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Abstract
We consider a one-dimensional oscillatory medium with a coupling through a diffusive linear
field. In the limit of fast diffusion this setup reduces to the classical Kuramoto–Battogtokh model.
We demonstrate that for a finite diffusion stable chimera solitons, namely localized synchronous
domain in an infinite asynchronous environment, are possible. The solitons are stable also for
finite density of oscillators, but in this case they sway with a nearly constant speed. This
finite-density-induced motility disappears in the continuum limit, as the velocity of the solitons is
inverse proportional to the density. A long-wave instability of the homogeneous asynchronous
state causes soliton turbulence, which appears as a sequence of soliton mergings and creations. As
the instability of the asynchronous state becomes stronger, this turbulence develops into a
spatio-temporal intermittency.

1. Introduction

Chimera patterns is a fascinating object in coupled oscillatory systems, attracting much of attention. They
were discovered and theoretically explained by Kuramoto and Battogtokh [1] (KB) around 20 years ago.
Later, Abrams and Strogatz [2] coined the term chimera to stress an unusual situation, where in a fully
spatially symmetric setup, oscillators form a synchronous (coherent) and asynchronous (disordered)
domains. Further theoretical and experimental studies of chimeras are summarized in reviews [3–5].

A striking property of chimeras is that they are highly nontrivial at different levels of description, from
microscopic through mesoscopic to macroscopic. At a microscopic level one deals with a set of equations for
coupled oscillators. In the simplest KB setup it is a finite lattice (typically an ordered lattice, while recently
also lattices with a quenched or a time-dependent disorder have been studied [6]) of phase oscillators with a
non-local coupling with an exponential kernel. Correspondingly, the observed regime is an attractor in a
finite set of ordinary differential equations. A part of oscillators form a synchronous cluster, while other
units have frequencies different from the synchronous one. This order–disorder pattern can be classified as
a weak chaos that is, for a large number of elements, close to a high-dimensional quasiperiodic (with a large
number of incommensurate frequencies) regime.

One can drastically simplify the description at a mesoscopic level in the continuous limit (which for a
finite medium is also a thermodynamic limit). One introduces a coarse-grained order parameter,
characterizing local distribution of oscillators with one complex number. This order parameter obeys a
nonlinear dissipative partial differential equation [7–9]. This brings the problem into realm of pattern
formations in nonlinear nonequilibrium media [10, 11]. In this context the macroscopic KB chimera is a
stationary (in a proper rotating system) spatially periodic pattern [7, 12–19]. This pattern may become
unstable, what results in a breathing chimera [20–24] or in turbulent regimes [8]. In this description the
difference between synchronous and asynchronous domains is not as astonishing as at the microscopic
level; here local synchrony and asynchrony (or, in other words, local order and local disorder) are
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determined just by the values of the local complex order parameter (which has absolute value one for
synchrony, and is less than one for asynchrony and partial synchrony).

In this paper we study chimera solitons. At the mesoscopic and the macroscopic levels, existence of
solitary solutions of dissipative partial differential equations (PDEs) is not surprizing, but previous attempts
to find such solutions resulted in unstable solitons [9]. The crucial step here is to restore a physical
description of the coupling which was at the origin of the KB model. Indeed, an exponential interaction
kernel of coupling between the oscillators is motivated by a physical situations where these oscillators
interact via a diffusive field. The instantaneous exponentially decaying coupling appears in the limit of very
fast diffusion. Below we consider a more realistic situation of finite diffusion and find that this facilitates
stability of the solitary chimeras, which can be described as standing local synchronous domains on an
infinite disordered background. It belongs to a class of dissipative solitons [25–27] (thus, in
contradistinction to solitons in conservative nonlinear wave equations, its parameters do not depend on
initial conditions). Furthermore, at the same macroscopic level we study a situation where the
homogeneous disordered state becomes unstable. Here the solitons appear spontaneously, but they do not
form a regular stable lattice—instead we observe an interesting regime of soliton turbulence, where solitons
merge and emerge from the background in an irregular manner. Chimera solitons have a bounded
amplitude (because the order parameter cannot exceed one), so if the stability of a synchronous state is
enhanced, at merging events wide synchronous domains appear. We demonstrate that this leads to a
spatio-temporal intermittency [28], where the synchronous state is the absorbing one.

The found solitons can be straightforwardly modelled on a microscopic level, i.e. in a lattice of
oscillators coupled via a diffusive field. These simulations reveal a rather unexpected effect: for a finite
density of oscillators, solitons start to move. They move nearly regularly, but from time to time switch the
direction, so that the whole dynamics looks like swayings. We call this phenomenon finite-density-induced
motility because it disappears in the continuum limit. We argue that this motility is due to finite-size
fluctuations, and in this sense belongs to the class of effects where these fluctuations play a constructive role
(cf finite-size-induced transitions [29, 30] and system size resonance [31]).

The paper is organized as follows. In section 2 we introduce the model of a one-dimensional medium of
oscillators coupled through a diffusive field, including the mesoscopic description in terms of the local
order parameter. In section 3 we briefly discuss spatially homogeneous states and their stability. In section 4
we formulate the problem of finding solitary states. We present an approximate analytical approach and
compare its results with numerical ones. In section 5 we explore chimera solitons in systems with a finite
density of oscillators and demonstrate the effect of finite-size-induced motility. We show, in particular, that
the velocity decreases inversely proportional to density. In section 6 we return to the mesoscopic description
with PDEs, and explore soliton turbulence which appears when the disordered homogeneous state becomes
unstable. We summarize the results in section 7.

2. Basic model

2.1. Phase dynamics
We consider a one-dimensional medium of oscillators which interact not directly, but through a diffusive
‘chemical agent field’. This class of models has been introduced by Kuramoto and co-workers [1, 32–34].
The oscillators are described by their phases ϕ(x, t), and the medium by a complex field P(x, t), which is
dissipative and diffusive, and is driven by the oscillators. The equations have the form

∂tϕ = ζ + ε Im(P e−iα e−iϕ), ∂tP = A∂xxP − BP + C eiϕ. (1)

Here parameter ζ is the frequency of oscillators; parameters ε,α, C describe coupling between the oscillators
and the chemical agent, and parameters A, B describe diffusion and dissipation of the latter. All parameters
are real; the phase shift in the coupling is described by angle α. It is convenient to reduce the number of
variables by rescaling time, space, and the field amplitude P according to

t = at′, x = bx′, P = cH

with
c = CB−1, b2 = AB−1, a = B(εC)−1.

Then the equations take the form (we omit primes at new time and space variables)

∂tϕ = ω + Im(H e−iα e−iϕ), (2a)

τ∂tH = ∂xxH − H + eiϕ. (2b)

2
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These equations contains three essential parameters: dimensionless frequency of oscillations ω = ζB(εC)−1,
dimensionless relaxation time of the agent field τ = εCB−2, and the coupling phase shift α. Additionally,
the length of the system is a parameter, but in this paper we consider patterns in an infinite domain.

Equation (2b) has a remarkable limit of fast dynamics of the agent field H, where one sets τ → 0. In this
limit the agent can be represented via the forcing field as an integral

H(x, t) =

∫
e−|x′−x| eiϕ(x′ ,t) dx′,

substitution of which to the equation for the phases (2a) leads to an effective non-local coupling with an
exponential kernel. Note that transforming to the rotating reference frame one can get rid of parameter ω as
well. The resulting model has been shown by Kuramoto and Battogtokh [1] to possess chimera patterns in a
periodic domain (for a similar result in two dimensions see [34]).

In this paper we do not assume the relaxation parameter τ to be small. We will demonstrate that this
allows for existence of stable chimera solitons in an infinite domain.

2.2. Ott–Antonsen reduction
While equation (2) can be straightforwardly discretized for numerical simulations (we perform this in
section 5), their analytical treatment is hardly possible because the field ϕ is not smooth in
space—neighboring phases are (almost) independent in a desynchronized domain. For a tractable system of
PDEs one performs a local Ott–Antonsen (OA) reduction (see [7, 8] for its application to such a setup). It
is based on a local averaging over the distribution of the phases; the latter is assumed to be a wrapped
Cauchy distribution which is characterized by a single complex number Z(x, t)—the local Kuramoto order
parameter Z(x, t) = 〈eiϕ〉loc, where the averaging is performed over a small neighborhood of a site x.
Accordingly, the OA reduction requires a thermodynamic limit, where the density of the oscillators tends to
infinity. The equation (2) after the OA reduction take the form

∂tZ = iωZ +
1

2

(
e−iαH − eiαH∗Z2

)
, (3a)

τ∂tH = ∂xxH − H + Z. (3b)

Now, one can consider continuous profiles of order parameter Z (the profiles of H are anyhow relatively
smooth due to diffusion). The order parameter Z reaches it maximal possible value |Z| = 1 in synchronous
domains, and |Z| < 1 in partially synchronous regions (the full asynchrony with a uniform distribution of
phases corresponds to |Z| = 0).

3. Homogeneous states and their stability

3.1. Homogeneous states
For τ = 0, i.e. in the standard KB setup, equation (3) have two spatially homogeneous solutions: one fully
asynchronous with Z = 0, and one fully synchronous with |Z| = 1. These states exchange stability at
α = π/2, i.e. exactly at the value of the phase shift that corresponds to a neutral coupling. With τ ,ω �= 0,
another homogeneous state with partial synchrony 0 < |Z| < 1 becomes possible. We will not discuss here
the full bifurcation diagram for homogeneous solutions, but mention only that there is a range of relatively
small values of τ ,ω, where the homogeneous states have the following properties (see figure 1). There is a
range of values of the phase shift parameter αl < α < αr, where the partially synchronous state (PSS) exists
and is unstable. It coexists with the stable fully asynchronous and stable fully synchronous states. The
asynchronous state becomes unstable for α < αl, while the synchronous state becomes unstable for α > αr.

Analytically, these properties are derived as follows. We seek for uniformly rotating solutions and
substitute

H = h0 ei(ω+Ω)t , Z = z0 ei(ω+Ω)t (4)

in equation (3). Then h = (1 + iτ (ω +Ω))−1z0 and the equation for z0 reads

0 = z0

[
−2iΩ+ e−iα 1

1 + iτΩ
− eiα |z0|2

1 − iτΩ

]
. (5)

One can see that for all parameter values ω, τ ,α there are at least two solutions: one fully asynchronous
with |z| = zfa = 0, and one fully synchronous with |z| = |zfs| = 1. Additionally, in some ranges of
parameters, a partially synchronous solution with 0 < |z| < 1 exists. This nontrivial solution has frequency

3
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Figure 1. Existence and stability of spatially homogeneous states. Panel (a): domains of existence and stability of homogeneous
states on the plane (α, τ) for ω = 0.25. The fully asynchronous state (FAS) is stable in domains B and C and unstable in domain
A; the completely synchronous state (CSS) is stable in domains A and B and unstable in domain C; the PSS exists in domain B
and is unstable. Panel (b): the order parameter |z| of the homogeneous regimes in dependence on α for ω = 0.25, τ = 0.5. Red
squares—FAS, blue circles—CSS, green triangles—PSS. Filled (empty) markers denote stable (unstable) regimes. Panel (c):
maximum (over all wavenumbers) real part of the mostly unstable eigenvalue max (λRe) of homogeneous states for ω = 0.25,
τ = 0.5. Red dashed line—FAS, blue dotted line—CSS, green solid line—PSS. Panels (d)–(f): real parts of the mostly unstable
eigenvalue max (λRe(κ)) for ω = 0.25, τ = 0.5 and α = 1.6 (d), α = 1.8 (e), α = 2.0 (f).

Ωps = τ−1 cosα/sinα− ω, its amplitude follows from the relation

|zps|2 =
2(τω sin α− cos α)

τ sin2 α
− 1.

Additionally, the condition 0 < |zps| < 1 should be satisfied. Note that for τ = 0 a PSS can exist for
cosα = 0 only, what corresponds to a conservative coupling. In figure 1 we show regions of existence of the
PSS for several values of ω and for τ < 1 (in a larger range of parameters these domains become more
complex, but it is not our aim here to provide a full analysis). Panel (a) of figure 1 shows domains of
existence of different states for ω = 0.25 on the plane (α, τ ). Panel (b) shows the values of |z| for these
states at τ = 0.5.

3.2. Stability of homogeneous states
A detailed stability analysis of homogeneous states is presented in reference [35], here we discuss briefly
only the properties relevant for the soliton dynamics below. It is instructive to start with the case τ = 0.
Then the stability properties are determined solely by parameter α, which governs the nature of coupling:
there is a change from attractive to repulsive coupling at α = π/2. Correspondingly, the fully unstable and
the fully stable states exchange their stability at α = π/2. For small τ and ω this picture slightly changes: a
domain αl < α < αr appears, where both these states are stable; this is exactly the domain where also a PSS
exists, which is unstable. This is illustrated in figure 1(c), where the maximal (over the full range of
wavenumbers k) values of the growth rate of small perturbations on top of homogeneous states are shown.
The nature of stability and instability is clear from panels (d)–(f), where we depict the real part of the
eigenvalues in dependence on the wavenumber k, at three parameter values denoted with the markers. In
the situation shown in panel (e), both states |zfs| = 1 and |zfa| = 0 are stable, but the intermediate state is
unstable. For the soliton solution below the stability properties of the FAS are mostly important. There are
two possible types of instability: one is a long-wave instability (unstable are modes with wave numbers
0 � k � klw), another is a short-wave instability (modes with k � ksw are unstable). For ω < 1/2 only the
long-wave instability is relevant. This case is illustrated in figure 1(d).

4
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4. Solitary chimera

4.1. Equations for a solitary profile
We look for solitary solutions of equation (3) in the form

Z(x, t) = z(x)ei(ω−ν)t , H(x, t) = h(x)ei(ω−ν)t . (6)

The value of ν is the ‘eigenvalue’ of the found solution, for α close to π/2 it is positive. Then equation (3a)
reduces to an algebraic equation −2iνz = e−iαh − eiαh∗z2. Only the solution having absolute value less than
one should be used:

z(x) =
ν −

√
ν2 − |h(x)|2

eiβh∗(x)
. (7)

Here we introduce β = α− π/2, it will serve as a small parameter in the analytic expressions for a soliton.
Substituting (7) in (3b), we obtain a differential equation for the complex field h(x):

h′′ − (1 + iτ(ω − ν)) h =

√
ν2 − |h|2 − ν

eiβh∗ . (8)

We seek for localized solutions with |h(x)| → 0 for x →±∞, i.e., for homoclinic solutions of (8).
Both for a numerical analysis and for a theoretical treatment it is convenient to rewrite the fourth-order

ODE equation (8) as a third-order system [9], this is always possible due to invariance of these equations to
phase shifts. Representing h(x) = r(x)exp[iθ(x)] and introducing a variable q = r2θ

′
, we get a system of real

equations which have different form at small and large amplitudes r. In domain |r| � |ν| (this corresponds
to a locally PSS of oscillators) the system reads

r′′ = r +
q2

r3
+

√
ν2 − r2 − ν

r
cos β, (9a)

q′ = τ(ω − ν)r2 − (
√
ν2 − r2 − ν) sin β. (9b)

In domain |r| > |ν| (this corresponds to a synchronous state of oscillators) the system reads

r′′ = r +
q2

r3
− ν

r
cos β +

√
r2 − ν2

r
sin β, (10a)

q′ = τ(ω − ν)r2 + ν sin β +
√

r2 − ν2 cos β. (10b)

A homoclinic solution (with r, q vanishing at ±∞), which completely lies in the domain |r| < |ν| is a
partially synchronous soliton (it has no synchronous part); a homoclinic solution with a patch in the
domain |r| > |ν| is a chimera soliton, it has a central synchronous part and disordered tails.

A numerical procedure for finding a soliton is straightforward: one starts two solutions in a vicinity of
r = q = 0 at large positive and large negative values of x, and by virtue of shooting matches these solutions
at x = 0 using ν as the adjustment parameter. In this way, for different parameters τ ,ω,β one finds families
of solitons. However, there is a possibility to construct an analytic approximation to a soliton solution,
which we present in section 4.2.

4.2. Analytic approximation of a soliton and comparison to numeric
As has been first explored in [9], for β = τ = 0 one can describe the partially synchronous soliton
analytically. Indeed, in this case q = 0 is a solution of (9b) and (9a) is a second-order equation, solution of
which can be represented as an integral. We will show below that for small β, τ the branches of solitons can
be found in a perturbative manner.

It is convenient to set first q = 0 in both equations (9a) and (10a) (although in the latter case it is not an
exact solution of (10) even for β = 0). This allows for introducing a potential U(r) and for formulation of
the equations (9a) and (10a) as the dynamics in this potential (here and below, for brevity of notations, we
use that ν > 0):

r′′ = −dU(r)

dr
, U(r) =

⎧⎨
⎩
−r2/2 −

√
ν2 − r2 + ν ln

(√
ν2 − r2 + ν

)
− ν (ln(2ν) − 1) , |r| < ν,

−r2/2 + ν ln
(
|r|
)
− ν (ln (2ν) − 1) , |r| � ν.

(11)
Here a constant term is added to U(r) to ensure U(0) = 0.

Let us now discuss possible soliton solutions of (11) (these are generally not the soliton solutions of the
original equations because we assume q = 0 here). Potential (11) (see figure 2) has a maximum at r = 0 for

5
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Figure 2. Potential function U(r) (11) for different values of the frequency ν. Green solid line with a square marker corresponds
to a soliton regime without a fully synchronous domain for ν∗∗∗ < ν < ν∗∗ . Blue solid line with a triangular marker corresponds
to a one-point soliton chimera for ν = ν∗∗. Blue solid line with a circle marker corresponds to a soliton chimera for ν∗∗ < ν <
ν∗. Red solid line with a diamond marker corresponds to a soliton with maximal amplitude for ν = ν∗ . Gray dashed lines
correspond to non-soliton solutions.

ν > ν∗∗∗ = 0.5, this defines one border for the soliton existence. The potential has also a maximum at finite
amplitude r∗ = (ν∗)1/2. The condition U(r∗) = 0 defines another border for the soliton existence:
ν∗ = e/4 ≈ 0.679 57. The change of the type of soliton (i.e. whether it is completely in the domain r < ν or
has a part in the domain r � ν happens if U(r∗∗) = 0 and r∗∗ = ν∗∗. This condition yields ν∗∗ = 2(1 −
ln 2) ≈ 0.6135. Only solitons for ν∗∗∗ < ν < ν∗∗, which are fully partially synchronous, are also the solitons
of the full equation (9) for τ = β = 0 (because in this case also q = 0). In contradistinction, solitons in (11)
for ν∗∗ < ν < ν∗ are not exact solutions of (9) and (10), but nevertheless they can serve as initial
approximations in the perturbation method below.

Next we perform a perturbation analysis, assuming that the variable q (which above has been assumed
to vanish) remains small. This is ensured if parameters τ (ω − ν) and β are small. Additionally, the chimera
soliton should have a small synchronous domain, i.e.

√
r2 − ν2 remains small (practically this means that

we have to consider ν close to ν∗∗, this is required to keep the last term in equation (10b) small). Under
these conditions, the equation for the variable r remains the same equation (11) (additional terms in
equations (9a) and (10a) are of second order in small parameters). Therefore, we have only to ensure that
the condition q → 0 at x →±∞ is fulfilled. The equation for q (here we combine equations (9b) and (10b))
reads

q′ = g1(r) − βg2(r), (12)

where we introduced two functions (containing the Heaviside step function Θ)

g1(r) = τ(ω − ν)r2 + Θ(r − ν)
√

r2 − ν2, (13)

g2(r) = −ν + (1 −Θ(r − ν))
√
ν2 − r2. (14)

Because q(x) is an odd function of x, it should vanish at x = 0, and the condition that q → 0 at x →±∞
can be achieved by integrating equation (12) in the domain (−∞, 0):

∫ 0

−∞
(g1(r(x)) − βg2(r(x)))dx = 0.

It is convenient to rewrite the integral in terms of variable r, using r′ =
√
−2U(r). This gives the family of

soliton solutions in form of dependence of parameter β on the parameters of the problem τ ,ω and on the
frequency of the solution ν:

β =

∫ rmax

0
g1(r)√
−2U(r)

dr∫ rmax

0
g2(r)√
−2U(r)

dr
. (15)

Here rmax is defined from the condition U(rmax) = 0, according to equation (11) this quantity is a function
of ν. In the case of a soliton which is partially synchronous, the integration is only over domain rmax < |ν|
and the expression (15) simplifies to

β = τ(ω − ν)

∫ rmax

0
r2√

−2U(r)
dr

∫ rmax

0
−ν+

√
ν2−r2

√
−2U(r)

dr
. (16)

In the case of a chimera soliton, one has to perform integration in (15) in both domains r < ν and r > ν.
Expressions (15) and (16) are the main result of the approximative analytical approach. On a qualitative

level, they imply existence of two branches of solitons, one partial synchronous, and another chimera

6
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Figure 3. Panels (a)–(c): dependencies of the parameter ν on α of the soliton solutions (6) for ω = 0.15, τ = 0.1 (a); ω = 0.45,
τ = 0.4 (b); and ω = 0.25, τ = 0.5 (c). Dashed and dotted lines—analytical results from equations (15) and (16). Solid
lines—numerical results based on finding homoclinic trajectories of the system (9) and (10). Blue lines—soliton chimeras, green
lines—soliton solutions without a fully coherent patch. FAS is stable in domains B and C and unstable in domain A; CSS is stable
in domains A and B and unstable in domain C; PSS exists in domain B and is unstable. Panels (d) and (e): soliton chimera
profiles for ω = 0.25, τ = 0.5, α = 1.72. Panels (f) and (g): soliton solutions without a fully coherent domain for ω = 0.25,
τ = 0.5, α = 1.72. Panels (d) and (f) show modulus of local order parameter |z(x)|, panels (e) and (g) show phases ϕ(x),
respectively. Inset on panel (d) depicts a homoclinic trajectory corresponding to the chimera soliton in the phase space of the
system (9) and (10).

soliton. For both these branches (15) and (16) yield dependencies of the ‘eigenfrequency’ ν on the
parameters β, τ ,ω.

In figure 3 we compare the numerically found chimera solitons with the analytic approximations (15)
and (16). Because the perturbation term is ∼ τ (ω − ν), and ν is positive, we observe a good
correspondence of the numerical solutions and their analytical approximations both for small values of τ
(panel (a)) and for moderate τ and large ω (panel (b)). The correspondence is not so good (although
qualitatively correct) for moderate τ and relatively small ω (panel (c)). Panels (d) and (f) show profiles of
the order parameter for a chimera soliton and for a partially synchronous soliton, correspondingly. Panels
(e) and (g) depict the corresponding snapshots of the phases for a finite-density representation of the
solitons (see section 5).

By virtue of direct numerical simulations (in a large L � 1 spatial domain with periodic boundary
conditions) we have found that chimera solitons (figures 3(d) and (e)) are stable in the domain B of
figure 3, i.e. in the domain where the asynchronous homogeneous state (on top of which the soliton exists)
is stable. The partially synchronous solitons (figures 3(f) and (g)) are unstable. We illustrate this in figure 4.
Here in panel (a) the initial condition is taken as a chimera soliton, and no evolution is seen. In panel (b)
we take a partially unstable soliton as an initial condition, and it evolves toward the chimera soliton existing
at the same values of parameters. In panel (c) we take a partially unstable soliton multiplied by factor 0.95
as an initial condition, it evolves toward the stable homogeneous asynchronous state.

5. Finite-density-induced motility

In this section we report on numerical exploration of the found soliton in a discrete lattice of oscillators.

5.1. Discrete equations
We consider first a situation where the oscillators are placed at discrete positions xn, with spacing
Δx = xn+1 − xn, but the coupling field H is continuous in space. Then the system (2) can be rewritten as

ϕ̇n = ω + Im(H(xn, t)e−iα e−iϕn ), (17a)

τ∂tH = ∂xxH − H + Δx
∑

n

δ(x − xn)eiϕn . (17b)
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Figure 4. Evolution of numerically found solitary waves in simulations of the full equation (3) in a domain of length L = 60.
The color code shows the field |z(x, t)|. Parameters: τ = 0.5, ω = 0.25, α = 1.71. Panel (a): partially synchronous soliton as an
initial condition; because of instability a stable chimera soliton appears. Panel (b): the initial condition of panel (b) multiplied by
factor 0.95, here the instability results in a homogeneous asynchronous state.

For the next step, namely for discretization of the field H, one has to compare a characteristic spatial scale of
diffusion (which is in our case one) with the spacing Δx. If Δx 
 1, then the variations of H on scale Δx
are small. Thus, this field can be characterized by its coarse-grained values Hn in intervals
(xn −Δx/2, xn +Δx/2):

Hn(t) = ρ

∫ xn+Δx/2

xn−Δx/2
H(x′, t)dx′,

where we introduced the density ρ = 1/Δx. Applying the integration over the interval
(xn −Δx/2, xn +Δx/2) to equation (17b) and approximating the second derivative via the values
Hn−1, Hn, Hn+1, we obtain a set of discrete equations suitable for numerical simulations:

ϕ̇n = ω + Im(Hn e−iα e−iϕn ), (18a)

τḢn = ρ2(Hn+1 − 2Hn + Hn−1) − Hn + eiϕn . (18b)

In all simulations below in this section, a finite spatial domain of length L � 1 with periodic boundary
conditions is used. The total number of oscillators is ρL. Furthermore, we fix parameters at values α = 1.71,
τ = 0.5, ω = 0.25.

5.2. Soliton motility at finite densities
In discrete simulations of a soliton in the framework of system (18) we expect to observe finite-size effects.
The parameter governing these effects is not the number of oscillators (because formally the solution is in
an infinite domain), but density ρ. Because the characteristic length of solitons reported in section 4 is one,
parameter ρ gives approximately the number of fully synchronized oscillators. For large values of ρ, we
expect the solution of the discrete version (18) to ‘converge’ to that of the continuous equation (3).

We present simulations of a soliton for different densities in figures 5 and 6. The initial conditions has
been chosen according to the solution of continuous equations Z(x), H(x) as follows: (i) the field H(x) was
just taken at discrete points xn; the values Z(xn) where used to randomly sample the phases ϕn according to
the wrapped Cauchy distribution with order parameter Z(xn). Figure 5 show evolution on a relatively short
time interval. It demonstrates that a soliton is robust also in simulations with a finite density.

However, for ρ = 20 fluctuations are definitely larger than for ρ = 100. Such fluctuations lead to a
rather surprising observation (see figures 5(b) and 6 for more details): after a long initial transient epoch,
during which the soliton practically does not move (apart from small fluctuations), the soliton starts to
move with a nearly constant velocity, and from time to time changes the direction of the motion while the
speed remains nearly the same. We call this regime finite-density-induced motility because as we will argue
below, it disappears in the limit ρ→∞. To this end, in figure 6 we show the results of direct numerical
simulations of equation (18) on a long time interval (significantly longer than one in figure 5). Here, the
position of the maximum of absolute value |H(x, t)| of the complex forcing field is depicted. One can see for
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Figure 5. Evolution of numerically found solitary waves in simulations of the full equation (18) in a domain of length L = 60.
The color code shows the field |H(x, t)|. Parameters: τ = 0.5, ω = 0.25, α = 1.71. Panel (a): larger density ρ = 100. Panel (b):
small density ρ = 20; here one can see an onset of finite-density-induced motility at t ≈ 103.

Figure 6. Evolution of a soliton in a domain of size L = 80 (this domain is ‘unwrapped’ for better visibility) for different
densities ρ: (a)ρ = 20, (b)ρ = 30, (c)ρ = 40, (d)ρ = 60, (e)ρ = 80, and (f)ρ = 90. The line shows position of the maximum
(over x) of field |H(x, t)|. Parameters of equation (18): α = 1.71, τ = 0.5, ω = 0.25. While after an initial waiting time the
soliton mostly sways back and forth, several relatively short epochs during which the soliton stays can be seen in panels (a), (c)
and (e) for ρ = 20, ρ = 40, and ρ = 80, respectively.

large densities, the ‘waiting time’ becomes large, and in the run with ρ = 90, no motility is observed up to
time 105.

It appears that the ‘swaying soliton’ has in fact three metastable states: two of motion with a nearly
constant velocity in opposite directions, and one where its velocity is very small and its dynamics is close to
a slow diffusion. The latter state is more probable to appear for small densities, for example for ρ = 20 in
figure 6 one can see several events where the soliton stops, but then after a relatively short waiting time
starts to sway again.

A natural question arises, if there is a threshold in the value of the density ρ, below which the solitons
can become motile, and above which they stay (or slowly diffuse). To check this, we performed simulations
where we ‘adiabatically’ increased the density. Namely, in simulations we started with N = 3000 oscillators
on the lattice of length L = 150 (i.e. the initial density is ρ = 20). Then, we added one particle every 50
units of time. A particle was added in the disordered region, opposite to the synchronous domain. In this
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Figure 7. Two runs of a soliton in a domain of size L = 150 with continuously growing density (see description of the procedure
in the text). In one run (red) the soliton continues to move at large densities, while in another run (blue) it at ρ ≈ 90
spontaneously stops.

Figure 8. Dependence of the soliton velocity on the density. The dashed line is the fit V = 0.17/ρ.

way, the density parameter slowly grows in time while the soliton is only weakly disturbed. Two such runs
are presented in figure 7. In one run (blue curve), the soliton stopped spontaneously at density ρ ≈ 90 and
then never became motile again. But in another run (red curve) the soliton continued to move up to
densities as large as ρ = 650 (the total simulation time of this run is 4.8 × 106). This result suggests that
there possibly is no upper threshold in density for the soliton motility, or at least this threshold is larger
than ρ = 650.

One can already see from figure 7 that the soliton velocity decreases with density ρ. To quantify this, we
have taken motile states at different stages of the red run in figure 7, and continued them—but now
without adding particles, i.e., at a constant density. Now from several stretches between U-turns one can
evaluate the average velocity of the soliton. The data shown in figure 8 show that with a good accuracy this
velocity is inverse proportional to the density. This means that the soliton motility is a pure finite-size effect,
disappearing in the continuous limit ρ→∞.

Below, we discuss possible mechanisms of the finite-size-induced motility. It appears, that they are due
to fluctuations of the field H(x, t). Indeed, in the continuous limit (i.e., in the framework of the analysis
based on the OA ansatz in section 4) this field is uniformly rotating, but otherwise constant. Synchronous
oscillators are locked by this field. Non-synchronized oscillators in this constant field perform rotations.
These periodic motions have a zero Lyapunov exponent (which corresponds to neutrality with respect to
phase shifts). For a finite density, the fields H(x, t) starts to fluctuate. Because the fluctuations at
neighboring sites (say, n and n + 1) are highly correlated, one can in the first approximation consider these
fluctuations as common for the neighbor oscillators. Thus one expects that periodic rotations can be
synchronized by common noise (see references [36–39] for a theory of synchronization of oscillators by
common noise). For a chimera pattern with a relatively small density of oscillators, this synchronization has
been recently reported in reference [40] for a social-type setup of the network, where fluctuations are
especially enhanced and correlations of these fluctuations at neighboring oscillators are especially high. See
also reference [41], where a potential role of common-noise-type fluctuations in a formation of chimeras
has been discussed. In the present setup, it is difficult to characterize effective fluctuations of the fields
H(x, t) and their correlations, due to non-stationarity effects. Nevertheless, a rough estimation that
fluctuations intensity decrease with density as ∼ ρ−1 corresponds to the observed dependence of the soliton
velocity (figure 8). The effect of fluctuations can be qualitatively described as follows: close to the
synchronous domain (center of the soliton) the fluctuations are especially strong, and they after a long
action lead to a partial synchronization of an asynchronous domain close to the soliton center. The central
synchronous domain merges with this newly created partial synchronous one and the soliton shifts its
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Figure 9. Panel (a): space-time plot of field |H(x, t)| showing merging of two solitons in equation (3) with parameters L = 50,
α = 1.71, τ = 0.5, ω = 0.25, and initial distance between solitons D = 12. Panel (b): collision and merging (at t ≈ 9500) of two
motile solitons at finite density ρ = 40. Parameters of numerical simulation within equation (18): L = 150, α = 1.71, τ = 0.5,
and ω = 0.25. At t ≈ 22 000 the soliton starts to move again. The color code shows the value of field |H(x, t)|.

position. This picture, however, cannot explain neither regularity and persistence of the motility, nor the
U-turns. A more detailed exploration of the soliton dynamics is needed to clarify these issues. In section 6
(see figure 9) we also demonstrate what happens when two moving solitons propagating in opposite
directions collide.

Finally, we mention that solitons changing direction of their velocity have been previously studied in the
context of conservative nonlinear differential equations and lattices [42–44]. There, solitons that just once
change the direction of their motion are called boomerons, and solitons that periodically sway around a
certain position are called trappons. Our setup differs from these studies in several aspects. First, our soliton
is a dissipative one, and we are not aware of any boomerons and trappons in dissipative equations. Second,
swaying of solitons in our case appears as a random process, not as a regular periodic swaying.

6. Soliton turbulence

In this section we describe irregular dynamics of the oscillatory medium in the situations where the fully
incoherent state Z = H = 0 becomes unstable. We will focus on the properties of the system of partial
differential equation (3), i.e. we do not consider any finite-density effects. Correspondingly, the numerical
simulations in this section are mainly concentrated on numerical solutions of equation (3). Below we will
fix parameters τ = 0.5 and ω = 0.25, exploration of other parameter values have revealed that the
described below properties are qualitatively quite general. For these parameters, the incoherent state
Z = H = 0 is unstable below αl ≈ 1.69 (cf figure 1), and stable above this value.

6.1. Merging of solitons
We start with the value of the phase shift α = 1.71, at which a stable soliton exists. We illustrate in
figure 9(a), that two solitons, placed closed to each other, experience attraction and eventually merge. The
interaction is, however, dependent on the initial phase shift between the solitons. As illustrated in
figure 10(a), the merging time is minimal if the phase shift is zero, and grows if the phase shift becomes
close to π. Because the soliton has exponentially decaying tails, one can expect that the interaction decreases
exponentially with the initial separation distance D. This is confirmed in figure 10(b), where we show the
exponential dependence of the merging time on the initial distance.

In the simulation, performed within the system (18) and depicted in figure 9(b), we also explore what
happens when two motile solitons, moving in opposite directions, collide. One can see that they merge and
produce one stationary soliton, similar to the case of soliton merging in the infinite-density limit described
above. This soliton, however, after a certain waiting time, starts to move.

6.2. Creation and merging of solitons close to instability border
At α = αl ≈ 1.69, the incoherent state Z = H = 0 becomes unstable, this instability is a long-wave one (cf
figure 1). Below in figure 11 we explore the result of this instability. Panels (a)–(c) show the regimes close to
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Figure 10. Merging time for two solitons in dependence on the initial phase shift (a) and on the initial distance D ((b), for a zero
phase shift). Parameters of simulation: L = 60, α = 1.71, τ = 0.5, ω = 0.25.

Figure 11. Spatio-temporal plots of field |H(x, t)| for different regimes of soliton turbulence for τ = 0.5, ω = 0.25. Panel (a):
α = 1.69; panel (b): α = 1.685; panel (c): α = 1.68; panel (d): α = 1.65; panel (e): α = 1.6; panel (f): α = 1.59.

the threshold αl. One observes events of merging of solitons due to their attractive interaction, like in
figure 9(a). In created voids, new solitons appear due to the long-wave instability. The whole irregular
process in figures 11(a)–(c) can be characterize as a repeating creation and merging of solitons. The
characteristic spatial scale diverges close to the criticality αl, and correspondingly diverges the characteristic
time scale (according to the exponential law of figure 10). This slowing down of the process close to
criticality is clearly seen if one compares time scales on panels (a)–(c).

6.3. Transition to spatio-temporal intermittency
At α = 1.65 (relatively far away from the threshold) one still can characterize the process as creations and
annihilations of solitons (figure 11(d)). Here, the characteristic space and time scale further decrease (the
time scale in panel (d) is reduced compared to panel (c) by factor ten). However, in panel (d) one observes
an additional feature at the merging events. Because at the merging a wide region of synchrony appears, and
for smaller α the stability of the synchronous state |Z| = 1 is enhanced, relatively large and long-living
patches of synchrony appear, they can be recognized as bright triangle-shaped regions in figure 11(d).
Nevertheless, the surrounding incoherence eventually wins so that these synchronous patches remain small
and isolated. With further decrease of parameter α, synchronous patches become larger and long-living
(panels (e) and (f) in figure 11). This regime can be characterized as a spatio-temporal intermittency, and
this intermittency becomes more pronounced for smaller values of α. Here the synchronous patches (bright
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yellow regions in panel (f)) dominate, but still coexist with incoherent domains. In many cases one observes
narrow incoherent pulses propagating on a synchronous background. A detailed description of such ‘dark
solitons’ will be presented elsewhere.

It should be stressed that for the values of α < αl, the fully synchronous state |Z| = 1 is stable, and thus
it is an absorbing state for the spatio-temporal intermittency. We have observed that below the critical value
αsti ≈ 1.58, the absorbing state wins and the spatio-temporal intermittency is a transient. Here the final
stable regime in the oscillatory medium is full synchrony.

7. Conclusions

Here we highlight essential novel findings of this paper.
First, we extended the classical Kuramoto–Battogtokh model of coupled oscillators to the case of a finite

inertia of the diffusive field responsible for the coupling. This extension allows for a consideration of more
realistic physical situations compared to the original KB formulation, which required a strong time scale
separation between the oscillators period and the characteristic relaxation time of the diffusive field.
Remarkably, together with the time scale of diffusion, the frequency of the oscillators now is a relevant
parameter, which cannot be ‘killed’ by a transformation to a rotating reference frame. At this point we
would like to mention, that there have been numerious studies of chimera patterns in non-locally coupled
oscillators, but with kernels of coupling different from the exponential kernel adopted by Kuramoto and
Battogtokh. Such kernels (for example, a periodic in space cos-shaped kernel or a rectangular kernel) may
have some advantages in mathematical and/or computational treatment of the equations, but they are not
as physically motivated as the exponential kernel originated from a diffusion process. Correspondingly, to
the best of our knowledge, there are no realistic extensions of such kernels to the case of a finite time scale
of the propagation of the coupling.

In the model with a finite time scale of diffusion, we have found stable chimera solitons. They exist for
phase shifts in coupling, where there is a bistability of fully synchronous and fully asynchronous spatially
homogeneous states. Because the tails of solitons decay exponentially, they are non-sensitive to boundary
conditions if the medium length is significantly larger than the soliton width. Thus, for solitons, in
contradistinction to patterns in the KB model, we do not have to impose periodic boundary conditions.

We have found soliton solutions numerically in PDEs describing the system in a continuous limit of an
infinitely high density of oscillators. These equations appear in the standard OA approach, where a
coarse-grained order parameter is introduced. Soliton solutions have been found numerically as homoclinic
trajectories of the resulting three-dimensional system of ordinary differential equations for the spatial
profile. In addition, we have developed an approximate analytical theory, using the fact that at certain
parameters a soliton having either empty or a single point synchronous domain can be found analytically as
a solution of a second-order equation. We have demonstrated that this analytical first-order perturbation
theory provides a good approximation in a certain range of parameters.

The most surprizing finding is the finite-size-induced motility of solitons. It is always present in
microscopic simulations with a finite (and relatively small) density of oscillators. We demonstrated that this
motility leads to an irregular swaying of a soliton. Typically, the dynamics has three states with velocities
≈±V and ≈0, while the latter regime in most cases appears seldom and for a small time interval. In our
discussion we attributed the motility to finite-size fluctuations of the diffusive field at the central part of the
soliton. Our hypothesis is that these fluctuations partially synchronize neighboring states, due to the effect
of synchronization by common noise, and thus the soliton moves. This picture is consistent with the
observed dependence of the characteristic velocity on the density V ∼ ρ−1. Nevertheless, there are many
open questions that should be addressed in future studies, e.g. why motion of solitons is so regular and why
they from time to time reverse the direction of motion. At this point we would like to mention, that there
are not so many dissipative nonlinear systems allowing for both microscopic and macroscopic descriptions.
Apart from coupled oscillators, one can mention granular systems [45]. There, however, the interactions are
local and thus one can hardly expect finite-size effects of synchronization through fluctuations, like in the
model considered in this paper.

We demonstrated that chimera solitons interact attractively, so two solitons placed at some distance
come close to each other and eventually merge. The interaction is less attractive if the solitons are prepared
with a phase shift ≈π, in this case during a long initial stage they first adjust their phases and then merge.

Merging of solitons is the essential process shaping the soliton turbulence, which is observed when the
asynchronous homogeneous state in the medium becomes unstable. This long-wave instability leads to
appearance of a ‘chain of solitons’, which, however is not stable. On a long time scale, mergings occur.
These merging leave larger domains of asynchrony where, do to instability, new solitons emerge. Thus, the
whole dynamics can be described as a sequence of irregular events of merging and emerging of solitons.
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Because the solitons are the basic constituents of the observed pattern, it is natural to speak on soliton
turbulence in this context. Furthermore, we have followed the development of the soliton turbulence in the
domain of parameters, where the stability of the synchronous state is stronger. Here, the extended
synchronous patches that appear at the merging of solitons, become long-living. With further increase of
stability of synchronous states the pattern ‘reverses’: instead of localized synchronous objects on the
asynchronous background, one observes large synchronous domains with relatively small asynchronous
patched between them. This regime can be characterized as spatio-temporal intermittency, where the
synchronous state is absorbing.
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