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Abstract

In X-ray computed tomography (XCT), an X-ray beam of intensity I0 is
transmitted through an object and its attenuated intensity I is measured
when it exits the object. The attenuation of the beam depends on the at-
tenuation coefficients along its path. The attenuation coefficients provide
information about the structure and composition of the object and can be
determined through mathematical operations that are referred to as recon-
struction.

The standard reconstruction algorithms are based on the filtered back-
projection (FBP) of the measured data. While these algorithms are fast
and relatively simple, they do not always succeed in computing a precise
reconstruction, especially from under-sampled data.

Alternatively, an image or volume can be reconstructed by solving a
system of linear equations. Typically, the system of equations is too large
to be solved but its solution can be approximated by iterative methods,
such as the Simultaneous Iterative Reconstruction Technique (SIRT) and
the Conjugate Gradient Least Squares (CGLS).

This dissertation focuses on the development of a novel iterative algo-
rithm, the Direct Iterative Reconstruction of Computed Tomography Trajec-
tories (DIRECTT). After its reconstruction principle is explained, its per-
formance is assessed for real parallel- and cone-beam CT (including under-
sampled) data and compared to that of other established algorithms. Fi-
nally, it is demonstrated how the shape of the measured object can be mod-
elled into DIRECTT to achieve even better reconstruction results.
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Zusammenfassung

Bei der Röntgen-Computertomographie (XCT) wird ein Röntgenstrahl der
Intensität I0 durch ein Objekt gesendet und seine abgeschwächte Inten-
sität I gemessen, wenn er das Objekt verlässt. Die Abschwächung des
Strahls hängt von den Abschwächungskoeffizienten entlang seines Weges ab.
Die Schwächungskoeffizienten liefern Informationen über die Struktur und
Zusammensetzung des Objekts und können durch mathematische Operatio-
nen, die als Rekonstruktion bezeichnet werden, bestimmt werden.

Die Standard-Rekonstruktionsalgorithmen basieren auf der gefilterten
Rückprojektion (FBP) der Messdaten. Diese Algorithmen sind zwar schnell
und relativ einfach, doch gelingt es ihnen nicht immer, eine präzise Rekon-
struktion zu berechnen, vor allem bei unzureichend abgetasteten Daten.

Alternativ kann ein Bild oder ein Volumen auch durch die Lösung eines
Systems linearer Gleichungen rekonstruiert werden. In der Regel ist das
Gleichungssystem zu groß, um gelöst zu werden, aber seine Lösung kann
durch iterative Methoden angenähert werden, wie die Simultaneous Iterative
Reconstruction Technique (SIRT) und die Conjugate Gradient Least Squares
(CGLS).

Im Mittelpunkt dieser Dissertation steht die Entwicklung eines neuarti-
gen iterativen Algorithmus, des Direct Iterative Reconstruction of Computed
Tomography Trajectories (DIRECTT). Nach der Erläuterung seines Rekon-
struktionsprinzips wird seine Leistung für reale Parallel- und Kegelstrahl-
CT-Daten (einschließlich unterabgetasteter Daten) bewertet und mit der
Leistung anderer etablierter Algorithmen verglichen. Schließlich wird gezeigt,
wie die Form des gemessenen Objekts in DIRECTT modelliert werden kann,
um noch bessere Rekonstruktionsergebnisse zu erzielen.



x



Erklärung
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Introduction

The project that resulted in this dissertation was one of the 15 projects that
the Innovative Training Network MUMMERING [11] comprised. MUM-
MERING encompasses all aspects of tomography, including image recon-
struction, which is the main subject of this work. More specifically, the
dissertation focuses on the development and the performance of a novel
reconstruction algorithm, the Direct Iterative Reconstruction of Computed
Tomography Trajectories (DIRECTT).

This dissertation is split into five chapters:

Chapter 1 introduces the basic principles of tomographic reconstruction
from parallel- and cone-beam data, as well as the iterative reconstruc-
tion algorithms.

Chapter 2 explains the original idea of DIRECTT and describes a novel
approach that greatly increases its efficiency.

Chapter 3 is an overview of image quality metrics that can be used to
assess the performance of the reconstruction algorithms.

Chapter 4 offers an assessment of DIRECTT and other established al-
gorithms on the reconstruction from parallel-beam data. Further em-
phasis is given on cases of missing-wedge tomography.

Chapter 5 offers an assessment of the same algorithms on the reconstruc-
tion from cone-beam data. The chapter also demonstrates how arte-
facts can be modelled into DIRECTT to achieve higher reconstruction
performance.



2 Introduction



Chapter 1

Tomographic reconstruction

X-ray computed tomography is used to reconstruct cross-sectional images
within a studied object by transmitting X-rays through it. X-ray photons
can penetrate the object but not all photons that enter will be transmitted
through it. Some photons interact with electrons, transfer part of their
energy to them, causing them to recoil, and are scattered away. Other
photons are absorbed by the object, converting their energy by mechanisms,
such as the photoelectric effect. The X-ray intensity I0 before entering the
object and the intensity I after exiting the object are related according to
the Beer-Lambert law :

I = I0e
−p (1.1)

where p is the line integral of the linear attenuation coefficients µ along the
path z of the X-rays. In case of uniform attenuation, Equation 1.1 becomes

I = I0e
−µz. (1.2)

The attenuation coefficient is a property of the material, but it also depends
on the energy of the radiation that penetrates the material.

An example of a CT scanner is shown in Figure 1.1. During the scan, an
X-ray beam of intensity I0 is generated by the source, which is highlighted
by the red frame. The studied object is placed on a rotating table (orange
frame) so that it can be irradiated by the beam from several, typically thou-
sand, different views. A detector (yellow frame) measures the intensity I of
the beam that exits the object in the form of a two dimensional (2D) image.
According to Equation 1.1, the line integral of the attenuation coefficients
is

p = ln

(
I0
I

)
. (1.3)

The structure and composition of the object can be subsequently determined
based on these coefficients through mathematical operations [13]. This pro-
cess is referred to as reconstruction



4 Tomographic reconstruction

Figure 1.1: Example of a computed tomography scanner. The image is
reproduced from Reference [54].

CT is a long-established method in the field of diagnostic medicine, where
it enables the examination of patients’ internal organs with high precision
in a non-invasive manner. The revolutionary impact of the technique led
to the 1979 Nobel Prize in Physiology or Medicine being awarded to Allan
MacLeod Cormack and Godfrey Hounsfield “for the development of
computer-assisted tomography” [44].

In the decades that followed the development of the first CT scanner
by Hounsfield [24], the technique has also found applications outside of
medicine, in the fields of materials analysis, non-destructive testing [16, 47],
and metrology [26] among others. Examples of such applications include the
detection of defects [20], the evaluation of porosity [30], and the determina-
tion of material and damage behaviour [49].

1.1 Basic principles

In tomography, image reconstruction refers to the process of producing a
tomographic image from a set of projections. For the example of a uniform
disk of density ρ, such as that of Figure 1.2a, its projection p(s) on the
detector s can be calculated as the product of the chord length t and the
density ρ. It is therefore equivalent to the line integral [12]. Given the
uniformity of the object, its projection would be the same regardless of the
view angle. For the more complicated object of Figure 1.2b, projections
from different angles are different from one another [7].

The calculation of the projections of an object is also known as the Radon
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Figure 1.2: (a) The projection p(s) of the uniform disk on the detector s is
the product of the chord length t and the density ρ. (b) The projections of
a complicated figure are different at a different view angle.

Figure 1.3: The representation of the projections on the s−θ plane is called
a sinogram.
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transform. More specifically, in an n-D space, the Radon transform of an
n-D object is its (n− 1)-D hyperplane integral.

The dependency of the projection to the angle θ can be better illustrated
using the example of a point source on an x − y coordinate system. Lines
are drawn across the plane, orthogonal to a hypothetical one-dimensional
detector, and the line integral is evaluated. Depending on whether the line
touches the point source or not, the intensity registered by the detector at
the end of the line is either one or zero (Figure 1.3a) [7]. If the locations
of the intensity spikes were displayed in 2D in a common s-θ coordinate
system, the resulting trajectory would resemble a sine wave (Figure 1.3c).
For this reason, the full projection data set can be referred to as a sinogram.

1.2 Parallel-beam image reconstruction

While many modern CT systems use a cone-beam geometry, X-ray imag-
ing beamlines at synchrotron radiation facilities use a geometry in which
the beam can be considered parallel due to the large distance between the
source and the measured object. It is instructive, therefore, to introduce the
concepts that describe parallel-beam image reconstruction.

In Figure 1.4a, a single element inside an otherwise empty space is pro-
jected from different angles. The element can be reconstructed from this
projection data by re-distributing the registered intensity back along the
projection path, in a process referred to as back-projection. Not knowing
where the element that resulted in the registered intensity is located, the
intensity must be back-projected in equal amounts of the full value along
the path (Figure 1.4b) [7]. However, compared to the original image, the
back-projection from many different angles will result in a blurrier image and
disproportionately higher values, due to the aforementioned superposition,
where the element is.

This example of a single element is useful for demonstrating the concepts
of projection and back-projection. Note, however, that two projections would
be enough for its reconstruction.

A more precise reconstruction of the single element would require the
dissolution of the overlapping effect through filtering of the projection data.
The filtering can be implemented either as a multiplication in the Fourier
domain or as a convolution in the spatial domain.

The foundation of the filtering process is the projection-slice theorem.
In the 2D case, the theorem states that the one-dimensional (1D) Fourier
transform P (ω) of the projection p(s) on a line (i.e., a 1D detector) of a two-
dimensional object is equal to a 1D slice through the origin of the 2D Fourier
transform F (ωx, ωy) of that object which is parallel to the line/detector
[3, 53]. It is illustrated for the example of the Shepp-Logan phantom [51] in
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Figure 1.4: (a) Projections of a single element inside an empty space. (b)
Reconstruction of the single element by back-projection.

Figure 1.5a. Expressed mathematically, the theorem is given as

P (ω, θ) = F (ω cos θ, ω sin θ). (1.4)

It is deduced, from the theorem, that projections of the object acquired
over at least 180◦ are equivalent to slices that cover the entire 2D Fourier
space. When F (ωx, ωy) is known, the measured object can be obtained by
a 2D inverse Fourier transform (Figure 1.5b) [3, 53]. Including multiple
‘central slices’ results in a higher density in the central region of the Fourier
space, which represents low frequencies. This non-uniform density in the
Fourier space leads to the overweighting of low-frequency components and
is the reason behind the blur of images produced by back-projection.

The above non-uniformity is proportional to 1√
ω2
x+ω

2
y

. The standard

way to compensate for it is to multiply the 1D Fourier Transform P (ω, θ)
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Figure 1.5: Illustration of the projection-slice theorem.

of the projection data by H(ω) = |ω| and calculate the 1D inverse Fourier
Transform of this product. If the filtered projection data Q(ω, θ) are back-
projected after this treatment, the exact image of the measured object is
obtained. This method is referred to as the filtered back-projection (FBP)
and the function |ω| is called ramp filter, after its appearance. The ramp
filter is a high-pass filter, meaning that it suppresses the low-frequency com-
ponents and enhances the high-frequency components.

Multiplication in one domain is the equivalent to convolution (denoted
with the symbol ∗) in the other domain [62]. Given this property, the ramp-
filtered data q(s, θ) of the projection p(s, θ) can also be obtained without
using the Fourier transform at all:
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Figure 1.6: Demonstration of the filtered back-projection algorithm: The
Radon transform p(s, θ) of the Shepp-Logan phantom (lower right corner)
is computed and the ramp filter is applied to it. The filtered data q(s, θ) is
back-projected along the projection path for all angles (images (2)-(7)) until
the reconstructed image resembles the phantom.

Q(ω) = P (ω) × H(ω)
1D Fourier
transform m m m
pair

q(s) = p(s) ∗ h(s)

Instead, the ‘Ramachandran-Lakshminarayanan’ kernel, which is the inverse
Fourier transform of the ramp filter, is employed. The continuous version of
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the convolution kernel is

h(s) =
1

2

sin(πs)

πs
− 1

4

[
sin
(
πs
2

)
πs
2

]2
(1.5)

but, since the projection data are measured with a sampling interval of σ,
the convolver needs only be known with the same sampling interval:

h(nσ) =


1

4σ2 , n = 0
0, n even
−1

n2π2σ2 , n odd.
(1.6)

A demonstration of the FBP algorithm is given in Figure 1.6. The Shepp-
Logan phantom is shown in the lower right corner. Its Radon transform
p(s, θ) is computed and the ramp filter is applied to it, resulting to the visibly
sharper q(s, θ) data. The image labelled (1) shows the back-projection of
q(s, θ), which is nothing more that smearing back the filtered data along the
projection path, for the first angle. In images (2)-(7), as data from more
angles, up to the full 180◦, are back-projected the reconstructed image is
gradually shaped and finally closely resembles the original image [60].

1.3 Three-dimensional image reconstruction

Parallel-beam data The reconstruction of a 3D volume from parallel-
beam data often can be decomposed into the reconstruction of individual 2D
slices based on the rays that are confined within a trans-axial slice (detector
row). When this is not applicable or desirable, the reconstruction can be
based on the extension of the projection-slice theorem 3D.

In that case, the theorem states accordingly that the 2D Fourier trans-
form P (ωu, ωv, ~θ) of the projection p(u, v, ~θ) of a 3D object is equal to a
slice through the origin of the 3D Fourier transform of the object which is
parallel to the detector. Here, ~θ = (sin θ cosφ, sin θ sinφ, cos θ) is the normal
direction of the u− v plane. In polar coordinates, the theorem is expressed
as

P (ωu, ωv, ~θ) =F (−ωu sinφ− ωv cos θ cosφ, ωu cosφ

− ωv cos θ sinφ, ωv sin θ) (1.7)

If the trajectory of ~θ is a great circle (the intersection of a sphere and a plane
that passes through the centre point of it), the measured P (ωu, ωv, ~θ) planes
fill up the entire (ωx, ωy, ωz) Fourier space. For the 3D reconstruction, in
accordance to the 2D case, the projection p(u, v, θ) is filtered by a 2D filter.
The back-projection of the filtered data q(u, v, θ) returns the reconstructed
object.
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Cone-beam data Two cross sections through a 3D phantom are shown
in Figure 1.7. The projections of the phantom acquired in a cone-beam
geometry from 0◦ and 90◦ are shown in Figure 1.8.

Figure 1.7: Perpendicular cross sections through a three-dimensional phan-
tom.

Figure 1.8: Projections of the phantom in Figure 1.7 from 0◦ and 90◦.

The standard reconstruction algorithm for cone-beam data acquired from
a circular focal-point trajectory was developed by Feldkamp, Davis and
Kress (FDK) [14]. The coordinate system for FDK is shown in Figure 1.9.
During the reconstruction, the projections are scaled by cosα, where α is
the half-cone angle for each detector pixel. Each row is subsequently filtered
with the ramp filter. Finally, the filtered data are back-projected towards
the focal point, with the value of each point on the back-projection path
(e.g. the red point on the red path of Figure 1.9) weighted proportionately
to its distance to the focal point.

Tuy’s condition states that every plane that intersects the measured
object must contain a cone-beam focal point [55]. It is obvious from Figure
1.10a that the circular orbit does not satisfy the condition. As a consequence,
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Filtered data

Figure 1.9: The coordinate system for the cone-beam algorithm developed
by Feldkamp, Davis and Kress.

Figure 1.10: The circular orbit (a) does not satisfy Tuy’s condition, but the
circle-and-lines (b) and the helix (c) orbits do.
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Figure 1.11: Reconstruction of the Defrise phantom [61] by the FDK algo-
rithm for different cone angles.

FDK is exact at the orbit plane and performs sufficiently well away from
it for small cone angles. For larger angles though, severe artefacts appear
away from the orbit plane, as demonstrated in Figure 1.11 [61].

It is worth noting that there are projection geometries, other that the
circular orbit, that do satisfy Tuy’s condition. Such geometries are the
circle-and-line orbit (1.10b) and the helical orbit (1.10c).

1.4 Iterative reconstruction

The image of Figure 1.12 is discretized into pixels (picture elements). It can
be reconstructed by solving a system of linear equations [17]. These equa-
tions express the relation of the pixels of the image xj and the projections
pi. They can be written in the matrix form as

AX = P (1.8)

where X = [x1, x2, ..., x9]
T , P = [p1, p2, ..., p9]

T , and A is a matrix the ele-
ments aij of which represent the contribution of the pixel xj to the projection
pi.

The reconstruction of the image in Figure 1.12 would require the solution
of a system of only nine equations. In reality, a volume will consist of
possibly millions, or even billions, of voxels and, accordingly, thousands of
projections. Therefore, the corresponding system of equations will be too
large to be solved. Iterative methods [15] can be used to find an approximate
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Figure 1.12: Example of problem with nine unknowns and nine measure-
ments.

solution to Equation 1.8 by minimizing the objective function

χ2 = ||AX − P ||2. (1.9)

During each iteration:

1. the image estimate is forward projected;

2. the projected data are compared to the measured data;

3. the discrepancies between the two are back-projected;

4. the back-projected data are used to modify the image estimate.

Figure 1.13 offers a schematic view of the iterative reconstruction process
[5].

There are numerous iterative reconstruction algorithms. Gradient de-
scent algorithms modify the image estimate by a small step size in the op-
posite direction of that indicated by the gradient of the objective function.
The general form of the algorithm for the iteration k is

Xk+1 = Xk − αk ~∆k, (1.10)
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Figure 1.13: Schematic view of the iterative reconstruction process. The
image was reproduced from Reference [5]

Figure 1.14: Gradient descent algorithms modify the image estimate by a
small step size in the opposite direction of that indicated by the gradient of
the objective function.
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where α is the step size and ~∆ is the gradient of the objective function.
Specifically,

~∆k = ∇||AX − P ||2 = 2AT (AX − P ). (1.11)

In the above relation, the product AX represents the Radon transform of
image X, while multiplication by AT represents the back-projection. In
the example of Figure 1.14, the gradient of the objective function for the
solution xk of a pixels is positive. During its next iteration, the algorithm
will move downwards towards an updated solution xk+1.

Examples of variations of the gradient descent algorithms are the Simul-
taneous Iterative Reconstruction Technique (SIRT) [15, 19] and the Con-
jugate Gradient Least Squares (CGLS) [23] algorithms. SIRT is expressed
algebraically as

Xk+1 = Xk + αCATR(P −AXk). (1.12)

C and R are diagonal matrices composed of the inverse row sums of A and
the inverse column sums of A, respectively. SIRT converges for a step size
0 < α < 2. CGLS modifies the image by following the conjugate, instead of
the gradient. It typically converges faster than SIRT.



Chapter 2

The Direct Iterative
Reconstruction of Computed
Tomography Trajectories
algorithm

2.1 The original idea of the algorithm

The idea of the Direct Iterative Reconstruction of Computed Tomography
Trajectories (DIRECTT) algorithm was first proposed by Lange, Hentschel,
and Kupsch [31, 32, 33] as an alternative to FBP [36]. It selectively traced
single sinusoidal trajectories from within the set of all possible trajectories
by appropriate criteria, such as their angular averaged weight or contrast to
adjacent trajectories, and computed their filtered inverse Radon transform,
in an iterative procedure, to form the reconstruction array. The Radon
transform of these elements was subsequently subtracted from the original
measured data and the obtained residual sinogram was treated the same
way in the next iteration steps, until a pre-selected criterion of convergence
was reached [27].

The application of DIRECTT was centred around the precise projection
of the reconstruction array. To achieve this precision, which is essential for
enhanced spatial resolution, the actual size and shape of the reconstructed
elements were also taken into consideration. This approach complemented
the abandonment of the spatial filtering, thus overcoming certain serious
restrictions associated with the FBP. One of these restrictions arises from
Nyquist’s theorem, which limits the achievable spatial resolution to twice
the detector pixel size. Any projections that are acquired by exceeding the
Nyquist rate (oversampling) have no effect on the outcome of the recon-
struction. However, since Nyquist’s theorem refers to the non-equidistant
angular sampling but not the detector-pixel sampling, the developers of DI-



18 Direct Iterative Reconstruction of CT Trajectories

RECTT claimed that, by oversampling the trajectories, could be enhanced
beyond the limit that the theorem predicts [27]. Further advantages include
improved reconstructed images in the cases of limited-view projections, as
well as region-of-interest measurements [33, 22].

DIRECTT was developed for application on parallel-, fan-[27], and cone-
beam [34] geometries. For the latter case, it has been shown to reduce arte-
facts that are associated with the FDK algorithm, particularly far outside
the source plane. Local smearing by focal spot size and real detector re-
sponse were also integrated into DIRECTT to increase the reconstruction
quality [29].

The performance of DIRECTT has been investigated for a number of
applications. In one of these, it was used to mitigate typical reconstruction
artefacts in missing-wedge CT [28]. Such artefacts appeared as elongations
of reconstructed details around the symmetry centre of the projections. A
two-fold approach combined elements from discrete tomography, which were
used to determine the coarse shape of objects, with subsequent refinements
by iterations without mass restrictions [28].

DIRECTT has also been applied to data acquired with techniques other
than X-ray computed tomography. It has coped with aperture-smearing
effects of neutron computed tomography and offered advantages over FBP
and SIRT while dealing with the simultaneous occurrence of numerous re-
strictions inherent to electron tomography [35].

2.2 A novel approach to DIRECTT

Despite being a promising alternative to FBP-type algorithms, DIRECTT
was not developed to its full potential. The available source code, written
in the programming language C, was not easy to use and its extension to
3D geometries, and particularly cone-beam geometries, was incomplete.

Additionally, there were some problems regarding the implementation of
the reconstruction principle. According to this principle, certain trajectories
within the measured projections should be singled out, during each itera-
tion, and subsequently only the values of the elements that corresponded to
those trajectories would be updated. In practice, it was easier to reconstruct
the volume by FBP, discard the elements with values lower than a thresh-
old value, which the user selected, and update the values of the remaining
elements based on their individual projection (trajectory).

The use of FBP during each iteration required the convolution of the
projections with a filter function, a much more computationally expensive
operation than the simple back-projection. Apart from the computational
cost, the constant filtering also resulted in the presence of salt-and-pepper
noise in the reconstructed images. While noise is set to increase with a large
number of iterations, filtering accelerates this effect. The added salt-and-
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pepper noise required additional special filters for its suppression.

The efficiency of the algorithm was also potentially affected by the ar-
bitrary selection of the threshold value that specified which reconstruction
elements would be updated during each iteration. A threshold value that
was either too high or too low could have a considerable impact on the
reconstruction routine in terms of quality and time.

In this work, the idea of DIRECTT has been thoroughly revisited. By
combining the existing principles with simple physical and mathematical
concepts, as well as sophisticated software, an efficient, easy-to-use algorithm
has been developed as a viable alternative to the standard reconstruction
techniques.

2.2.1 Parallel-beam image reconstruction

Obviously, the only way to rid the algorithm of the computational cost of
the FBP is to skip the filtering and simply back-project the measured data.
Modifying this aspect of the algorithm will also affect the selection of the
reconstruction-array pixels the values of which will be updated during each
iteration.

The new approach for the selection of the pixels can be demonstrated
for the simple example of a disc of µ = 1 (Figure 2.1a, µ has dimensions
of reciprocal length [L−1]). The back-projection of the sinogram of the disc
results in a blurry reconstruction (Figure 2.1a). The plot of the profiles
through the centre of the disc and its reconstruction demonstrates how the
two images differ from one another anywhere but their centres. Based on
this observation and the reconstruction principle of DIRECTT, as it has
been explained in this chapter, the threshold value for the initial iteration of
the algorithm would be set to 1, and the central pixel of the reconstruction
array would be updated.

In reality, the measured object typically will not be uniform. However,
as long as its shape is known, the Radon transform of a virtual, uniform
object C of the same shape and µ = 1 can easily be computed. The relation
between the threshold values for the initial iterations of DIRECTT for the
real and virtual objects will be the same as the relation between the norm
of each Radon transform. And since, following the same reasoning as for
the disc of Figure 2.1, the threshold for C would be 1, the threshold for the
real object will be

β1 =
||P ||
||AC||

, (2.1)

where ||P || is the norm of the measured projections, and ||AC|| is the norm
of the computed projections of the object C. While a high precision in repli-
cating the shape of the measured object in a virtual object is advantageous,
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Figure 2.1: (a) A uniform disc of µ = 1 (in units of reciprocal length [L−1]).
(b) The same disc as reconstructed by back-projection. (c) The plotted
profiles show that, moving away from its center, the reconstructed image
deviates from the real image.

it will rarely be achieved. The optimal approach, in this case, is to define C
as a cylinder that is inscribed in the reconstruction volume.

Following the above modifications, DIRECTT can be expressed in a way
that is compatible with Equations 1.8, 1.10, and 1.11:

Xk+1 = Xk + α ·max
(
AT (P −AXk)− βkJm,n,p, 0

)
. (2.2)

The above expression describes the following steps:

1. Each iteration begins with the back-projection (AT ) of the residual
projections over the m × n × p reconstruction volume. The residual
projections refer to the result of subtracting the Radon transform (A)
of the partially reconstructed image (Xk) from the measured data (P ).

2. A uniform matrix βkJm,n,p is subtracted from the volume that results
from the back-projection. Jm,n,p is a matrix of ones of the same size
as the reconstruction volume. The value of βk depends on the state of
the residual projections and thus decreases following each iteration:

βk =
||P −AXk||
||AC||

. (2.3)

The Radon transform of C is computed once, when β1 is calculated.
Therefore, its contribution to the total computational cost of the al-
gorithm is minimal.

3. After the subtraction of βkJm,n,p, the negative values are truncated to
zero. The result is a sparse matrix.
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4. The sparse matrix is multiplied by an appropriate weight α ≥ 1 and
is added to Xk. The value of α should be low enough that the recon-
structed attenuation coefficients will not be irreversibly overestimated
and, at the same time, high enough that the update of the array will
not be incremental. In many of the cases that are presented in this the-
sis, α is set, during the first iteration of DIRECTT, so that it elevates
the highest values of the sparse matrix to the level of β1.

Following the last step, the Radon transform of the updated solution Xk+1

is compared to P and all steps are repeated for the new set of residual
projections. The algorithm is terminated after a certain number of iterations
or when a pre-defined criterion is met. The criterion will be tied to a certain
quality of the residual, such as the norm of the shape of its histogram.

The different steps of DIRECTT are demonstrated in Figure 2.2 using
the projections of the Shepp-Logan phantom. During the first iteration
of the algorithm (first row of the figure), the values of the sinogram are
back-projected and β1, calculated according to Equation 2.3, is subtracted
from all pixels of the resulting image. After the subtraction, the values of
the positive pixels are multiplied by α and are added to the reconstruction
array to form the first estimate X1. This estimate is forward projected so
that its Radon transform can be subtracted from the original projections.
The same steps are repeated for the residual projections.

Several iterations later (second row of Figure 2.2), the greyscale val-
ues of the residual projections are lower but the projections still resemble
the original data. The attenuation coefficient values in the image after the
back-projection of the residual data are also lower. Compared to the first
iteration, more pixels of this smoother image are selected to be added to the
reconstruction array, which already clearly resembles the phantom. Simi-
larly, the Radon transform of the reconstruction array resembles the original
data.

After more iterations (third row of Figure 2.2), most elements in the
residual projections have greyscale values around zero. Even though the
back-projection reveals some structure, the attenuation coefficient values of
most pixels are too low to modify the reconstruction array significantly. Only
fine details are updated, which leads to the termination of the algorithm.
Different greyscale ranges have been used in each row of Figure 2.2, as is
evident from the colour bars.
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Figure 2.2: The different steps of the DIRECTT algorithm. Different
greyscale ranges have been used in each row, as is evident from the colour
bars.
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2.2.2 Cone-beam image reconstruction

DIRECTT, as described above for the parallel-beam geometry, can also be
implemented for the reconstruction from fan-beam projections. However,
the algorithm does not always succeed in computing the reconstruction from
cone-beam projections, specifically for large cone angles.

Figure 2.3: (a) Vertical cross section through a three-dimensional phantom.
(b) Simulated projection of the phantom. The dashed lines indicate the ex-
tent of a shorter detector. (c-d) Vertical cross section through the phantom
as reconstructed by DIRECTT when it lies within the field of view (c) fully
and (d) only partially.

How the reconstruction can be affected by the projection geometry is
demonstrated in Figure 2.3. The projection of a 3D phantom (vertical cross
section shown in Figure 2.3a) is simulated for two detectors of different
heights but of equal pixel spacing. A projection is shown in Figure 2.3b
where the dashed lines indicate the height of the shorter detector. When the
whole phantom lies within the field of view (FoV), DIRECTT reconstructs
it accurately (Figure 2.3c). However, when the phantom is only partially
within the FoV, severe artefacts arise in the reconstructed volume along
the axial direction (Figure 2.3d). These artefacts arise largely because of a
decrease, along that same direction, of the greyscale values that represent
µ within the volume that the back-projection of the data results in [39].
If this decrease, and hence the associated artefacts, can be predicted for
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Figure 2.4: Reconstruction of the three-dimensional phantom, which lay
partially within the field of view, with the modified version of DIRECTT.

the given projection geometry, the volume can be corrected prior to the
implementation of the subsequent steps of DIRECTT [39].

The artefacts can be indeed closely estimated by computing the Radon
transform AC of a uniform object C, and subsequently back-projecting the
result of the transform (ATAC). The outcome of these successive operations
is a volume M = ATAC that functions as a model of the distribution of
greyscale values in AP . The latter is the volume that the back-projection
of the measured data results in. After AP is divided by M pixel-by-pixel
(Hadamard division [46]), DIRECTT can be successfully applied on the
whole volume. M needs to be computed only once but is used during each
iteration, meaning that the computational cost of the modification is small
[39]. For cone-beam data, the expression of Equation 2.2 is adjusted to

Xk+1 = Xk + α ·max
(
AT (P −AXk)�M − βkJm,n,p, 0

)
. (2.4)

The symbol � denotes the Hadamard division1.

Regarding the shape of the virtual object C, what was mentioned in the
previous section in reference to the calculation of the value βk (Equation 2.3)
also applies here. The shape of C would ideally match the shape of the object
that is being reconstructed. If this cannot be accurately estimated, the best
approximation for C is a cylinder that is inscribed in the reconstruction
volume.

Using the model M to correct the volume during each iteration of the
DIRECTT algorithm for the case of the shorter detector of Figure 2.3 results
in the reconstructed volume of Figure 2.4. Compared to Figure 2.3d, the
artefacts in the axial direction are suppressed.

1Cijk = (A� B)ijk =
Aijk

Bijk
. The operation is defined only if the matrices are of equal

dimensions
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2.2.3 Software

The reconstruction of all samples that are discussed in the dissertation was
performed using a dedicated graphical user interface (GUI) [37]. The GUI
was developed using the Python programming language and the Tkinter
interface, and it incorporates the open-source ASTRA (All-Scales Tomo-
graphic Reconstruction Antwerp) toolbox [56]. Several algorithms, includ-
ing the FBP, the FDK, the SIRT, and the CGLS, are available in the toolbox
and can run with little input from the user. Regarding the implementation
of DIRECTT, the operations of the forward- and back-projection were also
performed via ASTRA. Using ASTRA, these two operations, which may be
too computationally demanding for the central processing unit (CPU), can
be offloaded on a graphics processor unit (GPU) using the CUDA (Compute
Unified Device Architecture) platform.

The average processing times required for the reconstruction of the 2563

Shepp-Logan phantom (64 MB) by FDK, and for a 100 iterations by each
of SIRT, CGLS, and DIRECTT are listed in Table 2.1. All algorithms
were executed on a computer equipped with an Intel i9-7900X CPU and an
NVIDIA GeForce GTX 1080 Ti GPU. While DIRECTT appears to be slower
than the other two iterative algorithms, these values cannot be compared
on one-to-one basis given that SIRT and CGLS are built into the ASTRA
toolbox, while DIRECTT is built around it. Finally, it is worth noting that
the processing time required for the original version of DIRECTT [33, 35, 28]
was approximately 20 times higher.

Table 2.1: Comparison of the processing time required for the reconstruc-
tion of the 2563 Shepp-Logan phantom by FDK, and for 100 iterations of
each of SIRT, CGLS, and DIRECTT on the same dataset.

Algorithm Avg. processing
time (s)

FDK 8.39 (11)
SIRT 16.214 (41)
CGLS 28.09 (16)
DIRECTT 37.82 (90)
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Chapter 3

Image quality metrics

Several reconstruction algorithms were discussed in Chapter 1. The develop-
ment of another algorithm, such as DIRECTT, the principle and implemen-
tation of which were presented in Chapter 2, is only meaningful provided
it can be shown that it outperforms the other algorithms in, at least, some
aspects. It is, therefore, essential that the quality of the images that are
reconstructed by each algorithm can be assessed using common metrics, so
that all algorithms can be directly compared to one another. This chapter
will discuss several such metrics that are classified into two major categories:
full-reference and no-reference metrics.

3.1 Full-reference metrics

As their name suggests, full-reference quality metrics are used to assess the
performance of a reconstruction algorithm based on how well the recon-
structed image compares to a reference image. Ideally, this reference image
corresponds to the ground truth. However, the ground truth is typically not
known unless it is a phantom, i.e. a synthetic ideal structure, that has been
measured.

In certain cases, full-reference metrics can still be used even if the ground
truth is not known. Consider, for instance, that a sample was scanned under
near-ideal conditions and with the appropriate sampling rate. In this case,
the FBP will reconstruct a nearly optimal image. If the same sample were
measured again under worse conditions (partial rotation, few projections)
or such conditions were simulated for the original dataset, the image that
had been earlier reconstructed by FBP could serve now as the reference by
which the reconstruction of the new/simulated dataset would be assessed.

One of the simplest ways to compare an image to a reference is shown
in Figure 3.1, where a profile of the Shepp-Logan phantom and the corre-
sponding profile of the image as reconstructed by the DIRECTT algorithm
are plotted. The plot shows that the reconstructed image is in excellent
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Figure 3.1: Top: The original Shepp-Logan phantom and the result of its
reconstruction by the DIRECTT algorithm. The greyscale values represent
the absorption coefficient µ (dimension of inverse length, L−1) but no specific
unit is assigned to them. Bottom: Plotted profiles of the reference and the
reconstructed image. The two profiles practically coincide.

agreement with the actual phantom and that it contains very little noise.
The absolute difference between the two images of Figure 3.1 is shown in

Figure 3.2. The image confirms the agreement between the original phantom
and the reconstruction and reveals the sharpness of the edges as their main
difference.

While useful conclusions can be extracted from Figures 3.1 and 3.2,
it is more practical if the difference between the reconstructed image and
the reference is quantified in a single value. A simple way to do this is
through the calculation of the mean squared error (MSE) [58]. If x is the
reference image and y is the reconstructed image, the MSE between the two
is computed as

MSE(x, y) =
1

n

n∑
i=1

(xi − yi)2 , (3.1)

where n is the number of pixels, and xi and yi are the pixels indexed with
i. If the two images are identical, the error between them will equal zero.
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Figure 3.2: Absolute difference between the images in Figure 3.1.

The lower the value of MSE is, the more accurate the reconstruction is. For
the image in Figure 3.1 that was reconstructed by DIRECTT, the MSE is
3.2× 10−3.

Despite its popularity, the MSE may not always be a reasonable fidelity
measure. Take, for example, the images in Figure 3.3. The Shepp-Logan
phantom (Figure 3.3, left) has greyscale values in the range [0,1]. Adding
randomly distributed values of ±0.2 results in a noisy image (Figure 3.3,
middle). On the other hand, adding a constant value of 0.2 evenly to the
original results in a brighter, but qualitatively similar image (Figure 3.3,
right). Nevertheless, the MSE between either manipulated image and the
original is 0.04, a result that reveals how the metric fails to predict human
perception of image fidelity and quality [58].

The Structural Similarity Index Metric (SSIM) [59] is a metric that can
be used instead of the MSE and potentially succeed where MSE fails. The
compact form of its formula is

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ . (3.2)

The component functions represent comparison measurements between a
reference image x and a reconstructed image y in terms of luminance (l),
contrast (c), and structure (s). The individual functions are

l(x, y) =
2xy + C1

x2 + y2 + C1
, (3.3)

c(x, y) =
2σxσy + C2

σ2x + σ2y + C2
, (3.4)

and

s(x, y) =
σxy + C3

σxσy + C3
. (3.5)
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Figure 3.3: The Shepp-Logan phantom, along with the images resulting
from adding noise or a constant value to it. Despite their obvious difference
in quality, the mean squared error between either of the resulting images
and the original is the same.

In the above equations, x and y are the mean of x and y, σ2x and σ2y are their

variance, and σxy = 1
n2

∑
i

∑
j>i(xi − xj)(yi − yj) is their covariance. The

constants C1 = (K1L)2 and C2 = 2C3 = (K2L)2 are included to avoid weak
denominators in the respective equations. L represents the dynamic range
of the pixel values, e.g. 255 for 8-bit images, and K1, K2 are small constants
with default values of 0.01 and 0.03, respectively. The default value of each
one of the weights α, β, and γ is 1. The SSIM has a value range of [0,1],
with the optimal value being 1.

Going back to Figure 3.3, the SSIM is 0.16 for the noisy image and 0.4
for the image after adding a constant value. While neither index value is
very high, the image that would be objectively perceived as more faithful to
the original scores higher according to the metric. The SSIM for the image
in Figure 3.1 that was reconstructed by DIRECTT is 0.96.

3.1.1 Using the measured projections as reference

As stated earlier, unless the scanned object is a phantom, there is no avail-
able reference to compare the reconstructed images to. What is available
though is the acquired projections. It was discussed in Chapter 1 how cer-
tain iterative reconstruction algorithms, during their k-th iteration, adjust
the image estimate Xk−1 by a factor that is proportional to ||AXk − P ||.
This residual norm is essentially a quality metric and can also be used to
assess the performance of the algorithm after its termination.

The norm of the projections difference is a global metric. Instead,
P (u, v, θ) and (AX)(u, v, θ) can be compared using local metrics. An ex-
ample of a local metric is the correlation coefficient. Their correlation may



3.1 Full-reference metrics 31

Figure 3.4: The Pearson correlation coefficient between a set of projections
and the forward projection of the volumes that were reconstructed from this
set by different versions of the DIRECTT algorithm.

be calculated over all projection angles θ as a function of the coordinates
(u, v) (detector pixels). Alternatively, it may be calculated for individual
cross sections as a function of θ.

The cross sections from Figures 2.3d and 2.4 are reproduced in Figure
3.4. Below either cross section, the Pearson correlation coefficient (PCC)
[48] between the forward projection of the corresponding volume and the pro-
jections from which the volume was reconstructed (2.3b, between the dashed
lines) is plotted for each detector pixel. For samples x = {x1, x2, ..., xn} and
y = {y1, y2, ..., yn}, the PCC is computed according to the formula

rx,y =
σxy
σxσy

(3.6)

where σx and σy the standard deviation of each sample and σxy their co-
variance. The PCC always has values between 1 and -1, ranging from total
correlation to total anti-correlation.

The reader is reminded that the volume (a cross section of which is
shown) in Figure 2.3d was reconstructed by the original version of DI-
RECTT, while the volume in Figure 2.4 was reconstructed by DIRECTT
following its correction by a model M , as defined in Equation 2.4. When the
model M is not incorporated into DIRECTT, the calculated PCC increases
immediately over and below the source plane, but decreases fast away from
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Figure 3.5: Reconstruction of the Shepp-Logan phantom by FBP and DI-
RECTT from projections over the angular range [0◦, 135◦], and the respec-
tive Radon transforms of the reconstructed images over the complete 180◦-
range.

it, as it would be expected by observing the artefacts that are visible in
Figure 2.3d. When the model M is incorporated into the algorithm, the
calculated PCC is near 1 for every detector pixel.

The PCC can also be calculated as a function of the projection angle.
The reconstruction of the 2D Shepp-Logan phantom by FBP and DIRECTT,
after the phantom was projected over an angular range of 135◦, rather than
180◦, is shown in Figure 3.5. Both reconstructed images were subsequently
projected over the complete 180◦ angular range. The resulting sinograms are
shown next to the respective reconstructed image. The sinograms appear
blurrier over the range [0◦, 135◦], since no projections within this range where
used for the reconstruction.

The shapes of the two sinograms in Figure 3.5 differ greatly from one
another, mainly because of the effect of the artefacts in the image that
was reconstructed by the FBP on the corresponding sinogram. The PCC
between the projections of the phantom and each reconstructed image in
Figure 3.5 over 180◦ are plotted in Figure 3.6. Because of the aforementioned
artefacts, the PCC of the image that was reconstructed by FBP remains
below 1 and fluctuates. The lowest values are located with the angular
range for which no projections were included during the reconstruction. In
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Figure 3.6: The Pearson correlation coefficient (PCC) between the projec-
tions of the Shepp-Logan phantom and the Radon transform of the two
reconstructed images in Figure 3.5 over 180◦.

the case of the image that was reconstructed by DIRECTT, the PCC only
decreases below 1 within the range [0◦, 135◦] but is consistently higher than
the PCC of the FBP image.

3.2 No-reference metrics

No-reference metrics evaluate image quality based on statistical features of
the assessed image. Examples of such metrics are the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [41], the Natural Image Qual-
ity Evaluator (NIQE) [42], and the Perception-based Image Quality Evalu-
ator (PIQE) [57]. These algorithms are trained on datasets of known dis-
tortions to assess images. However, their versions that are available with
open-source software, such as Matlab [40], are not trained for the images
that one typically encounters in CT.

There are, nevertheless, no-reference metrics that are simple to calculate,
yet provide useful information on image quality. Contrast-to-noise ratio
(CNR), for instance, is defined as

CNR =
|SA − SB|

σ0
(3.7)

where SA and SB are the intensities of two regions of interest, and σ0 is the
standard deviation of the pure image noise. If region B is selected within
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Figure 3.7: Magnification of the image, from Figure 3.7, that was recon-
structed by FBP. The contrast-to-noise ratio can be calculated from the
regions of interest A and B. Region B corresponds to the background of the
image and the standard deviation of its greyscale values are used to estimate
the noise.

the image background, the formula takes the form:

CNR =
|SA − SB|

σB
. (3.8)

By definition, an image with little noise will have a high CNR.
The FBP-reconstructed image from Figure 3.7 is shown in greater detail

in Figure 3.7. The CNR for Figure 3.7, according to Equation 3.8, is 1.1.
The CNR for the same image as reconstructed by DIRECTT (Figure 3.5)
is identical.

Another useful metric is the entropy of the image. The differential en-
tropy of a probability distribution f(x) is

h(f) = −
∫
f(x) log f(x)dx (3.9)

If f(x) is approximated with a histogram, the discrete entropy is

H(f) = −
n∑
i=1

f(xi) log

(
f(xi)

w(xi)

)
, (3.10)

where w(xi) is the frequency of the cases in each bin of the histogram [21].
Entropy is influenced by the presence of either noise or blur; homogeneously
distributed noise will maximize the outcome of Equation 3.10, while sharp
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delta peaks (histogram bars) will minimize it. Therefore, a low entropy is
an indication of high image quality [2]. For reference, the entropy of the
Shepp-Logan phantom is 0.97. The entropy of the images reconstructed
from missing-wedge projections by FBP and DIRECTT is 4.24 and 3.42,
respectively.
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Chapter 4

Reconstruction from
parallel-beam tomography
data

4.1 Sample images

Two parallel-beam datasets were acquired at the BAMline [45] of the BESSY
synchrotron radiation facility in Berlin, Germany. A pco.4000 CCD camera
of 4008×2672 pixels and a nominal pixel size of 9 µm was used for the
measurements. The incident cross section was narrowed by a slit system to
the detector field-of-view (FoV) in order to reduce detector backlighting [1].

Figure 4.1: Tomograms of two metal matrix composite plates of different
compositions. In the sample of (a), the presence of Al2O3 fibers is preva-
lent. In the sample of (b), which will be reconstructed in this chapter, SiC
particles are also visible. The figure is reproduced from Reference [9].
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Metal matrix composite The first sample was a metal matrix composite
(MMC) plate. The MMC was an AlSi12CuMgNi alloy reinforced with 7
vol. % of Al2O3 short fibres and 15 vol. % SiC particles (Figure 4.1). A
cylinder with a diameter of 1 mm was extracted by a billet, which had
been produced by squeeze casting. Monochromatic radiation of 25 keV was
selected for the measurement and 3000 projections were acquired over 180◦.
The acquisition time per projection was 3 s. A 20× magnification of the
camera system resulted in a linear voxel size of 0.44 µm [9].

Invar grid The second sample was a grid made of Invar, a nickel-iron
alloy that is also known generically as FeNi36. The sample has a large
aspect ratio: its surface is 1.1 mm × 2.8 mm, while its thickness is 20 µm.
Forty columns and 20 rows of circular apertures formed the grid structure.
The apertures had a diameter of 0.18 mm. Monochromatic radiation of 30
keV was selected for the measurement and 3000 projections were acquired
over 180◦. The acquisition time per projection was 2 s. A 4× magnification
resulted in a linear voxel size of 2.2 µm.
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Figure 4.2: Mean attenuation of the X-ray beam as a function of the pro-
jection angle θ during the measurement of the invar grid. The sharp drop
in the range [86◦, 94◦] is attributed to the unsuitable dynamic range of the
detector that was set for the initial orientation of the sample.

The dynamic range of the detector was set when the longer side of the
grid was parallel to the detector. However, after the grid had rotated 90◦

relative to its initial orientation, approximately 93% of the photons reached
the detector without interacting with the grid. For the projections that
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correspond roughly to the angular range [86◦, 94◦], the dynamic range of
the detector did not allow the accurate recording of the attenuation signal
(Figure 4.2).

4.2 Results and discussion

4.2.1 Simulation of a missing-wedge measurement

A single horizontal slice of the MMC sample was reconstructed by DIRECTT
from the projections that correspond to a single row v of the 4008×2672
detector. The projections, in the form of a sinogram, and the corresponding
histogram are shown in Figures 4.3a and 4.4, respectively. There are two
distinguishable parts in the histogram: a narrow peak, which corresponds
to the part of the beam that reaches the detector without being attenuated,
and a wider range of values that correspond to the MMC.

DIRECTT was programmed to run until the condition

||P −AXk||
||P ||

≤ 0.05. (4.1)

was satisfied. This required 40 iterations. A uniform disk C with a diameter
of 1.2 mm was modelled in order to calculate the value of βk (Equations 2.2,
2.3). The value of α (Equation 2.2) was set to 12. The residual sinogram
at the termination of DIRECTT is shown in Figure 4.3b. All the values are
around zero. The comparison of the corresponding histogram in Figure 4.4
with that of the measured projections confirms that the residual projections
consist mainly of noise.

The same slice of the MMC sample was also reconstructed by FBP,
as well as 120 iterations of SIRT, and 40 iterations of CGLS. The iterative
algorithms were also terminated after the condition of Equation 4.1 had been
met. The images that were reconstructed by each of the four algorithms are
shown in Figure 4.5. A common 600×600 µm2 region of interest (ROI)
around the centre of each image in Figure 4.5 is shown in 4.6.

The image that was reconstructed by FBP appears to be noisy. The
iterative algorithms have suppressed the noise in the reconstructed images.
The values of two no-reference quality metrics, the CNR and the entropy
H, are listed in Table 4.1 for all four images. The values for the image that
was reconstructed by DIRECTT are better by a significant margin, which is
largely attributed to the fact that the background of the image is virtually
noise-free.

The same projections of Figure 4.3a were used to simulate a missing-
wedge measurement. Specifically, the reconstruction of the slice was at-
tempted using only 2000 of the 3000 acquired projections, which corre-
sponded to the angular range [0◦, 120◦]. The images that were reconstructed
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Figure 4.3: (a) Projections corresponding to a single horizontal slice of the
metal matrix composite sample. (b) Residual projections of the same slice
after 40 iterations of DIRECTT.
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Figure 4.4: Histograms of the values in the sinograms of Figures 4.3a and
4.3b.



4.2 Results and discussion 41

Figure 4.5: Reconstruction of a horizontal slice of the metal matrix compos-
ite sample from 3000 projections by (a) FBP, (b) 60 iterations of SIRT, (c)
25 iterations of CGLS, and (d) 40 iterations of DIRECTT. For reference,
the theoretical µ for the nominal density of Al2O3 and SiC (2.7 g·cm−3 and
3.2 g·cm−3, respectively) are 5 cm−1 and 5.7 cm−1.

Table 4.1: The contrast-to-noise ratio (CNR) and the entropy of each image
in Figure 4.5.

Algorithm CNR Entropy H

FBP 7.9 4.9
SIRT 20.6 3.9
CGLS 27.1 3.8
DIRECTT 93.8 2.7
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Figure 4.6: A 600×600 µm2 region of interest around the centre of each
image in Figure 4.5.

by FBP, SIRT, CGLS, and DIRECTT are all shown in Figure 4.7. A com-
mon 600×600 µm2 ROI around the centre of each image in Figure 4.7 is
shown in 4.8. The three iterative algorithms were terminated after the con-
dition of Equation 4.1 had been met. Each performed more iterations than
they had in the case of the full dataset. SIRT performed 140 iterations,
CGLS performed 70, and DIRECTT performed 60.

The CNR and the entropy H of each image in Figure 4.7 are listed in
Table 4.2. The values of both metrics are again better for the image that was
reconstructed by DIRECTT. The quality of the reconstructed images was
also assessed using two full-reference metrics, the MSE and the SSIM. It has
been argued in Chapter 3 that, when the ground truth is not available, earlier
reconstructed data of proven quality may serve as the reference instead.
Among the images shown in Figure 4.5, which were reconstructed from the
full dataset, the image reconstructed by CGLS was chosen as the reference
based on its higher CNR and lower entropy (Table 4.1). Although the values
of both metrics are better for the image reconstructed by DIRECTT, the
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Figure 4.7: Reconstruction of a horizontal slice of the metal matrix compos-
ite sample from projections that corresponded to the angular range [0◦, 120◦].
The images were reconstructed by: (a) FBP, (b) 175 iterations of SIRT, (c)
80 iterations of CGLS, and (d) 60 iterations of DIRECTT.

Table 4.2: The contrast-to-noise ratio (CNR) and entropy of each image
in Figure 4.7, and their mean squared error and structural similarity index
metric in reference to the image in Figure 4.5 that was reconstructed by
CGLS.

Algorithm CNR Entropy H MSE SSIM
(cm−2)

FBP 2.5 5.0 1.06 0.39
SIRT 7.2 4.6 0.22 0.75
CGLS 7.9 4.6 0.22 0.75
DIRECTT 32.5 2.8 0.22 0.78
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Figure 4.8: A 600×600 µm2 region of interest around the centre of each
image in Figure 4.7.

image was chosen as the reference in order to remove any bias in favour of
the DIRECTT.

The values of MSE and SSIM for each image of Figure 4.7 are listed
in Table 4.2. The higher SSIM value for the image that was reconstructed
by DIRECTT is attributed to the fact that the algorithm has performed
better in preserving the shape of the sample despite the missing wedge.
This is strictly a result of the implementation of DIRECTT. No additional
geometric constraints, such as masks, were imposed on the image.

The perception that the image that was reconstructed by DIRECTT is
the most accurate is reinforced when the PCC between the full dataset of
projections and the Radon transform, over the full 180◦, of all reconstructed
images of Figure 4.7 is calculated. It is evident from Figure 4.9 that, in
the case of the images that were reconstructed by FBP, the PCC decreases
sharply in the range [120◦, 180◦]. The images by CGLS and SIRT have a
higher correlation which, however, still decreases noticeably in the range of
the missing projections. On the other hand, the PCC that corresponds to
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Figure 4.9: Pearson correlation coefficient (PCC) as a function of the pro-
jection angle. The coefficient is calculated for the full dataset of projections
of the metal matrix composite slice and the forward projection of the im-
ages that were reconstructed from the projections that corresponded to the
angular range [0◦, 120◦] by different algorithms.

DIRECTT remains near 1 over the full range of 180◦.

4.2.2 Reconstruction of a sample with large aspect ratio

In section 4.1, it was explained that, because of the dynamic range that was
selected for the detector during the measurement of the Invar grid, it was not
possible to record an accurate attenuation signal within the angular range
[86◦, 94◦] (Figure 4.2). Instead of allowing them to affect the reconstruction
in a negative way, the corresponding projections (100 out of the 3000 that
were acquired) were discarded. The reconstruction of the grid from the
remaining 2900 projections presents challenges that are similar to those of
a missing-wedge measurement.

The grid was reconstructed by FBP, SIRT, CGLS, and DIRECTT. The
three iterative algorithms performed 300, 250, and 300 iterations, respec-
tively. Regarding the implementation of DIRECTT, a cuboid C with di-
mensions 3.15 mm × 8.4 mm × 0.06 mm was modelled in order to calculate
the value of βk; α was set to 1.

Two cross sections of the volume that was reconstructed by DIRECTT
are shown in Figure 4.10. The corresponding cross sections of the volumes
that were reconstructed by the other three algorithms are not shown since,
at this scale, the differences among the images would not be easily distin-
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Figure 4.10: Orthogonal views of the volume of the invar grid that was
reconstructed by DIRECTT. The green line along the XZ-view refers to
the relative position of the XY -view. The blue line along the XY -view
refers to the relative position of the XZ-views of Figure 4.11. For reference,
the theoretical µ of Invar for its nominal density of 8 g·cm−3 is 71 cm−1.

Figure 4.11: Images from the volumes of the grid that were reconstructed by
(a) FBP, (b) SIRT, (c) CGLS and (d) DIRECTT. The images correspond to
the blue line in Figure 4.10. At ∆y = 0.4 mm from the grid, only the volume
that was reconstructed by DIRECTT is entirely devoid of ‘ghost images’.
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Figure 4.12: (a) The measured projection of the grid at angle θ = 0. (b-e)
The structural similarity index metric image between the measured projec-
tion and the corresponding Radon transform of the volume that was recon-
structed by (b) FBP, (c) SIRT, (d) CGLS, and (e) DIRECTT.

guishable. Information about the qualitative differences among the volumes
can be extracted by calculating their CNR and entropy, the values of which
are listed in Table 4.3. The volume that was reconstructed by DIRECTT
has both the highest CNR and the lowest entropy.

Images from each of the four reconstructed volumes are shown in Figure
4.11. The images correspond to the blue line in Figure 4.10. At ∆y = 0.4 mm
from the grid, only the volume that was reconstructed by DIRECTT is
entirely devoid of artefacts. While, at that distance from the grid, the
volumes should be empty (µ = 0), the cross sections through the volumes
other than DIRECTT reveal ‘ghost images’. This is a further indication
that DIRECTT has performed better in preserving the shape of the grid.
Note that the zero image is not the result of the application of a mask to
the volume after the algorithm was terminated. It is rather a result of the
implementation of DIRECTT.

It was explained in Chapter 3 that, when real samples are reconstructed,
there is no available reference to compare the reconstructed images to and
that the acquired projections can be used for the same purpose instead.
Moreover, the correlation coefficient was suggested as a local metric that
can be used to compare the Radon transform to the acquired projections.

Because of the shape of the grid, which results to several projections
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Table 4.3: The contrast-to-noise ratio and entropy of each reconstructed
volume, and the structural similarity index metric (SSIM) between the
Radon transform of each volume and the measured projections.

Algorithm CNR Entropy H SSIM(P,AX)

FBP 1.1 2.8 0.79
SIRT 1.7 3.5 0.46
CGLS 2.6 3.6 0.71
DIRECTT 5.3 1.4 0.92

consisting mainly of background values, the calculation of the correlation
coefficient, similar to Figure 3.4, would not return meaningful results. In-
stead, the assessment may be focused on projections that corresponds to
views near θ = 0 or θ = π, when the grid is projected on most of the detec-
tor. In this case, the assessment can be carried out by calculating the SSIM
image that compares the acquired projection and the Radon transform for
the specific angle.

The SSIM images for each reconstructed volume after it has been pro-
jected at θ = 0 are shown in Figure 4.12. The respective values of the metric
are listed in Table 4.3. In the case of the volume that was reconstructed by
DIRECTT, most pixels in the corresponding SSIM image have values near
1. The SSIM images that correspond to the other volumes have a higher
number of pixels with values near 0, particularly where the apertures are
projected and also in the background of the projections. This is an indica-
tion of a less precise reconstruction of the apertures, as well as noise in the
corresponding reconstructed volumes.



Chapter 5

Reconstruction from
cone-beam tomography data

5.1 Sample images

A concrete rod was scanned with a GE v|tome|x L300 scanner operated by
Division 8.5 of BAM. The shape of the rod was a cylinder with a radius of
30 mm. An example of a similar, but thicker, sample is shown in Figure
5.1. A PerkinElmer detector of 2024×2024 pixels and a pixel size of 0.2 mm
was used for the measurement. The source-detector distance was SD = 1018
mm. A 0.5 mm Cu prefilter was placed in front of the source.

Two different datasets of 3000 projections over 360◦ were acquired for
the same sample:

1. During the first measurement, the source-to-object distance was SO =
81.4 mm. A not-to-scale geometric representation of the measurement
is shown in Figure 5.2a. The width of the rod lay fully within the
FoV for all projections. Conversely, the inverse conical area, which is
defined by the solid and dashed red lines in Figure 5.2, in the lower
part of the sample did not lay within the FoV for all projections. This
area, as will be shown also in the next section, cannot by definition be
fully reconstructed by FDK [18]. The rod extended all the way to the
lower edge of the FoV but, at the same time, not to its upper edge.
The voltage and current settings of the source were set to 140 kV
and 80 µA, respectively. The acquisition time per projection was 6 s.
The relation between the source-object and source-detector distances
resulted in a 12.5× magnification and a voxel size of 16 µm [38].

2. The second measurement was a ROI measurement. The source-to-
object distance was SO = 40.7 mm. A not-to-scale geometric repre-
sentation of the measurement is shown in Figure 5.2b. Because of the
proximity of the rod to the source, its width never lay fully within the



50 Reconstruction from cone-beam tomography data

Figure 5.1: Photograph of a computed tomography scanner, which was de-
signed and is operated by BAM, with a concrete rod placed on the rotating
table. The rod that is pictured is thicker than the rod that will be recon-
structed in this chapter. The figure was reproduced from Reference [25].

FoV. In this case the rod extended all the way to both the upper and
lower edges of the FoV. Therefore, there is an inverse conical area that
cannot be fully reconstructed by FDK in both directions.
The voltage and current settings of the source were set to 140 kV
and 70 µA, respectively. The acquisition time per projection was 6 s.
The relation between the source-object and source-detector distances
resulted in a 25× magnification and a voxel size of 8 µm.
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Figure 5.2: Geometric representation of the (a) full-width and (b) region-
of-interest measurements of the concrete rod. The setup is not pictured to
scale.
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5.2 Results and discussion

5.2.1 Full-width measurement

It has been explained in Chapter 2 that the model object C serves a dual
role for the reconstruction from cone-beam data with DIRECTT: Its forward
projection is computed once and used, during each iteration, to correct the
volume following the back-projection (Equation 2.4) and to determine the
voxels the value of which will be updated (Equations 2.2 and 2.3).

In the case of the concrete rod, it is easy to define a uniform object C
the shape of which matches the shape of the sample. The rod is cylindrical,
which is the most common sample shape in CT measurements for non-
destructive testing and materials science [4, 8, 10, 13]. Even if its dimensions
are not already known from the acquisition stage, as would typically be the
case, they can be determined from the measured data. First, its radius
can be determined from its projections, one of which is shown in Figure
5.3a. Specifically, it can be determined as half the distance between the
two peaks in the plot of

∣∣dP (u)/du
∣∣ (the absolute value of the derivative of

the mean integral attenuation along the detector columns u) in Figure 5.3b.
Considering that the size of the detector pixels was 0.2 mm and that the
measurement resulted in a magnification of 12.5×, the radius r of the rod,
and the object C, is estimated to be equal to 14.74 mm.

The height h of the part of the rod that lay within the FoV at any
moment, during the acquisition, is equal to the sum of h1 and h2. These
are the heights of the parts of the rod that lay above and below the source
plane, respectively. Using basic geometry concepts, it can be shown [39]
that

h2 =
SO + r

SD
· H

2
, (5.1)

where H = 404.8 mm is the height of the detector. Hence, h2 = 19.12 mm.
The height h1 can be estimated from the result of the back-projection of

the measured data, rather than the data itself, as was the case for the radius
r. Specifically, it can be derived by the inflection point of µ(z). A vertical
cross section through the centre of the volume which the back-projection re-
sults in is shown in Figure 5.3c. From the high peak in the plot of |dµ(z)/dz|
(the absolute value of the derivative of the mean attenuation coefficient along
the axis z) in Figure 5.3d, it is estimated that h1 = 12.66 mm. Therefore,
the total height is h = 31.78 mm.

After the uniform object C has been defined, its forward projection is
computed and the result is back-projected. The volume that the back-
projection results in, after it has been normalized for the slice that is paral-
lel to the source plane, is the model M (Equation 2.4) of artefacts that are
associated with the projection geometry and the geometry of the sample. Or-
thogonal cross sections through the concrete rod after the back-projections
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Figure 5.3: (a) A projection of the concrete rod. (b) Absolute value of the
derivative of the mean integral attenuation along the detector columns u.
The diameter of the rod can be derived from the distance between the two
peaks. (c) Vertical cross section through the centre of the volume that the
back-projection of the data results in. (d) Absolute value of the derivative
of the attenuation coefficient along the positive part of axis z. The position
of the high peak is used to derive the height of the part of the rod that
extends above the source plane (h in Figure 5.2).

of the measured data and through the corresponding model M are shown
in Figure 5.4. The qualitative relation between the two sets of images is
obvious. Performing the Hadamard division of the two, the artefacts in the
volume are suppressed and the voxels the value of which will be updated in
the volume estimate are determined. These steps are repeated during each
iteration of DIRECTT without the need to compute an updated M .

Cross sections through the volumes that were reconstructed by FDK, 200
iterations of SIRT, 60 iterations of CGLS, and 200 iterations of DIRECTT
are shown in Figure 5.5. For the implementation of DIRECTT, the value
of α was set to 6.4. The relative position of the cross sections in Figure 5.5
corresponds precisely to the views in Figure 5.4. The CNR and entropy of
each volume are listed in Table 5.1. The artefacts that are associated with
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Figure 5.4: Orthogonal cross sections through the concrete rod after the
back-projections of the measured data (top row) and through the corre-
sponding model M (bottom row). The red lines indicate the position of
each cross section in relation to the other two.

cone-beam CT are prevalent in the volume that was reconstructed by FDK,
which is also noisy. These shortcomings of FDK are reflected on the low
CNR and the high entropy of the volume.

The iterative algorithms appear to have suppressed these artefacts, al-
beit in varying degrees. The greyscale values in the volume that was recon-
structed by SIRT are consistent along the z-axis but the images are not very
sharp. The volume that was reconstructed by CGLS is sharper. However,
it suffers from severe ring-like artefacts, which are located at the border
between the part of the sample that always lies within the FoV and its part
that only lies within it partially (i.e., not for all projection angles). With the
exceptions of these artefacts, the greyscale values are consistent along the
z-axis. The volume that was computed by DIRECTT is sharp and largely
noise-free, as attested by its high CNR and low entropy. Its greyscale values
are also consistent along the z-axis.

Profiles across the centre of each XY -slice of Figure 5.5 are plotted in
Figure 5.6. The profiles, in their respective volumes, correspond to the voxels
marked with the green line in the XY -slice of the DIRECTT-reconstructed
volume in Figure 5.5. An accurate profile should have a square shape with
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Figure 5.5: Orthogonal cross sections through the volume of the concrete
rod that was reconstructed by FDK, 200 iterations of SIRT, 60 iterations
of CGLS, and 200 iterations of DIRECTT. The cross sections correspond
precisely to those from Figure 5.4. The green line in the XY -slice of the
DIRECTT-reconstructed volume in Figure corresponds to the profiles that
are plotted in Figure 5.6.

Table 5.1: The contrast-to-noise ratio and the entropy of each volume in
Figure 5.5.

Algorithm CNR Entropy H

FDK 4.8 5.1
SIRT 7.2 4.8
CGLS 9.4 4.8
DIRECTT 23.8 3.4
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Figure 5.6: Profiles across the centre of each XY -slice of Figure 5.5. The
profiles, in their respective volumes, correspond to the voxels marked with
the green line in the XY -slice of the DIRECTT-reconstructed volume in
Figure 5.5.

modulation that corresponds to the composition of the sample. Because of
the cone-beam artefacts, the values of µ near the edges are lower and the
profile that corresponds to FDK deviates from the described shape. The
iterative algorithms have largely suppressed these artefacts. However, in
the case of the volumes that were reconstructed by SIRT and CGLS, the
outer edges are still more blurred than the centre of the slice. The presence
of artefacts at the edges of the inverse conical area near the bottom of the
volume that was reconstructed by CGLS has a visible contribution to the
respective profile, which is plotted in Figure 5.6 in blue.
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Simulation of sparse-sampling measurements

The same dataset was used to simulate sparse-sampling measurements. By
progressively and evenly removing projections, the reconstruction of the
concrete rod was attempted from five under-sampled datasets of 1500, 1000,
750, 600, and 500 projections. Each dataset still represented a full rotation
of the sample (no missing wedge) but with only a fraction of the original
projections.

Figure 5.7: Mean squared error (MSE) and structural similarity index metric
(SSIM) of each reconstructed volume of the concrete rod. Six datasets that
contained between 500 and 3000 projections were reconstructed, each by
FDK, SIRT, CGLS, and DIRECTT. The volume that was reconstructed by
FDK from the full dataset was used as the reference for the calculation of
both metrics.

The rod was reconstructed from each dataset by all four previously used
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algorithms. The number of iterations that the iterative algorithms needed
to perform generally decreased along with the decrease in the number of
projections. SIRT performed between 70 and 160 iterations until it met the
termination condition, CGLS between 50 and 60, and DIRECTT between
140 and 175.

The quality of each reconstructed volume was assessed by calculating
their MSE and SSIM. Since the ground truth for the sample is not known,
one of the volumes from Figure 5.5 had to serve as the reference for the
calculation of the two metrics. Among the four, the volume that was re-
constructed by FDK was of lesser quality than either of the other three,
with respect to the metrics of Table 5.1. Nevertheless, FDK is accepted
as the standard algorithm for reconstruction from cone-beam data. There-
fore, using the volume that was reconstructed by FDK as the reference is
reasonable.

More specifically, the MSE and SSIM were calculated for regions of di-
mensions (16.2 mm)3 around the centre of each volume. All voxels within
these regions corresponded to the material (including pores) but not the
background. Had the metrics been calculated for the whole reconstructed
volume, the calculation would have also included noise from the background
of the sample. In that case, the calculations would have skewed the results
in favour of FDK or any algorithm that fails to suppress the noise during
the reconstruction.

The MSE and SSIM of each reconstructed volume are plotted in Figure
5.7. Obviously, the volume that was used as reference has the best possible
values fro both metrics (0 for MSE, 1 for SSIM) when compared to itself.
Nevertheless, both metrics agree that the quality of the reconstruction by
FDK, among all four algorithms, decreases the fastest as a function of the
decreasing number of available projections. According to the MSE, CGLS
and DIRECTT perform the best. According to the SSIM, there is a clear
advantage in using DIRECTT.

Correction of severe ring artefacts

Another challenge that is addressed is the suppression of severe ring arte-
facts. Such artefacts may be caused by defective detector pixels or, in the
case of synchrotron tomography, defects or impurities of the scintillator crys-
tals [6]. Several methods have been proposed for the corrections of ring arte-
facts, ranging from the standard flat-field correction [50] to processing of the
projections during the reconstruction [6] and post-processing of the recon-
structed images [52]. Regarding the implementation of DIRECTT, the ring
artefacts can be modelled in the model M and therefore corrected during
the reconstruction.

A rather extreme case of a ring artefact was simulated for the slice of the
concrete rod that was parallel to the source plane. In the simulated case, 40
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Figure 5.8: (a) Projections of the slice of the detector row that, during the
measurement, was parallel to the source plane. The case that 40 consecutive
pixels of the corresponding detector row were defective is simulated. (b)
Reconstruction of the slice from the sinogram in (a) by FDK.

consecutive pixels of a detector row would be defective. The values of the
defective pixels would be discarded and replaced with zero, resulting in the
sinogram of Figure 5.8a.

The slice that is reconstructed by FDK from the sinogram is shown in
Figure 5.8b. In addition to the significant loss of information because of the
ring artefact, the image has an overall high level of noise. While the CNR
of the volume in Figure 5.5 that was reconstructed by FDK was 4.8 (Table
5.1), the CNR of the slice in Figure 5.8b is only 1.9. The MSE of the slice
in reference to the corresponding slice of the volume that was reconstructed
by FDK in Figure 5.5 is 3.8× 10−4 mm−2. Its SSIM is 0.83.

For the current version of DIRECTT, only a simple back-projection is
performed. The result of this operation for the sinogram of Figure 5.8a is
shown in Figure 5.9a. For the implementation of the algorithm, it is also
required that the Radon transform of a uniform object C is computed. In
this case, C is a disk of radius 14.74 mm. However, in this case, the exact
same pixels that were discarded in Figure 5.8a are also discarded in the
projections of C. The model M for the reconstructed slice that is computed
from these projections is shown in 5.9b. The qualitative relation between
the result of the back-projection and the model is obvious.

During the first iteration of DIRECTT, the Hadamard division of the
slice in Figure 5.9a by the model M is performed. Following this operation,
the pixels of the reconstruction slice the values of which will be updated are
identified. In subsequent iterations, the result of the back-projection of the
residual sinogram is also divided by M .

The final result of DIRECTT is shown in Figure 5.10a. No ring artefact
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Figure 5.9: (a) Result of the back-projection of the sinogram in Figure 5.8a.
(b) Model M of the artefacts in (a).

Figure 5.10: Reconstruction of the slice of the concrete rod by DIRECTT
in two different magnifications.
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Table 5.2: The mean squared error (MSE) and the structural similarity
index metric (SSIM) of the slices in Figures 5.8b and 5.10 in reference to
the corresponding slice of the volumes in Figure 5.5 that were reconstructed
by FDK and DIRECTT.

MSE SSIM
(×10−4 mm−2)

Algorithm Reference
in Fig. 5.5: FDK DIRECTT FDK DIRECTT

FDK 3.8 3.8 0.83 0.80
(Fig. 5.8b)

DIRECTT 0.17 0.06 0.87 0.95
(Fig. 5.10)

is visible at this scale. A (10 mm)2-region around the centre of the same slice
is shown in magnification in Figure 5.10b. There is only a slight gradient
around the pixels that correspond to the ring artefact in Figure 5.8b. The
MSE of the slice in reference to the corresponding slice of the volume that
was reconstructed by FDK in Figure 5.5 is 1.7×10−5 mm−2; its SSIM is 0.87.
The corresponding slice of the volume that was reconstructed by DIRECTT
in Figure 5.5 has a MSE equal 6 × 10−6 mm−2 and a SSIM equal to 0.95.
These values, along with those for the slice in Figure 5.8b are also compiled
in Table 5.2.

Since the ring artefact has been artificially introduced in the presented
example, it is known which pixels should be discarded from the sinogram.
This does not preclude the implementation of the same approach on real
data. Of course, the said implementation would require the identification
of the detector pixels to which similar artefacts would be attributed. The
pixels would be identified easily based on outlier values in the flat-field image
[50].

5.2.2 Region-of-interest measurement

During the measurement of the concrete rod at half its original distance from
the source, only a region of interest (ROI) in the shape of cylinder with a
diameter of 16.2 mm and a height of 11.8 mm lay fully within the FoV.
Cross sections through the volume that was reconstructed by FDK from the
acquired projections are shown in the upper row of Figure 5.11. Filtering the
truncated projections leads to the artefacts in the form of extremely high µ
values tangentially to the ROI [43]. In order to achieve better visualization
inside the ROI, the maximum greyscale value was set to 0.1 mm−1 causing
a ”halo” effect in the images.
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Figure 5.11: Common cross sections through the volumes of the concrete rod
that were reconstructed by FDK and DIRECTT from the region-of-interest
projections. In order to achieve better visualization inside the ROI in the
volume that was reconstructed by FDK, the maximum greyscale value was
set to 0.1 mm−1 causing a ”halo” effect in the images. The red lines in
the upper row indicate the relative position of the two cross sections to one
another.

Based on the detector voxel size of 0.2 mm and the magnification of 25×,
a reconstruction volume of (16.2 mm)3 was selected for the implementation
of FDK. However, in the case of the iterative algorithms, the reconstruction
volume must contain the majority of the elements that lay, even partially,
within the FoV. This is essential because of the repeated forward- and back-
projection operations. Therefore, for the implementation of the iterative
algorithms, the volume was expanded to 19.4×32.4×32.4 mm3.

The model M , which is required for the implementation of DIRECTT
(Equation 2.4), was computed based on a virtual cylinder C that was in-
scribed inside the expanded reconstruction volume. The value of α was set
to 2.5. Cross sections through the ROI as this was reconstructed by DI-
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Figure 5.12: (a) The region of interest (ROI) as reconstructed by FDK from
the full-width projections and the same ROI as reconstructed by (b) FDK,
(c) SIRT, (d) CGLS, and (e) DIRECTT from the truncated projections.

Table 5.3: The mean squared error (MSE) and structural similarity index
metric (SSIM) of each volume in Figures 5.12b-e in reference to the volume
in Figure 5.5 that was reconstructed by FDK.

Algorithm MSE SSIM
(×10−4 mm−2)

FDK 11.5 0.70
SIRT 1.8 0.81
CGLS 2.5 0.78
DIRECTT 1.7 0.80
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RECTT are shown in the lower row of Figure 5.11. The area around the
edges of the ROI is now mostly devoid of severe artefacts. While the im-
ages remain slightly blurred near their corners, they are vastly improved
compared to those reconstructed by FDK.

Since both full-width and region-of-interest projections of the same sam-
ple have been used in this chapter, the volumes that were reconstructed from
the former could be used as the reference for the assessment of the volumes
that were reconstructed from the latter. However, this would be possible
only if the volume that was assessed had a voxel size that was equal to that
of the reference. By taking full advantage of the increased magnification of
the ROI measurement, the reconstructed volume would have a voxel size of
8 µm (2424×4048×4048 array). Instead, the algorithms were programmed
to reconstruct volumes with a voxel size of 16 µm (1212×2024×2024 array),
using the original projections.

The XY -slices from Figure 5.11 are shown again in Figure 5.12 alongside
the corresponding slices from the ROI as reconstructed by SIRT and CGLS.
The 16.2×16.2 mm2 part around the centre of the corresponding slice from
the volume that was reconstructed by FDK from the full-width projections is
also shown in Figure 5.12a. SIRT performed 800 iterations, CGLS performed
200, and DIRECTT performed 600. Interestingly, compared to FDK, SIRT
and CGLS each performed better at suppressing the artefacts on opposite
sides of their respective volumes: SIRT on the right side, and CGLS on the
left side. On the contrary, DIRECTT performed well at suppressing the
artefacts on both sides.

The MSE and SSIM of each volume in Figures 5.12b-e are listed in Table
5.3. A region of dimensions (16.2 mm)3 around the centre of the volume
that was reconstructed by FDK from the full-width projections (Figure 5.5)
was used as the reference. The same reference was used for the calculation
of the metrics in Figure 5.7. The values of the metrics in Table 5.3 indicate
that the volumes that were reconstructed by SIRT and DIRECTT are of
similar quality, higher than that of the volume reconstructed by CGLS and
much better than that of the volume reconstructed by FDK.



Summary and outlook

This dissertation has dealt with the subject of image reconstruction from
Computed Tomography (CT) data. It has specifically focused on the use of
iterative algorithms for the reconstruction from under-sampled data.

An overview of the basics of image reconstruction has been given, be-
ginning with the simplest case of a two-dimensional (2D) measurement with
a parallel X-ray beam, and extending to three dimensions (3D) and the
more complex projection geometry involving a cone beam. This overview
included an introduction to the standard filtered back-projection (FBP) al-
gorithm, as well as the algorithm developed by Feldkamp, Davis and Kress
(FDK) specifically for the reconstruction from cone-beam data. It also intro-
duced the concept of iterative reconstruction, with special reference to two
established and easily accessible algebraic-reconstruction algorithms: the
Simultaneous Iterative Reconstruction Technique (SIRT) and the Conjugate
Gradient Least Squares (CGLS).

Within the wide subject of image reconstruction, the overarching objec-
tive of the dissertation has been the development of the Direct Iterative Re-
construction of Computed Tomography Trajectories (DIRECTT) algorithm.
DIRECTT was originally proposed by Lange and Hentschel. While it had
already been shown to be a promising alternative to FBP algorithms, its
implementations was hindered by certain weaknesses. The main weaknesses
have been identified here as the repeated and computationally expensive fil-
tering of the projections and the relatively arbitrary selection of elements of
the reconstruction array, the values of which would be updated during each
iteration. They both affect the efficiency of the algorithm in terms of speed
and reconstruction quality.

To overcome these weaknesses, a novel approach to DIRECTT has been
proposed. First, the measured (or, after the initial iteration, residual) data
are not filtered any more before they are back-projected. Second, a virtual
uniform object C of dimensions sufficiently similar to those of the measured
object is defined. The relation between the Radon transform of C, which is
computed only once, and the measured data is used to easily identify which
elements of the reconstruction array will have their values updated during
each iteration.

The novel approach to DIRECTT has also been expanded to its im-
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plementation for 3D geometries, including acquisitions with a cone-beam.
In this particular case, the object C serves a second role. After the Radon
transform of the virtual uniform object is computed, as explained above, the
result is back-projected to compute the model M . This is a model of arte-
facts that arise during the back-projection of the data and, even though it
needs to be computed only once, it is used to correct the volume prior to the
identification of the voxels that will have their values updated during each
iteration. Without these corrections, DIRECTT could not be implemented
efficiently for cone-beam geometries.

The newly formulated version of DIRECTT has been tested on several
datasets that were acquired in both parallel- and cone-beam measurements.
Its results have been compared to those of other established algorithms. The
evaluation of the results has been performed using an array of full-reference,
as well as no-reference metrics.

Regarding the reconstruction from parallel-beam data, the algorithms
have been compared for two sets that present different challenges. In the
first case, the iterative algorithms have clearly performed better than FBP in
suppressing the noise while reconstructing a metal matrix composite cylin-
drical sample from noisy data. After the introduction of an extra degree
of difficulty, through the simulation of a missing-wedge measurement, DI-
RECTT has been shown to suppress the distortion of the shape of the sam-
ple. Hence, it has returned an image that resembles more closely, compared
to the other algorithms, the image that is reconstructed from the full dataset.
In a second example, a significant number of projections have been deemed
unusable because of the large aspect ratio of the scanned grid, resulting in a
different, but relevant, case of a missing-wedge measurent. DIRECTT has
been shown to perform better, in terms of locating the attenuation coefficient
values accurately throughout the reconstruction volume and, consequently,
preserving the shape of the apertures of the grid.

Two sets of measured data have been used to compare the reconstruction
algorithms for the case of cone-beam CT as well. The sets correspond to
different measurements of a concrete sample. In the first case of a conven-
tional, full-width measurement of the sample, the iterative algorithms have
performed better than FDK in suppressing artefacts that are associated
with the cone-beam geometry. Following the progressive removal of projec-
tions from the data, in order to simulate sparse-sampling measurement, DI-
RECTT has been shown to reconstruct volumes that resemble more closely
those that have been reconstructed from the full dataset, compared to the
other algorithms. In the second case of a region-of-interest measurement,
the iterative algorithms have suppressed the very severe artefacts that arise
when reconstructing by FDK.

To sum up, the performance of different reconstruction algorithms has
been tested for several distinct cases of CT measurements. Regarding DI-
RECTT in particular, the novel approach to the reconstruction principle of
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the algorithm, which has been presented here, has led to higher efficiency
and improved computational time compared to the original version. DI-
RECTT has been shown to perform the reconstruction from any dataset at
least as well as other algorithms. In fact, in most cases, DIRECTT outper-
forms them. The number of iterations that DIRECTT requires is practical,
even if typically larger that that of CGLS. It is comparable to the number
of iterations required by SIRT and often even smaller.

There is definitely a potential for further improvement of DIRECTT.
Future work will mostly focus on the modelling of the scanned object. A fast
but accurate estimation of the shape and geometry will improve further the
efficiency of the algorithm in terms of speed and reconstruction quality. For
instance, different artefacts, e.g. metal artefacts, could be suppressed if the
factors that cause them are included when the object C and/or the model
M are defined. In addition, the relative simplicity of the mathematical
concepts that the iterative of DIRECTT is based on means that higher-level
programming could reduce the required running time of the algorithm by
several degrees.
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zur rechnergestützten Auswertung computertomographischer Messungen
durch direkte iterative Rekonstruktion. Patent No. DE 103 07 331 Q4
A1, Germany, 2003.

[32] A. Lange and M. P. Hentschel. Imaging method and device for the
computer-assisted evaluation of computer-tomographic measurements
by means of direct iterative reconstruction. Patent No. US 2006 0233459
A1, United States of America, 2006.



72 BIBLIOGRAPHY

[33] A. Lange, M. P. Hentschel, and A. Kupsch. Computertomographische
Rekonstruktion mit DIRECTT: 2D-Modellrechnungen im Vergleich zur
gefilterten Rückprojektion. Materials Testing, 50(5):272–277, 2008.

[34] A. Lange, M. P. Hentschel, and A. Kupsch. True 3D-CT-reconstruction
in comparison to the FDK-algorithm. In 17th World Conference on
Non-Destructive Testing (Proceedings), pages 491–495, Shanghai, 2008.
International Committee for Non-Destructive Testing.

[35] A. Lange, A. Kupsch, M. P. Hentschel, I. Manke, N. Kardjilov, T. Arlt,
and R. Grothausmann. Reconstruction of limited computed tomog-
raphy data of fuel cell components using Direct Iterative Reconstruc-
tion of Computed Tomography Trajectories. Journal of Power Sources,
196(12):5293–5298, 2011.

[36] S. Lück, A. Kupsch, A. Lange, M. P. Hentschel, and V. Schmidt. Sta-
tistical analysis of tomographic reconstruction algorithms by morpho-
logical image characteristics. Image Analysis & Stereology, 29(2), 2011.

[37] S. Magkos. Graphic User Interface for reconstruction from Computed
Tomography data. https://github.com/BAMresearch/DIRECTT,
2021.

[38] S. Magkos, A. Kupsch, and G. Bruno. Direct Iterative Reconstruction of
Computed Tomography Trajectories Reconstruction from limited num-
ber of projections with DIRECTT. Review of Scientific Instruments,
91(10):103107, 2020.

[39] S. Magkos, A. Kupsch, and G. Bruno. Suppression of Cone-Beam Arte-
facts with Direct Iterative Reconstruction Computed Tomography Tra-
jectories (DIRECTT). Journal of Imaging, 7(8):147, 2021.

[40] Mathworks. Image quality metrics. https://www.mathworks.com/

help/images/image-quality-metrics.html.

[41] A. Mittal, A. K. Moorthy, and A. C. Bovik. Blind/Referenceless
Image Spatial Quality evaluator. In 2011 Conference Record of the
Forty Fifth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), pages 723–727, Pacific Grove, California, 2011.

[42] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a “com-
pletely blind” image quality analyzer. IEEE Signal Processing Letters,
20(3):209–212, 2013.

[43] M. Müller and G. R. Arce. Truncation artifacts in tomographic recon-
structions from projections. Applied Optics, 35(20):3902–3914, 1996.

https://github.com/BAMresearch/DIRECTT
https://www.mathworks.com/help/images/image-quality-metrics.html
https://www.mathworks.com/help/images/image-quality-metrics.html


BIBLIOGRAPHY 73

[44] Nobel Foundation. The nobel prize in physiology or medicine 1979.
https://www.nobelprize.org/prizes/medicine/1979/summary.

[45] A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann,
A. Lange, J. Goebbels, M. Hentschel, and W. Görner. High resolution
synchrotron-based radiography and tomography using hard X-rays at
the BAMline (BESSY II). Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, 586(2):327–344, 2008.

[46] R. Reams. Hadamard inverses, square roots and products of almost
semidefinite matrices. Linear Algebra and its Applications, 288:35–43,
1999.

[47] P. Reimers, J. Goebbels, H. P. Weise, and K. Wilding. Some aspects
of industrial non-destructive evaluation by X- and γ-ray computed
tomography. Nuclear Instruments and Methods in Physics Research,
221(1):201–206, 1984.

[48] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the
correlation coefficient. The American Statistician, 42(1):59–66, 1988.

[49] D. Schob, I. Sagradov, R. Roszak, H. Sparr, R. Franke, M. Ziegenhorn,
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