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Abstract

In this thesis, we discuss the formulation of variational problems on supermanifolds. Super-
manifolds incorporate bosonic as well as fermionic degrees of freedom. Fermionic fields take
values in the odd part of an appropriate Grassmann algebra and are thus showing an anti-
commutative behaviour. However, a systematic treatment of these Grassmann parameters
requires a description of spaces as functors, e.g. from the category of Grassmann algberas
into the category of sets (or topological spaces, manifolds,. . . ). After an introduction to the
general ideas of this approach, we use it to give a description of the resulting supermanifolds
of fields/maps. We show that each map is uniquely characterized by a family of differential
operators of appropriate order. Moreover, we demonstrate that each of this maps is uniquely
characterized by its component fields, i.e. by the coefficients in a Taylor expansion w.r.t. the
odd coordinates. In general, the component fields are only locally defined. We present a way
how to circumvent this limitation. In fact, by enlarging the supermanifold in question, we
show that it is possible to work with globally defined components. We eventually use this
formalism to study variational problems. More precisely, we study a super version of the
geodesic and a generalization of harmonic maps to supermanifolds. Equations of motion are
derived from an energy functional and we show how to decompose them into components.
Finally, in special cases, we can prove the existence of critical points by reducing the problem
to equations from ordinary geometric analysis. After solving these component equations, it is
possible to show that their solutions give rise to critical points in the functor spaces of fields.

In dieser Dissertation wird die Formulierung von Variationsproblemen auf Supermannig-
faltigkeiten diskutiert. Supermannigfaltigkeiten enthalten sowohl bosonische als auch fermion-
ische Freiheitsgrade. Fermionische Felder nehmen Werte im ungeraden Teil einer Grassman-
nalgebra an, sie antikommutieren deshalb untereinander. Eine systematische Behandlung
dieser Grassmann-Parameter erfordert jedoch die Beschreibung von Räumen durch Funk-
toren, z.B. von der Kategorie der Grassmannalgebren in diejenige der Mengen (der topologis-
chen Räume, Mannigfaltigkeiten, ...). Nach einer Einführung in das allgemeine Konzept dieses
Zugangs verwenden wir es um eine Beschreibung der resultierenden Supermannigfaltigkeit der
Felder bzw. Abbildungen anzugeben. Wir zeigen, dass jede Abbildung eindeutig durch eine
Familie von Differentialoperatoren geeigneter Ordnung charakterisiert wird. Darüber hinaus
beweisen wir, dass jede solche Abbildung eineindeutig durch ihre Komponentenfelder, d.h.
durch die Koeffizienten einer Taylorentwickelung bzgl. ungerader Koordinaten bestimmt ist.



Im Allgemeinen sind Komponentenfelder nur lokal definiert. Wir stellen einen Weg vor, der
diese Einschränkung umgeht: Durch das Vergrößern der betreffenden Supermannigfaltigkeit
ist es immer möglich, mit globalen Koordinaten zu arbeiten. Schließlich wenden wir diesen
Formalismus an, um Variationsprobleme zu untersuchen, genauer betrachten wir eine super-
Version der Geodäte und eine Verallgemeinerung von harmonischen Abbildungen auf Super-
mannigfaltigkeiten. Bewegungsgleichungen werden von Energiefunktionalen abgeleitet und
wir zeigen, wie sie sich in Komponenten zerlegen lassen. Schließlich kann in Spezialfällen
die Existenz von kritischen Punkten gezeigt werden, indem das Problem auf Gleichungen der
gewöhnlichen geometrischen Analysis reduziert wird. Es kann dann gezeigt werden, dass die
Lösungen dieser Gleichungen sich zu kritischen Punkten im betreffenden Funktor-Raum der
Felder zusammensetzen.
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i

1 Introduction

The research in this thesis addresses the problem of the formulation of geometric variational
problems on supermanifolds and the development of technics to find and describe its critical
points. The problems in question generalize the notions of geodesics and harmonic maps to
supergeometry.

The development of supergeometry took its origin from concepts of theoretical physics: In
quantum physics, there are two different kinds of particles, bosons and fermions. Whereas
bosons behave according to the Bose-Einstein statistic and are allowed to occupy the same
quantum state, fermions are not able to do so, they behave according to the Fermi-Dirac
statistic. As a consequence, bosonic fields are described by operators Φ1,Φ2 which commute
among each other up to order ~, whereas fermionic fields Ψ1,Ψ2 lead to anticommutator
relations:

[Φ1,Φ2] = O(~) {Ψ1,Ψ2} = O(~)

In a classical limit ~ → 0, this leads to a theory of commuting and anticommuting classi-
cal fields. Supergeometry is the attempt to incorporate commuting and anticommuting (i.e.
bosonic and fermionic) objects in a unified framework in order to obtain a geometric approach
to physics which treats both types of fields on the same footing. There are several reasons
to look for such a framework. In quantum physics, the path integral formalism for fermions
requires a classical field theory which includes anticommuting quantities. In general, it is
then desirable to be able to work on an arbitrary curved space. Moreover, the concept of
superspaces allows for the construction of theories which are manifestly supersymmetric in a
nice geometric fashion (although not all supersymmetric theories arise in this way). Finally,
the subject is also interesting from a mathematical point of view. It leads to interesting gen-
eralizations of concepts from classical geometry and geometric analysis such as geodesics or
harmonic maps which get anticommuting contributions, even on ordinary smooth manifolds.
These behave differently from their commuting partners. Insights from supermathematics
also play an important role in index theory and there are ideas to give “supersymmetric
proofs” of the index theorem which still have to be made rigorous.

In this work, we will discuss variational problems on spaces containing commuting and an-
ticommuting degrees of freedom rather than questions arising from supersymmetry itself. In
particular, we will neither discuss the complex supersymmetric theories from modern physics
nor the relation of spin and statistics - there will be no spinor fields. The focus is mainly
on a formalism, which enables us to define variational problems, introduce a concept of crit-
ical points and to demonstrate the existence of solutions for certain geometrical functionals
defined on supermanifolds. We will use the approach introduced by Berezin, Kostant and
Leites which defines a supermanifold in terms of its sheaf of functions using the ringed space
language from algebraic geometry. A superfunction which anticommutes with itself must be
nilpotent and in fact, it is the existence of nontrivial nilpotent functions which is responsible
for most of the new features of supergeometry. In particular, this geometry can not be de-
scribed in terms of points of a topological space.
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In fact, it turns out that it is necessary to define a “space of maps” between supermanifolds
to give a precise meaning to functionals and their critical points. Following [61], this “space”
has to be defined as a functor and we will adopt the categorical approach to supergeometry by
Molotkov ([44]) and Sachse ([52]) to describe this construction. Although it would be possible
to work exclusively inside the Molotkov-Sachse framework, we will choose a hybrid approach.
We will avoid functorial language when dealing with finite dimensional supergeometry and
use the construction by Berezin, Kostant and Leites instead. On the other hand, the notion of
critical points relies on the functorial language and we will show how to merge both concepts.

We close the introduction with a naive discussion of a simple variational problem which
nevertheless shows some interesting features. Looking at a map Φ from a space R1|1 with one
commuting and one anticommuting dimension into a Riemannian manifold (N, 〈, 〉), we may
do a naive Taylor expansion w.r.t. an odd coordinate θ:

Φ(t, θ) = c(t) + ψ(t)θ (1.1)

This has to stop because θ2 = 0. It turns out that c is just an ordinary (commuting) curve
whereas ψ is an anticommuting vector field along c, so that we have the following picture:

N

R

R1|1

c

Φ

It is possible to write down an energy functional for such a super curve and the resulting
equations of motion read

∇tċ = R(ψ,ψ)ċ ∇tψ = 0 (1.2)

We see that one map Φ gives rise to 2 geometric objects (c, ψ) whose equations of motions
are coupled in a natural way. What’s more, we obtain completely new expressions since a
term as R(ψ,ψ)ċ does not automatically vanish.

This work is organized as follows:
The first chapter contains basic material on super linear algebra. All notions and construc-
tions will be introduced on the level of modules. In particular, we will discuss the Berezinian
of a module and a map as well as the operation of changing the ring of a module, which is
needed during the discussion of pullbacks and the development of component formalism in
chapter 4.
The second chapter is an introduction in the theory of supermanifolds by Berezin, Kostant



iii

and Leites. We will discuss their basic structure theory and that of morphisms among them.
Furthermore, we will discuss super vector bundles and geometric structures on them which
generalize the notion of Riemannian metrics and connections. The construction of pullback
bundles and connections will be developed in detail since the approach here is different from
that on ordinary smooth manifolds and not much material on that topic is available in the
literature. Finally, we describe integration on Riemannian supermanifolds and discuss some
variational calculus as well as the divergence theorem.
The third chapter discusses the categorical (or functorial) approach to supergeometry. We
introduce the general idea of this concept which consists in replacing supermanifolds by
functors (from the category of supermanifolds to the category of sets) and maps by natural
transformation between such functors. As an example, we will discuss how to construct the
total space of a vector bundle in terms of the functor representing it. The second part of
chapter 3 is devoted to the Molotkov-Sachse approach to supergeometry which uses certain
functors from the category of finite dimensional Grassmann algebras into a category of man-
ifolds to describe a supermanifold. After discussing this approach in some detail, the space
of all maps between two supermanifolds is introduced (however, without equipping it with a
smooth structure). This notion is crucial to deal with variational problems.
In chapter four, we analyze the structure of the space of maps defined in the previous chap-
ter. It turns out that it can be described in terms of differential operators on supermanifolds
along maps. To make this statement precise, we give a short introduction to the theory of
jet bundles and linear differential operators on smooth manifolds. We then include a detailed
exposition of the algebraic definition of differential operators on modules and their charac-
terization using product rules similar to the Leibniz rule. Based on such product rules, we
use combinatorial arguments to prove that the space of maps can be described by differential
operators. Finally, we introduce component fields of maps and vector fields and prove that
the latter ones are uniquely determined by their components. Since the definition of these
components is based on a choice of global odd coordinate fields on a given supermanifold,
we introduce a method which will enable us to apply the component formalism on arbitrary
supermanifolds.
The last chapter is devoted to special variational problems for maps from supermanifolds to
ordinary Riemannian manifolds (N, 〈, 〉). We will look at supergeodesics as discussed e.g. in
[61] in a first part and then consider a generalization of harmonic maps to supermanifolds.
The chapter starts with a discussion of functionals and their critical points using the cate-
gorical approach from chapter 4. Then we give an overview on classical theorems on closed
geodesics, harmonic maps and elliptic theory on vector bundles. Based on these well known
results, we discuss the existence of critical points by reducing the super equations of motion
to differential equations on smooth manifolds and vector bundles. This also reveals the geo-
metric meaning of these equations. We find the following general pattern resulting from the
reduction: There is one nonlinear equation and a family of linear equations, which depend on
the solution of the nonlinear one and can be thought of as corrections from the super world.
In the case of supergeodesics defined on R1|1, it is possible to give an explicit expression for
the functor of critical points which is represented by the supermanifold TN ⊕ΠTN . This is
already mentioned in [10]. For closed supergeodesics and superharmonic maps, this explicit
description in terms of a representing supermanifold is not available and we will describe the
functor of critical points in terms of a “bundle structure”.
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2 Elements of Superalgebra

In this section, we will give a short introduction into concepts of superalgebra. The general
concepts are well known in the literature (e.g. [10], chapter 1, [66], chapter 3 or [42], chapter
3). However, some notions occur in the literature in an ambiguous way so we will also use
this section to settle them. Finally we collect some algebraic results that will be needed
in later sections, which are, to the authors knowledge, not contained in the literature on
supergeometry.

2.1 Super modules and algebras

The word “super” is always to mean Z2-graded, indices in Z2 referring to this grading will
be denoted 0, 1 and i, j respectively. They may occur as lower or upper indices. The parity
of an element x of a Z2-graded object is denoted by |x|. If G = G0 ⊕G1 is some Z2-graded
Abelian group, elements of G0 ∪G1 \ {0} are called homogeneous.

We introduce the basis algebraic concepts:

Definition 2.1
(a) A superring R is a Z2-graded ring, i.e. it satisfies R = R0 ⊕ R1 as an Abelian group

and Ri · Rj ⊂ Ri+j for the multiplication. R is called supercommutative if the super-
commutator

[r1, r2] := r1r2 − (−1)|r1||r2|r2r1 (2.1)

vanishes for all homogeneous elements of r1, r2 ∈ R.

(b) A left R-supermodule is a Z2-graded left R-module M =M0 ⊕M1 such that Ri ·Mj ⊂
Mi+j . Right supermodules are defined in a similar way.

(c) A morphism f : M −→ N of left R-supermodules is a morphism of the underly-
ing R- modules which preserves the Z2-grading. The set of morphisms is denoted by
Hom

RSMod(M,N), the corresponding category is denoted by RSMod (and SModR for
right modules).

In case there is no danger of confusion, we will simply write HomR(M,N) instead of
Hom

RSMod(M,N) etc. Superalgebras are modules with an additional multiplication:

Definition 2.2 An left R-supermodule A is called an R-superalgebra, if A is an ordinary
R-algebra and its multiplication is compatible with the grading in the sense AiAj ⊂ Ai+j .
Together with the morphisms

Hom
RSAlg(A,B) = {f ∈ HomR(A,B)|f(ab) = f(a)f(b) for all a, b ∈ A}

they form the category RSAlg. Again, the case of right R-superalgebras is treated in an
analogous way.
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Defining submodules and ideals, it is necessary to make sure that the corresponding subspaces
are compatible with the grading:

Definition 2.3 Let M be a left R-supermodule and N ⊂M .

(a) N is called a R-super submodule of M if it is an ordinary submodule and in addition,
the Z2-gradings are compatible in the sense Ni = N ∩Mi for i = 0, 1. In other words,
N must not lie “transversal” to the grading of M .

(b) If M is a R-superalgebra, then N is called a superideal (or homogeneous ideal) of M if
it is an ordinary ideal and a super submodule.

Remark 2.4
(a) R becomes a superring by setting R0 := R and R1 := {0}. The resulting category of left

(and right) supermodules is then denoted SV ec, its objects are called R-super vector
spaces.

(b) In many cases, the superring in question will already be a unital, supercommutative
R- superalgebra A. The corresponding A-supermodules then of course always have an
underlying R-super vector space.

(c) Equations like (2.1) make sense only for homogenous elements. In the rest of this
work, we will use similar expressions for general elements of R interpreting them in the
following way: The statement is true if all elements involved are homogenous and it is
extended by multilinearity to the general case.

(d) In commutative algebra, left and right R-module structures correspond bijectively to
each other. In the same manner, a left R-supermodule M over a supercommutative
superring R gives rise to a right R-supermodule by defining

m · r = (−1)|m||r|r ·m for m ∈M, r ∈ R (2.2)

and vice versa.

(e) In this work, we will assume that the superrings in question have a unit 1 (which has
to be an element of R0) and are supercommutative as well as associative. Thus, by
(d), there is no need to distinguish between left and right supermodules. We will often
indicate which structure is used just by putting the ring element r to the left or to the
right of the module element m.

The concept of morphisms of supermodules from definition 2.1 can be extended as follows:

Definition 2.5 Let M , N be R-supermodules, then the set of inner morphisms is defined by

Hom
RSMod(M,N) := {f :M −→ N |f is R− linear }

Again, we will simply write HomR(M,N).
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At the moment, this is an ad hoc definition. We will see in example 4.3 using the categorical
point of view that this notion occurs very naturally in many situations (e.g. if the modules
are free). It is important to point out that this is not the set of homomorphisms in the
category of supermodules. Morphisms in a category of superobjects will always preserve the
Z2-grading. Inner morphism have the following properties (see [10], §1.6):

Lemma 2.6 Let R be a superring and M,N be R-supermodules. Then Hom(M,N) becomes
an left R-supermodule by the following specifications for r ∈ R:

Hom(M,N)i := {f :M −→ NR− linear |f(Mj) ⊂Mj+i}

r · f := (m 7→ r · (f(m)))

Moreover, we have Hom(M,N)0 = Hom(M,N) and for all r ∈ R,m ∈M,f ∈ Hom(M,N):

f(rm) = (−1)|r||f |rf(m) f(mr) = f(m)r (2.3)

so that f is R-linear w.r.t. to right module structure from equation (2.2).

Remark 2.7 The left side of equation (2.3) is an example for the following important rule
of thumb: If a calculation involves super objects x and y and these two are interchanged,
then a sign (−1)|x||y| occurs. Thus, objects of parity 1 behave like fermions.
From a more abstract point of view, the rule of thumb is a consequence of the fact that the
categories of interest are tensor categories in a super sense (see the next example for the
definition of the tensor product). This means that there are, as in usual tensor categories,
commutativity-isomorphisms satisfying the usual identities except for signs that have to be
added, according to the parity of the interchanged objects (see [10] §1.2 or [66] 3.7 for a
discussion).

Given R-supermodules M and N , we can perform the obvious algebraic constructions:

Example 2.8
(a) The module with exchanged parity: As additive group, we set (ΠM)i := Mi+1.

Denoting by π : M −→ ΠM the canonical map which is the identity on the level of
sets, the multiplication ·π on ΠM depends on whether M is a left or right module. It
is defined by

r ·π π(m) := (−1)|r|π(r ·m) π(m) ·π r := π(m · r)

These equations reflect the fact, that π, as an inner morphism M −→ ΠM , is odd.
In case that M is a supermodule over a superalgebra A, ΠM can be identified with
ΠR⊗RM = R0|1 ⊗RM for the tensor product defined below.

(b) The sum of modules and algebras: The direct sumM ⊕N is defined as the direct
sum of ordinary modules, equipped with the following Z2-grading:

(M ⊕N)i :=Mi ⊕Ni

In case that M and N are superalgebras, the sum M ⊕N inherits this structure by

(m,n) · (m′, n′) = (−1)|n||m
′|(mm′, nn′)
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(c) The dual of a module: The dual left R-supermodule M∗ of M is defined to be
HomR(M,R), where R is considered as a left supermodule over itself. This is a left
R-supermodule by 2.6. Note that we took the inner morphisms because these carry a
Z2-grading, whereas the set HomR(M,R) does not have a useful superstructure.

(d) The tensor product of modules and algebras: By (2.2), we can regard M as
a right module since we assume that R is supercommutative. The tensor product of
ordinary modules M ⊗R N , together with the following grading and left action by R,

(M ⊗R N)k =
⊕

i+j=k

Mi ⊗Nj

r · (m⊗ n) := (rm⊗ n)

then gives the super tensor product of M and N . The tensor product, defined in this
way, has the usual universal property of tensor products, see [2] p.6 ff. In case that
M,N are in fact R-superalgebras, the tensor product becomes a superalgebra again by
defining the multiplication according to the rule of thumb:

(m⊗ n) · (m′ ⊗ n′) = (−1)|n||m
′|(mm′)⊗ (nn′)

Remark 2.9 Using the tensor product of supermodules, it is possible to rewrite the definition
of a superalgebra in a useful way: It is an R-supermodule A, together with an element

µ : A⊗R A −→ A

of HomR(A ⊗ A,A). In fact, since µ preserves the grading, the rule a · b := µ(a⊗ b) defines
the multiplication and vice versa.

Following [20], appendix A2.3, super algebras may be used to give a unified definition of sym-
metric and exterior algebra. Let V be a super vector space and provide T (V ) :=

⊕∞
k=0 V

⊗k

with the following super structure:

(T (V ))i :=
⊕

j1+···+jk≡i

Vj1⊗. . .⊗Vjk

This is just a generalization of the tensor product from example 2.8. Thus, for V = V0, this
is the trivial graduation on T (V ) whereas for V = V1, we have the natural Z2-graduation on
T (V ) which is given by tensor powers. In general, we could have started with a Z-graded
vector space or even module but we are not going to deal with that.

Definition 2.10 The symmetric algebra S(V ) is defined to be T (V )/I, where I is the two-
sided ideal generated by the elements

I := {[a, b]|a, b ∈ T (V )} = {ab− (−1)p(a)p(b)ba|a, b,∈ T (V )}

The d-th symmetric power Sd(V ) is the image of V ⊗d ⊂ T (V ) under the quotient map.
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By definition of the “ordinary” symmetric and exterior algebra, we get

Proposition 2.11 ([20] A.2.2) We have the following isomorphisms :

(a) If V = V0, then S(V ) ∼= Sym•(V ) and Sd(V ) ∼= Symd(V ). Furthermore, S carries the
trivial graduation.

(b) If V = V1, then S(V ) ∼=
∧
•(V ) and Sd(V ) ∼=

∧
d(V ). Furthermore, S carries the natural

super structure: S(V )0 =
∧
ev(V ), S(V )1 =

∧
od(V )

This proposition will provide a nice justification for the definition of supermanifolds in 3.1.
Symmetric algebras over a super vector space V form one of the most important classes of
supercommutative superalgebras over R. It of course contains, as a special case, the exterior
algebra of a finite dimensional vector space.

2.2 Free modules and linear algebra

A particular important class of supermodules is given by those that admit a basis. They are
for instance used to define the notion of super vector bundles. Many familiar theorems from
the linear algebra of vector spaces carry over to this class of modules.

Definition 2.12 An R-super module M is called free of rank (or dimension) p|q if it admits
a homogeneous basis {m1

0
, . . . ,mp

0
,m1

1
, . . . ,mq

1
} such that mi

j
∈Mj.

Under the assumption, that R is unital, the rank is indeed well defined:

Proposition 2.13 The rank p|q of a free super module M over a supercommutative unital
superring is uniquely defined.

We will not give a detailed proof (see [66] p. 114 for details) but just sketch the method.
If J ⊂ R denotes the ideal of nilpotent elements, R/J is a commutative ring with 1. Thus,
there is a unital homomorphism ϕ : R −→ K into some field K (in later applications usually
K = R, in general we can take the quotient of R/J by some maximal ideal) which becomes
an R-module by r · k := ϕ(r)k. Forming the tensor product, we obtain M ⊗RK ∼= Kp|q. But
the right hand side is a super vector space whose even and odd dimension is well defined.

Remark 2.14 The technique, that was applied in the preceding proof can be roughly de-
scribed by “setting the odd variables to zero”. This is due to the fact, that R1 ⊂ J so that
we in particular take a quotient by R1 when we take the productM ⊗RK. Taking an appro-
priate tensor product to remove odd and nilpotent components will prove crucial for many
constructions and arguments in subsequent parts of this work.

Having fixed a basis, we clearly have the following isomorphism:
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Lemma 2.15 (and Definition) If M is a free R-super module of rank p|q, then we have
M ∼= Rm|n where Rm|n is the (left) R-supermodule, given by the free R-module Rm+n, provided
with the grading

(Rm|n)0 = Rm
0
⊕Rn

1
(Rm|n)1 = Rn

0
⊕Rm

1

Hence, it is possible to do linear algebra of free modules using matrices with entries in the
superring R. The set of these (m+n)× (s+ t) matrices will be denoted by Mat(m|n, s|t, R),
invertible matrices by GL(m|n,R). We will not go into details but only note that we can
assign a parity to matrices P which describe elements of HomR(R

m|n, Rs|t) according to the
parity of the corresponding inner homomorphism of modules. Writing P in the obvious block
decomposition

P :=

(
A B

C D

)
(2.4)

we have |P | = 0 if all entries of A,D are even and those of B,C are odd, whereas |P | = 1 if
the entries of A,D are odd and those of B,C are even.

For free modules, we have the usual duality relations:

Proposition 2.16 If M is a free R-supermodule with homogeneous basis {m1, . . . ,mp+q},
then the set {ϕ1, . . . , ϕm+n} ⊂ Hom(M,R), uniquely defined by ϕi(ej) = δij , provides a

homogeneous basis for E∗, where the parities are given by |ϕi| = |mi|. In particular, we have
M ∼=M∗ ∼= Rp|q.

Bearing in mind the rule of thumb (remark 2.7), it is necessary to fix an order for the natural
pairing of M∗ and M . We will always use

〈·, ·〉 :M∗ ⊗RM −→ R 〈ϕ,m〉 := ϕ(m) (2.5)

Using this contraction, the super trace is defined as follows on a free module M :

str : HomR(M,M) −→ R F 7→
∑

i(−1)|ei|ei(F (ei)) = tr(A)− tr(D) (2.6)

where on the right hand side, a homogeneous basis was chosen and F is represented by a
matrix of the form (2.4).

To be able to do integration on supermanifold, the notion of a determinant is needed. The
ordinary Leibniz formula clearly can be generalized to matrices containing only elements of
R0. In general, the concept of the Berezinian is introduced:

Proposition 2.17 (and definition [42] 3.3.4, 3.3.5) Let P ∈ GL(m|n,R) be written in
block form (2.4). Its Berezinian is defined by

Ber(P ) := det(A −BD−1C)detD−1

Ber : GL(m|n,R) −→ GL(1|0, R0) is a well defined group homomorphism agreeing with the
determinant in case n = 0.
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The notion of a Berezinian can then be generalized to automorphisms of free supermodules.
The following concept will play a role similar to that of the top degree exterior power of a
vector space:

Proposition 2.18 ([10] §1.11, [42], III.3.7) Let M be a free R-supermodule of rank p|q.
The Berezinian Ber(M) of M is then the R-supermodule, generated by elements [m1

0
· · ·mq

1
]

for any homogeneous basis {m1
0
, . . . ,mp

0
,m1

1
, . . . ,mq

1
} subject to the following relations:

[T (m1
0
) · · · T (mq

1
)] = Ber(T )[m1

0
· · ·mq

1
] ∀T ∈ AutR(M)

Ber(M) is a free R-supermodule of rank 1|0 for q ∈ 2N and 0|1 for q ∈ 2N0 + 1.
If N is another free R-supermodule of rank p|q and f ∈ HomR(M,N) is invertible, then there
is an induced morphism

Ber(f) : Ber(M) −→ Ber(N) [m1
0
· · ·mq

1
] 7→ [f(m1

0
) · · · f(mq

1
)]

If M = N , then Ber(f) is given by multiplication by Ber(F ), where F is any matrix repre-
senting f .

Note that similar to definition 2.10, it is possible to give the definition of the exterior algebra
of a free supermodule. However, there is in general no top degree component because the
exterior algebra of R0|s, considered as an ungraded algebra, is isomorphic to the symmetric
algebra Sym•(Rs).

Since the Berezinian is only defined for invertible matrices, it can not be used to test whether
an element of Mat(m|n,R) is invertible. However, the problem can be reduced to the com-
putation of a determinant. First recall that a matrix with entries in an ordinary unital
commutative Ring S is invertible if and only if its determinant is an element of the group
of units R×. This can be applied to the construction discussed on top of remark 2.14. The
projection π : R −→ R/J induces a projection

π : Mat(m|n,R) −→Mat(m+ n,R/J)

which can be used to characterize the invertibility of a matrix:

Lemma 2.19 ([8], 2.22) For A ∈ Mat(m|n,R), the following statements are equivalent:

(a) A is invertible.

(b) π(A) ∈Mat(m+ n,R/J) is invertible

(c) det(π(A)) is in the group of units (R/J)×

The proof (a) ⇔ (b) uses the fact that if π(A) is invertible, A is invertible up to a nilpotent
element N . But then, it is easy to write down an inverse for A using a Neumann’s series
which converges since N is nilpotent (see the quoted reference for details). A typical example
for this situation in supergeometry is the following:
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Example 2.20 Let U ⊂ Rp be an open set and q ∈ N. Let R := C∞(U)⊗R
∧• Rq with the

grading induced from
∧•Rq. We then have

J = C∞(U)⊗R
∧≥1Rq R/J ∼= C∞(U)⊗R R ∼= C∞(U)

Thus, a matrix in Mat(s,R) is invertible if and only if the the projected matrix π(A) ∈
Mat(s, C∞(U)) is invertible, i.e. if and only if we have det(π(A)) ∈ C∞(U,R×). We will also
write ev(A) instead of π(A).

Finally, we can localize this statement at a point x ∈ U . The localization Rx of R at the
maximal ideal mx := m

′
x ⊗R

∧
•Rq ⊕

∧≥1 Rq (where m
′
x = {[f ] ∈ C∞

Rp,x|f(x) = 0}) is given
by Rx = C∞

x ⊗
∧• Rq. Here, C∞

x denotes the ring of germs of smooth functions on U near x
and Rx ist just the stalk of germs of sections of R near x (where R is considered as a sheaf
of rings on U). Since the ideal of nilpotent elements in Rx is given by Jx = C∞

x ⊗
∧≥1Rq, a

matrix M ∈ Mat(m|n,Rx) “at x” is thus invertible if and only if its image πx(M) under the
projection

πx : Mat(m|n,Rx) −→ Mat(m+ n,Rx/Jx) = Mat(m+ n,C∞
x )

is an invertible matrix with entries in C∞
x . Furthermore, this is equivalent to the statement

that the matrix evx(M) := πx(M)(x) ∈ Mat(m+ n,R = Rx/mx), obtained by evaluating all
germs at x, is invertible.

2.3 Extension and restriction of scalars

In the following, we collect some results concerning the change of the ring of a given (super)-
module. The reference is [6], chapter II.1.13 and II.5. All superrings are again assumed to
be unital and supercommutative.

Definition 2.21 Let R and S be two superrings and ρ : S −→ R a homomorphism of
superrings (which preserves the grading).

(a) Let M be an R-supermodule. The S-supermodule ρ∗M (also denoted by Mρ) is given
by M as an Abelian group, equipped with the action of S defined by s ·m := ρ(s)m. It
is called the module obtained from M by restricting the ring of scalars.

(b) For each f ∈ HomR(M,N) let ρ∗f ∈ HomS(ρ∗M,ρ∗N) be the canonically induced
morphism.

This construction has the following properties:

Proposition 2.22 ([6],II.1.13)
(a) The assignment f 7→ ρ∗f is injective, it is bijective in case ρ is surjective.

(b) If ρ is surjective (injective), every generating (free) family in M is generating (free) in
ρ∗M .

(c) For σ : T −→ S is another homomorphism of superrings, then (ρ ◦ σ)∗M = σ∗ρ∗M .
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To describe the operation adjoint to the restriction of scalars, let again ρ : R −→ S be
a homomorphism of superrings. By definition 2.21 and remark 2.7, S becomes a right R-
supermodule ρ∗(R). Thus, it is possible to change the scalars in the following way:

Definition 2.23 Let M be a left R-supermodule.

(a) The S-supermodule ρ∗M is given by ρ∗S ⊗RM as an Abelian group, equipped with the
action of S defined by s · (s′ ⊗m) := (ss′)⊗M . It is the supermodule derived from M
by extending the ring of scalars. We will also use the notation S ⊗ρ M in subsequent
chapters.

(b) For each f ∈ HomR(M,N), let fρ := idS ⊗ f ∈ HomS(ρ
∗M,ρ∗N) be the induced

morphism.

By the following result, restriction and extension of scalars are adjoint operations:

Proposition 2.24 ([6],II.5.1.1) Let ρ : R −→ S be a homomorphism of superrings as
before. Let M be a R- and N be an S-supermodule. Then there is a canonical bijection

HomR(M,ρ∗N) ∼= HomS(ρ
∗M,N) f 7→ f

where f is uniquely characterized by the condition f(1⊗m) = f(m) for all m ∈M .

In the following, we again collect some elementary properties of this construction. Let N be
another R-supermodule:

Proposition 2.25 ([6], II.5)
(a) Let σ : S −→ T be another homomorphism of superrings. Then there is an isomorphism

(σ ◦ ρ)∗M ∼= σ∗ρ∗M of T -supermodules mapping 1⊗m to 1⊗ (1⊗m) for all m ∈M .

(b) There is a unique isomorphism ρ∗M⊗Rρ
∗N ∼= ρ∗(M⊗RN) of S-supermodules mapping

(1⊗m)⊗ (1⊗ n) to 1⊗ (m⊗ n).

(c) Let P be a right S-module, then there is an isomorphism of R-modules ρ∗P ⊗RM −→
P ⊗S ρ

∗M mapping p⊗m to p⊗ (1⊗m).

(d) If M is free with basis {mi}i∈I , then ρ
∗M is free with basis {1⊗mi}i∈I . If moreover ρ

is injective, then m 7→ m⊗ 1 is injective too.

(e) If M is free and of finite rank, there is an isomorphism S ⊗R HomR(M,N) −→
HomS(ρ

∗E, ρ∗F ) given by b⊗ f 7→ ((b′ ⊗m) 7→ (−1)|b
′||f |bb′ ⊗ f(m))

(f) If M is a free module of finite rank, then there is an isomorphism v : ρ∗(E∗) ∼= (ρ∗E)∗

of S- supermodules given by 〈v(s′ ⊗ ϕ), s ⊗m〉 = (−1)|s||ϕ|s′sρ(ϕ(m))
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3 Supermanifolds

In this chapter, we will give an introduction into the general theory of supermanifolds. There
are two different approaches to this subject. The first is inspired by the way, spaces (e.g.
schemes, varieties) are defined in algebraic geometry and goes back to Berezin (see [4]),
Kostant (see [35]), Leites (see [39]) and others and describes a space by specifying the algebra
of functions defined on this space. The other approach by Rogers (see [51] for an overview) and
DeWitt (see [9]) is closer to the concepts of differential geometry and uses charts to a model
space. These approaches are not equivalent and their relation was clarified by Molotkov and
Sachse (see [44] section 4.7 and [53], chapter 5) using a categorical approach to supermanifolds
which will be discussed in chapter 4 . In this work, we will use this categorical point of view
and the Berezin-Kostant-Leites (BKL) approach. They are equivalent in finite dimensions.
This chapter serves as an introduction to the BKL construction and the corresponding notion
of morphisms (or “smooth maps”) between these supermanifolds. However, concepts like the
“component formalism”, i.e. the expansion of a morphisms w.r.t. odd coordinates, will
only become clear using the categorical point of view discussed in the next chapters. As
in the previous chapter, most of the general theory is well known. Only at the end of the
chapter, we will provide some additional results in supergeometry related to the construction
of connections and their pullbacks.

3.1 Elementary structure of supermanifolds

Following the general principles for the definition and construction of spaces in algebraic
geometry (which includes smooth and complex manifolds and virtually all other types of
spaces considered in “geometry”), the general concept of a superspace is defined as follows
(see [66], 4.1)

Definition 3.1 A superspace is a super ringed space (X,O) (i.e. a topological space X
equipped with a sheaf of super algebras O) such that the stalks are local supercommutative
rings.

Here, a local supercommutative ring is a supercommutative superring containing a unique
maximal homogeneous ideal (see definition 2.3 (b)). There is a natural concept of morphisms
between superspaces, the concept of local morphisms among ringed spaces :

Definition 3.2 A morphism of superspaces (ϕ,Φ∗) : (X,O) −→ (Y,R) is a local morphism
of the ringed spaces which preserves parity. More precisely, it is given by a continuous map
ϕ : X −→ Y and a morphism of sheaves of superalgebras Φ : R −→ ϕ∗O (where ϕ∗O is the
direct image of O under ϕ, see definition 3.13) such that

(a) The homomorphisms Φ∗
V : R(V ) −→ O(ϕ−1(V )) of supercommutative algebras preserve

the Z2-grading.

(b) The induced homomorphisms Φ∗
y : Ry −→ ϕ∗Oy on stalks are local, i.e. Φy(m

′
y) ⊂ my

where m
′
y ⊂ Ry and my ⊂ ϕ∗Oy are the unique maximal ideals of the stalks.



3.1 Elementary structure of supermanifolds 11

There is a second, equivalent description of morphisms of ringed spaces, which will be dis-
cussed in proposition 3.14. Supermanifolds can now defined in the same way, manifolds are
defined in ordinary “non super” geometry: They are superspaces which are locally isomorphic
to a model space. The latter is defined as follows:

Definition 3.3 The superspace Rp|q is defined as the super ringed space (Rp,Op|q) given by
the underlying space Rp and the sheaf Op|q where Op|q(U) := C∞(U,R)⊗R

∧
•Rq for open sets

U ⊂ Rp. Open subspaces of Rp|q are superspaces of the form (W,Op|q|W ) for W ⊂ Rp.

As already mentioned in example 2.20, the stalk at x ∈ Rp is given by O
p|q
x = C∞

Rp,x ⊗
∧
•Rq

and the ideal mx ⊗R
∧
•Rq ⊕

∧≥1Rq is its unique maximal graded ideal where mx = {[f ] ∈
C∞
Rp,x|f(x) = 0}.

Definition 3.4 A supermanifold is a superspace X = (X̃,O) such that the following proper-
ties are satisfied:

(a) The topology of X̃ is Hausdorff and second countable

(b) The superspace (X̃,O) is locally isomorphic to Rp|q (p, q ∈ N0 fixed)

The pair p|q is called the dimension of (X,O) with even part p and odd part q. Together with
the morphisms defined in 3.2, supermanifolds form a category denoted by BKL1. If U ⊂ X̃
is an open set, then X|U := (U,O|U ) is called an open subsupermanifold of X.

For q = 0, the resulting supermanifold ist just an ordinary smooth manifold of dimension p
(cf. proposition 3.6). If (X̃,O) is a supermanifold, (local) sections of O are called (local)
superfunctions. It is possible to assign to superfunctions s ∈ O(U) a ”value” for each x ∈ U ,
more precisely:

Lemma 3.5 ([66], p.133) Let s ∈ O(U) be a superfunction and x ∈ U . Then there is a
unique real number evx(s) such that s − evx(s) is not invertible in any neighborhood of x,
called the value of s in x. The real valued function x ∋ U 7→ evx(s) will be denoted by ev(s).

The assignment s 7→ ev(s) is clearly a homomorphism of R-algebras. Since there are no
nontrivial nilpotent real-valued functions, a superfunction s can not be determined by evx(s),
in fact, the values of a nilpotent superfunction are always 0. There is no other invariant
concept of “value at x” that resolves this problem. Nevertheless, the concept is still useful:
Defining Õ to be the presheaf given by real functions of the form ev(s), it may be shown,
that in fact, Õ is a sheaf over X and locally isomorph to C∞

Rp . Thus, we have:

Proposition 3.6 ([66], p.133 and [8] 4.5) Let X be a supermanifold. Then, X̃ carries a
canonical structure of an ordinary smooth manifold and there is an inclusion of supermani-
folds ι : (X̃, C∞

X̃
) −→ X, where ι is given by idX̃ and the surjective sheaf morphism

ι∗U : O(U) −→ C∞
X̃
(U), s 7→ ev(s)

ι∗ is uniquely determined by X and ι∗ϕ−1(V )Φ
∗
V = ϕ∗

V ι
∗
V for all morphisms (ϕ,Φ∗) : X −→ Y .

1We avoid using “SMan” at this point, since this will be used for a different category later.
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In particular, ϕ is already determined by Φ∗ and we will simply write Φ : X −→ Y for
morphisms in the rest of this work. We will not proof this theorem (see [8], Satz 4.5) but
sketch one instructive way to construct ι following [66]. Let

J (U) := {s ∈ O(U) | s is nilpotent}

It may be shown that J is a sheaf of ideals of O over X̃, the subsheaf of nilpotent elements
of O and that J (U) = {s ∈ O(U)|ev(s) = 0}. The sheaf J fits into the following exact
sequence:

0 // J
⊂

// O
ι∗ // C∞

X̃
// 0 (3.1)

Thus, ι∗ naturally occurs as the quotient map O ։ O/J . This quotient is a sheaf of
R-algebras on X̃ locally isomorphic to C∞(Rp) and we just write C∞

X̃
for it. This exact

sequence always splits but not canonically (see [8] p.126 and [35] 2.4). In fact, any splitting
leads, by definition, to a decomposition

O = C ⊕ J ∼= C∞
X̃

⊕ J

Thus, it determines the way, smooth real-valued functions are embedded in the larger sheaf
of superfunctions:

Definition 3.7 ([35] (2.2.3)) A subalgebra C(U) ⊂ O(U) for U ⊂ X̃ is called a (local)
function factor, if

ι∗U |C(U) : C(U) −→ C∞(U)

is an isomorphism of R-algebras. The same terminology is used for the corresponding sheaves
of algebras.

It can be shown that function factors exist on all open sets (see [8] 4.21) but they are not
unique. In fact, a choice for a function factor corresponds to a choice of the even part of a
coordinate system. We will not define coordinates at this point but refer to [8] 4.22 and 4.26.
The relation between coordinates and function factors is discussed in 4.23 of this reference.

While the quotient O/J only determines the structure of the smooth manifold X̃, the sheaf
J can be used to characterize a superfunction completely as well as to specify the global
structure of (X̃,O) up to (non-canonical) isomorphism. For x ∈ U ⊂ X̃ we define the ideal
of superfunctions vanishing in p by

Jx(U) := ker(evx) = {s ∈ O(U) | ι∗U (s)(x) = 0}

and we denote by J k
x (U) its k-th power. A superfunction f is then characterized by its

images f + J q+1
x (U) in the (q+1)-th infinitesimal neighborhood O(U)/J q+1

x (U) as follows:

Lemma 3.8 ([8] 4.13 - 4.16) Let (X̃,O) be a supermanifold of dimension p|q. Then,

O is q-separated, i.e. for each U ⊂ X̃, we have
⋂
x∈U J q+1

x (U) = {0}.
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To obtain a global description of X based on J , let E := J /J 2 be the quotient sheaf, which
is a sheaf of O-modules. Let G := Sym•(E) be the sheaf of symmetric algebras, as defined
analogously to 2.10.

Theorem 3.9 (Batchelor, see [3] 2.2 and [42], 4 §2.2) Let X be a supermanifold of di-
mension p|q. Then, the sheaves G and O are isomorphic, i.e. we have an isomorphism of
supermanifolds X ∼= (X̃,G). The isomorphism is not canonical.
In fact, there exist a vector bundle E −→ X̃ such that E ∼= Γ(−, E) and consequently
O ∼= Γ(−,

∧•E). The bundle E is called a “Batchelor bundle”.

The preceding theorem reduces the classification of supermanifolds to the classification of
vector bundles over X̃, see also [42], 4 §2.7. This description of supermanifolds in terms of
vector bundles is very useful and will be referred to as “Batchelor picture”. One application
is the construction of products. Let E1 −→ X̃1 and E2 −→ X̃2 describe two supermanifolds
given by a Batchelor bundle and let pri : X̃1×X̃2 ։ X̃i (i = 1, 2) be the canonical projection.
It is then easy to see that (X̃1×X̃2,Γ(−,

∧•(pr∗1E1⊕pr
∗
2E2))) satisfies the universal property

of a product in the category BKL and hence, we have

Proposition 3.10 ([8] 5.21) The category BKL of supermanifolds admits finite products.
The product of X = (X̃,O) and Y = (Ỹ ,R) will be denoted by X × Y = (X̃ × Ỹ ,O⊗̂R).

Since X̃ carries the structure of a smooth manifold, some technical results from ordinary
differential geometry are still valid in supergeometry. Recall that the support of a local
section s of a presheaf of Abelian groups is defined by

supp(s) := U \
⋃

{V | V ⊂ U is open and ρUV (s) = 0}

We then have the existence of partitions of unity:

Proposition 3.11 ([39], 3.1.7) Every open covering of a supermanifold (X̃,O) admits a
local finite refinement {Ui} and a family {fi} of superfunctions fi ∈ O(X)0 such that:

supp(fi) ∈ Ui
∑

i

fi = 1 f̃i ≥ 0

The sum in the last line of the proposition is locally finite and hence well defined.

As a corollary, the following localization principle can be obtained:

Lemma 3.12 ([39], 3.1.8) Let (X̃,O) be a supermanifold, C ⊂ X̃ be a closed and U ⊂ X̃
an open subset such that C ⊂ U ⊂ X̃ . Then, for each f ∈ O(U) there is an open set V
satisfying C ⊂ V ⊂ U and a superfunction g ∈ O(X̃) such that

ρUV (f) = ρX̃V (g) and supp(g) ⊂ supp(f)
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3.2 Morphisms between supermanifolds

Since supermanifolds are not described by the points of a topological space, their morphisms
are not simply maps between sets but are defined as morphisms of ringed spaces. To discuss
their structure in more detail, recall that every sheaf R on Ỹ can be described or even defined
by using its sheaf space π : LR ։ Ỹ , i.e. the bundle of stalks over Y (see [62] chapter 2.3).
Sections of R then correspond to continuous sections of π. The change of the base space of
a sheaf can be described in two different ways

Definition 3.13 (and Proposition, see [62] 3.7.3, 3.7.11) Let (X̃,O), (Ỹ ,R) be ringed
spaces and ϕ : X̃ −→ Ỹ a continuous map:

(a) The direct image ϕ∗O of O is defined by ϕ∗O(V ) := O(ϕ−1(V )) for open sets V ⊂ Ỹ ,
together with the obvious restriction map. This construction yields a sheaf of rings over
Ỹ called the direct image of O under ϕ.

(b) Consider the pullback of the sheaf space LR along ϕ,

ϕ∗LR = {(x, r) ∈ X × LR|ϕ(x) = p(r)},

provided with the topology induced from X × LR and the projection π′ : ϕ∗LR −→ X
on the first component. This defines a sheaf space over X̃ and its sheaf of sections is
called the inverse image of R along ϕ. It is sometimes also denoted by ϕ−1LR.

Both approaches can be used to describe morphisms of ringed spaces and it is useful to
switch between them since both have advantages and disadvantages. This is justified by the
following theorem:

Theorem 3.14 ([62], 7.13) Let (X̃,O) and (Ỹ ,R) be ringed spaces and ϕ : X̃ −→ Ỹ a
continuous map. Then, there is a natural bijection

HomRS−X̃(ϕ
∗R,O)

∼=
−→ HomRS−Ỹ (R, ϕ∗O)

ψ 7→ (σ 7→ ψ(ϕ∗σ))

where RS−X̃ and RS−Ỹ denote the categories of ringed spaces over X and Y respectively. In
other words, the functor ϕ∗ : RS− X̃ −→ RS− Ỹ is right adjoint to ϕ∗ : RS− Ỹ −→ RS− X̃
and vice versa.

Remark 3.15
(a) It should be noted that, even though it is possible to change the base from X̃ to Ỹ , a

morphism of ringed spaces is described in both cases by a morphism which generalizes
the pullback of functions. It maps “functions” on the target space (i.e. elements of R
or ϕ∗R) to those of the domain space (i.e. elements of O or ϕ∗O).

(b) We will use both equivalent interpretations without documenting the change if there is
no danger of confusion.
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In analogy to ordinary differential geometry, morphisms can be locally described using coordi-
nates, we follow [8] section 4.3. Let (U,Op|q|U ) be a super domain with (standard) coordinate
system (x1, . . . , xp, ξ1, . . . , ξq). Now, let Φ : X −→ (U,Op|q|U ) be a morphism of supermani-
folds with underlying smooth map ϕ : U −→ X̃. Then, we can define the following functions
on X:

f i := Φ∗(xi) ∈ OX(ϕ
−1(U))0 (3.2)

hj := Φ∗(ξj) ∈ OX(ϕ
−1(U))1

These superfunctions on X represent the coordinates of Φ. By proposition (3.6), we have
(ι∗(f1), . . . , ι∗(fp)) = ϕ ∈ C∞(U,Rp). In particular, the tuple satisfies the following property:

Definition 3.16 Let g1, . . . , gp ∈ O(X)0 and U ⊂ Rp an open set. Then (g1, . . . , gp) satisfy
the mapping condition with respect to U , if for all x ∈ X̃,

(ι∗
X̃
(g1)(x), . . . , ι∗

X̃
(gp)(x)) ∈ U

The next theorem states that it is possible to reverse this construction, i.e. to construct a
unique morphism such that its coordinates are given by (3.2). Hence, coordinates are still
sufficient to describe morphisms and consequently all other structures in supergeometry in the
sense of BKL supermanifolds. This implies in particular that tensors, connections, etc. can
still be decomposed into components in the way familiar from ordinary differential geometry.

Theorem 3.17 ([8] 4.18) Let Up|q be an open sub-supermanifold of Rp|q with standard co-
ordinates xi ∈ Op|q(U)0, θ

α ∈ Op|q(U)1 and X an arbitrary supermanifold. Then we have:

(a) For any morphism Φ : X −→ Up|q, f i := Φ∗(xi) ∈ O0 and gα := Φ∗(θα) ∈ O1.

(b) For given f i ∈ O0, g
α ∈ O1 satisfying the mapping condition 3.16, there is a unique

morphism Φ : X −→ Up|q of supermanifolds such that f i = Φ∗(xi) ∈ (O0) and gα =
Φ∗(θα) ∈ O1.

Another important theorem which is useful for simplifying arguments roughly says, that every
morphism can be defined by prescribing the homomorphism between the global algebras of
superfunctions. The proof relies on the existence of partitions of unity and thus, it is only
valid in the category of smooth supermanifolds but not in that of analytic or holomorphic
ones.

Theorem 3.18 ([8] Satz 4.8, compare also [35] section 2.15) Let X = (X̃,O) and Y =
(Ỹ ,R) be supermanifolds. Then, the following map is a bijection:

HomBKL(X,Y ) −→ HomSAlg(R(Ỹ ),O(X̃))

Φ 7→ Φ∗
Ỹ

Motivated by this result, we will no longer keep track of the open sets U ⊂ X̃ unless there is
danger of confusion and just write O for the global algebra of superfunctions.
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3.3 Super vector bundles

This section discusses vector bundles on supermanifolds. On a smooth manifold, a vector
bundle can be equivalently described by its total space or by its sheaf of sections. In fact,
there is a one-to-one correspondence between the isomorphism classes of vector bundles over
M and the isomorphism classes of locally free C∞

M -modules, see [67] II.1.13.

Definition 3.19 ([10], §3.2) A super vector bundle over a super manifold X = (X̃,O) is a
locally free O-module E, i.e. E is a sheaf of O-supermodules on X, which is locally isomorphic
to a sheaf of the form (cf. example 2.8 (a) for the definition of ΠO)

O ⊕ · · · ⊕ O︸ ︷︷ ︸
s-times

⊕ΠO ⊕ · · · ⊕ΠO︸ ︷︷ ︸
t-times

The pair s|t is called the rank of the super vector bundle.

Remark 3.20
(a) A super vector bundle can also defined as a fibre bundle with fibres isomorphic to Rs|t

and structure group Gl(s|t). We are not going to discuss this equivalent approach at
this point. Since E only describes sections of the bundle, it is necessary to construct the
sheaf of “all functions on the total space”. It is much easier (and much more useful) to
do define it as a functor. This will be done in example 4.7

(b) A super vector bundle of rank s|0 has odd sections. It is locally isomorphic to Os and
this module has a non trivial odd part, given by (O1)

s.

(c) The algebraic constructions of taking sums, tensor products and dualization generalize
to super vector bundles in a straightforward way: They are described by the corre-
sponding super operations of the O-modules defined in example 2.8. Recall that the
dual sheaf is defined by the internal Hom functor, E∗ = Hom(E ,O) (see 2.8 (c)).

(d) The parity reversed bundle ΠE is the locally free sheaf of O-supermodules obtained
from applying Π (see example 2.8 (a)) to E .

Is is clear that the direct sums, the dual and the parity reversed sheaves of O-supermodules
are again sheaves. This is nontrivial for the tensor product. In general, the assignment
U 7→ E1(U) ⊗O(U) E2(U) for two sheaves of O-supermodules is not a sheaf but has to be
sheafified. The following result simplifies the situation for supermanifolds:

Lemma 3.21 ([57] 7.13, p.133 or [50] proposition 4.6) Let X be supermanifold, E,F
sheaves of O-supermodules and assume that E is locally free. Then U 7→ E(U) ⊗O(U) F (U)
defines a sheaf.

We will need the pullback of bundles and of connections along a given morphism of super-
manifolds. On smooth manifolds, the pullback of a bundle E −→ N along a (smooth) map
ϕ :M −→ N is, roughly speaking, the bundle over M , construct by attaching the fibre Eϕ(m)

of the bundle E at the point m ∈ M . This construction can not be generalized directly
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because a supermanifold is not completely described by the points x ∈ X̃. Following the
philosophy of the ringed-space formalism, we have to construct its sheaf of sections which is
- by definition - a locally free O-module. The following construction follows the general ideas
described in [62], 4.4.13 and is also sketched in textbooks on algebraic geometry.

Let (ϕ,Φ∗) : X = (X̃,O) −→ Y = (Ỹ ,R) be a morphism of super manifolds. The general
pullback of a sheaf along a continuous map ϕ : X̃ −→ Ỹ was introduced at the beginning of
section 3.2. In particular, to any sheaf E of R-supermodules over Ỹ , we get a sheaf ϕ∗E of
ϕ∗R-supermodules over X̃. Note that the latter is not the sheaf of superfunctions O - it is
obtained by putting at each x ∈ X̃ the stalk Rϕ(x) of superfunctions from the target of Φ.

By theorem 3.14, Φ can be considered as a morphism of sheaves Φ∗ : ϕ∗R −→ O over X̃.
Using restriction of scalars from definition 2.21, we can turn O in a ϕ∗R-module sheaf by

η · f := Φ∗
U (η)f for η ∈ (ϕ∗R)(U), f ∈ OX(U) (3.3)

However, taking into account proposition 2.22 and the fact, that Φ∗ will be in general neither
surjective nor injective, we can not expect that this sheaf has nice properties:

Remark 3.22 The ϕ∗R-module O is not free of finite rank. This is not a problem that is
special to supergeometry, it already occurs if all spaces are smooth manifolds. As an example,
consider the (super-)manifolds (R, C∞

R2) and (R, C∞
R ) and the morphism given by ϕ(x, y) := x.

Its action on functions (more precisely, germs of functions on R pulled back to R2) in ϕ∗C∞
R1

is then given by Φ(g) = ((x, y) 7→ g(ϕ(x, y))) ∼= ϕ∗g, i.e. by pullback. Obviously, all functions
of the form ϕ∗g are constant in y-direction. Hence, it is clearly impossible that every smooth
function on R2 can be written as a linear combination of some fixed functions f1 . . . , fN ∈ C∞

R2

with coefficients of the form ϕ∗g. This proves that, even without odd contributions, O is not
a free ϕ∗R-module.
On a super manifold with (local) odd coordinate functions {θα}, we can in particular not
expect that {θI}|||I|||≤q is a ϕ∗R-basis for O, although it is a basis w.r.t the action of C∞

X̃
.

Here I = (i1, . . . , ik) is a multi-index2, |||I||| :=
∑k

s=1 ik and θI := (θ1)i1 · · · (θk)ik .

By using extension of scalars 2.23, we obtain a presheaf O ⊗Φ ϕ
∗E of O-supermodules. The

module structure is given by 2.23:

f ′(f ⊗ e) := (f ′f)⊗ e for e ∈ (ϕ∗E)(U), f, f ′ ∈ O(U)

The general definition (see [62], 4.4.13) then reads:

Definition 3.23 The pullback or inverse image Φ∗E of an R-module E along a morphism
Φ : X −→ Y is the presheaf of O-supermodules given by

Φ∗E(U) := O(U)⊗Φ ϕ
∗E(U) for U ⊂ X̃

2Multi-indices are discussed in section 5.2 and 5.3, in particular, we use |||I ||| to denote their absolute values
and not |I |, because this notation will be used for a Z2-parity, see (5.2).
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Since Φ∗E was defined as a tensor product of sheaves, the resulting presheaf is a priori not
complete and Φ∗E should be defined as its sheafification. To show that this is not necessary
in our situation, we collect some properties of the pullback presheaves:

Lemma 3.24 Let Φ : X −→ Y a morphism of supermanifolds and E a locally free R-module
of rank s|t over Y , then we have:

(a) ϕ∗E is a locally free ϕ∗R-module of rank s|t over X̃.

(b) Φ∗E is a locally free presheaf of O-modules of rank s|t over X̃.

Proof To see the first part, let x ∈ X and choose an open neighborhood V of ϕ(x),
s.t. E|V admits a homogeneous basis {σi}i=1...,s+t. Let U := ϕ−1(V ). Then, the sections
ϕ∗σi := (x ∈ U 7→ (x, σi(ϕ(x)))) form a basis of ϕ∗E(U). To see this, let ω be another
section in ϕ∗EU . Locally on small open sets W ⊂ V , we may write ω|W = ϕ∗σW for some
local section σW in E|V . We then have a unique decomposition σW =

∑
i λ

W
i σi, where λ

W
i

are local sections in R. By construction and uniqueness of the coefficients, the pulled back
sections ϕ∗λWi coincide for fixed i on intersections. By the sheaf property of ϕ∗R, they glue
to sections λi ∈ ϕ∗R(U), which are uniquely determined. This proves that {ϕ∗σi} is a basis
for ϕ∗E(U).
By proposition 2.25 d), the sections {1⊗Φ ϕ

∗σi} then form a local basis for Φ∗E = O⊗Φ ϕ
∗E

because {ϕ∗σi} is a local basis for ϕ∗E . This proves the second assertion.
�

Using lemma 3.21 together with part a) of the preceding lemma, we finally obtain:

Corollary 3.25 Φ∗E is a locally free sheaf of O-modules and we have rk(Φ∗E) = rk(E).

If F : E −→ E ′ is a morphism of R-modules E and E ′, we have an induced morphism ϕ∗F :
ϕ∗E −→ ϕ∗E ′ of ϕ∗R-supermodule sheaves (see [62], remark below 7.12, p.58). Extending
O-linear as in definition 2.23, we obtain a morphism Φ∗E −→ Φ∗E ′, given by

Φ∗F (f ⊗ ϕ∗e) := f ⊗ ϕ∗(F (e)) for e ∈ ϕ∗E , f ∈ OX

Together this yields a functor

Φ∗ : {locally free R-modules over Ỹ } −→ {locally free O-modules over X̃} (3.4)

The following proposition indicates, that this construction indeed yields the correct notion
of “pullback bundle”:

Proposition 3.26 Let ϕ : M −→ N be a (smooth) map and E −→ N a (smooth) vector
bundle with sheaf of sections E. Then, we have

Φ∗E ∼= Γ(−, ϕ∗E) (3.5)

where Φ denotes the morphism, canonically associated to ϕ by taking pullbacks.
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Proof [sketch following the proof of lemma 3.24] It is well known that the sec-
tions {ei ◦ ϕ} define a local frame for ϕ∗E if {ei} is a local frame for E. These sections can
be mapped to the sections 1 ⊗ϕ∗ ei ◦ ϕ in Φ∗E and it can be verified, that this prescription
extends to an isomorphism of C∞

M -module sheaves.
�

Example 3.27 (and Warning) If U is a coordinate neighborhood in X with odd coordi-
nates {θi}, it is tempting to decompose a section ξ ∈ Φ∗F(U) in the form

ξ =
∑

I

θI ⊗Φ ξ
I (3.6)

where ξI are suitable sections of ϕ∗F . It should be emphasized that due to the fact that
O is not a free ϕ∗R-module (see remark 3.22) this decomposition in general does not exist.
Hence, this is not the right way to define the ”component fields” of ξ. We will give a different
approach in chapter 5.
In general, vector fields along Φ given by dΦ(X) do not admit such a decomposition, even
not locally. Again, this is nothing special to supergeometry, we may consider the smooth
curve given by

γ : R −→ R2 t 7→

{
e−

1
t2 (sin(1t ), sin(

2
t )) t 6= 0

0 t = 0

Obviously, there is a cluster point at 0, the image points converge to (0, 0) and the curve
enters (0, 0) from different directions. Thus, it is impossible to write dγ( ddt)(0) = γ̇(0) =
ζ ⊗ϕ∗ f ∼= (ζ ◦ ϕ)f for some local section ζ ∈ ϕ∗TR2 . Such a section would have to be
multivalued.

3.4 Tangent sheaf and tangent spaces

The tangent space of a smooth finite dimensional manifold M at p can be defined by

TpM := Der(C∞
p ,R)

:= {v : C∞
p −→ R|v is R− linear, v(fg) = v(f)evp(g) + evp(f)v(g)}

where C∞
p denotes the germs of smooth functions at p and evp : C∞

p −→ R the evaluation
map. A vector field on an open set U ⊂M is correspondingly given by elements of

Der(C∞(U), C∞(U)) = {V ∈ EndR(C
∞(U))|V (fg) = V (f)g + fV (g)}

We may evaluate a vector field V at p ∈ M obtaining an element of TpM by the following
formula

(evp(V ))(f) := evp(V (f))

Here f is a function defined locally near p. Note that a locally defined vector field V is
uniquely specified by all the derivations evp(V ) for p ∈ U .
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These constructions can be generalized to a supermanifold X = (X̃,O). Let p|q be its
dimension.

Definition 3.28 Let U ⊂M be an open set. The superderivations of O(U) are defined by

TX(U) := Der(O(U),O(U))

:= {V : O(U) −→ O(U) | V is linear , V (fg) = V (f)g + (−1)|V ||f |fV (g)}

|V | ∈ Z2 is called the parity of V and a general element of TX(U) can be uniquely decomposed
as V = V0 + V1.

Fixing local coordinates (x1, . . . , xp, θ1, . . . , θq) on X, each superfunction can locally be writ-
ten as f =

∑
I fI(x)θ

I and the following super derivations can be introduced:

∂
∂xµ f =

∑

I

∂fI
∂xµ θ

I ∂
∂θα

(∑

Iα/∈I

fIθ
I + fα,Iθ

αθI
)

=
∑

α/∈I fα,Iθ
I (3.7)

Super derivations are local operators (see e.g. [35] 3.1.9, we will prove a more general result in
proposition 5.14) . Thus it is possible to introduce a restriction map ρUV : TX(U) −→ TX(V )
and TX becomes a presheaf. In fact, it is a super vector bundle over X:

Theorem 3.29 ([10] 3.3.1) The assignment U 7→ TX(U) defines a sheaf of O-supermodules
over X̃. It is locally free of rank p|q, a local basis is given by the superderivations in (3.7).

PropSmfSmooth This allows to introduce the common tangent structures:

Definition 3.30 Let X be a supermanifold.

(a) TX is called its tangent sheaf, Ω1
X := T ∗

X the cotangent sheaf of X. Their sections are
called super vector fields and super 1-forms respectively, the dual pairing between them
is defined in accordance with (2.5).

(b) For 2 super vector fields V,W , the super Lie bracket is defined by

[V,W ](f) := V (W (f))− (−1)|V ||W |W (V (f))

(c) Let Φ : X −→ Y be a morphism of supermanifolds. Its differential is defined as the
morphism of sheaves of Abelian groups given by

dΦ : TX −→ TY V 7→ V ◦Φ∗

It can be shown that dΦ is a section in T ∗
X ⊗O Φ∗TY with the pullback introduced in

definition 3.23.
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Using the evaluation evp : O(U) −→ R at p ∈ U , each super vector field V induces a super
derivation of the stalk Op by

X(p) : Op −→ R X(p)([f ]p) := evp(X(f))

As in the smooth setting, these objects form a vector space (see [35] 2.10, 2.12):

Definition 3.31 (and Lemma) For p ∈ X̃, the tangent space at p to X is defined to be

TpX := {v ∈ HomR(Op,R) | v(fg) = v(f)evp(g) + (−1)|v||f |evp(f)v(g)}

It is a real super vector space having the same dimension as X. All tangent spaces form a
bundle of super vector spaces over X̃ denoted by TX.

Remark 3.32
(a) A super vector field X is not determined by its values X(p). In fact, using coordinate

vector fields,

evp(
∑

i f
i ∂
∂xi

+
∑

α g
α ∂
∂θα ) =

∑
i f

i
∅(p)

∂
∂xi

|p +
∑

α g
α
∅(p)

∂
∂θα |p

where f∅ and g∅ are the real components of the superfunctions f, g. Thus, evp(θ
∂
∂x) = 0

whereas the odd derivation θ ∂
∂x is nonzero. The same holds for the even derivation θ ∂

∂θ .
Nevertheless, the concept of super tangent space will prove useful when discussing
metrics.

(b) We already observed that it is not sufficient to look at points in X̃ to describe a
supermanifold (X̃,O). Similarly, the points TX of TX do not specify the complete
tangent sheaf. Example 4.7 will show how to generalize the notion of point in order to
obtain a proper description of the total space of TX .

If E = TY is the tangent sheaf of (Ỹ ,R), its pullback Φ∗TY along a morphism Φ : X −→ Y
also acts on a suitable sheaf of functions. As (Φ∗TY )x ∼= (O)x ⊗Rϕ(x)

(TY )ϕ(x), the stalks of
this sheaf should consist of germs of functions in R defined along ϕ, in other words, Φ∗TY
should act on sections of ϕ∗R. In particular, each function g ∈ R(V ) gives rise to such
a section x 7→ gϕ(x), but not each section is globally of this form. Using the elementary
identification

O ∼= O ⊗Φ ϕ
∗R = Φ∗R where f ∼= f ⊗ 1 1⊗ η ∼= Φ∗(η)

we obtain:

Proposition 3.33 The following action of f ⊗ ξ ∈ Φ∗TY on sections λ of ϕ∗R defines a
derivation along the morphism Φ:

(f ⊗Φ ξ)(λ) := f ⊗Φ ξ(λ) ∈ Φ∗R ∼= O
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Proof It is clear that the construction is O-super linear in f and hence can be extended
by super linearity. To check the derivation property along Φ, let λ, µ ∈ ϕ∗R:

(f ⊗ ξ)(λµ) = f ⊗ ξ(λµ)

= f ⊗ ξ(λ)µ + (−1)|ξ||λ|f ⊗ λξ(mu)

= (f ⊗ ξ(λ))Φ∗(µ) + (−1)(|ξ|+|f |)|λ|Φ∗(λ)(f ⊗ ξ(µ))

This proves that f ⊗ ξ is a superderivation of parity |f ⊗ ξ| = |ξ|+ |f |.
�

3.5 Metrics, frames and integration

The discussion in the previous section showed that a super vector field X ∈ Der(OU ) is not
determined by the super tangent vectors X(p) for p ∈ U . Consequently, the notion of a
metric has to be defined on the level of sheaves:

Definition 3.34 ([12], definition 23, [26], section 4.1, [51] 12.3.1) A super pseudo-Riemannian
metric is a morphism of sheaves of OX -super modules

〈, 〉 : TM ⊗OM
TM −→ OM

such that the following conditions are satisfied:

(a) 〈, 〉 is supersymmetric, that is, we have for all X,Y ∈ Der(OM ):

〈X,Y 〉 = (−1)|X||Y | 〈Y,X〉

(b) 〈, 〉 is non-degenerated, that is, it induces an isomorphism

Der(OM ) −→ Der(OM )∗ = Hom(Der(OM ),OM ) X 7→ 〈X, ·〉

Remark 3.35
(a) The fact that the metric is a morphism of sheaves of supermodules implies that it is

even.

(b) Up to this point, there is no notion of positive definiteness. This has two reasons: The
product of a purely odd vector field with itself has to vanish by supersymmetry and,
even if we restricted to even vector fields, the product would take values in O0, so that
there is no notion of positivity.

(c) In principle, there is a second choice for the isomorphism in part (b): X 7→ 〈·,X〉. We
stick to the other convention, because it (clearly) satisfies p(〈X, ·〉) = p(X) in the sense
that 〈X, aY 〉 = (−1)|X||a|a 〈X,Y 〉. Nevertheless, the other choice leads to an equivalent
concept of non-degeneracy.
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Given a super pseudo-Riemannian metric, we can evaluate it at p an obtain a well-defined
bilinear form on the super tangent space TpX:

〈, 〉p : TpX ⊗R TpX −→ R : 〈U(p), V (p)〉p := evp(〈X,Y 〉)

where U, V ∈ Der(Op) are super vector fields such that evaluation at p yields U(p) and
V (p). It is clear that 〈U, V 〉 ∈ O1 if the vector fields U and V have different parities. Thus,
evp 〈U, V 〉 = 0 and we have:

Lemma 3.36 Let 〈, 〉 be a super pseudo-Riemannian metric on a supermanifold X:

(a) 〈, 〉p is a well defined, supersymmetric, non-degenerated R-bilinear form on the super
vector space TpX, i.e. its restrictions to (TpX)0 and (TpX)1 are symmetric and anti-
symmetric respectively.

(b) The splitting TpX = (TpX)0 ⊕ (TpX)1 is orthogonal with respect to 〈, 〉.

(c) If p|q is the dimension of X then q ∈ 2N0

The last point of the lemma uses the fact, that there are non non-degenerate antisymmetric
forms on vector spaces of odd dimension. It is also clear that there is no reasonable notion
of positivity for 〈, 〉p restricted to (TpX)1. Thus, we use the following concept of Riemannian
metric

Definition 3.37 A super pseudo-Riemannian metric 〈, 〉 is called Riemannian if the restric-
tion of 〈, 〉p to (TpX)0 is positive definite for all p ∈ X̃.

After choosing a homogeneous basis {b01, . . . , b
1
p+q} of Der(OU ), 〈, 〉 can be represented by the

matrix
Gij := 〈bi, bj〉 ∈ Mat(p|q,O)0

The non-degeneracy of the bilinear forms on TX and TpX is clearly equivalent to the invert-
ibility of the corresponding matrix G. By lemma 2.19, we obtain

Lemma 3.38 〈, 〉 is non-degenerate on TX if and only if 〈, 〉p is non-degenerate for all p ∈ X̃.

For calculations, it is convenient to have orthogonal frames. The following result is mentioned
in [51] 12.3 and proven for similar C-valued products in [9] (2.8.16) and [63] IV.7.8. :

Proposition 3.39 Let 〈, 〉 be a super Riemannian metric. Then, there are local frames
{e1, . . . , ep} of T0 and {ep+1, . . . , ep+q} of T1 s.t. the matrix 〈ei, ej〉 takes the form

N :=




1
. . . 0

1

0 −1
1 0

0
. . .

0 −1
1 0




(3.8)



24 3 SUPERMANIFOLDS

We will only sketch a proof. Since G =
(
G00 G01
G10 G11

)
∈ Mat(p|q,O)0 is invertible, this is

also true for the skew symmetric matrix ev(G11) ∈ Mat(q|C∞
X̃
). Thus we can adapt the

standard proof for the existence of symplectic bases on symplectic vector spaces and obtain a
symplectic basis {ep+1, . . . , ep+q} for T1. For i = 1 . . . p, we form b′i := bi −

∑q
k=p+1 λ

k
i where

λki = 〈bi, ek−1〉 for k even and λki = −〈bi, ek+1〉 for k odd. Since the representing matrix G′
00

of 〈, 〉 w.r.t {b′i} is invertible and ev(G′
00
) is positive definite at each point x ∈ X̃ , we can

finally adapt the Gram-Schmidt procedure3 to {b′i} and obtain the desired basis.
Since 〈ei, ei〉 = 0 for |ei| = 1, we introduce the following (even) map defined locally w.r.t an
orthonormal frame:

Jek :=





ek if k ≤ p

−ek+1 if k = p+ 2l − 1 for l ∈ {1, . . . , q′}

ek−1 if k = p+ 2l for l ∈ {1, . . . , q′}

(3.9)

It clearly satisfies the following identities:

〈ek, Jel〉 = δkl 〈JX, JY 〉 = 〈X,Y 〉 J2 = pr(TX)0
− pr(TX)1

The decomposition of a vector field into its component reads

X =
∑

i

g(X,Jei)ei =
∑

i

(−1)|ei|g(X, ei)Jei =
∑

i

Jeig(ei,X) =
∑

i

(−1)|ei|eig(Jei,X)

Finally, denoting by {ei} the frame dual to {ei} given by ei(ej) = δij , then we have

ei = (−1)|ei| 〈Jei, ·〉

Choosing a Batchelor bundle E, we have4 TX1
∼= E∗, so that the Riemannian metric, re-

stricted to the odd tangent spaces, defines a symplectic form on E∗. The existence of a
symplectic form is related to the structure of the bundle E in the following way (see [43],
proposition 2.61 and theorem 2.60):

Proposition 3.40 Let E −→M be a 2n-dimensional vector bundle, then we have

(a) For each symplectic form ω on E, there is a compatible complex structure J on E, i.e.
a complex structure s.t. ω(·, J ·) is symmetric and positive definite. In particular, E is
a complex vector bundle.

(b) For each complex structure J on E, there is a symplectic form ω compatible with J .

(c) Two symplectic bundles (Ei, ωi) (i = 1, 2) are isomorphic if and only if the underlying
complex vector bundles are isomorphic.

3As usual, the square root of an even superfunction f such that ev(f) > 0 is defined by means of a Taylor
expansion in the nilpotent part.

4An element V ∈ Γ(E∗) acts on Γ(Λ•E) as odd derivation. Since superfunctions are identified with elements
of Γ(

∧•E), sections of TX1 are identified with elements of the form ev ◦ V where ev : Γ(
∧•E) → C∞(X̃)

assigns to each superfunction its value.
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We thus obtain the following corollary which will prove useful later:

Corollary 3.41 The supermanifold X admits a super Riemannian metric in the sense of
definition 3.37 if and only if one (and hence every) Batchelor bundle is a complex bundle.

Proof We only have to show that a symplectic form ω on E∗ defines a super Riemannian
metric. Sections of E∗ can be interpreted as odd vector fields on X by extending their action
from Γ(E) to Γ(

∧•E) as an odd derivation. Thus, extending by Γ(
∧•E)-linearity (i.e. super

linearity), we get a well defined metric on (TX)1. Similarly, a Riemannian metric g on X̃
can be extended by super linearity, the orthogonal sum g+ω then gives a super Riemannian
metric.

�

Remark 3.42 If we start with a super Riemannian metric, restrict it to TX and then extend
it again by super linearity, we do not recover the original metric. In particular, the metric
obtained on (TX)1 by super linear extension is always flat in the sense that there are local
coordinate frames which are orthonormal. Every local symplectic basis of E∗, extended to
Γ(
∧•E) has this property.

This also shows that on (TX)1, the situation is quite different from the geometry on smooth
manifolds: Metrics do not always exist, but if they exist, there is even a flat one.

Integration theory is based upon the notion of the Berezinian of Ω1
X rather than on its exterior

power. The latter is a well defined object, but, as mentioned in chapter 2, there are no top
degree forms if the supermanifold X has odd dimension q > 0. Moreover, as discussed in
[10] §3.3, k-forms can only be integrated on k|0-dimensional submanifolds of X which in
particular excludes integrating objects over all of X in case q > 0. Sections of Ber(Ω1

X) can
be integrated over X. We will discuss integration under the assumption that X̃ is compact
and orientable (see [10] 3.10 for the general concept):

Theorem 3.43 There is a unique linear functional
∫

X
: Γ(Ber(Ω1

X)) −→ R

such that for each section of [dx1 · · · dxpdθ1 · · · dθq]g ∈ Ber(Ω1
X) with support contained in a

coordinate neighborhood U , the integral takes the value
∫

X
[dx1 · · · dxpdθ1 · · · dθq]g =

∫

M̃
dx1 · · · dxng(q···1) (3.10)

where g ∈ O(U) is expanded g(q···1)θ
q · · · θ1 +

∑
|||I|||<q gIθ

I and
∫
X̃ is the ordinary integral of

the p-form dx1 · · · dxng(q···1).

To be able to do calculus of variations, we need some properties of the integral. By the
definition of products in 3.10, there is a canonical projection prX : R×X ։ X and functions
ft depending smoothly on some parameter can be identified with sections of pr∗XO = C∞

R ⊗̂O.
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Lemma 3.44 Let X be a compact orientable supermanifold and ω ∈ Ber(Ω1
X).

(a) Let f be a function depending on t. Then, we have

d
dt

∣∣
0

∫

X
ωf =

∫

X
ω ∂f

∂t

∣∣∣
0

(b) Let f ∈ O and assume that ω locally generates Ber(Ω1
X). If

∫
X ωfg = 0 for all g ∈ O,

then f = 0.

Proof For the first statement, we can choose a finite covering of X with coordinate neigh-
borhoods and a subordinated partition of unity (see proposition 3.11). Then, the problem
is reduced to expressions of the form (3.10). All integrals on X̃ have compactly supported
integrands and we can exchange integration and differentiation. This proves the first part.
For the second assertion, assume that supp(g) is contained in a coordinate neighborhood.
Writing ω|U = [dx1 · · · dθq]h, h ∈ O(U) is invertible by assumption. Let f ′ := hf . Expanding
the functions with respect to the coordinates, we obtain

0 =

∫

X
ωfg =

∫

X
[dx1 · · · dθq]f ′g =

∑

I⊂q

∫

U
dx1 · · · dxpf ′IgIc

Since all components gIc can be chosen independently, we obtain f ′I = 0 from the ordinary
theory of integration. Thus, f ′ = 0 on U and since h is invertible, we have f = 0 on all
coordinate neighborhoods.

�

We will eventually need a version of Stokes’ theorem. It is formulated using integral forms,
which are used instead of differential forms of lower degree. The complex of integral forms
is defined as a free O-supermodule I•, which is also Z-graded but bounded from above
with respect to this grading. The highest nontrivial component is at degree p and given by
Ip := Ber(Ω1

X). Lower degree components are obtained by contractions iX : I• −→ I•−1 for
X ∈ TX . In analogy to differential forms, there are compatible operations α∧ : I• −→ I•+1

and d : I• −→ I•+1, see [10], 3.12 for the details. Here, we will only need integral forms of
degree p−1, which satisfy Ip−1 ∼= TX⊗OBer(Ω

1
X) ([10], (3.12.2)) and the differential is given

by ([10], 3.11)

d : TX ⊗O Ber(Ω
1
X) −→ Ber(Ω1

X) d(V ⊗ ω) = LV ω

where L is the Lie derivative.

Theorem 3.45 ([10], 3.12.3) Let X be a compact supermanifold of dimension p|q and α
an integral form of degree p− 1. Then

∫
X dα = 0.

We now discuss integration with respect to a Riemannian volume element. Let (X,G) be a
Riemannian supermanifold, such that X̃ is orientable and compact. Moreover, since there
exists a super Riemannian metric, the bundle TX1 −→ X̃ is complex and carries a canonical
orientation. We propose the following definition of a volume “form” (see [9] p. 112 for a
similar construction in the context of the definition of metric used in this reference)
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Definition 3.46 (and Lemma) Let {e1, . . . , ep ep+1, . . . , ep+q} be an local orthonormal frame
for TX, which is assumed to be oriented in the sense that ev(e1), . . . , ev(ep) is an oriented
basis of TX0 and {ev(ep+1), . . . , ev(ep+q)} is an oriented basis of TX1. Then, the volume
element of G is locally defined by the section [e1 . . . ep+q] of Ber(Ω

1
X). These local sections

yield the globally defined volume element volG ∈ Ber(Ω1
X). The integral of a function f ∈ O

is finally defined as the integral of volGf .

To see that volG is well-defined, we note, that two different orthonormal bases are related by
an orthosymplectic matrix S, i.e. SsTG0S = G0 where G0 is the matrix from (3.8). Taking
the Berezinian, we find Ber(S)2 = 1. Since orientation is preserved by construction, we have
Ber(S) = 1 and volG is well-defined.

To be able to use Stokes’ theorem, it is necessary to compute LV volG. First note that for
any smooth family B(t) in GL(p|q,R)0 such that B(0) = 1, we obtain

d
dt |0Ber(B(t)) = tr(Ḃ00(0)) − tr(Ḃ11(0)) = str(Ḃ(0)) (3.11)

from definition 2.17 using the usual rule for differentiation of the determinant. Let |V | = 0,
exp(tV ) be the flow of V and exp(tV )∗ the induced actions on the different super vector bun-
dles, i.e. on the corresponding free locally free modules. Strictly speaking, exp(tV )∗ is not an
automorphism of these modules but rather satisfies exp(tV )∗(fm) = exp(tV )∗(f)exp(tV )∗(m)
where f ∈ O and m is a section of the module. Nevertheless, the action of exp(tV )∗ on
Ber(Ω1

X) is still given by multiplication by Ber(exp(tV )∗) as in definition 2.18. Using (3.11)
yields

LV volG = d
dt |0
(
exp(tV )∗volG

)
= d

dt |0Ber(exp(tV )∗)volG = d
dt |0str(exp(tV )∗)volG

Expressing the super trace in the local frame, its derivative is given by
∑

i(−1)|ei|G(Jei,−[V, ei]).
Since the Levi-Civita connection induced by G is free of torsion, it can be used to replace the
Lie bracket and we find:

LV volG =
∑

iG(∇eiV, Jei)volG = str(∇V )volG =: sdiv(V )volG

Thus, we obtain the following corollary to theorem 3.45

Corollary 3.47 Let X be a compact Riemannian supermanifold of dimension p|2q and V
an even vector field on X. Then

∫
X sdiv(V )volG = 0.

3.6 Connections

The definition of a connection generalizes in a straightforward way to the superworld:

Definition 3.48 ([12], section 4.5, [42] 4.4.5) Let X = (X̃,O) be a supermanifold and
E a locally free O-module. A connection ∇ on E is a morphism of sheaves of R-supermodules

∇ : E −→ E∗ ⊗O E

satisfying the super Leibniz-rule for e ∈ E and f ∈ O:

∇(f · e) = df ⊗ e+ f∇e (3.12)
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By definition ∇ preserves the grading. It should be noted that ∇ itself is not O-linear but
only R-linear and satisfies (3.12). The following properties are defined in analogy to the
situation on a smooth vector bundle, see also [46], chapter 4 and [26], chapter 4:

Definition 3.49 ([12], section 4.5, [26] 4.2)
(a) If (·, ·) : E ⊗OX

E −→ OX is a super scalar product on E , then ∇ is called metric if

d
(
e, e′

)
=
(
∇e, e′

)
+
(
e,∇e′

)

(b) If E = T is the tangent sheaf, then the supertorsion T∇ of ∇ is defined by

T∇ : E ⊗ E −→ E : T∇(V,W ) := ∇VW − (−1)|V ||W |∇WV − [V,W ]

As in smooth Riemannian geometry, it is possible to prove the existence of a unique Levi-
Cevita connection:

Proposition 3.50 ([46] 4.2 or [12] (22)) Given a (pseudo) Riemannian supermanifold,
there exists a unique metric and torsion free connection on T . It is given by the super-
analogue of the Koszul-formula for X,Y,Z ∈ T :

2g(∇XY,Z) = Xg(Y,Z) + (−1)|X||Y |Y g(X,Z) − (−1)|Z|(|X|+|Y |)Zg(X,Y )

+ g([X,Y ], Z)− (−1)|Y ||Z|g([X,Z], Y )− (−1)|X|(|Y |+|Z|)g([Y,Z],X)

It is interesting that the super Levi-Civita connection can be easily characterized as a deriva-
tion, i.e. by specifying its action on superfunctions. To the author’s knowledge, this charac-
terization is not included in the literature so far although it can be more natural in situations,
when the action as a derivation is explicitly needed.

Definition 3.51 Let (X,OX , G) be a (pseudo) super Riemannian manifold and f ∈ OX . Its
gradient grad(f) ∈ T is defined by g(X, grad(f)) = X(f) = (−1)|X||f | 〈df,X〉 ∀X ∈ T

Proposition 3.52 Let X,Y ∈ T and f ∈ OX . Then the (unique) Levi-Civita connection is
given by

(∇XY )(f) = X(Y (f))− 1
2 〈d(g(X,Y )), grad(f)〉

− 1
2g(X, [Y, grad(f)]) −

1
2 (−1)p(X)p(Y )g(Y, [X, grad(f)])

The order of the symbols has been chosen in order to avoid signs arising from the parity of
f .

We will omit the proof because the result is not used in the subsequent part of the thesis.
The component formalism in chapter 5 relies on the notion of a pullback connection. We will
generalize the approach from smooth differential geometry and give a step by step construc-
tion of the pullback ∇Φ of ∇ on some super vector bundle E . A similar construction has been
recently published in [24], 2.15 for tangent bundles.

Let Φ : X −→ Y a morphism of supermanifolds. Let E a super vector bundle over Y of
rank m|n and ∇ : E −→ T ∗

Y ⊗R E a connection. We give a construction in two steps of the
connection on Φ∗E = O ⊗Φ ϕ

∗E :
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(a) Definition on ϕ∗E :
On sections of the form ϕ∗e, we define (ϕ∗∇)ϕ∗e ∈ ϕ∗T ∗

Y ⊗ϕ∗ ϕ∗E by

〈ϕ∗W,ϕ∗∇ϕ∗e〉 := ϕ∗(∇W e)

Each section of ϕ∗E is locally of the form ϕ∗e. Since ∇ satisfies the Leibniz rule, we
can use a locality argument (see [8], 4.34, 4.35 and 4.36 for an analogous argument) to
see that local representations fit together and form a well defined connection on ϕ∗∇.

(b) Extension of scalars to O:
Using 2.25 b), we can naturally identify

O ⊗ϕ∗

(
ϕ∗T ∗

Y ⊗ϕ∗ ϕ∗E
)
∼= (O ⊗ϕ∗ ϕ∗T ∗

Y )⊗O (O ⊗ϕ∗ ϕ∗E) = Φ∗T ∗
Y ⊗O Φ∗E (3.13)

Let ψ a local section of Φ∗E . Using a local basis {σi} of ϕ
∗E , we can write ψ =

∑
i f

i⊗σi
where the coefficients f i ∈ O are uniquely determined by ψ. Choosing coordinates on
Y , we can decompose dΦ(V ) =

∑
k V (Φ∗(ϕ∗yk))⊗ϕ∗ ∂

∂yk
for each super vector field on

V . Using the identification (3.13), we define the covariant derivative of ψ by

∇Φ
V ψ =

∑

i

(−1)|fi||V |f i∇dΦ(V )(1⊗ σi) + V (f i)⊗ σi

:=
∑

i

(−1)|fi||V |f i
∑

k

V (Φ∗(ϕ∗yk))⊗O ϕ
∗(∇∂kσi) + V (f i)⊗ σi (3.14)

Here, the second line serves as a definition for the ∇dΦ(V )-expression, the first results
from formally applying the Leibniz rule. It is clear that this construction does not
depend on the choice of coordinates and the next proposition states that it is also
independent of the choice of the frame {σi}.

Proposition 3.53 There exist a connection along (ϕ,Φ∗), that is, a morphism of sheaves of
super algebras

∇Φ : Φ∗E −→ T ∗
X ⊗OX

Φ∗E

satisfying the Leibniz rule along (ϕ,Φ). It is uniquely determined by these properties and the
values on sections of the form 1⊗Φ ϕ

∗e.

Proof First, we show that the definition is independent of the choice of the local basis
{ei}. We will omit the symbols ϕ∗ and use Einstein’s convention for sums. If {e′j} is another

basis, we have e′j = αkj ek for a matrix α ∈ GL(m|n,R) and thus

f ′j ⊗ e′j = f ′j ⊗ αkj ek = f ′jΦ∗(αkj )⊗ ek =⇒ fk = f ′jΦ∗(αkj )

The super product rule yields for coordinates {yµ} on Y :

V (fk) = V (f ′j)Φ∗(αkj ) + (−1)|V ||f ′j |f ′jV (Φ∗(yµ))Φ∗(∂µα
k
i ) (3.15)
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Inserting this in (3.14) and using Leibniz-rule, we obtain

(−1)|f
′i||V |f ′iV (Φ∗(yµ))⊗∇µe

′
i + V (f ′i)⊗ e′i

= (−1)|f
′i||V |f ′iV (Φ∗(yµ))Φ∗(∂µα

k
i )⊗ ek +X(f ′i)Φ(αki )⊗ ek

+ (−1)|f
′i||V |+|yµ||αk

i |f ′iV (Φ∗(yµ))Φ(αki )⊗∇µek

Rearranging the third summand yields (−1)|f
k ||V |fkV (Φ∗(yµ))⊗∇µek, whereas the first and

the second add up to V (fk)⊗ ek by (3.15). A locality argument then shows, that ∇Φ defines
a morphism Φ∗E −→ Φ∗T ∗

N ⊗OX
Φ∗EX of sheaves.

By construction in (3.14), ∇Φ is OX-linear in the first slot satisfies the Leibniz rule along
Φ. The statement about uniqueness is straightforward because using OX -linearity and the
Leibniz rule, every expression ∇Φψ for ψ ∈ Φ∗E may be reduced to an expression involving
only terms of the form ∇Φ(1⊗Φ ϕ

∗e).
�

We end this chapter with some comments that will be used in subsequent calculations:

Remark 3.54 If E is the tangent bundle of Y and ∇ is the Levi-Civita connection then ∇Φ

inherits the properties of being metric and free of torsion. The latter property deserves some
comment, its general form is

∇Φ
UdΦ(V ) = (−1)|U ||V |∇Φ

V dΦ(U)

provided [U, V ] = 0. In case U = V = ∂
∂θ , this in particular implies ∇Φ

θ dΦ(∂θ) = 0.

Furthermore, the curvature of ∇Φ is in this case given by

RΦ(X,Y )ξ = RY (dΦ(X), dΦ(Y ))ξ

where X,Y ∈ TX and ξ ∈ Φ∗E . In this expression, dΦ(X), dΦ(Y ) and ξ are vector fields
along Φ. We have the following symmetry properties:

R(ξ, η)ζ = −(−1)|ξ||η|R(η, ξ)ζ

R(ξ, η)ζ + (−1)|ξ|(|η|+|ζ|)R(η, ζ)ξ + (−1)|ζ|(|η|+|ξ|)R(ζ, ξ)η = 0

The second Bianchi identity can be adapted in a similar way.
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4 Categorical aspects of supergeometry

In chapter 3, we discussed the ringed space approach to supergeometry. Instead of using
“points” or values of a map at a point, supergeometric concepts were formulated in terms of
rings of superfunctions and modules over them. However, there are certain problems which
show that there is the need to introduce a layer of abstraction by describing these structures
using the language of category theory.

As a starting point, we will consider one of these problems especially relevant for this work:
Consider example (1.1) given as a motivation in the introduction, i.e. we consider morphisms
Φ : R1|1 −→ N where N is an ordinary smooth manifold. On the level of functions, Φ is
described by

Φ : C∞
N −→ ϕ∗O

1|1 Φ(g) = A(g)1 + ψ(g)θ

where A,ψ : C∞
N −→ C∞

R . Since Φ is required to be even by definition, we have ψ = 0. A is
a homomorphism of C∞

N and hence corresponds to the underlying smooth map ϕ. Thus, the
problem is reduced to a problem of ordinary differential geometry and in particular, there
seems to be no vector field (be it odd or even) encoded in Φ. If we allowed Φ to break the
parity, it would be possible to have a nontrivial contribution ψ. It is easy to see that it
satisfies the Leibniz-rule of a ϕ-derivation. However, ψ would just be an ordinary vector field
along ϕ and not “odd”, because the tangent sheaf of N only contains even derivations. An
expression RN (ψ,ψ) then clearly vanishes. The same problem is observed when looking at
an even morphism Φ : R1|2 −→ N . Writing Φ(g) = A(g) + ψ(g)θ1θ2, we now indeed find
a vector field given by ψ in the case where Φ preserves parity. But again, this is just an
ordinary vector field and we see that in general, it is not possible to obtain an anticommuting
coefficient ψ simply because it takes values in the real numbers and not in a Grassmann
algebra.
This problem can be resolved by introducing a suitable “space of all morphisms from R1|1

to N” and looking at its “points” rather than only at morphisms R1|1 −→ N as defined in
3.2. It will be shown that these points indeed contain odd vector fields. A similar approach
to obtain odd spinor fields is described in [13], section 3.4. To define this space and to give
meaning to the concept of a “point of this space”, we have to introduce the categorical ap-
proach to supergeometry.

There are other reasons to introduce this more abstract concept which is based on ideas from
algebraic geometry: In contrast to the theory of smooth manifolds where it is possible to
define infinite dimensional Banach- or Fréchet manifolds, this is impossible in supergeometry
as long as one keeps the ringed space approach. It was observed in [14] (introduction to
chapter 3) that sheaves of rings of functions are in general not sufficient to describe these
objects. This was a motivation in [52] to study the categorical approach and is in particular
important when trying to define the “space of all morphisms”. Moreover, concepts like inner
morphisms (see definition 2.5) arise very natural in the categorical setting. Compared to the
ringed space language, this approach furthermore resembles the constructions of superspace
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and supergeometric objects appearing in the physics literature, although this might be not
obvious until one gets used to the new language. Finally, it allows to compare all the different
concepts for supergeometry that have been developed in a systematic way.

4.1 The categorical approach to algebra and geometry

The general idea of the categorical approach to algebra and geometry is to replace objects
(e.g. modules, supermanifolds,. . . ) by functors and morphisms between such objects by nat-
ural transformations of the corresponding functors. These ideas are described in detail in [30]
and [21], the categorical formulation of supergeometry is discussed in [10], [52] or [44].

In any category5 C, we can associate to an object X the following functor:

HomC(−,X) : Cop −→ Set HomC(−,X)(Y ) := HomC(Y,X) HomC(−,X)(f) := f∗ (4.1)

Here, Y is also an object in C and f is a morphism in this category. HomC(−,X) is called
the contravariant Hom-functor. Moreover, if f : X1 −→ X2 is a morphism in C then

τf : HomC(−,X1) −→ HomC(−,X2) (τf )Y := f∗

clearly defines a natural transformation between the functors. Thus, we associated a functor
to each object and a natural transformation to each morphism. The converse direction easily
follows from the Yoneda-Lemma (see A.1):

Proposition 4.1 Let C be a category, X an object and f : X1 −→ X2 a morphism in C then
we have:

(a) The object X is determined up to a unique isomorphism by the functor HomC(−,X).

(b) The natural transformations τ : HomC(−,X1) −→ HomC(−,X2) correspond bijectively
to the morphisms X1 −→ X2.

The proposition says that it is possible to replace objects and morphisms by the corresponding
Hom-functors and their natural transformations. Since not every functor C −→ Set is of the
form HomC(−,X) for some object X, it is useful to give a name to those functors which
represent objects in this sense:

Definition 4.2 ([30], II.3.2) A functor F : Cop −→ Set is called representable if there exist
an object X ∈ C such that F and HomC(−,X) are naturally equivalent.

There exist certain criteria insuring that a functor is representable (see [59] 10.3 and [52]
for supermodules). Since we will not deal with questions of representability, we will not go
into these details but refer to the literature. The following example shows that the functorial
point of view and the representing objects play an important role already at the superalgebra
level:

5See Appendix A for the notions from category theory which are used in the following
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Example 4.3 (Inner Hom-functors for super vector spaces, see [66] 3.7, [10] §1.6)
Let V,W be real super vector spaces. By definition 2.1, HomR(V,W ) are the linear maps
from V to W which preserve parity. So far, HomR(V,W ) is not a super vector space and in
fact, the super vector space of all linear maps V −→W was defined by (see definition 2.5)

HomR(V,W )0 := {f : V −→W | f is linear, preserves parity}
∼= HomR(V0,W0)⊕HomR(V1,W1)

HomR(V,W )1 := {f : V −→W | f is linear, interchanges parity}
∼= HomR(V0,W1)⊕HomR(V1,W0)

We can now see that this ad hoc construction (which proved important to define e.g. dual
spaces) arises very naturally in the categorical framework as follows: In ordinary “non super”
linear algebra, we have the relation

HomR(U,HomR(V,W )) ∼= HomR(U ⊗ V,W ) (4.2)

which is functorial in U . Clearly, we wish to preserve this feature in super linear algebra, so
we define the functor

F : SVec −→ Set U 7→ HomR(U ⊗ V,W )

where HomR denote the parity preserving morphisms in SVec and ⊗ the super tensor product.
A representing object for F , if it exists, then satisfies the super version of (4.2). Using (4.2)
for the homogeneous components Vi,Wi, it is then easy to verify that we have

HomR(U ⊗ V,W ) ∼= HomR(U,HomR(V,W ))

Thus, a representing object for F (which is unique up to isomorphism) is given by HomR(V,W )
and this justifies its introduction from an abstract point of view. HomR is also know as inner
Hom-functor or internal Hom-functor (see also [30], II.4.23).

Since the elements of the sets HomC(−,X) determine a representing object X completely,
the following notion of “point” is introduced:

Definition 4.4 Let C be a category and X an object of C. For each object S of C, the
elements of HomC(S,X) are called S-points of X.

Remark 4.5 Example 4.3 demonstrates the importance of looking at maps from different
vector spaces into HomR(V,W ), i.e. at its different U -points. If we restricted ourselves
to U = R, then we would not “see” the odd part of HomR(V,W ) since parity preservation
implies HomR(R,HomR(V,W )) ∼= HomR(V,W ) = HomR(V,W )0. The odd part becomes only
visible, provided we start with a space already containing odd elements, e.g. for U = R0|1,
we have HomR(R0|1,HomR(V,W )) ∼= HomR(V,W )1 (see also [23] lecture 1). Functoriality is
then required to obtain a construction independent of U . The same general principle also
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clarifies and resolves the problem discussed in the introduction of this section. In fact, we
will see that the morphisms Φ considered there only correspond to R-points of the space of all
morphisms from R1|1 to N (see 4.26 for the precise definition) and we will not obtain an odd
vector field in their component decomposition. However, looking at more general S-points
where S is allowed to have a nontrivial odd part, we will see that these odd component fields
do exist.

It should be pointed out that regarding supermanifolds (in the sense of definition 3.4) as
ringed spaces and as representable functors is equivalent by proposition 4.1. These are just
two different points of view and it is possible to switch to the picture which is more appropriate
in the situation under consideration. As an example, it is possible in both approaches to define
the concept of a super Lie group:

Example 4.6 (Super Lie groups) Following [10], §2.10, a super Lie group can be defined
as a supermanifold G, such that all its S-points carry compatible groups structures, i.e. for
all supermanifolds S, T and all morphisms ϕ : S −→ T , we have

(a) Hom(S,G) is a group with unit element eS , multiplication µS and inversion iS

(b) ϕ∗ : Hom(T,G) −→ Hom(S,G) is a group homomorphism.

This approach is valid in any category, the concept is described in detail in appendix A.
Moreover, it is also shown there, that this approach is equivalent to the classical definition of
a super Lie group (see [66], chapter 7.1), i.e. a supermanifold equipped with a multiplication
µ : G×G −→ G, an inversion i : G −→ G and a unit element e : R0|0 −→ G satisfying certain
compatibility relations. Finally, a supermanifold can then also be constructed by giving a
functor BKLop −→ Set which satisfies (a) and (b) above and proving its representability
afterwards.

Another important example is given by the construction of the total space of a bundle:

Example 4.7 (The total space of a vector bundle) We will follow the construction out-
lined in [10] (3.2, p.72), see also [15] (p.42). Let X = (X̃,O) a supermanifold and E a locally
free module of rank r|s. Locally, the total space E should then have the structure of X×Rs|t.
Recall that the pullback of E was defined in section 3.3 using ringed space formalism. Define
the functor E : BKLop −→ Set by

E(S) := {(ϕ, s)|ϕ ∈ Hom(S,X), s ∈ (ϕ∗E)0}

E(ρ : S −→ S′) := ((ϕ′, s′) 7→ ρ∗(ϕ′, s′) := (ϕ′ρ, ρ∗s′))

To prove the representability of E, first let Up|q ⊂ Rp|q be an open subsupermanifold and E
a free Op|q-module of rank r|s. Denoting S = (S̃,Σ), we have (ϕ∗E)0 = Σr0 ⊕ Σs1. Moreover,
by theorem 3.17, Hom(S,Up|q) = (Σp0)

map ⊕Σq1, where
map indicates, that the even functions

have to satisfy the mapping condition. Hence, we have

E(S) ∼= (Σp0)
map ⊕ Σq1 ⊕ Σr0 ⊕Σs1

∼= Hom(S,Up|q × Rr|s)
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which is natural in S. An arbitrary supermanifold X of dimension p|q equipped with a locally

free module of rank r|s can be covered by such neighborhoods {U
p|q
i = (Ui,Oi)}. Denoting

Uij = Ui ∩ Uj , we have isomorphisms of functors

Hom(−, Ui|Uij
× Rr|s) ∼= E|Uij

(−) ∼= Hom(−, Uj |Uij
× Rr|s)

By proposition 4.1, they induce isomorphisms fij : Ui|Ũij
×Rr|s −→ Uj|Ũij

×Rr|s which satisfy

the cocycle conditions by construction and glueing these patches (see [66] section 4.2, p.135
for the details) then yields a supermanifold E of dimension p + r|q + s. By construction, E
represents the functor E(−), i.e. the isomorphisms E(S) ∼= Hom(S,E) are natural in S.
Finally, it is possible to recover the sections E(U) from E(−) for some open set U ⊂ X̃.
Let S = R0|1 × X|U so that Σ =

∧•R1 ⊗ O(U) and consider the morphism ϕ = prX|U :

R0|1 ×X|U ։ X|U . Then, we have

(pr∗XE)0 =
∧ev R⊗ E(U)0 ⊕

∧odd R⊗ E(U)1
∼= E(U)0 ⊕ E(U)1

which allows us to identify E(U) with { s | (prX|U , s) ∈ E(R0|1 ×X|U )}.

In general, handling all the S-points of a supermanifold can be difficult because S ranges over
a large set of objects and the sets HomBKL(X,Y ) are large, they already carry the structure
of an infinite dimensional manifold if X and Y are smooth manifolds. Thus, it is desirable
to find a smaller class G of objects in BKL such that the restriction of Hom(−,X) to G still
determines X in an appropriate sense. Looking at the category of sets first, we easily find,
that any set {pt} consisting of one arbitrary element is enough:

(a) We have HomSet(pt,X) ∼= X for any set X because any such morphism s just corre-
sponds to the image point s(pt) ∈ X. Thus, every set X is determined up to isomor-
phism by the restriction of HomSet(−,X) to G = {pt}.

(b) If f : X −→ Y is a map between the sets X and Y , then f is clearly determined by all
f ◦ s ∈ HomSet(pt, Y ) for s ∈ HomSet(pt,X) because f ◦ s just corresponds to the value
of f at all the points in X given by s.

The second property states, that different morphisms f, g : X −→ Y can already be distin-
guished by looking at the composites f ◦ s for all s ∈ HomSet(pt,X). This property is used
to define the general concept of a set of generators6:

Definition 4.8 ([59], 10.5.1) A set G of objects in a category C is called generating, if for
all f 6= g ∈ HomC(X,Y ), there is G ∈ G and s ∈ HomC(G,X) such that fs 6= gs.

Even though we will see that the restriction of a functor Hom(−,X) to a set of generators
need not uniquely specify X, it will be important to have a suitable set of generators for
BKL:

Definition 4.9 A superpoint is a (0|q)-dimensional supermanifold. The full subcategory of
BKL consisting of superpoints and their morphisms is denoted by SPoint.

6There is a different notion of generator given in [32], 5.2.1. We will not discuss the difference here.
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Thus, a superpoint is given by a topological space {pt} and a sheaf of superfunctions O being
isomorphic to C∞(pt) ⊗ Λq = Λq, where Λq =

∧• Rq. Every superpoint of dimension (0|q)
is clearly isomorphic (but not canonically) to R0|q. We have the following result (see [52],
2.2.16):

Lemma 4.10 Let Gr be the category of the finite dimensional Grassmann algebras7 Λn :=∧•Rn (morphisms are again assumed to preserve parity). Then we have a natural equivalence
of categories P : Grop −→ SPoint which is defined by

P(Λn) := ({pt},Λn) := Pn

P(ϕ : Λn −→ Λm) := Φ = (id{pt}, ϕ
∗ : Pm −→ Pn)

In particular, a morphism between superpoints Pn −→ Pm is given by the homomorphism
of the superalgebras Λm −→ Λn going in the converse direction. These categories provide us
with a suitable set of generators :

Theorem 4.11 ([52], 3.3.3) The set of superpoints {Pn|n ∈ N} forms a set of generators
of the category BKL of finite dimensional supermanifolds. We will just say n-points instead
of Pn-points.

We will only sketch the argument: Let Φ1 6= Φ2 : X −→ Y be two morphisms and ϕ1, ϕ2

their underlying maps. In case ϕ1 6= ϕ2, we can distinguish these maps by some 0-point
s ∈ Hom(P0,X), as described above in the category Set and in particular, we do not need
generators of even dimension > 0. In general, we have Φ∗

1(g) 6= Φ∗
2(g) ∈ O(U) ∼= C∞(U)⊗Λq

for some local superfunction g on Y . But then, choosing n large enough, we can find a homo-
morphism ψ : Λq −→ Λn and x ∈ U such that ψ(Φ1(f)(x)) 6= ψ(Φ2(f)(x)). ψ and x specify
the desired n-point of X. Note however, that we have to take an infinite set of superpoints as
generators to allow for arbitrary large odd dimension of X. This is a fundamental difference
in comparison with the category of smooth manifolds where there exist a single generator. It
is caused by the existence of nilpotent functions.

The following examples in the category BKL or rather Man (the category of smooth mani-
folds) show, that the term “generator” is in fact a bit misleading:

Example 4.12
(a) Let X be an ordinary smooth manifold, considered to be an object of BKL. The sets

HomBKL(Pn,X) do not determine X as a smooth (super)manifold since the smooth
structure of the underlying manifold is not encoded by them. An example are the fa-
mous Milnor 7-spheres, where the underlying topological spaces are even homeomorphic
but the smooth manifolds are not diffeomorphic.

(b) Following example 3.17 of [1], let ϕ : X −→ Y be a smooth map between smooth
manifolds. We define αPn(f) := evpt(ϕf) for f ∈ HomBKL(Pn,X). Thus, we have a

7For convenience, we are choosing one representative for each dimension so Gr is a skeleton of the category
of all finite dimensional Grassmann algebras and equivalent to this larger category.
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natural transformation α : Hom(−,X) −→ Hom(−, Y ) but it is not of the form f 7→ ψf
for some ψ ∈ Hom(X,Y ). To see this, note that on functions, α is given by prR(f

∗ ◦ϕ∗)
which is not of the form f∗ ◦ ψ∗.
This means that it is not sufficient to define morphisms on the level of generators (see
remark 4.18 for the additional requirements).

These simple examples show that some extra structure is needed in order to characterize
supermanifolds and their morphisms in terms of functors Gr −→ Set. In fact, the concept
of generators remains useful if we consider Hom(−,M) not as a functor into the category
of sets but in that of smooth manifolds. In this case, it is again obvious that Hom(pt,M)
determines M up to isomorphism (here: diffeomorphism) and a similar result will hold for
supermanifolds. This is the subject of the next section.

4.2 The Molotkov-Sachse approach to supergeometry

The Molotkov-Sachse approach was introduced in [44], [53] and [52] (chapter 3). Very sim-
ilar concepts are discussed in earlier publications by Leites ([39] 3.3.1 and also [40], 1.3) as
well as [60] and used in [1]. Here, functors Gr −→ Set (recall that Gr is defined in lemma
4.10) are the starting point for defining and constructing algebraic and geometric objects.
They form a category denoted by SetGr (see appendix A). Additional structure is specified
by requiring the functors to take values in suitable categories of modules, manifolds etc. In
this way, it is possible to define everything without the need to use the BKL-definition of
supermanifolds, this category is in fact rediscovered in the categorical framework at a later
point. Furthermore, the concept remains meaningful in infinite dimensions. We will only give
a short account of the work in [44] and [53] here and refer to the literature for all the details.

First of all, it is necessary to replace the real numbers by a ring R in the category SetGr.
That means that for Λ,Λ′ ∈ Gr and ϕ ∈ HomGr(Λ,Λ

′)8, each R(Λ) has the structure of a
commutative ring and each R(ϕ) is a ring homomorphism. It is defined as follows (see section
3.1 [53]):

R(Λ) := Λ0 R(ϕ) := ϕ|Λ0

It is now possible to define R-modules in SetGr:

Definition 4.13 ( [53], section 3.2 and definition 4.5 )
(a) A functor M ∈ SetGr is a R-module if all M(Λ) are R(Λ)-modules and all M(ϕ) are

homomorphism of R(Λ)-modules.

(b) A R-module M is called superrepresentable, if there exist a R-super vector space V ,
such that M is isomorphic in SetGr to the functor V defined by

V (Λ) := (Λ⊗R V )0 V (ϕ) := (ϕ⊗ idV )|V (Λ)

8In this chapter, we assume that Λ,Λ′ ∈ Gr and ϕ ∈ HomGr(Λ,Λ
′) without always mentioning it.
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Note that not every R-module is superrepresentable, see [53], p. 13 equation (38) and below
for a counterexample. The superrepresentable modules however will be important since they
serve as model spaces for supermanifolds. More precisely, in complete analogy to an open
subset of Rn, it is possible to introduce open subfunctors of certain R-modules. Thus, it is
first necessary to discuss topologic notions. Let Top denote the category of topological spaces
and TopGr the category of functors Gr −→ Top.

Definition 4.14 ([53], 4.1 and 4.3) Let F,F ′ be functors in TopGr.

(a) F ′ is called a subfunctor of F (denoted F ′ ⊂ F ) if all F ′(Λ) are topological subspaces
of F (Λ) and if the inclusions {iΛ : F ′(Λ) →֒ F (Λ)}Λ∈Gr form a natural transformation,
i.e. a morphism in TopGr.

(b) F ′ is called open subfunctor of F if F ′(Λ) ⊂ F (Λ) is an open set for all Λ.

(c) A morphism α : F ′ −→ F in TopGr is called open, if there exist an open subfunctor G
of F and an isomorphism of functors β : F ′ ∼

−→ G s.t. α factorizes as follows:

α = F ′ β
−→ G ⊂ F

Open morphisms will be used to generalize the notion of a chart in smooth differential ge-
ometry, which is, by definition, a continuous map x−1 : V

∼
−→ U ⊂ M such that U ⊂ M

and V ⊂ Rn are open and x−1 : V −→ U is a homeomorphism. V will be replaced by a
superdomain, which can now be defined as open subfunctors of certain superrepresentable
modules:

Definition 4.15 ([53], 4.5, 4.6) A superrepresentable R-module M in TopGr is called Ba-
nach, Fréchet or locally convex etc. if all the topological R-vector spaces M(Λ) are Banach,
Fréchet or locally convex respectively. In this case, an open subfunctor F ⊂ M is called
Banach, Fréchet or locally convex superdomain.

For all functors F in TopGr, it is possible to construct the following kind of open subfunctor
called a “restriction” (see [53] below definition 4.4). Denote by prΛ : Λ ։ R the canonical
projection. Let U be an open subset of the topological space F (R). Then, the restriction of
F to U is defined by

F |U (R) := U F |U (Λ) := (F (prΛ))
−1(U) ⊂ F (Λ)

and the action on morphisms is given by the obvious restriction. In general, there can be
many open subfunctors but for superdomains, the concept is restrictive:

Proposition 4.16 ([53], 4.8 and 4.9) Let F be a superdomain (or locally isomorphic to a
superdomain, see below). Then every open subfunctor of F is a restriction. In particular,
each superdomain is of the form M |U for a superrepresentable R-module M and some open
set U ⊂M(R).
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The proposition essentially says that an open subfunctor of a superdomain is already deter-
mined by its underlying open set. There are no open subfunctors F1, F2 which differ only in
the sets Fi(Λ) for some Λ 6= R, so that the shape of an open subfunctor is restricted.

To be able to use superdomains as building blocks for more general spaces, it is necessary to
specify a concept of supersmooth morphism among them. For ordinary Banach- and Fréchet-
spaces, there exist a well established notion of smooth maps, which is used in the following
definition:

Definition 4.17 ([53], 4.10) Let M |U and N |V be Banach- or Fréchet superdomains. A
morphism f :M |U −→ N |V in TopGr is called supersmooth provided that

(a) The map f(Λ) : M |U (Λ) −→ N |V (Λ) is smooth (in the Banach- or Fréchet-sense,
respectively) for each Λ.

(b) The derivative Df(Λ) :M |U (Λ)×M(Λ) −→ N(Λ) is Λ0-linear in the second entry for
all Λ.

Remark 4.18
(a) In the second part of definition 4.17, we used a formulation also appropriate in the

situation when the topology of the spaces is only Fréchet. If we are in the Banach
category, it is possible to work with maps g(Λ) which are smooth as maps among
Banach spaces. In this case, the differentials Dg(Λ) exist as a bounded linear maps
M(Λ) → N(Λ) and not only in the weaker form as in (b).

(b) The Λ0-linearity is a crucial and strong requirement. The situation is similar to the
definition of complex differentiability, where a map f : C −→ C is supposed to be
differentiable as a map f : R2 −→ R2 but in addition, the differential df is required to
be C-linear. Looking at example 4.12 (b), the morphism {prΛ}Λ∈Gr satisfies the first
assumption of the definition but it is clearly not Λ0-linear. In fact, it is also discussed in
[60] (see [1] lemma 4.8 and theorem 4.5 for details) that this linearity condition ensures
that a morphism of functors is induced by an actual morphism of finite dimensional
supermanifolds.

In order to define supermanifolds in the categorical setting, it is necessary to define open
coverings of functors which then also allow to introduce the notion of local isomorphisms:

Definition 4.19 ([53] 4.2, 4.4) Let F ′, F ′′ be subfunctors of F in TopGr.

(a) The union F ′ ∪ F ′′ is defined by (F ′ ∪ F ′′)(Λ) := F ′(Λ) ∪ F ′′(Λ) and (F ′ ∪ F ′′)(ϕ) :=
F (ϕ)|(F ′∪F ′′)(Λ). The intersection F ′ ∩ F ′′ is defined similarly.

(b) An open covering of F is a family {ui : Ui −→ F} of open functor morphism such that
the induced family {ui(Λ) : Ui(Λ) −→ F (Λ)} is an open covering in the usual sense for
each Λ.

(c) A functor F in TopGr is locally isomorphic to superdomains if there exist an open
covering ui : Ui −→ F s.t. every Ui is a superdomain.
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The definition of a supermanifold can now be given in terms of atlases, precisely as in the
case of ordinary smooth manifolds. Let Man denote the category of finite dimensional smooth
manifolds, of Banach manifolds or Fréchet-manifolds (see [37] or [27] for the latter cases). This
choice for Man will then lead to finite dimensional supermanifolds, Banach supermanifolds
and Fréchet supermanifolds respectively. Clearly, the superdomains have to be chosen finite
dimensional, Banach or Fréchet respectively and we assume that the corresponding choice
has been made.

Definition 4.20 ([53], 4.12) Let X be a functor in ManGr and A = {ui : Ui −→ X}i∈I an
open covering of it. A is called an atlas on X and the {ui} are called charts provided that

(a) Each Ui is a superdomain.

(b) For each pair of indices i, j ∈ I, the fibre product Uij := Ui×X Uj in ManGr carries the
structure of a superdomain such that the projections Πi : Uij −→ Ui and Πj : Uij −→ Uj
are supersmooth.

Two atlases are called equivalent if their union is again an atlas on X. A supermanifold is a
functor X ∈ ManGr which is equipped with an equivalence class of atlases.

The second condition in the definition of an atlas is explained in appendix A in more detail.
It makes sure that Uij is indeed a superdomain (which does not follow automatically as in the
case of open subsets of Rn, we refer to [53] section 4.4 for the details) and that the coordinate
changes are supersmooth. The concept of a supersmooth map between supermanifolds is now
introduced in a similar fashion:

Definition 4.21 ([53], 4.14) Let X,Y be supermanifolds in the sense of definition 4.20. A
morphism f : X −→ Y in ManGr is called supersmooth if for all charts u : U −→ X and
v : V −→ Y , the fibre product

U ×Y V

Πu
vvlllllllllllllll

Πv

((RRRRRRRRRRRRRRR

U
u // X

f
// Y Vv

oo

carries the structure of a superdomain such that Πu and Πv are supersmooth. The set of
morphism is denoted by SC∞(X,Y ), the category defined by supermanifolds and supersmooth
morphisms by SMan.

As before in the case of the coordinate changes, the condition on the fibre product U ×Y V
ensures that local representative of f is a supersmooth morphism between superdomains.

It should be pointed out that it is nontrivial, that SPoint is still is a set of generators for the
“new” category SMan (theorem 4.11 on applies to BKL). It is in fact true, more precisely,
we have the following proposition:
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Proposition 4.22 ([53], 4.18) For each X ∈ SMan and each Λ ∈ Gr, there is a bijection

X(Λ) ∼= SC∞(P(Λ),X) = HomSMan(P(Λ),X)

which is natural in Λ.

So far, there is the BKL-construction for finite dimensional supermanifolds and the Molotkov-
Sachse approach which also yields a subcategory fSMan of SMan consisting of finite dimen-
sional supermanifolds. To relate both constructions, we follow the construction in chapter
5.1 of [53]. First, it is possible to define a R-superalgebra R in SetGr by

R(Λ) := Λ R(ϕ) := ϕ

which also carries the structure of a finite dimensional supermanifold. Given any other finite
dimensional supermanifold X, it is possible to form the morphisms on X with values in R,

SC∞(X) := SC∞(X,R)

It becomes an R-superalgebra in the sense of definition 2.2 by imbedding R as the constant
morphisms of SC∞(X). If X = V is a linear supermanifold (i.e. a finite dimensional
superdomain represented by the entire super vector space V = V0⊕V1), it can be shown that
SC∞(V ) ∼= C∞(V0) ⊗R

∧• V1 which is precisely the superalgebra of smooth functions used
on V in the BKL approach. More general, X̃ := X(R) is a smooth manifold and it can be
verified that X̃ ⊃ U 7→ SC∞(X|U ) is a sheaf of R-superalgebras on X̃, locally isomorphic to
C∞(Rp) ⊗R Λq (see [53] above theorem 5.1). Thus, X induces a BKL supermanifold S(X)
Since a morphism f : X −→ Y in SMan acts on these sheaves of functions by pullback,
f∗SC∞(Y,R) −→ SC∞(X,R), it defines a morphism S(f) : S(X) −→ S(Y ). Thus, we
obtain a functor S : fSMan −→ BKL by

X 7→ S(X) := (X(R), SC∞(X)) f 7→ S(f)

Theorem 4.23 ([53], 5.1) The functor S : fSMan −→ BKL is an equivalence of categories.

Remark 4.24 It should be pointed out that the preceding theorem implies, that in finite
dimensions, we can either use the functorial formalism sketched in this section or the BKL
approach. The author prefers to use the latter one, e.g. when defining geometric structures
on a supermanifold. Nevertheless, it is often useful to think of a supermanifold X as a space
defined by its n-points HomBKL(Pn,X) for n ∈ N
As mentioned before, the situation is different for the infinite dimensional case. Here, the
functorial approach really extends the BKL concept and makes it possible to define a “space
of all morphisms” in the next section. Some authors (e.g [10]) prefer to use the entire category
BKL for their functorial approach instead of SPoint ∼= Grop which has been used by Molotkov
and Sachse. On the one hand, this restriction to Gr leads to a much smaller class of objects
that have to be taken into account, on the other hand, it is necessary to take care of the Λ0-
linearity of the derivatives in all definitions explicitly. In both cases however, the definition of
infinite dimensional supermanifolds requires the specification of Banach- or Fréchet-structures
on certain functors, because neither SPoint nor BKL contains infinite dimensional structures.
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As a result, it is in particular possible to define the total space E of a super vector bundle
E by specifying its n-points. In contrast to example 4.7, the functor VE is then defined in
ManGr and all morphisms are required to be supersmooth. The following example will be
used later:

Example 4.25 Let N be a smooth manifold, TN its tangent bundle with corresponding
sheaf of sections TN and Π(TN ) the parity reversed sheaf. They have rank dim(N)|0 and
0|dim(N) respectively. Finally let TN⊕Π(TN) denote the bundle obtained from TN⊕Π(TN )
using the functorial construction in example 4.7 which has rank dim(N)|dim(N). Note that
this sheaf has odd sections, which are also given by vector fields on N but whose parity is
odd by definition. An n-point of TN ⊕Π(TN) is an n-point of the base N (i.e. an element
f ∈ Hom(Pn, N) = SC∞(Pn, N)) and a section σ of the sheaf

(Λn ⊗f (TN ⊕ΠTN ))0 = Λn,0 ⊗f (TN )0 ⊕ Λn,1 ⊗f (ΠTN )1
∼= Λn,0 ⊗f TN ⊕ Λn,1 ⊗f TN

Note that it becomes obvious here how odd tangent vectors ofN arise as sections of Λn,1⊗fTN .

Finally, it should be mentioned that it is also possible to relate the Rogers-DeWitt approach
(see [9] and [51]) to the functorial one discussed in this section. Since this concept is not used
in this work, we will not go into the details but refer to section 5.2 of [53].

4.3 The space of morphisms

One motivation to introduce the functorial approach to supergeometry in this work is given
by the need to introduce the “space of all morphisms between two supermanifolds” as already
indicated in the introduction to this chapter. Since this space will be infinite dimensional, it
has to be constructed as a functor. We will follow the approach in [52], section 7.1.2 - 7.1.4,
a similar construction can be found in [61], (p.649 ff). A variant of this approach already
appears in Leites’ work [39], 3.3.2, who considers families of morphisms instead of functors.

In the category of sets, the set of maps HomSet(M,N) between sets M and N is itself an
object of the category Set. We obviously have the relation

HomSet(S,HomSet(M,N)) ∼= HomSet(S ×M,N) (4.3)

which is furthermore natural in S. In other words, the set HomSet(M,N) is a represent-
ing object for the functor S 7→ Hom(S × M,N). This situation is analogous to example
4.3, where a similar relation was used to define the inner Hom-object Hom(V,W ) for super
vector spaces. An adjunction formula like 4.3 can be used to define objects of morphisms
between objects in a broad class of categories, see e.g. [30] II.4.23. In particular for M
and N smooth, finite dimensional manifolds where M is compact, it is possible to give
the structures of infinite dimensional manifolds to spaces of smooth mappings, such that
C∞(S ×M,N) = C∞(S,C∞(M,N)) holds (see [37], 42.14).
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Since SPoint still forms a set of generators for SMan, the space of morphisms between two
supermanifolds can be defined as a functor in SetGr in the following way, using the notation
of lemma 4.10:

Definition 4.26 ([52], 7.1.3) Let X and Y be supermanifolds, then the corresponding inner
Hom-functor, denoted by SC∞(X,Y ) : Gr −→ Set, is defined by

SC∞(X,Y )(Λ) := SC∞(P(Λ) ×X,Y )

SC∞(X,Y )(ϕ) := (f 7→ f ◦ (P(ϕ) × idX))

where Λ,Λ′ ∈ Gr and ϕ ∈ HomGr(Λ,Λ
′).

Again, similar concepts also appear in [65] and [39] (if the parameter spaces are taken to be
R0|n)

Remark 4.27
(a) For Z another supermanifold, there is a natural way to define a composition ◦, which is

a natural transformation in SetGr from SC∞(X,Y ) × SC∞(X,Y ) to SC∞(X,Z) and
defined as follows (see also [52], section 7.1.3):

(f ◦Λ g) := (P(Λ) ×X
(idP(Λ),f)
−→ P(Λ) × Y

g
−→ Z)

where f ∈ SC∞(X,Y )(Λ) and g ∈ SC∞(Y,Z)(Λ). It was furthermore shown in [52]
(proposition 7.1.4), that SC∞(X,X) forms a monoid with unit idX .

(b) Setting Λ = R, it is clear that SC∞(X,Y )(R) = SC∞(X,Y ), so that the 0-points of
this inner Hom-functor are precisely the morphisms between X and Y in the category
of supermanifolds. The n-points for n > 0 then contain components which are invisible
for n = 0 and we will study their structure in the next chapter. In particular, we will see
that the “missing” odd vector fields mentioned in the introduction, arise as components
of these higher points.

To the author’s knowledge, it has not been discussed so far under which conditions the functor
SC∞(X,Y ) ∈ SetGr is representable in SMan for a suitable choice of smoothness in Man. In
case that it is not, the functor itself can serve as a generalization for this space. In this work,
we will be eventually interested in spaces of solutions of certain differential equations. These
will be subfunctors of some SC∞(X,Y ). However, in case of nonlinear equations, these are
usually not manifolds. This is nothing special to the super case but already occurs if we look
for closed geodesics on a two dimensional flat torus T 2 ∼= R2/Z2. A geodesic starting at some
point closes if and only if the slope of the velocity vector in R2 (i.e. tan(corresponding angle))
is rational. Thus, the set of closed geodesic on T 2 can be identified with a subset of the unit
tangent bundle T 1T 2 = {X ∈ TT 2 | ‖X‖ = 1} but it is not a manifold.

Remark 4.28 In the rest of this work, we will use SC∞(X,Y ) as a functor and will not try
to give a manifold structure to it. However, this topic should be addressed in future research
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because, as discussed in 4.18 (see also example 4.12 b)), the Λ0-linearity is a crucial part of
the definition of supersmoothness. Without this property, SC∞(X,Y ) is more a “superset”
than a supermanifold.
The component and the subcomponent formalism introduced in section 5.5 and definition 6.20
respectively might provide an ansatz how to equip SC∞(X,N) with the structure of a Fréchet
supermanifold if X is compact and N is a smooth manifold. A n-point Φ ∈ SC∞(X,N) is
decomposed into a smooth map ϕ∅ : X̃ −→ N and a family of vector fields along ϕ0. It has
been proven in [27], section I.4.1 to I.4.3 that for M,N smooth manifolds and M compact,
C∞(M,N) is a Fréchet manifold and its tangent bundle is given by all vector fields along
smooth maps M −→ N . Hence, it is interesting to study whether there is the possibility
to carry this structure over to SC∞(X,N). Moreover, it would be interesting to investigate
whether it is possible to use theorem 5.20 to find a Fréchet structure in more general cases.
We will not develop these ideas in this text.

We will close this section with some remarks on vector bundles and their supermanifold of
sections. They are only included for the purpose of comparison with some constructions in
chapter 6. Therefore, we only give a brief sketch of the ideas.
The notion of a vector bundle can be formulated entirely in the Molotkov-Sachse approach
without reference to a locally free sheaf of modules. The details can be found in [52], sec-
tion 3.8. According to definition 3.8.3 in Sachse’s work, a super vector bundle is a functor
E : Gr −→ VBun (where VBun is the subcategory of vector bundles in Man) which admits
an open covering by trivial super vector bundles. Similar to definition 4.20, it is further-
more required that the changes of trivializations on overlaps are supersmooth and R-linear.
In particular, this implies that there is supersmooth projection π : E −→ X onto a base
supermanifold X. Sections are defined in the usual way:

Γ(M,E) := {σ :M −→ E | σ supersmooth, π ◦ σ = idM} ⊂ SC∞(M,E) (4.4)

Since this set is not sufficient to define a supermanifold of sections, the latter is defined as
a functor in SetGr in complete analogy to the definition of SC∞(X,Y ) (see [52], equations
(5.3),(5.4)):

Γ(X,E)(Λ) := Γ(P(Λ) ×X, pr∗XE) Γ(X,E)(ϕ : Λ −→ Λ′) := (σ 7→ σ ◦ (P(ϕ) × idX))

Here, Λ is a Grassmann algebra and pr∗XE denotes the pullback of E along the projection
prX : P(Λ) × X ։ X (see [52] section 3.8.1). The functor Γ(X,E) is actually always
representable:

Theorem 4.29 ([52], 5.3.1) Let π : E −→M be a super vector bundle and V := Γ(M,E⊕
ΠE). Then V is a super vector space representing Γ(X,E), i.e. there is an isomorphism

Γ(P(Λ) ×X,E) = Γ(X,E) ∼= V (Λ) = (Λ⊗R V )0 (4.5)

We will come back to this description of sections in a vector bundle at the begin of chapter 6
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5 The fine structure of the space of morphisms

In this chapter, we will determine the geometric structure of the n-points of SC∞(X,Y ) for
arbitrary supermanifoldsX and Y . This has been done in [52], chapter 7.2.1 and [54], chapter
5.2 for invertible elements of SC∞(X,X). A similar technique is also discussed in [29]. The
approach uses an expansion of elements of SC∞(X,Y )(Pn) ∼= Hom(X × Pn, Y ) w.r.t. the
odd parameters in Pn, in other words, the decomposition is done w.r.t. a basis of Λn. We
will show that the resulting coefficients are super differential operators of suitable degree and
parity.
The geometric theory of differential operators on C∞-manifolds is usually formulated using
jet bundles. Here, we only review the very basic constructions at the beginning and refer
the reader to [56] or [49] for all the details. Again, it is necessary to work with the rings
of functions or sections rather than with bundles itself to generalize these notions to super-
manifolds. The general theory is discussed in [36] and we will work out the formalism for
supermanifolds and its relation to points of SC∞(X,Y ) in detail. Since differential operators
of order ≥ 2 are complicated geometric objects, we will discuss how to decompose them into
vector fields in an appropriate way. This methods corresponds to the decomposition into
component fields in the physics literature. Finally, we will apply the formalism to the case
when the supermanifold is described using a Batchelor bundle.

5.1 Classical formalism of jets and differential operators

Let M be a smooth manifolds and E −→M a vector bundle. Let p ∈M and (xi, uα) bundle
coordinates of E near p. Two local sections ω, τ of E near p are called k-equivalent for k ∈ N0

if

∂|||I|||ωα

∂xI
=
∂|||I|||τα

∂xI
for all |||I||| ≤ k

where we used the multi-index notation (cf. remark 3.22 for the definition of ||||||). By the
chain rule, this is independent of the choice of the bundle coordinates and hence, we have
well defined equivalence classes denoted by jetkp(ω). We can then form

Jetk(E) := {jetkp(ω) | p ∈M, ω section near p}

which obviously projects to M . It can be shown (see [56], 6.2.7) that this defines a smooth
bundle over M which becomes a vector bundle by

jetkp(ω) + jetkp(τ) := jetkp(ω + τ) λjetk(ω) := jetkp(λω)

using the vector bundle operations of E. Intuitively speaking, jetkp(ω) not only captures the
coordinates of p and the fibre value ω(p) ∈ E|p but also the values of all derivatives up to
order k. Clearly, a section ω of E induces a section p 7→ jetkp(ω) of Jet

k(E), so that we obtain
a mapping

jetk : Γ(E) −→ Γ(Jetk(E))
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However, not every section of Jetk(E) is obtained in this way because the derivatives of a given
section of E obviously depending on lower order derivatives whereas they are independent
for a general section of Jetk(E).
The fact that Jetk(E) encodes derivatives up to order k allows us to define (linear) differential
operators of order ≤ k since such an operator is locally given as a C∞(M)-linear combination
of derivatives up to order k. More formally, let F −→ M be another vector bundle, and
σ : Jetk(E) −→ F a morphism of vector bundles. Then (see [56], 6.2.22)

σ ◦ jetk : Γ(E) −→ Γ(F )

defines a differential operator from E to F . For example, on a Riemannian manifold, let E =
F =M ×R so that sections of the bundles are just functions on M . Fixing local coordinates
{xi} on M , the coordinates of ξ := jet2p(f) are given by (xi(ξ) := xi(p), v(p) := f(p), v,i(ξ) :=
∂f
∂xi

(p), v,ij(ξ) :=
∂2f

∂xi∂xj
(p))i,j=1,2. In these coordinates, we can define a morphism

σ : Jet2(M × R) −→M × R (xi, v,i, v,ij)i,j=1,2 7→ gijv,ij − gijΓkijv,k

Then, σ clearly induces the Riemannian Laplace operator on functions. More general, a linear
differential operator of order ≤ k is a linear map D : Γ(E) −→ Γ(F ) which factors over jetk:

Γ(E)
jetk

//

D

%%LLLLLLLLLL
Γ(Jetk(E))

σD
��

Γ(F )

(5.1)

The map σD is called the (total) symbol of the differential operator D.

The last paragraph already indicates, how the theory of jets and differential operator should
be carried over to super vector bundles: The staring point is the locally free sheaf of sections
defining the bundle. It is then possible to give purely algebraic definitions of linear differential
operators and jets which remain related to each other by a property similar to that given in
diagram (5.1).

5.2 Algebraic theory of super differential operators and -jets

We will now discuss the theory of linear differential operators and jet modules on supermani-
folds by reformulating and generalizing the concepts of the preceding chapter in the algebraic
language. In contrast to the classical approach, the algebraic approach starts with the defi-
nition of the differential operators as the more fundamental concept. General references for
the algebraic approach are [36] chapter 1, [47] chapter 9 and [25] chapter 6.2 for supermodules.

In the following, let A be a supercommutative R-superalgebra. In principle, we can allow
for arbitrary supercommutative rings of scalars, but for sake of simplicity, we choose R. A
will take the role of the ring of functions, so the typical example is A = O(U) where O is
the sheaf of superfunctions on some supermanifold. P,Q will denote supermodules over A or
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some other superring which will be indicated if necessary. Here, the typical example will be
the module of local sections in a super vector bundle. Furthermore, when speaking of linear
maps, we will indicate by a subscript, with respect to which ring of scalars the linearity is
to be understood. For example, as defined in chapter 2, HomR(P,Q) is the space of R-linear
mappings from P to Q which carries a natural Z2-grading denoted by | · |. Following the
exposition in [36] chapter 1 §1 for the commutative case, we introduce some notation:

Definition 5.1 Let ∆ ∈ HomR(P,Q), then we introduce

(a) a left and a right A-module structure on HomR(P,Q) by defining

(a ·∆)(p) := a∆(p) (∆ · a)(p) := ∆(ap)

(b) the commutator of the preceding module structures by defining

δa∆ := a ·∆− (−1)|a||∆|∆ · a

The abstract definition of a super differential operator is now as follows:

Definition 5.2 A map ∆ ∈ HomR(P,Q) is called linear differential operator from P to Q of
order ≤ k ∈ N0 and parity |∆| ∈ Z2 if the following identity is satisfied:

∀a0, . . . ak ∈ A : δa0 ◦ · · · ◦ δak∆ = 0

The set of all differential operators of order ≤ k from P to Q is denoted by Diffk(P,Q)

The following remarks are obvious:

Remark 5.3
(a) Diffk(P,Q) inherits from HomR(P,Q) a left, a right and an A-bi- supermodule structure.

The modules are denoted by Diffk(P,Q), Diffk+(P,Q)) and Diffk(+)(P,Q). We will not
mention the module structures explicitly unless there is the danger of confusion.

(b) A differential operator of order zero is just an R-linear map, which supercommutes with
A, i.e. which is A-linear. Thus, we have Diff0(P,Q) = HomA(P,Q).

(c) More general, ∆ is a differential operator of order ≤ k iff for all a0, . . . , ak−1, the map
δa0 ◦ · · · ◦ δak−1

∆ is A-linear.

We are going to give some examples:

Example 5.4
(a) Super derivations and first order operators Let P = Q = A so that we consider

differential operators acting on “functions“. Let ∆ ∈ Diff1(A,A). We may decompose
∆ as follows (see also [55], p.57/58):

∆ = (∆−∆(1)) + ∆(1)
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where ∆(1) ∈ A is considered to be a multiplication operator so that we have ∆(1) ∈
Diff0(A,A). A simple calculation shows:

(∆ −∆(1))(ab) = (∆−∆(1))(a)b + (−1)|a||∆|a(∆−∆(1))(b)

Thus, ∆−∆(1) is a superderivation of parity |∆| on A. In case A = O(U), this says that
a first order operator can be decomposed into a super vector field and a multiplication
operator. This decomposition is in fact a direct sum because an A-linear derivation ∆
satisfies ∆(1) = 0 but A-linearity then implies ∆(f) = ∆(1)f = 0. Thus, we obtain the
following exact sequence which splits by the preceding argument:

0 // Der(O(U)) // Diff1(O(U),O(U)) // O(U) // 0

where we used O(U) ∼= HomO(U)(O(U),O(U)) = Diff0(O(U),O(U)). This is the
Spencer sequence of degree 1 ([36], (1.1)). A similar decomposition for higher order
operators does in general not exist.

(b) Vector fields along a morphism Let Φ : X = (X̃,O) −→ Y := (Ỹ ,R) be a
morphism of supermanifolds with underlying smooth map ϕ : X̃ −→ Ỹ . Let P = A =
ϕ∗R(U) and Q = O(U)Φ the module obtained by restricting to the ring of scalars to
A as defined in 2.21. Then, an element ∆ ∈ Diff1(ϕ∗R(U),O(U)Φ) without constant
term (i.e. ∆(1) = 0) satisfies

∆(gg′) = ∆(g) · g′ + (−1)|g||∆|g ·∆(g′) = ∆(g)Φ(g′) + (−1)|g||∆|Φ(g)∆(g′)

Thus, elements of Diff1(ϕ∗R(U),O(U)Φ) without constant term generalize the classical
notion of vector fields along a map. Finally, note that sections in R(V ) canonically
induce sections of ϕ∗R(ϕ−1(V )). In this way, elements of Diff1(ϕ∗R(U),O(U)Φ) also
act on superfunctions on Y .

The second example offers a nice possibility to define differential operators on a super manifold
along a morphism, just by choosing the appropriate module structures (cf. part (b) of the
preceding example for the notation):

Definition 5.5 Let Φ : X = (X̃,O) −→ Y = (Ỹ ,R) be a morphism of supermanifolds with
underlying smooth map ϕ : X̃ −→ Ỹ , P a R- module on Y and Q an O-module on X.
Then, a linear differential operator from P to Q along Φ of degree ≤ k is an element of
Diffk(ϕ∗P (U), Q(U)Φ).

The following proposition clarifies the structure of differential operators along Φ:

Proposition 5.6 Let Φ, P and Q satisfy the assumptions of the preceding definition and
assume that P is locally free. Then we have for all U ⊂ X̃:

Diffk(ϕ∗P (U), Q(U)Φ) ∼= Q(U)⊗Φ Diffk(ϕ∗P (U), ϕ∗R(U))
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Before proving the proposition, we work out its meaning in more detail: We may identify
∆ ∈ Diffk(ϕ∗R(U),O(U)Φ) with

∑
i fi ⊗Φ ∆i for suitable ∆i ∈ Diffk(ϕ∗R(U), ϕ∗R(U)) and

fi ∈ O(U). If now g ∈ ϕ∗R(U), the action of ∆ on g is given by (cf. Proposition 3.33)

∆(g) =
∑

i fi ⊗Φ ∆i(g) = fiΦ(∆i(g))

This means that a differential operator along Φ is essentially given by an O-linear combina-
tion of differential operators on Y of the same order composed with the morphism Φ. Again,
this coincides with the well known decomposition of a vector field ξ along a smooth map
ϕ :M −→ N on ordinary manifolds, used in the proof of proposition 3.26.

Proof of proposition 5.6 We will see in 5.15 that both sides are locally free sheaves.
Thus, it is sufficient to prove the statement for open sets of the form U = ϕ−1(V ) such that
P (V ) is a free module, since these sets cover X̃ .
First, there is an isomorphism of left ϕ∗R(U)-supermodules ϕ∗R(U)⊗ΦQ(U) ∼= Q(U)Φ given
by r ⊗ q 7→ Φ(r)q whose inverse is q 7→ 1⊗ q. Using this and proposition 5.22 (b)9, we have

Diffk(ϕ∗P (U), Q(U)Φ) ∼= Diffk(ϕ∗P (U), ϕ∗R(U)⊗Φ Q(U))

∼= Homϕ∗R(Jet
kϕ∗P (U), ϕ∗R(U)⊗Φ Q(U))

Now, ϕ∗P (U) is a free module by lemma 3.24 and hence, we have (see [6] II.4.2.2 (ii))

Homϕ∗R(Jet
kϕ∗P (U), ϕ∗R(U)⊗Φ Q(U)) ∼= Homϕ∗R(Jet

kϕ∗P (U), ϕ∗R(U)) ⊗Φ Q(U)

∼= Diffk(ϕ∗P (U), ϕ∗R(U))⊗Φ Q(U)

In the last step, we again used proposition 5.22. The statement now follows from the super-
commutativity of the super tensor product.

�

In the following, we fix some notations for multi-indices and permutations, which do not
coincide with the common conventions. They will be used to discuss some product rules:

For n ∈ N, we use the abbreviation n to denote the tuple (1, . . . , n) as well as the set
{1, . . . , n}. As usual, a multi-index is an element I = (i1, . . . , il) ∈

⋃
k∈N0

Nk0 where we set

N0
0 := {∅}. The number l ∈ N0 s.t. I ∈ Nl0 is also called the length of I. A graded

multi-index of type (p|q) is a multi-index I of length l = p + q together with a partition
l = {1, . . . , p + q} = ev(I) ⊔ odd(I). Writing I = (i1, . . . , ip+q), an index ik is called even if
k ∈ ev(I) and odd if k ∈ odd(I). Note that this definition simply assigns a parity to each of
the ik, it does not take into account whether ik is even or odd as an integer. For a graded
multi-index I of type (p|q) as above, we will abbreviate

‖I‖ = length of I = p+ q (5.2)

|I| = number of odd indices in I = #odd(I) = q

|I| mod 2Z is called the parity of the index.

9Although proposition 5.22 appears later in this work, it is clearly independent of the statement which is
proven here.
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A subindex J of I is a multi-index of length ‖J‖ ≤ ‖I‖, together with a strictly monotonic
increasing map ιJ : ‖J‖ = {1, . . . , ‖J‖} −→ ‖I‖ = {1, . . . , ‖I‖} such that jk = iιJ (k). This
means that each element of J has to appear as an element of I in the order prescribed by
J . We will usually omit ιJ and just write J ⊂ I. Finally, a graded subindex J of a graded
multi-index I is a subindex, such that the parity of an element of J coincides with the parity
of its image in I, i.e. ιJ(ev(J)) ⊂ ev(I) and ιJ(odd(J)) ⊂ odd(I).
Given an index I of type (p, q) and a subindex J ⊂ I of type (p′, q′), we define the comple-
mentary index of J in I as Jc := I \ J = (ik | k /∈ ιJ(‖J‖)) which is the index obtained from
I by removing all the elements of J . Clearly, Jc inherits from I the structure of a graded
multi-index of type (p− p′, q − q′) and is a graded subindex of I.
Now, given a graded index I of type (p, q), any element σ ∈ Sp+q defines a new index of the
same type by permuting the entries. For any graded subindex J ⊂ I, we may form the new
index (J, Jc) which has the type of I. Introducing the permutations

σ(J, Jc) :=

(
1 · · · p+ q

ιJ(‖J‖) , p+ q \ ιJ(‖J‖)

)−1

σodd(J, Jc) :=

(
odd(I)

odd(J)odd(Jc)

)−1

,

it is clear that σ(J, Jc) transforms (J, Jc) back to I. Its sign will be denoted by sign(J, Jc).
Finally, osign(J, Jc) := sign(σodd(J, Jc)) only counts transpositions in σ(J, Jc) which corre-
spond to permuting odd elements of I.
Let I be a graded multi-index of type (p, q) and let ai1 , . . . , aip+q

be pure elements of A such
that |aik | = 1 if and only if k ∈ odd(I). We then write

aI := ai1 · · · aip+q
δI := δai1 ◦ · · · ◦ δaip+q

(5.3)

We clearly have |aI | = |I| and as usual, these notations are extended to non-homogeneous
elements by multilinearity. Note that aI is not the common mult-index monomial!

Using these notations, we have the following rules (see [47] 9.58 for smooth manifolds):

Lemma 5.7 Let I be a graded multi-index, a, b, ai ∈ A and ∆′ ∈ HomR(P,Q), ∆ ∈ HomR(Q,R).
Then we have

(a) δa ◦ δb = (−1)|a||b|δb ◦ δa

(b) δI(∆ ◦∆′) =
∑

J⊂I

(−1)|∆||aJ
c
|(−1)osign(J,J

c)δJ(∆) ◦ δJc(∆′)

(c) δI(∆)(b) = (−1)‖I‖
∑

J⊂I

(−1)‖J‖(−1)|∆||aJ
c
|(−1)osign(J,J

c)aJ∆(aJ
c

b)

Proof The first statement is clear. Part (b) and (c) are proven by induction on ‖I‖. We
start with (b). For ‖I‖ = 0, there is nothing to show and the case ‖I‖ = 1 is essentially the
definition of δ. For the induction step, we write I = (i, I ′), fix some ai, ai0 , . . . , aik and by
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using the induction hypothesis and the already proven case for I = {i}, we obtain:

δI(∆ ◦∆′) = δai
∑

J ′⊂I′

(−1)|∆||J ′c|(−1)osign(J
′,J ′c)δJ ′(∆) ◦ δJ ′c(∆′)

=
∑

J ′⊂I′

(−1)|∆||J ′c|(−1)osign(J
′,J ′c)δai ◦ δJ ′(∆) ◦ δJ ′c(∆′)

+
∑

J ′⊂I′

(−1)|∆||J ′c|(−1)(|J
′|+|∆|)|ai|(−1)osign(J

′,J ′c)δJ ′(∆) ◦ δai ◦ δJ ′c(∆′) (5.4)

Now, we reorganize the indices in the two summands as follows:

• 1.summand: We set J = (i, J ′) which implies Jc = J ′c and

|J | = |J ′|+ |ai|, |Jc| = |J ′c|, ‖J‖ = ‖J ′‖+ 1

(−1)|∆||Jc| = (−1)|∆||J ′c|

(−1)osign(J,J
c) = (−1)osign(J

′,J ′c)

• 2.summand: We set J = J ′ which implies Jc = (i, J ′c) and

|J | = |J ′|, |Jc| = |J ′c|+ |ai|, ‖J‖ = ‖J ′‖

(−1)|∆||Jc| = (−1)|∆||ai|+|∆||J ′c|

(−1)osign(J,J
c) = (−1)|J

′||ai|(−1)osign(J
′,J ′c)

Hence, the first sum becomes the sum over all J ⊂ I containing the first index i whereas the
second one runs over all subindices not containing i. Substituting into (5.4), we find

δI(∆ ◦∆′) =
∑

J⊂I

(−1)|∆||Jc|(−1)osign(J,J
c)δJ (∆) ◦ δJc(δ′)

which proves b).
c) is proven similarly. Again, the cases ‖I‖ = 0, 1 are trivial or follow directly from the
definition. For the induction, we proceed as above, so let I = (i, I ′). We get, using the
induction hypothesis and the definition of δai

(δI∆)(b) = (δai(−1)‖I
′‖
∑

J ′⊂I′

(−1)‖J
′‖(−1)|∆||J ′c|(−1)osign(J

′,J ′c)aJ
′
∆(aJ

′c
))(b)

= (−1)‖I
′‖
∑

J ′⊂I′

(−1)‖J
′‖(−1)|∆||J ′c|(−1)osign(J

′,J ′c)aia
J ′
∆(aJ

′c
b)

− (−1)|ai|(|I
′|+|∆|)(−1)‖I

′‖
∑

J ′⊂I′

(−1)‖J
′‖(−1)|∆||J ′c|(−1)osign(J

′,J ′c)aJ
′
∆(aJ

′c
aib)

Now, we can treat the two summands as in the proof of b). Inserting the different expressions
for the signs in the last equation, we finally arrive at

δI(∆)(b) = (−1)‖I‖
∑

J⊂I

(−1)‖J‖(−1)|∆||aJ
c
|(−1)osign(J,J

c)aJ∆(aJ
c

b)

�



52 5 THE FINE STRUCTURE OF THE SPACE OF MORPHISMS

The last identity leads to a useful equivalent characterization of the property of being a
differential operator of order ≤ s:

Corollary 5.8 Let ∆ ∈ HomR(P,Q) and s ∈ N, then ∆ is a differential operator of order
≤ s if an only if for all a0, . . . , as ∈ A and p ∈ P

∆(a0 · · · asp) = −
∑

∅ 6=J⊂s+1

(−1)‖J‖(−1)|∆||aJ |(−1)osign(J,J
c)aJ∆(aJ

c

p)

If P = A, i.e. the differential operator acts on “functions”, we can say more. In the following
statement, the number of factors appearing in the product rule is reduced by one in compar-
ison with the general statement of the last corollary, where we have s+ 1 elements of A and
an element p ∈ P .

Corollary 5.9 ∆ ∈ HomR(A,Q) is a differential operator of order ≤ s if and only if for all
a1, . . . , as, as+1, we have

∑

J⊂s+1

(−1)‖J‖(−1)|∆||aJ
c
|(−1)osign(J,J

c)aJ∆(aJ
c

) = 0

This equation is equivalent to the following product formula:

∆(a1 · · · as+1) = −
∑

∅ 6=J⊂s+1

(−1)‖J‖(−1)|∆||aJ |(−1)osign(J,J
c)aJ∆(aJ

c

) (5.5)

Proof By remark 5.3 (c), ∆ is a differential operator if and only if δa1 · · · δas∆ is A-
superlinear, i.e. for all a1, . . . , as, as+1, we have:

(δa1 · · · δas∆)(as+1)− (δa1 · · · δas∆)(1)as+1 = 0

Rearranging the sum with the techniques used in the proof of lemma 5.7 then gives the result.
�

Composing differential operators of order k and l, we expect that the result is again a differ-
ential operator of order ≤ k+ l. In fact, applying δI with ‖I‖ = k+ l+1 to their composition
and using part (b) of lemma 5.7, we see that one of the two factors δJ (∆) and δJc(∆′) must
vanish since either ‖J‖ ≥ k + 1 or ‖Jc‖ ≥ l + 1. Thus, we have

Corollary 5.10 Let ∆ ∈ Diffk(P,Q) and ∆′ ∈ Diff l(Q,R), then ∆′ ◦∆ ∈ Diffk+l(P,Q) and
|∆′ ◦∆| = |∆′|+ |∆|.

Next, we will show that this concept of differential operators coincides with the more common
approach using local coordinates. Parts of the results have already been stated in [35], chapter
8, without proofs. We will only sketch parts of the proof here, generally following the strategy
which is used in chapter 4.5 of [8] to show that DerO forms a locally free sheaf of O-modules.
We will restrict ourselves to the case Diffk(O,O) on a supermanifold (X̃,O), the result can
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be generalized in the obvious way to locally free O-modules.
Let U ⊂ X̃ be a coordinate neighbourhood with coordinates (x1, . . . , xp, θ1, . . . , θq) =: (ξi).
Denote the corresponding coordinate vector fields by {∂/∂ξi}. Using the characterization
given in corollary 5.9, repeated application of the Leibniz rule for these vector fields establishes
the following statement:

Lemma 5.11 Let I = (I0, I1) be a graded multi-index where I0 = (i1, . . . , ip) ∈ Np0 and
I1 = (α1, . . . , αq) ∈ {0, 1}q . Then each expression of the form

∂|||I|||

∂ξI
:=

∂i1

∂(x1)i1
◦ · · · ◦

∂αq

∂(θq)αq

is an element of Diff |||I|||(O(U),O(U)) whose parity is given by |||I1||| mod 2.

Note that at this point, we use multi-indices in the familiar way (e.g. known from Taylor
polynomials). Let K = (K0,K1) ∈ N

p
0 × {0, 1}q be another graded multi-index and ξK the

corresponding monomial defined by the coordinate functions. It is easy to see that we have

∂|||I|||ξK

∂ξI
=

{
K!
I! (−1)⌊|||I1|||/2⌋osign(I, Ic)ξI

c
for I ⊂ K

0 for I  K

where the complementary subindex Ic is defined w.r.t. K and K! = k1! · · · kp+q! etc. Note
that for |||I||| = |||K|||, the expression vanishes unless K = I. If superfunctions fI ∈ O(U) are
chosen for each |||I||| ≤ s, it follows from lemma 5.11 that

∆ :=
∑

|||I|||≤s

f I ∂
∂ξI

(5.6)

defines a differential operator of order ≤ s which in general is not of pure parity. Apply-
ing it to the monomials 1, ξi, . . . , ξK , . . . ∈ O(U), we obtain a recursive procedure for the
determination of the coefficients fI :

f∅ = ∆(1)

f i = ∆(ξi)− f∅ξi = ∆(ξi)−∆(1)ξi

...

fK = (−1)⌊‖K1‖/2⌋
(
∆(ξK)−

∑

|||I|||<|||K|||

fI
∂|||K|||ξK

∂ξI

)
(5.7)

...

Thus, by induction on |||K|||, the coefficients fI are uniquely determined by ∆ if the sum in (5.6)
runs over ordered multi-indices I = (I0, I1) as used in lemma 5.11. In fact, a representation
of the form (5.6) does always exist so we obtain
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Proposition 5.12 ([35], 2.9.1) The O(U) module Diffs(O(U),O(U)) is free, a basis is

given by { ∂|||I|||

∂ξI
| I ∈ Np0 × {0, 1}q a multi-index s.t. |||I||| ≤ s}

Proof Uniqueness of the decomposition was already discussed. For the existence, we
follow the strategy used in the proof of proposition 4.38 in [8]. Given ∆ ∈ Diffs(O(U),O(U)),
we define its coefficients by setting ∆∅ = δ(1) and defining ∆I for |||I||| ≥ 1 recursively using
(5.7). The difference D := ∆−

∑
|||I|||≤s∆

I ∂
∂ξI

is then a differential operator of order ≤ s and
we have to show D = 0.
We claim that D vanishes on all monomials ξK for |||K||| ≤ s. Obviously, D(1) = ∆(1)−∆∅ =
0. For 0 < |||K||| ≤ s, we find using the definition (5.7)

D(ξK) = ∆(ξK)−∆I ∂
∂ξI

−
∑

|||I|||<|||K|||

∆I ∂|||I|||ξ
K

∂ξI

= ∆(ξK)− (−1)⌊|||K1|||/2⌋
(
∆(ξK)−

∑

|||I|||<|||K|||

fI
∂|||K|||ξK

∂ξI

)
(−1)⌊|||K1|||/2⌋ −

∑

|||I|||<s

∆I ∂|||I|||ξ
K

∂ξI

= 0

By corollary 5.8, this property extends to monomials of order > s so that by linearity, D
vanishes on all polynomials of the coordinate functions.
Finally, let f ∈ O(U) be an arbitrary superfunction and u ∈ U . We can choose a polynomial
p (of degree ≤ q + s) s.t. f − p ∈ Iu(U)q+s+1 (see [8], lemma 4.13 b)). By the product rule
5.9 and D ∈ Diffs(O(U),O(U)), we clearly have D(Iu(U)q+s+1) ⊂ Iu(U)q+1. D(p) = 0 then
implies D(f) = D(f − p) ∈ Iu(U)q+1 and since this is valid for all u ∈ U , we have D(f) = 0
by lemma 3.8.

�

We are now going to discuss the global structure of Diffs(O,O) by proving that the assignment

U 7→ Diffs(O(U),O(U))

defines a sheaf of O(U)-modules on X. One of the most important properties of differential
operators is that of locality:

Definition 5.13 Let U ⊂ X be an open set and A ∈ HomR(O(U),O(U)). Then A is a local
operator iff for all V ⊂ U open and f ∈ O(U), we have: ρUV (f) = 0 =⇒ ρUV (Af) = 0

In particular, a local operator A induces maps Ax : Ox −→ Ox of the stalks Ox at x ∈ U ,
given by [f ]x 7→ [Af ]x where f can always be chosen to be an element of O(U). As in the
case of differential operators on smooth manifolds, we have

Proposition 5.14 A differential operator ∆ ∈ HomR(O(U),O(U)) is local.

Proof Sketch We will follow the proof of [8], lemma 4.34. Let V ⊂ U and f ∈ O(U)
s.t. ρUV (f) = 0. Given x ∈ V , we can choose (see corollary 3.12) open neighbourhoods
Vx ⊂ Wx ⊂ V of x and a cutoff function ϕx ∈ O(U) satisfying Wx ⊂ V , ρUVx(ϕx) = 0 and
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ρU
U\Wx

(ϕx) = 1. We then also have ϕxf = f and the product rule (5.5) applied to ϕxf implies

ρUVx(∆(f)) = 0. This is true for every x ∈ V and the result follows from the sheaf properties
of O.

�

Consider now the sheaf HomR(O,O) which is defined by HomR(O,O)(U) = Hom(O|U ,OU ).
Here, the right hand side is the set of morphisms of sheaves between the restricted sheaves
O|U . It is well known that an element of A ∈ HomR(O(U),O(U)) is induced by an element
of Hom(O|U ,OU ) iff A is local10. This can be seen most easily in the sheaf space picture:
By locality we already have a map on stalks and it is straight forward to verify, that it is
also open and hence continuous (see also [62], 4.12). It is clear that the maps ∆x induced
by a differential operator ∆ (of order ≤ k) on stalks are also differential operators (of order
≤ k). Thus, a morphism glued from local data which are differential operators (of order ≤ k)
are differential operators (of order ≤ k) again and we obtain that Diffk(O,O) is a subsheaf
of HomR(O,O). In fact, an analogue of Peetre’s theorem should hold so that the sheaves
are equal but we will not discuss it. Taking into account proposition 5.12, we eventually
conclude:

Theorem 5.15 Diffs(O,O) is a locally free sheaf of O-modules.

Using proposition 5.6, the preceding results can be carried over immediately to differential
operators along morphisms:

Corollary 5.16 Let Φ : X −→ Y be a morphism of supermanifolds. Then the differential
operators of order ≤ s along Φ form a locally free sheaf.

5.3 The structure of higher points

In this chapter, we will determine the structure of the higher points of SC∞(X,Y ) where
X = (X̃,O) and Y = (Ỹ ,R) are two supermanifolds. Let Φ(n) ∈ SC∞(X,Y )(Pn), so by
definition Φ(n) : ϕ∗R −→

∧
n ⊗ O where ϕ : X̃ −→ Ỹ is the underlying smooth map. We

will write Φ(n) instead of Φ(n)∗ and omit the reference to open sets. Recall that Φ(n) is even
by definition. Denoting the generators of Λn by η1, . . . , ηn and choosing g ∈ ϕ∗R, we can
decompose Φ(n) as (cf. (5.3))

Φ(n)(g) =
∑

I⊂n

ηIΦ
(n)
I (g) where for I ⊂ n : Φ

(n)
I : ϕ∗R −→ O (5.8)

where n (and hence also I) are considered to be purely odd multi-indices in accordance with
the fact, that all ηi are odd. Since Φ(n) is an even object, we obviously have

|Φ
(n)
I | = |I| |Φ

(n)
I (g)| = |I|+ |g|

10In general, the assignment U 7→ Hom
R
(O(U),O(U)) can not be equipped with the structure of a sheaf

of R-vector spaces. If this were a sheaf and U1, U2 two disjoint, non empty open sets, then we would have
Hom

R
(O(U1 ⊔ U2),O(U1 ⊔ U2)) ∼= Hom

R
(O(U1),O(U1))⊕ Hom

R
(O(U2),O(U2)). This is in general not true.
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By definition, Φ(n) is a unital homomorphism of R-superalgebras and it is this property

which determines the structure of the coefficients Φ
(n)
I . From this and equation (5.8), we

immediately obtain

Lemma 5.17
(a) Φ

(n)
∅ is a morphism of superalgebras ϕ∗R −→ O, in other words, we have a morphism

of supermanifolds Φ
(n)
∅ : X −→ Y .

(b) For ‖I‖ > 0, we have Φ
(n)
I (1) = 0.

Hence, the structure of Φ
(n)
∅ is completely understood and it remains do discuss Φ

(n)
I for

‖I‖ > 0 in greater detail. To formulate the combinatorics, we will have to deal systematically
with decompositions of multi-indices and to this end, we introduce the following notation:
Let I ⊂ n be a multi-index and k ∈ N, then we write

I = I1 ⊔ · · · ⊔ Ik

if I is the union of pairwise disjoint subindices Ij ⊂ I which are allowed to be empty.
These partitions are ordered, that is, two partitions which only differ in the order of the Ij
are considered to be different. The partition itself is also denoted by (I1, . . . , Ik). Next, we
say that two partitions I1 ⊔ · · · ⊔ Ik and Ĩ1 ⊔ · · · ⊔ Ĩl of I are equivalent (or essentially equal),
denoted by (I1, . . . , Ik) ∼ (Ĩ1, . . . , Ĩl), if the nonempty subindices on both sides are the same
and appear in the same order. We can finally introduce the following notations:

Dn(I) := {(I1, . . . , Ik)|I = I1 ⊔ · · · ⊔ Ik, k ≤ n}

Dess
n (I) := Dn(I)/ ∼

L(I1, . . . , Ik) := k

Less((I1, . . . , Ik)) := #{Ij |Ij 6= ∅}

L±((I1, . . . , Ik)) := #{Ij | ‖Ij‖ is even (odd)}

We say that for D ∈ Dn(I), L
ess(D) is the essential length of D since only the number of

nonempty subindices is counted. Hence, this notion is also well defined for classes in Dess
n (I).

Also note that sign(I1, . . . , Ik), which was introduced before, only depends on the equivalence
class in Dess

n (I) and not on the partition itself, too. We have the following easy combinatorial
lemma:

Lemma 5.18 Let (I1, . . . , Ik) = D ∈ Dn(I) and 1 ≤ α, β ≤ k. Then

∏

α<β

(−1)‖Iα‖‖Iβ‖ = (−1)(
L−(D)

2 )

Proof There is a contribution of −1 to the product, if both, ‖Iα‖ and ‖Iβ‖, are odd
numbers. Hence the number of −1 occurring in the product is equal to the number of

(unordered) pairs of subindices which have an odd length, which in turn is given by
(L−(I)

2

)
.
�
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We can now start the discussion of the properties of the components Φ
(n)
I :

Lemma 5.19 Let I ⊂ n be a multi-index and g1, . . . , gn ∈ ϕ∗R. For Φ(n),Φ
(n)
I as before, we

have

ΦI(g1 · · · gn) =
∑

I1⊔···⊔In=I

sign(I1, . . . , In)
∏

1≤α<β≤n

(−1)|Iβ |(|Iα|+|gα|)
∏

k=1...n

Φ
(n)
Ik

(gk)

Proof By definition, we have Φ(n)(g1 · · · gn) = Φ(n)(g1) · · ·Φ
(n)(gn). Using the expansion

from (5.8), we obtain

∑

I⊂n

ηIΦI(g1 · · · gn) =

(∑

I1⊂n

ηI1ΦI1(g1)

)(∑

I2⊂n

ηI2ΦI2(g2)

)
· · ·

(∑

In⊂n

ηInΦIn(gn)

)

We now rearrange the product on the right side and collect all the terms contributing to the
ηI -summand. Clearly, these are precisely given by all the decompositions I = I1 ⊔ · · · ⊔ In.
Furthermore, each summand has to be rearranged in the way, that all η are to the left of

the Φ-factors. In other words, ηIβ has to be interchanged with all Φ
(n)
Iα

(gα) for α < β ∈ n,

yielding a factor
∏
α<β(−1)|Iβ |(|Iα|+|gα|) for each summand. Finally, each product of ηs is

rearranged as ηI1 · · · ηIn = ηIsign(I1, . . . , In). Collecting all the summands and signs proves
the lemma.

�

Basing on these product-type rules, we can now prove, that all ΦI are in fact differential
operators:

Theorem 5.20 Let Φ(n) be a n-point of SC∞(X,Y ) and let Φ
(n)
I (‖I‖ > 0) be one of the

coefficients of the expansion (5.8). Then Φ
(n)
I ∈ HomR(ϕ

∗R,O
Φ

(n)
∅

) is a linear super differen-

tial operator of degree ≤ ‖I‖ and of parity ‖I‖ mod 2 along the morphism Φn∅. In particular,

Φ
(n)
I are sections of a super vector bundle on X.

Proof It was already observed in lemma 5.17 that Φ
(n)
∅ is in fact a morphism and it is

also obvious from the definition, that all Φ
(n)
I are R-linear. It remains to verify the property

of being differential operator along Φ
(n)
∅ . We use the characterization of corollary 5.9, i.e for

g1, . . . , g‖I‖+1 ∈ ϕ∗R, we have to show

∑

J ‖I‖+1

(−1)‖J‖(−1)|I||J
c|osign(J, Jc)Φ

(n)
∅ (gJ )Φ

(n)
I (gJ

c

) = 0

taking into account that ϕ∗R acts on O via Φ
(n)
∅ and that there is no contribution for

J = ‖I‖ + 1 by lemma 5.17 b). Using the product formula of lemma 5.19 with n replaced by
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‖Jc‖, we have to show

0 =
∑

J ‖I‖+1

(−1)‖J‖(−1)|I||J
c|osign(J, Jc)Φ

(n)
∅ (gJ ) × (5.9)

{ ∑

I1⊔···⊔I‖Jc‖=I

sign(I1, . . . , I‖Jc‖)
∏

1≤α<β≤‖Jc‖

(−1)|Iβ |(|Iα|+|gJc
α
|)

∏

k=1...‖Jc‖

Φ
(n)
Ik

(gJc
k
)

}

Here Jck denotes the k-th entry of the multi-index Jc. Expanding this sum, all summands are

of the form ±Φ
(n)
I1

(g1) · · ·Φ
(n)
I‖I‖+1

(g‖I‖+1) where the multi-indices Ik are possibly empty. The

strategy of the proof is now to collect all those summands which belong to a specific com-
bination of multi-indices Ij and argument functions gk and show, that already the resulting
partial sum vanishes. If this holds for any combination of multi-indices and functions, then
obviously the total sum in (5.9) vanishes.

In a first step, we will simplify the product of factors (−1). To this end, letD := (I1, . . . , I‖Jc‖).
Note that

(−1)‖I‖|J
c|

∏

1≤α<β≤‖Jc‖

(−1)‖Iβ‖|gJc
α
| =

∏

1≤β≤α≤‖Jc‖

(−1)‖Iβ‖|gJc
α
|

Using this identity and lemma 5.18, we can compute

SD,J := (−1)‖J‖(−1)‖I‖|J
c|osign(J, Jc)Φ

(n)
∅ (gJ )sign(D)

∏

1≤α<β≤‖Jc‖

(−1)‖Iβ‖(‖Iα‖+|gα|)
∏

k=1...‖Jc‖

Φ
(n)
Ik

(gJc
k
)

= (−1)‖J‖osign(J, Jc)sign(D)(−1)(
L−(D)

2 )
∏

1≤β≤α≤‖Jc‖

(−1)‖Iβ‖|gJc
α
| Φ

(n)
∅ (gJ )

∏

k=1...‖Jc‖

Φ
(n)
Ik

(gJc
k
)

Now we rearrange the sums in (5.9) with respect to the class of index D in Dess
‖I‖+1(I) and

the length of these indices. We obtain

∑

J ‖I‖+1

∑

Z∈D‖Jc‖(I)

SD,J =

‖I‖+1∑

j=1

∑

J ‖I‖+1

‖Jc‖=j

∑

Z∈Dj(I)

SD,J

=
∑

E∈Dess
‖I‖+1

(I)

‖I‖+1∑

j=Less(E)

∑

J ‖I‖+1

‖Jc‖=j

∑

D∈E
L(D)=j

SD,J

After inserting the expression for SD,J , observing that sign(D) and L−(D) only depend on
D’s class in Dess

‖I‖+1(I) and using ‖J‖ = ‖I‖ + 1− ‖Jc‖, we obtain
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∑

E∈Dess
‖I‖+1

(I)

sign(E)(−1)(
L−(E)

2 )(−1)‖I‖+1 (5.10)

×

‖I‖+1∑

j=Less(E)

∑

J ‖I‖+1

‖Jc‖=j

∑

D∈E
L(D)=j

(−1)josign(J, Jc)
∏

1≤β≤α≤‖Jc‖

(−1)‖Iβ‖|gJc
α
| Φ

(n)
∅ (gJ)

∏

k=1...‖Jc‖

Φ
(n)
Ik

(gJc
k
)

Recalling that the multi-indices J are ordered by definition, it is clear that two partitions
of I, which are not essentially equal, can not produce the same combinations of Ij and
gk in the summands of (5.10). Thus, we fix a class E0 ∈ Dess

‖I‖+1(I), choose a multi-index

H = (h1, . . . , h‖H‖) ⊂ ‖I‖+ 1 of length ‖H‖ = Less(E0) and collect all the summands of the

form ±Φ
(n)
∅ (g‖I‖+1\H)Φ

(n)
I1

(h1) · · ·Φ
(n)
I‖H‖

(h‖H‖). We make the following observations:

(a) The summands in (5.10) depend only on combination of Ij and gk. To see this, we
set G := ‖I‖+ 1 \ H = (γ1, . . . , γ‖G‖) and arrange the products in an increasing or-

der Φ
(n)
∅ (gγ1) · · ·Φ

(n)
∅ (gγ‖G‖

)Φ
(n)
I1

(gh1) · · ·Φ
(n)
I‖H‖

(gh‖H‖
). This involves permuting gks with

Ijs and other gls. First, each gJc
α
is interchanged with all the Iβ for β < α which

each time gives a factor (−1)‖Iβ‖|gJc
α
|. Second, we clearly have osign(J, Jc)gJgJ

c
=

osign(G,H)gGgH so that we can read off the sign resulting from rearranging the func-
tions g. Summarizing, we find that for a fixed combination of Ij and gk, all the corre-
sponding summands have the form

(−1)josign(G,H)
∏

1≤β≤α≤‖Jc‖
Jc
α∈H

(−1)‖Iβ‖|gJc
α
| Φ

(n)
∅ (gγ1) · · ·Φ

(n)
I‖H‖

(gh‖H‖
) =: (−1)jsE0,H

Since the value of the product only depends on the choices of E0 (which encodes the
structure of the indices Ik 6= ∅) and H, i.e. on the choice of the combination of Ij and
gk, the same holds for the summands sE0,H .

(b) Given a combination of Ij and gk specified by E0 and H as above, a multi-index J does
not contribute to it if H * Jc. If H ⊂ Jc, then there is precisely one D ∈ E0 such
that the resulting summand contributes to the combination in question. By the first
observation, all these contributions for different Jc ⊃ H have in fact the same value.
Denoting j := ‖Jc‖, the number of these contributions is then given by

(
‖I‖+ 1− ‖H‖

‖Jc‖ − ‖H‖

)
=

(
‖I‖+ 1− Less(E0)

j − Less(E0)

)

because next to the mandatory elements ofH, Jc contains another ‖Jc‖−‖H‖ elements,
which are to be chosen out of ‖I‖+ 1 \H.



60 5 THE FINE STRUCTURE OF THE SPACE OF MORPHISMS

Using both observations, we can finally write down the contribution to (5.10) as well as (5.9)
of all the summands for some fixed E0 and H ⊂ ‖I‖+ 1 such that ‖H‖ = Less(E0):

‖I‖+1∑

j=Less(E)

(
‖I‖+ 1− Less(E0)

j − Less(E0)

)
(−1)jsE0,H

= sE0,H(−1)L
ess(E0)

‖I‖+1−Less(E0)∑

j=0

(−1)j
(
‖I‖+ 1− Less(E0)

j

)

= 0

The last equality follows immediately from the Binomial theorem. Since this is true for any
combination of Ij and gk, i.e. any choice of E0 and H, the total sum in (5.10) vanishes which
proves the theorem.

�

The preceding theorem discusses the decomposition of a given element of SC∞(X,Y )(Pn)
into its components which have been proven to be super differential operators. Conversely,
we can ask whether each family of super differential operators parameterized by multi-indices
I ⊂ n,

∆
(n)
I : ϕ∗R −→ O

of order ‖I‖ and parity ‖I‖ mod 2 defines an element of SC∞(X,Y )(Pn) by setting Φ(n) =∑
I η

I∆
(n)
I in analogy to equation (5.8). This is clearly not true, because by lemma 5.19, the

differential operators have to fulfill certain compatibility relations. However, it is not satis-
fying to describe higher points of SC∞(X,Y ) by families of differential operators of suitable
order and parity being subject to the relations of lemma 5.19. In fact, we just used these

relations to prove, that the coefficients Φ
(n)
I are differential operators so that imposing the

product rules of the lemma on a family of differential operators is redundant. We should
separate the property of being a differential operator from the algebraic compatibility rela-
tions from the lemma. As announced in section 5.1, this can be done using jets. We will give
a short review of the algebraic approach to this concept following [36], I.2, to complete the
discussion of higher points of SC∞(X,Y ).

As before, let A be a unital supercommutative R-super algebra and P a module over A. We
can then form the tensor product A ⊗R P and have an induced A-module structure on this
space by setting a′(a⊗ p) := (a′a)⊗ p. Following [55] 3.2.6 and below, we set

Definition 5.21
(a) For a′ ∈ A, let δa

′
: A⊗R P −→ A⊗R P the (R-linear) endomorphism defined by

δa
′
(a⊗ p) := a′a⊗ p− (−1)|a

′||a|a⊗ a′p
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(b) For k ∈ N0, the module of k-jets is defined by

Jetk(P ) := A⊗R P/Mk+1 where Mk+1 := spanA{δ
a0 · · · δak (x)|x ∈ A⊗R P, ai ∈ A}

(c) The natural map jetk : P −→ Jetk(P ) is defined by

jetk(p) := 1⊗ p+Mk+1

We will not discuss the relation to the classical concept of jet bundles (see e.g. [47] 11.46 ff),
but collect some important properties of Jetk(P ).

Proposition 5.22 Let P,Q be A-modules and k ∈ N0, then we have:

(a) jetk ∈ Diffk(P, Jetk(P ))0, in words: jetk is an even super differential operator of order
≤ k. Its image generates Jetk(P ).

(b) For each super differential operator ∆ ∈ Diffk(P,Q)i (i ∈ Z2), there is a unique mor-
phism σ(∆) ∈ Hom(Jetk(P ), Q)i such that the following diagram commutes:

P
jetk

//

∆
��

=
=

=
=

=
=

=
=

Jetk(P )

σ(∆)
{{www

ww
www

w

Q

This universal property characterizes Jetk(P ) up to isomorphism. Using the language
of definition 4.2, this statement says, that Jetk(P ) is a representing object for the
covariant functor Q 7→ Diffs(P,Q)0.

We are not giving the proof of this elementary properties but refer to [36] I.2. The map
σ(∆) ∈ Hom(Jetk(P ), Q) thus contains all the information about the ∆:

Definition 5.23 The map σ(∆) ∈ Hom(Jetk(P ), Q) is called the total symbol of the differ-
ential operator ∆ ∈ Diffk(P,Q).

As an application, we let l ≥ k and set ∆ = jetl : P −→ Jetl(P ) =: Q which is a differential
operator of order ≤ l by part a) of the preceding proposition. By proposition 5.22 (a), jetk

is also a differential operator of order ≤ l. Applying part b) of the proposition, we get the
following lemma

Lemma 5.24 For k ≤ l, there is a unique map jetl,k ∈ HomA(Jet
l(P ), Jetk(P )) such that

jetk = jetk,l ◦ jetl. For k ≤ l ≤ m, we furthermore have jetm,l ◦ jetl,k = jetm,k.

This statement can of course also be proven directly by observing that Ml ⊂ Mk (l ≥ k)
which leads to the desired map. A special situation arises, if we choose A = P , i.e. we look
at differential operators acting on functions. In this case, A⊗RA is not only a left (and right)
A-module but also an R-superalgebra by (a⊗ b) · (a′ ⊗ b′) = (−1)|b||a

′|(aa′)⊗ (bb′). Defining
the submodules Mk as above, we have
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Lemma 5.25 For all k ∈ N0, Mk ⊂ A ⊗R A is a graded ideal. In particular, Jetk−1(A) =
⊗RA/Mk carries a natural structure of a R-superalgebra and we have jetk(ab) = jetk(a)jetk(b).

Proof We only have to show that Mk is a graded ideal, the rest follows from the usual
construction of the quotient algebra and of the definition jetk(a) = [1 ⊗ a]. But it is easily
verified that

(a⊗ b)δc(a′ ⊗ b′) = (−1)(|a|+|b|)|c|δc((aa′)⊗ (bb′))

which proves that Mk is indeed an ideal. Moreover, it is easy to see that we have

(δc(a⊗ b))i =
∑

j+k+l≡i mod 2

δcj (ak ⊗ bl)

which proves that for x ∈Mk, we have x0, x1 ∈Mk, too. Thus, Mk is a graded ideal.
�

Remark 5.26 It should be noted, that the multiplicativity of jetk does not mean, that this
map is A-linear (and hence a 0-order operator). In detail, both relations read

jetk(bb′) = jetk(b)jetk(b′) ⇔ [1⊗ bb′] = [1⊗ b][1⊗ b′]

jetk(ab) = a jetk(b) ⇔ [1⊗ ab] = [a⊗ b]

Whereas the first relation is always true, the second relation precisely generates M1 so that
A-linearity of jetk is only satisfied for k = 0.

The splitting ∆ = σ(∆) ◦ jetk from proposition 5.22 (b) allows us in some sense to separate
∆’s property of being a differential operator from its algebraic properties. This is what we
need to discuss the question mentioned above, which families of differential operators define
elements of SC∞(X,Y ):

Let Φ(n) ∈ SC∞(X,Y )(Pn) and write Φ(n) =
∑

I η
IΦ

(n)
I as in (5.8). By theorem 5.20, we

know that Φ
(n)
I are differential operators of order ‖I‖ and parity ‖I‖ mod 2. We can now

factorize Φ
(n)
I =: σ(Φ

(n)
I ) ◦ jet‖I‖ where σ

(n)
I := σ(Φ

(n)
I ) ∈ Hom(Jet‖I‖(ϕ∗R),O)‖I‖ mod 2 is

the symbol of the differential operator, which contains in particular all information about the
parity. Since ‖I‖ ≤ n by definition, we can use the maps jetn,‖I‖ from lemma 5.24 to define
the following trivial extensions of all symbols to the space Jetn(ϕ∗R):

σ̂
(n)
I := σ(Φ

(n)
I ) ◦ jetn,‖I‖ : Jetn(ϕ∗R) −→ O and

Φ̂(n) :=
∑

I

ηI σ̂
(n)
I : Jetn(ϕ∗R) −→ Λn ⊗O (5.11)

Note that, by lemma 5.24, we obviously have

Φ̂ ◦ jetn =
∑

I

ηIσ(Φ
(n)
I ) ◦ jet‖I‖ = Φ(n) (5.12)
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By slight abuse of notation, we call Φ̂n the total symbol of Φ(n). It can be used to characterize
those families of differential operators, which give rise to a n-point of SC∞(X,Y )

Theorem 5.27 Every element Φ(n) ∈ SC∞(X,Y )(Pn) determines a unique morphism Φ
(n)
∅ :

ϕ∗R → O and a unique family of differential operators {Φ
(n)
I } of order ‖I‖ and parity ‖I‖

mod 2 along Φ
(n)
∅ , such that the total symbol Φ̂(n) defined in (5.11) is a homomorphism of

superalgebras. Conversely, given a morphism Ψ∅ : X −→ Y and a family {ΨJ}∅ 6=J⊂n of

differential operators along Ψ∅, such that Ψ̂ is a homomorphism of superalgebras, then (5.12)
defines a n-point of SC∞(X,Y ). These constructions are inverse to each other.

Proof For the first part, we only have to prove that Φ̂(n) ∈ HomSAlg(Jet
n(ϕ∗R),Λn⊗O).

Since the parity of Φ
(n)
I is given by ‖I‖ mod 2, it is clear that Φ̂ is preserves the grading.

Choosing elements jetn(f), jetn(g) ∈ Jetn(ϕ∗R) and using lemma 5.25 and equation (5.12),
we calculate

Φ̂(n)(jetn(fg)) = Φ(n)(fg) = Φ(n)(f)Φ(n)(g) = Φ̂(n)(jetn(f))Φ̂(n)(jetn(g))

where we used the fact, that Φ(n) is a homomorphism. Since the elements jetn(f) generate
Jetn(ϕ∗R), we obtain that Φ̂(n) is a homomorphism.
Conversely, given Ψ∅ and the family {ΨI}, we set

Ψ(n) := Ψ̂(n) ◦ jetn : ϕ∗R −→ Jetn(ϕ∗R) −→
∧
n⊗O

which is a homomorphism of superalgebras because jetn and Ψ̂(n) are. Finally, the decompo-
sition into components is clearly unique since {ηI}I⊂n is a basis of the Grassmann algebra.
This proves that both constructions are inverse to each other.

�

5.4 Application to the Batchelor picture

In the Batchelor picture (see theorem 3.9), we can use the theory derived in the previous
section to obtain a description of morphisms using only notions from ordinary smooth differ-
ential geometry. The results are not crucial for subsequent sections, so the discussion will be
less detailed. The author is grateful to Gregor Weingart for drawing attention to this point
of view.

Let E −→ M and F −→ N two vector bundles over smooth manifolds which define the
supermanifolds X := (M,Γ(−,

∧
•E)) and Y := (N,Γ(−,

∧
•F )) in the Batchelor picture.

The specification of the bundles E,F equips X and Y with the following extra structure:

(a) Since Γ(M,
∧0E) = C∞(M), we have a canonical function factor.

(b) Since Γ(M,
∧1E) ∼= J /J 2 where J ⊂ Γ(M,

∧•E) is the ideal of nilpotent elements,
we have a canonical identification of the quotient with an actual subspace of the ring
of superfunctions. Moreover, the Z-grading of Γ(

∧•E) ∼=
⊕

k Γ(
∧k E) induces the

Z2-grading of the super algebra.
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It can now be used to discuss the structure of ordinary morphisms Φ : X −→ Y , i.e. of
0-points of SC∞(X,Y ). By definition, Φ is given by ϕ ∈ C∞(M,N) and a morphism

Φ∗ : ϕ∗Γ(−,
∧• F ) −→ Γ(−,

∧•E)

of sheaves of superalgebras. Since it preserves the Z2-grading, we clearly have

Φ(ϕ∗Γ(−,
∧ev F )) ⊂ Γ(−,

∧ev E) Φ(ϕ∗Γ(−,
∧odd F )) ⊂ Γ(−,

∧oddE) (5.13)

In particular, for f ∈ C∞(N) ⊂ Γ(N,
∧ev F ), the image Φ(f) will in general have a non-

trivial component in Γ(M,
∧≥2E). Hence the fact that Φ(fσ) = Φ(f)Φ(σ) for f ∈ C∞(M)

and σ ∈ Γ(N,
∧• F ) does not imply, that Φ is given by a homomorphism of smooth vector

bundles ϕ∗
∧• F −→

∧•E . Its structure is more complicated and again involves differential
operators now acting on smooth functions in C∞(N) and smooth sections of F , respectively.

To see this, it is sufficient to work locally and to choose a basis of local sections {ei}i=1,...,rk(E)

of E which corresponds to a choice of an odd coordinate system. Locally, the supermanifold
X now has the form X ∼=M × Prk(E) and using the expansion

Φ(σ) =
∑

I⊂rk(E)

ΦI(σ)e
I for σ ∈ Γ(

∧• F ),

theorem 5.20 implies that the maps ΦI are differential operators acting on Γ(N,
∧• F ) with

values in C∞(M) of order ‖I‖. However, more can be said. In particular, the value for the
order of the differential operators is not optimal, Φ is already determined by operators of
lower order (see proposition 5.29).We need the following lemma to get a refined description:

Lemma 5.28 Let ∆ : Γ(
∧• F ) −→ Γ(

∧•E) be a differential operator of order ≤ k along
ϕ :M −→ N and e ∈ Γ(

∧•E). Then, the map

∆ · e : Γ(
∧• F ) −→ Γ(

∧•E) ∆ · e(σ) := (−1)|e||σ|(∆(σ))e

is also a differential operator of order ≤ k. The same holds for C∞(N)-submodules of
Γ(
∧• F ).

Proof For f ∈ C∞(N) and σ ∈ Γ(
∧• F ), we find

(δf (∆ · e))(σ) = (−1|σ||e|)
(
f∆(σ)e)−∆(fσ)e

)
= (−1|σ||e|)

(
(δf∆)(σ)e

)
=
(
(δf∆) · e

)
(σ)

taking into account that f is even. Now ∆ is of order ≤ k if δf0 · · · δfk∆ = 0 for all
fi ∈ C∞(N). But the previous computation then clearly implies that δf0 · · · δfk(∆ · e) = 0,
which means that ∆ · e is a differential operator of order ≤ k, too.

�

We can now discuss the refined structure of Φ taking advantage of the extra structure given
by the choice of Batchelor bundles. Recall that Diffk(ϕ∗Γ(F ),Γ(E)ϕ)) denotes the module
of differential operators along ϕ acting on sections of F with values in sections of E.
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Proposition 5.29 Let (M,Γ(−,
∧•E)) and (N,Γ(−,

∧• F )) be supermanifolds in the Batch-
elor picture and r := ⌊rk(E)/2⌋. The morphisms Φ : (M,Γ(−,

∧•E)) −→ (N,Γ(−,
∧• F )) of

supermanifolds are in one to one correspondence with triples (ϕ,D0,D1) where ϕ :M −→ N
is a smooth map and D0,D1 are differential operators along ϕ,

D0 ∈ Diffr(ϕ∗C∞
N ,Γ(

∧ev≥2E)ϕ) D1 ∈ Diffr(ϕ∗Γ(F ),Γ(
∧oddE)ϕ)

satisfying the following compatibility conditions for f, g ∈ C∞
N and σ ∈ Γ(F ):

D0(fg) = ϕ∗fD0(g) +D0(f)ϕ
∗g +D0(f)D0(g)

D1(fσ) = ϕ∗fD1(σ) +D0(f)D1(σ) (5.14)

More precisely, the correspondence is given by

ϕ ∼= pr0 ◦Φ|C∞
N

D0
∼= prev ≥2 ◦ Φ|C∞

N
D1

∼= Φ|Γ(F )

where prk : Γ(
∧•E) ։ Γ(

∧k E) are the obvious projections.

Proof From the universal property of the exterior algebra (see [6], III.7.1.1) and the fact
that morphisms preserve the grading, it follows that Φ is determined by its restriction to
C∞(N)⊕Γ(F ) = Γ(

∧≤1 F ) ⊂ Γ(
∧• F ). Conversely, a map ϕ : Γ(

∧≤1 F ) −→ Γ(
∧•E) which

is multiplicative in the sense

ϕ(fg) = ϕ(f)ϕ(g) ϕ(fσ) = ϕ(f)ϕ(σ) (5.15)

for f ∈ C∞
N , σ ∈ Γ(F ) extends uniquely to a multiplicative map Γ(

∧• F ) −→ Γ(
∧•E). By

(5.13), Φ|Γ(
∧≤1 F ) can be decomposed into ϕ∗ : C∞

N −→ C∞
M , D0 : C∞

N −→ Γ(
∧ev≥2E) and

D1 : Γ(F ) −→ Γ(
∧oddE). It is the easy to see that the compatibility conditions (5.14) are

equivalent to the multiplicativity property. Moreover, ϕ : C∞
N −→ C∞

M is multiplicative and
hence defines a smooth map M −→ N .
It remains to show that property (5.15) implies that D0 and D1 are differential operators of
order r along ϕ. Writing Φ =

∑
I ΦIe

I and recalling that r = ⌊rk(E)/2⌋, we can rearrange
this sum by factoring out even powers eI and we obtain

Φ =
∑

J⊂2r

(AJ +BJ)e
J

where AJ has values in C∞
M and BJ in Γ(E) respectively. The symbols {eJ |J ⊂ 2r} form a

basis of the algebra Λev2r. As a vector space, the latter is isomorphic to Λr but since it only
contains even elements, this is not true on the level of algebras. Thus we can not apply theo-
rem 5.20 literally but we have to adapt the proof by removing all signs arising from Z2-parity
only keeping those occurring in the definition of even differential operators. We will not give
the details here but only conclude that coefficients (AJ +BJ) are even differential operators
of order ≤ r since we do the expansion w.r.t. Λr (without parity !). Since both summands
of Γ(

∧≤1E) = C∞
M ⊕ Γ(E) are C∞

M -submodules, AJ and BJ are already differential opera-
tors separately. Finally, we have D0 =

∑
‖J‖≥2AJe

J and D1 =
∑

J BJe
J on the coordinate



66 5 THE FINE STRUCTURE OF THE SPACE OF MORPHISMS

neighbourhood so that D0 and D1 are differential operators of order ≤ r along ϕ by lemma
5.28.

�

We close this subsection with slightly different points of view:

Remark 5.30
(a) It is possible to include ϕ as a component of a new operator D′

0 with values in Γ(
∧ev E),

so that ϕ is given implicitly by it. However, the concept seems to be more satisfying if
ϕ is recorded separately and D0 and D1 are considered to be corrections to it arising
from the superworld.

(b) It is possible to omit restricting Φ to Γ(
∧≤1 F ). In that case, Φ is described by the map

ϕ and two differential operators D0 : Γ(
∧ev F ) −→ Γ(

∧ev≥2E), D1 : Γ(
∧odd F ) −→

Γ(
∧oddE) satisfying a condition similar to (5.14).

(c) As in theorem 5.27 and (5.12), we can factor the differential operators D0 and D1 over
Jetr(X̃) and Jetr(F ), respectively. In this cases, the compatibility relations (5.14)
translate into a similar properties for the total symbols σ0 and σ1.

5.5 Component formalism

Theorems 5.20 and 5.27 provide a complete descriptions of n-points of SC∞(X,Y ) for arbi-
trary supermanifolds X,Y and n ∈ N0. However, the result has certain drawbacks:

(a) The components appearing in the composition are differential operators of arbitrary
order. In contrast to vector fields (i.e. differential operators of order ≤ 1 without
0.-order term), these higher order terms are difficult to use in the tensor calculus of
differential geometry. For instance, it is not immediately clear how to contract these
fields with curvature tensors.

(b) To construct a n-point of SC∞(X,Y ), we not only have to construct a family of differ-
ential operators but we also have to ensure, that the corresponding symbol maps define
a homomorphism of super algebras. These constraints are in general quite complicated.

One possible approach, which actually resolves both drawbacks, is the introduction of com-
ponent fields of a morphism (or superfield in physicists’ terminology). This idea has been
used for a long time in mathematical and physical literature (see [68], III and IV, [7], 2.4.4 or
[11] §1.2) Roughly speaking, it consists in fixing some odd coordinate system and performing
a sort of Taylor expansion with respect to the powers of the odd coordinates. The compo-
nent fields are the resulting coefficients, obtained by differentiating the morphism w.r.t. odd
coordinates of X ( not w.r.t. odd parameters in Λn). On a general curved, topologically non-
trivial supermanifold, we can not just use ordinary derivatives but have to take into account
covariant derivatives w.r.t. some connection, this is the approach used in [11]. We will adapt
this concept to points of SC∞(X,Y ) and prove, that each point uniquely determines a set of
component fields and vice versa.
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To define the components in a precise way, we fix a connection ∇ on TY . Moreover, we
choose odd coordinates on X which means that in general, we have to work locally. To
simplify notation, we may assume that we have a p|q-dimensional supermanifold X with
globally defined odd coordinates θ1 . . . , θq ∈ O(X)1 which remain fixed in this section. In the
Batchelor picture, this means that we describe the supermanifold by a trivializable vector
bundle E −→ X̃ and θ1, . . . , θq define a trivialization of it. Furthermore, denote by ι : X̃ −→
X the canonical embedding from 3.6 which is given by the map setting all θα to zero. Since
we have to deal with higher points of X and SC∞(X,Y ), it is convenient to extend ι to∧
•Rn ⊗OX by acting as the identity on the factor

∧
•Rn:

ι : Pn × X̃ −→ Pn ×X ι∗ : Λn ⊗OX −→ Λn ⊗ C∞(X̃)

We now define the components in analogy to [10]. To this end, we introduce the notation I :=
(ik · · · , i1) for an arbitrary multi-index I = (i1 · · · ik) and abbreviate ∇Φ

I := ∇Φ
∂

∂θi1

· · · ∇Φ
∂

∂θik

.

The components are now defined as follows:

Definition 5.31 Let X,Y be supermanifolds and n ∈ N0. The components of an element
Φ(n) ∈ SC∞(X,Y )(Pn) (w.r.t to the fixed odd coordinates and the connection ∇) are given
by

ϕ(n) := ι∗Φ(n)

ψ(n)
α := ι∗dΦ(n)( ∂

∂θα ) for (α = 1, . . . , q)

ψ
(n)
A := ι∗∇Φ(n)

A\α1
dΦ( ∂

∂θα1 ) for A = (α1, . . . , αk) ⊂ q, ‖A‖ > 1.

A similar definition may be used for vector fields along an element of SC∞(X,Y )(Pn):

Definition 5.32 Let Φ(n) ∈ SC∞(X,Y ) and let V be a vector field along Φ(n) (i.e. a section
of Φ(n)∗TY ). Then, the components of V (w.r.t. the fixed coordinates and the connection ∇)
are defined as follows:

V∅ := ι∗V

VA := ι∗∇Φ(n)

A
V for A ⊂ q, ‖A‖ > 0

From the discussion in section 3.3 and 3.6, we immediately obtain

Lemma 5.33 Let Φ(n) and V as in definitions 5.31 and 5.32. Then ϕ(n) is a morphism of
supermanifolds from X̃ to Y and all components ψα, ψA and VA are vector fields along ϕ.

We will start by proving the correspondence between vector fields and and their components
because it will be convenient to use it in the proof for the morphisms. To do so, we need to
introduce a right inverse j for ι. We choose a function factor C ⊂ OX and define j∗ using
the inclusion of the rings of functions:

j∗ : Λn ⊗ C →֒ Λn ⊗O
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Recall that the choice of a function factor is by definition the choice of an embedding
C∞(X̃) ∼= C →֒ OX , which is, in contrast to the projection O −→ C∞(X̃), not naturally
given. Hence, j∗ must invoke this choice, however, the statement we prove is independent
of it. Having fixed odd coordinates {θ1 . . . , θq} and the function factor C, we write X̃p|q

for the supermanifold specified by the function algebra C[θ1, . . . , θq], which is isomorphic to
C∞(X̃)⊗Λ•Rq. We can also define restriction and extension to a subset I = (i1, . . . , ik) ⊂ q
of the odd coordinate directions:

ιI : O = C[θ1, . . . , θq] −→ C[θi
c
1 , . . . , θi

c
l ] where Ic = (ic1, . . . , i

c
k)

jI : C −→ C[θi1 , . . . , θik ] (5.16)

Clearly, Λn ⊗ O becomes an Λn ⊗ C module via j∗ and since C ⊂ O0, we may commute
elements of C with any other elements. In analogy to the operation

∧
•Rn ⊗ C∞(X̃) ⊗ι∗ −,

which restricts a vector field along Φ ∈ SC∞(X,Y )(Pn) to a vector field along Φ0 := ι∗Φ, we
can use j∗ to extend a vector field along Φ0 to one along Φ. To this end, we set

j∗Φ∗
0TY :=

∧
•Rn ⊗ Cθ1 · · · θq ⊗j∗ Φ

∗
0TY

This construction obviously generalizes to the case when we only extend by some odd direc-
tions to C[θi1 , . . . , θik ].

Lemma 5.34 We have j∗Φ∗
0TY

∼=
∧
•Rn ⊗ Cθ1 · · · θq ⊗j∗Φ0 TY . Moreover, we have a well

defined embedding

j∗Φ∗
0TY −→ Φ∗TY θ1 · · · θqf i ⊗j∗Φ∗

0

∂
∂yi

7→ θ1 · · · θqf i ⊗Φ
∂
∂yi

In particular, sections of j∗Φ∗
0TY can be canonically identified with vector fields along Φ and

we will always do so.

Proof Since
∧
•Rn⊗Cθ1 · · · θq is a

∧
•Rn⊗C-supermodule, we can form the product given

in the definition. The transitivity rule from proposition 2.25 (a) yields the first isomorphism.
To prove the existence of the embedding, we consider

Λn ⊗ Cθ1 · · · θq × TY −→ Φ∗TY (f i, ∂
∂yi

) 7→ f i ⊗Φ
∂
∂yi

(5.17)

For g ∈ Λn⊗Cθ
1 · · · θq and f ∈ R, we clearly have gΦ∗(f) = gj∗Φ∗

0(f) since all θ
α already ap-

pear in g. Thus, the map in (5.17) isR-bilinear and induces a map on Λn⊗Cθ
1 · · · θq⊗j∗Φ∗

0
TY .

Since { ∂
∂yi

} is a local basis for the module TY , it easily follows that this map is injective.
�

Remark 5.35 Note that the preceding embedding is well defined because all odd coordinates
necessarily appear in the elements of Λn ⊗ Cθ1 · · · θq. There is no corresponding embedding
of Λn ⊗ Cθi1 · · · θik for k < q.

In the next lemma, we collect some simple rules for calculation.
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Lemma 5.36 Let V ∈ Φ∗
0TY and I, J ⊂ q.

(a) We have ιIιJ = ιJ ιI = ιI∪J .

(b) If I ∩ J = ∅, we can identify the following elements in θI∪JΦ∗
0TY :

θI ⊗jI (θ
J ⊗jJ V ) ∼= θIθJ ⊗I∪J V ∼= (−1)‖I‖‖J‖θJ ⊗jJ (θI ⊗jI V )

(c) We have ι∗I∇
jIΦ0

I
(θI ⊗jI V ) = V

(d) For I ∩ J = ∅ and W ∈ j∗JΦ
∗
0TY , we can identify

θI ⊗jI ∇
jJΦ0

J W ∼= (−1)‖I‖‖J‖∇jI∪JΦ0

J (θI ⊗jI W )

Proof Part a) and b) are obvious. Part c) follows from the fact, that terms containing
θs are set to zero by ι∗I . Hence, applying Leibniz rule, the only term which contributes to
the left hand side is the one where all the derivatives act on the θI-factor. Applying ι∗I then
clearly gives X. The last statement is obtained by observing, that differentiating θI w.r.t.
one of the θj-directions (j ∈ J) is always zero since I ∩ J = ∅. More precisely, writing
Y = Y m ⊗jJΦ0

∂
∂y, and assuming for simplicity ‖J‖ = 1, J = (α), we arrive at

∇
j(I,α)Φ0
α (θI ⊗jI Y ) = (−1)‖I‖θI ∂Y

m

∂θα ⊗j(I,α)Φ0
∂

∂ym+

(−1)‖I‖+‖I‖|yn|+|Ym|(1+|yn|)θIY m∂j(I,α)Φ
n
0

∂θα ⊗j(I,α)Φ0 ∇yn
∂

∂ym

Since
∂(j(I,α)Φ

n
0 )

∂θα = jI
∂(jαΦn

0 )
∂θα , lemma 5.36 b) shows, that this expression equals (−1)‖I‖θI ⊗jI

∇jαΦ0
α Y . The general statement the follows by induction on ‖J‖.

�

We can now state and prove the reconstruction theorem for vector fields:

Theorem 5.37 Let Φ(n) ∈ SC∞(X,Y ) and {WI}I⊂q a family of vector fields along ϕ(n) :=

ι∗Φ(n). Then, there exist a unique vector field V along Φ(n), such that its components VI ,
defined in 5.32, are given by the family {WI}. More precisely, we have the following recon-
struction formula:

V =
∑

I⊂q

∇Φ
Ic

(
θ1 · · · θq ⊗j∗ ι

∗∇Φ
I
X

)
sign(Ic, I) (5.18)

Proof We proceed by induction on the odd dimension q of X. The case q = 0 is trivial.
In the case q = 1, it is clear that sign(Ic, I) = 1, so we have to prove

V = ∇Φ
θ (θ ⊗j∗ ι

∗V ) + θ ⊗j∗ ι
∗(∇Φ

θX) (5.19)

W0 = ι∗(∇Φ
θ (θ ⊗j∗ W0) + θ ⊗j∗ W1) (5.20)

W1 = ι∗∇Φ
θ (∇

Φ
θ (θ ⊗j∗ W0) + θ ⊗j∗ W1) (5.21)
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for any W0,W1 ∈ ϕ(n)∗TY . We omit the proof of (5.19), it can be easily verified by using
the identification of lemma 5.34 and the definition of ∇Φ. (5.20) follows immediately from
lemma 5.36 (c). To prove the third part, we denote by O(θ) an expression, which contains a
factor θ. Using coordinate expansion, we compute:

ι∗∇Φ
θ (∇

Φ
θ (θ ⊗j∗ W0) + θ ⊗j∗ W1

= ι∗
(
(−1)|y

k ||V i
0 | ∂Φ

k

∂θ W
i
0 ⊗Φ ∇k

∂
∂yi

+ (−1)|y
k ||θV i

0 | ∂
∂θ (

∂Φk

∂θ θV
i
0 )⊗Φ ∇k

∂
∂yi

+ ∂
∂θ (θV

j
1 )⊗Φ

∂
∂yj

+O(θ)
)

= ι∗(W j
1 ⊗ϕ(n)

∂
∂yj

) =W1

To do the induction step q → q + 1, recall that we have a fixed set of global odd coordinates
and that all tensor products used in this section are super tensor products. Thus, we have

Λn ⊗O ∼= Λn ⊗ C[θ0, . . . , θq] ∼= Λn+q ⊗ C[θ0] (5.22)

This means that we can view Λn ⊗O either as function algebra of Pn ×X = Pn × X̃p|1+q or
of Pn+q × X̃p|1 as long as the coordinates {θα} are not changed. To the last configuration,
we can apply (5.19) since this equation holds for arbitrary n. We will first prove (5.18) and
then show, that the components are indeed given by the prescribed vector fields.
Denoting by ι0 : Λn ⊗C[θ0, . . . , θq] −→ Λn ⊗C[θ1, . . . , θq] the restriction map w.r.t. the first
odd coordinate θ0 and similarly, by j0 : Λn⊗C[θ1, . . . , θq] →֒ Λn⊗C[θ0, . . . , θq] the inclusion,
(5.19) yields

V = ∇Φ
θ0(θ

0 ⊗j∗0
ι∗0V ) + θ0 ⊗j∗0

ι∗0∇
Φ
θ0V (5.23)

The two expressions ι∗0X and ι∗0∇
Φ
θ0X are vector fields along ι∗0Φ : R −→ Λn ⊗ C[θ1, . . . , θq]

and we can apply the induction hypothesis to them:

ι∗0V =
∑

J⊂q

∇ι0Φ
Jc

(
θ1 · · · θq ⊗j∗q ι

∗
q∇

ιqΦ

J
V

)
sign(Jc, J)

ι∗0∇
Φ
θ0V =

∑

J⊂q

∇ι0Φ
Jc

(
θ1 · · · θq ⊗j∗q ι

∗
q∇

ιqι0Φ

J
ι∗0∇

ι0ΦV

)
sign(Jc, J)

Here, ιq and jq denote the projection and embedding for the remaining odd variables θ1, . . . , θq.
Inserting both expressions in (5.23), and simplifying using lemma 5.36, we obtain

V =
∑

J⊂q

∇Φ
(0,Jc)

(
θ0 . . . θq ⊗j∗ ι

∗∇Φ
J
V

)
sign(Jc, J)(−1)‖J

c‖

+
∑

J⊂q

∇Φ
Jc

(
θ0 . . . θq ⊗j∗ ι

∗∇Φ
(J,0)

V

)
sign(Jc, J)(−1)‖J

c‖

The first part of this sum corresponds to all the indices I ⊂ {0, . . . , q} not containing 0.
Setting I := J , we have Ic = (0, Jc) and sign(Ic, I) = (−1)‖J

c‖sign(Jc, J). Analogously, the
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second part contains precisely those indices I containing 0 and we find the same relations for
the signs. This proves the formula.
Let now {WI}I⊂{0,...,q} be vector fields along ϕ

(0). By induction hypothesis, we obtain unique
vector fields W’, W” along ι0Φ, given by (5.18), such that their components are given by
{WJ |J ⊂ q} and {W(0,J)|J ⊂ q} respectively. Viewing W ′,W ′′ as vector fields on Pn+q × X̃

by the identification (5.22), we obtain a unique vector field on Pn × X̃p|1+q ∼= Pn+q × X̃p|1

along Φ:

W := ∇Φ
θ0(θ

0 ⊗j0 W
′) + θ0 ⊗j0 W

′′ =
∑

I⊂{0,...,q}

∇Φ
I (θ

0 · · · θq ⊗j WI)

By (5.20) and (5.21), its components, considered as a vector field on Pn+q× X̃
p|1, areW ′ and

W ′′. Using lemma 5.36, this leads by construction of W to the following components w.r.t
the coordinates {θ0, . . . , θq} for J ⊂ q:

ι∗∇Φ
J
W = ι∗q∇

ι0Φ

J
ι∗0W = ι∗q∇

ι0Φ

J
W ′ =WJ

ι∗∇Φ
(J,0)

= ιq∇
ι0Φ

J
ι∗0∇

Φ
θ0W = ι∗q∇

ι0Φ

J
W ′′ =W(J,0)

This shows that the components of W are given by the prescribed {WI} and finishes the
proof.

�

We will now use the reconstruction theorem for vector fields to prove the corresponding result
for points of SC∞(X,Y ):

Theorem 5.38 Every Φ ∈ SC∞(X,Y ) gives rise to components defined in 5.31, which
uniquely determine Φ. Moreover, for any morphism Ψ∅ and vector fields ΨI along Ψ∅ (∅ 6=
I ⊂ q), there is an element Φ ∈ SC∞(X,Y ) such that its components are given by {Ψ∅,ΨI}.

Proof We will prove the statement using induction on q. The case q = 0 is again trivial.
Before doing the induction step q → q + 1, we will discuss the central part of the argument
that will be used.
For g ∈ R, we decompose Φ(g) with respect to powers of the coordinates {θ0, . . . , θq} (this
decomposition is similar but not equal to that in (5.8)):

Φ(g) =
∑

I⊂{0...q}

θIΦI(g) =
∑

I⊂q

θIΦI(g) +
∑

I⊂q

θ0θIΦ0,I(g)

= j0(ι0Φ(g)) + θ0 ⊗j0 ι
∗
0dΦ(

∂
∂θ0 )(g) (5.24)

The last equality follows directly from the definition of dΦ( ∂
∂θ0 ). Thus, Φ is decomposed in

j0 ∗ ι0 ∗Φ and θ0⊗j∗0
ι∗0dΦ(

∂
∂θ0 ), which is a vector field along j0 ∗ ι0 ∗Φ and even by definition.

Consequently, ι∗0dΦ(
∂
∂θ0

) is a vector field along ι0 ∗Φ and odd. Conversely, given a morphism

Φ0 : X̃
p|q−1 −→ Y and an odd vector field ξ ∈ Φ∗

0TY , we can form

Φ′ : R −→ Λn ⊗C[θ0, . . . , θq] Φ′(g) := j∗1Φ0(g) + θ0 ⊗j0 ξ(g) (5.25)



72 5 THE FINE STRUCTURE OF THE SPACE OF MORPHISMS

Using the nilpotency of θ0, it is straightforward to verify, that Φ′(fg) = Φ′(f)Φ′(g) which
shows that Φ′ defines an element of SC∞(X,Y )(Pn).

We now do the induction step: Let Φ : X̃p|1+q −→ Y be decomposed into j0 ∗ ι0 ∗ Φ and
θ0 ⊗j0 ι

∗
0dΦ(

∂
∂θ0

) as in (5.24). By induction hypothesis, ι∗0Φ : X̃p|q −→ Y (and hence j∗0 ι
∗
0Φ)

is determined by all the components of the form

ι∗qι
∗
0Φ = ι∗Φ (5.26)

ι∗qd(ι
∗
0Φ)(

∂
∂θα ) = ι∗dΦ( ∂

∂θα ) where α = 1, . . . , q

ι∗q∇
ι0Φ

J\j1
ι∗0dΦ(

∂
∂θj1

) = ι∗∇Φ
J\j1

(dΦ( ∂
∂θj1

)) where J = (j1, . . . , jk) ⊂ q

where we have used lemma 5.36 to rearrange terms. By theorem 5.37, the vector field θ0 ⊗j0

ι∗0dΦ(
∂
∂θ0

) along Φ is determined by its components ι∗∇Φ
J
ι∗0dΦ(

∂
∂θ0

) for J ⊂ {0, 1, . . . , q}.
Here, we only have to take into account the case where 0 ∈ J since all other components are
zero by definition of ι∗, so we may write J = (0, I). Hence, the vector field is determined by
the components

ι∗(θ0 ⊗j0 ι
∗
0dΦ(

∂
∂θ0

)) = ι∗dΦ( ∂
∂θ0

) (5.27)

ι∗∇Φ
(J,0)

(θ0 ⊗j0 ι
∗
0dΦ(

∂
∂θ0

)) = ι∗∇Φ
J
dΦ( ∂

∂θ0
) where J ⊂ q

Together, (5.26) and (5.27) contain precisely the components of Φ as defined in definition
5.31.
Conversely, given {ΨI}I⊂{0,1,...}, by induction hypothesis, the components {ΨI}I⊂q form Φ′ ∈

SC∞(X̃p|q, Y )(Pn). The remaining components are of the form ΨI = Ψ(0,J) and vector fields
along Ψ∅ = ι∗qΦ

′. Since J ⊂ q, this family of vector fields define a unique vector field Φ′′

along Φ′ by theorem 5.37. Thus, in accordance with (5.25), we can define an element of
SC∞(X̃p|1+q, Y )(Pn) by

Φ := j∗0Φ
′ + θ0 ⊗j0 Φ

′′

It remains to show that the components ΦI , obtained from (5.26) and (5.27), are in fact given
by {ΨI}I⊂{0,1,...,q}. For 0 /∈ I, these are obviously given by the corresponding components of
Φ′, which in turn are given by {ΨI}I⊂q by induction. For I = (0, J), we obtain the compo-

nents ι∗∇Φ
(J)dΦ(

∂
∂θ0

) = ι∗q∇
Φ′

J Φ′′ and these are precisely the terms {ΨI}0∈I by construction
and theorem 5.37. This completes the proof.

�

5.6 Components on general supermanifolds

So far, component fields have been introduced w.r.t. globally defined odd coordinates, in
other words, we assumed that “the” Batchelor bundle is globally trivializable (this condition
clearly does not depend on the specific choice of the bundle). To be able to apply the com-
ponent formalism for an arbitrary supermanifold X = (X̃,O), we may work on coordinate
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neighbourhoods U ⊂ X̃ and try to obtain global statements or globally well defined objects
(e.g. by glueing) at the end. However, this is not a promising approach to solve variational
problems. Even the existence of closed geodesics is usually proven by global variational meth-
ods (cf. section 6.2), it is in general impossible to obtain these results by solving the geodesic
equation locally and gluing the segments to obtain a closed geodesic. Thus, we proceed in a
different fashion: We enlarge the supermanifold X to a suitable X where the latter admits
global odd coordinates. Then we discuss and solve the problem on X and restrict back to
X at the end. Here we will only discuss the foundations and work out the details for the
variational problems in later chapters.

We need the following well known result (see e.g. [31], III.5.7 and III.5.8 for the topological
case and [22], 2.2.2 for an argument in the smooth complex case):

Theorem 5.39 Let M be a smooth manifold and E −→ M a K-vector bundle on M (K =
R,C). Then there exist a K-vector bundle E′ −→ M such that the vector bundle E ⊕ E′ is
trivializable.

Given a supermanifold X = (X̃,O), we choose a Batchelor bundle E −→ X̃ and denote
the (non-canonical) associated superdiffeomorphism by ΦE : (X̃,Γ(

∧•E)) −→ X. Using
theorem 5.39, we furthermore choose an inverse bundle E′ −→ X̃ and defined the enlarged
supermanifold by

X := (X̃,Γ(
∧•(E ⊕ E′))) (5.28)

We now have a well defined map of vector bundles of rank 2rk(E)+rk(E′)

∧•E ⊗
∧•E′ −→

∧•(E ⊕ E′) (e⊗ e′) 7→ e ∧ e′

It is easily seen to be injective by inserting elements of a basis and since the ranks of the
bundles on the left and the right hand side are equal, this map is an isomorphism. Moreover,
if ⊗ denotes the super tensor product, this also defines an isomorphism of super algebra
bundles. For the sheaves of super functions, this implies:

Γ(
∧•E)⊗ Γ(

∧•E′) ∼= Γ(
∧•E ⊗

∧•E′) ∼= Γ(
∧•(E ⊕ E′))

where the last isomorphism is induced by the wedge product. Note that this is not the
product in the category of supermanifolds (cf. proposition 3.10) since X still has the same
underlying manifold as X. Now let p̃r : Γ(

∧•E′) ։ Γ(
∧0E′) = C∞(X̃) denote the canonical

projection. Using the isomorphism Γ(
∧•E) ⊗ C∞(X̃) ∼= Γ(

∧•E), we obtain an inclusion
ιX : X →֒ X and a projection πX : X։ X defined on the level of sheaves as follows:

ιX : Γ(
∧•(E ⊕ E′))

∧−1

−→ Γ(
∧•E)⊗ Γ(

∧•E′)
id⊗p̃r
−→ Γ(

∧•E)⊗ C∞(X̃)
∼

−→ Γ(
∧•E)

Φ−1
E−→ O

πX : O
ΦE−→ Γ(

∧•E)
id⊗1
−→ Γ(

∧•E)⊗ Γ(
∧•E′)

∧
−→ Γ(

∧•(E ⊕ E′) (5.29)

In both cases, the underlying map of smooth manifolds is of course given by idX̃ .
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We now compare this extension of X with the notation introduced in section 5.5. Let U ⊂ X̃
be an open set such that there exist odd coordinate systems θ1, . . . , θq and θq+1, . . . , θq+rk(E

′)

onX|U and (U,Γ(U,
∧•E′)), respectively. We obtain an odd coordinate system θ1, . . . , θq+rk(E

′)

for X over U . In (5.16) and below, we discussed the restriction to and the prolongation by a
subset of odd coordinates. By construction we have

Proposition 5.40 Under the identifications given by the coordinate systems on U ⊂ X̃ the
inclusion ιX corresponds to ι(q+1,...,q+rk(E′)) and the projection πX to j(q+1,...,q+rk(E′)). In
particular, we can apply all the calculation rules, established for ι and j in chapter 5.5, to ιX
and πX.

Concluding this chapter, one important feature of the construction should be emphasized:

Remark 5.41 All the construction in subsection 5.6 left the underlying manifold X̃ un-
touched. We only added odd coordinate directions given by an additional vector bundle over
the same smooth manifold X̃. Loosely speaking one might say that only part of a linear
structure was changed whereas the underlying nonlinear part remained unchanged. This will
prove to be crucial in chapter 6 because it will enable us to extend a variational problem to X
and prove that its solutions, restricted to X, solve the original problem. This method would
fail if we had also enlarged X̃ , e.g. by embedding it into some RN .
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6 Variational Problems on Supermanifolds

In this section, we will apply the previously discussed formalism to study variational problems
on supermanifolds. We will not discuss a general theory of calculus of variation using jet
theory (see e.g. [45] for results not using the functorial language) but focus on two concrete
examples for functionals arising in geometry. For (N, 〈, 〉) a Riemannian manifold, we consider

(a) The energy functional for curves Φ : R1|1 −→ (N, 〈, 〉) (and S1|1 −→ (N, 〈, 〉), where
S1|1 is a supermanifold defined by a Batchelor bundle E → S1 of rk(E) = 1) given by

E1(Φ) :=

∫

R1|1
dtdθ

〈
Φ̇, dΦ(D)

〉
where D := ∂

∂θ − θ ∂∂t (6.1)

(b) An energy functional for maps (X,G) −→ (N, 〈, 〉) from a compact super Riemannian
manifold X of dimension m|2 into N given by (cf. definition 3.46 of volG)

E2(Φ) :=
1
2

∫

X
volG 〈dΦ, dΦ〉 (6.2)

The first functional is introduced and discussed e.g. in [11] §1.3 and [61]. A theory of solutions
is sketched in this case but not all the details of the proof are given. We will reproduce this
result (theorem 6.24) and extend it to maps defined on S1|1. In the latter case, the situation
is more involved. The second functional is a generalization of the energy functional which is
used in the theory of harmonic maps (cf section 6.2) and we will again show the existence
of solutions under assumptions of the geometry of the target space. A similar functional has
been considered in [48] and [33], the authors study similar functionals for maps into Lie groups
and symmetric spaces. We will first clarify the notion of a “critical point” for functionals in
super geometry and shortly review some results from the theory of harmonic maps as well as
linear elliptic equations. Both are needed in the approach that we will take to find critical
points. It consists in first decomposing the equations of motions into its components and then
applying the theory for PDE on ordinary Riemannian manifolds. This procedure also reveals
the geometric meaning of the super equations of motion. We do not try to set up variational
methods (e.g. minimizing the functional or using a heat flow) on the supermanifold itself,
this topic lies outside the scope of this work and might be addressed in future research.

6.1 Functionals and critical points

If M and N are smooth manifolds, a critical point ϕc of the energy functional

E : C∞(M,N) −→ R ϕ 7→ E(ϕ) :=

∫

M
‖dϕ‖2dvolM

is usually viewed as a map, namely ϕc : M −→ N which has a certain regularity. On the
other hand, it is of course possible to view ϕc as a point (or an element) of a space Crit of
solutions which is a subspace of C∞(M,N) or of some suitable Sobolev space. Both points
of view are equivalent but the second one is more natural in the context of super geometry.
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Here, the space of smooth maps is given by the functor SC∞(X,Y ) defined in definition 4.26
and the subspace of critical points is then given by a subfunctor

Crit ⊂ SC∞(X,Y ) ∈ SetGr

It may be defined by equations of motion and is sometimes presentable by a supermanifold,
but this is not always true. By definition, such a functor has higher points Crit(Λn) which
are morphisms Pn ×X −→ Y in the category of supermanifolds. Critical 0-points are just
morphisms X −→ Y but a general critical n-point is not of this form but depends on the
“odd parameters” contained in Λn. It is this dependency which gives rise to many of the
interesting features of supergeometry as the existence of odd vector fields (see example 4.25)
on an ordinary smooth manifold. Since Crit is a functor, it does not only act on the objects
Λn but also on morphisms ρ : Λn −→ Λm, i.e. we have maps induced by SC∞(X,Y )

Crit(Λn) ⊂ SC∞(X,Y )(Λn)
Crit(ρ)
−→ Crit(Λm) ⊂ SC∞(X,Y )(Λm)

satisfying the usual functoriality properties. This implies that, whenever there is a critical
Λn-point ϕ

(n) and a morphism ρ : Λn −→ Λm, then Crit(ρ)(ϕ(n)) must be a critical Λm-
point. This demonstrates the necessity to construct the whole functor of critical points (or a
subfunctor of it) and not only single critical points.
In a similar fashion, we have to extend the notion of a functional. Instead of being a map
C∞(M,N) −→ R, it is now a map (or natural transformation) of functors in ManGr (or at
least SetGr),

E : SC∞(X,Y ) −→ R

This means that E has to be a morphism in the sense of definition 4.21, i.e. compatible with
all morphisms ρ : Λn −→ Λm. As mentioned in 4.28, we should also check Λn,0-linearity of
derivatives but since the smooth structure on SC∞(X,Y ) has not been defined yet, we will
restrict ourselves to the discussion of functoriality.
Applying these concepts to the category of ordinary smooth manifolds, they reduce to the
notions familiar from geometric analysis because there is just one generator {pt} (as discussed
for the category of sets above definition 4.8) and one morphism id{pt} : {pt} −→ {pt} among
generators.

Next, we give formal definitions for the structure described above following [61]. The two
functionals in (6.1) and (6.2) are formally defined for ordinary morphisms of supermanifolds.
However, they should be maps of functors. This means that geometric objects, defined on
BKL-supermanifolds in chapter 3, have to be extended to Pn × X and its tangent sheaf
to be able to rigorously define the actions and compute equations of motion. The sheaf of
functions of Pn×X is given by Λn⊗̂O = Λn⊗RO. Moreover, we have a canonical projection
prX : Pn × X ։ X given on functions by pr∗Xf = 1 ⊗R f and similarly for prPn . For the
tangent sheaves, we have

TPn×X = pr∗Pn
TPn ⊕ pr∗XTX = O ⊗R TPn ⊕ Λn ⊗R TX

We choose the following extensions for the relevant objects:
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Definition 6.1 Let Λ be a finite dimensional Grassmann algebra. Then we do the following
extensions by Λ-super linearity:

(a) An R-super vector space V is extended to the Λ-module Λ ⊗R V , v ∈ V is mapped to
1⊗ v. In the same way, elements of V ∗ are extended by Λ-super linearity to Λ⊗R V

∗.

(b) An O-module E on a supermanifold X is embedded into the Λ⊗RO-module by pr∗XE by
e 7→ 1⊗prX e.

Note that the second part of this definition is special case of the first part. Both are consistent
since (Λ⊗R O)⊗prX ⊗E ∼= Λ⊗R E . The following examples will be used later:

Example 6.2
(a) A vector field ξ ∈ TX is extended to 1 ⊗ ξ ∈ pr∗XTX ⊂ TPn×X . The derivation defined

in this way is in particular Λ0-linear, i.e. 1⊗ ξ(λg) = λ 1⊗ ξ(g).

(b) A metric 〈., .〉 on some vector bundle E over X is an element of E ⊗O E . It is hence
mapped to 1 ⊗ 〈, 〉 ∈ pr∗X(E ⊗O E) ∼= (pr∗XE

∗) ⊗Λ⊗O (pr∗XE
∗), which is precisely the

Λ-bi-super linear extension.

(c) Similarly, a linear connection ∇ : E −→ Ω1 ⊗O E is extended to a Λ-super linear
connection pr∗XE −→ pr∗XΩ

1 ⊗Λn⊗O pr∗XE .

(d) The Berezinian Ber(Ω1) is extended to pr∗XBer(Ω
1), so that the “volume forms” take

coefficients in Λ⊗RO but the generators are still given by elements of Ω1. Thus, there is
no integration with respect to the directions of Pn but rather a Λ-super linear extension
of the R-linear functional

∫
: Γ(Ber(Ω1)) −→ R to

∫
: Γ(pr∗XBer(Ω

1)) −→ Λ.

Remark 6.3 The preceding construction shows what was called “hybrid approach” in the
introduction. We used the functorial formalism to define the infinite dimensional spaces
SC∞(X,N), which can not be defined as a ringed spaces. However, all the geometric objects
on the finite dimensional (super) manifolds are treated using ringed space language. This of
course requires to extend these objects to the Λ-parameters in a natural way which is given
by Λ-super linearity. Since we are also dealing with odd objects (e.g. the odd vector field
D), we have to require Λ-super linearity rather than Λ0-linearity, which is sufficient in the
functorial construction in section 4.2.
It is interesting to compare the choices made above with the fully functorial treatment. For
the first functional defined on X = R1|1, it would be necessary to replace D := ∂

∂θ − θ ∂∂t and
∂
∂t by n-points of Γ(X,TX), the volume element dtdθ by n-points of Γ(X,Ber(Ω1

X)) etc. for
all n ∈ N0. By equation (4.5), we have

Γ(X,TX)(Λn) ∼= (Λn ⊗R Γ(X,TX ⊕ΠTX))0

Since D ∈ Γ(X,ΠTX) and ∂
∂t ∈ Γ(X,TX), there is a natural choice for the higher n-points

given by 1⊗D and 1 ⊗ ∂
∂t . This is precisely the choice made in definition 6.1 b). Similarly,

R-super vector spaces and R-linear forms are replaced by the R-super modules represented
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by them which corresponds to the choice in part a) of the definition. In this sense, the
hybrid approach which is used in this work coincides with a fully functorial construction of
the functionals.
It should be pointed out that choosing different extensions which depend in a nontrivial way
on the parameters ηi ∈ Λn would eventually break the functoriality of the resulting functionals
E. The choice made here, where the only true dependence of E on the parameters in Λn is
given through the fields Φ, is the only reasonable one.

Using these canonical extensions, we obtain

Proposition 6.4 The functionals E1 and E2, extended to functionals (denoted by the same
symbols) E1 : SC

∞(R1|1, N) −→ R and SC∞(X,N) −→ R indeed define natural transforma-
tions.

Proof We only give the argument for E1, naturality of E2 can be proved in a similar way.
The actions only depend on λ ∈ Λn through Φ ∈ SC∞(R1|1, N), so we are mainly interested
in the coefficient functions in Λn ⊗R O1|1 occurring in the various modules. Since D is odd
and ∂

∂t is even, we have

dΦ( ∂∂t) =
∑

i(λ
i
0f

i + λi1g
iθ)⊗ ei dΦ(D) =

∑
i(µ

i
1f̃

i + µi0g̃
iθ)⊗ ei

where {ei} is a local orthonormal frame, λi0/1, µ
i
0/1 ∈ Λ0/1 and f i, gi are smooth functions on

R. Taking into account that the Berezin integration picks the θ-coefficient of the integrand,
we have E1(Φ) =

∫
R dt

∑
i(−λ

i
1g
iµi1f̃

i + λi0f
iµi0g̃

i). For ϕ : Λn −→ Λm, let Φ̂ := SC∞(ϕ)Φ.
Since ϕ acts only on the Λn-coefficients, we obtain

E(Φ̂) =

∫

R
dt
∑

i

(−ϕ(λi1)g
iϕ(µi1)f̃

i + ϕ(λi0)f
iϕ(µi0)g̃

i)

=

∫

R
dt
∑

i

ϕ(−λi1g
iµi1f̃

i + λi0f
iµi0g̃

i)

= ϕ(E(Φ))

because ϕ is linear.
�

Critical points are defined as in the classical setting, following [10], p.651, (ii). Again, we
work functorially over Grassmann algebras:

Definition 6.5 Let X,Y be supermanifolds and X compact.

(a) A variation of Φ ∈ SC∞(X,Y )(Λ) is an element Ψ ∈ SC∞(R × X,Y )(Λ) such that
Ψ ◦ r = Φ. Here r denotes the morphism Pn × X ∼= Pn × {0} × X −→ Pn × R × X
which is induced by the evaluation map f 7→ f(0) on C∞(R).
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(b) A critical n-point of a functional E : SC∞(X,Y ) −→ R is an n-point Φ ∈ SC∞(X,Y )(Λn)
such that for each morphism ϕ : Λn −→ Λm and for each variation of Ψ of SC∞(X,Y )(ϕ)Φ,
we have

d
dt

∣∣
0
E(Ψ) = 0

The corresponding space of critical n-points will be denoted Crit(E)(Λn) ⊂ SC∞(X,Y )(Λn).

Since SC∞(X,Y ) is a functor, it induces an action of morphisms Λn −→ Λm on Crit(E)(Λn).
In fact, the definition of critical points makes sure that Crit(E) is a functor:

Proposition 6.6 Let E be a functional as in the preceding definition. Then, the assignment

Λn 7→ Crit(E)(Λn) (ϕ : Λn −→ Λm) 7→ Crit(E)(ϕ) := SC∞(X,Y )(ϕ)

defines a subfunctor of SC∞(X,Y ) in SetGr.

Proof We only have to check that Crit(E)(ϕ)(Crit(E)(Λn)) ⊂ Crit(E)(Λm). But this
is trivial since the condition in 6.5 b) is invariant under the action of SC∞(X,Y )(ϕ) by
definition.

�

In subsequent sections, we will characterize the critical points of some concrete functionals by
equations of motion. Using these, it is also possible to check the functor property of Crit by
showing directly, that a solution of the equation is mapped to another one under Crit(E)(ϕ).

6.2 Harmonic maps and elliptic theory

We will give a very brief survey on some results on harmonic maps. There is a large amount
of literature available on this subject, see e.g. [16], [17], [18] or the books [69], [58] and [41]

Let (M,g) and (N,h) be two Riemannian manifolds. The energy of a smooth map ϕ ∈
C∞(M,N) is the defined as by the expression

E(ϕ) := 1
2

∫

M
‖dϕ‖2volg (6.3)

which is finite if M is assumed to be compact. The critical point s of this functional can be
obtained using calculus of variations and one obtains

ϕ is a critical point ⇐⇒ τ(Φ) = tr(∇dϕ) = 0

Here ∇ denotes the Levi-Civita connection on N , pulled back along ϕ to M . τ is called the
tension field and is a vector field along ϕ.

Definition 6.7 The critical points of the functional (6.3), characterized by τ(ϕ) = 0, are
called harmonic maps.
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Remark 6.8
(a) In case M = R or M = S1, the functional (6.3) gives the usual energy of a curve and

its critical points are clearly (closed) geodesics. Hence, harmonic maps are a higher
dimensional generalization of the theory of geodesics.

(b) The equation τ(ϕ) = 0 is not linear, more precisely, it is a semilinear elliptic equation.

Since the differential equation for harmonic maps is not linear, the standard theory for elliptic
equations can not be applied. Nevertheless, under certain assumptions on the geometry of
N , existence of critical points could be proven by using heat equation techniques:

Theorem 6.9 (Eells & Sampson, [19], 11) Let M and N be compact and let N have
non-positive Riemannian sectional curvature. Let ϕ : M −→ N be a continuous map. Then
there exist a harmonic map ϕ′ :M −→ N which is homotopic to ϕ and satisfies E(ϕ′) ≤ E(ϕ).

Remark 6.10
(a) The compactness assumption on N can be replaced by the weaker requirement, that N

is complete an satisfies a certain growth condition (see [19], 10). We will not use this
more general form.

(b) Given a continuous map f : M −→ N , there can be several harmonic maps in the
homotopy class given by f . One of the easiest examples is given by maps S1 −→ T 2

(flat torus), where there are infinitely many closed geodesics homotopic to each other. In
general, under the hypothesis that N is complete and of nonpositive sectional curvature,
there is a result due to Hartman ([28], p. 674, statement (E)) saying that two harmonic
mappings ϕ,ϕ′ homotopic to each other are smoothly homotopic through a family of
harmonic maps. Moreover, if there is a point n ∈ ϕ(M) such that the curvature is
negative there, then ϕ is unique in its homotopy class unless it is a closed geodesic
([28], p.675, statement (H)).

The existence of closed geodesics is actually valid without the assumption on the curvature
of N , see [64], theorem 3.4.2 or [34], theorems 2.1.4 and 2.1.6:

Theorem 6.11 Let N be compact. Then there is a closed geodesic in every homotopy class
of closed curves, which attains the minimum of the energy in this class.

We are now going to discuss some central results of the theory of elliptic partial differential
equations which will be applied in subsequent parts of this chapter. We will follow [38],
chapter III.1, II.4 and III.5. Let E −→ M and F −→ M be two vector bundles over M ,
equipped with Riemannian (or Hermitian) metrics. We then have the vector space Γ(E) of
smooth sections and its completion L2(E) with respect to the scalar product induced by the
bundle metrics. We consider linear differential operators

P : Γ(E) −→ Γ(F )

These have been abstractly defined in section 5.2 and it was shown that each operator of
order ≤ m ∈ N can be written w.r.t. local coordinates x on M and local trivializations on E
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and F in the form

P =
∑

|α|≤mA
α(x)∂

|α|

∂xα (6.4)

The total symbol σ(P ) was defined in 5.23. It can be shown (see [38], p.167 and 168) that
the part of σ(P ) associated to the derivatives of highest degree m, given by the coefficients
{Aα}|α|=m in equation (6.4), defines a well defined section of SymmTM ⊗Hom(E,F ):

Definition 6.12 ([38], III.1.2) The section σp(P ) ∈ Γ(SymmTM ⊗ Hom(E,F )) is called
the principal symbol of P .

Since there is a canonical isomorphism of SymmTxX with the space of polynomial functions
on T ∗

xM of degree ≤ m, we may evaluate σp(P ) for any fixed ξ ∈ T ∗
xM and obtain a linear

map σpξ (P ) : Ex −→ Fx.

Definition 6.13 ([38], III.1.3) A linear differential operator is called elliptic if for each
ξ ∈ T ∗M \ {0}, the linear map σpξ (P ) is invertible.

The following result is a consequence from Fredholm theory and is of fundamental importance
for the theory of linear elliptic equations on vector bundles:

Theorem 6.14 ([38], III.5.5) Let P : Γ(E) −→ Γ(E) be a linear, elliptic, self-adjoint
operator over a compact Riemannian manifold. Then there is a direct sum decomposition
which is orthogonal w.r.t. the L2-scalar product:

Γ(E) = ker(P )⊕ im(P )

This implies the following corollary for inhomogeneous, elliptic equation:

Corollary 6.15 Let P be as in theorem 6.14. The inhomogeneous equation Pu = f has a
solution if and only if f is L2-orthogonal to ker(P ). In this case, the space of solutions is
given by u0 + ker(P ) for any solution u0 of the inhomogeneous equation.

Moreover, the eigenspaces of P which include in particular its kernel have the following nice
properties:

Theorem 6.16 ([38], II.5.8) Let P : Γ(E) −→ Γ(E) be a self-adjoint elliptic differen-
tial operator of order m > 0 over a compact manifold. Then each eigenspace Eλ of P is
finite-dimensional and consists of smooth sections, Moreover, the eigenvalues are real, form
a discrete set and the corresponding eigenspaces furnish a complete orthonormal system for
L2(E), i.e. L2(E) =

⊕
λEλ.

The following example will be used in the following :

Example 6.17 Let ∇ be a connection on E. The connection Laplacian is the linear differ-
ential operator of order ≤ 2 given by

∇∗∇ : Γ(E) −→ Γ(E)
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Its principal symbol is given by σpξ (∇
∗∇) = ‖ξ‖2 ([38] p.154) so that the operator is clearly

elliptic. Moreover, it can be shown ([38] II.8.1 and following) that it is essentially self-
adjoint on complete Riemannian manifolds, i.e. it extends uniquely to a self-adjoint operator
∇∗∇L2(E) −→ L2(E).
This notion can be extended to generalized Laplacians, which are defined ([5]) to be differen-
tial operators of order ≤ 2 on Γ(E) such that σpξ (L) = ‖ξ‖2 is satisfied. It can be shown ([5],
proposition 2.5) that for each generalized Laplacian, there exist a connection ∇ such that

L = ∇∗∇+ F

where F is a differential operator on Γ(E) of order zero, i.e. a endomorphism field. If the
endomorphism field is fibrewise self-adjoint and the base manifold M is compact, this in
particular implies that L extends to a self adjoint, elliptic operator on L2(E) and theorems
6.14 to 6.16 can be applied.

6.3 Supergeodesics

We consider the functional for supergeodesics given in (6.1) on R1|1. These are supercurves
in N rather than geodesics in a supermanifold X, see [24] for a discussion of the latter
subject. Using the extensions to n-points discussed in 6.1, we write dΦ(D) =: DΦ for
Φ ∈ SC∞(R1|1, N) and there is no ambiguity of sign since Φ is even. The functional reads

E : SC∞(R1|1, N) −→ R Φ 7→

∫

R1|1

1
2dtdθ

〈
Φ̇,DΦ

〉
(6.5)

Here, the integrand depends on the choice of coordinates t, θ whereas the functional is inde-
pendent of it. The functional also implicitly depends on the odd parameters in Λn. Moreover,
there is a certainly global coordinate system on R1|1 but there need not be a global odd coor-
dinate θ on S1|1. For sake of simplicity, we assume that the Batchelor bundle is trivializable
to be able to define component fields. We obtain the following equation of motion (compare
[61], (2.7)).

Theorem 6.18 Let n ∈ N0. A n-point Φ of SC∞(R1|1, N) is a critical point of the functional
E from (6.5) if and only if it satisfies the following equation of motion:

∇Φ
t DΦ = 0 (6.6)

Here, ∇Φ is induced by the Levi-Civita-connection as in remark 3.54. Again, this equation
has to be interpreted functorially in the Grassmann algebras Λn.

The component fields of Φ (see definition 5.31) read

ϕ := ι∗Φ ∈ SC∞(R, N) ψ := ι∗dΦ( ∂∂θ ) ∈ TR1|1

It should be noted that in [10] (p.651 (b)), the component field ψ = ι∗dΦ(D) is defined in a
slightly different fashion. However, since ι∗ annihilates each section containing a factor θ, it
is easy to see that for any point Φ of SC∞(R1|1, N) and any vector field V along Φ,

ι∗dΦ(D) = ι∗dΦ( ∂∂θ ) ι∗∇Φ
DV = ι∗∇Φ

∂
∂θ

V
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Thus, we can use ∂
∂θ instead of D and obtain the same component expressions. A similar

argument would apply in the situation with several odd coordinates θα. We will use the
coordinate basis for the component decomposition but of course leave the action unchanged.
The component equations of motion are given by:

Proposition 6.19 ([10] p.653, 654) The point Φ is a critical point for the energy func-
tional if and only if ϕ and ψ satisfy the following equations

∇ϕ
t ϕ̇ = 1

2R(ψ,ψ)ϕ̇ ∇ϕ
t ψ = 0 (6.7)

Conversely, each pair (ϕ,ψ) satisfying these equations defines a critical point Φ.

The component equations of motion are obtained by computing the components of the ex-
pression ∇Φ

t DΦ = 0 using 3.54. We omit the details, they can be found in [10], p.653 and
654. It is then clear from theorem 5.37 that (6.6) is satisfied if and only if (6.7) are satisfied.
Furthermore, using again theorem 5.38, there is a critical field Φ for each critical pair of
component fields ϕ,ψ.

These equations still depend on the odd parameters in some Λn since we are working functori-
ally over the Grassmann algebras. Hence, it is impossible to apply techniques from geometric
analysis directly at this stage. However, the superpoints Pn are supermanifolds in their own
right. Since an n-point ϕ(n) is just a morphism of supermanifolds ϕ(n) : Pn × R −→ N , we
can apply the formalism of theorems 5.38 and 5.37 again and do an expansion w.r.t. the
odd coordinates of Pn. Similarly, ψ is a vector field along ϕ(n) and can be decomposed using
5.37. In this way, we obtain maps and vector fields defined entirely in the setting of smooth
differential geometry.

Definition 6.20 Let η1, . . . , ηn be a set of generators for Λn and let ι : P0 →֒ Pn denote11

the canonical map given by ι∗ : Λn ։ R. For ∅ 6= A ⊂ n, the components

ϕ
(n)
∅ ∈ C∞(R, N) ϕ(n)

α , ϕ
(n)
A ∈ Γ(ϕ

(n) ∗
∅ TN) ψ

(n)
∅ , ψ

(n)
A ∈ Γ(ϕ

(n) ∗
∅ TN)

given by definitions 5.31 and 5.32 applied to the coordinates η instead of θ will be called

subcomponents of ϕ(n) and ψ(n). We will usually write ϕ
(n)
0 instead of ϕ

(n)
∅ .

Remark 6.21
(a) In the preceding definition, the superscript (n) was included to point out that there are

subcomponents for each n ∈ N0. If ϕ(n) and ϕ(m) are two points of SC∞(R, N), there

is in general no relation between, say ϕ
(n)
0 and ϕ

(m)
0 . We will drop the superscript (n)

whenever there is no danger of confusion to get a more convenient notation.

(b) Since ϕ(n) is even, it contains only summands with an even power of ηs. Thus, the sub-

components belong to an index of odd length, i.e. ϕ
(n)
α , ϕ

(n)
αβγ,... are always zero because

11We use the same character ι for the morphism sending the θs and the ηs to zero since there is no danger
of confusion.
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at least one η is left after taking the (covariant) derivatives which is the annihilated

by ι∗. Similarly, all the even subcomponents ψ
(n)
0 , ψαβ , . . . must vanish. On the whole

there are 2n−1 even subcomponents of ϕ(n) and 2n−1 odd ones of ψ(n).

We will give the explicit expressions for the subcomponent equations arising from 6.19 for
n = 0, 1, 2, 3 and describe the general structure afterwards, the proof of 6.23 also indicates
the type calculations that have to be done here. By the following remark, it is enough to
compute one equation for each n:

Remark 6.22 The equations (6.7) are functorial in Λn. For I = {i1, . . . , im} ⊂ n, let
ιI : Λn −→ Λn−‖I‖ be the projection morphism as defined in (5.16) with θ replaced by η.
Applying ιI to an n-point of the equation of motion thus yields an n − ‖I‖-point of it. In
this way, every subcomponent equation at level n already occurs at a level m < n except the

one for the top degree field ϕ
(n)
n = ϕ

(n)
(1...n) (or ψ

(n)
(1...n), in case n is odd). Hence, for each n, it

is sufficient to compute the (1 . . . n)-subcomponent. More formally

ι∗∇
ϕ(n)
Ic (∇ϕ(n)

t ϕ̇(n) − 1
2R(ψ

(n), ψ(n))ϕ̇(n)) = ι∗Ic∇
ιIϕ

(n)

Ic ι∗I(∇
ϕ(n)

t ϕ̇(n) − 1
2R(ψ

(n), ψ(n))ϕ̇(n))

(and similarly for the other equation). The right hand side is the highest degree component

of ι∗I(∇
ϕ(n)

t ϕ̇(n) − 1
2R(ψ

(n), ψ(n))ϕ̇(n)) which is a (n− ‖I‖)-point of (6.7).

For the lowest values of n, we obtain the following fields and they have to satisfy the following
equations:

n=0 The only nontrivial subcomponent field is ϕ
(0)
0 :

∇
ϕ
(0)
0

t ϕ̇
(0)
0 = 0 (6.8)

n=1 The nontrivial subcomponent fields are ϕ
(1)
0 , ψ

(1)
1 :

∇
ϕ
(1)
0

t ψ
(1)
1 = 0 (6.9)

n=2 The nontrivial subcomponent fields are ϕ
(2)
0 , ψ

(2)
α , ϕ

(2)
12 for α = 1, 2:

∇
ϕ
(2)
0

t ∇
ϕ
(2)
0

t ϕ
(2)
12 +R(ϕ

(2)
12 , ϕ̇

(2)
0 )ϕ̇

(2)
0 = 2R(ψ

(2)
1 , ψ

(2)
2 )ϕ

(2)
0 (6.10)

n=3 The nontrivial subcomponent fields are ϕ
(3)
0 , ψ

(3)
α , ϕ

(3)
αβ , ψ

(3)
123 for α = 1, 2, 3, α < β ≤ 3:

∇
ϕ
(3)
0

t ψ
(3)
123 = R(ϕ

(3)
13 , ϕ̇

(3)
0 )ψ

(3)
2 −R(ϕ

(3)
12 , ϕ̇

(3)
0 )ψ

(3)
3 −R(ϕ

(3)
23 , ϕ̇

(3)
0 )ψ

(3)
1

The general structure is stated in the following proposition:
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Proposition 6.23 Let n ∈ N+. Omitting the index (n), the equations of motions for the
highest degree subcomponent fields ϕn (for n even) and ψn (for n odd) are given by

∇
ϕ0

t ∇
ϕ0

t ϕn +R(ϕn, ϕ̇0)ϕ̇0 = Fn(ϕA, ψB) (6.11)

∇
ϕ0

t ψn = Gn(ϕA, ψB) (6.12)

where F and G are multilinear functions of the subcomponents ϕA, ψB for ‖A‖, ‖B‖ < n
depending in a complicated way on the curvature of (N, g) and its (higher) derivatives.
Note that the left hand side of the first equation is just the Jacobi-operator, applied to the
vector field ϕn in case that ϕ0 is a geodesic.

Proof For n > 0 even, we have to rewrite the equation

ι∗∇ϕ
ηn · · · ∇

ϕ
η1
∇ϕ
t ϕ̇ = ι∗∇ϕ

ηn · · · ∇
ϕ
η1
(R(ψ,ψ)ϕ̇).

To obtain ϕn, all the η-derivatives have to be moved to ϕ. The right hand side can not
contain ϕn at all because moving all derivatives to ϕ would imply that the corresponding
summand still contains η-factors resulting from the odd fields ψ. Thus, all these summands
are annihilated by ι but there are of course contributions to F (ϕA, ψB).
Since the connection is torsion-free, we have ∇ϕ

η1
ϕ̇ = ∇ϕ

t dϕ(
∂
∂η1 ). Thus, using the definition

of the curvature tensor R, the left hand side reads:

ι∗∇ϕ
ηn · · · ∇

ϕ
η1
∇ϕ
t ϕ̇ = ι∗∇ϕ

ηn · · · ∇
ϕ
η2

(
R(dϕ( ∂

∂η1
), ϕ̇)ϕ̇+∇ϕ

t ∇
ϕ
t dϕ(

∂
∂η1

)
(6.13)

Differentiating the curvature term, there is precisely one summand containing ϕn which is ob-
tained by collecting all derivatives at dϕ( ∂

∂η1
). After evaluation of ι∗, it yields R(ϕn, ϕ̇0)ϕ̇0. In

the second summand in (6.13), we successively interchange the η- and the t-derivatives. The
resulting curvature terms can not contain ∇ϕ

ηn · · · ∇
ϕ
η2
dϕ( ∂

∂η1
) and are collected in F (ϕA, ψB),

the only summand containing it is ∇ϕ
t ∇

ϕ
t ∇

ϕ
ηn · · · ∇

ϕ
η2
dϕ( ∂

∂η1 ). Applying ι∗ yields ∇
ϕ0

t ∇
ϕ0

t ϕn
which proves the first equation. The equation for ψn is obtained in a similar fashion.

�

The following result is already mentioned in [10] (p.655) and [23], lecture 2 although no
rigorous proof is given there. Moreover, super parallel transport, which is part of the problem,
was discussed in detail in [15].

Theorem 6.24 Let (N,h) be a complete Riemannian manifold and fix t0 ∈ R. Then, the
functor of critical points of the functional 6.5 can be identified as

Crit ∼= TN ⊕Π(TN)

The isomorphism depends on the choice of the reference parameter t0

Proof Equation (6.8) is the equation for a geodesic on N . Since N is assumed to be
complete, for each tuple (p ∈ N, v ∈ TpN), there is a unique geodesic starting at time t0 at
the point p in direction of v which is defined on all of R. Equation (6.11) is a linear ordi-
nary differential equation of order two for ϕn on the vector bundle ϕ∗

0TN . It has solutions
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defined on all of R which are uniquely defined by a point p = ϕ0(t0) ∈ N and two vectors
v1, v2 ∈ TpN . Similarly, a solution for 6.12) is uniquely determined by p and one vector
v ∈ TpN .
As discussed in 4.25, an n-point of TN ⊕ ΠTN consists of an n-point f : Pn −→ N and an
even section σ = (σ′, σ′′) of f∗(TN ⊕ ΠTN). The idea is that f and σ′ provide the initial
conditions at t0 for the first equation of (6.7) and σ′′ those for the second. We will make that
precise by giving an inductive definition of an isomorphism Crit(E1)(Λn) ∼= (TN⊕ΠTN)(Λn)
making use of the decomposition into subcomponents which are defined for all ordered multi-
indices I ⊂ n.
For I = 0, the subcomponent equation is the geodesic equation. Its solutions are in bijection
with the pair (f0, σ

′
0) since the first is a map {pt} −→ N , i.e. a point in p ∈ N and the second

is a tangent vector in TpN . The 0-components of σ′′ are clearly zero.
For I = (α), α = 1, . . . , n, the I-subcomponents of f and σ′ are zero. There are n subcom-
ponents σ′′α ∈ TpN , which correspond to the initial conditions for the first order equations
(6.9) for α = 1, . . . , n. This sets up a bijection for ‖I‖ = 1.
For I = (α, β) with 1 ≤ α < β ≤ n, the subcomponents of σ′′ vanish and we have
f(αβ), σ

′
(αβ) ∈ TpN . These two vectors are mapped to ϕαβ(t0) and∇

ϕ0

t ϕαβ(t0), which uniquely
determine the solution ϕ(αβ) since it satisfies a second order equation. Note that the right
hand side of (6.10) depend on ψα and ψβ, which have already been identified in the step
‖I‖ = 1. Thus, we established the bijection for ‖I‖ = 2.
Using induction on ‖I‖, we construct an bijection for the whole set of n − points. For
‖I‖ ∈ 2N, we have two new vectors fI , σ

′′
I ∈ TpN for each I. On the other hand, the subcom-

ponent ϕI satisfies the second order equation (6.11) whose solutions is specified by ϕI(t0) and
∇
ϕ0

t ϕI(t0). For ‖I‖ ∈ 2N+1, there is only one new vector σ′′I which gives the initial condition
for the field ψI which satisfies the first order equation (6.12). In both cases, the right hand
sides only depend on subcomponent fields, which were already completely determined in an
earlier step.
Finally, even though we chose a set of generators η1, . . . , ηn for Λn, the bijection is functorial
by proposition 6.6 which completes the proof.

�

The situation for the same functional defined on S1|1 is more complicated. The reason is, that
we are now looking for closed geodesics and vector fields along them, which means that these
fields have to close smoothly after running around the geodesic. Already the set of closed
geodesics will have a complicated structure for a generic geometry and the coupled equations
for higher subcomponent fields makes things worse. We will offer a geometric description
of the resulting functor although no closed description in terms of a representing object (as
TM ⊕ΠTN above) is available.

Let η1, . . . , ηn be generators of Λn and identify Λn−1
∼= R[η1, . . . , ηn−1]. Thus, we have two

morphisms of Grassmann algebras, a projection and a lift:

prn : Λn ։ Λn−1 lfn : Λn−1 →֒ Λn
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By proposition 6.6, there are induced maps

PRn := Crit(E)(prn) : Crit(E)(Λn) −→ Crit(E)(Λn−1)

LFn := Crit(E)(lfn) : Crit(E)(Λn−1) −→ Crit(E)(Λn)

Since the whole functor of critical points is given by all of its n-points, this suggest the fol-
lowing geometric structure:
The critical points of E form a tower of sets which at each n have a bundle structure as fol-
lows: At each level n, the set Crit(E)(Λn) forms the total space over the base Crit(E)(Λn−1)
where the projection is given by PRn. The maps LFn provide sections of the bundle struc-
tures for each n.

Note that this structure is not natural since it depends on the choice of parameters ηi.
In general, there are no natural maps between Crit(E)(Λn) and Crit(E)(Λm) since there
is no distinguished morphism Λn −→ Λm. The only exceptions are n = 0 or m = 0, i.e.
each n-point has a naturally defined 0-base point and conversely, there is only one way to
map a 0-point into the set of n-points. We will denote these natural maps by PRn,0 and LF0,n.

Despite the lack of naturalness, this structure is helpful to picture the functor of critical
points. We will picture it for n = 0, 1, 2 (see description below the picture):

b
bbbb b

cc′

(c, ζ)

b

(c, ψ2)
b

n = 2

n = 1

n = 0

PR1

PR2

PR1

b

(c,ζ,0,J)
b
(c,ζ,ψ2,J)

PR2,0

PR2
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Crit(E)(Λ0) consists of the set of all closed geodesics in N . It can again be identified with
a subset of TN but in general, it does not have a nice submanifold structure. Each fibre
PR−1

1 (c) for some closed geodesic c is given by the space of solutions of the first order
linear homogeneous differential equation (6.9), i.e. by the parallel vector fields along c. Its
dimension is between 1 and dim(n), since there is certainly always the parallel vector field
ċ. However, depending on the geometry, this dimension may depend on the base point (in
the picture, the fibre above c′ has smaller dimension than that over c). Thus, we arrive at
a decomposition of Crit(E)(Λ1) into vector spaces but this does not provide a nice bundle
structure since the fibres even need not be isomorphic.
For n = 2, we fix a point (c, ζ) ∈ P−1

1 (c) and analyze the fibre PR−1
2 (c, ζ). Each 2-point of

this fibre has subcomponents (c, ζ, ψ2, ϕ12) where ψ2 is another parallel vector field along c.
ϕ12 has to satisfy (6.10), which is inhomogeneous and needs not have a solution at all. From
corollary 6.15, we conclude that it has a solution if and only if 〈J,R(ζ, ψ2)ċ〉L2(S1) = 0. In
that case, the space of solutions for fixed c, ζ and ψ2 is an affine space modelled on the vector
space J (c) of Jacobi fields along c, which is determined by c alone. Hence, we can write the
fibre as

PR−1
2 (c, ζ) =

⊔

ψ2∈PR
−1
1 (c)

J (c)⊥R(ζ,ψ2)ċ

GJ (R(ζ, ψ2)ċ) + J (c) (6.14)

where GJ is the Greens operator for the Jacobi operator. In the picture, this fibre has been
pictured as a grey block, which possibly contains “gaps” where the inhomogeneous equation
has no solution, but which always contains J (c) as a subspace (dark grey) for ψ2 = 0. In
particular, there is a always a solution in this subspace.

Parts of this structure persist for larger n but it gets more complicated since the number of
subcomponent fields increase as 2n. We have the following structure:

Proposition 6.25 Let Λn ⊂ Λn+1 be given as above. Denote by (ϕ(n), ψn) and (ϕ(n+1), ψn+1)
the critical points. Then:

(a) PRn((ϕ
(n+1) and ψ(n+1))) is the critical point at level n, whose subcomponent fields

ϕ
(n+1)
I , ψ

(n+1)
J are annihilated for indices I, J containing n+ 1 and left unchanged oth-

erwise. Hence, the fibres as well as the base at level n have dimension ≤ 2n−1 (in those
cases when there is a well defined dimension).

(b) LFn((ϕ
(n), ψ(n))) is the critical point at level n + 1, whose subcomponent fields ϕ

(n+1)
I

and ψ
(n+1)
J are defined to be zero for indices I, J containing n + 1 whereas the other

components are copied from (ϕ(n), ψ(n)). The image of LFn is contained in the solution
space of the homogeneous parts of (6.11) and (6.12) respectively.

The statements follow from the fact, that prn+1 and lfn+1 set ηn to zero or extend by this
condition respectively. To see that the image of LFn indeed consists of solutions of the ho-
mogeneous equations, we study the right hand sides of (6.12) and (6.11). By the proof of
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proposition 6.23, each summand of Fn and Gn contains a subcomponent field whose index
contains n+ 1. Thus, all summands are set to zero.

Summarizing, we have

Theorem 6.26 Let (N,h) be a compact Riemannian manifold. Then there exist solutions to
equation (6.6) in the sense that for each n, the set Crit(E)(Λn) is nonempty and these sets
behave functorially. More precisely, let p ∈ Crit(E)(Λn−1) and c := Pn−1,0(p) the underlying
closed geodesic, then

• For n ∈ 2N, the fibre PR−1
n (p) is a disjoint union of affine spaces modelled on J (c).

• For n ∈ 2N+1, the fibre PR−1
n (p) is a disjoint union of affine spaces modelled on V(c).

Here, the spaces of Jacobi fields J (c) and of parallel vector fields V(c) only depend on the
lowest order subcomponent, i.e. the underlying closed geodesic.

Proof By theorem 6.11, there exist a closed geodesic in every homotopy class of curves.
Iterated application of the lifts LFn (n = 1, 2, . . .) yields critical n-points for each n. The
decomposition of the fibres PR−1

n (p) was given for n = 2 in (6.14) and the argument can be
easily generalized to n > 2.

�

The following example illustrates the dependence of Crit on the geometry of the target space:

Example 6.27 Let N = T n be the standard flat torus. Then, the equations (6.11) and
(6.12) reduce to ∇

ϕ0

t ∇
ϕ0

t ϕn and ∇
ϕ0

t ψn = 0 respectively. In particular, these equations are
homogeneous, so that solutions always exist. If c is a closed geodesic in T n, each vector at
Tc(0)N gives rise to a parallel vector field along c by parallel transport. However, on a flat
manifold, the set of Jacobi fields along c is given by

J (c) = {J = V + tW |V,W are parallel vector fields along c}

It is clear that only the choice W = 0 yields a Jacobi field closing smoothly, in other words,
only parallel Jacobi fields solve (6.11) globally. Thus, Crit is only a subfunctor of TN⊕ΠTN .
Indeed, denoting a n-point of TN ⊕ ΠTN by (f, (σ′, σ′′)) as in the proof of theorem 6.24,
all the subcomponet contributions σ′I for ‖I‖ > 0 must vanish since they give the initial
value for ϕI . We can describe Crit as follows: We can identify the set of closed geodesics
with a subset cg ⊂ T 1T n of the unit tangent bundle and define a subfunctor of TN by
CG(Λn) = HomSet(P0, cg) so that there are no nontrivial higher points. Then, as in the
proof of 6.24, we find Crit ∼= CG×(N,0) ΠTN , i.e.

Crit(Λn) ∼= {(c, (f, σ′′))|c ∈ cg, f ∈ SC∞(Pn, N), σ ∈ f∗ΠTN such that c(0) = f0}

This functor is no longer represented by a supermanifold but can still be described in geo-
metric terms. This simple description is no longer available, if N is not assumed to be flat.
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It is not difficult to see that it is possible to construct a metric on T n for n ≥ 3 such that
there exist a closed geodesic c, parallel vector fields X,Y and a Jacobi field ξ along c, such
that (ξ,R(X,Y )ċ)L2(S1) 6= 0. In this case, already the inhomogeneous equation (6.10) has no
solution for this special choice of c,X, Y .

Remark 6.28
(a) It should be pointed out that the existence of solutions mainly depends on the exis-

tence of the solution for the 0-subcomponent equation. The remaining equations are
linear equations, they can be interpreted as an infinitesimal correction to the nonlinear
geodesic equation from the super world.

(b) It might be interesting to look for a generalization of the energy functional to super
curves defined on R1|q. For q = 1, the space of critical points is basically determined
by closed geodesics and parallel vector fields as well as Jacobi fields along them. For
q > 1, it might be possible to use such a functional to explore higher order variations
of geodesics or the energy of smooth curves.

(c) It might be interesting to study Crit ⊂ SC∞(S1|1, N) if N is a (locally) symmetric
space. Examples for small n indicate, that the existence of solutions of (6.11) and
(6.12) can be understood in these cases, although a general statement has still to be
shown. This might be a starting point for further research on the relationship between
symmetry and curvature properties of the target space and the structure of Crit.

6.4 Superharmonic maps

We consider the functional from (6.2) given by the extensions to n-points discussed in 6.1:

E : SC∞(X,N) −→ R Φ 7→

∫

X
volG 〈dΦ, dΦ〉 (6.15)

(X,G) is assumed to be compact and super Riemannian (see definition 3.34). The product
〈dΦ, dΦ〉 is induced by the metrics 〈, 〉 on N and G on X as usual. Again, the integrand
depends implicitly on the odd parameters in Λn but we will simply write Φ instead of Φ(n)

to improve the readability of some rather long equations.

Choosing a frame {ei} such that the metric has the normal form from proposition 3.39, we
obtain the following equations of motion:

Theorem 6.29 A n-point Φ of SC∞(X,N) is critical if and only if

0 = τ(Φ) := strG(∇
ΦdΦ) :=

∑

i

(∇Φ
eµdΦ)(J(eµ)) (6.16)

Proof Let Φ be an n-point of SC∞(X,N) and ρ : Λn −→ Λm a morphism of Grassmann
algebras. Let Φ̃ := SC∞(ρ)Φ = Φ ◦ (P(ρ)× idM ). By definition 6.5, Φ is critical if for all m,
all ρ and all variations Φ̃t of the resulting point Φ̃, we have d

dt |0E(Ψ̃t) = 0.
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By lemma 3.44, the order of t-differentiation and Berezin integration can be interchanged.
Fixing an orthosymplectic frame {ei} and using J as in (3.9) ff., we get12

d
dt

∣∣∣∣
t

E(Φ̃t) =

∫

Pm×M
volG

d
dt |0

〈
dΦ̃, dΦ̃

〉

= 2

∫

Pm×M

∑
i

〈
∇Φ̃t
t (dΦ̃t(ei)), dΦ̃t(Jei)

〉

Introducing the vector field Wt :=
〈
∇Φ̃t
ei ((−1)|ej |

〈
dΦ̃t(∂t), dΦ̃t(ej)

〉
Jej), Jei

〉
, computation

of its divergence yields

div(Wt) =
〈
∇Φ̃t
t dΦ̃t(ei), dΦ̃t(Jei)

〉
+
〈
dΦ̃t(∂t), (∇

Φ̃t
ei dΦ̃t)(Jei)

〉

By the divergence theorem, there is no contribution from div(Wt), integrated over M . Re-
stricting to t = 0, we finally obtain

d
dt

∣∣∣∣
t

E(Φ̃t) = −

∫

Pm×M
volG

〈
Ṽ , τ(Φ̃)

〉

where Ṽ := dΦ̃t(∂t)|t=0 is the variational vector field. Introducing local coordinates on N
and denoting the coefficient of the metric on the target by hµν , the integrand is given by
Ṽ (Φ̃(yµ))τ(Φ̃)(Φ̃(yν))Φ̃hµν . Since the components of Ṽ are arbitrary, we obtain τ(Φ̃) = 0.
Finally, every morphism ρ of Grassmann algebras induces the map

ρ̂ := (ρ⊗ idO)⊗ idTN : (Λn ⊗R O)⊗Φ TN −→ (Λm ⊗R O)⊗Φ̃ TN

It is clear that this extension of ρ commutes with the covariant derivative etc. so that we
obtain: Φ is critical if and only if, for all ρ : Λn −→ Λm, we have ρ̂(τ(Φ)) = τ(Φ̃) = 0. This
is clearly equivalent to τ(Φ) = 0.

�

τ(Φ) is a vector field along Φ and following the strategy used for supergeodesics, we use
components to reformulate (6.16). We will furthermore make the following assumptions on
(X,G) to obtain a manageable set of component equations:

(a) We will assume dim(X) = m|2. Recall that the odd dimension has to be an even number
by lemma 3.36 (c). The number of component fields on a general supermanifold of
dimension p|q is 2q so that already q = 4 leads to 16 superfields and extremely complex
equations. Some general properties of the component equations and the functor of
critical points will nevertheless be valid in general.

(b) We will assume that X admits global odd coordinates θ1, θ2, i.e. that any Batchelor
bundle E −→ X̃ is trivializable. This condition is necessary to obtain globally defined
component fields, it will be removed at the end. Note that the even coordinates fields
will in general only be defined locally.

12The calculation follows that in [69], 1.2.3. However, the calculation is slightly more complicated due to
the super signs and due to the fact that we do have a frame parallel at a “point”.
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(c) We will assume that G is block diagonal, i.e. we have TX,0 ⊥ TX,1. This is always true
on the level of super tangent spaces by lemma 3.36 but in order to simplify calculations,
we assume that this holds for G itself.

Since an odd coordinate system is precisely a frame of a Batchelor bundle, we can always
absorb a change of base, given by a matrix in Gl(2, C∞(X̃)), into the odd coordinates. Then,
the block of G corresponding to TX,1 has normal form up to order θα and there are only

terms left which are proportional to θ1θ2. Moreover, the block corresponding to TX,0 must
be a Riemannian metric up to order θα so that we have the following lemma:

Lemma 6.30 Under the above assumptions, G and G−1 have the form

G =




G0 0 0

0 0 −1− hθ1θ2

0 1 + hθ1θ2 0


 G−1 =




G−1
0 0 0

0 0 1− hθ1θ2

0 −1 + hθ1θ2 0




(6.17)

with respect to a coordinate frame { ∂
∂x1

, . . . , ∂
∂xm ,

∂
∂θ1

, ∂
∂θ2

}. We have h ∈ C∞(X̃) and G0 is
an invertible matrix with entries in O0 which may be written as

G0 = g + ĝθ1θ2 G−1
0 = g−1 − g−1ĝg−1θ1θ2

for a Riemannian metric g on X̃ and a symmetric bilinear form ĝ on TX̃.

Before giving the component equations, we note two covariant derivatives on (X,G) which
can be obtained from Koszul’s formula:

∇X
∂µ

∂
∂xν = Γiµν∂i +

(
Γ̂iµν − Γkµν ĝkjg

ji
)
θ1θ2 ∂

∂xi
+ 1

2 ĝµν(θ
1 ∂
∂θ1

− θ2 ∂
∂θ2

) (6.18)

∇X
θ2

∂
∂θ1 = −1

2θ
1θ2gradg(h)− h(θ1 ∂

∂θ1 + θ2 ∂
∂θ2 )

Here, Γiµν denote the Christoffel symbols of the Levi-Civita connection associated to g whereas

Γ̂iµν := 1
2(
∂ĝνρ
∂xµ +

∂ĝµρ
∂xν −

∂ĝµν
∂xρ )g

ρi. Using this, we also find the following super Lie bracket
expression for α = 1, 2:

[∇X
∂µ

∂
∂xν ,

∂
∂θα ] = (−1)α

(
Γ̂iµν − Γkµν ĝkjg

ji
)
θ3−α ∂

∂xi
+ (−1)α 1

2 ĝµν
∂
∂θα (6.19)

(6.20)

Here, the components of Φ = Φ(n) are

ϕ = ι∗Φ ψα = ι∗dΦ( ∂
∂θα ) (α = 1, 2) ξ = ι∗∇Φ

θ2dΦ(
∂
∂θ1 ),

and we obtain the following component equations:
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Theorem 6.31 Φ is a critical point of the energy functional if and only if the following
component hold:

τ(ϕ) = −2ξ (6.21)

∇ϕ∗∇ϕψα = trgR
N (ψα, dϕ(·))dϕ(·) − 2(−1)αRN (ψ1, ψ2)ψα (6.22)

+ (−1)α 1
2trg(ĝ)ψα + 2hψα

∇ϕ∗∇ϕξ = RN(ψ2, τ(ϕ))ψ1 + 2R(ψ1, ξ)ψ2 + trgR(ξ, dϕ(·))dϕ(·) (6.23)

+ 2trgR
N (ψ2, dϕ(·))∇

ϕ
· ψ1 − 2trgR

N (ψ1, dϕ(·))∇
ϕ
· ψ2

+ trg(∇
N
ψ2
RN )(ψ1, dϕ(·))dϕ(·) + trg(∇

N
dϕ(·)R

N )(ψ2, dϕ(·))ψ1

+ 2(∇N
ψ2
RN )(ψ1, ψ2)ψ1

+ 2hξ + dϕ(gradg(h)) − 〈∇ϕdϕ, ĝ〉 − 1
2trg(ĝ)ξ − gµν(Γ̂iµν − Γkµν ĝkjg

ji)dϕ( ∂
∂xi

)

Conversely, each set of component equations defines a critical point Φ. Here trg denotes the
metric trace on the underlying Riemannian manifold (X̃, g) and 〈∇ϕdϕ, ĝ〉 the contraction of
∇ϕdϕ and ĝ on Sym2T ∗X̃ which yields a vector field along ϕ.

Remark 6.32 At a first glance, the third equation shows an unexpected asymmetry in ψ1

and ψ2. While the trgR-terms show a supersymmetric behavior under exchange of ψ1 and ψ2,
this seems to be wrong for the trg∇R-terms. However, using the second and the derivative
of the first Bianchi identity, it is not difficult to show that we have

trg(∇
N
ψ2
RN )(ψ1, dϕ(·))dϕ(·) + trg(∇

N
dϕ(·)R

N )(ψ2, dϕ(·))ψ1 =

1
2

(
trg(∇

N
ψ2
RN )(ψ1, dϕ(·))dϕ(·) − trg(∇

N
ψ1
RN )(ψ2, dϕ(·))dϕ(·)

)

+ 1
2

(
trg(∇

N
dϕ(·)R

N )(dϕ(·), ψ1)ψ2 − trg(∇
N
dϕ(·)R

N )(dϕ(·), ψ2)ψ1

)

The right hand side is indeed supersymmetric in ψ1 and ψ2 and a similar expression can be
obtained for the summand (∇N

ψ2
RN )(ψ1, ψ2)ψ1.

Proof of theorem 6.31 We have to compute the expressions ι∗τ(Φ), ι∗∇Φ
θατ(Φ) for

α = 1, 2 and ι∗∇Φ
θ2∇

Φ
θ1τ(Φ). Using the special form (6.17) of the metric, we find

τ(Φ) = str(∇ΦdΦ) = Gµν(∇Φ
∂µdΦ)(∂ν)− 2G21(∇Φ

θ2dΦ)(
∂
∂θ1

) (6.24)

µ, ν = 1, . . . ,m will label only the even coordinates in the course of this proof.
Equation (6.21) is obtained by rearranging ι∗τ(Φ) = 0 using (6.24), the form of the metric
given in lemma 6.30 and the definition of the components. To prove (6.22) for α = 1, we

obtain from lemma 6.30 that ι∗ ∂G
ij

∂θα = 0 and hence

ι∗τ(Φ) = gµνι∗∇θα
(
∇Φ
µdΦ(

∂
∂xν )− dΦ(∇µ

∂
∂xν )

)
︸ ︷︷ ︸

=:I

−2 ι∗∇Φ
θα
(
∇Φ
θ2dΦ(

∂
∂θ1 )− dΦ(∇θ2

∂
∂θ1 )

)
︸ ︷︷ ︸

=:II
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We deal with both summands separately. Using the fact that ∇Φ is free of torsion and the
curvature expressions in remark (3.54), we have

I = gµν ι∗
(
RN (dΦ( ∂

∂θ1
), dΦ( ∂

∂xµ ))dΦ(
∂
∂xν)+∇Φ

µ∇
Φ
ν dΦ(

∂
∂θ1

)−∇Φ
∇µ∂νdΦ(

∂
∂xν )−dΦ([

∂
∂θ1

,∇µ
∂
∂xν ])

)

= trgR
N (ψ1, dϕ(·))dϕ(·) −∇ϕ∗∇ϕψ1 −

1
2 trg(ĝ)ψ1

In the last step, we used the expression (6.19) for the Lie bracket. Taking into account that
∇Φ
θ1(

∂
∂θ1 ) = 0 since ∇Φ has no torsion, we obtain

II = −ι∗
(
RN (dΦ( ∂

∂θ1
), dΦ( ∂

∂θ2
))dΦ( ∂

∂θ1
)−∇ΦdΦ(∇θ2

∂
∂θ1

)
)

= −RN(ψ1, ψ2)ψ1 − hψ

In the last step, we used (6.18). Combining I and II yields the second equation of motion,
the generalization to α = 2 is straightforward.
The third equation is obtained in the same way, the expression used above is obtained by
using Bianchi identities to simplify expressions involving curvature. We omit the rather long
calculations.

�

Remark 6.33 It is tempting to define the component decomposition using the adapted
frame {ei} instead of coordinate vector fields. In general, it is possible to define components
with respect to some general odd frame for T1. However, looking at the preceding proof, it is
clear that at each point, where the definition of curvature or torsion is used, additional terms
containing Lie brackets will occur. It was impossible so far to find an appropriate adapted
frame which circumvents this problem and up to now, a coordinate frame seems to be the
most convenient choice to define components. In particular, no straightforward generalization
of the left invariant fields Dα = ∂

∂θα − Γµαβθ
α ∂
∂xµ (cf. [11], chapter 1) could be found. First,

the even coordinate fields are in general only defined locally but to be able to define global
component fields, global odd frame fields are needed. Second, even in cases when these fields
can be defined globally, it seems to be impossible to find a suitable set of fields Dα, adapted
to the geometry of (X,G) in a canonical way, which leads to easier component equations than
those given above.

Again, all the objects occurring in (6.21) to (6.23) still depend on the odd parameters of
the function ring Λn of the superpoint Pn. Following the strategy used for supergeodesics,
we decompose w.r.t. the odd parameters and obtain a set of subcomponent equations for
each n ∈ N. As described before, functoriality implies that it is only necessary to give the
equations for the “new” top component field at each level n. For n ∈ 2N+ 1, this is a single
equation arising from (6.22), for n ∈ 2N we have a coupled system of 2 equations arising from
(6.21) and (6.23). We will only give the lowest contributions for n = 0, 1 in detail:
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n=0 The second equation yield a trivial contribution 0 = 0, so we are left with two equations

for the 0-component ϕ
(0)
0 , ξ

(0)
0 , respectively:

τ(ϕ
(0)
0 ) = −2ξ

(0)
0 (6.25)

∇ϕ
(0)
0 ∗∇ϕ

(0)
0 ξ

(0)
0 = trgR

N (ξ
(0)
0 , dϕ

(0)
0 (·))dϕ

(0)
0 (·) + 2hξ

(0)
0 − 1

2 trg(ĝ)ξ
(0)
0 (6.26)

+ dϕ
(0)
0 (gradg(h)) − 〈∇ϕ

(0)
0 dϕ

(0)
0 , ĝ〉 − gµν(Γ̂iµν − Γkµν ĝkjg

ji)dϕ
(0)
0 ( ∂

∂xi
)

n=1 We have the subcomponent fields ϕ
(1)
0 , ψ

(1)
α,1 and ξ

(1)
0 and one new subcomponent equa-

tion obtained by differentiating (6.22) w.r.t. the coordinate η of P1:

0 = ∇ϕ
(1)
0 ∗∇ϕ

(1)
0 ψ

(1)
α,1 +

∑
iR

N (ψ
(1)
α,1, dϕ

(1)
0 (ei))dϕ

(1)
0 (ei) (α = 1, 2)

For n > 1, the equations have the following general structure

Proposition 6.34 For n ∈ 2N+, the equations of motion for the highest degree subcomponent
fields ϕn, ξn are given by the system

∇ϕ0∗∇ϕ0ϕn + 2ξn = Fn(ϕA, ψα,B , ξC) (6.27)

∇ϕ0∗∇ϕ0ξn − trgR
N (ξn, dϕ0(·))dϕ0(·)

−trgR
N (ξ0,∇

ϕ0
· ϕn)dϕ0(·)− trgR

N (ξ0, dϕ0(·))∇
ϕ0
· ϕn

−2hξn −∇
ϕ0

(gradgh)
ϕn +

〈
(∇ϕ0)2·,·ϕn, ĝ

〉

+1
2trg(ĝ)ξn + gµν(Γ̂iµν − Γkµν ĝkjg

ji)∇
ϕ0

xi
ϕn = Gn(ϕA, ψα,B , ξC)

For n ∈ 2N + 1, the equation of motion for the highest degree subcomponent field ψα,n (α =
1, 2) is given by

∇ϕ0∗∇ϕ0ψα,n − trgR
N (ψα,n, dϕ0(·))dϕ0(·)− ((−1)α 1

2trgĝ + 2h)ψα,n = Hn(ϕA, ψα,B , ξC)
(6.28)

Again, F,G and H are multilinear functions of the subcomponents ϕA, ψα,B , ξC such that
‖A‖, ‖B‖, ‖C‖ < n, depending in a complicated way on the curvature of (N, g) and its (higher)
derivatives.

The proof uses the same method which already used to show proposition 6.23. We will not
give the details. The subcomponent equations have the following structure:

Proposition 6.35 The subcomponent equations at level n ≥ 1 are inhomogeneous partial
differential equations of order ≤ 2 for the subcomponent fields with multi-index n. The in-
homogeneity depends on the subcomponent fields up to level n− 1 and the geometric data of
(X,G) and (N, 〈, 〉).

• For n ∈ 2N0+1, equation (6.28) is defined by a linear elliptic operator acting on sections
of ϕ∗

0TN which is selfadjoint.
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• For n ∈ 2N0, equations (6.27) are given by a linear elliptic operator action on sections
of ϕ∗

0(TN)⊕ ϕ∗
0(TN), which is however not necessarily selfadjoint.

Proof The general statement concerning the structure of the inhomogeneity follows from
proposition 6.34 or rather the proof of proposition 6.23. Since ∇∗∇ is linear, elliptic and
selfadjoint (see example 6.17) and X 7→ trgR

N (X, dϕ0(·))dϕ0(·) is linear, of order 0 and self-
adjoint since X̃ is compact, we obtain the statement for n odd.
For n even, the principle symbol of the differential operator is determined by the map
(ϕnξn) 7→ (∇ϕ0∗∇ϕ0ϕn,∇

ϕ0∗∇ϕ0ξn +
〈
(∇ϕ0)2·,·ϕn, ĝ

〉
) so that it is invertible. Thus, we have

linear and elliptic operator.
�

Remark 6.36
(a) The operator in equation (6.27) is selfadjoint if we assume that G and 〈, 〉 are flat.

However, it is not sufficient to assume G is flat since the properties of the term
trgR

N (ξ0,∇
ϕ0
· ϕn)dϕ0(·) + trgR

N (ξ0, dϕ0(·))∇
ϕ0
· ϕn depend on the curvature of the tar-

get geometry.

(b) Proposition 6.35 suggests that it might be possible to set up an inductive procedure to
determine the functor of critical points. In analogy to the situation in section 6.3, we
still have a system of nonlinear equation at level n = 0 and linear elliptic systems at
level n > 0. In the latter case, the space of solutions still decomposes into affine spaces
modelled over a finite dimensional vector space (this is true for all elliptic operators)
but the characterization of the existence of solutions given in corollary 6.15 is in general
not applicable.

We will finally discuss the existence of critical points under special circumstances. Again,
it is in general impossible to prove that the functor of critical points is representable by a
supermanifold due to the nonlinearity of (6.25), already its 0-points do not form a smooth
manifold if they exist at all. In analogy to the discussion in section 6.3 it would be possible
to introduce a bundle picture where critical n+1-points form the total space over the critical
n-points. We will not repeat it here but be content with discussing the existence of solutions
under severe restrictions.

The subcomponent equations (6.25) and (6.26) at level n = 0 form a coupled system of
nonlinear differential equations and it is not clear whether they admit solutions at all. We
will assume that

ĝ = 0 h = 0 (6.29)

in other words, we assume that the super Riemannian metric G is just given by the ordinary
Riemannian metric g on TX̃ and that it is flat in the odd directions. The subcomponent
equations now take the form

τ(ϕ
(0)
0 ) = −2ξ

(0)
0 ∇ϕ

(0)
0 ∗∇ϕ

(0)
0 ξ

(0)
0 = trgR(ξ

(0)
0 , dϕ

(0)
0 (·))dϕ

(0)
0 (·) (6.30)

and it is easy to observe that a harmonic map ϕ
(0)
0 , together with ξ

(0)
0 = 0 solve the system.
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Theorem 6.37 Assume that the super Riemannian metric satisfies (6.29) and that (N, 〈, 〉)
is a compact Riemannian manifold of nonpositive curvature. Then, there exist solutions to
(6.16) in the sense that for each n, the set Crit(E)(Λn) is nonempty and these sets behave
functorially.

Under the strong assumptions, the theorem is easy to show because it follows from theorem
6.9 that there are critical 0-points of the form (ϕ0, ξ0 = 0) where ϕ0 is a harmonic map. The
trivial extensions to higher points (i.e. setting all higher subcomponent fields to 0) then form
critical n-points for all n ∈ N. We will not try to determine the structure of the complicated
equations 6.34.

The equations (6.30) for n = 0 have the following interesting property:

Proposition 6.38 Let X be a compact and let (N, 〈, 〉) be a Riemannian manifold of non-
positive section curvature. If ϕ0, ξ0 satisfy (6.30), then we already have ξ0 = 0.

Proof Multiplying the differential equation on ξ0 by ξ0 and integrating it yields

∫

X̃
‖∇ϕ0ξ0‖

2 =
∑

i

∫

X̃
‖ξ0 ∧ dϕ0(ei)‖

2KN (ξ0 ∧ dϕ0(ei)) ≤ 0

which implies ∇ϕ0ξ0 = 0. Thus, ξ0 is parallel and in particular, ‖ξ0‖ =: C ∈ R. We define
the form α ∈ Ω2(Xred) by α(X) :=

〈
dϕ0(X), ξ0

〉
and compute its divergence:

divα =
∑

i ∂ei
〈
dϕ0(ei), ξ0

〉
−
〈
dϕ0(∇eiei), ξ0

〉

=
〈
τ(ϕ0), ξ0

〉
+
∑

i

〈
dϕ0(ei),∇

ϕ0
ei ξ0

〉

= −2
〈
ξ0, ξ0

〉
= −2C2

Since X̃ is closed, the divergence theorem implies 0 = −2C2vol(M) which in turn implies
ξ0 = 0.

�

Remark 6.39 This result is interesting for two reasons: First, it reduces the subcomponent
equations (6.30) at n = 0, which provide a coupled system of nonlinear partial differential
equations, to the case of the problem of finding harmonic maps.
Second, the result again demonstrates the necessity to introduce the “space” SC∞(X,N) and
look for the functor of critical points. If we had only been looking for critical morphisms in
the category BKL, i.e. 0-points of SC∞(X,N), we could have expected one new contribution

from the super world given by ξ
(0)
0 which is not there in the setting of classical harmonic maps.

However, proposition 6.38 shows that this contribution vanishes under the assumptions on G
and 〈, 〉 so that in the BKL-approach to morphisms, we are left with a smooth harmonic map.
In this sense, looking at higher points is crucial to obtain new (and interesting) contributions
from the super setting.
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Finally, based on the method introduced in section 5.6, we now show how to generalize the
existence theorem to general supermanifolds which do not admit a global odd coordinate
system. Let E −→ X̃ be a Batchelor bundle for X. Since there exists a super Riemannian
metric, E is a complex bundle by corollary 3.41. By theorem 5.39, there is a complex bundle
E′ −→ X̃ such that E⊕E′ is trivial and using the corollary again, we find a super Riemannian
metric G′

1
on the new odd dimensions given by E′ which can be chosen to be flat. Thus, we

have a super Riemannian manifold (X,G) where X is defined in (5.28) and it admits global
coordinates.
Assume there exist critical n-points Φ of SC∞(X, N) for the energy functional defined on
the supermanifold (X,G). These are characterized by the equation of motion τ(Φ) = 0
by theorem 6.29. Using the inclusion and projection defined in (5.29), we obtain natural
transformations

ι∗X : SC∞(X, N) −→ SC∞(X,N) π∗X : SC∞(X,N) −→ SC∞(X, N)

which are given by (idPn × ιX)
∗ and (idPn ×πX)

∗ on n-points, respectively. We then have the
following correspondence of critical points:

Proposition 6.40 Let Φ be a critical n-point for the energy functional defined on (X,G),
then Φ := (idPn × ιX)

∗Φ is critical for the functional on (X,G). Conversely, if Φ is critical,
then also (idPn × πX)

∗Φ is critical.

Proof We will suppress the first factor of (idPn × ιX)
∗ and just write ι∗X for the action

on functions as well as on vector fields. We may choose a local orthonormal frame for (X,G)
and extend it to one of (X,G), both will be denoted by {ei}.

By 6.29, τ(Φ) =
∑

i(∇
Φ
eidΦ)(Jei) =

∑
i∇

Φ
eidΦ(Jei) − dΦ(∇eiJei) = 0. Applying ι∗X to the

second summand, we obtain ι∗X
∑

i dΦ(∇eiJei) =
∑

i d(ι
∗
XΦ)(dι

∗
X(∇eiJei)) =

∑
i dΦ(∇eiJei).

On the left hand side, we are only summing over the frame of X since dι∗X annihilates tangent
vectors arising from the additional directions in X. Using a coordinate expansion as e.g. in
the proof of lemma 5.36 (d), we can again use the argument that dι∗X annihilates the extra

directions and obtain: ι∗X
∑

i∇
Φ
eidΦ(Jei) =

∑
i∇

Φ
eidΦ(Jei). Using these identities, we can

calculate the tension field of Φ:

τ(Φ) =
∑

i∇
Φ
eidΦ(Jei)− dΦ(∇eiJei) = ι∗X

(∑
i∇

Φ
eidΦ(Jei)− dΦ(∇eiJei)

)
= ι∗Xτ(Φ) = 0

Thus, Φ is critical. The converse direction is obtained in a similar fashion.
�

Since each critical n-point Φ induces a critical n-point Φ := (idPn×ιX)
∗Φ ∈ SC∞(X,N)(Λn),

we have shown the assumption concerning the existence of globally defined odd coordinates
can be removed.
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A Appendix: Elements of category theory

Let C be a category. We denote by Obj(C) its class of objects and by HomC(X,Y ) the
morphisms between the objects X,Y . We denote by Cop the opposite category, i.e. the
category defined by

Obj(Cop) := Obj(C) HomCop(X,Y ) := HomC(Y,X)

Thus, Cop is obtained from C by reversing arrows.

For two categories C and D, the functor category DC is defined as follows:

Obj(DC) := { functors C −→ D}

HomDC(F,G) := { natural transformations F −→ G}

Here, a natural transformation from a functor F to another functor G is a family of morphisms
{ηX}X∈Obj(C) such that the following diagram commutes for all morphisms f ∈ HomC(X,Y ):

F (X)
ηX //

F (f)
��

G(X)

G(f)
��

F (Y )
ηY // G(Y )

(A.1)

The class of all natural transformations F −→ G will also be denoted by Nat(F,G) Strictly
speaking, it is necessary to discuss some set theoretic subtleties at this point. We will not do
this but refer to [59], chapter 3.

Two functors F,G are called isomorphic, if there exist a natural transformation η : F −→ G
such that each ηX ∈ HomD(F (X), G(X)) is an isomorphism (i.e. there exist an inverse
morphism). In this case, η is called a natural equivalence. This is also often expressed by
saying that a bijection

F (X) ∼= G(X) X ∈ Obj(C)

is functorial in X. Thus, “being functorial” in X means that there is an isomorphism η (or
more general a natural transformation in case bijectivity is not assumed) which relates F (X)
and G(X) according to (A.1).

Let Set denote the category of sets. For any category C, we have the following two functors :

HomC(−,X) : Cop −→ Set HomC(−,X)(Y ) := HomC(Y,X) HomCC(−,X)(f) := f∗

HomC(X,−) : C −→ Set HomC(X,−)(Y ) := HomC(X,Y ) HomCC(X,−)(g) := g∗



100 A APPENDIX: ELEMENTS OF CATEGORY THEORY

Proposition A.1 (Yoneda Lemma) Let C be a category and F : C −→ Sets a functor and
A an object of C. Then, there is a bijection

Y : Nat(Hom(A,−), F ) −→ F (A)

τ 7→ τA(1A) (A.2)

See [59], 4.2 for a proof. We have the following corollaries:

Corollary A.2 Let A,A′ be objects in C, then the following map yields a bijection:

Y −1 : Hom(A′, A) −→ HomSetC(Hom(A,−),Hom(A′,−))

f 7→ f∗

In other words, we have a bijective correspondence τ ↔ f of natural transformations of
Hom-functors and morphisms in C.

Corollary A.3 Let τ be a natural transformation and f a morphism related by f = Y (τ),
then τ is a natural equivalence iff f is an isomorphism. In other words : Hom(A,−) and
Hom(A′,−) are naturally equivalent if and only if A and A′ are isomorphic.

The Yoneda lemma and its corollaries allow us to replace an object in the category C by the
functor HomC(−,X) representing it. Similarly, a morphisms in C can be replace by a natural
transformation between the representing functors. For S another object in C, the elements of
HomC(S,X) are also called “S-points of X” since they characterize X in the way described
before.

Following [30], II.3.9 and II.3.10, we give an example how this method can be used to define
group objects in a category (e.g. super Lie groups in some category of supermanifolds)

Example A.4 Assume that C contains a final object E (i.e. the set HomC(X,E) contains
precisely one morphism for every X) and that it admits finite products. We say that an
object X carries a group structure if there exist three morphisms

µ : X ×X −→ X (multiplication law)

i : X −→ X (inverse map)

e : E −→ G (identity)

which satisfy certain compatibility relations expressing that µ is associative, that i is the left
inversion and the e is a left identity. For instance, the identity µ ◦ (µ, idX) = µ ◦ (idX , µ)
means that the multiplication is associative and there are similar requirements on i and e to
make sure that they describe a unit element and the inversion, respectively (see [30] II.3.10
for a diagrammatic expression for these relations). These morphisms and compatibility rela-
tions form a generalization of the usual definition of a group to an arbitrary category.

Alternatively, a group object can be defined as an object X such that all its S-points
Hom(S,X) carry compatible group structures (see [30] II.3.9). More precisely, this means
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(a) Each set Hom(S,X) is an ordinary group with unit element eS , multiplication law µS
and inversion law iS .

(b) For any morphism ϕ : S −→ T in C, the map ϕ∗ : Hom(T,X) −→ Hom(S,X) is a
group homomorphism in the usual sense.

Both approaches are equivalent : By composition, the morphisms µ, i, e clearly induce op-
erations on the S-points Hom(S,X). In this way, the sets Hom(S,X) become groups and
the group structures are clearly compatible in the way described above. Conversely, using
Yoneda’s lemma, the functoriality of the multiplication laws µS in S implies the existence
of a morphism µ : X × X −→ X. Since all µS are associative, the same holds for µ. The
morphisms i and e are obtained in a completely analogous way from the iS and eS .

Thus, replacing objects by functors and morphisms by natural transformations clearly in-
creases the layer of abstraction but on the other hands, it allows us to carry over many
constructions well known for sets (with some extra structure) to general categories in an
elegant and natural way.

We will finally discuss fibre products and their generalization to categories since this concept
is needed in the main part of this thesis. Let M,N,S be sets and m :M −→ S, n : N −→ S
be maps. The fibre product of m and n is then defined as a set M ×S N , together with a
canonical map m×S n :M ×S N −→ S:

M ×S N := {(x, y) ∈M ×N |m(x) = n(y)} (A.3)

m×S n := ((x, y) 7→ m(x) = n(y)) (A.4)

It is often simply denoted by M ×S N and generalizes constructions like the intersection
M ∩ N of two subsets (m,n →֒ S are the inclusions), the preimage m−1(N) (m a map,
n : N →֒ S the inclusion) and of course the ordinary product (see [30] II.5).
The notion can be generalized to arbitrary categories:

Definition A.5 Let X,Y, S be objects in a category C and x : X −→ S, y : Y −→ S two
morphisms. A fibre product X×SY is an object in C, together with a morphism X×SY −→ S
which represents the following functor CO −→ Set:

T 7→ Hom(T,X)×Hom(T,S) Hom(T, Y ) (A.5)

and defined on morphisms by pullback.

Some remarks are in order:

Remark A.6
(a) The morphisms x, y clearly induce maps x∗ : Hom(T,X) −→ Hom(T, S) and y∗ :

Hom(T, Y ) −→ Hom(T, S). These maps are used for m,n in (A.3) to define the product
×Hom(T,S).
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(b) The family of maps {x∗ ×Hom(T,S) y∗}T is natural in T . If the functor (A.5) is rep-
resentable by X ×S Y , this family then induces the morphism X ×S Y −→ S by the
Yoneda lemma.

(c) A fibre product need not exist but if it does, it is uniquely defined by the functor up
to isomorphism.

(d) A fibre product comes along with canonical projections ΠX : X ×S Y −→ X and
ΠY : Y ×S Y −→ Y which are obtained by taking the obvious projections on the level
of S-points, i.e. on the level of sets.

There is a second equivalent way to define a fibre product over S as an ordinary product
in a new category CS , whose objects are all morphisms Hom(X,S) (X arbitrary) and whose
morphisms are all commutative triangles over S (see [30], p.81). We will not use this formu-
lation but use the first definition to discuss the fibre product of two superdomains. We use
the notation of definition 4.20.

Example A.7 (Fibre products of superdomains) Let X be a functor in ManGr and
A = {ui : Ui −→ X} an open covering of it, where each Ui is a superdomain. Thus, by
definition 4.14, each ui factors as

ui : Ui
ũi−→ Vi ⊂ X

where ũi : Ui −→ Vi is an isomorphism of an open subfunctor of X. By definition, we obtain
for a Λ-point (Λ a finite dimensional Grassmann algebra) of the fibre product Ui ×X Uj:

(Ui ×X Uj)((Λ)) = Ui(Λ)×X(Λ) Uj(Λ)

= {(pi, pj) ∈ Ui(Λ)× Uj(Λ)|ui(Λ)(pi) = uj(Λ)(pj)}

= (ui(Λ)× uj(Λ))
−1(Vi(Λ) ∩ Vj(Λ))

In definition 4.20, this set is required to be a superdomain. Taking into account the projections
Πi : Ui ×X Uj −→ Ui and Πi : Ui ×X Uj −→ Ui, we obtain the following diagram

(ui(Λ)× uj(Λ))
−1(Vi(Λ) ∩ Vj(Λ))

Πi(Λ)
ttjjjjjjjjjjjjjjjjj

Πj(Λ)
**TTTTTTTTTTTTTTTTT

Ui(Λ) // Uj(Λ)

Thus, requiring Πi and Πj to be supersmooth means that the horizontal arrow at the bottom
of the diagram, which is given by uj(Λ) ◦ ui(Λ)

−1, is required to be supersmooth. In other
words, coordinate transitions are required to be supersmooth.
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[45] J. Monterde, J. Muñoz Masqué, Variational Problems on Graded Manifolds,
Contemporary Mathematics, Volume 132, 551-571, American Mathematical
Society, Providence, RI, 1992.

[46] J. Monterde, O. A. Sánchez-Valenzuela, The exterior derivative as a Killing
vector field. Israel J. Math. 93 (1996), 157170.

[47] J. Nestruev, Smooth manifolds and observables. Joint work of A. M. Astashov,
A. B. Bocharov, S. V. Duzhin, A. B. Sossinsky, A. M. Vinogradov and M.
M. Vinogradov. Translated from the 2000 Russian edition by Sossinsky, I. S.
Krasil’schik and S. V. Duzhin. Graduate Texts in Mathematics, 220. Springer-
Verlag, New York, 2003.

[48] F. O’Dea, Supersymmetric Harmonic Maps into Lie Groups, arXiv:hep-
th/0112091v1

[49] J.-F. Pommaret, Systems of partial differential equations and Lie pseudogroups.
With a preface by Andre Lichnerowicz. Mathematics and its Applications, 14.
Gordon & Breach Science Publishers, New York, 1978.

[50] S. Rempel, T. Schmitt, Pseudodifferential operators and the index theorem on
supermanifolds. Math. Nachr. 111 (1983), 153175.

[51] A. Rogers, Supermanifolds. Theory and applications. World Scientific Publish-
ing Co. Pte. Ltd., Hackensack, NJ, 2007.

[52] C. Sachse, Global Analytic Approach to Super Teichmueller Spaces,
arXiv:0902.3289

[53] C. Sachse, A Categorical Formulation of Superalgebra and Supergeometry,
arXiv:0802.4067

[54] C. Sachse, C. Wockel, The diffeomorphism supergroup of a finite-dimensional
supermanifold, arXiv:0904.2726

[55] G. Sardanashvily, Lectures on Differential Geometry of Modules and Rings,
arXiv:0910.1515

[56] D. J. Saunders, The geometry of jet bundles. London Mathematical Society
Lecture Note Series, 142. Cambridge University Press, Cambridge, 1989.



REFERENCES 107

[57] T. Schmitt, Super differential geometry, Report 05/84 des IMath der Akad.
der Wiss. der DDR, 1984

[58] R. Schoen, S. T. Yau, Lectures on harmonic maps. Conference Proceedings and
Lecture Notes in Geometry and Topology, II. International Press, Cambridge,
MA, 1997.

[59] H. Schubert, Kategorien I, Heidelberger Taschenbücher, Band 65, Springer-
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