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A growing number of publications presenting results from sequencing natural history
collection specimens reflect the importance of DNA sequence information from such
samples. Ancient DNA extraction and library preparation methods in combination with
target gene capture are a way of unlocking archival DNA, including from formalin-fixed
wet-collection material. Here we report on an experiment, in which we used an RNA
bait set containing baits from a wide taxonomic range of species for DNA hybridisation
capture of nuclear and mitochondrial targets for analysing natural history collection
specimens. The bait set used consists of 2,492 mitochondrial and 530 nuclear RNA
baits and comprises specific barcode loci of diverse animal groups including both
invertebrates and vertebrates. The baits allowed to capture DNA sequence information
of target barcode loci from 84% of the 37 samples tested, with nuclear markers being
captured more frequently and consensus sequences of these being more complete
compared to mitochondrial markers. Samples from dry material had a higher rate of
success than wet-collection specimens, although target sequence information could
be captured from 50% of formalin-fixed samples. Our study illustrates how efforts
to obtain barcode sequence information from natural history collection specimens
may be combined and are a way of implementing barcoding inventories of scientific
collection material.

Keywords: target capture, type specimens, molecular species identification, museum specimens, cross-species
capture

INTRODUCTION

The growing interest in accessing DNA of natural history wet-collection specimens, which have
long been recalcitrant regarding DNA analyses, is reflected in increasing numbers of publications
reporting sequencing of this highly fragmented DNA (e.g., Lyra et al., 2020; Rancilhac et al., 2020;
Scherz et al., 2020; Hahn et al., 2021; Straube et al., 2021a,b). Combining ancient DNA extraction
methods, single stranded DNA library construction and short-read high throughput sequencing
technology allows for obtaining DNA sequences of museum specimens at unprecedented scales
(e.g., Hahn et al., 2021; Straube et al., 2021a). In taxonomy, unlocking DNA sequence information
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from rare and extinct species as well as type material is of
particular interest. Numerous described species are only known
from few, aged museum specimens and often re-collection efforts
are hindered by several factors such as extensive sampling
efforts, conservation concerns, politically instable situations in
countries of origin or simply rareness of the species in question.
However, rare species described from remote localities are
of special concern in conservation, directing the attention to
museum specimens as potential alternative DNA sources for
taxonomic evaluation as basis for conservation efforts. Besides
their undoubted importance for taxonomic research (e.g., Lyra
et al., 2020; Rancilhac et al., 2020; Scherz et al., 2020; Straube
et al., 2021b), type specimens may as well represent the only
representatives of a rare or extinct species. Most of such
specimens lack a phylogenetically close reference genome, but for
taxonomy, barcode genes for species delimitation are generally
sufficient as references for phylogenetic placement of species’
haplotypes. In these circumstances, DNA sequences from type
material can play a key role.

Ancient DNA methods have paved the way for accessing DNA
sequence information from archival samples, including formalin-
fixed wet-collection samples (Stiller et al., 2016; Gansauge et al.,
2017; Straube et al., 2021a), even on the genome level (Hahn
et al., 2021). These approaches are laborious and time consuming,
however. As shown previously in Straube et al. (2021a), the
level of target DNA in initial test-sequencing datasets may be
low. Shotgun sequencing of such DNA libraries then becomes
inefficient in terms of associated costs necessary to attain
coverage levels allowing for reconstructing specific barcode loci.
Target gene capture as alternative can be an additional costly and
time-intensive step, especially when a second round of capture is
performed which has been shown to increase sequencing success
(e.g., Li et al., 2013, 2015; Templeton et al., 2013; Springer et al.,
2015; Paijmans et al., 2016). In an effort to increase efficiency
and decrease overall costs for target capture of sample specific
barcode markers in museum specimens, we report here on the
design and successful application of an RNA bait set targeting
taxonomically useful barcode markers in a variety of natural
history collection samples of different phyla. Undergoing this
process, we also aim to detect factors that may have an impact
on the capture success such as different target regions, tissue
type, fixation history, and genetic distance between bait and
target sequences.

MATERIALS AND METHODS

We obtained 37 samples including dried bone, teeth, and soft
tissue samples as well as muscle and skin from wet-collection
specimens. Representatives of the following classes were
included: Demospongiae, Gastropoda, Polychaeta, Malacostraca,
Insecta, Actinopterygii, Chondrichthyes, Amphibia, and Reptilia.
The investigated samples range in age from 25 to 192 years
(Supplementary Table 1). Along with the tissue samples, we
obtained information on the samples using a standardised sample
sheet (Supplementary Table 2). The requested information
relates to the age, fixation, and preservation details as far

as available, target barcode loci, bait sequences to capture
specific barcode loci, reference genomes and taxonomic history
of the sample. DNA was extracted from samples listed in
Supplementary Table 1 following the different DNA extraction
treatments described in Straube et al. (2021a) based on the
ancient DNA extraction protocol specified in Dabney et al. (2013)
using a GuSCN based extraction buffer (Rohland et al., 2004).
Subsequently, single stranded DNA libraries were prepared
for each sample following the protocol by Gansauge et al.
(2017). For obtaining information on the presence of target
DNA, test-sequencing as described in Straube et al. (2021a)
was performed. Independent of presence of endogenous DNA,
target capture was subsequently performed for all samples to
test if the limited information of the test-sequencing data may
fail to detect endogenous DNA even though it is present in
the DNA library.

For target capture of barcode loci, specific bait sequences
and reference genomes provided partially by our collaborators,
but mostly obtained from public resources (Supplementary
Table 3) were sent to Arbor Biosciences R© and split into a
mitochondrial and a nuclear bait set. For both sets of sequences,
80 nt, 3x tiled baits were designed. While the mitochondrial
baits were not further processed bioinformatically, the nuclear
baits were filtered in two steps. First, baits were blasted to
reference genomes from available most closely related species
(Supplementary Table 1). Any bait that had blast hits to a
region of the genome that was greater than 25% soft-masked
for repeats was removed. The second filtering step was based on
the number of bait hits and the predicted melting temperatures
between the bait and those blast hits to detect the number of
binding sites a bait may have, which ultimately resulted in the
exclusion of 97 nuclear baits. A final set of 2,492 mitochondrial
and 530 nuclear RNA baits was produced. Target capture was
performed for each sample listed in Supplementary Table 1
following the manufacturer’s protocol for N = 2 samples. For the
remaining 35 samples a target-gene enrichment protocol based
on the Mybaits-manual-v3 was used, which is cost-reducing
and requires less of RNA baits per sample compared to the
recommended amount but maintaining the same level of target
capture success (Huang et al., 2021). For both protocols, we used
an in-solution hybridisation temperature of 65◦C for 24 h. The
capture was performed twice including a second amplification
of libraries after the first round of target capture. Optimal
number of amplification cycles was estimated for each library
by performing a qPCR. DNA libraries were double-indexed
during amplification and sequenced as described in Paijmans
et al. (2017). Sequencing was performed on an Illumina Nextseq
500 sequencing platform, using 500/550 High Output v2.5 (75
cycles, Illumina 20024906) kits (75 bp single-end reads). All
laboratory steps as well as sequencing was conducted in the
molecular laboratories of the AG Hofreiter at the University of
Potsdam. At least three million sequencing reads were targeted
for each sample to gain sufficient coverage of target markers.
Sequencing reads available after target capture underwent quality
checking and trimming as in Straube et al. (2021a) and were
subsequently used to reconstruct the target barcode loci using
mapping and consensus sequence generation in BWA-ALN
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v.0.7.17 (Li and Durbin, 2009) and Bcftools v.1.9 (Li, 2011).
We used either the bait sequences or phylogenetically closer
reference sequences which became available after bait production
(Supplementary Table 4). Afterwards, consensus sequences were
analysed for phylogenetic position and classification.

We tested for correlation between the completeness of target
genes after hybridisation capture and the phylogenetic distance of
RNA bait sequences to target consensus sequences (p-distances).
Therefore, each target consensus sequence was aligned to the
appropriate bait sequence as listed in Supplementary Table 1
using Mafft v.7.49 (Katoh et al., 2002) and resulting p-distances
were calculated using MEGA v.11.0.10 (Kumar et al., 2016). If
several bait sequences were available for aligning to a genetic
locus of a species, the reference with the smallest p-distance to the
consensus sequence was used. For correlation analysis, Pearson’s
correlation coefficient was calculated, and a t-test was performed.
Specimens with too low endogenous DNA content to create a
consensus sequence after target capture were not included in the
analysis. We further tested for correlation between sequencing
depth and completeness as described above.

RESULTS

After test-sequencing, we detected endogenous DNA in most
of our samples (91.9%; Supplementary Table 1). For samples
that showed no endogenous DNA after test sequencing, target
capture attempts failed. Available sequencing data after target
capture ranged from 391,964 to 12,195,369 raw reads and
91,101 to 10,611,372 reads after trimming. Trimmed reads
including PCR duplicates that mapped to the reference sequences
ranged between 0 and 69.23% (Supplementary Table 4). We
were able to capture DNA sequence information of target
barcode loci from 84% of our samples (Figure 1), 73.52% for
mitochondrial and 94.28% for nuclear target genes, respectively.

The completeness of all nuclear barcode loci is 85.15% and higher
than that of the mitochondrial loci, the completeness of which
is 72.25% (Figure 1). The best results in terms of consistency
and sequence completeness were obtained from the crocodilian
bone and dry skin samples with an average consensus sequence
completeness of 98.31%. For wet-collection material we obtained
sequence information for 86.2% of the target genes and an
average sequence completeness of 71.74%. Similar differences
are observed when comparing the different materials of the
Demospongiae samples, with an average consensus sequence
completeness of 55.02% for the wet collection tissues and 74.38%
for the dried tissues, respectively. Three of the ten specimens
for which formalin fixation is assumed resulted in target gene
completeness above 75% (Figure 1). The Mollusca samples in
particular showed a high target sequence completeness with an
average of 96.12% in all five target loci tested.

The p-distance, defined as proportion of different nucleotides
per total numbers of nucleotides compared, was on average
7.62% (range between 0 and 56.80%) and did not correlate with
the target gene completeness (Pearson correlation coefficient:
r = −0.20; p = 0.0). We found similar results when calculating
the correlation coefficient for mitochondrial and nuclear data
separately (Pearson correlation coefficient: r = −0.40; p = 0.49
for mitochondrial data; r = −0.22; p = 0.21 for nuclear data).
A correlation between sequencing depth and target marker
completeness was not detected (r = 0.29).

DISCUSSION

In this report, we present results from a target capture experiment
using a mixed bait set covering specific taxa across several animal
phyla (Porifera, Annelida, Mollusca, Arthropoda, and Chordata)
set on a range of museum collection samples. We were able to
obtain sequence information for 75% of all samples which is

FIGURE 1 | Completeness of target genes after hybridisation capture. Dry material is indicated in bold, all other samples originate from wet-collection specimens.
Assumed formalin-fixation before wet-collection preservation of specimens is indicated by an asterisk.
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promising to be useful sequence information for phylogenetic
placement of specimens. The obtained sequences will further be
used for sample specific phylogenetic analyses. For the samples
of the classes Demospongiae, Gastropoda, Polychaeta and
Amphibia, we received consistently high sequence completeness
(Figure 1 and Supplementary Table 4). Above all, dry
crocodilian material (tooth and bone) that are up to 100 years
old (Supplementary Table 1) have shown to be a reliable source
of DNA. Several samples of the classes Malacostraca, Insecta and
Chondrichthyes targeted for mitochondrial and nuclear loci show
low capture success. The single actinopterygian sample failed,
which may have been due to long-term formalin preservation
(N. Schnell pers. comm.). Although our results imply that target
capture of nuclear markers outperforms capture of mitochondrial
markers, the differences are likely introduced by samples with a
generally low completeness of target sequences. In cases where
both nuclear and mitochondrial markers were captured, similar
results regarding the target sequence completeness were obtained
(Figure 1). In general, wet-collection specimens showed poorer
results compared to dry material. Water in ethanol solutions used
for long-term storage intensifies hydrolysis (Lindahl, 1993) and
may have contributed to our results.

To overcome potential disadvantages of large phylogenetic
distances between bait and target sequences, a second round
of target capture, as performed herein, can increase capture
efficiency (e.g., Li et al., 2013; Paijmans et al., 2016). In this study,
the p-distances between the bait sequences and the completeness
of the consensus sequences are not correlated, which might
be different if all consensus sequences were complete and
should be investigated in further studies. Further experimental
optimisation such as hybridisation temperature and time may
allow for increasing capture efficiency in samples with low or
no target gene completeness. However, our study also includes
samples that should have small phylogenetic distances between
bait and target sequences (e.g., Etmopterus spp., Figure 1).
We were able to recover the complete mitochondrial marker
sequence from only a single of these specimens (E. pycnolepis).
As insufficient sequencing effort can be ruled out, reasons for
the failure of the remaining samples could be related to fixation
and preservation induced DNA damage. Details on the fixation
history of most samples are poorly known (Supplementary
Table 1), however, formalin has severe DNA damaging effects
(Hoffman et al., 2015). Different ways of formalin fixation can
also play a role in the success of DNA recovery (e.g., Paireder
et al., 2013) ultimately influencing the amount and complexity
of available target DNA for the target capture experiment. Besides
these factors degradation and associated short DNA fragment size
may have impeded the mapping attempts (Huson et al., 2007).

An alternative to commercially purchased RNA baits as used
in this study are home-made DNA baits using PCR products
of amplified target markers for DNA bait library production
(González Fortes and Paijmans, 2019). In general, bait production
for a small sample number targeting a single or few barcode
markers of phylogenetically close taxonomic units is costly
and inefficient. A combination of taxon-specific bait sequences
for target capturing widely different taxa can overcome these
limitations and enables the simultaneous sequencing of several

phylogenetically distant taxa of interest. Our approach allows
for cost-sharing between collection subsections and paves the
way for implementing barcoding inventories in natural history
collections, for example barcoding inventories of type specimens.
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