
Institut für Informatik
Universität Potsdam

Contributions to the Syntactical Analysis

Beyond Context-Freeness

Habilitationsschrift

zur Erlangung des akademischen Grades
“doctor rerum naturalium habilitatus”

(Dr. rer. nat. habil.)
in der Wissenschaftsdisziplin “Theoretische Informatik”

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Henning Bordihn

Tag des Kolloquiums: 17. Februar 2012

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2012/5971/
URN urn:nbn:de:kobv:517-opus-59719
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59719

Preface

The theory of formal grammars and languages has its origins in the fifties of the 20th century,
when Noam Chomsky suggested a classification of formal grammars describing the syntax
of languages [27]. Since then, this theory has been developed by many researchers into
one of the theoretical fundamentals of computer science. Apart from its linguistic roots,
this development has been strongly influenced by the fields of combinatorics and algebra of
semigroups and monoids as well as the theory of computing.

Comprehensively developed parts of formal language theory allow applications such as
language processing. In particular, the rise of high-level programming languages required
a theoretically sound methodology for constructing compilers. Here and in other language
processing applications, the syntactical analysis (parsing) is one of the main application areas
of formal language theory based on formal grammars.

In connection with programming languages, context-free grammars (one of the classes
suggested by Chomsky) have been established as a useful formalism for describing the syntax
of languages, which led to the remarkable development of a theory of parsing of context-free
languages. However, many application areas of formal languages exhibit inherent aspects
that cannot be described with the help of context-free grammars. Examples of such areas
are, besides linguistics, developmental biology, logic, graph theory and so on; for a detailed
discussion see [41]. The grammars of the next level of the classification given by Chomsky,
namely the context-sensitive grammars, turned out to be too powerful for efficient applications
and are rather lacking a coherent interpretation in the fields of application. Therefore, a large
number of grammar formalisms has been introduced whose generative power is in between
that of context-free and context-sensitive grammars. It has been the intention to obtain
mechanisms which are both powerful enough for the description of all syntactical aspects of
the applications and preserve as much as possible of the simplicity of context-free grammars.

Although those “intermediate” mechanisms have been thoroughly investigated, there is
hardly any application which is in line with their motivation. The main reason for this
might be the fact that an important property of context-free grammars is missing in most
cases, namely that of allowing an efficient syntactical analysis. The presented thesis aims
at attacking this problem. It systematically surveys results obtained by the author together
with his co-authors which can be viewed as contributions to the area of syntactical analysis
of non-context-free languages.

In the first chapter the motivation, as sketched above, is elaborated. Moreover, the basic
notions and notation used throughout the thesis are presented.

The second chapter provides a survey of non-context-free grammar formalisms treated
in this thesis, reviewing their definitions and results with respect to their capacities when
describing languages.

In Chapter 3, these grammar formalisms are treated as accepting devices, working as

3

4

language recognizers and thus—possibly—as syntactical analyzers. It is investigated in which
cases the accepting feature adds to the power of the underlying grammar formalisms and
which families of languages can be analyzed. Furthermore, an application of the concept of
accepting grammars to the field of computational complexity is presented by giving several
grammatical characterizations of an unsolved complexity problem, namely the LBA problem.

Another approach to the syntactical analysis of languages described by non-context-free
grammar formalisms is taken in Chapters 4 and 5. Using the example of cooperating dis-
tributed grammar systems, it is shown how non-context-free grammar formalisms can be
restricted so that efficient parsing becomes possible. The class of grammar systems obtained
by those restictions is investigated with respect to several properties, and an efficient parsing
algorithm is presented.

It should be mentioned that this thesis is not intended to be a collection of parsing al-
gorithms for non-context-free grammar formalisms, and it is deliberately not restricted to
efficient syntactical analysis. It surveys several different contributions to the topic, including
theoretical investigations of the families of languages which can be analyzed by the mecha-
nisms treated in the thesis.

Most of the results presented here have been published in scientific journals or conference
proceedings, in particular the results

• from Section 3.1.1 in [17],

• from Section 3.1.2 in [15, 16, 17, 52],

• from Section 3.1.3 in [11, 53],

• from Section 3.1.4 in [13, 14],

• from Section 3.2 in [21] after a preliminary version [8],

• from Chapter 4 in [25] after an extended abstract [23],

• from Chapter 5 in [24] after a preliminary but more comprehensive version in [22].

Theorems, lemmata and corollaries of this thesis are given together with references to the
articles where they have been published, if applicable.

The author would like to express his gratitude to his co-authors of the joint papers which
have become the basis of this thesis, that is, Erzsébet Csuhaj-Varjú, Jürgen Dassow, Henning
Fernau, Markus Holzer and György Vaszil. It is a need to mention that Jürgen Dassow
suggested the topics of formal languages and syntactical analysis to the author and was
frequently available for helpful discussions. The author is also grateful to Helmut Jürgensen
for his continual support and patient encouragement to complete this thesis. Last but not
least, the author wishes to thank his family, in particular his wife Antje and daughter Inga,
who had to endure the plenty of time the author spent working on this thesis.

Contents

1 Introduction 7

1.1 Syntactical Analysis and Language Processing 7

1.2 Basic Definitions and Notation . 10

1.2.1 Languages, Language Operations, Families of Languages 10

1.2.2 Automata, Grammars and the Chomsky Hierarchy 12

1.2.3 Basic Elements of the Theory of Parsing 15

1.3 Insufficiency of Context-Freeness . 17

2 Non-Context-Free Grammar Formalisms 21

2.1 Definitions . 23

2.2 Generative Capacities . 30

2.2.1 Single Devices: The Non-Erasing Case 30

2.2.2 Single Devices: The Erasing Case . 31

2.2.3 Grammar Systems . 33

3 Accepting Grammars and Systems 34

3.1 Accepting versus Generating Mode . 35

3.1.1 Context Condition Grammars . 35

3.1.2 When cc Grammars Do Not Help . 39

3.1.3 Cooperating Distributed Grammar Systems 45

3.1.4 Parallel Communicating Grammar Systems 53

3.2 Accepting Grammars and the LBA Problem 64

3.2.1 Restricting Nondeterminism in Programmed Grammars 65

3.2.2 On Context-Sensitive and Deterministic Context-Sensitive Languages . 73

3.2.3 Programmed Grammars with Regulation 78

3.3 Discussion . 79

4 Leftmost Derivations 82

4.1 Definitions . 83

4.2 The Power of Leftmost Derivations in CD Grammar Systems 85

4.2.1 The So-Called Trivial Derivation Modes 85

4.2.2 The Terminal Mode of Derivation . 86

4.2.3 The =k and ≥k Modes of Derivation 87

4.2.4 The Full Competence Mode of Derivation 92

4.3 Conclusion . 94

5

6 CONTENTS

5 Deterministic Parsing for CD Grammar Systems 96
5.1 Definitions . 97
5.2 On the Power of LL(k) CD Grammar Systems 99
5.3 Using Lookup Tables . 102
5.4 Conclusion . 113

Bibliography 114

Chapter 1

Introduction

1.1 Syntactical Analysis and Language Processing

The core of most language processing devices is the mapping of one representation of certain
structures into another. Here, language is regarded as a concept in the broader sense, includ-
ing natural languages, programming languages, languages of graphical representations, sets
of DNA strands as languages encoding genetical information, and so forth. Typical exam-
ples of language processing devices are automated language translators for natural languages,
compilers, code generation or virtualization tools, parts of DNA analyzing tools etc. Natural
languages can be translated into another natural language or into machine language, includ-
ing translations by speech recognition devices. Compilers are needed in order to translate
high-level programming languages into code executable by computer processors or virtual
machines. In modern integrated (software) development environments (IDEs), portions of
compilers continuously check the correctness of the code under development, indicating er-
rors or violations of certain conventions. In the context of model driven software development
(see, for example, [101] or [73] for the approach of the Object Modelling Group), tools for
modelling the structure or behaviour of the software to be developed gain more and more
interest. In order to circumvent a loss of information when stepping from those models to
technical realizations, model transformation of (frequently graphical) models to executable
code are of crucial importance. Code virtualization can be viewed as converse translation,
which may help to understand and maintain the business logic contained in operating soft-
ware products, what may come in useful when rigorous documentation is missing and software
maintenance or re-engineering is needed.

All these formal language applications have one feature in common: sentences of a lan-
guage representing some information or structure is transformed into sentences of another
language representing the same pieces of information or structure. A compiler, for example,
consists of several portions, each realizing such transformation. The translation performed by
the compiler as a whole is the composition of the mappings executed by the single portions.
The main phases of a compiler and their main tasks are

1. the lexical analysis in which the source code of a program as sequence of, say, ASCII or
Unicode symbols is translated into a sequence of tokens representing reserved key words
of the programming language, identifiers, literals and operators, punctuation symbols,
and so forth;

7

8 CHAPTER 1. INTRODUCTION

2. the syntactical analysis in which the sequence of tokens is checked against the rules
specifying the syntax of the programming language (that is, the grammar, frequently
given in Backus-Naur Form (BNF)1) and, in the affirmative case, the syntax tree is
produced reflecting the syntactical rules which are applied in order to obtain the given
program;

3. the weed in which the syntax tree is transformed into a reduced form, called abstract
syntax tree, ridded of redundant or unnecessary parts such that it is more suitable for
the processing in further phases;

4. the code generation yielding machine code or, as a preliminary step, assembler code or
code executable by a virtual machine;

5. the code optimization aiming to make the code more compact and efficient when exe-
cuted.

Each phase takes the result of its preceding phase as input, translating it to a new repre-
sentation as output. Nevertheless, it should be noted that this sequence of phases is a very
simplified description of a compiler. At first, some important parts are not listed here, such
as the symbol processing (scoping), type checking and further static checks of additional re-
quirements on the syntax of a program, for example, in order to make sure in languages like
Java that each local variable has been initialized prior to any reading access to it. At second,
one should be aware of the fact that a real compiler does not sequentially run through the
phases as listed above. The phases, together with the symbol processing, type checking and
further static analysis, are rather nested and interleaved, see [5, 102].

Other language processing devices consist of similar but application specific phases. One
principal phase is fundamental for all those processes when sentences of languages (specified
by some grammar) are translated into sentences of another language (specified by another
grammar), namely the syntactic analysis. A sentence of a given language (a sentence of a
natural language, a program of a programming language etc.) as a mere sequence of symbols
is insufficient for the purpose of language processing. During the syntactical analysis, the
membership of the sentence in the language is checked. The sentence is a member of the
language if it can be constructed according to the grammatical rules of the language. If so,
then a sequence of rules is derived in which the given sentence can be constructed (depending
on the construction scheme). Such sequence is said to be a parse of the sentence. The parse
can be graphically represented as syntax tree; it reveals the grammatical structure of the
sentence which is particularly needed for further language processing steps. Consider, for
example, the sentence of the natural language English:

The man writes the letter.

The (a little bit simplified) grammatical rules according to which this sentence is constructed
can be written in Backus-Naur Form as follows.

(r1) <sentence> ::= <noun phrase><verb phrase>

(r2) <noun phrase> ::= <determiner><noun>

1The Backus-Naur Form of grammatical rules is a unified representation of context-free rules which are
formally introduced in Section 1.2. For examples, see [3, 102].

1.1. SYNTACTICAL ANALYSIS AND LANGUAGE PROCESSING 9

(r3) <verb phrase> ::= <verb><noun phrase>

Then, one parse of the sentence is r1r2r3r2, expressing that the sentence consists of a noun
phrase followed by a verb phrase (r1), next the noun phrase is a determiner followed by a
noun (r2), the verb phrase is a sequence of a verb and a noun phrase (r3), the latter of
which is developed according to (r2) again. Note that, depending on the order in which
grammatical categories are replaced according to the rules, also another parse can be found,
namely r1r3r2r2. In both cases, the syntax tree built on the sentence is given in Figure 1.1.
Here, <s>, <np>, <vp> and <det> are abbreviatory written for <sentence>, <noun phrase>,
<verb phrase> and <determiner>, respectively. In such syntax tree, a “top-down walk”
from the root (here <s>) to the leaves corresponds to the rule applications which yield the
sentence.2

< s >

< np >

ooooooooooo

< vp >

OOOOOOOOOOO

< det >

ppppppppppp

< noun > < verb >

ppppppppppp

< np >

NNNNNNNNNNN

< det >

ppppppppppp

< noun >

the man writes the letter

Figure 1.1: The structure of an English sentence.

Furthermore, a lexical substitution (according to some dictionary) is performed as a last
step, in which the grammatical items <determiner>, <noun> and <verb> are replaced with the
lexical items in boldface letters. Clearly, also other substitutions are possible, yielding other
sentences with the same grammatical structure. For example, one might take the sentences

the cat eats the mouse

or
the letter writes the man

which explain clearly that grammatical correctness and structure only refer to the syntax of
the sentences.

Similarly, as an example for the definition of the syntax of a programming language, rules
for arithmetic expressions <exp> are given. A part of those rules might look like this, see
[3, Section 1.1.2]:

(r1) <exp> ::= <exp> + <term>

(r2) <exp> ::= <term>

2As syntax trees are not formally treated in the present thesis, we refrain from defining the notion. For
definitions we refer to the literature, for example, see [3] or [63].

10 CHAPTER 1. INTRODUCTION

< exp >

< exp >

oooooooooooo

+ < term >

WWWWWWWWWWWWWWWWWWWWWWWW

< term > < term >

nnnnnnnnnnnnn

∗ < factor >

PPPPPPPPPPPP

< factor > < factor > < id >

< id > < id > c

a b

Figure 1.2: The structure of an arithmetic expression.

(r3) <term> ::= <term> * <factor>

(r4) <term> ::= <factor>

(r5) <factor> ::= <id>

Then, for instance, the expression a + b ∗ c has the syntax tree presented in Figure 1.2.

Again, there are several parses for the expression. If, for example, always the left-
most grammatical item is selected to be replaced prior to any other item, then the parse
r1r2r4r5r3r4r5r5 is found.

1.2 Basic Definitions and Notation

In this section we introduce the notation used in the sequel and review notions from language
and parsing theory that are a foundation for this thesis. All results presented in this section
are preliminary and can be found in standard reference books. We refer to [63, 97, 99, 117]
for a general background on formal languages and automata and to [3, 4, 104] for information
on the theory of parsing.

Basic concepts from discrete mathematics (such as sets, relations, graphs, trees, etc.) are
assumed to be known. By N we denote the set of positive integers; then N0 = N ∪ {0}. For
a singleton set {s} we write just s unless there is the risk of a confusion. As usual, ∪, ∩,
and \ are the operator symbols for set union, intersection, and set difference, respectively.
Set inclusion and strict set inclusion are denoted by ⊆ and ⊂, respectively. Let M be a set.
Then, |M | is the cardinality of M and 2M is the set of all finite subsets of M .

1.2.1 Languages, Language Operations, Families of Languages

An alphabet is a finite and non-empty set. The elements of an alphabet are called symbols.
Let V be an alphabet. A word over V is a finite concatenation of symbols taken from V .
By V ∗ we denote the set of all words over V including the empty word λ. Then V + = V ∗\{λ}

1.2. BASIC DEFINITIONS AND NOTATION 11

is the set of all non-empty words over V . For w ∈ V ∗, |w| is the length of w. The set of
elements of V ∗ with length at most k, for some k ∈ N, is denoted by V ≤k. For U ⊆ V ,
the notation |w|U is used for the number of occurrences of symbols from U in the word w,
whereas symb(x) = { a ∈ V | |x|a > 0 } is the set of all symbols occurring in w. A language
over V is a subset of V ∗. A language is λ-free if it does not contain the empty word. For
languages L and L′, their concatenation L · L′ is the set {ww′ | w ∈ L, w′ ∈ L′ }. Then,
L0 = {λ}, Li = L · Li−1, for i ≥ 1, and L∗ =

⋃

i≥0 Li. The language L∗ is called the

Kleene closure of L. For a language L and a word w, dl
w(L) = {u | u ∈ V ∗, wu ∈ L } and

dr
w(L) = {u | u ∈ V ∗, uw ∈ L } are the left and right derivatives of L by w, respectively. The

reversal of a word over alphabet V is recursively defined by λR = λ and (va)R = avR, for
v ∈ V ∗ and a ∈ V . Then, for L ⊆ V ∗, the reversal is LR = {wR | w ∈ L }.

Consider words u, v,w ∈ V ∗ such that w = uv. Then u is a prefix of w, and v is a suffix
of w. If w = v1uv2 for some v1, v2 ∈ V ∗, then u is a subword of w. Let Pref(w), Suf(w) and
Sub(w) denote the set of prefixes, suffixes and subwords, respectively, of w. Furthermore, by
prefk(w), w ∈ V ∗, we denote the prefix of length k of w if |w| ≥ k or, otherwise, the string w
itself. For a language L, let prefk(L) = {prefk(w) | w ∈ L }.

Let U and V be two alphabets, not necessarily different. Furthermore, let s : V → 2U∗

be a mapping. The extension of s to V ∗ defined by s(λ) = {λ} and s(vw) = s(v) · s(w),
for v,w ∈ V ∗, is referred to as substitution from V into U . If, for all a ∈ V , the set s(a)
is finite, then s is a finite substitution. If, for all a ∈ V , s(a) is a singleton set, then s is a
homomorphism; if additionally s(a) 6= λ, for all a ∈ V , then the homomorphism is λ-free.
For any substitution s from V into U and a language L ⊆ V ∗, s(L) =

⋃

w∈L s(w). For a
homomorphism h : V ∗ → U∗ and L ⊆ U∗, the inverse homomorphism of L is defined by
h−1(L) = {w ∈ V ∗ | h(w) ∈ L }. Thus, for a word u ∈ U∗, h−1(u) = {w ∈ V ∗ | h(w) = u }.

A generalized sequential machine (gsm, for short) is a sextuple M = (Q,V,U, q0, τ, F),
where Q is a finite set of states, V and U are the alphabets of input and output symbols,
respectively, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and τ is the transition
function, τ : Q × V → 2(Q×U∗). M is λ-free if τ : Q × V → 2(Q×U+). Let w ∈ V ∗. The
gsm-mapping of w induced by M is defined in the following way. Let w = a1a2 . . . an with
aj ∈ V , 1 ≤ j ≤ n. Then,

gM (w) = {u1u2 . . . un | there are states qi0 , qi1 , . . . qin with
qi0 = q0, qin ∈ F and (qij , uj) ∈ τ(qij−1 , aj) for 1 ≤ j ≤ n }.

The gsm-mapping gM is extended to languages over V as usual by gM (L) =
⋃

w∈L gM (w). It
is λ-free if M is λ-free.

Following [63], a family of languages is a set of languages containing at least one non-empty
language. Let L be a family of languages and o be a k-ary language operation. The family L
is closed under the language operation o if L1, L2, . . . , Lk ∈ L implies o(L1, L2, . . . , Lk) ∈ L.
A family of languages is referred to as Abstract Family of Languages (AFL) if it is closed
under union, concatenation, Kleene closure, λ-free homomorphisms, inverse homomorphisms
and intersection with regular languages (with respect to any λ-free homomorphism, inverse
homomorphism and regular language, respectively), where a language over some alphabet V
is regular if it can be obtained by a finite number of applications of the operations union,
concatenation and Kleene closure to the elements of V ∪{λ}. An AFL is full if it is closed with
respect to arbitrary homomorphisms. Any full AFL is closed with respect to gsm-mappings,
and any AFL is closed with respect to λ-free gsm-mappings and left and right derivatives.

12 CHAPTER 1. INTRODUCTION

A finite language can be defined by enumerating its elements. Apart from that there are
three principal ways of defining languages with the help of a finite specification:

• definition by construction (for instance, in a recursive manner or algebraically as in the
case of regular languages),

• generation,

• acceptance.

The latter two ways of defining languages are treated in the next section.

We term two devices describing languages equivalent if the two described languages are
equal. Two languages L1 and L2 are considered to be equal if and only if L1 \{λ} = L2 \{λ}.
We simply write L1 = L2 in this case.

1.2.2 Automata, Grammars and the Chomsky Hierarchy

Automata are devices which can be used for language acceptance. For example, finite state
automata are, in principle, generalized sequential machines without output. A finite state
automaton accepts an input word if it can reach an accepting (final) state by reading the
input completely. More precisely, a nondeterministic finite state automaton (NFA, for short)
is a quintuple A = (Q,V, q0, δ, F), where Q is a finite set of states, V is the alphabet of
input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and δ is the
transition function, δ : Q × V → 2Q. The transition function is extended to words over V
by δ(q, λ) = {q} and δ(q, va) =

⋃

p∈δ(q,v) δ(p, a), for q ∈ Q, v ∈ V ∗ and a ∈ V . The language
accepted by A is the set

L(A) = {w ∈ V ∗ | δ(q0, w) ∩ F 6= ∅ }.

A finite state automaton is deterministic (a DFA) if, for all q ∈ Q and a ∈ V , |δ(q, a)| = 1.

The capability of finite state automata can be extended in several ways, for example, by
adding further resources. In pushdown automata, they are equipped with a pushdown store
as additional memory which is used, besides the finite set of states, in order to control the
computation; for more details and formal definitions see, for example, [63]. If the automata
have an unlimited read-write memory, then one is led to the concept of Turing machines which
are computationally complete in the sense that any function which is viewed to be effectively
computable (for example by computer programs) can also be computed by a Turing machine
and vice versa, possibly after appropriate encodings of the input and the output. Formally, a
nondeterministic Turing machine is defined to be a tuple M = (Q,Σ,Γ, δ, q0, B, F), where Q
is the set of states, Γ is the alphabet of tape symbols, B ∈ Γ is the blank symbol, Σ ⊆ Γ\{B} is
the alphabet of input symbols, δ is the transition function mapping from Q×Γ to 2Q×Γ×{L,R},
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. Similarly to the case of finite
state automata, the Turing machine M is deterministic if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Γ.

A configuration characterizing the global state of M is written as xqy, where q ∈ Q is the
current state and xy ∈ Γ∗ is the word currently stored in the read-write memory of M . The
memory is thought to be an infinite tape, divided into cells, each of which containing a symbol
form Γ. The cells to the left and the right of xy are filled with the blank symbol. Therefore,
there is an infinite number of configurations characterizing one and the same global state,

1.2. BASIC DEFINITIONS AND NOTATION 13

since one can write as many as needed of those blank symbols, as a prefix of x and a suffix
of y.

A move of M is defined as follows. Let a1a2 . . . ai−1qaiai+1 . . . an be a configuration and
(p, b,R) ∈ δ(q, ai). Then,

a1a2 . . . ai−1qaiai+1 . . . an ⊢
M

a1a2 . . . ai−1bpai+1 . . . an.

If (p, b, L) ∈ δ(q, ai), then

a1a2 . . . ai−1qaiai+1 . . . an ⊢
M

a1a2 . . . ai−2pai−1bai+1 . . . an.

The language accepted by M is the set

L(M) = {w | w ∈ Σ∗, q0w
∗

⊢
M

xpy for some p ∈ F and x, y ∈ Γ∗ },

where
∗

⊢
M

denotes the reflexive and transitive closure of the relation ⊢
M

.

For every nondeterministic Turing machine there is a deterministic one simulating it.
This is important with respect to the following observation. From the point of view of
computations, every Turing machine induces a function. If, for w ∈ Σ∗, xy ∈ Γ \ {B}∗,
q0w

∗

⊢
M

xpy holds for some p ∈ F , then xy is the value of the induced function with argument w.
Thus, a language is accepted by a Turing machine if and only if it is the domain of a function
induced by a Turing machine (a computable function). Equivalently, it is the range of a
computable function. Such language is said to be recursively enumerable. A language L
over Σ is recursive if there is a Turing machine with input alphabet Σ which halts on each
input from Σ∗ answering the question whether or not w ∈ L. The families of all recursively
enumerable and all recursive languages are denoted by L(RE) and L(REC), respectively.

Formal grammars are the traditional mean in order to generate languages. A phrase
structure grammar is a quadruple G = (VN , VT , P, S), where VN and VT are disjoint alpha-
bets, P is a finite subset of (VN ∪ VT)∗VN (VN ∪ VT)∗× (VN ∪ VT)∗, and S ∈ VN . The sets VN

and VT are the alphabets of nonterminal symbols and terminal symbols, respectively, P is
the set of productions (or rewriting rules), and S is the start symbol (or axiom) of G. The
set VG = VN ∪ VT is the total alphabet of G. In what follows, we write α→ β for (α, β) ∈ P .

For words γ and γ′ over VG, γ directly derives γ′ in G if and only if there are words
δ1, δ2 ∈ V ∗

G and a production α → β ∈ P such that γ = δ1αδ2 and γ′ = δ1βδ2. We write
γ =⇒

G
γ′ in this case. The subscript G is omitted when there is no risk of a confusion. A

sequence of words γ0, γ1, . . . , γn is referred to as a derivation in G if γi−1 ⇒ γi, for 1 ≤ i ≤ n.
We use the notation γ0

n
⇒ γn expressing the fact that the derivation consists of exactly n

steps. Moreover, we write γ
∗
⇒ γ′ if γ

n
⇒ γ′ for some n ≥ 0. Thus,

∗
⇒ denotes the reflexive

and transitive closure of the relation ⇒. This notation is also used for the yield relations of
other grammar types, defined in the sequel.

A word γ ∈ V ∗
G with S

∗
⇒ γ is said to be a sentential form of G. The language L(G)

generated by G is the set of all sentential forms of G which are contained in V ∗
T , that is,

L(G) = {w | w ∈ V ∗
T and S

∗
⇒ w }.

One distinguishes four basic types of phrase structure grammars. A phrase structure
grammar G = (VN , VT , P, S) is called

(i) type-0 grammar if there is no restriction on the set of production rules (that is, any
phrase structure grammar is a type-0 grammar and vice versa),

14 CHAPTER 1. INTRODUCTION

(ii) type-1 grammar if, for each production α → β in P , there are words η1, η2 over VG,
A ∈ VN and γ ∈ V +

G such that α = η1Aη2 and β = η1γη2,

(iii) type-2 grammar if, for each production α→ β in P , α ∈ VN ,

(iv) type-3 grammar if, for each production α→ β in P , α ∈ VN and β ∈ V ∗
T VN ∪ V ∗

T .

That is, any type-3 grammar is a type-2 grammar, where it is additionally required that
on the right-hand sides of the rules at most one nonterminal symbol occurs and if so, then
at the rightmost position. Therefore, type-3 grammars are also referred to as right-linear
grammars. One could also define left-linear grammars where, for each production α → β
in P , α ∈ VN and β ∈ VNV ∗

T ∪ V ∗
T is required. Right- and left linear grammars are able

to generate exactly the same languages, namely the regular languages. More precisely, for
any regular language there is both a right-linear and a left-linear grammar generating it and,
conversely, any right-linear or left-linear grammar generates a regular language. Therefore,
type-3 grammars are also called regular grammars. Type-2 and type-1 grammars are referred
to as context-free and context-sensitive grammars, respectively.

Moreover, one considers the following types of phrase structure grammars. A context-free
grammar G = (VN , VT , P, S) is linear if α → β ∈ P implies β ∈ V ∗

T VNV ∗
T ∪ V ∗

T . A phrase
structure grammar is monotone if, for each production α→ β in P , |α| ≤ |β|.

A language L is said to be of type-i, 0 ≤ i ≤ 3, right-linear, left-linear, regular, lin-
ear, context-free, context-sensitive or monotone if there is a type-i grammar, 0 ≤ i ≤ 3, a
right-linear, left-linear, regular, linear, context-free, context-sensitive or monotone grammar,
respectively, generating L. In order to compare the generative powers of the various types
of grammars, the families of languages are considered which are defined by the classes of
all grammars of one and the same type. By L(REG),L(LIN),L(CF),L(CS) and L(MON)
the families of all regular (or, equivalently, right-linear or left-linear), linear, context-free,
context-sensitive and monotone languages are denoted, respectively. Finally, the family of all
type-0 languages is L(RE), since type-0 grammars generate precisely all recursively enumer-
able languages.

The other families of type-i languages have a characterization in terms of automata,
either. The family of languages accepted by DFAs (or, equivalently, by NFAs) is the family
of regular languages, whereas the families of context-free and context-sensitive languages are
characterized by the classes of nondeterministic pushdown automata3 and linear-bounded
automata. Here a linear-bounded automaton (LBA, for short) is a non-deterministic Turing
machine in which the number of cells that can be used during a computation on an input
word w is O(|w|). That is, given an input word w, the number of cells available on the
work tape is bounded by a function which is linear in the length |w| of the input.4 A
linear-bounded automaton is said to be deterministic if and only if the underlying Turing
machine is deterministic. It is an open question whether or not deterministic linear-bounded
automata are as powerful as non-deterministic LBAs. This question is referred to as the LBA
problem [69].

A fundamental result on context-free grammars is that erasing productions can effectively
be eliminated without affecting the generated language. Generally, a grammar is λ-free if it

3It is known that, in contrast to finite state automata and Turing machines, deterministic pushdown au-
tomata are strictly less powerful than their nondeterministic variants.

4Formally, for two functions f : N0 → N0 and g : N0 → N0, f is O(g) if there are positive integers n0

and c such that, for all n ≥ n0, f(n) ≤ cg(n).

1.2. BASIC DEFINITIONS AND NOTATION 15

contains no λ-rule, that is, each of its rules α → β satisfies β ∈ V +
G . As any production of

a λ-free context-free grammar is a context-sensitive one (with η1 = η2 = λ), it follows that
any context-free language is context-sensitive. Therefore, any type-i language is a type-(i−1)
language, for 1 ≤ i ≤ 3. Furthermore, there is a type-(i−1) language which is no type-i
language, 1 ≤ i ≤ 3. These results together establish the Chomsky hierarchy :

L(REG) ⊂ L(CF) ⊂ L(CS) ⊂ L(RE).

Further results extend this hierarchy as follows:

L(FIN) ⊂ L(REG) ⊂ L(LIN) ⊂ L(CF) ⊂ L(CS) = L(MON) ⊂ L(REC) ⊂ L(RE),

where L(FIN) is the family of all finite languages.
The result that, for any context-free grammar there is an equivalent λ-free context-free

one can be strengthened by the following normal form result: A context-free grammar G =
(VN , VT , P, S) is in Chomsky normal form if each production in P is of the form A → BC
or A → a, A,B,C ∈ VN and a ∈ VT .5 For any context-free grammar, one can effectively
construct an equivalent grammar in Chomsky normal form. A similar normal form result is
known for context-sensitive grammars. For any context-sensitive grammar, there is effectively
an equivalent grammar in Kuroda normal form, where all rules are of one of the following
forms: A→ BC, AB → CD, or A→ a, where A,B,C,D ∈ VN , a ∈ VT .

1.2.3 Basic Elements of the Theory of Parsing

A parsing algorithm is an effective procedure which, given a grammar G and a terminal
word w as input, decides whether w can be generated by G, and if so, reconstructs (at least)
one derivation. Parsing algorithms which are known to work for all context-free grammars,
such as the Cocke-Younger-Kasami algorithm or the parsing method by Early, see [3], need
to take O(n3) steps, when the input is of length n. The algorithms can partially be improved
due to techniques for fast multiplication of matrices, but they keep a time complexity which
is strictly worse than quadratic in the input length. In order to obtain more efficient parsing
algorithms, one has to restrict context-free grammars so that the derivations become “more
deterministic”. In a certain sense, context-free grammars possess a threefold nondeterminism.
Let G = (VN , VT , P, S) be a context-free grammar. In a derivation step according to G in
which a sentential form γ shall be rewritten, one may

1. select a nonterminal symbol A ∈ VN which shall be replaced;

2. select an occurrence of A in γ to be replaced;

3. select a production of the form A→ α, that is, the right-hand side α with which A shall
be rewritten.

Some useful ways in which this nondeterminism can be restricted, are explained in the fol-
lowing.

5In the literature, one frequently finds definitions of the Chomsky normal form in which additionally a rule
of the form S → λ is allowed under the condition that the symbol S does not occur on the right-hand side of
any production in P . The same addition is found in the definitions of context-sensitive grammars. As this rule
S → λ is only needed in order to generate the empty word, we prefer to omit it in the definitions, but allow
to consider two languages to be equal if they differ from each other at most by the empty word.

16 CHAPTER 1. INTRODUCTION

Consider a derivation γ1 ⇒ γ2 ⇒ . . . ⇒ γn in G. If in any γi, the leftmost occurrence
of a nonterminal is replaced, then this derivation is called leftmost derivation in G. That is,
for 1 ≤ i < n, if γi = uiAiβi with ui ∈ V ∗

T , Ai ∈ VN and βi ∈ V ∗
G, then γi+1 = uiαiβi has

to hold, for some αi with Ai → αi ∈ P .6 We write γi =⇒
lm

γi+1 in this case and
∗=⇒
lm

for the
reflexive and transitive closure of =⇒

lm
. On the one hand, for any context-free grammar G, the

language generated only by leftmost derivations is equal to L(G), where the order in which
the nonterminal symbols are replaced is arbitrary. On the other hand, there are ambiguous
context-free grammars in which some words have several different leftmost derivations. Even
worse, there are context-free languages which are inherently ambiguous, that is, any context-
free grammar generating it is ambiguous.

One subclass of context-free grammars which are unambiguous and for which parsing
algorithms exist that take O(n) steps, when n is the length of the input, is the class of
context-free LL(k) grammars. A context-free grammar G = (VN , VT , P, S) satisfies the LL(k)
property, for some positive integer k, if whenever there are two leftmost derivations

(1) S
∗=⇒
lm

uAβ
∗=⇒
lm

wαβ
∗=⇒
lm

uv and

(2) S
∗=⇒
lm

uAβ
∗=⇒
lm

wα′β
∗=⇒
lm

uv′

such that prefk(v) = prefk(v
′), it follows that α = α′. Intuitively, given (1) a sentential form

uAβ of a leftmost derivation in G generating the terminal word uv, for some word v, and
(2) the first k symbols of v (if they exist), there is only one production in P which can be
applied to uAβ in the next leftmost derivation step. For each k ≥ 1, every LL(k) grammar is
LL(k + 1) and there is a language for which an LL(k + 1) grammar but no LL(k) grammar
exists, see [94].

Let k ≥ 1 and G = (VN , VT , P, S) be a context-free LL(k) grammar. For an effective
construction of a parser for G one needs to know the sets of all words in L≤k which are
prefixes of those terminal words that can be derived from single nonterminal symbols or may
appear immediately to the right of them. More generally, for any α ∈ (VN ∪ VT)∗, let

FIRSTG
k (β) = prefk(L(G,β)),

where L(G,β) denotes the set of terminal words that can be derived from β,

L(G,β) = {w ∈ V ∗
T | β

∗=⇒
G

w}.

Furthermore,

FOLLOWG
k (β) = {w ∈ V ∗

T | there is α, γ with S
∗=⇒
G

αβγ and w ∈ FIRSTk(γ)}.

The symbol G is omitted if no confusion may arise. For an effective construction of these
sets and of a parser for context-free LL(k) grammars, see for example [3]. It is also pointed
out there that the construction of the parser becomes particularly simple if the leftmost
nonterminal symbol together with the first k terminal symbols to be derived next (namely A
and prefk(v) in the definition of the LL(k) property) are sufficient to determine the production
which has to be used rewriting the leftmost nonterminal. Systems with this property are said

6Alternatively, one can define rightmost derivations or other manners in which the sentential forms have to
be rewritten. Those are not treated in the present thesis.

1.3. INSUFFICIENCY OF CONTEXT-FREENESS 17

to be strong LL(k). Formally, a context-free grammar G = (VN , VT , P, S) is strong LL(k) if
the following statement holds:

If A→ β and A→ β′ are distinct productions in P , then
FIRSTk(βFOLLOWk(A)) ∩ FIRSTk(β

′FOLLOWk(A)) = ∅.

Every context-free LL(1) grammar is strong LL(1).

1.3 Insufficiency of Context-Freeness

As explained in Section 1.1, there are syntactical issues of programming languages which are
not checked during the phase of syntactical analysis. The reason why such checks have to
be shifted to other phases is that there are some aspects in the syntax of many high-level
programming languages which cannot be expressed with the help of context-free grammars
(thus, in BNF). One typical example is that identifiers are required to be declared prior to
their use. In [54], Floyd has provided a formal argument that this aspect cannot be captured
in terms of context-free grammars for ALGOL 60, see also [41, Section 0.4]. We present this
argument using the example of the language Java. Let us consider a class of the form

class NonCF {
void method() {

int x;
y = 1;

}
}

A source code like this is correct if and only if x and y are identical identifiers. Let R be
the regular set of all Java classes which are of the form as above with arbitrary identifiers
x, y ∈ {a, b}∗, and let Java be the set of all correct source codes in Java. Furthermore, let g
be the gsm which erases all symbols different from those in x and y. Then

g(Java ∩R) = {xx | x ∈ {a, b}+ }

is not context-free. Since the family of context-free languages is a full AFL, thus closed
with respect to gsm-mappings and intersections with regular sets, the language Java is not
context-free.

As already Floyd pointed out in [54], it seems that this argument can be adapted to any
other “reasonable language in which all variables must be declared”.

Together with this example, Dassow and Păun presented seven circumstances where
context-free languages turn out to be insufficient, emerging in the field of programming
languages, the language of logic, graph theory, developmental biology, economic modeling,
folklore, and natural languages. In the remainder of this section, this list of examples is
supplemented by two items.

Molecular Genetics

DNA molecules consist of double strands of nucleotides wound to a helix. Due to the Watson-
Crick complementarity of the involved nucleotides and a particular molecule structure at the
ends of the strands (denoted by 3′ and 5′), a DNA molecule can be represented as a word over

18 CHAPTER 1. INTRODUCTION

a four-letter alphabet {A,C,G, T}, each letter representing one of the nucleotides. According
to the Watson-Crick complementarity, A is in relation with T and C is in relation with G.
For more details, see [61, 90].

The DNA, together with proteins, is packaged to chromosomes. At the end of a chro-
mosome, particular DNA sequences, called telomeres, appear which do not contain genetic
information and protect the chromosomes from degeneration an fusion with other chromo-
somes. During the process of DNA replication, several enzymes cause the double helix to
unwind and partially split into two single strands. Due to the complementarity of the nu-
cleotides, each of the single strands serves as template for the formation of double strands,
again. This duplication starts not at the very ends of the strands. Therefore, a piece of the
telomeres is lost during each DNA replication, causing cell aging. That is also why the life of
cells is restricted. Another enzyme, namely telomerase, can prolongate the telomeres again.
Telomerase consists of a protein and an RNA part; RNA molecules are similar to DNA single
strands, but one of the nucleotides is replaced. Therefore, in the alphabet for RNA strings,
the letter U is used instead of T .

A complex secondary structure (folding) of the telomerase RNA, so-called pseudoknots, is
critical for its biological activity [26]. Pseudoknots consist of at least two hairpin loops and
contain crossing sequences as it is seen in the schema given in Figure 1.3, see [83].

5’

$
%

'
&

3’

AUUCAG

UAAGUC GCCUCC

CGGAGG

Figure 1.3: Crossing sequences in pseudoknots—a schematic representation.

There are hydrogen bonds between nucleotides appearing in the single strand, obeying the
Watson-Crick complementarity. These bonds are represented as vertical lines in Figure 1.3.
If we label the blocks, in this example AUUCAG, CCUCCG, CUGAAU, and CGGAGG, read
in the 5’-3’ direction, by i, j, i′, j′, the hydrogen bonds appear between i and i′ as well as j
and j′. Since i < j < i′ < j′, where < denotes the “occurs-left-to” relation, the pairwise
bonded blocks occur in a crossing sequence. That is, the telomerase RNA strand is of the
form w1w2w

′
1w

′
2 where wi is linked via the Watson-Crick complementarity with w′

i, 1 ≤ i ≤ 2,
at least if symbols are ignored which are not relevant in this respect. Then the set of those
structures is not context-free since (if the bonding is encoded) it can be mapped to the
non-context-free language { ambncmdn | m,n ≥ 1 } with the help of a gsm.

Natural Languages

In order to proof the non-context-freeness of some natural language it is essential to find
cross-serial dependencies of arbitrary large size in this language. Many of those arguments
given in the literature turned out to be contestable because they exploit features which are

1.3. INSUFFICIENCY OF CONTEXT-FREENESS 19

rather anomalous from a semantic or a pragmatic point of view than ungrammatical, see [92].
Nevertheless, evidence has been achieved for the non-context-freeness of some particular lan-
guages such as Swiss-German, keeping the arguments on a pure syntactical level. The reader
may confer [103] or [84, Chapter 18] and [35] for another example.

Consider the following sentences in Swiss-German with their translations into English
(first word-by-word, then into grammatical English sentences):

• Jan säit das mer em Hans es huus hälfed aastriiche.
John said that we Hans the house helped paint.
John said that we helped Hans paint the house.

• Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.
John said that we the children Hans the house let help paint.
John said that we let the children help Hans paint the house.

• Jan säit das mer (d’chind)i (em Hans)j es huus haend wele
(laa)i (hälfe)j aastriiche.
John said that we (the children)i (Hans)j the house have wanted to
(let)i (help)j paint.
John said that we wanted to let Mary help Hans, let Frank help Jessica,
let Chris help Lucy, and let Vanessa help René paint the house.

In the first sentence, the verbs (hälfed and aastriiche) occur in the same order as the
objects (em Hans and es huus) they refer to. Thus, it demonstrates that crossing sequences
may be present in Swiss-German sentences. Next, the sentence is modified in a way such that
the last sentence shows how it can be extended to arbitrary length in a reasonable way; its
latter translation provides an example sentence with i = j = 4. If a gsm is applied to the last
sentence is Swiss-German, which maps

• verbs requiring dative case (hälfe) to a,

• verbs requiring accusative case (laa) to b,

• dative case objects (Hans) to c,

• accusative case objects (d’chind) to d, and

• everything else to λ,

then the resulting word is aibjcidj . The gsm-mapping of the intersection of Swiss-German
with the regular set

Jan säit das mer (d’chind)∗ (em Hans)∗ es huus haend wele (laa)∗ (hälfe)∗ aastriiche.

yields the non-context-free language { ambncmdn | m,n ≥ 1 }, again. Hence, Swiss-German is
not context-free.

20 CHAPTER 1. INTRODUCTION

Non-Context-Free Mechanisms

Alas, the next more powerful type of Chomsky grammars, namely the context-sensitive gram-
mars, are also not used in most applications because they are too complex. For example, the
fixed membership problem (thus, the parsing problem) is PSPACE-complete and many other
relevant decision problems are proved to be undecidable7 for context-sensitive grammars.

Therefore, a series of grammar formalisms has been introduced which are able to cover all
the desired non-context-free aspects but aim to maintaining the nice properties of context-free
grammars. The fact that there are non-context-free aspects in the syntax of natural languages
led to the concept of mildly context-sensitive grammars [65] providing some lower and upper
bound conditions for families of languages which may be useful in linguistics, see also [9]. A
grammar formalisms is said to be mildly context-sensitive if the family of its languages

1. contains (besides the context-free languages8)

L1 = { anbncn | n ≥ 1 },

L2 = {wcw | w ∈ {a, b}∗ },

L3 = { ambncmdn | m,n ≥ 1 },

2. contains only languages which can be parsed in polynomial time, and

3. contains only semilinear languages.9

Besides tree-adjoining grammars introduced in [66] and other mildly context-sensitive gram-
mars [110], the three most important sources of such language describing devices are gram-
mars with controlled derivations, grammars with parallel derivations (mainly Lindenmayer
systems), and grammar systems; a survey about those mechanisms is presented in the next
chapter.

7For definitions of the notions from complexity and recursion theory, the reader is referred, for example,
to [63].

8This requirement to cover all context-free languages has been weakened in more recent articles.
9Originally, in [65] Joshi required the slightly weaker property that, for all infinite languages L which

can be generated, there is a constant C such that for any word w ∈ L there is another word w′ ∈ L with
0 < |w′| − |w| < C.

Chapter 2

Grammar Formalisms for
Describing Non-Context-Free
Languages

Grammar formalisms suitable for the description of formal languages which are not context-
free have been considered since the beginning of formal language theory. One of the most
famous class of those grammars might be the context-sensitive one, as it belongs to the Chom-
sky hierarchy. Due to its mathematical and algorithmic inadequacy, a bench of other grammar
formalisms which are more powerful than context-free grammars have been introduced and
investigated. The underlying concepts can be divided into the following categories1 , where we
restrict ourselves to grammars with derivations in which symbols or substrings are substituted
according to productions.

1. Grammars with controlled derivations.
Basically, a grammar with controlled derivations is an ordinary Chomsky grammar, say
a context-free grammar, with its usual strongly nondeterministic derivation process.
Out of the rich diversity of possible derivations, the control selects some to be valid,
and disregards all the others.

In general, the control adds to the power of the type of the underlying grammar since
the generated language can potentially be restricted to words possessing some desired
properties. Note that the control can also regard all possible derivations to be valid,
thus resuming the power of the underlying system. Here, the focus is on context-free
grammars with controlled derivations.

Examples of control mechanisms are

(a) a restriction of the order in which productions can be applied such as prescribed
sequences of productions (like in matrix grammars [1] or grammars with regu-
lar control [58]) or a mechanism prescribing which productions are allowed to be
applied in the next derivation step, depending on the production which has just
been used (like in programmed grammars [93]); another example are grammars
controlled by a bicolored digraph [116].

1As a matter of course, also other classifications are possible and can be found in the literature.

21

22 CHAPTER 2. NON-CONTEXT-FREE GRAMMAR FORMALISMS

(b) a context condition requiring that certain symbols are present or absent in the
sentential form (like in random context grammars [112] or ordered grammars [56])
or even at certain positions (like in conditional grammars [85]); note that context-
sensitive grammars can be considered as belonging to this category, the underlying
Chomsky grammar being context-free,

(c) additional symbols inside the sentential forms, encoding information about the
derivation yielding the sentential forms (like in indexed grammars [2]) or allowing
different nonterminals to communicate with each other in a restricted way (like in
synchronizing grammars [68], see also [20]).

For a comprehensive monograph about grammars with controlled derivations we refer
to [41]; an extensive survey containing also more recent results is given in [44].

2. Parallel or partially parallel grammars.
Whereas in Chomsky grammars the derivation process is sequential, that is a single
occurrence of a symbol or a substring of the sentential form is replaced according to a
production, in parallel grammars all symbols of the sentential form are replaced simul-
taneously. Thus, a finite substitution is repeated by those mechanisms. The various
classes of Lindenmayer systems (L systems, for short) have been introduced to model
the biological development of lower organisms [62]. Subsequently a sophisticated math-
ematical theory of L systems has been established [96].

Grammars with partial parallelism rewrite the sentential forms in a manner which is
intermediate between sequential and parallel replacement. For example, uniformly lim-
ited L systems replace (if possible) a fixed number of symbols per derivation step [115],
limited L systems replace a fixed number of occurrences of any symbol of the alpha-
bet [113, 114], and Indian parallel grammars replace all occurrences of exactly one
symbol of the alphabet whereas the other symbols remain unchanged [105].

3. Grammar systems.
A grammar system consists of several Chomsky grammars, called components of the
system, which jointly generate a common language. The components perform derivation
steps sequentially or in a parallel way.

(a) Sequential grammar systems work on a common sentential form in turns, according
to some cooperation strategy. The possibly best known model is the concept of
cooperating distributed grammar systems, where all components are context-free
grammars.

Typical cooperation strategies rely on counting the number of derivation steps
consecutively performed by any component. Another approach is based on the
“competence” of the components. In the terminating mode, any component, once
started, has to continue rewriting until it has no production left which is applicable
to the sentential form. In the full competence mode, a component remains active
until and unless one nonterminal appears in the sentential form which cannot be
rewritten.

Cooperating distributed grammar systems have been introduced as a grammatical
model of distributed problem solving, following the blackboard architecture from
artificial intelligence [31], see also [32], after a forerunner paper pursued a similar

2.1. DEFINITIONS 23

approach as a generalization of two-level substitution (van-Wijngaarden) gram-
mars to a multi-level concept [75]. Furthermore, in [12] CD grammar systems are
considered as sequential counterparts to tabled Lindenmayer systems with auxil-
iary symbols (ET0L systems), which consist of several production sets (the tables)
as well (see [95]).

(b) In parallel grammar systems, the components work simultaneously on individual
sentential forms in a synchronized way, according to a universal clock. They are
able to communicate with each other by sending their sentential forms upon request
(or command) to other components. Then, the generated language consists of all
words obtainable by a designated component in this way.

Those parallel communicating grammar systems have been introduced as a gram-
matical model of parallelism in a very broad sense [91] and were associated with
the classroom model of problem solving [32]: the work in a real classroom or in
similar environments, for instance in a research team, is organized by distributing
the task to several workers which perform problem solving steps simultaneously
but individually and which are allowed to exchange information about the state
of the problem solving, possibly according to some restricted communication pro-
tocol. From another point of view, parallel communicating grammar systems are
language generating models of parallel and distributed computation as it appears,
for example, in computer nets. This approach has several advantages. So it allows
to compare the power of distinct communication structures (parallel architectures)
in a way in which other (computing) models have not been able to establish results
(see [64]).

For standard references about grammar systems, including also further types such as
eco-grammar systems or test tube systems, confer [32] and [43].

Several types of grammars combine some of the features listed above. Scattered context
grammars, for example, rewrite the sentential forms in a partially parallel manner, simultane-
ously obeying context constraints, see [59] (or [78] for the unordered variant). Furthermore,
one might consider systems of (partially) parallel grammars or adding control mechanisms to
those grammars or grammar systems. One approach to mechanisms allowing combinations
in a very general sense is given by the concept of networks of language processors [30].

2.1 Definitions

The formal definitions of the grammars and systems which are in the focus of the present
thesis are given in this section. It should be noted that their selection is, to a certain extent,
subjective. Some further mechanisms will be defined at the spots where they are needed.

For the sake of the present thesis, the context-free case is of main interest, that is, context-
free grammars with controlled derivations, ((uniformly) limited) L systems rewriting symbols
without any context dependencies (E0L systems and variants thereof) and grammar systems
with context-free components. Nevertheless, we will present some definitions in a more general
way so that they are suitable also for the next chapter about accepting grammars and systems.

In what follows, let VN and VT be two disjoint alphabets, the alphabet of nonterminals
and the alphabet of terminal symbols, respectively. The union VN ∪ VT is referred to as the

24 CHAPTER 2. NON-CONTEXT-FREE GRAMMAR FORMALISMS

total alphabet and is denoted by VG. Moreover, let S ∈ VN be a designated nonterminal
referred to as axiom.

Definition 2.1 (Matrix grammars) A matrix grammar ([1, 41]) is a quintuple G =
(VN , VT ,M, S, F), where M is a finite set of matrices each of which is a finite sequence

m : (α1 → β1, α2 → β2, . . . , αn → βn),

n ≥ 1, of ‘usual’ rewriting rules over VG, the core rules of G, and F is a finite set of occurrences
of such rules in M . For x, y ∈ V ∗

G and a matrix m : (α1 → β1, α2 → β2, . . . , αn → βn) in M ,
we write x =⇒

m
y (or simply x⇒ y if there is no danger of confusion) if and only if there are

strings y0, y1, . . . , yn such that y0 = x, yn = y, and for 1 ≤ i ≤ n, either

yi−1 = zi−1αiz
′
i−1, yi = zi−1βiz

′
i−1 for some zi−1, z′i−1 ∈ V ∗

G

or yi−1 = yi, the rule αi → βi is not applicable to yi−1, that is, αi /∈ Sub(yi−1), and the
occurrence of αi → βi appears in F . One says that the rules whose occurrences appear in
F are used in appearance checking mode, since, during a derivation according to a matrix
in M , they can be passed over if not applicable. A matrix grammar is defined with (without)
appearance checking if F 6= ∅ (F = ∅, respectively). The language generated by G is defined
as

Lgen(G) = {w ∈ V ∗
T |S =⇒

m1
v1 =⇒

m2
v2 =⇒

m3
. . . =⇒

mk
vk = w, k ≥ 1, mi ∈M, 1 ≤ i ≤ k }.

Definition 2.2 (Programmed grammars) A programmed grammar ([93, 41]) is a tuple
G = (VN , VT , P, S), where P is a finite set of productions of the form (r : α→ β, σ(r), ϕ(r)),
where r : α → β is a rewriting rule, called the core rule of the production, labeled by r (the
labels uniquely determine productions, but there may be some productions with different
labels having identical core rules α → β), and σ(r) and ϕ(r) are two sets of labels of such
core rules in P . By Lab(P), we denote the set of all labels of the productions appearing in P .

A sequence of words y0, y1, . . . , yn over V ∗
G is referred to as a derivation in G if and only

if, for 1 ≤ i ≤ n, there are productions (ri : αi → βi, σ(ri), ϕ(ri)) ∈ P such that either

yi−1 = zi−1αiz
′
i−1, yi = zi−1βiz

′
i−1, and, if 1 ≤ i < n, ri+1 ∈ σ(ri)

or
αi /∈ Sub(yi−1), yi−1 = yi, and, if 1 ≤ i < n, ri+1 ∈ ϕ(ri).

In the latter case, the derivation step is done in appearance checking mode. The set σ(ri) is
called success field and the set ϕ(ri) failure field of ri. If ϕ(r) = ∅ for all r ∈ Lab(P), then G
is said to be without appearance checking. We also write the derivation as

y0 =⇒
r1

y1 =⇒
r2
· · ·=⇒

rn
yn

or simply as y0 ⇒ y1 ⇒ · · · ⇒ yn. Also the notations y0
n
⇒ yn and y0

∗
⇒ yn are used. The

language generated by G is defined as Lgen(G) = {w ∈ V ∗
T | S

∗
⇒ w }.

Definition 2.3 (Random context grammars) A random context grammar ([112, 41]) is
a quadruple G = (VN , VT , P, S) where P is a finite set of random context rules, that is, triples
of the form (α → β,Q,R) where α → β is a rewriting rule over VG (the core rule of the

2.1. DEFINITIONS 25

random context rule), and Q and R are subsets of VN . For x, y ∈ V ∗
G, we write x ⇒ y if

and only if x = z1αz2, y = z1βz2 for some z1, z2 ∈ V ∗
G, (α → β,Q,R) is a triple in P , all

symbols of Q appear in z1z2, and no symbol of R appears in z1z2. Q is called the permitting
context of α→ β and R is the forbidding context of this rule; if R = ∅ for all random context
rules in P , then G is a random context grammar without appearance checking. The language
generated by G is the set Lgen(G) = {w ∈ V ∗

T | S
∗
⇒ w }.

Definition 2.4 (Grammars with regular control) Let G′ = (VN , VT , P, S) be a type-n
grammar with labelled rules, that is, P = {r1 : α1 → β1, r2 : α2 → β2, . . . , rn : αn → βn},
let Lab(P) be the set of all labels {r1, r2, . . . , rn}, F ⊆ Lab(P), and let R be a regular language
over the alphabet Lab(P). Then G = (VN , VT , P, S,R, F) is refered to as a (type-n) grammar
with regular control (cf. [58, 41, 99]). The language generated by G consists of all words w for
which there is a word ri1ri2 · · · rik in R and there are strings x0, x1, . . . , xk such that x0 = S
and xk = w and, for 1 ≤ j ≤ k, either

xj−1 = zj−1αijz
′
j−1, xj = zj−1βijz

′
j−1 for some zj−1, z′j−1 ∈ V ∗

G ,

or xj−1 = xj , the rule with label rij is not applicable to xj−1, and rij ∈ F . The rules with
a label in F are used in appearance checking mode. If F = ∅, then G is said to be without
appearance checking.

Definition 2.5 (Ordered grammars) An ordered grammar ([56, 41]) is a quintuple G =
(VN , VT , P, S,≺), where (VN , VT , P, S) is a phrase structure grammar and ≺ is a partial order
on P . A production α→ β is applicable to a string x if x = z1αz2 for some z1, z2 ∈ V ∗

G and x
contains no subword α′ such that α′ → β′ ∈ P for some β′ and α→ β ≺ α′ → β′; then x⇒ y
with y = z1βz2. As usual, Lgen(G) = {w ∈ V ∗

T |S
∗
⇒ w }.

Thus, in ordered grammars only productions can be applied to a sentential form x which are
maximal with repect to ≺ among all productions with left-hand sides in Sub(x).

Definition 2.6 (Conditional grammars) A conditional grammar ([85, 41]) is a pair (G, ρ),
where G = (VN , VT , P, S) is a phrase structure grammar and ρ is a mapping of P into the
family of regular languages over VG. For x, y ∈ V ∗

G, we write x⇒ y if and only if x = z1αz2,
y = z1wβz2, z1, z2 ∈ V ∗

G, α → β ∈ P , and x ∈ ρ(α → β). The language generated by a

conditional grammar (G, ρ) is defined by Lgen(G, ρ) = {w ∈ V ∗
T | S

∗
⇒ w }.

Definition 2.7 (Lindenmayer systems) An extended tabled 0L system (ET0L system)
([95, 41, 96]) is a quadruple G = (Σ,∆, {P1, P2, . . . , Pr}, ω), where ∆ is a non-empty sub-
set of the alphabet Σ, ω ∈ Σ+ is the axiom, and each so-called table Pj is a finite subset
of Σ × Σ∗ which satisfies the condition that, for each a ∈ Σ, there is a word wa ∈ Σ∗ such
that (a,wa) ∈ Pi (the elements of Pj are written as a → wa again), that is, each Pj defines
a finite substitution σj : Σ∗ → 2Σ∗

, σj(a) = {w | a → w ∈ Pj }. We write x ⇒ y if and

only if y ∈ σj(x) for some j, and Lgen(G) = { v ∈ ∆∗ |ω
∗
⇒ v }, where

∗
⇒ is the reflexive and

transitive closure of the relation ⇒.

Definition 2.8 (Exact uniformly-limited L systems) An exact k-uniformly-limited
ET0L (kulET0L,ex) system ([17]) is a tuple G = (Σ,∆, {P1, P2, . . . , Pr}, {ω1, ω2, . . . , ωs}, k),
where Σ is the total alphabet, ∆ ⊆ Σ is the terminal alphabet, each Pj is a table as in ET0L

26 CHAPTER 2. NON-CONTEXT-FREE GRAMMAR FORMALISMS

systems, {ω1, ω2, . . . , ωs} ⊂ Σ+ is a finite set of axioms, and k is an integer with k ≥ 1.
The yield relation ⇒ is defined as follows: x ⇒ y if and only if there is a table Pj and,
for 1 ≤ κ ≤ k, there are productions aκ → wκ ∈ Pj and words x0, x1, . . . , xk such that
x = x0a1x1 · · · akxk and y = x0w1x1 · · ·wkxk. The language generated by G is

Lgen(G) = {w ∈ ∆∗ |ωσ
∗
⇒ w for some σ with 1 ≤ σ ≤ s }.2

Besides the definition of the yield relation given by an exact kulET0L system, there is a
definition by Wätjen [115], where each symbol in a word shorter than k is replaced (kulET0L
system). In view of accepting systems, which will be introduced in the next chapter, we prefer
the following definition.

Definition 2.9 (Uniformly limited L systems) A k-uniformly-limited ET0L system (ab-
breviated as kulET0L system) is a quintuple G = (Σ,∆, {P1, P2, . . . , Pr}, {ω1, ω2, . . . , ωs}, k).
The components are defined as for exact kulET0L systems. For x ∈ Σ∗, let Lk(x) denote
the set of strings derived directly from x via G, where G is interpreted as an exact kulET0L
system. Now define x⇒ y if and only if y ∈ Lk(x) or there is a partition x = x1x2 · · · xl with
l ≤ k and there is a table in G containing productions x1 → y1, x2 → y2, . . ., xl → yl such
that y = y1y2 · · · yl.

Note that this definition coincides with Wätjen’s definition.
As another concept of limited parallelism, k-limited ET0L systems have been defined

in [55, 113], where k occurrences of any symbol of the alphabet are replaced simultaneously.
Here, we present the formal definition only for the case k = 1. This will be sufficient for the
objective of this thesis, particularly since any k-limited ET0L system can be simulated by a
1-limited ET0L system, k ≥ 1 (regardless of whether or not erasing productions are allowed),
see [49] and [113].

Definition 2.10 (Limited L systems) A 1-limited ET0L system (abbreviated as 1lET0L
system) is a quintuple G = (Σ,∆, {P1, P2, . . . , Pr}, ω, 1) such that (Σ,∆, {P1, P2, . . . , Pr}, ω)
is an ET0L system. According to G, x ⇒ y (for x, y ∈ Σ∗) if and only if there is a table Pj

and partitions x = x0a1x1 · · · anxn, y = x0w1x1 · · ·wnxn such that aν → wν ∈ Pj for each
1 ≤ ν ≤ n, aν 6= aµ for ν 6= µ, and each left-hand side z of a production in Pj is either equal
to some aν or not contained in Sub(x0) ∪ Sub(x1) ∪ · · · ∪ Sub(xn).

Definition 2.11 (Scattered context grammars) A scattered context grammar ([59, 41])
is a quadruple G = (Σ,∆, P, S), where Σ and ∆ denote the total alphabet and the terminal
alphabet, respectively, and S ∈ Σ \ ∆ is the axiom. P is a finite set of finite sequences of
context-free productions, P = {p1, p2, . . . , pn}, written as

pi : (vi1, vi2, . . . , viri
)→ (wi1, wi2, . . . , wiri

), 1 ≤ i ≤ n.

The application of such a rule pi to some x ∈ Σ+ yields y ∈ Σ∗ (written as x⇒ y), if

x = x0vi1x1vi2 · · · xri
viri

xri
, and y = x0wi1x1wi2 · · · xri

wiri
xri

,

for same words x0, x1, . . . , xri
. Denoting the reflexive transitive closure of ⇒ by

∗
⇒, we define

Lgen(G) = {w ∈ ∆∗ |S
∗
⇒ w }.

2Obviously, apart from the concept of tables, this definition is equivalent to the definition of k-context-free
grammars given by K. Salomaa in [100].

2.1. DEFINITIONS 27

Definition 2.12 (Unordered scattered context grammars) An unordered scattered
context grammar ([78, 41]) is defined as a scattered context grammar above, where the ap-
plication of such a rule pi to some x ∈ Σ+ yields y ∈ Σ∗ (written as x ⇒ y), if there is a
permutation π : {1, 2, . . . , ri} → {1, 2, . . . , ri} such that

x = x1vπ(1)x2vπ(2) · · · xri
vπ(ri)xri+1, and y = x1wπ(1)x2wπ(2) · · · xri

wπ(ri)xri+1,

for same words x0, x1, . . . , xri
. Again, Lgen(G) = {w ∈ ∆∗ |S

∗
⇒ w }, where

∗
⇒ denotes the

reflexive, transitive closure of the yield relation ⇒.

Next, we turn to the definition of grammar systems, where we restrict ourselves to systems
with context-free productions.

Definition 2.13 (Cooperating distributed grammar systems)A cooperating distributed
grammar system (CD grammar system) ([31, 32, 43]) with n context-free components is a
tuple Γ = (VN , VT , S, P1, P2, . . . , Pn) such that Gi = (VN , VT , Pi, S) is a context-free grammar,
for 1 ≤ i ≤ n. The total alphabet VN∪VT of Γ is denoted by VΓ. The set dom(Pi) = {A ∈ VN |
A→ z ∈ Pi } is called the domain of Pi. Furthermore, we set Ti = VΓ \ dom(Pi), 1 ≤ i ≤ n.
Let x, y ∈ V ∗

Γ and k be a positive integer. For 1 ≤ i ≤ n, we write x⇒i y if x⇒ y according
to the grammar Gi. Hence, subscript i refers to the context-free grammar (the component)
to be used.

• A ∗-derivation by the ith component is defined by x
∗=⇒i y, where

∗=⇒i denotes the
reflexive and transitive closure of ⇒i.

• A k-step derivation by the ith component is defined by

x
=k=⇒i y iff x = x0 ⇒i x1 ⇒i x2 ⇒i . . .⇒i xk = y,

for some strings x1, x2, . . . , xk−1 in V ∗
Γ .

• An at most k-step derivation by the ith component is defined by

x
≤k
=⇒i y iff x

=k′=⇒i y for some k′ ≤ k.

• An at least k-step derivation by the ith component is defined by

x
≥k
=⇒i y iff x

=k′=⇒i y for some k′ ≥ k.

• A t-derivation by the ith component is defined by

x
t=⇒i y, iff x

∗=⇒i y, and there is no z with y ⇒i z.

• A derivation in the full-competence mode by the ith component is defined by

x
full=⇒i y, iff x = x0 ⇒i x1 ⇒i x2 ⇒i . . .⇒i xm = y,

where for all j, 0 ≤ j ≤ m− 1, we have

xj ∈ (dom(Pi) ∪ VT)∗, and symb(y) ∩ (VN \ dom(Pi)) 6= ∅ or y ∈ V ∗
T .

28 CHAPTER 2. NON-CONTEXT-FREE GRAMMAR FORMALISMS

The language generated by the CD grammar system Γ in the mode γ of derivation,
γ ∈ {∗, t, full} ∪ {=k,≤k,≥k | k ≥ 1 }, is

L(Γ, γ) = {w ∈ V ∗
T | S

γ
=⇒i1 w1

γ
=⇒i2 w2 . . .

γ
=⇒im wm = w,

where m ≥ 1, 1 ≤ ij ≤ n, wj ∈ V ∗
Γ , 1 ≤ j ≤ m }.

Intuitively, in each derivation mode, the component which starts rewriting the sentential
form is selected in a nondeterministic manner. The derivation mode determines the condition
when a component, once started, stops rewriting and “hands over” the sentential form to
the next (not necessarily different) component. In particular, in the t-mode of derivation,
a component stops rewriting if and only if it has no production left which is applicable. In
the full competence mode, a component stops if and only if there is one nonterminal symbol
present in the sentential form which cannot be rewritten. The full competence mode has been
defined in [75] and has been called sf-mode in [11] and some succeeding papers; the ≥k-mode
is from [42], and all the other modes have been introduced in [31].

Definition 2.14 (Parallel communicating grammar systems) A parallel communicat-
ing grammar system (PC grammar system) ([91, 32, 43]) with n context-free components,
n ≥ 1, is an (n + 3)-tuple Γ = (N,K, T,G1, G2, . . . , Gn), where N , K, and T are pairwise
disjoint alphabets of nonterminal symbols, query symbols, and terminal symbols, respectively.
For 1 ≤ i ≤ n, Gi = (N ∪K,T, Pi, Si) is a context-free grammar with nonterminal alphabet
N ∪K, terminal alphabet T , a set of rewriting rules Pi ⊆ (N ∪K) × (N ∪K ∪ T)∗ and an
axiom Si.

The grammars G1, G2, . . . Gn are called components of Γ, G1 is said to be the master
component (or master grammar) of Γ. The total alphabet N ∪K ∪ T of Γ is denoted by VΓ.

Let Γ = (N,K, T,G1, G2, . . . , Gn), n ≥ 1, be a PC grammar system as above. An n-tuple
(x1, x2, . . . , xn), where xi ∈ V ∗

Γ , 1 ≤ i ≤ n, is called a configuration of Γ. The configuration
(S1, S2, . . . , Sn) is said to be the initial configuration.

PC grammar systems change their configurations by performing direct derivation steps.
Let Γ = (N,K, T,G1, G2, . . . , Gn), n ≥ 1, be a PC grammar system, and let (x1, x2, . . . , xn)
and (y1, y2, . . . , yn) be two configurations of Γ. We say that (x1, x2, . . . , xn) directly derives
(y1, y2, . . . , yn), denoted by (x1, x2, . . . , xn) =⇒ (y1, y2, . . . , yn), if one of the next two cases
holds:

1. If there is no xi which contains any query symbol, then, for 1 ≤ i ≤ n, either xi ∈
(N ∪ T)∗ \ T ∗ and xi =⇒

Gi
yi, or xi ∈ T ∗ and yi = xi.

2. There is some xi, 1 ≤ i ≤ n, which contains at least one occurrence of query symbols.
Let xi be of the form xi = z1Qi1z2Qi2 . . . ztQitzt+1, where zj ∈ (N ∪ T)∗, 1 ≤ j ≤ t + 1, and
Qil ∈ K, 1 ≤ l ≤ t. In this case yi = z1xi1z2xi2 . . . ztxitzt+1, if xil , 1 ≤ l ≤ t, does not contain
any query symbol. In so-called returning systems, yil = Sil , for 1 ≤ l ≤ t. In non-returning
systems yil = xil , 1 ≤ l ≤ t. If some xil contains at least one occurrence of query symbols,
then yi = xi. For all i, 1 ≤ i ≤ n, for which yi is not specified above, yi = xi holds.

The first case is the description of a rewriting step: if no query symbols are present in any
of the sentential forms, then each component grammar uses one of its rewriting rules except
those which have already produced a terminal string. The derivation is blocked if a sentential
form is not a terminal string, but no rule can be applied to it.

The second case describes a communication step which has priority over effective rewriting:
if some query symbol, say Qj, appears in a sentential form, then the rewriting process stops

2.1. DEFINITIONS 29

and a communication step must be performed. The symbol Qj has to be replaced by the
current sentential form of component Gj , say xj, supposing that xj does not contain any
query symbol. If this sentential form also contains query symbols, then first these symbols
must be replaced with the requested sentential forms and so on. If this condition cannot be
fulfilled (a circular query appeared), then the derivation is blocked.

If the sentential form of a component was communicated to another one, this component
can continue its own work in two ways: in so-called returning systems, the component must
return to its sentential form of the initial configuration (the axiom) and begin to derive a
new string. In non-returning systems the components do not return to their initial sentential
forms but continue to process their current string.

In the following, by
∗
⇒ the reflexive and transitive closure of the yield relation ⇒ is

denoted.
Let Γ = (N,K, T,G1, G2, . . . , Gn) be a PC grammar system as above. The language of Γ

is defined by

Lgen(Γ) = {x1 ∈ T ∗ | (S1, S2, . . . , Sn)
∗
⇒ (x1, x2, . . . , xn), xi ∈ V ∗

Γ , 2 ≤ i ≤ n } .

Thus, the generated language consists of the terminal strings appearing as sentential forms
of the master grammar G1 in a derivation which started off with the initial configuration
(S1, S2, . . . , Sn).

Finally, we introduce the following notation in order to refer to the classes of grammars
which have been listed above. Let X ∈ {REG,LIN,CF−λ,CF,CS,RE}. By (M,X, ac),
(P,X, ac), (RC,X, ac) and (rC,X, ac) we denote the classes of all matrix grammars, pro-
grammed grammars, random context grammars and grammars with regular control, respec-
tively, with core rules of type X. If the grammars are restricted to be without appearance
checking, then ‘ac’ is omitted in that notation. Correspondingly, (O,X), (C,X), (SC,X) and
(uSC,X) are the classes of all ordered, conditional, scattered context and unordered scattered
context grammars, respectively, with rewriting rules of type X.

Furthermore, ET0L, (kulET0L,ex), kulET0L and klET0L denote the classes of the corre-
sponding Lindenmayer systems, k ≥ 1. Furthermore, we define

([u]lET0L[,ex]) =
⋃

k≥1

(k[u]lET0L[,ex]).3

Moreover, if in the systems G = (Σ,∆, {P1, P2, . . . , Pr}, ω) no table Pj contains a λ-rule, that
is, Pj ⊆ Σ × Σ+ for each j, we call the systems propagating; in this case, we add the letter
P to the notation, leading to the class EPT0L and its limited variants. Finally, in case of
r = 1, the letter T is omitted in the notation of the classes. Clearly, these restrictions may
be combined.

Let X be a class of devices as above. Then L(X) is written for the family off languages
which can be generated by some device from X.

As to grammar systems, let L(CDn,CF, γ) denote the family of languages generated by CD
grammar systems with n context-free components in the mode γ of derivation, γ ∈ {∗, t, full}∪
{=k,≤k,≥k | k ≥ 1}, and let L(CD∞,CF, γ) =

⋃

n≥1 L(CDn,CF, γ). In this notation, CF is
replaced with CF−λ if systems having λ-rules in at least one of the components are excluded.

3Whenever we use bracket notations like this, we mean that the statement is true both in case of neglecting
the bracket contents and in case of ignoring the brackets themselves.

30 CHAPTER 2. NON-CONTEXT-FREE GRAMMAR FORMALISMS

Finally, we shall denote the families of languages of returning and non-returning PC grammar
systems with context-free components by L(PC∞CF) and L(NPC∞CF), respectively. When
only centralized PC grammar systems are used, we add the letter C coming to the families
L(CPC∞CF) and L(NCPC∞CF). We replace CF by CF–λ in that notation if λ-rules are
forbidden in any component of the systems.

2.2 Generative Capacities

In this section the hierarchical relationships between the families of languages generated by the
devices with context-free core rules presented in the preceding section are given. Moreover,
we locate these families in the Chomsky hierarchy. Further properties such as closure or
decidability properties can be found in the standard references [32, 41, 43, 44, 96].

In some sense, the following diagrams supplement the diagram on page 146 in [41] and
Theorem 2.15 including the figure on page 137 in [44]; see also [17]. In the diagrams given
below, solid lines indicate strict inclusion, where the larger language class is near the arrow-
tip, dashed lines indicate an inclusion relation where the strictness is unknown, and dotted
lines mean that the inclusion relation which is indicated by the arrow tip cannot hold.

Below, we only list proofs of results not contained in the standard references [41, 96, 97].

2.2.1 Single Devices: The Non-Erasing Case

The following equalities are valid (see [44]):

1. L(P,CF−λ) = L(M,CF−λ) = L(rC,CF−λ) = L(uSC,CF−λ)

2. L(RC,CF−λ) ⊆ L(P,CF−λ)

3. L(P,CF−λ, ac) = L(M,CF−λ, ac) = L(RC,CF−λ, ac) = L(rC,CF−λ, ac)

4. L(C,CF−λ) = L(CS)

Moreover, the relations shown in Figure 2.1 hold.
Reference of claims:

• In [60], it is shown that {a2n
|n ∈ N} 6∈ L(P,CF). Hence, there are EP0L languages

which are not in L(P,CF). This naturally applies also to superfamilies of L(EPT0L)
and to subfamilies of L(P,CF). Especially, this partially answers a question raised in
[115] concerning the relationship of uniformly limited L systems and L systems.

• The same example shows the strictness of the inclusion between L(P,CF−λ) and
L(P,CF−λ, ac).

• In [47, Theorem 5.2], it is shown that L(O,CF−λ) ⊂ L(1lEPT0L) which improves
[48, Lemma 3.7].

• The strictness of the inclusion L(CF−λ) ⊂ L(ulEP0L) can be seen by Example 2.1
in [115], where also the incomparability results concerning EP0L are proved.

• In [113, Theorem 4.4] together with [114], it is shown that L(lEP0L) does not contain
L(EP0L). Similarly, [114] shows the strictness of the inclusion L(lEP0L) ⊂ L(lEPT0L).

2.2. GENERATIVE CAPACITIES 31

L(CS)

L(SC,CF−λ)

55k
k

k
k

k
kk

k

L(P,CF−λ, ac)

OO

L(lEPT0L)

OO�
�

�

L(P,CF−λ)

OO ;;xxxxxxxxxxxxxxxxxxxxxx

L(O,CF−λ)

OO

L(ulEPT0L[,ex])

OO�
�

�

L(EPT0L)

OO

L(ulEP0L,ex) //

OO�
�

�

L(EP0L)

OO

cc

// L(lEP0L)

\\9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

L(CF)

iiSSSSSSSSSSSSSS

OO 66lllllllllllll

Figure 2.1: Hierarchy of families of languages generated by single devices without erasing
rules.

• The inclusion L(lEPT0L) ⊆ L(P,CF−λ,ut) is proved in [37, 46]. The other inclusion
is seen via a modification of the technique given in [37] in the presence of erasing
productions.

Finally, the problem remains where to place the chain

L(CF) // L(RC,CF−λ) //___ L(P,CF−λ)

within the sketched diagram.

2.2.2 Single Devices: The Erasing Case

The following equalities are valid (see [44]):

1. L(P,CF) = L(M,CF) = L(rC,CF) = L(uSC,CF) = L(C,CF)

2. L(RC,CF) ⊆ L(P,CF)

3. L(P,CF, ac) = L(M,CF, ac) = L(RC,CF, ac) = L(rC,CF, ac)
= L(SC,CF) = L(C,CF) = L(RE)

Moreover, the relations shown in Figure 2.2 hold.
With the references given in the preceding subsection, most of the connections given in

the following diagram are be clear. We add only the following few references:

• The equality L(SC,CF) = L(RE) is shown in [74].

32 CHAPTER 2. NON-CONTEXT-FREE GRAMMAR FORMALISMS

L(RE)

L(REC)

OO

L(lET0L)oo

ffN
N

N
N

N

L(P,CF)

66nnnnnnnnnnnn

L(CS) //oo

OO

L(O,CF)

ffNNNNNNNNNN

OO

��

L(ulET0L,[ex])

OO�
�

�

L(ET0L)

OO 88pppppppppp

L(ulE0L,ex) //

OO�
�

�

L(E0L)

OO

``

// L(lE0L)

OO

L(CF)

hhPPPPPPPPPPPP

OO 88pppppppppp

Figure 2.2: Hierarchy of families of languages generated by single devices when erasing rules
are allowed.

• The strictness of the inclusion L(lE0L) ⊂ L(lET0L) was shown in [114].

• The arguments for the equivalence between exact and non-exact ulET0L systems have
been given in [52].

• We showed in [16] that ordered grammars have a solvable membership problem. Fur-
thermore, L(O,CF) is closed under homomorphism. If each context-sensitive language
were generable by an ordered grammar, then also any homomorphic image of a context-
sensitive language were generable by an ordered grammar, which would finally imply
the recursiveness of any enumerable language.

• A similar argument is valid for L(P,CF).

Finally, the problem remains where to place the chain

L(CF) // L(RC,CF) //___ L(P,CF)

within the sketched diagram.

By definition, the erasing variants of all the grammar formalisms are at least as pow-
erful as the non-erasing variants. The results listed above induce that the inclusions of the
corresponding language families are strict for matrix, programmed and random context gram-
mars as well as grammars with regular control (all with appearance checking), furthermore
for conditional and scattered context grammars. The problem remains unsolved for matrix
and programmed grammars without appearance checking, for grammars with regular con-
trol without appearance checking as well as for ordered grammars and unordered scattered
context grammars, though recently some contributions towards a solution of these open ques-
tions have been made by showing that erasing productions can be removed in random context

2.2. GENERATIVE CAPACITIES 33

grammars without appearance checking [118] and proving a sufficient condition for erasing
productions to be avoidable in grammars with controlled derivations [119]. Moreover, in [120]
a reformulation of this question for matrix grammars has been given in terms of Petri net
controlled grammars. In the case of ET0L systems, erasing productions can be eliminated by
a non-straightforward modification of the standard construction for context-free grammars,
see [96]. For the limited cases it has been shown in [47] that L(1lEPT0L) ⊂ L(1lET0L).

2.2.3 Grammar Systems

The power of CD grammar systems depends on the derivation mode. The following is
known [43].

(i) L(CD∞,CF[−λ], γ) = L(CF), for γ ∈ {=1,≥1, ∗} ∪ {≤k | k ≥ 1 }.

(ii) L(CF) = L(CD1,CF[−λ], γ) ⊂ L(CD2,CF[−λ], γ) ⊆ L(CDr,CF[−λ], γ)
⊆ L(CD∞,CF[−λ], γ) ⊆ L(M,CF[−λ]), for γ ∈ {=k, ≥k | k ≥ 2 }, r ≥ 3.

(iii) L(CDr,CF[−λ],=k) ⊆ L(CDr,CF[−λ],=sk), for k, r, s ∈ N.

(iv) L(CDr,CF[−λ],≥k) ⊆ L(CDr,CF[−λ],≥(k + 1)), for k, r ∈ N.

(v) L(CF) = L(CD1,CF[−λ], t) = L(CD2,CF[−λ], t)
⊂ L(CD3,CF[−λ], t) = L(CD∞,CF[−λ], t) = L(ET0L).

Concerning the full-competence mode of derivation, the following inclusion chain is valid
according to [75, 10].

(vi) L(CF) = L(CD1,CF[−λ], full) ⊂ L(CD2,CF[−λ], full)
= L(CD3,CF[−λ], full) = L(CD∞,CF[−λ], full) = L(M,CF[−λ], ac).4

About PC grammar systems, one can find the following results in [32, 43, 109].

(i) L(PC∞CF−λ) = L(NPC∞CF−λ) = L(PC∞CF) = L(NPC∞CF) = L(RE)

(ii) L(CF) ⊂ L([N]CPC∞CF−λ) ⊆ L(CS)

(iii) L(CF) ⊂ L([N]CPC∞CF) ⊆ L(RE)

Detailed proofs of results not contained in [32] can be found in [108] (which is an
improvement of [45]), [33], and [70].

4In [10], the λ-free case has not been considered explicitly. However, in the construction of a CD grammar
system with three components from an arbitrary one, no new erasing productions are introduced. Hence, the
constructed grammar system is λ-free if the given one is so.

Chapter 3

Accepting Grammars and Systems

While programming (and many other) languages are usually defined via grammars, that is
language generating devices, parsers are essentially language acceptors. As already Salomaa
pointed out in [99], any device that generates words (hence describing a formal language) can
be interpreted as a system that accepts words. A grammar, interpreted as language acceptor,
starts its derivation with a terminal string (the sentence to be analyzed) and strives to derive
the axiom, which serves as the “goal symbol” (instead of the “start symbol”), by applying
its rewriting rules backwards, that is, when the left-hand sides and the right-hand sides are
interchanged. Those accepting grammars still keep the feature of natural language descriptors
but allow to be viewed as nondeterministic “semi-algorithmic parsers” halting on those input
words which belong to the accepted language, yielding a parse if the syntactic correctness
of the input is given. If the grammar formalism guarantees that the length of the words
cannot increase during the derivations, then these nondeterministic acceptors can be realized
as backtrack parsing algorithms as described in [3].

For the usually considered type-n grammars of the Chomsky hierarchy, it does not matter
whether these devices are considered in generating or accepting mode, in the sense that the
family of languages generable by type-n grammars equals the family of languages acceptable
by type-n grammars, see [99, Theorem I.2.1]. However, the trivial proof of this observation
does not transfer to several cases of more involved language defining mechanisms.

In this chapter, we investigate grammar formalisms suitable for the description of non-
context-free languages as those which are listed in Chapter 2. Indeed, we find representatives
for each of the following cases:

• There is a trivial equivalence between accepting and generating mode, that is, we observe
x ⇒ y in generating mode of a grammar G if and only if y ⇒ x in accepting mode of
some (dual) grammar G′.

• We get equivalence between accepting and generating mode via a more complicated
construction.

• Accepting and generating mode yield different language classes.

For many devices X considered in this thesis, the definitions of the generating devices
given in the preceding chapters equally apply to the accepting case. We have covered both
the generating and the accepting case, whenever these notions are inherited via the underlying
Chomsky grammar. For the definition of the accepting mode of the devices, the general idea
is the next:

34

3.1. ACCEPTING VERSUS GENERATING MODE 35

• Instead of start words, we have goal words. We use the notion “axioms” both in
generating and in accepting case.

• Generally, we allow only productions of a special form in generative devices. Since they
turn out to be the most interesting case, mainly context-free productions of the form
a → w, where a is some symbol and w is some (possibly empty) word, are considered.
In accepting mode, we turn these restrictions “around”, coming to productions of the
form w → a in the context-free case. Especially, accepting λ-productions are of the
form λ→ a.

We call an accepting grammar Gd derived from a generating grammar G dual to G if Gd is
obtained from G by interpreting start words as goal words and productions of the form v → w
as productions w → v. Similarly, one can consider the dual Hd of an accepting grammar H.
Obviously, (Gd)d = G and (Hd)d = H.

• An essential thing about grammars is their dynamic interpretation via the yield relation
⇒ (and its reflexive transitive closure

∗
⇒). Following [15, 16, 52], we introduce the

corresponding yield relation (also denoted by ⇒) of the accepting mode with textually
the same words as in the generating case.

Observe that, when defining accepting counterparts of existing generating devices, we do not
want to define accepting grammars just in order to mimic the generating steps the other way
round, but we want to carry over the original idea and motivation of the generating mech-
anism in order to define the corresponding accepting mechanism. Formally, such accepting
grammars look like their generating counterparts, just turning the core productions “around”
and keeping the control mechanism ruling the application of these productions textually the
same.

If needed, we will give more details about the accepting devices further below.

3.1 Accepting versus Generating Mode

In this section, we compare, for the various grammar formalisms, their power as generating
and as accepting devices. If X is some device, Lgen(X) (Lacc(X)) denotes the language
generated (accepted) by the device X. If X is some class of devices (such as, for example,
(M,CF)), Lgen(X) (Lacc(X)) denotes the family of languages each of which can be generated
(accepted) by some device in X.1 As in the preceding chapters, let VN and VT be two disjoint
alphabets, the alphabet of nonterminals and the alphabet of terminal symbols, respectively.
Moreover, we denote the total alphabet VN ∪ VT of G by VG.

3.1.1 Context Condition Grammars

We already mentioned that, for type-n grammars, the descriptive power of the generating
and the accepting mode coincides. More precisely, if G is a generating type-n grammar, then
its dual Gd is an accepting type-n grammar such that Lgen(G) = Lacc(G

d), and vice versa.
In this case, we find x⇒ y in G if and only if y ⇒ x in Gd.

1For a device X, Lgen(X) has been written as L(X) in the previous chapter, and for a class X of devices,
Lgen(X) is identical with L(X). The subscript ‘gen’ is only added to explicitly point to fact that the devices
are treated in generating mode.

36 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

In this section, we introduce a type of grammar referred to as context condition gram-
mar (cc grammar, for short) for which the trivial relation between say generating grammars
and their dual accepting counterparts is true, as well. Since cc grammars generalize phrase
structure grammars, we show the well-known result once more.

Definition 3.1 (context condition grammars [17]) A context condition (cc) grammar is
given by a construct G = (VN , VT , P , Ω), where P is a finite set of production tables
P = {P1, P2, . . . , Pt} and Ω ⊂ V +

G is the finite set of axioms. Each table contains a finite
number of productions pij of the form (vij → wij , gij) (with 1 ≤ i ≤ t and 1 ≤ j ≤ |Pi|),
where vij, wij ∈ V +

G and gij ⊆ (VG ∪{#})
∗×N (where # 6∈ VG is a new limiting symbol). As

an exception, we admit λ-productions, more precisely, productions of the form (vij → λ, gij)
in generating mode or productions of the form (λ→ wij , gij) in accepting mode, respectively.
We call vij → wij the core production of the production pij . A table Pi is applied to a string x
using the following steps:

1. Consider the string x to be partitioned into x = x1v1x2v2 · · · xnvnxn+1. Define
x# = x1#x2# · · · xn#xn+1.

2. Select n productions pij1, pij2 , . . . , pijn from Pi (possibly with pijr = pijs) such that for
all 1 ≤ k ≤ n: vk = vijk

and (x#, k) ∈ gijk
.

3. Replace x using the selected productions such that we get the sentential form y =
x1wij1x2wij2 · · · xnwijnxn+1.

If we succeed going through these three steps, then we write x ⇒ y in this case. By
∗
⇒, we

denote the reflexive and transitive closure of the relation ⇒. The language generated by the
cc grammar G is Lgen(G) = { z ∈ V ∗

T | (∃ω ∈ Ω)ω
∗
⇒ z }. The language accepted by the cc

grammar G is Lacc(G) = { z ∈ V ∗
T | (∃ω ∈ Ω) z

∗
⇒ ω }.

Observe that cc grammars are a very broad framework, maybe comparable to selective
substitution grammars [41]. Especially, note that we do not exclude the further derivation of
terminal symbols. Hence, we incorporate pure rewriting2, too, and also the usual conventions
in parallel rewriting.

Example 3.1 ([17]) Every phrase structure grammar corresponds to an equivalent cc gram-
mar G with one table and one one-letter-axiom letting g = V ∗

G{#}V
∗
G×{1} for any production.

Conversely, to every cc grammar G = (VN , VT , {P}, {ω}) with one table with productions of
the form (v → w, V ∗

G{#}V
∗
G × {1}) with |v|VN

> 0 in the generating or |w|VN
> 0 in the

accepting case, respectively, and one one-letter axiom ω ∈ VN , there corresponds an equiv-
alent type-0 grammar (VN , VT , P ′, ω). This is also true if we restrict ourselves to so-called
left derivations, where we let g = V ∗

T {#}V
∗
G × {1} for any production. For context-sensitive

grammars, it is possible to give another different characterization. Let H = (VN , VT , P, S)
be a generating context-sensitive grammar. For each production y1Ay2 → y1wy2, we put a
production (A → w, g) into the table P ′ of the equivalent cc grammar (VN , VT , {P ′}, {S}),
where (x1#x2, n) ∈ g if and only if y1 ∈ Suf(x1) and y2 ∈ Pref(x2) and n = 1. Dually, we
may treat the case of accepting context-sensitive grammars.

2In pure grammars and systems, there is no distinction between terminal and nonterminal symbols. As in
the case of Lindenmayer systems, there is a total alphabet about which the rewriting rules are defined.

3.1. ACCEPTING VERSUS GENERATING MODE 37

In the following, we formulate the concept of dual grammar formally for cc grammars. If
G = (VN , VT , {P1, P2, . . . , Pt},Ω) is a cc grammar, then Gd = (VN , VT , {P d

1 , P d
2 , . . . , P d

t },Ω)
is called dual to G if P d

i = { (w → v, g) | (v → w, g) ∈ Pi }. Obviously, (Gd)d = G.

Our main theorem is the next. The simple inductive proof parallels the one for [99,
Theorem I.2.1].

Theorem 3.2 ([17]) (i) Lgen(G) = Lacc(G
d), for any generating cc grammar G.

(ii) Lacc(G) = Lgen(Gd), for any accepting cc grammar G.

Proof. Let G = (VN , VT , P , Ω) be a cc grammar, generating or accepting. It is shown
by induction over k that y0 ⇒ y1 ⇒ . . . ⇒ yk is a derivation according to G if and only if
yk ⇒ . . . ⇒ y1 ⇒ y0 is a derivation according to Gd. By definition of Gd, this equivalence
is true for k = 1. Let y0 ⇒ y1 ⇒ . . . ⇒ yk ⇒ yk+1 according to G and assume that
yk ⇒ . . . ⇒ y1 ⇒ y0 is a derivation according to Gd. As, by definition, yk+1 ⇒ yk according
to Gd, we get yk+1 ⇒ yk ⇒ . . .⇒ y1 ⇒ y0 according to Gd.

Let ω ∈ Ω and z ∈ V ∗
T . If G is generating, it follows as a particular case that ω

∗=⇒
G

z if
and only if z

∗=⇒
Gd

ω. Hence, Lgen(G) = Lacc(G
d). If G is accepting, then z

∗=⇒
G

ω if and only
if ω

∗=⇒
Gd

z, thus Lacc(G) = Lgen(Gd). 2

Since we can interpret any type-n grammar as cc grammar G, and since we can re-interpret
the dual Gd as type-n grammar, we obtain Lgen(X) = Lacc(X) for X ∈ {REG,CF,CS,RE}
as a simple corollary. But we can handle other devices in this setting, too. Its application
is always the same. (1) Find a characterization of the grammars in question in terms of cc
grammars. (2) Consider the duals of the cc grammars in the opposite mode (either accepting
if we start with a generating device or vice versa). (3) Re-interpret the dual cc grammars
again in terms of the original mechanism. All the following examples are from [17].

Example 3.3 (Random context grammars) Every random context grammar G, G =
(VN , VT , P, S) may be interpreted as a cc grammar G′ = (VN , VT , {P ′}, {S}) where, for each
random context rule (α → β,Q,R), we have one production (α → β, g) in P ′ such that
(x1#x2, n) ∈ g if and only if A ∈ Q implies A ∈ Sub(x1) ∪ Sub(x2) and A ∈ R implies
A 6∈ Sub(x1) ∪ Sub(x2), and n = 1.

Conversely, consider a cc grammar of the form G = (VN , VT , {P}, {S}) with S ∈ VN and
productions (α → β, g) such that α → β is a rewriting rule over VG and there are subsets Q
and R of VN such that g may be characterized via (x1#x2, n) ∈ g if and only if A ∈ Q implies
A ∈ Sub(x1) ∪ Sub(x2) and A ∈ R implies A 6∈ Sub(x1) ∪ Sub(x2), and n = 1. To G, there
corresponds an equivalent random context grammar G′ defined in the obvious way. Hence,
we immediately obtain the equivalence between generating and accepting mode for random
context grammars.

Other regulation mechanisms that may be treated similarly are:

• string random context grammars (also called semi-conditional grammars) [41, 86],

• random string context grammars ([16, 29]),

• a variant of conditional grammars introduced by Navrátil [82, 85].

38 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

Example 3.4 (Conditional grammars) To any conditional grammar G of type (i, j), G =
(VN , VT , P, S, ρ), there corresponds a cc grammar G′ = (VN , VT , {P ′}, {S}) with α → β ∈ P
if and only if (α → β, gsmα→#(ρ(α → β)) × {1}) ∈ P ′, where the gsm-mapping gsmα→#

replaces exactly one occurrence of α by #, and keeps the other symbols unchanged. Since
type-j languages are closed under non-erasing gsm-mappings, gsmα→#(ρ(α→ β)) is a type-j
language over VG ∪ {#} with exactly one occurrence of #.

On the other hand, if G′ = (VN , VT , {P ′}, {S}) is a cc grammar with S ∈ VN and produc-
tions (α→ β,L(α→ β)×{1}) ∈ P ′ (where α→ β is a type-i production), then the conditional
grammar G = (VN , VT , P, S, ρ) with α→ β ∈ P if and only if (α→ β,L(α→ β)× {1}) ∈ P ′,
and ρ(α → β) = gsm−1

α→#(L(α → β)) ∩ V ∗
G, is equivalent to G′ and is indeed of type (i, j),

since type-j languages are closed under both inverse gsm-mappings and intersections with
regular sets, which means that ρ(α→ β) is a type-j language over VG.

Example 3.5 (Matrix grammars without appearance checking) Consider a matrix
grammar G = (VN , VT ,M, S, F) with F = ∅ and let m1,m2, . . . ,mt be the matrices in M
and (αi1 → βi1, αi2 → βi2, . . . , αiki

→ βiki
) be the production sequence of matrix mi. We

introduce a unique label pij (1 ≤ i ≤ t, 1 ≤ j ≤ ki). In the equivalent cc grammar
G′ = (V ′

N , VT , P, {S′}) with V ′
N = VN ∪ {pij | 1 ≤ i ≤ t, 1 ≤ j ≤ ki} ∪ {S

′} (the unions
being disjoint), we have a start table containing {(S′ → Spi1, {#} × {1}) | 1 ≤ i ≤ t},
a termination table {(pi1 → λ, V ∗

T {#} × {1}) | 1 ≤ i ≤ t}, and, for each pij , j < ki,
a table {(αij → βij , V

∗
G{#}V

∗
G{#} × {1}), (pij → pi,j+1, V

∗
G{#}V

∗
G{#} × {2})}, and, for

each piki
, a table {(αiki

→ βiki
, V ∗

G{#}V
∗
G{#} × {1})} ∪ {(piki

→ ps1, V
∗
G{#}V

∗
G{#} × {2}) |

1 ≤ s ≤ t}.
On the other hand, a cc grammar of the given form can be readily transformed into an

equivalent matrix grammar without appearance checking.
A similar but more awkward construction is possible in the non-erasing case. An al-

ternative proof for this case via a direct construction of dual matrix grammar is presented
in [16].

Moreover, both for

• programmed grammars without appearance checking and for

• grammars with regular control without appearance checking [41, 58, 99],

Theorem 3.2 applies in a very similar manner. For the latter case a construction is given
in [15].

Now we turn to systems with parallel rewriting. In [52], the concept of accepting parallel
derivation is discussed, arriving at the following formal definition:

Example 3.6 (ET0L systems) An accepting ET0L system is a quadruple

G = (V, V ′, {P1, P2 . . . , Pr}, ω),

where V ′ is a non-empty subset of the alphabet V , ω ∈ V +, and each table Pi is a finite
subset of V ∗ × V which satisfies the condition that, for each a ∈ V , there is a word wa ∈ V ∗

such that (wa, a) ∈ Pi (the elements of Pi are written as wa → a again), such that each Pi

defines a finite substitution σi : V ∗ → 2V ∗

, σi(a) = {w |w → a ∈ Pi}. We write y ⇒ x if

and only if x ∈ σ−1
i (y) for some i, and Lacc(G) = {v ∈ V ′∗ | v

∗
⇒ ω}. As in the generating

3.1. ACCEPTING VERSUS GENERATING MODE 39

case, if no table Pi contains a λ-rule, that is, Pi ⊆ V +×V for each i, then we call the system
propagating and add the letter P to the notation of the system. As regards the comparison of
the descriptive power of generating and accepting mode, L systems are quite trivial, since any
application of a finite substitution in generating mode can be simulated by an application of
the inverse of a finite substitution in accepting mode and vice versa. This fact is equally easily
seen using cc grammars: For any ET0L-table t, we introduce in the simulating cc grammar
a table t consisting exactly of the productions (v → w, {#}∗ × N) whenever v → w ∈ t.
Obviously, this also applies to the propagating case. Moreover, our theorem allows to carry
over results on the synchronization degree (which is determined by the number of tables,
see [95]) from generating systems to accepting ones. Especially, the equivalence result is valid
for E0L and EP0L systems, where the number of tables is restricted to one.

Example 3.7 ((Exact) uniformly-limited L systems) As in the case of ET0L systems,
the definitions of accepting kulET0L,ex and kulET0L systems are derived from the definitions
of the generating ones.3 In [52], a proof of the equivalence between generating and accepting
mode is given, stemming from the concept of duality introduced for L systems. Using Theo-
rem 3.2, we associate with each production v → w in a table Pi of an exact kulET0L system a
production (v → w, (V ∗

G{#})
kV ∗

G×{1, 2, . . . , k}) in a simulating table P ′
i of the corresponding

cc grammar.

Analogously, the employment of Theorem 3.2 shows the equivalence between generating
and accepting mode of kulET0L systems.

Note that this theorem allows also to carry over results on the synchronization degree
from generating systems to accepting ones.

Example 3.8 (Scattered context grammars) The application of Theorem 3.2 is possible
as follows. For any production (vi1, vi2, . . . , viri

) → (wi1, wi2, . . . , wiri
) of a scattered context

grammar, we introduce a table ti in the simulating cc grammar consisting of the productions
(vij → wij , (V

∗
G{#})

riV ∗
G × {j}) for each 1 ≤ j ≤ ri.

Clearly, also in the case of unordered scattered context grammars, Theorem 3.2 is applica-
ble. We just have to introduce a new table for each possible permutation.

3.1.2 When cc Grammars Do Not Help

We would like to treat matrix grammars with appearance checking as an example, where we
cannot apply our main theorem on cc grammars. Let G = (VN , VT ,M, S, F) be a matrix
grammar with appearance checking.

Observe that we could also include appearance checking features in cc grammars which
are not reversible, for example, via a table

{(pij → pi,j+1, (V
∗
G \ (V ∗

G{αij}V
∗
G)){#} × {1})}

if pij ∈ F . Taking the dual grammar, we would exclude βij instead of αij , which gives some
feeling why appearance checking really behaves different, as it is shown below. Indeed, we
find the following example: let G = ({A}, {a}, {(A → aa,A → a)}, A, F) be a generating
matrix grammar, where F contains both A → aa and A → a, then we have Lgen(G) = {aa}

3Note that the definitions of the yield relation of kulET0L,ex and kulET0L systems as given in Chapter 2
are equally suitable for the generating and accepting modes.

40 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

but the language accepted by the dual cc grammar obtained via the proposed construction is
{a, aa}.

Permitting appearance checking features in the accepting case allows to test both the
containment and the noncontainment of a string in the current sentential form. Thus, it is
less surprising that we get the following result.

Theorem 3.9 ([17]) (i) Lacc(M,CF–λ, ac) = Lgen(CS),

(ii) Lacc(M,CF, ac) = Lgen(RE).

Proof. We only prove Lgen(CS) ⊆ Lacc(M, CF–λ, ac) and Lgen(RE) ⊆ Lacc(M,CF, ac),
using the principle of the proof of Theorem 3.3 in [41]. The converse relations can easily be
seen by a construction of a linear bounded automaton and a Turing machine, respectively.

i) First, we find that Lacc(M,CF–λ, ac) is closed under finite union: In the case of two
given grammars, make the two sets of nonterminals disjoint, add an additional symbol S (the
new goal symbol) and two productions S1 → S, S2 → S (S1, S2 being the goal symbols of the
original grammars).

Let L ∈ Lgen(CS), L ⊆ V +. Obviously,

L =
⋃

a,b∈V

{a}dl
a(d

r
b(L)){b} ∪ (L ∩ (V ∪ V 2)).

Since the family Lacc(M,CF–λ, ac) is closed under finite union and contains all finite languages,
this identity proves that it is sufficient for the proof of the present assertion to show that
{a}K{b} ∈ Lacc(M,CF−λ,ac) for K ∈ Lgen(CS), λ 6∈M .

We consider a generating context-sensitive grammar G = (VN , VT , P, S) without λ-pro-
ductions in Kuroda normal form generating K. We construct an accepting matrix grammar
G = (VN , VT ∪ {a, b},M, S, F) as follows. Let VN = VN ∪ {A,B, S,E} ∪ {Y ′ |Y ∈ VN} (the
unions being disjoint), (VN ∪ VT) \ {Y ′ |Y ∈ VN} = {C1, C2, . . . , Cn}, let M contain the
following matrices:

(a) (ASB → S) ,

(b) (A→ E, B → E, a→ A, b→ B) ,

(c) (A→ A, B → B, x→ X) for all context-free rules X → x ∈ P ,

(d) (A→ A, B → B, Y → Y ′, Z → Z ′,

Y ′C1 → E, Y ′C2 → E, . . . , Y ′Cn → E,

C1Z
′ → E, C2Z

′ → E, . . . , CnZ ′ → E,

Y ′ → X, Z ′ → U) for XU → Y Z ∈ P,

and let F contain exactly all rules with the symbol E on their right-hand sides. The non-
terminal E, once introduced into the sentential form, cannot be removed anymore; thus it
serves as a “trap symbol”. Given a terminal string, only matrix (b) can be applied, replacing
exactly one occurrence of a and of b with the new nonterminals A and B, respectively. The
rules A→ E and B → E guarantee that this matrix can be applied only once. After A and B
have been introduced, the matrices of types (c) and (d) can be used in order to simulate the
productions of G. There, the rules with the symbol E on the right-hand sides make sure
that the symbols Y and Z can be replaced successfully according to some non-context-free

3.1. ACCEPTING VERSUS GENERATING MODE 41

production of G only if neighboring occurrences of Y and Z are primed. Finally, matrix A
can yield the goal symbol if and only if the given terminal string can be generated by G and A
and B have been introduced at the left- and rightmost positions, with the help of matrix (b)
in the first step. Therefore, L(G) = {a}K{b}.

(ii) For any recursively enumerable language L ⊆ Σ∗, Σ = {c1, c2, . . . , cm}, there is a
context-sensitive language L′ ⊆ V ∗, V ∩Σ = ∅, and a homomorphism h such that L = h(L′).
Therefore, it is sufficient to add a sequence of productions c1 → E, c2 → E, . . . , cm → E as
the first m rules in each matrix constructed above, and to introduce matrices (w → z) for
h(z) = w. 2

Corollary 3.10 ([17]) (i) Lgen(M,CF, ac) = Lacc(M,CF, ac),

(ii) Lgen(M,CF–λ, ac) ⊂ Lacc(M,CF–λ, ac),

Let us mention that we need the whole power of (λ-free) context-free rules in this con-
struction in the sense that we cannot restrict the accepting matrix grammars to linear or
regular core rules in order to get them more powerful than in generating mode. Indeed, for
X ∈ {REG,LIN}, we find

Lacc(M,X,ac) = Lacc(M,X) = Lgen(X)

by the same argument as in generating mode (e.g. see [41]). Hence, for X ∈ {REG,LIN}, we
have

Lacc(M,X,ac) = Lgen(M,X,ac) .

Note that the inclusions both Lgen(M,CF–λ, ac) ⊂ Lacc(M,CF–λ, ac) and Lgen(M,CF, ac) ⊆
Lacc(M,CF, ac) can alternatively be proved by a direct simulation, more precisely, without
(additional) nonterminal symbols. In [19], such a proof is given for pure programmed gram-
mars.

In [15, 16], analogous results are obtained for

• programmed grammars with appearance checking,

• regular controlled grammars with appearance checking and

• ordered grammars.

Furthermore, using the same idea, we get this result for 1-limited ET0L systems:

Theorem 3.11 ([52]) (i) Lacc(1lEPT0L) = Lgen(CS),

(ii) Lacc(1lET0L) = Lgen(RE).

Outline of the proof. The containment of Lacc(1lEPT0L) in Lgen(CS) holds as any ac-
cepting 1lEPT0L system can be simulated by a linear bounded automaton.

The family Lacc(1lEPT0L) is closed with respect to finite union and contains all finite
languages. Therefore, for the proof of Lacc(1lEPT0L) ⊇ Lgen(CS), it is sufficient to show
that {a}M{b} ∈ Lacc(1lEPT0L) for M ∈ Lgen(CS), λ 6∈ M . Let G = (VN , VT , P, S) be a
context-sensitive grammar without λ-productions in Kuroda normal form generating M . Let
us assume a unique label r being attached to any rule of the form XU → Y Z (the set of
labels is denoted by Lab). We construct a 1lEPT0L system G′ = (V, V ′, {inita, initb, term} ∪

42 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

{simul-cfX→x |X → x ∈ P} ∪ {simul-csr,i | r ∈ Lab, 1 ≤ i ≤ 6}, S′, 1) accepting {a}M{b} as
follows. Let

V = VN ∪ {A,B, S′, Fl, Fr} ∪ {(A, r), [A, r], [B, r], (Y, r), [Z, r] | r : XU → Y Z ∈ P} ∪ V ′

(the unions being disjoint), where V ′ = VT ∪ {a, b}.
For brevity, we leave out productions of the form Fl → x which have to be added for

right-hand sides x not present in the table specifications listed above in order to fulfill the
completeness restriction for tables inherited from L systems.

1. start/termination/context-free rules:

(a) inita = {a→ A} ∪ {x→ Fr | x ∈ V \ V ′}

(b) initb = {b→ B} ∪ {x→ Fr | x ∈ V \ (V ′ ∪ {A})}

(c) simul-cfX→x = {x → X} ∪ {(A, r) → Fr, [A, r] → Fr | r ∈ Lab} for context-free
rules X → x ∈ P ;

(d) term = {ASB → S′} ∪ {x→ Fr | x ∈ V }

2. For each context-sensitive rule r : XU → Y Z ∈ P , we introduce the next tables:

(a) simul-csr,1 = {A→ [A, r], B → [B, r]} ∪ {[A, s]→ Fr, (A, s)→ Fr,
[B, s]→ Fr | s ∈ Lab};

(b) simul-csr,2 = {Y → [Y, r]} ∪ {A→ Fr, B → Fr, (A, s)→ Fr, [A, s′]→ Fr,
[B, s′] → Fr, [T, s]→ Fr, (T, s)→ Fr | s ∈ Lab, s′ ∈ Lab \ {r}, T ∈ VN};

(c) simul-csr,3 = {Z → (Z, r)} ∪ {A→ Fr, B → Fr, (A, s)→ Fr, [A, s′]→ Fr,
[B, s′] → Fr, [T, s′]→ Fr, (T, s)→ Fr | s ∈ Lab, s′ ∈ Lab \ {r}, T ∈ VN};

(d) simul-csr,4 = {[A, r]→ (A, r)} ∪ {A→ Fr, B → Fr, (A, s)→ Fr, [A, s′]→ Fr,
[B, s′]→ Fr, [T, s′]→ Fr, (T, s′)→ Fr, [Y, r]y → Fr | s ∈ Lab, s′ ∈ Lab \ {r},
T ∈ VN , z ∈ V \ {[Y, r]}, y ∈ V \ {(Z, r)}};

(e) simul-csr,5 = {[B, r]→ B} ∪ {A→ Fr, B → Fr, (A, s′)→ Fr, [A, s]→ Fr,
[B, r]→ Fr, [T, s′]→ Fr, (T, s′)→ Fr, z(Z, r)→ Fr | s ∈ Lab, s′ ∈ Lab\{r},
T ∈ VN , z ∈ V \ {[Y, r]}, y ∈ V \ {(Z, r)}};

(f) simul-csr,6 = {(A, r)→ A} ∪ {(Z, r)→ U} ∪ {[Y, r]→ X} ∪ {A→ Fr, [A, s]→ Fr,
[B, s]→ Fr, (A, s′)→ Fr, [T, s′]→ Fr, (T, s′)→ Fr | s ∈ Lab,
s′ ∈ Lab \ {r}, T ∈ VN}.

The general idea of this construction is the same as in the proof of Theorem 3.9. The
simulation of a non-context-free production r : XU → Y Z ∈ P is more involved.
The table simul-csr,1 marks the special nonterminals A and B with the label r of the
production, selecting the production from P to be simulated. Next, simul-csr,2 is used
for selecting an occurrence of Y by marking it with r, as well, leading to [Y, r]. Then,
one occurrence of Z is marked by r with the help of simul-csr,3. The table simul-csr,4

checks that there is no unmarked symbol to the right of [Y, r], whereas simul-csr,5

checks that there is no unmarked symbol to the left of the marked Z. Moreover, [B, r]
is renamed to B, again. Finally, by simul-csr,6 the marked symbols Y , Z and A are
replaced with X, U and (unmarked) A, thus finishing the simulation of an application
of r and yielding a sentential form with no marked symbols, again. The renaming of

3.1. ACCEPTING VERSUS GENERATING MODE 43

symbols to their several copies and the productions with Fr on the right-hand sides
are used to control the order in which the tables are applied. Note that, according to
Definition 2.10, any production of a table has to be applied (exactly) once to a sentential
form, if possible. This allows to test non-occurrences of symbols. This also guarantees
that all markings are done with one and the same label r during one cycle of applications
of simul-csr,1 through simul-csr,6.

By this construction, the first equality of the Theorem is proved. The second equality
is now proved as the corresponding one of Theorem 3.9. 2

Corollary 3.12 ([17]) (i) Lgen(1lEPT0L) ⊂ Lacc(1lEPT0L),

(ii) Lgen(1lET0L) ⊆ Lacc(1lET0L).

Finally, we are going to consider another restriction of ET0L systems,4 where the nonde-
terminism in the yield relation is decreased considerably: given a table and a sentential form,
the application of the table to the sentential form yields only one successor word.

Definition 3.2 ([96]) Let G = (Σ,∆, {P1, P2, . . . , Pr}, ω) be a generating ET0L system as in
Definition 2.7. The system G is called deterministic if any table Pj defines a homomorphism,
that is |σj(a)| = |{w | a→ w ∈ Pj }| = 1, for all a ∈ Σ and 1 ≤ j ≤ r.

In this case, we add a letter D to the notation of the systems, coming to the class EDT0L.
If we treat the notion of determinism as purely syntactical concept, we are led to the

following definition in the accepting case.

Definition 3.3 ([52]) Let G = (Σ,∆, {P1, P2, . . . , Pr}, ω) be an accepting ET0L system as
defined in Example 3.6. The system G is called deterministic if |{ a | w → a ∈ Pj }| ≤ 1, for
all w ∈ Σ∗ and 1 ≤ j ≤ r.

Our intuition is to conceive a concept in which any decomposition of the sentential form into
non-overlapping subwords can yield at most one result in a direct derivation step, whenever
a deterministic table is applied to it. Note that this is in accordance with deterministic
generating Lindenmayer systems (where any direct derivation step yields exactly one resulting
word). One might alternatively think of defining deterministic accepting Lindenmayer systems
by requiring all tables define an inverse homomorphism. In order to take also this idea into
consideration, the concept of symmetrically deterministic systems is introduced which requires
unambiguity on both sides of the rewriting rules.

Definition 3.4 ([52]) Let G be some ET0L system (be it generating or accepting). The
system G is called symmetrically deterministic or ESDT0L system if and only if for any
table P and any two productions v1 → w1, v2 → w2 ∈ P , v1 = v2 is equivalent to w1 = w2.

It turns out that, in the generating case, this concept can be viewed as some sort of normal
form.

Lemma 3.13 ([52]) Lgen(EDT0L) = Lgen(ESDT0L)

4In principle, one may consider deterministic variants of sequentially rewriting grammar formalisms as well.
We refrain from considering deterministic sequential grammars here since we have shown in [6, 7] that, in most
cases, only singleton sets or the empty language can be generated by deterministic sequential grammars.

44 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

Proof. Since the inclusion ‘⊇’ of the claim is trivial, the other direction ‘⊆’ remains to be
shown. Let G = (V, V ′, {P1, P2, . . . , Pr}, ω) be a generating deterministic ET0L system with
V = {a1, a2, . . . , at}, V ′ = {as+1, as+2, . . . , at}. Let F,Λ1,Λ2, . . . ,Λt be new symbols. We
define a new total alphabet V = V ∪ {F,Λ1,Λ2, . . . ,Λt}.

For each table P in G, define

conflict(P) = { ai → x ∈ P | (∃j 6= i)(aj → x ∈ P) } and

no-conflict(P) = P \ conflict(P)

Define

SD(P) = no-conflict(P) ∪ { ai → Λix | ai → x ∈ conflict(P) }

∪ {Λi → F i+1 | ai ∈ V } ∪ {F → F}, and

Tj = {Λj → λ} ∪ { b→ b | b ∈ V \ {Λj} }.

Consider the symmetrically deterministic system

G = (V , V ′, {SD(P1), SD(P2), . . . , SD(Pr), T1, T2, . . . , Tt}, ω).

Then Lgen(G) = Lgen(G) follows immediately. 2

Next, we show that the condition of determinism is no restriction at all regarding the
power of accepting ET0L systems.

Lemma 3.14 ([52]) Lacc(ET0L) = Lacc(EDT0L)

Proof. We have to show the inclusion ⊆. The proof is very much alike the previous one.
Let G = (V, V ′, {P1, P2, . . . , Pr}, ω) be an accepting ET0L system.

For each table P in G, define

conflict(P) = {x→ y ∈ P | (∃z 6= y)(x→ z ∈ P) } and

no-conflict(P) = P \ conflict(P)

We introduce new symbols Λx→y if there is a table P such that x → y ∈ conflict(P). We
assume a suitable enumeration of these symbols, that is,

{Λx→y | (∃1 ≤ j ≤ r)(x→ y ∈ conflict(Pj)) } = {Λi | 1 ≤ i ≤ I }.

We define a new total alphabet V = V ∪ {F,Λ1,Λ2, . . . ,ΛI}.
Next, we define

DET (P) = no-conflict(P) ∪ {Λx→yx→ y |x→ y ∈ conflict(P) }

∪ {F i+1 → Λi | 1 ≤ i ≤ I } ∪ {F → F}, and

Tj = {λ→ Λj} ∪ { b→ b | b ∈ V \ {Λj} }.

Consider the deterministic system

G = (V , V ′, {DET (P1),DET (P2), . . . ,DET (Pr), T1, T2, . . . , TI}, ω).

3.1. ACCEPTING VERSUS GENERATING MODE 45

By this construction, Lacc(G) = Lacc(G). 2

In other words, any ET0L language L can be accepted by a deterministic ET0L system.
This contrasts the situation found within generating ET0L systems, since there is an ET0L
language L which cannot be generated by any deterministic ET0L system [96]. Since the dual
of an accepting ESDT0L system is again an ESDT0L system generating the same language
and vice versa, we may state the following corollary.

Corollary 3.15 ([52]) Lacc(ESDT0L) = Lgen(ESDT0L) = Lgen(EDT0L)
⊂ Lacc(EDT0L) = Lacc(ET0L) = Lgen(ET0L)

By simple modifications of the proofs of Lemmata 3.13 and 3.14 the statements of these
Lemmata are shown to be valid also for ((exact) uniformly) limited ET0L systems, see [52].
We do not know what happens if we restrict our attention to propagating systems.

3.1.3 Cooperating Distributed Grammar Systems

Let Γ = (VN , VT , S, P1, P2, . . . , Pn) be a CD grammar system with context-free components.
The language accepted in the mode γ, γ ∈ {∗, t, full} ∪ {=k,≤k,≥k | k ≥ 1 }, is defined by

Lacc(Γ, γ) = {w ∈ V ∗
T | w

γ
=⇒i1 w1

γ
=⇒i2 w2 . . .

γ
=⇒im wm = S,

with m ≥ 1, 1 ≤ ij ≤ n, wj ∈ V ∗
Γ , 1 ≤ j ≤ m },

where the components are accepting context-free grammars. The accepting derivation in the
full-competence mode is defined as follows. Following [11], a set of production rules P is said
to be sentential-form-complete (sf -complete, for short) with respect to a word w, w 6= λ, if
and only if w has a factorization w = z1z2 · · · zn such that, for each i, 1 ≤ i ≤ n, there is a
rule zi → β ∈ P , for some β. Now, an accepting derivation in the full-competence mode by
the ith component is defined by

x
full=⇒i y, iff x = x0 ⇒i x1 ⇒i x2 ⇒i . . .⇒i xm = y,

where for all j, 0 ≤ j ≤ m−1, Pi is sf -complete with respect to xj, and it is not sf -complete
with respect to y or y = S.5

First, we show that using the modes ∗, =k, ≤k and ≥k for CD grammar systems, k ≥ 1,
we get trivial equivalences between generating and accepting devices.

Theorem 3.16 ([53]) Let X ∈ {CF,CF−λ}. If N ∈ N∪{∞} and γ ∈ {∗}∪{=k,≤k,≥k |
k ≥ 1 }, then Lgen(CDN ,X, γ) = Lacc(CDN ,X, γ).

Outline of the proof. We restrict ourselves to the =k-mode. The equality for the other
cases can be shown with similar arguments. Thus, let Γ = (N,T, S, P1, P2, . . . , Pn) (with
n ∈ N) be a CD grammar system working in =k-mode for some k ≥ 1.

We construct the dual CD grammar system Γd (with accepting context-free productions)
as follows. Let Gd = (N,T, S, P d

1 , P d
2 , . . . , P d

n), where P d
i is defined as

P d
i = {β → α | α→ β ∈ Pi }

5Note that, in the generating case, we can reformulate the definition in terms of sf -completeness as well.
There, Pi is required to be sf -complete with respect to h(xj), for 1 ≤ i ≤ m − 1, but not to h(y) or y ∈ T ∗,
where h is the morphism erasing all terminal symbols and mapping all nonterminals identically.

46 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

for 1 ≤ i ≤ n.

Now, it suffices to show by induction that α
=k=⇒i β in Γ if and only if β

=k=⇒i α in Gd for
some 1 ≤ i ≤ n. Consider a k-step derivation in Γ via production set Pi:

α = α0 ⇒i α1 ⇒i . . .⇒i αk = β.

Since αj−1 ⇒i αj by a context-free derivation using a production in Pi, we have αj ⇒i αj−1

using the dual production from P d
i . The necessity can be seen similarly. 2

Combining this theorem with the results about the generating case, we immediately get:

Corollary 3.17 ([53]) 1. If γ ∈ {∗,=1,≥1} ∪ {≤k | k ≥ 1 }, then

Lgen(CF) = Lacc(CD∞,CF[−λ], γ).

2. If γ ∈ {=k,≥k | k ≥ 2 }, then, for any n ≥ 2,

Lgen(CF) = Lacc(CD1,CF[−λ], γ)

⊂ Lacc(CD2,CF[−λ], γ)

⊆ Lacc(CDn,CF[−λ], γ)

⊆ Lacc(CD∞,CF[−λ], γ) ⊆ Lgen(M,CF[−λ]).

Next, we turn to the terminating mode. Similarly as in Section 3.1.2, equivalence to
context-sensitive grammars will be shown for accepting systems when working in the t-mode.
The following theorem is possibly the strongest one of its kind (in comparison with other
characterizations of the context-sensitive languages via accepting regulated devices, con-
fer [16]), since generating CD grammar systems with context-free components working in
t-mode are strictly weaker than ordered grammars regarding their generative capacity. As in
general a constructive proof showing Lgen(X) ⊆ Lgen(Y) is transferable into a proof showing
Lacc(X) ⊆ Lacc(Y), it is interesting to find generative devices with low generative capacity
whose accepting counterparts have maximal accepting power, that is, they characterize the
context-sensitive languages, if λ-rules are forbidden. Here, in contrast to our earlier results,
the admittance of erasing productions does not enhance the accepting power of CD grammar
systems working in t-mode:

Having an accepting component with λ-rules, that is, rules of the form λ → A, working
in t-mode we can delete the whole component, because a derivation using such a component
does not terminate. Thus, Lacc(CD∞,CF, t) and Lacc(CD∞,CF−λ, t) denote the same family
of languages.

Theorem 3.18 ([53]) Lacc(CD∞,CF−λ, t) = Lacc(CD∞,CF, t) = Lgen(CS).

Proof. By our above remark, we may assume that a given accepting grammar system Γ
working in t-mode does not contain λ-productions. Hence, it is easy to construct a simulating
linear bounded automaton accepting Lacc(Γ). Therefore, the inclusion Lacc(CD∞,CF, t) ⊆
Lgen(CS) follows. It is left to show the converse inclusion.

By a standard argument, it can be shown that Lacc(CD∞,CF, t) is closed under union
and embraces the finite languages.

3.1. ACCEPTING VERSUS GENERATING MODE 47

Let L ∈ Lgen(CS), L ⊆ V ∗
T . Then,

L =
⋃

a,b∈VT

({a}V +
T {b} ∩ L) ∪ (L ∩ VT) ∪ (L ∩ V 2

T).

Since L is context-sensitive, Lab = {w ∈ V +
T | awb ∈ L } is context-sensitive due to the closure

of Lgen(CS) under derivatives and intersection with regular languages. Now, it is sufficient
for the proof of the present assertion to show that {a}M{b} ∈ Lacc(CD∞,CF−λ, t) provided
that M ⊆ V +

T is context-sensitive.
Let G = (VN , VT , S, P) be a context-sensitive grammar without λ-productions in Kuroda

normal form generating M . Let us assume a unique label r being attached to any genuine
context-sensitive rule of the form XU → Y Z with X,U, Y, Z ∈ VN ; the set of labels is denoted
by Labcs and let Labcs = {r1, r2, . . . , rR}.

We construct a (CD∞,CF− λ, t) system of grammars

G′ = (V ′
N , VT , S′, Pinit, Pfin, Pcf,1, Pcf,2, P1,1, P1,2, P1,3, . . . , PR,1, PR,2, PR,3)

accepting {a}M{b}. The nonterminal alphabet is

V ′
N = VN ∪ { [A, ρ], (A, ρ), [Y, ρ], (Z, ρ) | rρ : XU → Y Z ∈ P } ∪

{ C̃ | C ∈ VN ∪ VT } ∪ { c̄ | c ∈ VT } ∪ {A,B, S′, F,A′ }

(the unions being disjoint). For brevity, we let V̄T = { c̄ | c ∈ VT } and define the two mor-
phisms ˆ: (VT ∪ VN)∗ → (V̄T ∪ VN)∗ by ĉ = c̄, for c ∈ VT , and Ĉ = C for C ∈ VN , and, for
each production XU → Y Z labelled with r, gr : (V̄T ∪ VN)∗ → (V̄T ∪ VN ∪ { Ỹ , Z̃ })∗ is given
by gr(Y) = Ỹ , gr(Z) = Z̃, and gr(x) = x, otherwise.

The component

Pinit = { a→ A, b→ B } ∪ { c→ c̄ | c ∈ VT } ∪

{Y → F | Y ∈ V ′
N \ (V̄T ∪ {A,B }) },

when applied correctly, turns the left delimiter a into A and the right delimiter b into B, while
the other occurrences of a’s and b’s (as well as all the other terminal symbols) are changed
into their barred counterparts. The check of the correctness of this application is postponed
until the last applicable component

Pfin = {ASB → S′}

does its work.
Purely context-free productions are handled by

Pcf,1 = { ŵ → C̃ | C → w ∈ P } ∪ { D̂ → D̃ | D ∈ VT ∪ VN } ∪ {A→ A′ } ∪

{ (A, ρ)→ F, [A, ρ]→ F | 1 ≤ ρ ≤ R } ∪ {a→ F, b→ F};

Pcf,2 = { D̃ → D̂ | D ∈ VT ∪ VN } ∪ {A
′ → A } ∪

{ (A, ρ)→ F, [A, ρ]→ F | 1 ≤ ρ ≤ R } ∪ {a→ F, b→ F}.

First applying Pcf,1 and then Pcf,2, we may simulate one application of some context-free rule.
Of course, Pcf,1 may be used also to simulate a parallel application of various context-free

48 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

rules, but this does not matter, since there is a possible trivial sequentialization of these rules
corresponding to a valid sequence of derivation steps in G.

Finally, we introduce three production sets simulating a genuine context-sensitive produc-
tion rρ : XU → Y Z ∈ P :

Pρ,1 = {A→ [A, ρ], Y → [Y, ρ], Y → Ỹ , Z → (Z, ρ), Z → Z̃} ∪

{ (A,σ) → F | 1 ≤ σ ≤ R } ∪

{ [C, σ] → F | 1 ≤ σ ≤ R ∧ σ 6= ρ ∧ C ∈ VN ∪ VT ∪ {A} } ∪

{a→ F, b→ F,A′ → F},

Pρ,2 = { [A, ρ]→ (A, ρ), A→ F,A′ → F, a→ F, b→ F, Y → F,Z → F } ∪

{ [C, σ] → F, (C, σ)→ F | 1 ≤ σ ≤ R ∧ σ 6= ρ ∧C ∈ VN ∪ VT ∪ {A} } ∪

{ z(Z, ρ) → F | z ∈ VT ∪ V ′
N ∧ z 6= [Y, ρ] } ∪

{ [Y, ρ]y → F | y ∈ VT ∪ V ′
N ∧ y 6= (Z, ρ) } ∪

{ Ũ → F | U ∈ VN ∪ VT , U 6∈ {Y,Z} },

Pρ,3 = { (A, ρ)→ A, (Z, ρ)→ U, [Y, ρ]→ X,a→ F, b→ F,A′ → F } ∪

{ [C, σ] → F, (C, σ)→ F | 1 ≤ σ ≤ R ∧ C ∈ VN ∪ VT ∪ {A} } ∪

{ Ũ → F | U ∈ VN ∪ VT , U 6∈ {Y,Z} } ∪ { Ỹ → Y, Z̃ → Z }.

Consider the following derivation of G:

S
∗
⇒ x1XUx2 ⇒rρ x1Y Zx2.

In the constructed grammar system, we find the simulation

Ax̂1Y Zx̂2B
t=⇒ρ,1 [A, ρ]gρ(x̂1)[Y, ρ](Z, ρ)gρ(x̂2)B
t=⇒ρ,2 (A, ρ)gρ(x̂1)[Y, ρ](Z, ρ)gρ(x̂2)B
t=⇒ρ,3 Ax̂1XUx̂2B

Finally, we have ASB
t=⇒init S′.

Observe that the second production set only serves for checking whether the first produc-
tion set has correctly nondeterministically selected two adjacent Y and Z. These checks are
always possible, since we introduced left and right end-markers A and B, respectively. Fur-
thermore, observe that we need both tests, z(Z, ρ) → F and [Y, ρ]y → F in order to prevent
shortcuts, i.e., only replacing either Y by [Y, ρ] or Z by (Z, ρ). 2

Corollary 3.19 ([53]) Lgen(CD∞,CF[−λ], t) = Lgen(ET0L) = Lacc(ET0L)
⊂ Lacc(CD∞,CF[−λ], t) = Lgen(CS).

Now, we turn our attention to grammar systems with a limited number of components.

Theorem 3.20 ([53]) For n ≥ 2 we have:

Lgen(CF) = Lacc(CD1,CF[−λ], t)

⊂ Lacc(CDn,CF[−λ], t) = Lacc(CD∞,CF[−λ], t) = Lgen(CS).

3.1. ACCEPTING VERSUS GENERATING MODE 49

Proof. The relations Lgen(CF) = Lacc(CD1,CF[−λ], t) ⊆ Lacc(CD2,CF[−λ], t) are obvious;
the latter inclusion is shown to be strict by Theorem 3.18 and the proof below, where we
show the inclusion Lacc(CD∞,CF[−λ], t) ⊆ Lacc(CD2,CF[−λ], t).

Let Γ = (VN , VT , S, P1, P2, . . . , Pn) a CD grammar system with at least two components.
We construct a CD grammar system with two components

Γ′ = (V ′
N , VT , S1, P

′
1, P

′
2)

accepting Lacc(Γ, t). The nonterminal alphabet is

V ′
N = {Ai | A ∈ (VN ∪ VT), 1 ≤ i ≤ 2n } ∪ {F}

(the unions being disjoint). For 1 ≤ i ≤ 2n, we now define a morphism hi : (VN ∪VT)∗ → V ′ ∗
N ,

hi(C) = Ci, if C ∈ VN ∪ VT . The components P ′
1 and P ′

2 are given as follows:

P ′
1 = { a→ ai | a ∈ VT ∧ 1 ≤ i ≤ n } ∪

{Ai → An+j | Ai, An+j ∈ V ′
N ∧ 1 ≤ i, j ≤ n },

P ′
2 = {An+i → Ai | An+i, Ai ∈ V ′

N ∧ 1 ≤ i ≤ n } ∪

{hi(α)→ hi(A) | α→ A ∈ Pi ∧ 1 ≤ i ≤ n } ∪

{AiAj → F | Ai, Aj ∈ V ′
N ∧ 1 ≤ i, j ≤ n ∧ i 6= j }.

A possible derivation in Γ′ has to start by using component P ′
1. From now on, whenever

we simulate one step of the original grammar Γ using production set Pi we have to perform
one application of P ′

1 and P ′
2 in sequence. Here, P ′

1 is used to change the indices of the
symbols in the appropriate way. Then with P ′

2 one applies the productions of the original
set Pi. In addition, P ′

2 is used to check whether the first production set has changed the
indices correctly, that is, there is no mixture of letters indexed by different i, j. Consider the
following derivation of Γ:

w
t=⇒i1 α1

t=⇒i2 . . .
t=⇒im−1 αm−1

t=⇒im αm = S,

with w ∈ V ∗
T , m ≥ 1, 1 ≤ ij ≤ n, and 1 ≤ j ≤ m. In the constructed grammar system, we

find the simulation

w
t=⇒1 hn+i1(w)

t=⇒2 hi1(α1)
t=⇒1 hn+i2(α1)

t=⇒2 hi2(α2)

. . .
t=⇒1 hn+im(αm−1)

t=⇒2 him(αm) = Sim
t=⇒1 Sn+1

t=⇒2 S1

2

Comparing the power of generating and accepting CD grammar systems, we obtain:

Corollary 3.21 ([53]) 1. Lgen(CF) = Lgen(CD1,CF[−λ], t) = Lacc(CD1,CF[−λ], t).

2. Lgen(CDn,CF[−λ], t) ⊂ Lacc(CDn,CF[−λ], t) for n ≥ 2. 2

50 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

As to the full competence mode of derivation, we find the following result.

Theorem 3.22 ([11]) (i) Lacc(CD∞,CF−λ, full) = Lgen(CS)

(ii) Lacc(CD∞,CF, full) = Lgen(RE)

Proof. (i) Since any CD grammar system from (CD∞,CF−λ, full) can be simulated by a
linear-bounded automaton (that is, by a context-sensitive grammar), we only show that the
reverse inclusion holds, using a modification of the proofs of analogous statements for other
types of devices, again. Let us have a generating context-sensitive grammar G = (N,T, P, S)
in Kuroda normal form, without λ productions. Assume that a unique label r is attached to
any context-sensitive rule, of the form XU → Y Z with X,U, Y, Z ∈ N , in P. Let us denote
the set of labels by Lab(P) = {r1, r2, . . . , rR}. Let T̄ = {ā | a ∈ T}, { ¯̄T = {¯̄a | a ∈ T} and
let h be a morphism defined by h(a) = A for A ∈ N and h(a) = ā for a ∈ T. For a string
w ∈ (N ∪ T)∗ let us denote by w̄ = h(w).

We construct an accepting CD grammar system

Γ = (N ′, T, S′, Pinit, PCF, P1,1, P1,2, P1,3, P
′
1,1, P

′
1,2, P

′
1,3 . . . , P ′

R,1, P
′
R,2, P

′
R,3)

such that Lacc(Γ, full) = L(G) holds. Let Γ be defined with

N ′ = N ∪ T̄ ∪ ¯̄T ∪ {S′, F} ∪ {[A, r], (A, r) |A ∈ N and r ∈ Lab(P)}
∪{x′ | x ∈ N ∪ T̄} ∪ {〈x, r〉 | x ∈ N ∪ T̄ and r ∈ Lab(P)}

(the unions being disjoint). The components of Γ are constructed as follows:

Pinit = {a→ ā, ā→ ā, ā→ ¯̄a | a ∈ T},

PCF = {S → S′} ∪ {x→ x | x ∈ N ∪ T̄} ∪ {w̄ → C |C → w ∈ P} ∪

{Y → [Y, r] | r : XU → Y Z ∈ P} ∪ {x′ → x |x ∈ N ∪ T̄} ∪

{¯̄a→ ā | a ∈ T} ,

and, for 1 ≤ r ≤ R, r : XU → Y Z:

Pr,1 = {[Y, r]→ [Y, r], Z → (Z, r)} ∪ {x→ x | x ∈ N ∪ T̄} ∪ {x′ → x | x ∈ N ∪ T̄}

Pr,2 = {[Y, r](Z, r)→ F} ∪ {x→ x |x ∈ N ∪ T̄} ∪ {x→ 〈x, r〉 | x ∈ N ∪ T̄}

Pr,3 = {[Y, r]→ X, (Z, r)→ U} ∪ {x→ x |x ∈ N ∪ T̄} ∪

{〈x, r〉 → x′ |x ∈ N ∪ T̄}

P ′
r,1 = {[Y, r]→ [Y, r], Z → Z ′}

P ′
r,2 = {[Y, r]Z ′ → F, [Y, r]→ Y ′}

P ′
r,3 = {Y ′ → X,Z ′ → U,X → X}

Production set Pinit is for starting the derivation process. Obviously, by PCF context-free
derivation steps of G are simulated whereas the components Pr,1, Pr,2, Pr,3 and P ′

r,1, P
′
r,2, P

′
r,3

simulate applications done by the rule with label r after replacing exactly one appearance
of symbol Y in the sentential form by [Y, r]. The first group of production sets handles the
situation when the sentential form is of the form u[Y, r]Zv, with uv ∈ (N∪T̄)+, and the second
is for the situation when the sentential form is [Y, r]Z. In the first case it is necessary to replace
a symbol 〈x, r〉 in order to leave Pr,3 which can only be introduced by application of Pr,2. But

3.1. ACCEPTING VERSUS GENERATING MODE 51

Pr,2 can be active only if the symbols [Y, r] and (Z, r) are neighboring in the “correct” manner
or they do not appear at all. In the latter case, the applications of Pr,2 and Pr,3 remain without
any effect. Shortcuts are impossible since a component must be fully competent when applied.
Similarly, it is easy to see that production sets P ′

r,1, P
′
r,2, P

′
r,3 can be successfully applied only

if the sentential form is of the form [Y, r]Z. Hence, Lacc(Γ, full) = Lgen(G).

(ii) Without loss of generality we can assume the given type-0 grammar to have only rules
as a grammar in Kuroda normal form only having rules of the form A → λ, with A ∈ N , in
addition. Thus, we can use the same construction as in (i) only giving additional rules λ→ A
to component PCF if needed. The other direction of the proof can be shown by construction
of a Turing machine. 2

In CD grammar systems, all components work according to the same strategy. However,
the agents of a problem solving system usually have different capabilities. Therefore, a gener-
alization of CD grammar systems called hybrid CD grammar systems has been investigated
(Mitrana [79], Păun [88, 89]).

Definition 3.5 A hybrid CD grammar systems (HCD grammar system) of degree n, with
n ≥ 1, is an (n + 3)-tuple

G = (VN , VT , S, (P1, γ1), (P2, γ2), . . . , (Pn, γn)),

where VN , VT , S, P1, P2, . . . , Pn are defined as in CD grammar systems, and, for 1 ≤ i ≤ n,
γi ∈ {∗, t, full} ∪ {=k,≤k,≥k | k ≥ 1 }. The language generated by a HCD grammar system
is defined by

Lgen(G) := {w ∈ T ∗ | S
γi1=⇒i1 w1

γi2=⇒i2 . . .
γim=⇒im wm = w with

m ≥ 1, 1 ≤ ij ≤ n, and 1 ≤ j ≤ m }

Analogously, the language Lacc(G) accepted by a HCD grammar system G is defined.

The families of languages generated (accepted) by HCD grammar systems with at most n
[λ-free] context-free components are denoted by Lgen(HCDn,CF[−λ]) (Lacc(HCDn,CF[−λ]),
respectively). As above, we write Lgen(HCD∞,CF[−λ]), Lacc(HCD∞,CF[−λ]), respectively,
if the number of components is not restricted.

In the following, we consider accepting versus generating hybrid CD grammar systems.
Since the t-mode is incorporated in such systems, we immediately get from Theorem 3.18
that Lacc(HCD∞,CF−λ) equals Lgen(CS). Moreover, in the presence of λ-productions, HCD
grammar systems characterize the recursively enumerable languages, since erasing rules can
be simulated in components working in ∗-mode. Thus, we get:

Corollary 3.23 ([53]) 1. Lacc(HCD∞,CF−λ) = Lgen(CS).

2. Lacc(HCD∞,CF) = Lgen(RE). 2

Again, we turn our attention to grammar systems with a limited number of grammars in
each system. We quote the known facts on generating systems (see Mitrana [79]).

52 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

Theorem 3.24 For n ≥ 4, we have:

Lgen(CF) = Lgen(HCD1,CF[−λ])

⊂ Lgen(HCD2,CF[−λ])

⊆ Lgen(HCD3,CF[−λ])

⊆ Lgen(HCDn,CF[−λ]) = Lgen(HCD∞,CF[−λ]).

The following was proved by Păun [88] (the proof trivially carries over to the case admitting
λ-rules).

Theorem 3.25 Lgen(ET0L) ⊂ Lgen(HCD∞,CF[−λ]) ⊆ Lgen(M,CF[−λ], ac). 2

As in the case of CD grammar systems working in t-mode, the situation is also a little
bit different in the case of accepting hybrid systems. We show that the hierarchy collapses to
the second level.

Theorem 3.26 ([53]) For n ≥ 2, we have:

Lgen(CF) = Lacc(HCD1,CF[−λ])

⊂ Lacc(HCDn,CF[−λ]) = Lacc(HCD∞,CF[−λ]).

Proof. The equality Lgen(CF) = Lacc(HCD1,CF[−λ]) is immediate, and the strict inclusion
Lacc(HCD1,CF[−λ]) ⊂ Lacc(HCD2,CF[−λ]) was already shown in Theorem 3.20.

The inclusion Lacc(HCD∞,CF[−λ]) ⊆ Lacc(HCD2,CF[−λ]) can be seen as follows: Mi-
trana [79, Theorem 4] has shown that, for every generating HCD grammar system, there exists
an HCD grammar system generating the same language, having four components working in
the t-mode and one component working in =k-mode for some k. Observe, this proof carries
over to the accepting case as well.

Then, we reduce the number of components working in t-mode, using the same construc-
tion as in the proof of Theorem 3.20. Here, we construct two components P ′

1 and P ′
2, where P ′

2

contains the modified rewriting rules of all components working in the t-mode. Now it is easy
to see that only component P ′

2 has to work in the t-mode. The other component can work
in, e.g., ∗-mode as well. Thus, only one t-mode component is left.

Finally, using a standard technique we put together the components working in ∗- and
=k-modes. We have to be careful with the last step, because if we introduce new nonterminal
symbols, we have to add additional rewriting rules to P ′

2, in order to check whether the
constructed set P1 has been correctly applied. This is rather technical, and the details are
omitted here.

This shows that, in the accepting case, two components are sufficient. 2

Comparing the power of generating and accepting HCD grammar systems, we obtain the
next results.

Corollary 3.27 ([53]) 1. Lgen(CF) = Lgen(HCD1,CF[−λ]) = Lacc(HCD1,CF[−λ]).

2. Lgen(HCDn,CF−λ) ⊂ Lacc(HCDn,CF−λ) for n ≥ 2.

3. Lgen(HCDn,CF) ⊆ Lacc(HCDn,CF) for n ≥ 2.

Proof. We know that Lgen(M,CF − λ, ac), and a fortiori Lgen(HCDn,CF−λ) is strictly
contained in Lgen(CS) which equals the class Lacc(HCDn,CF−λ) by our above theorem. 2

3.1. ACCEPTING VERSUS GENERATING MODE 53

3.1.4 Parallel Communicating Grammar Systems

A accepting PC grammar system ([13, 14]) with n context-free components is a PC grammar
system Γ = (N,K, T,G1, G2, . . . , Gn) as in Definition 2.14, where the components Gi are ac-
cepting context-free grammars, that is, with sets of rewriting rules Pi ⊆ (N∪K∪T)∗×(N∪K),
for 1 ≤ i ≤ n. The configuration (S1, S2, . . . , Sn) is said to be the goal configuration,
whereas an initial configuration is given by a tuple in T ∗ × (V ∗

Γ)n−1. For two configura-
tions (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of Γ the direct derivation step (x1, x2, . . . , xn) =⇒
(y1, y2, . . . , yn), if defined as follows: if there is no xi which contains any query symbol, then,
for 1 ≤ i ≤ n, either xi ∈ (N ∪ T)∗ \ {Si} and xi =⇒

Gi
yi or xi = yi = Si; otherwise, a

communication step is performed which is defined as in the generating case. The language
accepted by Γ is the set

Lacc(Γ) = {x1 ∈ T ∗ | (x1, x2, . . . , xn)
∗

=⇒(S1, S2, . . . , Sn), xi ∈ V ∗
Γ , 2 ≤ i ≤ n } .

Whereas the generated language consists of the terminal strings appearing as sentential forms
of the master grammar G1 in a derivation which started off with the initial configuration
(S1, S2, . . . , Sn), the accepted language consists of all terminal words appearing as sentential
forms of the master grammar G1 in the initial configuration of an arbitrary derivation which
yields the goal configuration (S1, S2, . . . , Sn).

The notions of returning, non-returning and centralized systems are inherited from the
generating case. For X ∈ {PC,CPC,NPC,NCPC} and Y ∈ {CF−λ,CF}, the family of
languages accepted by a PC grammar system of type X components of type Y is denoted by
Lacc(X∞Y).

First, we show that accepting PC grammar systems with context-free components are as
powerful as Turing machines in either mode, even if λ-productions are prohibited.

Theorem 3.28 ([14]) For X ∈ {PC,CPC,NPC,NCPC} and Y ∈ {CF−λ,CF},

Lacc(X∞Y) = L(RE) .

Proof. The inclusions Lacc(X∞Y) ⊆ L(RE) trivially hold by Turing machine constructions.
The converse inclusions are proved by the following simulations of type-0 grammars which
are assumed to be given in an appropriate normal form.

Let L ∈ L(RE). Then there is a type-0 grammar G = (VN , VT , P, S) generating L, where
the set P of productions can be assumed to contain only rules of the forms A→ BC, A→ a,
AB → CD, and Z → λ, where A,B,C,D ∈ VN , a ∈ VT , and Z is a special nonterminal
symbol. This can be seen by combining the idea of the proof of Theorem 9.9 in [99] with the
usual construction of Kuroda normal form (see, for example, [71]).

Let the total alphabet VN ∪ VT of G contain r symbols, say VN ∪ VT = {x1, x2, . . . , xr},
and let the number of (pairwise different) productions in P of the form AB → CD be n.
Moreover, let us assume a unique label ri, 1 ≤ i ≤ n, being attached to each production of
this form.

We consider the generalized accepting parallel communicating grammar system

Γ = (N,K, T,G1, G2, . . . , Gn+2r+1)

of degree n + 2r + 1, where

N = VN ∪ {S2, S3, . . . , Sn+2r+1},K = {Q2, Q3, . . . , Qn+2r+1} and T = VT

54 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

where S2, S3, . . . Sn+2r+1, Q2, Q3, . . . , Qn+2r+1 are additional symbols, and the components
are constructed as follows:

G1 = (N ∪K,T, P1, S) with

P1 = {BC → A | A→ BC ∈ P, A,B,C ∈ VN }

∪ { a→ A | A→ a ∈ P, A ∈ VN , a ∈ VT }

∪ {CD → Qi+1 | ri : AB → CD ∈ P, 1 ≤ i ≤ n }

∪ {xj → Qn+1+j | 1 ≤ j ≤ r } ∪ {xj → Qn+1+r+j | 1 ≤ j ≤ r }

and, for 2 ≤ i ≤ n + 1, if ri : AB → CD,

Gi = (N ∪K,T, Pi, Si) with

Pi = {A→ A,AB → Si} .

Furthermore, for any symbol xj ∈ VN ∪ VT , 1 ≤ j ≤ r, two additional components Gn+1+j

and Gn+1+r+j are introduced providing the strings Zxj and xjZ, respectively. More precisely,
for 1 ≤ j ≤ r, we have

Gn+1+j = (N ∪K,T, Pn+1+j , Sn+1+j) with

Pn+1+j = {Z → Z,Zxj → Sn+1+j} ,

Gn+1+r+j = (N ∪K,T, Pn+1+r+j , Sn+1+r+j) with

Pn+1+r+j = {Z → Z, xjZ → Sn+1+r+j} .

Obviously, a derivation with initial configuration (w,α2, α3, . . . , αn+2r+1) yields the goal con-
figuration if

• S
∗

=⇒w in G,

• for 2 ≤ i ≤ n + 1, αi = AB if AB is the left-hand side of production ri in P , and

• for 1 ≤ j ≤ r, αn+1+j = Zxj and αn+1+r+j = xjZ.

Then the master component can directly simulate the (reverse) application of context-free
productions from P whereas the “real” monotone productions as well as the λ-productions
are simulated by communication steps. Clearly, in those accepting derivations, the compo-
nents Gi, i ≥ 2, must behave such that the αi’s are simultaneously rewritten by Si exactly in
the tact when the master grammar derives its axiom S. Otherwise, the derivation might be
blocked, since there is no component which can rewrite any Si, i ≥ 2, but an application of a
rule β → Si at a “wrong moment” does not allow the master to derive words which are not
in Lgen(G).

Hence, Lacc(Γ) = Lgen(G) = L for the (centralized) PC grammar system Γ both in
returning and in non-returning mode. Note that all productions occurring in a component of
Γ are accepting context-free and that no λ-rules are needed. 2

Unfortunately, by this construction, both the number of nonterminals and the number of
components in the simulating PC grammar system depend on the size of the type-0 grammar
to be simulated. We do not know whether or not any given type-0 grammar can be simulated
by a PC grammar system with a bounded number of nonterminals and/or components. In
case of generating PC grammar systems such bounds are known, see, for instance, [33].

3.1. ACCEPTING VERSUS GENERATING MODE 55

Note that in case of both generating and accepting PC grammar systems, query symbols
can be introduced in some sentential form only by rewriting steps and they can be replaced
only by means of communication. Hence, we can assume without loss of generality that
in the generating case query symbols never appear on left-hand sides of productions of the
components. If we take this restricted definition of a generating PC grammar system then
we obtain a quite different derivational ability in accepting mode. Formally, this leads to the
following definition.

Definition 3.6 ([14]) A restricted generating [accepting] parallel communicating grammar
system is a construct Γ = (N,K, T,G1, G2, . . . , Gn) as in Definition 2.14, but Pi ⊆ N × (N ∪
K∪T)∗ [Pi ⊆ (N ∪K∪T)∗×N] holds for each component Gi = (N ∪K,T, Pi, Si), 1 ≤ i ≤ n.

The languages Lgen(Γ) and Lacc(Γ) generated [accepted] by restricted PC grammar sys-
tems are defined as in the non-restricted cases.

For X ∈ {PC,CPC,NPC,NCPC} and Y ∈ {CF−λ,CF}, we denote the family of lan-
guages generated by generalized generating [accepting] PC grammar systems by Lgen(rX∞Y)
[Lacc(rX∞Y)].

Obviously, the generative power of generating parallel communicating grammar systems
is not altered if we limit to the restricted version:

Lemma 3.29 ([14]) For X ∈ {PC,CPC,NPC,NCPC} and Y ∈ {CF−λ,CF},

Lgen(X∞Y) = Lgen(rX∞Y).

However, in the case of accepting PC grammar systems the limitation to restricted versions
considerably decreases the power as shown in the following lemma.

Lemma 3.30 ([14]) For X ∈ {PC,CPC,NPC,NCPC} and Y ∈ {CF−λ,CF},

Lacc(rX∞Y) = L(CF) .

Proof. Let Γ = (N,K, T,G1, G2, . . . , Gn) be an accepting PC grammar system with the
components Gi = (N ∪ K,T, Pi, Si), 1 ≤ i ≤ n. By definition, Pi ⊆ (N ∪ K ∪ T)∗ × N ,
1 ≤ i ≤ n. By the priority of communication steps over rewriting steps, we can assume that
Pi ⊂ (N ∪T)∗×N . This implies that rewriting steps rewrite words over N ∪T to words over
N ∪ T . Therefore a communication step can only occur at the first step. Since in the initial
configuration the first component x1 is a terminal word, it is not changed by a communication
step. Thus the language generated by the accepting PC grammar system Γ coincides with
the language generated (or, equivalently, accepted) by the context-free grammar G1. Hence
Lacc(Γ) ∈ L(CF) and thus Lacc(PC∞CF) ⊆ L(CF).

On the other hand, a context-free grammar G = (N,T, P, S) can be considered as a PC
grammar system Γ = (N, ∅, T,G). Obviously, Lacc(Γ) = Lacc(G) (and Lacc(G) = Lgen(G))
which implies that L(CF) ⊆ Lacc(PC∞CF). 2

In conclusion, we list the following relationships between generating and accepting PC
grammar systems which are obtained by the results given in this section and and in Chapter 2.

Corollary 3.31 ([14]) Let X ∈ {CF,CF−λ} and Y ∈ {N, λ}. The following relations hold:

(i) Lacc(rY PC∞X) ⊂ Lgen(Y PC∞X) = Lacc(Y PC∞X).

56 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

(ii) Lacc(rY CPC∞,CF−λ) ⊂ Lgen(Y CPC∞,CF−λ) ⊂ Lacc(Y CPC∞,CF−λ)

(iii) Lacc(rY CPC∞,CF) ⊂ Lgen(Y CPC∞,CF) ⊆ Lacc(Y CPC∞,CF) 2

In fact, Lemma 3.30 argues that there is no reason to consider restricted PC grammar
systems (as far, as in our setting, language families are concerned) since they do not yield
new language families both in the generating and accepting case. Therefore, in the following
we restrict ourselves to the non-restricted variant.

In what follows we deal with another interpretation of analyzing derivations. We look for
a definition of analyzing PC grammar systems in such a way, that analyzing derivations mimic
their generative counterparts performing the same derivation steps backwards. Our goal is
to use exactly the same system in both ways, to generate and to analyze a language. The
generating and accepting versions of a parallel communicating grammar system as considered
so far in this section do not satisfy this requirement as one can see from the results and proofs
above. In order to distinguish the grammars considered now from those considered so far we
call them analyzing PC grammar systems.

We mention a problem arising from the treatment of terminal strings in generating PC
grammar systems. If a component generates a terminal string, this string remains unchanged
through the rest of the derivation. Thus, in the analyzing derivation a terminal string can
remain unchanged simulating a generating derivation step on a terminal string or it can be
changed simulating a generating derivation step backwards. This is artificial since by the
productions of the component a change is possible in any moment of time.

In order to eliminate this feature from analyzing derivations we have to eliminate the
maintenance of terminal strings from the generating derivations. Thus we make a slight mod-
ification in defining derivation steps in the generative mode, a modification which will enable
us to find analyzing counterparts to each generative derivation and vice versa. Therefore
the equivalence of the generated and accepted language classes will be obvious. After this,
we show that the modification of the generating derivation step does not effect the power of
returning PC grammar systems in the generative case, so analyzing grammar systems defined
this way accept the same class of languages that is generated in the conventional returning
generating mode.

Let us start with defining the modified derivation step for the generative mode.

Definition 3.7 ([14]) Let Γ = (N,K, T,G1, G2, . . . , Gn), for some n ≥ 1, be a generating
PC grammar system with initial configuration (S1, S2, . . . , Sn) and let (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) be two configurations of Γ. (x1, x2, . . . , xn) directly derives (y1, y2, . . . , yn) in
strong-returning mode, denoted by (x1, x2, . . . , xn) =⇒

sr
(y1, y2, . . . , yn), if one of the following

three cases holds:

1. There is no xi which contains any query symbol, and there is no xi which is a terminal
word, that is, xi ∈ (N ∪ T)∗ \ T ∗ for 1 ≤ i ≤ n. Then xi =⇒

Gi
yi.

2. There is no xi which contains any query symbol, that is, xi ∈ (N ∪ T)∗, 1 ≤ i ≤ n.
Then yj = Sj if xj ∈ T ∗, and yj = xj if xj ∈ (N ∪ T)∗ \ T ∗.

3. There is some xi, 1 ≤ i ≤ n, which contains at least one occurrence of query symbols,
that is xi = z1Qi1z2Qi2 . . . ztQitzt+1 where zj ∈ (N∪T)∗, 1 ≤ j ≤ t+1 and Qil ∈ K, 1 ≤ l ≤ t.
Then yi = z1xi1z2xi2 . . . ztxitzt+1, where xil , 1 ≤ l ≤ t does not contain any query symbol,
and yil = Sil , 1 ≤ l ≤ t. If some xil contains at least one occurrence of query symbols, then
yi = xi. For all i, 1 ≤ i ≤ n, for which yi is not specified above, yi = xi holds.

3.1. ACCEPTING VERSUS GENERATING MODE 57

The first point is the description of a rewriting step, where no terminal strings are present
among the sentential forms. This is a usual rewriting step known from returning PC grammar
systems.

The second point is the description of a derivation step, after at least one terminal string
appeared among the sentential forms. In this case, the terminal strings are changed to the
start symbol, the other ones remain the same.

The third point again is describing a usual returning communication step.

The language generated by systems in strong-returning mode is defined as before, now of
course using strong-returning steps during the derivations.

Again, by
∗

=⇒
sr

we denote the reflexive and transitive closure of =⇒
sr

Definition 3.8 ([14]) Let Γ = (N,K, T,G1, G2 . . . , Gn) be a (generating) PC grammar sys-
tem with master grammar G1, and let (S1, S2, . . . , Sn) denote the initial configuration of Γ.
The language generated by the PC grammar system Γ in strong-returning mode is

Lsr(Γ) = {x1 ∈ T ∗ | (S1, S2, . . . , Sn)
∗

=⇒
sr

(x1, x2, . . . , xn), xi ∈ V ∗
Γ , 2 ≤ i ≤ n }.

Let the class of languages generated by PC grammar systems in the strong-returning mode
with context-free components be denoted by Lgen(PC∞CF, sr).

Now we show that strong-returning PC grammar systems generate the same class of
languages as in the returning mode. To achieve our goal, we make use of earlier results about
so called rule-synchronized PC grammar systems. Let us first recall the necessary definitions
from [87] and [107].

Definition 3.9 A transition of a generating parallel communicating grammar system Γ =
(N,K, T,G1, G2, . . . , Gn) is an n-tuple t = (p1, p2, . . . , pn), with pi ∈ Pi ∪ {♯} for 1 ≤ i ≤ n,
where Pi denotes the rule set of the component Gi and ♯ is an additional symbol. We
say that transition t = (p1, p2, . . . , pn) is applied in the rewriting step (x1, x2, . . . , xn) =⇒
(y1, y2, . . . , yn) of Γ, if pi ∈ Pi implies xi =⇒

pi
yi and pi = ♯ implies xi ∈ T ∗ and yi = xi.

Definition 3.10 A PC grammar system with rule-synchronization is an (n + 4)-tuple Γ =
(N,K, T,G1, G2, . . . , Gn, R), where (N,K, T,G1, G2, . . . , Gn) is a usual PC grammar system
and R ⊆ (P1 ∪ {♯} × P2 ∪ {♯} × . . . × Pn ∪ {♯}) is a set of transitions of Γ. In each rewriting
step (x1, x2, . . . , xn) =⇒ (y1, y2, . . . , yn) of a rule-synchronized PC grammar system one of
the transitions from R must be applied. Communications are performed as usual.

Let Lgen(RPC∞CF) and Lgen(RPC∞CF, sr) denote the families of languages generated by
context-free rule-synchronized PC grammar systems in returning and strong returning modes,
respectively.

Note that in the strong-returning mode rule-synchronized PC grammar systems never
use transitions containing ♯, the “empty rule”, applied to terminal strings in conventional
returning systems.

Now we recall a theorem from [34], which shows that rule-synchronization does not add
to the generative power of context-free PC grammar systems in the returning and strong-
returning modes. There the statement is proved only for returning PC grammar systems, but
the same proof also works in the strong-returning case without any modifications.

Theorem 3.32 (i) Lgen(PC∞CF) = Lgen(RPC∞CF),

58 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

(ii) Lgen(PC∞CF, sr) = Lgen(RPC∞CF, sr).

Now, with the aid of rule-synchronization we show, through the next two theorems, that
context-free systems generate the same class of languages in returning and strong-returning
mode.

Lemma 3.33 ([14]) Lgen(PC∞CF) ⊆ Lgen(PC∞CF, sr).

Proof. Let Γ = (N,K, T,G1, G2, . . . , Gn) be a context-free returning PC grammar system
as above, and let R = (P1 ∪ {♯} × P2 ∪ {♯} × . . . × Pn ∪ {♯}) be the set of all the transitions
of Γ. Let

Γ′ = (N ′,K ′, T,G
(1)
1 , G

(1)
2 , . . . , G(1)

n , G
(2)
1 , G

(2)
2 , . . . G(2)

n , Ga1
1 , Ga1

2 , . . . , Ga1
n , Ga2 , R′)

be a PC grammar system with the nonterminal alphabet N ′, the set K ′ of query symbols, the

terminal alphabet T and components G
(1)
i = (N ′∪K ′, T, P

(1)
i , S), G

(2)
i = (N ′∪K ′, T, P

(2)
i , Si),

Ga1
i = (N ′∪K ′, T, P a1

i , S), 1 ≤ i ≤ n, and Ga2 = (N ′∪K ′, T, P a2 , S), where G
(2)
1 is the master

grammar, and

N ′ = N ∪ {S, $, Z} ∪ { [k, j], [k, 2, t], [k, 3, t] | 1 ≤ k ≤ |R|, 1 ≤ j ≤ 3 },

K ′ = {Q
(j)
i | 1 ≤ i ≤ n, 1 ≤ j ≤ 2 }.

Let also h : (N ∪ K ∪ T)∗ → (N ∪ K ′ ∪ T)∗ be a homomorphism defined by h(x) = x for

x ∈ (N ∪ T), h(Qj) = Q
(1)
j for Qj ∈ K, and

P
(1)
i = {S → SiZ,Z → Z,S → S, S → Q

(2)
i } for 1 ≤ i ≤ n,

P
(2)
i = {Si → Si, Si → SiZ,Si → Q

(1)
i , Z → Z,Z → λ}

∪ {X → h(α) | X → α ∈ Pi } for 1 ≤ i ≤ n,

P a1
i = {S → S, S → Q

(1)
i , Z → λ} for 1 ≤ i ≤ n,

P a2 = {S → $, $→ [k, 1], [k, j] → [k, j + 1], [k, 3] → $ | 1 ≤ k ≤ |R|, 1 ≤ j ≤ 2 }

∪ { [k, 1]→ [k, 2, t], [k, 2, t] → [k, 3, t] | 1 ≤ k ≤ |R| }.

The set R′ is obtained by substituting each transition rk, 1 ≤ k ≤ |R|, in R by a set of new
transitions that can be applied one after the other (this will be ensured by component Ga2).

To sketch the idea of the proof, a configuration (x1, x2, . . . , xn) of Γ will correspond to
(x1Z, x2Z, . . . , xnZ,S, . . . , S, $) in Γ′, where the symbol Z is a nonterminal distinct from the
elements of N . This way Γ′ is not able to take advantage of its strong-returning mode, since
no terminal string appears before the end of any derivation.

One transition of Γ is simulated with four new transitions. First the sentential forms are
transferred from G

(1)
1 , G

(1)
2 , . . . , G

(1)
n to G

(2)
1 , G

(2)
2 , . . . , G

(2)
n , where the effect of the rules of Γ is

simulated in three rewriting steps, the rewriting rules are applied to the sentential forms and
the Z nonterminals are erased if necessary, before a sentential form is communicated, in order
to avoid the duplication of these Z-s in the strings. Since the application of the “empty rule” ♯
is simulated by the application of Z → Z to a sentential form xZ, it is also necessary to check,
whether x is really terminal or not. This is done by the components Ga1

1 , Ga1
2 . . . , Gan

n . The
correct order of the application of these substituting transitions is ensured by component Ga2 .

3.1. ACCEPTING VERSUS GENERATING MODE 59

Now we construct the substituting transitions. Let rk = (rk,1, rk,2, . . . , rk,n), 1 ≤ k ≤ |R|,
be a transition in R, and let Req(k) ⊂ {1, 2, . . . , n}, 1 ≤ k ≤ |R| contain the indices of those
components which are queried after the execution of transition rk, in other words j ∈ Req(k)
if and only if there is a rule rk,l for some l, 1 ≤ l ≤ n, which introduces a string containing Qj ,
the query symbol requesting the sentential form of the j-th component. We will need this
information, since the Z nonterminals have to be erased from these sentential forms before
the communication. Now let R(1) contain the transitions

(r
(1,1)
k,1 , r

(1,1)
k,2 , . . . , r

(1,1)
k,n , r

(1,2)
k,1 , r

(1,2)
k,2 , . . . , r

(1,2)
k,n , r

(1,a1)
k,1 , r

(1,a1)
k,2 , . . . , r

(1,a1)
k,n , r

(1,a2)
k),

for 1 ≤ k ≤ |R|, where

r
(1,1)
k,i = Z → Z for 1 ≤ i ≤ n,

r
(1,2)
k,i = Si → Q

(1)
i for 1 ≤ i ≤ n,

r
(1,a1)
k,i =

{
S → S if rk,i 6= ♯,

S → Q
(1)
i if rk,i = ♯

for 1 ≤ i ≤ n,

r
(1,a2)
k = $→ [k, 1].

Here the components G
(1)
1 , G

(1)
2 , . . . , G

(1)
n leave their sentential forms unchanged, while the

components G
(2)
1 , G

(2)
2 , . . . , G

(2)
n get ready to receive them. Components Ga1

1 , Ga1
2 , . . . , Ga1

n

query those components which must contain a terminal string (apart from Z) according to
the transition rk being simulated.

Let R(2) contain the transitions

(r
(2,1)
k,1 , r

(2,1)
k,2 , . . . , r

(2,1)
k,n , r

(2,2)
k,1 , r

(2,2)
k,2 , . . . , r

(2,2)
k,n , r

(2,a1)
k,1 , r

(2,a1)
k,2 , . . . , r

(2,a1)
k,n , r

(2,a2)
k),

and

(r
(2,t,1)
k,1 , r

(2,t,1)
k,2 , . . . , r

(2,t,1)
k,n , r

(2,t,2)
k,1 , r

(2,t,2)
k,2 , . . . , r

(2,t,2)
k,n , r

(2,t,a1)
k,1 , r

(2,t,a1)
k,2 , . . . , r

(2,t,a1)
k,n , r

(2,t,a2)
k),

for 1 ≤ k ≤ |R|, where

r
(2,1)
k,i = S → S for 1 ≤ i ≤ n,

r
(2,2)
k,i =

{
Z → λ if i ∈ Req(k) and rk,i 6= ♯
Z → Z if i 6∈ Req(k) or rk,i = ♯

for 1 ≤ i ≤ n,

r
(2,a1)
k,i =

{
S → S if rk,i 6= ♯
Z → λ if rk,i = ♯

for 1 ≤ i ≤ n,

r
(2,a2)
k = [k, 1]→ [k, 2],

and

r
(2,t,1)
k,i = S → S for 1 ≤ i ≤ n,

r
(2,t,2)
k,i =

{
Z → λ if rk,i 6= ♯
Z → Z if rk,i = ♯

for 1 ≤ i ≤ n,

r
(2,t,a1)
k,i =

{
S → S if rk,i 6= ♯
Z → λ if rk,i = ♯

for 1 ≤ i ≤ n,

r
(2,t,a2)
k = [k, 1]→ [k, 2, t].

60 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

If the system uses a transition of the first type the derivation is to be continued, if the
second type is used then rk will be the last simulated transition. Using a first type transition

the components G
(1)
1 , G

(1)
2 , . . . , G

(1)
n wait for the others, while G

(2)
1 , G

(2)
2 , . . . , G

(2)
n get ready

to apply the effective rewriting rules by erasing the symbol Z from those sentential forms
which are not terminal and have to be communicated according to the rules of rk. The
components Ga1

1 , Ga1
2 , . . . , Ga1

n also erase the Z-s from their sentential forms, which will result
in the blocking of the system, if the rest of these strings are not terminal words. The second

type transition does the same, except in components G
(2)
1 , G

(2)
2 , . . . , G

(2)
n it erases Z-s from

all sentential forms to which a production other than ♯ is applied according to rk, and in
component Ga2 it introduces a nonterminal which tells the system to stop after the simulation
of rk.

Let R(3) contain the transitions

(r
(3,1)
k,1 , r

(3,1)
k,2 , . . . , r

(3,1)
k,n , r

(3,2)
k,1 , r

(3,2)
k,2 , . . . , r

(3,2)
k,n , r

(3,a1)
k,1 , r

(3,a1)
k,2 , . . . , r

(3,a1)
k,n , r

(3,a2)
k),

and

(r
(3,t,1)
k,1 , r

(3,t,1)
k,2 , . . . , r

(3,t,1)
k,n , r

(3,t,2)
k,1 , r

(3,t,2)
k,2 , . . . , r

(3,t,2)
k,n , r

(3,t,a1)
k,1 , r

(3,t,a1)
k,2 , . . . , r

(3,t,a1)
k,n , r

(3,t,a2)
k),

for 1 ≤ k ≤ |R|, where

r
(3,1)
k,i = S → S for 1 ≤ i ≤ n,

r
(3,2)
k,i =

X → h(α) if rk,i = X → α
Z → λ if i ∈ Req(k) and rk,i = ♯
Z → Z if i 6∈ Req(k) and rk,i = ♯

for 1 ≤ i ≤ n,

r
(3,a1)
k,i = S → S for 1 ≤ i ≤ n,

r
(3,a2)
k = [k, 2]→ [k, 3],

and

r
(3,t,1)
k,i = S → S for 1 ≤ i ≤ n,

r
(3,t,2)
k,i =

{
X → h(α) if rk,i = X → α
Z → λ if rk,i = ♯

for 1 ≤ i ≤ n,

r
(3,t,a1)
k,i = S → S for 1 ≤ i ≤ n,

r
(3,t,a2)
k = [k, 2, t]→ [k, 3, t].

Using transitions of the first type the components G
(2)
1 , G

(2)
2 , . . . , G

(2)
n apply the rules of rk

and erase the Z-s from those strings of which the rest is a terminal word and are going to
be communicated after the application of rk. Then a communication will follow, the queries
introduced by rk are going to be satisfied. The components Ga1

1 , Ga1
2 , . . . , Ga1

n block the
derivation, if any of them contains a string different from S, which is the case, if rk could not
be applied to the sentential forms. Transitions of the second type do the same, but also erase
all Z-s and block the system with Ga2 introducing [k, 3, t]. If a terminal string is generated

in G
(a2)
1 , the master, it is the string generated by the system.

Let R(4) contain the transitions

(r
(4,1)
k,1 , r

(4,1)
k,2 , . . . , r

(4,1)
k,n , r

(4,2)
k,1 , r

(4,2)
k,2 , . . . , r

(4,2)
k,n , r

(4,a1)
k,1 , r

(4,a1)
k,2 , . . . , r

(4,a1)
k,n , r

(4,a2)
k),

3.1. ACCEPTING VERSUS GENERATING MODE 61

for 1 ≤ k ≤ |R|, where

r
(4,1)
k,i = S → Q

(2)
i for 1 ≤ i ≤ n,

r
(4,2)
k,i =

{
Si → SiZ if i ∈ Req(k)
Z → Z if i 6∈ Req(k)

for 1 ≤ i ≤ n,

r
(4,a1)
k,i = S → S for 1 ≤ i ≤ n,

r
(4,a2)
k = [k, 3]→ $.

These transitions continue the derivations. The sentential forms are sent back to components

G
(1)
1 , G

(1)
2 , . . . , G

(1)
n , and the system gets ready to simulate an other transition.

Now if we take a special initializing transition

r0 = (r
(1)
0,1, r

(1)
0,2 , . . . , r

(1)
0,n, r

(2)
0,1 , r

(2)
0,2, . . . , r

(2)
0,n, r

(a1)
0,1 , r

(a1)
0,2 , . . . , r

(a1)
0,n , r

(a2)
0)

where, for 1 ≤ i ≤ n,

r
(1)
0,i = S → SiZ, r

(2)
0,i = Si → Si,

r
(a1)
0,i = S → S, r

(a2)
0 = S → $,

and the set of controlling transitions

R′ = {r0} ∪ R
(1) ∪R(2) ∪R(3) ∪R(4)

then we have a PC grammar systems simulating the returning system Γ in strong-returning
mode. 2

Obviously, by the fact Lgen(PC∞CF) = L(RE) (see [33], [70]), we obtain the inclusion
Lgen(PC∞CF, sr) ⊆ Lgen(PC∞CF). We reprove this result by a simulation.

Lemma 3.34 ([14]) For each context-free strong-returning PC grammar system Γ we can
construct a returning PC grammar system Γ′ which generates the same language as Γ.

Proof. Let Γ = (N,K, T,G1, G2, . . . , Gn) be a PC grammar system with n context-free
components Gi = (N ∪K,T, Pi, Si), 1 ≤ i ≤ n, working in the strong-returning mode, and
let R = (P1×P2× . . .×Pn) be the set of all transitions of Γ. Note that the transitions do not
contain the symbol ♯, since the components always return to their axiom after the appearance
of a terminal string before doing any effective rewriting. We are going to construct a rule-
synchronized returning PC grammar system Γ′, which generates the same language as Γ, and
then our statement follows from Theorem 3.32.

Let
Γ′ = (N ′,K ′, T,G1, G2, . . . , Gn, Ga1 , Ga2 , R′)

be a PC grammar system with the nonterminal alphabet N ′, terminal alphabet T , set K ′

of query symbols, the component grammars Gi = (N ′ ∪ K ′, T, Pi, Si), 1 ≤ i ≤ n, Gaj =
(N ′ ∪K ′, T, P aj , S), 1 ≤ j ≤ 2, and the set R′ of controlling transitions, where

N ′ = N ∪ {X ′ | X ∈ N } ∪ {S, S′},

K ′ = K ∪ {Qa1},

62 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

and G1 is the master grammar. The sets of productions are

Pi = {X → X ′,X ′ → α | X → α ∈ Pi }, 1 ≤ i ≤ n,

P a1 = {S → S, S → γa | γ ∈ K∗, |γ|Qj
≤ 1, 1 ≤ j ≤ n, a ∈ T },

P a2 = {S → Qa1S′, S′ → S}.

The controlling transition set R′ is constructed by creating sets R
(1)
k and R

(2)
k of new transi-

tions for each transition rk, 1 ≤ k ≤ |R|, of R. These transitions simulate rk in two rewriting
steps. The first n-tuple of rules of these new transitions will simulate the application of a
transition from R, while the rules of the other components will simulate the strong-returning
mode by querying those components of the first n-tuple, G1, G2, . . . , Gn, which produced a
terminal string.

For a transition rk = (rk,1, rk,2, . . . , rk,n), rk,i ∈ Pi, 1 ≤ i ≤ n, 1 ≤ k ≤ |R|, of R, let R
(1)
k

and R
(2)
k be the sets of transitions

(r
(1)
k,1, r

(1)
(k,2), . . . , r

(1)
k,n, ♯, S → Qa1S′)

and

(r
(2)
k,1, r

(2)
(k,2), . . . , r

(2)
k,n, ra1

k , S′ → S),

respectively, where, for 1 ≤ i ≤ n,

r
(1)
k,i = X → X ′,

r
(2)
k,i = X ′ → α with rk,i = X → α,

ra1
k ∈ {S → γa | γ ∈ K∗, |γ|Qj

≤ 1, 1 ≤ j ≤ n, a ∈ T }.

Now let us take a special initial transition

r0 = (S1 → S′
1, S2 → S′

2, . . . , Sn → S′
n, S → S, S → Qa1S′),

let also

Rk = R
(1)
k ∪R

(2)
k

and

R′ = {r0} ∪ (

|R|
⋃

k=1

Rk).

These transitions do the following: the first subset of Rk begin the application of a rule
in G1, G2, . . . , Gn, which will be finished by a transition of the second subset. During this
finishing step, the component Ga1 can query the components Gi, 1 ≤ i ≤ n, to remove the
possibly appearing terminal strings. The system blocks the derivation if either a terminal

string is not removed, since the applicable transitions never contain ♯ as one of the rules r
(j)
k,i ,

1 ≤ j ≤ 2, 1 ≤ i ≤ n, 1 ≤ k ≤ |R|, or if a string containing nonterminals is removed, since
the next transition always applies ♯ to the string made up of the removed sentential forms. 2

Now we define analyzing derivations by “turning around” strong-returning derivation
steps.

3.1. ACCEPTING VERSUS GENERATING MODE 63

Definition 3.11 ([14]) Let Γ = (N,K, T,G1, G2, . . . , Gn) be a (generating) PC grammar
system as above with axioms Si, 1 ≤ i ≤ n, and let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two
configurations of Γ. We say that (x1, x2, . . . , xn) directly derives (y1, y2, . . . , yn) in analyzing
mode, denoted by (x1, x2, . . . , xn) =⇒

ana
(y1, y2, . . . , yn), if one of the following three cases holds:

1. For 1 ≤ i ≤ n, xi = z1αz2 for some z1, z2 ∈ (N ∪ T)∗, α ∈ (N ∪ T ∪K)∗, yi = z1Xz2

and X → α ∈ Pi.
2. If xi ∈ (N ∪ T)∗ for 1 ≤ i ≤ n, then either yi = xi or yi ∈ T ∗ and xi = Si.
3. Let there be at least one j, 1 ≤ j ≤ n, with xj = Sj. For 1 ≤ i ≤ n, if |xi|K〉0,

then yi = xi, and if |xi|K = 0, then either yi = xi or yi = z1Qi1z2Qi2 . . . ztQitzt+1 for some
zl ∈ (N ∪ T)∗, 1 ≤ l ≤ t + 1, and some Qik ∈ K, 1 ≤ k ≤ t, such that the following condition
holds: If yi = z1Qi1z2Qi2...ztQitzt+1 then xi = z1yi1z2yi2 ...ztyitzt+1 and yik ∈ (N ∪ T)∗ and
xik = Sik for 1 ≤ k ≤ t.

The first point is the description of an analyzing rewriting step, each grammar uses one of its
rules “backwards” (therefore analyzing grammars work as accepting grammars).

The second point describes the analyzing counterpart of the strong-returning feature: if
an axiom is present at some component, it can be replaced with an arbitrary terminal string
while the other sentential forms remain unchanged.

The third point describes a communication step, which is possible to perform if the sen-
tential form of at least one of the components is its axiom. In this case, the other components
send subwords of their sentential forms to these components (the ones which have the axiom
as their current string), and replace the subword they have sent, with the appropriate query
symbol (Qj for example, if the subword was sent to component Gj , for some j, 1 ≤ j ≤ n).
According to the classroom model this can be interpreted as a distribution of subtasks to
agents who have finished their assignments and recording the distribution by the correspond-
ing query symbol.

By
∗

=⇒
ana

we denote the reflexive and transitive closure of =⇒
ana

.

Definition 3.12 ([14]) Let Γ = (N,K, T,G1, G2, . . . , Gn) be a PC grammar system. The
language analyzed by the PC grammar system Γ is

Lana(Γ) = {x1 ∈ T ∗ | (x1, x2, . . . , xn)
∗

=⇒
ana

(S1, S2, . . . , Sn), xi ∈ V ∗
Γ , 2 ≤ i ≤ n }.

Let the class of languages analyzed by PC grammar systems with context-free components
be denoted by Lana(PC∞CF).

Note the following difference between the generating process (with and without strong
return) or accepting process on one side and the analyzing process on the other side. In a
generating and accepting derivation the current sentential form determines uniquely whether
or not a usual derivation step, a derivation step with strong return or a communication step
has to be done. In an analyzing derivation we have to make a choice what type of step we
want to make backwards. By our motivation we cannot avoid to choose a derivation step or
a communication step. On the other hand, if we restrict to parallel communicating grammar
systems where. for any production, the axiom does not occur in the word on the right-hand
side, then the generative power of generating systems (with and without strong return) is not
changed (as one can easily see) and in analyzing grammars there is no choice between doing
backwards usual and strong returning derivation steps.

Now, for a PC grammar system, we show that all strong-returning derivations have an
analyzing counterpart, and that, similarly, all analyzed strings can be generated in the strong-
returning mode.

64 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

Lemma 3.35 ([14]) If Γ is a PC grammar system, then Lsr(Γ) = Lana(Γ).

Proof. The relation (x1, x2, . . . , xn) =⇒
sr

(y1, y2, . . . , yn) holds by a strong-returning rewrit-
ing step (point 1. of Definition 3.7) if and only if (y1, y2, . . . , yn) =⇒

ana
(x1, x2, . . . , xn) holds by

an analyzing rewriting step (point 1. of Definition 3.11).
Furthermore, (x1, x2, . . . , xn) =⇒

sr
(y1, y2, . . . , yn) holds by point 2. of Definition 3.7 if

and only if (y1, y2, . . . , yn) =⇒
ana

(x1, x2, . . . , xn) holds by point 2. of Definition 3.11. There
are no query symbols present so terminal strings are changed to the axiom, or axioms are
changed to terminal strings.

Moreover, (x1, x2, . . . , xn) =⇒
sr

(y1, y2, . . . , yn) holds by a communication step (point 3.
of Definition 3.7) if and only if (y1, y2, . . . , yn) =⇒

ana
(x1, x2, . . . , xn) holds by point 3. of

Definition 3.11. To see this, consider the following. During a generating communication step
all query symbols occurring in a sentential form are replaced with the requested strings if these
strings do not contain further queries. If some of them do, then none of the query symbols
in this certain string can be replaced. The sentential forms of those components which were
able to send their strings are changed to the axiom. In an analyzing communication step all
components which have sentential forms not containing query symbols are able to distribute
subwords of their strings among those components which have the axiom as sentential form.

2

Now as a consequence of Lemma 3.33, Lemma 3.34 and Lemma 3.35, we obtain the
following theorem.

Theorem 3.36 ([14]) L(RE) = Lgen(PC∞CF) = Lgen(PC∞CF, sr) = Lana(PC∞CF).

Note that with respect to analysis we have only considered non-centralized returning PC
grammar systems. In a certain sense this is natural by the definition of strong return. How-
ever, we have not taken into consideration analyzing PC grammar systems in the centralized
and/or non-returning case.

3.2 Accepting Grammars and the LBA Problem

In Section 3.1.2, it is proved that programmed grammars with λ-free context-free productions
and with appearance checking features describe the family of context-sensitive languages if
they are used as accepting devices. In other words, these acceptors recognize the same
languages as linear bounded automata (LBAs) do, that is, non-deterministic Turing machines
with a linear bounded work tape.

Let us consider the family of languages which can be accepted by deterministic linear-
bounded automata, which we call deterministic context-sensitive languages. It is denoted by
L(DCS). Then the chain of the Chomsky hierarchy can be refined by

L(CF) ⊂ L(DCS) ⊆ L(CS).

Now, the LBA problem can be expressed as the question whether the inclusion L(DCS) ⊆
L(CS) is strict.

In order to contribute to the discussion of the LBA problem, it is natural to search
for appropriate restrictions which can be attached to accepting λ-free programmed grammars
such that they become acceptors for the class of deterministic context-sensitive languages, that

3.2. ACCEPTING GRAMMARS AND THE LBA PROBLEM 65

is, languages recognizable by deterministic LBAs. As a first step, we restrict the grammars
to leftmost derivations. But for a complete elimination of non-determinism in the derivations
of programmed grammars, one additionally has to restrict the number of possible choices of
productions for continuing a derivation of a programmed grammar in a certain situation, that
is, after a certain production has been applied leading to a certain sentential form. For this,
we introduce a measure of descriptional complexity for programmed grammars, the degree of
non-regulation, which reflects this number of possible choices.

This section is organized as follows. In Subsection 3.2.1 we provide the necessary def-
initions and notations, in particular of leftmost derivations of programmed grammars and
the degree of non-regulation. We examine the cases in which the restriction to leftmost
derivations changes the descriptive power of the underlying type of programmed grammars.
Moreover, the hierarchies induced by the degree of non-regulation are investigated for gen-
erating and accepting programmed grammars with several types of core rules. In Subsec-
tion 3.2.2, the correspondingly defined families of languages are investigated, where the focus
is on their relationship to the families of context-sensitive and deterministic context-sensitive
languages. In the end, we obtain three different characterizations of the LBA problem in
terms of programmed grammars, that is, the question of whether or not deterministic and
non-deterministic linear bounded automata are of the same power is shown to be equivalent to
the question of whether or not certain variants of programmed grammars are equally powerful.
More on the LBA problem can be found in, for instance, [81, 111]—the latter reference refers
to a grammatical characterization of the LBA problem in terms of Lindenmayer systems. Fi-
nally, in Subsection 3.2.3 we compare the variants of programmed grammars with regulation,
that is, whose degree of non-regulation is equal to one, with respect to their descriptive power.

3.2.1 Restricting Nondeterminism in Programmed Grammars

Leftmost Derivations

Let G = (VN , VT , P, S) be a programmed grammar as in Definition 2.2. A derivation according
to G is said to be leftmost if each rule is either applied in a way such that it replaces the
leftmost occurrence of its left-hand side or it is applied in appearance checking mode.6 By
Lgen(G-left) (or Lacc(G-left)) we denote the language generated (accepted, respectively) by G
in this leftmost manner. In order to denote the corresponding families of languages obtained
by leftmost derivations we add left to the first component of our notation, for example, leading
to Lgen(P-left,CF, ac).

Let us recall some results for the generating case [41] and extend them to further cases.

Lemma 3.37 ([21]) (i) For X ∈ {CF,CF−λ}, we have

Lgen(P,X[, ac]) ⊆ Lgen(P-left,X[, ac]).

(ii) For X ∈ {REG,CS,MON,RE},

Lgen(P,X) = Lgen(P-left,X) = Lgen(P,X, ac) = Lgen(P-left,X, ac) = L(X).

Proof. For (i) see [41, Lemma 1.4.8] and its proof. Statement (ii) is seen as follows: For
X ∈ {REG,CS,RE}, it is proved that

Lgen(P,X) = Lgen(P,X, ac) = L(X)

6Note that this definition corresponds to the definition of leftmost derivations of type 3 in [41].

66 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

in [41]. Note that Lgen(P,CS) ⊆ Lgen(P,MON) ⊆ Lgen(P,MON, ac) holds by definition and
Lgen(P,MON, ac) ⊆ L(CS) can easily be shown by LBA construction. Thus, these equalities
also hold for X = MON.

Therefore, it is only left to prove that Lgen(P,X[, ac]) = Lgen(P-left,X[, ac]), for X ∈
{REG,CS,MON,RE}. In case of right-linear core rules this equality is obvious because there
is at most one nonterminal symbol in every sentential form. In order to show Lgen(P,X[, ac]) ⊆
Lgen(P-left,X[, ac]), for X ∈ {CS,MON,RE}, we slightly modify the idea of the proof given
for the context-free case in [41, Lemma 1.4.8]: Let us consider the programmed grammar
G = (VN , VT , P, S) with productions of type CS, MON, or RE; with each rule of the form
(r : α→ β, σ(r), φ(r)) ∈ P , we associate the productions

(r : α→ α, {r′, r′′}, φ(r)),

(r′ : A→ A′, {r′, r′′}, ∅) if α = uAγ with u ∈ V ∗
T , A ∈ VN ,

γ ∈ (VN ∪ VT)∗,

(r′′ : α→ β, {r′′′}, ∅),

(r′′′ : A′ → A, {r′′′}, σ(r)).

The rule α → α at label r is used to verify whether the left hand-side α appears in the
current sentential form. If this is not the case, then the simulation is continued at a label
from φ(r). Otherwise, some nonterminals A are coloured to A′ at label r′. This is done in
order to be able to choose some appearance of α in a left-most fashion. Finally, rule α → β
at r′′ simulates the original rule application and A′ → A at r′′′ does the necessary recolouring
and continues with a label from σ(r).

If G is without appearance checking, the modification of the appropriate proof given in [41,
Lemma 1.4.8] is analogous. For the remaining part of the construction cf. [41, Lemma 1.4.8].

Now, the proof is finished by showing the converse inclusions via LBA or Turing machine
constructions, respectively. 2

It is unknown whether the inclusion stated in (i) of Lemma 3.37 is strict.

Now, we turn to accepting grammars. In the case of right-linear core rules, accepting
λ-productions can be applied only in the first step of any derivation, which yields the axiom.
Therefore, by a standard argument in the theory of formal grammars, they can be substituted.
Hence, (accepting) programmed grammars with right-linear core rules can be assumed to
have no λ-productions without loss of generality. If accepting grammars in general perform
leftmost derivations, then accepting λ-productions, that is, productions of the form λ→ u can
be applied only at the left margin of any sentential form. Thus, even in the case of Chomsky
grammars, leftmost derivations of generative grammars cannot be mimicked by the dual
accepting ones, if λ-productions are involved. Therefore we disregard accepting grammars
having λ-productions whenever leftmost derivations are considered. In what follows, whenever
accepting programmed grammars with leftmost derivations are considered, we will restrict
ourselves to the cases with core rules of types REG, CF−λ, CS, or MON without further
mentioning.

Lemma 3.38 ([21]) (i) We have

Lacc(P-left,REG[, ac]) ⊂ Lacc(P,REG[, ac]) = L(REG).

3.2. ACCEPTING GRAMMARS AND THE LBA PROBLEM 67

(ii) For context-free core rules we have

Lacc(P,CF−λ) ⊆ Lacc(P-left,CF−λ).

(iii) For X ∈ {CS,MON}, we have

Lacc(P,X) = Lacc(P-left,X) = L(CS).

(iv) For X ∈ {CF−λ,CS,MON}, we have

Lacc(P,X, ac) = Lacc(P-left,X, ac) = L(CS).

Proof. The equalities Lacc(P,REG[, ac]) = L(REG) are shown by a standard simulation
technique. The inclusions of the language families induced by leftmost derivations within
Lacc(P,REG[, ac]) are immediate by definition, as there is at most one nonterminal symbol in
every sentential form of any successful derivation. The strictness follows by the observation
that the regular language a∗ cannot be accepted by any accepting programmed grammar with
right-linear core rules7 using leftmost derivations. The easy proof is left to the reader. This
shows statement (i).

Concerning the other three statements, we first consider accepting programmed gram-
mars with appearance checking. The inclusion L(CS) ⊆ Lacc(P,CF−λ, ac) is proved, for
example, in [16], and for X ∈ {CF−λ,CS,MON}, Lacc(P,CF−λ, ac) ⊆ Lacc(P,X, ac) holds
by definition. The inclusion Lacc(P-left,X, ac) ⊆ L(CS) with X ∈ {CF−λ,CS,MON} can
be shown by LBA construction. Thus, it is only left to prove the inclusion Lacc(P,X, ac) ⊆
Lacc(P-left,X, ac), for X ∈ {CF−λ,CS,MON}.

This inclusion can be proved similarly to the proof for generating grammars. We just
have to rename the terminal symbols first in order to avoid terminals on the right-hand sides
of rules. More precisely, for a given accepting programmed grammar G = (VN , VT , P, S),
we construct an equivalent accepting programmed grammar with leftmost derivations G′ =
(V ′

N , V ′
T , P ′, S′) as follows. Set V ′

N = VN ∪ {x
′ | x ∈ VN ∪ VT } ∪ { a | a ∈ VT } and V ′

T = VT .

Now, letˆ: (VN ∪ VT)∗ → (V ′
N)∗ be the morphism defined by Â = A for A ∈ VN and â = a

for a ∈ VT . Furthermore, let P ′ contain the following productions: For each a ∈ VT , let

((0, a) : a→ a, { (0, b) | b ∈ VT }, { r, r
′, rac | r ∈ Lab(P) }),

and with each (r : α→ β, σ(r), φ(r)) ∈ P , we associate the productions

(r′ : x̂→ x′, {r, r′}, ∅), if α = xγ, x ∈ VN ∪ VT , γ ∈ (VN ∪ VT)∗

(r : α̂→ β̂, {r′′}, ∅),
(r′′ : x′ → x̂, {r′′}, { p, p′, pac | p ∈ σ(r) }),

(rac : α̂→ β̂, ∅, { p, p′, pac | p ∈ φ(r) }).

Clearly, Lacc(G
′) = Lacc(G). Note, that we have only productions of type X if every (given)

rule α→ β is of type X.
If appearance checking features are not involved, the necessary modifications parallel the

ones given in [41] for the generating case: For a ∈ VT , let

((0, a) : a→ a, { (0, b) | b ∈ VT } ∪ { r, r
′} | r ∈ Lab(P) }, ∅),

7Note that we would have equality instead of the strict inclusion, if we considered left-linear core rules
instead of right-linear ones.

68 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

and with each (r : α→ β, σ(r), ∅) ∈ P , we associate the productions

(r′ : x̂→ x′, {r, r′}, ∅), if α = xγ, x ∈ VN ∪ VT , γ ∈ (VN ∪ VT)∗

(r : α̂→ β̂, {r′′} ∪ σ(r) ∪ { p′ | p ∈ σ(r) }, ∅),
(r′′ : x′ → x̂, {r′′} ∪ σ(r) ∪ { p′ | p ∈ σ(r) }, ∅).

Since the productions labeled by (0, a), a ∈ VT , are the only ones replacing terminal symbols,
any successful derivation must replace all terminal symbols before some productions with
labels r, r′ or r′′ are applied. A similar argument shows that the remaining productions must
be used in an appropriate order. Hence, Lacc(G

′) = Lacc(G).
The proof is completed with the observation: (1) Lacc(P-left,X) ⊆ L(CS) by LBA con-

struction and (2) L(CS) ⊆ Lacc(P,X) by definition, for X ∈ {CS,MON}. 2

Example 3.39 ([21]) Consider the following accepting programmed context-free grammar
G = ({S,A}, {a}, P, S), where P contains the following productions:

(r1 : a→ S, {r1}, ∅)

(r2 : a2 → S, {r2}, {r3})

(r3 : S → A, {r3}, {r4})

(r4 : A2 → S, {r4}, {r3}).

Then it is easily seen that Lacc(G) equals the non-context-free language { a2n
| n ≥ 0 }. A

successful sample derivation for the word a4 is

a4 ==⇒
r2

a2S ==⇒
r2

SS ==⇒
r3

AS ==⇒
r3

AA ==⇒
r4

S,

while the derivation

a4 ==⇒
r2

aSa ==⇒
r3

aAa ==⇒
r4

aAa ==⇒
r3

. . .

runs forever, because the first step of the derivation prevents that all a’s can be rewrit-
ten accordingly. According to the above given construction we associate with (r2 : a2 →
S, {r2}, {r3}) the productions

(r′2 : a→ a′, {r2, r
′
2}, ∅),

(r2 : aa→ S, {r′′2}, ∅),

(r′′2 : a′ → a, {r′′2}, {r2, r
′
2, r

ac
2 }),

(rac
2 : aa→ S, ∅, {r3, r

′
3, r

ac
3 }).

Thus, the original derivation a4 ==⇒
r2

a2S is simulated on the word a4 as follows

a4 ==⇒
r′2

a′a3 ==⇒
r′2

a′a′a2 ==⇒
r2

a′a′S ==⇒
r′′2

aa′S ==⇒
r′′2

aaS.

The Degree of Non-Regulation

Programmed grammars possess a two-fold non-deterministic feature. In general, one can first
select the production to be applied from the success or the failure fields. Secondly, one can

3.2. ACCEPTING GRAMMARS AND THE LBA PROBLEM 69

choose the occurrence of the left-hand side of the selected production in the sentential form
which is to be replaced. By the restriction to leftmost derivations, the second nondeterminism
is lost. In order to get rid of the nondeterminism in derivations of programmed grammars
entirely, one could restrict the success and failure fields to singleton sets. In order to follow
a more general approach, we consider the following measure of syntactic complexity that has
been introduced in [8].

Let G = (VN , VT , P, S) be a programmed grammar (with or without appearance checking)
with productions of type X, for X ∈ {REG,CF,CF−λ,CS,MON,RE}, in generating or in
accepting mode. The degree of non-regulation Rg(G) of G is defined in the following way:
For any production (r : α→ β, σ(r), φ(r)) in P , we set

Rg(r) = max{|σ(r)|, |φ(r)|}

and

Rg(G) = max{Rg(r) | r ∈ Lab(P) } .

For a language L ∈ Lgen(P[-left],X[, ac]), we define the degree of non-regulation with
respect to (Pgen[-left],X[, ac]) as

Rg(Pgen[-left],X[,ac])(L) = min{Rg(G) | G is a generating (P,X[,ac])-

grammar and Lgen(G[-left]) = L } .

The degree of non-regulation of a language in the family Lacc(P[-left],X[, ac]) with respect to
(Pacc[-left],X[, ac]) is defined analogously. Furthermore, we set

Lgen
n (P[-left],X[, ac]) = {L | L ∈ Lgen(P[-left],X[, ac])

and Rg(Pgen[-left],X[,ac])(L) ≤ n },

Lacc
n (P[-left],X[, ac]) = {L | L ∈ Lacc(P[-left],X[, ac])

and Rg(Pacc[-left],X[,ac])(L) ≤ n }.

The inclusions

Lgen
n (P[-left],X[, ac]) ⊆ Lgen

n+1(P[-left],X[, ac]) ⊆ Lgen(P[-left],X[, ac])

and

Lacc
n (P[-left],X[, ac]) ⊆ Lacc

n+1(P[-left],X[, ac]) ⊆ Lacc(P[-left],X[, ac])

trivially hold for n ≥ 1. Obviously, the degree of non-regulation of a programmed grammar
is a measure for the maximum number of possibilities to continue a derivation of the form
z

∗
⇒ z′ =⇒

p
w according to G, for some sentential forms z, z′, w and a label p ∈ Lab(P).

Lemma 3.40 ([21]) Let X ∈ {REG,CF,CF−λ,CS,MON,RE}. Then

(i) Lgen
2 (P,X[, ac]) = Lgen(P,X[, ac]) and

(ii) Lacc
2 (P,X[, ac]) = Lacc(P,X[, ac]).

70 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

Proof. First, we consider a generating programmed grammar G = (VN , VT , P, S). With
each production

(r : α→ β, {s1, s2, . . . , sℓ}, {t1, t2, . . . , tk}) ∈ P, ℓ > 2 or k > 2,

we associate the following groups of productions:

(r : α→ α, {r′1, r2}, {t1, r2}),
(r′1 : α→ β, {s1}, ∅),

if ℓ 6= k, for 1 < i ≤ min{ℓ, k},

(ri : α→ α, {r′i, ri+1}, {ti, ri+1}),
(r′i : α→ β, {si}, ∅),

and, if ℓ < k, for ℓ < j < k,

(rj : α→ α, ∅, {tj, rj+1}), and
(rk : α→ α, ∅, {tk}),

if k < ℓ, for k < j < ℓ,
(rj : α→ α, {r′j , rj+1}, ∅), and

(r′j : α→ β, {sj}, ∅)

(rℓ : α→ β, {sℓ}, ∅).

Finally, in the case of ℓ = k, we perform the same construction but we set

(rk : α→ β, {sk}, {tk}).

If σ(r) = ∅ (or φ(r) = ∅) we let the success fields (the failure fields, respectively) be empty in
all these productions. Now, we construct the programmed grammar G′ = (VN , VT , P ′, S) by
replacing each rule r ∈ P with Rg(r) > 2 by the corresponding group of productions as listed
above in order to obtain P ′. Then G′ is of the same type as G and Lgen(G′) = Lgen(G) holds.

In the accepting case, let G′ = (V ′
N , VT , P ′, S), where V ′

N = VN ∪ {x
′ | x ∈ VN ∪ VT },

VN∩{x
′ | x ∈ VN∪VT } = ∅, and P ′ is constructed as above under the following modifications:

instead of (r : α→ α, {r′1, r2}, {t1, r2}) we take (r : α→ β′, {r′1, r2}, {t1, r2}), where

β′ =

A′ if G is right-linear or context-free and β = A
γ1A

′γ2 if G is context-sensitive and α = γ1vγ2, β = γ1Aγ2

x′
1 . . . x′

m if G is monotone or of type-0 and β = x1 . . . xm .

Moreover, we replace any further occurrence of α → α by β′ → β′ and any occurrence of
α → β by β′ → β in the above groups of productions associated to rule r. Thus, we obtain
only accepting rules of the same type and we have Lacc(G

′) = Lacc(G). 2

Let us mention that a similar construction is possible for the special case of programmed
grammars with unconditional transfer (for a definition cf. [41]). Moreover, the constructions
given in the proof of Lemma 3.40 also work for the case of leftmost derivations, that is,
Lgen(G′-left) = Lgen(G-left) (Lacc(G

′-left) = Lacc(G-left), respectively).

Corollary 3.41 ([21]) (i) For X ∈{REG,CF,CF−λ,CS,MON,RE}, we have

Lgen
2 (P-left,X[, ac]) = Lgen(P-left,X[, ac]) ,

3.2. ACCEPTING GRAMMARS AND THE LBA PROBLEM 71

(ii) For X ∈ {REG,CF−λ,CS,MON}, we have

Lacc
2 (P-left,X[, ac]) = Lacc(P-left,X[, ac]) .

For the cases X ∈ {CS,MON,RE} without left-most derivations but with appearance
checking, we can even improve the result.

Lemma 3.42 ([21]) Let X ∈ {CS,MON,RE}. Then

(i) Lgen
1 (P,X, ac) = L(X) and

(ii) Lacc
1 (P,X, ac) = L(X).

Proof. We only proof the first statement. The accepting case can be proven with a similar
construction.

Because of L(X) = Lgen(P,X, ac), we only have to show the inclusion from right to left.
We argue as follows: By standard arguments the family Lgen

1 (P,X, ac) is closed under union
and includes the finite languages. Let L ⊆ V ∗

T be in L(X), then

L =
⋃

a,b,c∈VT

(δabc(L) · abc) ∪ (L ∩ V 3
T) ∪ (L ∩ V 2

T) ∪ (L ∩ VT) ∪ (L ∩ {λ}),

where δabc(L) = {w ∈ V +
T | wabc ∈ L }. Since L is in L(X), the language δabc(L) is in

L(X) due to the closure of that family under derivatives. Thus, for the proof of the present
assertion, it is sufficient to show that δabc(L) · abc is in Lgen

1 (P,X, ac), provided that δabc(L)
is in L(X).

Let Gabc = (VN , VT , P, S) be a grammar of type X generating δabc(L). Assume that
P = {α1 → β1, α2 → β2, . . . , αn → βn}. Let S′, X, and X ′ be new symbols not contained in
VN ∪VT . We construct a programmed grammar G = (VN ∪{S

′,X,X ′}, VT , P ′, S′) with labels

{[init]} ∪ {[t, 1], [t, 2], [t, 3]} ∪ { [ri, j] | 1 ≤ i ≤ n and 1 ≤ j ≤ 7 }

as follows: To start the derivation we are going to use the production

([init] : S′ → SXXX, {[r1, 1]}, ∅).

Then, for every 1 ≤ i ≤ n, let the following rules be given.

([ri, 1] : XX → XX ′, {[ri, 2]}, ∅)

([ri, 2] : XXX ′ → XXX ′, {[ri, 3]}, {[ri, 4]})

([ri, 3] : αi → βi, {[ri, 4]}, ∅)

([ri, 4] : XX ′ → XX, {[ri, 5]}, ∅)

([ri, 5] : XX → XX ′, {[ri, 6]}, ∅)

([ri, 6] : XXX ′ → XXX ′, {[ri, 7]}, {[t, 1]})

([ri, 7] : XX ′ → XX, { [rj , 1] | j = 1 if i = n,

and j = i + 1 otherwise }, ∅)

The XXX symbols in the sentential form are used as a switch in order to (1) apply the
actual rule αi → βi to the sentential form—rules with labels [ri, 1], [ri, 2], and [ri, 3]—and (2)
to start the termination of the derivation process—rules with labels [ri, 5] and [ri, 6]. To be
more precise, one can do the following derivations on a sentential form αXXX:

72 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

(i) Apply the rule αi → βi and continue with the next label [r1, 1], if i = n, and [ri+1, 1]
otherwise:

αXXX ==⇒
[ri,1]

αXXX ′

==⇒
[ri,2]

αXXX ′ ==⇒
[ri,3]

α′XXX ′ ==⇒
[ri,4]

α′XXX

==⇒
[ri,5]

α′XXX ′ ==⇒
[ri,6]

α′XXX ′ ==⇒
[ri,7]

α′XXX,

where α′ is derived from α by the rule under consideration.

(ii) Apply the rule αi → βi and start the termination process by continuing at [t, 1]:

αXXX ==⇒
[ri,1]

αXXX ′ ==⇒
[ri,2]

αXXX ′ ==⇒
[ri,3]

α′XXX ′

==⇒
[ri,4]

α′XXX ==⇒
[ri,5]

α′XX ′X ==⇒
[ri,6]

αXX ′X,

where α′ is as described above.

(iii) Do not apply the rule αi → βi and continue with the next label [r1, 1], if i = n, and
[ri+1, 1] otherwise:

αXXX ==⇒
[ri,1]

αXX ′X ==⇒
[ri,2]

αXX ′X ==⇒
[ri,4]

αXXX

==⇒
[ri,5]

αXXX ′ ==⇒
[ri,6]

αXXX ′ ==⇒
[ri,7]

αXXX.

(iv) Do not apply the rule αi → βi and start the termination process by continuing with
label [t, 1]:

αXXX ==⇒
[ri,1]

αXX ′X ==⇒
[ri,2]

αXX ′X

==⇒
[ri,4]

αXXX ==⇒
[ri,5]

αXX ′X ==⇒
[ri,6]

αXX ′X.

Since the rules are checked in sequence, we can simulate each derivation of the original gram-
mar.

Finally, in order to terminate the derivation process we use

([t, 1] : XX ′X → XX ′c, {[t, 2]}, ∅),

([t, 2] : XX ′c→ Xbc, {[t, 3]}, ∅),

([t, 3] : Xbc→ abc, {[t, 3]}, ∅).

This completes the construction of G. Obviously, Rg(G) = 1, and it is easy to see that
L(G) = δabc(L) · abc. 2

What about the degree 1 of non-regulation for programmed grammars with rules of the
types X with X ∈ {REG,CF,CF−λ}? The cases of generating programmed grammars (with
or without appearance checking) and accepting programmed grammars without appearance
checking are treated in Section 3.2.3. Concerning accepting programmed grammars with
appearance checking, the context-free case is investigated in the next subsection, where a close
relation to the LBA problem is shown. In the remainder of this subsection we consider the
case of right-linear core rules in accepting programmed grammars with appearance checking.

3.2. ACCEPTING GRAMMARS AND THE LBA PROBLEM 73

Lemma 3.43 ([21]) Lacc
1 (P,REG, ac) = L(REG).

Proof. The inclusion from left to right follows by Lemma 3.38. The converse inclusion is
seen as follows: As the family of regular languages is closed with respect to mirror image,
and (LR)R = L for any language L, we have {L | LR ∈ L(REG) } = L(REG). Therefore, it
is sufficient to simulate deterministic finite automata reading the input one-way from right
to left, which will be called RL-DFA’s in the following.

Let M = (Q,Σ, δ, q0, F) be an RL-DFA, where Q is the set of states, Σ is the alphabet
of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q × Σ → Q is the transition function. Let Σ = {a1, a2, . . . , an}, Q = {q0, q1, . . . , qm},
and assume that q0 is the unique initial state. We construct a programmed grammar G =
(Q ∪ {S},Σ, P, S), S /∈ Q, with labels

{[init]} ∪ { [i, j] | 0 ≤ i ≤ m and 1 ≤ j ≤ n } ∪ { [term i] | 0 ≤ i ≤ m }

and where P contains the following groups of productions.

(1) The derivation is started with the rule

([init] : λ→ q0, {[0, 1]}, ∅).

(2) The simulation of the finite automaton A is done by the following rules. For every
0 ≤ i ≤ m define

([i, j] : ajqi → qk, {[k, 1]}, {[i, j + 1]}),

if 1 ≤ j < n and δ(qi, aj) = qk. Moreover let

([i, n] : anqi → qk, {[k, 1]}, {[term i]}),

where δ(qi, an) = qk.

(3) In order to terminate the derivation one of the following rules can be used:

([term i] : qi → S, {[term i]}, ∅), 0 ≤ i ≤ m and qi ∈ F,
([term i] : qi → qi, {[term i]}, ∅), 0 ≤ i ≤ m and qi 6∈ F .

This completes the description of the accepting programmed right-linear grammar G with
Rg(G) = 1. It is easy to see that Lacc(G) equals the language accepted by the RL-DFA M .

2

3.2.2 On Context-Sensitive and Deterministic Context-Sensitive Languages

First, we present some characterizations of the family of context-sensitive languages with
the help of programmed grammars. From the literature, the following characterizations are
known. In [41] it has been shown that, for X ∈ {CS,MON},

Lgen(P,X) = Lgen(P,X, ac) = L(CS)

holds. Furthermore, in Section 3.1.2 it is proved that the family of accepting programmed
grammars with appearance checking and λ-free context-free core rules describes exactly the
family L(CS). If we take into consideration the results of the previous subsection, we can
give some further characterizations of this language family.

74 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

Corollary 3.44 ([21]) For X ∈ {CF−λ,CS,MON} and Y ∈ {CS,MON}, all the following
families of languages are equal to L(CS):

(i) Lacc(P,X, ac) = Lacc(P-left,X, ac) = Lacc
2 (P,X, ac) = Lacc

2 (P-left,X, ac).

(ii) Lacc(P, Y) = Lacc(P-left, Y) = Lacc
2 (P, Y) = Lacc

2 (P-left, Y).

(iii) Lgen
1 (P, Y, ac) = Lacc

1 (P, Y, ac).

Proof. Let X and Y be as in the statement of the corollary. From Lemma 3.38, it is known
that the equalities

Lacc(P,X, ac) = Lacc(P-left,X, ac) = L(CS)

and

Lacc(P, Y) = Lacc(P-left, Y) = L(CS)

hold. Thus, together with Lemma 3.40 and Corollary 3.41, the equalities claimed in (i) and (ii)
are proved. The equalities of Lgen

1 (P, Y, ac) and Lacc
1 (P, Y, ac) to L(CS) have been shown in

Lemma 3.42. 2

Since the restriction of the degree of non-regulation of programmed grammars to 1 means
the elimination of some non-deterministic aspect, it is natural to investigate the interrelations
between the families L(DCS) and, for example, Lacc

1 (P[-left],CF−λ, ac). Here we find the
following situation.

Lemma 3.45 ([21]) For X ∈ {CF−λ,CS,MON}, we have

Lacc
1 (P-left,X, ac) ⊆ L(DCS).

Proof. Let G = (VN , VT , P, S) be an accepting programmed grammar with produc-
tions of type X (working in leftmost mode) and Rg(G) = 1. Furthermore, let k = |PT |,
where PT = {α → β ∈ P | α ∈ V +

T }. Let {pi1 , pi2 , . . . , pik} be the set of labels of the
rules in PT . Construct a deterministic linear-bounded automaton M = (Q, VT , VN ∪ VT ∪
{#, $, B}, δ, q0, B, F), where the states are tuples with the first k components memorizing
labels ri1, ri2 , . . . , rik from Lab(P), in q0 initialized by rij = pij , 1 ≤ j ≤ k, such that M
performs the following steps.

Step 1. Copy the input word w, w ∈ V ∗
T , (k − 1)-fold such that we obtain the string

#w#w#w · · ·w#w#
︸ ︷︷ ︸

k−times w

.

Step 2. Perform stepwise simulations of leftmost derivation steps according to G in the
following way. For j = 1 to k:

2.1 Search for the leftmost occurrence of the left-hand side αij of rule rij in the j-th
subword between markers # on the tape from the left to the right (in the j-th
occurrence of w, in the beginning).

3.2. ACCEPTING GRAMMARS AND THE LBA PROBLEM 75

2.2 If such substring is found and |σ(rij)| = 1, replace it by the right-hand side βij

of rule rij , if |βij | = |αij |, and replace it by βij$
m if |αij | − |βij | = m, m > 0;

change the j-th component of the current state to σ(rij). If # is reached and no
subword αij has been found in the current subword change the j-th component of
the state to φ(rij) if possible and do not change the j-th component of the state
otherwise.

2.3 If j < k, move the read-write head over the first cell of the (j + 1)-st subword and
proceed with 2.1 for the next j. If j = k then remove all occurrences of $ and shift
the remaining parts such that we obtain a “compact” word over VN ∪ VT ∪ {#}.
Then move the read-write head over the first cell of the first subword.

Step 3. Check whether a subword #S# occurs in the current contents of the tape. If yes,
then accept, otherwise repeat step 2 according to the currently memorized rules in the
state.

Clearly, indeed M is deterministic and linear-bounded and accepts exactly the words in
Lacc(G-left). 2

Regarding the converse inclusion, we can only prove the following statement.

Lemma 3.46 ([21]) For X ∈ {CS,MON}, we have

L(DCS) ⊆ Lacc
1 (P-left,X, ac).

Proof. Given a deterministic linear-bounded automaton M . Without loss of generality,
let M possess the following standard properties of (deterministic) LBAs. We assume that,
in any computation, M first marks the leftmost symbol and the rightmost symbol of the
input word with, say, superscript L and R, respectively. Then, by the theorem about tape
compression (for instance, see [63, Theorem 12.1]), the number of cells used during the
computation on the input word w can be assumed to be equal to |w|, that is, the read-write
head is allowed to visit only the cells which are occupied by the input word at the beginning of
the computation. Therefore, if a transition has to be applied where the read-write head moves
to the right, then the cell to the right is occupied by a non-blank symbol, and if the read-
write head has to be moved to the left, then a non-blank symbol will be met there. Moreover,
we can assume that there are no transitions for final states, that is, M has no next moves
whenever the input is accepted. Let M = (Q,Σ,Γ, δ, q0, B, F), where Σ = {a1, a2, . . . , an}
and Γ = {a1, a2, . . . , an, an+1, an+2, . . . , ar}. We set

VΓ = Γ ∪ {xL | x ∈ Γ } ∪ {xR | x ∈ Γ }

and construct an accepting programmed grammar G = (VN ,Σ, P, S) with

VN = VΓ ∪ (Q× VΓ) ∪ {x′ | x ∈ Σ } ∪ {S}

(the unions being disjoint) and where P contains the following groups of productions.

76 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

(1) At first, we allow the grammar to accept the “correct” words of length one.

([i] : ai → S, ∅, ∅), if ai ∈ Σ ∩ L(M)

(2) The grammar can guess the leftmost symbol of its input string and mark it with super-
script L and can then find the rightmost symbol in order to mark it with superscript R.

([initL, i] : ai → aL
i , [init, i, 1], ∅), 1 ≤ i ≤ n,

([init, i, j] : aL
i aj → aL

i a′j , [i, j, 1], [init, i, j + 1]), 1 ≤ i ≤ n,

1 ≤ j < n,

([init, i, n] : aL
i an → aL

i a′n, [i, n, 1], ∅), 1 ≤ i ≤ n,

([i, j, k] : a′jak → aja
′
k, [i, k, 1], [i, j, k + 1]), 1 ≤ i, j ≤ n,

1 ≤ k < n,

([i, j, n] : a′jan → aja
′
n, [i, n, 1], [initR, i, j]), 1 ≤ i, j ≤ n,

([initR, i, j] : a′j → aR
j , [0, i], ∅), 1 ≤ i, j ≤ n

(3) The simulation of the work of M can be initiated by

([0, i] : aL
i → (q0, a

L
i), [q0, a

L
i , a1], ∅), 1 ≤ i ≤ n.

(4) Any transition of M of the form δ(q, âi) = (q′, âk, R) can be simulated, where x̂ ∈ {x, xL},
for x ∈ Γ.

([q, âi, aj] : (q, âi)aj → âk(q
′, aj), [q′, aj, a1], [q, âi, aj+1]),

1 ≤ j < r,

([q, âi, ar] : (q, âi)ar → âk(q
′, ar), [q′, ar, a1], [q, âi, a

R
1]),

([q, âi, a
R
j] : (q, âi)a

R
j → âk(q

′, aR
j), [q′, aR

j , a1], [q, âi, a
R
j+1]),

1 ≤ j < r,

([q, âi, a
R
r] : (q, âi)a

R
r → âk(q

′, aR
r), [q′, aR

r , a1], ∅)

(5) Any transition of M of the form δ(q, ai) = (q′, ak, L) can be simulated, where x ∈ {x, xR},
for x ∈ Γ.

([q, ai, aj] : aj(q, ai)→ (q′, aj)ak, [q′, aj , a1], [q, ai, aj+1]),

1 ≤ j < r,

([q, ai, ar] : ar(q, ai)→ (q′, ar)ak, [q′, ar, a1], [q, ai, a
L
1]),

([q, ai, a
L
j] : aL

j (q, ai)→ (q′, aL
j)ak, [q′, aL

j , a1], [q, ai, a
L
j+1]),

1 ≤ j < r,

([q, ai, a
L
r] : aL

r (q, ai)→ (q′, aL
r)ak, [q′, aL

r , a1], ∅)

3.2. ACCEPTING GRAMMARS AND THE LBA PROBLEM 77

(6) In order to terminate, add the productions

([qf , x, a1] : (qf , x)→ x̃, 1, ∅), for all x ∈ VΓ, qf ∈ F,

where x̃ = x′ if x ∈ Σ

and x̃ = x otherwise,

(i : xL
i → xL

i , 〈i, 1〉, i+1), 1 ≤ i < r − 1,

(r − 1 : xL
r−1 → xL

r−1, 〈r − 1, 1〉, 〈r, 1〉),

(〈i, j〉 : xL
i xj → xL

j , 〈j, 1〉, 〈i, j + 1〉), 1 ≤ i ≤ r, 1 ≤ j < r,

(〈i, r〉 : xL
i xr → xL

r , 〈r, 1〉, 〈i, 1′〉), 1 ≤ i ≤ r,

(〈i, j′〉 : xL
i x′

j → xL
j , 〈j, 1〉, 〈i, j + 1′〉), 1 ≤ i ≤ r, 1 ≤ j < n,

(〈i, n′〉 : xL
i x′

n → xL
n , 〈n, 1〉, 〈i, 1, R〉), 1 ≤ i ≤ r,

(〈i, j, R〉 : xL
i xR

j → S, ∅, 〈i, j + 1, R〉), 1 ≤ i ≤ r, 1 ≤ j < r,

(〈i, r,R〉 : xL
i xR

r → S, ∅, ∅), 1 ≤ i ≤ r .

Note that the primed versions of the input symbols are needed here in order to have a
nonterminal symbol on the right-hand sides of the productions labeled by [qf , x, a1].

Given a word w ∈ Σ∗, with |w| ≥ 2, the only possibility to initiate a successful derivation
is to start by a rule with label [initL, i]. If the “correct” i has been guessed, then the leftmost
symbol is marked by L; next the rightmost symbol will be found and marked by R. After
application of production [0, i] the leftmost symbol carries the initial state as an additional
component. Now, the transitions of M can be simulated, where the marked symbols remain on
the extreme positions of the sentential form, until a sentential form is arrived which contains
a symbol from F × VΓ. Then the productions of the final group allow to derive S, but only if
indeed the leftmost symbol has been marked by L in the first step and w can be recognized
by M . If a symbol different from the leftmost symbol of w has been marked in the first step
then it is impossible to derive the axiom since letters to the left of the marked one cannot
be replaced. In conclusion, G accepts (by leftmost derivations) exactly the words recognized
by M . Note that Rg(G) = 1 and that G has monotone core rules. By a standard trick in
formal language theory, one can transform all the productions of G to context-sensitive ones
without changing the degree of non-regulation. This proves the statement of the Lemma. 2

The Lemmas 3.45 and 3.46 lead to the equality Lacc
1 (P-left,X, ac) = L(DCS), for X ∈

{CS,MON}. Together with Corollary 3.44, we see that the question of whether or not the de-
gree of non-regulation of accepting programmed grammars with context-sensitive or monotone
productions and with leftmost derivations can be reduced to 1 without loss of descriptional
capacity is equivalent to the LBA problem. In case of λ-free context-free core rules, the rela-
tionship to the LBA problem is a little bit weaker, since it is unknown whether the inclusion
Lacc

1 (P-left,CF−λ, ac) ⊆ L(DCS) is strict.

Corollary 3.47 ([21]) (i) For X ∈ {CS,MON}, we have

Lacc
1 (P-left,X, ac) = L(DCS) ⊆ L(CS) = Lacc

2 (P-left,X, ac).

(ii) Moreover,

Lacc
1 (P-left,CF−λ, ac) ⊆ L(DCS) ⊆ L(CS) = Lacc

2 (P-left,CF−λ, ac).

78 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

For X ∈ {CS,MON}, we find an analogous inclusion chain also without appearance check-
ing features, both in generating and accepting mode. It is proved in the next subsection that
the first inclusion is strict in both modes.

Corollary 3.48 ([21]) For X ∈ {CS,MON},

(i) Lgen
1 (P-left,X) ⊆ L(DCS) ⊆ L(CS) = Lgen

2 (P[-left],X),

(ii) Lacc
1 (P-left,X) ⊆ L(DCS) ⊆ L(CS) = Lacc

2 (P[-left],X).

Proof. The idea of the proof of Lemma 3.45 can easily be transferred to languages in
Lgen

1 (P-left,X). Concerning the equalities to L(CS), see the Lemmas 3.37, 3.38, and 3.40 as
well as Corollary 3.41. 2

Due to Lemma 3.42, we obtain another, precise characterization of the LBA problem in
terms of programmed grammars.

Corollary 3.49 ([21]) For X ∈ {CS,MON}, we have

Lacc
1 (P-left,X, ac) = L(DCS) ⊆ L(CS) = Lacc

1 (P,X, ac).

3.2.3 Programmed Grammars with Regulation

It will be shown there are variants of programmed grammars which characterize exactly the
family L(DCS), if the degree of non-regulation is equal to 1. In general, it is interesting to
do further research on those programmed grammars with regulation, that is with degree of
non-regulation 1, and their families of languages.

Generating programmed grammars G with Rg(G) = 1, except for grammars with non-
context-free rules and with appearance checking, can generate finite languages only.

Lemma 3.50 ([21]) The following families of languages equal the family of all finite lan-
guages:

Lgen
1 (P[-left],REG) = Lgen

1 (P[-left],REG, ac)

= Lgen
1 (P[-left],CF[−λ]) = Lgen

1 (P[-left],CF[−λ], ac)

= Lgen
1 (P[-left],CS) = Lgen

1 (P[-left],MON)

= Lgen
1 (P[-left],RE)

Proof. Let G be any programmed grammar of the above mentioned type. If Lgen(G) = ∅,
then the statement trivially holds. Now let Lgen(G) 6= ∅ and w ∈ Lgen(G) be obtained with
exactly n derivation steps. By induction one can show that all sentential forms which can
be derived from the axiom by a fixed number of derivation steps starting off with one and
the same production applied to the axiom are equally long and have the same Parikh vector.
Hence all words which can be obtained with n derivation steps are letter equivalent to the
word w, thus are terminal words. 2

If core rules of type X with X ∈ {CS,MON,RE} and appearance checking are allowed,
the family L(X) is characterized both in generating and in accepting mode, see Lemma 3.42.

Accepting programmed grammars without appearance checking do not lead to the same
trivial characterization of the class of finite languages as in Lemma 3.50. For example, even

3.3. DISCUSSION 79

a right-linear programmed grammar with regulation 1 but without left-most derivations and
without appearance checking can accept a regular and non-finite language. This is seen as
follows: Let G = ({S}, {a}, P, S), where P contains the productions

(r1 : a→ S, {r2}, ∅),

(r2 : aS → S, {r2}, ∅).

Then it is easy to see that Lacc(G) = a+. Therefore the language a+ belongs to Lacc
1 (P,REG).

By a symmetric argument one can use also left-linear or context-free core rules, thus covering
also the left-most derivation case.

Concerning accepting programmed grammars with context-free core rules and appearance
checking and with regulation, we only mention the following facts demonstrating that this
class is a non-trivial one, even if λ-rules are forbidden.

For example, the (non-deterministic) context-free language L = {wwR | w ∈ {a, b}∗ },
where wR denotes the mirror image of w, is contained in Lacc

1 (P-left,CF−λ, ac). This can
be seen as follows. Consider the accepting context-free λ-free programmed grammar G =
(VN , VT , P, S) working in leftmost manner with VT = {a1, a2, . . . , ak}, which first guesses the
symbols that form the left and the right margin of the terminal word to be analyzed by a
production of the form

([L, i, j] : ai → aL
i , [i, j, 1], ∅),

for 1 ≤ i, j ≤ k. Now, the leftmost occurrence of symbol ai is marked by superscript L and
G starts to search for the rightmost occurrence of symbol aj and marks it by superscript R
with help of the following group of productions:

([i, j, 1] : aj → a′j, [i, j, 2], ∅),

([i, j, 2] : aj → a′j, [i, j, 3], [i, j, 4]),

([i, j, 3] : a′j → a′′j , [i, j, 2], ∅),

([i, j, 4] : a′j → aR
j , σ([i, j, 4]), ∅).

If the guess was correct, the margin symbols are marked by superscripts L and R, and if these
margin symbols consume the string in an appropriate way, G can check whether or not the
input string does belong to L.

Moreover, it is easily shown that the family Lacc
1 (P-left,CF−λ, ac) contains even non-

context-free languages like { a2n
| n ≥ 0 } or {wcw | w ∈ {a, b}∗ }, it includes all regular

languages, and that it is closed under union.
The same properties can be shown for the class Lacc

1 (P,CF−λ, ac); note that, in the first
example, the margin symbols can directly be marked in the beginning of any derivation by
non-deterministic choice.

3.3 Discussion

The descriptive power of accepting grammars has been studied in detail. Accepting grammars
can be viewed as nondeterministic recognizers for the language families which they describe.
In many cases, when in any possible derivation the lengths of the sentential forms build a
monotone decreasing sequence of non-negative integers, then backtrack parsing algorithms
may be obtained from the accepting grammar formalisms.

80 CHAPTER 3. ACCEPTING GRAMMARS AND SYSTEMS

Unfortunately, most of those mechanisms lose too many positive properties of the context-
free grammars, in particular the fixed membership problem becomes intractable. If the fam-
ily of context-sensitive languages is effectively characterized, then this decidability problem
is PSPACE-complete; if accepting grammars are constructively equivalent to their gener-
ating variants, then the problem is also at least NP-hard in many cases. Even the known
deterministic polynomial-time parsing algorithms for tree-adjoining (and equivalent mildly
context-sensitive grammars) are of complexity O(n6), see, for example, [67].

In the last section of this chapter, another use of accepting grammars has been taken
into consideration: we presented several grammatical characterizations of the LBA problem.
Thus, a problem stemming from complexity theory can be expressed in terms of descrip-
tional complexity of grammars. Alas, for the precise characterization of the LBA problem
we needed context-sensitive core rules. It is an open problem whether or not the inclusion
Lacc

1 (P-left,CF−λ, ac) ⊆ L(DCS) is strict.
The exact characterizations of the LBA problem can be summarized as follows:

Lacc
1 (P-left,CS, ac) = L(DCS)

and
Lacc

1 (P,CS, ac) = Lacc
2 (P-left,CS, ac) = L(CS).

Thus, giving up determinism in linear bounded automata means the same as giving up either
the restriction to leftmost derivations or the restriction to a degree of non-regulation of 1 in
accepting programmed grammars with context-sensitive core rules. Concerning future work,
it seems to be interesting to further explore the degree of non-regulation, for example, for
(programmed) grammars with timed bounded functions.

Let us remark that by the technique given in the previous section for finding the margins
of a given terminal word, that is, the rules of group (2) in the proof of Lemma 3.46 can be
replaced with productions having context-free λ-free core rules. Thus, monotone rules are
in fact only needed in the productions of groups (4) and (5) in that proof. Moreover, it
is remarkable that we actually do not need the left-most derivation feature in the proof of
Lemma 3.46, what reproves that, for X ∈ {CS,MON}, we have

L(DCS) = Lacc
1 (P-left,X, ac) ⊆ Lacc

1 (P,X, ac) = L(CS)

what has already been shown because of Lemma 3.42.
As it has been mentioned in Section 3.1.1, also pure grammars and systems might be taken

into consideration, what is of some interest with respect to syntactical analysis issues. What is
the general idea of the concept of a pure grammar? Take the definition of successful derivation
of the non-pure case, but do not distinguish between terminal and nonterminal symbols. (This
means especially that terminal symbols may be rewritten in generating context-free grammars,
and they can be generated in accepting context-free grammars.) Into the described pure
language, we put all words appearing in some successful derivation. Such pure grammars have
been investigated, e.g., in [57, 72], and in combination with regulated rewriting in [36, 40],
and they are of interest because of the following reasons:

1. For the simulation of say type-0 grammars by accepting programmed grammars, a
suitable nonterminal alphabet is needed. Pure grammars are a suitable mean in order
to get rid of the influence of coding tricks possible by making use of a nonterminal
alphabet.

3.3. DISCUSSION 81

2. The “intermediate” sentential forms belong to the language such that no information
about the derivation process is lost. This is important, for example, for purposes of
syntax analysis. Moreover, new light is shed on the role of the auxiliary symbols in
the simulation of generating grammars by accepting ones: Is it possible to keep the
simulation features also in the pure case or do we find new relationships between the
families of languages generated and accepted by certain pure grammars?

3. In some sense, they form a sequential counterpart to the basic (non-extended) types of
Lindenmayer systems, where, in the terminology of Definition 2.7, ∆ = Σ.

Accepting pure grammars and systems have been investigated in [18] and [19]. As in the
non-pure case, both equivalences of the generating and the accepting variants of grammar
formalisms and strict inclusions of the generated in the accepted families of languages have
been obtained. Additionally, also examples of pure grammars and systems have been en-
countered for which incomparability between the generating and the accepting modes are
proved.

Concerning the yield relation, we textually transfered the given definition of a derivation
step in the generating device to the accepting one. One could alternatively try to create an
accepting grammar type which mimics the generating process of another generative grammar
step by step. Such an approach has been taken in [76] for the case of cooperating distributed
grammar systems. By construction, the language families generated and accepted in this way
automatically coincide. We pursued that approach here only for PC grammar systems, where
it led to non-straightforward considerations.

Chapter 4

Leftmost Derivations

For context-free grammars, the theory of parsing is sophisticated and methodologically sound.
One fundamental property which many compiler generations make use of is the fact that
every context-free grammar still describes the same language if it is restricted to left-most
derivations, that is, if at any step of the derivation the leftmost occurrence of a nonterminal
symbol is replaced. In the case of context-free grammars with controlled derivations, such
as context-free matrix or context-free programmed grammars, the situation is quite different,
see for example [41]: at first, the descriptional capacity of the grammars may change and,
secondly, there are frequently several different definitions of the leftmost restriction, which
are all sensible and may yield different language families.

In the preceding chapter, in Section 3.2, programmed grammars have been restricted to
leftmost derivations in order to eliminate one sort of nondeterminism in the derivations. The
results from [41] have been supplemented there, taking also programmed grammars with
regular, context-sensitive, monotone and type-0 core rules into consideration. Moreover,
besides generating grammars also the accepting case has been regarded.

For context-free matrix grammars without appearance checking, Dassow, Fernau and
Păun systematically investigated the concept of leftmost derivation in [38], where twelve
different definitions of leftmostness have been considered. Seven of them have been shown
to characterize the set of all recursively enumerable languages. Precise characterizations of
the families of context-free and context-sensitive languages have also been obtained. In three
cases, the closure under a homomorphism and an intersection with a regular language yields
characterizations of the family L(RE). These investigations have been expanded to further
classes of grammars with controlled derivations in [51]. There, grammars controlled by a
bicoloured digraph viewed as a unifying generalization of several types of grammars with
controlled derivations are in the focus of the investigations.

This chapter deals with CD grammar systems with respect to the leftmost feature. Simi-
larly to the case of matrix grammars, several natural restrictions are applicable. The inves-
tigation of two of them has already been started by Dassow and Mitrana, see [39]. There,
one distinguishes between a strong type of leftmostness, where always the leftmost occurrence
of a symbol has to be rewritten, and a weak leftmost feature, where the active context-free
grammar of the system (that is, the component which is currently working on the sentential
form) has to rewrite the leftmost nonterminal which it is able to rewrite. But also in this
weak type of leftmostness any component has to replace the very leftmost occurrence of a
nonterminal (according to the strong leftmost definition) in its first step. That is, the system

82

4.1. DEFINITIONS 83

is forced to treat the leftmost nonterminal when no component has been activated yet, and
then the leftmost nonterminals for which the activated component has a rule.

As this type, which will be called sw-type in the present chapter, is the hardest (“as
leftmost as possible”) way of leftmost rewriting in which cooperating distributed grammar
systems are able to generate non-context-free languages, it will be used in the next chapter
(following [24]) for defining the grammar class having a deterministic parser of strictly sub-
quadratic time complexity.

But one could also apply the weak manner of leftmostness in the first steps to be performed
by the components or the strong one only in the following steps. Taking also the free type
of rewriting, that is, the ordinary “non-leftmost” replacement into consideration, one can
distinguish nine ways in which the components work on the sentential forms.

This chapter aims to provide a systematic investigation of the power of the corresponding
CD grammar systems, working according to several different cooperation strategies. Although
there is a close relationship between matrix grammars and CD grammar systems, the results
and the proof techniques presented in [38] and the present chapter differ considerably. This
might mainly be due to the fact that in matrix grammars the sequence of rules (in the
matrices) is prescribed and cannot be changed.

4.1 Definitions

First, a restricted type of programmed grammars is defined, which has been introduced in [106]
as another characterization of the language family generated by restricted ET0L systems,
where the applicability of the tables is controlled by random context conditions.

Definition 4.1 A context-free recurrent programmed grammar [106] is a context-free pro-
grammed grammar where, for each of its production rules (r : A → z, σ(r), φ(r)), (1) the
label r is contained in the success field, r ∈ σ(r), and (2) either φ(r) = σ(r) or φ(r) = ∅.

Like a programmed grammar as defined in 2.2, a recurrent programmed grammar is said
to be without appearance checking if the failure field is empty for each production in P . In
the notation of language families, we write rP instead of P whenever programmed grammars
are restricted to recurrent programmed grammars. The following inclusion chains hold due
to [44, 50, 106].

L(CF) ⊂ L(rP,CF) ⊆ L(P,CF) ⊂ L(P,CF, ac) = L(RE).
L(CF) ⊂ L(rP,CF) ⊂ L(rP,CF, ac) ⊆ L(P,CF, ac) = L(RE).

Next we turn to the definition of the various leftmost restricted variants of context-free
CD grammar systems.

Definition 4.2 ([39, 23, 25]) Let Γ = (N,T, S, P1, P2, . . . , Pn) be a CD grammar system
with n components.

A strong leftmost rewriting step is a direct derivation step that rewrites the leftmost
nonterminal of a sentential form. Formally, we write x =⇒

s i y if and only if x = x1Ax2,
y = x1zx2, A→ z ∈ Pi, and x1 ∈ T ∗, x2, z ∈ (N ∪ T)∗.

A weak leftmost rewriting step is a direct derivation step that rewrites the leftmost non-
terminal from the domain of the active component. Formally, x =⇒

w i y where x = x1Ax2,
y = x1zx2, A→ z ∈ Pi, and x1 ∈ T ∗

i , x2, z ∈ (N ∪ T)∗.

84 CHAPTER 4. LEFTMOST DERIVATIONS

A free rewriting step is a usual direct derivation step that rewrites any nonterminal of
a sentential form. Formally, x =⇒

f i y where x = x1Ax2, y = x1zx2, A → z ∈ Pi, and
x1, x2, z ∈ (N ∪ T)∗.

Let
k

=⇒
α i denote k consecutive derivation steps of component Pi, k ≥ 1, in the strong

leftmost, weak leftmost or free manner, if α = s, α = w, or α = f, respectively. Further, let
∗

=⇒
α i denote the reflexive and transitive closure of =⇒

α i.

We denote the combinations of the above defined types of leftmostness as αβ where
α, β ∈ {s,w, f}. The first symbol, α, denotes the type of leftmostness applied when a new
component is chosen to begin the rewriting, that is, if α = s then the chosen component must
be able to rewrite the leftmost nonterminal of the sentential form and it must rewrite this
nonterminal in the first rewriting step; if α ∈ {w, f}, then the chosen component must be able
to rewrite some of the nonterminals in the sentential form, and in case of α = w, the leftmost
occurrence of these nonterminals must be rewritten. The symbol β denotes the restriction
obeyed by the chosen component for the rewriting steps following the first one.

Definition 4.3 ([23, 25]) Let Γ = (N,T, S, P1, P2, . . . , Pn) be a CD grammar system with
n context-free components. A ∗-derivation by the ith component in the αβ manner, where
α, β ∈ {s,w, f}, denoted by

∗=⇒
αβ i, is defined as

x
∗=⇒

αβ i y, iff x =⇒
α i x1 and x1

∗=⇒
β i y,

for some x1 ∈ (N ∪ T)∗. A t-derivation by the ith component in the αβ manner, where

α, β ∈ {s,w, f}, denoted by
t=⇒

αβ i, is defined as

x
t=⇒

αβ i y, iff x =⇒
α i x1, x1

∗=⇒
β i y, and there is no z with y =⇒

β i z,

for some x1 ∈ (N ∪T)∗. Let k be a positive integer. A k-step derivation by the ith component

in the αβ manner, where α, β ∈ {s,w, f}, denoted by
=k=⇒
αβ i, is defined as

x
=k=⇒
αβ i y, iff x =⇒

α i x1 and x1
k−1
=⇒

β i y,

for some x1 ∈ (N ∪ T)∗. An at most k-step (at least k-step) derivation by the ith component

in the αβ manner, where α, β ∈ {s,w, f}, denoted by
≤k
=⇒

αβ i (
≥k
=⇒

αβ i), is defined as

x
≤k
=⇒

αβ i y (x
≥k
=⇒

αβ i y), iff x
=k′=⇒
αβ i y for some k′ ≤ k (k′ ≥ k).

A derivation in the full-competence mode by the ith component in the αβ manner, where

α, β ∈ {s,w, f}, denoted by
full=⇒
αβ i, is defined as

x
full=⇒
αβ i y, iff x = x0 =⇒

α i x1 =⇒
β i x2 =⇒

β i . . . =⇒
β i xm = y,

where for all j, 0 ≤ j ≤ m− 1, we have

xj ∈ (dom(Pi) ∪ T)∗, and symb(y) ∩ (N \ dom(Pi)) 6= ∅, or y ∈ T ∗.

The “non-leftmost” way of rewriting (or the ff manner in the above notation) is exactly the
same as it has been introduced in 2.13.

4.2. THE POWER OF LEFTMOST DERIVATIONS IN CD GRAMMAR SYSTEMS 85

Definition 4.4 ([23, 25]) Let Γ be a CD grammar system as above. The language generated
by Γ in the αβ manner of leftmostness and the mode γ of derivation, α, β ∈ {s,w, f}, γ ∈
{∗, t, full} ∪ {=k,≤k,≥k | k ≥ 1 }, is

Lαβ(Γ, γ) = {w ∈ T ∗ | S
γ

=⇒
αβ i1 w1

γ
=⇒

αβ i2 w2 . . .
γ

=⇒
αβ im wm = w,

where m ≥ 1, 1 ≤ ij ≤ n, wj ∈ (N ∪ T)∗, 1 ≤ j ≤ m }.

In what follows, the notation is simplified by letting Lαβ(CDn, γ) denote the class of languages
generated by CD grammar systems with n components in the αβ manner of leftmostness
and the mode γ of derivation, α, β ∈ {s,w, f}, γ ∈ {∗, t, full} ∪ {=k,≤k,≥k | k ≥ 1};
correspondingly, let Lαβ(CD∞, γ) =

⋃

n≥1Lαβ(CDn, γ).
Obviously, the ff-type of leftmostness imposes no restriction at all, therefore, we will omit

the subscript ff in the sequel without further mentioning. Note also that the ss and the sw
variants were called “strong leftmost” and “weak leftmost” in [39].

4.2 The Power of Leftmost Derivations in CD Grammar Sys-

tems

In the following we will investigate the power of context-free CD grammar systems using the
above defined modes of derivation in the leftmost manner.

4.2.1 The So-Called Trivial Derivation Modes

The following theorem shows that restricting the derivations of CD grammar systems in the
above described combinations of leftmostness does not increase their power if they use the
so-called “trivial” derivation modes, that is, the modes which in the “non-leftmost” manner
generate context-free languages only (see item 1. of the results above).

Theorem 4.1 ([23, 25]) For all α ∈ {ss, sw, sf,ws,ww,wf, fs, fw}, β ∈ {∗,=1,≤1,≥1} ∪
{≤k | k ≥ 2 }, Lα(CD∞, β) = L(CF).

Proof. To show that CF ⊆ Lα(CD∞, β), let G = (N,T, S, P) be a context-free grammar,
and consider the CD grammar system Γ = (N,T, S, P1) with P1 = P . Since a context-
free derivation produces the same result irrespective of the order in which the rewritten
nonterminals are chosen, the language generated by Γ is the same as the one generated by G,
thus, Lα(Γ, β) = L(G). Note that the grammar system Γ is allowed to change the component
after any single derivation step, according to all derivation modes β considered in this theorem.

In order to prove the inclusion Lα(CD∞, β) ⊆ CF, consider the CD grammar system
Γ = (N,T, S, P1, P2, . . . , Pn), and let G = (N,T, S, P) be a context-free grammar where
P =

⋃n
i=1 Pi. Since any derivation of Γ in any of the derivation modes β and manners α

of leftmostness can also be reproduced by G, we have Lα(Γ, β) ⊆ L(G). To prove that
L(G) ⊆ Lα(Γ, β), notice that any of the derivation modes β allows to use a component just
for one rewriting step, thus, for α ∈ {fs, fw} arbitrary derivations of G can be reproduced
by Γ, while for α ∈ {ss, sw, sf,ws,ww,wf} all leftmost derivations of G can be reproduced
by Γ, where by leftmost derivations of G we mean derivations which always replace the
leftmost nonterminal occurrence of the sentential form. Since all words which can be derived
by G, can also be derived by G in the leftmost manner, we have L(G) ⊆ Lα(Γ, β), and thus,
L(G) = Lα(Γ, β). 2

86 CHAPTER 4. LEFTMOST DERIVATIONS

4.2.2 The Terminal Mode of Derivation

Let us now continue with the study of the t mode. By Lemma 2 of [39], we have

Lss(CD∞, t) = L(CF).

Concerning the other types of leftmostness, context-free CD grammar systems working in
the t-mode of derivation are equally powerful when working in the sw and sf manner. To
see this observe that, given a sentential form, (a) the same components can be chosen to
rewrite since the leftmost nonterminal has to be rewritten in both cases, and (b) the chosen
components must give the same results in the sw and the sf manner because of the t-mode.
Thus, according to Lemma 5 of [39] we have, for α ∈ {sw, sf},

1. L(CF) = Lα(CD1, t) = Lα(CD2, t) and

2. L(ET0L) ⊂ Lα(CD3, t) = Lα(CD∞, t).

Based on similar arguments taking into account the nature of the t-mode derivations, the
following three variants of leftmostness have no effect on the generative power of CD grammar
systems.

Theorem 4.2 ([23, 25]) For α ∈ {ww,wf, fw}, n ≥ 1, Lα(CDn, t) = L(CDn, t).

Proof. First, given any CD grammar system Γ and a sentential form w, a component can
start to rewrite w using one of the ww,wf, fw leftmost restrictions if and only if it can also
start to rewrite w in the non-leftmost manner. Second, since the components must rewrite
the sentential form as long as it contains at least one nonterminal from the domain of the
component, the result of the rewriting process is the same in the non-leftmost manner, or
using any of the ww,wf, fw leftmost restrictions. 2

Concerning the ws and fs variants of leftmostness, the argument above does not work, but
we can show the following weaker statement.

Theorem 4.3 ([23, 25]) For n ≥ 5, and α ∈ {ws, fs}, L(CF) ⊂ Lα(CDn, t).

Proof. The inclusion follows from the fact that any context-free CD grammar system with
only one component is just a context-free grammar, and it generates the same context-free
language when working in the t-mode of derivation. For the strictness we argue as follows.
Consider the CD grammar system

Γ = ({S,A,A′, B,B′, T, F}, {a, b, c}, S, P1 , P2, . . . , P5),

a CD grammar system with five components, where

P1 = {S → AB,A′ → A},

P2 = {A′ → F,B′ → B,B′ → T},

P3 = {A→ aA′b},

P4 = {A→ ε, T → ε,B → F,B′ → F},

P5 = {A→ F,B → cB′}.

This system generates a non-context-free language, namely, if α ∈ {ws, fs}, then Lα(Γ, t) =
{aibicj | 1 ≤ j ≤ i}. 2

4.2. THE POWER OF LEFTMOST DERIVATIONS IN CD GRAMMAR SYSTEMS 87

4.2.3 The =k and ≥k Modes of Derivation

The investigation of leftmostness for the derivation modes of =k and ≥k for k ≥ 2 has also
been started in [39]. By Lemma 3, Lemma 4, and Corollary 1 of [39], we have for n ≥ 1 and
k ≥ 1,

1. Lss(CDn,=k) = Lss(CDn,≥k) = L(CF),

2. Lsw(CDn,=k) ⊆ Lsw(CDn,=p·k) where p ≥ 1, and

Lsw(CDn,≤k) ⊆ Lsw(CDnk,=q) where q is the least common multiple of 1, 2, . . . , k.

Note that the second part of item 2 is also a consequence of Theorem 4.1 above. Note also,
that item 1 of the above statement implies that, for k ≥ 2 and n ≥ 1,

Lws(CDn,=k) = Lws(CDn,≥k) = L(CF).

To see this, observe that if a component of a CD grammar system is able to perform at least
two derivation steps in the ws manner on a sentential form, then it must be able to rewrite
the leftmost nonterminal of the sentential form, thus any weak leftmost rewriting step must
also be strong leftmost, that is, for k ≥ 2, ws = ss holds.

Now we continue the investigations concerning the =k and ≥k modes with the different
types of leftmost restrictions. In contrast to item 2 above, we can show the following.

Theorem 4.4 ([23, 25]) For any n, k ≥ 1 and α ∈ {sw,ww},

1. Lww(CDn,=k) ⊆ Lα(CDn+2,=k+1), and

2. Lww(CDn,≥k) ⊆ Lα(CDn+2,≥k+1).

Proof. Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system and let k ≥ 1 be a given inte-
ger. We construct a system Γ′ with n + 2 components such that Lww(Γ,=k) = Lα(Γ′,=k+1)
and Lww(Γ,≥k) = Lα(Γ′,≥k+1), α as above.

Let Γ′ = (N ′, T, S′, P ′
1, P

′
2 . . . , P ′

n, Pinit+reset, Pter) with

N ′ = N ∪ {S′,X ′, Y } ∪ {Xi | 0 ≤ i ≤ k },

the unions being pairwise disjoint, and let the components be defined as follows. The deriva-
tions start with the rules S′ → X0SY and X0 → X0 of the component

Pinit+reset = {S′ → X0SY,X0 → X0} ∪ {X
′ → X1,Xk → X0} ∪Rreset,

where

Rreset =

{
{Xi → Xi+1 | 1 ≤ i ≤ k − 1 } if k ≥ 2,
∅ if k = 1.

Now, every sentential form w of Γ corresponds to the sentential form X0wY of Γ′. To simulate
a k-step application of the component Pi with k + 1 steps, we have for each i, 1 ≤ i ≤ n,

P ′
i = Pi ∪ {X0 → X ′}.

With these components we obtain the sentential form X ′w′Y , if and only if w′ can be obtained
by the corresponding component of Γ. Note that X0 must be rewritten due to the leftmost
restriction.

88 CHAPTER 4. LEFTMOST DERIVATIONS

To reset X ′ to X0 again, we use the the rules of Pinit+reset, and for the termination of the
derivation we need

Pter = {Y → ε,A→ F | A ∈ N } ∪Rter,

where

Rter =

{
{X0 → ε} if k = 1,
{Xi → Xi+1 | 0 ≤ i ≤ k − 2 } ∪ {Xk−1 → ε} if k ≥ 2.

Since any k-step derivation is also a ≥k-step derivation, the construction above is sufficient
to prove both statements of our theorem. 2

We can also show that CD grammar systems using the sf leftmost restriction in the≥(k+1)
derivation modes are at least as powerful as non-restricted systems working in the ≥k mode.

Theorem 4.5 ([23, 25]) For any n, k ≥ 1, L(CDn,≥k) ⊆ Lsf(CDn+1,≥k+1).

Proof. Let Γ = (N,T, S, P1, P2, . . . , Pn) be a CD grammar system and let k ≥ 1 be a given
integer. We construct a system Γ′ with n+1 components such that L(Γ,≥k) = Lsf(Γ

′,≥k+1).
Let Γ′ = (N ∪ {S′,X,X ′}, T, S′, P0, P

′
1, . . . , P

′
n) with

P0 = {S′ → S′, S′ → XS,X ′ → X ′,X ′ → X,X ′ → ε},

and
P ′

i = Pi ∪ {X → X ′} for 1 ≤ i ≤ n.

The work of Γ′ starts with the possibly repeated application of P0 which yields the sentential
form XS. Now, since X is the leftmost nonterminal, any ≥(k+1) step application of a
component with the sf leftmost restriction to a sentential form Xw leads to X ′w′ where w′

is the result of the free ≥k step application of the same component to the sentential form
w. If we use P0 to change X ′ back to X, we can repeat the simulation of any ≥k step of Γ
in Γ′ until X ′ is erased and a terminal string is produced. If after the removal of X ′ from the
sentential form, Γ′ does not produce a terminal word but continues to apply its components
in the ≥(k+1) mode, then it executes special ≥k step derivations, so it cannot produce any
word which cannot be also produced by Γ in the ≥k mode. Thus the two systems generate
the same language, and the statement is proved. 2

Note that the argument above cannot be used to prove a similar statement for the =k mode
of derivation, since =(k+1) step derivations cannot be viewed as special =k step derivations,
contrarily to the cases of ≥k and ≥(k+1) step derivations, for k ≥ 1.

Now we continue with the characterization of the generative power of systems using either
the =k or the ≥k derivation modes for k ≥ 2. First we show that systems using the sf
restriction can generate non-context-free languages.

Theorem 4.6 ([23, 25]) For n ≥ 4 and β ∈ {=k,≥k | k ≥ 2 },L(CF) ⊂ Lsf(CDn, β).

Proof. The inclusion follows from the following observation. Given a context-free grammar
G = (N,T, S, P), let X be a new nonterminal symbol, and replace P with

P ∪ {S → XS,X → X,X → ε}.

Now, we interpret G as CD grammar system with one component. In the first, strong leftmost
step, the component must replace the symbol X, and then simulate the actual context-free

4.2. THE POWER OF LEFTMOST DERIVATIONS IN CD GRAMMAR SYSTEMS 89

derivation step. As X can be deleted in the very last step, all derivations of G can be
simulated. If X has been erased when other nonterminals remained in the sentential form,
then only derivations are possible which can be performed in the given context-free grammar,
either. Hence, the language L(G) is generated.

To prove the strictness, we use a similar construction as in the proof of Theorem 4.3.
Consider the CD grammar system with four components

Γ = ({S,A,A′, B,B′, T}, {a, b, c}, S, P1 , P2, P3, P4),

where

P1 = {S → AB,A→ A,T → T, T → ε},

P2 = {A′ → A,B′ → B,B → B},

P3 = {A→ aA′b,B → cB′, B′ → B′},

P4 = {A→ ab,B → cT, T → T}.

This system generates a non-context-free language, for β ∈ {=k,≥k | k ≥ 2 }, Lsf(Γ, β) =
{ aibici | i ≥ 1 }. 2

The next theorem characterizes the power of the sw,ww, and fw types of leftmostness. We
give a more detailed proof since the other theorems of this section are proved by modifications
of this construction.

Theorem 4.7 ([23, 25]) For α ∈ {sw,ww, fw}, and k ≥ 2,

Lα(CD∞,=k) = Lα(CD∞,≥k) = L(RE).

Proof. For any recursively enumerable language L, there is a context-free programmed
grammar G = (N,T, S, P) with appearance checking such that L = Lleft(G), where Lleft(G)
denotes the language generated by G in such a way that each rule is always applied to rewrite
the leftmost occurrence of the nonterminal on its left-hand side. According to the proof
Lemma 1.4.8 of [41] (where this leftmost derivation mode for programmed grammars is called
left-3), such a programmed grammar always exists.

Consider the CD grammar system Γ with nonterminal alphabet N ′, terminal alphabet T ,
and start symbol S0 ∈ N ′ where

N ′ = N ∪ {X,X ′, B, F}
∪ {Si,Xr,X

′
r, [r]i, [r]

′
i, (r)i | r ∈ lab(P), 0 ≤ i ≤ k − 1 },

the unions being disjoint, and the components are defined as follows.

P0 = {Si → Si+1 | 0 ≤ i ≤ k − 2 } ∪ {Sk−1 → [r]0SX | r ∈ lab(P) }

is the component initiating the derivation process which is continued by simulating the rule
labelled with r ∈ lab(P). The rules of G are simulated in several rewriting steps.

In order to simulate the successful application of the rules with the sw leftmost restriction,
we have a component for each (r : A→ α, σ(r), φ(r)) defined as

Pr,succ = { [r]i → [r]i+1 | 0 ≤ i ≤ k − 3 }

∪ {[r]k−2 → [r]′0, A→ Bα,B → B},

90 CHAPTER 4. LEFTMOST DERIVATIONS

and one more component

Psucc = { [r]′i → [r]′i+1, [r]
′
k−2 → [s]0 | r ∈ lab(P), s ∈ σ(r),

0 ≤ i ≤ k − 3 } ∪ {B → ε}.

Note that the symbol B is introduced and deleted in Pr,succ and Psucc, respectively, since,
in the ≥k-mode, a multiple application of the rule A → α in one simulation cycle must be
prevented.

For the same simulation using the ww and fw restrictions, we need to make sure that the
leftmost marker is rewritten. So for the simulation of the successful rule application we have
in this case

P ′
r,succ = Pr,succ ∪ { [p]0 → F, [q]′0 → F | p, q ∈ lab(P), p 6= r }

∪ { (p)0 → F | p ∈ lab(P) }.

To simulate the “unsuccessful” application of the rules with the sw restriction, we have for
each r as above

Pr,fail = { [r]i → [r]i+1 | 0 ≤ i ≤ k − 3 }

∪ {[r]k−2 → (r)0, A→ F,X → X},

and one more component

Pfail = { (r)i → (r)i+1, (r)k−2 → [s]0 | r ∈ lab(P), s ∈ φ(r),

0 ≤ i ≤ k − 3 } ∪ {X → X}.

Note that after reaching the sentential form (r)0wX, where w corresponds to a sentential
form of G, (at least) one further step has to be performed. If A ∈ symb(w), then the trap
symbol F will be introduced, blocking the derivation.

For the ww and fw restrictions we need to replace the component Pr,fail with two compo-
nents

P ′
r,fail = { [r]i → [r]i+1 | 0 ≤ i ≤ k − 3 } ∪ {[r]k−2 → (r)0,X → Xr}

and
P ′′

r,fail = {Xr → X ′
r,X

′
r → X ′

r, A→ F},

and need to change the rule X → X in Pfail to X ′
r → X.

If a terminal string has been obtained between the left and right markers, then the deriva-
tion can be finished by erasing these markers. This can be done with the sw or ww restriction
by the component

Pter = { [r]i → [r]i+1, [r]k−2 → ε | r ∈ lab(P), 0 ≤ i ≤ k − 3 }

∪ {A→ F,X → ε | A ∈ N }.

Here any label symbol of the form [r]0, r ∈ lab(P), must be rewritten since it belongs to the
domain of Pter.

For the fw restriction we need two components instead of Pter, defined as

P ′
ter,1 = {X → X ′,X ′ → X ′} ∪ {A→ F | A ∈ N }

4.2. THE POWER OF LEFTMOST DERIVATIONS IN CD GRAMMAR SYSTEMS 91

and

P ′
ter,2 = { [r]i → [r]i+1, [r]k−2 → ε | r ∈ lab(P), 0 ≤ i ≤ k − 3 }

∪ {X ′ → ε}.

Here we make use of the derivation mode which guarantees that at least one symbol is
rewritten in the weak leftmost manner.

The constructions above work in both the =k and ≥k modes for any k ≥ 2, thus we have
shown that systems using the sw,ww or fw restrictions working in these derivation modes
can simulate leftmost derivations of context-free programmed grammars with appearance
checking, hence can generate any recursively enumerable language. 2

A similar construction can be used to simulate context-free programmed grammars with-
out appearance checking in the fs manner of leftmostness.

Theorem 4.8 ([23, 25]) For k ≥ 2,

L(P,CF)⊆Lfs(CD∞,=k) and L(P,CF)⊆Lfs(CD∞,≥k).

Proof. The idea of the proof is the same as in the proof of Theorem 4.7: For any
L ∈ L(P,CF), we simulate the programmed grammar G = (N,T, S, P) without appear-
ance checking and with L = Lleft(G) which, according to the proof of Lemma 1.4.8 of [41],
always exists.

Consider the CD grammar system Γ with P0, Psucc, P ′
r,succ from the proof of Theorem 4.7,

for each (r : A→ α, σ(r)) ∈ P . Now, the rules A→ Bα and B → ε have to be applied in the
first, free derivation step of the components P ′

r,succ and Psucc, respectively. Furthermore, we
add the component

P ′
ter = { [r]i → [r]i+1, [r]k−3 → ε | r ∈ lab(P), 0 ≤ i ≤ k − 4 } ∪

{A→ F,X → Y, Y → ε | A ∈ N }

where Y is a new nonterminal. The rule X → Y is needed in order to prevent the cancellation
of X in the first, free derivation step of P ′

ter, hence to guarantee that no symbol A ∈ N is left.

This system generates the language L in the =k or ≥k modes of derivation and fs manner
of leftmostness. 2

We continue with the investigation of the wf mode.

Theorem 4.9 ([23, 25])

1. Lwf(CD∞,=2) = L(RE),

2. L(rP,CF, ac) ⊆ Lwf(CD∞,=k) for any k ≥ 3, and

3. L(rP,CF, ac) ⊆ Lwf(CD∞,≥k) for any k ≥ 2.

Proof. To prove the first statement, the same construction is sufficient as in the proof of
Theorem 4.7 for the fw restriction and k = 2.

92 CHAPTER 4. LEFTMOST DERIVATIONS

Next, let G be an arbitrary context-free recurrent programmed grammar. To prove the
second and the third statement, we take the construction of Theorem 4.7 for the fw restriction,
now simulating a free derivation of the given grammar G, but instead of P ′

r,succ, we have

P ′′
r,succ = { [r]i → [r]i+1 | 0 ≤ i ≤ k − 3 } ∪ {[r]k−2 → [r]′0, A→ α}

∪ { [p]i → F, [p]′i → F, (q)i → F | 0 ≤ i ≤ k, p, q ∈ lab(P),

p 6= r },

and the production B → ε is cancelled from the set Psucc.
To see that the context-free recurrent programmed grammar G is simulated, note the

following fact. The only difference between the behaviour of the systems working in the =2
mode on the one hand, and in the =k and ≥k modes, for some k > 2, on the other hand,
is that in the latter case it is possible to repeat a successful rule application more than once
while completing a “label changing cycle” from [r]0 to [r]k−2 and then to [s]0. Now, since the
rules (r : A → α, σ(r), φ(r)) of a recurrent programmed grammar have the property that r
is always contained in σ(r), this causes no problems during the simulation of a recurrent
programmed grammar. This is also the reason why the symbol B of Pr,succ is not needed
anymore. Thus, the statements are proved. 2

4.2.4 The Full Competence Mode of Derivation

Let us recall that in the full (competence) mode of derivation a component is applicable to a
sentential form if and only if it contains rules for each nonterminal occurring in the sentential
form. This means that a leftmost derivation step is exactly the same according to the s or w
restrictions, thus we have the following statement.

Observation 4.10 ([23, 25]) For any n ≥ 1,

1. Lsf(CDn, full) = Lwf(CDn, full),

2. Lfs(CDn, full) = Lfw(CDn, full),

3. Lα(CDn, full) = Lα′(CDn, full), for α,α′ ∈ {ss, sw,ws,ww}.

In the next theorem, we treat the leftmost restrictions appearing in the first and the second
item.

Theorem 4.11 ([23, 25]) For α ∈ {sf,wf, fs, fw}, Lα(CD∞, full) = L(RE).

Proof. First, let α ∈ {sf,wf}. As L(CD∞, full) = L(RE), it is sufficient to show that
L(CD∞, full) ⊆ Lα(CD∞, full). (The converse inclusion can be proved by construction of a
Turing machine.) Given an arbitrary CD grammar system Γ = (N,T, S, P1, P2, . . . , Pn) with
context-free components, we construct the system Γ′ = (N ∪ {S′,X}, T, S′, P0, P

′
1, P

′
2 . . . , P ′

n)
with

P0 = {S′ → XS},

and
P ′

i = Pi ∪ {X → X,X → ε} for 1 ≤ i ≤ n.

We show that L(Γ, full) = Lα(Γ′, full). The derivation must be started with P0, and then each
sentential form Xw of Γ′ corresponds to a sentential form w of Γ. Since the rule X → X

4.2. THE POWER OF LEFTMOST DERIVATIONS IN CD GRAMMAR SYSTEMS 93

is added to each component, any component of Γ′ is competent on Xw if and only if the
corresponding component of Γ is competent on w. And since X is the leftmost nonterminal,
as long as it is present, derivations with the sf and wf restrictions give Xw′ as a result, if and
only if w′ can be produced by Γ.

Keeping X in the sentential form as long as necessary, any free derivation of Γ can be
simulated by Γ′. If X is erased before a terminal word is produced, then the derivations of Γ′

correspond to special full mode derivations of Γ, but no word which is not in L(Γ, full) can
be produced, thus, L(Γ, full) = Lα(Γ′, full) which proves our statement for α ∈ {sf ,wf}.

To prove the theorem for α ∈ {fs, fw}, let L ∈ L(RE) be an arbitrary recursively enumer-
able language, and let us consider a context-free programmed grammar G = (N,T, S, P) with
appearance checking, such that L = L(G). Let the rules of P be labelled by labels from the
set lab(P), and let them be denoted as (r : A→ α, σ(r), φ(r)) where σ(r), φ(r) ⊆ lab(P), r ∈
lab(P) are the success and failure fields of the rule r. Let us further assume, without the loss
of generality, that r 6∈ σ(r). We construct a CD grammar system Γ′′ with Lα(Γ′′, full) = L(G)
having a nonterminal alphabet N ′, terminal alphabet T , and start symbol S′ ∈ N ′ where

N ′ = N ∪ {S′} ∪ {Ar, [r] | r ∈ lab(P) },

and the components are defined as follows.

P0 = {S′ → [r]S | r ∈ lab(P) }

is the component initiating the derivation process which is continued by simulating the rule
labelled with r ∈ lab(P). The rules are simulated in several rewriting steps.

To simulate the successful application of the rules, we have two components for each
(r : A→ α, σ(r), φ(r)) defined as

Pr,succ = {A→ Ar, [r]→ [r], B → B | B ∈ N },

P ′
r,succ = {Ar → α, [r]→ [s], B → B | s ∈ σ(r), B ∈ N },

where A and Ar are to be rewritten in the first, free step of Pr,succ and P ′
r,succ, respectively.

If [r] → [s] is applied in the first step, then the symbols [s] 6= [r] and Ar are present in the
sentential form, and the derivation according to the full mode is blocked. To simulate the
“unsuccessful” application of the rules, we have for each r as above

Pr,fail = { [r]→ [s], B → B | s ∈ φ(r), B ∈ N \ {A} }.

To finish the derivation the marker has to be erased. This can be done by the component

Pter = { [r]→ ε | r ∈ lab(P) }.

The correct use of the components is guaranteed by the full competence mode of derivation.
In particular, Pter can be applied only to sentential forms in [r]T ∗. 2

In contrast to the theorem above, we can show that CD grammar systems in the full mode
of derivation with the other leftmost restrictions generate only context-free languages. More
precisely, we find the following equality.

Theorem 4.12 ([23, 25]) For α ∈ {ss, sw,ws,ww}, Lα(CD∞, full) = L(CF).

94 CHAPTER 4. LEFTMOST DERIVATIONS

Proof. Let Γ = (N,T, S, P1, P2, . . . , Pn) be a context-free CD grammar system. We con-
struct a random context grammar G = (N ′, T, S, P) such that Lα(Γ, full) = Lleft(G), where
Lleft(G) denotes the language generated by G in such a way that in each derivation step,
always the leftmost nonterminal is rewritten. This is sufficient to prove our statement, since
according to Lemma 1.4.4 of [41], random context grammars with this type of leftmost rewrit-
ing characterize the family of context-free languages.

Let

N ′ = N ∪ { [A]i, [A]′i | A ∈ N, 1 ≤ i ≤ n },

and let the random context rules of G be constructed as follows. To start the derivation, we
need for each i with S ∈ dom(Pi) a rule

(S → [S]i, ∅, ∅).

For each i, 1 ≤ i ≤ n, and rule A→ α ∈ Pi with (symb(α) ∩N) ⊆ dom(Pi), we have

([A]i → coli(α), ∅, N ′ \ { [A]i | A ∈ dom(Pi) }),

where, for α = x1x2 . . . xt, the notation coli(α) is used to designate the string

coli(x1)coli(x2) . . . coli(xt)

with coli(A) = [A]i for A ∈ N , and coli(x) = x for x ∈ T .

For each rule A → α ∈ Pi where α = α0B1α1B2 . . . Btαt with (symb(αk) ∩ N) ⊆
dom(Pi), 0 ≤ k ≤ t, and Bl ∈ N \ dom(Pi), Bl ∈ dom(Pj), 1 ≤ l ≤ t, we have

(Ai → coli(α0)[B1]
′
jcoli(α1)[B2]

′
j . . . [Bt]

′
jcoli(αt), ∅,

N ′ \ { [A]i | A ∈ dom(Pi) }).

Note that if there is no j, such that Bl ∈ dom(Pj) for all 1 ≤ l ≤ t, then the rule cannot be
used in any derivation, since its application blocks the work of Γ. In this case, there is no
need to simulate it in G.

Let us further add, for each j, 1 ≤ j ≤ n, A ∈ N , and C ∈ dom(Pj), all rules of the forms

([A]i → [A]′j , {[C]′j}, N
′ \ ({ [A]i | A ∈ dom(Pi) } ∪ { [A]′j | A ∈ N })),

and

([C]′j → [C]j , ∅, { [B]i | B ∈ N, i 6= j })

to P .

By this construction, for any of the leftmost restrictions α ∈ {ss, sw,ws,ww}. 2

4.3 Conclusion

The main results of the chapter are summarized in Table 4.1 ([23, 25]). In this table, let
k ≥ 2. A language family L at the intersection of the row marked by αβ and the column
marked by γ means that Lαβ(CD∞, γ) = L. The appearance of L ⊆ · or L ⊂ · means that
L ⊆ Lαβ(CD∞, γ) or L ⊂ Lαβ(CD∞, γ), respectively.

4.3. CONCLUSION 95

trivial modes t-mode =k-mode ≥k-mode full-mode

free CF ET0L CF ⊂ · ⊆ P CF ⊂ · ⊆ P RE

ss CF CF CF CF CF

sw CF ET0L ⊂ · RE RE CF

sf CF ET0L ⊂ · CF ⊂ · CF ⊂ · RE

ws CF CF ⊂ · CF CF CF

ww CF ET0L RE RE CF

wf CF ET0L rPac ⊆ ·
1 rPac ⊆ · RE

fs CF CF ⊂ · P ⊆ · P ⊆ · RE

fw CF ET0L RE RE RE

Table 4.1: Power of leftmost restricted CD grammar systems summarized, compared with
non-restricted CD grammar systems (row “free”).

Besides the results summarized in the table, we also presented some findings on the power
of those CD grammar systems with a restricted number of components. Concerning the
=k mode of derivation, we proved the inclusions Lww(CD∞,=k) ⊆ Lα(CD∞,=k+1), for
α ∈ {sw,ww}. Thus, we settled a problem for some types of leftmost rewriting which is
longstanding open in the general case.

1In the = 2-mode, we even proved equality to RE.

Chapter 5

Deterministic Parsing for CD
Grammar Systems

The notion of context-free LL(k) grammars is extended to CD grammar systems using two dif-
ferent derivation modes. The properties of the resulting language families and the possibility
of parsing these languages deterministically, without backtracking, are examined.

A first approach towards the deterministic parsing of languages generated by CD gram-
mar systems has been taken by Mitrana and Mihalache [77], with a continuation in [80].
Mainly, the generative power of CD grammar systems is investigated that obey syntactical
constraints similar to those of strict deterministic context-free grammars. In the latter paper,
also accepting CD grammar systems are taken into consideration, which are restricted such
that every accepting derivation has a unique leftmost accepting derivation. In this thesis,
we strictly follow the concepts known from deterministic top-down parsing of context-free
languages as presented in Section 1.2.3. In the preceding chapter, CD grammar systems with
leftmost derivations have been investigated. For the purpose of deterministic top-down pars-
ing, the ss- and sw-types of leftmostness will be used.1 Though CD grammar systems gain
more generative power under the sw-leftmost restriction, a decrease of the nondeterminism
during the derivation is effected: in any step of the derivation, it is determined which oc-
currence of a nonterminal symbol has to be replaced next. In order to allow deterministic
top-down parsing, CD grammar systems are to be further restricted to unambiguity. For this,
an appropriate LL(k) condition is imposed on the systems. That is, given a terminal word w
(to be syntactically analyzed), for any sentential form of a leftmost derivation, the first k
symbols of w which have not yet been derived to the left of the leftmost nonterminal in the
sentential form determine the next step to be performed by the CD grammar system. This
means, for any word of the language generated in some derivation mode, there is a unique
sequence of components to be activated and, for each of these components, there is a unique
sequence of productions to be applied.

First, the concept of LL(k) context-free CD grammar systems working in the =m- and
t-modes of derivation, m ≥ 1, using the ss- and sw-types of leftmost restrictions is defined.
We prove some first hierarchical properties for the families of languages generated by these
systems. Then we focus on the =m-mode of derivation. We show that LL(k) CD grammar
systems working in the =m-mode, for any m ≥ 2, can be simulated by LL(k) CD grammar

1Note that these types of derivations were also considered in [39] where they were called “strong-leftmost”
and “weak-leftmost”, respectively.

96

5.1. DEFINITIONS 97

systems working in the =2-mode if the so-called sw-type of leftmostness is imposed, and
that LL(k) systems of this type can generate non-semilinear languages. Next we define the
notion of a (strong) lookup table which, based on pairs of nonterminals and lookahead strings,
identifies the component and the sequence of rules needed for the continuation of the derivation
according to the LL(k) condition. Opposed to the case of LL(k) context-free grammars, the
existence and the effective constructibility of the lookup table is not obvious, but we show
that in most cases, if we have the lookup table, then a lookup string of length one is sufficient,
and a parsing algorithm of strictly sub-quadratic time complexity can be given. Finally, we
present a decidable condition which implies the effective constructibility of the lookup table.

5.1 Definitions

Let G = (VN , VT , S, P1, P2, . . . , Pn) be a CD grammar system with n context-free components.
We call G deterministic ([24]), if for all 1 ≤ i ≤ n, Pi contains at most one rule for each
nonterminal, that is, for each symbol A ∈ VN , the property #{w | A→ w ∈ Pi} ≤ 1 holds.

For x, y ∈ VN ∪ VT)∗, let prod(x
µ

=⇒
α i y) denote the set of production sequences which can

be used in the derivation step x
µ

=⇒
α i y, µ ∈ {t,=m | m ≥ 1}, α ∈ {ss, sw} . More precisely,

(A0 → w0, A1 → w1, . . . , Al−1 → wl−1) ∈ prod(x
µ

=⇒
α i y)

if and only if there are strings x0, x1, . . . , xl, l ≥ 1, such that the derivation

x0 ⇒ x1 ⇒ . . .⇒ xl

is of the form x
µ

=⇒
α i y and xj−1 = zj−1Aj−1z

′
j−1 and xj = zj−1wj−1z

′
j−1, for some zj−1, z

′
j−1

and Aj−1 → wj−1 ∈ Pi, 1 ≤ j ≤ l.

For α ∈ {ss, sw}, µ ∈ {t,=m | m ≥ 1}, and x, y ∈ (VN ∪ VT)∗, the relation x
µ

=⇒∗
α

y,
expresses the fact that there is an α-leftmost derivation by G consisting of an arbitrary
number of µ-mode derivation steps yielding y from x, that is, either x = y, or

x
µ

=⇒
α i1 x1

µ

=⇒
α i2 x2 . . .

µ

=⇒
α ir xr = y,

for some ij with 1 ≤ ij ≤ n, 1 ≤ j ≤ r.
Next, we introduce the LL(k) condition appropriate for (deterministic) CD grammar sys-

tems. It is adopted from the context-free case.

Definition 5.1 Let G = (VN , VT , S, P1, P2, . . . Pn) be a CD grammar system with n context-
free components, n ≥ 1, µ ∈ { t,=m | m ≥ 1 } and α = {ss, sw}. The system G satisfies the
LL(k) condition with respect to µ and α for some k ≥ 1, if for any two leftmost derivations
of type α ∈ {ss, sw} and of mode µ ∈ {t,=m | m ≥ 1},

S
µ

=⇒∗
α

uXy
µ

=⇒
α i uz

µ

=⇒∗
α

uv and S
µ

=⇒∗
α

uXy
µ

=⇒
α i′ uz′

µ

=⇒∗
α

uv′

with u, v, v′ ∈ V ∗
T , X ∈ VN , y, z, z′ ∈ (VN ∪ VT)∗, if prefk(v) = prefk(v

′), then i = i′ and

prod(uXy
µ

=⇒
α i uz) = prod(uXy

µ

=⇒
α i′ uz′) is a singleton set.

The idea behind this concept is the following ([24]): Given a terminal word uv and a sentential
form uXy, X ∈ VN and y ∈ (VN ∪ VT)∗, which has been obtained from S, then the first k

98 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

letters of v (if they exist) allow to determine the component and the sequence of rules of that
component which is to be applied to uXy in order to derive uv.

Note that, also according to the sw-type of leftmostness, X must be the very leftmost
occurrence of a nonterminal in the sentential form since in those situations a new component
has to start over working on the sentential forms.

In the notation of the language families Lα(CDn, γ) for some type of leftmost restriction α,
mode of derivation γ and n ∈ N∪{∞}, CD is replaced with dCD when only deterministic CD
grammar systems are considered. If we restrict to grammar systems of degree n which satisfy
the LL(k)-condition for some k ≥ 1, then the families of languages obtained are denoted by
CDnLL(k)(µ, α) and dCDnLL(k)(µ, α).

Some of the proofs from Chapter 4 and [39] can easily be adapted to the deterministic case.
Thus, the hierarchy results about CD grammar systems can be supplemented as follows ([24]):

1. Lss(CD∞, µ) = Lss(dCD∞, µ) = L(CF), for µ ∈ {t,=m | m ≥ 1},

2. L(ET0L) ⊂ Lsw(CD3, t) = Lsw(CD∞, t), and

3. Lsw(CD∞,=m) = Lsw(dCD∞,=m) = L(RE), for any m ≥ 2.

Before continuing, we illustrate the notion of LL(k) CD grammar systems with two examples.

Example 5.1 ([24]) Consider the deterministic CD grammar system

G1 = ({S, S′, S′′, A,B,C,A′, B′, C ′}, {a, b, c}, S, P1 , P2, P3)

with

P1 = {S → S′, S′ → S′′, S′′ → ABC,A′ → A,B′ → B,C ′ → C},

P2 = {A→ aA′, B → bB′, C → cC ′},

P3 = {A→ a,B → b, C → c}.

This system generates by sw-leftmost derivations in the (=3) mode the language

L1 = { anbncn | n ≥ 1 },

and satisfies the LL(2) condition, what is seen as follows. Consider a derivation

S
=3
=⇒
sw

∗
uXy

=3
=⇒
sw i uz

=3
=⇒
sw

∗
uv;

the pair X ∈ VN and pref2(v) determines the component Pi and the unique production

sequence in prod(uXy
=3
=⇒
sw i uz) which are used, as indicated in the following table.2

aa ab

S
P1:
(S → S′, S′ → S′′, S′′ → ABC)

P1:
(S → S′, S′ → S′′, S′′ → ABC)

A
P2:
(A→ aA′, B → bB′, C → cC ′)

P3:
(A→ a,B → b, C → c)

A′ P1:
(A′ → A,B′ → B,C ′ → C)

P1:
(A′ → A,B′ → B,C ′ → C)

2Such table is called lookup table for CD grammar systems which is considered in more detail in Section 5.3.

5.2. ON THE POWER OF LL(K) CD GRAMMAR SYSTEMS 99

Thus, L1 = { anbncn | n ≥ 1 } ∈ dCD3LL(2)(=3, sw). It is an easy exercise to prove that
L1 ∈ dCD3LL(2)(=2, sw) also holds. (Let A produce an a and b simultaneously.)

The languages L2 = {wcw | w ∈ {a, b}∗} and L3 = {anbmcndm | n,m ≥ 1} are shown to be
in dCD5LL(2)(=2, sw) and in dCD3LL(2)(=2, sw), respectively, using the systems

G2 = ({S, S′, A,B,A′, B′}, {a, b, c}, S, P1 , P2, . . . , P5)

with

P1 = {S → S′, S′ → c,A→ b,B → b},

P2 = {S → S′, S′ → AcB,A′ → A,B′ → B},

P3 = {A→ aA′, B → aB′},

P4 = {A→ bA′, B → bB′},

P5 = {A→ a,B → a},

and
G3 = ({S, S′, A,B,A′, B′}, {a, b, c, d}, S, P1 , P2, P3)

with

P1 = {S → S′, S′ → AC,A′ → A,B′ → B,C ′ → C,D′ → D},

P2 = {A→ aA′, C → cC ′, B → b,D → d},

P3 = {A→ aB′, C → cD′, B → bB′,D → dD′}.

Furthermore, the languages of the three CD grammar systems do not change if the t-mode of
derivation and the sw-type of leftmostness are used; then G1, G2 and G3 still satisfy the LL(2)
condition. Hence, the languages L1, L2, and L3 from the definition of mild context-sensitivity
are contained in both CD∞LL(2)(=2) and CD∞LL(2)(t).

The CD grammar system of the next example is working in the ss-type of leftmostness
and the t-mode of derivation. Although these systems generate only context-free languages,
the LL(k) variants are also able to deterministically describe languages (and thus allow their
deterministic top-down parsing) which cannot be generated by context-free LL(k) grammars.

Example 5.2 ([24]) Consider G = ({S, S′, A}, {a, b, c}, S, P1 , P2, P3, P4, P5) with compo-
nents

P1 = {S → aS′A}, P2 = {S′ → S}, P3 = {S′ → λ},
P4 = {A→ b}, P5 = {A→ c}.

This deterministic system generates by leftmost derivations of type ss, in the t-mode the
non-LL(k) language Lss(G, t) = {anbn | n ≥ 1}∪{ancn | n ≥ 1}, and as can easily be checked,
satisfies the LL(1) condition.

5.2 On the Power of LL(k) CD Grammar Systems

First we present the following trivial hierarchies.

Lemma 5.3 ([24]) For any integers k ≥ 1, n ≥ 1, µ ∈ {t,=m | m ≥ 1}, α ∈ {ss, sw}, and
X ∈ {CD,dCD}, we have

100 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

1. dCDnLL(k)(µ, α) ⊆ CDnLL(k)(µ, α),

2. XnLL(k)(µ, α) ⊆ XnLL(k + 1)(µ, α),

3. XnLL(k)(µ, α) ⊆ Xn+1LL(k)(µ, α).

Now, for any positive integer k, we summarize the relationship of the families of context-free
LL(k) languages, denoted by LL(k), and the families of languages generated by LL(k) CD
grammar systems.

Theorem 5.4 ([24]) For any k ≥ 1,

1. LL(k) = CD∞LL(k)(=1, α) = dCD∞LL(k)(=1, α), for α ∈ {ss, sw},

2. LL(k) ⊆ dCD∞LL(k)(=m, ss), for m ≥ 2,

3. LL(k) ⊂ dCD∞LL(k)(=m, sw), for m ≥ 2,

4. dCD∞LL(k)(t, α) \ LL(k) 6= ∅, for α ∈ {ss, sw}.

Proof. Let L ∈ LL(k) for some k ≥ 1, and let G = (VN , VT , P, S) be a context-free LL(k)
grammar with L = L(G). Let the rules r ∈ P be labeled by 1 ≤ lab(r) ≤ #P . First we
construct a deterministic CD grammar system G′ = (V ′

N , VT , S, P1, P2, . . . , Pn) satisfying the
LL(k) condition and generating L in the =m-mode of derivation, for any m ≥ 2, using any
of the ss or sw-types of leftmostness, as follows. The number of components of G′ is going
to be n = #P . Let V ′

N = VN ∪ {X
(i) | 1 ≤ i ≤ m − 1, X ∈ VN }, and for 1 ≤ i ≤ #P , if

i = lab(X → α), then let

Pi = {X → X(1),X(1) → X(2), . . . ,X(m−1) → α }.

It is easy to see that for any µ ∈ {=m | m ≥ 2}, α ∈ {ss, sw}, a rewriting step x
µ

=⇒
α i y in G′

is possible if and only if x =⇒i y is possible in G, where =⇒i denotes a rewriting step on the
leftmost nonterminal using rule r with lab(r) = i.

For the proof of the equality in point 1, we first note that any CD grammar system
G = (VN , VT , S, P1, P2, . . . , Pn) working in the =1-mode is equivalent to a context free gram-
mar (VN , VT , S, P) where P =

⋃

1≤i≤n Pi using any of the two types of leftmostness in the
derivations. Moreover, both of them are equivalent to a deterministic CD grammar sys-
tem G′ = (VN , VT , S, P ′

1, P
′
2, . . . , P

′
r) working in the =1-mode, where r = #P , #Pi = 1 for

1 ≤ i ≤ r, and
⋃

1≤i≤r Pi = P . Then the equality follows from point 1 of Lemma 5.3.
The strictness of the inclusions in point 3 and the statement of 4 follows from Example 5.1

and Example 5.2 above. 2

Now we study further properties of the families of languages generated by CD grammar
systems satisfying the LL(k) property in the =m-mode of derivation, m ≥ 2, and the sw-
type of leftmostness. We show that any language in this family can also be generated by
deterministic systems in the =2-mode.

Theorem 5.5 ([24]) For any k ≥ 1, m ≥ 2,

CD∞LL(k)(=m, sw) = dCD∞LL(k)(=m, sw) = X∞LL(k)(= 2, sw),

where X ∈ {dCD,CD}.

5.2. ON THE POWER OF LL(K) CD GRAMMAR SYSTEMS 101

Proof. We show that the inclusion CD∞LL(k)(=m1, sw) ⊆ dCD∞LL(k)(=m2, sw) holds
for any m2 ≥ 2. Let G = (VN , VT , S, P1, P2, . . . , Pn) be a CD grammar system satisfying
the LL(k) condition, k ≥ 1, in derivation mode =m1 for some m1 ≥ 2, with the sw-type of
leftmostness. For any m2 ≥ 2, we construct a deterministic CD grammar system G′ satisfying
the LL(k) condition, such that Lsw(G,=m1) = Lsw(G′,=m2). Let the set of terminals and
the start symbol of G′ be the same as that of G, let the set of nonterminals be defined as

V ′
N = VN ∪ {X

(l)
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m1, 1 ≤ l ≤ m2 − 1}, the union being disjoint, and let

us define for all Pi, 1 ≤ i ≤ n, the rule sets Pi,j , 1 ≤ j ≤ ri for some ri ≥ 1, in such a way
that for all 1 ≤ i ≤ n,

•
⋃

1≤j≤ri
Pi,j = Pi,

• dom(Pi,j) = dom(Pi) for all 1 ≤ j ≤ ri, and

• Pi,j is deterministic, that is, for all A ∈ dom(Pi,j), #{w | A→ w ∈ Pi,j} = 1.

Now for all i, j, li, 1 ≤ i ≤ n, 2 ≤ j ≤ m1−1, 1 ≤ li ≤ ri, let the components of G′ be defined
as follows.

Pi,1,li = {A→ X
(1)
i,1 w | A→ w ∈ Pi,li} ∪

{X
(s)
i,1 → X

(s+1)
i,1 ,X

(m2−1)
i,1 → X

(1)
i,2 | 1 ≤ s ≤ m2 − 2},

Pi,j,li = Pi,li ∪ {X
(s)
i,j → X

(s+1)
i,j ,X

(m2−1)
i,j → X

(1)
i,j+1 | 1 ≤ s ≤ m2 − 2},

Pi,m1,li = Pi,li ∪ {X
(s)
i,m1
→ X

(s+1)
i,m1

,X
(m2−1)
i,m1

→ λ | 1 ≤ s ≤ m2 − 2}.

To see that the Lsw(G,=m1) = Lsw(G′,=m2) holds, consider that for u ∈ V ∗
T , G can execute

a derivation step uAy
=m1
=⇒
sw i uy′ if and only if

uAy
=m2
=⇒
sw i,1,li,1 uX

(1)
i,2 y1

=m2
=⇒
sw i,2,li,2 uX

(1)
i,3 y2 . . . uX

(1)
i,m1

ym1−1
=m2
=⇒
sw i,m1,li,m1

uy′

for some 1 ≤ li,j ≤ ri for all 1 ≤ j ≤ m1, can be executed by G′. Note that the nonter-

minals X
(l)
i,j must always be replaced as they appear leftmost in the sentential forms. The

leftmostness of these nonterminals also implies that until they have been erased, no new
terminal symbols are added to the already derived terminal prefix of the generated string
appearing left of these nonterminals, so the rule sequence determined by the LL(k) property

at the beginning of an m1-step derivation of G and these nonterminals of the form X
(s)
i,j also

determine the unique rule sequence for each m2-step derivation of G′ which means that it
also satisfies the LL(k) property.

The statements of the theorem are consequences of the inclusion we have proved above,
and the results of Lemma 5.3. 2

Lemma 5.6 ([22]) For any X ∈ {dCD,CD}, µ ∈ {t,=m | m ≥ 2}, there are non-semilinear
languages in X∞LL(1)(µ, sw).

Proof. (Sketch) According to Theorem 5.5 it is sufficient to present a deterministic CD
grammar system which satisfies the LL(1) condition and generates a non-semilinear language
in the derivation modes =2 and t, with the sw-type of leftmostness. Consider the CD grammar
system

G = (VN , {a, b, c, d, e, f}, P1, P2, . . . , P13, S)

102 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

with VN = {S, S′, A,A′, B,B′, C,C ′,D,E, F, T,X} and

P1 = {S → S′, S′ → AET},
P2 = {A→ dA′, E → DD}, P7 = {B → dB′, D → EE},
P3 = {A′ → X, X → A}, P8 = {B′ → X, X → B},
P4 = {A→ aX, X → B}, P9 = {B → aX, X → A},
P5 = {A→ X, X → C}, P10 = {B → X, X → C},
P6 = {C → eC ′, D → b}, P11 = {C → fC ′, E → b},

P12 = {C ′ → X, X → C},
P13 = {C ′ → c, D → F, E → F, T → c} .

We determine the language Lsw(G,=2). Any leftmost derivation of G in the = 2-mode starting
off with the axiom must initially use component P1 leading to AET . Then, the components
P2, P3, P4, P7, P8, and P9 can be used in turns. In this phase, the number of occurrences
of D’s and E’s can be increased. Note that this number can at most be doubled until a new
symbol a will be introduced before a further increase is possible. Moreover, whenever one
more D or E is introduced, then simultaneously a terminal d must emerge. This phase is
finished by one application of either P5 or P10 turning the leftmost nonterminal (A or B)
to C. Now, all occurrences of nonterminals D and E can be terminated with the help
of P6, P11, and P12. Finally, the leftmost and the rightmost nonterminals, that is C ′ and T
at this stage of the derivation, can be terminated by using P13. Since also this terminating
component must be applied in the leftmost way and F is a trap symbol, it is guaranteed
that all occurrences of D and E have vanished before P13 can successfully be applied in
the =2-mode. Therefore, in every non-terminal sentential form, either A, B, C (or its primed
versions or X) is the leftmost occurring nonterminal, steering the selection of the components.
Thus, the different phases of the derivation cannot be mixed.

Consequently, the non-semilinear language L is generated, where

L ⊆ K = {fcbc} ∪ { di1adi2a . . . dinvcbmc | n ≥ 1, 0 ≤ ij ≤ 2j ,

for 1 ≤ j ≤ n, m = 1 +
∑n

j=1 ij , v ∈ {e, f}m } .

Here, L is not equal to K only because the portion v has to obey some additional combinatorial
properties which do not affect the non-semilinearity of the language. Since writing down these
properties would decrease readability, they are omitted. On the other hand, the e’s and f ’s
are needed in order to make sure that G is LL(k) in the =2-mode. In fact, one can readily
prove that G satisfies the LL(1) condition. By analyzing this system, we can see that it
generates the same non-semilinear language also in the t-mode of derivation. 2

5.3 Using Lookup Tables

The aim of this section is to provide deterministic top-down parsing methods for CD grammar
systems satisfying the LL(k) property in α-type leftmost derivations of mode µ, µ ∈ {t,= m},
α ∈ {ss, sw}. In the case of LL(k) CD grammar systems under the ss-leftmost restrictions,
slight modifications of the usual top down methods for context-free LL(k) parsing can be used
to provide parsing algorithms also for grammar systems of these types, as always the leftmost
nonterminal is to be replaced.

For CD grammar systems working in the sw-type of leftmostness we need more sophis-
ticated methods while derivations of this type also rewrite nonterminals which are not the

5.3. USING LOOKUP TABLES 103

leftmost ones in the sentential form. In order to present an appropriate parsing algorithm, the
notion of (strong) lookup table for CD grammar systems satisfying the LL(k) condition with
respect to µ and α is needed. The lookup table determines the component and the sequence
of rules which are needed for the continuation of the derivation, according to the definition
of the LL(k) condition. In strong lookup tables, the selection of the rules is based on pairs of
nonterminals (the leftmost nonterminal in the leftmost derivation under consideration) and
lookahead strings (the first k terminal letters of the suffix of the resulting terminal word which
is derived by the remaining part of the leftmost derivation).3

First, we present some notions used in the definition of the strong lookup table and the
parsing algorithm, see also [22].

• A production is p = X → α ∈ VN × (VN ∪ VT)∗ with left(p) = X, right(p) = α.

• A stack over N is st = xj]xj−1] . . .]x1], xi ∈ N, 1 ≤ i ≤ j, with top(st) = xj , pop(st) =
xj−1] . . .]x1], and for some y ∈ N, push(y, st) = y]xj]xj−1] . . .]x1]. The empty stack,
pop(x]) for some x ∈ N, is denoted by λ].

• A stack over VN ∪VT is st = xj]xj−1] . . .]x1], xi ∈ VN ∪VT , 1 ≤ i ≤ j, with top(st) = xj ,
pop(st) = xj−1] . . .]x1] and for some y = y1 . . . ym ∈ (VN∪VT)∗, yi ∈ VN∪VT , 1 ≤ i ≤ m,
push(y, st) = y1] . . .]ym]xj]xj−1] . . .]x1]. The empty stack, pop(x]) for some x ∈ VN ∪VT ,
is denoted by λ].

• A production queue is pq = (p1, p2, . . . , pj), pi ∈ Pl, 1 ≤ l ≤ n, 1 ≤ i ≤ j, with
first(pq) = p1, butfirst(pq) = (p2, . . . , pj).

Definition 5.2 ([22]) Let G = (VN , VT , S, P1, P2, . . . Pn) be a CD grammar system satisfying
the LL(k) condition with respect to µ and α, for some µ ∈ {t,=m | m ≥ 1}, α ∈ {ss, sw},
n ≥ 1, and k ≥ 1. The strong lookup table for G is given as lookupTable ⊆ VN × V k

T × PQ
where PQ denotes the set of all production queues consisting of m productions; it is a function
which for a nonterminal X ∈ VN and a terminal word of length k, y ∈ V k

T , returns a production
queue pq = lookupTable(X, y).

In Figure 5.1 we present a parsing algorithm for languages in CDnLL(k)(= m, sw), see
also [22, 24]. It uses the variables

• step, stepOfTopmost ∈ N, natural numbers,

• mainStack, a stack over VN ∪ VT , the “main” stack of the parser,

• stacksForN , an l-tuple of stacks for natural numbers where l = |VN |; it provides a
stack over N for each nonterminal of the grammar system,

• input ∈ V ∗
T , the string to be analyzed,

• topmost ∈ VN , a nonterminal symbol,

• pQueue, a production queue as above,

• pQueuesLeft ⊆ N× PQ, where PQ denotes the set of all production queues of length
at most m, that is, pQueuesLeft is a set of pairs of the form (i; pq) where i is an integer
and pq is a production queue as above,

• pToUse ∈ VN × (VN ∪ VT)∗, a production as above.

104 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

1 step ← 0
2 mainStack ← push(mainSt, S)
3 stacksForN(S) ← push(stacksForN(S), 0)
4 while mainStack is not empty and there is no ERROR do
5 if top(mainStack) is a terminal symbol then
6 if top(mainStack) coincides with the first symbol of input then
7 mainStack ← pop(mainStack)
8 input ← input without its first symbol
9 else ERROR
10 else topmost ← top(mainStack)
11 stepOfTopmost← top(stacksForN(topmost))
12 stacksForN(topmost) ← pop(stacksForN(topmost))
13 if there exist (i; pQueue) ∈ pQueuesLeft such that

i ≥ stepOfTopmost, left(first(pQueue)) = topmost,
and furthermore, if (i′; pQueue′) ∈ pQueuesLeft
with left(first(pQueue′)) = topmost, then i < i′, then

14 pQueuesLeft ← pQueuesLeft− {(i; pQueue)}
15 pToUse ← first(pQueue)
16 pQueue ← butfirst(pQueue)
17 if pQueue is not empty then
18 pQueuesLeft ← pQueuesLeft ∪ {(i; pQueue)}
19 mainStack ← pop(mainStack)
20 mainStack ← push(mainStack, right(pToUse))
21 for each symbol X from right(pToUse) do
22 if X ∈ VN then
23 stacksForN(X) ← push(stacksForN(X), step)
24 else step ← step + 1
25 lookahead ← the next k symbols of input
26 pQueue ← lookupTable(topmost, lookahead)
27 if pQueue is empty then
28 ERROR
29 else pToUSe ← first(pQueue)
30 pQueue ← butfirst(pQueue)
31 if pQueue is not empty then
32 pQueuesLeft ← pQueuesLeft ∪ {(step, pQueue)}
33 mainStack ← pop(mainStack)
34 mainStack ← push(mainStack, right(pToUse)
35 for each symbol X from right(pToUse) do
36 if X ∈ VN then
37 stacksForN(X) ← push(stacksForN(X), step)
38 if there is no ERROR then successful termination

Figure 5.1: The parsing algorithm.

5.3. USING LOOKUP TABLES 105

a b

S
P1:
(S → A1A2A1A3, A2 → b,
A3 → A4)

P1:
(S → bA1A2A1A3, A2 → b,
A3 → A4)

A1

P2:
(A1 → aA2, A1 → aA2,
A4 → A5)

—

A2
P3:
(A2 → a,A2 → a,A5 → b)

—

Figure 5.2: The lookup table for the grammar system of Example 5.7.

In the following we demonstrate the work of the algorithm through an example.

Example 5.7 ([22]) Consider the CD grammar system

G = ({S,A1, A2, A3, A4, A5}, {a, b}, S, P1 , P2, P3)

with

P1 = {S → A1A2A1A3, S → bA1A2A1A3, A2 → b,A3 → A4},

P2 = {A1 → aA2, A4 → A5},

P3 = {A2 → a,A5 → b},

This system generates, in the (= 3) mode, the finite language

L = {aabaab, baabaab},

and satisfies the LL(1) condition. The (strong) lookup table for the parser is seen on Fig-
ure 5.2.

Let us see how the parser analyzes the string aabaab ∈ Lsw(G,=3). This string is generated
in three steps in the (= 3)-mode as follows.

S
=3
=⇒
sw 1 A1bA1A4

=3
=⇒
sw 2 aA2baA2A5

=3
=⇒
sw 3 aabaab.

Now we will follow the work of the parser step-by-step, and describe its configuration by

(input,mainStack, step, stacksForN, pQueuesLeft)

where the variables are as described above. The value of stacksForN will be denoted as
(α0, α1, α2, α3, α4, α5) where α0 is the contents of stacksForN(S), and for i ∈ {1, 2, 3, 4, 5}, xi

is the contents of stacksForN(Ai).
The initial configuration of the parser is

(aabaab, S], 0, (0], λ], . . . , λ]), ∅),

3In general, lookup tables might need to exploit some further, finite piece of information about the current
sentential form, see [3] for this notion for context-free grammars.

106 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

meaning that nothing is read from the input, the initial symbol, S, is placed in the main
stack, the step counter is set to zero, the integer zero is placed in the stack stacksForN(S)
associated to the nonterminal S which indicates that it appeared in the main stack when
the counter step had value zero, and the set of production queues waiting to be applied,
pQueuesLeft, is empty.

The main stack is not empty, so the parser starts the execution of the while loop of the
algorithm at line 4. The symbol on the top of the main stack is a nonterminal, so it jumps
to line 10. Since pQueuesLeft, the set of production queues waiting for execution is empty,
after popping the stack stacksForN(S) associated to the symbol in the main stack, the parser
proceeds with the instruction on line 24 by increasing the counter step and identifying the
production queue to be applied with the help of the lookup table. At this point

lookahead = a,
topmost = S,
pQueue = (S → A1A2A1A3, A2 → b,A3 → A4).

The production to be used is the first production of pQueue,

pToUse = S → A1A2A1A3.

Now the remaining part of pQueue is stored in pQueuesLeft indexed with one, the current
value of the step counter, as a pair (1;A2 → b,A3 → A4). This indicates that the rules of this
queue can be used on nonterminals that appeared in the main stack when the step counter
had value one or less. Now the top of the main stack is replaced with the word on the right
side of pToUse, the stack associated to S is emptied, and the value of step is placed into the
stacks associated to the nonterminals appearing on the right side of the rule, stacksForN(X),
X ∈ {A1, A2, A3}. The configuration of the parser is

(aabaab,A1]A2]A1]A3], 1, (λ], 1]1], 1], 1], λ], λ]), {(1; A2 → b,A3 → A4)}).

Now the parser starts the execution of the while loop on line 4 again. Since the top of the
main stack is a nonterminal, A1, and since there is no production queue in pQueuesLeft
having A1 on the left-hand side of its first rule, after popping stacksForN(A1), the stack
associated with the topmost nonterminal, the parser continues with line 24 of the algorithm
by increasing the counter step, and determining the production queue and the production to
be used with the help of the lookup table, obtaining

pQueue = (A1 → aA2, A1 → aA2, A4 → A5),
pToUse = A1 → aA2.

After the application of the production A1 → aA2 to the topmost nonterminal of the main
stack, the parser is in the configuration

(aabaab, a]A2]A2]A1]A3], 2, (λ], 1], 2]1], 1], λ], λ]),
{(1;A2 → b,A3 → A4), (2;A1 → aA2, A4 → A5)}),

and then the execution of the algorithm continues at line 4 again.
Since the top of the main stack is the same terminal as the first symbol of the input, the

parser enters

(abaab,A2]A2]A1]A3], 2, (λ], 1], 2]1], 1], λ], λ]),
{(1;A2 → b,A3 → A4), (2;A1 → aA2, A4 → A5)})

5.3. USING LOOKUP TABLES 107

by popping the main stack and reading one letter of the input, then continues with line 4,
and jumps to line 10 again.

Now the topmost nonterminal is A2, and by popping two from the stack stacksForN(A2),
it is clear that the production queue (A2 → b,A3 → A4) from pQueuesLeft can not be used
since it has index one. This means that the parser needs to turn to the lookup table again,
obtaining

pQueue = (A2 → a,A2 → a,A5 → b),
pToUSe = A2 → a.

After the necessary replacements in the stacks and after updating the value of other variables,
the parser enters

(abaab, a]A2]A1]A3], 3, (λ], 1], 1], 1], λ], λ]),

{(1;A2 → b,A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}).

Now after popping the main stack and reading one more symbol of the input, the parser
continues at line 10 again. This time, the topmost nonterminal is A2, and the integer popped
from the corresponding stack, stacksForN(A2) is one, so the first production of the produc-
tion queue (A2 → b,A3 → A4) stored in pQueuesLeft with the same index can be used.
Thus, the parser continues at line 14 of the algorithm setting

pToUse = A2 → b,
pQueuesLeft = {(1;A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}.

After replacing the topmost nonterminal of the main stack with the right side of pToUse, the
parser enters

(baab, b]A1]A3], 3, (λ], 1], λ], 1], λ], λ]),
{(1;A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}).

After popping the main stack and reading one more symbol of the input, the condition on
line 13 is satisfied again, so the parser sets

pToUse = A1 → aA2,
pQueuesLeft = {(1;A3 → A4), (2;A4 → A5), (3;A2 → a,A5 → b)},

and then uses them, entering

(aab, a]A2]A3], 3, (λ], λ], 3], 1], λ], λ]),
{(1;A3 → A4), (2;A4 → A5), (3;A2 → a,A5 → b)}).

Popping and reading again, then

pToUse = A2 → a,
pQueuesLeft = {(1;A3 → A4), (2;A4 → A5), (3;A5 → b)},

since the queue (A2 → a,A5 → b) stored in pQueuesLeft has index three, the same as the
value obtained from the stack stacksForN(A2), so it can be used, producing

(ab, a]A3], 3, (λ], λ], λ], 1], λ], λ]), {(1; A3 → A4), (2;A4 → A5), (3;A5 → b)}).

108 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

After the main stack is popped again and one more input symbol is read, the parser sets

pToUse = A3 → A4,
pQueuesLeft = {(2;A4 → A5), (3;A5 → b)},

and enters
(b,A4], 3, (λ], λ], λ], λ], 1], λ]), {(2; A4 → A5), (3;A5 → b)}).

The value one is placed in the stack stacksForN(A4) because the queue index of the rule
A3 → A4 was one which means that the application of the rule happens in step one, that
is, A4 appears in the first (= 3)-mode step of the generation of the input string.

The next configuration is

(b,A5], 3, (λ], λ], λ], λ], λ], 2]), {(3; A5 → b)}),

and then
(b, b], 3, (λ], λ], λ], λ], λ], λ]), ∅),

after which the last input symbol is read and the main stack is once again popped, so the
parser enters

(λ, λ], 3, (λ], λ], λ], λ], λ], λ]), ∅),

and since the main stack is empty, finishes its work at line 38 of the algorithm.

Theorem 5.8 ([22]) If a CD grammar system G satisfying the LL(k) condition in the =m
derivation mode using the sw-type of leftmostness is given together with its strong lookup
table, then for Lsw(G,=m) a parser can be constructed as presented in Figure 5.1, which
halts on every input word w in O(n · log2 n) steps, where n is the length of w.

Proof. Let G = (VN , VT , S, P1, P2, . . . , Ps) be a CD grammar system satisfying the LL(k)
condition in the (=m)-mode of derivation. First we show that the parser constructed accord-
ing to G halts on every input.

Assume that the parser does not halt on an input word w ∈ V ∗
T . This means that it

loops infinitely, and it can only do that if the instructions on the lines 10 – 37 are executed
infinitely many times. To see this, notice that the body of the main while loop contains one
if-then-else statement. Instructions of the then part read an input symbol, so they can not
be repeated infinitely many times. This implies that the else part on lines 10 – 37 is repeated
infinitely many times.

This part of the algorithm contains an if-then-else statement starting with line 13, the
execution of the instructions of this part mean either the execution of the then part on lines
14 – 23, or the else part on lines 24 – 37. If lines 10 – 37 are executed infinitely many times,
then there must be infinitely many such executions when no terminal symbol is written on the
top of the main stack in line 20 or in line 34, which means that there is an infinite sequence
of consecutive executions of lines 10 – 37 during which no terminal symbol is ever written on
the top of the main stack.

Since each execution of the instructions of lines 14 – 23 removes one production from the
production queues stored in pQueuesLeft, the instructions on lines 24 – 37 must be executed
infinitely many times, or the parser cannot loop infinitely.

Because the lookahead never changes and because the number of nonterminal symbols is
finite, there must be a sequence of instructions starting with lines 24 – 37, continuing with

5.3. USING LOOKUP TABLES 109

possibly several executions of lines 10 – 23 or lines 24 – 37, and then ending with lines 24 – 37
again, in such a way that the value of topmost, that is, the topmost nonterminal of the main
stack, is the same at the first and at the last execution of lines 24 – 37.

Since the choice of the productions to be applied is based on the lookup table (line 26),
the situation outlined above can only happen if the lookup table has certain properties which
we describe below.

Let X ∈ VN and y ∈ V k
T be a row and a column index of the lookup table, and let

maxchain(X, y) denote the production queue with the following properties:

• maxchain(X, y) is a prefix (p1, . . . , pl) of the corresponding entry of the lookup table,
lookupTable(X, y) = (p1, . . . , pl, pl+1, . . . , pm).

• If maxchain(X, y) and lookupTable(X, y) are as above, then X ⇒p1 X1w1 and, fur-
thermore, Xiwi ⇒pi+1 Xi+1wi+1, Xi ∈ VN , wi ∈ (VN ∪ VT)∗, for each 1 ≤ i ≤ l− 1, and
each pi rewrites the leftmost nonterminal, that is, it is of the form p1 = X → α1, and
pi = Xi−1 → αi, 2 ≤ i ≤ l, and

• maxchain(X, y) contains the maximal number of productions with the properties above,
that is, pl+1 = Z → w where Z 6= Xl.

The parser may enter an infinite loop, if there exist a column of the lookup table, labelled
with y ∈ V k

T , such that

X ⇒maxchain(X,y) X1w1 ⇒maxchain(X1,y) X2w2 ⇒maxchain(X2,y) . . .

. . .⇒maxchain(Xl,y) Xl+1wl+1 = Xwl+1,

where X,Xi ∈ VN , wi ∈ (VN ∪ VT)∗, 1 ≤ i ≤ l + 1, and ⇒maxchain(X,y) denotes a leftmost
derivation sequence using the rules of the production queue maxchain(X, y).

Now we show that such a column cannot exist in the lookup table. If during a left-
most (=m)-mode derivation we encounter the nonterminal X as the leftmost nontermi-
nal, and the production queue identified by X and the lookahead would be the queue in
lookupTable(X, y), then a successful application of the rules would lead to the choice of the
queue lookupTable(X1, y), lookupTable(X2, y), and so on, until we would obtain X again as
the leftmost nonterminal with the same lookahead, thus, the production queues identified by
the leftmost nonterminal and the lookahead would never lead to a successful derivation which
is a contradiction.

Now we show that given the input word w ∈ V ∗
T , the parser halts after O(n·log2 n) number

of steps where n = |w|. With similar arguments as above, we can show that the number of
instructions executed without reading any input symbol is O(1) which means that the running
time of the parser is the length of the input multiplied by the time necessary to execute an
instruction. All the instructions used in the algorithm can be executed in constant time,
except the evaluation of the condition on line 13 and the assignments on line 14, 18, and 32
because they require the manipulation of the data stored in the set structure pQueuesLeft.
The evaluation of line 13 requires a search, the assignments require the addition and the
deletion of an element using a set where the number of stored elements can be as many as
O(n).

All of these operations, however, can be executed in O(log2 n) time if we use balanced
search trees, such as red-black trees for example, to store the elements of the set pQueuesLeft.

110 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

(For more on balanced search trees and red-black trees in particular, see [28].) The implemen-
tation of the set pQueuesLeft must consist of a red-black tree for each nonterminal X ∈ VN

which stores the indexed production queues (i; pq) ∈ pQueuesLeft with X = left(first(pq))
ordered by the index i ∈ N. Having such a structure, the evaluation of the condition on
line 13 can be realized by turning to the search tree associated to the nonterminal topmost to
obtain the pair (i; pQueue) where either i = stepOfTopmost, or if such index is not present,
then i is the smallest available index with i ≥ stepOfTopmost. To perform this search takes
O(log n) comparisons since even in the worst case when the index is not present, it is enough
to explore one path of the red-black tree leading from the root to one of the leaves, and the
length of these paths, that is, the height of the tree is O(log n). To execute lines 14, 18, and 32,
that is, to add or remove elements from the structure first requires a search to determine the
appropriate tree and the location of the element in the tree, and then a constant number of
elements need to be manipulated to insert or to remove the data. Since the number of trees
used are finite, the number of necessary comparisons and data manipulations are O(log n).
One comparison or one data manipulating step, however, also requires O(log n) time, since
the integers used to index the production queues, that is, the keys used to index the nodes of
the search tree, might be as large as n, so their representation can be as long as log n which
means that comparing, reading or writing them requires O(log n) elementary computation
steps. This gives a total running time of O(n · log2 n) where n = |w|, the length of the input
word. 2

In case of deterministic systems, the lookup table is more simple, it only needs to give
a component for the pairs of nonterminals and lookahead strings, the exact order of the
application of the rules is automatically determined due to the restriction to sw-type of
leftmost derivations.

Definition 5.3 ([24]) Let G = (VN , VT , S, P1, P2, . . . Pn) be a deterministic CD grammar
system satisfying the LL(k) condition with respect to µ and α, for some µ ∈ {t,=m | m ≥
1}, α ∈ {ss, sw}, n ≥ 1, and k ≥ 1. The strong lookup table MG for G is a subset of
VN × V ≤k

T × {P1, P2, . . . , Pn} such that for all uXy with

S
µ

=⇒∗
α

uXy
µ

=⇒
α

uz
µ

=⇒∗
α

uv

u, v ∈ V ∗
T , X ∈ VN , y, z ∈ (VN ∪ VT)∗, the entry (X,prefk(v)) contains the component which

is to be applied to the sentential form uXy.

According to this definition, the lookup table for the CD grammar system from Example 5.1
is written as follows:

{(S, aa, P1), (S, ab, P1), (A, aa, P2), (A, ab, P3), (A
′, aa, P1), (A

′, ab, P1)}.

For the existence of a lookup table, it is necessary for a CD grammar system to satisfy
the LL(k) condition. The implication in the other direction, opposed to the context-free case,
is not as obvious. Just as unclear is the existence of a general algorithm for the construction
of a lookup table when a (deterministic) grammar system is given.

However, in many cases it is not difficult to construct a lookup table, such as in the
Examples presented in this chapter.

Now we show that if we assume the existence of a strong lookup table, then in the case of
the sw-type of leftmostness, the length of the necessary lookahead can be decreased to k = 1.

5.3. USING LOOKUP TABLES 111

That is, in contrast to the context-free case, the hierarchies of language families corresponding
to deterministic LL(k) CD grammar systems induced by k collapse, namely to the first level.

Theorem 5.9 ([24]) Given a deterministic CD grammar system G satisfying the LL(k)
condition for some derivation mode µ ∈ {t,= m | m ≥ 2} with the sw-type of leftmostness,
and its strong lookup table MG, then Lsw(G,µ) ∈ dCD∞LL(1)(µ, sw).

Proof. Given G = (VN , VT , S, P1, P2, . . . Pn), a deterministic CD grammar system as above,
satisfying the LL(k) condition for some k ≥ 2. Let the look-up table of G denoted by MG.
We construct a context-free CD grammar system H which satisfies the LL(1) condition and
for which Lsw(H,µ) = Lsw(G,µ) holds, µ is as above. Let the set of non-terminals for H be
the set

V ′
N = VN ∪ {(X, v), (X, v)(i)(A, v), (A, v)′ , (A, v)(i), (ā, v), (ā, v)(i) | A ∈ VN ,

v ∈ V ≤k
T , a ∈ VT , 1 ≤ i < m} ∪ {ā | a ∈ VT },

where X is a new symbol, and let the axiom of H be (S, λ). Let us define for any α =
x1x2 . . . xt, xi ∈ VN ∪ VT , 1 ≤ i ≤ t, the string ᾱ = b(x1)b(x2) . . . b(xt) with b(x) = x for
x ∈ VN , and b(x) = x̄ ∈ V̄T for x ∈ VT .

We construct the following components.

(1) Scanning components. For all A ∈ VN and u ∈ V ≤k−1
T , v ∈ V ≤k

T , we have:

{(A,u)→ (A,u)(1), . . . , (A,u)(m−2) → (A,u)(m−1), (A,u)(m−1) → a(A,ua)′},

and also the components:

{(A, v)′ → (A, v)(1), . . . , (A, v)(m−2) → (A, v)(m−1), (A, v)(m−1) → (A, v)}.

These collect the look-ahead string v of length at most k symbol by symbol. Their correct,
deterministic use is guaranteed by the look-ahead of length one. If |u| = k for some (A,u),
or the look-ahead symbol is λ, then these components cannot be used any more.

(2) Direct simulating components. For (A, v, Pi) ∈ MG, A → α ∈ Pi, α = uBβ with
u ∈ V ∗

T , B ∈ VN , β ∈ (VN ∪ VT)∗, we have:

{(A, v)→ v1(X, v2)Bβ̄} ∪ P̄i

where if u = vv′, for some v′ ∈ V ∗
T , then v1 = v′ and v2 = λ. Otherwise, if v = uu′, for some

u′ ∈ V ∗
T , then v1 = λ and v2 = u′. Furthermore, P̄i denotes the set {A→ ᾱ | A→ α ∈ Pi}.

If α = u with u ∈ V ∗
T , then we have:

{(A, v) → v1(X, v2)} ∪ P̄i

where if u = vv′, for some v′ ∈ V ∗
T , then v1 = v′ and v2 = λ, or otherwise, if v = uu′, for

some u′ ∈ V ∗
T , then v1 = λ and v2 = u′, and P̄i is as above. These components will do

the same as the component Pi of G under look-ahead v. It is taken into consideration that
either the prefix v of u has already been generated by the scanning components and only the
corresponding suffix must be produced in the first step, or the suffix of the scanned look-ahead
string which is no part of u is stored in the new nonterminal which is now leftmost.

112 CHAPTER 5. DETERMINISTIC PARSING FOR CD GRAMMAR SYSTEMS

Note that the scanning components have nonempty look-aheads, the simulating compo-
nents which rewrite some (A, v) with |v| < k, on the other hand, are to be used under empty
look-ahead string.

(3) Look-ahead shifting components. For all u ∈ V ≤k
T , we have:

{(X,u)→ (X,u)(1), . . . , (X,u)(m−1) → (X,u)(m−2), (X,u)(m−2) → λ}∪

{B → (B,u) | B ∈ VN ∪ V̄T }, and

{(b̄, u)→ (b̄, u)(1), . . . , (b̄, u)(m−1) → (b̄, u)(m−2), (b̄, u)(m−2) → b(X, δ) | b̄ ∈ V̄T ,

δ = λ if u = λ, or δ = u′ if u = bu′}.

By these components the stored look-ahead string u is transferred to the next symbol to
the right of the leftmost nonterminal symbol. If this next symbol is from V̄T , then the
corresponding terminal symbol is generated and the rest of the look-ahead is shifted further,
if it is from VN , a look-ahead string of maximal possible length (k, in general) is supplemented
to it with the help of the scanning components. Only then, the next simulation can be
performed.

The comments given to the components constructed above show that the equalities
Lsw(H,µ) = Lsw(G,µ), µ ∈ {t,=m | m ≥ 2}, hold, and as H satisfies the LL(1) property, the
proof of is complete. 2

From Theorem 5.5, and Theorem 5.9 we obtain the following corollary.

Corollary 5.10 ([24]) Given a deterministic CD grammar system G satisfying the LL(k)
condition, k ≥ 1, and its strong lookup table for derivation mode =m, m ≥ 2 with type of
leftmostness sw. Then Lsw(G,=m) ∈ dCD∞LL(1)(=2, sw).

Now we present a decidable condition which a CD grammar system has to satisfy in order
that the lookup table be effectively constructible.

Definition 5.4 ([24]) A deterministic CD grammar system G = (VN , VT , S, P1, . . . , Pn), n ≥
1, satisfies the strong-LL(k) condition for some k ≥ 1, if for all i, 1 ≤ i ≤ n, and productions
A → α ∈

⋃

1≤i≤n Pi, the fact that A → α ∈ Pi implies that A → α 6∈ Pj for all j 6= i.
Moreover, for all productions A→ α, A→ β ∈

⋃

1≤i≤n Pi, such that α 6= β, the condition

FIRSTk(αFOLLOWk(A)) ∩ FIRSTk(βFOLLOWk(A)) = ∅

holds with respect to the context-free grammar (VN , VT , S,
⋃

1≤i≤n Pi).

Since the FIRST and FOLLOW sets for context-free grammars are effectively constructible,
the strong-LL(k) condition for deterministic CD grammar systems is algorithmically decid-
able. Note also, that each of the CD grammar systems presented in Examples 5.1 and 5.2
satisfies the strong-LL(k) property, for the respective value of k.

For all context-free grammars (VN , VT , S, P) which satisfy the strong-LL(k) property, a
strong lookup table M ⊂ (VN × V ≤k

T × P) can be effectively constructed as described, for
example, in [3]. Thus, we can effectively construct a lookup table MG also for any CD
grammar system G = (VN , VT , S, P1, P2, . . . , Pn) satisfying the strong LL(k) property by
constructing MH for H = (VN , VT , S,

⋃

1≤i≤n Pi), and then let (A,w,Pi) ∈MG if and only if
(A,w,A→ α) ∈MH , for some A→ α ∈ Pi.

5.4. CONCLUSION 113

Corollary 5.11 ([24]) Let µ ∈ {t,= m | m ≥ 2} and k ≥ 1. If a deterministic CD grammar
system G satisfies the strong-LL(k) property, then Lsw(G,µ) ∈ dCDnLL(1)(µ, sw) and, more-
over, both the corresponding deterministic CD grammar system satisfying the LL(1) condition
and the strong lookup table for deterministic parsing can be effectively constructed.

5.4 Conclusion

Cooperating distributed grammar systems working in the t- and = m-modes of derivation,
m ≥ 2, have been restricted in a way such that, on the one hand, they maintain enough
power in order to generate all context-free LL(k) languages, the languages L1, L2 and L3

of the concept of mildly context-sensitive grammars and even some non-semilinear language,
but, on the other hand, there is an efficient parsing algorithm of O(n·log2 n) time complexity.4

It is worth mentioning here, that the logarithm in the time bound of the algorithm is
squared only because we carefully count bit operations in which reading and writing a search
index n takes O(log n) time. A uniform measurement of our algorithm would yield a time
complexity of O(n · log n).

The focus was on the development of the concept of an LL(k) condition which is appropri-
ate for those systems, and of the parsing algorithm. The corresponding families of languages
(CDnLL(k)(µ, α), µ ∈ { t,=m | m ≥ 1 }, α ∈ {ss, sw}) need further investigations. The
development of a construction method for a lookup table for CD grammar systems which are
LL(k) but not strong LL(k) is of importance. Furthermore, the following decision problem
might be of interest: Is it decidable whether a given CD grammar system is LL(k), for a
given k or for any k? Moreover, one could extend the research to other derivation modes.
Similar investigations could also be led for further grammar formalisms such as matrix or
programmed grammars. Finally, other restrictions like an appropriate LR(k) condition can
be taken into consideration.

4The ability to generate a non-semilinear language, however, means that CD grammar systems satisfying
the LL(k) condition do not define a new class of mildly context-sensitive languages.

Bibliography

[1] S. Ábrahám. Some questions of phrase-structure grammars I. Comput. Linguistics 4
(1965), 61–70.

[2] A.V. Aho. Indexed grammars. An extension of context-free grammars. Journal of the
ACM 15 (1968), 647–671.

[3] A.V. Aho, J.D. Ullman. The Theory of Parsing, Translation, and Compiling. Volume I:
Parsing. Prentice Hall, Englewood Cliffs, N.J., 1972.

[4] A.V. Aho, J.D. Ullman. The Theory of Parsing, Translation, and Compiling. Volume
II: Compiling. Prentice Hall, Englewood Cliffs, N.J., 1973.

[5] A.W. Appel. Modern Compiler Implementation in Java. Basic Techniques. Cambridge
University Press, 1998.

[6] H. Bordihn. On some deterministic grammars with regulated rewriting. Analele
Universitaţii Bucareşti XXXIX-XL(3), 35–48, 1990-1991.

[7] H. Bordihn. Pure languages and the degree of nondeterminism. Journal of Information
Processing and Cybernetics (formerly: EIK) 28(5), 231–240, 1992.

[8] H. Bordihn. A grammatical approach to the LBA problem. In Gh. Păun and A. Salo-
maa (editors), New Trends in Formal Languages, (LNCS 1218), 1–9. Springer, Berlin,
Heidelberg, 1997.

[9] H. Bordihn. Mildly context-sensitive grammars. In C. Mart́ın-Vide, V. Mitrana,
Gh. Păun (editors), Formal Languages and Application, Studies in Fuzziness and Soft
Computing 148, 163–173. Springer, Berlin, Heidelberg, 2004.

[10] H. Bordihn. On the number of components in cooperating distributed grammar systems.
Theoretical Computer Science 330, 195–204, 2005.

[11] H. Bordihn, E. Csuhaj-Varjú, On competence and completeness in CD grammar systems,
Acta Cybernetica 12 (1996) 347–360.

[12] H. Bordihn, E. Csuhaj-Varjú, J. Dassow. CD grammar systems versus L systems. In
Gh. Păun and A. Salomaa (editors), Grammatical Models of Multi-Agent Systems (Topics
in Computer Mathematics 8), 18–32. Gordon and Breach Science, 1999.

[13] H. Bordihn, J. Dassow, Gy. Vaszil. Grammar systems as language analyzers and re-
cursively enumerable languages. In G. Ciobanu, Gh. Păun (editors), Fundamentals of

114

BIBLIOGRAPHY 115

Computation Theory, 12th International Symposium, FCT’99 (LNCS 1684), 136–147.
Springer, Berlin, Heidelberg, 1999.

[14] H. Bordihn, J. Dassow, Gy. Vaszil. Parallel communicating grammar systems as language
analyzers. Grammars 3 (2000), 1–20.

[15] H. Bordihn, H. Fernau. Accepting grammars and systems. Technical Report 9/94,
Universität Karlsruhe, Fakultät für Informatik, 1994.

[16] H. Bordihn, H. Fernau. Accepting grammars with regulation. International Journal of
Computer Mathematics 53 (1994), 1–18.

[17] H. Bordihn, H. Fernau. Accepting grammars and systems via context condition gram-
mars. Journal of Automata, Languages and Combinatorics 1 (1996), 97–112.

[18] H. Bordihn, H. Fernau, M. Holzer: On accepting pure Lindenmayer systems. Fundamenta
Informaticae 38 (1999), 365–375.

[19] H. Bordihn, H. Fernau, M. Holzer. Accepting pure grammars. Publicationes Mathemat-
icae 60 (2002), 483–510.

[20] H. Bordihn, M. Holzer. On the computational complexity of synchronized context-free
languages. In C.S. Calude, K. Salomaa, S. Yu (editors), Advances and Trends in Au-
tomata and Formal Languages, Journal of Universal Computer Science, 8 (2002), 119–
140.

[21] H. Bordihn, M. Holzer. Programmed grammars and their relation to the LBA problem.
Acta Informatica 43 (2006), 223–242.

[22] H. Bordihn, Gy. Vaszil. CD grammar systems with LL(k) conditions. In E. Csuhaj-Varjú,
Gy. Vaszil (edditors), Proceedings of Grammar Systems Week, 95–112. MTA SZTAKI,
Budapest, 2004.

[23] H. Bordihn and Gy. Vaszil. On leftmost derivations in CD grammar systems. In R. Loos,
Sz.Zs. Fazekas, C. Mart́ın-Vide (editors), 1st International Conference on Language
and Automata Theory and Applications, LATA’07, Reports 35/07, 187–198. Universi-
tat Rovira I Virgli, Tarragona, Spain, 2007.

[24] H. Bordihn and Gy. Vaszil. Top-down deterministic parsing of languages generated
by CD grammar systems. In E. Csuhaj-Varjú and Z. Ésik (editors), Fundamentals of
Computation Theory, 16th International Symposium, Budapest, Hungary, August 27-30,
2007, Proceedings, (LNCS 4639), 113–124. Springer, Berlin, Heidelberg, 2007.

[25] H. Bordihn and Gy. Vaszil. Leftmost derivations in CD grammar systems. Submitted to
Acta Informatica, 2011.

[26] J.L. Chen, C.W. Greider. Functional analysis of the pseudoknot structure in human
telomerase RNA. Proceedings of the Natural Academy of Sciences of the USA (PNSA)
105 (2005), 8080–8085.

[27] N. Chomsky. Three models for the description of language. IRE Transactions on Infor-
mation Theory 2 (1956), 113–124.

116 BIBLIOGRAPHY

[28] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. MIT Press and
McGraw-Hill Book Company, 1990.

[29] E. Csuhaj-Varjú. On grammars with local and global context conditions. International
Journal of Computer Mathematics 47 (1993), 17–27.

[30] E. Csuhaj-Varjú. Networks of Language Processors. Bulletin of the EATCS 63 (1997),
120–134.

[31] E. Csuhaj-Varjú, J. Dassow. On cooperaing distributed grammar systems. J. Inf. Process.
Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.) 26 (1990), 49–63.

[32] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun. Grammar systems. A Grammatical
Approach to Distribution and Cooperation. Gordon and Breach, London, 1994.

[33] E. Csuhaj-Varjú and Gy. Vaszil. On the computational completeness of context-free
parallel communicating grammar systems. Theoretical Computer Science 215 1-2 (1999),
349-358.

[34] E. Csuhaj-Varjú and Gy. Vaszil. On context-free parallel communicating grammar sys-
tems: Synchronization, communication, and normal forms. Theoretical Computer Science
255 (2001), 511–538.

[35] Ch. Culy. The complexity of the vocabulary of Bambara. Ling. and Philosophy 8 (1985),
345–351.

[36] J. Dassow. Pure grammars with regulated rewriting. Rev. Roumaine Math. Pures Appl.
31 (1986), 657–666.

[37] J. Dassow. A remark on limited 0L systems. J. Inf. Process. Cybern. EIK (formerly
Elektron. Inf.verarb. Kybern.) 24 (1988), 287–291.

[38] J. Dassow, H. Fernau, Gh. Păun. On the leftmost derivation in matrix grammars. Int.
Journal of Foundations of Computer Science. 10 (1999), 61–80.

[39] J. Dassow and V. Mitrana. On the leftmost derivation in cooperating grammar systems.
Revue Roumaine de Mathématiques Pures et Appliquées, 43 (1998), 361–374.

[40] J. Dassow and Gh. Păun. Further remarks on pure grammars with regulated rewriting.
Rev. Roumaine Math. Pures Appl. 31 (1986), 855–864.

[41] J. Dassow, Gh. Păun. Regulated Rewriting in Formal Language Theory. Volume 18
of EATCS Monographs in Theoretical Computer Science. Springer, Berlin, Heidelberg,
1989.

[42] J. Dassow and Gh. Păun. Cooperating/distributed grammar systems with registers.
Foundations of Control Engineering, 15 (1990), 19–38.

[43] J. Dassow, Gh. Păun, G. Rozenberg. Grammar systems. In [97], 155–213.

[44] J. Dassow, Gh. Păun, A. Salomaa. Grammars with controlled derivations. In [97],
101–154.

BIBLIOGRAPHY 117

[45] S. Dumitrescu. Non-returning PC grammar systems can be simulated by returning
systems. Theoretical Computer Science 165 (1996), 463-474.

[46] H. Fernau. On function-limited Lindenmayer systems. J. Inf. Process. Cybern. EIK
(formerly Elektron. Inf.verarb. Kybern.) 27 (1991), 21–53.

[47] H. Fernau. Membership for 1-limited ET0L languages is not decidable. J. Inf. Process.
Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.) 30 (1994), 191–211.

[48] H. Fernau. Remarks on adult languages of propagating systems with restricted paral-
lelism. In G. Rozenberg and A. Salomaa, editors, Developments in Language Theory
(Turku, 1993), 90–101. Singapore: World Scientific, 1994.

[49] H. Fernau. On unconditional transfer. In W. Penczek, A. Szalas (editors), Proceedings
of MFCS’96 (LNCS 1113), 348–359, Springer, Berlin Heidelberg, 1996.

[50] H. Fernau. Remarks on regulated limited ET0L systems and regulated context-free
grammars. Theoretical Computer Science 194 (1998), 35–55.

[51] H. Fernau. Regulated grammars under leftmost derivation. Grammars 3 (2000), 37–62.

[52] H. Fernau, H. Bordihn. Remarks on accepting parallel systems. International Journal
of Computer Mathematics 56 (1995), 51–67.

[53] H. Fernau, M. Holzer, H. Bordihn. Accepting multi-agent systems: The case of coop-
erating distributed grammar systems. Computers and Artificial Intelligence 15(1996),
123–139.

[54] R.W. Floyd. On the non-existence of a phrase structure grammar for ALGOL 60. Com-
munications of the ACM 5 (1962), 483–484.

[55] M. Frings. Systeme mit eingeschränkter paralleler Ersetzung. Master’s thesis, TU Braun-
schweig, D-3300 Braunschweig, 1985.

[56] I. Frǐs. Grammars with partial orderings of the rules. Information and Control (now
Information and Computation), 12 (1968), 415–425.

[57] A. Gabrielian. Pure grammars and pure languages. Technical Report CSRR 2027, Univ.
of Waterloo, Dept. of Comp. Sci., 1970.

[58] S. Ginsburg, E.H. Spanier. Control sets on grammars. Mathematical Systems Theory 2
(1968), 159–177.

[59] S. Greibach, J.E. Hopcroft. Scattered context grammars. Journal of Computer and
System Sciences 3 (1969), 233–247.

[60] D. Hauschildt and M. Jantzen. Petri net algorithms in the theory of matrix grammars.
Acta Informatica 31 (1994), 719–728.

[61] T. Head, Gh. Păun, D. Pixton. Language theory and molecular genetics. In [97], 295–360.

[62] G.T. Herman, G. Rozenberg. Developmental Systems and Languages. North-Holland,
Amsterdam, 1975.

118 BIBLIOGRAPHY

[63] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Reading (MA): Addison-Wesley, 1979.

[64] J. Hromkovič, On the communication complexity of distributive language generation. In:
J. Dassow, G. Rozenberg and A. Salomaa (eds.), Developments in Language Theory II,
237–246. World Scientific, Singapore, 1995.

[65] A.K. Joshi. Tree adjoining grammars: How much context-sensitivity is necessary for
characterizing structural descriptions. In: D. Dowty, L. Karttunen, A. Zwicky (edditors),
Natural Language Parsing: Psychological, Computational and Theoretical Perspectives,
206–250. Cambridge University Press, New York, 1985.

[66] A.K. Joshi, L.S. Levi, M. Takahashi. Tree adjunct grammars. J. Comput. System Sci.
10 (1975), 136–163.

[67] A.K. Joshi, Y. Schabes. Tree-adjoining grammars. In [98], 69–123.

[68] H. Jürgensen, K. Salomaa. Block-synchronized context-free grammars. In D.Z. Du and
J.I. Ko (editors), Advances in Algorithms, Languages, and Complexity, 111–137. Kluwer,
1997.

[69] S.Y. Kuroda. Classes of languages and linear bounded automata. Information and
Control 7 (1964), 207–223.

[70] N. Mandache. On the computational power of context-free PC grammar systems. The-
oretical Computer Science 237 (2000), 135–148.

[71] A. Mateescu and A. Salomaa. Aspects of classical language theory. In [97], 175–251.

[72] H.A. Maurer, A.K. Salomaa, and D. Wood. Pure grammars. Information and Control
44 (1980), 47–72.

[73] MDA Model Driven Architecture. http://www.omg.org/mda

[74] A. Meduna. A trivial method of characterizing the family of recursively enumerable
languages by scattered context grammars. EATCS Bulletin 56 (1995), 104–106.

[75] R. Meersman, G. Rozenberg. Cooperating grammar systems. Proc. MFCS’78 (LNCS
64), 364–374, Springer, Berlin, Heidelberg, 1978.

[76] V. Mihalache. Accepting cooperating distributed grammar systems with terminal deriva-
tion. EATCS Bulletin 61 (1997), 80–84.

[77] V. Mihalache, V. Mitrana. Deterministic cooperating distributed grammar systems. In
Gh. Păun and A. Salomaa (editors), New Trends in Formal Languages, (LNCS 1218),
137–149. Springer, Berlin, Heidelberg, 1997.

[78] D. Milgram, A. Rosenfeld. A note on scattered context grammars. information Processing
Letters 1 (1971), 47–50.

[79] V. Mitrana. Hybrid cooperating/distributed grammar systems. Computers and Artificial
Intelligence 12 (1993), 83–88.

BIBLIOGRAPHY 119

[80] V. Mitrana. Parsability approaches in CD grammar systems. In R. Freund, A. Kele-
menová, editors, Proceedings of the International Workshop Grammar Systems 2000,
165–185. Silesian University, Opava, 2000.

[81] B. Monien. On the LBA problem. In F. Gécseg (editor) Proceeding of the Interna-
tional Conference Fundamentals on Computation Theory (LNCS 117), 265–280. Springer,
Berlin, Heidelberg, 1981.

[82] E. Navrátil. Context-free grammars with regular conditions. Kybernetika 6 (1970), 118–
126.

[83] K. Ogasawara, S. Kobayashi. Stochastically approximating tree grammars by regu-
lar grammars and its application to faster ncRNA family annotation. In R. Loos,
Sz.Zs. Fazekas, C. Mart́ın-Vide (editors), 1st International Conference on Language
and Automata Theory and Applications, LATA’07, Reports 35/07, 187–198. Universi-
tat Rovira I Virgli, Tarragona, Spain, 2007.

[84] B.H. Partee, A. ter Meulen, R. Wall. Mathematical Methods in Linguistics. Kluwer,
1993.

[85] Gh. Păun. On the generative capacity of conditional grammars. Information and Control
(now Information and Computation) 43 (1979), 178–186.

[86] Gh. Păun. A variant of random context grammars: semi-conditional grammars. Theo-
retical Computer Science 41 (1985), 1–17.

[87] Gh. Păun. On the synchronization in parallel communicating grammar systems. Acta
Informatica 30 (1993), 351–367.

[88] Gh. Păun. On the generative capacity of hybrid CD grammar systems. J. Inf. Process.
Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.) 30 (1994), 231–244.

[89] Gh. Păun. Grammar systems: a grammatical approach to distribution and cooperation.
In Automata, Languages and Programming; 22nd International Colloquium, ICALP’95,
Szeged, Hungary, (LNCS 944), 429–443, Springer, Berlin, Heidelberg, 1995.

[90] Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing. New Computing Paradigms.
Springer, Berlin, Heidelberg, 1998.

[91] Gh. Păun, L. Sântean. Parallel communicating grammar systems: the regular case. Ann.
Univ. Buc., Ser. Matem.-Inform. 38 (1989), 55-63.

[92] G. Pullum, G. Gazdar. Natural languages and context-free languages. Linguistics and
Philosophy 4 (1982), 471–504.

[93] D.J. Rosenkrantz. Programmed grammars and classes of formal languages. Journal of
the Association for Computing Machinery 16 (1969), 107–131.

[94] D.J. Rosenkrantz, R.E. Stearns. Properties of deterministic top-down grammars. Infor-
mation and Control 17 (1970), 226–256.

[95] G. Rozenberg. Extension of tabled 0L-systems and languages. International Journal of
Computer and Information Sciences 2 (1973), 311–336.

120 BIBLIOGRAPHY

[96] G. Rozenberg, A. Salomaa. The Mathematical Theory of L Systems. Academic Press,
New York, 1980.

[97] G. Rozenberg, A. Salomaa. Handbook of Formal Languages. Vol.2, Linear Modelling:
Background and Application. Springer, Berlin, Heidelberg, 1997.

[98] G. Rozenberg, A. Salomaa. Handbook of Formal Languages. Vol.3, Beyond Words.
Springer, Berlin, Heidelberg, 1997.

[99] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[100] K. Salomaa. Hierarchy of k-context-free languages. International Journal of Computer
Mathematics 26 (1989) 69–90, 193–205.

[101] D.C. Schmidt. Model-driven engineering. IEEE Computer 39 (2006), 25–31.

[102] R. Sethi. Programming Languages. Concepts & Constructs. Addison Wesley, 1996.

[103] S.M. Shieber. Evidence against the context-freeness of natural language. Linguistics
and Philosophy 8 (1985), 333–343.

[104] K. Sikkel, A. Nijholt. Parsing of context-free languages. In [97], 61–100.

[105] R. Siromoney, K. Krithivasan. Parallel context-free grammars. Information and Control
24 (1974).

[106] S.H. von Solms. Some notes on ET0L-languages. International Journal of Computer
Mathematics 5 (1976), 285–296.

[107] F.L. Ţiplea, C. Ene, C.M. Ionescu and O. Procopiuc. Some decision problems for parallel
communicating grammar systems. Theoretical Computer Science 134 (1994), 365–385.

[108] Gy. Vaszil. On simulating non-returning PC grammar systems with returning systems.
Theoretical Computer Science 209 (1998), 319-329.

[109] Gy. Vaszil. Investigations on parallel communicating grammar systems. PhD thesis,
Eötvös Loránd University, Budapest, 2000.

[110] K. Vijay-Shanker, D.J. Weir. The equivalence of four extensions of context-free gram-
mars. Mathematical Systems Theory 87 (1994), 511–546.

[111] P.M.B. Vitányi. Context sensitive table Lindenmayer languages and a relation to the
LBA problem. Information and Control 33 (1977), 217–226.

[112] A.P.J. van der Walt. Random context grammars. Proc. Symp. on Formal Languages,
Oberwolfach, 1970.

[113] D. Wätjen. k-limited 0L systems and languages. J. Inf. Process. Cybern. EIK (formerly
Elektron. Inf.verarb. Kybern.) 24 (1988), 267–285.

[114] D. Wätjen. A weak iteration theorem for k-limited E0L systems. J. Inf. Process. Cybern.
EIK (formerly Elektron. Inf.verarb. Kybern.) 28 (1992), 37–40.

BIBLIOGRAPHY 121

[115] D. Wätjen, E. Unruh. On extended k-uniformly-limited T0L systems and languages. J.
Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.) 26 (1990), 283–299.

[116] D. Wood. Bicolored digraph grammar systems. RAIRO, Rech. Oper. R-1 (1973), 45–50.

[117] D. Wood. Theory of Computation. John Wiley & Sons, New York, 1987.

[118] G. Zetsche. On erasing productions in random context grammars. In S. Abramsky,
C. Gavoille, C. Kirchner, F. Meyer auf der Heide and P. G. Spirakis (editors), Automata,
Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux,
France, July 6-10, 2010, Proceedings, Part II (LNCS 6199), 175–186. Springer, Berlin,
Heidelberg, 2010.

[119] G. Zetsche. A sufficient condition for erasing productions to be avoidable. In G. Mauri
and A. Leporati (editors), Developments in Language Theory, 15th International Con-
ference, DLT 2011, Milan, Italy, July 19-22, 2011, Proceedings (LNCS 6795), 452–463.
Springer, Berlin, Heidelberg, 2011.

[120] G. Zetsche. Towards understanding the generative capacity of erasing rules in matrix
grammars. International Journal of Foundations of Computer Science 22 (2011), 411–
426.

	Title
	Imprint

	Preface
	Contents
	1 Introduction
	1.1 Syntactical Analysis and Language Processing
	1.2 Basic Definitions and Notation
	1.2.1 Languages, Language Operations, Families of Languages
	1.2.2 Automata, Grammars and the Chomsky Hierarchy
	1.2.3 Basic Elements of the Theory of Parsing

	1.3 Insufficiency of Context-Freeness

	2 Non-Context-Free Grammar Formalisms
	2.1 Definitions
	2.2 Generative Capacities
	2.2.1 Single Devices: The Non-Erasing Case
	2.2.2 Single Devices: The Erasing Case
	2.2.3 Grammar Systems

	3 Accepting Grammars and Systems
	3.1 Accepting versus Generating Mode
	3.1.1 Context Condition Grammars
	3.1.2 When cc Grammars Do Not Help
	3.1.3 Cooperating Distributed Grammar Systems
	3.1.4 Parallel Communicating Grammar Systems

	3.2 Accepting Grammars and the LBA Problem
	3.2.1 Restricting Nondeterminism in Programmed Grammars
	3.2.2 On Context-Sensitive and Deterministic Context-Sensitive Languages
	3.2.3 Programmed Grammars with Regulation

	3.3 Discussion

	4 Leftmost Derivations
	4.1 Definitions
	4.2 The Power of Leftmost Derivations in CD Grammar Systems
	4.2.1 The So-Called Trivial Derivation Modes
	4.2.2 The Terminal Mode of Derivation
	4.2.3 The =k and ≥k Modes of Derivation
	4.2.4 The Full Competence Mode of Derivation

	4.3 Conclusion

	5 Deterministic Parsing for CD Grammar Systems
	5.1 Definitions
	5.2 On the Power of LL(k) CD Grammar Systems
	5.3 Using Lookup Tables
	5.4 Conclusion

	Bibliography

