resolved by the detection and the role of
the central frequency becomes important. In particular EN becomes highly
peaked around the Stokes sideband Ω = −ωm, showing that the optomechan-
ical entanglement generated within the cavity is mostly carried by this lower
frequency sideband. What is relevant is that the optomechanical entanglement
of the output mode is significantly larger than its intracavity counterpart and
achieves its maximum value at the optimal value ε ≃ 10, i.e., a detection band-
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width τ−1 ≃ ωm/10. This means that in practice, by appropriately filtering
the output light, one realizes an effective entanglement distillation because the
selected output mode is more entangled with the mechanical resonator than
the intracavity field.

The fact that the output mode which is most entangled with the mechanical
resonator is the one centered around the Stokes sideband is also consistent
with the physics of a previous model analyzed in [66]. In [66], a free-space
optomechanical model is discussed, where the entanglement between a vibra-
tional mode of a perfectly reflecting micro-mirror and the two first motional
sidebands of an intense laser beam shined on the mirror is analyzed. Also in
that case, the mechanical mode is entangled only with the Stokes mode and
it is not entangled with the anti-Stokes sideband.

One can also understand why the output mode optimally entangled with the
mechanical mode has a finite bandwidth τ−1 ≃ ωm/10 (for the chosen op-
erating point). In fact, the optimal situation is achieved when the detected
output mode overlaps as best as possible with the Stokes peak in the spec-
trum, and therefore τ−1 coincides with the width of the Stokes peak. This
width is determined by the effective damping rate of the mechanical resonator,
γeff
m = γm+Γ, given by the sum of the intrinsic damping rate γm and the net

laser cooling rate Γ of Eq. (52). It is possible to check that, with the chosen
parameter values, the condition ε = 10 corresponds to τ−1 ≃ γeff

m .

It is finally important to analyze the robustness of the present optomechani-
cal entanglement with respect to temperature. As discussed above and shown
in [64], the entanglement of the resonator with the intracavity mode is very
robust. It is important to see if this robustness is kept also by the optome-
chanical entanglement of the output mode. This is shown also in the inset of
Fig. 7, where the logarithmic negativity EN of the output mode centered at
the Stokes sideband Ω = −ωm is plotted versus the temperature of the reser-
voir at two different values of the bandwidth, the optimal one ε = 10, and at
a larger bandwidth ε = 0.5. We see the expected decay of EN for increasing
temperature, but above all that also this output optomechanical entangle-
ment is robust against temperature because it persists even above liquid He
temperatures, at least in the case of the optimal detection bandwidth ε = 10.

4.3 Optical entanglement between sidebands

Let us now consider the case where we detect at the output two independent,
well resolved, optical output modes. We use again the step-like filter functions
of Eqs. (69) and (71), assuming the same bandwidth τ−1 for both modes
and two different central frequencies, Ω1 and Ω2, satisfying the orthogonality
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Fig. 8. Sideband-sideband entanglement. Parameters p0, κ = ωm and G = ωm/2.
(a) Assuming one detection setup centered at the Stokes sideband and sweeping
the second detection frequency around the anti-Stokes sideband at Ω = ωm, the
entanglement is clearly shown to be optimized when the anti-Stokes output field
is detected. This entanglement is improving with smaller and smaller detection
bandwidth (ǫ → ∞). (b) Logarithmic negativity increases asymptotically to a finite
value with ǫ → ∞. (c) Temperature robustness for ǫ = 10π and ǫ = 100π. The
entanglement survives to very high temperatures.

condition of Eq. (70) Ω1−Ω2 = 2pπτ−1 for some integer p, in order to have two
independent optical modes. It is interesting to analyze the stationary state of
the resulting tripartite CV system formed by the two output modes and the
mechanical mode, in order to see if and when it is able to show purely optical
bipartite entanglement between the two output modes.

The generation of two entangled light beams by means of the radiation pres-
sure interaction of these fields with a mechanical element has been already con-
sidered in various configurations. In Ref. [93], and more recently in Ref. [63],
two modes of a Fabry-Perot cavity system with a movable mirror, each driven
by an intense laser, are entangled at the output due to their common pondero-
motive interaction with the movable mirror (the scheme has been then gen-
eralized to many driven modes in [94]). In the single mirror free-space model
of Ref. [66], the two first motional sidebands are also robustly entangled by
the radiation pressure interaction as in a two-mode squeezed state produced
by a non-degenerate parametric amplifier [95]. Robust two-mode squeezing of
a bimodal cavity system can be similarly produced if the movable mirror is
replaced by a single ion trapped within the cavity [96].

The situation considered here is significantly different from that of Refs. [63,93,94,96],
which require many driven cavity modes, each associated with the correspond-
ing output mode. In the present case instead, the different output modes orig-
inate from the same single driven cavity mode, and therefore it is simpler
from an experimental point of view. The present scheme can be considered
as a sort of “cavity version” of the free-space case of Ref. [66], where the
reflecting mirror is driven by a single intense laser. Therefore, as in [66,95],
one expects to find a parameter region where the two output modes centered
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around the two motional sidebands of the laser are entangled. This expec-
tation is clearly confirmed by Fig. 8a, where the logarithmic negativity EN
associated with the bipartite system formed by the output mode centered at
the Stokes sideband (Ω1 = −ωm) and a second output mode with the same
inverse bandwidth (ε = ωmτ = 10π) and a variable central frequency Ω, is
plotted versus Ω/ωm. EN is calculated from the CM Vout (for N = 2) eliminat-
ing the first two rows associated with the mechanical mode. One can clearly
see that bipartite entanglement between the two cavity outputs exists only
in a narrow frequency interval around the anti-Stokes sideband, Ω = ωm,
where EN achieves its maximum. This shows that, as in [66,95], the two cav-
ity output modes corresponding to the Stokes and anti-Stokes sidebands of
the driving laser are significantly entangled by their common interaction with
the mechanical resonator. The advantage of the present cavity scheme with
respect to the free-space case of [66,95] is that the parameter regime for reach-
ing radiation-pressure mediated optical entanglement is much more promising
from an experimental point of view because it requires less input power and
a not too large mechanical quality factor of the resonator. In Fig. 8b, the
dependence of EN of the two output modes centered at the two sidebands
Ω = ±ωm upon their inverse bandwidth ε is studied. We see that, differently
from optomechanical entanglement of the former subsection, the logarithmic
negativity of the two sidebands always increases for decreasing bandwidth,
and it achieves a significant value, comparable to that achievable with para-
metric oscillators, for very narrow bandwidths. This fact can be understood
from the fact that quantum correlations between the two sidebands are estab-
lished by the coherent scattering of the cavity photons by the oscillator, and
that the quantum coherence between the two scattering processes is maximal
for output photons with frequencies ωl ± ωm. Figs. 7 and 8 show that in the
chosen parameter regime, the output mode centered around the Stokes side-
band mode shows bipartite entanglement simultaneously with the mechanical
mode and with the anti-Stokes sideband mode. This fact suggests that the CV
tripartite system formed by the output Stokes and anti-Stokes sidebands and
the mechanical resonator mode might be characterized by a fully tripartite-
entangled stationary state. This is actually true and it can be checked by
applying the classification criterion of Ref. [97], providing a necessary and suf-
ficient criterion for the determination of the entanglement class in the case of
tripartite CV Gaussian states, which is directly computable in terms of the
eigenvalues of appropriate test matrices [97] (see Ref. [69]).

5 Entanglement generation with two driven cavity modes

We now generalize the system by considering the case when two cavity modes
with different frequencies are intensely driven. We shall focus onto a param-
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eter regime which will prove to be convenient for the generation of robust
stationary CV entanglement between the resonator and the two cavity modes.
A bichromatic driving of a cavity has been already experimentally considered
in Refs. [21]. There however it was employed for cooling a macroscopically
heavy (m ≃ 1g) movable mirror. One driven mode is used to “trap” the mir-
ror, i.e., to induce a strong optical spring effect increasing by three orders of
magnitude the oscillation frequency. The other driven mode is instead used to
cool the mechanical resonator by increasing the effective mechanical damping,
either via back-action, or via cold-damping feedback. The bichromatic driving
configuration has been already considered for the generation of entanglement
in various configurations in some theoretical proposals. In fact, in Ref. [93],
and more recently in Ref. [63], two modes of a Fabry-Perot cavity system, each
driven by an intense laser, are entangled at the output due to their common
ponderomotive interaction with the movable mirror.

5.1 Quantum Langevin equations and stability conditions

We generalize the Hamiltonian of Eq. (1) by considering two cavity modes,
with frequencies ωcA and ωcB, each driven by a laser with frequency ω0A and
ω0B, and power PA and PB, respectively. The resulting Hamiltonian is

H = ~ωcA a†a+ ~ωcB b†b+
1

2
~ωm(p

2 + q2)− ~(G0A a†a+G0B b†b)q

+i~[EA(a
†e−iω0At − aeiω0At) + EB(b

†e−iω0Bt − beiω0B t)], (74)

where a and b now denote the annihilation operators of the two cavity modes,

we have introduced the two coupling constants G0x =
√
~/mωm ωcx/L, and

the two driving rates |Ex| =
√
2Pxκ/~ω0x, x = A,B. We have assumed for

simplicity that the two modes have the same decay rate κ. We assume that
scattering of photons of the driven modes into other cavity modes and also
between the two chosen modes is negligible: this is verified when ωm is much
smaller then the free spectral range of the cavity.

Introducing again dissipation and noise terms as in Sec. 2, the system dynamics
is described by the following set of nonlinear QLE, written in the interaction
picture with respect to ~ω0Aa

†a + ~ω0Bb
†b,

q̇=ωmp, (75)

ṗ=−ωmq − γmp+G0Aa
†a+G0Bb

†b+ ξ, (76)

ȧ=−[κ + i(∆0A −G0Aq)]a+ EA +
√
2κain, (77)

ḃ=−[κ + i(∆0B −G0Bq)]b+ EB +
√
2κbin, (78)
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where ∆0x ≡ ωcx − ω0x are the detunings of the two lasers, and we have
introduced a vacuum input noise bin(t) for the cavity mode b, possessing the
same correlations of Eqs. (7)-(8).

We assume again that both modes are intensely driven so that the system is
characterized by a semiclassical steady state with large intracavity amplitudes
for both modes and a modified cavity length. This classical steady state is
determined by setting the time derivatives to zero, factorizing the averages
and solving for the mean values as = 〈a〉, bs = 〈b〉, qs = 〈q〉, ps = 〈p〉. One
gets

as =
EA

κ+ i∆A
, (79)

bs =
EB

κ+ i∆B

, (80)

qs =
G0A|as|2 +G0B|bs|2

ωm

, (81)

ps = 0, (82)

where the effective detunings ∆x ≡ ∆0x− (G2
0A|as|2+G2

0B|bs|2)/ωm, x = A,B,
have been defined, so that Eqs. (79)-(80) form actually a system of nonlinear
equations, whose solution gives the stationary amplitudes as and bs.

One then focuses onto the dynamics of the quantum fluctuations around this
steady state, which are well described by linearizing the QLE of Eqs. (75)-(78)
around the semiclassical steady state values, provided that |as|, |bs| ≫ 1. The
linearized QLE for the resonator and for the amplitude and phase quadratures
of the two modes, δXA, δXB, δYA and δYB, defined as in Sec. 2, can be written
in compact form as

u̇(t) = Au(t) + n(t),

where u = (δq, δp, δXA, δYA, δXB, δYB)
T is the vector of quadrature fluctua-

tions, and n = (0, ξ,
√
2κX in

A ,
√
2κY in

A ,
√
2κX in

B ,
√
2κY in

B )T is the correspond-
ing vector of noises. The 6 × 6 matrix A is the drift matrix of the system,
which reads

A =




0 ωm 0 0 0 0

−ωm γm GA 0 GB 0

0 0 −κ ∆A 0 0

GA 0 −∆A −κ 0 0

0 0 0 0 −κ ∆B

GB 0 0 0 −∆B −κ




, (83)

where we have chosen the phase reference of the two cavity modes so that as
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and bs are real and positive, and defined the effective couplings GA = G0Aas
√
2

and GB = G0Bbs
√
2.

The steady state exists and it is stable if all the eigenvalues of the drift ma-
trix A have negative real parts. The parameter region under which stability
is verified can be obtained from the Routh-Hurwitz criteria [81], but the in-
equalities that come out in the present case are quite involved. One can have
an idea of this fact from the expression of the characteristic polynomial of A,
P (λ) = λ6 + c1λ

5 + c2λ
4 + c3λ

3 + c4λ
2 + c5λ+ c6, where

c1= γm + 4κ,

c2=∆2
A +∆2

B + 4γmκ+ 6κ2 + ω2
m,

c3= γm(∆
2
A +∆2

B + 6κ2) + 2κ[∆2
A +∆2

B + 2(κ2 + Ω2
m)],

c4= κ4 + 2γmκ(∆
2
B + 2κ2) + 6κ2ω2

m +∆2
B(κ

2 + ω2
m) +

∆2
A(∆

2
B + 2γmκ+ κ2 + ω2

m)− ωm(G
2
A∆A +G2

B∆B),

c5= γm(∆
2
A + κ2)(∆2

B + κ2) + 2κω2
m(∆

2
A +∆2 + 2κ2)

−2κωm(G
2
A∆A +G2

B∆B),

c6=ω2
m(∆

2
A + κ2)(∆2

B + κ2)− ωm[G
2
B∆B(∆

2
A + κ2)

+G2
A∆A(∆

2
B + κ2)].

We are considering here a bichromatic driving of the cavity in order to im-
prove the size and the robustness of the generated entanglement. Entangle-
ment monotonically increases with the optomechanical coupling but, as we
have seen also in the previous sections, the stability conditions put a strict
upper bound on the maximum achievable value of this coupling. Therefore
it is interesting to find a regime in which the presence of the second driven
mode makes the system always stable, so that the couplings can be made
very large (for example by increasing the input power, the cavity finesse, or
decreasing the cavity length) without entering the unstable regime. One then
hopes that in this regime also entanglement can be made large and robust
against temperature.

A simple way to have always a stable system is to find a particular relation
between the parameters such that the characteristic polynomial of A does
not depend upon GA and GB. In this case, the eigenvalues of A would be
independent of the two couplings and stability would be guaranteed. The
expressions above show that the eigenvalues of A are independent of GA and
GB and the system is always stable if and only if

|Ga| = |GB| = G, (84a)

∆A = −∆B = ∆. (84b)

The condition described by Eqs. (84) represents a perfect balance between a
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cooling cavity mode (which, without loss of generality, we can take as mode
A, so that ∆A > 0) and a heating cavity mode, i.e., mode B with ∆B < 0. The
fact that the eigenvalues of A do not depend upon the couplings means that
the decay rates of both the resonator and the cavity modes are left unchanged
and in this case radiation pressure mainly create quantum correlations, i.e.,
entanglement, between the modes. We shall assume conditions (84) from now
on.

5.2 Entanglement of the output modes

We now calculate the entanglement properties of the steady state of the bichro-
matically driven cavity. However we shall not discuss here the intracavity en-
tanglement, but only the entanglement properties of the optical output modes.
In fact, as we have seen above in the case of a single driven mode, one can ob-
tain a larger optomechanical entanglement with respect to the intracavity case
by appropriately filtering the output modes. Moreover only the entanglement
with output modes is relevant for any quantum communication application.
We shall apply therefore the filter function formalism developed in Sec. 4.2,
restricted however here to the simple case of a single output mode for each
intracavity mode. In fact, we have now two driven cavity modes and consider-
ing the more general case of multiple output modes associated to each driven
mode as in Sec. 4.2, would render the description much more involved with-
out however gaining too much insight into the physics of the problem. The
two output modes originate from two different cavity modes, and since the
latter are not too close in frequency, they consequently describe two indepen-
dent modes. Therefore we do not need orthogonal filter functions like those of
Eq. (69) used for the single driven mode case, and we choose here a different
filter function. We consider the two output modes with annihilation operators

aoutΩx
(t) =

∫ t

−∞
dsgx(t− s)aoutx (s) x = A,B, (85)

where aoutA (t) and aoutB (t) are the usual output fields associated with the two
cavity modes and

gx(t) =

√
2

τ
e−(1/τ+iΩx)tθ(t) x = A,B (86)

are the two filter functions, describing two output modes, both with bandwidth
1/τ and with central frequencies, ΩA and ΩB , which are in general different
from the cavity mode frequencies ωcA and ωcB.

The entanglement between the chosen output modes and the mechanical res-
onator mode is fully determined by the corresponding 6 × 6 CM, which is
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defined as in Eq. (72)

Vout
ij (t) =

1

2

〈
uout
i (t)uout

j (t) + uout
j (t)uout

i (t)
〉
, (87)

where now

uout(t) =
[
0, 0, δXout

ΩA
(t), δY out

ΩA
(t), δXout

ΩB
(t), δY out

ΩB
(t)
]T

, (88)

is the vector formed by the mechanical position and momentum fluctuations
and by the amplitude and phase quadratures of the filtered modes. Using the
various definitions, input-output relations and also the correlation function of
the noise terms, one can derive an integral expression for the CM Vout of the
system (see Ref. [69] for the details in a similar calculation), which is given by

Vout =
∫

dωT̃ (ω)
[
M̃(ω) +

Pout

2κ

]
D(ω)

[
M̃(ω)† +

Pout

2κ

]
T̃ (ω)†, (89)

where T̃ (ω) is the Fourier transform of

T (t) =




δ(t) 0 0 0 0 0

0 δ(t) 0 0 0 0

0 0
√
2κRegA(t) −

√
2κImgA(t) 0 0

0 0
√
2κImgA(t)

√
2κRegA(t) 0 0

0 0 0 0
√
2κRegB(t) −

√
2κImgB(t)

0 0 0 0
√
2κImgB(t)

√
2κRegB(t)




,

(90)

,
M̃(ω) = (iω + A)−1 , (91)

Pout = Diag[0, 0, 1, 1, 1, 1] is the projector onto the optical quadratures, and
D(ω) is the matrix associated with the Fourier transform of the noise corre-
lation functions, given by

D(ω) = Diag[0, (γmω/ωm) coth(~ω/2kBT ), κ, κ, κ, κ].

Using the CM Vout one can analyze the entanglement between the three dif-
ferent bipartitions of the system, when one of the three modes is traced out,
and also tripartite entanglement.

5.2.1 Optomechanical entanglement

First of all we consider the entanglement between the output field of the
“cooling mode” (A) (the one with ∆A > 0) and the mechanical resonator.
We have seen in Sec. 4 that this configuration allows to achieve the maximum
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optomechanical entanglement in the case of a single driven cavity mode. In
fact, when ∆ ≃ ωm, G is large enough, and the selected output mode is
centered around the Stokes sideband, the entanglement is optimized and it is
also robust against temperature (see Fig. 7). Fig. 9 shows that the presence
of the second “heating” mode B disturbs this optimal condition and that EN
is appreciably lower than the one with only one driven mode. In fact, we
have considered here a similar parameter region, i.e. p0, κ = ωm, ∆A = ωm,
∆B = −ωm, Ga = 0.326ωm, Gb = 0.302ωm. The qualitative behavior of EN
is identical to that of the corresponding Fig. 7, i.e., EN is maximum when
the output mode overlaps as best as possible with the Stokes sideband of the
corresponding driving laser, which means centered around −ωm and with an
inverse bandwidth ε = ωmτ ≃ 10. However the achievable values of EN are
significantly lower. Fig. 7b shows that, despite the lower values, entanglement
is still quite robust against temperature.

Fig. 9. Logarithmic negativity EN of the bipartite system formed by the mechanical
mode and the output of the “cooling” mode A. (a) EN versus the center frequency of
the output mode ΩA/ωm at three different values of the inverse detection bandwidth
ǫ = ωmτ . As in the single driven mode case (see Fig. 7), entanglement is maximum
when the output mode is centered around the the Stokes sideband ΩA = −ωm.
The other parameters are p0, κ = ωm, ∆A = ωm, ∆B = −ωm, Ga = 0.326ωm,
Gb = 0.302ωm. (b) EN versus the reservoir temperature T when the output mode
is centered at the Stokes sideband (ΩA = −ωm) for the same three different values
of ε.

The advantage of the bichromatic driving becomes instead apparent when
one considers the bipartite system formed by the resonator and the output
field of the “heating” mode (B), the one with ∆B = −ωm. The stationary
optomechanical entanglement can achieve in this case significantly larger val-
ues. The results are shown in Fig. 10 which refers to the same parameters of
Fig. 9 and shows the same qualitative behavior: EN is optimized when the
selected output mode well overlaps with the Stokes sideband of the driving
laser ΩB = −ωm and it persists up to reservoir temperatures of the order of
10 K. However, EN is now roughly three times larger than the corresponding
value for the “cooling” mode. This behavior is different from what is found in
Sec. 4 for a single driven cavity mode, where we have seen that optomechan-
ical entanglement in the “heating” regime of negative detunings is seriously
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Fig. 10. Logarithmic negativity EN of the bipartite system formed by the mechanical
mode and the output of the “heating” mode B. (a) EN versus the center frequency
of the latter ΩA/ωm at three different values of the inverse detection bandwidth
ǫ = ωmτ . As it happens for the “cooling” mode A, entanglement is maximum when
the output mode is centered around the the Stokes sideband ΩB = −ωm. Parameters
are as in Fig. 9. (b) EN versus the reservoir temperature T when the output mode
is centered at the Stokes sideband (ΩB = −ωm) for the same three different values
of ε.

limited by stability conditions. Now, thanks to the combined action of the two
driven modes and to the conditions (84), the system is always stable and the
parametric-like process described in Sec. 4 is able to generate large and robust
entanglement. Therefore we can say that in this bichromatic case, mode A
helps to entangle in a robust way the output of the “heating” mode B, by
counteracting its instability effect and making the system stable for any value
of the couplings GA and GB. Notice that in this case, the Stokes sideband
of the laser driving mode B is resonant with the cavity, because ∆B = −ωm

implies ωcB = ω0B − ωm = ωStokes and this provides a further reason why the
optomechanical entanglement may become large.

5.2.2 Purely optical entanglement between output modes

Let us consider now the purely optical entanglement between the two output
light beams. As discussed at the beginning of the section, the possibility to
entangle two different output modes of a cavity by means of radiation pres-
sure has been already suggested in different configurations [63,66,93,95]. We
have also seen in Sec. 4 that this is possible even with a single driven mode.
It is nonetheless interesting to compare the results of Sec. 4 with the present
bichromatic driving case. The bichromatic case has been already studied in
Ref. [63], which however restricted to the case of output modes with infinitely
narrow bandwidth (τ = ∞) and centered around the driving laser frequency
(ΩA = ΩB = 0). The general filter function formalism instead allows us to con-
sider generic values of τ , ΩA, and ΩB. By applying again Eq. (89) and tracing
out now the mechanical mode, we get the results illustrated in Fig. 11. We have
considered a slightly different parameter regime with respect to the previous
subsection, by choosing slightly larger couplings, Ga = 1.74ωm, Gb = 1.70ωm,
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Fig. 11. Logarithmic negativity EN of the bipartite system formed by the output
modes associated with the two driven cavity modes. (a) EN versus the center fre-
quency of the “cooling” mode A ΩA/ωm for a center frequency of the “heating” mode
fixed at ΩB = −ωm (Stokes sideband), and at three different values of the inverse
detection bandwidth ǫ = ωmτ . The other parameters are p0, κ = ωm, ∆A = ωm,
∆B = −ωm, Ga = 1.74ωm, Gb = 1.70ωm. (b) EN versus the reservoir temperature T
when the output of the mode A is centered at the anti-Stokes sideband (ΩA = ωm)
and the output of mode B is centered at the Stokes sideband (ΩB = −ωm), for two
different values of ε.

i.e., larger input powers. Here, the oscillating mirror induces Stokes and anti-
Stokes sidebands for both driving lasers and therefore it may be nontrivial to
establish which are the most-entangled output modes. Fig. 11(a) shows that
the largest all-optical entanglement is achieved between the anti-Stokes side-
band of the “cooling” mode and the Stokes sideband of the “heating” beam.
This is consistent with the results for a single cavity mode, because in both
cases the motion of the resonator creates strong quantum correlations between
the scattering of a Stokes and an anti-Stokes photon. Moreover this result can
be understood from the fact that the two sidebands are those which are res-
onant with the corresponding cavity mode. Fig. 11(a) also shows that, as it
happens in the single cavity mode case, and differently form the optomechan-
ical entanglement, the all-optical EN monotonically increases for decreasing
detection bandwidths. This is reasonable because the two output modes are
correlated as in two-mode squeezing which is based on the pairwise correlated
production of photons from a pump laser beam via a parametric process. In
this case the quantum correlations are optimally detected when only pairs of
photons exactly satisfying the matching condition ωs + ωas = ω0A + ω0B are
detected, i.e., when τ = ∞.

Fig. 11(b) instead shows the robustness of all-optical entanglement with re-
spect to the reservoir temperature, which is extremely good: entanglement
persists even at room temperature provided that one considers output modes
with a sufficiently narrow bandwidth. In this respect, the bichromatic driving
case proves to be more promising than the single driving mode case (compare
Fig. 11(b) with Fig. 8(c)).
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Combining all the results of this section, we see that the output modes as-
sociated with the two driven cavity modes and the mechanical mode form a
tripartite system in which each bipartite subsystem is entangled. This suggests
that a parameter region exists where this tripartite system is characterized by
a fully tripartite-entangled stationary state. This is actually true and it can be
checked by applying the classification criterion of Ref. [97], providing a nec-
essary and sufficient criterion for the determination of the entanglement class
in the case of tripartite CV Gaussian states, which is directly computable in
terms of the eigenvalues of appropriate test matrices [97].

6 Cavity-mediated atom-mirror stationary entanglement

A final recent application of optomechanical systems, recently suggested by a
number of papers (see Refs. [70,71]), is to couple them also to atomic ensembles
in order to realize new and more flexible CV quantum interfaces. To be more
specific, here we consider a hybrid system comprised of Na two-level atoms
of energy splitting ~ωa, coupled to an optical cavity, which is in turn coupled
to a mechanical element by radiation pressure. We consider again the steady
state of the system and choose a weak-coupling regime where the atoms and
the cavity are far-off resonance (as illustrated by Fig. 12). The working point
for the optomechanical system is the regime described in the previous section
where red-detuned driving of the cavity ensures optimal entanglement between
the Stokes sideband and the mechanical resonator. We show here that when
the atoms are resonant with the Stokes sideband of the laser, a regime where
both atoms-mirror bipartite CV entanglement and tripartite CV entanglement
can be generated in the steady state, is achieved.

We start from the Hamiltonian of Eq. (1) to which we add the Tavis-Cummings
atom-cavity field interaction

HI = ~g
(
S+a + S−a

†
)
,

where collective spin operators are defined as S+,−,z =
∑

{i} σ
(i)
+,−,z for i =

1, Na (σ+,−,z are the Pauli matrices) and satisfy the commutation relations
[S+, S−] = Sz and [Sz, S±] = ±2S±. The atom-cavity coupling constant is

given by g = µ
√
ωc/2~ǫ0V where V is the cavity mode volume, µ is the dipole

moment of the atomic transition, and ǫ0 is the free space permittivity.

The dynamics of the tripartite system is fairly complicated. However, one can
find a regime where a simpler dynamics of three coupled harmonics oscillators
is a good approximation of the system dynamics. To this purpose, we assume
that the atoms are initially prepared in their ground state, so that Sz ≃
〈Sz〉 ≃ −Na and this condition is not appreciably altered by the interaction
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Fig. 12. Setup for tripartite hybrid entanglement. An atomic cloud of two-level
atoms is placed inside a cavity driven by a laser. As seen in the inset, the atoms
are resonant with the Stokes sideband of the laser. Since this latter sideband is the
one carrying most of the optomechanical entanglement, also the atoms and movable
mirror become entangled at the steady state.

with the cavity field. This is satisfied when the excitation probability of a
single atom is small. In this limit the dynamics of the atomic polarization can
be described in terms of bosonic operators: in fact if one defines the atomic

annihilation operator c = S−/
√
|〈Sz〉|, one can see that it satisfies the usual

bosonic commutation relation [c, c†] = 1 [98]. In the frame rotating at the laser
frequency ωl for the atom-cavity system, the quantum Langevin equations can
then be written as

q̇=ωmp, (92)

ṗ=−ωmq − γmp+G0a
†a + ξ, (93)

·
a=−(κ + i∆0)a+ iG0aq − iGac+ El +

√
2κain, (94)

·
c=− (γa + i∆a) c− iGaa +

√
2γaFc, (95)

where ∆0 = ωc−ωl and ∆a = ωa−ωl are the cavity and atomic detuning with
respect to the laser,Ga = g

√
Na, and 2γa is the decay rate of the atomic excited

level. The noise affecting the atoms has one non-vanishing correlation function
〈Fc (t)F

†
c (t

′)〉 = δ (t− t′). We now assume that the cavity is intensely driven,
so that at the steady state, the intracavity field has a large amplitude αs, with
|αs| ≫ 1. However, the single-atom excitation probability is g2|αs|2/(∆2

a+ γ2
a)

and since this probability has to be much smaller than one for the validity
of the bosonic description of the atomic polarization, this imposes an upper
bound to |αs|. Therefore the two conditions are simultaneously satisfied only
if the atoms are weakly coupled to the cavity, g2/[∆2

a + γ2
a] ≪ |αs|−2 ≪ 1.

If one is interested only in atoms-mirror entanglement, one could assume a bad
cavity limit and adiabatically eliminate the cavity mode [71]. However, one
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can have a more complete information by linearizing the Langevin equations
Eqs. (92)-(95) around the semiclassical steady state and then solving for the
exact solution of the 3-mode system steady state provided by the Lyapunov
equation (29) [70]. In fact, owing to the Gaussian nature of the quantum noise
terms ξ, ain and Fc, and to the linearization of the dynamics, the steady state
of the quantum fluctuations of the system is a CV tripartite Gaussian state,
which is completely determined by its 6 × 6 correlation matrix (CM). The
corresponding drift matrix after linearization is given by

A =




0 ωm 0 0 0 0

−ωm −γm G 0 0 0

0 0 −κ ∆ 0 Ga

G 0 −∆ −κ −Ga 0

0 0 0 Ga −γa ∆a

0 0 −Ga 0 −∆a −γa




, (96)

while the diffusion matrix is equal to D =diag[0, γm (2n0 + 1) , κ, κ, γa, γa]. We
have solved Eq. (29) for the CM V in a wide range of the parameters G, Ga, ∆
and ∆a. We have studied first of all the stationary entanglement of the three
possible bipartite subsystems, by quantifying it in terms of the logarithmic
negativity of bimodal Gaussian states. We will denote the logarithmic neg-
ativities for the mirror-atom, atom-field and mirror-field bimodal partitions
with Ema, Eaf and Emf , respectively.

The results on the behavior of the bipartite entanglement Ema are shown in
Fig. 13a. Optimization requires, as expected that the atoms are resonant with
the Stokes motional sideband. In Fig. 13b, the logarithmic negativity of the
three bipartitions is plotted versus the normalized atomic detuning. It is evi-
dent that one has a sort of entanglement sharing: due to the presence of the
atoms, the initial cavity-mirror entanglement (represented by the dashed line)
is partially redistributed to the atom-mirror and atom-cavity subsystems and
this effect is predominant when the atoms are resonant with the Stokes side-
band (∆a = −ωm). It is remarkable that, in the chosen parameter regime, the
largest stationary entanglement is the one between atoms and mirror which are
only indirectly coupled. Moreover, the nonzero atom-cavity entanglement ap-
pears only thanks to the effect of the mirror dynamics because in the bosonic
approximation we are considering and with a fixed mirror, there would be
no direct atom-cavity entanglement. We also notice that atom-mirror entan-
glement is instead not present at ∆a = ωm. This is due to the fact that the
cavity-mirror entanglement is mostly carried by the Stokes sideband and that,
when ∆a = ωm, mirror cavity-cooling is disturbed by the anti-Stokes photons
being recycled in the cavity by the absorbing atoms.
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Fig. 13. Entanglement in the hybrid mirror-atom-field system. Parameters are p0,
κ = γa = ωm, G = 1.3ωm. (a) Contour plot of EN between mirror and atoms as a
function of Ga/ωm and ∆a/ωm. The entanglement is optimized for ∆a = −ωm, i.e.
when the atoms are resonant with the Stokes sideband of the laser. (b) The three
bipartite entanglement versus the atomic detuning. The blue dashed line represents
the mirror-field EN in the absence of atom-field coupling. When the atoms are
immersed in the mirror-field system, the entanglement is redistributed among the
three sub-partitions, especially around the regime where ∆a = −ωm.

We notice that the chosen parameters correspond to a small cavity mode vol-
ume (V ≃ 10−12 m3), implying that for a dipole transition, g is not small.
Therefore the assumed weak coupling condition g2/[∆2

a + γ2
a] ≪ |αs|−2 ≪ 1

can be satisfied only if g represents a much smaller, time averaged, coupling
constant. This holds for example for an atomic vapor cell much larger than
the cavity mode: if the (hot) atoms move in a cylindrical cell with axis or-
thogonal to the cavity axis, with diameter ∼ 0.5 mm and height ∼ 1 cm, they
will roughly spend only one thousandth of their time within the cavity mode
region. This yields an effective g ∼ 104 Hz, so that the assumptions made
here hold, and the chosen value Ga/2π = 6 × 106 Hz can be obtained with
Na ∼ 107. An alternative solution could be choosing a cold atomic ensemble
and a dipole-forbidden transition.

The entanglement properties of the steady state of the tripartite system can be
verified by experimentally measuring the corresponding CM. This can be done
by combining existing experimental techniques. The cavity field quadratures
can be measured directly by homodyning the cavity output, while the mechan-
ical position and momentum can be measured with the schemes discussed in
Sec. 3.3. Finally, the atomic polarization quadratures x and y (proportional
to Sx and Sy) can be measured by adopting the same scheme of Ref. [99], i.e.,
by making a Stokes parameter measurement of a laser beam, shined transver-
sal to the cavity and to the cell and off-resonantly tuned to another atomic
transition.

41



7 Conclusions

The search for experimental demonstrations of the quantum behavior of macro-
scopic mechanical resonators is a fastly growing field of investigation. Re-
cent experimental results [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]
and theoretical predictions suggest that quantum states of resonators with a
mass at the microgram scale will be generated and detected in the near future.
In this chapter we have tried to give an overview of two relevant arguments of
this research field: i) cooling to the motional ground state; ii) the generation
of robust entangled steady states involving mechanical and optical degrees
of freedom. The latter condition is the fundamental prerequisite for the even-
tual integration of micro- and nano-mechanical resonators serving as quantum
memories and interfaces within quantum communication networks.

In the first part of the chapter we have described and compared the two
main approaches for cooling micro-mechanical resonators via radiation pres-
sure coupling to an optical cavity, cold-damping feedback [32,34,35,36,41], and
back-action cooling [33,39,40,41,42,43]. We have adopted a general quantum
Langevin treatment which is valid within the full parameter range of a sta-
ble cavity. Both back-action cooling and cold damping feedback are able to
cool to the ground state, even though back-action cooling is preferable for a
good cavity (κ < ωm), while cold damping is more convenient for a bad cavity
(κ > ωm).

In the second part of the chapter we have analyzed the entanglement proper-
ties of the steady state of the system formed by the optical cavity coupled to
a mechanical element. We have considered two different configurations, with
either one or two intensely driven cavity modes. We have seen that the intra-
cavity mode and the mechanical element can be entangled in a robust way
against temperature, and that back-action cooling is not a necessary condi-
tion for achieving entanglement. In fact, entanglement is possible also in the
opposite regime of a blue-detuned laser where the cavity mode drives and
does not cool the resonator. More generally, the two phenomena are quite in-
dependent, and one is not necessarily accompanied by the other. Cooling is a
classical process (even though it can ultimately lead to the quantum ground
state), while entanglement is an intrinsically quantum phenomenon. More-
over, they are optimized in different parameter regimes. In fact, logarithmic
negativity is maximized close to the stability threshold of the system, where
instead the resonator is not cooled. We have then focused our study onto the
entanglement properties of the cavity output field, which is the relevant one
for quantum communication applications. We have developed a general theory
showing how it is possible to define and evaluate the entanglement properties
of the multipartite system formed by the mechanical resonator and N inde-
pendent output modes of the cavity field. We have seen that the tripartite
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system formed by the mechanical element and the two output modes centered
at the first Stokes and anti-Stokes sideband of the driving laser (where the
cavity output noise spectrum is concentrated) shows robust fully tripartite
entanglement. In particular, the Stokes output mode is strongly entangled
with the mechanical mode and shows a sort of entanglement distillation be-
cause its logarithmic negativity is significantly larger than the intracavity one
when its bandwidth is appropriately chosen. In the same parameter regime,
the Stokes and anti-Stokes sideband modes are robustly entangled, and the
achievable entanglement in the limit of a very narrow detection bandwidth is
comparable to that generated by a parametric oscillators. These results hold
in both cases of single and bichromatic driving of the cavity. In this latter case,
entanglement becomes larger and more robust against temperature under a
particular parameter condition in which one mode is driven by a red-detuned
laser and the other one by a blue-detuned laser. In fact, for equal optome-
chanical couplings and opposite detunings the system is always stable, even
for large values of the intracavity power, and entanglement can persist also at
higher temperatures.

Finally we have investigated a possible route for coupling optomechanical de-
vices with atomic ensembles, by showing that if the atoms are placed inside
the optical cavity and tuned into resonance with the Stokes sideband, optome-
chanical entanglement is optimally distributed also to the atomic ensemble
[70]. Under these conditions one realizes a strongly coupled system showing
robust tripartite entanglement which can be exploited for the realization of
CV quantum interfaces [71].
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We introduce a framework of optomechanical systems that are driven with a mildly amplitude-

modulated light field, but that are not subject to classical feedback or squeezed input light. We find

that in such a system one can achieve large degrees of squeezing of a mechanical micromirror—signifying

quantum properties of optomechanical systems—without the need of any feedback and control, and within

parameters reasonable in experimental settings. Entanglement dynamics is shown of states following

classical quasiperiodic orbits in their first moments. We discuss the complex time dependence of the

modes of a cavity-light field and a mechanical mode in phase space. Such settings give rise to certifiable

quantum properties within experimental conditions feasible with present technology.
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Periodically driven quantum systems exhibit a rich be-
havior and display nonequilibrium properties that are ab-
sent in their static counterparts. By appropriately
exploiting time-periodic driving, strongly correlated
Bose-Hubbard-type models can be dynamically driven to
quantum phase transitions [1], systems can be dynamically
decoupled from their environments to avoid decoherence
in quantum information science [2], and quite intriguing
dynamics of Rydberg atoms strongly driven by micro-
waves [3] can arise. It has also been muted that such
time-dependent settings may give rise to entanglement
dynamics in oscillating molecules [4]. A framework of
such periodically driven systems is provided by the theory
of linear differential equations with periodic coefficients or
inhomogeneities, including Floquet’s theorem [5].

In this Letter, we aim at transferring such ideas to
describe a new and in fact quite simple regime of opto-
mechanical systems, of micromirrors as part of a Fabry-
Perot cavity [6–9], and also to one of the settings [10–14]
that are the most promising candidates in the race of
exploring certifiable quantum effects involving macro-
scopic mechanical modes. This is an instance of a regime
of driving with mildly amplitude-modulated light. We find
that in this regime, high degrees of squeezing below the
vacuum noise level can be reached, signifying genuine
quantum dynamics. More specifically, in contrast to earlier
descriptions of optomechanical systems with a periodic
time dependence in some aspect of the description, we
will not rely on classical feedback based on processing of
measurement-outcomes—a promising idea in its own right
in a continuous-measurement perspective [15,16]—or re-
sort to driving with squeezed light. Instead, we will con-
sider the plain setting of a time-periodic amplitude
modulation of an input light. The picture developed here,
based in the theory of differential equations, gives rise to a
framework of describing such situations. We find that large
degrees of squeezing can be reached (complementing other
very recent nonperiodic approaches based on cavity-

assisted squeezing using an additional squeezed light
beam [17]). It is the practical appeal of this work that
such quantum signatures can be reached without the ne-
cessity of any feedback, no driving with additional fields,
and no squeezed light input (the scheme by far outperforms
direct driving with a single squeezed light mode): in a
nutshell, one has to simply gently shake the system in
time with the right frequency to have the mechanical and
optical modes rotate appropriately around each other, remi-
niscent of parametric amplification, and to so directly
certify quantum features of such a system.
Time-dependent picture of system.—Before we discuss

the actual time dependence of the driven system, setting
the stage, we start our description with the familiar
Hamiltonian of a system of a Fabry-Perot cavity of length
L and finesse F being formed on one end by a moving
micromirror,

H ¼ @!ca
yaþ 1

2
@!mðp2 þ q2Þ � @G0a

yaq

þ i@
X1

n¼�1
ðEne

�ið!0þn�Þtay � E�
ne

ið!0þn�ÞtaÞ: (1)

Here, !m is the frequency of the mechanical mode with
quadratures q and p satisfying the usual commutation
relations of canonical coordinates, while the bosonic op-
erators a and ay are associated to the cavity mode with

frequency !c and decay rate � ¼ �c=ð2FLÞ. G0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!mÞ

p
!c=L is the coupling coefficient of the radiation

pressure, where m is the effective mass of the mode of the
mirror being used. Importantly, we allow for any periodi-
cally modulated driving at this point, which can be ex-
pressed in such a Fourier series, where � ¼ 2�=� and
� > 0 is the modulation period. The main frequency of the
driving field is !0 while the modulation coefficients fEng
are related to the power of the associated sidebands fPng by
jEnj2 ¼ 2�Pn=ð@!0Þ. The resulting dynamics under this
Hamiltonian together with an unavoidable coupling of the
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mechanical mode to a thermal reservoir and cavity losses
gives rise to the quantum Langevin equation in the refer-
ence frame rotating with frequency !0, _q ¼ !mp, and

_p ¼ �!mq� �mpþG0a
yaþ �;

_a ¼ �ð�þ i�0Þaþ iG0aq

þ X1
n¼�1

Ene
�in�t þ ffiffiffiffiffiffi

2�
p

ain;

(2)

where �0 ¼ !c �!0 is the cavity detuning. �m is here an
effective damping rate related to the oscillator quality
factor Q by �m ¼ !m=Q. The mechanical (�) and the
optical (ain) noise operators have zero mean values and
are characterized by their auto correlation functions which,
in the Markovian approximation, are h�ðtÞ�ðt0Þ þ
�ðt0Þ�ðtÞi=2 ¼ �mð2 �nþ 1Þ�ðt� t0Þ and hainðtÞainyðt0Þi ¼
�ðt� t0Þ, where �n ¼ ½expð@!m

kBT
Þ � 1��1 is the mean thermal

phonon number. Here, we have implicitly assumed that
such an effective damping model holds [18], which is a
reasonable assumption in a wide range of parameters in-
cluding the current experimental regime.

Semiclassical phase space orbits.—Our strategy of a
solution will be as follows: we will first investigate the
classical phase space orbits of the first moments of quad-
ratures. We then consider the quantum fluctuations around
the asymptotic quasiperiodic orbits, by implementing the
usual linearization of the Heisenberg equations of motion
[11,12] (excluding the very weak driving regime).
Exploiting results from the theory of linear differential
equations with periodic coefficients, we can then proceed
to describe the dynamics of fluctuations and find an ana-
lytical solution for the second moments.

If we average the Langevin equations (2), assuming
hayai ’ jhaij2, haqi ’ haihqi (true in the semiclassical
driving regime we are interested in), we have a nonlinear
differential equation for the first moments. Far away from
instabilities and multistabilities, a power series ansatz in

the coupling G0 hOiðtÞ ¼ P1
j¼0 OjðtÞGj

0 is justified, where

O ¼ a, p, q. If we substitute this expression into the
averaged Langevin equation (2), we get a set of recursive
differential equation for the variables Ojð:Þ. The only two

nonlinear terms in Eq. (2) are both proportional to G0,
therefore, for each j, the differential equation for the set of
unknown variablesOjð:Þ is a linear inhomogeneous system

with constant coefficients and �-periodic driving. Then,
after an exponentially decaying initial transient (of the
order of 1=�m), the asymptotic solutions Oj will have the

same periodicity of the modulation [5], justifying the
Fourier expansion

hOiðtÞ ¼ X1
j¼0

X1
n¼�1

On;je
in�tGj

0: (3)

Substituting this in Eq. (2), we find the following recursive
formulas for the time independent coefficientsOn;j, qn;0 ¼
pn;0 ¼ 0, an;0 ¼ E�n=ð�þ ið�0 þ n�ÞÞ, corresponding

to the zero coupling G0 ¼ 0, while for j � 1, we have

qn;j¼!m

Xj�1

k¼0

X1
m¼�1

a�m;kanþm;j�k�1

!2
m�n�2þ i�mn�

;

pn;j¼ in�

!m

qn;j; an;j¼ i
Xj�1

k¼0

X1
m¼�1

am;kqn�m;j�k�1

�þ ið�0þn�Þ ;
(4)

Within the typical parameter space, considering only the
first terms in the double expansion (3), corresponding to
the first sidebands, leads to a good analytical approxima-
tion of the classical periodic orbits, see Fig. 1. On physical
grounds, this is expected to be a good approximation, since
G0 � !m, and because high sidebands fall outside the
cavity bandwidth, n�> 2�. What is more, the decay
behavior of En related to the smoothness of the drive
inherits a good approximation in terms of few sidebands.
Quantum fluctuations around the classical orbits.—We

will now turn to the actual quantum dynamics taking first
moments into account separately when writing any opera-
tor as OðtÞ ¼ hOiðtÞ þ �OðtÞ. The frame will hence be
provided by the motion of the first moments. In this refer-
ence frame, as long as jhaij � 1, the usual linearization
approximation to (2) can be implemented. In what follows,

we will also use the quadratures �x ¼ ð�aþ �ayÞ= ffiffiffi
2

p
and

�y ¼ �ið�a� �ayÞ= ffiffiffi
2

p
, and the analogous input noise

quadratures xin and yin. For the vector of all quadratures we

will write u ¼ ð�q; �p; �x; �yÞT , with n ¼
ð0; �; ffiffiffiffiffiffi

2�
p

xin;
ffiffiffiffiffiffi
2�

p
yinÞT being the noise vector [11,18].

Then the time-dependent inhomogeneous equations of
motion arise as _uðtÞ ¼ AðtÞuðtÞ þ nðtÞ, with

AðtÞ ¼
0 !m 0 0

�!m ��m GxðtÞ GyðtÞ
�GyðtÞ 0 �� �ðtÞ
GxðtÞ 0 ��ðtÞ ��

2
6664

3
7775; (5)

where the real AðtÞ contains the time-modulated coupling
constants and the detuning as GðtÞ ¼ GxðtÞ þ iGyðtÞ,

GðtÞ ¼ ffiffiffi
2

p haðtÞiG0; �ðtÞ ¼ �0 �G0hqðtÞi: (6)

From now on we will consider quasiperiodic orbits only, so
the long-time dynamics following the initial one, when the
first moments follow a motion that is � periodic. Then, A is

FIG. 1 (color online). Phase space trajectories of the first mo-
ments of the mirror (a) and light (b) modes. Numerical simula-
tions for t 2 ½0; 50�� (black) and analytical approximations of
the asymptotic orbits (green or light gray).
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� periodic, and hence AðtÞ ¼ Aðtþ �Þ ¼ P1
n¼�1 Ane

i�nt.
In turn, if all eigenvalues of Að:Þ having negative real parts
for all t 2 ½0; �� is a sufficient condition for stability. From
the Markovian assumption, we have hniðtÞnjðt0Þ þ
njðt0ÞniðtÞi=2 ¼ �ðt� t0ÞDi;j, where D ¼ diagð0;
�mð2 �nþ 1Þ; �; �Þ. The formal solution of Eq. (5) is [5]

uðtÞ ¼ Uðt; t0Þuðt0Þ þ
Z t

t0

Uðt; sÞnðsÞds; (7)

where Uðt; t0Þ is the principal matrix solution of the homo-
geneous system satisfying _Uðt; t0Þ ¼ AðtÞUðt; t0Þ and
Uðt0; t0Þ ¼ 1. From Eqs. (5) and (7), we have as an equa-
tion of motion of the covariance matrix (CM)

_VðtÞ ¼ AðtÞVðtÞ þ VðtÞATðtÞ þD: (8)

Here, the CM Vð:Þ is the 4� 4 matrix with components
Vi;j ¼ huiuj þ ujuii=2, collecting the second moments of

the quadratures. This is again an inhomogeneous differen-
tial equation for the second moments which can readily be
solved using quadrature methods, providing numerical
solutions that will be used to test and justify analytical
approximate results in important regimes. Moreover, now
the coefficients and not the inhomogeneity are � periodic,
AðtÞ ¼ Aðtþ �Þ. Again, we can invoke results from the
theory of linear differential equations to Eq. (8) [5]: we find
that in the long time limit, the CM is periodic and can be
written as VðtÞ ¼ P

nVne
in�t. An analytical solution for

Vð:Þ, is most convenient in the Fourier domain, ~fð!Þ ¼Rþ1
�1 e�i!tfðtÞdt, giving rise to

� i!~uð!Þ þ X1
n¼�1

An~uð!� n�Þ ¼ �~nð!Þ: (9)

If An�0 ¼ 0, corresponding to no modulation, we are in the
usual regime where the spectra are centered around �!m

for the mechanical oscillator and around�� for the optical
mode. The modulation introduces sidebands shifted by
�n�. If the modulation is weak, only the first two side-
bands at �� significantly contribute. For strong modu-
lation also further sidebands play a role: Disregarding
higher sidebands means truncating the summation to
�N [valid if uð!� N�Þ ’ 0]. Then Eq. (9) can be writ-
ten as �Að!Þ �uð!Þ ¼ �nð!Þ, where �uTð!Þ ¼ ð~uTð!�
N�Þ; . . . ; ~uTð!Þ; . . . ; ~uTð!þ N�ÞÞ and �nTð!Þ ¼
ð~nTð!� N�Þ; . . . ; ~nTð!Þ; . . . ; ~nTð!þ N�ÞÞ are 4�
ð2N þ 1Þ vectors, while, in terms of 4� 4 blocks,

�Að!Þ ¼

B�N A�1 A�2 	 	 	 A�2N

A1 B�ðN�1Þ A�1
..
.

A2 A1 B�ðN�2Þ
..
.

..

. ..
.

A2N 	 	 	 A1 BN

2
666666666664

3
777777777775

(10)

with Bk ¼ A0 � ið!þ k�Þ.
We have that �i;jð!;!0Þ ¼ h �nið!Þ �n�j ð!0Þ þ

�n�j ð!0Þ �nið!Þi=2 ¼ P
2N
n¼�2N �ð!�!0 � n�ÞDn, where

D0 ¼ diagðD;D; . . . ; DÞ, then D1 is the matrix that has D

on all first right off diagonal blocks, D2 on the second off
diagonals, with Dn analogously defined, and D�n ¼ DT

n .
We now define the two frequency correlation function
as �Vi;jð!;!0Þ ¼ h �uið!Þ �u�j ð!0Þ þ �u�j ð!0Þ �uið!Þi=2. We

have �Vð!;!0Þ ¼ �A�1ð!Þ�ð!;!0Þ½ �A�1ð!0Þ�y. We are in-
terested only on the central 4� 4 block of �V which we
call ~Vð!;!0Þ ¼ ½ �Vð!;!0Þ�4. We find ~Vð!;!0Þ ¼P

2N
n¼�2N

~Vnð!Þ�ð!�!0 � n�Þ, where ~Vnð!Þ ¼
½ �A�1ð!ÞDn½ �A�1ð!� n�Þ�y�4. This means that the driving
modulation correlates different frequencies, but only if
they are separated by a multiple of the modulation fre-
quency �. By inverse Fourier transforms we recover the
time-periodic expression for the CM, where the compo-
nents Vn are given by the integral of their noise spectra, i.e.,

Vn ¼ 1

2�

Z þ1

�1
~Vnð!Þd!: (11)

Squeezing and entanglement modulation.—We will now
see that the mild amplitude-modulated driving in the cool-
ing regime is exactly the tool that we need in order to arrive
at strong degrees of squeezing, in the absence of feedback
or squeezed light. We will apply the previous general
theory to setting of an optomechanical system that is
experimentally feasible with present technology. In fact,
all values that we assume have been achieved already and
reported on in publications with the exception of assuming
a relatively good mechanical Q factor. The reasonable set
of experimental parameters [9] that we assume is L ¼
25 mm, F ¼ 1:4� 104, !m ¼ 2� MHz, Q ¼ 106, m ¼
150 ng, T ¼ 0:1 K. We then consider the—in the mean-
time well known—self-cooling regime [7] in which a
cavity eigenmode is driven with a red detuned laser �0 ’
!m (with wavelength � ¼ 1064 nm), but we also add a
small sinusoidal modulation to the input amplitude with a
frequency � ¼ 2!m, so twice the mechanical frequency.
To be more precise we choose the power of the carrier
component equal to P0 ¼ 10 mW, and the power of the
two modulation sidebands equal to P�1 ¼ 2 mW.
We approximate the asymptotic classical mean values in

Eq. (3) by truncating the series only to the first terms with
indexes j ¼ 0; . . . ; 3 and n ¼ �1, 0, 1. Figure 1 shows
that, after less than 50 modulation periods, the first mo-
ments reach quasiperiodic orbits which are well approxi-
mated by our analytical results.
In order to calculate the variances of the quantum fluc-

tuations around the classical orbits, we truncate the sum in
Eq. (9) to N ¼ 2 and we apply all the previous theory to
find the covariance matrix V. In Fig. 2 we compare two
regimes: with or without (P�1 ¼ 0) modulation (computed
analytically and numerically). We see that the modulation
of the driving field causes the emergence of significant true
quantum squeezing below the Heisenberg limit of the
mechanical oscillator state and also the interesting phe-
nomenon of light-mirror entanglement oscillations. This
dynamics reminds of the effect of parametric amplification
[13,16], as if the spring constant of the mechanical motion
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was varied in time with just twice the frequency of the
mechanical motion, leading to the squeezing of the me-
chanical mode. For related ideas of reservoir engineering,
making use of bichromatic microwave coupling to a charge
qubit of nanomechanical oscillators, see Refs. [20]. Here, it
is a more complicated joint dynamics of the cavity field
and the mechanical mode—where the dynamics of the first
and the second moments can be separated—which for large
times yet yields a similar effect. Indeed, this squeezing can
directly be measured when considering the output power
spectrum, following Ref. [21], and no additional laser light
is needed for the readout, giving hence rise to a relatively
simple certification of the squeezing. Entanglement here
refers to genuine quantum correlations between the mirror
and the field mode, as being quantified by the logarithmic
negativity defined as ENð	Þ ¼ logk	�k1, essentially the
trace norm of the partial transpose [22,23]. The minimum
eigenvalue of the mirror covariance matrix—the logarithm
thereof typically referred to as single mode squeezing
parameter—is almost constant and this means that the state
is always squeezed but that the squeezing direction con-
tinuously rotates in phase space with the same period of the
modulation. Calling this rotating squeezed quadrature �xR,
a rough estimate of its variance can be calculated in the
rotating-wave approximation (RWA, compare, e.g.,
Ref. [24]),

h�x2Ri¼
1

2
þ �n�2�ðG0�G�1ÞðG0 �nþG�1ð �nþ1ÞÞ

ð�mþ2�ÞðG2
0�G2�1þ2�m�Þ

; (12)

with fGng being defined as GðtÞ ¼ P1
n¼�1 Gne

in�t.
Conclusions and outlook.—In this Letter we have intro-

duced a framework of describing periodically amplitude-
modulated optomechanical systems. Interestingly, such a
surprisingly simple setting feasible with present technol-
ogy [9] leads to a setting showing high degrees of me-
chanical squeezing, with no feedback or additional fields
needed. We hope that such ideas contribute to experimental
studies finally certifying first quantum mechanical effects
in macroscopic mechanical systems, constituting quite an
intriguing perspective.

This work has been supported by the EU (MINOS,
COMPAS, QAP), and EURYI.
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We establish a method of directly measuring and estimating nonclassicality—operationally defined in

terms of the distinguishability of a given state from one with a positive Wigner function. It allows us to

certify nonclassicality, based on possibly much fewer measurement settings than necessary for obtaining

complete tomographic knowledge, and is at the same time equipped with a full certificate. We find that

even from measuring two conjugate variables alone, one may infer the nonclassicality of quantum

mechanical modes. This method also provides a practical tool to eventually certify such features in

mechanical degrees of freedom in opto-mechanics. The proof of the result is based on Bochner’s theorem

characterizing classical and quantum characteristic functions and on semidefinite programming. In this

joint theoretical-experimental work we present data from experimental optical Fock state preparation.

DOI: 10.1103/PhysRevLett.106.010403 PACS numbers: 03.65.Ta, 03.67.Mn, 42.50.�p

Where is the ‘‘boundary’’ between classical and quan-
tum physics? Unsurprisingly, acknowledging that quantum
mechanics is the fundamental theory from which classical
properties should emerge in one way or the other, instances
of this question have a long tradition in physics. Possibly
the most conservative and stringent criterion for nonclas-
sicality of a quantum state of bosonic modes is that the
Wigner function—the closest analogue to a classical
probability distribution in phase space—is negative, and
can hence no longer be interpreted as a classical probabil-
ity distribution [1–3]. From this, negativity of other quasi-
probability distributions, familiar in quantum optics, such
as the P-function [1,4] follows. In fact, a lot of experimen-
tal progress was made in recent years on preparing quan-
tum states of light modes that exhibit such nonclassical
features, when preparing number states, photon subtracted
states, or small Schrödinger cat states [5–8]. At the same
time, a lot of effort is being made of driving mesoscopic
mechanical degrees of freedom into quantum states even-
tually showing such nonclassical features [9]. All this
poses the question, needless to say, of how to best and
most accurately certify and measure such features.

In this work, (i) we demonstrate that, quite remarkably,
nonclassicality in the above sense can be detected from
mere measurements of two conjugate variables. For a
single mode, this amounts to position and momentum
detection, as can be routinely done by homodyne measure-
ments in optical systems. (ii) What is more, using such data
(or also data that are tomographically complete) one can
get a direct and rigorous lower bound to the probability of
operationally distinguishing this quantum state from one
with a positive Wigner function—including a full certifi-
cate. Such a bound uses information from possibly much
fewer measurement settings than needed for full quantum
state tomography. At the same time, quantum state

tomography using Radon transforms for quantum modes
is overburdened with problems of ill-conditioning.
The method introduced here, in contrast, is a direct

method giving rise to a certified bound which arises from
conditions all classical and quantum characteristic func-
tions have to satisfy as being grasped by the classical and
quantum Bochner’s theorem [10]. Hence, we ask: ‘‘What is
the smallest nonclassicality consistent with the data’’?
Intuitively speaking, the proof circles around the deviation
of a quantum characteristic function as the Fourier trans-
form of the Wigner function from a classical characteristic
function. This deviation can then be formulated in terms of
a semidefinite program—so a well-behaved convex opti-
mization problem—giving rise to certifiable bounds. The
same technique can also be applied to notions of entangle-
ment, and indeed, the rigor applied here reminds of apply-
ing quantitative entanglement witnesses [11,12]. What is
more, the criterion evaluation procedure is efficient. At
present, such techniques should be most applicable to sys-
tems in quantum optics, and we indeed implement this idea
in a quantum optical experiment preparing a field mode in a
nonclassical state. Yet, they should be expected to be
helpful when eventually certifying that a mesoscopic me-
chanical system has eventually reached quantum properties
[9], where ‘‘having achieved a nonclassical state’’, with
careful error analysis, will constitute an important
benchmark.
Measure of nonclassicality.—Nonclassicality is most

reasonably quantified in terms of the possibility of opera-
tionally distinguishing a given state from a state that one
would conceive as being classical. That is to say, the
meaningful notion of distinguishing a state from a classical
one is as follows.
Definition 1: (Measure of nonclassicality).—

Nonclassicality is measured in terms of the operational
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distinguishability of a given state from a state having a
positive Wigner function,

�ð�Þ ¼ min
!2C

k��!k1; (1)

where C denotes the set of all quantum states with positive
Wigner function and k � k1 is the trace norm.

This measure is indeed the operational definition of a
nonclassical state—as long as one accepts the negativity of
the Wigner function as the figure of merit of nonclassical-
ity. Needless to say, the operational distinguishability with
respect to other properties would also be quantified by
trace-distances, and naturally several quantities of such a
type can be found in the literature (see, e.g., Ref. [13] for a
similar notion of nonclassicality and Ref. [14] for a related
idea to quantify entanglement). It has the following natural
properties: It is (a) invariant under passive and active linear
transformations, and (b) nonincreasing under Gaussian
channels, and in fact under any operation that cannot
map a state with a positive Wigner function onto a negative
one. The latter property is an immediate consequence of
the trace norm being contractive under completely positive
maps. Moreover, since Gaussian states are positive this
measure of negativity gives a direct lower bound to the
non-Gaussianity of the same state—quantified again in
terms of the distance to the set of Gaussian states. Such a
notion of non-Gaussianity (see, e.g., Refs. [15]), just as the
negativity of the Wigner function as such, can be viewed as
quantifying a resource in quantum information processing.
Similar to entanglement measures being monotones under
local operations with classical communication, these mea-
sures are monotones under Gaussian operations. What is
more, the negativity of the Wigner function may also be
seen as quantifying the potential of violating a Bell in-
equality based on homodyning [16].

Characteristic functions and Bochner’s theorems.—We
consider physical systems of n bosonic modes, associated
with canonical coordinates R ¼ ðq1; . . . ; qn; p1; . . . ; pnÞ, of
‘‘position’’ and ‘‘momentum’’, or some quadratures. In the
center of the analysis will be quantum characteristic func-
tions [2,17], for nmodes as a function �: R2n ! C defined
as �ð�Þ ¼ tr½�Dð�Þ�, Dð�Þ ¼ ei���R, so as the expectation
value of the Weyl or displacement operator [18]. This
characteristic function is nothing but the Fourier transform
of the familiar Wigner function W: R2n ! R,

WðzÞ ¼ 1

ð2�Þ2n
Z

�ð�Þe�i���zd�: (2)

A key tool will be the notion of � positivity [10]:
Definition 2: (� positivity).—A function �: R2n ! C is

�-positive definite for � 2 R if for every m 2 N and for
every set of real vectors T ¼ ð�1; �2; . . . ; �mÞ the m�m

matrix Mð�Þð�; TÞ is non-negative, Mð�Þð�; TÞ � 0, with

ðMð�Þð�; TÞÞk;l ¼ �ð�k � �lÞei��k���l=2: (3)

Conversely, one can ask for a classification of all func-
tions that can be characteristic functions of a quantum

state, or some classical probability distribution. Such a
characterization is captured in the quantum and classical
Bochner’s theorems [10]. (i) Every characteristic function
of a quantum state must be 1-positive definite. (ii) Every
characteristic function of a quantum state with a positive
Wigner function must be at the same time 1-positive defi-
nite and 0-positive definite.
Measuring nonclassicality.—Data are naturally taken as

slices in phase space, resulting from measurements of
some linear combinations of the canonical coordinates,
as they would be obtained from a phase sensitive measure-
ment such as homodyning in quantum optics. One collects
data from measuring observables ukR for some collection
of uk 2 R2n with kukk ¼ 1. E.g., in the simplest case of
one mode one could measure only q and p or, if the state is
phase invariant, one could average over all the possible
directions. With repeated measurements one can estimate
the associated probability distributions Pk: R ! Rþ, re-
lated to slices of the characteristic functions by a simple
Fourier transform

R
PkðsÞei!sds ¼ �ð!�ukÞ. Actually, in

a real experiment one can build only a statistical histogram
rather than a continuous probability distribution. Hence,
measurements of values of the characteristic function must
be equipped with error bars [19]

�ð!Þ ¼ j!jhþ n=
ffiffiffiffi
N

p
; (4)

where 2h is the width of each bin of the histogram, N is the
number of measurements and n is the number of standard
deviations that one should consider depending on the
desired level of confidence [20]. This kind of measure-
ments can be performed also in optomechanical systems
where a particular quadrature of a mechanical oscillator
can be measured a posteriori by appropriately homodyning
a light mode coupled to it [21]. A different idea has
recently been proposed for directly pointwise measuring
the characteristic function of a mechanical mode coupled
to a two-level system [22]. In both cases the method that
we are going to describe can be easily applied. Restricted
measurements also arise in the context of bright beams
[23], where Mach-Zehnder interferometers have to replace
homodyning. In the study of states of macroscopic atomic
ensembles [24] similar issues arise.
Bounds to the nonclassicality from convex optimiza-

tion.—We assume that we estimate the values of the char-
acteristic function �ð ��jÞ ’ cj for a given set of points ��j,

j ¼ 1; . . . ; p, within a given error �j � 0 [20], so that

j�ð ��jÞ � cjj � �j. Now pick a set of suitable test vectors

T ¼ ð�1; . . . ; �mÞ, the differences �j � �k of which at least

contain the data points ��1; . . . ; ��p. Based on this, we define

the following convex optimization problem as over �, x,

minimize x; (5)

such that

jReð�ð ��jÞÞ� ReðcjÞj � �j; j ¼ 1; . . . ; p; (6)

PRL 106, 010403 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 JANUARY 2011

010403-2



jImð�ð ��jÞÞ� ImðcjÞj � �j; j ¼ 1; . . . ; p; (7)

Mð0Þð�; TÞ þ xm1 � 0; Mð1Þð�; TÞ � 0; (8)

where Mð0Þð�; TÞ and Mð1Þð�; TÞ are the Hermitian matri-
ces (3) associated with the � positivity, based on the test
points �1; . . . ; �m as being specified in Def. 2. The mini-
mization is in principle performed over all functions
�: R2n ! C such that �ð��Þ ¼ �ð�Þ�, where �ð ��lÞ is

constrained by the data and Mð0=1Þð�; TÞ depend on the
test points. Since we take only a finite number of points of
�, yet, the above problem gives rise to a semidefinite
problem (SDP) [25]. This can be efficiently solved with
standard numerical algorithms. By means of the notion of
Lagrange duality, one readily gives analytical certifiable
bounds: Every solution for the dual problem will give a
proven lower bound to the primal problem [25], and hence
a lower bound to the measure of nonclassicality itself. The
entire procedure hence amounts to an arbitrarily tight
convex relaxation of the Bochner constraints. We can
now formulate the main result: Eq. (5) gives rise to a lower
bound for the nonclassicality: Given the data (and errors),
one can find good and robust bounds to the smallest non-
classicality that is consistent with the data.

Theorem 3: (Estimating nonclassicality).—The output x0
of Eq. (5) is a lower bound for the nonclassicality, �ð�Þ �
x0. The proof proceeds by constructing a witness operator

F ¼ 1

m

Xm
k;l¼1

v�
kvlDð�k � �lÞ; (9)

where �1; . . . ; �m 2 R2n are the test vectors from
Bochner’s theorem used in the SDP and v is the normalized
eigenvector associated with the minimum eigenvalue of

Mð0Þð�0; TÞ, where �0 is the optimal solution for �. For a
given state �, this operator F has the following properties:

(i) F ¼ Fy, (ii) jtrðF!Þj � 1 for all quantum states !.
(iii) trðF!Þ � 0 for all quantum states! 2 C. (4) If x0 � 0
is the optimal solution, then trðF�Þ � �x0. These proper-
ties will be proven to be valid in the Supplementary mate-
rial [19], involving some technicalities. They suggest that
F is actually a witness observable able to distinguish a
subset of nonclassical states from the convex set of classi-
cal states. Formally, from the variational definition of the
trace norm, we have the lower bound to be shown [26],

�ð�Þ ¼min
!2C

k��!k1 �min
!2C

trð!FÞ � trðF�Þ � x0: (10)

An example: Schrödinger cat state.—As an example we
consider a quantum superposition of two coherent states,
so jc i � ðj	i þ j � 	iÞ with 	 ¼ 1:77. We assume to
measure only the probability distributions of position and
momentum [Fig. 1(a)]: P1ðqÞ ¼ jhqjc ij2 and P2ðpÞ ¼
jhpjc ij2, i.e., the data is collected from a mere pair of
canonical operators. This amount of information is of
course not sufficient for tomographically reconstructing
the state since it corresponds to just two orthogonal slices
of the characteristic function. In order to define the SDP we

consider a 25� 25 square lattice centered at the origin of
the domain of the characteristic function, optimizing over
the values of � at the lattice points. Position and momen-
tum measurements define the constraints (6) and (7) for
only two slices of the lattice (assuming an error of
�j ¼ 10�3 for each point). We generate 100 random test

vectors and we construct the associated �-positivity con-
straints (8). The output of the SDP is x0 ’ 0:05> 0which is
a certified lower bound for the nonclassicality of the state.
Experimentally detecting nonclassicality.—Finally, to

certify the functioning of the idea in a quantum optical
context, we apply our method to experimental data. We
consider data from a heralded single-photon source based
on parametric down-conversion (cf. Ref. [8]). Here, an
optical parametric oscillator (OPO), pumped continuous-
wave and far below threshold, delivers the down-converted
photon pair at frequencies !	. The pair is separated using
an optical cavity; the transmitted photon !� is frequency
filtered by additional cavities before impinging an ava-
lanche photodiode (APD) giving the heralding event for
homodyne measurement of the reflected twin photon !þ.
On every event the homodyne current is sampled around
the heralding time and postprocessed into one quadrature
value using an appropriate mode function [27]. In total,
quadrature values from 180 000 events are accumulated
[Fig. 2(a)]. Data is phase randomized meaning that we
can use the same probability distribution for every phase
space direction, the phase being unavailable in the experi-
ment. Since our nonclassicality measure is convex, aver-
aging over phase space directions is an operation which
can only decrease the negativity of the state. This means

FIG. 1 (color online). (a) Position and momentum distributions
for an exact cat state. (b) Wigner function based on the SDP.

FIG. 2 (color online). (a) Raw measured quadrature distribu-
tion from the experiment. (b) Wigner function based on the
output of the SDP.
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that a lower bound to the nonclassicality of the phase
randomized state will be valid for the original state.

In order to apply our algorithm we use the measured data
to constrain all the points of the characteristic function on a
37� 37 lattice. Error bars are estimated using Eq. (6) with
n ¼ 5 standard deviations. This means that the probability
that all the points of the lattice lie inside the error bars is
larger than 99.9%. The lower bound for the nonclassicality
coming out from the SDP (200 random test vectors) is x0 ’
0:0028, meaning that the Wigner function of the state
cannot be a positive probability distribution. The Wigner
function reconstructed from the optimal solution of the
SDP [Fig. 2(b)] is clearly negative even if we asked for
the most positive one consistent with measured data.

Extensions of this approach.—Needless to say, this ap-
proach can be extended in several ways. Indeed, the
method can readily be generalized to produce lower
bounds for entanglement measures [11] in the multimode
setting. Also, this idea can be applied to the situation when
not slices are measured, but points in phase space, such as
when using a detector-atom that is simultaneously coupled
to a cantilever [22]. It also constitutes an interesting per-
spective to apply the present ideas to certify deviations
from stabilizer states for spin systems (as those states
having a positive discrete Wigner function [28]).

Summary.—We have introduced a method to directly
measure the nonclassicality of quantum mechanical
modes, requiring less information than tomographic
knowledge, but at the same time in a certified fashion.
These ideas are further advocating the paradigm of ‘‘learn-
ing much from little’’—getting much certified information
from few measurements—complementing methods of wit-
nessing entanglement [11,12], ideas of compressed sensing
[29] or matrix-product based [30] approaches to quantum
state tomography, detector tomography [31], or the direct
estimation of Markovianity [32].

This work has been supported by the EU (MINOS,
COMPAS, QESSENCE), and the EURYI.
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Chapter 6

Cooling by heating



Cooling by heating
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We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving
rise to a counter-intuitive mechanism of “cooling by heating”. In this effect, the mere incoherent occupation of
a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of
effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to
the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this
situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary
classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in
opto-mechanical systems with present technology is sketched.

Cooling in quantum physics is usually achieved in just the
same way as it occurs in classical physics or in common ev-
eryday situations: One brings a given system into contact with
a colder bath. Coherent driving of quantum systems can effec-
tively achieve the same aim, most prominently in instances of
laser cooling of ions or in its opto-mechanical variant, cooling
mechanical degrees of freedom using the radiation pressure of
light. The coherence then serves a purpose of, in a way, ren-
dering the state of the system “more quantum”. In any case, in
these situations, the interacting body should first and foremost
be cold or coherent.

In this work, we introduce a paradigm in which thermal
hot states of light can be used to significantly cool down a
quantum system. To be specific, we will focus on an opto-
mechanical [1–6] implementation of this idea: This type of
system seems to be an ideal candidate to demonstrate this ef-
fect with present technology; it should however be clear that
several other natural instances can well be conceived. Intu-
itively speaking, it is demonstrated that due to the driving with
thermal noise, the interaction of other modes can be effec-
tively enhanced, giving rise to a “transistor-like” effect [8].
We flesh out this effect at hand of two approaches following
different approximation schemes. The first approach is es-
sentially a weak coupling master equation, while the second
approach makes use of stochastic samplings with respect to
colored classical stochastic processes [10], which constitutes
an interesting and practical tool to study such quantum optical
systems of several modes in its own right.

The observation made here adds to the insight that appears
to be appreciated only fairly recently, in that quantum noise
does not necessarily only give rise to heating, decoherence,
and dissipation, providing in particular a challenge in appli-
cations in quantum metrology and in quantum information
science. When suitably used, quantum noise can also assist
in processes thought to be necessarily of coherent nature, in
noise-driven quantum phase transitions [11], quantum criti-
cality [12], in entanglement distillation [13] or in quantum
computation [14]. It turns out that thermal noise, when ap-
propriately used, can also assist in cooling. Alas, this counter-
intuitive effect is not in contradiction to the laws of thermody-
namics, as is plausible when viewing this set-up as a thermal

machine or heat engine [15] operating in the quantum regime.

FIG. 1. The opto-mechanical setup primarily being considered in this
work, involving two optical modes and a mechanical one.

The system under consideration. We consider a system of
two optical modes at frequencies ωa and ωb, respectively, that
are coupled to a mechanical degree of freedom at frequency
ωc. The Hamiltonian of the entire system is assumed to be
well-approximated by H = H0 + H1, where the free part is
given byH0 = h̄ωaa

†a+h̄ωbb
†b+h̄ωcc†c, and the interaction

can be cast into the form

H1 = h̄g(a+ b)†(a+ b)(c+ c†). (1)

It is convenient to move to a rotating interaction picture with
respect to h̄ωb(a†a+ b†b). The radiation pressure interaction
is invariant under this transformation, while H0 simplifies to

H ′0 = h̄∆a†a+ h̄ωcc
†c,

where ∆ = ωa − ωb. For most of what follows, the fre-
quencies are chosen such that ∆ = ωc, as we will see is
the optimal resonance for cooling the mechanical resonator.
This can be realized by tuning the mechanical degree of free-
dom or the cavity mode splitting. In fact, this is exactly the
setting proposed in Ref. [16] as a feasible three-mode op-
toacoustic interaction, in an idea that can be traced back to
studies of parametric oscillatory instability in Fabry-Perot in-
terferometers [17]. Similarly, with systems of high-finesse
optical cavities coupled to thin semi-transparent membranes
[18], of double-microdisk whispering-gallery resonators [19]
or of opto-mechanical crystals [20] such a situation can be
achieved. Surely numerous other architectures are well con-
ceivable.

In addition to this coherent dynamics, the system is as-
sumed to undergo natural damping and decoherence – un-
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avoidable in the opto-mechanical context. The quantum mas-
ter equation governing the dynamics of the entire system em-
bodying the two optical modes and the mechanical degree of
freedom is given by

ρ̇ = Lρ = − i
h̄

[H, ρ] + (La + Lb + Lc)ρ, (2)

with the generators being defined by La = κDa and

Lb = (1 + nb)κDb + nbκDb† , (3)
Lc = (1 + nc)γDc + ncγDc† , (4)

making use of the notation for a generator in Lindblad form

Dx(ρ) = 2xρx† − {x†x, ρ}. (5)

Here, we allow the optical bath of mode b to be in a Gibbs or
thermal state having an arbitrary temperature.

This type of damping reflects the plausible mechanism of
loss. For the mechanical motion, we are primarily interested
in the regime where ωm � γ, such that the damping mech-
anism of quantum Brownian motion based on some spectral
density is virtually indistinguishable from the quantum opti-
cal Markovian damping as for an optical mode [21]. For that
reason, for coherence of presentation, the same type of dissi-
pative dynamics has been chosen for the optical and mechan-
ical modes.

We will now discuss this given situation in two different
pictures. The first one is a weak coupling approach leading to
approximate analytical expressions. The second one involves
sampling over colored classical stochastic processes. These
methods are further discussed in the range of their validity in
the EPAPS, where they are also compared with exact diago-
nalization methods for small photon numbers [23].

Description 1: Weak coupling approximation as an analyt-
ical approach. In this approach, a picture is developed grasp-
ing the physical situation well for small couplings g. In ad-
dition to the actual physical baths of the three modes a, b,
and c giving rise to dissipative dynamics, we also consider
mode b as a further external “bath” and derive an effective
master equation for modes a and c only. This is a good ap-
proximation if the back action on mode b is negligible and up
to second order in the coupling constant g. Having this pic-
ture in mind, the Liouvillian in Eq. (2) can be decomposed as
L = Lsys + Lint + Lbath, where Lbath = Lb and

Lsys = − i
h̄

[H ′0, ·] + La + Lc, Lint = − i
h̄

[H1, ·]. (6)

Using projection operators techniques [22], one can derive a
master equation for the reduced system ρa,c = trb[ρ]

ρ̇a,c(t) = Lsysρa,c(t)+trbLint

∫ ∞

0

ds eLrsLintρa,c(t−s)⊗ρb.

Here Lr = Lsys + Lbath. Making use of the explicit expres-
sion (6) for Lint, we have

ρ̇a,c(t) = Lsysρa,c(t)−
1

h̄2 trb[H1,

∫ ∞

0

dseLrs[H1, ρa,c(t−s)⊗ρb]]
(7)

In what follows, we will make a sequential approximation of
the interaction Hamiltonian H1 and the damping mechanism.
In order to be as transparent as possible, we mark each of the
steps with a roman letter.

Eq. (7) – up to second order expansion in the coupling g,
which constitutes the first approximation step (a) – can also
be written as

ρ̇a,c(t) = Lsysρa,c(t)−
1

h̄2 trb[H1,

∫ ∞

0

ds[eL
†
rs(H1), ρa,c(t)⊗ρb]],

(8)
where L†r acts only on the Hamiltonian H1, corresponding to
a “dissipative interaction picture” with respect to Lr.

We start from Eq. (1) and (b) neglect the term proportional
to a†a because we assume mode a to be weakly perturbed
from its ground state. In contrast, we allow the physical op-
tical bath of mode b to have an arbitrary temperature and
therefore we cannot neglect the term proportional to b†b. We
rewrite the approximated H1 as

H ′1 = h̄g(a†b+ b†a+ δ)(c+ c†), (9)

where the operator δ = b†b− nb represents the intensity fluc-
tuations of mode b. In order to have vanishing first moments
with respect to mode b, the mean force proportional to 〈b†b〉
has been subtracted, which is responsible of merely shifting
the resonator equilibrium position. Since ωa − ωb = ωc, the
(c) rotating wave approximation (RWA) of Eq. (9) is

H ′′1 = h̄g(a†bc+ ab†c†) + h̄gδ(c+ c†). (10)

As will be explained later in more details, the first term of the
Hamiltonian is responsible for the cooling of the mechanical
resonator, while the second term corresponds to an additional
heating noise.

In order to compute the partial trace in Eq. (8), we need the
two-time correlation functions of the thermal light in mode b,

〈beL†
rsb†〉 = e−κsnb, 〈δeL

†
rsδ〉 = e−2κs(n2

b + nb). (11)

The exponential functions in Eqs. (11) determine the time
scale of the integral kernel in Eq. (8), which will be of the
order of κ−1. Within this time scale (d) we can neglect the
effect of the mechanical reservoir (γ � κ), and the action of
the map eL

†
rs on the system operators will be

eL
†
rsa = e−(κ+i∆)sa = e−(κ+iωc)sa,

eL
†
rsc = e−(γ+iωc)sc ' e−iωcsc.

We can finally perform the integral in Eq. (8), and since all the
odd moments of ρb vanish, the cooling and heating terms in
Eq. (10) generate two independent contributions to the master
equation, respectively

Lcool =
g2

2κ
((1 + nb)Dac† + nbDa†c) , (12)

Lheat =
2κg2(n2

b + nb)

4κ2 + ω2
c

(Dc† +Dc) , (13)
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where in calculating Lheat we (e) kept only the counter-
rotating terms. The effect of Lheat is simply a renormalization
of the mean occupation number of the mechanical bath

nc 7→ ñc = nc +
2κg2(n2

b + nb)

γ(4κ2 + ω2
c )

,

always increasing, as expected, the effective temperature of
the environment. Denoting with L̃sys the corresponding renor-
malized Liouvillian, the master equation can be written as

ρ̇a,c = (L̃sys + Lcool)ρa,c. (14)

With respect to Eq. (2), Eq. (14) can be numerically solved
with much less computational resources but we have to remind
ourselves that this approach is valid only within the RWA and
for weak coupling: γ, g � ωc. Another advantage of Eq.
(14) is that the corresponding adjoint equations for the number
operators na = a†a and nc = b†b are closed with respect to
these operators, that is

ṅa = −2κna −
g2

κ
((nb + 1)na − nbnc − nanc) ,

ṅc = −2κnc −
g2

κ
(nbnc − (nb + 1)na − nanc) + 2γñc.

Assuming (f) that the factorization property 〈nanc〉 '
〈na〉〈nc〉 holds – which is essentially a mean-field approach
which is expected to be good in case of small correlations, or,
again as assumed, for small values of g – we can find analyti-
cal expressions for the steady state expectation values:

〈nc〉 =
ñc − η

2
+

(
(ñc + η)2

4
− κnbñc

γ

)1/2

,

〈na〉 =
(ñc − 〈nc〉)γ

κ
,

where η = 1 + nb(1 + κ/γ) + 2κ2/g2.
Description 2: Sampling with respect to colored station-

ary classical stochastic processes. In this approach, we start
from the exact dynamics Eq. (2) but treat mode b as a classi-
cal thermal field and neglect any feed-back from the resonator.
We substitute the bosonic operator with a complex amplitude
b(t) 7→ βt, giving rise to a semi-classical picture. The pa-
rameter βt can be described as a classical stochastic process
defined by the stochastic differential equation (SDE)

dβt = −κβtdt+
√
κnb(dW

(x) + idW (y)), (15)

with independent Wiener increments [10] obeying the Itō
rules dW (a)dW (b) = δa,bdt, dW (a,b)dt = 0. The dynam-
ics of the remaining modes a and c instead, can be efficiently
treated quantum mechanically; this is true, since for every
single realization of the process (15), the evolution defines
a Gaussian completely positive map and therefore the corre-
sponding Gaussian state ρ(βt)

a,c (t) = E(βt)
t (ρa,c) can be de-

scribed entirely in terms of first and second moments. The ac-
tual quantum state of the system will in general not be exactly

Gaussian, it can nonetheless be simulated by sampling over
many Gaussian states associated with different realizations of
βt: Only the respective weight in the convex combinations
are such that the resulting state can be non-Gaussian. The re-
sulting state ρa,c(t) = Eρ

(βt)
a,c (t) will be our semi-classical

description of the system.
It is convenient to introduce a vector of quadratures op-

erators u = [xc, yc, xa, ya], where xj = (j + j†)/
√

2,
yj = i(j† − j)/

√
2 and j = a, c. From Eq. (2), we get a

SDE for the first moments

d〈u〉t
dt

= At〈u〉t + ft, (16)

where

At =




−γ ωc 0 0

−ωc −γ gβ
(x)
t gβ

(y)
t

−gβ(y)
t 0 −κ ∆

gβ
(x)
t 0 −∆ −κ


, ft =




0
g|βt|2

0
0


(17)

β
(x)
t = (βt + β∗t ), β(y)

t = i(β∗t − βt). The second moments
can be arranged in the matrix Vt = Re〈uu†〉t, satisfying the
SDE

dVt
dt

= AtVt + VtA
T
t +D + Ft, (18)

where D = diag[γ(2nc + 1), γ(2nc + 1), κ, κ], and Ft =
ft〈u〉Tt + 〈u〉tfTt . The statistical average over many realiza-
tion of Vt will be an estimator for the second moments of the
quantum state V (t) = E(Vt). In particular, the first two di-
agonal elements give the effective phonon number of the me-
chanical oscillator, since 〈nc〉(t) = (V1,1(t) +V2,2(t)− 1)/2.
The three stochastic differential equations (15,16,18) can be
numerically integrated in sequential order. In our simulations,
see Fig. 2, we used the Euler method, for each time step dt
sampling the associated Wiener increments in Eq. (15) with
normal distributions of variance σ2 = dt.

Intuitive explanation of the effect of cooling by heating.
This effect can be intuitively explained at hand of Eq. (10)
in Description 1: Two competing processes play here an im-
portant role: The first term appears like a beam splitter inter-
action between the modes a and c with a “reflectivity” given
by the thermal fluctuations of the amplitude of mode b. This
is responsible for the cooling of the mirror. That is to say, the
occupation of mode b takes the role resembling the “basis of a
transistor”: A high occupation renders the interaction between
a and c stronger, hence triggering the cooling effect. For this
effect to be relevant, the coherence or purity of the state of b
does not play a dominant role, and hence even thermal noise
can give rise to cooling. This is referred to as “good noise”.
The second term corresponds to the fluctuations of the radia-
tion pressure of mode b and it is a source of “bad” noise which
heats the mechanical mode.

Similarly, this effect can be studied at hand of the stochastic
picture of Description 2, when observing Eq. (18). In addition
to the intrinsic quantum noise described byD, stochastic fluc-
tuations of βt generate an additional heating noise given by
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the matrix Ft. However, the same process βt is also contained
in the matrix At and corresponds to a cooling noise, up to the
approximations identical to the above “good noise”. The rea-
son is quite evident from Eq. (17), where we observe that the
coupling between the hot mechanical oscillator and the cold
optical mode is mediated by the thermal fluctuations of βt.
This opto-mechanical coupling, which would be zero without
noise, leads to a sympathetic cooling of the mechanical mode.

Example. We will now discuss the effect of cooling by heat-
ing at hand of an example using realistic parameters in an
opto-mechanical setting. Fig. 2 shows the effective temper-
ature of the mechanical mode as a function of the number of
photons in mode b: Here, effective temperature is defined as
the temperature T of a Gibbs state

ρc(T ) =
e−h̄ωcc

†c/(kT )

tr(e−h̄ωcc†c/(kT ))

such that 〈nc〉 = tr(ρc(T )c†c). One quite impressively en-
counters the effect of cooling by heating, for increasing pho-
ton number and hence effective temperature of this optical
mode. For very large values of the photon number, the “bad
noise” eventually becomes dominant, resulting again in a
heating up of the mechanical mode. Note that needless to
say, the effective temperature of the optical mode b is usually
larger than the mechanical one by many orders of magnitude
(approximately 1010K for reasonable parameters).
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FIG. 2. Room temperature cooling with parameters reminding of
those typical in realistic experiments [3]: ωc = 2πMHz, κ = 0.2ωc,
g = 0.3× 10−5ωc, and γ = 10−3ωc. The black line shows the pre-
dictions of the steady state using Description 1, the dots are a result
from stochastic sampling using Description 2 (with 100 realizations),
which qualitatively coincide well. One clearly finds that an increased
population of mode b leads to a significant cooling of the mechani-
cal mode – up to a point when eventually the “bad noise” becomes
dominant.

Summary. In this work, we have established the notion of
cooling by heating, which means that cooling processes can be
assisted by means of incoherent hot thermal light. We focused
on an opto-mechanical implementation of this paradigm. We
also introduced new theoretical tools to grasp the situation
of driving by quantum noise, including sampling techniques
over stochastic processes. To experimentally demonstrate this
counterintuitive effect should be exciting in its own right.

Putting things upside down, one could also conceive settings
similar to the one discussed here as demonstrators of small
heat engines [15] operating at the quantum mechanical level,
where b takes the role of an “engine” and mode a of a “con-
denser”. To fully explore these implications for feasibly real-
izing quantum thermal machines constitutes an exciting per-
spective. It would also be interesting to fully flesh out the po-
tential for the effect to assist in generating non-classical states
[24]. Finally, quite intriguingly, this work may open up ways
to think of optically cooling mechanical systems without us-
ing lasers at all, but rather with basic, cheap LEDs emitting
incoherent light.

Acknowledgements. We would like to thank the EU (Minos,
Compas, Qessence), the EURYI, and QuOReP for support.

[1] S. Gigan et al., Nature 444, 67 (2006); O. Arcizet et al., ibid.
444, 71 (2006); D. Kleckner and D. Bouwmeester, ibid. 444, 75
(2006).

[2] A. Schliesser et al., Nature Physics 4, 415 (2008).
[3] S. Groeblacher et al., Nature Phys. 5, 485 (2009); Nature 460,

724 (2009).
[4] D. Vitali, S. Mancini, L. Ribichini, and P. Tombesi, Phys. Rev.

A 65, 063803 (2002).
[5] A. Ferreira, A. Guerreiro, and V. Vedral, Phys. Rev. Lett. 96,

060407 (2006); M. Paternostro et al., ibid. 99, 250401 (2007);
D. Vitali et al., ibid. 98, 030405 (2007); C. Genes et al., Phys.
Rev. A 78, 032316 (2008).

[6] F. Marquardt and S. M. Girvin, Physics 2, 40 (2009).
[7] J. Eisert, M. B. Plenio, S. Bose, and J. Hartley, Phys. Rev. Lett.

93, 190402 (2004); I. Wilson-Rae, P. Zoller, and A. Imamoglu,
ibid. 92, 075507 (2004).

[8] This cooling is not due to some energy minimum being favored,
with a transition facilitated by small amounts of quantum noise,
reminding of quantum versions of stochastic resonance [9].

[9] M. B. Plenio and S. F. Huelga, Phys. Rev. Lett. 88, 197901
(2002); I. Goychuk and P. Hänggi, ibid. 91, 070601 (2003).

[10] N.G. van Kampen, Stochastic processes in physics and chem-
istry (Elsevier, 2007).

[11] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and
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SUPPLEMENTARY MATERIAL

In this supplementary material, we compare the methods of
Description 1 and 2 of the main text with an exact simulation
of the master equation (2) in a truncated, finite-dimensional
Hilbert space of the three involved modes,H = CN

a⊗CNb⊗
CNc . The unique stationary state of Eq. (2) can easily be
found numerically; a dimension d = NaNbNc of the total
Hilbert space of, say, d <∼ 400, is well feasible. This is obvi-
ously an essentially exact method for small occupation num-
bers in each of the three modes, and the error made can easily
be estimated. This analysis, see Fig. 3, together with anal-

ogous ones in similar regimes, shows that the methods used
here are also suitable in the deep quantum regime.
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FIG. 3. Stochastic simulation – introduced in Description 2 – of the
mean number of phonons as a function of time (black line), compared
with the exact steady state (blue line) and with the analytical approx-
imation given in Description 1 (red line). Parameters: nb = nc = 1,
κ = 0.1ωc, γ = 0.01ωc, g = 0.006ωc.
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One of the main milestones in the study of opto- and electro-mechanical systems is to certify entanglement
between a mechanical resonator and an optical or microwave mode of a cavity field. In this work, we show
how a suitable time-periodic modulation can help to achieve large degrees of entanglement, building upon the
framework introduced in [Phys. Rev. Lett. 103, 213603 (2009)]. It is demonstrated that with suitable driving, the
maximum degree of entanglement can be significantly enhanced, in a way exhibiting a non-trivial dependence
on the specifics of the modulation. Such time-dependent driving might help experimentally achieving entangled
mechanical systems also in situations when quantum correlations are otherwise suppressed by thermal noise.

INTRODUCTION

Opto-mechanical [1–7] and electro-mechanical systems [8–
13] are promising candidates for realizing architectures ex-
hibiting quantum behavior in macroscopic structures. Once
the quantum regime is reached, exciting applications in quan-
tum technologies such as realizing precise force sensors are
conceivable [15, 16]. One of the requirements to render such
an approach feasible, needless to say, is to be able to certify
that a mechanical degree of freedom is deeply in the quantum
regime [16–20]. The detection of entanglement arguably con-
stitutes the ultimate benchmark in this respect. While effective
ground state cooling has indeed been experimentally closely
approached [6, 10] and achieved [7, 9, 13], the detection of
entanglement is still awaiting.

In this work, we emphasize that a mere suitable time-
modulation of the driving field may significantly help to
achieve entanglement between a mechanical mode and a ra-
diation mode of the system. We extend the idea of Ref.
[21], putting emphasis on the improvement of entanglement
by means of suitable modulations [21–23]. The method used
here is not a direct modulation of the frequencies of the two
modes (parametric amplification), but the system is instead
externally driven with a modulated field. This time depen-
dence of the driving indirectly affects the effective radiation
pressure coupling between the two modes and generates non-
trivial entanglement resonances. In this way, with the appro-
priate choice of the modulation pattern, large degrees of two-
mode squeezing can be reached.

MODULATED OPTO- AND ELECTRO-MECHANICAL
SYSTEMS

We consider the simplest scenario of a mechanical res-
onator of frequency ωm coupled to a single mode of the elec-
tromagnetic field of frequency ωa. This radiation field could
be an optical mode of a Fabry-Perot cavity [1–7, 18, 19, 24]
or a microwave mode of a superconductive circuit [8–10, 14].
It can be shown that the Hamiltonians associated to this two
experimental settings are formally equivalent [14, 19] and
therefore the theory that we are going to introduce is general

enough to describe both types of systems.
We assume that the radiation mode is driven by a coherent

field with a time dependent amplitude E(t) and frequency ωl.
The particular choice of the time dependence is left unspeci-
fied but we impose the structure of a periodic modulation such
that E(t + τ) = E(t) for some τ > 0 of the order of ω−1

m .
In this sense, the driving regime that we are going to study is
intermediate between the two opposite extremes of constant
amplitude and short pulses. The Hamiltonian of the system is

H = ~ωaa†a+
1

2
~ωm(p2 + q2)− ~ga†aq

+i~[E(t)e−iωlta† − E∗(t)eiωlta], (1)

where the mechanical mode is described in terms of dimen-
sionless position and momentum operators satisfying [q, p] =
i, while the radiation mode is captured by creation and an-
nihilation operators obeying the bosonic commutation rule
[a, a†] = 1. The two modes interact via a radiation pressure
potential with a strength given by the coupling parameter g.

In addition to this coherent dynamics, the mechanical mode
will be unavoidably damped at a rate γm, while the opti-
cal/microwave mode will decay at a rate κ. These dissipative
processes and the associated fluctuations can be taken into ac-
count in the Heisenberg picture by the following set of quan-
tum Langevin equations [14, 17–19],

q̇ = ωmp, (2)
ṗ = −ωmq − γmp+ ga†a+ ξ,

ȧ = −(κ+ i∆)a+ igaq + E(t) +
√

2κain.

In this set of equations a convenient rotating frame has be
chosen a 7→ ae−iωlt, such that the detuning parameter is
∆ = ωa − ωl. The operators ξ and ain represent the me-
chanical and optical bath operators respectively, and their cor-
relation functions are well approximated by delta functions

〈ξ(t)ξ(t′) + ξ(t′)ξ(t)〉/2 = γm(2nm + 1)δ(t− t′), (3)
〈ain(t)ain†(t′)〉 = (na + 1)δ(t− t′),
〈ain†(t)ain(t′)〉 = naδ(t− t′),

where nx = (exp(~ωx/(kBT )) − 1)−1, is the bosonic mean
occupation number at temperature T .
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CLASSICAL PERIODIC ORBITS: FIRST MOMENTS

We are interested in the coherent strong driving regime
when 〈a〉 � 1. In this limit, the semiclassical approximations
〈a†a〉 ' |〈a〉|2 and 〈aq〉 ' 〈a〉〈q〉 are good approximations.
Within this approximation, one can average both sides of Eq.
(2) and get a differential equation for the first moments of the
canonical coordinates

〈q̇〉 = ωm〈p〉, (4)
〈ṗ〉 = −ωm〈q〉 − γm〈p〉+ g|〈a〉|2,
〈ȧ〉 = −(κ+ i∆)〈a〉+ ig〈a〉〈q〉+ E(t).

Far away from the well known opto- and electro-
mechanical instabilities, asymptotic τ -periodic solutions can
be used as ansatz for Eqs. (4) (see the Appendix for a more
detailed analysis). These solutions represent periodic orbits in
phase space and are usually called limit cycles. These cycles
are induced by the modulation and should not be confused
with the limit cycles emerging in the strong driving regime
due to the non-linearity of the system. Because of the asymp-
totic periodicity of the solutions, one can define the funda-
mental modulation frequency as Ω = 2π/τ , such that each
periodic solution can be expanded in the following Fourier se-
ries

〈O(t)〉 =

∞∑

n=−∞
One

inΩt, O = q, p, a. (5)

The Fourier coefficients {On} appearing in Eq. (5) can be ana-
lytically estimated as shown in Appendix and they completely
characterize the classical asymptotic dynamics of the system.

Finally we notice that the classical evolution of the dynam-
ical variables will shift the detuning to the effective value of
∆̃(t) = ∆−g〈q(t)〉. For the same reason, it is also convenient
to introduce an effective coupling constant defined as

g̃(t) = ig〈a(t)〉/
√

2. (6)

QUANTUM CORRELATIONS: SECOND MOMENTS

The classical limit cycles are given by the asymptotic solu-
tions of Eqs. (4). In order to capture the quantum fluctuations
around the classical orbits, we introduce a column vector of
new quadrature operators u = [δq, δp, δx, δy]T defined as:

δq = q − 〈q(t)〉, (7)
δp = p− 〈p(t)〉,
δx =

[
(a− 〈a(t)〉) + (a− 〈a(t)〉)†

]
/
√

2,

δy = −i
[
(a− 〈a(t)〉)− (a− 〈a(t)〉)†

]
/
√

2.

This set of canonical coordinates can be viewed as describing
a time-dependent reference frame co-moving with the classi-
cal orbits. The corresponding vector of noise operators will
be

n = [0, ξ, (ain + ain†)/
√

2,−i(ain − ain†)/
√

2]T . (8)

Since we are in the limit in which classical orbits emerge
(〈a〉 � 1), it is a reasonable approximation to express the
previous set of Langevin equations (2) in terms of the new
fluctuation operators (7) and neglect all quadratic powers of
them. The resulting linearized system can be written as a ma-
trix equation [21],

u̇ = A(t)u+ n(t), (9)

where,

A(t) =




0 ωm 0 0
−ωm −γm <g̃(t) =g̃(t)

−=g̃(t) 0 −κ ∆̃(t)

<g̃(t) 0 −∆̃(t) −κ


 (10)

is a real time-dependent matrix.
If the system is stable, and as long as the linearization is

valid, the quantum state of the system will converge to a Gaus-
sian state with time dependent first and second moments. The
first moments of the state correspond to the classical limit cy-
cles introduced in the previous section. The second moments
can be expressed in terms of the covariance matrix V (t) with
entries

Vk,l(t) = 〈uk(t)u†l (t) + u†l (t)uk(t)〉/2. (11)

One can also define a diffusion matrix D as

δ(t− t′)Dk,l = 〈nk(t)n†l (t
′) + n†l (t

′)nk(t)〉/2, (12)

which, from the properties of the bath operators (3), is diago-
nal and equal to

D = diag[0, γ(2nm + 1), κ(2na + 1), κ(2na + 1)]. (13)

From Eqs. (9) and (12), one can easily derive a linear differ-
ential equation for the correlation matrix,

d

dt
V (t) = A(t)V (t) + V (t)AT (t) +D. (14)

Since the first and the second moments are specified, Eqs. (4)
and (14) provide a complete description of the asymptotic dy-
namics of the system. Apart from the linearization around
classical cycles, no further approximation has been done: Nei-
ther a weak coupling, adiabatic or rotating-wave approxima-
tion. Numerical solutions of both equations (4) and (14) can
be straightforwardly found. These solutions will be used to
calculate the exact amount opto- and electro-mechanical en-
tanglement present in the system.

The asymptotic periodicity of the classical solutions (Eq.
(5)) implies that, in the long time limit,A(t+τ) = A(t). This
means that Eq. (14) is a linear differential equation with peri-
odic coefficients and then all the machinery of Floquet theory
is in principle applicable. Here, however, since we are only
interested on asymptotic solutions, we are not going to study
all the Floquet exponents of the system. The only property
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that we need is that, in the long time limit, stable solutions
will acquire the same periodicity of the coefficients:

V (t+ τ) = V (t). (15)

This is a simple corollary of Floquet’s theorem. In the sub-
sequent sections we will apply the previous theory to some
particular experimental setting and show how a simple modu-
lation of the driving field can significantly improve the amount
of opto- and electro-mechanical entanglement.

ENTANGLEMENT RESONANCES

In this section we are going to study what kind of amplitude
modulation is optimal for generating entanglement between
the radiation and mechanical modes. As a measure of entan-
glement we use the logarithmic negativity EN which, since
the state is Gaussian, can be easily computed directly from
the correlation matrix V (t) [26–28]. We have also seen that
the correlation matrix is, in the long time limit, τ -periodic.
This suggests that it is sufficient to study the variation of en-
tanglement in a finite interval of time [t, t+ τ ] for large times
t. One can then define the maximum amount of achievable
entanglement as

ÊN = lim
t→∞

max
h∈[t,t+τ ]

EN (h). (16)

This will be the quantity that we are going to optimize.
We first study a very simple set of parameters (see caption

of Figure 1) in order to understand what the optimal choice is
for the modulation frequency. For this purpose we impose the
effective coupling to have this simple structure

g̃(t) = g̃0 + g̃Ω e−iΩt, (17)

where g̃0 is associated to the main driving field with detun-
ing ∆, while g̃Ω is the amplitude of a further sideband shifted
by a frequency Ω from the main carrier. Without loss of gen-
erality we will assume g̃0 and g̃Ω to be positive reals. This
kind of driving is a natural one and has been chosen for rea-
sons that will become clear later. From now on we set the
detuning of the carrier frequency to be equal to the mechan-
ical frequency ∆ = ωm. This choice of the detuning cor-
responds to the well known sideband cooling setting [17, 24]
and it has been shown to be also optimal for maximizing opto-
mechanical entanglement with a non-modulated driving [19].
Fig. 1 shows the maximum entanglement ÊN between the me-
chanical and the radiation modes as a function of the modu-
lation frequency Ω and for different values of the driving am-
plitude g̃0. This maximum degree of entanglement has been
calculated for t > 200/κ when the system has well reached
its periodic steady state.

We observe that in Fig. 1 there are two main resonant peaks
at the modulation frequencies

Ω ' 2ωm ± g̃0. (18)
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FIG. 1. Maximum entanglement ÊN as a function of the modulation
frequency Ω and for different values of the driving strength g̃0. The
chosen parameters in units of ωm are: κ = 0.2, γm = 10−6, ∆̃ = 1,
nm = na = 0, g̃Ω = 0.1, g̃0 = 0.2 (circles), 0.4 (squares), 0.6
(diamonds), 0.8 (triangles).

We will now provide some intuition why one should expect
the main resonances at the locations where they are observed.
First assume that g̃0 = 0. Then, for ∆ = ωm, the linearized
Hamiltonian in the interaction picture is

Hint = −~g̃Ω

(
ei(ωm−Ω)δa† + e−i(ωm−Ω)δa

)

(
eiωmδb† + δbe−iωm

)
/2, (19)

where the bosonic operators are defined as δa = (δx +
iδy)/

√
2, δb = (δq + iδp)/

√
2. From Eq. (19), it is clear

that for Ω = 2ωm, neglecting all rotating terms, we get the
well known two-mode squeezing generator

Hint ' −~g̃Ω

(
δa†δb† + δaδb

)
/2. (20)

So, in the case of g̃0 = 0, a modulation of Ω = 2ωm would be
the most reasonable choice in order to generate entanglement.
However, this regime is well known to be highly unstable and,
in practice, it cannot be used for preparing entangled steady
states [14].

This is why we need to consider a modulated coupling of
the form given in Eq. (17) – or a similar type of modulation
sharing these features. We now allow for g̃0 being different
from zero, giving rise to a situation which can be assessed in
a very similar way as above (only that the rotation terms will
take a more involved form). The main amplitude g̃0 then takes
the role of cooling and stabilizing the system while the mod-
ulation amplitude g̃Ω is used to generate entanglement. At the
same time however, as shown in Refs. [5, 25], for g̃0 > κ/

√
2

the system hybridizes in two normal modes of frequencies

ω± ' ωm ± g̃0/2. (21)

As a consequence, this will affect the modulation frequency
Ω that one has to choose in order to achieve the two-mode
squeezing interaction given in Eq. (20). This is the reason
for the presence of two resonant peaks in Fig. 1 and for the
resonance condition given in Eq. (18).
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Note also that the choices of modulations that give rise
to the optimal local single-mode squeezing [21] of the me-
chanical mode and the degree of entanglement are not iden-
tical. This is rooted in the “monogamous nature” of squeez-
ing: For a fixed spectrum of the covariance matrix, one can
either have large local or two-mode squeezing. This effect is
observed when considering the modulation frequencies that
achieve maximum single- and two-mode squeezing.

We finally observe that the height of the two peaks, due
to the cavity filtering, is not equal: the first resonance at
Ω = 2ωm − g̃0 is better for the amount of steady state en-
tanglement. One could also ask what the behavior of entan-
glement is when we change the amplitude of the modulation.
Fig. 2 shows the amount of entanglement ÊN as a function
of g̃Ω and for different choices of g̃0. We observe that entan-
glement is monotonically increasing in g̃Ω up to a threshold
where the system becomes unstable.
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FIG. 2. Maximum entanglement ÊN as a function of the modulation
amplitude g̃Ω and for different values of the driving strength g̃0. The
chosen parameters in units of ωm are: κ = 0.2, γm = 10−6, ∆̃ = 1,
nm = na = 0, Ω = 2ωm − g̃0, g̃0 = 0.2 (circles), 0.4 (squares),
0.6 (diamonds), 0.8 (triangles).

OPTO- AND ELECTRO-MECHANICAL ENTANGLEMENT
IN REALISTIC SETTINGS

We have seen that an effective coupling of the form g̃(t) =
g̃0 + g̃Ω e−i(2ωm−g̃0)t is optimal for the generation of entan-
glement within the considered class of drivings. However, the
parameter g̃(t) depends on the average amplitude 〈a(t)〉 and
assuming such a simple structure may seem somewhat artifi-
cial. In this section, we show how the desired time-dependent
coupling can indirectly result from the classical limit cycles of
the system (see insets of Figs. 3 and 4) and we also take into
account the effect of a temperature of the order of T ' 100
mK. The natural “educated guess” for the structure of the driv-
ing field will be

E(t) = E0 + EΩEe
−i(2ωm−g̃0)t. (22)

For the choice of the other parameters, we focus on two set
of parameters corresponding to two completely different sys-

tems: an optical cavity with a moving mirror and a supercon-
ducting wave guide coupled to a mechanical resonator. The
parameters are chosen according to realistic experimental set-
tings, see, e.g., Ref. [5] (opto-mechanical system) and Ref. [9]
(electro-mechanical system). Fig. 3 and Fig. 4 show that, in
both experimental scenarios, entanglement can significantly
be increased by an appropriate modulation of the driving field.
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FIG. 3. (Optical cavity). The degree of entanglement, measured in
terms of the logarithmic negativity, as a function of time. The full line
refers to a modulated driving (Ω = 1.4ωm) while the dotted line cor-
responds to a non-modulated driving (Ω = 0). The chosen parame-
ters in units of ωm are: κ = 0.2, γm = 10−6, ∆ = 1, nm = 2×103,
na = 0, g0 = 4× 10−6, E0 = 7× 104, EΩ = 2.5× 104. The inset
shows the trajectory of the effective coupling g̃(t) =

√
2g〈a(t)〉 in

the complex plane due to the time evolution of the optical amplitude.
The phase space orbit (black line) is numerically simulated from Eq.
(4), while the limit cycle (green line) is an analytical approximation
(see Appendix for more details).
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FIG. 4. (Microwave cavity). Entanglement log-negativity as a func-
tion of time. The full line refers to a modulated driving (Ω =
1.3ωm) while the dotted line corresponds to a non-modulated driv-
ing (Ω = 0). The chosen parameters in units of ωm are: κ = 0.02,
γm = 3 × 10−6, ∆ = 1, nm = 200, na = 0.03, g0 = 2 × 10−5,
E0 = 9× 103, EΩ = 1.3× 103. The inset depicts the trajectory of
the effective coupling g̃(t) =

√
2g〈a(t)〉 in the complex plane due

to the time evolution of the microwave amplitude. The phase space
orbit (black line) is numerically simulated from Eq. (4), while the
limit cycle (green line) is an analytical approximation (see Appendix
for more details).
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SUMMARY

In this work, we have shown how time-modulation can
significantly enhance the maximum degree of entanglement.
Triggered by the time-modulated driving, the mode of the
electromechanical field as well as the mechanical mode start
“rotating around each other” in a complex fashion, giving rise
to increased degrees of entanglement. The dependence on the
frequencies of the additional modulation is intricate, with res-
onances highly improving the amount of entanglement that
can be reached. The ideas presented here could be particu-
larly beneficial to prepare systems in entangled states in the
first place, in scenarios where the parameters are such that the
states prepared are close to the boundary to entangled states,
but where this boundary is otherwise not yet quite reachable
with present technology. At the same time, such ideas are
expected to be useful in metrological applications whenever
high degrees of entanglement are needed.

APPENDIX

In this appendix we derive analytical formulas for the
asymptotic solutions of the classical system of dynamical
equations (4). A crucial assumption for the following pro-
cedure is that it is possible to expand the solutions in powers
of the the coupling constant g0

〈O〉(t) =
∞∑

j=0

Oj(t)g
j
0, (23)

where O = a, p, q. This is justified only if the system is
far away from multi-stabilities and the radiation pressure cou-
pling can be treated in a perturbative way. A very important
feature of the set of equations (4) is that they contain only two
non linear terms and those terms are proportional to the cou-
pling parameter g0. This implies that, if we use the ansatz
(23), each function Oj will be a solution of linear differen-
tial equation with time dependent parameters depending on
the previous solution Oj−1(t). Since E(t) = E(t + τ), from
a recursive application of Floquet’s theorem, follows that sta-
ble solutions will converge to periodic limit cycles having the
same periodicity of the driving: 〈O(t)〉 = 〈O(t + τ)〉. One
can exploit this property and perform a double expansion in
powers of g0 and in terms of Fourier components

〈O〉(t) =
∞∑

j=0

∞∑

n=−∞
On,je

inΩtgj0, (24)

where n are integers and Ω = 2π/τ . A similar Fourier series
can be written for the periodic driving field,

E(t) =
∞∑

n=−∞
Ene

inΩt. (25)

The coefficients On,j can be found by direct substitution in
Eq. (4). They are completely determined by the following set

of recursive relations:

qn,0 = pn,0 = 0, an,0 =
E−n

κ+ i(∆0 + nΩ)
, (26)

corresponding to the 0-order perturbation with respect to G0,
and

pn,j =
inΩ

ωm
qn,j , (27)

qn,j = ωm

j−1∑

k=0

∞∑

m=−∞

a∗m,k an+m,j−k−1

ω2
m − nΩ2 + iγmnΩ

, (28)

an,j = i

j−1∑

k=0

∞∑

m=−∞

am,kqn−m,j−k−1

κ+ i(∆0 + nΩ)
, (29)

giving all the j-order coefficients in a recursive way. For all
the examples analyzed in this paper we truncated the analyti-
cal solutions up to j ≤ 3 and |n| ≤ 2. This level of approx-
imation is already high enough to well reproduce the exact
numerical solutions.
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Chapter 7 - Opto and electro-mechanical entanglement improved

by modulation



Discussion and conclusions

Here I will do a global discussion about the scientific material presented in

this thesis. First I will briefly summarize all the main results that have been

achieved in each publication and afterwords I will try to give a global picture

underling the connections among the different results.

• Quantum effects in optomechanical systems [1]

This is a general review of the field of quantum optomechanics specially

focused on the theory of mechanical ground state cooling and on the gen-

eration of entanglement involving mechanical, optical and atomic degrees

of freedom. My contribution to this publication has been mostly on the

analysis of the entanglement between spectral sidebands of output cav-

ity modes and the motion of a vibrating mirror (Section 4) and on the

study of optomechanical systems where two optical modes are driven at

the same time (Section 5).

• Gently modulating optomechanical systems [2]

Here a new method for generating squeezed mechanical states has been

proposed. A squeezed state [34] is a quantum state where the uncertainty

along one particular phase space direction is less than the vacuum fluctu-

ations. Because of the Heisenberg principle, this noise reduction can only

occur at the expense of having more noise along the orthogonal phase

space direction, hence the name squeezing. Contrarily to ground state

cooling, mechanical squeezing has not yet been experimentally achieved

and it would represent a further step deep into the quantum regime.

All previous proposals [7] required some experimental effort like: mod-

ulating the spring constant, driving with squeezed light or controlling

with feedback loops. In this paper we have shown that all standard op-

tomechanical setups currently used to cool the mechanical motion are

potentially able to generate squeezed states. The idea is to simply mod-

ulate the amplitude of the driving laser field (this is much easier than
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modulating the mechanical spring constant). For a particular choice of

the modulation frequency (twice the mechanical one), non-trivial asymp-

totic cycles emerge generating strong degrees of mechanical squeezing.

The appeal of this result is the simplicity of the proposed experimen-

tal apparatus since, with respect the state of the art of all laser cooling

experiments, it only requires the addition of an amplitude modulator.

• Directly estimating non-classicality [3]

In this paper we proposed a method for directly measuring “how much”

a state is non-classical. By applying mathematical tools like classical

[40] and quantum [38, 39] Bochner’s theorems, we developed a direct

operational test for rigorously certifying the negativity of the Wigner

function of any continuous variable quantum system. With this new

theoretical method we have been able to experimentally certify the non-

classicality of a real quantum state of light. The proposed algorithm is

very general and ready to be directly applied to optomechanical systems

as soon as the preparation of mechanical non-classical states will be

experimentally feasible.

• Cooling by heating [4]

This paper introduces the quite counter-intuitive idea of “cooling by

heating” in the sense of cooling a quantum system (in our case a me-

chanical resonator) by using hot thermal light. The technique of laser

cooling of mechanical systems is well known and it is successfully used

in many experiments [17, 19, 20, 21]. In this paper we have shown that,

in some particular situations, the same task can be achieved without the

need of a coherent laser but simply with incoherent thermal light. From

a theoretical point of view we also introduced a new simulation method

based on stochastic sampling of Gaussian quantum states with respect to

stationary classical stochastic processes. This paper has been submitted

to a peer review journal and it is currently under editorial evaluation.

A news article about this work appeared in the popular science journal

PhysicsWorld [42].

• Opto- and electro-mechanical entanglement improved by mod-

ulation [5]

Here the modulation technique introduced in Gently modulating optome-

chanical systems has been exploited for a different task: improving the
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steady state entanglement between a mechanical resonator and an op-

tical or microwave cavity mode. We have shown that for appropriate

modulation frequencies (non-trivially related to the hybridization of the

energy levels of the system) large degrees of entanglement can be gen-

erated. The proposed method may be very convenient from an experi-

mental point of view: entangled optomechanical states are very fragile

with respect to temperature and this technique could provide a feasible

solution to this obstacle.

The common theme connecting all the particular results is the attempt to

investigate new methods for preparing and measuring signatures of quantum

effects in optomechanical systems. In particular several new protocols have

been proposed for preparing pure states, squeezed states and entangled states

involving optical and mechanical modes. For each of this effects we proposed

a feasible way of experimentally measuring it. In particular we developed

a rigorous and quantitative algorithm for experimentally certifying the non-

classicality of continuous variable quantum states.

The possibility of controlling massive mechanical systems (∼ 1015 atoms)

into a quantum mechanical regime would have huge impact not only within

the scientific community but it would open the door for many new technolog-

ical and industrial applications. Ultra sensitive measurements of position or

force are just two examples of a direct application of quantum optomechanics

[43]. Other ideas in the field of classical or quantum information processing

have been proposed [6] and, as usual when some new physical phenomenon

is discovered, many new unpredictable technological applications are “there”

waiting to be found. It is then clear that the main goal of the present research

on optomechanics is to reach the ability of manipulating mesoscopic mechan-

ical devices at the quantum level, or said in other words, “putting mechanics

into quantum mechanics” [43]. This thesis is intended as a small contribution

in this big challenge.
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