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Abstract

Service-oriented Architectures (SOA) facilitate the provision and orchestration of business ser-
vices to enable a faster adoption to changing business demands. Web Services provide a technical
foundation to implement this paradigm on the basis of XML-messaging. However, the enhanced
flexibility of message-based systems comes along with new threats and risks. To face these issues,
a variety of security mechanisms and approaches is supported by the Web Service specifications.
The usage of these security mechanisms and protocols is configured by stating security require-
ments in security policies. However, security policy languages for SOA are complex and difficult
to create due to the expressiveness of these languages.

To facilitate and simplify the creation of security policies, this thesis presents a model-driven
approach that enables the generation of complex security policies on the basis of simple security
intentions. SOA architects can specify these intentions in system design models and are not
required to deal with complex technical security concepts.

The approach introduced in this thesis enables the enhancement of any system design modelling
languages – for example FMC or BPMN – with security modelling elements. The syntax, se-
mantics, and notion of these elements is defined by our security modelling language SecureSOA.
The meta-model of this language provides extension points to enable the integration into system
design modelling languages. In particular, this thesis demonstrates the enhancement of FMC
block diagrams with SecureSOA.

To enable the model-driven generation of security policies, a domain-independent policy model is
introduced in this thesis. This model provides an abstraction layer for security policies. Mappings
are used to perform the transformation from our model to security policy languages. However,
expert knowledge is required to generate instances of this model on the basis of simple security
intentions. Appropriate security mechanisms, protocols and options must be chosen and com-
bined to fulfil these security intentions. In this thesis, a formalised system of security patterns is
used to represent this knowledge and to enable an automated transformation process. Moreover,
a domain-specific language is introduced to state security patterns in an accessible way. On
the basis of this language, a system of security configuration patterns is provided to transform
security intentions related to data protection and identity management. The formal semantics
of the security pattern language enable the verification of the transformation process introduced
in this thesis and prove the correctness of the pattern application.

Finally, our SOA Security LAB is presented that demonstrates the application of our model-
driven approach to facilitate a dynamic creation, configuration, and execution of secure Web
Service-based composed applications.
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Zusammenfassung

Service-orientierte Architekturen ermöglichen eine dynamische Bereitstellung und Orchestrierung
von Diensten, um eine schnelle Anpassung an Geschäftsanforderungen zu gewährleisten. Webser-
vices bieten die technologische Grundlage zur Umsetzung dieses Paradigmas auf der Basis einer
nachrichtenbasierten Kommunikation. Um die neuen Risiken und Gefahren zu adressieren, die
mit diesem dezentralen Ansatz einhergehen, unterstützen die Webservice-Spezifikationen eine
Vielzahl von Sicherheitsmechanismen und Protokollen. Die Verwendung dieser Mechanismen
wird, gemäß den Sicherheitsanforderungen, deklarativ in Sicherheitspolicies spezifiziert. Aller-
dings weisen Policysprachen für SOA eine hohe Komplexität auf und sind fehleranfällig in der
Verwendung.

Um die Generierung von Sicherheitskonfigurationen in komplexen Systemen zu vereinfachen, wird
in dieser Arbeit ein modellgetriebener Ansatz vorgestellt, der eine Modellierung von Sicherheits-
anforderungen in Architekturmodellen ermöglicht und eine Generierung von Sicherheitspolicies
auf Grundlage dieser Anforderungen unterstützt. Die Modellierungsebene ermöglicht eine ein-
fache und abstrakte Darstellung von Sicherheitsanforderungen, die sich auch Systemarchitekten
erschließt, welche keine Sicherheitsexperten sind.

Der in dieser Arbeit vorgestellte Ansatz ermöglicht die Erweiterung beliebiger Systemmodel-
lierungssprachen - beispielsweise FMC oder BPMN - mit sicherheitsbezogenen Modellierungs-
elementen. Die Syntax, die Semantik und die Darstellung dieser Elemente werden durch unsere
Sicherheitsmodellierungssprache SecureSOA spezifiziert. Erweiterungspunkte ermöglichen die In-
tegration dieser Sprache in beliebige Systemmodellierungssprachen. Insbesondere wird in dieser
Arbeit die Erweiterung von FMC-Blockdiagrammen mit SecureSOA demonstriert.

Um eine modellgetriebene Generierung von Sicherheitspolicies zu ermöglichen, spezifizert diese
Arbeit ein domänenunabhängiges Policymodell, das eine Abstraktionsschicht zu Sicherheitspoli-
cies bildet. Allerdings kann eine Generierung von Policymodellinstanzen auf Grundlage der
modellierten Anforderungen nur erfolgen, wenn im System Expertenwissen hinterlegt ist, das die
Auswahl von Sicherheitsprotokollen, -mechanismen und -optionen bestimmt. Im Rahmen dieser
Arbeit werden Entwurfsmuster für SOA-Sicherheit zur Transformation herangezogen, die dieses
Wissen repräsentieren. Dazu wird ein Katalog von Entwurfsmustern eingeführt, der die Ab-
bildung von Sicherheitsintentionen auf unser domänenunabhängiges Modell unterstützt. Diese
Muster sind mittels einer domänenspezifischen Sprache (DSL) definiert, um eine einfache Spezi-
fikation der Entwurfsmuster zu ermöglichen. Die formale Semantik dieser Entwurfsmustersprache
ermöglicht die formale Verifikation des Transformationsprozesses, um die Korrektheit der Ent-
wurfsmusteranwendung nachzuweisen.

Die Anwendbarkeit unseres Ansatzes wird durch das SOA Security LAB unter Beweis gestellt, das
eine dynamische Konfiguration und Ausführung von sicheren Webservice-Szenarien ermöglicht.
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Chapter 1

Introduction

In recent years, IT enterprise infrastructures evolved into distributed and loosely coupled system
landscapes that expose the assets and resources in an organisation as business services. The
paradigm of Service-oriented Architectures (SOA) facilitates the flexible provision and reuse
of these services to enable a faster adoption to changing business requirements. OASIS has
published a reference model [MLM+06] that defines SOA as ’a paradigm for organising and
utilising distributed capabilities that may be under the control of different ownership domains.’
Services expose capabilities to address the needs of service consumers. The interactions between
a service provider and a service consumer are introduced in this model as a core concept to use
a capability by exchanging information.

The basic concepts of service orientation as described in the OASIS reference model [MLM+06]
lead to key aspects that are widely used to describe service-oriented computing. Thomas Erl
[Erl05] described these key aspects as Loose coupling, Service Contract, Autonomy, Abstraction,
Reusability, Composablity, Statelessness, and Discoverability. Services encapsulate and expose
logic (autonomy) as described in the service contract (abstraction). The contract defines the
structure of exchanged information and minimizes the dependency between client and service to
facilitate a loose coupling. A client has to conform to the contract and is not statically bound
to a binary interface. The independent nature of services, with respect to operating systems,
programming languages and system architectures, facilitates the creation of complex service
orchestrations. In the scope of organisational workflows, SOA provides a suitable foundation to
execute business processes as an orchestration of multiple independent services.

Altogether, Service-oriented Architectures deliver a flexible infrastructure to allow independently
developed software components to communicate in a seamless manner. However, this flexibility
comes along with new security risks and threats. Messages exchanged in a decentralized environ-
ment across system borders are vulnerable to information tampering and disclosure. To address
these risks, exchanged information must be protected in terms of confidentiality and integrity
by applying encryption mechanisms and digital signatures. Furthermore, the authentication of
participants in an interaction is required to restrict the service access to authorised users. While
monolithic applications can manage their users in an isolated fashion, this approach is not ap-
plicable in the scope of service computing. The composition and dynamic selection of services
require a seamless usage and integration of services - even across organisational borders. Iden-
tity management models for decentralised environments have been developed and provide the
foundation to authenticate and identify users across administrative domains.
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CHAPTER 1. INTRODUCTION

Security requirements concerning the identification and authentication of users and the confi-
dentiality and integrity of exchanged information must be enforced by interacting participants
(services and clients). The enforcement of these requirements transforms messages that are ex-
changed in the scope of these interactions. For example, exchanged messages might be encrypted,
signed, or convey identity information due to security requirements stated by a service. Security
policies enable services to express and group these security capabilities and requirements and
represent an important concept to enable interoperability at runtime. Policies are provided with
the interface description of a service and define a list of supported security options. Clients can
retrieve this policy and select security mechanisms and protocols to invoke the service securely.

In the scope of the Web Service specifications, WS-SecurityPolicy can be used to specify re-
quirements regarding the protection of exchanged messages (e.g. algorithms, key strength, and
protected message parts) and the provision of identity information (e.g. authentication options
and trusted parties). This policy language provides a complex structure and a variety of options
to specify and restrict the usage of the Web Service security specifications. However, the broad
range of options and security mechanisms complicates the creation of secure and consistent poli-
cies. Security policies are hard to understand and even harder to create, due to the expressiveness
of this language. Since various security mechanisms and options can be required and combined
in a policy, strong security expert knowledge is needed.

To simplify the creation of security configurations for Web Services, tool support is offered by all
major Web Service platforms and development environments. These tools provide policy editors
and preconfigured policies that can be used by selecting a profile or binding. However, strong
security knowledge is still required to choose appropriate bindings and to provide additional se-
curity related configurations. In addition, these tools do not take the overall system architecture
into account. The designer of a policy has to consider available security services, trust relation-
ships, communication channels and the security capabilities of the participants involved in the
interactions with services.

Model-driven security approaches promise to assist the policy generation process by providing
a conceptual layer to model, verify, and transform security requirements in a simplified way.
The enhancement of system design models with security requirements provides a comprehensive
view on security aspects to facilitate the generation of consistent security policies that comply
with these requirements. Various approaches have been specified to enhance different types
of modelling languages such as UML [Jue02, BDL06] or BMNP [RFMP07, WS07]. Some of
these approaches provide an enhancement of system design models to express and verify security
requirements, while other approaches enable a transformation of authorisation annotations to
generate access control policies. However, these approaches are not applicable in the scope of
service-based systems that require the modelling and transformation of requirements related to
secure messaging.

To overcome these limitations, this thesis presents a methodology to enable the modelling of se-
curity intentions in system design models and a transformation process to generate Web Service
security policies. Our modelling approach provides a simple and high level notion of security
requirements that can be used by enterprise architects who are not required to have a strong
security background. Furthermore, our approach enables an automated transformation of simple
security intentions to complex, customised security configurations. To perform this transfor-
mation, a catalogue of security patterns for service-based systems is introduced in this work.
The specification of a security design language to enhance system models, a formalised security
pattern system, and a pattern-based transformation process are the main contributions of this
thesis.

2



1.1. STATE OF THE ART IN MODEL-DRIVEN SECURITY

1.1 State of the Art in Model-driven Security

The domain of model-driven security is an emerging research area. The need to describe security
policies referring to an application scenario on an abstract level is discussed in [TIN04]. A tool
is presented that provides business-oriented views to configure secure Web Services on the basis
of interaction models and related threats.

Jürjens introduces the UMLsec extension in [Jue02] to express and verify security aspects within
UML diagrams. UML profiles, tags, and stereotypes are used to express requirements such as
confidentiality, access control and non-repudiation. This approach provides formal semantics to
enable a verification of security requirements. For example, security protocols can be modelled
and verified. However, to perform such a formal verification, all security-related aspects such as
cryptographic data must be specified in the system model. As a consequence, UMLsec models
have a high degree of complexity and tend to be difficult to understand without a strong security
background. Although this approach could be adapted to model and verify Web Service security
protocols, it does not provide a simple, high-level notion for security intentions.

Breu and Haffner propose a methodology for security engineering in Service-oriented Architec-
tures [HB08] that is based on a model-driven approach. Security requirements are modelled in
a domain-specific language and transformed to a domain-independent language that is used to
generate security policies. In particular, they outline a mapping to authorisation constraints.
Although messing-related security goals can be expressed, a mapping to a security policy lan-
guage is not described. In addition, specific Web Service concepts such as claim-based identities
are not considered that would be required to configure identity management systems.

In [BDL06], Basin and Lodderstedt introduce SecureUML that provides a security design lan-
guage to describe role-based access control and authorisation constraints. In addition, they
describe a general schema to integrate this language in different types of system design lan-
guages. Using this schema, they specify the modelling language ComponentUML to illustrate
the integration of SecureUML. The transformation into executable EJB and .NET systems with
configured access control infrastructures is described as well.

Previous work done by Rodriguez et al. [RFMP06], [RFMP07] discusses an approach to express
security requirements in the context of business processes by defining security requirement stereo-
types that link to activity elements of a business process. In addition, they propose graphical
annotations to visually enrich the process model with related security requirements. Although
they support several security requirements, they neither describe a schema to integrate these
requirements in other modelling languages nor provide a model-driven transformation. A model-
driven scenario based on their annotations is considered as future work.

Wolter [WS07] fosters a model-driven approach to enable a generation of XACML access control
policies based on enhanced business process models. Therefore, he describes an extension for
BPMN to visualise authorisation requirements and related constraints. Similar to Wolter, Klarl
[KMW+09] introduced a model-driven approach based on the enhancement of process models as
well.

Jensen and Feja describe a model-driven generation of Web Service security policies based on
the annotation of security requirements in business process models [JF09]. In particular, their
approach is focused on the generation of WS-SecurityPolicy documents to ensure a secure mes-
saging in terms of confidentiality and integrity. Security requirements and aspects related to
identity management concepts (e.g. identity provisioning requirements, trust relationships, or
identity providers) are not considered.

3



CHAPTER 1. INTRODUCTION

Using security patterns, Delessy describe a pattern-driven process for secure SOAs [Del08]. This
approach intents to use patterns for a semi-automated translation to support system architects.
An automated transformation to security policies is not provided.

In summary, most of the related approaches have been focusing on the modelling of authorisation
requirements or the specification of security requirements in the scope of business processes. A
generic framework that enables an integration schema to express security requirements in any
system design modelling language and that provides the generation of messaging-related security
policies for service-based systems has not been provided yet.

1.2 Contribution: A Framework for Model-driven Security

The contribution of this thesis is a model-driven approach that simplifies the design of security
policies by enabling the visual modelling of high-level security intentions in system design models.
Security polices are generated on the basis of these intentions using the transformation process
provided by our approach. As illustrated in Figure 1.1, our model-driven approach consists of
three layers. Security requirements, expressed at the modelling layer are translated to a domain-
independent SOA security model. This model constitutes the foundation to generate WS-Security
policies. The modelling of security requirements, the structure of the domain-independent model
and the transformation process across these layers are outlined in this section.
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Figure 1.1: Model-driven Security in SOA

1.2.1 Modelling Security Requirements

System design models such as FMC block diagrams [TAW05] or UML models [Gro09b] form
the foundation to enable system designers to state security aspects in an easy accessible way.
We use the integration schema provided by SecureUML [BDL06] to enable the enhancement
of these system design models with our security design language SecureSOA. SecureSOA spec-
ifies security-related modelling elements by providing the abstract syntax, notion, and formal
semantics of these elements. In particular, this language specifies security intentions, security
annotations, and trust relationships. Security intentions are used to represent basic requirements
(e.g. authentication or confidentiality), while security annotations represent capabilities (such as
a user directory facilitating the management of users). To enable the annotation of security re-
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quirements in system models, we foster the integration of SecureSOA in Fundamental Modelling
Concept (FMC) Block Diagrams.

Figure 1.2: Modelling Security Intentions

For instance, an FMC block diagrams enhanced with SecureSOA is shown in Figure 1.2. A
user leverages a web frontend to access a service. Moreover, a Security Token Service (STS) is
deployed that performs the user management. The trust relationship to the client indicates that
users of the web frontend are registered at the identity provider, while the trust relationship
from the service to the STS indicates that this service relies on statements made by the identity
provider. The identity provider authenticates users – e.g. by validating user name and password
entered at the web front end – and issues security tokens. These tokens can be sent along
with the request message to access the service. In addition to the system structure, Figure 1.2
depicts two security intentions representing security goals that must be enforced by the security
infrastructure.

Profile Security Mechanisms

high X509-Token
default UserName-Token, X509-Token

Table 1.1: Examples of Security Profiles

To enable the transformation of security intentions to a technical layer, a set of security mech-
anisms and protocols must be listed for each intention that can be used to enforce it. Instead
of specifying the algorithms, key strength and other technical details at the modelling layer, a
modelled security intention refers to a security profile that provides this information. Profiles
are used to abstract from technical details that should be hidden from the modeller and depend
on the integration platform that is used to provide and secure the services. Basically, the pro-
files list security mechanisms that are supported by the platform to enforce security intentions.
As an example, Table 1.1 lists two profiles that provide security mechanisms to implement the
authentication of users.

1.2.2 A Domain-independent SOA Security Model

Security policy languages provide complex and expressive grammars to state security require-
ments at a technical layer. For example, WS-SecurityPolicy specifies an XML syntax to represent
messaging-related requirements that are structured in policy assertions and policy alternatives.
However, other security policy languages may define a grammar that organises requirements in
another way.

5
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To facilitate the generation of security configurations in different security policy languages, we
have specified a domain-independent SOA security model that provides an abstraction layer to
technical security policies for service-based systems. This abstraction layer provides a consistent
interface to simplify the handling and creation of security policies and supports the expression
of security requirements concerning communication related security goals.

Our SOA security policy model provides a separation of concerns. This model facilitates a
transformation of high-level security intentions to technical security requirements independent
of any security policy language. Security policy languages supported by specific platforms and
frameworks - for instance WS-SecurityPolicy or Apache Rampart configuration files - can be
integrated easily by providing mappings from our domain-independent model to these languages.

Policy

PolicyAlternative

Confidentiality Constraint

Constraint Subject 

(Secured Message Part)

Security Algorithms 

(Algorithm Suite)

Credential (Key Type)

...

PolicyAlternative

...

Figure 1.3: Policy Model Example

A policy in our domain-independent policy meta-model consists of several Policy Alternatives
that contain a list of Security Constraints. In general, a Security Constraint describes a set of
requirements to fulfil a Security Goal. An example of a security policy model instance is shown in
Figure 1.3. A Confidentiality Constraint is specified stating that a specific piece of information
(message parts) must be protected using specific algorithms and key types.

1.2.3 A Model-driven Transformation

The generation of enforceable security policies based on security intentions is a challenging task
that has not been fully addressed in related work. A simple mapping is not sufficient to implement
the transformation process, since context information must be considered that is specified at the
modelling layer (e.g. provided security services, trust relationships, etc.).

Using our domain-independent policy model, the transformation of security intentions to security
configurations works as follows: First of all, security constraints are generated based on the
modelled security intentions and combined in policy alternatives. In a second step, this policy
model instance is transformed to a security policy document that is stated in a specific security
policy language.

1.2.3.1 Pattern-based Transformation of Security Intentions

The creation of security policy model instances on the basis of a SecureSOA model is the first
step of our model-driven transformation. However, a simple mapping is not sufficient to perform
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the transformation from abstract security intentions to an instance of our security model that
describes complex technical requirements. Security expert knowledge is required to determine
an appropriate strategy to secure services and resources, since multiple solutions might exist to
satisfy a security goal. For example, confidentiality can be implemented by securing a channel
using SSL or by securing parts of transferred messages using WS-Security. To describe these
strategies and their preconditions in a standardised way, we foster the usage of security configu-
ration patterns. Security patterns have been introduced by Yoder and Barcalow in 1997 [YB97]
and are based on the idea of design patterns as described by Christopher Alexander in 1977:
’A pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that pattern’ [AIS+77]. This thesis provides a formalised
system of security configuration patterns to enable an automated application of security pat-
terns in the transformation process. Each security configuration pattern creates and configures
a set of policy constraints (solution) for a security intention (problem). In addition, conditions
(forces) are defined for each pattern that determine its applicability. To state the definition of
the forces and the solution of security configuration patterns, we have specified a domain-specific
language (DSL). The syntax and the formal semantics of our security configuration pattern DSL
are presented in this thesis and enable a formal verification of the transformation process.

Overall, our security configuration patterns enable an automated creation of security policy
constraints based on simple security intentions. In addition, the security pattern system is
supported by a security ontology that provides security-specific knowledge as shown in Figure 1.1.
It is used by our transformation process and enables a mapping of security concepts referenced
in a security pattern’s solution to security mechanisms listed in the profiles.

1.2.3.2 Generation of System Configurations

The transformation of security policy model instances to security policy documents is the final
step in our model-driven approach. A security policy document is expressed in a security policy
language that is supported by the integration platform.

To enable a generation of security policies for Web Service-based systems, we have specified a
mapping to WS-Policy and WS-SecurityPolicy. WS-Policy [VOH+07] defines a grammar to group
and express requirements and consists of a set of policy alternatives representing a disjunction of
requirement sets. Each alternative groups a set of policy assertions or additional alternatives and
represents a conjunctive combination. Policy assertions represent concrete requirements that are
defined by additional specifications. The WS-SecurityPolicy specification has been developed
to express requirements related to Web Service security and provides assertions to describe
requirements regarding the provision of security tokens and the use of encryption/signature
algorithms and options [NGG+07a].

Since our policy model supports the concept of policy alternatives, a mapping to WS-Policy
is straightforward. However, the generation of WS-SecurityPolicy assertions is more compli-
cated due to the complexity of this specification. The transformation of our security policy
model to WS-SecurityPolicy assertions must be performed in multiple phases that generate the
different types of WS-SecurityPolicy assertions (binding assertions, protection assertions, and
the supporting token assertions) in each step. This transformation process, which is not dis-
cussed in the scope of this thesis, has been developed and implemented by Warschofsky et al. in
[WMM10, War10].
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1.3 Outline
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Figure 1.4: The Structure of the Thesis

The structure of this thesis is illustrated in Figure 1.4. Chapter 2 provides an overview about
security in service-based systems and introduces the concepts secure messaging, identity man-
agement and policy management. In the following chapter, our meta-model for SOA security is
introduced that provides an SOA interaction model to describe the basic entities and relations in
an SOA. Moreover, a meta-model is presented specifying our policy model. These meta-models
define our domain-independent model used in our model-driven approach and constitutes the
foundation to specify our security modelling language SecureSOA. This language and its integra-
tion into FMC block diagrams is described in chapter 4. In the next chapter, the structure and
the semantics of security configuration patterns are introduced that are used to generate and
modify security constraints. Security configuration patterns are stated in a domain-specific lan-
guage that will be introduced in this chapter as well. This language is used in chapter 6 to define
our pattern system for identity management and data protection. Our pattern system provides
the foundation to perform the transformation process of visual models to security policies as
introduced in chapter 7. In this chapter, the basic concepts of our pattern engine are introduced
that applies security patterns to security intentions. The correctness of this transformation step
is proven on the basis of the patterns’ formal semantics. Chapter 8 describes our SOA Security
LAB that uses our model-driven approach to provide a test platform for service security, while
chapter 9 concludes this thesis.
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Chapter 2

SOA Security Concepts and
Standards

This chapter provides an overview of key concepts and standards facilitating the design and
implementation of secure service-based systems. As a starting point, the Web Service standards
are introduced that define a flexible messaging framework for SOA. Next, secure messaging and
identity management approaches are described that provide the foundation to realise authentica-
tion, confidentiality, and integrity in decentralised systems. The technical specifications used to
implement these concepts are presented as well. Finally, the concepts and standards related to
security policy management are introduced that facilitate the statement of security requirements
related to secure messaging and identity management.

2.1 Web Service Technology

The concept of service orientation encourages the vision of self-descriptive services that enable a
loose coupling of enterprise systems to facilitate a faster adaption to changing business demands.
To implement this approach, the Web Service standards provide a framework for interoperable
machine-to-machine interactions. As defined by D. Foggon et al. in [FMUW03], a Web Service
is a remotely accessible application component that listens for certain text-based requests, usually
made over HTTP, and reacts to them. These application components are also referred to as Web
Methods. Although Web Services are protocol-independent, most Web Service implementations
expect their Web Methods to be invoked using HTTP-requests conveying SOAP messages based
on XML. Due to the usage of these standards, Web Services are independent of operating systems
and programming languages.

A broad range of Web Service specifications has been defined by the Organization for the Ad-
vancement of Structured Information Standards (OASIS). These specifications provide a frame-
work that enables a secure and reliable messaging in decentralised systems. Figure 2.1 illustrates
and groups selected Web Service specifications. Based on XML, SOAP and WS-Addressing
provide a message structure to implement a message exchange. Meta information concerning a
Web Service is provided by the standards WSDL and WS-Policy. WSDL defines an interface
description language, while WS-Policy provides a structure to express and group capabilities and
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requirements as assertions in policies. These policies can enhance WSDL documents as described
by WS-PolicyAttachment. WS-MetadataExchange specifies a simple message structure to query
meta information from a Web Service. Furthermore, multiple specifications enable the implemen-
tation of security mechanisms to secure the message exchange. WS-Security enhances SOAP to
enable the usage of XML encryption and XML signature. In addition, the exchange of credentials
with SOAP is described to facilitate the authentication of users. These credentials are repre-
sented as an XML structure and are denoted as Security Tokens. A Security Token Service (STS)
provides a WS-Trust interface and is used to perform the authentication of users and to issue
security tokens. To optimise the exchange of multiple secure messages, WS-SecureConversation
enables the establishment of a secure channel. WS-SecurityPolicy defines security assertions that
can be used with WS-Policy. These assertions define requirements concerning the usage of the
specifications WS-Security, WS-Trust, and WS-SecureConversation.

Messaging

Security

OASIS WS-Security

X.509 Certificate Token

Kerberos Token

...

OASIS WS-Federation

OASIS WS-Secure-

Conversation

SOAP

Metadata

WS-MetadataExchange

WS-Policy

WS-SecurityPolicy

WS-PolicyAttachment

WSDL

XML Specifications

W3C XML Schema W3C XML Signature W3C XML Encryption

Transport

WS-Trust

WS-Addressing

W3C XML 1.1W3C XPath

Figure 2.1: Web Service Specifications (Extract)

2.1.1 Messaging with SOAP

SOAP is an XML-based message format to exchange information using HTTP or other protocols.
Initially, it has been designed to implement an XML-based remote procedure call. With the ad-
vent of additional Web Service specifications, SOAP evolved into a generic messaging framework.
While SOAP was an acronym for Simple Object Access Protocol, this denotation is not used
anymore, since it does not correspond to the current purpose of SOAP.

The message structure defined by SOAP consists of an envelope as shown in Figure 2.2. Within
this envelope, two additional sections are provided to describe processing information and mes-
sage content: An optional header element and a mandatory body element.

10



2.1. WEB SERVICE TECHNOLOGY

SOAP Envelope
 

<soap:Envelope xmlns:soap=”http://schemas…”>

SOAP Body

<soap:Body>

</soap:Body>

SOAP Header

<soap:Header>

</soap:Header>

SOAP Message Payload

Optional SOAP Fault

Optional Header Parts

Figure 2.2: SOAP Message Structure

A SOAP header provides the possibility to extend the message with meta information. For
instance, a SOAP header can be used to store security information such as security keys and dig-
ital signatures, or routing information to pass a message through multiple intermediaries. These
headers are defined by additional Web Service specifications. The attribute mustUnderstand can
be used with each XML element in the SOAP header section to indicate that the receiver of a
message must be able to process this header. The body of a SOAP message encapsulates the
payload of the message such as a method name and invocation parameters. In addition, fault
information can be conveyed in case of errors.

To route messages over intermediaries, addressing information must be included in exchanged
messages. Therefore, WS-Addressing has been specified to define additional message headers
that identify endpoints and messages. In addition, these headers can be used to implement an
asynchronous service invocation.

2.1.2 WSDL - Describing Web Services

The Web Service Definition Language (WSDL) specification provides an XML-based language
to describe service interfaces in a platform and protocol independent way. WSDL represents
services as a set of endpoints, which offer multiple operations. For each operation, incoming and
outgoing messages, error messages, and a message exchange pattern are specified. An operation
can be invoked by a client using the address provided by the WSDL description. A WSDL
document is structured hierarchically, whereas the <description> element is used to represent
the root element. To facilitate the reuse of service descriptions, WSDL documents are separated
in an abstract and a concrete part.

The abstract service definition describes the interface of a service in terms of input and output
messages, while the concrete service definition binds this interface to protocols and an address. As
illustrated in Figure 2.3, the Web Service’s abstract definition of a WSDL 1.2 document is defined
by the portType element that contains several operation elements. These operations reference
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Figure 2.3: WSDL 1.2 Structure

messages used for input, output, or fault transmission. Each message can be defined by either an
XML Schema Definition (XSD) or a type definition. The concrete definition appends protocol-
specific information to the portType by defining a binding. For each operation in portType, there
is also a protocol-specific operation element in binding. A series of binding elements are composed
to create a service. Altogether, a WSDL 1.2 document is based on five basic elements:

• types - specifies basic data types on the basis of XSD definitions.

• message - defines data that is exchanged between a consumer and a provider during service
invocations. Each message consists of multiple part elements that represent the conveyed
data. Therefore, each part is associated with an XSD type or a type element.

• portType - represents an abstract definition of a service. There are multiple operations
defined in each portType specifying the exposed Web Methods. Within these operations,
messages are referenced to represent input, output or fault information.
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• binding - each binding is mapped to a portType element to specify the required trans-
port protocol and contains multiple operations to specify invocation options for each Web
Method such as the required encoding.

• service - represents the concrete definition of a Web Service. A service element is composed
of several ports. Each port references a binding and defines an address.

WSDL 2.0 introduced some minor changes to this structure. PortType has been renamed to
Interface and the data type definitions are referenced by input, output and fault elements without
using the message element.

2.2 Secure Messaging

The enforcement of the security goals confidentiality, integrity, and availability represents the
core principle of information security. In the scope of secure messaging, confidentiality and in-
tegrity must be ensured to protect conveyed information. Confidentiality prevents the disclosure
of information to unauthorized individuals, whereas integrity facilitates the detection of modifica-
tion performed by unauthorised parties. However, message integrity requires the authentication
of message senders to verify the identity of authorised parties (cf. [Jue03], p. 44).

Cryptographic methods and digital certificates provide the foundation to implement these se-
curity goals. The application of these methods can be performed at the transport layer by
establishing a secure channel that enables the authentication of communication partners and the
enforcement of confidentiality and integrity of transferred information. However, this approach is
not appropriate in a system that passes messages over multiple intermediaries. Although secure
channels can be established between actors in such a system, information stored and processed
by the intermediaries would not be protected. Moreover, the receiver of a message would not
be able to verify the identity of the message sender. Therefore, messages passed across multi-
ple intermediaries must be protected using cryptographic mechanisms to enable a protection of
information in rest, transit and processing.

In the scope of the XML-based Web Service specifications, XML Signature and XML Encryption
provide the fundamental building blocks to enable the application of encryption and signature
mechanisms to SOAP messages.

2.2.1 WS-Security

WS-Security has been proposed as a standard by Microsoft and IBM [IBM02] in 2002 and was
established as an OASIS standard in 2004. This standard defines enhancements to SOAP to
enable a secure messaging in terms of integrity, confidentiality, and authentication. WS-Security
provides a framework to integrate digital signature and encryption methods. In addition, it
enables the exchange of key and authentication information. WS-Security is based on XML-
Signature and XML-Encryption to enable an end-to-end protection of messages.

WS-Security provides a security header for SOAP that serves as a standardised place to store
security information. As illustrated in Figure 2.4, this additional header can be composed of
three major elements: security tokens, a digital signature, and encryption meta data.
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Figure 2.4: WS-Security Structure

Security tokens represent credentials that provide identity information for authentication and
authorisation. In addition, a token might provide information concerning the keys that have been
used to apply digital signature and encryption mechanisms to a message. WS-Security defines
two types of security tokens: an unsigned token (UsernameToken), which is used to provide user
name and password information to a service, and a signed token (BinarySecurityToken) that
has been endorsed by a third party. Figure 2.4 illustrates the usage of a binary security token
that represents an X.509 certificate. The attribute ValueType is used to specify the content type
(X.509 certificate or a Kerberos), while the attribute EncodingType defines the representation of
the binary data.

Moreover, a WS-Security header can contain the tag Signature to encapsulate XML signature
information. XML Signature enables the application of digital signature technology to XML and
is itself described with XML. Figure 2.4 illustrates the usage of the following key elements:
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• SignedInfo – specifies the signed message parts and the algorithms that have been used.
SignedInfo encapsulates the Reference element that provides a set of references to signed
message elements as well as the digests of these elements. Please note that message sig-
natures based on the usage of simple id references are vulnerable to signature wrapping
attacks. This issue and related countermeasures are discussed in [MA05, GJLS09].

• SignatureValue – contains a Base-64 encoded value that represents the digital signature.
This value is the result of encrypting a digest of the SignedInfo element.

• KeyInfo – references a key to enable the verification of the signature. In case of WS-
Security, KeyInfo points to the used security token.

Finally, WS-Security facilitates the encryption of message parts by leveraging XML encryption.
Encrypted message parts are replaced by EncryptedData elements that wrap encrypted data and
provide meta data information. Figure 2.4 illustrates the encryption of the message body that
is based on a combined usage of symmetric and asymmetric encryption. Since an asymmetric
encryption on the basis of a public key infrastructure is a time consuming task compared to
symmetric encryption, a symmetric session key is generated for each message exchange. This
session key is stored in the element CipherData that is wrapped in the EncryptedKey element of
the WS-Security message header. In addition, the EncryptedKey element provides the element
ReferenceList that points to all EncryptedData items that have been encrypted with the shared
key. As illustrated in Figure 2.4, the element KeyInfo provides a reference to the public key that
has been used to encrypt the shared key.

2.3 Identity Management

The identification and authentication of users are important security requirements to ensure
a trustworthy communication in decentralised systems and provide the foundation to restrict
access to services. The enforcement of these security goals operate on a representation of an
user’s identity in the digital world - a user’s digital identity. A digital identity consist of a set of
attributes and is managed in an account.

Identity Management describes the process of establishing, representing, maintaining and provi-
sioning a person’s identity as digital identities in IT systems as shown in Figure 2.5.
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Figure 2.5: Life Cycle of a Digital Identity

The first step in this process represents the registration of users. In order to create a user’s digital
identity, identity information is stored in an account that is created for the user. The usage of a
digital identity at a service provider is based on four steps. A user is identified and authenticated
to verify that a specific digital identity belongs to this user. Then, required identity information
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is provided to a service provider to enable the consumption of this information. At the end of
the life cycle, a digital identity is destroyed by deleting the user’s account.

The digital identity life cycle identifies basic steps that are performed by identity management
systems. The concepts and architecture behind these systems are classified and described by
identity management models. We distinguish four models, while each model implements a spe-
cific identity management approach. As described by Thomas et al. in [TM11], an identity
management model can be based on an domain-based approach or on an open environment
approach.

The domain-based approach represents traditional models that bind a digital identity to a specific
security domain (e.g. a company). The consumption of identity information by services is limited
to this domain. Figure 2.6 illustrates identity management models implementing the domain-
based approach.
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(b) Centralised Identity Management

Figure 2.6: Domain-based Identity Management Models

The isolated identity management model is shown in Figure 2.6(a) and implements a service
specific management of digital identities. A service is attached to a user directory that provides
the identity information for this service and enables the authentication of users. Each service
that is based on this model has full control over the users. However, users have to be registered at
each service independently. Since the identification and representation of users is service-specific,
the usage of this model prevents the orchestration and composition of independent services. To
enable a single-sign-on across multiple services in a domain, the centralised identity management
model can be used as illustrated in Figure 2.6(b). The services are connected to a single iden-
tity provider to organise the identity management in a centralised way. The identity provider is
responsible to manage the digital identities of users and to perform their authentication. Authen-
tication decisions can be brokered to services that rely on this information. In addition, identity
information required by the services can be provided as well. The usage of an identity provider
requires trust relationships between the relying services and the centralised identity provider.
Since the identity provider is used in a single trust domain, these relationships are established
by default.

Although domain-based identity management approaches enable service providers to control the
identity information of their users, these approaches prevent the usage of identities across domain
boundaries. Since users have to be registered in each domain independently, an increasing number
of digital identities and accounts have to be managed. Consider the usage of web applications in
the internet: users have to deal with a multitude of user name and password combinations and
tend to select the same password for each account. This example illustrates that the application
of domain-based identity management approaches in open environments results in an increasing
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number of security risks. Furthermore, identity information (e.g. the user’s address) has to be
updated in multiple accounts to keep all identity information consistent.

Identity management models based on the open environment approach address these issues by
enabling the usage of digital identities across trust domains. These models are based on the
usage of multiple identity providers that share and broker identity information. Since identity
providers can be implemented on the basis of different technologies and protocols, an abstraction
layer is required to enable the interoperable exchange of identity information.

Security Domain

Identity Metasystem

IDM System

Security Domain

IDM System

Security Domain

IDM System

Figure 2.7: Identity Metasystem

This abstraction layer is defined by the identity metasystem [CJ06] as illustrated in Figure 2.7.
Standards such as WS-Trust and SAML provide interoperable interfaces and token formats.
The identity metasystem facilitates the integration of identity management systems to avoid the
replacement of existing solutions.

The identity management models based on the open environment approach are shown in Fig-
ure 2.8. Both models are based on the identity metasystem to integrate multiple identity
providers. Service providers rely on identity information and authentication decisions that are
asserted by trustworthy identity providers. The brokering of identity information enables a single-
sign-on across organisational borders. Both models differ from each other in the establishment
of the underlying trust relations.

��������	
����������	
��


�������

�����	��


�������

��������

�

�����������������

�

�����������������

�

(a) User-Centric Identity Management

��������	�
���



���
�������
���
�������

��������

��������

��������

��������

�

����
�
����������

�

����
�
����������

�

(b) Federated Identity Management

Figure 2.8: Open Environment Identity Management Models

The Federated Identity Management model illustrated in Figure 2.8(b) forms a federation of mul-
tiple organisations and is based on a circle of trust. Underlying contracts define the obligations
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of each participating organisation concerning the identity management and the authentication
of users. Service providers rely on assertions issued by any identity provider in the federation.

The User-centric Identity Management model shown in Figure 2.8(a) is not based on contracts
and predefined trust relations. A user can select any identity provider that is able to provide
authentication assertions or required identity information. The security tokens issued by these
identity providers can be used to access a service. The service provider has to decide, whether
a token can be accepted from this source. For instance, Information Card [Cha06], which is
implemented as CardSpace in Microsoft Windows, is based on this model.

2.3.1 SAML

SAML (Security Assertion Markup Language) is an XML-based framework standardised by the
OASIS Security Services Technical Committee that enables the description, issuing, and exchange
of identity information.

SAML

Profiles

SAML 

Metadata

SAML

Bindings

SAML

Protocols

SAML

Assertions
SAML 

Authentication 

Context

Figure 2.9: SAML Components

As shown in Figure 2.9, SAML provides the following components. SAML Assertions are used
to make statements about an identity, while SAML Protocols provide protocols to request and
exchange these statements. To enable the exchange of assertions using standard messaging or
transport protocols, a mapping is provided by SAML Bindings. Finally, SAML Profiles guide
the application of these protocols in the scope of specific use cases.

SAML assertions (denoted as SAML tokens in the scope of the Web Service specifications) contain
one or more statements made by a SAML authority. This authority vouches for the correctness
of the information in the statements. Each assertion contains issuer information and identifies
the subject the statements are made about. A digital signature of the issuer is included in the
assertions to enable the verifiability of the statements’ integrity. In particular, SAML specifies
three types of statements: authentication statements, authorisation statements, and attribute
statements.

Authentication statements assert that a user (subject) has been authenticated by the issuer of the
assertion using a specific authentication method at a particular point in time. An authorisation
assertion is used to assert access control decisions, while attribute statements convey identity
attributes.

Figure 2.10 illustrated a simple SAML assertion. This assertion contains an authentication
statement and specifies that the subject Michael.Menzel has been authenticated by the identity
provider of the Hasso Plattner Institute. In addition, the authentication context states that a
username/password credential has been used to perform the authentication that was submitted
over a secure channel.

18



2.4. POLICY MANAGEMENT

<saml:Assertion

Version="2.0"

ID=“_54296”

IssueInstant="2011-01-31T10:03:35.42Z">

<saml:Issuer>

http://authority.hpi-web.De

</saml:Issuer>

<ds:Signature>

…

</ds:Signature>

<saml:Subject>

<saml:NameID>

Michael.Menzel

</saml:NameID>

</saml:Subject>

<saml:AuthnStatement AuthnInstant="2011-01-31T10:03:35.42Z">

<saml:AuthnContext>

<saml:AuthnContextClassRef>

   urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

</saml:AuthnContextClassRef>

</saml:AuthnContext>

</saml:AuthnStatement>

</saml:Assertion>

XML 

Signature

Authentication 

Statement

Subject 

Information

Issuer 

Information

Figure 2.10: SAML Assertion Example

2.3.2 WS-Trust

WS-Trust defines a Web Service interface to issue, renew, verify, and cancel security tokens. A
service that provides this interface is denoted as Security Token Service (STS). Security tokens
can be requested from an STS using a request for security token (RST) message structure.
These tokens are returned by a request for security token response (RSTR). The RST request
message can specify requirements concerning the desired token. For example, the token type
(e.g. SAML 2.0), the conveyed identity information (claims), and encryption/signature options
can be specified. In order to issue a token, an STS must authenticate the message sender on the
basis of a security token that has been sent with the message request.

WS-Trust provides an important interface to implement an identity provider that supports the
open environment identity management models. The conversion of security tokens is the primary
task of a security token service implementing a federated or decentralised identity management
approach. Either security tokens that enable a user authentication (e.g. username/password
token) are converted to SAML tokens or SAML tokens issued by other security token services
are converted to new SAML tokens.

2.4 Policy Management

While interface definition languages (e.g. WSDL) are used to describe the exposed functional-
ity, security policy languages enable the enhancement of these interface descriptions to describe
requirements and capabilities a service consumer must comply to. In particular, security require-
ments can be expressed as policies to configure secure interactions between service consumers
and service providers. These requirements refer to the protection of exchanged data and the
provisioning of identity information as described in the previous sections.
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Security Policy Management provides a process to ensure that all participants adhere to common
guidelines and regulations. The security policy management process contains several steps to
map these regulations to the technical layer as illustrated in Figure 2.11.

Negotiation MonitoringDefinition Deployment Enforcement

Figure 2.11: Policy Management Process

The definition and creation of security policies is the first step in this process. Since strong
security knowledge is required to transform common regulations to technical policies, the policy
creation step represents the most complex task. A model-driven approach to facilitate this step is
the contribution of this thesis. In the second step, security polices are distributed and deployed
at the services. These policies configure the security modules of the services and facilitate
the negotiation of security requirements between service consumers and service providers. The
services have to enforce the security configurations stated by their policies by applying the
requirements to incoming service requests and outgoing service responses. Finally, the policy
monitoring step verifies that policy requirements have been applied correctly.

Service 

Consumer
Service 

1. Query service security policy

2. Load client security policy

3. Compute common security options

4. Request service with common policy

Effective 

Policy

Client 

Policy

Service 

Policy∩=

Figure 2.12: Negotiation of Security Requirements

Figure 2.12 illustrates the policy negotiation step that represents an important concept in the
scope of the Web Service specifications. Web Service security policies organise security require-
ments in policy alternatives. Each alternative represents a set of valid security configurations to
interact with a service in a secure manner. Clients can retrieve a service’s policy and compare the
offered security alternatives with their own security configurations. Finally, a policy alternative
that is supported by the client can be selected to invoke the service.

The provision of multiple alternatives facilitates interoperability at run-time by enabling the
dynamic configuration of actors in a service-based system. An example is illustrated in Fig-
ure 2.13. The security policy of the service requires that AES 256 or AES 192 has to be used for
encryption, while the client policy states that AES 168 and AES 192 are supported. The client
retrieves the service policy and calculates the effective policy that requires AES 192. Finally,
this policy is used by the client to secure the service invocation with AES 192. In the scope of
the Web Service specifications, WS-Policy and WS-SecurityPolicy provide a grammar to group
and express security requirements and capabilities as policy alternatives.
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Service 
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Service 

…

AES 192

...

…

AES 168 or 

AES 192

...

…

AES 192 or 

AES 256

...

∩=

Effective Policy Client Policy Service Policy

Figure 2.13: Policy Negotiation Example

2.4.1 WS-Policy

The WS-Policy W3C standard [VOH+07] describes an extensible and flexible XML-based gram-
mar to express general characteristics, capabilities and requirements of actors in an XML Web
Service-based system as policies. A WS-Policy document provides a series of policy alternatives,
while each policy alternative describes a collection of policy assertions specifying requirements
that must be fulfilled by service consumers. However, the definition of specific policy asser-
tions representing concrete requirements (e.g. required encryption method) is not in the scope
of WS-Policy, since WS-Policy just provides a general framework to structure any type of re-
quirements in a consistent way. Additional specifications such as WS-PolicyAssertions provide
policy assertions for a specific application domain. Security specific assertions are defined by the
WS-SecurityPolicy standard.

The root element of a WS-Policy document is represented by the <wsp:Policy> tag that can
contain the assertions <wsp:All>, <wsp:ExactlyOne>, and <wsp:OneOrMore> provided by WS-
Policy. These assertions require that all, exactly one, or at least one assertion contained in this
element must be fulfilled by service consumers.

These policy assertions provided by WS-Policy can be nested to group policy assertions stating
specific requirements. Alternative sets of requirements can be expressed by using the assertions
<wsp:ExactlyOne> and <wsp:OneOrMore>. Since any disjunctive and conjunctive combination
of the assertion listed above can be used to structure requirements, WS-Policy provides an
algorithm to convert a WS-Policy expression in a disjunctive normal form.

In addition, an algorithm is described by WS-Policy to compare policy documents. Clients
can implement this algorithm to select policy assertions for service invocation by intersecting
their policies with a policy retrieved from a service. Next to WS-Policy, the specifications WS-
MetadataExchange and WS-PolicyAttachment are used to facilitate policy negotiation in Web
Service-based systems. WS-MetadataExchange provides a protocol to retrieve metadata from
Web Service endpoints and enables clients to retrieve a WS-Policy document from a service prior
to the invocation of this service. WS-PolicyAttachment facilitates the association of WS-Policy
documents with subjects of Web Services. These policy subjects (e.g. endpoints, operations, or
messages) identify specific Web Service parts that can be associated with policy requirements.

2.4.2 WS-SecurityPolicy

As mentioned above, additional specifications are required to define policy assertions for specific
application domains. Therefore, WS-SecurityPolicy has been defined to provide a set of policy
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assertions that express security-related requirements and capabilities concerning the usage of WS-
Security, WS-Trust, and WS-SecureConversation. In particular, WS-SecurityPolicy specifies the
following key assertions:

• Security Binding Assertions provide requirements to secure an exchange of Web Service
messages. Three types of binding assertions are specified by WS-SecurityPolicy that repre-
sent different security patterns. A TransportBinding specifies requirements for a message
transfer across a secure channel (e.g. based on SSL), while SymmetricBinding and Asym-
metricBinding state requirements to protect conveyed information at the message layer.
Messages can be secured with the same security token for both message exchange directions
(SymmetricBinding) or with different security tokens (AsymmetricBinding).

Additional assertions can be nested in security binding assertions to state specific require-
ments: Token Assertions specify type and properties of security tokens that must be used
in the scope of a security binding, while Algorithm Suite Assertions define a set of required
algorithms.

• WS-Security and WS-Trust Assertions require the support and compliance with WS-
Security and WS-Trust options. These assertions are used to ensure the interoperability of
participants concerning optional elements and different versions of these specifications.

• Supporting Token Assertions specify requirements regarding security tokens that must be
included in a message (in addition to the token that is specified by the binding asser-
tion). For example, this assertions can be used to require a SAML token to assert the
authentication of users.

• Protection Assertions specify message parts that must be protected using signature or
encryption mechanisms.

• Required Element Assertions require the existence of message parts in exchanged messages
that are specified using XPath expressions.
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Chapter 3

A Security Meta-Model for SOA

This chapter introduces a meta-model for security in service-based systems that consists of
two parts. A basic SOA interaction model facilitates the description of participants and their
relations in SOA, while an extension of this model represents security policies stating security
requirements. This model provides the foundation for our model-driven approach and supports:

1. the specification of our security design language SecureSOA. This language is introduced in
the next chapter and is used to state security requirements for SOA at the modelling layer.
The definition of this language is based on a meta-model that extend our SOA interaction
model with security intentions.

2. the specification of our domain-independent model. As introduced in section 1.2, a system
design model enhanced with SecureSOA is transformed to our domain-independent model
that can be translated to a specific security policy language. The meta-model for SOA
security introduced in this chapter defines the elements of our domain-independent model.

In addition, an approach is introduced to formalise our meta-model. This formalisation is used
to specify the formal semantics of our model.

3.1 A Model for Service Interactions

In this section, we will introduce the basic entities of our model and their relationships to describe
an interaction in a Service-oriented Architecture. Further, we will show how these entities can
be mapped to Web Service specifications such as SOAP.

3.1.1 The SOA Interaction Model

The basic actors (e.g. services and clients) participating in a service-based communication are
represented as objects in our model. Objects consist of a set of attributes and can participate in
an interaction, see Figure 3.1. An interaction is always performed on a medium that is connected
to objects. For instance in the scope of Web Services, an object could be a Web Service client or a
Web Service itself. A Web Service is bound to a medium – for example a TCP/IP network – and
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Figure 3.1: SOA Interaction Model

can interact with Web Service clients by exchanging SOAP-Messages. Therefore, an interaction
also involves the exchange of information.

To enable a detailed description of Web Service messaging, we model transferred information as
data transfer objects as introduced by Fowler in [Fow03]. A data transfer object is ’[...] little
more than a bunch of fields and the getters and setters for them. [...] it allows you to move
several pieces of information over a network in a single call. [...] the data transfer object is
responsible for serializing itself into some format that will go over the wire.’
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Figure 3.2: Modelling SOAP-based Message Structures

Figure 3.1 shows the adaptation of this concept to our model. A data transfer object represents
serialised information and is an information itself. However, it can also contain information.
This recursive structure facilitates the description of SOAP messages and encapsulated message
parts. Figure 3.2 visualizes the mapping of our model to the SOAP message structure (cf. SOAP
messaging framework specification [GHM+07]). A SOAP envelope is a data transfer object that
can contain different message parts that are data transfer objects itself.

Moreover, a data transfer object has a target and an issuer. This reflects that a data transfer
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object can be sent over several objects acting as intermediaries. Therefore, issuer and target do
not have to correspond necessarily to the objects that are involved in an interaction exchanging a
data transfer object. In the scope of Web Service technology, WS-Addressing [GHR06] would be
used to represent issuer and target information in a SOAP-message by including a WS-Addressing
header.

3.1.2 Modelling Digital Identities
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Figure 3.3: Digital Identity Model

In our SOA interaction model, objects such as Web Service clients are entities in a technical
system that operate on behalf of an organisation or person. We refer to this organisation or
person as subject. In the digital world, a subject is described by a set of subject attributes that
are stored in an account managed by an identity provider, as shown in Figure 3.3. In reality, it
is quite common that people (subjects) have multiple digital identities registered with different
identity providers, for instance their employer, their email provider or various shopping sites in
the internet.

In order to use services – whether Web Services or services in the internet – the exchange of
identity information is required to identify, authenticate, and authorise a subject. This informa-
tion is represented by a credential that contains a set of claims [Jon06] about the subject and
an authentication information. A credential is created and asserted by an issuer, whose identity
can be verified by the authentication information in the credential.

In a simple scenario, a user has to provide a username and a password to access a service. This
credential (username/password) is issued by the user himself, contains a claim ’my user name is
...’ and provides a password as authentication information. Furthermore, to enable single sign-
on in a more complex scenario, the credential might be a SAML token [RHPM06] issued by the
user’s employer (acting as identity provider). Such a token could contain arbitrary claims about
the user (e.g. his role in the organisation) and includes a signature as authentication information
to enable a verification of the token and its claims.
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In summary, claims are made by an issuer about a subject and represent a set of subject at-
tributes. While in a closed, administered, and trustworthy security domain the term security
assertion is commonly used, the term claim has been introduced in the scope of the Web Service
specifications and is described by the identity metasystem [Jon06]. This term represents a degree
of doubt regarding the brokering of identity information across trust domains in a loosely coupled
system. The trustworthiness of a claim about a subject depends on the identity of the issuer.
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Figure 3.4: Roles in our SOA Interaction Model

As aforementioned, objects act in the digital world on behalf of subjects and, therefore, imper-
sonate them. As shown in Figure 3.4, subjects and objects can act in different roles. Services
are objects that offer capabilities on behalf of service providers, whereas a service consumer can
interact with these services impersonating a user. An identity provider is a subject that man-
ages a digital identity of other subjects and is impersonated by a security token service (service
interfaces are defined in [NGG+07b, RHPM06]), which is a specialisation of a service.

Trust relationships exist between objects and provide the foundation to enforce security require-
ments in service-based systems. As defined by Jøsang et. al. [JFH+05], trust can be defined
as the extent to which one party is willing to depend on something or somebody in a given sit-
uation with a feeling of relative security, even though negative consequences are possible. Trust
relationships enable objects to rely on information provided by another party. In the scope of
our meta-model, the meaning of this relationship depends on the context and the roles of the
participating objects as follows:

1. Trust relationship from a Service to an STS - indicates that a services relies on state-
ments made by a security token service. In particular, this service relies on authentication
decisions and identity information provided by the STS. Moreover, this relation indicates
that the service is able to verify the identity of the STS. In general, certificates provide
the foundation for this authentication step. For example, a security token can be issued
by an STS. The verification of the signature enables the service to rely on the information
conveyed in this token.

2. Trust relationship from an STS to a Client - this relation is used to represent trust
relations that are established between an STS and all users that are impersonated by this
client. A trust relation between a user and an STS indicates that this user is registered
at the identity provider that provides the STS. A credential (e.g. username/password)
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facilitates the security token service to authenticate this user and enables the STS to rely
on the identification of users. Since the user has to handle his credentials in a secure
manner to avoid misuse, trust is required between the identity provider and the user.

3. Trust relationship from a Service to a Client - the meaning of this relation depends
on the context. First of all, this relation indicates that a service is willing to rely on
information provided by the client. For example, this information could represent a request
message that will be processed by the service. This relation requires that the service is
able to verify the identity of the client. In the scope of Web Service messaging, certificates
provide the foundation to implement this requirement. On the other hand, this relation
might indicate that the users impersonated by a client are registered at this service. In this
case, this trust relationship is specified in accordance with the trust relationship ’STS to
Client’. Since the service must be able to manage the identities of users, a user directory
must be attached to the service. In the next chapter, security annotations will be introduced
in the scope of SecureSOA to annotate this capability.

3.2 Modelling Security Requirements

In the previous section, we introduced the basic entities and their relations to model participants
and interactions in a Service-oriented Architecture. Based on this general model, we will describe
our approach to model security requirements in this section. Therefore, we will start with a basic
model that will reveal the general structure of a security policy and its relation to other entities
in our model. This generic description captures the essential policy elements to enable a mapping
to any policy language. Based on this structure we will describe security constraints for specific
security goals such as authentication and confidentiality.

3.2.1 Security Policy Structure

As we have outlined in the previous section, the interaction between objects and the exchange
of data transfer objects are important concepts to model communication in distributed and
loosely coupled systems. Security policies in such systems define requirements to restrict the
communication between participants in order to comply to predefined security intentions and
organisational regulations.

A policy, as shown in Figure 3.5, is stated by a policy subject (e.g. a service) to express the
requirements of this object concerning the interaction with other objects. Therefore, we do
not consider policies that relate to the internal functioning of an object. In our model, policy
requirements always refer to interactions and related data transfer objects.

A policy consists of a set of policy alternatives. Each policy alternative requires a set of security
constraints that describe requirements for a specific security goal. A policy will be fulfilled, if
all security constraints of one policy alternative are enforced. Therefore, the usage of policy
alternatives enables a disjunctive and conjunctive combination of security constraints and rep-
resents a disjunctive normal form. Since all logical formulas can be converted into a disjunctive
normal form, any security policy structure based on a nesting of disjunctive and conjunctive
combinations of policy requirements can be normalised and mapped to our model. Security
requirements stated by security constraints refer to data transfer objects sent and received by
the policy subject. These data transfer object are denoted as constraint subjects. Two different
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Figure 3.5: Security Policy Model

types of requirements can be stated by security constraints that must be applied to the con-
straint subjects. First of all, a constraint can specifies the security mechanisms that must be
applied to the constraint subjects. A security mechanism specifies a protocol or an algorithm –
e.g. for encryption and signature – that is used to transform data transfer objects. In addition,
a security constraint can specify a set of data transfer objects that are required to be included
in the constraint subject. For example, a constraint could state that a SOAP request message is
the constraint subject that must contain a specific type of credential for authentication.
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Figure 3.6: Security Mechanisms

3.2.2 Security Constraints for Authentication and Data Protection

Our security policy model defines a general structure to group and describe security constraints
for distributed systems. Based on this model, we have specified specialised constraints that
define precisely the required information and security mechanisms regarding the security goals
authentication, confidentiality, and integrity.

Figure 3.7 illustrates the structure of an authentication constraint. This constraint requires
a specific type of credential (such as SAML or username/password) that must be included in
the data transfer objects. As aforementioned, these data transfer objects are identified by the
constraint subject as shown in Figure 3.5. An authentication constraint specifies a set of required
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Figure 3.7: Authentication Constraint

claim types to identify the attributes that must be provided to the policy subject. In addition,
an issuer can be specified (for instance a specific identity provider) that must have asserted this
credential.

Medium

Constraint 

Subject

Security 

Protocol

1..*

1..*

trans-

forms

1..*

1..*

Data Protection 

Constraint

Policy 

Subject

1

states

1..*

1

1..*

Credential

1..*

use

1

Interaction

1

1

refers 

to
1

1

bound 

to 1..*

specifies

Security 

Mechanisms

Cryptographic 

Algorithm

specifies

1..*

1..2 1..*

1
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The data protection constraint is shown in Figure 3.8 and enables the specification of require-
ments concerning the integrity and confidentiality of exchanged information. This constraint
specifies the following elements:

• a security protocol – this requirement identifies the protocol that is used to implement the
protection of exchanged information (e.g. SSL to require a secure channel at the transport
layer or WS-Security to secure data transfer objects itself).

• one or more cryptographic algorithms – one of these algorithms must be used by the protocol
to protect information (e.g AES or DES).

• one or two credentials – identifies the type of credential that is used as a key to secure
information. Depending on the specified algorithm, there must be a single credential type
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defined (e.g. symmetric encryption) or two types of credentials for incoming and outgoing
data transfer objects (e.g. asymmetric encryption).

• one or more constraint subjects – define the data transfer objects that must be encrypted
or signed (e.g. a credit card number or a message header).

As shown in Figure 3.9, the data protection constraint is used to specify the confidentiality
constraint and integrity constraint. A specific constraint type is assigned to each subclassed
constraint.
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Figure 3.9: Confidentiality and Integrity Constraints

3.3 Meta-Model Formalisation

We can formalize our security meta-model as a relational model (based on sets and relations)
as described by Lodderstedt [Lod04]. This formalisation provides a foundation to specify formal
semantics for security constraints and facilitates the verification of the transformation steps in
our model-driven approach.

A MOF-based model m (M1 level) described by a language l is expressed as a n-tuple ml :=
(c1, . . . , cn). Each object in the n-tupel represents a set containing instances of a specific class
or relation in the meta-model. Subclasses in the meta-model are translated to sets that share
elements with sets representing the parent classes. If c1, . . . , cn represent subclasses of c, then⋃n
i=1(ci) = c. To create a relational model, each class and association in the meta-model is

mapped to a set ci in a model ml. The sets in the model ml that represent a meta-model class
are named after this class, while the names of sets representing an association are created using
the capital letters of the related classes.

For instance, a simple example that connects a client to a service contains two participants (1:
Web Frontend, 2: Web Service). These instances can be expressed as the following sets: Object =
{1, 2}, Client = {1}, and Service = {2}. In addition, the following relations can be defined that
represent the interactions and trust relationships in the example: OOInteraction = {(1, 2)} and
OOTrust = {(2, 1)}

3.3.1 Domain-Independent Relational Model

As introduced in this chapter, our SOA security meta-model is composed of our SOA interaction
model and the policy model. These models define the entities of our domain-independent model
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that facilitates the transformation of security intentions to enforceable security policies. Using
the formalisation approach we can express the domain-independent model as a relational model.

Therefore, we can translate a domain-independent model based on our SOA security meta-model
to a relational model mdim:

mdim := ( Object,Client,Service,STS, Interaction,
TrustRelationship,DataTransferObject,Policy,
PolicyAlternative,SecurityConstraint,AuthenticationConstraint,
ConfidentialityConstraint, IntegrityConstraint,Claims,
OI,OT,DI,DD,DOIssuer,DOTarget,PO,AP,CA,CD,CC )

The model mdim is composed of the following elements:

1. Sets for each class in the SOA interaction part of the SOA security meta-model:

Object, Client, Service, STS, Interaction, TrustRelationship and DataTransferObject.

2. Sets representing security policies and security constraints:

Policy, PolicyAlternative, SecurityConstraint, AuthenticationConstraint,
ConfidentialityConstraint, IntegrityConstraint, Claim

3. Sets that represent relations between the classes in the meta-model as shown in Table 3.1
and in Table 3.2.

As aforementioned, subclasses in the meta-model are translated to sets that share elements with
sets representing the parent classes. It follows that Object = Client ∪ Service ∪ STS

Relation Description

OI ⊆ Object× Interaction objects that participate in inter-
actions

OT ⊆ Object× TrustRelationship objects that participate in trust
relationships

DI ⊆ DataTransferObject× Interaction information bound to an inter-
action

DD ⊆ DataTransferObject×DataTransferObject used to describe the composition
of data transfer objects

DOIssuer ⊆ DataTransferObject×Object assigns an issuer to a data trans-
fer object

DOTarget ⊆ DataTransferObject×Object assigns a target to a data trans-
fer object

Table 3.1: Formalising Basic Relations in the Meta-Model
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Relation Description

CD ⊆ SecurityConstraint×DataTransferObject assigns a security constraint to
a data transfer object

PO ⊆ Policy×Object assigns a policy to an object
AP ⊆ PolicyAlternative× Policy assigns alternatives to a policy
CA ⊆ SecurityConstraint× PolicyAlternative assigns constraints to an alter-

native
CC ⊆ AuthenticationConstraint× Claims assigns a required set of claims

to an authentication constraint

Table 3.2: Formalising Relations in the Policy Meta-Model

In addition, the following relations are used:

1. X∗ denotes the reflexive and transitive closure of a relation X.

2. X−1 represents the inverse relation of X with X−1 := {(y, x) | (x, y) ∈ X}.

3. X ◦Y denotes the composition of the relations X and Y with aX ◦Y c⇔ ∃b : aX b∧ bY c.

To describe the interactions and trust relationships between objects, we provide the following
relations:

OOInteraction ⊆ Object×Object (3.1)

=
{

(x, y) ∈ Object2 | ∃ i ∈ Interaction : xOI i ∧ y OI i
}

OOTrust ⊆ Object×Object (3.2)

=
{

(x, y) ∈ Object2 | ∃ t ∈ TrustRelationship : xOT t ∧ y OT t
}

Based on this foundation, predications can be made concerning the structure of data transfer
objects. Each data transfer object must be bound to an interaction:

∀d ∈ DataTransferObject ∃ i ∈ Interaction : (d, i) ∈ DI (3.3)

Furthermore, each data transfer object must be associated to an issuer and a target. An inter-
action path must exist between the issuer and the target to ensure that this data transfer object
can be exchanged. Since a data transfer object can be sent across multiple intermediaries, the
reflexive and transitive closure of OOInteraction is used to express this predicate:

∀d ∈ DataTransferObject ∃ oIssuer ∈ Objects ∃ oTarget ∈ Objects : (3.4)

(d, oIssuer) ∈ DOIssuer

∧ (d, oTarget) ∈ DOTarget

∧ oIssuer OO∗Interaction oTarget

3.3.2 Security Constraints Formal Semantics

Security constraints represent requirements concerning the structure and the properties of data
transfer objects that are sent to a specific object. We define the functions sigdim, encdim, authdim,
and iddim that evaluate a particular property of a data transfer object:
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Data Integrity -
The function sigdim : DataTransferObject 7→ {true, false} returns true, if a signature is
attached to a data transfer object d ∈ DataTransferObject. This function can be specified
in dependency to the IntegrityConstraint set:

sigdim(d)⇔ ∃ a ∈ SecurityAlternative : d DOTarget ◦ PO−1 ◦AP−1 a ∧ (3.5)

∀ a ∈ SecurityAlternative where d DOTarget ◦ PO−1 ◦AP−1 a :

∃ c ∈ IntegrityConstraint : c CD d ∧ c CA a

A data transfer object d is signed, if

1. all policy alternatives that are offered by the target of the data transfer object d
(line 2) contain an integrity constraint that refers to d (line 3).

2. at least one security alternative is offered by the target of d (line 1). In combination,
both conditions guarantee the existence of an integrity constraint that requires the
protection of d.

Data Confidentiality -
The function encdim : DataTransferObject 7→ {true, false} returns true, if a data transfer
object d ∈ DataTransferObject is encrypted. This function can be specified in dependency
to the ConfidentialityConstraint set:

encdim(d)⇔ ∃ a ∈ SecurityAlternative : d DOTarget ◦ PO−1 ◦AP−1 a ∧ (3.6)

∀ a ∈ SecurityAlternative where d DOTarget ◦ PO−1 ◦AP−1 a :

∃ c ∈ ConfidentialityConstraint : c CD d ∧ c CA a

A data transfer object d is encrypted, if

1. all policy alternatives that are offered by the target of the data transfer object d
(line 2) contain an confidentiality constraint that refers to d (line 3).

2. at least one security alternative is offered by the target of d (line 1). In combination,
both conditions guarantee the existence of an confidentiality constraint that requires
the protection of d.

User Authentication -
The function authdim : DataTransferObject 7→ {true, false} returns true, if a credential
is attached to a data transfer object d ∈ DataTransferObject. This credential enables
the authentication of users. The function authdim can be specified in dependency to the
AuthenticationConstraint set:

authdim(d)⇔ ∃ a ∈ SecurityAlternative : d DOTarget ◦ PO−1 ◦AP−1 a ∧ (3.7)

∀ a ∈ SecurityAlternative where d DOTarget ◦ PO−1 ◦AP−1 a :

∃ c ∈ AuthenticationConstraint : c CD d ∧ c CA a

A data transfer object d conveys a credential that authenticates an user, if

1. all policy alternatives that are offered by the target of the data transfer object d
(line 2) contain an authentication constraint that refers to d (line 3).

2. at least one security alternative is offered by the target of d (line 1). In combination,
both conditions guarantee the existence of an authentication constraint that requires
the provision of a credential.
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Identity Provisioning -
The function idclaimdim : DataTransferObject 7→ {true, false} returns true, if a credential with
a specific claim is attached to a data transfer object. This function can be specified in
dependency to the AuthenticationConstraint set:

idclaim
dim (d)⇔ ∃ a ∈ SecurityAlternative : d DOTarget ◦ PO−1 ◦AP−1 a ∧ (3.8)

∀ a ∈ SecurityAlternative where d DOTarget ◦ PO−1 ◦AP−1 a :

∃ c ∈ AuthenticationConstraint : c CD d ∧ c CA a ∧ a CC claim

A data transfer object d conveys a credential that provides a specific claim, if

1. all policy alternatives that are offered by the target of the data transfer object d
(line 2) contain an authentication constraint that refers to d and requires the specified
claim (line 3).

2. at least one security alternative is offered by the target of d (line 1). In combination,
both conditions guarantee the existence of an authentication constraint that requires
the provision of the claim.
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Chapter 4

SecureSOA: A Language to
Model Security Intentions

The SOA security meta-model introduced in the previous chapter provides the foundation to
define our security modelling language SecureSOA. As outlined in section 1.2, SecureSOA enables
the integration of basic security intentions in system design models to facilitate an automated
generation of security policies. In this chapter, we introduce SecureSOA by enhancing our SOA
interaction model with additional artefacts to enable the representation of security intentions
and capabilities. In addition to the meta-model, we specify the visualisation of the SecureSOA
modelling elements and the formal semantics of the security intentions. Moreover, we discuss
different strategies in this chapter to enhance arbitrary system design models with our security
modelling language and provide an integration schema that is based on the schema used by
SecureUML [BDL06]. A modelling dialect on the basis of FMC block diagrams is introduced to
illustrate the integration of SecureSOA in a design modelling language.

4.1 Providing Security Design Languages - Overview

Various modelling languages and dialects have been defined that can be used to model different
aspects in an SOA. For instance, the system structure can be visualised in UML or FMC, while
the processes executed by this system can be modelled with BPMN. Each modelling language
provides a specific view on a particular aspect of the system that can be used to annotate security
intentions. To aggregate and enforce intentions from different types of modelling languages,
security intentions must be defined consistently and independent from any modelling language.
In this section we discuss strategies to integrate security intentions into modelling languages and
outline the steps of our approach.

4.1.1 Enhancing Modelling Languages

To integrate security modelling elements in system design languages, an enhancement of these
languages is required. In general, three approaches can be distinguished to implement such an
enhancement:
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1. Light-weight extensions – The easiest way to enhance a particular system design lan-
guage is the usage of extension points provided by the language itself. For instance, UML
provides stereotypes and tags to extend UML modelling elements. Light-weight UML ex-
tensions are used by UMLsec to express security requirements. However, the visualisation
of complicated security requirements might get confusing. Moreover, not all modelling lan-
guages define extension points to enhance modelling elements. For example, FMC diagrams
do not offer such points.

2. Heavy-weight extensions – Another approach to enhance modelling languages is based
on the extension of its meta-model. For example, this approach is used by Rodŕıguez to
define his security extensions for BPMN and UML [RFMP07] process models. A major
disadvantage of this approach, however, is that the definition and integration of security
requirements is done specifically for a particular system design modelling language based
on its meta-model.

3. Defining a new language – To avoid the drawbacks mentioned above, a new model-
ling language can be defined. This modelling language integrates security elements and
contains specific redefined elements of a system design modelling language. SecureUML
uses this approach to model security requirements as an integral part of system models.
Therefore, Basin and Lodderstedt described a generic approach to create a new security
design languages by integrating security modeling languages into system design modelling
languages as described in [BDL06].

4.1.2 Defining Modelling Design Languages

The schema described by Basin and Lodderstedt provides a flexible approach to construct security
design languages. A security modelling language is defined once with certain extension points
that enable an integration into different design modelling languages for service-based systems.
The resulting languages are denoted as modelling dialects. Moreover, formal semantics can be
provided for the security modelling language that enable the verification of the requirements
modelled in any dialect. We have adopted this approach as shown in Figure 4.1.

Security Design Language

Security Modelling 

Language 

System Design 

Modeling Language

SecureSOA

· Security Intentions

· Security Annotations

· Trust Relationships

· FMC

· BPMN

· ...

Extension 

Points

Dialect Modeling 

Language 

based on

SecureSOA 

+ FMC

Figure 4.1: Schema for constructing Security Design Languages

The schema consists of the following parts:

1. A security modelling language is used to express security requirements for a specific pur-
pose. We have defined SecureSOA that enables the modelling of security intentions and
capabilities for services-based systems.
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2. The structure of a system is described by a system design modelling language. While
different types of modelling languages can be used, our approach is based on FMC Block
Diagrams that enable the visualisation of system architectures.

3. Both languages are integrated by merging their vocabulary using the extension points of
the security modelling language. The resulting language is a called a dialect.

1) Subclassing extension points

si

mj

The easiest way to perform the integration is to map a design modelling
language class mj to its corresponding extension point si in SecureSOA
that represents an abstraction of this class. This dependency can be rep-
resented as an inheritance relationship in the dialect between the classes
si and mj .

2) Enhancing the dialect with new classes

si

mj

si’

dl

This schema enables the mapping of SecureSOA subclasses. A Secure-
SOA class si is inherited by a class si′ that models a specific aspect of
service-based systems. Although a class si can be mapped to a class mj

as described by schema 1, it is unlikely to find a class in a general pur-
pose modelling language that corresponds to the specialised class si′ . To
associate the extension point si′ with the design modelling language, it is
necessary to enhance the dialect with a new class dl that inherits the class
si′ and mj .

3) Defining associations and OCL constraints

si

mj mk

Association

+ OCL 

Constraint

However, there might not be a straight mapping for each extension point
of SecureSOA, since certain aspects might be modelled on different levels
of abstraction in both languages. In this case, a class si has to be mapped
to multiple classes mj and mk in the other language. To integrate these
classes into the dialect, associations have to be defined between the cor-
responding classes. OCL constraints can be used to capture additional
semantics of these dependencies.

Table 4.1: Schemas for Creating the Modelling Dialect

4.1.3 Merging Security and System Design Languages

In SecureSOA, extension points are represented by basic classes that are defined by our SOA
interaction model. These extension points can be mapped to entities in any system design
model. For example, our model represents participants in an SOA such as services as objects that
participate in an interaction by exchanging information. FMC visualises system architectures
that are composed of agents communicating over a channel. Therefore, an object is an extension
point and can be mapped to an agent.

As stated by Lodderstedt in [Lod04], there is no universal approach to perform an integration
of arbitrary security and design modelling languages. The integration technique depends on the
structure of the security modelling language. In the scope of SecureSOA, we have identified
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three integration patterns that are listed in Table 4.1. The definition of these patterns is based
on classes and relationships in the meta-models of the security design language and the system
design language. We denote the set of classes in the SecureSOA meta-model as s = {s1, . . . , sn1

},
classes in the meta-model of the system design language as m = {m1, . . . ,mn2

} and classes in
the meta-model of the dialect as d = {d1, . . . , dn3

}.

4.2 SecureSOA - A Security Design Language for SOA

SecureSOA is our security modelling language that enables a modelling of security requirements
and capabilities for service-based systems and is defined by a MOF-based meta-model (abstract
syntax). In addition, we will introduce the notion of these elements (concrete Syntax) as UML
profiles and the definition of the formal semantics of SecureSOA.

4.2.1 SecureSOA Abstract Syntax

Our security modelling language SecureSOA is based on the SOA interaction model that has
been introduced in the previous chapter. The elements in this model provide basic entities and
relations to describe interactions in a Service-oriented Architecture. These elements constitute
the extension points of our model that are mapped to entities in the meta-model of the system
design model as described by the integration schema introduced above.

In addition to this set of basic entities, we have to specify additional elements to represent
security requirements and security capabilities. Therefore, we introduce security intentions and
security annotations as new modelling elements in this section.

4.2.1.1 Modelling of Security Intentions

The security intention meta-model is illustrated in Figure 4.2. A security intention states security
requirements (e.g. the enforcement of a specific security goal or the provision of security related
information) for a security intention subject (Intention Subject) that is either an object or a data
transfer object.

Information 
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Object
11..*

Intention

Subject

Information

1

1..* Object 

Intention

Data 

Confidentiality

Data 

Authenticity

User 

Authentication

Security Intention
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Provisioning

Security
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1 1..*

Claim 
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Figure 4.2: Modelling Security Intentions

In the scope of this thesis, we provide the following basic set of security intentions that are
introduced in Table 4.2: User Authentication, Identity Provisioning, Data Authenticity, and
Data Confidentiality. As illustrated in Figure 4.2, these security intention classes are derived
from the class Security Intention. SecureSOA provides an open and extensible model that is not
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limited to these intentions. Custom security intentions can be defined by deriving additional
security intention classes. For example, a non-repudiation intention could be defined.

Security
Intention

Intention
Type

Description

User
Authentication

Object
Intention

requires the trustworthy identification and authentica-
tion of users that access the Intention Subject. Data
Transfer Objects (e.g. messages) sent to the subject
must contain a credential that proves the identity of
these users.

Identity
Provisioning

Object
Intention

requires the provisioning of identity information to the
Intention Subject. Data Transfer Objects (e.g. mes-
sages) sent to the subject must contain a credential pro-
viding the required set of claims.

Data
Confidentiality

Information
Intention

indicates that the confidentiality of the information con-
veyed by the subject must be guaranteed.

Data
Authenticity

Information
Intention

indicates that the integrity of the information conveyed
by the subject must be ensured. In addition, the trust-
worthiness of the sender must be ensured.

Table 4.2: SecureSOA Security Intentions

One of the key components of our security modelling language SecureSOA are data transfer ob-
jects that enable interactions in a service-based system. Security intentions state requirements
that affect the structure of exchanged data transfer objects. For example, the security intention
Data Authenticity requires that a data transfer object must contain a signature, while the inten-
tion User Authentication requires data transfer objects to contain a credential. The requirements
stated by an intention must be enforced by the receivers of these data transfer objects. Therefore,
security intentions always have an impact on an object and on a set of data transfer objects.
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Intention

Object 

Intention

The Intention Subject 

must enforce the 
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Transfer 

Object

The requirements 

relate to the 

Intention Subject 
DTO Target

The requirements relate to 

all DTOs that are sent 

to the intention subject

The target of the referenced Data Transfer Object 

must enforce the requirements

Figure 4.3: Security Intention Types and their Dependencies

As shown in Figure 4.2, we distinguish two types of security intentions. An Information Intention
is attached to a data transfer object that is the subject of this intention. For example, a data
transfer object representing a credit card information can be annotated in a BPMN diagram
using a Data Confidentiality intention. However, it is not feasible for all security requirements
to be represented as annotations on data transfer objects. For instance, Identity Provisioning
requires the provision of identity information to a service. Since this security intention refers to a
service, the subject of this intention is of type object. We denote this class of security intentions
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as Object Intention. All data transfer objects that are sent to the subject of an object intention
must comply with the requirements specified by this intention. Figure 4.3 illustrates the two
types of security intentions and their dependencies to objects and data transfer objects. The
Object Intention and the Information Intention are connected to the corresponding subjects,
while the dotted line represents the implicit relationship to data transfer objects or objects.

The annotation of data transfer objects to specify security requirements presumes that there
are modelling elements provided by the system design language to represent data transfer ob-
jects. This is not the case in each system design modelling language. While BPMN enables the
modelling of data objects, FMC block diagrams visualises the static structure of a system, but
does not provide a view on data objects. To enable the specification of information intentions in
these diagram types as well, we allow information intentions to be connected to objects. In this
case, an information intention applies to all data transfer object that are exchanged with this
object. This aspect will be considered in the definition of the formal semantics of SecureSOA.
An example will be provided in section 4.4.

Figure 4.4: Security Profile Example

In addition, further information must be provided at the modelling layer to enable a model-driven
transformation. Security mechanisms and protocols must be selected for each security intention
to enable the generation of security policies. However, this choice depends on

1. the capabilities of the platform or runtime environment that enforces the generated security
policies. For example, different Web Service frameworks support different sets of algorithm
suites and protocol versions.

2. the required security level. The security level determines the minimal key strength and the
type of authentication mechanisms that must be used.

3. requirements of the modeller. The modeller might have reasons to require the usage of
specific protocol versions and security mechanisms to enforce a security intention.

However, our modelling approach intents to hide technical details at the modelling layer. The
modeller should not be bothered with details such as security algorithms and mechanisms that
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are used to enforce a specific intention. Nevertheless, the modeller should be able to influence
the selection of security mechanisms if this is required.

To solve this issue, our approach is based on the usage of Security Profiles that provide predefined
sets of security mechanisms and protocols. Security profiles are labelled by a name and are
referenced by the security intentions as shown in the security intention meta-model in Figure
4.2. An example of a security profile denoted as ’default’ is illustrated in Figure 4.4. The modeller
of the system can assign such a default profile providing the most common security mechanisms
to an intention or he can select another predefined profile. Since a security profile is just a set
of security mechanisms and a name, a modeller can easily define custom profiles to enforce a
specific security intention.

A basic sets of security profiles must be provided by the implementation of our model-driven
approach according to the capabilities of the run-time environment. The name of a profile can
indicate a security level, but this is just an informal association that is specific for this security
profile. We chose not to define and use security levels explicitly in our approach, since this would
require the definition of all-encompassing, holistically metrics to enable an automated assignment
of security mechanisms and protocols to these security levels.

To facilitate the assignment of security mechanisms to security profiles, common security patterns
can be used. For example, Schumacher provided a pattern catalogue in [SFBH+06] that defines
the pattern ’automated I&A Design Alternatives’. This pattern provides a process to choose
among authentication techniques alternatives. In particular, a process is described to collect
requirements that are used to evaluate authentication techniques. This evaluation can be used
as a basis to create identification and authentication profiles.

4.2.1.2 Modelling of Security Annotations

While security intentions facilitate the specification of security requirements, we need additional
modelling elements to represent capabilities of objects. A Security Annotation is a modelling
element that associates a set of security attributes with a subject. Similar to security intentions,
security annotations can relate to data transfer objects or to objects as illustrated in Figure 4.5.
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Figure 4.5: Modelling Security Annotations

In the scope of this thesis, we provide two security annotations that are related to identity
management capabilities:

1. User Directory – this annotation element indicates that an user directory is attached
to an object. An user directory stores the digital identities of users and enables attached
objects the authentication of registered users. The capabilities described by the annotation
User Directory are considered in the selection phase of security patterns.
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To illustrate the usage of this annotation, consider a service that is connected to a client.
An User Authentication intention is attached to the service to require the authentication of
users. Therefore, all service requests that are sent to this service have to provide a creden-
tial. To select security patterns that configure the requirements concerning the provision of
security credentials, the SecureSOA model must identify the objects in the system that are
capable to authenticate users. This information is provided by the annotation User Direc-
tory. Since each STS provides a user directory by default, the User Directory annotation
is specified implicitly for this type of object.

2. Supported Claim Types – Next to the authentication of users, services might require
the provisioning of identity information. The set of identity claims required at a service can
be specified using the security intention Identity Provisioning. To identify the objects in
SecureSOA that are capable to provide a specific set of claim types, the security annotation
SupportedClaimTypes can be used. In particular, this annotation can be used to specify
the claim types supported by an security token services and clients. For instance, a client
can request the user to enter the required identity information that are provided to the
relying party as a SAML-Token.

4.2.2 SecureSOA Concrete Syntax

The concrete syntax specifies the visualisation of elements that are defined by the abstract syntax.
Since the extension points of the SecureSOA meta-model provided by our SOA interaction model
are mapped to classes in the design modelling language, their notion is already defined by this
language. Therefore, we just have to define the notion of security intentions and annotations.

UML Stereotype Symbol

<< User Authentication >>

<< Identity Provisioning >>

<< Data Authenticity >>

<< Data Confidentiality >>

Table 4.3: SecureSOA Concrete Syntax

In general, there are two possibilities to define a concrete syntax (notion) for these elements.
The first option is to express them as a property of the subject of the element. For example, if
the notion of the design modelling language is based on UML, then the subject of an intention
might be visualised as an UML class. In this case, the notion of this class could be extended
to contain an additional property ’user identification’. This property would offer the possibility
to specify a set of claim types that are required by an activity. Another option to visualise
security requirements is the definition of artefacts for each element that can be used to annotate
the element’s subject. We have chosen this approach to define the concrete syntax of security
intentions specified by SecureSOA.

Our notion for security intentions is based on an UML concrete syntax using UML classes and
stereotypes. Each intention is visualised as an UML class that is connected to the intention’s
subject using an UML association. The mapping between SecureSOA intentions and UML
stereotypes is listed in Table 4.3. Figure 4.6 illustrates the notion of the User Authentication
and Identity Provisioning intentions.
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(a) User Authentication (b) Identity Provisioning

Figure 4.6: Notion of Security Intentions

In addition to security intentions, we have to define the notion of security annotations. Since
a user directory and a set of claim types represent data storages, we use the concrete syntax
for storages provided by FMC block diagrams to represent these elements. The visualisations of
these annotations are shown in Figure 4.7.

(a) User Directory (b) Supported Claim Types

Figure 4.7: Notion of Security Annotations

4.2.3 SecureSOA Formal Semantics

As described in section 3.3, our formalisation approach is based on a mapping of a MOF-based
model described by a language l to a relational model ml that is based on sets and relations.

Our security modelling language SecureSOA enhances our SOA interaction model with security
intentions and security annotations. Security intentions and security annotations refer to a
specific subject (e.g. a service) and can specify multiple parameters such as required claim
types. Using our formalisation approach, we can translate a security design modelling language
based on SecureSOA to a relational model mSecureSOA that is defined as follows:

mSecureSOA := ( Object,Client,Service,STS, Interaction,DataTransferObject,
TrustRelationship,Claim,SecurityIntention,ObjectIntention,
InformationIntention,DataConfidentiality,DataAuthenticity,
UserAuthentication, IdentityProvisioning,SecurityAnnotation,
ObjectAnnotation, InformationAnnotation,UserDirectory,
SupportedClaimTypes,SecurityProfile,SecurityProfileLabel,
SecurityMecanism,OI,OT,DI,DD,DOIssuer,DOTarget,
SO,SD,SL,ML,LL, IC,AO,AD,TC)
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The model mSecureSOA is composed of the following elements:

1. Sets and relations specified by the SOA interaction model as specified in section 3.3.

2. Sets for each security intention and associated data: SecurityIntention, ObjectIntention,
InformationIntention, DataConfidentiality, DataAuthenticity,
UserAuthentication, IdentityProvisioning, and Claim.

3. Sets for each security annotation: SecurityAnnotation, ObjectAnnotation, UserDirectory,
InformationAnnotation, SupportedClaimTypes.

4. Sets that represent relations between the classes in the SecureSOA meta-model. In addition
to the relations DD, OI, OT, DI, DOIssuer, DOTarget that are defined in Table 3.1, relations
referring to security intentions and annotations are required as listed in Table 4.4.

5. The set SecurityProfile is used to represent security profiles that are referenced by security
intentions. In addition, the set SecurityProfileLabel ⊆ Σ∗ contains all labels that are used
to identify security profiles, while SecurityMechanism ⊆ Σ∗ represents security algorithms
and protocols that can be used in the profiles.

Relation Description

SO ⊆ SecurityIntention×Object assigns the subject to an ob-
ject intention (cf. 4.2.1.1).

SD ⊆ SecurityIntention×DataTransferObject assigns the subject to an infor-
mation intention (cf. 4.2.1.1).

SL ⊆ SecurityIntention× SecurityProfile assigns a security intention to
a security profile.

ML ⊆ SecurityMechanism× SecurityProfile assigns security mechanisms
to security profiles.

LL ⊆ SecurityProfileLabel× SecurityProfile assigns labels to security pro-
files.

IC ⊆ IdentityProvisioning× Claim assigns a required set of claims
to the security intention Iden-
tity Provisioning.

AO ⊆ SecurityAnnotation×Object assigns the subject to an ob-
ject annotation 4.2.1.2.

AD ⊆ SecurityAnnotation×DataTransferObject assigns the subject to an infor-
mation annotation 4.2.1.2.

TC ⊆ SupportedClaimTypes× Claim assigns a required set of claims
to the annotation Supported
Claim Types.

Table 4.4: Formalising Relations in the SecureSOA Meta-Model

Since subclasses in the meta-model are translated to sets that share elements with sets repre-
senting parent classes, it follows that

SecurityIntention = ObjectIntention ∪ InformationIntention
ObjectIntention = UserAuthentication ∪ IdentityProvisioning
InformationIntention = DataConfidentiality ∪DataAuthenticity
SecurityAnnotation = ObjectAnnotation ∪ InformationAnnotation
ObjectAnnotation = UserDirectory ∪ SupportedClaimTypes
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The relations SO and SD in the meta-model are used to assign a subject (object or information)
to a security intention. In particular, the relation SO will be used, if the intention is an object
intention, while SD is used to assign a subject to an information intention. As described in
section 4.2.1.1, an information intention can also be assigned to an object using the relation
SO. In this case, this intention applies to all data transfer objects that are exchanged with this
object.Therefore, it follows that

∀i ∈ InformationIntention :
(∃ o ∈ Objects : (i SO o)⇒ ∀d ∈ {d | dDOTarget o ∨ dDOIssuer o} : (i SD d))

(4.1)

In the following, SOx = {(s, d) ∈ SO | s ∈ X} represents a subset of SO for a specific security
intention X. SDX is defined correspondingly.

Security intentions represent requirements concerning the structure and the properties of data
transfer objects that are sent to a specific object. To define the semantics of the security in-
tentions, we define the functions sigSecureSOA, encSecureSOA, credSecureSOA, and idSecureSOA that
evaluate a particular property of a data transfer object:

Data Authenticity -
The function sigSecureSOA : DataTransferObject 7→ {true, false} returns true, if a signature
is attached to a data transfer object d ∈ DataTransferObject. This function can be specified
in dependency to the security intention Data Authenticity :

sigSecureSOA(d)⇔ ∃ i ∈ DataAuthenticity : (i SD d) (4.2)

A data transfer object d is signed, if a Data Authenticity intention is attached to a data
transfer object.

Data Confidentiality -
The function encSecureSOA : DataTransferObject 7→ {true, false} returns true, if a data
transfer object d ∈ DataTransferObject is encrypted. This function can be specified in
dependency to the security intention Data Confidentiality :

encSecureSOA(d)⇔ ∃ i ∈ DataConfidentiality : (i SD d) (4.3)

A data transfer object d is encrypted, if a Data Confidentiality intention is attached to a
data transfer object.

Autentication -
The function authSecureSOA : DataTransferObject 7→ {true, false} returns true, if a creden-
tial is attached to a data transfer object d ∈ DataTransferObject. This function can be
specified in dependency to the security intention User Authentication:

authSecureSOA(d)⇔ ∃ i ∈ UserAuthentication :
(d DOTarget ◦ SO−1 i) ∨ (d DOIssuer ◦ SO−1 i)

(4.4)

A data transfer object d contains a credential, if it is sent or received by an object that is
attached to an User Authentication intention i.
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Identity Provisioning -
The function idcSecureSOA : DataTransferObject 7→ {true, false} returns true, if a credential
with a claim c is attached to a data transfer object d ∈ DataTransferObject. This function
can be specified in dependency to the security intention Identity Provisioning :

idcSecureSOA(d)⇔ ∃ i ∈ IdentityProvisioning :
((d DOTarget ◦ SO−1 i) ∨ (d DOIssuer ◦ SO−1 i)) ∧ (i IC c)

(4.5)

A data transfer object d contains a credential with a claim c, if it is sent or received by an
object that is attached to an Identity Provisioning intention i that requires this claim.

In addition, we have to state the following predicates concerning the trust relationships to ensure
that an object can authenticate its users. An interaction between a client and another object
implies that there must be a trust relationship if a security intention User Authentication or Iden-
tity Provisioning is attached to the object. Let SOOI := SOUserAuthentication∪IdentityProvisioning,
then it follows that

∀c ∈ Client ∀o ∈ Object :
(c OO∗Interaction o ∧ ∃i : i SOOI o)⇒ o OO∗Trust c

(4.6)

4.3 A SecureSOA Dialect based on FMC

SecureSOA offers the possibility to express security intentions in various modelling languages.
We have chosen FMC Compositional Structure Diagrams (Block Diagrams) as a system design
modelling language, since FMC offers a suitable foundation to describe an SOA on a technical
layer in terms of involved participants and their communication channels.

4.3.1 Fundamental Modeling Concepts

Fundamental Modeling Concepts (FMC) provides an approach to describe software systems. It
can be used to model the structure, processes, and value domains of a system.

Agent LocationStorage

Channel

1..*

Connection

2..*

Operation

performs

Value

WriteAccess

ReadAccess
Access 

Reification

Figure 4.8: MOF-based FMC Meta-Model

FMC Compositional Structure Diagrams (also known as FMC Block Diagrams) depict the static
structure of a system and the relationships between system components. This diagram type
distinguishes between active and passive components. Agents are active system components
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that are capable to communicate via channels and to perform activities in the system. Channels
and storages are passive components used to transmit or store information.

The FMC meta-model [TAW05] describes the abstract syntax for all diagram types and is spec-
ified using FMC entity relationship diagrams. We have translated the FMC meta-model to a
MOF-based meta-model. Figure 4.8 depicts the part of the MOF-based meta-model that de-
scribes FMC block diagrams. Agents are connected to storages or channels and interact by
performing read or write operations.

4.3.2 Merging SecureSOA and FMC

To integrate SecureSOA in FMC, the vocabularies of both languages have to be merged and
the entities in FMC have to be mapped to corresponding extension points in SecureSOA. The
meta-model of the dialect is shown in Figure 4.9.
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Figure 4.9: SecureSOA-based FMC Dialect

As aforementioned in section 4.1.3, the easiest way to perform the integration is to subclass
elements of SecureSOA. Object is subclassed by Agent, while Information is subclassed by Value.
However, there is no class in FMC that can be mapped to Service, Client, STS and Data Transfer
Object. As described by our integration pattern 2 in section 4.1.3, these extension points can be
mapped by adding new elements (c.f. grey coloured elements in Figure 4.9) to the dialect that
subclass related elements in FMC and SecureSOA.

Finally, the SecureSOA class Interaction has to be mapped to FMC. Subclassing will not work
as integration technique, since interaction is not just a channel in FMC. It is composed of a
Channel in combination with an Operation that is performed on this channel. Therefore, we
specified associations to perform the integration as defined by pattern 3 in section 4.1.3.

The notion of the classes in the meta-model of the dialect is provided by the concrete syntax
of FMC and SecureSOA. However, a notion must be defined for the elements Service Agent,
STS Agent and Client Agent that have been added to the dialect. Since these elements inherit
from FMC Agent, their notion is based on the notion of this class. To indicate the agent’s
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type (Service, Client, or STS ) we enhanced the concrete syntax with a notion for stereotypes as
defined by UML.

4.4 SecureSOA Modelling Example

This section illustrates the usage of the FMC-based SecureSOA modelling dialect. We have added
this dialect as a stencil set to the web-based modelling tool Oryx [DOW08]. Due to limitations
in Oryx concerning the visualisation of edges, our stencil set represents a simplified version of
FMC block diagrams. We visualise a channel between two actors as a plain arrow and omit the
visualisation of a channel as a small circle.

Figure 4.10 illustrates a web shop scenario modelled with SecureSOA. This scenario implements
an order process that handles the selection, payment and shipping of items bought in an online
store. Therefore, the web application integrates three services: The Music Shop Service that
manages the items of the store, the Money Transfer Service, which handles the payment step in
the order process, and the Order Processing Service that initiates the shipping of the goods using
the recipients address. Note that each agent indicates its type (Client, Service or STS) using
stereotypes. The order and the shipping service are operated by external services providers and
belong to isolated trust domains.

Figure 4.10: SecureSOA Web Shop Example

There are two additional organisations modelled in this scenario. The Trusted Bank and the
Registration Office act as identity providers managing their user’s digital identities and provide
a Security Token Service (STS). The trust relations from Shop Application to the security token
services indicate that the users impersonated by the shop application have an account at each
identity provider.

Furthermore, SecureSOA is used to annotate security intentions to various actors in this scenario.
The security intention Identity Provisioning indicates that the Money Transfer Service needs
payment information including a credit card number, while the shipping service requires the
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provision of the user’s name and address. Since these attributes must be asserted and provided
by trustworthy sources, the payment service has established a trust relationship with the trusted
bank, while the shipping service relies on information from the registration office. The security
annotation Supported Claim Types is used to indicate that the identity providers are able to
provide the sets of claims required by the services. To secure the exchanged information, the
intentions Data Authenticity and Data Confidentiality are used as well in this example. Each
intention relates to the default profile.

The entities in the scenario map to objects and interactions in our SOA interaction model.
There are six objects in this scenario (2 x STS, 1 x Client, 3 x Service) that participate in five
interactions with other objects. The objects interact by exchanging data transfer objects that
are message requests and responses.

Modelling Element Id

Shop Application 1
Music Shop Service 2
Order Processing Service 3
Money Transfer Service 4
Registration Office Identity Provider 5
Trusted bank Identity Provider 6

Table 4.5: Formalised Modelling Elements (Extract)

An identifier is assigned to each modelling element to formalise the model as listed in Table
4.5. Next to the elements modelled explicitly in Figure 4.10, data transfer objects must be
represented. Therefore, two data transfer objects are created for each interaction representing
request and response messages. Finally, we can formalise this scenario as follows:

Object = {1, 2, 3, 4, 5, 6}
Client = {1}
Service = {2, 3, 4}
STS = {5, 6}
DataTransferObject = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

SecurityIntention = {1, 2, 3, 4}
ObjectIntention = {1, 2}
InformationIntention = {3, 4}
IdentityProvisioning = {1, 2}
DataConfidentialtiy = {3}
DataAuthenticity = {4}

OOInteraction = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}
OOTrust = {(5, 1), (6, 1), (3, 5), (4, 6)}
DOTarget = {(1, 2), (2, 1), (3, 3), (4, 1), (5, 4), (6, 1), (7, 5), (8, 1), (9, 6), (10, 1)}
DOIssuer = {(1, 1), (2, 2), (3, 1), (4, 3), (5, 1), (6, 4), (7, 1), (8, 5), (9, 1), (10, 6)}
SO = {(1, 3), (2, 4), (4, 3), (3, 4), (4, 4)}
SD = {(4, 3), (4, 4), (3, 5), (3, 6), (4, 5), (4, 6)}

In the following, we will inspect the security intention Data Confidentiality (Id 3). Since it
is attached to the service ’Money Transfer Service’ (Id 4), this intention refers to all data
transfer objects that are exchanged with this service as stated in Formula 4.1. Since 3 ∈
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InformationIntention, 4 ∈ Objects, and 3 SO 4, it must hold that

∀d ∈ {d | dDOTarget 4 ∨ dDOIssuer 4} : (3 SD d))
⇔ ∀d ∈ {5, 6} : (3 SD d))
⇔ true

The function encSecureSOA was defined in Fromula 4.3. From 3 ∈ DataConfidentiality, 3 SD 5,
and 3 SD 6 we obtain:

encSecureSOA(5) = true
encSecureSOA(6) = true

According to the definition of the function encSecureSOA, the data transfer objects 5 and 6 are
encrypted in the scope of our model.
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Chapter 5

Security Configuration Patterns
for SOA Security

SecureSOA facilitates the enhancement of system design modelling languages to enable the spec-
ification of security intentions and additional security-related aspects. As outlined in section
1.2, security intentions are transformed to security constraints that provide a detailed model of
technical requirements (e.g. required protocols, algorithms, or credentials). However, a broad
range of different solutions and configuration options exists that can be used to configure secu-
rity constraints to satisfy a security intention. For example, confidentiality can be enforced at
the transport layer or at the message layer and requires the provision of cryptographic keys. A
suitable choice of appropriate security mechanisms depends on the overall architecture of the
service-based system. Therefore, expertise knowledge is required to determine an appropriate
strategy that specifies how to secure a service by enforcing an intention. To describe these
strategies and their preconditions in a standardised way, we foster the usage of security patterns.

This chapter provides an introduction to security patterns that are used to represent security
expert knowledge. To enable an automated application of security patterns in the scope of
our model-driven approach, we introduce a formalised pattern structure denoted as security
configuration pattern. A domain-specific language is provided to define the preconditions and
the solution for this class of patterns. The syntax and formal semantics of this language are
specified in this chapter.

5.1 Security Patterns – State of the Art

Security patterns are based on the idea of design patterns that has been introduced by Christo-
pher Alexander in 1977: ’A pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that pattern’ [AIS+77]. This
approach has been applied to software development in 1987 by Cunningham and Beck [BC87].
In general, design patterns are defined in an informal way, usually in the natural language, to
enable programmers and system designers to adapt the solution described by a pattern to their
own specific problem. Patterns are described in documents that have a specific structure as listed
in Table 5.1. As described in [MD96], the mandatory elements of a pattern are Name, Context,
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Forces, Problem, and Solution.Security patterns have been introduced by Yoder and Barcalow
[YB97] in 1997. Based on this work, various security patterns and pattern systems have been
defined that refer to different phases in the development process. An overview about recent work
is given in [YWM08] by Yoshioka et al.

Element Description

Name is a label that identifies the pattern and
reflects the intention of this pattern.

Context describes the environment before the
application of this pattern.

Forces are conditions that exist within the con-
text. They affect the problem and
might represent trade-offs or precondi-
tions.

Problem describes a problem that occurs within
the context.

Solution is a proven solution for the problem
within the context.

Dependencies might exist between patterns. As de-
scribed by Zimmer [Zim95] there are
three basic dependencies that might oc-
cur between patterns: Usage, Refine-
ment or Conflict.

Table 5.1: Design Pattern Structure

Delessy and Fernandez defined several security patterns for SOA and Web Service security
[DFLP07, FDLP06] that describe best practices and concepts such as identity provider and
identity federation. Their work was enhanced by [ESP07] to describe authentication and autho-
risation infrastructures. These patterns provide an informal description, although parts of the
pattern’s solution are formalised using UML diagrams.

Microsoft published the book ’Web Service Security - Scenarios, Patterns, and Implementation
Guidance’ [SS05]. This book presents a catalogue of security patterns for Web Services and
discusses the usage and preconditions for each pattern. In accordance with the design pattern
structure, these patterns are described in an informal way.

The need of a formalisation of security patterns has been addressed by M. Schumacher [Sch03]
by providing a classification. Schumacher proposed an approach to define a knowledge base
using a security ontology that provides mappings between security concepts and security pattern
elements. This knowledge base was used to implement a security pattern search engine that
enables developers to retrieve security patters that meet given queries. This approach offers a
classification of elements in the pattern structure (e.g. the context or the problem), but is not
suitable to enable an automated application of security patterns.

In fact, Yoshioka et al. describe the unification of security patterns and system models as im-
portant future work: ’For modelling security concerns, models such as UMLsec and SecureUML
have been proposed, so we need to adapt such models to security patterns’.
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5.2 Web Service Security Configuration Patterns

Security patterns provide reusable expert knowledge that can be used by system designers.
As outlined in the previous section, these patterns are represented in an informal way and do
not support a model-driven transformation on the basis of an automated pattern application.
Therefore, a formalisation of the pattern structure is required. Existing approaches that provide
a formalisation – e.g. as proposed by Schumacher [Sch03] – offer a classification of the elements
in the pattern structure (e.g. the context or the problem) and do not enable an automated
reasoning and application of these patterns.

Moreover, the solutions provided by common security patterns describe a generic process that can
be applied by programmers and security engineers to a concrete platform. The different steps in
such a process could require the implementation of security-related mechanisms, the provisioning
of configuration data such as certificates, or the configuration of the platform itself. However,
patterns describing the implementation of security mechanisms and protocols are not applicable
in the scope of our approach. Instead, security patterns are needed that describe the usage and
configuration of security mechanisms and protocols concerning a particular security intention
in order to enable an automated model-driven transformation. A platform that supports our
model-driven approach has to support a basic set of security mechanisms and protocols that
can be configured by applying our system of security patterns for SOA. Therefore, our approach
requires a restricted type of security patterns. We denote this class of security patterns as security
configuration patterns.

A security configuration pattern addresses a specific problem that is described by a security
intention and facilitates the generation and modification of security constraints. The applicability
of a pattern depends on the forces of this pattern that specify conditions in the scope of a
SecureSOA model.

The structure of a security pattern is illustrated in Figure 5.1. A pattern is applied to an
environment that is described by the Context of the pattern. The context is a relational
SecureSOA model as introduced in chapter 4. Each security configuration pattern has a Name
(a string) that identifies the pattern and addresses a Problem. As shown in Figure 5.1, the
problem of a security configuration pattern is identified by a security intention.
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Figure 5.1: Security Configuration Pattern Structure

The Forces of our security configuration patterns determine the applicability of a pattern in a
specific context by defining conditions over the entities and their relationships (e.g. a service
must have a trust relationship to a client), while the Solution instantiates new entities and
relationships in this model (e.g. security constraints). To specify the conditions and operations
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on the data model in an accessible way, we provide a Domain Specific Language (DSL) that is
used to specify the forces and the solution of a pattern. The syntax and the semantics of our
security configuration pattern DSL will be introduced in the next section.

To sum up, a security configuration patterns defines a solution that provides a set of constraint
operations. The applicability of a pattern is determined by the context and related forces. We
can formalise security configuration patterns as follows:

Definition: Let ΣIntentions =

{
UserAuthentication, IdentityProvisioning,
DataAuthenticity,DataConfidentiality

}
denote the secu-

rity intentions specified by SecureSOA, F and S represent sets of all syntactically well-formed
forces and solutions that can be formulated using our security configuration pattern DSL, and
MSecureSOA denote the set of all SecureSOA models. A security configuration pattern is a tupel

(name, problem, forces, solution) ∈ Σ∗ × ΣIntentions × F× S (5.1)

We provide a system of multiple security patterns to address the security intentions defined by
SecureSOA. As described by Schumacher [Sch03], a pattern system is a set of patterns that are
defined using a consistent, uniform and precisely defined structure. Therefore, we can formalise
a pattern system as a set patternSystem ⊆ Σ∗ × ΣIntentions × F × S with patternSystem =
{pattern1, . . . , pattern]patternSystem}. We denote the components of patterni as namei, problemi,
forcesi, and solutioni.

5.3 A Domain-specific Language for Security Configura-
tion Patterns

To specify the forces and the solution of a pattern, a language is required that provides a syntax
to state conditions and operations on the data model. Languages such as QVT [Gro08] or ATL
[gro09a] have been specified in the scope of the Model-Driven Architectures (MDA) approach and
provide an expressive and standardized syntax to define model transformations. However, the
flexibility of these languages comes along with an increased complexity that would complicate the
definition of security patterns. Therefore, we propagate the usage of a concise domain-specific
language (DSL) that is defined specifically for the usage in our security pattern system.

A security configuration pattern DSL operates on a relational SecureSOA model. In the follow-
ing, the operations and functions of our domain-specific pattern language will be introduced.
Furthermore, the formal syntax and semantics of our domain-specific language will be described
as well.

5.3.1 Security Configuration Pattern Operations and Functions

Our DSL provides a set of operations and functions that can be used to state the forces and the
solution. These operations and functions operate on the pattern’s context (sets and relations of
SecureSOA). The fundamental sets in SecureSOA are Client , Service, and STS that represent
actors. Therefore, these keywords are used in our domain-specific pattern language to represent
the corresponding sets. In addition, the keyword intention is reserved to represent the concrete
instance of a security intention a pattern is applied to. intention provides a set of properties
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that represent the parameters and the subject of the intention (e.g. intention.subject represents
the subject the intentions refers to).

Besides security intentions, SecureSOA provides security annotations to express security-related
capabilities of objects. As described in Table 5.2, we represent annotations as properties of the
objects they are attached to.

Operators Description

(boolean) object.UserDirectory returns a boolean value that indicates whether
an UserDirectory annotation is attached to this
object.

(set) object.SupportedClaimTypes returns the set of claims that are provided by
SupportedClaimTypes annotations attached to
this object.

Table 5.2: Object Properties Representing Annotations

Table 5.3 lists functions that evaluate interactions and trust relations between actors in the
relational model. The parameters object1 and object2 represent a single object (expressed as a
number) or multiple objects (expressed as a set of numbers).

Function Description

(boolean) Interaction(object1,object2)
(boolean) Trust(object1,object2)

determine whether there is a trust or inter-
action relationship between two objects. If
object1 or object2 is a set of numbers, then
it is analysed whether there is a relationship
from/to all objects in this set

(set) InteractionPath(object1,object2)
(set) TrustPath(object1,object2)

determine whether two objects or set of objects
relate concerning the transitive closure of the
respective relations. These functions return a
set of numbers that represent the objects on
the path.

Table 5.3: Functions to Evaluate Relations in SecureSOA

Moreover, boolean operators are provided by our DSL as illustrated in Table 5.4. These functions
provide the foundation to express the condition of the forces in a pattern. Each function operates
on boolean values. However, a set or an integer value can be passed to these functions as well. A
set will evaluate as true if this set has elements, while an integer value will be evaluated as true
if it is non-zero. For instance, {1,2} AND { } is equal to false, while 0 IMPLIES 10 is true.

Operators Description

(boolean) value AND/OR value these operators correspond to boolean and/or
assertions.

(boolean) value IMPLIES value represents an implication.

Table 5.4: Boolean Operators

Functions operating on sets are listed in Table 5.5. The function CONTAINS checks a con-
tainment relationship (e.g. {1, 2, 3, 4} CONTAINS ({1, 2}) ≡ true), while the WHERE function
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returns a restricted set of elements. To illustrate this function, consider the following example:
{1, 2, 3, 4}.WHERE({it > 2}) = {3, 4}

Function Description

(boolean) set CONTAINS value checks whether a value is contained in a set. If this
value is a set, then it is verified that each element of
the second set is contained within the first set.

(set) set INTERSECTION set calculates the intersection of two sets that is made
up of the objects contained in both sets.

(set) set.WHERE({condition}) returns a set with elements of set that comply with
the condition. The condition passed to this func-
tion has to evaluate as true or false. The variable
labelled it can be used in the condition to represent
the element in the set.

Table 5.5: Functions Operating on Sets

A sequence of operations can be applied to all elements of a set using the FORALL operation
(see Table 5.6). The current element of the set the sequence is applied to is denoted as it .

Operation Description

FORALL (set){operation*} executes a list of operations for each element in a given set.

Table 5.6: ForAll Operation

Finally, specific operations are required that support the expression of a pattern’s forces and
solution. Table 5.7 lists the ASSERT operation that can be used to state the forces, while the
operations that can be used to specify solutions are shown in Table 5.8.

Operation Description

ASSERT (value) is used to define the forces of a pattern. A pattern can be applied
in a certain context, if all ASSERT operations evaluate as true.
An ASSERT operation will return true, if the value passed to
this function is equals true, is a non-empty set, or is a non-zero
number.

Table 5.7: Forces Operation

5.3.2 Security Configuration Pattern DSL Formal Syntax

Our DSL can be used to specify the forces and the solution of a security configuration pattern.
We provide the formal grammars GForces = (NForces,ΣForces, PForces, <Forces>) and GSolution =
(NSolution,ΣSolution, PSolution, <Solution>) to specify the syntax of the forces and the solution.
Both grammars share a common set of symbols and rules that are defined as follows:

ΣForces and ΣSolution denote finite sets of terminal symbols that appear in the string formed from
the grammar. These sets are defined as
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Operation Description

REQUIRE (securityGoal) this operation results in the creation of security constraints
for a specific security goal that are returned by the solution.

SET (key, value) assigns a value to specific properties (identified by a key) of
the constraints that have been created during the execution
of the solution.

USE (key) similar to the SET-operation, this operation assigns a value
to specific properties of the constraints. The value is re-
solved from the profiles as introduced in section 1.2.1.

ENFORCE (intention) this operation can be used in the scope of a solution and in-
dicates that a specific security intention must be enforced.
A set of security constraints is returned that is created by
applying security patterns matching to the intention.

SCOPE (subject){operation*} limits the application of SET and USE operations to con-
straints that refer to the specified subject.

Table 5.8: Solution Operations

ΣForces = ΣIntentionProperties ∪ ΣActors ∪ ΣIntentions ∪ ΣAnnotations ∪
ΣSecurityGoals ∪ ΣFunctions ∪ ΣSecurityOntology ∪ ΣOperationsForces

ΣSolution = ΣIntentionProperties ∪ ΣActors ∪ ΣIntentions ∪ ΣAnnotations ∪
ΣSecurityGoals ∪ ΣFunctions ∪ ΣSecurityOntology ∪ ΣOperationsSolution

The basic sets defining the terminal symbols are specified as follows:

ΣToken =
{

., ,, {, }, (, )
}

ΣIntentionProperties = {intention, subject, claims}

ΣActors = {Service, Client, STS}

ΣIntentions = {UserAuthentication, IdentityProvisioning,
DataAuthenticity, DataConfidentiality}

ΣAnnotations = {UserDirectory, SupportedClaimTypes}

ΣSecurityGoals = {Confidentiality, Integrity, Authentication}

ΣOntologyConcepts ⊆ Σ∗

ΣFunctions = {Interaction, Trust, InteractionPath, TrustPath,
AND, OR, CONTAINS, INTERSECTION,
IMPLIES, FORALL, WHERE}

ΣOperationsForces = {ASSERT}

ΣOperationsSolution = {REQUIRE, SET, USE, ENFORCE, SCOPE}

The terminal symbols in the set ΣIntentionProperties are used to construct references to properties
of the intention the pattern is applied to, while ΣActors is used to specify symbols representing
different types of actors. The elements in ΣIntentions and ΣAnnotations symbolise the security
intentions and annotations specified by SecureSOA and ΣSecurityGoals denotes security goals that
identify required security constraints. ΣOntologyConcepts provides symbols that represent concepts
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specified by a security ontology. A security ontology provides a set of concepts and relationships
for a specific security configuration pattern system. Its structure will be introduced in section 5.4.
Finally, we use the terminal symbols in the set ΣFunctions to denote common functions and
operations that can be used in the forces as well as in the solution. Operations that are specific
for the forces or the solution are specified in the sets ΣOperationsForces and ΣOperationsSolution.

The components NForces in GForces and NSolution in GSolution denote finite sets of nonterminal
symbols that do not appear in strings formed from the grammars:

N = {<Set>,<Number>,<Boolean>,<AnyType>,<NumberOrSet>}

NForces = N ∪ {<Forces>,<OperationForces>}

NSolution = N ∪ {<Solution>,<OperationSolution>,<Concepts>,
<Intention>,<SecurityGoal>}

The symbols <Forces > respectively <Solution > of GForces and GSolution represent the start
symbols. In addition, the formal grammars contain the finite sets PSolution ⊆ (NSolution)∗ ×
(ΣSolution ∪ NSolution)∗ and PForces ⊆ (NForces)

∗ × (ΣForces ∪ NForces)
∗ of production rules. In

particular, PSolution and PForces contain the following basic set of production rules:

<Solution> → <OperationSolution>; <Solution> | ε

<Forces> → <OperationForces>; <Forces> | ε

PSolution and PForces share a set of rules to construct basic functions and operations. These
functions operate on basic data types that are denoted as <Boolean>, <Number>, and <Set>.
Since some functions accept different types of parameters, we define

<AnyType> → <Boolean> | <Number> | <Set>

<NumberOrSet> → <Number> | <Set>

The nonterminal symbols representing data types can be replaced by variables or functions
returning the corresponding type. Therefore, the following production rules are defined for the
different data types:

<Number> → intention.subject

| it

<Set> → intention.claims

| STS | Client | Service

| <Set>.WHERE(<Boolean>)

| <Set> INTERSECTION <Set>

| InteractionPath(<NumberOrSet>,<NumberOrSet>)

| TrustPath(<NumberOrSet>,<NumberOrSet>)

| <Number> .SupportedClaimTypes
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<Boolean> → <AnyType> AND <AnyType> | <AnyType> OR <AnyType>

| <AnyType> IMPLIES <AnyType>

| <Set> CONTAINTS <NumberOrSet>

| Interaction(<NumberOrSet>,<NumberOrSet>)

| Trust(<NumberOrSet>,<NumberOrSet>)

| <Number> .UserDirectory

In addition, the following rules for security intentions and security goals are defined:

<Intention> → UserAuthentication | IdentityProvisioning

| DataConfidentiality | DataAuthenticity

<SecurityGoal> → Authentication | Confidentiality | Integrity

Finally, rules are defined for operations that can be used to specify the forces and the solutions:

<OperationForces> → ASSERT(<AnyType>)

| FORALL(<Set>){<Forces>}

<OperationSolution> → REQUIRE(<SecurityGoal>)

| SET(<Concept>,<AnyType>)

| USE(<Concept>)

| ENFORCE(<Intention>)

| FORALL(<Set>){<Solution>}

| SCOPE(<NumberOrSet>){<Solution>}

The nonterminal symbol <Concept> represents concepts defined by an ontology. Therefore, it
can be replaced using production rules that map this symbol to a symbol in ΣontologyConcept:

<Concept>→ c,where c ∈ ΣOntologyConcept

5.3.3 Security Configuration Pattern DSL Formal Semantics

As outlined in section 5.2, a security configuration pattern operates on a relational SecureSOA
model and is applied to a security intention contained in the intention set of this model. The
forces determine the patterns applicability, while the solution results in the generation of our
security constraint model. Therefore, the meaning of the programs Forces and Solution of a
pattern stated in our security configuration pattern DSL can be described by their corresponding
input-output-functions:

[[Forces]] : MSecureSOA × Intention→ B (5.2)

[[Solution]] : MSecureSOA × Intention→Mdim

The forces of a pattern map the input to a boolean value that indicates the applicability of this
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pattern, while the solution transforms a model instance of MSecureSOA into an instance of the
domain-independent model of Mdim. To standardize the definition of the input-output-functions
for operations, functions, and variables of our security configuration pattern DSL, we represent
the input as a set of variables. Therefore, let Vars be an union of all syntactic domains that are
used to represent variables. Moreover, this set contains elements for each input variable of the
function’s Forces and Solution. In particular, each component name of a relational SecureSOA
model mSecure (e.g. Service, Client, OOInteraction, ...) is an element of Vars and a variable
Intention is used to represent the security intention a pattern is applied to. We define a variable
assignment function that is used to assign values to variables in Vars as follows:

Definition: Let D = B∪N∪ 2N be a value set. We define a function σ : Vars→ D as a variable
assignment that maps a variable in Vars to a value in D.

The value set D represent the basic values used in our approach that are either of data type
boolean, number, or set. For instance, let Service = {1, 2, 3} be a component of a relational
SecureSOA model mSecureSOA. Therefore, we obtain Service ∈ Vars and σ(Service) = {1, 2, 3}.
σ(Service) returns the value of the variable labelled Service.

Using the variable assignment function we can restate the semantics of the program’s Forces and
Solution as

[[Forces]] : (Vars→ D)→ B (5.3)

[[Solution]] : (Vars→ D)→Mdim

5.3.3.1 Formal Semantics of Basic Data Types and Functions

We use the variable assignment function σ to define the semantics of basic data types and
functions. The semantics of a boolean expression b ∈ Vars is defined by a function [[b]] : (Vars→
D)→ B as follows:

[[true]] (σ) :≡ true (5.4)

[[false]] (σ) :≡ false

[[b]] (σ) :≡ σ(b)

[[¬b]] (σ) :≡ ¬ [[b]] (σ)

In addition, we can define the semantics of the operators AND and OR. Let x1, x2 ∈ Vars and
τ : D → B a mapping from the value set to a boolean value. The function τ is used to support
the definition of these operators to enable the provision of numbers and sets as parameters in
addition to boolean values.

τ(x) :≡

 x if x ∈ B
x > 0 if x ∈ N
x 6= {} if x ∈ 2N

(5.5)

[[x1 AND x2]] (σ) :≡ τ([[x1]] (σ)) ∧ τ([[x2]] (σ)) (5.6)

[[x1 OR x2]] (σ) :≡ τ([[x1]] (σ)) ∨ τ([[x2]] (σ))

We use the function [[x]] : (Vars → D) → N to define the semantics of an integer expression
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x ∈ Vars as follows:

[[x]] (σ) := σ(x) (5.7)

[[−x]] (σ) := − [[x]] (σ)

[[x1�x2]] (σ) := [[x1(σ)]] � [[x2]] (σ), � : N2 → B,� ∈ {+,−, ∗}
[[x1�x2]] (σ) :≡ [[x1(σ)]] � [[x2]] (σ), � : N2 → B,� ∈ {=, <,≤,≥, >}

The semantics of a set expression s ∈ Vars are defined by a function [[s]] : (Vars → D) → 2N as
follows:

[[s]] (σ) := σ(s) (5.8)

In the the next step, we define the semantics of the INTERSECTION operation. Let s1 and s2
be set expressions in Vars, then

[[s1 INTERSECTION s2]] (σ) := [[s1]] (σ) ∩ [[s2]] (σ) (5.9)

Furthermore, we define the semantics of the CONTAINS function that evaluates a containment
relationship. Let s ∈ Vars be a set expression, while x ∈ Vars is a set or number expression.

[[s CONTAINS x]] (σ) :≡

{
[[x]] (σ) ∈ [[s]] (σ) if [[x]] (σ) ∈ N ∨ [[x]] (σ) ∈ B

[[x]] (σ) ⊆ [[s]] (σ) if [[x]] (σ) ∈ 2N
(5.10)

Next, we define the semantic of the functions Interaction and Trust that are used to evaluate
the relationships between actors. Let x1, x2 ∈ Vars be a set or number expression. Since these
functions accept numbers and sets as parameters, we define the auxiliary function ς : D → 2N.
This function expresses elements of the value set as a set to simplify the definition of the functions
Interaction and Trust .

ς(x) :=

{
x if x ∈ 2N

{x} if x ∈ N ∨ x ∈ B (5.11)

[[Interaction(x1, x2)]] (σ) :≡ ∀e1 ∈ ς([[x1]] (σ)) ∀e2 ∈ ς([[x2]] (σ)) : (5.12)

(e1, e2) ∈ σ(OOInteraction)

[[Trust(x1, x2)]] (σ) :≡ ∀e1 ∈ ς([[x1]] (σ)) ∀e2 ∈ ς([[x2]] (σ)) : (5.13)

(e1, e2) ∈ σ(OOTrust)

To determine whether there is a transitive relation between two objects, we provide the functions
InteractionPath and TrustPath. These functions return the set of all objects on paths from the
first to the second object. If there is no transitive relation between two objects, an empty
set is returned. Let σ be a variable assignment function, σ(Rel) ⊆ σ(Object) × σ(Object) a
relation between Objects (e.g. OOInteraction or OOTrust), and let x1 and x2 denote number
expressions in Vars. We represent the paths from an object x1 to x2 connected via relations in
σ(Rel) as a graph (VRel, ERel) that is returned by a function PathsRel : D × D × (Vars → D) →
2σ(Object) × 2(σ(Object)×σ(Object)). Let PathsRel(x1, x2, σ) = (VRel, ERel) where VRel ⊆ σ(Objects)
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and ERel ⊆ σ(Rel). We define the sets of edges (ERel) and vertices (VRel) as follows. Let
x, y ∈ σ(Objects), then

(x, y) ∈ ERel iff there is a sequence p0, . . . , pn with pi ∈ σ(Object)for all 0 ≤ i ≤ n (5.14)

where (pi, pi+1) ∈ σ(Rel) for all 0 ≤ i < n
and [[x1]] (σ) = p0, [[x2]] (σ) = pn
and ∃ z ∈ {0, . . . , n− 1} : pz = x ∧ pz+1 = y

x ∈ VRel ⇔ ∃y ∈ σ(Objects) : (x, y) ∈ ERel ∨ (y, x) ∈ ERel (5.15)

Using the function PathsRel, we can specify the input-output function of the functions Interac-
tionPath and TrustPath.

[[InteractionPath(x1, x2)]] (σ) :=VRel (5.16)

with PathsRel(x1, x2, σ) = (VRel, ERel)

and Rel = OOInteraction

[[TrustPath(x1, x2)]] (σ) :=VRel (5.17)

with PathsRel(x1, x2, σ) = (VRel, ERel)

and Rel = OOTrust

Moreover, we have to specify the semantics of the expressions that are used to reference the prop-
erties of the security intention the pattern is applied to (e.g. intention.subject). As introduced
in chapter 4, an intention subject is either the object that is assigned to an intention using the
relation SO or a data transfer object associated with the relation SD . In addition, a security
intention relates to an object that must enforce this intention (intention.policySubject) and the
data transfer objects (intention.DTOSubject) that must be transformed due to the intention.
If a subject represents a data transfer object, the properties intention.subject.issuer and inten-
tion.subject.target can be used to resolve the issuer and the target of this data transfer object.
Claims are assigned to an intention using the relation IC . To simplify the following definitions,
we use the auxiliary function ϕ : σ(SecurityIntention) −→ B that evaluates whether an intention
is of type object intention.

ϕ(i) :≡
{

true if i ∈ σ(UserAuthentication) ∪ σ(IdentityProvisioning)
false else

(5.18)

Let intention ∈ Vars be a number expression, then

[[intention.subject]] (σ) :=


o with (σ(intention), o) ∈ σ(SO)

if ϕ(σ(intention))
d with (σ(intention), d) ∈ σ(SD)

else

(5.19)
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[[intention.DTOsubject]] (σ) :=


d with ∃ o : σ(intention) σ(SO) o ∧ dDOTarget o

and ∃ i : dDI i
if ϕ(σ(intention))

d with (σ(intention), d) ∈ σ(SD)
else

(5.20)

[[intention.policySubject]] (σ) :=


o with (σ(intention), o) ∈ σ(SO)

if ϕ(σ(intention))
o with (σ(intention), o) ∈ σ(SD) ◦ σ(DOTarget)

else

(5.21)

[[intention.subject.issuer]] (σ) := o with (σ(intention), o) ∈ σ(SD) ◦ σ(DOIssuer) (5.22)

[[intention.subject.target]] (σ) := o with (σ(intention), o) ∈ σ(SD) ◦ σ(DOTarget) (5.23)

[[intention.claims]] (σ) := {c | (σ(intention), c) ∈ σ(IC)} (5.24)

Besides security intentions, SecureSOA provides security annotations. Let obj denote a number
expression in Vars, then

[[obj.UserDirectory]] (σ) :≡ ∃ a ∈ UserDirectory : (a, [[obj]]) ∈ AO (5.25)

[[obj.SupportedClaimTypes]] (σ) := {c ∈ Claim | ∃ a ∈ SupportedClaimTypes : (5.26)

(a, [[obj]]) ∈ AO ∧ (a, c) ∈ TC}

The semantics of the syntactic expressions representing the actors in an SOA are defined as
follows:

[[Client]] (σ) := σ(Client) (5.27)

[[Service]] (σ) := σ(Service)

[[STS]] (σ) := σ(STS)

[[RelyingParty]] (σ) := σ(STS) ∪ σ(Service)

5.3.3.2 Operational Small Step Semantics

As described in the previous section, a pattern’s forces and solution can be specified syntactically
as a sequence of operations o1, . . . , on. The processing of these operations can be represented
as a sequence of execution steps.

Definition: Let os1 = (o1, . . . , on) be a sequence of operations and σ1 the variable assignment
for os1. An execution step is a relation osi|σi → osi+1|σi+1, where osi = (oi, . . . , on) and
osi+1 = (oi+1, . . . , on). osi+1 denotes the sequence of operations after the execution of operation
oi.

Since each execution step alters the assignment function σi due to the assignment of new values
to variables in Vars, a variable assignment function σi is transformed to a function σi+1. We
model the relationship between both functions using the operator ⊕ that is used to replace the
assignment of variable values:
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Defintion: Let σ : Vars → D be a variable assignment function and {x1, . . . , xk} ⊆ Vars a set
of variables. σ ⊕ {x1 → d1, . . . , xk → dk} is a variable assignment function, where each variable
xi is assigned a value di with (1 ≤ i ≤ k)

Let s ∈ Vars be a set expression. We use the function ⊕ to define the semantics of the expression
s.where({condition}) that returns a set of elements that comply with the condition.

[[s.where({condition})]] (σ) := {e ∈ [[s]] (σ)| [[condition]] (σ ⊕ {it→ e})} (5.28)

To define the semantics of an execution step osi|σi → osi+1|σi+1, we have to specify osi+1 and
σi+1 in dependence on the first operation oi in osi.

The assignment operation is the simplest operation provided by our DSL. Let x ∈ Vars and
oi ≡ x := e. The semantics of this operation can be defined as follows:

oi; osi+1 | σi → osi+1|σi+1 with σi+1 = σi ⊕ {x→ [[e]] (σi)} (5.29)

Another basic operation is the FORALL(s){os} operation that can be used in the definition of
the forces and the solution to repeat a set of operations os for each element in the set [[s]] =
(s1, . . . , s]s). The current instance of the element is denoted as it and added to the set Vars.
The semantics of an execution step with oi ≡ FORALL(s){os} are defined as:

oi; osi+1 | σi → it := s1; os; (5.30)

...

it := s]s; os; osi+1|σi+1 with σi+1 = σi

5.3.3.3 Specifying the Semantics of the Forces

The result of a pattern’s forces depends on the evaluation of the operation ASSERT(expr). The
semantics of the execution step with oi ≡ ASSERT(expr) can be defined as follows:

oi; osi+1|σi → osi+1|σi+1 with (5.31)

σi+1 = σi ⊕ {ForcesResult→ τ([[expr]] (σi)) ∧ σi(ForcesResult)}

ForcesResult is a variable that is used to represent the result of a pattern’s forces. The execution
of an ASSERT operation will set this variable to true if the expression passed to this operation
evaluates as true and if ForcesResult is not false due to a previous ASSERT evaluation.

Let σ1 be the initial variable assignment function generated from the pattern context, whereas
ForcesResult→ true ∈ σ1. Using the variable ForcesResult , we can specify the forces of a pattern
as follows:

[[Forces]] := σn(ForcesResult), with Forces|σ1 →∗ ε|σn (5.32)

5.3.3.4 Specifying the Semantics of the Solution

The operations in a pattern’s solution create or modify security constraints. To define the se-
mantics of a pattern’s solution, we will start with the definition of the semantics of the operation
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ENFORCE(intention). Let P (σ1) be the set of applicable patterns regarding a variable assign-
ment function σ1:

P (σ1) := {j ∈ {1, . . . , ]patternSystem}| [[Forcesj ]] (σ1) (5.33)

∧ σ1(intention) = SecurityIntentionj}

P (σ1) contains all patterns whose intentions are equal to intention and whose forces evaluate
as true. This set might contain multiple security patterns that represent alternatives. Since
the solutions of each alternative pattern might require the enforcement of additional security
intentions, the application of security intentions result in a tree of applied security patterns. To
enable the generation of security alternatives after the execution of the solution, it is necessary
to construct the pattern application tree and to associate security constraints to this tree during
the execution of the patterns solution. Therefore, we define a Pattern Application Tree (PAT)
as a graph PAT = (VPAT, EPAT), where VPAT ⊆ N and EPAT ⊆ N × N. Each element in VPAT

represents the application of a security pattern to fulfil a specific security intention. We associate
the policy subject of the security intention with the corresponding node in the tree using the
relation PatO ⊆ VPAT×Objects. This object represents the entity (e.g. a service) that requires the
enforcement of the related security constraints. The relation CPAT ⊆ SecurityConstraint×VPAT

is used to relate security constraints to nodes in the pattern application tree.

An example is shown in Figure 5.2. The pattern application tree resulted from the application of
four security patterns. The initial pattern v1 required the enforcement of an additional security
intention that triggered the application of a single pattern in v2. This pattern created the security
constraint c1 and required the enforcement of an additional security intention, too. In this case,
two pattern were applied that created the security intentions c2 and c3. The nodes v1 and v2
relate to object o1, while the pattern v3 and v4 refer to object o2.

PatO

...

(v1,o1)

(v4,o2)

(v3,o2)

CPatSecurity 

Constraints

Pattern Application 

Tree PAT = (VPAT, EPAT)

Objects

 o1

 o2

...

 c1

 c2

 c3

...

 v1

 v2

 v3  v4

...

(v1,v2)

(v2,v3) (v2,v4)

(c1,v2)

(c2,v3)

(c3,v4)

...

(v2,o1)

Figure 5.2: Pattern Application Tree Example

We use the variable PAT ∈ Vars to denote the pattern application tree, while PID ∈ Vars
represents the current element in the pattern application tree during the execution of the solution.
Let σi be a variable assignment function with PAT → (VPAT, EPAT) ∈ σi, let PID → pid ∈ σi
with pid ∈ VPAT, and let subj = [[intention.policySubject]] (σi). The semantic of an execution
step with (oi ≡ ENFORCE(intention)) that applies additional security patterns for the specified
security intention is defined in Formula 5.34.

The execution of this operation results in the insertion of the solutions of the applicable patterns
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into the sequence of operations. In addition, the pattern application tree stored in σi+1 is en-
hanced with new states for the additionally applied patterns that are linked to the policy subject
using the relation PatO. Assignment operations are inserted into the sequence of operations to
set the variable PID to the node in the pattern application tree that is associated with a pattern
whose solution is executed next. After applying the solutions of all applicable patterns, PID
is set back to its original value σi(PID) and the remaining sequence of operations oi+1; will be
executed. Altogether, the semantics of an ASSERT operation are defined as follows:

oi; osi+1|σi → PID := ]VPAT + 1; solutionj1 ; (5.34)

...

PID := ]VPAT + ]P (σi); solutionj]P (σi)
; PID := pid; osi+1 | σi+1

where j1, . . . , j]P (σ1) ∈ P (σ1),
and σi+1 = σi ⊕ {PAT→ (VPAT ∪ {]VPAT + 1, . . . , ]VPAT + ]P (σi)} ,

EPAT ∪ {(pid, ]VPAT + 1),
...

(pid, ]VPAT + ]P (σi)}),
PatO→ PatO ∪ {(]VPAT + 1, subj),

...
(]VPAT + ]P (σi), subj)}}

The operation REQUIRE(g) is another important operation that is used to generate new se-
curity constraints for a security goal g ∈ Vars. These constraints are stored in the constraint
sets AuthenticationConstraint , ConfidentialityConstraint , and IntegrityConstraint of Vars and
represent components of Mdim.

To enhance these constraint sets with a new constraint, we define a set of functions υX : (Vars→
D)→ 2N that returns an enhanced set of security constraints as a variable assignment. Since the
sets AuthenticationConstraint , ConfidentialityConstraint , and IntegrityConstraint are subsets of
SecurityConstraint , the function υX enhances these sets with ]SecurityConstraint + 1 as a new
and unique constraint number. In addition, υSC relates the new constraint to the data transfer
object it is referring to.

υAC(σ) = {AuthenticationConstraint→ (5.35)

σ(AuthenticationConstraint) ∪ {]σ(SecurityConstraint) + 1}}
υCC(σ) = {ConfidentialityConstraint→ (5.36)

σ(ConfidentialityConstraint) ∪ {]σ(SecurityConstraint) + 1}}
υIC(σ) = {IntegrityConstraint→ (5.37)

σ(IntegrityConstraint) ∪ {]σ(SecurityConstraint) + 1}}
υSC(σ) = {SecurityConstraint→ (5.38)

σ(SecurityConstraint) ∪ {]σ(SecurityConstraint) + 1} ,
CD→
σ(CD) ∪ {(]σ(SecurityConstraint) + 1, [[intention.DTOsubject]]}}

Let nSC := ]σi(SecurityConstraint). An execution step with (oi ≡ REQUIRE(g)) alters the
variable assignment function in dependency to the specified security goal g. In particular, a new
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security constraint is added to the constraint sets and the relation CPat is enhanced to associate
the new constraint with the current node PID in the pattern application tree. Therefore, the
semantics of an execution step are defined as follows:

oi; osi+1|σi →osi+1|σi+1 (5.39)

where σi+1 = σi ⊕ υAC(σi) ∪ υSC(σi) ∪ {CPAT→ σi(CPAT) ∪ (nSC + 1, σi(PID))}
if σi(g) = Authentication

and σi+1 = σi ⊕ υCC(σi) ∪ υSC(σi) ∪ {CPAT→ σi(CPAT) ∪ (nSC + 1, σi(PID))}
if σi(g) = Confidentiality

and σi+1 = σi ⊕ υIC(σi) ∪ υSC(σi) ∪ {CPAT→ σi(CPAT) ∪ (nSC + 1), σi(PID)}
if σi(g) = Integrity

Finally, we can specify the semantics of a pattern’s solution as follows. The execution of a patterns
solution results in the generation of security constraints that are described by components of our
domain-independent model. Therefore, we can define the semantics of the solution as a function
that transforms a model mSecureSOA into a model mdim.

[[Solution]] := mdim, (5.40)

with mdim := ( σn(Object), σn(User), σn(Service), σn(STS),
σn(Interaction), σn(TrustRelationship),
σn(DataTransferObject),Policy,PolicyAlternative,
σn(SecurityConstraint), σn(AuthenticationConstraint),
σn(ConfidentialityConstraint), σn(IntegrityConstraint),
σn(Claims), σn(OI), σn(OT), σn(DI), σn(DD), σn(DOIssuer),
σn(DOTarget),PO, AP, CA, σn(CD), σn(CC) )

where Solution|σ1 →∗ ε|σn

As mentioned above, the semantics of a solution are defined by a function that maps input vari-
ables representing a SecureSOA model to a domain-independent model mdim. The components
of this model describing the basic SOA entities and their relations (such as Object, Interac-
tion, OI, ...) are provided by the SecureSOA input model mSecureSOA and are stored by the
corresponding variables in Vars. The values of these variables are determined by the variable
assignment function σn after the execution and termination of the solution in step n. In addition,
this function provides the constraint sets AuthenticationConstraint , ConfidentialityConstraint ,
IntegrityConstraint , and SecurityConstraint containing the constraints that have been generated
by executing the function REQUIRE as described above.

Next to the components stored in variables of Vars, mdim contains the sets PolicyAlternative,
Policy , AC , AP , and PO that are used to group constraints in security policies. In the following
part, we define these sets on the basis of the pattern application tree that has been generated
during the execution of this solution. Figure 5.3 illustrates these sets and their relationships.

A policy consists of multiple security alternatives that provide a set of security alternatives. Each
policy is assigned to an object (e.g. a Service) using the relation PO. Since each Service or STS
provides a single policy, we can identify a policy with the number of the object it is assigned to.
Therefore, we define Policy and PO as follows:

Policy := σn(Service) ∪ σn(STS) (5.41)

PO := {(x, x) | x ∈ Policy} (5.42)
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Policy

PolicyAlternative

SecurityConstraint

AP

CA

Object
PO

DataTransferObject
CD

Figure 5.3: Policy Sets and Relations in mdim

Next, we have to specify the policy alternatives in dependency to the pattern application tree.
As mentioned above, a node in this tree represents a pattern application step. Since nodes with
the same parent node have been applied to the same security intention, the security constraints
associated with each node form security alternatives. For example, the nodes v3 and v4 in Ex-
ample 5.2 represent the application of alternative patterns. In particular, all security constraints
that (1) relate to the same object and that (2) are on a path from the root node to a leaf of the
tree form one security alternative.

The pattern application tree shown in Figure 5.2 provides three policy alternatives: {c1} on
the path v1, v2, {c2} on the path v1, v2, v3, and {c3} on the path v1, v2, v4. The first alternative
provides security constraints for object o1, while the other security constraints relate to o2. These
objects relate to the last node in the corresponding path and are denoted as the subject of the
path.

To specify the security alternatives, we define the set alternativePaths that contains all these
paths in the pattern application tree representing policy alternatives. Let σn(PAT) = (VPAT, EPAT),
VPAT = {v0, . . . , vn} and alternativePaths ⊆ V ∗PAT with

(p1, . . . , pn) ∈ alternativePaths⇔(pi, pi+1) ∈ EPAT for all 1 ≤ i ≤ n (5.43)

∧q1 = v0

∧@ (q1, . . . , qm) ∈ V ∗PAT

where q1 = pn
and (qj , qj+1) ∈ EPAT for all 1 ≤ j ≤ m
and ∃ z : (qz, o) ∈ σn(PatO)

where o ∈ σn(Objects)
with (vn, o) ∈ σn(PatO)

alternativePaths contains all paths in the pattern application tree from the root node to a node
pn so that there is no path starting from pn with nodes that relate to same object as pn. For
example, the path (v1, v2) in Figure 5.2 is such a path, since there is no path from v2 to a leaf
node of the tree (v3 or v4) with a node that relate to o1 (v3 and v4 relate to o2). However, (v1)
is not an element of alternativePaths, since there is a path (v1, v2, v3) with v2 relating to o2.

Since each element in alternativePaths represents a policy alternative, we define the constraint
set PolicyAlternative as

PolicyAlternative := {1, . . . , ]alternativePaths} (5.44)

In the next step, the security constraints in the constraint sets must be associated with the secu-
rity alternatives using the relation CA. This relation is defined as follows. Let alternativePaths =
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{path1, . . . , pathn} with pathx = (px1 , . . . , p
x
k), then

(c, a) ∈ CA⇔ ∃ i :(c, pai ) ∈ σn(CPAT) (5.45)

∧(pai , o) ∈ σn(PatO)⇒ (pak, o) ∈ σn(PatO)

A pair (c, a) with c ∈ SecurityConstraints and a ∈ SecurityAlternative is an element of CA, if c
relates to a node in patha of alternativePaths. The second condition ensures that the constraint
and its node relate to the subject of this path.

Finally, we have to associate each alternatives with a policy. A policy alternative belongs to a
policy, if the subject of the corresponding alternative path is equal to the subject of the policy.
Let patha = (p1, . . . , pk), then

(a, p) ∈ AP⇔ ∃ o ∈ Object : (pk, o) ∈ σn(PatO) ∧ (p, o) ∈ PO (5.46)

In this section, we have specified the formal semantics of our security configuration pattern DSL
that has been used to define the semantics of a pattern’s forces and solution. These definitions
provide the foundation to enable a verification of the transformation process that will be presented
in section 7.2. In particular, this formal verification proves that a specific security constraint has
been created for a security intention. Although we prove the existence of security constraints, we
do not consider the values of the constraint properties (e.g. Security Mechanisms). Therefore,
the corresponding elements are not represented in our relational domain-independent model.
Since the operations SET and USE modify the properties of security constraints, we did not
specify the the semantics of these operations in the scope of this thesis. The specification of the
semantics of these operations would require an enhancement of the relational models to express
these properties.

5.4 Security Ontology

The security configuration pattern structure enables the specification of a solution that is based
on a generic set of operations to generate and manipulate security constraints. In particular,
the USE operation enables the declaration of a specific security concept (e.g. MessageProtec-
tionProtocol) that must be resolved from the security profiles and assigned to properties of the
security constraints. Since a formalisation of the relationships between the technologies listed in
the profiles and the high level security concept referenced in the pattern is required, a security
ontology has to be defined for each security pattern system that provides this knowledge. An
ontology provides a formal, explicit specification of a shared conceptualisation and defines the
vocabulary that can used to define security configuration patterns.

As an example, consider the security ontology that is shown in Figure 5.4. The operation
USE(’MessageProtectionProtocol’) can be stated in a security pattern solution to select such a
protocol from the profiles and to set this protocol in the confidentiality constraint. The relation-
ship between the concept referenced by the USE operation, the profile entry and the security
constraint property is described by a security ontology. As shown in Figure 5.4, the ontology
reveals that ’WSS’ is a ’MessageProtectionProtocol’. Since ’MessageProtectionProtocol’ is a ’Se-
curityProtocol’, the property ’SecurityProtocol’ can be identified in the constraint. Finally, the
policy type of ’WSS’ described by the policy is set in the constraint.

Our security ontologies are based on four types of relations. The ’is a’ relationship describes
a sub classification of a concept, while ’contain’ describes a containment relationship. A policy
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Figure 5.4: Onotology Usage Example

type can be assigned to concepts representing a concrete security mechanism using the relation
’has policyType’. Moreover, the ’require’ relation expresses that a concept requires the implemen-
tation of another security concept. For example, ’MessageProtectionProtocol’ requires a concept
MessageProtectionToken that must be resolved from the profile and set in the constraint.
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Chapter 6

A System of Security
Configuration Patterns

The domain-specific language for security configuration patterns introduced in the previous chap-
ter constitutes the foundation to define our pattern system that supports a transformation of
security intentions. In this chapter, we introduce our patterns system that provides a set of solu-
tions for the security intentions User Authentication, Identity Provisioning, Data Confidentiality,
and Data Authenticity, which have been specified by SecureSOA in section 4.2. We can distin-
guish two classes of security intentions: The security intentions User Authentication and Identity
Provisioning result in the generation of an authentication constraint, while Data Confidentiality
and Data Authenticity support the generation of a data protection constraint. For each intention
class, we introduce basic implementation schemes, a security ontology and security patterns that
address related security intentions.

6.1 Patterns for Identification and Authentication

A broad range of security patterns have been defined to determine requirements and design
decisions concerning the identification and authentication of users. For example, Schumacher
provides a catalogue of identification and authentication patterns in [SFBH+06]. These patterns
can be applied to evaluate security mechanisms and are useful to facilitate the creation of security
profiles as described in section 4.2.1. However, patterns of this type do not consider the system
architecture and are not applicable in our approach to configure the usage of security mechanisms
and protocols at a technical layer. Security Patterns for service-based systems have been defined
by Delessy [FDLP06, DFLP07]. These patterns support the selection of components (e.g. an
identity provider), but they do not describe the usage and configuration of these components.
This has been addressed by Microsoft in [SS05]. Their pattern catalogue defines basic patterns
to configure the authentication in Web Service-based systems. In particular, the patterns direct
authentication and brokered authentication are provided that enable selection of appropriate
credential types. The pattern brokered authentication configures a decentralised authentication
on the basis of a security token service.
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The web service security patterns introduced by Microsoft provide the basis for our pattern
catalogue[QMT+10], which has been developed and published in the scope of our participa-
tion in the TeleTrusT SOA Security working group. This catalogue provides informal patterns
and describes a general approach to map security requirements to security mechanisms in de-
pendency to basic use cases. The concepts that have been used to define the identification and
authentication patterns in this catalogue provide the foundation to define a pattern system based
on our security configuration pattern DSL. These implementation schemes and related security
configuration patterns are presented in this section.

6.1.1 Basic Implementation Schemes

The specification of requirements concerning the authentication of users and the provisioning of
identity information is based on our digital identity model introduced in section 3.1.2. Users are
registered at one or more identity providers, which manage their digital identities in an account.
We consider an identity provider as a participant that is able to broker identity information
to relying parties. In the scope of the Web Service specifications, an identity provider is a
security token service that implements WS-Trust. However, we use this term in a wider sense.
As described in section 4.2.1.2, SecureSOA provides the annotation User Directory that can be
attached to objects. A user directory enables services and clients to authenticate users. Since
clients and services can broker authentication decisions and identity information to composed
services, we consider them as identity providers as well. Authentication decisions and identity
information are conveyed in credentials that are issued by identity providers. The receiver of a
credential has to rely on the conveyed claims on the basis of a trust relationship to the sender.

Security configuration patterns for identification and authentication generate authentication con-
straints for all entities (Service or STS) in a service-based system that are needed to assert, con-
vert and provide identity information to a relying party. Security constraints state requirements
concerning the types and the properties of exchanged credentials. In general, we can distinguish
two types of credentials: User credentials issued by the subject itself (issuer = subject) that
are used by a subject to make claims about himself (e.g. Username/Password token) and issued
credentials that are asserted by a third party (issuer 6= subject) such as an issued SAML token.

Therefore, we can derive two basic authentication schemes as shown in Figure 6.1. The subject
authentication schema (cf. Figure 6.1(a)) states that a user credential must be required by an
identity provider to enable the authentication of registered users. The trust relationships between
identity provider and users indicate that these users are registered at this identity provider.

Identity 

Provider

Subject 

Authentication

Requires: User Token
Trust 

Relationship

Ingoing 

Messages

Service 

Consumer

User

0..*

(a) Subject Authentication

Identity 

Provider

Identity 

Provider

Relying 

Party

Issuer 

Authentication

Requires: Issued Token
Trust 

Relationship

Ingoing 

Messages

0..*

(b) Issuer Authentication

Figure 6.1: Basic Authentication Schemes

On the other hand, services and identity providers that do not manage the identities of users
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themselves, have to rely on the authentication and provisioning of identity information performed
by trusted identity providers. Therefore, these relying parties have to require an issued token
as described by the issuer authentication schema illustrated in Figure 6.1(b). To ensure the
trustworthiness of the claims conveyed in the credential, the relying party has to authenticate
the issuing identity provider.

In chapter 2.3 four identity management models have been introduced. While the isolated iden-
tity management model is based on subject authentication, the brokered authentication schema is
applicable to the other models. As illustrated in Figure 6.2, this schema is based on the combined
use of subject and issuer authentication. The user authentication is performed by an identity
provider that has a trust relationship to the user, while the service performs an issuer authenti-
cation. There is a trust path between this identity provider and the service that might involve
additional identity providers that perform an issuer authentication to convert the credential.
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Consumer

User
0..*

...
Trust 

Relationship

Figure 6.2: Brokered Authentication

Figure 6.2 illustrates the brokered authentication schema, which can be used to configure enti-
ties in the identity management models. The centralised identity management model performs a
brokered authentication with a single centralised identity provider, while the open identity man-
agement models might involve additional identity providers. In the scope of the federated identity
management, a brokered authentication is performed based on multiple identity providers, since
a federation is based on the association of independent administrative domains.

6.1.2 Security Ontology

The ontology for identity management in SOA provides a classification of credentials and relates
these classes (ontology concepts) to concrete technologies. For each ontology concept that can
be required in a WS-SecurityPolicy, the corresponding WS-SecurityPolicy type is specified. As
mentioned in the section above, we distinguish credentials used to perform an issuer authentica-
tion from credentials that enable a direct authentication. These types of credentials are named
IssuedToken and UserToken as shown in Figure 6.3 and refer to the parent concepts creden-
tial using an ’is a’-relationship. These concepts are further subdivided in concepts representing
credential types. The UserToken is a superior concept of UserNameToken and SelfSignedCer-
tificate. Since these concepts denote credential types that can be required in a WS-Policy, they
are assigned to a policy type.

The concept IssuedToken is subdivided into STSIssuedToken and ClientIssuedToken, since WS-
SecurityPolicy distinguishes between two classes of issued credentials. An STSIssuedToken type
must be required by a policy, if a token should be issued by an STS. The usage of the related
policy type enables the Web Service framework used by the client to retrieve the security token in
an automated manner. On the other hand, requiring a specific ClientIssuedToken such as SAML
enables the client logic to control the creation and provisioning of this token. Both concepts rely
on the usage of an issued credential such as SAML.
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Figure 6.3: Identity Management Ontology

6.1.3 Pattern Definitions

The authentication schemes introduced above provide the foundation to define our system of
security configuration patterns for authentication and identity provisioning. A security intention
can be fulfilled by one or more patterns, while each pattern might require the enforcement of
additional security intentions. These dependencies result in a graph structure that is shown in
Figure 6.4.

The User Authentication intention is enforced by two security configuration patterns: The pat-
tern Client Issuer Authentication enables the authentication of clients that are able to broker
authentication decisions, while the pattern Brokered Authentication enables the integration of
security token services to perform the user authentication. The Brokered Authentication pattern
states that the security intention Authentication must be enforced for each entity on trust paths
to clients. The Authentication intention is defined in the scope of our pattern system in addition
to the intentions provided by SecureSOA and enables the application of subsidiary patterns.
In particular, this intention is addressed by the patterns STS Issuer Authentication and Sub-
ject Authentication that implement the authentication schemes issuer authentication and subject
authentication introduced in section 6.1.1.

There are two patterns defined that configure the provisioning of identity information (intention
Identity Provisioning). Similar to the pattern Brokered Authentication, Brokered Identity Provi-
sioning enforces the intention Authentication for each entity on the trust path. In addition, the
claims provided by the Identity Provisioning intention are set as a requirement in the resulting
constraints. The pattern Direct Identity Provisioning configures the requirements for a service
that is connected to clients controlling and managing the identity information required by the
service (e.g. a web frontend that enables users to enter required information such as name and
address).
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Figure 6.4: Pattern System for Identification and Authentication
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The pattern that are shown in Figure 6.4 are defined as follows:

6.1.3.1 Pattern ’Brokered Authentication’

This pattern configures the authentication requirements for all participants (service and identity
providers) that collaborate to perform the authentication of users.

Name: Brokered Authentication
Problem: User Authentication
Forces:
1  ASSERT ( RelyingParty CONTAINS intention.subject ) 

2  FORALL ( Clients ) { 

3   ASSERT ( InteractionPath ( it, intention.subject  ) IMPLIES 

4       TrustPath( intention.subject, it ) ) } 

 
Solution:
1  FORALL ( TrustPath ( intention.subject, Clients ) ) { 

2  ENFORCE  ( 'Authentication' ) } 

 

Table 6.1: Pattern ’Brokered Authentication’

The forces state in line 1 (Table 6.1, Forces) that a pattern is applicable, if the subject of
the intention is a relying party (service or identity provider). In addition, trust relations must
be established to all clients that invoke this service (as stated in lines 2-4 of the forces). This
condition ensures that all user that invoke a service using a client are either managed by the
service itself or by an trusted identity provider that is able to perform the authentication and to
assert the authentication decision.

Figure 6.5 illustrates a simple examples that connects a client C1 with a service S1. Since an
indirect trust relationship is established over the identity providers IP1 and IP2, the pattern
Brokered Authentication can be applied at the service S1.

Figure 6.5: Brokered Authentication Example

The solution of this pattern requires the enforcement of the security intention Authentication
for all objects on trust paths to clients. This includes the service the pattern is applied to as
well as all identity providers on the trust paths from this service to clients. In Figure 6.5, the
authentication intention would be required for the service S1 and the identity providers IP1 and
IP2.
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6.1.3.2 Pattern ’Subject Authentication’

This pattern is used to configure a direct authentication of users that are registered at a service
or STS and implements the subject authentication schema introduced in section 6.1.1.

Name: Subject Authentication
Problem: Authentication
Forces:
1  ASSERT ( Trust(intention.subject, Client) )  

2  ASSERT ( 

3  ( STS CONTAINS intention.subject ) OR 

4 ( Service CONTAINS intention.subject AND 

5   intention.subject.UserDirectory) ) 

 
Solution:
1  REQUIRE ( 'Authentication' ) 

2  USE ( 'UserToken' ) 

3  SET ( 'Issuer', Clients.where ( {Trust(intention.subject, it)} ) ) 

 

Table 6.2: Pattern ’Subject Authentication’

The forces state in line 1 (Table 6.2, Forces) that there must be direct trust relationship to one
or more clients. A subject authentication scheme can be used to authenticate the users that are
impersonated by clients, if these digital identities are managed by the subject of the intention.
This condition is expressed in lines 2-5 of the forces. The subject must be an STS or a service
that is attached to a user directory. An associated user directory indicates that a service is
capable to perform the authentication of users.

(a) Brokered Trust Relationship (b) Direct Trust Relationship

Figure 6.6: Subject Authentication Examples

The applicability of this pattern is illustrated in Figure 6.6. In use case 6.6(a), a service has
established a trust path over two identity providers to the client. The pattern Subject Authentica-
tion is applicable to the identity provider IP1 that is connected to the client, since this identity
provider manages the users’ identities and is able to perform a subject authentication. Fig-
ure 6.6(b) shows a simple example with a single service that performs the identity management
itself. Due to the forces described above, the Subject Authentication pattern can be applied in
this case.

The solution generates an authentication constraint in line 1 (Table 6.2, Solution), requires the
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usage of an UserToken in line 2, and assigns the set of trusted parties to the issuer property
of the authentication constraint in line 3. The UserToken concept is resolved from the profiles
using the ontology introduced in section 6.1.2.

6.1.3.3 Pattern ’STS Issuer Authentication’

This pattern implements the issuer authentication schema at a relying party. It is used to
configure the authentication of identity providers that are able to assert identity information of
users.

Name: STS Issuer Authentication
Problem: Authentication
Forces:
1   ASSERT ( RelyingParty CONTAINS intention.subject ) ) 

2   ASSERT ( TrustPath ( intention.subject, STS ) )    

 
Solution:
1   REQUIRE ( 'Authentication' ) 

2   USE ( 'IssuedToken' ) 

3   SET ( 'Issuer', STS.where( { Trust( intention.subject, it ) } ) )  

4   SET ( 'Target', RelyingParty.where( { Trust( it,intention.subject ) } ) ) 

 

Table 6.3: Pattern ’STS Issuer Authentication’

The forces assert in line 1 (Table 6.3, Forces) that the subject of a intention is a relying party
(STS or Service). Since this pattern configures the authentication of security token services, an
STS must exist that is trusted by the subject. Therefore, line 2 requires that a trust relation to
an STS must exist.

Figure 6.7: STS Issuer Authentication Example

The use case shown in Figure 6.7 defines a trust path from a service to a client across two security
token services. The STS Issuer Authentication pattern is applicable to the service S1 and the
identity provider IP2.

The solution generates an authentication constraint in line 1 (Table 6.3, Solution), requires the
usage of an IssuedToken in line 2, and assigns the set of trusted parties to the issuer property
of the authentication constraint in line 3 and the set of relying parties trusting the subject to
the target property of this constraint in line 4. The IssuedToken concept is resolved from the
profiles using the ontology introduced in section 6.1.2.
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6.1.3.4 Pattern ’Client Issuer Authentication’

This pattern is used to configure a service to rely on an authentication that is performed by a
client (e.g. a Web platform). This client acts as an identity provider and is able to assert the
identity information of users. Hence, an issuer authentication schema is implemented by this
pattern.

Name: Client Issuer Authentication
Problem: User Authentication
Forces:
1  ASSERT ( Service CONTAINS intention.subject ) 

2  ASSERT ( Trust( intention.subject, Client.where ({ it.UserDirectory }) ) ) 

 Solution:
1  REQUIRE ('Authentication') 

2  USE ('ClientIssuedToken') 

3  SET ('Issuer', Client.where({Trust(intention.subject, it)} ) ) 

4  SET ('Target', RelyingParty.where({Trust(it,intention.subject)} ) ) 

 

Table 6.4: Pattern ’Client Issuer Authentication’

The forces assert in line 1 (Table 6.4, Forces) that the subject of an intention is a service. Line 2
requires a trust relationship to a client that is a attached to an user directory.

Figure 6.8: Client Issuer Authentication Example

Figure 6.8 illustrates an example that specifies a direct trust path from a service to a client,
which is attached to a user directory. Therefore, the pattern Client Issuer Authentication is
applicable to the service S1.

The solution generates an authentication constraint in line 1 (Table 6.4, Solution), requires the
usage of a ClientIssuedToken in line 2, and assigns the set of trusted parties to the issuer property
of the authentication constraint in line 3 and the set of relying parties trusting the subject to
the target property of this constraint in line 4. The ClientIssuedToken concept is resolved from
the profiles using the ontology introduced in section 6.1.2.

6.1.3.5 Pattern ’Brokered Identity Provisioning’

This pattern configures the provisioning of identity information issued by an identity provider
to a service - even across multiple identity providers. The forces and the solution of this pattern
are defined similarly to the Brokered Authentication pattern.
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Name: Brokered Identity Provisioning
Problem: Identity Provisioning
Forces:
1  ASSERT ( RelyingParty CONTAINS  intention.subject  ) 

2  FORALL (Clients) { 

3            ASSERT ( 

4                 InteractionPath( it, intention.subject ) IMPLIES (  

5                     TrustPath ( intention.subject, it ) AND 

6                         ( STS.where{ it.SupportedClaimTypes CONTAINS intention.Claims   } INTERSECTION 

7                           TrustPath ( intention.subject, it ) ) 

8             ) } 

 
Solution:
1   FORALL ( TrustPath ( intention.subject, Clients ) ) { 

2        ENFORCE ( 'Authentication' ) } 

3   SCOPE  ( intention.subject ) { 

4        SET ( 'Claims' , intention.Claims ) } 

 

Table 6.5: Pattern ’Brokered Identity Provisioning’

In addition to the forces defined in the Brokered Authentication pattern, identity providers man-
aging the required claims must be included in all trust relations to clients that invoke this service.
This condition is stated in lines 2-8 of the forces (Table 6.5) and ensures that there is an identity
provider included in each trust chain that is able to assert the required identity information.

Figure 6.9: Brokered Identity Provisioning

Figure 6.9 illustrates an examples that connects a client C1 to a service S1 and two Identity
Providers (IP1 and IP2 ). Since an indirect trust relationship is established accross the identity
providers and the identity provider IP1 is on the trust path providing the required set of claims,
the pattern Brokered Identity Provisioning can be applied at the service S1.

Similar to the Brokered Authentication pattern, the solution of this pattern requires the en-
forcement of the security intention Authentication for all objects on trust paths from the subject
of the Brokered Identity Provisioning pattern to its clients in lines 1-2 (Table 6.5, Solution). This
includes the service this intention is attached to as well as all identity providers on trust paths
to clients. In addition, this pattern sets the claims in the authentication constraints created for
the subject of this intention in lines 3 and 4.

80



6.1. PATTERNS FOR IDENTIFICATION AND AUTHENTICATION

6.1.3.6 Pattern ’Direct Identity Provisioning’

This pattern configures the provision of identity information issued by a client to a service. For
example, a web application could manage its user without using an identity provider. Composed
services can be invoked using a SAML token to convey required identity information.

Name: Direct Identity Provisioning
Problem: Identity Provisioning
Forces:
1  ASSERT ( Service CONTAINS  intention.subject  ) 

2  ASSERT ( Trust( intention.subject,  

3        Client.where ( { it.SupportedClaimTypes CONTAINS ( intention.Claims ) } ) ) ) 

 
Solution:
1  REQUIRE ( 'Authentication' ) 

2  USE ( 'ClientIssuedToken' ) 

3  SET ( 'Issuer', Client.where ( { Trust( intention.subject, it ) } ) ) 

4  SET ('Target' , RelyingParty.where ( { Trust( it, intention.subject ) } ) ) 

5  SCOPE ( intention.subject ) { 

6        SET ( 'Claims', intention.Claims ) } 

 

Table 6.6: Pattern ’Direct Identity Provisioning’

Line 1 of the forces in Table 6.6 requires the subject of the pattern’s intention to be a service,
while lines 2 states that a direct trust relationship must be established between the subject and
a client, which is able to provide the required claims.

In Figure 6.10, a client and a service are illustrated that are connected by a direct trust relation-
ship. Therefore, the Direct Identity Provisioning pattern is applicable to the service S1.

Figure 6.10: Direct Identity Provisioning

The solution generates an authentication constraint in line 1 (Table 6.6, Solution), requires
the usage of a Client Issued Token in line 2, and assigns the set of trusted parties to the issuer
property of the authentication constraint in line 3 and the set of relying parties trusting the
subject to the target property of this constraint in line 4. Finally, this pattern sets the claims in
this authentication constraints.
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6.2 Patterns for Data Protection

In [SNL05] Steel et al. provide a catalogue of basic security implementation patterns for J2EE
systems. These patterns enable the implementation of components and modules that are used
to enforce security. Examples of security patterns are Message Inspector, Assertion Builder,
and Secure Service Proxy. In addition, the pattern Secure Pipe is defined that configures the
usage of these modules. This pattern describes a secure channel to prevent eavesdropping and
information tampering caused by man-in-the-middle attacks. Web Service Security Patterns
for WSE 3.0 have been introduced by Microsoft in [SS05]. A pattern Data Confidentiality is
described providing a strategy for message-based encryption.

These patterns have been consolidated in the pattern catalogue published by the TeleTrusT SOA
Security working group [QMT+10]. The basic concepts of these patterns provide the foundation
to define a pattern system for data protection which is based on our security configuration pattern
DSL. These implementation schemes and related security configuration patterns are presented
in this section.

6.2.1 Basic Implementation Schemes

To ensure the integrity and confidentiality of exchanged information, the application of digital
signatures and encryption mechanisms has to be required by a service. The application of these
protection mechanisms can be performed at the transport or at the message layer. Figure 6.11
illustrates the protection of information at the transport layer. A secure channel is established
between a sender and a receiver, e.g. using SSL.
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Figure 6.11: Transport-based Security

Another possibility is to apply security mechanisms at the message layer as shown in Figure 6.12.
For example, WS-Security can be used to secure ingoing and outgoing messages. Since protec-
tion mechanisms are applied to the exchanged messages itself, information conveyed in these
messages is protected in rest, processing and transit - even if these messages are transferred over
intermediaries.
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Figure 6.12: Message-based Security

6.2.2 Security Ontology

The concepts that are required to implement data protection are SecurityProtocol, Protection-
Token, and AlgorithmType as illustrated in Figure 6.13 and in Figure 6.14.

SecurityProtocol identifies a data protection protocol, while ProtectionToken denotes the type
of credential used by the security protocol to secure data. These concepts are illustrated in
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Figure 6.13: Data Protection Ontology

the ontology shown in Figure 6.13. Two subsidiary concepts are defined for SecurityProtocol
describing message-based data protection (MessageProtectionProtocol) and transport-based data
protection (TransportProtectionProtocol). These concepts are subclassed by SSL and WSS that
represent specific technologies. In addition, there is a protection token concept defined for each
protection protocol concept, since a specific type of security token is required by each protocol.
In particular, an SSL Token is required by SSL, while X509 Token is required by WSS. Each of
these concepts represents a technology that can be codified in WS-SecurityPolicy. Therefore, a
policy type is assigned to each concept.

AlgorithmType

EncryptionAlgorithmType SignatureAlgorithmType

Basic256

is_a

is_a is_a

has_policyType

AlgorithmSuite

containscontains

Basic192

is_a

has_policyType

Basic128

is_a
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TripleDes

is_a

has_policyType

...

is_a

has_policyType

Figure 6.14: Security Mechanism Ontology

The concept AlgorithmType is defined in the ontology shown in Figure 6.14. There are two types
of algorithms required for our approach: encryption algorithms (EncryptionAlgorithmType) and
signature algorithms (SignatureAlgorithmType). WS-SecurityPolicy is based on the concept of
algorithm suites that combine different types of algorithms. Therefore, an algorithm suite has to
be specified in a policy instead of single algorithm types. Our ontology provides concepts for all
algorithm suites that are supported by our model driven approach. Each concept is a subclass of
the concept AlgorithmSuite. For example, if an EncpryptionAlgorithm is required by a pattern
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and the algorithm suite Basic256 is specified in the profile, then the ontology will reveal that
this requirement can be fulfilled by the Basic256 policy type.

6.2.3 Pattern Definitions

The pattern system for data protection is shown in Figure 6.15. The security intentions ’Data
Confidentiality’ and ’Data Authenticity’ are specified by SecureSOA and are addressed by the
security patterns ’Secrecy’ and ’Authenticity’. These patterns require the enforcement of the
intention ’Information Protection’ to select the data protection schema introduced above. The
transport-based protection schema is addressed by the pattern Secure Pipe, while the message-
based protection schema is implemented by the Message Protection pattern.
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Figure 6.15: Pattern System Data Protection

The subject of the data protection intentions (Data Confidentiality and Data Authenticity) is a
data transfer object as introduced in section 4.2.1.1. If a data protection intention is attached
to a service, then the subject of this intention relates to the data transfer objects representing
request and response messages. The patterns for Data Protection are defined in the following
sections.
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6.2.3.1 Pattern ’Secrecy’

This pattern implements the protection of exchanged information in terms of confidentiality by
selecting appropriate security mechanisms and protocols.

Name: Secrecy
Problem: Data Confidentiality
Forces:
1 ASSERT ( InteractionPath ( intention.subject.issuer, 

2         intention.subject.target ) ) 

 
Solution:
1  REQUIRE ( 'Confidentiality' ) 

2  USE ( 'EncryptionAlgorithm' ) 

3  ENFORCE ( 'Information Protection' ) 

4  SET ( 'ProtectedMessageParts' ,  intention.subject ) 

 

Table 6.7: Pattern ’Secrecy’

The forces require that an interaction path must exist between the sender and the receiver of a
data transfer object. Examples are illustrated in Figure 6.16. A data transfer object representing
credit card information is send from a client C1 to a service S1. In use case 6.16(b), the message
conveying this information is send across a proxy. Since there are interaction paths in both use
cases, this pattern is applicable.

(a) Direct Interaction (b) Indirect Interaction

Figure 6.16: Secrecy Examples

The solution listed in Table 6.7 creates a confidentiality constraint in line 1 and assigns an
encryption algorithm that is resolved from the profile. In line 3, the Information Protection
intention is enforced to select the protocol according to the data protection schemes introduced
in section 6.2.1. Finally, the data transfer object identified by the subject of the intention is
assinged to the ProtectedMessagePart property of the authentication constraint. This property
indicates that this data transfer object must be protected.
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6.2.3.2 Pattern ’Authenticity’

This pattern ensures the authenticity of exchanged information by selecting appropriate security
mechanisms and protocols.

Name: Authenticity
Problem: Data Authenticity
Forces:
1  ASSERT ( 

2        InteractionPath( intention.subject.issuer , intention.subject.target ) AND 

3        TrustPath( intention.subject.target , intention.subject.issuer )  ) 

 
Solution:
1   REQUIRE( 'Integrity' ) 

2   USE ( 'SignatureAlgorithm' ) 

3   ENFORCE( 'Information Protection' ) 

4   SET( 'ProtectedMessageParts' , intention.subject ) 

 

Table 6.8: Pattern ’Authenticity’

The forces listed in Table 6.8 require that an interaction path must exist between the sender and
the receiver of a data transfer object. In addition, a trust relationship must exist to ensure that
the receiver is able to verify the identity of the sender. Examples are illustrated in Figure 6.17.
These use cases are based on the secrecy use cases presented in Figure 6.16 and are enhanced
with trust relationships. Due to the interactions and trust relations, the pattern Authenticity is
applicable to the data transfer objects.

(a) Direct Interaction (b) Indirect Interaction

Figure 6.17: Authenticity Examples

The solution (specified in Table 6.8) creates an integrity constraint and sets a signature al-
gorithm that is resolved from the profiles. In line 3, the Information Protection intention is
enforced to select the protection protocol according to the data protection schemes introduced
above. Finally, the subject of the pattern intention is assigned to the ProtectedMessagePart
property. This property indicates that the data transfer object identified by the subject must be
protected.
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6.2.3.3 Pattern ’Secure Pipe’

This security configuration pattern implements a data protection at the transport layer.

Name: Secure Pipe
Problem: Information Protection
Forces:

Secrecy 
Forces 
1 ASSERT ( InteractionPath ( intention.subject.issuer, 
2         intention.subject.target ) ) 
 

1) An interaction path must exist between an issuer of a message and its target. 
 
Solution 
1  REQUIRE ( 'Confidentiality' ) 
2  USE ( 'EncryptionAlgorithm' ) 
3  ENFORCE ( 'Information Protection' ) 
4  SET ( 'ProtectedMessageParts' ,  intention.subject ) 
 
Description 
This pattern ensures the confidentiality of exchanged information by selecting appropriate security 
mechanisms and protocols. 

Authenticity 
Forces 
1  ASSERT ( 
2        InteractionPath( intention.subject.issuer , intention.subject.target ) AND 
3        TrustPath( intention.subject.target , intention.subject.issuer )  ) 

 
1) 'For each client that interacts with this service, there must be a direct trust relationship or a 

trust path via an STS specified, since the user must be registered at the service or at an STS 
trusted by the service. 

 
Solution 
1   REQUIRE( 'Integrity' ) 
2   USE ( 'SignatureAlgorithm' ) 
3   ENFORCE( 'Information Protection' ) 
4   SET( 'ProtectedMessageParts' , intention.subject ) 
 
Description 
This pattern ensures the authenticity of exchanged information by selecting appropriate security 
mechanisms and protocols. 

Secure Pipe 
Forces 
1  ASSERT ( Interaction( intention.subject.issuer,  intention.subject.target ) ) 
 

1) An interaction path must exist between an issuer of a message and its target. 
 
Solution 
1   USE( 'TransportSecurityProtocol' ) 
2   USE( 'TransportProtectionToken' ) 
 
Description 

Solution:

Secrecy 
Forces 
1 ASSERT ( InteractionPath ( intention.subject.issuer, 
2         intention.subject.target ) ) 
 

1) An interaction path must exist between an issuer of a message and its target. 
 
Solution 
1  REQUIRE ( 'Confidentiality' ) 
2  USE ( 'EncryptionAlgorithm' ) 
3  ENFORCE ( 'Information Protection' ) 
4  SET ( 'ProtectedMessageParts' ,  intention.subject ) 
 
Description 
This pattern ensures the confidentiality of exchanged information by selecting appropriate security 
mechanisms and protocols. 

Authenticity 
Forces 
1  ASSERT ( 
2        InteractionPath( intention.subject.issuer , intention.subject.target ) AND 
3        TrustPath( intention.subject.target , intention.subject.issuer )  ) 

 
1) 'For each client that interacts with this service, there must be a direct trust relationship or a 

trust path via an STS specified, since the user must be registered at the service or at an STS 
trusted by the service. 

 
Solution 
1   REQUIRE( 'Integrity' ) 
2   USE ( 'SignatureAlgorithm' ) 
3   ENFORCE( 'Information Protection' ) 
4   SET( 'ProtectedMessageParts' , intention.subject ) 
 
Description 
This pattern ensures the authenticity of exchanged information by selecting appropriate security 
mechanisms and protocols. 

Secure Pipe 
Forces 
1  ASSERT ( Interaction( intention.subject.issuer,  intention.subject.target ) ) 
 

1) An interaction path must exist between an issuer of a message and its target. 
 
Solution 
1   USE( 'TransportSecurityProtocol' ) 
2   USE( 'TransportProtectionToken' ) 
 
Description Table 6.9: Pattern ’SecurePipe’

The forces stated in Table 6.9 require a direct interaction between a message sender and a
receiver. A message delivery across services acting as proxies is not allowed. An example use
case is shown in Figure 6.18. The Secure Pipe pattern is applicable to the data transfer object,
since there is a direct interaction.

Figure 6.18: Secure Pipe Example

The solution of this pattern selects a transport security protocol and a transport protection
token from the profiles. These properties are set in all security constraints that have been
generated by the patterns that invoked the Information Protection intention.
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6.2.3.4 Pattern ’Message Protection’

This security configuration pattern configures a data protection at the message layer.

Name: Message Protection
Problem: Information Protection
Forces:
1  ASSERT ( InteractionPath ( intention.subject.issuer, intention.subject.target ) ) 

 
Solution:
1   USE( 'MessageSecurityProtocol' ) 

2   USE( 'MessageProtectionToken' ) 

 

Table 6.10: Pattern ’Message Protection’

The forces listed in Table 6.10 require an interaction path between a message sender and a
receiver. Messages can be exchanged directly or across services acting as proxies. An example
use case is illustrated in Figure 6.19. Due to the forces of the Message Protection pattern, this
pattern is applicable to the illustrated data transfer object.

Figure 6.19: Message Protection Example

The solution of this pattern selects a message security protocol and a message protection token
from the profiles. Similar to the pattern Secure Pipe, these properties are set in all security
constraints that have been generated by the patterns that invoked the Information Protection
intention.
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Chapter 7

A Pattern-driven Transformation
Process

Chapter 3 introduced our domain-independent model that serves as an abstraction layer to secu-
rity policy languages. As outlined in 1.2, the transformation of security intentions to instances
of our security policy model represents the core concept of our model-driven approach. The
security configuration pattern system introduced in the previous chapter is used to facilitate the
generation of policy model instances containing security constraints. This transformation process
is described and discussed in this chapter. In addition, we provide a formal verification of the
transformation to prove that security requirements are preserved throughout the transformation
process.
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Figure 7.1: Transforming Security Intentions to Security Policies

The overall transformation process is shown in Figure 7.1. The transformation from security
intentions to instances of our policy model is performed by a security pattern engine. A security
pattern engine is a component that applies a set of security patterns to a set of security intentions.
The engine has to select patterns that match to the required security intentions and whose forces
evaluate as true. In accordance to the solutions stated in these patterns, an instance of our
security policy model is generated containing alternative sets of security constraints. In addition
to the security patterns, a security ontology is used by the pattern engine to map concepts
referenced in the patterns’ solutions to specific technologies that are listed in the profiles. For
example, the solution of a security pattern can require a message-based protection. Using the
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ontology, the pattern engine can map this requirement to a specific version of WS-Security that
is configured in the profiles.

7.1 Security Intention Transformation

A security pattern engine applies a security pattern system to the security intentions stated in a
system design model and returns an instance of our security policy model (see section 1.2.2). An
important feature of a pattern engine is the capability to interpret and enforce the operations of
our domain-specific language that has been specified in section 5.3.
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Figure 7.2: Pattern Engine Transformation Process

The transformation process performed by an engine is illustrated in Figure 7.2. A SecureSOA
system model is translated to a relational model denoted as execution context. This model
provides the foundation to apply security configuration patterns to a set of security intentions
that results in the generation of security constraints. Since multiple security patterns might
be applicable to a security intention and a pattern might require the enforcement of additional
security intentions, the application of security patterns can be represented as a tree. Security
constraints that have been created in the pattern application process are associated to a specific
node in this pattern application tree (see section 5.3.3.4). Finally, the pattern application tree
and related security constraints are transformed to security alternatives that are combined in a
security policy model. In the following, we will discuss these steps in more detail.

7.1.1 Execution Context Creation

The execution context is a data structure that stores a relational SecureSOA model. The pattern
engine executes the forces and the solution of a security configuration pattern on the basis of
the information in the execution context. This relational model is generated from SecureSOA
models that have been created by the architect of the system in a modelling tool. The generation
of the relational model is based on a mapping from the data exchange format supported by this
modelling tool. For example, the web based modelling tool Oryx [DOW08] exports instances of
SecureSOA models using the data exchange formats RDF and JSON. Therefore, the implemen-
tation of our model-driven approach provides a mapping from JSON to the SecureSOA relational
model.

90



7.1. SECURITY INTENTION TRANSFORMATION

A simple example is shown in Figure 7.3 that will be used throughout this chapter. This example
contains three participants (1: Web Frontend, 2: Web Service, 3: STS). The security intentions
reference a set of security profiles that is specified as

profile = {(UsernamePasswordToken, default),(SSL, default),(WSS, default)}

The creation of the relational model based on the elements defined in this model results in
the instantiation of the following sets: Object = {1, 2, 3}, Client = {1}, Service = {2}, and
STS = {3}. In addition, the following relations represent the interactions and trust relationships
in the example: OOInteraction = {(1, 2), (1, 3)} and OOTrust = {(2, 3), (3, 1)}.

Figure 7.3: SecureSOA Modelling Example

7.1.2 Applying Security Patterns

In the next step, security patterns are applied to the security intentions specified in the execution
context (see Figure 7.2). We represent the application of security patterns to a security intention
as a function TransformIntention that operates on the execution context, expects a security
intention as input parameter and returns a sets of security constraints. This function is invoked
for each security intention in the execution context independently. The intention transformation
process that is executed by this function is illustrated in Figure 7.4. The first task in this flow
selects security patterns that refer to the required security intention. Then, the forces of each
pattern are evaluated. A pattern will be applied, if the forces evaluate as true. As shown in 7.4,
the task Apply Solution executes the operations specified in a pattern’s solution that result in
the generation of security constraints.

Since multiple patterns might be applied for a security intention, multiple sets of security con-
straints might be generated. As aforementioned, operations in a pattern’s solution might require
the enforcement of additional security intentions. The execution of this operation results in a
recursive invocation of the function TransformIntention to execute the intention transformation
process for the security intentions required additionally. The sets of security constraints, which
are returned by each recursion step, are labelled with a number that refers to a node in the
tree of applied pattern. This number facilitates the creation of security policies later on. In the
following sections, the steps Evaluate Forces and Apply Solution of the intention transformation
process shown in Figure 7.4 are described in detail.
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Figure 7.4: Pattern Engine: Intention Transformation

7.1.2.1 Forces Evaluation

The forces of a pattern are a sequence of operations that are defined by our security configuration
pattern DSL. A pattern is applicable to a security intention, if all ASSERT operations stated in
the forces return true. As specified in section 5.3, an ASSERT operation returns true, if the value
passed to this operation is not equal to zero, is not equal to false, and is not an empty set. This
value is the result of the functions and operations of our DSL that evaluate sets and relations
in the execution context. The pattern engine must interpret these functions and operations in
accordance with the formal semantics of these functions.

For example, consider the evaluation of the forces for the intention ’IdentityProvisioning’ as
shown in Figure 7.3. The first line of the pattern’s forces state that the security intention the pat-
tern is applied to must be a relying party: ASSERT(RelyingParty CONTAINS intention.subject)

The execution context contains the set RelyingParty = {2, 3}. Since the intention is attached to
the service, we know that (intention.subject = 2). Due to intention.subject ∈ RelyingParty, the
pattern engine can evaluate RelyingParty CONTAINS intention.subject as true. Therefore, the
first ASSERT operation evaluates as true.

7.1.2.2 Solution Application: Generation of Security Constraints

The transformation process of security intentions that is illustrated in Figure 7.4 applies the
solution of a security configuration pattern by executing the sub process ’Apply Solution’. This
process is illustrated in Figure 7.5. The application of a pattern’s solution results in the execution
of the operations in this solution that instantiate and modify security constraints. The DSL to
describe a solution has been introduced in section 5.2.

An operation in the domain-specific language is selected and interpreted to generate and manip-
ulate security constraints. As shown in Figure 7.5, there are three basic types of operations that
create or modify security constraints: REQIRE creates a specific constraint identified by a secu-
rity goal, while SET/USE operations modify properties in the constraints. ENFORCE triggers
the transformation of an additional, subsidiary security intention. In particular, the ENFORCE
operation requires a recursive execution of the intention transformation process illustrated in
Figure 7.4 that result in the creation of additional security constraints and the modification of
existing constraints. Therefore, the constraints created in prior intention transformations have
to be passed to the subsidiary transformations invoked recursively. This enables SET/USE op-
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Figure 7.5: Pattern Engine: Solution Application

erations to modify properties in the constraints, which were created in the current intention
transformation process and in prior transformations steps. To organise the security constraints
created in different recursive transformation steps, the intention transformation process illus-
trated in Figure 7.4 is based on three sets: Parent Constraints, New Constraints, and Child
Constraints. These sets will be introduced later on.

As aforementioned, the recursive transformation of security intentions triggered by the EN-
FORCE operation results in the application of multiple security patterns that can require the
enforcement of further intentions. A simple example based on three patterns is shown in Fig-
ure 7.6. A pattern ’A’ is applied that results in the execution of operations as specified by
the solution of ’A’. The REQUIRE operation results in the creation of security constraint a,
while SET and USE operations modify this constraint. Moreover, the solution of ’A’ contains
an ENFORCE operation that requires the transformation of an additional security intention. In
Figure 7.6, the security configuration patterns ’B’ and ’C’ address this intention and are applied
as well. Pattern ’B’ creates security constraint b in constraint set 1.1, while ’C’ results in the
creation of the security constraint c added to constraint set 1.2. The SET and USE operations
modify the properties in the constraints created by these patterns and in constraint a that has
been created by pattern ’A’. To avoid that the modifications performed by patterns ’B’ and
’C’ on constraint a conflict with each other, constraint a is duplicated for each pattern and
added to the constraint sets 1.1 and 1.2. These constraints are marked as a copy of constraint a.
SET/USE operations performed by pattern ’A’ after applying patterns ’B’ and ’C’ will also
effect the constraints in the sets 1.1 and 1.2 created by these patterns. The result of the overall
intention transformation process are three constraint sets labelled with 1, 1.1, and 1.2. These
labels relate the sets to the pattern application tree.

7.1.2.3 Security Constraint Sets

The example introduced above revealed that patterns operate on constraints that have been
created by superior patterns, subsidiary patterns, or by themself. As shown in Figure 7.5 the
transformation flow is based on three sets that are used to handle these types of constraints:
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Figure 7.6: Application Example of Security Patterns

1. New Constraints (NC) - The New Constraints set contains all constraints that have been
generated in the scope of the current transformation process by executing the REQUIRE
operation. This set will be passed to a subsidiary transformation in conjunction with the
Parent Constraint set, if an ENFORCE operation is executed. Combined with the Child
Constraints, the constraints in this set are returned as the result of the transformation
process.

2. Parent Constraints (PC) - The constraints in this set have been generated by prior
intention transformations and have been passed initially to the current transformation
process as a parameter. If SET or USE operations are executed that refer to constraints in
the Parent Constraints set, then modifications will be applied to copies of these constraints
to avoid conflicts with other patterns that are applied to the same security intention (cf.
Figure 7.6, copy on modification). These copies are enhanced with references to their parent
constraints and stored in the New Constraints set. Moreover, the Parent Constraints set
will be passed to a subsidiary transformation in combination with the New Constraints set,
if an ENFORCE operation is executed.

3. Child Constraints (CC) - These constraints have been generated by recursive calls
of subsidiary intention transformations. An intention transformation process returns the
Child Constraints in combination with the New Constraints set as a result.

7.1.2.4 Executing Constraint Operations

As aforementioned, four operations are used to create and modify constraints. These operations
work on the constraint sets as follows:
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• REQUIRE (String SecurityGoal) - This operation maps a security goal to a security
constraint type, instantiates a security constraint of this type and adds it to the New Con-
straints set. As described in section 3, our SOA Security meta-model provides constraints
for the security goals Authentication, Confidentiality, and Integrity.

• ENFORCE (String SecurityIntention) - This operation requires the enforcement of
an additional security intention and results in a recursive invocation of the intention trans-
formation process as described above. The constraints that result from this invocation are
added to the Child Constraints set.

• SET (String Key, AnyType Value) - The workflow executed by the SET operation
is illustrated in Figure 7.7. This operation is used to assign a value to a specific security
constraint property. The property is identified by the key that is passed to this operation.
Therefore, the ontology is used in the first step to resolve the name of this property.
Each property belongs to a specific type of security constraint (data protection constraint
or authentication constraint). In the next step, all security constraints of this type are
selected. Security constraints that are selected in the Parent Constraints set are duplicated
and placed in the New Constraints set. In addition, references to the parent constraints are
added to each copy. This step ensures that the execution of alternative patterns does not
result in conflicting modifications on constraints in the Parent Constraints set. Finally, the
property identified by the key is modified in the constraints selected in the New Constraints
set and the Child Constraints set.Property 
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Name
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Constraints 
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Figure 7.7: SET Operation Flow

• USE (String Concept) - While the SET operation modifies a key with a specific value,
the USE operation fetches the value for a security concept from the security profile as
shown in Figure 7.8. The SET operation is used in a second step to assign this value.

Search Profile 

Entry for Concept

Call SET Method 

to set value

Ontology

Profile 
Entry

Profile

Figure 7.8: USE Operation Flow
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In addition to these operations, there are operations defined in section 5.3 that can be used in
the solution as well, but that do not result in a direct effect on the security constraints (e.g.
FORALL-operation).

7.1.2.5 Transformation Example

Figure 7.9 illustrates the transformation of the security intentions ’Identity Provisioning’ and
’Data Confidentiality’ that are stated in the model shown in Figure 7.3. To transform the
intention ’Identity Provisioning’, the pattern ’Brokered Identity Provisioning’ is applied. This
pattern is applicable, since the subject of the intention is a service, there is a trust path to
the client that interacts with the service, and the STS on the trust path is capable to provide
the required claims. The solution of this pattern requires the enforcement of the intention
’Authentication’ for all entities on the trust path (S1 and IP1). The forces of the security
patterns ’Subject Authentication’ and ’STS Issuer Authentication’ evaluate as true, since the
entity IP1 is an STS and the service S1 has a indirect trust relationship to the client.
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Figure 7.9: Transformation Process Example

The pattern ’STS Issuer Authentication’ results in the creation of an authentication constraint
(added to constraint set 1.1) for intention subject S1, sets the client as issuer and the service as
target of this constraint, and uses a ’UserToken’. Since UsernamePasswordToken is configured
as a credential type in the profiles and the security ontology for identity management reveals that
UsernamePassowrdToken is a UserToken, this credential type is set in the Credential property of
the authentication constraint. The relationship between UserToken and the Credential property
is described by the ontology as well. Similarly, the pattern ’Subject Authentication’ generates an
authentication constraint (added to constraint set 1.2) for the intention subject STS1, sets the
issuer and the target and resolves an STSIssuedToken using the ontology and the profiles. After
applying the security patterns for the intention ’Authentication’, the solution of the ’Brokered
Identity Provisiong’ pattern sets the required claims provided by the ’Identity Provisioning’
intention in the authentication constraint for subject S1.

The pattern ’Secrecy’ is applied to satisfy the security intention ’Data Confidentiality’. The
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solution of this pattern creates a confidentiality constraint and requires the enforcement of the
intention ’Data Protection’. The patterns ’Message Protection’ and ’Transport Protection’ are
applied to satisfy this intention, since the client interacts with the service without intermedi-
aries. The patterns use the profile and the ontology to set the properties SecurityProtocol and
ProtectionToken in the constraints. Finally, the solution of the ’Secrecy’ pattern resolves an
EncryptionAlgorithm from the profile. The ontology reveals that the algorithm suite Basic256
stated in the profile is an EncryptionAlgorithm that can be set as an algorithm type in the
constraint. Moreover, the protected message parts are set by the solution.

7.1.3 Security Policy Model Generation

The application of security configuration patterns results in security constraint sets returned by
the intention transformation process. This process implements the Apply Patterns step illus-
trated in Figure 7.2. In a final step, an instance of our policy model is created on the basis of
the security constraint sets. However, not all constraints that are provided in these sets must be
required at the same time. Multiple patterns might have been applied for a security intention.
The sets of security constraints created by the application of these solutions represent policy al-
ternatives. For instance, the enforcement of the security intention Data Protection might result
in the application of two patterns and, therefore, the creation of two constraints: one constraint
that requires security at the transport layer and one constraint that requires security at the mes-
sage layer. Therefore, these constraints have to be assigned to alternatives that are combined in
the policy model.

Alternative Sets for Security Intention 1

Constraint Sets for

Security Intention 1

Constraint Sets for

Security Intention n

...

Alternative Set...

...

Policy

Alternative

Security Policy

...

Policy

Alternative
Alternative Set

Alternative Sets for Security Intention n

Alternative Set...Alternative Set

1. 2.

Figure 7.10: Policy Model Generation Steps

The generation of security policies is performed in two steps and is shown in Figure 7.10. As
aforementioned, the intentions transformation process has been executed for each security in-
tention that is defined in the SecureSOA model. Therefore, multiple constraint sets have been
generated for each security intention. In a first step, these constraints are recombined in sets
representing alternatives concerning a specific security intention. Finally, the alternative sets
referring to different security intentions are combined to policy alternatives that are added to an
instance of our security policy model.

As shown in the example in Figure 7.9, the enforcement of a security intention can be represented
as a tree, since multiple patterns might be applied for a security intention and each solution might
require the enforcement of additional security intentions. The application of these patterns results
in the creation of sets with new security constraints that can be organised hierarchically according
to the pattern application tree. Each constraint set is labelled with the position of its constraint
set in the constraint hierarchy.
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Figure 7.11: Generation of Policy Alternatives

The sets in the pattern application tree have to be recombined to sets that represent alternatives
concerning a specific security intention. The constraints with the same distance to the root node
in the hierarchy are alternatives, since these constraints have been generated by alternative pat-
terns that are applicable for the same security intention. Therefore, the generation of alternative
sets works as follows: All constraints that are on the path from the root node to a leaf in this tree
are combined in an alternative set that is added to the set of alternatives for a specific security
intention.
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Figure 7.12: Merging Alternative Sets for Multiple Security Intentions

Figure 7.11 shows a simple example to illustrate this step. Two patterns have been applied
for the the intention ’1’ resulting in the creation of two security constraints. Therefore, these
constraints are labelled with 1.1 and 1.2. For each pattern, subsidiary patterns were applied that
created constraints in the sets 1.1.1, 1.1.2 and 1.2.1. In particular, the pattern 1.1.2 duplicated
the constraint 1.1, since a modification of this constraint was required by its solution. Based
on this tree, a security policy is generated that consists of three alternatives containing the
constraints on the paths to the leafs of the tree. Please note that the second alternative does not
contain constraint 1.1, because it has been replaced by a duplication in the 1.1.2 constraint set.

The example in Figure 7.11 illustrates the generation of a alternative sets for a single security
intentions. If constraint sets have been created for multiple security intentions, then the recom-
bination will be performed for each security intention independently. As shown in 7.10, these
sets have to be merged to create a security policy. A policy alternative is created by selecting a
constraint set for each intention. These sets are combined to form a policy alternative. Therefore,
each alternative set is combined with alternative sets that refer to another security intention.
This step is illustrated in Figure 7.12.
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Figure 7.13: Policy Generation Flow

The overall policy generation flow is shown in Figure 7.13. This flow operates on security
constraint sets that have been generated in a previous step. A policy will be generated for each
object in the SecureSOA model. In the first step, alternative sets are created for each intention
attached to this object. Therefore, the paths to the leafs in the constraint sets are determined.
In each path, parent constraints are removed that have been duplicated and modified by a
subsidiary pattern. The resulting constraints are added to an alternative set. After calculating
the alternative sets for all intentions of an object, each alternative for an intention is combined
with the alternatives for all other intentions. The combined sets of constraints are added to a
security policy as policy alternatives.

Figure 7.14 illustrates the policy generation for the example introduced in Figure 7.3. Several
constraints have been generated for the security intentions ’Identity Provisioning’ and ’Data
Confidentiality’. Two constraints have been created for the intention ’Identity Provisioning’,
while one constraint has been created by the pattern ’Secrecy’ that has been modified by sub-
sidiary patterns. There is a single constraint for STS1 and three constraints for the service S1.
Therefore, a security policy with a single alternative is generated for STS1. The security pol-
icy for S1 contains two policy alternatives, since the alternative for the ’Identity Provisioning’
intention is merged with the two alternatives for ’Data Confidentiality’.
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Figure 7.14: Policy Generation Example
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7.2 Formal Verification of the Transformation Process

The transformation process introduced in the previous section translates a SecureSOA enhanced
system design model to our domain-independent model. To proof the correctness of this trans-
formation step we have to verify that the protection characteristics of data transfer objects
(evaluated by functions such as encSecureSOA(d) and encdim(d)) are preserved during the trans-
formation. In this section, we will prove the correctness of the transformation concerning the
encryption of data transfer objects.

Theorem: Let mSecureSOA be a relational SecureSOA model and let mdim be a domain-
independent relational model that has been created by applying the security pattern system
introduced in chapter 6 to mSecureSOA. Since the application of these security patterns results
in the generation of an instance of our security policy model and do not alter components of
the SecureSOA model, we assume that both models share a common set of components repre-
senting our SOA interaction model (e.g. Objects, Interactions, or Data Transfer Objects). The
functions encSecureSOA(d) and encdim(d) evaluate encryption properties of data transfer objects
as introduced in section 4.2.3 and in section 3.3.2. Let DataTransferObject be a component of
mSecureSOA, then

∀dto ∈ DataTransferObject : encSecureSOA(dto)⇒ encdim(dto) (7.1)

Proof: So given an arbitrary dto ∈ DataTransferObject we assume encSecureSOA(dto) ≡ true.
From definition 4.3 it follows that a security intention exists that refers to the data transfer
object dto:

encSecureSOA(dto)⇒ ∃ i ∈ DataConfidentiality : (i SD dto) (7.2)

Next, we have to show that a security pattern exists that is applicable to this security intention.
We use an initial variable assignment function σ1 that provides the values for all components of
mSecure and mdim. Then we know

dto ∈ σ1(DataTransferObject) (7.3)

i ∈ σ1(DataConfidentiality) (7.4)

i ∈ σ1(intention) (7.5)

true ≡ σ1(ForcesResult) (7.6)

Let Secrecy denote the index of the pattern Secrecy in our security configuration pattern system.
We will show that the forces of this pattern evaluate as true ([[ForcesSecrecy]] (σ1) ≡ true.

As specified in the definition of the pattern Secrecy in section 6.2.3, ForcesSecrecy denotes a single
operation (o1) whereas

o1 ≡ ASSERT(InteractionPath(intention.subject.issuer, intention.subject.target)) (7.7)

In the first step, we will show that InteractionPath returns a non-empty set and then we will
apply the semantics of the ASSERT operation. From Formula 3.4 follows that the data transfer
object dto must have an issuer:

∃ oIssuer ∈ σ1(Objects) : (dto, oIssuer) ∈ σ1(DOIssuer) (7.8)
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Let oIssuer ∈ σ1(Objects) whereas dto σ1(DOIssuer) oIssuer. With 7.2 and 7.5 we obtain

σ1(intention) σ1(SD) dto ∧ dto σ1(DOIssuer) oIssuer (7.9)

By definition of [[intention.subject.issuer]] (cf. Definition 5.22), this implies

[[intention.subject.issuer]] (σ1) = oIssuer (7.10)

Correspondingly, it follows by definition of [[intention.subject.target]] (cf. Definition 5.23)

∃ oTarget : [[intention.subject.target]] (σ1) = oTarget (7.11)

Formula 3.4 states that there is a path between the issuer oIssuer and the target oTarget of the
data transfer object dto and we obtain:

oIssuer σ1(OOInteraction)∗ oTarget

⇒ there is a sequence p0, . . . , pn with pi ∈ σ1(Object)for all 0 ≤ i ≤ n (7.12)

where (pi, pi+1) ∈ σ1(OOInteraction) for all 0 ≤ i < n
and p0 = oIssuer, pn = oTarget

This implies that there is a graph PathOOInteraction(oIssuer, oTarget, σ) as defined by Formula 5.14
that returns (VOOInteraction

, EOOInteraction
) where {p0, . . . , pn} ⊆ VOOInteraction

. By definition of
InteractionPath (cf. 5.16), it follows that

[[InteractionPath(intention.subject.issuer, intention.subject.target)]] (σ1) ⊇ {p0, . . . , pn}
⇒ [[InteractionPath(intention.subject.issuer, intention.subject.target)]] (σ1) 6= {} (7.13)

From the definition of τ (cf. Definition 5.5) and 7.13 we obtain

τ([[InteractionPath(intention.subject.issuer, intention.subject.target)]] (σ1) ≡ true (7.14)

The semantics of the ASSERT operation have been specified in Formula 5.31 that provides the
variable assignment function σ2 by defining the changes to the function σ1. From this definition
and Fromulae 7.14 and 7.6 we obtain

σ2 = σ1 ⊕ {ForcesResult→ true}
⇒ σ2 ⊇ {ForcesResult→ true} (7.15)

σ2 represents the variable assignment function after the termination of the forces (o1|σ1 → ε|σ2).
According to the semantics of the forces defined in Formula 5.32 we obtain

[[ForcesSecrecy]] (σ1) ≡ σ2(ForcesResult) ≡ true (7.16)

Therefore, it is proven that the security configuration pattern Secrecy is applicable to the Data
Confidentiality intention i. In the next step, we will show that the application of this pattern
results in the generation of a model mdim that contains a confidentiality constraint related to
the data transfer object dto.

101



CHAPTER 7. A PATTERN-DRIVEN TRANSFORMATION PROCESS

The initial variable assignment function σ1 introduced above is used to execute the solution.
We assume that this function initialises variables representing the components of mdim. These
sets and relations are initialised as empty sets. In addition, the pattern application tree is
initialised with a root node that represents the application of the pattern Secrecy. The re-
lation PatO associates this node with the policy subject [[intention.PolicySubject]]. From the
semantics of the policy subject specified in Formula 5.21 we obtain [[intention.PolicySubject]] =
oTarget where dto DOTarget oTarget. The function σ1 initialises these sets and relations as follows:

σ1(ConfidentialityConstraint) = {} (7.17)

σ1(SecurityConstraint) = {}
σ1(CPAT) = {}
σ1(PatO) = {(1, oTarget)}
σ1(CD) = {}
σ1(PID) = 1

σ1(PAT) = (VPAT, EPAT) with VPAT = {1} and EPAT = {}

The solution of the pattern Secrecy has been specified in section 6.2.3. SolutionSecrecy denotes
the a sequence of operations (o1, o2, o3, o4) with

o1 ≡ REQUIRE(Confidentiality) (7.18)

Definition 5.39 provides the semantics of the REQUIRE operation and enables the calculation
of σ2. With nSC := ]σ1(SecurityConstraint) = 0 we obtain

σ2 = σ1 ⊕ υCC(σ1) ∪ υSC(σ1) ∪ {CPAT→ σ1(CPAT) ∪ (1, σ1(PID))} (7.19)

Using the Definitions 5.36 and 5.38 we can calculate υCC(σ1) and υSC(σ1) as

υCC(σ1) = {ConfidentialityContraint→ {1}} (7.20)

υSC(σ1) = {SecurityContraint→ {1}, CD→ {1, dto}} (7.21)

By replacing υCC(σ1) and υSC(σ1) in Formula 7.19 we obtain

σ2 ⊇



ConfidentialityContraint → {1},
SecurityContraint → {1},
PatO → {(1, oTarget)},
CPAT → {(1, 1)},
PAT → ({1}, {}),
CD → {(1, dto)}


(7.22)

The execution of the solution is a transformation o1|σ1 →∗ ε|σ5. Each execution step might
cause an enhancement of the constraint sets and the pattern application tree. Since elements
can be added to sets by executing the operations, but not removed, we can derive
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σ2(ConfidentialityConstraint) ⊆ σ5(ConfidentialityConstraint) (7.23)

σ2(SecurityConstraint) ⊆ σ5(SecurityConstraint)

σ2(CPAT) ⊆ σ5(CPAT)

σ2(PatO) ⊆ σ5(PatO)

σ2(PAT) ⊆ σ5(PAT)

σ2(CD) ⊆ σ5(CD)

The variable assignment function σ5 provides the values for the components of the model mdim

that is returned by the pattern solution. In addition, the model mdim contains components to
represent policies and policy alternatives. To create these components, we use the sets Policy,
PolicyAlternative, PO, AP, CA as specified by the formulae 5.41, 5.42, 5.44, 5.45, and 5.46. The
definition of these sets is based on the set alternativePaths = {path1, . . . , path]alternativePaths}
specified in 5.43 that contains all paths in the pattern application tree representing policy alter-
natives.

In the next step, we have to show that policy alternatives have been generated for the target of the
data transfer object. From the definition of the initial variable assignment function σ1 in Formula
7.17 and the statement on σ5 (cf. Formula 7.23) we know σ5(PAT) = (VPAT, EPAT) with VPAT =
{1} and 1 σ5(PatO) oTarget. Since there is at least one node in VPAT, it follows that there is at
least one path in alternativePaths. Therefore, the alternativePaths definition 5.43 implies that

∃ patha ∈ alternativePaths with patha = (p1, . . . , pk), k ≥ 1 (7.24)

and p1 = 1

and pk σ5(PatO) oTarget

According to the definition of the set SecurityAlternative in Formula 5.44 we obtain
a ∈ SecurityAlternative. Formulae 5.41 and 5.42 state that each object is assigned to a pol-
icy that has the same id as the object itself. Therefore, we know ∃ p ∈ Policy : p PO oTarget.
From the definition of AP in Formula 5.46 and from Formula 7.24 we can derive the following
implication

(pk, oTarget) ∈ σ5(PatO) ∧ (p, oTarget) ∈ PO (7.25)

⇒ a AP p

This proves that a policy alternative has been generated for the target of the data transfer object:

∃a ∈ SecurityAlternative : dto σ5(DOTarget) ◦ PO−1 ◦AP−1 a (7.26)

Finally, it remains to prove that a confidentiality constraint exists for all security alternatives
that refers to the data transfer object. So given arbitrary a ∈ SecurityAlternative we assume

dto σ5(DOTarget) ◦ PO−1 ◦AP−1 a (7.27)

The definition of the set SecurityAlternative is based on the set alternativePaths (cf. Formula
5.44). Let patha = (p1, . . . , pk) denote the path in alternativePaths that corresponds to alter-
native a. The definition of this set in Formula 5.43 implies that p1 = 1. Since the node 1 is the
root element of the pattern application tree, it is an element of each path in alternativePaths
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We know from 7.27 that oTarget relates to the policy of a:

∃ p : a AP p ∧ p PO oTarget (7.28)

The definition of AP in Formula 5.46 implies pk σ5(PatO) oTarget. Formulae 7.22 and 7.23
entail 1 σ5(PatO) oTarget and 1 σ5(CPAT) 1. With p1 = 1 we obtain p1 σ5(PatO) oTarget and
1 σ5(CPAT) p1. By definition of CA in Formula 5.45, it follows 1 CA a.

With 1 ∈ σ5(ConfidentialityConstraint), 1 σ5(CD) dto (cf. Formulae 7.22 and 7.23) we obtain

∃ c ∈ σ5(ConfidentialityConstraint) : c CA a ∧ c σ5(CD) dto (7.29)

According to the semantics of the confidentiality constraint specified in Definition 3.6 Formulae
7.26 and 7.29 imply

encdim(dto) ≡ true q.e.d

We have proven the correctness of the transformation from a model mSecureSOA to a model mdim

concerning the encryption property of data transfer objects. The transformation of a security
intention Data Confidentiality will always result in the creation of confidentiality constraints that
refer to the data transfer objects that are annotated by the security intention. The correctness
of the transformation regarding the security goals integrity and authentication can be shown in
a similar way.
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Chapter 8

Proof of Concept: The SOA
Security LAB

In this chapter, our SOA Security LAB is presented that supports the on-demand creation
and orchestration of composed applications and services. Our platform enables the testing,
monitoring and analysis of Web Services regarding different security configurations, concepts
and infrastructure components. Since security policies are hard to understand and even harder
to codify, our model-driven approach is used to simplify the creation of security configurations.

8.1 SOA Security LAB Overview

The Web Service specifications introduced in section 2.1 provide a flexible messaging framework
to enable an interoperable communication between loosely coupled services. SOAP and WSDL
are core specifications in this framework that specify the structure of exchanged messages and
facilitate the definition of service contracts to describe exposed service interfaces. Web Service
frameworks such as Axis2, Oracle Metro, or Microsoft Web Service Communication Foundation
facilitate the usage of these specifications by providing tools and APIs to expose and invoke
class methods as Web Services. These frameworks hide the complexity of the Web Service
specification stack and support developers to focus on the business logic implemented in these
methods. For instance, a code-first approach is supported by these frameworks to enable an
automated creation of services and service contracts on the basis of programming language
classes and implemented methods. In addition, tools are provided to generate a proxy class that
offers a programming language interface to invoke a specific Web Service. This proxy class can
be generated automatically on the basis of a WSDL file and handles the creation and exchange of
SOAP messages. Altogether, Web Service frameworks enable developers to build service-based
systems without expert knowledge in Web Service technology.

However, Web Service frameworks are not capable to simplify the configuration of security re-
quirements. Security policies must be deployed with each service to configure the enforcement of
these requirements. In addition, the handling of required credentials such as certificates or secu-
rity tokens must be configured or implemented. As outlined in the introduction of this work, the
provision of security policies is an error-prone task due to the complexity of WS-SecurityPolicy.
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To simplify the generation of security policies, tool support is offered by most Web Service frame-
works. Policies editors are provided to offer a user interface that enables the selection of security
options and the generation of WS-SecurityPolicy documents. However, strong security knowl-
edge is still required to understand the underlying security concepts and to select a set of security
options that matches to the user’s requirements. In addition, the enforcement of these policies
requires the provision and handling of additional security-related information: The access and
validation of certificates must be enabled, access to security Security Token Services might be
required, and the validation and request of user credentials must be implemented.

The high level of configuration and implementation effort results in a complex and time-consuming
development process for secure Web Services. Even the instantiation and integration of a small
set of secure Web Services requires the provision of complex security policies and the generation
and provision of digital certificates. The implementation of advanced identity management and
federation approaches requires the setup of additional services such as identity providers based
on WS-Trust. However, this complexity impede the provision of secure Web Service-based ap-
plications for educational and research purposes that enable the testing of security mechanisms,
the execution of web service attacks, and the validation of research ideas.

To provide a simplified way to setup, test, and experience Web Service security mechanisms
in practise, we have designed a web-based test platform for Web Service security. Our SOA
Security LAB facilitates the configuration and instantiation of web applications orchestrating
Web Services in virtual machines. These composed applications can be executed to analyse
the exchange of messages and the invocation of security services. The model-driven approach
presented in this thesis is used to generate the security configurations for Web Services used by
the composed applications.
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Figure 8.1: SOA Security LAB Usage

As illustrated in Figure 8.1, there are three basic use cases that describe the functionality of the
SOA Security LAB:

UC 1: Scenario Modelling - The SOA Security LAB supports the visual design of scenarios
that can be instantiated and executed in virtual machines. An SOA Security LAB scenario
is an FMC-based SecureSOA model (cf. chapter 4) that describes the usage of composed
web applications, the orchestration of Web Services, the integration of security services (e.g.
an Security Token Service), and the statement of security requirements. The composed
web applications provide frontends that can be used to execute the scenario. The scenario
modelling use case includes two basic use cases:
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UC 1.1: Specification of Composed Applications - To create a scenario, the basic
actors and their relationships have to be defined. Therefore, the SOA Security LAB
facilitates the selection of a composed web application and a set of services that imple-
ment required interfaces. In addition to services that provide business functionality
for the composed web applications, security services (e.g. STS) can be connected to
frontends and services to model advanced scenarios. In the current version of the SOA
Security LAB, a predefined set of web applications and services can be used. In future
versions, an upload and orchestration of custom services might be supported.

UC 1.2: Modelling of Security Requirements - Next to the selection and orchestra-
tion of frontends and services, the SOA Security LAB enables the visual configuration
of security requirements and settings. In particular, security intentions, security an-
notations, trust domains, and trust relationships can be specified as described in
chapter 4. The model-driven process introduced in this thesis is used to implement
the generation of security policies to configure deployed services and service clients.

UC 2: Scenario Instantiation - To enable the execution of modelled scenarios, the SOA
Security LAB supports the instantiation of scenarios in a virtual machine. Web applications
and Web Services are deployed in an application server along with required configuration
files.

UC 3: Security Analysis - The execution of deployed scenarios results in the invocation
of deployed services and the exchange of SOAP messages. Messages sent to these services
adhere to the services’ security policies generated on the basis of the SecureSOA model. The
SOA Security LAB enables users to investigate how security policies have been enforced
to comply to the modelled security requirements. Altogether, the SOA Security LAB
facilitates the analysis of generated policies and the examination of exchanged messages.
Therefore, the security analysis use case includes the following basic use cases:

UC 3.1: Security Policy Inspection - Security polices that have been generated by
our model-driven approach can be visualised by the SOA Security LAB. This view
enables users to inspect policies and to analyse how modelled security requirements
are represented in WS-SecurityPolicy.

UC 3.2: Message Flow Visualisation - The execution of scenarios results in the ex-
change of SOAP messages between web applications and services. To reveal how
security services have been integrated and invoked, our LAB supports the visuali-
sation of the message flow in a scenario. In addition, a message processing view is
provided to illustrate the message handling. SOAP Messages that have been sent or
received by services are processed by a chain of message handlers, which are provided
by the Web Service framework that has been used to build these services. For exam-
ple, security handlers are used to perform the encryption and decryption of messages.
The SOA Security LAB enables the visualisation of incoming and outgoing handler
chains and the flow of messages through these chains.

UC 3.3: Message Inspection - Messages that have been exchanged and processed by
Web Services and Web Service clients can be inspected by the user to investigate how
security policies affect the message exchange. Our LAB supports a syntax highlight-
ing of the XML message structure and identifies message parts that are specified by
specific Web Service protocols such as WS-Security.
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8.2 SOA Security LAB Architecture

Figure 8.2 illustrates the overall architecture of the SOA Security LAB. Our platform is com-
posed of three main components that realise the SOA Security LAB use cases introduced in the
previous section. The Scenario Modelling component enables the creation of SecureSOA models
and the generation of security policies (Use Case 1), the Deployment Management component
stores deployment artefacts and supports the dynamical instantiation of composed applications
(Use Case 2), and the Security Analysis component supports the monitoring and analysis of
applied security mechanisms (Use Case 3). Each component provides GUI components that are
highlighted in Figure 8.2.

As illustrated in Figure 8.2, the SOA Security LAB uses the Tele-Lab Virtual Machine Service to
instantiate and control virtual machines. This service has been developed in scope of the Tele-Lab
Internet Security project at the Hasso Plattner Institute. The Tele-Lab project provides a novel
eLearning platform for Internet Security and enables students to perform practical exercises in
virtual machines [WM08]. Each virtual machine that is instantiated by the Tele-Lab VM Service
for the SOA Security LAB provides a Tomcat servlet container and a management service. The
management service enables the deployment of web applications and Web Services.
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Figure 8.2: Service Security LAB Architecture

The main components of our SOA Security LAB are structured as follows:

1. Scenario Modelling – The scenario modelling component provides a scenario editor
to create and alter SOA Security LAB scenarios. A scenario is described by a FMC-
based SecureSOA model and specifies the functional aspects (web applications, services
and interactions) as well as security aspects (security intentions, security annotations, trust
domains, and trust relations). The scenario editor is based on the web-based modelling
tool Oryx [DOW08] and has been enhanced with a custom stencil set for our FMC-based
SecureSOA dialect. This stencil set is enhanced by our SOA Security LAB with modelling
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elements for each web application and Web Service managed in the application pool. This
pool is provided by the Scenario Management component.

After creating or updating SecureSOA models, security policies are generated for these
scenarios using the transformation process described in section 1.2.3. The pattern en-
gine component shown in Figure 8.2 performs the first transformation step and resolves
platform-independent policy models on the basis of our security configuration pattern sys-
tem. These platform-independent models are passed to the policy generator component
that converts these models to Web Service security policies. The WS-SecurityPolicy doc-
uments and configuration files are provided to the deployment management component.

2. Scenario Deployment – The scenario deployment component enables the execution of
scenarios and manages deployment files and metadata that are required to instantiate
scenarios. This component provides an application pool that stores Web Services and
composed web applications as WAR files. WAR archives wrap java server pages, servlets,
java classes and metadata (e.g. WSDLs) that are required to execute Web Services and
web applications in a servlet container such as Tomcat. In addition to WAR archives,
the application pool stores dependencies between web applications and Web Services, since
each composed application or service might require the provision of additional services that
implement a specific interface. As mentioned above, the scenario modelling component uses
this information to generate a stencil set for Oryx.

For each SOA Security LAB scenario, deployment information is needed that lists Web
Services and web applications, which should be instantiated in a virtual machine. This in-
formation is generated by the Scenario Modelling component and is stored in the Scenario
Topology Store (Deployment Store) of the Deployment Management component. In addi-
tion, configuration documents are stored in the Deployment Store that must be deployed
with Web Services or web applications. For example, security policies generated for each
scenario are added to the Service Configuration store.

The Scenario Deployer component handles the process that instantiates and configures a
scenario in a virtual machine. In a first step, missing configuration documents – e.g. key
and trust stores – are created by the Configuration Generator component and are added
to the Service Configuration store. In the next step, the Tele-Lab VM service is invoked to
instantiate a new virtual machine. As soon as the virtual machine is provided, the Scenario
Deployer enhances the archives used in the current scenario with the configuration docu-
ments in the Service Configuration store and leverages the virtual machine’s management
Web Service to deploy applications, services and configuration files to the application server
as shown in Figure 8.2. Finally, the URL of the composed web application running in the
virtual machine is returned to the user to enable the execution of the deployed applications
and services.

3. Security Analysis – The Security Analysis component enables users to inspect the flow
of SOAP messages that were exchanged during the execution of a scenario in a virtual
machine. This functionality is based on the usage of monitoring agents that have been
deployed in the virtual machine. These agents intercept messages and forward them to
the Message Monitor of the Security Analysis component. The Message Flow Visualiser
aligns monitored messages with the modelled entities and enables users to track the com-
munication and the behaviour of security modules. The content of exchanged messages
is visualised by the Message Visualiser component that supports a highlighting of the
message structure.
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8.3 Security Pattern Engine Implementation

As illustrated in 8.2, the security pattern engine and the policy generator are provided by the
Scenario Modelling component. These components implement our model-driven approach to
enable the transformation of abstract security intentions to technical security policies for service-
based systems. The security pattern engine performs the pattern-based transformation step
described in chapter 7 and leverages the security pattern system introduced in chapter 6 to
transforms SecureSOA models to an instance of our platform-independent policy model described
in chapter 3. This policy model instance is provided to the policy generator that performs the
transformation to WS-SecurityPolicies documents. These policies can be deployed with Web
Services in virtual machines to configure security requirements. The implementation of the policy
generation process has been provided by R. Warschofsky and is described in [WMM10, War10].

In this section, the groovy-based implementation of the security pattern engine is introduced,
which performs the pattern-based transformation step to generate an instance of our policy
model. The pattern engine’s groovy classes compile to java bytecode and are organised in pack-
ages. These packages are described in this section.

8.3.1 Security Pattern Engine Package Structure

The implementation of our security pattern engine provides classes that realise the pattern-driven
transformation process described chapter 7. These classes are organised in a package structure
that is shown in Figure 8.3.
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Figure 8.3: Security Pattern Engine Package Overview

The pattern-driven transformation process is applied to a SecureSOA model in three steps (cf.
Figure 7.2): The execution context is created to store SecureSOA entities and relations, security
constraint sets are generated by applying our security pattern system to security intentions in
the SecureSOA model, and the security policy model is generated on the basis of the security
constraint sets. To perform this process, the classes in the package core implement these steps
and required data structures. The execution context and the security pattern system are defined
in the packages dataTypes, model, and dataAccess.

The package dataTypes provides classes to define and handle basic data types (Long, Boolean,
and Set) that are used to implement security pattern DSL operations. In addition, these data
types are utilised in the package model that provides classes to define security patterns and the
execution context. Instances of these classes are created using factory classes provided by the
package dataAccess.
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To enable the application of security patterns, the package dsl provides classes that implement
our security pattern domain-specific language. These classes are used in the core package to
evaluate a pattern’s forces and to apply a pattern’s solution. This application step results in the
generation of security constraints and the manipulation of constraint properties. The instantia-
tion of security constraints and the mapping of values to constraint properties is performed by
classes in the package mapping.

In the following sections, the classes are introduced that are provided by the security pattern
engine packages shown in Figure 8.3. This overview starts with packages that provide basic
functionality. Finally, the classes in the core package are introduced that use the classes in the
basic packages to implement the security pattern-based transformation process.

8.3.2 Package ’dataTypes’

The classes in the package dataTypes define basic data types that are used to implement the
operations specified by our security pattern language. As introduced in chapter 5.3, variables of
type set, long, and boolean are required to implement these operations.
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Figure 8.4: Package dataTypes

The classes BooleanValue, LongValue, and ListValue provide implementations for these enhanced
data types. Each data type class implements the boolean operators (AND, OR, IMPLIES)
and set functions (CONTAINS, INTERSECTION, WHERE) that are specified by our security
pattern DSL.

To provide a common interface for data type classes, the abstract class valueType is used as
a parent class that defines these operations. In addition, this class provides an interface with
multiple methods to access a value of a data type instance. For example, the method getBoolean-
Value() is implemented by all child classes. An instance of the class BooleanValue returns its
current value, while a LongValue instance will evaluate if its value is equal to zero. The usage
of this interface guarantees that functions and sets defined by our domain-specific language can
be used seamlessly to state security configuration patterns.
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8.3.3 Package ’model’
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Figure 8.5: Package model

The package model provides classes to represent components of the relational SecureSOA model
and the security pattern system. Instances of these classes are stored in the execution context
to facilitate the transformation of security intentions.

The Objects class is provided to store information concerning the objects used in a model, their
roles and related object annotations. To query a set of objects that share a specific role (enu-
meration ObjectRole), the function getObjects(roleName: ObjectRole) is provided. In addition,
the function getAnnotation is offered by the Objects class to return a set of annotations that are
associated with a specific object. Trust and interaction relations are defined in SecureSOA to
represent security dependencies between objects. The class Relation is provided in the package
model as a generic class to represent these dependencies. This class offers a set of methods to
evaluate the relations between object. Interaction relations involve the exchange of information
that is represented as data transfer objects in SecureSOA. The class DataTransferObjects is used
to store information regarding these modelling elements. This class provides a method to access
the properties of data transfer objects such as the issuer and target.

The model classes introduced so far provide context information for security configuration pat-
terns. These classes are used to evaluate the patterns’ forces and to apply the solution. Moreover,
the class SecurityIntention is used to represent a security intention, which identifies the problem
that is addressed by a security pattern. Instances of this class are generated from the SecureSOA
model and are passed to the security pattern engine (cf. Figure 7.2). To provide a data structure
for security patterns and the security pattern system, the package model contains the classes
SecurityPattern and SecurityPatternSystem.
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8.3.4 Package ’dataAccess’

To enable the instantiation of model classes representing the execution context, the package
dataAccess defines interfaces for factory classes. The FactoryManager class is provided to get
an instance for a required factory interface. This class uses the system properties to resolve a
factory implementation. If no factory implementation is specified in the system properties, a
default implementation providing test data will be instantiated. The unit tests use these default
factory classes, while the SOA Security LAB provides its own factory class implementations to
facilitate the generation of the execution context.
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Figure 8.6: Package dataAccess

8.3.5 Package ’mapping’

The application of security patterns results in the creation of security constraints that are spec-
ified by our domain-independent policy model. The implementation of this model [WMM10,
War10] provides a package that contains classes for each policy model element introduced in
chapter 3.2. Since security configuration patterns are based on the statement of high level se-
curity requirements (e.g. REQUIRE(’confidentiality’)), mappings to specific security constraint
types and properties are required. Classes that facilitate these mappings are provided in the
package mapping.

The class ConstraintFactory provides the method createInstance that enables the instantiation
of security constraints. A string that denotes a security goal is passed to this method to identify
the required constraint type. This factory class is used to implement the operation REQUIRE
specified by our security pattern DSL.

In addition, our security pattern DSL offers operations to update properties in constraints
(SET/USE operations). To set a constraint property, instances of additional classes might be
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Figure 8.7: Package mapping

required that are defined by our security policy model. For example, an instance of the class
credential is required to set a specific security token type in an authentication constraint. These
operations are encapsulated in closures that are managed by the class ConstraintPropertyMap-
per. For each property that is used in a constraint, a closure is stored in combination with the
constraint type the closure is applicable to. The class ConstraintPropertyMapper provides the
function get(propertyName: String) to resolve a closure that is capable to update the specified
constraint property.

8.3.6 Package ’dsl’

Each Groovy object is assigned to a meta-class object that handles method calls executed on
that object. To enable the customisation of method calls, groovy supports the assignment of a
custom meta-class object that support the enhancement of objects with additional methods. This
mechanisms facilitates the definition of domain-specific languages. For each closure that is used
in a DSL script, an instances of a delegate class can be assigned that provides an implementation
for invoked methods. The delegate classes that implement our security pattern DSL are defined
in the package dsl that is illustrated in Figure 8.8.

The class patternSystemParser provides a parser to import a security pattern system document,
which contains a script that specifies a pattern system. This script contains one or more pat-
ternSystem operations that accept a closure as input parameter providing operations for security
pattern definitions. To execute the pattern system script, the patternSystemParser adds an in-
stance of the class PatternSystemDelegate to the patternSystem operation as a delegate class.
This delegate instance is used to execute the closures provided to patternSystem operations and
contains a method securityPattern that is invoked for each securityPattern operation used in a
patternSystem closure.

An instance of the class PatternDelegate is added as a delegate to closures passed to the securi-
tyPattern operation. Each of these closures invokes the operations Name, Problem, Description,
Uses, Forces, and Solution to specify a security pattern. The information provided by these
operations is stored in an instance of the class SecurityPattern that is added to the singelton
SecurityPatternSystem (package model).

The class SecurityPatternSystem serves as a storage for security pattern definitions used by
the security pattern engine. Each security pattern specifies forces and a solution to enable
the verification of the pattern’s applicability and to facilitate the execution of this pattern.
A pattern’s forces and solution are specified by closures that contain a set of operations as
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Figure 8.8: Package dsl

specified by our security pattern DSL. To enable the execution of these scripts, the delegate
classes ForcesDelegate and SolutionDelegate are provided in the package dsl. These classes are
based on the class BaseDelegate that provides common operations and functionality.

The baseDelegate class offers implementations for the DSL functions Trust, TrustPath, Inter-
action, and InteractionPath that are used to evaluate trust and interaction relations between
objects. In addition, the DSL operations FORALL and SCOPE are specified that can be used in
the patterns’ forces and solutions. The class ForcesDelegate is a child class of baseDelegate and
implements the DSL methods ASSERT, AND, OR, NOT, CONTAINS, and INTERSECTION
that are used to evaluate a patterns’ forces. The forces will evaluate as true, if all ASSERT op-
erations return true. The ForcesDelegate class tracks the results of these operations and provides
the property result that determines the pattern’s applicability.

Moreover, the class SolutionDelegate is a child class of baseDelegate that provides implemen-
tations for the DSL operations USE, SET, REQUIRE, and ENFORCE. These operations are
implemented in accordance with the concepts described in section 7.1.2.4 and are used to create
and modify security constraints that are organised in three sets: the New Constraint set, the
Parent Constraint set, and the Child Constraint set (cf. section 7.1.2.3). To represent these
sets, three instances of the class SecurityConstraintMap are used that is provided by the core
package. The implementation of the REQUIRE operation is based on the class Constraint-
Factory (package mapping). This operation is used to instantiate security constraints that are
added to the New Constraint set. Moreover, implementations are provided for the SET/USE
operations that modify properties of constraints contained in all constraint sets. The private
functions applyToConstraints and applyToConstraintList facilitate this task and leverage the
class ConstraintPropertyMapper (package mapping).
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8.3.7 Package ’core’

The package core provides classes that implement our pattern-driven transformation process.
This process is executed by the PatternEngine class that represents the main class of our im-
plementation. The PatternEngine class offers the method generatePolicyModel that translates
security intentions to our security policy model. This method creates an execution context (class
ExecutionContext) using the ExecutionContextFactory, invokes a new instance of the Pattern-
Application class to transform the security intentions to security constraints, and generates an
instance of the security policy model that contains alternative sets of security constraints.

The ExecutionContextFactory leverages the package dataAccess to create a new instance of the
class ExecutionContext. The execution context contains instances of the model classes that
represent components of the SecureSOA model and the security configuration pattern system. In
addition, a reference to an instance of the SecurityProfile class is provided that stores the security
profiles (cf. chapter 4.2.1.1), which has been passed to the pattern engine. This class provides
the method getEntries to query a list of security mechanisms for a specific security concept.
The SecurityOntology class is used to identify security mechanisms in a profile that relate to
this concept (cf. chapter 5.4). The SecurityOntology instance is initialised with concepts and
predicates (relations) that represent our security ontologies for identity management and data
security introduced in chapter 6.1.2 and in chapter 6.2.2.
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Figure 8.9: Package core

The PatternApplication class operates on the execution context and generates security constraints
that are stored in an instance of the class SecurityConstraintMap. This class stores security
constraints in combination with an identifier that represents the constraint’s position in the
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pattern application tree (c.f. chapter 7.1.2.2). The identifiers facilitates the assignment of security
constraints to security alternatives that are combined in an instance of the security model as
described in chapter 7.1.3.

The transformIntention method provided by the PatternApplication class has been introduced
in chapter 7.1.2. This method retrieves all patterns from the SecurityPatternSystem instance
that address the required security intentions. For each closure that is defined as these patterns’
forces, an instance of the delegate class ForcesDelegate is configured with the current execution
context. Then, the forces of each pattern are executed to determine the patterns’ applicability.

Finally, the solution of each applicable pattern is executed. A delegate class is configured for
each solution closure that provides the implementation for the operations specified in a solu-
tion. The security constraints created so far are passed to the solution delegate and are stored
in the solution delegate’s parent constraints set. The execution of a solution closure results in
the invocation of the DSL operations implemented by the solution delegate. To implement the
operation ENFORCE that requires the enforcement of an additional security intention, the solu-
tion delegate creates a new PatternApplication instance to invoke the intention transformation
process recursively. The constraint set of the new PatternApplication instance is initialised with
the parent constraints set and new constraints set of the delegate. Properties of constraints in
these sets might be modified by enforcing subsidiary security intentions. Security constraints
created by the new PatternApplication instance are returned by the ENFORCE operation and
are added to the child constraints set of the solution delegate. In chapter 7.1.2.3 the security
constraint sets and their usage have been illustrated and described in detail. After executing
the solution closure, the delegate returns the constraints of the new constraints set and the child
constraints set as the result of the solution execution.

8.4 SOA Security LAB Usage

The SOA Security LAB implements the use cases introduced in this chapter to model, execute,
and analyse Web Service scenarios. To enhance the usability of our LAB, a wizard is integrated
that guides users through this process. Figure 8.10 illustrates the activities in the overall process.
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Figure 8.10: Process to Model, Execute, and Analyse Web Service Scenarios

Each activity is supported by a wizard step that provides a view for a use cases introduced in
section 8.1. These wizard steps are used as follows:

1. Modelling of Composed Applications – The first wizard step enables users to create
a composed application by modelling the structure of the desired system (use case UC 1.1,
cf. Figure 8.1). Moreover, security related aspects such as security intentions and trust
relationships can be modelled as well. This wizard step integrates the web-based modelling
tool Oryx [DOW08] to model the scenario structure as described in section 8.2. The security
design language SecureSOA (see section 1.2.1) is added as a stencil set to this tool.

Figure 8.11 illustrates the modelling of a SecureSOA scenario in the first wizard step. This
scenario defines a web shop that is composed of three Web Services. The Classical Music
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Figure 8.11: Scenario Modelling

Shop Service manages the items that are offered by the Shop Application. To handle the
payment and delivery of purchased items, the services Order Processing Service and Money
Transfer Service are orchestrated as well. These services are annotated with security inten-
tions to require the authentication of users and the confidentiality of conveyed information.
An identity provider is used to manage user accounts. The trust relations indicate that the
Money Transfer Service relies on authentication statements issued by the identity provider.

To guarantee the instantiation of models in virtual machines, the modelling editor performs
a verification of SecureSOA scenarios. In case of modelling errors, the editor highlights
related modelling elements. For example, a composed web application must be connected
to services that implement required interfaces. Moreover, the modelled security intentions,
annotations and trust relationships are verified to ensure that security patterns can be
applied to secure a scenario. For instance, the security intention ’user authentication’
requires a trust relationship between the service and its clients to enable the authentication.
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2. Security Profile Configuration – In addition to the system model, the user has to specify
security profiles that are referenced by security intentions. As introduced in section 1.2.1,
each profile describes security mechanisms that can be used to secure the composite appli-
cation. The SOA Security LAB provides a high level security profile and a default profile
for each scenario. These profiles can be altered in the second wizard step shown in Fig-
ure 8.11. For example, a certificate-based authentication can be configured in a profile
instead of a password authentication. The SOA Security LAB verifies that a required set
of security mechanisms is configured.

Figure 8.12: Configuration of Security Profiles

119



CHAPTER 8. PROOF OF CONCEPT: THE SOA SECURITY LAB

3. Security Pattern Application – After specifying the SecureSOA model and related
profiles, the pattern engine is used to transform security intentions to an instance of our
domain-independent policy model. The result of this transformation is illustrated in the
third wizard step illustrated in Figure 8.13. For each SecureSOA object, the security
patterns are listed that have been applied.

Figure 8.13: Security Pattern Application

For example, the security configuration pattern Secrecy has been applied to the Order
Processing Service that has been annotated with the security intention Data Confidentiality.
Since this pattern requires the enforcement of the security intention Data Protection, the
pattern engine has selected and applied the pattern Message Protection. As illustrated in
Figure 8.13, these patterns are shown in the list of applied patterns.
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4. Generation of Security Policies – In the next step, our domain-independent model
is transformed to WS-SecurityPolicy documents that can be deployed and enforced at
the services and frontends in the virtual machine. These policies are used to enhance
the service interface descriptions (WSDLs files) with security requirements. The fourth
wizard step implements use case UC 3.1 (cf. Figure 8.1) and enables users to inspect these
interface descriptions and embedded security policies. As illustrated in Figure 8.14, our
SOA Security LAB supports the highlighting of metadata parts such as WS-SecurityPolicy
assertions.

Figure 8.14: Inspection of Generated Security Policies
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5. Composed Web Application Execution – The deployment management component
shown in Figure 8.2 handles the instantiation and setup of virtual machines (use case UC 2,
cf. Figure 8.1). The web frontend and the orchestrated Web Services used in a scenario are
deployed at the application server running in a virtual machine. In addition, the security
policies created in the previous step are used to configure these components.

The web frontend of the composed application is shown in the fifth step to enable the exe-
cution of the scenario. As shown in Figure 8.15, the shop application provides an interface
to search for pieces of music. The list of items offered by the store has been provided by
the Classical Music Shop Service. Moreover, the shopping cart of the store offers the pos-
sibility to purchase items by invoking the orchestrated services Order Processing Service
and Money Transfer service.

Figure 8.15: Execution of a Composed Application
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6. Inspection of Security Modules and Exchanged Messages – The execution of Se-
cureSOA scenarios in virtual machines results in the exchange of Web Service messages.
In a final step, the flow of messages is visualised (use case UC 3.2, cf. Figure 8.1) as
shown in Figure 8.16. Sequence numbers are assigned to each interaction dependency in
the SecureSOA model that refer to the exchanged messages listed below.

Figure 8.16: Visualisation of the Message Flow

In addition, users can select the Web Services and web application in the model to inspect
the security modules that are used to enforce security policies. Figure 8.17 visualises the
chain of security modules of the Order Processing Service that processes incoming and
outgoing messages. An intercepted message is shown that is received from the network and
passed to a security handler. In compliance with the security intention Data Confidentiality,
WS-Security and XML-Encryption are used to secure this message.

123



CHAPTER 8. PROOF OF CONCEPT: THE SOA SECURITY LAB

Figure 8.17: Message Handler Chain Illustration

The messages that passed through these modules can be inspected as well (use case UC 3.3,
cf. Figure 8.1). Figure 8.18 shows the visualisation of the incoming message in our platform.
Our SOA Security LAB analyses visualised messages and highlights identified security
protocols and mechanisms.

Figure 8.18: SOAP Message Visualisation
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Chapter 9

Conclusion

In this thesis, a model-driven methodology has been presented to simplify the creation and
handling of security policies for service-based systems. High level security requirements annotated
in visual system design models are translated to specific security policies using the security
pattern-driven transformation introduced in this work.

Security policies for service-based systems state technical security requirements and capabilities
to enable interactions between service providers and service consumers in a secure manner. In
particular, these policies facilitate a declarative configuration of services and enable a negotiation
of security requirements with service consumers. Consumers can retrieve a service’s policies to
select a policy alternative to invoke a service securely. In the scope of the Web Service specifica-
tions, WS-Policy and WS-SecurityPolicy provide a language to organise security requirements in
policies concerning the usage of security mechanisms, methods, and standards in Web Service-
based systems. Since a multitude of security mechanisms and options must be required and
combined in policies to implement specific security patterns for service-based systems, the cre-
ation of security policies is an error-prone task. Strong security expert knowledge is needed due
to the complexity of security policy languages.

Since model-driven security promises a solution to these issues by enabling a simplified genera-
tion and management of security policies, this topic has been in the focus of security research
in recent years. Multiple extensions of modelling languages have been proposed to state and
review security requirements on a non-technical layer. These extensions provide the foundation
for model-driven approaches that enable a formal verification of security requirements or facil-
itate the transformation of these requirements to specific security configurations (e.g. access
control policies). However, the approaches proposed so far are not capable to address complex
security use cases in service-based systems, since they do not provide a generic modelling and
transformation framework on the basis of SOA security best practices.

To overcome these limitations, this thesis presented a model-driven approach that introduced a
security modelling language to enhance system design models with security modelling elements
for service-based systems. Moreover, our approach provides a transformation process that utilises
security patterns for SOA to guide the generation of security policies for service-based systems.

The model-driven approach introduced in this work is based on a meta-model for security in
Service-oriented Architectures. This model has been presented in this thesis and provides a
basic SOA interaction model to facilitate the description of participants and their relations in
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SOA. In addition, this model enables the representation of security policies as well as specific
security requirements concerning confidentiality, integrity, and authentication. Our SOA security
meta-model provides the foundation of our security design language SecureSOA that facilitates
the enhancement of any system design modelling language with security artefacts. The sys-
tem design language FMC block diagrams has been enhanced with SecureSOA to illustrate the
modelling of security requirements. Moreover, the SOA security meta-model has been used to
specify a domain-independent model that supports our model-driven transformation process by
providing an abstraction layer to security policy languages. The model-driven process translates
security requirements expressed in SecureSOA models to our domain-independent policy model.
A mapping to security policy languages such as WS-Policy and WS-SecurityPolicy enables the
generation of specific security configurations.

However, additional knowledge is required to perform the transformation from simple secu-
rity intentions defined in SecureSOA models to technical requirements stated in our domain-
independent model. To drive this transformation, we foster the usage of security patterns that
convey the required security expert knowledge in a reusable manner. As common security pat-
terns are stated in an informal way, a formalised pattern structure has been introduced in this
work to enable an automated application of security patterns. This pattern structure has been
denoted as security configuration patterns. Each pattern provides a solution for a problem in a
specific context. A problem is identified by a security intention, while the context of a security
configuration pattern is specified by a relational SecureSOA model. The forces of a pattern state
conditions on this model to define the applicability of this pattern. The solution provided by a
pattern results in the creation and modification of security constraints in the domain-independent
model.

Moreover, a domain-specific language has been introduced in this thesis to enable the specification
of a pattern’s forces and solution in an accessible way. On the basis of our security configuration
pattern DSL, a system of security configuration patterns has been presented that addresses the
security intentions User Authentication, Identity Provisioning, Data Confidentiality, and Data
Authenticity. The formal semantics of the security configuration pattern DSL and SecureSOA
enable a formal verification of the transformation process. To illustrate the formal verification
of security intention transformations, we have proven that data transfer objects preserve their
encryption properties during the transformation process.

Altogether, the model-driven approach introduced in this thesis constitutes a suitable foundation
to describe and implement a model-driven transformation of abstract security intentions to en-
forceable security configurations for service-based systems. To illustrate the applicability of our
approach, the SOA Security LAB has been introduced as a model-driven platform to configure,
instantiate, execute, and analyse Web Service-based scenarios.

The approach presented in this thesis has been designed to provide a generic framework and
methodology to implement model-driven security for service-based systems. So far, security
intentions, constraints, ontologies and patterns have been specified to express requirements con-
cerning the confidentiality and integrity of exchanged information and the identification and
authentication of users. In future work, SecureSOA can be customized with additional security
intentions such as a non-repudiation intention. The enhancement of SecureSOA with additional
security intentions requires the provision of additional security patterns, which can be declared
using our security pattern language. For example, security patterns for non-repudiation have
been listed in [QMT+10]. Moreover, the provision of additional security configuration patterns
might require the enhancement of our policy model with additional constraints. For instance, a
logging constraint might be required to realise non-repudiation.
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To prove that the statement of security intentions results in the generation of corresponding
security constraints, this thesis illustrated the formal verification of this transformation step.
A formal verification of the entire transformation process including the policy generation step
was not in the scope of this thesis, but would be a comprehensive topic for future research.
Such a verification would require the formalisation of supported policy languages such as WS-
SecurityPolicy and the specification of a formal semantic for security constraint attributes.

Another important aspect in the scope of SOA refers to the seamless composition of independent
services to complex service orchestrations. The model-driven approach presented in this thesis
can be used to generate security policies for composed services as well. Nevertheless, it must be
considered that composed services orchestrate multiple other services, which have their own se-
curity requirements. For example, specific identity information of service users might be required
by orchestrated services that must be conveyed across the service composition to these services.
Therefore, composed services must broker the security requirements of orchestrated services to
its consumers by including them in the service composition’s security policy. However, the ag-
gregation of security requirements retrieved from orchestrated services might result in conflicts
due to conflicting requirements. A classification of security requirement dependencies and an
approach to determine an aggregation of security requirements are described in [MWM08]. The
application of this approach to the model-driven transformation presented in this thesis would fa-
cilitate the generation of security policies for composed applications that comply to the required
level of security.
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Appendix A

Glossary

Data Transfer Object - Data Transfer Objects represent transferred information as intro-
duced by Fowler in [Fow03] and are used to model Web Service messaging. A data transfer
object is ’[...] little more than a bunch of fields and the getters and setters for them. [...]
it allows you to move several pieces of information over a network in a single call. [...] the
data transfer object is responsible for serializing itself into some format that will go over
the wire.’

Domain-independent Security Policy Model - The domain-independent security policy
model has been introduced in this thesis to provide an abstraction layer for security policy
languages such as WS-SecurityPolicy. It is used to express technical security requirements
concerning the exchange of messages between clients and services. A domain-independent
security policy consists of a set of policy alternatives. Each policy alternative requires a
set of security constraints that describe technical requirements for a specific security goal.

Object - An object represents an actor (e.g. service or client) participating in a service-based
communication. Objects consist of a set of attributes and can participate in an interaction
with other objects to exchange data transfer objects.

Pattern-driven Transformation Process - The pattern-driven transformation process that
has been introduced in this work leverages security configuration patterns to transform
high-level security intentions (e.g. User Authentication) to an instance of the domain-
independent security policy model.

Policy Assertion - Policy assertions are used in WS-Policy documents [BBea05] to specify a
set of domain-specific requirements that must be fulfilled by service consumers.

SAML - SAML (Security Assertion Markup Language) [RHPM06] is an XML-based framework
that has been standardised by the OASIS Security Services Technical Committee. It enables
the description, issuing, and exchange of identity information.

SecureSOA - SecureSOA is a security modelling language for service-based systems that en-
ables the enhancement of system design modelling languages with high-level security inten-
tions and security annotations. The syntax, notion, and formal semantics of this language
have been introduced in this thesis. The enhancement of system design languages is based
on the integration schema introduced by SecureUML.
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Security Annotation - A Security Annotation is a modelling element of SecureSOA that as-
sociates a set of security attributes with objects and data transfer objects to represent
security-related capabilities. In the scope of this thesis, the security annotations ’User Di-
rectory’ and ’Supported Claim Types’ are provided to express security capabilities related
to identity management.

Security Configuration Pattern - Security Patterns provide reusable security expert knowl-
edge to solve security-related problems. A special class of formalized security patterns
(denoted as Security Configuration Patterns) has been introduced in this thesis. These
patterns provide rules and operations to create security constraints on the basis of high-
level security intentions. A security configuration pattern addresses a specific problem that
is described by a security intention and specifies operations to perform the generation and
modification of security constraints. The applicability of a pattern depends on the forces
of this pattern that specify conditions in the scope of a SecureSOA model.

Security Configuration Pattern DSL - The security configuration pattern domain-specific
language (DSL) provides the syntax and semantics of operations that enable the specifica-
tion of security configuration patterns’ forces and solutions.

Security Configuration Pattern System - A security configuration pattern system is a set
of security configuration patterns that address the security intentions provided by Secure-
SOA.

Security Constraint - A security constraint is an element of our domain-independent policy
model and is used to specify technical security requirements for a specific security goal. In
the scope of this thesis, security constraints are defined for authentication, confidentiality,
and integrity.

Security Design Model - A security design model enables the visual modelling of service-
based systems with security requirements. It is composed of a security design language
that has been enhanced with SecureSOA.

Security Intention - A security intention is a modelling element defined by SecureSOA and
is used to annotate objects (e.g. services) and data transfer objects (e.g. service requests)
with security requirements. These requirements demand the enforcement of specific security
goals or the provision of security related information. In the scope of this thesis, a basic set
of four security intentions has been defined: User Authentication, Identity Provisioning,
Data Authenticity, and Data Confidentiality.

Security Interaction Model - The SOA interaction model describes basic entities and rela-
tions of service-based systems. It provides the foundation of the security modelling language
SecureSOA and the domain-independent security policy model that have been introduced
in this work.

Security Ontology - A security ontology defines high-level security concepts that provide the
vocabulary for the security configuration patterns. In addition, an ontology associates
these high-level security concepts with concepts that represent the security mechanisms
listed in the security profiles. For example, a security configuration pattern might contain
the Operation ’USE(IssuedToken)’, while a security profile might list ’SAML-2.0-Token’ as
a supported security mechanism. To enable the execution of the security pattern operation,
a security ontology would provide the knowledge that a SAML-2.0-Token is an IssuedToken.
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Security Policy - Security Policies are used in the scope of service-based systems to specify
technical security requirements for specific subjects (e.g. services). The syntax of a se-
curity policies is specified by a security policy language. Various languages exists (e.g.
WS-Security or Rampart Configuration Language) to support different platforms and ap-
plication domains. A domain-independent security policy model has been introduced in
this work that serves as an abstraction layer to security policy languages.

Security Profile - A security profile provides a list of technical security mechanisms (e.g.
SAML 2.0) that can be used by the pattern-driven transformation process to translate
high-level security intentions (such as ’User Authentication’) to technical security policies.
Profiles are labelled by a name and are referenced by security intentions, which refer to
services that are configured with security policies generated by the pattern-driven transfor-
mation process. The security mechanisms listed in the profiles denote algorithms, protocols
and standards that are supported by the run-time environment of the configured services.
Multiple security profiles can be defined for a run-time environment to group security
mechanisms in different security levels. For example, a profile ’low security’ might list
username/password as a valid security mechanism, while a profile ’high security’ would
require a certificate-based authentication method.

Security Token - Security Tokens convey user-related information (e.g. username/password
or certificates) and are serialised in an XML structure. A basic set of security tokens is
specified by WS-Security to enable a secure messaging.

Security Token Service (STS) - A service that implements a WS-Trust interface is denoted
as a security token service (STS).

SOA Security LAB - The SOA Security LAB provides a test environment for secure Web
Services and supports the on-demand creation and orchestration of composed applications
and services. Our platform enables the testing, monitoring and analysis of Web Services
regarding different security configurations, concepts and infrastructure components. The
model-driven approach introduced in this thesis is used to model security requirements and
to simplify the creation of security configurations.

SOAP - SOAP [GHM+07] is an XML-based message format to exchange information using
HTTP or other protocols. Initially, it has been designed to implement an XML-based
remote procedure call. With the advent of additional Web Service specifications, SOAP
evolved into a generic messaging framework.

System Design Modelling Language - A system design modelling language provides mo-
delling elements to describe the structure of a service-based system. In the scope of this
thesis, FMC block diagrams are used as a system design modelling language to enable the
modelling of clients, services and their communication channels.

Web Service - A Web Service provides remotely accessible application components (referred
to as Web Methods), listens for certain text-based requests (usually made over HTTP),
and reacts to them. Although Web Services are protocol-independent, most Web Service
implementations expect their Web Methods to be invoked using HTTP-requests conveying
SOAP messages based on XML. Due to the usage of these standards, Web Services are
independent of operating systems and programming languages.

WSDL - The Web Service Definition Language (WSDL) specification [CMRW07] provides an
XML-based language to describe service interfaces in a platform and protocol independent
way. WSDL represents services as a set of endpoints, which offer multiple operations.
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WS-Policy - The WS-Policy W3C standard [BBea05] describes an extensible, XML-based
grammar to express general characteristics, capabilities and requirements of actors in an
XML Web Service-based system. A WS-Policy document provides a series of policy al-
ternatives, while each policy alternative describes a collection of policy assertions. Policy
assertions are used to specify requirements that must be fulfilled by service consumers.
Additional specifications such as WS-SecurityPolicy provide policy assertions for specific
application domains.

WS-Security - WS-Security [NKMHB06] defines enhancements for SOAP to enable a secure
messaging in terms of integrity, confidentiality, and authentication. This specification pro-
vides a framework to integrate digital signature and encryption methods and is based on
XML-Signature and XML-Encryption to enable an end-to-end protection of messages. In
addition, it enables the exchange of key and authentication information. WS-Security has
been proposed as a standard by Microsoft and IBM in 2002 and was established as an
OASIS standard in 2004.

WS-SecurityPolicy - WS-SecurityPolicy [NGG+07a] is an OASIS Standard that provides
a set of security-related policy assertions for WS-Policy. These assertions express re-
quirements and capabilities concerning the usage of WS-Security, WS-Trust, and WS-
SecureConversation.

WS-Trust - WS-Trust [NGG+07b] defines a Web Service interface to issue, renew, verify, and
cancel security tokens. Security tokens are used to convey user information to services
to enable the authentication of users. A service that provides this interface is denoted as
Security Token Service (STS).
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