
Hasso Plattner Institute
University of Potsdam

Information Systems Group

Efficient Duplicate Detection
and the Impact of Transitivity

A thesis submitted for the degree of
Doctor of Engineering (Dr.-Ing.)

Digital Engineering Faculty
University of Potsdam

By: Uwe Draisbach
Supervisor: Prof. Dr. Felix Naumann

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-57214
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-572140

Acknowledgments

Throughout the time of my research, several people have supported, advised, and encour-
aged me. They have all been important to the writing of this thesis in various ways.

First of all, a special thanks to my patient and supportive supervisor Prof. Dr. Felix
Naumann. I was always given the freedom to go into any research direction and explore my
ideas without limitations. Our numerous fruitful discussions and his invaluable feedback
have advanced my work.

Secondly, I would like to thank Prof. Dr. Peter Christen for the opportunity of a research
stay at the Australian National University. Our discussions provided new ideas, insights,
and perspectives, and I got the chance to explore a new country.

Working at the Hasso Plattner Institute was a great experience, and I want to thank all
my co-authors and colleagues, especially Tobias, Dustin, and Jana, who always provided
support, new ideas, and fun.

Finally, I would like to thank my family and friends for their continuous support.

iii

Abstract
Duplicate detection describes the process of finding multiple representations of the

same real-world entity in the absence of a unique identifier, and has many application
areas, such as customer relationship management, genealogy and social sciences, or online
shopping. Due to the increasing amount of data in recent years, the problem has become
even more challenging on the one hand, but has led to a renaissance in duplicate detection
research on the other hand.

This thesis examines the effects and opportunities of transitive relationships on the
duplicate detection process. Transitivity implies that if record pairs 〈ri, rj〉 and 〈rj , rk〉
are classified as duplicates, then also record pair 〈ri, rk〉 has to be a duplicate. However,
this reasoning might contradict with the pairwise classification, which is usually based on
the similarity of objects. An essential property of similarity, in contrast to equivalence, is
that similarity is not necessarily transitive.

First, we experimentally evaluate the effect of an increasing data volume on the thresh-
old selection to classify whether a record pair is a duplicate or non-duplicate. Our ex-
periments show that independently of the pair selection algorithm and the used similarity
measure, selecting a suitable threshold becomes more difficult with an increasing number
of records due to an increased probability of adding a false duplicate to an existing clus-
ter. Thus, the best threshold changes with the dataset size, and a good threshold for a
small (possibly sampled) dataset is not necessarily a good threshold for a larger (possibly
complete) dataset. As data grows over time, earlier selected thresholds are no longer a
suitable choice, and the problem becomes worse for datasets with larger clusters.

Second, we present with the Duplicate Count Strategy (DCS) and its enhancement
DCS++ two alternatives to the standard Sorted Neighborhood Method (SNM) for the
selection of candidate record pairs. DCS adapts SNMs window size based on the number of
detected duplicates and DCS++ uses transitive dependencies to save complex comparisons
for finding duplicates in larger clusters. We prove that with a proper (domain- and data-
independent!) threshold, DCS++ is more efficient than SNM without loss of effectiveness.

Third, we tackle the problem of contradicting pairwise classifications. Usually, the
transitive closure is used for pairwise classifications to obtain a transitively closed re-
sult set. However, the transitive closure disregards negative classifications. We present
three new and several existing clustering algorithms and experimentally evaluate them on
various datasets and under various algorithm configurations. The results show that the
commonly used transitive closure is inferior to most other clustering algorithms, especially
for the precision of results. In scenarios with larger clusters, our proposed EMCC algo-
rithm is, together with Markov Clustering, the best performing clustering approach for
duplicate detection, although its runtime is longer than Markov Clustering due to the sub-
exponential time complexity. EMCC especially outperforms Markov Clustering regarding
the precision of the results and additionally has the advantage that it can also be used in
scenarios where edge weights are not available.

v

Zusammenfassung
Dubletten sind mehrere Repräsentationen derselben Entität in einem Datenbestand.

Diese zu identifizieren ist das Ziel der Dublettenerkennung, wobei in der Regel Paare
von Datensätzen anhand von Ähnlichkeitsmaßen miteinander verglichen und unter Ver-
wendung eines Schwellwerts als Dublette oder Nicht-Dublette klassifiziert werden. Für
Dublettenerkennung existieren verschiedene Anwendungsbereiche, beispielsweise im Kun-
denbeziehungsmanagement, beim Onlineshopping, der Genealogie und in den Sozialwis-
senschaften. Der in den letzten Jahren zu beobachtende Anstieg des gespeicherten Da-
tenvolumens erschwert die Dublettenerkennung, da die Anzahl der benötigten Vergleiche
quadratisch mit der Anzahl der Datensätze wächst. Durch Verwendung eines geeigneten
Paarauswahl-Algorithmus kann die Anzahl der zu vergleichenden Paare jedoch reduziert
und somit die Effizienz gesteigert werden.

Die Dissertation untersucht die Auswirkungen und Möglichkeiten transitiver Bezie-
hungen auf den Dublettenerkennungsprozess. Durch Transitivität lässt sich beispielsweise
ableiten, dass aufgrund einer Klassifikation der Datensatzpaare 〈ri, rj〉 und 〈rj , rk〉 als Du-
blette auch die Datensätze 〈ri, rk〉 eine Dublette sind. Dies kann jedoch im Widerspruch
zu einer paarweisen Klassifizierung stehen, denn im Unterschied zur Äquivalenz ist die
Ähnlichkeit von Objekten nicht notwendigerweise transitiv.

Im ersten Teil der Dissertation wird die Auswirkung einer steigenden Datenmenge
auf die Wahl des Schwellwerts zur Klassifikation von Datensatzpaaren als Dublette oder
Nicht-Dublette untersucht. Die Experimente zeigen, dass unabhängig von dem gewählten
Paarauswahl-Algorithmus und des gewählten Ähnlichkeitsmaßes die Wahl eines geeigneten
Schwellwerts mit steigender Datensatzanzahl schwieriger wird, da die Gefahr fehlerhafter
Cluster-Zuordnungen steigt. Der optimale Schwellwert eines Datensatzes variiert mit des-
sen Größe. So ist ein guter Schwellwert für einen kleinen Datensatz (oder eine Stichprobe)
nicht notwendigerweise ein guter Schwellwert für einen größeren (ggf. vollständigen) Da-
tensatz. Steigt die Datensatzgröße im Lauf der Zeit an, so muss ein einmal gewählter
Schwellwert ggf. nachjustiert werden. Aufgrund der Transitivität ist dies insbesondere bei
Datensätzen mit größeren Clustern relevant.

Der zweite Teil der Dissertation beschäftigt sich mit Algorithmen zur Auswahl geeigne-
ter Datensatz-Paare für die Klassifikation. Basierend auf der Sorted Neighborhood Method
(SNM) werden mit der Duplicate Count Strategy (DCS) und ihrer Erweiterung DCS++
zwei neue Algorithmen vorgestellt. DCS adaptiert die Fenstergröße in Abhängigkeit der
Anzahl gefundener Dubletten und DCS++ verwendet zudem die transitive Abhängigkeit,
um kostspielige Vergleiche einzusparen und trotzdem größere Cluster von Dubletten zu
identifizieren. Weiterhin wird bewiesen, dass mit einem geeigneten Schwellwert DCS++
ohne Einbußen bei der Effektivität effizienter als die Sorted Neighborhood Method ist.

Der dritte und letzte Teil der Arbeit beschäftigt sich mit dem Problem widersprüch-
licher paarweiser Klassifikationen. In vielen Anwendungsfällen wird die Transitive Hülle
zur Erzeugung konsistenter Cluster verwendet, wobei hierbei paarweise Klassifikationen als

vii

Nicht-Dublette missachtet werden. Es werden drei neue und mehrere existierende Cluster-
Algorithmen vorgestellt und experimentell mit verschiedenen Datensätzen und Konfigu-
rationen evaluiert. Die Ergebnisse zeigen, dass die Transitive Hülle den meisten anderen
Clustering-Algorithmen insbesondere bei der Precision, definiert als Anteil echter Dublet-
ten an der Gesamtzahl klassifizierter Dubletten, unterlegen ist. In Anwendungsfällen mit
größeren Clustern ist der vorgeschlagene EMCC-Algorithmus trotz seiner subexponenti-
ellen Laufzeit zusammen mit dem Markov-Clustering der beste Clustering-Ansatz für die
Dublettenerkennung. EMCC übertrifft Markov Clustering insbesondere hinsichtlich der
Precision der Ergebnisse und hat zusätzlich den Vorteil, dass dieser auch ohne Ähnlich-
keitswerte eingesetzt werden kann.

viii

Contents

1 Introduction 1
1.1 Application Areas for Duplicate Detection 5
1.2 Challenges of Duplicate Detection . 8

1.2.1 Linguistic Challenges . 8
1.2.2 Non-Linguistic Challenges . 9

1.3 Contributions and Outline . 12

2 The Duplicate Detection Process 15
2.1 Preprocessing . 18
2.2 Pair Selection . 19
2.3 Pair Classification . 23
2.4 Evaluation . 27
2.5 Further Related Work . 29

3 On Choosing Thresholds for Duplicate Detection 35
3.1 The DuDe Toolkit . 37

3.1.1 DuDe Architecture . 38
3.1.2 Datasets . 41

3.2 Threshold Experiments . 43
3.2.1 Datasets and Configuration . 43
3.2.2 Experimental Results . 46

4 The Duplicate Count Strategy for Pair Selection 53
4.1 Motivation for Windowing Approaches . 54
4.2 Related Work . 56
4.3 Duplicate Count Strategy . 60

4.3.1 Basic Strategy . 60
4.3.2 Multiple Record Increase . 60

4.4 Experimental Evaluation . 67
4.4.1 Datasets and Configuration . 67
4.4.2 Experimental Results: Perfect Classifier 69

ix

4.5 Effect of an Imperfect Classifier on DCS++ 73
4.5.1 Analysis of the Effects of an Imperfect Classifier 74
4.5.2 Experimental Results: Imperfect Classifier 77

4.6 Conclusion . 80

5 Clustering 81
5.1 Problem Description . 83
5.2 Related Work . 86
5.3 Maximum Clique Clustering . 88

5.3.1 Maximum Clique Clustering (MCC) 88
5.3.2 Extended Max. Clique Clustering (EMCC) 89

5.4 Global Edge Consistency Gain (GECG) . 91
5.5 Prior Clustering Algorithms . 95

5.5.1 Transitive Closure . 96
5.5.2 GCluster . 97
5.5.3 Markov Clustering . 98
5.5.4 Merge-Center Clustering . 98
5.5.5 Modified Star Clustering . 99
5.5.6 Correlation Clustering . 100
5.5.7 Complexity Analysis . 101

5.6 Evaluation . 103
5.6.1 Baseline Clustering Algorithms . 103
5.6.2 Datasets . 103
5.6.3 Evaluation Approach and Results . 106

5.7 Conclusion . 117

6 Conclusion and Outlook 119

A DuDe Experiment 125

Bibliography 131

x

Chapter 1

Introduction

In recent years, many organizations and companies have collected vast amounts of data
in huge data warehouses with the goal to transform the collected data into relevant infor-
mation. The stored data volume in data centers worldwide is expected to rise from 397
exabyte in 2017 to 1,327 exabyte in 2021 [182]. Amazon has more than 200 million Amazon
Prime customers and offers more than 353 million products in their marketplace [31,173].
Facebook is the largest social network with more than 2.74 billion active users, followed
by YouTube with more than 2.29 billion active users [187]. The largest libraries in the
world, the British Library and the Library of Congress, have a catalog with more than 170
million items each [28,126]. Next to these extremely large databases, there is a significant
number of smaller databases that contain hundreds of thousands or a few million records
with personal information, product data, or other entities.

This data volume provides companies the possibility to gain a competitive advantage
if they can manage the information enable data-driven decisions [148]. Likewise, the
database research community agrees that big data is one of the biggest challenges of our
times [2]. Three major trends have supported the advance of big data. First, devices,
such as sensors, for generating data became much cheaper. Second, reduced costs for
processing large amounts of data due to better hardware, inexpensive cloud computing,
open source software, and finally, the process of generating, processing, and consuming
data is no longer limited to database professionals but possible for everyone [2].

As the volume of data increases, there is also a greater need for high data quality. Ac-
cording to a Gartner study, poor data quality costs companies on average $15 million [138].
For the US economy, the estimated costs due to poor data quality are $3.1 trillion [101].
Quality is often defined as „fitness for use“, which emphasizes the consumer viewpoint for
judging whether a product complies with the required quality standards [203]. According
to this definition, fitness “implies both freedom from defects and possession of desired fea-
tures” [167]. Data quality comprises different dimensions, which can be subdivided into
data dimensions and schema dimensions [13]. Examples of data quality dimensions are
accuracy/correctness, completeness, consistency, timeliness, accessibility, and believability.

1

Chapter 1. Introduction

In a study by Deutsche Post Direkt GmbH, the quality of German private household
addresses has been investigated [53]. They use a sample of 100 million records from
different address cleansing projects and compare them with their own database of about
190 million addresses. Several sources frequently update the database, e.g., postmen
who validate addresses or other cooperation partners. Table 1.1 shows the latest results
from 2015 and compares them with the results in 2014. With the assumption that an
address does not contain multiple errors, nearly 22 % of the addresses were erroneous.
It is noticeable that there are huge differences regarding the frequency of errors in the
different parts of an address. The salutation of an address was incorrect in 6.28 % of the
investigated addresses, e.g., the gender could not be derived from the first name, whereas
the house number is incorrect only in 0.16 % of the cases.

Table 1.1: Percentage of the different errors for German addresses [53].

2015 2014

Salutation 6.28 % 5.30 %
Street 5.61 % 5.19 %
City 3.82 % 4.54 %
Zip code 2.20 % 1.76 %
Last name 1.81 % 2.01 %
First name 1.65 % 2.14 %
Title 0.24 % 0.40 %
House number 0.16 % 0.17 %

Overall 21.77 % 21.51 %

For data quality problems, Lee et al. provide a list of ten root causes [118]. A more
detailed description of these root causes regarding data matching can be found in [39].

1. Multiple data sources. Multiple sources can contain different values for the same
entity, e.g., some information may have been correct in the past.

2. Subjective judgment in data production. Information may be missing because it was
not considered relevant during data collection.

3. Limited computing resources. Data matching is a computationally expensive process,
and a lack of computing and storage resources may lead to less sophisticated and
accurate matching algorithms.

4. Security/accessibility trade-off. Information may not be accessible due to security,
privacy, or confidentiality requirements.

5. Coded data across disciplines. Different data sources may use different codes during
data entry, and therefore a mapping is necessary before data can be matched.

2

6. Complex data representations. Most similarity functions are for strings or numerical
data, but sometimes we have complex data structures, such as XML.

7. Volume of data. Large data volumes make it difficult to access relevant information
in a reasonable amount of time.

8. Input rules too restrictive or bypassed. Data is entered in fields that originally have
a different purpose, or default values are used for mandatory fields.

9. Changing data needs. The data requirements may change over time, leading to new
or deleted fields in a data source.

10. Distributed heterogeneous systems. Distributed heterogeneous systems lead to in-
consistent definitions, formats, and values if no proper integration exists.

One aspect of data quality is duplicate detection, i.e., finding multiple representations
of the same real-world entity. Neiling et al. describe the problem of duplicate detec-
tion on a database A as “Which database records a, b ∈ A refer to the same real-world
object?” [144]. Most of the ten root causes for data quality problems have an impact on
duplicate detection. Duplicates arise if data is stored in multiple data sources or distributed
heterogeneous systems and no proper integration mechanism exists. A high volume of data
in combination with limited computing resources impedes finding all duplicates in a rea-
sonable amount of time due to the quadratic complexity for an exhaustive comparison of
all possible record pairs. Classifying record pairs as duplicate or non-duplicate is difficult if
we have complex data representations or input rules are too restrictive or bypassed, which
leads to incomplete or erroneous data values.

Rahm and Do provide a classification of data quality problems in data sources [163].
They distinguish between single-source and multi-source problems, which both can be
subdivided into problems on schema or instance level. In single sources, data quality de-
pends mainly on schema and integrity constraints [163]. Schemaless sources, such as files,
have a higher probability of errors and inconstancies than databases, which have data
model and application-specific integrity constraints. Nevertheless, missing or false values,
misspellings, cryptic or contradictory values, and duplicates, are still possible on the in-
stance level [121]. Integrating multiple sources increases the problems, as each source may
contain dirty data, and additionally, the data might be represented differently, overlap,
or contradict [163]. Some error types are unique for integrated sources, e.g., different
units, different precision of key figures, or different aggregation levels [121]. Therefore,
integrated data from multiple sources is more likely subject to variations than data from
a single source [26]. With regard to duplicate detection, duplicates within a single source
are also called intra-source duplicates, whereas duplicates from multiple sources are also
called inter-source duplicates [143].

3

Chapter 1. Introduction

The basic duplicate detection problem has been studied under various further names,
such as entity matching, entity resolution, data matching, object matching, object identifi-
cation, merge/purge, record linkage, record reconciliation, and many other terms [39,143].
Talburt distinguishes between the terms matching and linking [185]. Two objects match
if their similarity is above a predefined threshold, whereas two objects are linked if they
obtain a common identifier. Talburt argues that there might be objects that match but
should not be linked, and, vice versa, there might be objects that do not match but should
be linked. For the remainder of this thesis, this differentiation of the terms matching and
linking is not necessary.

Modern database schemas are often based on the relational data model that was first
described by Codd [48]. Entities are represented in relations with attributes that describe
an entity and a primary key that clearly identifies this entity. If every entity can be iden-
tified, there is, in theory, no necessity for duplicate detection. Only a simple database
join is required to link data on the entity level [42]. Examples for globally unambiguous
identifiers are the social security number for persons, the International Standard Book
Number (ISBN) for books, the Open Researcher and Contributor ID (ORCID) for re-
searchers, or the Global Trade Item Number (GTIN) for products. Unfortunately, globally
unique identifiers often do not exist, are unknown, or are incorrect for various reasons.
As reported by the German newspaper Süddeutsche Zeitung, the newly introduced tax
identification number in Germany, which should be unique for each citizen for the entire
life, was faulty in approximately 160,000 cases [24]. Citizens either received two different
tax identification numbers or received the same tax identification number as someone else.

Globally unique identifiers are often not available, e.g., customers do not reveal their
social security number for each purchase in an online shop or when they contact a com-
pany’s customer service. In the case of self-service channels, such as the web or speech
recognition systems, users can create new accounts if they cannot remember their user-
name or password [169]. Thus, each database creates a new surrogate key for an entity.
If multiple databases are linked or merged, the same entity will probably have different
keys within the different sources [181]. However, even in a single database, a single real-
world entity might have several identifiers, e.g., if a customer has moved to a new city
or a customer contacts a company through multiple channels without knowing his cus-
tomer number. Matching persons would be easier if every person would be known and
represented by exactly one name throughout their life, but names vary due to different
reasons, e.g., marriage or usage of nicknames [26]. Experts estimate that two percent of
the records in a customer file become obsolete within a month due to death, marriage,
divorce, or relocation [72]. Another study revealed that in a customer database with more
than 20 million customers, every year, about 2 million customers moved, and 60,000 got
divorced, leading to a high number of duplicates [94].

4

1.1. Application Areas for Duplicate Detection

According to a master data study by Lünedonk, 85 % of the companies could not es-
timate the percentage of duplicates in their master data [131]. The remaining companies
estimated that, on average, about 6 % of their master data are duplicates. Poorly main-
tained master data costs time, e.g., for removing duplicates, that the employees cannot
spend for higher quality tasks. The study reveals that, on average, 5 % of working time
can be saved with higher quality master data. Another study by Acxiom revealed that
consumer databases typically contain nearly 8 % duplicates on an individual level [11].

1.1 Application Areas for Duplicate Detection

The application areas for duplicate detection are multifarious. Christen gives an overview
of sample areas, such as national census, health sector, national security, crime and fraud
detection and prevention, business mailing lists, bibliographic databases, online shopping,
and social sciences and genealogy [39]. The challenges for each application area are differ-
ent, and exemplarily, some are described in the following paragraphs.

Online Shopping. Online shopping has become very popular in recent years. As thou-
sands of online shops and marketplaces with millions of different products exist, both
customers and retailers need to identify the same product on multiple platforms, e.g., for
comparing prices or reading customer ratings [124]. Many product search engines rely
on unique product identifiers, such as UPC (Universal Product Code), GTIN (Global
Trade Item Number), or ISBN (International Standard Book Number). Nevertheless,
these unique identifiers are often not available, and the usage of these identifiers is often
error-prone [112]. Most e-commerce platforms provide a free-text product title and some
product attributes, which are usually name-value pairs [124]. Attributes might be the
brand name or the net weight of the product. The challenge arises on the one hand from
identical products with different descriptions and, on the other hand, from marketplaces
with different product attributes or synonyms for attributes that actually describe the same
product characteristic [124]. Additionally, a particular term for evaluating the similarity
may be needed for each product category to decide if two products are equivalent [17].

Scholarly Data. Several scholarly digital libraries and search engines, such as Cite-
SeerX1, DBLP2, ACM Digital Library3, or IEEE Xplore4, contain millions of records with
documents, citations, authors, institutions, conferences, and journals. The data can be
used to create services such as citation and impact analyses for individuals and jour-
nals, alert services for new publications by an author, or the analysis of collaboration

1https://citeseerx.ist.psu.edu/
2https://dblp.org/
3https://dl.acm.org/
4https://ieeexplore.ieee.org/

5

https://citeseerx.ist.psu.edu/
https://dblp.org/
https://dl.acm.org/
https://ieeexplore.ieee.org/

Chapter 1. Introduction

networks [39]. The results can have a great impact, e.g., on grant decisions or individ-
ual’s promotion [80]. Maintaining duplicate-free citations, also called citation matching,
is challenging due to data-entry errors, different citation formats, lack of citation stan-
dards, imperfect citation-gathering software, common author names, or abbreviations of
publication venues [117]. Global IDs, such as ISBN or digital object identifiers (DOI), are
available but often not used in the reference sections [117].

Author name disambiguation is challenging due to different spellings of the same author,
multiple authors with the same name, and the limited number of additional attributes,
e.g., affiliation. Furthermore, the author’s profile changes over time, e.g., due to new
collaborations, change of the research group or institution, or a change of the interests and
research field [80]. A similar application area for duplicate detection is the disambiguation
of inventors in a patent database, e.g., to list all patents of an inventor [105].

Online Recruitment / Company Entity Resolution. In the online recruitment
domain, many job offers are published redundantly at multiple websites and job portals.
For recruiters and employers it is important to deduplicate these job ads to gain insights
regarding their biggest competitors on the job market and emerging and demanded job
titles and skill sets in different occupations and industries [30]. However, these job ads are
often slightly different due to different formats in the sources, A/B testing on job titles and
descriptions by the employers, or multiple branches of a company with different addresses
in the same city [30]. A second challenge is the company entity resolution. Online career
sites and professional networks, such as LinkedIn5, comprise millions of candidate resumes
that can contain name variations for employer names [128]. The resolution of company
names is important for several business applications, such as recruiting or advertising [216].

Genealogy and Social Sciences. Genealogists and historians integrate data from dif-
ferent sources for their research. Their goal is the reconstruction of families or the social,
economic, and demographic life-cycle of communities [23,106]. The most important sour-
ces are vital records, such as births, marriages, and deaths, but also pedigrees that show
the relationship between persons. By adding tax and landholding data, it is also possible
to recreate a person’s social status or the social hierarchy within a community [162]. An
important issue is a great variety in the spelling of names, which are related to different
pronunciations, spelling inconsistencies, the usage of diminutive and Latinized forms of
names, as well as writing, reading, and typing errors [106]. This is even more complicated
if persons change their name, e.g., due to marriage.

Counterterrorism. Governments have increased their efforts to protect their citizens
against terrorist threats. With record linkage, databases might be linked to finding en-
tities with suspicious behavior or threatening activities [87]. The challenges are the vast

5https://www.linkedin.com

6

https://www.linkedin.com

1.1. Application Areas for Duplicate Detection

amount of data, often non-standardized formats, and missing standardization algorithms,
especially for foreign names and addresses. Furthermore, the accuracy of the data match-
ing has to be very high. Otherwise, if due to false matchings too many people are classified
as potential terrorists, many innocent people will be under surveillance, and further in-
vestigations will become ineffective due to lack of resources [103]. The matching becomes
more difficult, as criminals might use deceptive or fraudulent identities [199].

Customer Relationship Management. Customer Relationship Management (CRM)
comprises different business activities that follow a strategy to improve the customer man-
agement, and these activities are supported by technology and processes [170]. CRM em-
phasizes enhancing customer relationships, and it is highly related to database marketing,
which uses customer databases for a more effective acquisition, retention, and development
of customers [20]. The benefits of CRM are (1) an improved ability to target profitable
customers, (2) integrated offerings across channels, (3) improved sales force efficiency and
effectiveness, (4) individualized marketing messages, (5) customized products and services,
(6) improved customer service efficiency and effectiveness, and (7) improved pricing [170].
A small company can enhance customer relationships without using data, in case the
salesperson knows the customer and his preferences. However, with an increasing number
of customers and salespersons, not every salesperson may know each customer, and there-
fore the implementation of a customer database, the analysis of customer data, and based
on the results, the design of a marketing campaign is a possibility to gain a competitive
advantage [20]. In practice, the used customer data is often inconsistent and frequently
outdated [108]. There are several issues with duplicates in a customer database that can
harm marketing and sales campaigns, as shown in [27]:

• Wasted marketing budget due to sending multiple marketing messages to the same
person.

• No single customer view, as not all interactions are assigned to the same person.

• Inaccurate personalization due to wrong customer segmentation.

• Harmed brand perception, as customers might be annoyed how a company interacts
with their customers.

• Confusion among customers if marketing messaging with outdated or inaccurate
data is sent.

• Worse email deliverability because multiple emails with the same content are more
likely to be flagged as spam.

7

Chapter 1. Introduction

1.2 Challenges of Duplicate Detection

The previous paragraphs have shown several application areas for duplicate detection
algorithms. The following paragraphs give an overview of some of the challenges and
complexity that have to be addressed by the algorithms.

Duplicate detection tries to identify multiple records that refer to the same real-world
entity. Due to the quadratic number of comparisons for comparing each record with all
other records, efficiency becomes a major challenge and is even more important with an
increasing data volume as in recent years. The problem of efficiency is described in more
detail in Chapter 2 and especially Sec. 2.2. Chapter 4 presents the new Duplicate Count
Strategy that uses transitive relationships to increase efficiency by reducing the number
of comparisons.

The second challenge is to decide whether two records represent the same real-world
entity or not in the absence of a globally unique identifier. As multiple records of the
same real-world entity will usually be slightly different, some smart algorithms will be
needed to calculate the similarity of two records and to classify two records as duplicate or
non-duplicate. The following subsections give an overview of linguistic and non-linguistic
reasons why there might be differences. The classification as duplicate or non-duplicate
is not the focus of this thesis, but it helps to understand the causes for duplicates. The
large number of different causes also shows why it is challenging or nearly impossible to
avoid duplicates as they emerge instead of identifying them later in a duplicate detection
process.

1.2.1 Linguistic Challenges

The most important but also most challenging characteristic of a person is its name [127].
Names do not have a “right spelling” that can be looked up in a dictionary, which is the
reason why spell-checking routines often are not a solution [26]. Nowadays, a name consists
of at least two words, but for many centuries Europeans used only one given name, and
different cultures used different ways of assigning names, e.g., places of origin or residence,
ancestors, occupation, terms that describe personal attributes, or even animal names [26].
Due to migration and traveling, databases contain records of people from all over the world
and from different naming systems. For the name, there are non-linguistic variations, such
as the usage of the initials or the order of a name, e.g., John Fitzgerald Kennedy, John F.
Kennedy, and Kennedy John Fitzgerald are all names of the same person [127]. On the
other hand, there are linguistic challenges. The Cyrillic name of the first Russian president
is Борис Николаевич Ельцин, whereas due to different transcriptions, his German name is
Boris Nikolajewitsch Jelzin, his English name Boris Nikolayevich Yeltsin, and his French
name Boris Nikolaïevitch Eltsine. The reason for the divergent spellings are different
transcription standards.

8

1.2. Challenges of Duplicate Detection

The process of transposing a name from one alphabet into another one (e.g., from
Russian into Latin) is called transcription or transliteration. Transcription is primarily
concerned with the correct representation of the phonemes, whereas transliteration is
concerned primarily with the representation of the graphemes [127]. The advantage of
transcription is that a name in the target language sounds similar to the original language.
Transliteration, on the other hand, allows a reconstruction of the original spelling, which is
usually not possible for transcriptions [127]. An example for different transcriptions is the
former Libyan leader Muammar al-Gaddafi, for whom ABC news reported 112 different
spellings of his name between 1998 and 2004 [12].

The second linguistic challenge for name matching are hypocorisms. An analysis
of a genealogical database revealed 1,500 variants for the given name Catherine [26].
Hypocorisms are mainly a problem for first names, but not for last names, e.g., Mr.
Bill and Mr. Williams are probably not the same person in contrast to Bill Gates and
William Gates [127].

Personal names can be translated literally to retain the meaning if someone moves to a
new country or culture [26]. Translations, such as Mr. Black (English)≈Herr Schwarz (Ger-
man) ≈ Monsieur Noir (French), are not so common today, but in former times, immi-
grants often changed their name and adapted it to the new language region [127]. Thus,
genealogists often deal with translations, such as Hans Müller has been translated into
John Miller.

The third linguistic challenge are homophones, which are two or more words that are
pronounced alike but are different in derivation, meaning, or spelling [115]. Examples
for homophones are the german names Meier, Meyer, Maier, Mayer, Mejer, Mayr, the
French names Renault, Reno, Reneaux, Renaud, or the English names Stuart and Steward,
which all have in their language a similar pronunciation [127]. Homophones and other
phonetic errors often occur in records that are collected orally because people tend to
spell unfamiliar names based on their knowledge [26]. Therefore, also the education level
and how well-traveled the data collector is make a difference if the spelling is correct or
not [127]. This is aggravated by the fact that there is no obvious right spelling for personal
names that can be looked up in a dictionary [26].

1.2.2 Non-Linguistic Challenges

Next to the linguistic challenges described before, there are also non-linguistic issues that
make it challenging to identify records representing the same real-world entity. According
to a study by Damerau, approximately 80% of misspelled words fall in one of four single
error classes [51], whereas other studies even report 90-95 % [159], or only 39.2% [83]. The
most common types of spelling errors are [51]:

9

Chapter 1. Introduction

• Insertion: The user hits next to the intended key also an adjacent key on the key-
board, e.g., Smioth.

• Replacement: The user hits instead of the intended key an adjacent key, e.g., Smoth.

• Omission: The user does not hit a key strong enough, there is a hardware issue with
the keyboard, or the user forgets a character, e.g., Smth.

• Transposition: The user transposes two characters in the word, e.g., Smiht.

For insertion, omission, and substitution, vowels are slightly more affected than conso-
nants [159]. Typing errors at the beginning of a name are less likely than in the middle or
at the end of a name [43, 127]. For spelling errors, the error position is more evenly dis-
tributed for longer than for shorter words, and especially the third letter of a word is most
likely involved [159]. The reason for typos can be divided into (1) physical factors, such
as the motor control of hands and fingers or the distance between keys on the keyboard,
(2) visual factors, such as the visual similarity of characters or the repetition of the same
character, and (3) phonological factors if there is a phonological similarity of characters
or words [8]. The following paragraphs give an overview of several causes for errors.

Errors depend on the way how data is entered. A major factor for data quality,
and therefore also for the origin of duplicates, is the way how data is entered [43]. If data
is typed manually, the errors might be specific to the used keyboard layout, e.g., adjacent
keys are hit mistakenly is more likely than keys that are further apart [39]. Additionally,
there might be character variations, such as capitalization, punctuation, spacing, and
abbreviations [181]. If the data is submitted by phone, people tend to spell unfamiliar
names based on their knowledge, and therefore errors are more likely if the data is entered
by someone from a different linguistic background [26].

Errors due to limitations of the available fields The availability and length of
input fields for data collection are often limited. Not for all name elements, such as titles
(“Mr.”, “Ms.”, or “Dr.”) or suffixes (“Jr.”, “Sr.”,“III”) exists a separate field in all forms.
Thus, these elements might be added in other fields, such as the last name field [26].
Sometimes input fields might not be large enough, which leads to abbreviations6. Also,
forms might have mandatory fields that cannot be populated. For example, the zip code is
often a mandatory field for an address, although not every country uses zip codes7. This
might result in erroneous values entered only to complete a data entry form.

6The longest street name in Germany is, for example, Bischöflich-Geistlicher-Rat-Josef-Zinnbauer-
Straße, which contains 50 characters [70].

7Even in Europe, the Republic of Ireland introduced zip codes at first in 2015 [169].

10

1.2. Challenges of Duplicate Detection

Errors due to lack of skills or lack of motivation. The skills and motivation
of the person entering the data affect the quality of the data. The skills depend, for
example, on the educational background or learning disabilities, such as Dyslexia. Reid
and Caterall report that a competent data entry clerk has an average error rate of 2-4 %,
whereas data entered by the public on the web has an error rate of 10-15 % [169]. As an
example for motivation, they describe that call center agents are traditionally incentivized
by the number of calls. If data quality is not a measure for their performance, it might
happen that call center agents do not change default values or just type single characters
in free text fields to answer more calls in a working shift [169]. Motivation also depends
on the reason for the data collection. For official documents, such as the passport or
the driver’s license, people might tend to report their full name, including middle name
without abbreviations, in opposite to a publication or registering at an online shop, where
they might not use their full name or they use an artist name [26]. Motivation also includes
deliberately incorrect data, for example, due to fraudulent intentions.

Errors due to automatic data entry. Next to manual data collection, there are
also issues when data is collected automatically, e.g., by using optical character recognition
(OCR) software. The most likely types of error are substitutions between similar-looking
characters (e.g., ’S’ and ’5’, or ’D’, ’O’, ’0’) or character sequences that look similar to a
single character (e.g., ’rn’ and ’m’) [39, 160]. Deletions and insertions are also possible,
but not transpositions [88]. Even with a character recognition rate of 99%, the word
recognition accuracy rate is only 95%, as we have one error per 100 characters, and this
leads to roughly one error per 20 words, assuming five-character words on average [116].
The error rate and the types of errors are device-specific [88]. In 2013, it was reported
that Xerox machines using JBIG2 compression change documents after scanning [32].
Thousands of devices were affected, and the error existed for several years, so it is difficult
to estimate how many documents were changed [50].

The previous paragraphs described the problem of multiple records that represent the
same real-world entity, although some attribute values are different due to various rea-
sons. Even under the assumption that some sophisticated algorithms can fix these slight
text deviations, we still cannot be sure that these records represent the same real-world
entity, which makes the duplicate detection process more challenging. A German news-
paper wrote an article about two women; both called Gabi Böhme, both born on August
10, 1957, and both living in Dresden [14]. For many companies and also governmental
institutions, they are actually the same person. Therefore, letters and even tax statements
were delivered to the wrong person. With additional information, such as the birth name,
it would be easy to distinguish between the two women. However, in reality, such detailed
information is often not available. This example shows that it is challenging to classify
records as match or non-match because even a high similarity does not necessarily mean
that two records represent the same real-world entity.

11

Chapter 1. Introduction

1.3 Contributions and Outline

In this thesis, we tackle the problem of finding all duplicates, i.e., multiple records repre-
senting the same real-world entity, in a dataset. This process consists of multiple steps,
and we address the steps of (i) creating candidate record pairs that will later be classified
as matches or non-matches, and (ii) the clustering step that uses the pairwise similarities
and pairwise matches to create clusters of records that represent the same real-world entity.
While the former is concerned with the efficiency of the process, the latter is concerned
with effectiveness. To this end, we make the following contributions:

(1) Presentation of the duplicate detection process and related work (Chap-
ter 2)

Chapter 2 presents the duplicate detection process that is used in the following sections.
Additionally, we give an overview of related work.

(2) Duplicate detection toolkit DuDe and experimental evaluation of choosing
thresholds for duplicate detection (Chapter 3)

Chapter 3 is divided into two parts. First, we present a modular duplicate detection
toolkit, dubbed DuDe, which can easily be extended and additionally contains multiple
datasets, including their gold standard and detailed descriptions. The DuDe toolkit is
used for most of our experimental evaluations. The presentation of DuDe is based on
published work in [65].

In the second part, we experimentally show the effect of an increasing data size on
the selection of the threshold to classify record pairs as match or non-match. Choosing
the optimal threshold is one of the main difficulties in configuring a duplicate detection
program for a given dataset. This problem becomes more challenging if the size of the
dataset increases over time, and it is even aggravated due to transitive relationships. This
section is based on published work in [67].

(3) Adaptive windows for duplicate detection (Chapter 4)

In the duplicate detection process, a pair selection algorithm selects the candidate
record pairs that are classified in the next step as duplicates or non-duplicates. The
naive approach creates all possible record pairs and is thus quadratic in the number of
records [143]. For efficient duplicate detection, it is necessary to select candidate record
pairs that are likely to be duplicated and to avoid creating candidate record pairs that are
obviously non-duplicates.

Chapter 4 presents the Duplicate Count Strategy (DCS) as a variant of the Sorted
Neighborhood Method for selecting candidate record pairs. The Duplicate Count Strategy
adapts the window size based on the number of already classified duplicates. Additionally,

12

1.3. Contributions and Outline

we present a variant of DCS, dubbed DCS++, which uses transitive relationships to avoid
comparisons. We prove that it increases the efficiency of the duplicate detection process
without reducing the effectiveness. A comprehensive evaluation of both DCS and DCS++,
using (i) real-world and synthetic datasets and (ii) using perfect and imperfect classifiers,
confirms our proof.

The idea of the Duplicate Count Strategy and its extension DCS++ is the result of a
master thesis [215]. The content of Chapter 4 is based on our published work in [69]. An
extension of this publication is our technical report [68].

(4) Transforming pairwise duplicates to entity clusters for high-quality dupli-
cate detection (Chapter 5)

Most duplicate detection algorithms use pairwise comparisons. However, the resulting
(transitive) clusters can be inconsistent: not all records within a cluster are sufficiently
similar to be classified as duplicates. An additional clustering algorithm can further im-
prove the result.

Chapter 5 gives a detailed presentation of several existing clustering algorithms that
create consistent clusters from the result of the pairwise comparison. They belong to the
best clustering algorithms in the context of duplicate detection, as evaluated in [91, 200].
Additionally, we present three new clustering algorithms. The first two new algorithms
use the input graph structure and thus are, in contrast to the third new and many other
existing clustering algorithms, not dependent on edge weights. Our comprehensive experi-
mental evaluation of all clustering algorithms using (i) real-world datasets and (ii) different
pair selection strategies shows that in specific scenarios, our new algorithm EMCC out-
performs the often used Transitive Closure approach. The content of Chapter 5 is based
on our published work in [63].

Finally, we conclude the thesis in Chapter 6 by summing up our results, providing
recommendations for an effective and efficient duplicate detection, discussing open research
questions, and giving an outlook on duplicate detection.

13

Chapter 2

The Duplicate Detection Process

Duplicate detection has the goal to partition a set of records so that all records in each
partition represent the same real-world object, and there are no two distinct partitions
that represent the same object [143]. The techniques for duplicate detection depend on
the type of information used to represent objects, and we can distinguish three types [13]:

1. Simple structured data, e.g., files or relational tables.

2. Complex structured data, e.g., groups of logically related files or relational tables.

3. Semistructured information, e.g., XML files.

Duplicate detection must solve two inherent difficulties: Speedy discovery of all du-
plicates in large datasets (efficiency) and correct identification of duplicates and non-
duplicates (effectiveness) [64,121].

• Efficiency: The first difficulty is the quadratic nature of the problem: Conceptually,
each record must be compared with every other record. To approach this problem
and thus improve the efficiency of duplicate detection, many solutions have proposed
a reduction of the number of comparisons. The general idea is to avoid comparisons
of vastly different objects and to concentrate on comparisons of objects that have at
least some quickly detectable similarity. Overall, the runtime should scale with the
number of records [121].

• Effectiveness: The second difficulty of duplicate detection is the definition of an
appropriate similarity measure to decide whether a candidate pair is, in fact, a
duplicate. Typical approaches employ combinations of different similarity measures.
In addition, a similarity threshold must be chosen to classify pairs as duplicates
(similarity greater than or equal to the threshold) or as non-duplicates (similarity
lower than the threshold). More recent approaches are based on machine learning
models.

15

Chapter 2. The Duplicate Detection Process

This chapter presents the duplicate detection process, illustrated in Fig. 2.1, that is
used in the rest of this thesis. We first give a rough overview before the individual steps
are described in more detail in the following subsections.

We have one or multiple sources, and before the duplicate detection or record linkage
process can be started, a data preprocessing step may be required for each source to prepare
the data. This may be required because the used data can vary in format, structure, and
content [39]. More details are described in Sec. 2.1.

The second step is selecting a set of candidate pairs from the initial dataset or datasets
(in the case of linking multiple datasets). Due to the quadratic workload for an exhaus-
tive comparison, usually only candidate pairs with a high chance of being duplicates are
selected. Two important approaches, namely blocking and windowing, are described in
Sec. 2.2 and Chapter 4 presents a new algorithm.

Afterward, the candidate record pairs are selected and classified as either match, non-
match, or potential match, which is described in more detail in Sec. 2.3. This step is
typically divided into three sub-steps, (1) the calculation of a similarity value for each
candidate pair, (2) the pairwise classification as a match, non-match, or potential match,
and finally, a post-processing step for creating clusters that represent the same real-world
entity. This step is necessary because the result of the pairwise comparison might be incon-
sistent (e.g., record pairs 〈ri, rj〉 and 〈rj , rk〉 are classified as duplicates, but 〈ri, rk〉 is not).
Chapter 5 presents and evaluates several existing and three new clustering algorithms.

In the case of potential-matches, there is a manual review step in which a domain
expert classifies the potential-matches in matches or non-matches. The manual review is
a time-consuming and labor-intensive process, which is difficult even for a domain expert,
and therefore, the results can vary from reviewer to reviewer, but also a single domain
expert can come to different classification depending on his concentration [39]. The manual
classified record pairs can be used later as training data to improve the performance of
the automatic classification, especially since they represent difficult classification cases.

If the ground truth is known, the classified objects can be evaluated regarding their
accuracy and their completeness. Several measures are proposed in the literature, and the
most important ones are described in Sec. 2.4.

For the classified matches there is an optional fusion step. In the case of a customer
database, it might be useful to merge multiple records of the same customer into a single
record. A fusion step might not be needed or allowed in other application areas, such
as linking records from multiple sources, e.g., due to privacy reasons. The difficulty for
data fusion lies in data conflicts, i.e., multiple records that should be fused disagree on
at least one attribute value, whereby we can distinguish between uncertainties and con-
tradictions [21]. Different strategies exist in the literature to solve these conflicts, but as
they are not the focus of this thesis, they are not further considered at this point.

16

C
la

ss
ifi

ca
tio

n
Pre-Processing

Selection of candidate record pairs
(Contributions in Chapter 4)

Pairwise Classification
(Contributions in Chapter 3)

Source 1

Pre-Processing

Source 2

Record pair comparison

Non-Matches

Potential Matches

Matches

Fusion

Manual Review

Clustering
(Contributions in Chapter 5)

Evaluation

Training data

Figure 2.1: Illustration of the duplicate detection process.

17

Chapter 2. The Duplicate Detection Process

2.1 Preprocessing

The first step in the deduplication process is preprocessing the raw input data. Poor
data quality is one of the biggest obstacles for successful deduplication, and therefore,
the data should be converted into a well-defined and consistent form [40]. The original
data does not have to be overwritten, but new files or database tables can be created that
are used in subsequent steps [39]. Several preprocessing operations are described in the
literature [13,39,75,99,185]. Not all of them are necessary for each deduplication project,
and they depend on both the quality of the raw input data and the available resources
(funding, labor, computing power) [39].

1. Encoding: The encoding needs to be unified, e.g., changing the encoding from
ASCII to Unicode.

2. Conversion: Converting data from one data type to another, e.g., binary integer
to a numeric character string, or conversion of lowercase in uppercase letters.

3. Removal of unwanted characters and words: Remove words, terms, and ab-
breviations without use for the data matching, e.g., commas, colons, quotes, or other
special characters. Also, replace multiple white spaces with a single white space.

4. Standardization: Transforming values in a unified format, e.g., changing Avenue
and AV to AVE. Standardization is an inexpensive step with a high impact on
the fast identification of duplicates, because without standardization, record pairs
might be erroneously classified as non-duplicates only because common identifying
information cannot be compared [75].

5. Correction: Verify and correct the values based on reference data (lookup tables,
commercial databases), e.g., correcting the city based on the zip code.

6. Parsing: Attributes with several pieces of information are split into a set of attri-
butes, e.g., an address is split into city, zip code, and street. In some cases, this step
might also create multiple records, e.g., John and Mary Doe is split in a record John
Doe and a second record Mary Doe.

7. Bucketing: Group numeric values into ranges with an assigned code, e.g., an income
of $45,000 into a bucket Medium with a range of $30,000–$50,000.

8. Integrity Checks: Validating rules of data values and rules between data items,
e.g., a child cannot be born in the future or before its parents.

9. Enhancement: Adding information that might be useful in the matching process,
which is not in the original record but can be derived based on the information
in other attributes, e.g., adding longitude and latitude coordinates based on the
address, or derive the missing gender from the first name.

18

2.2. Pair Selection

10. Schema reconciliation: In the case of multiple sources, additionally schema con-
flicts, such as heterogeneity conflicts, semantic conflicts, description conflicts, and
structural conflicts, have to be solved [13]. For example, both sources have a field
date with different semantic meanings, or one source uses an attribute lastname,
whereas the other source uses surname. The goal is to create a mapping where each
attribute in one source is mapped to a corresponding and semantically equivalent
attribute in the other source [22].

Besides the steps above, another preprocessing activity is data profiling to assess the
quality and the data characteristics. For each attribute, at least the type of values in an
attribute (e.g., string, number, date, et cetera), the number of different attribute values,
their frequency distribution, and the number of empty values should be known [39]. This
information is relevant for the subsequent steps, to select suitable attributes for partition-
ing the records or choosing the right similarity functions in the comparison step.

Several of the previously mentioned preprocessing operations were used in our experi-
ments to gain a better matching result. This includes (i) encoding, (ii) conversion (e.g., we
converted uppercase in lowercase letters), (iii) removal of unwanted characters (e.g., we
replaced commas with white spaces and replaced multiple white spaces with a single white
space), (iv) standardization (e.g., author names containing a dot were split into two names
separated by a white space), and (v) integrity checks (e.g., we ignored phone numbers that
were obviously incorrect).

2.2 Pair Selection

A pair selection algorithm selects the record pairs that are classified in the next step
of the duplicate detection process. For a single source, the naive approach for the pair
selection algorithm creates all possible record pairs and is thus quadratic in the number of
records [143]. Given n records in the database, the naive approach leads to n(n−1)

2 record
pairs, as we do not have to compare each record with itself and, under the assumption
of a symmetric classification function (comparison of record pairs 〈r1, r2〉 and 〈r2, r1〉 lead
to the same classification as duplicate or non-duplicate), we have to compare each record
pair only once.

In the case of linking multiple sources, the naive approach creates |A| · |B| record pairs,
as we have to compare each record from source A with each record of source B. Under
the assumption that each source is duplicate-free, the maximum number of true matches
corresponds to min(|A|, |B|) [39].

The majority of comparisons for the naive approach are between records that are clearly
not matches [39]. Thus, it is necessary to make intelligent guesses which records have a high
probability of representing the same real-world entity. These guesses are often expressed as
partitionings of the data in the hope that duplicate records appear only within individual

19

Chapter 2. The Duplicate Detection Process

partitions. In this way, the search space can be reduced with the drawback that some
duplicates might be missed. This step in the duplicate detection process is often called
indexing [40]. For each record, a key is generated first based on a single or multiple
attribute values (or parts of them, e.g., only the first few characters).

For the selection of the indexing key, several criteria such as (i) attribute quality,
(ii) attribute value frequencies, and (iii) trade-off between number and size of partitions
have to be considered [39]. This aspect is also relevant in Chapter 4, in which the new
pair selection algorithms use, among other things, a sorting step to create partitions, and
the corresponding sorting key should be created from attribute values that are complete
(i.e., no missing values) and correct. The attribute value frequency is also important to
get a unique sort order.

Often, indexing techniques need one or several parameters that have to be set, which
makes them error-prone. Ideally, an indexing technique does not require any parameter
at all or is at least robust regarding the selected parameter values [40]. Two important
approaches for reducing the search space are blocking and windowing1, which we evaluated
and compared in [64].

Blocking uses attributes, or certain parts of attribute values, to create a blocking key
value for each record and then uses them to divide the records into mutually exclusive
partitions (blocks) [75]. Only records within the same block are compared with each
other. This approach is based on the assumption that no matches occur between records of
different blocks [75]. Thus, all records with different blocking keys are inherently classified
as non-duplicates [99]. The definition of the blocking keys has a high impact on both the
number and the quality of the generated record pairs [37]. The records within a block
should be significantly different from the records outside of the block [217]. With an
optimal blocking key, all true matches are included in the generated record pairs, whereas
the number of generated record pairs is as small as possible [39]. The number of candidate
record pairs, and consequently the overall execution time, highly depends on the size of
the largest block [13]. Therefore, uniformly distributed blocking key values are preferable.

The most prominent representative for windowing is the Sorted Neighborhood Method
(SNM) by Hernández and Stolfo [96,97]. SNM has three phases, illustrated in Fig. 2.2:

1. Key assignment: In this phase, a sorting key is assigned to each record. Keys are usu-
ally generated by concatenating certain parts of attribute values (e.g., first three

letters of the last name | first two digits of zip code) in the hope that du-
plicates are assigned similar sorting keys and are thus close after the sorting phase.
Sorting keys are not necessarily unique, but the number of records with the same
sorting key value should not be higher than the window size to avoid that records
with the same sorting key are not in the same window. This can be achieved by
adding further attributes in the sorting key. The sorting keys are particularly sensi-
tive to their first letters, and they should be more specific than blocking keys [39].

1Called “non-overlapping blocking” in [111].

20

2.2. Pair Selection

2. Sorting: All records are sorted by the sorting key.

3. Windowing: A fixed-size window slides over the sorted data. All pairs of records
within a window are compared, and duplicates are marked.

w
w

Current
window
of records

Next
window
of records

l
l
l

l
l
l

Figure 2.2: Illustration of the Sorted Neighborhood Method [96].

A disadvantage of the Sorted Neighborhood Method is the fixed window size. If it is
selected too small, some duplicates might be missed. On the other hand, a window that
is too large leads to many unnecessary comparisons. Section 4 presents a new approach
that dynamically adapts the window size.

The effect of indexing, especially the reduction of candidate record pairs compared to
a full comparison, is illustrated in Fig. 2.3. Figures 2.3(a) and 2.3(b) show exemplarily
the created pairs for the deduplication of a single dataset. For blocking, we have three
blocks (〈r1, . . . , r5〉, 〈r6, . . . , r8〉, 〈r9, r10〉), and we can see that the number of created pairs
is dominated by the largest block. For the Sorted Neighborhood Method, the window size
w is set to 3. The first window contains records r1, r2, r3 and creates candidate pairs
〈r1, r2〉, 〈r1, r3〉, 〈r2, r3〉. Moving the window removes record r1 and adds r4 to the current
window, which leads to the newly created candidate pairs 〈r2, r4〉, 〈r3, r4〉.

In the case of multiple sources, we can combine the records of both sources into a
single dataset and then use the same indexing techniques as described before. However,
if each is duplicate-free, we can skip the comparison of records from the same source. An
alternative approach for the Sorted Neighborhood Method in the case of linking multiple
sources is presented in [39]. This approach uses the window size to select the same number
of records from each source. With a window size w = 3, three records are selected from
each source, but no pairs with records of the same source are created.

As we have shown in [64], blocking and windowing have much in common. Both aim to
reduce the number of comparisons by making intelligent guesses as to which pairs of tuples
have a chance of being duplicates. Both rely on some intrinsic orderings of the data and
the assumption that tuples, that are close to each other with respect to that order, have
a higher chance of being duplicates than other pairs of tuples. Their closeness is maybe
best characterized by the work of Yan et al., in which they present an “adaptive sorted

21

Chapter 2. The Duplicate Detection Process

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10

Blocking

(a) Blocking.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10

Sorted Neighborhood

(b) SNM with w = 3.

Figure 2.3: Matrices of candidate pairs for Blocking and SNM [39, 143]. The records
are sorted by their indexing key, and candidate pairs are shaded. Compared to a full
comparison, the number of candidate record pairs is highly reduced.

neighborhood method”, which in fact turns out to be a blocking method [217]. Table 2.1
shows the computational complexities of the two methods compared to the naive approach.

Both blocking and windowing depend on the quality of the attribute values used to
create the blocking or sorting key. To avoid that duplicate pairs are not selected as
candidate pairs due to errors in the blocking or sorting keys, multiple keys based on
different attributes can be created, and the results are later combined [40, 143]. The
drawback of this approach is additional record pair comparisons, which can partly be
compensated by creating smaller blocks or using a smaller window size.

Table 2.1: Complexity analysis for the pair selection with number of partitions b, window
size w, and number of tuples n [64].

Naive approach Blocking Windowing

Comparisons n2−n
2 nn−b

2b (w − 1)(n− w
2)

Key generation – O(n) O(n)
Sorting – O(n logn)) O(n logn))
Detection O(n2

2) O(n2

2b) O(wn)
Overall O(n2

2) O(n(n
2b + logn)) O(n(w + logn))

22

2.3. Pair Classification

2.3 Pair Classification

After the selection of promising candidate pairs, several approaches exist to classify these
candidate pairs as duplicate or non-duplicate, e.g., threshold- or rule-based techniques or
machine learning. In many approaches, the similarity of the records is calculated first by
comparing different attributes that typically result in a normalized value between 0.0 (total
dissimilarity) and 1.0 (exact match), where values in-between 0.0 and 1.0 correspond to
some degree of similarity between two attribute values [39]. The value is not a probability
but rather a score that correlates with the likelihood that a record pair is a match [59].

There are different similarity measures for different types of data, which usually belong
to one of the following groups:

1. Exact, Truncate, and Encoding Comparison: The exact similarity is 1.0 if both
attribute values are equal or otherwise 0.0 [39]. Variations are (i) to check the
equality only for substrings of the attribute values, e.g., the first n characters, or
(ii) to first apply an encoding function on the values before checking the equality.

2. Sequence-based similarity measures: Sequence-based similarity measures, sometimes
also called edit-based measures, view strings as a sequence of characters, and the sim-
ilarity is calculated based on the cost to transform one string into another [56]. Two
examples are the Levenshtein distance and the Jaro-Winkler similarity. Both will
be used in the following chapters for the experimental evaluations and are therefore
explained here in more detail.

The Levenshtein distance counts the minimum number of insertions, deletions, and
replacements to transform a string s1 into a string s2 [122]. The similarity sim can
then be calculated as simLevenshtein = 1.0 − dist(s1,s2)

max(|s1|,|s2|) . The extension Damerau-
Levenshtein also considers character swaps [51]. The Jaro similarity and its ex-
tension, the Jaro-Winkler similarity, are specially designed for short strings, such
as names [56, 143]. The Jaro similarity considers the number of common charac-
ters c within a certain window and also the number of transpositions t [102]. The
Jaro similarity is the calculated as simJaro = 1

3(c
|s1| + c

|s2| + c−t
c). The extension

Jaro-Winkler similarity gives a higher similarity value to strings with a common
prefix [213]. Further examples for sequence-based similarity measures are Hamming
distance [89] and the Smith-Waterman edit distance [180].

3. Set-based similarity measures: Set-based measures split a string in a set of to-
kens [143]. The tokens are either words or q-grams (substrings of length q) [56].
Set-based similarity measures are especially beneficial in cases where typographical
conventions lead to a rearrangement of words (e.g., “John Doe” vs. “Doe, John”) [75].
Given the tokens of two strings, we can calculate a similarity score, e.g., the Jaccard,
Overlap, or Dice coefficient. Another example of a set-based similarity measure is
the Cosine similarity using TF/IDF [143].

23

Chapter 2. The Duplicate Detection Process

4. Hybrid similarity measures: Hybrid similarity measures combine both sequence and
set-based functions to calculate a final similarity value [56,143]. Examples of hybrid
similarity measures are the Monge-Elkan measure [136] and Soft TF/IDF [49].

5. Phonetic Similarity measures: Phonetic similarity measures focus on the sound of the
spoken word [143]. They convert a string into a code depending on the pronunciation
and are therefore usually language-dependent [39]. Examples are Soundex [172],
Double-Metaphone [158], and the Cologne phonetics [161].

6. Numerical Comparison: Numeric values, e.g., financial data, are often treated as
strings, using the same similarity functions as described above [75]. Alternatively,
the similarity can be calculated based on the difference of the values, taking into
account a maximum tolerated difference (absolute or percentage value) [39].

7. Date and Time Comparison: Date and time values are special cases of numeric
values [39]. By calculating the difference between two values, e.g., the number of
days, hours, or minutes, we obtain a numeric value that can be used to calculate a
similarity value like for numerical comparisons.

8. Geographical Distance Comparison: The similarity of two locations can be calculated
by using geographic information, such as longitude and latitude, to calculate the
distance between the two locations [39].

9. Complex data: For data stored in complex relationships, e.g., XML documents, the
structure can differ due to (i) optional elements, (ii) different contexts of an element,
or (iii) different element cardinality [143]. For this case, special algorithms, such as
the Structure-aware XML distance [134] or DogmatiX [207], are necessary.

For multimedia data, features such as color histograms of an image can be extracted,
and the similarity is calculated on the resulting feature vectors [39].

With the calculated similarity, a record pair can then be classified as duplicate or
non-duplicate. Several approaches have been proposed, and at this point, only the most
common approaches are sketched briefly. A more detailed description can be found in the
literature [39,56,75].

1. Probabilistic Matching Models: The traditional model by Fellegi and Sunter describes
record linkage as a Bayesian inference problem to classify record pairs into two classes
M (matched) and U (unmatched) [75, 79]. Various myths and misconceptions of
probabilistic matching are explained in [59].

2. Super-/Semisupervised Learning: Supervised and semisupervised learning approaches
use labeled training data to create matching rules automatically [56]. They can cre-
ate very complex rules with little manual effort, but they have the disadvantage

24

2.3. Pair Classification

that they require a high number of training data, and it is challenging to create
ambiguous cases [75].

3. Active-Learning-based Techniques: Active-learning approaches require in the begin-
ning only a small amount of training data to create a first classification model.
Experienced users then iteratively add further training data to improve the classifi-
cation model until the accuracy of the classification model is high enough [39,177].

4. Distance-/Threshold-based Techniques The similarities of all attributes are aggre-
gated into a single (weighted) similarity value. With an additional threshold τ , the
candidate record pairs can be classified as matches or non-matches [143].

classify(ri, rj) =

match if sim(ri, rj) ≥ τ

non-match otherwise.

We use the threshold-based approach for the classification as match or non-match
in the experimental evaluations in Chapters 3-5. If a third class potential match is
required for the classification, then two thresholds τl and τu with τl < τu are needed.

5. Rule-based Approaches: A rule-based classifier has the form P ⇒ C, with P as a
boolean expression in conjunctive normal form, i.e., as a conjunction or disjunction
of terms, and C as the classification outcome of the pair (ri, rj) [143].

P = (term1,1∨term1,2∨ . . .)∧(term2,1∨term2,2∨ . . .)∧ . . .∧(termn,1∨termn,2∨ . . .)

In Chapters 3-5, we use additional rules for non-matches in the Cora dataset, i.e., if
certain conditions are met, a record pair is a non-match regardless of the similarity
of the attribute values. If the rule set contains rules for both matches and non-
matches, the order of the rules is relevant, otherwise not [39]. The creation of such
rules usually requires a high manual effort by a domain expert and typically results
in systems with high accuracy [75]. HIL is a high-level scripting language for entity
resolution that can be used to express such rules by capturing the overall integration
flow through a combination of SQL-like rules that link, map, fuse, and aggregate
entities [95].

6. Clustering-based Approaches: Clustering-based approaches assign records that are
similar to a cluster, with each cluster representing one entity. The goal is to create
clusters with a high intra-cluster similarity (objects in the same cluster should be
similar to each other) and a low inter-cluster similarity (objects in different clusters
should be dissimilar) [39]. The generated clusters are typically very small, and most
of the clusters consist only of a single record [39].

Finally, a clustering step is used to create consistent clusters in which all objects in
a cluster represent the same entity. The previously created pairwise classification can be

25

Chapter 2. The Duplicate Detection Process

used to create a duplicate pair graph, in which the nodes represent the candidates, and
the edges, which can have the similarity value as weight, represent the classification as a
match [143]. The clustering is a post-processing step in the pairwise matching process.
Several clustering approaches are presented in Chapter 5. If no clustering algorithm is
selected, then implicitly, the transitive closure is used because the classification as a match
is inherently transitive [121].

Transitivity implies that if record pairs 〈ri, rj〉 and 〈rj , rk〉 are classified as matches,
then also record pair 〈ri, rk〉 has to be a match. However, this might contradict the
pairwise classification, which is usually based on the similarity of objects. An essential
property of similarity, in contrast to equivalence, is that similarity is not necessarily tran-
sitive [88]. Figure 2.4 illustrates an example that uses the Levenshtein similarity and a
threshold τ = 0.7 to classify candidate pairs as matches or non-matches. The record
pairs 〈Mouse,House〉 and 〈House,Horse〉 are classified as matches, as the strings differ
only by one character, which results in a Levenshtein similarity above the threshold. We
have simLevenshtein(Mouse,House) = 0.8, as only the first character is different, and also
simLevenshtein(House,Horse) = 0.8, as only the third character is different. However, we
have simLevenshtein(Mouse,Horse) = 0.6, because two characters are different, and thus
〈Mouse,Horse〉 is first classified as non-match. To enforce transitivity, we can switch the
classification of any of the edges in the clustering step. The transitive closure always
switches edges of non-matches into matches.

This post-processing step is not always necessary. A clustering-based approach for the
classification might already create consistent clusters in which all objects are classified to
represent the same entity. Furthermore, other clustering algorithms than the transitive
closure might be used. For example, a clustering algorithm could switch the pairwise
classification of 〈Mouse,House〉 or 〈House,Horse〉 instead of 〈Mouse,Horse〉 to create con-
sistent clusters. The problem of consistent clusters due to transitivity is not limited to
groups of three elements, but becomes more challenging with an increasing number of
elements, as we will see in Chapter 3. The Cora dataset, which we use in the experimental
evaluations, has, for example, a cluster with more than 200 elements. Several clustering
algorithms will be presented and evaluated in Chapter 5.

M o u s e H o u s e H o r s e

simLevenshtein = 0.8 → match simLevenshtein = 0.8 → match

simLevenshtein = 0.6 → non-match

Figure 2.4: Contradictory pairwise classification with τ = 0.7 under consideration of the
transitive closure.

26

2.4. Evaluation

2.4 Evaluation

For the evaluation of different record linkage and deduplication methods, we can distin-
guish between quality and scalability [90]. Quality refers to the effectiveness of classifying
record pairs correctly as matches or non-matches. Scalability, on the other hand, refers to
how well a method scales to real-world problems due to the quadratic complexity. For the
latter, several key figures, such as reduction ratio, pairs completeness, or pairs quality, are
proposed [39]. However, in the experimental evaluation of Chapter 4, we use for scalability
the number of comparisons because the other measures are not commonly used in other
publications. In the following, we describe some measures for the quality with regard to
the completeness and accuracy of the duplicate detection result.

The biggest issue for the evaluation is the necessity to have a ground truth, also known
as gold standard, which contains all true matches [39]. Gold standards are usually avail-
able only for smaller real-world datasets or synthetically generated data. The problem
for creating the gold standard is the manual effort due to the quadratic complexity of
the problem. If a method for assessing the certainty of a match would exist, this method
would probably also be incorporated in the matching algorithm [58]. A generally accepted
dataset and a corresponding gold standard are needed for a duplicate detection bench-
mark that allows the repetition of experiments and the comparison of different entity
matching methods [197]. To overcome this problem, Vogel et al. propose a new annealing
standard [197].

If the ground truth is known, we can assign each classified record pair in one of four
classes, depending on their predicted and their actual matching status. The relationship
between the classes is also shown in Fig. 2.5.

• True-positives: The record pair is classified as a match and indeed represents the
same real-world entity.

• False-positives: The record pair is classified as a match but does not represent the
same real-world entity.

• True-negatives: The record pair is classified as a non-match and does not represent
the same real-world entity.

• False-negatives: The record pair is classified as a non-match but actually represents
the same real-world entity.

With an increasing number of records, the number of matches increases linearly, whereas
the search space and thus the number of true-negatives increases quadratically [42]. In
larger datasets, therefore, we have the problem of imbalanced classes, and quality measures
that use the number of true-negatives may give a wrong impression. For example, we have
accuracy = |T P |+|T N |

|T P |+|F P |+|T N |+|F N | , which still has a very high value for larger datasets, even
if we classify all record pairs as non-matches (the formula is dominated by |TN |) [42].

27

Chapter 2. The Duplicate Detection Process

False-Negatives (FN)True-Positives (TP)

True-Negatives (TN)

Matches

False-Positives (FP)

Non-Matches

Actual
classes

Matches

Non-Matches

Predicted classes

TP: declared match while actual match

FN: declared non-match while actual match

FP: declared match while actual non-match

TN: declared non-match while actual match

Figure 2.5: Classification of duplicate detection results.

Therefore, we need key figures that evaluate the quality of the matching process with-
out the number of true-negatives. The most prominent measures in duplicate detection
research are precision, recall, and F-measure. Given the number of record pairs in each
class, they can be calculated based on the number of true-positives, false-positives, and
false-negatives.

Precision is a measure of the correctness of the result and is calculated as the proportion
of actual matches in relation to the number of classified matches.

precision = |TP |
|TP |+ |FP |

Recall calculates the completeness of the result, which is the proportion of classified
matches in relation to the overall number of actual matches.

recall = |TP |
|TP |+ |FN |

The goal is to have both a high precision and a high recall value, but there is often
a conflict between these key figures [13]. To obtain a higher recall value, we need to
increase the number of true-positives, for example, by reducing the similarity threshold
for the classification as duplicate or non-duplicate. However, this will probably also lead
to more false-positives which have a negative impact on the precision value. The same is
true vice versa. To increase the precision value, we could increase the similarity threshold
for the classification to reduce the number of false-positives. However, this leads to fewer
true-positives and, therefore, to a reduced recall value.

The F-measure is the harmonic mean of precision and recall and, therefore, a trade-off
between correctness and completeness of the result. In the record linkage and deduplica-
tion literature, it is the most common approach to combine precision and recall [90, 132].
The F-measure obtains a high value only when both precision and recall are high and can
be interpreted as an attempt to find the best compromise between precision and recall [9].

F-measure = 2 ∗ precision ∗ recall
precision + recall

However, recent work has identified some issues when the F-measure is used to compare
deduplication methods [90]. The harmonic mean calculation of the F-measure can be

28

2.5. Further Related Work

converted into the weighted arithmetic mean of precision and recall, where different weights
are assigned to precision and recall depending upon the number of classified duplicates.
This can occur, for example, when different similarity thresholds for comparing different
deduplication methods are used. In the experimental evaluation of Chapter 3, we are
not comparing different deduplication methods but show the relation between the best
threshold and the number of records/clusters. In the experimental evaluation of Chapter 4,
we show most results in relation to the recall value instead of the F-measure. For the
experiments that evaluate the F-measure value, we use the same classifier and do not vary
such similarity thresholds. In the experimental evaluation of Chapter 5, we also do not
vary such similarity thresholds for the same dataset, but instead, we identify the best
threshold for each dataset based on the exhaustive pairwise comparison. Therefore, our
use of the F-measure is valid. Furthermore, we present precision and recall results as well
to provide the full details of the obtained deduplication quality.

Another quality measure for entity resolution is the generalized merged distance (GMD),
as presented in [132]. In contrast to the F-measure, which considers pairwise classifica-
tions, GMD evaluates the quality of the resulting clusters. It is defined as the minimal
number of merge (m) and split (s) operations to transform the clustering result to the
real-world classification. The cost functions for split and merge operations can be freely
customized, e.g., in some cases, it might be necessary to penalize splits more than merges
or vice versa [132]. We use GMD next to F-measure in our experimental evaluation in
Chapter 5 because the ranking of duplicate detection algorithms can depend on the used
measure, and therefore, it is beneficial to use multiple measures [132].

Several other measures in the entity resolution literature, such as specificity, false-
positive-rate, or ROC curve, are presented in [13, 39]. Since these measures are not very
common, they are not used in the experimental evaluation of this thesis or described in
more detail.

2.5 Further Related Work

In this section, we provide an overview of related work from three areas. First, we give
an overview of related work regarding duplicate detection, its properties, parallel and dis-
tributed deduplication, and privacy issues. Second, we present related work regarding
machine learning and neural networks for duplicate detection, as this has become an im-
portant research direction in recent years. Third, we give a brief overview of approaches
that use the crowd for duplicate detection, which is another approach to resolving inconsis-
tent clusters in addition to the clustering algorithms presented in Chapter 5. Additionally,
the crowd can be used to create new attribute labels that could be used as sorting keys
for the pair selection algorithms presented in Chapter 4. Related work regarding the pair
selection and the clustering step is presented in the respective chapters.

29

Chapter 2. The Duplicate Detection Process

Duplicate Detection

Duplicate detection was first defined by Newcombe et al. [147] and has been researched
extensively over the past decades. The challenge is to effectively and efficiently identify
clusters of records that represent the same real-world entity. Several surveys [39, 45, 75,
123,143,149,156] explain various duplicate detection methods for improving effectiveness
and efficiency. With regard to the increasing data volume in the last years, a recent survey
gives an overview of end-to-end entity resolution for big data [45]. The authors claim that
the four “V”s (Volume, Variety, Velocity, and Veracity) challenge existing entity resolution
algorithms and that especially a great variety of entities from heterogeneous data sources
call for a paradigm shift in all entity resolution tasks.

A formalization of pairwise duplicate detection is presented by Benjelloun et al. [15].
They define the ICAR properties (idempotence, commutativity, associativity, and repre-
sentativity) for match and merge functions in the duplicate detection process. Idempotence
means that a record matches itself, whereas commutativity describes whether the order of
the records has an impact on the matching result or not. In our experimental evaluations,
we use classifiers that fulfill these two properties. This is especially relevant for the evalu-
ation in Chapter 5 because due to commutativity, we have an undirected input graph for
the clustering algorithms. Without commutativity, we would have a directed input graph.
We do not have to consider associativity and representativity, as these are properties of a
merge function, and the evaluated algorithms do not merge records.

An effective deduplication depends on the quality of the data, which can be improved
by a preprocessing step, as described in Sec. 2.1. With fewer errors or variations in the
attribute values in a dataset, for example due to a preprocessing step, record pairs that
represent the same real-world entity will have a higher similarity, and it will be easier to
find a good threshold for the classification as duplicate or non-duplicate even in larger
datasets (see Chapter 3). Furthermore, a better classification of the record pairs will also
reduce the number of inconsistent clusters, which we will cover in Chapter 5. The impact of
data preparation activities on the success of duplicate detection is evaluated in [113]. The
authors present various data preparators, e.g., split attributes, remove special characters,
or transliterate, which they classify as useful for duplicate detection. Based on a sample
set of duplicates and non-duplicates, a combination of data preparators, that are beneficial
for the later deduplication step, is selected automatically. Due to an intrinsic connection
between metadata and data errors, the process of data preparation can be supported
by using metadata to find data errors, as shown in a study for using metadata in data
quality management [196]. The authors create a mapping between data quality issues and
extractable metadata using qualitative and quantitative techniques. Users can generate
new metadata to identify errors in a given dataset to develop a respective data cleaning
strategy. To reduce the time and manual effort for preparing and integrating new datasets,
Talburt et al. present a proof-of-concept for unsupervised data curation [186]. They use

30

2.5. Further Related Work

an iterative entity resolution process that is based on a scoring matrix used for linking
unstandardized references and an unsupervised process for evaluating the results based on
cluster entropy.

The runtime is an important factor for duplicate detection, and we propose a new algo-
rithm for pair selection in Chapter 4 to reduce the number of comparisons, which makes
duplicate detection also feasible for larger datasets. Another means to process the in-
creasing data volumes in a reasonable amount of time is parallel and distributed duplicate
detection. Christen discusses for each step of the duplicate detection process (as shown
in Fig. 2.1) the requirements for being parallelizable [39]. Parallel entity resolution ap-
proaches have been surveyed in [34]. The authors distinguish two possible parallelizations
for ER: intra-step and inter-step parallelism. They describe several classification crite-
ria, grouped in general, effectiveness-related, and efficiency-related criteria, and compare
34 approaches. Two-thirds of the evaluated approaches use MapReduce [52] to imple-
ment parallelization, seven approaches used parallel database processing without a specific
programming model, and four approaches used Apache Spark. The high importance of
MapReduce is confirmed by a recent survey of Christophides et al., who give an overview
of methods for parallelization of blocking and matching and also mention the significant
impact of the MapReduce framework for parallel entity resolution [45]. They also point
out that parallelization is important for scalability to address the increasing data volumes
of big data. Another possibility for parallelizing duplicate detection is the usage of GPUs,
as shown in [82] for duplicate detection in general, and in [178] for privacy-preserving
record linkage.

When comparing different duplicate detection algorithms, the ranking may depend on
the used measure, and therefore, we use multiple measures for the experimental evaluation
in Chapter 5. A new measure for the evaluation of group-based record linkage results is
presented in [141]. The measure compares the predicted with the ground truth clusters and
assigns each record to one of seven categories. The method gives more detailed information
about the quality of the result than precision and recall, can reward different clustering
techniques (e.g., favor singletons over groups), and the authors state that it is, therefore,
better suitable for selecting a matching technique for a given context.

Although duplicate detection has been a research topic for several decades, we still
have the problem of matching errors, for which the effects are studied in [58]. Although
there are only two types of errors (false and missed matches), the implications can be very
complex, especially when merging and splitting are involved. The authors state that it
is necessary to provide matching outputs that allow to explore the error distribution and
therefore present various techniques to assess the matching quality. A discussion of why
the error distribution is relevant in addition to the overall rate of false and missed matches
is provided in [60].

31

Chapter 2. The Duplicate Detection Process

This thesis presents several new algorithms that support linking data from different
sources, which gives private and public organizations the opportunity to gain new in-
sights. However, there are often legal, regulatory, and ethical constraints that have to be
considered [25]. Several case studies for the use of linking sensitive data, e.g., financial
fraud, law enforcement and counter-terrorism, health service research, survey methodol-
ogy in social sciences, or official statistics, are presented in [44]. Privacy-preserving record
linkage (PPRL), also known as blindfolded record linkage or private record linkage, ad-
dresses the problem of linking databases between different organizations without revealing
any private or confidential information [44]. The basic idea is to mask the data in the
involved sources and to conduct the matching only using the masked data [194]. The
result set contains only the identifiers of the matched records but not the respective attri-
bute values. Finally, the sources can exchange data of certain attributes for the matches,
e.g., statistical or health data. The motivation for data privacy, the relationship between
privacy and society, as well as data privacy issues in the context of big data, are discussed
in [193].

Machine Learning / Deep Learning

Recent advances in deep learning have encouraged researchers to explore deep learning
approaches for entity matching, with promising results [55]. Most approaches are based
on Recurrent Neural Networks and word embeddings [45]. An overview of deep learning
challenges, opportunities, and current deep learning models is presented in [125]. The
authors distinguish between non-transformer-based methods and pre-trained transformer-
based methods, which show better results due to a better language understanding. Ex-
amples of the former are DeepER and DeepMatcher. DeepER uses uni- and bi-directional
recurrent neural networks with long short-term memory to convert each tuple into a vec-
tor that is used to calculate the similarity, followed by a classification as match or mis-
match [71]. DeepMatcher allows different architectural configurations of deep learning for
entity matching [139]. The authors evaluate four solutions, including one that is similar
to DeepER, and compare it with Magellan [109] on different types of datasets.

An example of a pre-trained transformer-based method is DITTO, which reduces the
entity matching problem to a binary sequence-pair classification [125]. The authors used
three pre-trained models (BERT [54], RoBERTa [129], and DistillBERT [176]) for fine-
tuning and additionally used three optimizations (injecting domain knowledge, augmenting
training data, and summarizing long strings) to improve the model training further.

A recent approach by Loster et al. uses Siamese Neural Networks to eliminate the
time-consuming step of manual feature engineering [130]. Their approach automatically
discovers promising features, and they learn a specific similarity measure for a dataset
that can be used for duplicate detection. As they process the entities at their attribute
level, they are able to learn the properties of each attribute domain. This knowledge can

32

2.5. Further Related Work

be transferred to a deduplication network for a new dataset with similar attributes, and
thus they are able to reduce the amount of required training data for processing this new
dataset.

An important aspect of deep learning algorithms for entity matching is the explain-
ability of the matches, as discussed in [125]. The impact of data on society is growing,
and there is a higher need for responsible data management [183]. There are ethical and
legal responsibilities to justify decisions if they significantly impact people’s lives, e.g.,
decisions that result in financial loss [137]. Examples are automated rejections in a data-
driven hiring tool [183] or credit scoring systems [47]. Various methods for explaining
machine learning algorithms exist; however, they are inadequate for practitioners of entity
resolution [191]. Explanations should be given in two ways, on the one hand for end-
users and, on the other hand, for computer scientists who understand the underpinnings
of the technology [125]. The issue of explainability is relevant not only for deep learning
algorithms but in general for all duplicate detection approaches. The choice of a sim-
ilarity measure, the choice of a pair selection algorithm, and the choice of a clustering
algorithm all affect the final duplicate detection result. It is therefore important to know
the used algorithms and their properties in order to be able to explain why records are
matched or non-matched. In Chapter 5, for example, we see in Fig. 5.9 that the choice
of a clustering algorithm can lead to different matching results even for a few records.
In general, it is easier to explain the results of rule-based approaches compared to deep
learning algorithms.

Conflict Resolution by using the Crowd

In addition to automatic duplicate detection, the crowd can also be used for a manual
inspection to find duplicates, as well as resolving inconsistent clusters. Chapter 5 presents
several clustering algorithms that do the latter automatically, but the crowd is another
means to resolve difficult clusters, or to validate the duplicate detection results if no
gold standard is available. Several crowdsourcing platforms, such as Amazon Mechanical
Turk2 or Clickworker3, can be utilized based on the main idea that humans can solve
complex tasks better than computers. Crowd-based entity resolution has also attained
much attention in the industry with companies, such as Google, Bing, and Facebook, that
use it for creating summary records of entities in the web search [195].

Recent research resulted in several papers and algorithms that use crowdsourcing for
duplicate detection [201,204,210]. The main problems with using the crowd are, first, the
fact that even humans are not always correct in their classification of duplicates or non-
duplicates, and second, the costs for executing classification tasks. Furthermore, for many
duplicate detection tasks, crowds cannot be used due to data privacy reasons, e.g., for tasks

2https://www.mturk.com
3https://www.clickworker.de

33

https://www.mturk.com
https://www.clickworker.de

Chapter 2. The Duplicate Detection Process

that include health data. For the first problem, the worker quality can be improved by
testing the humans before giving them actual tasks, or tasks are given to multiple humans
with the majority answer as the final classification. The second issue can be tackled by
limiting the manual inspections to difficult classifications, e.g., for record pairs with a
very high or very low similarity, it is usually unnecessary to pay for manual inspections.
On the other hand, manual inspections are also a means to validate the computational
classifications. Another approach presented by Wang et al. is using transitive relations to
reduce the number of crowdsourced pairs [202].

One choice for crowd-based entity resolution is the usage of pairwise comparisons or the
creation of tasks with multiple items. The Waldo approach combines pairwise-comparisons
for difficult record pairs and uses multiple-item tasks for the rest of the pairs to better
utilize the available resources [195].

Khan and Garcia-Molina present an attribute-based crowd entity resolution approach
that uses a preprocessing step to ask the crowd for new attribute labels [104]. These are
later used to restrict the pairwise classification only on suitable candidate pairs (similar to
blocking). The new attribute labels can also be used as sorting keys that could, for exam-
ple, be used for the new pair selection algorithms presented in Chapter 4. As explained in
Sec. 2.2, all windowing approaches depend on the quality of the attribute values used to
create the sorting key. Thus, the duplicate detection result can be improved with better
sorting keys from the crowd.

34

Chapter 3

On Choosing Thresholds for
Duplicate Detection

Duplicate detection faces two challenges: efficiency and effectiveness. As there exists no
key that can be used to identify those records that represent the same real-world entity,
and due to typos and erroneous or incomplete data, often similarity measures are used in
combination with a threshold to decide whether a record pair represents the same real-
world entity or not. In the past decades, many similarity measures have been proposed to
determine the similarity of strings and numbers. These measures can be used to calculate
the similarity of individual attribute values, and these attribute similarities can then be
aggregated to an overall record similarity. The selection of relevant attributes and their
best similarity measure is a domain-specific task that requires a domain expert.

A threshold can then be used to classify whether a record pair is a duplicate or not. If
the similarity is above the threshold, the pair is a duplicate, and both records belong to
the same cluster. Additional records are added to the cluster if the similarity to at least
one record in the cluster is above or equal to the threshold. In this way, we also classify
all other records in that cluster as duplicates of the new record. However, it is possible
that some of the records have a similarity below the threshold with some other records
in the same cluster, and are nevertheless classified as duplicate only due to the transitive
relationship. Thus, the selection of a good threshold is very important. On the one hand,
the threshold should not be too high so that no true duplicates are missed. On the other
hand, it should not be so low that many non-duplicates are classified as duplicate, either
because the calculated similarity is above the threshold or because the calculated similarity
of another pair in that cluster is above the threshold. As described in Chapter 2, there is
also the option of choosing a second lower threshold, and all record pairs with a similarity
value between the two thresholds are potential duplicates that are classified in a manual
review step. Choosing the optimal threshold is one of the main difficulties of configuring
a duplicate detection program for a given dataset.

35

Chapter 3. On Choosing Thresholds for Duplicate Detection

Interestingly, this problem becomes more challenging if the size of the dataset increases
over time. The optimal threshold should not be evaluated only once, but there is a necessity
to evaluate it again if new records are added. Of course, the threshold should also be re-
evaluated for use cases with a decreasing number of records. This observation is the
main contribution of this chapter, based on an extensive empirical evaluation. Figure 3.1
illustrates the problem. In Fig. 3.1(a), we have three records A, B, and C. The edges show
the similarity between these records. Records A and B are a duplicate, so they belong to
the same cluster. If we want to select a good threshold for this sample, we can use any
value > 0.8 and ≤ 0.9. Then 〈A,B〉 would be classified correctly as duplicate, and the
record pairs 〈A,C〉 and 〈B,C〉 would be correctly classified as non-duplicate.

Consider a new record D that is inserted into the dataset, e.g., a new customer is added
to a customer database, with D as a duplicate of C. This case is shown in Fig. 3.1(b).
With the previous threshold, 〈C,D〉 is classified correctly as duplicate, as well as 〈A,D〉
as non-duplicate. An issue might arise with pair 〈B,D〉. If the chosen threshold is ≤ 0.84,
this pair is classified as duplicate, even though it is a non-duplicate. This problem is
even aggravated because the records belong to a cluster with multiple records: Due to
transitivity, record pairs 〈A,D〉, 〈A,C〉, and 〈B,C〉 are then also classified as duplicates.

C

BA 0.9

0.7

0.8

(a) Sample result for three records.

C

BA 0.9

0.840.7

D

0.7

0.8

0.95

(b) Sample result with additional record.

Figure 3.1: Illustration of threshold selection problem

Such observations shall serve as a warning that a once configured threshold might
not be appropriate in the future if the dataset increases over time. In our experience,
thresholds are often manually configured based on a sample of data. We show that the
initially chosen setting might no longer be optimal for larger datasets, even if they have
the same properties.

First, Sec. 3.1 introduces the DuDe Toolkit, which is the framework used for all ex-
periments in this thesis. The presentation of DuDe is based on published work in [65].
Afterward, Sec. 3.2 describes and analyzes in detail various experiments showing that
thresholds are indeed quite sensitive to dataset size. This section is based on published
work in [67].

36

3.1. The DuDe Toolkit

3.1 The DuDe Toolkit

For duplicate detection, researchers have developed and described various methods to mea-
sure the similarity of records or to reduce the number of required comparisons. Comparing
these methods to each other is essential to assess their quality and efficiency. However, it is
still difficult to compare results, as there are usually differences in the evaluated datasets,
the similarity measures, the implementation of the algorithms, or simply the hardware on
which the code is executed.

Elmagarmid et al. have compiled a survey of existing algorithms and techniques for
duplicate detection [75]. Köpcke and Rahm give a comprehensive overview of existing
duplicate detection frameworks [111]. They compare eleven frameworks and distinguish
between frameworks without training (BN [120], MOMA [192], SERF [15]), training-based
frameworks (Active Atlas [189, 190], MARLIN [18, 19], Multiple Classifier System [219],
Operator Trees [33]) and hybrid frameworks (TAILOR [74], FEBRL [38], STEM [110],
Context-Based Framework [35]). Not included in the overview is STRINGER [91], which
deals with approximate string matching in large data sources. Köpcke and Rahm use
several comparison criteria, such as supported entity types (e.g., relational entities, XML),
availability of partitioning methods to reduce the search space, used matchers to determine
whether two entities are similar enough to represent the same real-world entity, the ability
to combine several matchers, and, where necessary, the selection of training data. More
recent frameworks are JedAI [156], which can be used for both relational and RDF data1,
and Magellan [57].

In their summary, Köpcke and Rahm criticize that the frameworks use diverse method-
ologies, measures, and test problems for evaluation, and therefore it is difficult to assess
the efficiency and effectiveness of every single system. They argue that standardized entity
matching benchmarks are needed and that researchers should provide prototype imple-
mentations and test data with their algorithms. This agrees with Neiling et al. [144],
where desired properties of a test framework for object identification solutions are dis-
cussed. Moreover, Weis et al. [208] argue for a duplicate detection benchmark. Both
papers see the necessity for standardized data from real-world or artificial datasets, which
must also contain information about the real-world pairs. Additionally, clearly defined
quality criteria with a description of their computation and a detailed specification of the
test procedure are required. Recent work has pointed out that the results of deduplica-
tion experiments are often not repeatable or comparable due to different data preparation
activities [113]. An overview of quality and complexity measures for data linkage and
deduplication can be found in Christen and Goiser [42].

To face this challenge, we developed the comprehensive duplicate detection toolkit
“DuDe”. DuDe provides multiple methods and datasets for duplicate detection and con-
sists of several components with clear interfaces that can be easily served with individual

1A survey of Link Discovery frameworks can be found in [146].

37

Chapter 3. On Choosing Thresholds for Duplicate Detection

code. This section presents the DuDe architecture and its workflow for duplicate detec-
tion. We show that DuDe allows to easily compare different algorithms and similarity
measures, which is an important step towards a duplicate detection benchmark.

With DuDe, we provide a toolkit for duplicate detection that can easily be extended
by new algorithms and components. Conducted experiments are comprehensible and can
be compared with former ones. Additionally, several algorithms, similarity measures, and
datasets with gold standards are provided, which is a requirement for a duplicate detection
benchmark2.

The following Sec. 3.1.1 gives an overview of the DuDe architecture and its main com-
ponents. Afterward, Sec. 3.1.2 gives an overview of the datasets that are provided with
DuDe and might be used for duplicate detection benchmarking. Furthermore, in Ap-
pendix A, we explain the data flow of an example experiment and provide short code
listings to demonstrate the configuration of DuDe.

3.1.1 DuDe Architecture

The goal of DuDe is to provide a toolkit for duplicate detection that is easy to use, easy
to extend, supports a large variety of data sources, including nested data, allows almost
all algorithms to be implemented using the toolkit, and provides several basic similarity
measures. Figure 3.2 gives an overview of the different components used within the DuDe
toolkit to conduct experiments. The framework is implemented in Java, which makes
it easy to extend. The internal data format for processing records is based on JSON3,
which is a language-independent data-interchange format. In the following subsections,
we describe the different components in more detail.

DuDe

Similarity
Function

Partitioning
Algorithm

Postpro-
cessor OutputPrepro-

cessor
Data

SourceInput
Data

Experiment

Duplicates

Evaluation
statistics

Figure 3.2: DuDe architecture

2DuDe and several datasets are available for download at https://hpi.de/naumann/projects/data-
integration-data-quality-and-data-cleansing/dude.html.

3JavaScript Object Notation, http://www.json.org

38

https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html
https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html
http://www.json.org

3.1. The DuDe Toolkit

Data Source

The data source component is used to extract data from any data source that is supported
by the toolkit and to convert the data into the internal JSON format. With DuDe, we are
able to extract records from relational databases (Oracle, DB2, MySQL, and PostgreSQL),
CSV files, XML documents, and BibTeX bibliographies. For each data source, a record
identifier consisting of one or many attributes can be defined, and additionally, a global
ID is assigned to each data source, which is also saved within the extracted records. This
allows a comparison of records from different sources without the necessity of a data
source-wide unique identifier.

Preprocessor

The preprocessor is used to gather statistics while extracting the data, e.g., counting the
number of records or (distinct) values. After the extraction phase, each preprocessor
instance is accessible within the algorithm and might be used within similarity functions
that need preprocessing information.

Partitioning Algorithm

Partitioning algorithms are responsible for selecting pairs of records from the data sources
that should be classified as duplicate or non-duplicate. In general, DuDe supports all
algorithms that follow a pairwise comparison pattern. An implemented naive approach,
to be used as a baseline, simply generates all possible pairs of objects that are stored within
the data source(s). Each pair is returned only once. So if 〈A,B〉 is already returned, 〈B,A〉
is not. Most algorithms require some kind of preprocessing, such as sorting for the Sorted
Neighborhood Method [96] or partitioning for the Blocking Method [64]. Therefore, each
algorithm can execute a preprocessing step before returning record pairs. In the case of
sorting, DuDe allows the definition of a sorting key. A sorting key collects a list of different
subkeys which specify attributes or part of attribute values. The sorting can be executed
by an in-memory sorting algorithm (for small datasets) or by a file-based sorter.

Similarity Function

Similarity functions are used to compare two records and calculate a similarity. The
similarity is a value between 0 and 1, with 1 defined as equality. We distinguish between
three types of similarity functions in DuDe:

• Structure-based similarity functions can be used to compare objects based on
their structure. This is especially interesting if records from different sources with
different schemas are compared (e.g., calculating the similarity based on the number
of equal attributes in the record schemas).

39

Chapter 3. On Choosing Thresholds for Duplicate Detection

• Content-based similarity functions can be used to compare objects based on
concrete attribute values. DuDe contains more than 15 content-based comparators,
most of them using the publicly available library SimMetrics.4 Examples are Lev-
enshtein distance, Jaro Winkler distance, Smith-Waterman distance, SoundEx, and
identity comparators.

• Aggregators can be used to combine different structure- or content-based similarity
functions. This means that they receive the similarity values of several similarity
functions as input and calculate a combined similarity. At present, aggregators for
the calculation of the minimum or maximum value, the weighted average, and the
harmonic mean are implemented. Aggregators can also be nested.

Similarity functions are used only for calculating the similarity of a candidate pair but
not for finally classifying whether the candidate pair represents the same real-world en-
tity. For the classification, a threshold needs to be defined within the duplicate detection
experiment. Depending on whether the similarity is greater or less than the threshold, the
candidate pairs are then forwarded to a postprocessor or an output. It is also possible to
define multiple thresholds, e.g., for potential matches, as explained in Sec. 2.3. The user
must then define within the experiment how these potential matches should be processed.

Postprocessor

The postprocessor receives the classified record pairs and performs additional process-
ing: Two important postprocessors are the transitive closure generator and the statistic
component. The former calculates the transitive closure for all classified duplicates. The
latter allows the calculation of key performance indicators, such as runtime, number of
generated record pairs, and the number of classified duplicates. If a gold standard exists
for a dataset, additional key figures, such as precision, recall, or F-measure, are calculated
(an example is shown in Appendix A in Fig. A.3).

Output

There are several output formats for the record pairs, e.g., a simple text output, a JSON
output, or a CSV output. The simple text output, for example, writes each result pair
into one line using a specified separator for the attribute values. The CSV output allows
the output of additional information for record pairs, such as the calculated similarity
or whether the pair has been classified as duplicate or not. The statistic component has
its own CSV output, which also allows the specification of additional attributes. These
attributes can be used to describe the configuration of an experiment. All outputs can be
written to the screen or into a file. The offered output components can easily be extended
to meet experiment-specific requirements.

4http://www.dcs.shef.ac.uk/~sam/simmetrics.html, now available at https://sourceforge.net/
projects/simmetrics/

40

http://www.dcs.shef.ac.uk/~sam/simmetrics.html
https://sourceforge.net/projects/simmetrics/
https://sourceforge.net/projects/simmetrics/

3.1. The DuDe Toolkit

Appendix A shows an example for the configuration of a typical DuDe experiment,
including short code listings. In this example, we deduplicate audio CD information (e.g.,
artist, title, tracks) in a CSV file and use the Sorted Neighborhood Method [96] to search
for duplicates.

3.1.2 Datasets

To develop a duplicate detection benchmark, it is necessary to make generally accepted
datasets available. There is no single dataset that is commonly used for benchmarking in
the duplicate detection community; rather, there is a variety of more or less useful datasets
that have been used to evaluate algorithms.

Real-world data is preferable over synthetic data, as it is difficult to simulate all types
of errors that might occur during data entry or data processing. On the other hand, legal
regulations or privacy concerns often prevent data exchange between organizations and
the scientific community.

We have prepared three real-world datasets that have been used in several papers.
Necessary transformation steps for loading these datasets in DuDe are documented on
our website5, along with example code for the extractors. As frequently described, some
massaging of the data was necessary. To make this process transparent, we diligently
describe the individual corrections and customizations on the download page.

To evaluate the results of an experiment, we additionally offer a gold standard for each
of the datasets. The gold standard was created manually in an arduous process involving
distributed manual checking and cross-checking of all candidate pairs. Table 3.1 gives an
overview of the number of records, number of clusters, and number of duplicate pairs in
the datasets.

Table 3.1: Overview datasets

Dataset Format # Records # Clusters Duplicate pairs

Restaurant CSV 864 752 112
CD data CSV 9,763 9,505 299
Cora XML 1,879 118 64,386

The Restaurant data6 were extracted from the RIDDLE repository, which is a valu-
able source for datasets. The dataset comprises names and addresses of restaurants and
has been used in various papers [110, 114,190]. For DuDe, we have converted the file for-
mat from ARFF into CSV. The gold standard was extracted from the included attribute
“class”. As for the Cora dataset, we have added a unique identifier for each record to be
able to represent duplicate pairs easily.

5http://www.hpi.uni-potsdam.de/naumann/projekte/dude.html
6Originally from http://www.cs.utexas.edu/users/ml/riddle/

41

http://www.hpi.uni-potsdam.de/naumann/projekte/dude.html
http://www.cs.utexas.edu/users/ml/riddle/

Chapter 3. On Choosing Thresholds for Duplicate Detection

The CD dataset7 is a randomly selected extract from freeDB8. It contains information
about CDs, including artists, titles, and songs, and has been used in several papers [64,120].

Finally, the Cora Citation Matching dataset9 lists groups of differently represented
references to the same paper and is used in several approaches to evaluate duplicate
detection [18, 61, 179]. A disadvantage of this dataset is the missing unique identifier for
each record: A deeper look at the records revealed that the reference ID (the BibTeX
key) is unfortunately not always faultless. In particular, we discovered two problems:
two references have the same reference ID but do not represent the same paper (see
Listing 3.1). And vice versa, there are references that, in fact, represent the same paper
but have different reference IDs (see Listing 3.2). Therefore, we have added a unique
identifier for each record, which is a prerequisite to define a gold standard. Additionally,
we have transformed the three original files into one XML document to make the Cora
dataset readable for the DuDe toolkit. In contrast to the Restaurant and CD dataset,
minor changes had to be made in the new Cora dataset file, e.g., adding closing tags for
the references or repairing broken tags.

<NEWREFERENCE id="968"> 438 aha1991
<author>D.W. Aha, D. Kibler and M.K. Albert</author>
<year>(1991)</year>
<title>. Instance-Based Learning Algorithms.</title>
<journal>Machine Learning,</journal>
<volume>6</volume>
<pages>37-66.</pages>

</NEWREFERENCE>
<NEWREFERENCE id="969"> 439 aha1991
<author>D. Aha and D. Kibler.</author>
<title>Noise-tolerant instance-based learning algorithms.</title>
<journal>Machine Learning,</journal>
<volume>8:</volume>
<pages>794-799,</pages>
<year>1991.</year>

</NEWREFERENCE>

Listing 3.1: Cora example of two different papers with same reference ID “aha1991”

7Originally from http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets
8http://www.freedb.org, now available at https://gnudb.org
9Originally from http://www.cs.umass.edu/~mccallum/code-data.html

42

http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets
http://www.freedb.org
https://gnudb.org
http://www.cs.umass.edu/~mccallum/code-data.html

3.2. Threshold Experiments

<NEWREFERENCE id="1034"> 504 pazzani1992
<author>Michael Pazzani and Dennis Kibler.</author>
<title>The role of prior knowledge in inductive learning.</title>
<journal>Machine Learning,</journal>
<volume>9</volume>
<pages>57-94,</pages>
<year>1992.</year>

</NEWREFERENCE>
<NEWREFERENCE id="1035"> 505 kibler1992
<author>Michael Pazzani and Dennis Kibler.</author>
<title>The role of prior knowledge in inductive learning.</title>
<journal>Machine Learning,</journal>
<volume>9</volume>
<pages>57-94,</pages>
<year>1992.</year>

</NEWREFERENCE>

Listing 3.2: Cora example of two different reference IDs for the same paper

Besides these real-world datasets, researchers can create larger datasets using data gen-
erators. Possible data generators are the UIS Database Generator10, the Febrl generator11,
and the Dirty XML Generator12. The problem of creating a realistic synthetic dataset of
personal information is discussed in [43].

3.2 Threshold Experiments

To evaluate our assumptions from the introduction, we conducted various experiments.
This section first describes the used datasets and the experiment setup and then shows
our results.

3.2.1 Datasets and Configuration

For our experiments, we used four datasets. As real-world datasets, we use the CD and
Cora datasets as described in Sec. 3.1.2, as they are often used in other papers. Addi-
tionally, we used the Febrl dataset generator [36] to create two artificial datasets. Both
contain 10,000 clusters, i.e, information about 10,000 entities. The smaller dataset (Febrl
sm.) contains an additional 1,000 duplicate records with up to three duplicates per cluster.
The larger Febrl dataset (Febrl la.) contains 10,000 additional duplicates with up to nine

10https://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz
11http://sourceforge.net/projects/febrl/
12https://hpi.de/naumann/projects/completed-projects/dirtyxml.html

43

https://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz
http://sourceforge.net/projects/febrl/
https://hpi.de/naumann/projects/completed-projects/dirtyxml.html

Chapter 3. On Choosing Thresholds for Duplicate Detection

Table 3.2: Overview of datasets for experimental evaluation.

Dataset # Records # Clusters Max. cluster size Provenance

Febrl (sm.) 11,000 10,000 4 synthetic
Febrl (la.) 20,000 10,000 10 synthetic
CD 9,760 9,505 6 real-world
Cora 1,879 118 238 real-world

duplicates per cluster. Furthermore, the duplicates in the larger dataset can have more
modifications than those in the smaller one. Table 3.2 shows an overview of the datasets
used for the experiments, including the number of records and clusters and the maximum
cluster size.

For all datasets, we implemented one or more similarity functions for a pairwise com-
parison. Each similarity function calculates the similarity of single attributes and then
aggregates those attribute similarities to a record pair similarity. The similarity is a nor-
malized value between 0 and 1, with a larger similarity value indicating a higher similarity
between the records [39].

Pair Selection Algorithms

For all datasets, we used three pair selection algorithms. The first one is the naive ap-
proach, which creates the Cartesian product of all records. Because we use only symmetric
similarity functions, we do not have to consider ordered pairs, which means that if we cre-
ate a pair 〈A,B〉 we do not create 〈B,A〉.

The second pair selection algorithm is the Sorted Neighborhood Method (SNM) [97],
which sorts the records based on one or more sorting keys and then slides a fixed-size
window over the sorted records. Only those records within the same window are compared.
As in most real-life scenarios, we use multiple keys to avoid that due to erroneous values
in the sorting key attributes, real duplicates are far away in the sorting order. We use a
window size of 20 for all SNM experiments. For both algorithms, we calculate the transitive
closure of duplicates after each run: if 〈A,B〉 and 〈B,C〉 are classified as duplicate, also
〈A,C〉 is a duplicate, regardless of the similarity of 〈A,C〉.

DCS++ is our new pair selection algorithm and is based on SNM. It uses an adaptive
window size based on the number of detected duplicates, i.e., in windows with many
duplicates, the window will be enlarged [69]. On the other hand, DCS++ skips windows
for elements that were already classified as duplicate to save comparisons. DCS++ uses
parameter φ to decide if a window is enlarged, and we use φ ≤ 1

w−1 in our experiments.
More details on DCS++ and the selection of φ are presented in Chapter 4.

44

3.2. Threshold Experiments

Similarity Functions

For the Febrl dataset, we have two similarity functions, so we are able to evaluate if the
effect of an increasing best threshold depends on the similarity measure. Both of them
calculate the average similarity of the attributes first name, last name, address, suburb, and
state. The first similarity function uses for all attributes the Jaro-Winkler similarity [214],
whereas the second one uses for all attributes the Levenshtein distance [122]. For SNM,
we use three different sorting keys: 〈first name, last name〉, 〈last name, first name〉, and
〈postcode, address〉.

The similarity function for the Cora dataset calculates the average Jaccard coeffi-
cient [143] of attributes title and author using bigrams. Additionally, we use rules that set
the similarity of a record pair to 0.0. These rules are (1) the year attribute has different
values, (2) one reference is a technical report and the other is not, (3) the Levenshtein
distance of attribute pages is greater than two, and (4) one reference is a journal, but the
other one a book. For SNM, the used Cora sorting keys are 〈ReferenceID, Title, Author〉,
〈Title, Author, Refer.ID〉, and 〈Author, Title, Refer.ID〉.

For theCD dataset, we use a similarity function that calculates the average Levenshtein
similarity of the three attributes artist, title, and track01, but also considers NULL values
and string-containment. The similarity function is the same as described in [64]. For
SNM, the three used sorting keys are 〈Artist, Title, Track01〉, 〈Title, Artist, Track01〉,
and 〈Track01, Artist, Title〉.

Evaluation

Our evaluation is based on the F-measure, i.e., the harmonic mean of precision (fraction of
correctly detected duplicates and all detected duplicates) and recall (fraction of detected
duplicate pairs and the overall number of existing duplicate pairs). We evaluate all datasets
with different threshold values, starting with 0.50. The only exceptions are the two Febrl
datasets with the Jaro-Winkler similarity function, for which we start with 0.75. The
threshold is increased by 0.01 in every iteration up to 1.0. Additionally, we increase
the number of records to measure the effect of an increased number of records on the
selection of the threshold. To summarize, we have five parameters that are evaluated in
our experiments:

• Dataset: Febrl (sm.), Febrl (la.), Cora, and CD.

• Pair selection algorithm: All pairs (Naive), Sorted Neighborhood Method (SNM),
and DCS++.

• Similarity measure: JaroWinkler and Levenshtein for Febrl datasets, Jaccard for
the Cora, and Levenshtein for the CD dataset.

45

Chapter 3. On Choosing Thresholds for Duplicate Detection

• Number of clusters / records: For both Febrl datasets, we start with 10 clusters
and increase by 10 clusters until we use the entire dataset. For Cora and CD, we
start with ten records and increase by ten records in each iteration step.

• Threshold values: Threshold values starting with 0.50 (0.75 for Febrl with Jaro-
Winkler similarity), increased by increments of 0.01 up to 1.0.

We have exhaustively evaluated all parameter combinations and report on a large subset
of them. The described effects were observable for all combinations.

3.2.2 Experimental Results

In this section, we describe the results of our experiments. As mentioned before, we
evaluated different dataset sizes and different threshold values for the classification as a
duplicate or non-duplicate. Our results are shown in Figures 3.3 to 3.9. Each figure
shows on the left a heatmap for one combination of the dataset, algorithm, and similarity
measure. On the x-axis, we have an increasing number of records, and the y-axis shows
the different threshold values. The color determines the observed F-measure values. We
also created an additional chart with the same axes for every heatmap, showing for the
same experiment the threshold or threshold range that achieved the best F-measure value.
Additionally, this chart shows the precision, recall, and F-measure values for this threshold.

We begin with the evaluation of the two pair selection algorithms naive and SNM.
Figure 3.3 shows for these two algorithms the results for the small and the large Febrl
datasets for the Jaro-Winkler similarity measure and the two pair selection algorithms,
naive and SNM. For each dataset, we show the number of clusters on the x-axis. As
expected, the best threshold value increases with an increasing number of clusters. For a
small number of clusters, we have a window for the best threshold. This makes it easy
for a user to find a good threshold for this dataset. However, with an increasing number
of clusters, the window becomes smaller until it is only a single optimal threshold value.
Even for large datasets, the best threshold value increases almost monotonically, although
there are a few outliers, as we can see in Fig. 3.3(a) and especially in Fig. 3.3(d). We can
also see that the best possible F-measure value decreases with an increasing number of
clusters.

Figure 3.4 also shows results for the two Febrl datasets, but this time with the Leven-
shtein similarity and only for the Sorted Neighborhood Method as pair selection algorithm.
We can see again that we have a window for the selection of the best threshold for small
cluster sizes. This window of optimal thresholds shrinks until it is only a single value.
With an increasing number of clusters, this threshold value then increases. We also calcu-
lated for this similarity measure the results with the naive pair selection algorithm. The
results (not shown) are similar to those with SNM, so the results do not depend on the
pair selection algorithm.

46

3.2. Threshold Experiments

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(a) F-measure heatmap and best threshold chart for dataset Febrl (sm.) with naive algorithm

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(b) F-measure heatmap and best threshold chart for dataset Febrl (sm.) with SNM algorithm

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(c) F-measure heatmap and best threshold chart for dataset Febrl (la.) with naive algorithm

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

 /
 F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(d) F-measure heatmap and best threshold chart for dataset Febrl (la.) with SNM algorithm

Figure 3.3: Results of experiments for the Febrl datasets with JaroWinkler measure. The
figures show in a heatmap the F-measure values for different numbers of clusters and
different threshold values, and additionally the best F-measure values with the respective
threshold.

47

Chapter 3. On Choosing Thresholds for Duplicate Detection

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(a) F-measure heatmap and best threshold chart for dataset Febrl (sm.) with SNM algorithm

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(b) F-measure heatmap and best threshold chart for dataset Febrl (la.) with SNM algorithm

Figure 3.4: Results of experiments with the Febrl datasets and Levenshtein measure.

Figure 3.5 shows the results for the Cora dataset. Note for this dataset that we show
the number of records on the x-axis. We also evaluated both pair selection algorithms, and
again the results are very similar, so we only show the results for the Sorted Neighborhood
Method. Due to the used rules in the similarity measure, we achieve very high F-measure
values, as both precision and recall are high. Again, we can observe a window for the best
threshold in the beginning that becomes smaller with an increasing number of records.

0.5

0.6

0.7

0.8

0.9

1.0

0 300 600 900 1,200 1,500 1,800

T
hr
es
ho
ld

Number of Records

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 300 600 900 1,200 1,500 1,800

T
hr
es
ho
ld

 /
 F
-m
ea
su
re

Number of Records

Precision
Best F-measure

Recall
Best Threshold

Figure 3.5: F-measure heatmap and best threshold chart for dataset Cora with SNM.

48

3.2. Threshold Experiments

0.5

0.6

0.7

0.8

0.9

1.0

0 1,500 3,000 4,500 6,000 7,500 9,000

T
hr
es
ho
ld

Number of Records

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 1,500 3,000 4,500 6,000 7,500 9,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Records

Precision
Best F-measure

Recall
Best Threshold

Figure 3.6: F-measure heatmap and best threshold chart for dataset CD with SNM.

The results of the CD experiments in Fig. 3.6 also confirm our hypothesis that with
an increasing number of records, the selection of good thresholds becomes more difficult.
As for the Febrl and the Cora dataset, we first have a window for the best threshold,
which becomes smaller, and finally, the best threshold value increases with the number
of records. Thus, the best threshold changes with dataset size. A good threshold for a
small (possibly sampled) dataset is not necessarily a good threshold for a larger (possibly
complete) dataset. As data grows over time, earlier selected thresholds are no longer a
good choice.

We describe in the following paragraphs the results of our new DCS++ algorithm,
which we present in Chapter 4. Since DCS++ is an extension of SNM, the results of
DCS++ and SNM are very similar and overall confirm our hypothesis that, independently
of the pair-selection algorithm, the best threshold changes with an increasing dataset size.

Figure 3.7 shows the results for the Cora dataset, and Fig. 3.8 the results for the CD
dataset. For both datasets, we can observe that there is initially a window for the best
threshold that narrows as the number of records increases until it consists of only a single
value. For the CD dataset, we additionally see a sharp drop in the F-measure value in the
step from 4,200 to 4,210 records for thresholds ≤ 0.7. For example, for threshold 0.7, the
F-measure value decreases from 87.23 % to 11.26 %. This results from a decrease of the

0.5

0.6

0.7

0.8

0.9

1.0

0 300 600 900 1,200 1,500 1,800

T
hr
es
ho
ld

Number of Records

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 300 600 900 1,200 1,500 1,800

T
hr
es
ho
ld

 /
 F
-m
ea
su
re

Number of Records

Precision
Best F-measure

Recall
Best Threshold

Figure 3.7: F-measure heatmap and best threshold chart for dataset Cora with DCS++.

49

Chapter 3. On Choosing Thresholds for Duplicate Detection

0.5

0.6

0.7

0.8

0.9

1.0

0 1,500 3,000 4,500 6,000 7,500 9,000

T
hr
es
ho
ld

Number of Records

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 1,500 3,000 4,500 6,000 7,500 9,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Records

Precision
Best F-measure

Recall
Best Threshold

Figure 3.8: F-measure heatmap and best threshold chart for dataset CD with DCS++.

precision value from 86.51 % to 6.01 %, whereas at the same time, the recall value slightly
increases from 87.96 % to 88.29 %. We have added some records that are erroneously
classified as duplicate, which results in enlargement of the window size in DCS++, and
due to transitivity, a lot more false-positives are detected. We can state that adding a
couple of records can have a strong impact on the threshold selection.

The results for the two Febrl datasets are shown in Fig. 3.9, again for both similar-
ity functions JaroWinkler (Fig. 3.9(a) and Fig. 3.9(c)) and Levenshtein (Fig. 3.9(b) and
Fig. 3.9(d)). As for the naive pair selection algorithm and SNM, we observe that (i) we
have in the beginning a small window that shrinks until it is only a single value, (ii) the best
threshold value increases with an increasing number of clusters, and (iii) the observation
neither depends on the pair selection algorithm, nor the used similarity function.

To summarize, we have observed that the effect described in Figure 3.1 can be seen in
all of our experiment configurations: We continuously add records to our datasets, which
increases the probability that we add a false duplicate to an existing cluster. Thus, the
F-measure value decreases, and an adaption of the threshold is necessary to improve it.
The problem becomes worse if we have larger clusters, as we can see from the comparison
of the Febrl datasets. The threshold window for good F-measure values is smaller for the
large Febrl dataset, and additionally, the F-measure value decreases much faster. It is
worth noting that the effect does not depend on the used similarity measure, as we can see
from our results with the Febrl datasets and the JaroWinkler and Levenshtein similarity
measures. The problem is relevant both in research and in practice:

• In research papers, the reported thresholds might be misleading. Since often only
data subsets are available, the proposed thresholds may not be the best for the entire
dataset.

• In practice, it is difficult to find good thresholds for new datasets. Thresholds
selected based on sample data should be re-evaluated later for the entire data set.
A re-evaluation of the threshold is also useful if the size of the data set changes over
time.

50

3.2. Threshold Experiments

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(a) Experiment result for dataset Febrl (sm.) with DCS++ algorithm and JaroWinkler measure

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

/
F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(b) Experiment result for dataset Febrl (sm.) with DCS++ algorithm and Levenshtein measure

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

 /
 F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(c) Experiment result for dataset Febrl (la.) with DCS++ algorithm and JaroWinkler measure

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000

T
hr
es
ho
ld

 /
 F
-m
ea
su
re

Number of Clusters

Precision
Best F-measure

Recall
Best Threshold

(d) Experiment result for dataset Febrl (la.) with DCS++ algorithm and Levenshtein measure

Figure 3.9: F-measure heatmap and best threshold chart for the two Febrl datasets with
different similarity measures.

51

Chapter 4

The Duplicate Count Strategy for
Pair Selection

One of the most prominent pair selection algorithms is the Sorted Neighborhood Method
by Hernández and Stolfo [96, 97]. As described in Sec. 2.2, the idea is to sort the records
by a sorting key, slide a window over the sorted records, and create record pairs for all
records within the same window.

This chapter presents a new approach for adapting the window size. The Duplicate
Count Strategy adapts the window size to increase the efficiency of the duplicate detection
process without reducing the effectiveness [68,69]. Next to the Duplicate Count Strategy,
two further approaches, called the Key Similarity Strategy and the Record Similarity
Strategy, have been evaluated in our Technical Report [68].

• Duplicate Count Strategy: Window size is varied based on the number of iden-
tified duplicates: If many duplicates are found within a window, it is expected that
even more can be found within an increased window.

• Key Similarity Strategy: Window size is varied based on the similarity of the
sorting keys: The window size is increased if sorting keys are similar, and thus more
similar records can be expected.

• Record Similarity Strategy: Window size is varied based on the similarity of
the records: As a refinement of the key similarity strategy, one regards the actual
similarity of the records within the window instead.

For each strategy, there are several possible variations. Figure 4.1 gives an overview
of the different strategies and their variations. As shown in [68], the Duplicate Count
Strategy leads to the best results. In fact, we prove that this strategy outperforms the
original Sorted Neighborhood Method.

53

Chapter 4. The Duplicate Count Strategy for Pair Selection

Adaptive Sorted Neighborhood

Neighborhood expansion

Basic strategy

Skip expansion

Blocking expansion

Basic strategy

Average expansion

Blocking expansion

Basic strategy

Multiple record increase

Distance based increase

Window size
dependent increase

Key Similarity Strategy Record Similarity Strategy Duplicate Count Strategy

Figure 4.1: Overview of adaptation strategies evaluated in [68].

The idea of the Duplicate Count Strategy, as well as the Key Similarity Strategy and
the Record Similarity Strategy, is the result of a master thesis by Oliver Wonneberg [215].
The new contributions are:

• Motivation for windowing methods and the adaption of the window size (see Sec. 4.1).

• Addition of pseudocode for better comprehensibility of the algorithms (see Alg. 1
and Alg. 2).

• Simplification of the proof that DCS++ is more efficient than the Sorted Neighbor-
hood Method (see Sec. 4.3.2).

• Extension of experimental evaluation, including a new real-world dataset and a
synthetic dataset with more than one million records and also a comparison with
R-Swoosh (see Sec. 4.4).

• Comprehensive theoretical and experimental evaluation of the effects of an imperfect
classifier regarding the accuracy and completeness of the classification on the results
of DCS++ (see Sec. 4.5.2).

The content of Chapter 4 is based on our published work in [69]. An extension of this
publication is our technical report [68].

4.1 Motivation for Windowing Approaches

The idea of all windowing approaches is to bring similar records very close in the sorting
order next to each other, so that these similar records are in the same window and used
to create a candidate record pair that is later classified as duplicate or non-duplicate.
Figure 4.2 illustrates the idea for the Cora Citation Matching dataset, which comprises
1,879 references of research papers and is often used to evaluate duplicate detection meth-
ods [18,61,179]. In [65], we describe the definition of a gold standard for the Cora dataset
and other datasets. The Cora dataset contains 118 clusters with at least two records. The

54

4.1. Motivation for Windowing Approaches

heat map in Fig. 4.2 shows on the x-axis and on the y-axis the records, on both axes sorted
by the same sorting key. Based on an exhaustive comparison, the color of each pixel shows
the similarity of one record pair. There are two major findings in Fig. 4.2:

1. The highest similarity values are along the diagonal from the bottom-left to the
top-right. Thus, it is reasonable to slide a window along this diagonal line and
compare only records within this window. Most record pairs that are far away from
the diagonal line have only a low similarity value.

2. There are areas in the heat map where record pairs with a high similarity have a
higher or lower distance to the diagonal line. This shows the problem of windowing
approaches with fixed window sizes. With a fixed window size, the window is either
too large in areas with only a few similar records, which increases the computational
effort by creating and classifying many unnecessary record pairs, or the window size
is too small in areas with a high number of similar records, and therefore some
possible matches might not be in the same window, which reduces the completeness
of the entity matching process. Thus, there is an opportunity for a dynamic adaption
of the window size.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

So
rt
ed

R
ec
or
ds

Sorted Records

0.0

0.2

0.4

0.6

0.8

1.0

Si
m
ila
ri
ty

 v
al
ue

 o
f
a
re
co
rd

pa
ir

Cora Similarities

Figure 4.2: Similarity values of an exhaustive pairwise comparison for the Cora dataset.
The color of each pixel shows the similarity for one record pair. The records are sorted by
the same sorting key on the x- and y-axis.

55

Chapter 4. The Duplicate Count Strategy for Pair Selection

 0

 50

 100

 150

 200

 250

2 20 40 60 80 100 120

C
lu
st
er

Si
ze

Cluster

Figure 4.3: Number of records per cluster in the Cora dataset.

One essential decision for windowing approaches is the selection of the window size.
If effectiveness is most relevant, the ideal window size is equal to the size of the largest
duplicate cluster in a dataset. If a perfect sorting key exists, that sorts all records of
the duplicate clusters next to each other in the sort sequence, then all duplicates could
be found. However, even with the ideal window size, many unnecessary comparisons are
executed because not all clusters have this maximum size.

The histogram in Fig. 4.3 shows for the Cora dataset on the x-axis the clusters sorted
by their size and on the y-axis the corresponding cluster size. There are a few clusters
with more than 100 records, but most groups have less than 50 records. Clusters with
different sizes are quite common for deduplication [135], which also agrees with experience
from industry partners [209].

4.2 Related Work

Several variations of the Sorted Neighborhood Method (SNM) have been proposed. As
the deduplication result is highly dependent on the used sorting key, multi-pass variants,
with multiple keys and a finally calculated transitive closure, can improve accuracy [143].
Monge and Elkan [135] adopt the SNM and propose the union-find data structure that
defines a representative for each detected duplicate group. Records are first compared to
the representatives, and only if the similarity is high enough, they are compared with the
other members of that cluster.

Yan et al. [217] discuss the adaptivity of record linkage algorithms using the example
of SNM. They use the window to build non-overlapping blocks that can contain different
numbers of records. The pairwise record comparison then takes place within these blocks.

56

4.2. Related Work

The hypothesis is that the distance between a record and its successors in the sort se-
quence is monotonically increasing in a small neighborhood, although the sorting is done
lexicographically and not by distance. They present two algorithms and compare them
with the basic SNM. Incrementally Adaptive-SNM (IA-SNM) is an algorithm that incre-
mentally increases the window size as long as the distance of the first and the last element
in the current window is smaller than a specified threshold. The increase of the window
size depends on the current window size. Accumulative Adaptive-SNM (AA-SNM), on
the other hand, creates windows with one overlapping record. By considering transitiv-
ity, multiple adjacent windows can then be grouped into one block if the last record of
a window is a potential duplicate of the last record in the next adjacent window. After
the enlargement of the windows, both algorithms have a retrenchment phase, in which the
window is decreased until all records within the block are potential duplicates. We have
implemented both IA-SNM and AA-SNM and compare them to our work in our experi-
mental evaluation. However, our experiments do not confirm that IA-SNM and AA-SNM
perform better than SNM.

Whang et al. [211] propose an iterative blocking model in which they use multiple
blocking criteria at the same time to build overlapping blocks. The detected duplicates
are then distributed to other blocks, which can help to find additional duplicates and
reduces the processing time for the other blocks. They propose two algorithms: Lego and
Duplo. While Lego assumes that blocks are not stored on the disk and therefore is not
applicable for datasets with millions of records, Duplo uses a disk-based iterative approach
that can handle huge datasets. The concept of using the knowledge about already detected
duplicates to save comparisons is also an essential part of our algorithm DCS++. However,
in contrast to iterative blocking, our algorithm does not include a merging step.

As described in Sec. 2.5, the paper of Benjelloun et al. [15] defines the ICAR properties
(idempotence, commutativity, associativity, and representativity) for match and merge
functions in the duplicate detection process. They do not assume that the match function
is transitive (i.e., r1 ≈ r2 and r2 ≈ r3 does not imply r1 ≈ r3), whereas transitivity is
a key aspect of our algorithm DCS++. They propose three algorithms: G-Swoosh is
expensive but can be used if the ICAR properties do not hold. R-Swoosh exploits the
ICAR properties to reduce the number of comparisons. Finally, F-Swoosh also exploits
the four properties and additionally avoids repeated feature comparisons. This last feature
is irrelevant for our experimental setting, and we include R-Swoosh in our evaluation.

In the last decade, several surveys focussing on duplicate detection were published,
and they also describe several methods for blocking as part of the duplicate detection
process [39, 45, 75, 143]. Besides these general duplicate detection surveys, a couple of
further surveys especially focus on the blocking step [40, 123, 149, 154]. An experimental
comparison of 17 blocking algorithms is presented in [155]. A recent survey by Papadakis
et al. was published after the publication of the duplicate count strategy that is described

57

Chapter 4. The Duplicate Count Strategy for Pair Selection

in this chapter [154]. Therefore, the survey can be used to classify the two algorithms
DCS and DCS++ regarding their blocking approach and their relation to other blocking
methods. Papadakis et al. define a new taxonomy that consists of six dimensions to classify
blocking methods. The six dimensions and their possible values are:

• Key selection: non-learning and learning-based methods.

• Schema-awareness: schema-aware and schema-agnostic methods.

• Key type: hash-based, sort-based, or hybrid.

• Redundancy awareness: describes to how many blocks an entity is assigned. The
possible values are redundancy-free (single block), redundancy-positive (multiple
blocks), and redundancy-neutral (most entity pairs share the same number of blocks).

• Constraint awareness: lazy methods have no constraints, whereas positive methods
enforce constraints, such as the maximum block size.

• Matching awareness: static methods create blocks independent of the matching,
whereas dynamic methods utilize the matching decisions to adapt the blocks.

DCS and DCS++ are both sort-based and redundancy-neutral methods, and therefore
similar to the Sorted Neighborhood Method, IA-SNM, and AA-SNM as described above,
but also to an inverted index-based Sorted Neighborhood approach [40]. This approach
slides a fixed-size window over the sorted blocking key values instead of the entities, and
all candidate record pairs are created for all records with the corresponding blocking key
values. Regarding redundancy-awareness, other similar approaches are our Sorted Blocks
method and its variations, which were developed before DCS and DCS++ and are not part
of this thesis [66]. With respect to constraint awareness, there are several other methods,
such as suffix array blocking and its variations [3, 39]. Finally, DCS and DCS++ are two
of only three compared blocking methods with a dynamic matching awareness. The third
approach is DNF Learner [85], a machine learning approach to create blocking criteria.

Since the publication of the duplicate count strategy, further research has been con-
ducted by various researchers, resulting in new algorithms based on the duplicate count
strategy. Mestre et al. present a MapReduce-based version of DCS++, dubbed MR-
DCS++, that uses multiple MapReduce jobs and a tailored data replication to adapt the
window size [133]. Aassem et al. present an enhanced version of the duplicate count strat-
egy, dubbed E-DCS, which utilizes a matrix to mark record pairs that have already been
compared to avoid a repeating comparison of the same pair [1]. However, as we see in the
following sections, the duplicate count strategy never compares the same record pair multi-
ple times, and therefore we have reasonable doubts concerning the correct implementation
of our original algorithms.

58

4.2. Related Work

Papenbrock et al. present a progressive Sorted Neighborhood Method (PSNM) that
identifies most duplicates early in the duplicate detection progress, which is beneficial
in use cases with time constraints [157]. Beginning with a window size of two, they
dynamically and iteratively increase the window size until the process is either terminated
early by the user or the maximum window size has been reached. Therefore, PSNM is
another example for adapting the window size, although with another goal.

Meta-blocking is an approach that can be applied to existing blocking methods to
improve efficiency further [151]. It uses abstract blocking information to restructure a
set of blocks into new blocks that require fewer comparisons. Meta-blocking consists of
four consecutive steps. First, a blocking graph is created that contains for each candidate
record pair an edge between the two entities. In the second step, each edge is weighted, and
the authors present different weighting schemes. Third, a pruning algorithm and a pruning
criteria are used to eliminate edges and to derive a pruned blocking graph, which is used
in the final step to create new blocks that are redundancy-free (no overlapping blocks).
Enhanced meta-blocking reduces the time and space requirements even for millions of
records while still increasing the precision [153]. A supervised meta-blocking approach
can, even with a small training set, increase the performance compared to unsupervised
meta-blocking methods [152]. BLOSS is a recent supervised meta-blocking approach that
aims especially to reduce the user labeling effort while improving precision and recall [16].
As also meta-blocking can be time-consuming for larger datasets, a parallelized version
based on MapReduce is presented in [73], which shows an almost linear speedup regarding
the number of available nodes.

Besides meta-blocking, a different solution for optimizing the blocks from multiple
blocking keys is presented in [142]. The authors employ pruning algorithms to shrink,
split, merge, and exclude blocks, and to control the size of the generated blocks while still
obtaining reasonable blocking results. Splitting blocks is also used in a recent approach
called Recursive Blocking [218], which selects a pivot element within a block and uses
cheap similarity calculations with the other records in the block to split this block based
on the similarity into multiple blocks. This process is repeated iteratively until no block
can be split further.

For real-time entity resolution, Ramadan et al. propose a tree-based approach that
uses dynamic indexing based on the Sorted Neighborhood Method, and they evaluate
both static and adaptive window approaches [164]. The authors show that a similarity-
based adaptive window approach leads to a better matching quality with the drawback of
an increased query runtime.

O’Hare et al. propose an unsupervised blocking technique that does not require any
manual effort since all parameters are selected automatically [150]. For the generated
blocking keys, they use a blocking predicate reduction step, followed by a blocking pred-
icate weighting step to finally create a set of dissimilar blocks containing similar records,
to avoid unnecessary comparisons of dissimilar records.

59

Chapter 4. The Duplicate Count Strategy for Pair Selection

4.3 Duplicate Count Strategy

The Duplicate Count Strategy (DCS) is based on the Sorted Neighborhood Method (SNM)
and varies the window size based on the number of identified duplicates. Due to the
increase and decrease of the window size, the set of compared records differs from the
original SNM. Adapting the window size does not inevitably result in more comparisons;
it can also reduce the number of comparisons. However, adapting the window size should
result in an overall higher effectiveness for a given efficiency or in a higher efficiency for a
given effectiveness.

DCS uses the number of already classified duplicates as an indicator for the window
size: The more duplicates of a record are found within a window, the larger is the window.
On the other hand, if no duplicate of a record within its neighborhood is found, we assume
that there are no duplicates or the duplicates are very far away in the sorting order. Each
record ri is once the first record of a window. In the beginning, we choose an initial window
size w, which is, as for SNM, domain-dependent. In the first step, record ri is compared
with w − 1 successors. So the current window can be described as W (i, i+ w − 1). If no
duplicate can be found within this window, we do not increase the window. But if there
is at least one duplicate, we start increasing the window. Thus, with regard to the initial
window size, the window does not necessarily need to contain all duplicates already in the
beginning, but only at least one or a few so that the remaining duplicates can be found
later in the increased window. The window for record ri will only be increased but not
decreased. However, after sliding the window, we create a new window for record ri+1,
and use the initial window size w again.

4.3.1 Basic Strategy

The basic strategy increases the window size by one record. Let d be the number of
detected duplicates within a window, c the number of comparisons, and φ a threshold
with 0 < φ ≤ 1. Then we increase the window size as long as d

c ≥ φ. Thus, the threshold
defines the average number of detected duplicates per comparison. The pseudocode of this
variant can be found in Algorithm 1.

4.3.2 Multiple Record Increase

The multiple record increase variant, dubbed DCS++, is an improvement of the basic
strategy. It is based on an assumption of a perfect similarity measure (all record pairs are
classified correctly as duplicate or non-duplicate; the performance of the algorithm with a
non-perfect similarity measure is shown in Sec. 4.5.2). Instead of increasing the window
by just one record, we add for each detected duplicate the next w − 1 adjacent records of
that duplicate to the window, even if the average is then lower than the threshold φ. Of
course, records are added only once to that window. By calculating the transitive closure,
some of the comparisons can be saved: Let us assume that the pairs 〈ri, rk〉 and 〈ri, rl〉

60

4.3. Duplicate Count Strategy

Algorithm 1: DCS
Input : records: a set of records

key: a sorting key for the records
w: initial window size
φ: threshold for the window increase

Output: A set of record pairs that shall be classified as duplicate or non-duplicate.
1 sort records by key
2 populate window win with first w records of records
3 for j = 1 to records.length− 1 do /* Iterate over all records */

4 numDuplicates← 0 /* Number of detected duplicates */

5 numComparisons← 0 /* Number of comparisons */

6 k ← 2
7 while k ≤ win.length do /* Iterate over win to find dup. of rec. win[1] */

8 if isDuplicate(win[1], win[k]) then /* Check if rec. pair is a duplicate */

9 emit duplicate pair (win[1], win[k])
10 numDuplicates← numDuplicates + 1

11 numComparisons← numComparisons + 1
/* Potentially increase window size by 1 */

12 if k = win.length and j + k < records.length
13 and (numDuplicates/numComparisons) ≥ φ then
14 win.add(records[j + k + 1])

15 k ← k + 1

16 win.remove(1) /* Slide window */

17 if win.length < w and j + k < records.length then
18 win.add(records[j + k + 1])

19 else /* Trim window to size w */

20 while win.length > w do
21 win.remove(win.length) /* Remove last record from win */

22 j ← j + 1

23 calculate transitive closure of all emitted duplicate pairs

are duplicates, with i < k < l. Calculating the transitive closure returns the additional
duplicate pair 〈rk, rl〉. Hence, there is no need to check the window W (k, k +w − 1); this
window is skipped. Algorithm 2 shows the pseudocode of the multiple record increase.
The differences compared to Algorithm 1 are highlighted and include the performed check,
whether a record should be skipped, and the handling of a duplicate.

61

Chapter 4. The Duplicate Count Strategy for Pair Selection

Algorithm 2: DCS++ (differences to Alg. 1 are highlighted)
Input : records: a set of records

key: a sorting key for the records
w: initial window size
φ: threshold for the window increase

Output: A set of record pairs that shall be classified as duplicate or non-duplicate.
1 sort records by key
2 populate window win with first w records of records

3 skipRecords← null /* Records to be skipped */

4 for j = 1 to records.length− 1 do /* Iterate over all records */

5 if win[1] NOT IN skipRecords then
6 numDuplicates← 0 /* Number of detected duplicates */

7 numComparisons← 0 /* Number of comparisons */

8 k ← 2
9 while k ≤ win.length do /* Iterate over win to find dup. of rec. win[1] */

10 if isDuplicate(win[1], win[k]) then /* Check if rec.pair is duplicate */

11 emit duplicate pair (win[1], win[k])

12 skipRecords.add(win[k])
13 numDuplicates← numDuplicates + 1

14 /* Increase window size from k by w-1 records */

15 while win.length < k+w− 1 and j+win.length < records.length do
16 win.add(records[j + win.length + 1])

17 numComparisons← numComparisons + 1
/* Potentially increase window size by 1 */

18 if k = win.length and j + k < records.length
19 and (numDuplicates/numComparisons) ≥ φ then
20 win.add(records[j + k + 1])

21 k ← k + 1

22 win.remove(1) /* Slide window */

23 if win.length < w and j + k < records.length then
24 win.add(records[j + k + 1])

25 else /* Trim window to size w */

26 while win.length > w do
27 win.remove(win.length) /* Remove last record from win */

28 j ← j + 1

29 calculate transitive closure of all emitted duplicate pairs

62

4.3. Duplicate Count Strategy

Selection of the threshold

If we do not check the window W (k, k+w−1), we might miss some duplicates within this
window if it contains records in addition to those in the window in which rk was classified
as duplicate. In Fig. 4.4, record rk was classified as a duplicate of ri. The window of ri

ends with rj . Let us assume that rl is also a duplicate of ri and rk. If l ≤ j (case 1 in
Fig. 4.4), then rl is detected as a duplicate, even if the window of rk is not considered.
On the other hand, if l > j (case 2), we would not classify rl as a duplicate due to the
assumption that we do not have to create the window of rk. We show that with the right
selection of the threshold, this case cannot happen.

ri rk rl rj

ri rk rj rl

window of ri

window of rk

window of ri

window of rk

Case 1: l £ j

Case 2: l > j

Figure 4.4: Illustration of the two cases l ≤ j and l > j that have to be considered for the
selection of the threshold.

Theorem 4.3.1. With a threshold value φ ≤ 1
w−1 no duplicates are missed due to skipping

windows.

Proof. First, we show that the increase by multiple records cannot cause one window to
outrange the other one. Then we show that with φ ≤ 1

w−1 the skipped windows do not
contain additional records, i.e., the window of rk cannot outrange the window of ri.

(i) When rk is detected to be a duplicate of ri, the window of ri is increased from rk by
w − 1 records and thus contains the same records as the beginning window of rk. Every
time a new duplicate is detected, both windows are increased by w − 1 records from that
duplicate.

(ii) Windows are no longer increased if d
c < φ. Let f be the number of already detected

duplicates in window W (i, k), with f ≥ 1 because at least rk is a duplicate of ri, and k− i
as the number of comparisons. To ensure j ≥ l we need:

f + d

(k − i) + c
≥ φ > d

c
(4.1)

63

Chapter 4. The Duplicate Count Strategy for Pair Selection

Due to the assumption of a perfect similarity measure, d is the same for both windows.
From (4.1), we can infer:

f + d ≥ φ · (k − i)+φ · c (4.2)

and φ · c > d (4.3)

Inserting (4.3) in (4.2) results in:

f + d ≥ φ · (k − i) + φ · c

⇔ f + d ≥ φ · (k − i) + d

⇔ f ≥ φ · (k − i)

⇔ f

k − i
≥ φ

(4.4)

We now show which value to choose for φ, so that (4.4) is valid for all windows W (i, k).
The highest possible value for k is k = f · (w − 1) + i, which means that all previously
detected duplicates were the last of the respective window. Thus, we have:

φ ≤ f

k − i
≤ f

f · (w − 1) + i− i
= f

f · (w − 1) = 1
w − 1

We have shown that if the threshold value is selected φ ≤ 1
w−1 , all windowsWi comprise

at least all records of a window Wk where rk is a duplicate of ri. So leaving out window
Wk does not miss a duplicate and thus does not decrease the recall.

DCS++ is more efficient than Sorted Neighborhood

In this section, we show that DCS++ is at least as efficient as the Sorted Neighborhood
Method. Let b be the difference of comparisons between both methods. We have b > 0
if DCS++ has more comparisons, b = 0 if it has the same number of comparisons, and
b < 0 if it has fewer comparisons than SNM. For each detected duplicate, our method
saves between 0 and w − 2 comparisons.

To compare DCS++ with SNM, we have to examine the additional comparisons due to
the window size increase and the saved comparisons due to skipped windows. Figure 4.5
shows the initial situation. In windowWi, we have d detected duplicates, and it is increased
up to rj . The number of comparisons within W (i, j) is c = j− i. In any case, we have the
comparisons within the beginning window of ri. The number of additional comparisons
compared to SNM can be defined as a = j − i− (w − 1). With s as the number of saved
comparisons, because we do not create windows for the duplicates, we have s = d · (w−1).
We show that a− s ≤ 0.

64

4.3. Duplicate Count Strategy

ri rk ri+w-1 rm

Wi: window of ri

beginning window of ri

rj

rk

rm

additional comparisons of ri

beginning window of rk

beginning window of rm

… …

…

…

…

…

Figure 4.5: Initial situation.

Theorem 4.3.2. With a threshold value φ = 1
w−1 , DCS++ is at least as efficient in terms

of number of comparisons as SNM with an equivalent window size (wSNM = wDCS++).

Proof. We distinguish two cases: In case (i) the beginning window of ri contains no du-
plicate, and in case (ii) it contains at least one duplicate.

(i) If there is no duplicate of ri within the beginning window W (i, i+ w − 1), then we
have no additional comparisons due to a window size increase, but we also do not save
any comparisons due to skipping windows. It therefore holds:

b = a− s = 0− 0 = 0

In case (i), we have b = 0, which means the same number of comparisons as the SNM
with a window size of w.

(ii) In the second case, we have d ≥ 1 duplicates within the beginning window. Then
it holds:

b = a− s

= [j − i− (w − 1)]− [d · (w − 1)]

= j − i− (d+ 1) · (w − 1)

As the window size is increased until d
c < φ, and the last record is not a duplicate, we

need with φ = 1
w−1 at least c = d · (w − 1) + 1 comparisons to stop the window increase.

65

Chapter 4. The Duplicate Count Strategy for Pair Selection

ri rk rk+w-1

window of ri

beginning
window of ri

beginning window of rk

… …

Figure 4.6: Unfavorable case. Duplicate rk is the last record in the window of ri. Thus,
due to the window increase, there are w − 1 additional comparisons.

In the most unfavorable case (see Fig. 4.6), we find in the last comparison the du-
plicate rk and therefore increase the window by w − 1 additional records. Then for
W (i, k) we have d

d·(w−1) = φ and for W (i, k + w − 1) we have d
c = d

d·(w−1)+(w−1) and
thus c = d · (w − 1) + (w − 1). We then have for c = j − i:

b = j − i − (d+ 1) · (w − 1)

= d · (w − 1) + (w − 1)− (d+ 1) · (w − 1)

= (d+ 1) · (w − 1) − (d+ 1) · (w − 1)

= 0

Thus, also in case (ii), we have b = 0, which means the same number of comparisons
as the SNM with a window size of w.

We now show that for all other cases, we have b > 0. In these cases, we have fewer
than w − 1 comparisons after d

c falls under the threshold. The best case is when there is
just a single comparison (see Fig. 4.7).
It holds for the number of comparisons c:

d · (w − 1) + 1 ≤ c ≤ d · (w − 1) + (w − 1)

ri rk rk+w-1

window of ri

beginning window of ri

beginning window of rk

… …

Figure 4.7: Favorable case. Duplicate rk is the first record next to ri. Thus, there is just
one additional comparison due to the window increase.

66

4.4. Experimental Evaluation

So in the most favorable case c = j − i = d · (w − 1) + 1 we have:

b = j − i − (d+ 1) · (w − 1)

= d · (w − 1) + 1− (d+ 1) · (w − 1)

= 1− (w − 1)

= 2− w

As window size w is at least 2, we have b ≤ 0. Compared to SNM, we find the same
number of duplicates but can save up to w − 2 comparisons per duplicate.

Thus, we have shown that DCS++ with φ = 1
w−1 needs in the worst case the same

number of comparisons and in the best case saves w − 2 comparisons per duplicate com-
pared to the Sorted Neighborhood Method. With φ < 1

w−1 we would get larger windows
and possibly find additional duplicates, but this may also lead to lower efficiency due to
additional comparisons.

4.4 Experimental Evaluation

In this section, we evaluate the Duplicate Count Strategy. Section 4.4.1 describes the
datasets and experiment settings, and Sec. 4.4.2 presents the results for a perfect classifier.
The effects of an imperfect classifier on DCS++ will be analyzed and evaluated later in
Sec. 4.5.

4.4.1 Datasets and Configuration

The experiments were executed with the DuDe toolkit [65], as described in Sec. 3.1. To
calculate the transitive closure, we use Warshall’s algorithm [206]; additional duplicate
pairs created by the transitive closure do not count as a comparison because no comparison
function is executed for these pairs. We show later in Sec. 5.5.1 that there are alternatives
for calculating the transitive closure. Our evaluation is based primarily on the number
of comparisons because complex similarity measures are the main cost driver for entity
resolution. The transitive closure is calculated for both the Duplicate Count strategies
(DCS and DCS++) and the Sorted Neighborhood Method (SNM). As we show later, the
costs for the transitive closure depend on the number of duplicate pairs and hardly differ
for the different algorithms.

To evaluate duplicate detection results, a variety of evaluation metrics exists [42, 132].
As we want to evaluate algorithms that select candidate pairs, we do not use a similarity
function in Sec. 4.4.2. Instead, we assume a perfect classifier by using a look-up in the
gold standard to decide whether a record pair is a duplicate or not. Thus, all candidate
pairs are classified correctly as duplicate or non-duplicate. For the evaluation, we measure
the recall (fraction of detected duplicate pairs and the overall number of existing duplicate
pairs) in relation to the number of executed comparisons. As in real-world scenarios the

67

Chapter 4. The Duplicate Count Strategy for Pair Selection

assumption of a perfect classifier does not hold, we examine in Sec. 4.5 the effects of
an imperfect classifier. We use precision (fraction of correctly detected duplicates and
all detected duplicates) and recall as quality indicators for the used classifiers and the
F-measure (harmonic mean of precision and recall) as a measure to compare the different
algorithms.

We chose three datasets for the evaluation, and for each, we use a single sorting key
as an example to compare the number of comparisons. The Cora Citation Matching
dataset has already been described in Sec. 3.1.2 and Sec. 4.1, and we use the attribute
newreference (typically the concatenation of the first author’s last name and the year of
publication) as the sorting key. The second dataset was generated with the Febrl data
generator [36] and contains personal data. Using the Zipf distribution, 30,000 duplicates
were added. Figure 4.8 shows the distribution of cluster sizes within the Febrl dataset.
We chose a complex sorting key, created of the first three letters of culture and the first
two letters of title, social security ID, postcode, phone number, address, surname, and
given name, always without spaces.

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 2 3 4 5 6 7 8 9 10

N
um

b
er

of

 C
lu
st
er
s

Cluster Size

Figure 4.8: Distribution of the cluster sizes for the Febrl dataset.

The third dataset is artificially polluted real-world data and contains about 1 million
records of persons and their addresses. It was created by an industry partner who uses
this dataset to evaluate duplicate detection methods and is thus a good benchmark. Our
sorting key is the concatenation of the first three letters of the zip code, two letters of the
street and last name, and one letter of street number, city, and first name. Table 4.1
gives an overview of the three datasets.

We compare the Duplicate Count strategies on the one hand with SNM and on the other
hand with IA-SNM and AA-SNM [217]. As window sizes, we use values from 2–1,000 for
the Cora and the Febrl dataset and values between 2–200 for the Persons dataset. The
threshold φ for the Duplicate Count strategies is 1

w−1 , as suggested in the previous section.

68

4.4. Experimental Evaluation

Table 4.1: Datasets for experimental evaluation.

Dataset Provenance # of records # of dupl. pairs

Cora real-world 1,879 64,578
Febrl synthetic 300,009 101,153
Persons synthetic 1,039,776 89,784

IA-SNM and AA-SNM use the normalized Edit-Distance for creating the windows with
thresholds from 0.1–1.0 for the Cora dataset and 0.1–0.75 for the other two datasets. All
algorithms use the same classifiers to decide whether a record pair is a duplicate or not.

4.4.2 Experimental Results: Perfect Classifier

For the Cora dataset, Fig. 4.9(a) shows the minimal number of required comparisons to
gain the recall value on the x-axis. A comparison means the execution of a (probably
complex) similarity function. Note the logarithmic scale in opposite to Fig. 4.9(b), where
we bring into focus the most relevant recall range from 96% – 100%. Both figures show
the monotonic increase of SNM and the Duplicate Count strategies. The results of IA-
SNM and AA-SNM are interpolated, which means that they show the minimum number of
required comparisons to gain at least the specific recall. Most comparisons are needed for
the IA-SNM and AA-SNM algorithms. We see that due to the window size increase, DCS
performs worse than SNM. By contrast, DCS++ outperforms SNM because it omits the
creation of windows for already classified duplicates. The number of saved comparisons
of DCS++ in comparison to SNM increases with an increasing recall value. For a higher
recall value, both algorithms have to increase the (initial) window size w, which increases
the number of saved comparisons per duplicate, as shown in Sec. 4.3.2.

Both SNM and DCS++ make use of calculating the transitive closure to find additional
duplicates. Thus, some duplicates are selected as candidate pairs by the pair selection al-
gorithm (e.g., SNM and DCS++) and then classified as duplicates, while other duplicates
are detected when calculating the transitive closure later on. Figure 4.10 shows the origin
of the duplicates. The x-axis shows the achieved recall value by summing detected du-
plicates of executed comparisons and those calculated by the transitive closure. With an
increasing window size, SNM detects more and more duplicates by executing the classi-
fier and thus has a decreasing number of duplicates detected by calculating the transitive
closure. DCS++, on the other hand, has hardly an increase of compared duplicates but
makes better use of the transitive closure. As we show later, although there are differences
in the origin of the detected duplicates, there are only slight differences in the costs for
calculating the transitive closure.

69

Chapter 4. The Duplicate Count Strategy for Pair Selection

 1,000

 10,000

 100,000

1,000,000

10,000,000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ri
so
ns

Recall

DCS
AA SNM
IA SNM
SNM

DCS++

(a) Required comparisons (log scale).

 0

 200,000

 400,000

 600,000

 800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

C
om

pa
ri
so
ns

Recall

DCS
AA SNM
IA SNM
SNM

DCS++

(b) Required comparisons in the most relevant recall range.

Figure 4.9: Results of a perfect classifier for the Cora dataset. The figure shows the
minimal number of required comparisons to gain the recall value on the x-axis.

70

4.4. Experimental Evaluation

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 0.95 0.96 0.97 0.98 0.99 1

D
up
lic
at
es

Recall

SNM - Algorithm
SNM - Trans. Closure
DCS++ - Algorithm

DCS++ - Trans. Closure

Figure 4.10: Comparison of the origin of the detected duplicates for the Cora dataset.
The figure shows for the recall values on the x-axis the number of duplicates detected by
the pair selection algorithm (SNM / DCS++) and the number of duplicates additionally
calculated by the transitive closure.

The results for the Febrl dataset, as shown in Fig. 4.11(a), are similar to the results
of the Cora dataset. Again, the IA-SNM and the AA-SNM algorithm require the most
comparisons. IA-SNM and the AA-SNM actually both create non-overlapping blocks
with an exhaustive comparison of the records in the same block. Therefore, the number
of comparisons is quadratically for the records within a block, and the total number of
comparisons of the algorithms especially depends on the size of the largest blocks, as
explained in Sec. 2.2. However, for the Febrl dataset, SNM requires more comparisons
than DCS, whereas DCS++ still needs the fewest comparisons. In Fig. 4.11(b), we can
see again that SNM has to find most duplicates within the created windows to gain high
recall values. DCS++, on the other hand, finds most duplicates due to calculating the
transitive closure. It is therefore important to use an efficient algorithm that calculates
the transitive closure.

In contrast to the Cora dataset, the Person dataset has only clusters of two records. The
Duplicate Count Strategy is therefore not able to find additional duplicates by calculating
the transitive closure. Fig. 4.12 shows that DCS++ nevertheless slightly outperforms
SNM, as stated in Theorem 4.3.2. The difference between DCS and SNM is very small,
but the basic variant needs a few more comparisons.

71

Chapter 4. The Duplicate Count Strategy for Pair Selection

 1

 10

 100

 1,000

 10,000

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

C
om

pa
ri
so
ns

 i
n
m
ill
io
ns

Recall

AA SNM
IA SNM
SNM
DCS

DCS++

(a) Minimal number of required comparisons (log scale) to gain the recall value on the x-axis.

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

 0.86 0.88 0.9 0.92 0.94 0.96 0.98

D
up
lic
at
es

Recall

SNM - Algorithm
SNM - Trans. Closure
DCS++ - Algorithm

DCS++ - Trans. Closure

(b) Comparison of the origin of the detected duplicates, i.e., whether the duplicate pairs are created
by the pair selection algorithm or calculated by the transitive closure later on.

Figure 4.11: Results of a perfect classifier for the Febrl dataset.

72

4.5. Effect of an Imperfect Classifier on DCS++

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.8 0.805 0.81 0.815 0.82 0.825

C
om

pa
ri
so
ns

 i
n
m
ill
io
ns

Recall

DCS
SNM

DCS++

Figure 4.12: Results of a perfect classifier for the Person dataset. The figure shows the
minimal number of required comparisons to gain the recall value on the x-axis.

We also evaluated the performance of the R-Swoosh algorithm [15]. R-Swoosh has no
parameters, and it merges records until there is just a single record for each real-world
entity. The results of R-Swoosh are 345,273 comparisons for the Cora dataset, more than
57 billion comparisons for the Febrl dataset, and more than 532 billion comparisons for the
Person dataset. Thus, for the Cora dataset with large clusters and therefore many merge
operations, R-Swoosh shows a better performance than SNM or DCS, but it is worse than
DCS++. For the Febrl and the Person datasets, R-Swoosh requires significantly more
comparisons, but on the other hand, returns a “perfect” result (recall is 1).

4.5 Effect of an Imperfect Classifier on DCS++

So far, we have assumed a perfect classifier, which is nearly impossible to develop in
practice. In opposite to other pair selection algorithms, such as Blocking or SNM, a false
classification has an impact on the created pairs. Due to a false-negative classification, a
window might not be enlarged, and due to a false-positive classification, a window might
be skipped. In Sec. 4.5.1, we analyze the effects of an imperfect classifier on the results of
the DCS++ algorithm, followed by an experimental evaluation in Sec. 4.5.2.

73

Chapter 4. The Duplicate Count Strategy for Pair Selection

4.5.1 Analysis of the Effects of an Imperfect Classifier

In the case of an imperfect classifier, we have probably some misclassifications, i.e., real
duplicates are classified as non-duplicates (false-negatives), and real non-duplicates are
classified as duplicates (false-positives). For DCS++, a false classification of a record pair
as non-duplicate may prevent that the window size is enlarged if no other duplicates are
identified in that window. On the other hand, a false classification as duplicate leads
to skipping a window, which might prevent that other duplicates are identified. In this
subsection, we want to analyze the effect of a false classification on DCS++ and compare
it with SNM.

Figure 4.13 shows a sequence of sorted records. We first assume that all three labeled
records ri, rj , and rk are duplicates. Table 4.2 shows all possible combinations of how the
classifier could classify these pairs if the pairs were created as candidates by an algorithm.
We further assume that rj is within the initial window of ri, and rk is within the initial
window of rj . Additionally, we assume for this example that if 〈ri, rj〉 is classified as
duplicate, then the window of ri is increased until it includes at least rk. Otherwise, we
have to distinguish the two cases whether rk is included in the window of ri or not.

For each combination, Table 4.2 describes the effect of the classification on the overall
result. Each classified non-duplicate is a false negative. Note that the stated classification
refers to the result of the classifier. If the pair is not created, the classifier result is
irrelevant; calculating the transitive closure can yet change the final classification of a
record pair. Misclassification is not just a problem of the Duplicate Count Strategy, but
it also occurs with any other method.

If 〈ri, rj〉 is a duplicate, DCS++ does not create a window for rj , and therefore the
classification of 〈rj , rk〉 does not depend on the classifier but only on the calculation of
the transitive closure. In cases 5–8 of Tab. 4.2, 〈ri, rj〉 is classified as non-duplicate, and
so there is no guarantee that the window of ri is large enough to comprise rk. However,
if rk is included and 〈rj , rk〉 is classified correctly (case 5), then the transitive closure also
includes 〈ri, rj〉 as a duplicate.

ri rj rk… …

Figure 4.13: Sorted records for evaluation of an imperfect classifier.

74

4.5. Effect of an Imperfect Classifier on DCS++

Table 4.2: All three pairs are duplicates. The table shows for the DCS++ algorithm the
number of false-negatives (FN) if pairs are misclassified as non-duplicates. For comparison,
also the FN for SNM are included, with SNM always creating all three record pairs.

No
Pair created/classifier result FN

Explanation of FN for DCS++
〈ri, rj〉 〈ri, rk〉 〈rj , rk〉 DCS++ SNM

1 y D y D n D 0 0 All pairs classified correctly; pair 〈rj , rk〉 is not
created but classified by the TC.

2 y D y D n ND 0 0 All pairs classified correctly; pair 〈rj , rk〉 is not
created but classified by the TC.

3 y D y ND n D 2 0 As 〈ri, rj〉 is a duplicate, no window is cre-
ated for rj . Thus, 〈rj , rk〉 is not compared and
therefore also misclassified as non-duplicate.

4 y D y ND n ND 2 2 Only 〈ri, rj〉 is classified correctly as duplicate.

5 y ND y/n D y D 0/2 0 If the window for ri comprises rk, then 〈ri, rj〉
is classified as duplicate by calc. the TC. Oth-
erwise, both 〈ri, rj〉 and 〈rj , rk〉 are misclassi-
fied as non-duplicate.

6 y ND y/n D y ND 2/3 2 If the window for ri comprises rk, then only
〈ri, rj〉 is classified as duplicate.

7 y ND y/n ND y D 2 2 Only 〈rj , rk〉 > is classified correctly as dupli-
cate.

8 y ND y/n ND y ND 3 3 All record pairs are misclassified as non-
duplicate

Compared to the Sorted Neighborhood Method (SNM), case 3 is especially interesting
because pair 〈rj , rk〉 is not created, and therefore 〈ri, rk〉 is not detected to be a dupli-
cate due to the calculation of the transitive closure. SNM does not skip windows and
would therefore classify 〈rj , rk〉 and due to the transitive closure also 〈ri, rk〉 correctly as
duplicate. Thus, for case 3, we have two false negatives for DCS++ but none for SNM.

75

Chapter 4. The Duplicate Count Strategy for Pair Selection

Table 4.3 also refers to the records ri, rj , and rk in Fig. 4.13, but we now assume that
they are all non-duplicates. The results are similar to those in Table 4.2, but this time
classified duplicates are false positives. In cases 13–16, 〈ri, rj〉 is incorrectly classified as
duplicate, and thus, no window for rj is created. The classification of 〈rj , rk〉 depends only
on the transitive closure. This results in fewer false positives, compared to the SNM, in
case 14 because SNM would compare 〈rj , rk〉 and thus misclassify it as duplicate. Addi-
tionally, due to the calculation of the transitive closure, also 〈ri, rk〉 would be misclassified
as duplicate, resulting in three false positives for SNM as opposed to one false positive for
DCS++.

Table 4.3: All three pairs are non-duplicates. The table shows for the DCS++ algorithm
the number of false positives (FP) if pairs are misclassified as duplicates. For comparison,
also the FP for SNM are included, with SNM always creating all three record pairs.

No
Pair created / classifier result FP

Explanation of FP for DCS++
〈ri, rj〉 〈ri, rk〉 〈rj , rk〉 DCS++ SNM

9 y ND y/n ND y ND 0 0 All pairs classified correctly as non-duplicate.

10 y ND y/n ND y D 1 1 Only 〈rj , rk〉 is misclassified as duplicate.

11 y ND y/n D y ND 1/0 1 If the window for ri comprises rk, then only
〈ri, rk〉 is misclassified as duplicate.

12 y ND y/n D y D 3/1 3 If the window for ri comprises rk, then 〈ri, rj〉
is misclassified by calculating the TC. Oth-
erwise, only 〈rj , rk〉 is misclassified as non-
duplicate.

13 y D y ND n ND 1 1 Only 〈ri, rj〉 is misclassified.

14 y D y ND n D 1 3 As 〈ri, rj〉 is classified as duplicate, no window
is created for rj . Thus, 〈rj , rk〉 is not com-
pared and therefore also correctly classified as
non-duplicate.

15 y D y D n ND 3 3 All pairs are misclassified; pair 〈rj , rk〉 is not
created but classified by the TC.

16 y D y D n D 3 3 All pairs are misclassified; pair 〈rj , rk〉 is not
created but classified by the TC.

76

4.5. Effect of an Imperfect Classifier on DCS++

4.5.2 Experimental Results: Imperfect Classifier

Based on the results of Sec. 4.5.1, we can say that a misclassification can have a negative
impact on the overall result, but it does not necessarily have to. We now experimentally
evaluate the effect of misclassification. The experiment uses different classifiers for the
Cora dataset. Classifiers can be very restrictive, which leads to a high precision, but a
low recall value. Such a classifier that does not detect all real duplicates favors SNM, as
described before in case 3 in Tab. 4.2. On the other hand, classifiers with a lower precision
and hence a higher recall value favor DCS++ because misclassified non-duplicates are
worse for SNM (see case 14 in Tab. 4.3). Thus, the results depend on the precision/recall
tradeoff of the classifier, and therefore, we use the F-measure (harmonic mean of precision
and recall) in our experiments as a quality indicator.

We manually created three classifiers with the goal to evaluate the effects of lower
precision or recall values. The first classifier C1 has both a high precision and a high
recall value. The other two classifiers have either a high recall (C2) or high precision (C3)
value. Table 4.4 gives an overview of the used classifiers. The values are the results of an
exhaustive comparison without calculating the transitive closure.

Figure 4.14 shows the interpolated results of our experiments – one chart for each of the
classifiers. We see for all three classifiers that DCS requires the most and DCS++ the least
number of comparisons, while SNM is in between. Figure 4.14(a) shows the results for
classifier C1 with both a high recall and a high precision value. The best F-measure value
is nearly the same for all three algorithms, and the same is true for classifier C2 with a
high recall, but low precision value, as shown in Fig. 4.14(b). However, we can see that the
F-measure value for C2 is not as high as for classifiers C1 or C3. Classifier C3 with a high
precision but low recall value shows a slightly lower F-measure value for DCS++ than for
DCS or SNM. This classifier shows the effect of case 3 from Table 4.2. Due to the skipping
of windows, some duplicates are missed. However, the number of required comparisons is
significantly lower than for the other two algorithms. In summary, the DCS++ algorithm
shows its full potential for classifiers that especially emphasize the recall value.

Table 4.4: Three classifiers for the Cora dataset. Numbers are based on an exhaustive
pairwise comparison without calculating the transitive closure.

Classifier Precision Recall F-measure

C1 98.12 % 97.17 % 97.64 %
C2 83.27 % 99.16 % 90.52 %
C3 99.78 % 84.13 % 91.23 %

77

Chapter 4. The Duplicate Count Strategy for Pair Selection

 1,000

 10,000

 100,000

1,000,000

 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ri
so
ns

F-measure

DCS Basic - C1
SNM - C1

DCS++ - C1

(a) Required comparisons (log scale) classifier C1

 1,000

 10,000

 100,000

1,000,000

 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ri
so
ns

F-measure

DCS Basic - C2
SNM - C2

DCS++ - C2

(b) Required comparisons (log scale) classifier C2

 1,000

 10,000

 100,000

1,000,000

 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ri
so
ns

F-measure

DCS Basic - C3
SNM - C3

DCS++ - C3

(c) Required comparisons (log scale) classifier C3

Figure 4.14: Interpolated results of the imperfect classifiers C1-C3 for the Cora dataset.

78

4.5. Effect of an Imperfect Classifier on DCS++

So far, we have considered only the number of comparisons to evaluate the different
algorithms. As described before, DCS++ and SNM differ in the number of detected
duplicates by using a classifier and by calculating the transitive closure. We have measured
the execution time for the three classifiers, divided into classification and transitive closure
(see Fig. 4.15). As expected, the required time for the transitive closure is significantly
lower than for the classification, which uses complex similarity measures. The time for the
classification is proportional to the number of comparisons. All three classifiers require
about 0.2 ms per comparison.

The time to calculate the transitive closure is nearly the same for all three algorithms
and all three classifiers. SNM requires less time than DCS or DCS++, but the difference is
less than 1 second. Note that the proportion of time for classification and for calculating
the transitive closure depends on the one hand on the dataset size (more records lead
to more comparisons of the classifier) and on the other hand on the number of detected
duplicates (more duplicates require more time for calculating the transitive closure).

 0

 50

 100

 150

 200

 250

DCS
DCS++

SNM
DCS

DCS++

SNM
DCS

DCS++

SNM

T
im
e
in

 s

Time Classification
Time Transitive Closure

Classifier C3Classifier C2Classifier C1

Figure 4.15: Required Time for the best F-measure result of each classifier.

79

Chapter 4. The Duplicate Count Strategy for Pair Selection

4.6 Conclusion

With increasing dataset sizes, efficient duplicate detection algorithms become more and
more important. The Sorted Neighborhood Method is a standard algorithm, but it can-
not efficiently respond to different cluster sizes within a dataset due to the fixed window
size. The Duplicate Count Strategy adapts the window size based on the number of de-
tected duplicates, and we have proven that with a proper (domain- and data-independent!)
threshold, DCS++ is more efficient than SNM without loss of effectiveness. Our experi-
ments with real-world and synthetic datasets have validated this proof.

The DCS++ algorithm uses transitive dependencies (i) to save complex comparisons
and (ii) to find duplicates in larger clusters. Thus, it is important to use an efficient
algorithm to calculate the transitive closure. In contrast to previous works, we consider
the costs of the transitive closure separately.

Overall, we believe that DCS++ is a good alternative to SNM. The experiments have
shown the potential gains in efficiency, allowing to search for duplicates in very large
datasets within a reasonable time.

80

Chapter 5

Clustering

In the duplicate detection process, as described in Chapter 2, we can use clustering algo-
rithms to create consistent clusters of records after the classification of candidate record
pairs. A cluster is consistent if all record pairs in the cluster are duplicates. The goal
of the clustering step is to create clusters with a high intra-cluster similarity and a low
inter-cluster similarity [39].

In Chapter 4, we have used the transitive closure to create these clusters. Calculating
the transitive closure disregards negative classifications (the similarity of a record pair
is below the threshold and thus classified as non-duplicate). Table 5.1 shows sample
records extracted from freeDB1. As we can see, the artist and the year are the same for
all records. The values for disc and genre have only small differences, which leads to a
high string similarity for any pair of these records. However, for example, disc 4 of an
audiobook is not the same real-world entity as disc 5 of the same audiobook. In a real
application, the similarity function would be refined, e.g., by implementing a rule that
independently of the record pair similarity classifies a record pair as non-duplicate if these
are discs in a multiple CD set. Such rules are domain-dependent, so for books, other rules
might be necessary. Unfortunately, the rule fails for record 1, which does not contain any
information about the disc. As a result, record 1 would possibly be classified as a duplicate
of all other records and thus connect them. This example shows the challenges of duplicate
detection and the possible negative impact of calculating the transitive closure.

Figure 5.1 illustrates this problem. After the pairwise comparison, we initially have
a connection between record 1 and records 2-5, with records 2-5 being classified as non-
duplicates. Calculating the transitive closure ignores that records 2-5 are classified as
non-duplicates: all records are now in the same cluster, which means they represent the
same real-world entity. The opposite approach would be to reclassify duplicates as non-
duplicates until we reach a maximum clique. For our example in Fig. 5.1, we could first
reclassify edge 〈1, 3〉 as non-duplicate, then edge 〈1, 4〉, and finally edge 〈1, 5〉. We now have

1freedb was a database to look up CD information (http://www.freedb.org). The service is now
available at https://gnudb.org.

81

http://www.freedb.org
https://gnudb.org

Chapter 5. Clustering

Table 5.1: FreeDB example.

ID Artist Disc Genre Year

1 Nora Roberts Angels Fall Audio Book 2006
2 Nora Roberts Angels Fall-Disc04 Audiobook 2006
3 Nora Roberts Angels Fall-Disc05 Audiobook 2006
4 Nora Roberts Angels Fall-Disc06 Audiobook 2006
5 Nora Roberts Angels Fall-Disc07 Audiobook 2006

Transitive Closure

1

2 3

4 5

Maximum Clique

1

2 3

4 5

Initial graph after
pairwise comparison

1

2 3

4 5

Figure 5.1: Clustering of the example in Tab. 5.1, showing (i) the initial pairwise com-
parison graph, (ii) result of the transitive closure, which assigns all elements to the same
cluster, and (iii) the maximum clique approach, which creates one cluster with two ele-
ments and three singleton clusters.

four cliques {1, 2}, {3}, {4}, {5}. Note that the reclassified edges are selected arbitrarily in
this example. Edge 〈1, 2〉 might also be reclassified instead of one of the other edges.

The result of a misclassification is a reduction in the quality of the duplicate detection
result. In this example, only three pairs are affected, which might be either false-negatives
that reduce the recall (completeness of the result) or false-positives that reduce the preci-
sion (correctness of the result). However, for other datasets with larger clusters, misclas-
sification has a high impact on the overall result. As described in Sec. 4.1, one often cited
dataset to evaluate duplicate detection results is the Cora dataset, which features clusters
in a wide range of sizes. The two largest clusters have 238 and 149 records, respectively. A
single misclassification of a record pair with one element from each of those clusters leads
to 238 ∗ 149 = 35, 462 misclassified record pairs after calculating the transitive closure.
Note that this example uses a pairwise measure because this is used in most duplicate
detection publications. There are also cluster-based measures, e.g., the Generalized Merge
Distance, that can also be used to evaluate duplicate detection results. Menestrina et al.
describe different measures to evaluate duplicate detection results [132].

The goal of this chapter is the development and evaluation of several known and new
clustering algorithms for duplicate detection. The input for these clustering algorithms
results from a possibly incomplete and inconsistent pairwise comparison of all records.

82

5.1. Problem Description

Incomplete means that not all record pairs were classified as duplicate or non-duplicate,
e.g., due to partitioning as described in Sec. 2.2 and Chapter 4, whereas inconsistent means
that some pairwise comparisons may contradict each other, e.g., record pairs 〈r1, r2〉 and
〈r1, r3〉 are classified as duplicates, but 〈r2, r3〉 is not. The input can be described as a
graph, and the clustering algorithms use a re-classification of single edges to create cliques.
The elements in each clique represent the same real-world entity. The contributions of this
chapter are:

• Formalization for the problem of clustering duplicate detection results.

• Detailed presentation of several existing clustering algorithms that belong to the best
clustering algorithms in the context of duplicate detection, as evaluated in [91,200].

• Presentation of three new clustering algorithms. The first two new algorithms use
the structure of the input graph and thus are, in contrast to the third new and many
other existing clustering algorithms, not dependent on edge weights.

• Comprehensive experimental evaluation of all algorithms using (i) real-world datasets
and (ii) different pair selection strategies.

The content of Chapter 5 is based on our published work in [63]. In Sec. 5.1, we
formalize the problem of clustering duplicate detection results. Section 5.3 describes a new
clustering approach that does not depend on edge weights, whereas in Sec. 5.4, we present
a new algorithm that uses edge weights for classification. Section 5.5 gives an overview of
existing clustering algorithms that are evaluated in Sec. 5.6 with several datasets, followed
by a conclusion in Sec. 5.7. The description of the Birth records dataset in Sec. 5.6.2 is
written by Peter Christen.

5.1 Problem Description

Duplicate detection is the process of finding objects that represent the same real-world
entity. Given a set of records R = {r1, ..., rn}, a pair selection algorithm creates candidate
pairs 〈ri, rj〉 of records that are classified as duplicate D or as non-duplicate ND. The
result of a pairwise record comparison is an undirected Graph G = {V,E} with V as the
set of vertices and E as the set of labeled edges.

Depending on the pair selection algorithm, the graph can but does not necessarily have
to be complete. As for most pair selection algorithms, not all record pairs are classified –
edges between some vertices might be missing. Especially for large datasets, it is unlikely
that we have a complete graph because due to the quadratic number of comparisons
blocking would have to be applied [40].

Depending on the classifier, the edges might be weighted or just classified as duplicate
or non-duplicate. If weighted, each edge has a weight s that represents the similarity of
the records, with 0 ≤ s ≤ 1. A high weight means a high similarity of the records. Record

83

Chapter 5. Clustering

pairs with a similarity higher than a threshold t are classified as duplicates, whereas pairs
with a lower similarity are classified as non-duplicates. As we examine in Sec. 5.5, some
clustering algorithms require a weighted graph. If the classifier is not based on a similarity
function, we can also use s = 1.0 for duplicates and s = 0.0 for non-duplicates.

The subgraph induced by all edges with s ≥ t comprises between 1 and n connected
components, with n ≤ |V |. In each component, we have a path from every vertex to
all other vertices in the component with an “is-duplicate-of” relation. But for most clas-
sifiers the relation is not transitive, i.e., 〈r1, r2〉 = D and 〈r2, r3〉 = D does not imply
〈r1, r3〉 = D [15]. Transitive classifiers are discussed in [135]. Thus, the components are
not necessarily cliques.

The objective of a clustering algorithm is to change the classification of edges to create
a set of disjoint cliques C = {c1, ..., ck}, with ci ⊆ R and ci ∩ cj = ∅, so that each clique
ci is a set of records that are assumed to represent the same real-world entity. We call
a change of an edge classification an edge switch. Each clique ci can be a singleton or
contain multiple records, and it holds c1∪c2∪ ...∪ck = R. The challenge for the clustering
algorithm is that it neither knows which edges have a wrong classification nor the correct
size that each clique should have. The knowledge of the clustering algorithm is restricted
to the structure of the subgraph and, in the case that it is a weighted subgraph, the weight
of the edges. The latter information can help to decide which edge classification should
be switched. For example, if we have t = 0.7 and two edges e1 and e2 with s1 = 0.71 and
s2 = 0.99, then it might be a good choice to change the classification of e1 from duplicate
to non-duplicate, as the weight is just slightly above the threshold. Another challenge for
the clustering algorithm is that the input graph is not necessarily complete. Figure 5.2(a)
shows six sample records. If we have a classifier that calculates the edit distance (shown
in Fig. 5.2(b)) for the name and classifies a record pair as duplicate if the edit distance
ed is ed ≤ 2, then we have three clusters {1, 3, 4}, {2}, {5, 6}. Depending on the used pair
selection algorithm, we have different input graphs for the clustering step, as shown in
Fig. 5.3. A solid green edge represents a duplicate, whereas a dotted red edge represents
a non-duplicate.

ID Name City Entity Sort. Block

1 Doe, John Munich E1 4 B1
2 Doan, J. Berlin E2 2 B2
3 Do, John Berlin E1 1 B2
4 Doe, Jhon Berlin E1 3 B2
5 Poe, Jan Munich E3 6 B1
6 Po, Jan Munich E3 5 B1

(a) Example records.

ID 1 2 3 4 5 6
1 0 5 1 1 3 4
2 0 5 5 5 5
3 0 2 4 3
4 0 3 4
5 0 1
6 0

(b) Edit distance for sample records.

Figure 5.2: Example records and their pairwise edit distance.

84

5.1. Problem Description

2 3

6 5

41

(a) Input graph from an exhaustive comparison.

2 3

6 5

41

(b) Input graph from a non-
overlapping blocking algorithm
with city as blocking key.

2 3

6 5

41

(c) Input graph from the Sorted Neighbor-
hood Method [135] with name as sorting key
and window size 3.

Figure 5.3: Impact of the pair selection algorithm on the clustering input graph for the
example in Fig.5.2.

Note that there is not an edge between all vertices. This would be only the case for
an exhaustive comparison, as shown in Fig. 5.3(a). Most duplicate detection algorithms
select only a subset of candidate pairs for classification to reduce the costs. Thus, the
classification of some record pairs is unknown. In Fig. 5.3(b), we see the input graph of
disjoint blocking [39] with the city as blocking criteria. Record pairs are only classified
if they are in the same block. Figure 5.3(c), on the other hand, shows the result of the
Sorted Neighborhood method [135]. Both pair selection strategies select only a subset
of record pairs, making it more complicated for the clustering algorithm to achieve good
results.

To concisely state the problem description: Given a set of records as nodes and a set
of weighted edges between the records, the clustering algorithm should produce a set of
clusters, where (i) each cluster contains only records that represent the same real-world
entity and (ii) the number of clusters is equal to the number of real-world entities in the
dataset. On the one hand, the clustering algorithm can create missing edges and, on the
other hand, reverse the classification of existing edges to fulfill these two goals.

In the output graph of the clustering algorithm, all records representing the same real-
world entity are in the same maximal clique with only edges labeled as D, while between
two maximal cliques, there are only edges labeled as ND. Each maximal clique is then a
cluster of elements representing the same real-world entity. This means that if we remove
all ND edges, the resulting graph contains a set of connected components in which each
component is a clique.

85

Chapter 5. Clustering

5.2 Related Work

This section presents two papers that evaluate several clustering algorithms for duplicate
detection. Additionally, we describe alternative approaches for conflict resolution for the
result of a duplicate classification. A detailed presentation of several existing clustering al-
gorithms that belong to the best clustering algorithms in the context of duplicate detection
follows in the next sections.

Hassanzadeh et al. present the Stringer Duplicate Detection Framework [91]. They use
Stringer to evaluate the performance of clustering algorithms for entity resolution. First,
they apply a similarity join to retrieve pairs of similar records with their similarity score.
They consider only record pairs with a similarity score above a threshold θ. The result
of the similarity join is then processed by the clustering algorithm that creates clusters
of potential duplicates. They use 29 Stringer datasets that are described in Sec. 5.6.2
for their extensive evaluation of the clustering algorithms. Next to key figures, such as
precision, recall, and F-measure, they also use soft criteria (low, medium, high) to present a
classification regarding scalability, ability to find the correct number of clusters, robustness
against the choice of threshold, and robustness against amount and distribution of errors.

Wang et al. also evaluate several clustering algorithms [200]. They formalize the en-
tity resolution problem as a cohesive-based clustering problem on a weighted graph and
present two algorithms, GCluster and HCluster, that solve this problem. GCluster out-
performs HCluster on effectiveness, but HCluster is more efficient and better suited for
large datasets, as it avoids scanning data frequently.

In comparison to [91], our evaluation contains further datasets, including real-world
and larger ones. With regard to the results in [91], we can confirm that Markov Cluster-
ing (see Sec. 5.5.3) is among the most accurate algorithms and that none of the clustering
algorithms produces a perfect clustering. In comparison to [200], we evaluate more clus-
tering algorithms and also use additional datasets. With regard to the results in [200],
we can confirm that GCluster (see Sec. 5.5.2) outperforms Merge-Center Clustering (see
Sec. 5.5.4) and Star Clustering (see Sec.5.5.5) for the Cora and the Stringer datasets. Com-
pared to both papers, we present and evaluate new clustering algorithms, and particularly
evaluate the effect of different pair selection algorithms on the clustering result.

A similar use case for clustering is entity matching from different sources. Two proposed
algorithms are SplitMerge [145] and CLIP [175]. The main difference regarding clustering
for duplicate detection is their assumption that each source is already duplicate-free, i.e.,
for each real-world entity, there exists only one element per source. The following two
paragraphs sketch these algorithms. Both use the number of sources as a criterion for
the creation of the clusters. Therefore, they cannot be adapted for duplicate detection
within a single source. A comparison of both algorithms, especially regarding distributed
execution, can be found in [174].

86

5.2. Related Work

SplitMerge consists of four phases, namely preprocessing, initial clustering, clustering
decomposition, and cluster merge [145]. In the preprocessing phase, the required property
values for the similarity calculation are normalized, and the initial clustering phase creates
connected components. After this phase, it is still possible that a cluster contains multiple
entities of the same source. In this case, some entities are removed based on their similarity
to other entities in the cluster so that only the entity from one source with the highest
similarity to the other entities is kept. Cluster decomposition is used to separate entities
with either different or incompatible semantic types or too low similarity to other cluster
members. At the end of this phase, a cluster representative is calculated. The last step is
cluster merging, which iteratively merges clusters based on the similarity of the previously
calculated cluster representatives. Only clusters with fewer elements than the number of
sources are considered.

CLIP uses a similarity graph as input and classifies links between elements as a strong,
normal, or weak link [175]. Only strong links are considered to determine complete clusters
in the first phase, which are clusters that contain entities from all sources. In the second
phase, normal links are also considered, and CLIP iteratively clusters the remaining entities
based on link priorities so that no source-inconsistent or overlapping clusters are generated.

Arasu et al. [4] present a framework for collective deduplication using Dedupalog, a
declarative and domain-independent language to define constraints. They distinguish
between hard and soft constraints. The framework uses the constraints to find a clustering
that does not violate any hard constraint and minimizes the number of violated soft
constraints. The clustering algorithms that we evaluate in Sec. 5.6 are not using any
hard constraints. However, we use hard constraints for the pairwise classification. For
example for the Cora dataset, which contains references of research papers, we have a hard
constraint that if one reference is a technical report and the other reference is not, the
record pair is always classified as non-duplicate. This hard constraint is necessary because
sometimes researchers publish their work as both a conference paper and a technical
report. As the authors and the titles are often the same, both references have a very high
similarity, although they are different publications.

Another possibility to solve conflicts of a pairwise comparison is a manual inspection,
e.g., by using the crowd as described in Sec. 2.5. Active learning techniques use a small
initial dataset to build a classification model that is iteratively optimized by asking a
domain expert to inspect manually record pairs that are difficult to classify. These record
pairs are added to the training set, and the classification model is rebuilt [39].

87

Chapter 5. Clustering

5.3 Maximum Clique Clustering

In this section, we describe two novel clustering approaches that use the structure of the
resulting graph of the pairwise classification to create consistent clusters. The idea of
these clustering approaches is that the input graph structure is more important than the
edge weights. An edge with a similarity just a little above the threshold is as important
for the clustering as an edge with a similarity of 1.0. More important are further edges
that support the classification.

Figure 5.4 shows a sample graph representing the result of a pairwise classification, in
which edges with a similarity ≥ 0.7 were classified as duplicates. The similarity of edges
〈A,B〉, 〈B,C〉, and 〈B,C〉 is just high enough to be classified as duplicates, whereas 〈C,D〉
has a much higher similarity. However, example edge 〈A,C〉 is supported by the edges
〈A,B〉 and 〈B,C〉 because all three edges confirm that elements A,B,C represent the same
entity. The edge 〈C,D〉 is not supported by other edges because neither 〈A,D〉 nor 〈B,D〉
were classified as duplicates, either because their similarity was too low or because they
were not considered as candidate pairs. In Sec. 5.5, we present other clustering algorithms
focusing on the edge weights that would instead assign 〈C,D〉 to the same cluster.

A B

C D

0.7

0.70.7

1.0

Figure 5.4: Sample graph after pairwise classification.

5.3.1 Maximum Clique Clustering (MCC)

The MCC algorithm consists of two steps: First, it calculates for a component the max-
imum clique. The maximum clique is the biggest maximal clique (a clique is maximal
if it cannot be extended by another vertex of a graph). We use the Bron-Kerbosh algo-
rithm [29] to determine the maximal cliques. The maximum clique is the first cluster of
the component, and in the case of multiple maximum cliques, we use the first one. In the
second step, the vertices of the maximum clique are removed from the component. Thus,
the component might be split into several smaller components, which are then processed
independently of each other. For all remaining components, the algorithm is repeated
until all vertices are assigned to a cluster. Note that the first step is not necessary for
components with only one or two vertices, since in these cases, the component itself is
already a maximum clique.

88

5.3. Maximum Clique Clustering

5.3.2 Extended Max. Clique Clustering (EMCC)

The extended maximum clique clustering is an extension of MCC. It is especially useful
if we have near-cliques, e.g., just a single or only a few edges are missing to increase a
clique. As for MCC, we start calculating the maximum clique for a component. If there
are multiple possible maximum cliques, we have to select one. In the development phase
of EMCC, we have evaluated three strategies:

1. Select the first maximum clique arbitrarily.

2. Select the maximum clique with the most edges to vertices that are not in the
maximum clique. The hypothesis is that a maximum clique with many edges to
outside vertices can more likely be extended.

3. Select the maximum clique with the fewest edges to vertices that are not in the
maximum clique. The idea of this approach is that only a small number of edges in
the component is deleted if the maximum clique cannot be extended anymore.

We gained the best results with the second approach, selecting the maximum clique with
the most edges to vertices that are not in the maximum clique.

In the second step, we iteratively try to increase the clique with further vertices. If a
vertex that is not in the maximum clique fulfills a specific condition, we suppose that it
also represents the same real-world entity as the vertices in the maximum clique. Note
that if we add these vertices, we do not have a clique anymore, so we now call it a cluster.
In the development phase of EMCC, we evaluated two different conditions for adding a
vertex:

1. The vertex needs an edge to a specific percentage of vertices in the cluster. Due to
the increase of vertices in the cluster in each iteration, the number of required edges
is also rising.

2. Like the first approach, but additionally, a vertex needs a specific percentage of
edges to the vertices in the maximum clique. As with each iteration the cluster is
increasing, this additional constraint prevents that vertices are added that have no
or only a few edges to the original maximum clique.

Our experiments showed that the second condition is not necessary to obtain better
results. Thus, we use only the first condition for EMCC. The required percentage is
represented by a parameter τ . This extending step is repeated iteratively until no further
vertex can be added. In each iteration, the number of vertices in the cluster is increased,
and thus also the number of required edges to the cluster is increased. Algorithm 3 shows
the pseudocode for EMCC.

89

Chapter 5. Clustering

Algorithm 3: Extended Maximum Clique Clustering (EMCC)
Input : A set C = {c1, c2, . . . , cx} of undirected connected components (V,E).

A threshold τ for the clique extension.
Output: A set of clusters RC in which each cluster represents a real-world entity.

1 RC ← ∅; // Result set of clusters

2 foreach cx ∈ C do // Iterate over connected components

3 V ← ∅; // Set of vertices

4 while cx 6= ∅ do
5 V ← MaxClique(cx) with Max(|E|);
6 do // Check if extension is possible

7 if ∃v(|E(v, vy) with v ∈ cx \ V, vy ∈ V |/|V | ≥ τ) then
8 V ← V ∪ {v with Max(|E(v, vy) with v ∈ cx \ V, vy ∈ V |)}

9 while V has been extended;
10 RC ← new cluster with vertices in V ;
11 cx ← cx \ V ; // Remove elements in cluster from cx

12 return RC;

Figure 5.5 shows another sample of a pairwise comparison and the calculation of EMCC
with τ = 0.5. After calculating the first maximum clique, we have V1 = {A,B,C,D}.
Thus, in the first iteration, only vertices with at least two edges to V1 can be added to
the cluster. In the second iteration, V1 contains five vertices, so at least three edges are
required to extend V1. As we cannot extend V1 anymore, the vertices of V1 represent the
first cluster and are removed from the connected component. For the remaining vertices
E and F , we calculate the maximum clique again. As there are no further vertices left to
extend V2 = {E,F}, EMCC returns 2 clusters: {A,B,C,D,G} and {E,F}.

Please note the impact of parameter τ on the overall clustering result. In the example,
with τ > 0.5, EMCC would not add vertex G to the first maximum clique. Thus, EMCC
would give the same clustering result as the algorithm Maximum Clique Clustering.

The choice of τ is important to obtain good quality clustering results. The two ex-
treme cases are τ = 0.0 and τ = 1.0. In the case of τ = 0.0, we add all vertices of a
connected component to the same cluster. Thus, the clustering result equals the result
of the Transitive Closure. With τ = 1.0, we are not adding any additional vertex to the
maximum clique, and we obtain the same result as for MCC. Our experiments during the
development phase showed that there is not just a single optimal threshold in most cases
but rather a threshold range. Furthermore, in our experience, even the selection of τ close
to the best range has only a very small negative impact on the overall clustering result.

90

5.4. Global Edge Consistency Gain (GECG)

A B

C D E F

G

1.0

0.9

0.9

0.9

0.8 0.9 0.7

0.8 0.9
0.8

(a) Sample result of pairwise comparison.

A B

C D E F
G

V1

1. Calculate Max. Clique 2. Extend Cluster

3. Calculate Max. Clique
for remaining vertices

4. Return cluster C1 and C2

A B

C D E F
G

V1

A B

C D E F
G V2

C1 A B

C D E F
G C2

C1

(b) EMCC for the sample in Fig. 5.5(a) with τ = 0.5.

Figure 5.5: EMCC clustering.

The extension of the maximum clique in EMCC is similar to the creation of δ-cliques
in GCluster [200], which is described in Sec. 5.5.2. The main difference between these two
algorithms is that GCluster tries to maximize the edge weights within a cluster, whereas
EMCC is more concerned about the structure of a cluster. EMCC can also be used in
scenarios where no similarity values for edges are available, but only classifications as
duplicate or non-duplicate.

5.4 Global Edge Consistency Gain (GECG)

GECG is also a novel clustering approach, based on the idea that for each edge, we can
check whether the classification as duplicate or non-duplicate is correct by taking further
edges into account. Assume we have an edge 〈A,B〉 for vertices A and B, and the edge is
classified as duplicate. Additionally, we have a third vertex C, and edges 〈A,C〉 and 〈B,C〉
are also classified as duplicates, then C supports that A and B are in fact duplicates. On
the other hand, if only 〈A,C〉 is classified as duplicate, and 〈B,C〉 is classified as non-
duplicate, then C contradicts the classification of 〈A,B〉 as duplicate, as shown in Fig. 5.6.

91

Chapter 5. Clustering

C

BAC supports the
classification of
A and B as duplicates. C

BA C contradicts the
classification of
A and B as duplicates.

Figure 5.6: Additional vertices can support or contradict the classification of a record pair
as a duplicate. Dotted line edges represent a classification as non-duplicate and solid line
edges as duplicates.

GECG tries to increase the consistency of a connected component. To measure the
consistency of a connected component, GECG considers all possible triangles, i.e., all
possible sets with three vertices. The vertices in a triangle are consistent if no edge, one
edge, or all edges are classified as duplicate. If a triangle has no duplicate edge, the
vertices are not connected and represent three different real-world entities. With only one
duplicate edge, we have a cluster of two vertices and a singleton. If all three edges represent
an “is-duplicate-of” relation, all three vertices represent the same real-world entity. Only
if we have two edges classified as duplicate and one edge classified as non-duplicate is
this triangle inconsistent. In this case, we can switch any edge in this triangle to make it
consistent. An edge switch either results in a pair and a singleton or a cluster of all three
vertices. Figure 5.7 shows the possible triangles and their classification as consistent and
inconsistent.

A

BC
consistent

A

BC
consistent

A

BC
inconsistent

A

BC
consistent

Figure 5.7: GECG: consistent and inconsistent triangles.

The authors of [81] also define incomplete triangles if two edges are classified as dupli-
cate and one edge is unknown (e.g., the pair selection algorithm has created only two of
the possible three record pairs). We do not consider this case but implicitly assume that
unknown edges are classified as non-duplicate.

GECG first identifies the consistent and inconsistent triangles in the connected com-
ponent. The number of triangles in a set of vertices depends on the number of vertices
and can be calculated with the binomial coefficient

(v
3
)

= v ∗ (v− 1) ∗ (v− 2)/6. Table 5.2
shows the number of triangles t for connected components with v vertices.

Table 5.2: Number of triangles in a connected component.

v 1 2 3 4 5 6 7 8 9 10

t 0 0 1 4 10 20 35 56 84 120

92

5.4. Global Edge Consistency Gain (GECG)

A

DC

B

(a) Connected component
from pairwise comparison.

T1
A

DC

B A

DC

B
T3

A

DC

B
T2

A

DC

B
T4

(b) Triangles in the connected component of Fig. 5.8(a).

Figure 5.8: Connected component from a pairwise comparison and the triangles that are
considered by GECG.

In the second step, GECG calculates for each edge the consistency gain if the classi-
fication of the edge is switched, i.e., the edge classification is switched from duplicate to
non-duplicate or vice versa. The consistency gain is defined as the number of consistent
triangles after the edge switch minus the number of consistent triangles before the edge
switch. Figure 5.8 gives an example. We have a connected component (Fig. 5.8(a)) with
four vertices which results in four triangles T1 - T4 (Fig. 5.8(b)). Before GECG is executed,
only triangles T1 and T4 are consistent.

Table 5.3 shows for each edge the result of an edge switch. Initially, T1 and T4 are
consistent triangles. The consistency gain is only positive if we switch edge EA,D from
duplicate to non-duplicate.

This step of calculating the information gain for each edge and switching the edge with
the highest consistency gain is repeated until we get a clique (or a singleton). In this case,
we remove the vertices of the clique from the connected component and return them as the
next cluster, representing a real-world entity. For the remaining vertices, we repeat the
step of switching edges. An edge is switched only if the consistency gain is positive (> 0).
If no edge can be switched with a positive consistency gain, all remaining vertices are added
to the same cluster, representing the same real-world entity. In case we have multiple edges
with the same consistency gain, we select the edge with min(|threshold− similarity|).

Table 5.3: Edge switch result for the example in Fig. 5.8.

Switched Consistant triangle # cons. Cons.
Edge T1 T2 T3 T4 triangles gain

Initial state yes no no yes 2 -

EA,B: D→ND no yes no yes 2 0
EA,C : D→ND no no yes yes 2 0
EA,D: D→ND yes yes yes yes 4 2
EB,C : D→ND no no no yes 1 -1
EB,D: ND→D yes yes no no 2 0
EC,D: ND→D yes no yes no 2 0

93

Chapter 5. Clustering

Algorithm 4: Global edge consistency gain (GECG)
Input : A set C = {c1, c2, . . . , cx} of undirected connected components (V,E).

A threshold τ used for a pairwise classification.
Output: A set of clusters RC in which each cluster represents a real-world entity.

1 RC ← ∅
2 maxcg ← 1 // Max. consistency gain

3 foreach cx ∈ C do // Iterate over all connected components

4 c← cx ∈ C // Select next component to be processed

5 C ← C \ {cx}
6 while c contains inconsistent triangle with eij ≥ τ , ejk ≥ τ , and eik < τ

and maxcg > 0 do // Iteratively process selected component

7 maxcg ← max{get_cg(e,c) : e ∈ c} // Calculate max. consistency gain

8 if maxcg > 0 then // Check if max. consist. gain > 0
9 EMaxCG ← {e ∈ c : get_cg(e, c) = maxcg} // Get edges with max.

consistency gain

10 if ‖EMaxCG‖ = 1 then // Check number of edges with max. consist. gain

11 eswitch = e1 ∈ EMaxCG

12 else
13 eswitch = e1 ∈ {e ∈ EMaxCG‖esim = min(‖τ − esim‖)} // Get best edge

14 Switch edge eswitch (D → ND or ND → D) // Perform edge switch

15 if c is split in 2 components then // Check component split

16 c← component with more vertices
17 add component with less vertices to C

18 RC ← new cluster with vertices in c // Create new cluster

19 return RC

20 Function get_cg(e, g): // Get consistency gain of edge e in graph g

21 count← number of consistent triangles in g
22 countswitched ← number of consistent triangles in g with switched edge classification

for e
23 return count− countswitched

Algorithm 4 shows the pseudocode of GECG. GECG iterates over all connected com-
ponents (line 3). As long as there exists an inconsistent triangle in the selected component
and maxcg > 0 (line 6), GECG recalculates for all edges of the selected connected com-
ponent the consistency gain for an edge switch and determines the maximum consistency
gain (line 7). If the consistency gain is positive (line 8), one of these edges with the max-
imum consistency gain is selected (line 11 or 13) and then switched (line 14). In case
the edge switch splits the connected component, GECG continues with the larger compo-
nent and adds the smaller component to the set of connected components that still have
to be processed (lines 15-17). If there are no more inconsistent triangles in the selected

94

5.5. Prior Clustering Algorithms

connected component or an edge switch would result in a negative consistency gain, the
elements of the selected component are added as a new cluster to the result set (line 18).

5.5 Prior Clustering Algorithms

In this section, we describe six clustering algorithms from related work. These algorithms
were evaluated in [91] and [200] and are among the best clustering algorithms for duplicate
detection. In Sec. 5.6, we provide a comparative evaluation of all methods described in
Sec. 5.3, Sec. 5.4, and Sec. 5.5.

Some of these clustering algorithms require a similarity score for each edge (weighted
edges). The other clustering algorithms perform their clustering on the input graph struc-
ture (unweighted edges only). To illustrate the effects of the different clustering algo-
rithms, we use the sample result of a pairwise comparison in Fig. 5.5(a). Table 5.4 gives
an overview of the clustering algorithms and shows which clustering algorithms require a
similarity score and how many edge switches are needed for clustering the sample input
graph in Fig. 5.5(a). Note that in Fig. 5.5(a), all missing edges mean a classification as non-
duplicate. Adding a missing edge means changing the classification from non-duplicate to
duplicate and removing an edge vice versa. The different clustering algorithm results for
the sample input graph are shown in Fig. 5.9, with Fig. 5.9(a)-5.9(c) showing the results
of the previously presented algorithms.

Table 5.4: Overview of the nine clustering algorithms and the number of edge switches for
the example in Fig. 5.5(a).

Clustering Alg. Needs # edge switches
sim. D→ND ND→D

Maximum Clique Clustering no 3 0
Extended Maximum Clique Clustering no 1 2
Global Edge Consistency Gain yes 1 0

Transitive Closure no 0 11
GCluster yes 4 1
Markov Clustering yes 1 2
Merge Center Clustering yes 1 2
Modified Star Clustering no 3 4
VOTE/BOEM yes 4 1

95

Chapter 5. Clustering

G
A B

C D E F

C1
C3

C2

(a) Maximum Clique Clustering

G
A B

C D E F

C1

C2

(b) Extended Max. Clique Clus.

G
A B

C D E F

C1

C2

(c) Global Edge Consistency Gain

A
G B

F C
E D

C1

(d) Transitive Closure [143]

G
A B

C D E F

C1

C3C2

(e) GCluster [200]

G
A B

C D E F

C1

C2

(f) Markov Clustering [62]

G
A B

C D E F

C1

C2

(g) Merge-Center [92]

G
A B

C D E F

C1

C2

C3

(h) Modified Star Clustering

G
A B

C D E F

C1

C3C2

(i) VOTE/BOEM [76]

Figure 5.9: Clustering result of the different clustering algorithms for the sample graph in
Fig. 5.5(a).

5.5.1 Transitive Closure

The transitive closure approach is based on the observation that the relation “is-duplicate-
of” is transitive [143]. Two vertices belong to the same cluster if a path exists. The
transitive closure only switches edges from non-duplicate to duplicate, but not vice versa.
So it increases the recall potentially at the cost of precision.

Note that there are many algorithms for calculating the transitive closure, e.g., by
Warshall [206] or Warren [205], but most of them, including the aforementioned papers, are

96

5.5. Prior Clustering Algorithms

for directed graphs, which is more complex than for undirected graphs. For an undirected
graph, it is sufficient to identify the connected components and all vertices in a connected
component belong to the same cluster. Figure 5.9(d) shows the result of the transitive
closure for our example. Overall, 11 edges are switched from non-duplicate to duplicate.

5.5.2 GCluster

The concept of GCluster [200] is to create δ-cliques in order to maximize the cohesion of
the elements in the δ-cliques. In a δ-clique with v vertices, every vertex is connected to at
least δ(v − 1) vertices in the δ-clique. Cohesion is a fitness measure for a subgraph and is
defined as the sum of weights of the edges in the subgraph.

GCluster first removes all edges from the input graph with a similarity weight below
a threshold and then calculates the maximum weight matching [84]. A maximum weight
matching for a graph is a matching in which the edge weight sum is maximal. The result
of the weighted matching are connected components that are merged. If we have two
merged components A and B, then the edge between A and B has as weight the sum of
edge weights of vertices in A to vertices in B. The process of calculating the maximum
edge weight and merging the connected components is repeated until no components can
be merged. The maximum weight matching considers only edges between components,
which are still a δ-clique after being merged.

Figure 5.10 shows the GCluster algorithm for our example of Fig. 5.5(a) with thresholds
θ = 0.5 and δ = 0.6. All edges are above the threshold, and Fig. 5.10(a) shows the
maximum weight matching. Each pair 〈A,B〉, 〈C,G〉, and 〈D,E〉 is merged. In the
second iteration (see Fig. 5.10(b)), only one edge is left that fulfills the requirement that
merging the connected components would lead to a δ-clique. The edge weight is the sum of
edge weights between 〈A,C〉, 〈A,G〉, and 〈C,B〉. The result of GCluster for the example
is shown in Fig. 5.9(e).

In consultation with the authors of GCluster, our implementation uses an adapted
version of the GCluster pseudo-code (Alg. 1 in [200]). We adjusted in line 10 the test
whether the merged graph is a δ-clique or not, analogous to the description in the paper.

F0.9

1.0

0.9

0.8
0.9 0.8

0.9

0.9
0.8 0.7

A B

G

C D E

(a)

F

A B

G

C D E

2.6

(b)

Figure 5.10: GCluster maximum weight matchings, with δ = 0.6. An edge implies that
merging the vertices creates a new δ-clique. The thick edges show the result of the maxi-
mum weight matching.

97

Chapter 5. Clustering

5.5.3 Markov Clustering

Markov Clustering (MCL) [62] is an unsupervised clustering algorithm that simulates
random walks (or flows) in a graph by alternating an expansion and an inflation step on
the associated Markov matrix. The underlying idea is that clusters are regions in a graph
with many edges. In case a walk visits a dense cluster, it likely visits many vertices of
that cluster before it finds a way out of the cluster. Thus, there are regions with a high
flow in the graph and regions with a low flow. By applying simple algebraic operations on
the associated Markov matrix, MCL strengthens areas in the graph with a high flow and
weakens areas with a low flow. The expansion step calculates the normal matrix product,
whereas the inflation step calculates the Hadamard power [100], followed by a scaling step.
Figure 5.9(f) shows the result of Markov clustering for our example with the default power
coefficient γ = 2. The 3-clique {A,C,G} and the 4-clique {A,B,C,D} are areas with many
edges and therefore assigned to the same cluster. Edge 〈D,E〉 is identified as transition
between two clusters and therefore removed. Depending on the used power coefficient,
also other clusterings are possible with Markov Clustering, e.g., with γ = 1 we get only
a single cluster {A,B,C,D,E, F,G}, or with γ = 5 we get three clusters {A,B,C,G},
{E,F}, and {D}. For our evaluation, we used the originally implementation2 with the
default power coefficient γ = 2.

5.5.4 Merge-Center Clustering

Merge-Center [92] is an extension of Center [93], where the idea is that every cluster has
a center vertex, and all other elements in that cluster are similar to this center vertex. As
shown in [91], Merge-Center outperforms Center, so we regard only the former.

First, Merge-Center sorts all edges by their weight (similarity) in descending order and
then sequentially scans these vertex pairs. The first time a vertex vn occurs in the scan, it
is assigned as the center vertex of a new cluster. All subsequent vertices vm that appear
in pairs of the form 〈vn, vm〉 are assigned to the cluster of vn.

The extension of Merge-Center compared to Center is that in case of processing a pair
〈vn, vm〉, with vm being already an element of a different cluster than vn, the clusters of
vn and vm are merged. The merged cluster then has multiple center vertices. Due to the
merge step, Merge-Center creates fewer clusters than Center.

Figure 5.11 shows the Merge-Center algorithm for the sample graph with shaded center
nodes. When processing the edge 〈A,G〉, the two clusters with center nodes A and G are
merged. The result is shown in Fig. 5.9(g).

2http://micans.org/mcl/index.html

98

http://micans.org/mcl/index.html

5.5. Prior Clustering Algorithms

Edge Sim
〈A,B〉 1.0
〈A,C〉 0.9
〈A,D〉 0.9
〈B,C〉 0.9
〈C,G〉 0.9
〈D,E〉 0.9
〈A,G〉 0.8
〈B,D〉 0.8
〈C,D〉 0.8
〈E,F 〉 0.7

B

C D E F
G

A

Figure 5.11: Merge Center clustering with shaded center nodes.

5.5.5 Modified Star Clustering

Star Clustering [5] covers a similarity graph with star-shaped dense subgraphs. The star-
shaped subgraphs consist of a single star center and satellite vertices. The similarity of
each satellite to its star center is above a threshold. Applied to the duplicate detection
process, this means that only edges classified as duplicates are considered.

Star Clustering first sorts all vertices by their degree in descending order. In the
beginning, all vertices are unmarked, and the algorithm iterates over the sorted list of
vertices. If a vertex is unmarked, it becomes the star center of a new cluster. All associated
vertices become satellites in the cluster and are marked so that they cannot become the
star center of a new cluster. Note that Star Clustering creates overlapping clusters if a
vertex is associated with multiple star centers. This violates the goals for a clustering
algorithm (see Sec. 5.1). Therefore, we are using a modified version of Star Clustering, in
which a vertex is only associated with its first star center.

Thus, there are several possible solutions for star clustering. If several vertices have the
same degree, one is chosen as star center arbitrarily, e.g., in our implementation we take
the first one. Figure 5.12 shows two possible star clusterings for our sample graph, one
with vertices A and E and one with vertices D, F, and G as star centers. Figure 5.9(h)
shows, for the latter, the created clusters of our modified star clustering approach.

Vertex Degree
A 4
C 4
D 4
B 3
E 2
G 2
F 1

B

C D E F
G

A B

C D E F
G

A

Figure 5.12: Star Clustering for the sample in Fig. 5.5(a). The table shows the degree
for each vertex and the graphs show two possible solutions for star clustering with shaded
star centers.

99

Chapter 5. Clustering

5.5.6 Correlation Clustering

Correlation Clustering, introduced in [10], tries to find a clustering in a complete graph,
in which the edges are labeled either as + or −, depending on the classification of the
vertices as being similar or dissimilar. The goal is to find a clustering that minimizes the
number of + edges between clusters and the number of − edges within clusters. As shown
in [10], finding the best clustering is NP-hard, so there is a necessity for approximation
algorithms.

Elsner and Schudy [76] compare several correlation clustering algorithms and recom-
mend VOTE/BOEM for general problems. According to them, the input is a complete,
undirected graph G with n nodes in which each edge has a probability pij whether nodes
i and j belong to the same cluster. For duplicate detection, the probability corresponds
to the similarity that we calculated for the pairwise classification. The goal is to find a
clustering, defined as new graph G′ with edges xij = 1 if nodes i and j belong to the same
cluster, and otherwise xij = 0. Additionally, xii = 1 and xij = xjk = 1 implies xij = xik.

The objective, according to [76], is to find a clustering that is as consistent as possible
with regard to the probabilities. Edges with a high probability should be within a cluster
but not cross cluster boundaries. The opposite holds for edges with a low probability. The
authors define w+

ij as the cost of cutting an edge, with w+
ij = log(pij), and w−ij as the cost

of keeping an edge, with w−ij = log(1− pij). Mathematically, the objective is:

min
∑

ij:i<j

xijw
−
ij + (1− xij)w+

ij (5.1)

VOTE/BOEM consists of two algorithms, VOTE and BOEM, that are executed se-
quentially. VOTE is a greedy algorithm that uses the net weight w±ij = w+

ij −w
−
ij to assign

elements to an existing cluster or to create a new singleton cluster, as shown in Alg. 5.
Elsner and Schudy [76] ran 100 random permutations and reported the run with the

best objective value. In our implementation, we run the algorithm for each connected
component with up to 120 permutations. Thus, for all connected components with up to
five vertices, we run all possible permutations. Running the VOTE algorithm for each
connected component instead on the entire graph reduces the complexity of the algorithm
and is reasonable, because if two vertices are from different connected components, the
net weight is always negative, and these two vertices would never be added to the same
cluster.

The clustering result of the VOTE algorithm is then the input for the Best One E lement
Move (BOEM) algorithm. This algorithm iteratively selects one element from the current
clustering, and either moves this element to another cluster or creates a new singleton
cluster. In each iteration, we calculate for every element the change of the objective
value for all possible moves, and finally execute the move with the highest optimization
of the objective value. Note that for calculating the effect of an element move, we have to

100

5.5. Prior Clustering Algorithms

Algorithm 5: VOTE
Input : A complete, undirected graph G with n nodes; each edge in the graph

has a probability pij whether nodes i and j belong to the same cluster.
Output: Clustering C

1 k ← 0 // Number of clusters created so far

2 C[k++]← {1} // Create cluster for 1st vertex

3 for i = 2..n do // Iterate over vertices

4 for c = 1..k do // Iterate over clusters

5 Qualityc ←
∑

j∈C[c]w
±
ij // Get net weights sum

6 c∗ ← argmax1≤c≤kQualityc // Get best cluster

7 if Qualityc > 0 then
8 C[c∗]← C[c∗] ∪ {i} // Add vertex to cluster

9 else
10 C[k++]← {i} // Form a new cluster

11 return C

consider (i) the effect on the current cluster (element is removed), and (ii) the effect of the
target cluster (element is added). The algorithm runs until there is no element move left
that would improve the objective value. Figure 5.9(i) shows the result of VOTE/BOEM
for the sample graph.

5.5.7 Complexity Analysis

We give a short overview of the time complexity for the presented algorithms. As the
algorithms do not add vertices from different connected components to the same cluster,
we can run each algorithm (except for Markov Clustering) per connected component,
reducing complexity in practice with the worst case that all nodes are within a single
component. For finding the connected components, we use a depth-first search, which has
a complexity of O(V +E), where V is the number of vertices, and E the number of edges
in a connected component.

For Transitive Closure, all elements in a connected component belong to the same
cluster, so the complexity is O(1). GCluster has a complexity of O(V 3.5) [200]. For
Markov Clustering, a naive implementation has a complexity of O(V 3), but by applying a
pruning scheme, it can be reduced toO(V k2), with k as a pruning constant that reduces the
computation of a column to the k largest entries [62]. Merge Center Clustering first sorts all
edges by their similarity and then scans all edges, resulting in a complexity ofO(E log(E)+
E). Modified Star Clustering first calculates the degree of the vertices, then sorts them
by their degree, and finally scans the vertices, so the complexity is O(V + V log(V) + V).

101

Chapter 5. Clustering

The VOTE algorithm iterates over all vertices and calculates the net weight for all other
processed vertices. In the end, the net weight is calculated for all pairs of vertices, so the
complexity is O(V 2−V

2), multiplied by the number of permutations. As mentioned in [76],
BOEM can be implemented with a complexity of O(V 2) for preprocessing and O(V) for
each move, with at most V − 1 moves [86].

The complexity of MCC is dominated by the complexity for finding a maximum clique.
For this, the Bron-Kerbosh algorithm has a complexity of O(3V/3) [29]. As we do not
have to find all maximal cliques, the complexity can be improved to O(2V/3) [188] or
O(20.276V) [171]. For EMCC, we additionally have to consider the complexity for the
extension step, which is O(V).

For GECG, as mentioned in Sec. 5.4, we have V ∗ (V − 1) ∗ (V − 2)/6 triangles in
each component. Initially, we calculate in constant time for each triangle whether it is
consistent. To choose the best edge, we calculate for all V ∗ (V − 1)/2 edges the effect of
an edge switch for V − 2 triangles and then choose the best edge to be switched. In the
following iterations, under the premise that we saved preliminary results, we recalculate
only the consistency of V−2 triangles, and the effect of an edge switch for (V−2)∗2+1 edges
(two edges per triangle affected by the previous edge switch plus the switched edge itself).
As the number of inconsistent triangles is monotonically decreasing due to the condition
that the consistency gain has to be positive (line 11 of Alg. 4), the number of iterations
depends on the number of triangles (O(V 3)), and therefore the overall complexity isO(V 5).

If we compare the complexity of the new clustering approaches MCC/EMCC and
GECG, for all three, the runtime depends on the size of the connected components that
result from the pairwise comparison. For smaller connected components with V < 55,
MCC and EMCC are expected to run faster than GECG, and vice versa for larger con-
nected components with V ≥ 55 GECG is expected to be faster. This is shown in Tab. 5.5
and also later in our experimental evaluation. In the experimental evaluation, we compare
the runtimes of all clustering algorithms.

Table 5.5: Complexity comparison for EMCC and GECG.

V EMCC O(3V/3) GECG O(V 5)

53 268,622,364 418,195,493
54 387.420.489 459.165.024
55 558.757.034 503.284.375
56 805.867.092 550.731.776

102

5.6. Evaluation

5.6 Evaluation

In this section, we evaluate all clustering algorithms presented in the previous sections us-
ing various datasets. We employ different algorithms for the pairwise comparison. Next to
an exhaustive comparison, we also evaluate the effects of Blocking and the Sorted Neigh-
borhood Method on the clustering result [40, 135]. Both methods compare only record
pairs with a higher chance of being duplicates and thus reduce the pairwise comparison
effort with the restriction that some duplicates might be missed.

5.6.1 Baseline Clustering Algorithms

For our evaluation, we additionally use two baseline algorithms that help to measure the
performance of the clustering algorithms.

NoClustering: No clustering means that no edge is switched, and the clustering
result is identical to the result of the pairwise comparison. Thus, we do not have cliques
as described in Sec. 5.1, and the result might be inconsistent regarding the “is-duplicate-
of” relation, e.g., 〈A,B〉 and 〈B,C〉 are duplicates, but 〈A,C〉 is not. The result of this
approach can be used to evaluate how much a clustering algorithm can improve the result
of the pairwise comparison. Due to possible inconsistencies in the result, this approach
should not be used in real-life scenarios.

Gold Standard Clustering: We use the gold standard to decide for each component
which vertices belong to the same cluster. Thus, the precision of gold standard clustering
is always 100%. Note that the recall is not always 100% because gold standard cluster-
ing considers only duplicates that were placed in the same component by the pairwise
classification. The records of a duplicate might be in different components due to a mis-
classification, or the records were not selected as candidate pair. Gold standard clustering
is not suitable in real-world scenarios because the gold standard is generally unknown.
However, for our experiments, it is the upper bound for what can be reached without
connecting different components.

5.6.2 Datasets

For our evaluation, we use various synthetic and real-world datasets, some of which have
already been used in the previous chapters. For each, we describe its content, our similarity
measure, and other used parameters. Our similarity measures have been carefully created
to the best of our knowledge. Table 5.6 gives an overview of all datasets. For Stringer,
which consists of 29 datasets, we report only the average values of all datasets. The
configurations for the pair selection algorithms Blocking and Sorted Neighborhood method
are shown in Tab. 5.7.

103

Chapter 5. Clustering

Table 5.6: Overview of datasets, showing the number of records and clusters, the percent-
age of singleton clusters, and for non-singleton clusters the cluster sizes. For Stringer, the
table shows average values.

Dataset
Records # Clusters Singleton Non-singleton Clust. Sizes

% Average Median Maxim.

Cora 1,879 182 35.16 % 15.38 6.0 238
CD 9,763 9,508 97.68 % 2.15 2.0 6
Febrl Small 11,000 10,000 94.99 % 3.00 3.0 4
Febrl Large 20,000 10,000 79.73 % 5.93 6.0 10
NCVoter 8,261,838 8,110,137 98.17 % 2.02 2.0 6
Birth records 17,611 5,244 41.15 % 5.01 5.0 16
Stringer 4,163 638 14.97 % 8.32 8.1 20.66

Table 5.7: Configuration of pair selection algorithms Blocking and Sorted Neighborhood
Method (SNM) for datasets Cora, CD, Febrl, and NCVoter.

Dataset Pair Selection Configuration
Algorithm

Cora Blocking Three blocking keys with the first two characters of attributes
ReferenceID, Title, and Author.

SNM Window size 20 with three sorting keys 〈Refer.ID, Title, Author〉,
〈Title, Author, Refer.ID〉, and 〈Author, Title, Refer.ID〉.

CD Blocking Three blocking keys with the first two characters of attributes
Artist, Title, and Track01.

SNM Window size 20 with three sorting keys 〈Artist, Title, Track01 〉,
〈Title, Artist, Track01 〉, and 〈Track01, Artist, Title〉.

Febrl
(small/large)

Blocking Three blocking criteria with the first two characters of attributes
Firstname, Lastname, and Postcode.

SNM Window size 20 with three sorting keys 〈Firstname, Lastname〉,
〈Lastname, Firstname〉, and 〈Postcode, Address〉.

NCVoter Blocking Two blocking keys: (i) the concatenation of the first two letters of
Firstname and Lastname, and (ii) the concatenation of the first
four letters of City and Street address.

SNM Window size 20 with two sorting keys 〈Lastname, Firstname,
Middle name〉, 〈Firstname, Lastname, Middle name〉.

104

5.6. Evaluation

The previously mentioned Cora citation matching dataset3 comprises 1,879 references
of research papers and is often used for duplicate detection research [18,61]. The definition
of a Cora gold standard is described in [65]. For the classification as duplicate or non-
duplicate, we use a similarity measure that calculates the average Jaccard coefficient [143]
of attributes Title and Author using bigrams. Additional rules set the similarity of a
record pair to 0.0 when certain conditions are met. These rules are (1) the year attribute
has different values, (2) one reference is a technical report and the other is not, (3) the
Levenshtein edit distance of attribute Pages is greater than 2, and (4) one reference is a
journal, but the other one is a book.

The CD dataset4 is a randomly selected extract from freeDB. It contains information
about 9,763 CDs, including artists, titles, and songs. The dataset has been used in several
papers [40, 98]. Our similarity function calculates the average Levenshtein similarity of
the three attributes Artist, Title, and Track01, but also considers null values and string-
containment.

The Febrl dataset generator [36] was used to create two artificial datasets. Both
were created with 10,000 records of unique entities. The smaller dataset (Febrl small)
contains an additional 1,000 duplicate records with up to three duplicates per entity. The
larger dataset (Febrl large) contains 10,000 additional duplicate records with up to nine
duplicates per cluster and additionally more modifications in the duplicates than those
in the smaller one. The similarity function aggregates the Jaro-Winkler similarities of
attributes Firstname, Lastname, Address, Suburb, and State.

The NCVoter dataset5 contains about 8.2 million records with personal details of
individuals, such as name, address, and age. For some voters, there exists more than one
record, for instance, because their personal details have changed over time, or misspellings
were corrected. Ramadan et al. have extensively deduplicated this dataset, and we use
their result as the gold standard [165]. Due to the high number of records in the NCVoter
dataset, it is not feasible to perform an exhaustive pairwise comparison. Thus, we evaluate
only the clustering algorithms based on Blocking and the Sorted Neighborhood Method.

The historical Birth records dataset consists of 17,614 birth records from the Isle of
Skye in Scotland, spanning the years 1861 to 1901, where the linkage task is to group
all birth records of babies with the same parents, i.e., create one cluster per family. For
each birth record, the name and address details of the baby and its parents, as well
as marriage date and place, and occupation information of the parents were used in a
pairwise comparison step. A locality-sensitive hashing-based (LSH) blocking approach
on these string attributes (converted into character bigrams) was applied. The Jaro-
Winkler approximate string comparison function was used to calculate the similarities
between string values, and an approximate numerical similarity was calculated between

3https://people.cs.umass.edu/~mccallum/data.html
4https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html
5ftp://www.app.sboe.state.nc.us

105

https://people.cs.umass.edu/~mccallum/data.html
https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html
ftp://www.app.sboe.state.nc.us

Chapter 5. Clustering

year values [39]. Due to the highly skewed nature of the names and addresses in this
dataset, where the majority of people had one of only a very few common names and
lived in a small number of villages [168], the basic pairwise linkage did not result in high
linkage quality (too many false matches) [41], and clustering is required to identify the
correct groupings of birth records. Manually prepared ground truth, based on extensive
semi-automatic linkages done by domain experts [168], was available, which allowed us to
calculate the quality of the final clustering results.

The Stringer dataset6 comprises 29 datasets that were created with an enhanced ver-
sion of the UIS database generator and that were also used in the experimental evaluation
in [91]. We use Stringer only for an evaluation of clustering algorithms based on an ex-
haustive pairwise comparison, as it would be too time-consuming to find good blocking
criteria and sorting keys for each of the 29 datasets. The similarity measure corresponds
to the implementation in [91]. We use a weighted Jaccard similarity based on bigrams.

5.6.3 Evaluation Approach and Results

We used the DuDe toolkit [65] for our evaluation and ran all experiments on a server with
two 6-core 64-bit Intel Xeon 2.93 GHz CPUs, 96 GBytes of memory, and running Ubuntu
17.04. For the clustering algorithms, we use the following configurations: GCluster with
θ = 0.5 and δ = 0.6, and for EMCC, we evaluated the best values for τ , as shown in
Tab. 5.8. Table 5.9 gives for this configuration an overview of the connected components
without singletons that result from the pairwise comparison, showing the different sizes
per dataset and pair selection algorithm.

We use four different measures to evaluate the performance of the clustering algorithms,
as described in Sec. 2.4. Next to the most prominent measures precision (fraction of cor-
rectly detected duplicates and all detected duplicates), recall (fraction of detected duplicate

6http://dblab.cs.toronto.edu/project/stringer/clustering/

Table 5.8: EMCC: best value ranges for τ . Evaluated were all values from 0.00–1.00 with
a step size of 0.01. The best values for τ result in the highest F-measure values.

Dataset Exhaustive Comparison Blocking Sorted Neighborhood

Cora 0.32 - 0.38 0.07 0.04
CD 0.51 - 1.00 0.51 - 1.00 0.51 - 1.00
Febrl Small 0.00 - 0.33 0.00 - 0.33 0.00 - 0.33
Febrl Large 0.21 - 0.22 0.15 - 0.16 0.11
NCVoter — 0.41 - 0.50 0.76 - 1.00
Birth records — 0.49 - 0.50 —
Stringer 0.50 — —

106

http://dblab.cs.toronto.edu/project/stringer/clustering/

5.6. Evaluation

Table 5.9: Overview of connected components without singletons that result from the
pairwise comparison, showing the different sizes per dataset and pair selection algorithm
(average values for Stringer)

Dataset
Exhaustive Blocking Sorted Neighborhood

Count Avg Median Max Count Avg Median Max Count Avg Median Max

Cora 104 17.47 5 240 107 16.98 5 240 108 16.80 5 239
CD 204 2.19 2 6 199 2.16 2 6 200 2.16 2 6
Febrl Small 505 2.95 3 4 503 2.95 3 4 497 2.96 3 4
Febrl Large 2,024 6.08 5 826 2,061 5.90 5 334 2,066 5.68 5 77
NCVoter — — — — 179,059 2.04 2 9 168,785 2.04 2 9
Birth records — — — — 1,978 7.67 3 6,386 — — — —
Stringer 398 20 9 614 — — — — — — — —

pairs and the overall number of existing duplicate pairs), and F-measure (harmonic mean
of precision and recall) [143], we also use the generalized merged distance (GMD) [132].
GMD is defined as the minimal number of merge (m) and split (s) operations to transform
the clustering result to the real-world classification. GMD can be configured in different
ways and we use equal costs for merging and splitting (fm = fs = 1) in our evaluation, so
we do not favor smaller or larger clusters. The first three measures are pairwise measures,
whereas GMD considers the quality of the clusters.

We acknowledge recent work that has identified some issues when the F-measure is
used to compare deduplication methods [90]. The harmonic mean calculation of the F-
measure can be converted into a weighted arithmetic mean of precision and recall, however,
where different weights are assigned to precision and recall depending upon the number of
classified duplicates. This can occur, for example, when different similarity thresholds are
used when deduplication methods are compared. In our evaluation, as we discuss next,
we do not vary such similarity thresholds for the same dataset, but rather we identify the
best threshold for each dataset based on the exhaustive pairwise comparison. Therefore,
our use of the F-measure is valid. Furthermore, we present precision and recall results as
well to provide the full details of the obtained deduplication quality.

The first evaluation step is finding a suitable classification threshold for each dataset to
classify the record pairs as duplicate or non-duplicate. To give no clustering approach an
advantage, we take the F-measure result of the exhaustive pairwise comparison without
any clustering as a benchmark. If for one dataset multiple thresholds lead to the same
F-measure value, we take the threshold with the best precision value, and if there are still
multiple possible thresholds, we take the highest one. Table 5.10 gives an overview of the
datasets and their best threshold that we use in our evaluation. The table additionally
shows precision and recall values. Due to the high number of records for NCVoter, here
we use the Sorted Neighborhood results instead.

107

Chapter 5. Clustering

Table 5.10: Best threshold and its result per dataset for a exhaustive pairwise comparison
without clustering.

Dataset Best Threshold F-measure Precision Recall

Cora 0.64 97.66 % 98.05 % 97.28 %
CD 0.81 88.32 % 90.81 % 85.95 %
Febrl Small 0.91 97.07 % 99.24 % 95.00 %
Febrl Large 0.87 90.75 % 97.37 % 84.97 %
NCVoter 0.56 82.09 % 76.40 % 88.69 %
Birth records 0.78 67.18 % 66.40 % 67.98 %
ST. AB 0.64 99.72 % 99.80 % 99.63 %
ST. DBLPH1 0.18 87.77 % 91.59 % 84.25 %
ST. DBLPH2 0.23 86.53 % 88.76 % 84.41 %
ST. DBLPL1 0.36 99.50 % 99.75 % 99.26 %
ST. DBLPL2 0.40 99.63 % 99.61 % 99.64 %
ST. DBLPM1 0.26 89.65 % 91.14 % 88.20 %
ST. DBLPM2 0.32 94.53 % 97.77 % 91.51 %
ST. DBLPM3 0.29 99.18 % 99.03 % 99.34 %
ST. DBLPM4 0.31 99.01 % 98.69 % 99.33 %
ST. EDH 0.20 53.59 % 52.90 % 54.29 %
ST. EDL 0.35 87.98 % 89.77 % 86.27 %
ST. EDM 0.25 68.95 % 70.80 % 67.20 %
ST. H1 0.22 54.81 % 54.55 % 55.06 %
ST. H2 0.31 59.28 % 57.36 % 61.34 %
ST. L1 0.47 93.80 % 96.49 % 91.25 %
ST. L2 0.55 96.24 % 99.04 % 93.60 %
ST. M1 0.42 72.71 % 86.68 % 62.62 %
ST. M2 0.56 91.06 % 99.21 % 84.14 %
ST. M3 0.36 88.85 % 89.22 % 88.49 %
ST. M4 0.41 90.58 % 90.89 % 90.27 %
ST. TS 0.89 100.00 % 100.00 % 100.00 %
ST. ZH1 0.33 38.48 % 36.96 % 40.13 %
ST. ZH2 0.43 54.77 % 65.85 % 46.88 %
ST. ZL1 0.50 92.48 % 92.65 % 92.30 %
ST. ZL2 0.53 95.13 % 93.93 % 96.36 %
ST. ZM1 0.60 71.75 % 97.80 % 56.66 %
ST. ZM2 0.60 94.00 % 98.50 % 89.90 %
ST. ZM3 0.43 84.21 % 84.71 % 83.71 %
ST. ZM4 0.47 87.68 % 89.40 % 86.03 %

108

5.6. Evaluation

In the second step, we use the previously evaluated thresholds to run the clustering
experiments. For Stringer, we have aggregated the results of the individual datasets and
show only the average results in Tab. 5.11(a). This table shows for NoClustering the
absolute values for F-measure, precision, and recall, and for all other clustering algorithms
the difference in comparison to NoClustering. The highest improvements for each measure
are highlighted, e.g., GECG has the best F-measure value, which is 2.98 % higher than
the F-measure value for NoClustering. The column for the GMD shows absolute values,
not the improvements. Note that for NoClustering we cannot calculate a GMD, as we
would need consistent clusters. For F-measure, precision, and recall, higher values are
better, whereas the GMD should be as low as possible. The results of the Birth records
and NCVoter datasets are shown in Tab. 5.11(b) and Tab. 5.11(c), whereas Tab. 5.12
shows the results of datasets Cora (Tab. 5.12(a)) and CD (Tab. 5.12(b)), and Tab. 5.13
the results for both Febrl datasets, each with all pair selection algorithms.

For algorithm GECG, four Stringer and the Birth records dataset did not finish within
60 hours due to very large connected components (> 3,500 vertices each). Thus, for
GECG and Stringer, we report only the average results of all other Stringer datasets, and
no values for the Birth records dataset. We briefly report on runtimes separately at the
end of the section.

For all datasets, we observe that our classifiers alone already lead to good results (see
NoClustering). The possible improvements of a perfect clustering algorithm that improves
the quality only within a component, but does not assign records of different components
to the same cluster, are very limited (see GoldStandard clustering). On the other hand, a
clustering algorithm can also worsen the results of a pairwise comparison.

We can distinguish between datasets with small cluster sizes (e.g., CD, Febrl small,
NCVoter) and datasets with large cluster sizes (e.g., Cora, Febrl large, Birth records).
For the former datasets, the clustering algorithms achieve the same or similar results, and
there is no single clustering algorithm that outperforms the others. For the latter datasets,
we observe that the Transitive Closure, as expected, leads to the best recall values, but on
the other hand it also results in very low precision, and thus also low F-measure values.
Merge-Center Clustering and Modified Star Clustering (with the exception of Febrl large)
also tend to decrease the quality of the results. The best performing clustering algorithms
are Markov clustering and our new algorithm EMCC. The main difference between the
results of these two algorithms is that Markov Clustering leads to higher recall values,
whereas EMCC leads to a higher precision.

For the difficult Cora dataset, EMCC is the only algorithm that shows a slight increase
for F-measure, while Markov Clustering shows only a slight decrease. For Febrl large,
they both show the best results, and for Birth records, EMCC has the highest F-measure
value. GCluster shows especially good results for precision but yields the lowest recall

109

Chapter 5. Clustering

Table
5.11:

Experim
entalevaluation

for
datasets

Stringer,B
irth

records,and
N
C
Voter

w
ith

different
pair

selection
strategies.

(a)
R
esults

Stringer
dataset

Stringer
Exhaustive

C
om

parison
C
luster

A
lg.

F-m
easure

Precision
R
ecall

G
M
D

N
o
C
lustering

83.86
%

86.65
%

81.80
%

—
G
old

Standard
C
lust.

+
10.00

%
+
13.35

%
+
7.96

%
157.59

M
C
C

-6.86
%

+
2.76

%
-12.32

%
617.79

EM
C
C

+
0.10

%
+
1.13

%
-0.67

%
414.76

G
EC

G
+
2.98

%
+
3.24

%
+
2.84

%
275.56

Transitive
C
losure

-19.23
%

-25.16
%

+
7.96

%
272.79

G
C
luster

-1.70
%

+
8.50

%
-6.55

%
432.03

M
arkov

C
lustering

+
2.40

%
-1.22

%
+
7.22

%
239.55

M
erge-C

enter
C
lust.

-18.39
%

-24.21
%

+
6.84

%
288.62

M
od.

Star
C
lustering

-2.86
%

-6.53
%

+
1.47

%
414.24

V
O
T
E/B

O
EM

-14.59
%

+
10.50

%
-21.18

%
1,010.31

(b)
R
esults

B
irth

records
dataset

B
irth

R
ecords

LSH
-based

B
locking

C
luster

A
lg.

F-m
easure

Precision
R
ecall

G
M
D

N
o
C
lustering

67.18
%

66.40
%

67.98
%

—
G
old

Standard
C
lust.

+
24.05

%
+
33.60

%
+
15.89

%
1,273

M
C
C

+
1.53

%
+
22.29

%
-11.90

%
3,808

EM
C
C

+
5.45

%
+
14.68

%
-2.21

%
3,293

G
EC

G
—

—
—

—
Transitive

C
losure

-66.84
%

-66.23
%

+
15.89

%
3,366

G
C
luster

+
1.50

%
+
24.84

%
-12.91

%
3,713

M
arkov

C
lustering

-1.43
%

-9.11
%

+
9.17

%
2,899

M
erge-C

enter
C
lust.

-66.76
%

-66.19
%

+
13.21

%
3,449

M
od.

Star
C
lustering

-16.68
%

-26.06
%

-0.48
%

3,912
V
O
T
E/B

O
EM

+
2.13

%
+
24.01

%
-11.79

%
3,647

(c)
R
esults

N
C
Voter

dataset

N
C
V
oter

B
locking

Sorted
N
eighborhood

C
lustering

A
lg.

F-m
easure

Precision
R
ecall

G
M
D

F-m
easure

Precision
R
ecall

G
M
D

N
o
C
lustering

83.37
%

75.35
%

93.31
%

—
82.09

%
76.40

%
88.69

%
—

G
old

Standard
C
lust.

+
13.36

%
+
24.65

%
+
0.35

%
9,656

+
12.05

%
+
23.60

%
+
0.25

%
16,777

M
C
C

-0.13
%

+
0.21

%
-0.67

%
54,331

-0.09
%

+
0.19

%
-0.45

%
57,102

EM
C
C

-0.11
%

-0.36
%

-0.28
%

54,057
-0.09

%
+
0.19

%
-0.45

%
57,089

G
EC

G
-0.09

%
+
0.22

%
-0.55

%
54,086

-0.07
%

+
0.17

%
-0.38

%
56,976

Transitive
C
losure

-0.20
%

-0.55
%

+
0.35

%
54,099

-0.14
%

-0.42
%

+
0.25

%
56,987

G
C
luster

-0.05
%

+
0.27

%
-0.55

%
54,056

-0.05
%

+
0.20

%
-0.38

%
56,960

M
arkov

C
lustering

-0.17
%

-0.51
%

+
0.34

%
54,089

-0.13
&

-0.39
%

+
0.23

%
56,983

M
erge

C
enter

C
lust.

-0.11
%

-0.19
%

+
0.01

%
54,019

-0.10
%

-0.15
%

-0.02
%

56,954
M
od.

Star
C
lustering

-0.17
%

-0.49
%

+
0.33

%
54,086

-0.12
%

-0.37
%

+
0.23

%
56,975

V
O
T
E/B

O
EM

-0.05
%

+
0.30

%
-0.57

%
54,045

-0.04
%

+
0.24

%
-0.39

%
56,937

110

5.6. Evaluation
Ta

bl
e
5.
12

:
Ex

pe
rim

en
ta
le

va
lu
at
io
n
fo
r
da

ta
se
ts

C
or
a
an

d
C
D

w
ith

di
ffe

re
nt

pa
ir

se
le
ct
io
n
st
ra
te
gi
es
.

(a
)
R
es
ul
ts

C
or
a
da

ta
se
t

C
or
a

Ex
ha

us
tiv

e
C
om

pa
ris

on
B
lo
ck
in
g

So
rt
ed

N
ei
gh

bo
rh
oo

d
C
lu
st
er
in
g
A
lg
.

F-
m
ea
su
re

Pr
ec
isi
on

R
ec
al
l

G
M
D

F-
m
ea
su
re

Pr
ec
isi
on

R
ec
al
l

G
M
D

F-
m
ea
su
re

Pr
ec
isi
on

R
ec
al
l

G
M
D

N
o
C
lu
st
er
in
g

97
.6
6
%

98
.0
5
%

97
.2
8
%

—
94
.8
8
%

98
.8
7
%

91
.2
0
%

—
55
.2
0
%

98
.6
8
%

38
.3
2
%

—
G
ol
d
St
an

da
rd

C
lu
st
.

+
2.
10

%
+
1.
95

%
+
2.
23

%
12

+
4.
88

%
+
1.
13

%
+
8.
31

%
12

+
44
.5
6
%

+
1.
32

%
+
61
.1
9
%

12

M
C
C

-1
.4
8
%

+
1.
29

%
-4
.0
7
%

40
-4
.9
8
%

+
0.
61

%
-9
.1
9
%

59
-2
2.
16

%
+
0.
72

%
-1
8.
51

%
11
5

EM
C
C

+
0.
21

%
+
0.
21

%
+
0.
21

%
32

+
3.
99

%
-0
.5
2
%

+
8.
19

%
29

+
21
.7
4
%

-0
.5
1
%

+
24
.9
4
%

40
G
EC

G
-0
.7
7
%

-1
.3
4
%

-0
.2
1
%

33
+
0.
43

%
+
0.
32

%
+
0.
53

%
44

-5
.4
5
%

+
0.
57

%
-5
.1
3
%

62
Tr

an
sit

iv
e
C
lo
su
re

-9
.6
5
%

-1
9.
15

%
+
2.
23

%
40

-4
.8
8
%

-1
6.
72

%
+
8.
31

%
37

+
36
.0
6
%

-1
4.
42

%
+
61
.1
9
%

33
G
C
lu
st
er

-3
.8
6
%

+
0.
95

%
-8
.1
6
%

53
-2
6.
55

%
-0
.0
5
%

-3
8.
98

%
77

-2
4.
77

%
-0
.0
8
%

-2
0.
33

%
12
4

M
ar
ko
v
C
lu
st
er
in
g

-0
.3
2
%

-2
.7
8
%

+
2.
23

%
28

+
3.
63

%
-1
.2
7
%

+
8.
24

%
28

+
18
.6
3
%

-0
.6
0
%

+
20
.8
7
%

28
M
er
ge
-C

en
te
r
C
lu
st
.

-9
.6
5
%

-1
9.
15

%
+
2.
23

%
40

-4
.0
4
%

-1
5.
30

%
+
8.
31

%
35

+
36
.8
5
%

-1
3.
05

%
+
61
.1
9
%

31
St
ar

C
lu
st
er
in
g

-4
.1
5
%

-9
.4
0
%

+
1.
65

%
44

-1
.6
9
%

-6
.3
2
%

+
2.
64

%
50

+
2.
19

%
-4
.0
1
%

+
2.
86

%
62

V
O
T
E/

B
O
EM

-8
.9
5
%

+
0.
53

%
-1
6.
65

%
51

-1
0.
06

%
-0
.0
9
%

-1
6.
89

%
65

-1
0.
80

%
+
0.
80

%
-9
.7
4
%

10
0

(b
)
R
es
ul
ts

C
D

da
ta
se
t

C
D

Ex
ha

us
tiv

e
C
om

pa
ris

on
B
lo
ck
in
g

So
rt
ed

N
ei
gh

bo
rh
oo

d
C
lu
st
er
in
g
A
lg
.

F-
m
ea
su
re

Pr
ec
isi
on

R
ec
al
l

G
M
D

F-
m
ea
su
re

Pr
ec
isi
on

R
ec
al
l

G
M
D

F-
m
ea
su
re

Pr
ec
isi
on

R
ec
al
l

G
M
D

N
o
C
lu
st
er
in
g

88
.3
2
%

90
.8
1
%

85
.9
5
%

—
90
.1
8
%

94
.8
3
%

85
.9
5
%

—
90
.0
2
%

94
.4
9
%

85
.9
5
%

—
G
ol
d
St
an

da
rd

C
lu
st
.

+
4.
32

%
+
9.
19

%
+
0.
34

%
38

+
2.
46

%
+
5.
17

%
+
0.
34

%
38

+
2.
62

%
+
5.
51

%
+
0.
34

%
38

M
C
C

+
1.
19

%
+
2.
96

%
-0
.3
3
%

56
+
0.
12

%
+
0.
69

%
-0
.3
3
%

51
+
0.
12

%
+
0.
68

%
-0
.3
3
%

52
EM

C
C

+
1.
19

%
+
2.
96

%
-0
.3
3
%

56
+
0.
12

%
+
0.
69

%
-0
.3
3
%

51
+
0.
12

%
+
0.
68

%
-0
.3
3
%

52
G
EC

G
+
1.
19

%
+
2.
96

%
-0
.3
3
%

56
+
0.
12

%
+
0.
69

%
-0
.3
3
%

51
+
0.
12

%
+
0.
68

%
-0
.3
3
%

52
Tr

an
sit

iv
e
C
lo
su
re

-1
.8
9
%

-4
.2
3
%

+
0.
34

%
64

-0
.1
3
%

-0
.6
7
%

+
0.
34

%
52

-0
.1
2
%

-0
.6
7
%

+
0.
34

%
53

G
C
lu
st
er

+
1.
19

%
+
2.
96

%
-0
.3
3
%

56
+
0.
12

%
+
0.
69

%
-0
.3
3
%

51
+
0.
12

%
+
0.
68

%
-0
.3
3
%

52
M
ar
ko
v
C
lu
st
er
in
g

-1
.8
9
%

-4
.2
3
%

+
0.
34

%
64

-0
.1
3
%

-0
.6
7
%

+
0.
34

%
52

-0
.1
2
%

-0
.6
7
%

+
0.
34

%
53

M
er
ge
-C

en
te
r
C
lu
st
.

+
0.
88

%
+
2.
28

%
-0
.3
3
%

57
-0
.2
0
%

-0
.0
1
%

-0
.3
3
%

52
-0
.1
9
%

-0
.0
2
%

-0
.3
3
%

53
M
od

.
St
ar

C
lu
st
er
in
g

-1
.8
9
%

-4
.2
3
%

+
0.
34

%
64

-0
.1
3
%

-0
.6
7
%

+
0.
34

%
52

-0
.1
2
%

-0
.6
7
%

+
0.
34

%
53

V
O
T
E/

B
O
EM

-1
.6
0
%

-3
.6
5
%

+
0.
34

%
63

-0
.1
3
%

-0
.6
7
%

+
0.
34

%
52

-0
.1
2
%

-0
.6
7
%

+
0.
34

%
53

111

Chapter 5. Clustering
Table

5.13:
Experim

entalevaluation
for

Febrldatasets
w
ith

different
pair

selection
strategies.

(a)
R
esults

FebrlSm
alldataset

Febrl
Sm

all
Exhaustive

C
om

parison
B
locking

Sorted
N
eighborhood

C
lustering

A
lg.

F-m
easure

Precision
R
ecall

G
M
D

F-m
easure

Precision
R
ecall

G
M
D

F-m
easure

Precision
R
ecall

G
M
D

N
o
C
lustering

97.07
%

99.24
%

95.00
%

—
97.10

%
99.37

%
94.94

%
—

97.25
%

99.75
%

94.88
%

—
G
old

Standard
C
lust.

+
1.00

%
+
0.76

%
+
1.20

%
29

+
0.97

%
+
0.63

%
+
1.26

%
29

+
0.82

%
+
0.25

%
+
1.32

%
29

M
C
C

-0.92
%

-0.01
%

-1.75
%

60
-0.99

%
-0.01

%
-1.87

%
59

-1.06
%

-0.01
%

-1.99
%

54
EM

C
C

+
0.63

%
+
0.01

%
+
1.20

%
41

+
0.66

%
+
0.01

%
+
1.26

%
39

+
0.69

%
+
0.00

%
+
1.32

%
33

G
EC

G
+
0.04

%
+
0.01

%
+
0.06

%
50

+
0.07

%
+
0.00

%
+
0.12

%
48

+
0.10

%
+
0.00

%
+
0.18

%
42

Transitive
C
losure

+
0.63

%
+
0.01

%
+
1.20

%
41

+
0.66

%
+
0.01

%
+
1.26

%
39

+
0.69

%
+
0.00

%
+
1.32

%
33

G
C
luster

+
0.00

%
+
0.00

%
+
0.00

%
50

+
0.03

%
+
0.00

%
+
0.06

%
48

+
0.06

%
+
0.00

%
+
0.12

%
42

M
arkov

C
lustering

+
0.63

%
+
0.01

%
+
1.20

%
41

+
0.66

%
+
0.01

%
+
1.26

%
39

+
0.69

%
+
0.00

%
+
1.32

%
33

M
erge-C

enter
C
lust.

+
0.45

%
+
0.01

%
+
0.84

%
44

+
0.48

%
+
0.01

%
+
0.90

%
42

+
0.51

%
+
0.00

%
+
0.96

%
36

M
od.

Star
C
lustering

+
0.63

%
+
0.01

%
+
1.20

%
41

+
0.66

%
+
0.01

%
+
1.26

%
39

+
0.69

%
+
0.00

%
+
1.32

%
33

V
O
T
E/B

O
EM

-0.92
%

-0.01
%

-1.75
%

60
-0.99

%
-0.01

%
-1.87

%
59

-1.06
%

-0.01
%

-1.99
%

54

(b)
R
esults

FebrlLarge
dataset

Febrl
Large

Exhaustive
C
om

parison
B
locking

Sorted
N
eighborhood

C
lustering

A
lg.

F-m
easure

Precision
R
ecall

G
M
D

F-m
easure

Precision
R
ecall

G
M
D

F-m
easure

Precision
R
ecall

G
M
D

N
o
C
lustering

90.75
%

97.37
%

84.97
%

—
90.17

%
97.94

%
83.55

%
—

88.31
%

99.15
%

79.62
%

—
G
old

Standard
C
lust.

+
6.18

%
+
2.63

%
+
9.07

%
396

+
6.45

%
+
2.06

%
+
9.91

%
428

+
7.21

%
+
0.85

%
+
11.81

%
545

M
C
C

-7.81
%

+
1.48

%
-13.53

%
1,879

-8.83
%

+
1.02

%
-14.51

%
1,938

-10.53
%

+
0.34

%
-15.77

%
2,089

EM
C
C

+
3.38

%
-0.20

%
+
6.31

%
941

+
3.78

%
-1.20

%
+
7.77

%
925

+
5.70

%
-1.35

%
+
10.88

%
789

G
EC

G
+
1.61

%
+
1.57

%
+
1.63

%
1,089

+
1.66

%
+
1.15

%
+
2.01

%
1,122

+
1.34

%
+
0.47

%
+
1.86

%
1,218

Transitive
C
losure

-74.09
%

-88.23
%

+
9.07

%
1,066

-38.37
%

-62.11
%

+
9.91

%
959

+
1.29

%
-11.31

%
+
11.81

%
759

G
C
luster

-2.71
%

+
1.34

%
-5.52

%
1,304

-2.79
%

+
0.94

%
-5.27

%
1,295

-4.19
%

+
0.30

%
-6.73

%
1,340

M
arkov

C
lustering

+
3.86

%
-1.81

%
+
8.70

%
883

+
4.64

%
-1.36

%
+
9.55

%
831

+
6.34

%
-0.63

%
+
11.44

%
736

M
erge-C

enter
C
lust.

-59.18
%

-78.34
%

+
7.51

%
991

-16.06
%

-35.80
%

+
8.24

%
927

+
3.68

%
-4.39

%
+
9.76

%
832

M
od.

Star
C
lustering

+
0.76

%
-4.89

%
+
5.60

%
1,107

+
1.99

%
-3.77

%
+
6.69

%
1,031

+
4.59

%
-1.58

%
+
9.03

%
884

V
O
T
E/B

O
EM

-8.09
%

+
1.54

%
-13.97

%
1,820

-8.95
%

+
1.05

%
-14.70

%
1,905

-10.66
%

+
0.36

%
-15.95

%
2,045

112

5.6. Evaluation

values. Thus, GCluster is especially useful in scenarios where high precision values are
required.

Our extension of MCC to EMCC shows a positive effect, especially on the recall values.
Due to possible false pairwise classifications, not every component is a clique. MCC splits
these components and creates smaller clusters, whereas EMCC corrects possible false
classifications, which results in larger clusters and thus higher recall values. For Febrl
large, we also observe a higher precision.

The effect of the pair selection algorithm on the ranking of clustering algorithms is very
low. If a clustering algorithm shows the best result for an exhaustive comparison, it is
also one of the best algorithms for this dataset with Blocking or the Sorted Neighborhood
Method. In general, the GMD values confirm our observations and interpretations for all
datasets and clustering methods.

Runtime results. To ensure a runtime comparison that is as fair as reasonably possi-
ble, we re-implemented all clustering approaches in Java. Only two exceptions were made:
GCluster includes a maximum weight matching step for which we used an existing Python
library NetworkX7, and Markov-Clustering, for which we used the published C implemen-
tation of the author8. Table 5.14 reports exemplary runtimes for each algorithm for three
selected datasets, one with large clusters (Cora) and two with small clusters (CD, Febrl
small), and the exhaustive pair selection strategy.

The reported runtimes reflect only the time needed for the clustering step itself but
not time spent on pair classification. Each experiment was run five times, and we report
average runtimes.

We observe that runtime behavior can depend on cluster sizes. The Cora dataset
contains very large clusters, while the other two datasets contain only many small clusters.
Some algorithms cope well with this difference, while others are significantly slower in
the former case. This is, in particular, true for five algorithms: Large clusters lead to
high complexities for calculating maximum cliques (MCC, EMCC), triangles (GECG),
matchings (GCluster), or net weight (VOTE/BOEM).

The impact of the clustering step on the overall runtime depends mainly on the size of
the connected components created in the pairwise-comparison step. Table 5.15 shows the
runtime for the pairwise comparison. It mainly depends on the dataset size but also on
the complexity of the classifier. For Blocking and the Sorted Neighborhood Method, the
runtimes are much smaller, as expected. In the case of large connected component sizes,
e.g., for Cora, we can see that the selection of the clustering algorithm has a high impact
on the overall runtime. Vice versa, for small connected component sizes, the selection of
the clustering algorithm has only a small impact on the overall runtime, which is mainly
dominated by the runtime of the pair selection algorithm.

7https://networkx.github.io
8https://micans.org/mcl

113

https://networkx.github.io
https://micans.org/mcl

Chapter 5. Clustering

Table 5.14: Runtimes (in ms) for selected datasets.

Cluster Alg. Cora CD Febrl small

MCC 767,559 86 136
EMCC 785,137 91 141
GECG 11,131 86 131
Transitive Closure 781 61 98
GCluster 155,708 98,034 354.923
Markov Clustering 598 9 33
Merge Center Clust. 399 21 35
Mod. Star Clustering 792 68 103
VOTE/BOEM 8,196 74 112

Table 5.15: Pair-creation runtimes (in ms). The table shows the average values of five
runs.

Dataset Exhaustive Blocking SNM

Cora 176,565 28,148 10,354
CD 280,241 18,334 5,233
Febrl Small 414,740 30,178 5,858
Febrl Large 1,240,957 100,900 9,380
NCVoter — 23,523,221 2,706,307
Stringer 100,471 — —

Evaluation of the effect of different classifiers on the clustering result. For
the previous experiments, we used high-quality classifiers, which led to good results for
a pairwise comparison. Misclassifications can, but do not necessarily, have a negative
impact on the overall result. Classifiers can be very restrictive, which leads to smaller
connected components with a high precision, but a low recall value. Vice versa, classifiers
can classify too many record pairs as duplicates and therefore increase the size of the
connected components, which possibly leads to a higher recall value, but a lower precision.
We now experimentally evaluate the effect of misclassifications on the clustering result and,
for this purpose, use the Cora dataset again, but this time we use three classifiers with
different properties. These are the same three classifiers as used in [69].

Table 5.16 gives an overview of the classifier quality, achieved by an exhaustive com-
parison without clustering. The first classifier, C1, has both a high precision and a high
recall value. The other two classifiers have either only high recall (C2) or high precision
(C3). Note that all three classifiers still lead to good results of the pairwise comparison.
The goal of the additional experiments is to evaluate whether the clustering algorithms

114

5.6. Evaluation

Table 5.16: Three classifiers for the Cora dataset. The numbers are based in an exhaustive
pairwise comparison without clustering.

Classifier Precision Recall F-measure

C1 98.12 % 97.17 % 97.64 %
C2 83.27 % 99.16 % 90.52 %
C3 99.78 % 84.28 % 91.38 %

are resistant to small deviations of the classifier quality. We use again the three pair se-
lection algorithms from the previous experiments for the pairwise comparison, as well as
F-measure, precision, recall, and GMD as measures.

Table 5.17 shows the results for the different clustering algorithms. For the exhaustive
comparison, we can see that the Transitive Closure, Markov clustering, and Merge-Center
clustering have a much lower F-measure value for classifier C2 compared to C1, which
shows that they are very sensitive regarding the precision value of the classifier. The
lower recall value of C3 does not have such a strong impact on these clustering algo-
rithms. In fact, the Transitive Closure and Merge-Center clustering have significantly
higher F-measure values for C3 compared to C1. On the other hand, MCC, GCluster, and
VOTE/BOEM have a significantly lower F-measure value for C3, but for C2, they show
only slight differences. EMCC, Star Clustering, and especially GECG show only small
divergences for both C2 and C3 compared to C1.

For Blocking, the results are similar to the exhaustive comparison as pair selection
algorithm. The Transitive Closure and Merge-Center Clustering achieve worse results
with C2 compared with C1 but benefit from the higher precision of C3. Vice versa, MCC
and VOTE/BOEM achieve worse results with C3 but benefit from the higher recall values
of C2. The other clustering algorithms have smaller differences for the three classifiers.
Interestingly, GCluster this time has a higher difference between C1 and C2 than between
C1 and C3.

With the Sorted Neighborhood method as pair selection algorithm, we can see fewer dif-
ferences between the three classifiers than for the exhaustive comparison or blocking. Only
for the Transitive Closure and Merge-Center Clustering are the results of C2 considerably
smaller than for C1.

The additional experiments show that especially the Transitive Closure, Merge-Center
Clustering, and Markov clustering need a classifier with a high precision value to achieve
good results. For these algorithms, a classifier with a lower recall value has not necessarily
a negative impact. The opposite is true for MCC and VOTE/BOEM. A lower precision
value of the classifier has a much smaller impact on the F-measure value than a smaller
recall value of the classifier. The same is true for GCluster with an exhaustive comparison,
but GCluster shows similar results for all three classifiers with blocking or the Sorted

115

Chapter 5. Clustering

Table 5.17: Experimental evaluation for the Cora dataset with three different classifiers
and different pair selection algorithms.

Exhaustive C. F-measure in % Precision in % Recall in % GMD
Clustering Alg. C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

No Clustering 97.64 90.52 91.38 98.12 83.27 99.78 97.17 99.16 84.28 40 52 41
Gold Standard Cl. 99.76 99.81 98.22 100.00 100.00 100.00 99.51 99.61 96.50 12 8 34

MCC 96.04 93.64 80.96 99.34 92.19 99.89 92.96 95.13 68.06 44 58 116
EMCC 97.95 91.22 91.50 99.00 84.63 99.91 96.93 98.93 84.39 33 50 86
GECG 96.84 90.57 92.95 96.71 83.34 99.91 96.98 99.19 86.89 34 49 79
Transitive Closure 88.01 71.63 97.47 78.90 55.92 98.47 99.51 99.61 96.50 40 52 41
GCluster 94.68 92.60 60.45 99.09 95.74 99.92 90.64 89.65 43.33 60 71 84
Markov Clustering 97.34 87.44 95.17 95.27 77.92 98.58 99.51 99.61 91.99 28 43 44
Merge-Center Cl. 89.26 71.63 97.56 80.92 55.92 98.66 99.51 99.61 96.48 39 52 40
Mod. Star Cl. 93.77 87.07 94.49 89.19 78.39 98.50 98.84 97.92 90.80 45 65 58
VOTE/BOEM 89.83 87.85 78.90 98.70 87.51 99.01 82.43 88.20 65.58 48 55 124

Blocking F-measure in % Precision in % Recall in % GMD
Clustering Alg. C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

No Clustering 94.85 91.14 89.13 98.93 89.39 99.77 91.09 92.97 80.54 36 49 41
Gold Standard Cl. 94.85 99.81 98.22 100.00 100.00 100.00 99.51 99.61 96.50 12 8 34

MCC 89.80 90.32 79.38 99.48 97.18 99.89 81.84 84.37 65.86 60 67 128
EMCC 94.98 93.16 88.49 99.10 93.23 99.91 91.19 93.10 79.42 49 61 101
GECG 95.27 90.56 90.46 99.19 88.20 99.91 91.64 93.04 82.64 45 59 94
Transitive Closure 91.30 72.60 97.47 84.34 57.11 98.47 99.51 99.61 96.50 36 49 41
GCluster 67.86 59.58 63.14 98.93 94.92 99.92 51.64 43.42 46.15 75 88 101
Markov Clustering 98.51 90.76 95.14 97.60 83.42 98.60 99.44 99.52 91.92 28 43 45
Merge-Center Cl. 92.17 72.60 97.64 85.84 57.11 98.83 99.51 99.61 96.47 34 49 42
Mod. Star Cl. 93.47 89.11 93.11 93.19 83.84 98.88 93.75 95.08 87.97 50 65 63
VOTE/BOEM 82.96 86.01 68.50 98.64 97.01 99.53 71.59 77.25 52.22 72 68 127

Sorted Neighb. F-measure in % Precision in % Recall in % GMD
Clustering Alg. C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

No Clustering 55.13 54.88 50.92 98.75 91.60 99.65 38.24 39.17 34.20 31 47 42
Gold Standard Cl. 99.76 99.81 98.19 100.00 100.00 100.00 99.51 99.61 96.43 12 8 36

MCC 32.77 33.25 30.39 99.38 96.15 99.59 19.62 20.10 17.93 120 126 169
EMCC 47.90 48.08 43.03 99.05 94.23 99.71 31.59 32.28 27.43 72 87 130
GECG 49.65 49.95 43.60 99.24 94.88 99.73 33.11 33.90 27.90 63 76 118
Transitive Closure 92.75 77.96 97.62 86.84 64.04 98.83 99.51 99.61 96.43 31 47 42
GCluster 30.72 30.00 27.92 98.72 96.50 99.82 18.19 17.76 16.23 118 143 144
Markov Clustering 73.81 71.56 66.37 98.08 95.26 99.67 59.17 57.31 49.74 28 38 55
Merge-Center Cl. 95.41 77.96 97.67 91.66 64.04 99.01 99.48 99.61 96.37 30 47 44
Mod. Star Cl. 57.30 55.85 55.15 94.66 85.89 99.05 41.09 41.38 38.21 63 96 93
VOTE/BOEM 42.13 41.16 42.09 99.01 96.16 98.83 26.75 26.19 26.74 109 127 159

116

5.7. Conclusion

Neighborhood Method. EMCC, GECG, and Star Clustering do not show big differences for
the three classifiers, so they are not very sensitive to the quality of the classifier. GCluster
showed different results for different pair selection algorithms, thus a high-quality classifier
is necessary for GCluster.

5.7 Conclusion

In this chapter, we have formalized the problem of clustering duplicate detection results
and presented several existing and three new clustering algorithms. Our comprehensive
experimental evaluation of the clustering algorithms on various datasets and under various
algorithm configurations shows that the commonly used Transitive Closure is inferior to
most of the other clustering algorithms, especially for the precision of results. In scenarios
with small cluster sizes, the choice of the clustering algorithm has no or little effect on
the overall result. In scenarios with larger clusters, our proposed EMCC algorithm is,
together with Markov Clustering, the best performing clustering approach for duplicate
detection, although its runtime is longer compared to Markov Clustering due to the sub-
exponential time complexity. EMCC especially outperforms Markov Clustering regarding
the precision of the results and additionally has the advantage that it can also be used in
scenarios where edge weights are not available.

117

Chapter 6

Conclusion and Outlook

Duplicate detection is a well-known research topic that is still relevant today due to the
increasing volume of collected data and the growing need to integrate data from differ-
ent sources. In this thesis, we examined the impact and potential of transitivity on the
duplicate detection process and presented several new algorithms. Duplicate detection
methods are required when there is no identifier to group records that represent the same
real-world entity. Typically, pairs of records are created, and a calculated similarity score
is used in combination with a threshold for classification as duplicate or non-duplicate.
The similarity scores correlate with the probability that two records represent the same
entity. However, an essential property of similarity, in contrast to equivalence, is that
similarity is not necessarily transitive.

Summary

Chapter 1 highlighted various application areas for duplicate detection, as well as linguistic
and non-linguistic challenges. There are various reasons for the presence of duplicates,
such as different transcriptions, homophones, spelling errors, data collection restrictions,
OCR errors, or changing data over time. Duplicates negatively impact data quality and
lead to higher costs or other negative effects. Even for humans it is sometimes difficult
to decide whether some records represent the same real-world entity. Due to missing or
erroneous data, even similar records may represent different entities. This makes it even
for intelligent algorithms difficult to find true duplicates, and some degree of uncertainty
remains as to the correctness of the results.

Chapter 2 presented the duplicate detection process with a detailed description of
the sub-steps. In this thesis, we considered the impact of transitivity for the sub-steps
of (i) selecting candidate record pairs, (ii) selecting a threshold for classification, and
(iii) creating consistent clusters. Blocking and windowing were introduced and differ-
entiated for the selection of candidate record pairs, and the problem of transitivity with
regard to the similarity of records was described and illustrated. We also presented related
work as well as other emerging research directions such as machine learning and conflict
resolution using the crowd.

119

Chapter 6. Conclusion and Outlook

In Chapter 3, the DuDe Toolkit was presented, which was used for the experimental
evaluations in this thesis. Furthermore, various threshold experiments were conducted
with different dataset sizes and different threshold values. The two key messages of these
experiments are:

1. The best thresholds increase with an increasing number of clusters.

2. With an increasing data volume, the probability of adding a false duplicate to an
existing cluster also increases. This issue is exacerbated in use cases with large
clusters in the dataset due to the possible transitive dependencies.

Chapter 4 covered windowing approaches for selecting candidate record pairs. It was
shown that a flexible window size is superior to a fixed window size. Compared to other
candidate pair selection methods, a special characteristic of the presented Duplicate Count
Strategy and its extension DCS++ is the matching awareness, i.e., they use the matching
result to adapt the partitions. They use small windows in areas with no or few duplicates
and extend the window size in areas with many duplicates. By using transitive dependen-
cies, DCS++ saves up to w− 2 complex comparisons per duplicate. We have proven that
DCS++ with a proper threshold is more efficient than the Sorted Neighborhood Method,
which is confirmed by our experiments on real-world and synthetic datasets.

Since a pairwise classification does not necessarily lead to consistent clusters, we exam-
ined various clustering algorithms for duplicate detection in Chapter 5 and proposed three
new ones. Our evaluation showed that the commonly used Transitive Closure, on the one
hand, achieves the best recall values, but on the other hand, is inferior to most of the other
clustering algorithms due to low precision values. While the clustering algorithm choice
has little or no impact on datasets with small clusters, we observed differences for datasets
with larger clusters due to a higher probability of false pairwise classifications within a
cluster. Markov Clustering and our novel EMCC are effective clustering algorithms in
these scenarios, with Markov Clustering achieving higher recall values and EMCC achiev-
ing higher precision values. In addition, EMCC can be used in scenarios with only a binary
classification as duplicate or non-duplicate instead of a similarity value.

Recommendations

Based on the results in the previous chapters, we make the following recommendations for
effective and efficient duplicate detection:

1. At the beginning of a duplicate detection process, the threshold for the classification
as duplicate or non-duplicate is often selected based on the result of sampled data.
This threshold is most likely not the best threshold for the whole dataset. Therefore,
the largest clusters should be rechecked if they contain records in the same cluster
only due to transitive dependencies.

120

2. Selecting a threshold for the classification of record pairs as duplicate or non-duplicate
is not a one-time process. If the dataset size increases over time, the classification
threshold needs to be adapted repeatedly.

3. Expected cluster sizes should be considered when choosing an algorithm for creating
candidate record pairs, e.g., based on sampled data. In the case of varying cluster
sizes, especially with some large clusters, variable partition size algorithms, e.g.,
DCS++, are beneficial.

4. The selection of a clustering algorithm depends on both the use case and the size
of the clusters. The Transitive Closure is the best choice in use cases that require
high recall values but can deal with possibly low precision values. For use cases that
require higher precision values, EMCC is a good alternative.

Open Research Directions

DCS and DCS++ still have high research potential. Currently, DCS++ uses the Transi-
tive Closure to save comparisons. The first research question relates to the effect of other
clustering algorithms, such as EMCC, on DCS++. The research challenge is to create par-
titions of variable size and potentially use transitive dependencies to benefit from saved
comparisons while also having a clustering that creates clusters with high precision and
recall values. The second research question is the integration with meta-blocking. Meta-
blocking improves the efficiency of existing blocking methods by using abstract blocking
information to restructure a set of blocks into new blocks that require fewer compar-
isons [151]. Since the final partitions of DCS and DCS++ are calculated based on the
matching result, it remains an open research question whether meta-blocking can still be
applied, e.g., by recalculating the meta-blocking result after the detection of duplicates.

Most duplicate detection approaches require parameters, which, in most cases, are set
manually. Parameters can be the threshold for the classification, the initial window size for
the pair selection algorithm, or the percentage of edges that a vertex needs to other vertices
in the cluster for EMCC. In practice, it is often difficult and time-consuming to determine
the best configuration. In order to make duplicate detection algorithms useful for a larger
user group, an important research direction is to learn the best, or at least nearly optimal,
configurations automatically. Recent approaches, especially for classification, use deep
learning. Another approach is transfer learning, in which a configuration is learned for a
specific dataset, and the configuration is transferred to further datasets. Instead of the
expertise for rule-based approaches, learning-based approaches usually require training
data in sufficient quantity and quality, which often has to be created with great effort [130].

121

Chapter 6. Conclusion and Outlook

As shown in the experiments in Chapter 3, records are sometimes only in the same
cluster due to transitive dependencies. For small clusters, humans can identify the tran-
sitive dependencies and understand why two dissimilar records are in the same cluster.
However, it is difficult to understand these dependencies for larger clusters, with maybe
hundreds of records as in the Cora dataset. An open research question is to investigate how
duplicate detection results can be made more explainable, which also supports the clerical
review step and helps to understand when the current threshold value is no longer a good
choice and should be re-evaluated. This step could also be automated, e.g., calculating
the percentage of transitive duplicates.

With increasing data volumes and the decreasing costs for computing resources, it is
becoming more important to make algorithms parallelizable. For the clustering step, a
simple approach is to assign the connected components to different nodes, but in addition,
it should be examined if the clustering of a single connected component can also run in
parallel. As discussed in Sec. 2.5, most algorithms currently use the MapReduce approach
for parallelization. However, as we can see in the Top 500 list for supercomputers, GPU-
accelerated machines are becoming increasingly important, and for these machines, it is
necessary to port the code to take advantage of the full acceleration [78]. A first evaluation
showing the potential of duplicate detection on GPUs is presented in [82].

Outlook on Duplicate Detection

Duplicate detection has a long research history and is still a current topic due to the
increasing data collection and new technological opportunities, such as crowd-sourcing
and machine learning. Most of the current approaches use batch processing for matching
data, but organizations often face the challenge of processing a stream of data with entity
information, such as credit applications [39]. With the increasing data volume, there is
also a higher necessity for efficiency. Parallel and distributed data matching, as well as
real-time matching, will play an important role. To increase the effectiveness of duplicate
detection, recent deep learning approaches have shown very promising results, although
they are still in an early research phase.

This thesis focused on finding duplicates in structured data, such as database tables or
spreadsheets. However, related research directions focus on entity resolution with more
complex data, such as XML [119, 134], or semi-structured data, such as RDF [6, 46].
Currently, only a few open-source systems for entity resolution exist that can process both
structured and semi-structured data, e.g., JedAI [45,156]. Furthermore, entity resolution is
also relevant for multimedia data (images, audio, video), for example to identify persons
in a video for surveillance applications [140]. In the era of big data, there will be an
increasing demand for matching entities in different types of sources with structured,
semi-structured, or unstructured data, and multi-modal entity resolution will provide new
research challenges [45, 166]. On the one hand, each modality has its own feature space,

122

making it difficult to calculate the similarity between cross-modal data [166]. On the other
hand, each modality provides its own specific information about an entity that cannot be
obtained from other modalities and offers additional value [45]. For example, the usage
of product images besides textual attributes is a promising strategy to improve product
matching results, as shown in [212].

With regard to the practical implementation and usage of matching algorithms, legal
and ethical issues must also be considered. Insofar as personal data is involved, there is
always the question of data privacy, which is generally governed by legal requirements,
e.g., the General Data Protection Regulation (GDPR) in the European Union (EU) [77].
The GDPR stipulates, for example, that personal data may only be processed if there
is legal permission or consent from the data subject, but it also regulates the transfer
of personal data to cloud service providers outside the EU [198]. Insofar the matching
has a monetary, legal, or personal impact, there is also the necessity to make matching
results explainable to minimize the risk of misuse. Privacy-preserving duplicate detection
algorithms are a means of linking data from different sources without revealing individ-
uals [25, 44, 194]. However, there is still the risk that the integrated data can be used to
re-identify individuals in certain situations. One study showed that the combination of
just a few characteristics is often sufficient to uniquely or nearly uniquely identify indi-
viduals, e.g., 87 % of the population in the U.S. had a unique combination of zip code,
gender, and date of birth [184].

Next to legal requirements, there are also ethical issues for the usage of matching
algorithms. Ethical considerations are often difficult, nevertheless, they should not be
disregarded. A technology is neither good nor bad; what matters is how the technology
is used and how it affects people’s lives [107]. A study showed that it is possible, for
example, to link anonymized health data with a voter registration list [184]. Hereby,
diagnoses, medical procedures, and medications were linked to individuals, including their
name, address, and party affiliation. Although the use of the individual datasets is legally
permissible, the linking of the datasets is ethically questionable, as the linked dataset offers
great potential for misuse. Software engineers find, for example, some guidelines in the
ACM Code of Ethics and Professional Conduct, which formulates several principles, e.g.,
avoid harm and respect privacy, with the goal that the public good is always the primary
consideration [7].

Nevertheless, duplicate detection is an important and interesting research topic with
high practical relevance. Matching algorithms offer great potential, especially in medical
research and the emergence of big data.

123

Appendix A

DuDe Experiment

This appendix shows an example of a typical DuDe experiment configuration and is based
on published work in [67]. In our example, we deduplicate audio CD information (e.g.,
artist, title, tracks) in a CSV file and use the Sorted Neighborhood Method [96] to search
for duplicates. Figure A.1 shows the data flow for our configuration.

Figure A.1: DuDe example experiment workflow.

125

Appendix A. DuDe Experiment

For each experiment, we usually create a new Java class. First, we configure the data
source for reading the CD records (see Listing A.1). As the data is stored in a file, we
need only an identifier for the data source and the file name. Then we set the separator
and quote characters for the attributes, and enable the header function. The attribute
names are then read from the first row in the file. Afterward, we define attribute “pk” as
the unique identifier.

// configuration CSV data source
source = new CSVSource("cd_records", new File("./res/cd_records.csv"));
source.setSeparatorCharacter(’;’);
source.setQuoteCharacter(’"’);
source.enableHeader();
source.addIdAttributes("pk");

Listing A.1: Configuration of the data source for reading the CD records.

As our data source extracts single records, we need an algorithm that creates candidate
record pairs for comparison. In this example, we use the Sorted Neighborhood Method,
which needs sorted records. Therefore, we create a sorting key, which is the combination
of one or several subkeys (attributes “artist” and “title”, see Listing A.2). The algorithm
is then instantiated with a window size of 20, and in-memory processing is selected, which
improves performance but should only be used if enough main memory is available for the
entire dataset.

// defines sub-keys used to generate the sorting key
artistSubkey = new TextBasedSubkey("artist");
titleSubkey = new TextBasedSubkey("title");
// key generator uses sub-key selectors (order matters)
sortKey = new SortingKey();
sortKey.addSubkey(artistSubkey);
sortKey.addSubkey(titleSubkey);

// new SNM algorithm with window size 20 and in-memory processing enabled
algorithm = new SortedNeighborhoodMethod(sortKey, 20);
algorithm.enableInMemoryProcessing();
// the previously created data source is added to the algorithm
algorithm.addDataSource(source);

Listing A.2: Configuration of the SNM algorithm. The sorting key is used
for sorting the records in the data source.

126

The algorithm returns candidate record pairs to be classified by a weighted average
aggregator that uses SoundEx as similarity function for the artist name and the Leven-
shtein distance for the disc title (see Listing A.3). A different weighting of the similarity
functions is possible but not used in our example. In addition, we define a threshold for
the classification as duplicate or non-duplicate.

// define similarity functions
soundexSim = new SoundExFunction("artist");
levenshteinSim = new LevenshteinDistanceFunction("title");
simAgg = new Average(soundexSim, levenshteinSim);

// define a threshold used later to classify duplicates
threshold = 0.95;

Listing A.3: Configuration of the similarity function and a threshold for the
classification as duplicate or non-duplicate.

For classified duplicate pairs, we configure a postprocessor, which calculates the tran-
sitive closure and an output component that writes the finally classified duplicate pairs in
a file (see Listing A.4). We configure the output to show for each pair only the identifiers
of the records and the similarity value, but not the attribute values. Figure A.2 shows an
extract of the CSV file that will later be generated during the experiment execution.

// transitive closure generator
transClosure = new NaiveTransitiveClosureGenerator();

// output for classified duplicates
csvOutput = new CSVOutput(new File("./out/duplicates.csv"));
csvOutput.withoutData();

Listing A.4: Configuration of the transitive closure generator and output for
classified duplicates.

"First Object";"Second Object";"Similarity Value";"First Object Data";"Second Object Data"
"cd_records.[102406]";"cd_records.[103696]";"0.9821428656578064";"";""
"cd_records.[101925]";"cd_records.[104169]";"0.9852941036224365";"";""
"cd_records.[2252]";"cd_records.[4733]";"1.0";"";""
"cd_records.[10230]";"cd_records.[8029]";"0.9615384638309479";"";""

Figure A.2: Extract from CSV output of classified duplicates.

127

Appendix A. DuDe Experiment

To assess the quality of the duplicate detection process, we instantiate a statistic compo-
nent (see Listing A.5). This component first reads the gold standard from a file. Afterward,
both the classified duplicate pairs from the transitive closure and the non-duplicate pairs
from the comparator will be added to the statistic component during the experiment exe-
cution, and are then compared with the gold standard. The non-duplicate pairs are needed
because the statistic component additionally counts true-negatives and false-negatives only
for the actual classified pairs to obtain an additional measure of the comparator quality.
At the end of the experiment, the statistic component calculates several key figures, in-
cluding runtime, precision, and recall. By using the statistic output, these key figures can
then be written to a CSV file.

The statistic output file can contain results from several experiments. Therefore, we
have the possibility to add additional entries, for example, to describe the experiment
configuration, e.g., the used algorithm, window size, and threshold. Figure A.3 shows an
extract from a statistics file with multiple experiments.

// create data source for gold standard
goldStdSource = new CSVSource("goldStandard", new File("./res/cd_gold.csv"));
goldStdSource.setSeparatorCharacter(’;’);
goldStdSource.setQuoteCharacter(’"’);
goldStdSource.enableHeader();

// create gold standard
goldStandard = new GoldStandard(goldStdSource);
goldStandard.setFirstElementsObjectIdAttributes("disc1_id");
goldStandard.setSecondElementsObjectIdAttributes("disc2_id");
goldStandard. setSourceIdLiteral("cd_records");

// create statistic component
statisticComponent = new StatisticComponent(goldStandard, algorithm);

// create statistic output
statisticOutput = new CSVStatisticOutput(new File("./out/statistics.csv"),

statisticComponent, ’;’);
statisticOutput.setOptionalStatisticEntry("Algorithm" , "SNH");
statisticOutput.setOptionalStatisticEntry("Window Size" , "20");
statisticOutput.setOptionalStatisticEntry("Threshold" , Double.toString(threshold));

Listing A.5: Configuration of gold standard, statistic component, and statistic
output. For the statistic output we define additional fields that describe the
experiment configuration.

128

Precision Recall F-Measure
True
Positives

False
Positives

True
Negatives

False
Negatives

True Negatives based
on actual comparisons

False Negatives based
on actual comparisons

Algorithm
Window
Size

Threshold

94.52 % 46.15 % 62.02 % 138 8 47,652,896 161 38,794 102 SNH 5 0.99
94.59 % 46.82 % 62.63 % 140 8 47,652,896 159 185,051 108 SNH 20 0.99
86.56 % 58.19 % 69.60 % 174 27 47,652,877 125 38,776 72 SNH 5 0.95
86.13 % 58.19 % 69.46 % 174 28 47,652,876 125 185,032 76 SNH 20 0.95
82.55 % 64.88 % 72.65 % 194 41 47,652,863 105 38,762 52 SNH 5 0.90
82.55 % 64.88 % 72.65 % 194 41 47,652,863 105 185,018 56 SNH 20 0.90

Figure A.3: Extract from statistics file formatted in MS Excel, showing multiple experi-
ments with different window sizes and thresholds.

Listing A.6 shows the configuration of the experiment data flow for a single experiment
execution. Note that our algorithm does not select all duplicate pairs at once but rather
selects a candidate pair that is pipelined to the comparator and then classified before
the next candidate pair is selected. Therefore, it is possible that algorithms get notified
whether the former pairs have been classified as duplicate or non-duplicate before the
algorithm selects the next pair. This is necessary for algorithms that select pairs in
dependency to previous classifications (e.g., DCS and DCS++ in Chapter 4).

// start time measurement
statisticComponent.setStartTime();

// create candidate pairs
for (DuDeObjectPair pair : algorithm) {
// classify pair as duplicate or non-duplicate
if (simAgg. getSimilarity (pair) > threshold) {
transClosure.add(pair);

} else {
statisticComponent.addNonDuplicate(pair);

}
}

// read all classified records including those from the transitive closure
for (DuDeObjectPair pair : transClosure) {
statisticComponent.addDuplicate(pair);
csvOutput.write(pair);

}

// end time measurement and write statistics in file
statisticComponent.setEndTime();
statisticOutput.writeStatistics();

Listing A.6: Experiment execution.

129

Bibliography

[1] Aassem, Youssef ; Hafidi, Imad ; Aboutabit, Noureddine: Enhanced Duplicate
Count Strategy: Towards New Algorithms to Improve Duplicate Detection. In:
Proceedings of the International Conference on Networking, Information Systems &
Security (NISS), 2020. – Article No. 58

[2] Abadi, Daniel ; Agrawal, Rakesh ; Ailamaki, Anastasia ; Balazinska, Mag-
dalena ; Bernstein, Philip A. ; Carey, Michael J. ; Chaudhuri, Surajit ; Dean,
Jeffrey ; Doan, AnHai ; Franklin, Michael J. ; Gehrke, Johannes ; Haas,
Laura M. ; Halevy, Alon Y. ; Hellerstein, Joseph M. ; Ioannidis, Yannis E. ;
Jagadish, H. V. ; Kossmann, Donald ; Madden, Samuel ; Mehrotra, Sharad
; Milo, Tova ; Naughton, Jeffrey F. ; Ramakrishnan, Raghu ; Markl, Volker
; Olston, Christopher ; Ooi, Beng C. ; Ré, Christopher ; Suciu, Dan ; Stone-
braker, Michael ; Walter, Todd ; Widom, Jennifer: The Beckman Report on
Database Research. In: Communications of the ACM 59(2), 2016, P. 92–99

[3] Aizawa, Akiko ; Oyama, Keizo: A Fast Linkage Detection Scheme for Multi-
Source Information Integration. In: Proceedings of the International Workshop on
Challenges in Web Information Retrieval and Integration, 2005, P. 30–39

[4] Arasu, Arvind ; Ré, Christopher ; Suciu, Dan: Large-scale Deduplication with
Constraints using Dedupalog. In: Proceedings of the International Conference on
Data Engineering (ICDE), 2009, P. 952–963

[5] Aslam, Javed A. ; Pelekhov, Ekaterina ; Rus, Daniela: The Star Clustering
Algorithm for Static and Dynamic Information Organization. In: Journal of Graph
Algorithms and Applications 8(2), 2004, P. 95–129

[6] Assi, Ali ; Mcheick, Hamid ; Dhifli, Wajdi: Data linking over RDF knowledge
graphs: A survey. In: Concurrency and Computation: Practice and Experience
32(19), 2020. – Article No. e5746

[7] Association for Computing Machinery: ACM Code of Ethics and Professional
Conduct. 2018. – https://www.acm.org/binaries/content/assets/about/acm-
code-of-ethics-and-professional-conduct.pdf, Last Checked: 2021-11-07

131

https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-and-professional-conduct.pdf
https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-and-professional-conduct.pdf

Bibliography

[8] Baba, Yukino ; Suzuki, Hisami: How Are Spelling Errors Generated and Cor-
rected? A Study of Corrected and Uncorrected Spelling Errors Using Keystroke
Logs. In: Proceedings of the Annual Meeting of the Association for Computational
Linguistics: Short Papers, 2012, P. 373–377

[9] Baeza-Yates, Ricardo ; Ribeiro-Neto, Berthier: Modern Information Retrieval.
New York : ACM Press / Addison-Wesley, 1999

[10] Bansal, Nikhil ; Blum, Avrim ; Chawla, Shuchi: Correlation Clustering. In:
Mach. Learn. 56(1-3), 2004, P. 89–113

[11] Barker, David: Customer data integration: Reaching more consumers with cer-
tainty. In: Journal of Database Marketing & Customer Strategy Management 18(3),
2011, P. 214–219

[12] Bass, Sadie: How Many Different Ways Can You Spell ‘Gaddafi’?
http://web.archive.org/web/20171019233842/http://blogs.abcnews.com/
theworldnewser/2009/09/how-many-different-ways-can-you-spell-
gaddafi.html. Version: 2009, Last checked: 10.01.2022

[13] Batini, Carlo ; Scannapieco, Monica: Data and Information Quality - Dimen-
sions, Principles and Techniques. Springer International Publishing Switzerland,
2016 (Data-Centric Systems and Applications)

[14] Bauermeister, J.: Die doppelte Gabi! https://www.bild.de/news/inland/
doppelgaenger/die-doppelte-gabi-24255372.bild.html. Version: 2012, Last
checked: 2022-01-07

[15] Benjelloun, Omar ; Garcia-Molina, Hector ; Menestrina, David ; Su, Qi
; Whang, Steven E. ; Widom, Jennifer: Swoosh: a generic approach to entity
resolution. In: VLDB Journal 18(1), 2009, P. 255–276

[16] Bianco, Guilherme dal ; Gonçalves, Marcos A. ; Duarte, Denio: BLOSS:
Effective meta-blocking with almost no effort. In: Information Systems 75, 2018, P.
75–89

[17] Bilenko, Mikhail ; Basu, Sugato ; Sahami, Mehran: Adaptive Product Normal-
ization: Using Online Learning for Record Linkage in Comparison Shopping. In:
Proceedings of the IEEE International Conference on Data Mining (ICDM), 2005,
P. 58–65

[18] Bilenko, Mikhail ; Mooney, Raymond J.: Adaptive Duplicate Detection Using
Learnable String Similarity Measures. In: Proceedings of the ACM SIGKDD Inter-
national Conference of Knowledge Discovery and Data Mining, 2003, P. 39–48

132

http://web.archive.org/web/20171019233842/http://blogs.abcnews.com/theworldnewser/2009/09/how-many-different-ways-can-you-spell-gaddafi.html
http://web.archive.org/web/20171019233842/http://blogs.abcnews.com/theworldnewser/2009/09/how-many-different-ways-can-you-spell-gaddafi.html
http://web.archive.org/web/20171019233842/http://blogs.abcnews.com/theworldnewser/2009/09/how-many-different-ways-can-you-spell-gaddafi.html
https://www.bild.de/news/inland/doppelgaenger/die-doppelte-gabi-24255372.bild.html
https://www.bild.de/news/inland/doppelgaenger/die-doppelte-gabi-24255372.bild.html

Bibliography

[19] Bilenko, Mikhail ; Mooney, Raymond J.: On Evaluation and Training-Set Con-
struction for Duplicate Detection. In: Proceedings of the KDD Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, 2003, P. 7–12

[20] Blattberg, Robert C. ; Kim, Byung-Do ; Neslin, Scott A.: Database Marketing.
New York : Springer Science+Business Media LLC, 2008

[21] Bleiholder, Jens ; Naumann, Felix: Data Fusion. In: ACM Computing Surveys
41(1), 2009, P. 1–41

[22] Bleiholder, Jens ; Schmid, Joachim: Datenintegration und Deduplizierung. In:
Hildebrand, Knut (Ed.) ; Gebauer, Marcus (Ed.) ; Mielke, Michael (Ed.):
Daten- und Informationsqualität: Die Grundlagen der Digitalisierung. 5th edition.
Wiesbaden : Springer Vieweg, 2021, P. 123–142

[23] Bloothooft, Gerrit: Multi-Source Family Reconstruction. In: History and Com-
puting 7(2), 1995, P. 90–103

[24] Bohsem, Guido: Fiskus verteilte Steueridentifikationsnummern falsch.
https://www.sueddeutsche.de/wirtschaft/behoerden-panne-fiskus-
verteilte-steuernummern-falsch-1.1886932. Version: 2014, Last checked:
2022-01-07

[25] Bonomi, Luca ; Fan, Liyue ; Xiong, Li: A Review of Privacy Preserving Mecha-
nisms for Record Linkage. In: Gkoulalas-Divanis, Aris (Ed.) ; Loukides, Grig-
orios (Ed.): Medical Data Privacy Handbook. Cham : Springer International Pub-
lishing, 2015, P. 233–265

[26] Borgman, Christine L. ; Siegfried, Susan L.: Getty’s SynonameTMand its cousins:
A survey of applications of personal name-matching algorithms. In: Journal of the
American Society for Information Science 43(7), 1992, P. 459–476

[27] Bozeman, Ryan: 9 Real-World Reasons Duplicate Data Is Killing Your Marketing
& Sales Returns. https://www.impactbnd.com/blog/reasons-duplicate-data-
is-killing-your-marketing-and-sales-returns. Version: 2019, Last checked:
2022-01-07

[28] British Library: Facts and figures of the British Library. https://
www.bl.uk/about-us/our-story/facts-and-figures-of-the-british-library.
Version: 2021, Last checked: 2021-05-13

[29] Bron, Coen ; Kerbosch, Joep: Algorithm 457: Finding All Cliques of an Undi-
rected Graph. In: Communications of the ACM 16(9), 1973, P. 575–577

133

https://www.sueddeutsche.de/wirtschaft/behoerden-panne-fiskus-verteilte-steuernummern-falsch-1.1886932
https://www.sueddeutsche.de/wirtschaft/behoerden-panne-fiskus-verteilte-steuernummern-falsch-1.1886932
https://www.impactbnd.com/blog/reasons-duplicate-data-is-killing-your-marketing-and-sales-returns
https://www.impactbnd.com/blog/reasons-duplicate-data-is-killing-your-marketing-and-sales-returns
https://www.bl.uk/about-us/our-story/facts-and-figures-of-the-british-library
https://www.bl.uk/about-us/our-story/facts-and-figures-of-the-british-library

Bibliography

[30] Burk, Hunter ; Javed, Faizan ; Balaji, Janani: Apollo: Near-Duplicate Detec-
tion for Job Ads in the Online Recruitment Domain. In: Proceedings of the IEEE
International Conference on Data Mining Workshops (ICDMW), 2017, P. 177–182

[31] Business Wire: How Many Products Does Amazon Actually Carry? And in What
Categories? https://www.businesswire.com/news/home/20160614006063/en/
How-Many-Products-Does-Amazon-Actually-Carry-And-in-What-Categories.
Version: 2016, Last checked: 2021-05-12

[32] Chang, Jon M.: Xerox Machines Change Documents After Scanning.
https://abcnews.go.com/Technology/xerox-machines-change-documents-
scanning/story?id=19895331. Version: 2013, Last checked: 2021-05-27

[33] Chaudhuri, Surajit ; Chen, Bee-Chung ; Ganti, Venkatesh ; Kaushik, Raghav:
Example-driven design of efficient record matching queries. In: Proceedings of the
International Conference on Very Large Databases (VLDB), VLDB Endowment,
2007, P. 327–338

[34] Chen, Xiao ; Schallehn, Eike ; Saake, Gunter: Cloud-Scale Entity Resolution:
Current State and Open Challenges. In: Open Journal of Big Data (OJBD) 4(1),
2018, P. 30–51

[35] Chen, Zhaoqi ; Kalashnikov, Dmitri V. ; Mehrotra, Sharad: Exploiting context
analysis for combining multiple entity resolution systems. In: Proceedings of the
ACM International Conference on Management of Data (SIGMOD), 2009, P. 207–
218

[36] Christen, Peter: Probabilistic Data Generation for Deduplication and Data Link-
age. In: Proceedings of the International Conference on Intelligent Data Engineering
and Automated Learning (IDEAL), 2005, P. 109–116

[37] Christen, Peter: Towards Parameter-free Blocking for Scalable Record Linkage /
Australian National University. 2007. – ANU Research Publications

[38] Christen, Peter: Febrl: a freely available record linkage system with a graphical
user interface. In: Proceedings of the second Australasian workshop on Health data
and knowledge management, 2008, P. 17–25

[39] Christen, Peter: Data Matching : Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Berlin : Springer, 2012

[40] Christen, Peter: A Survey of Indexing Techniques for Scalable Record Linkage
and Deduplication. In: IEEE Transactions on Knowledge and Data Engineering
(TKDE) 24(9), 2012, P. 1537–1555

134

https://www.businesswire.com/news/home/20160614006063/en/How-Many-Products-Does-Amazon-Actually-Carry-And-in-What-Categories
https://www.businesswire.com/news/home/20160614006063/en/How-Many-Products-Does-Amazon-Actually-Carry-And-in-What-Categories
https://abcnews.go.com/Technology/xerox-machines-change-documents-scanning/story?id=19895331
https://abcnews.go.com/Technology/xerox-machines-change-documents-scanning/story?id=19895331

Bibliography

[41] Christen, Peter: Application of Advanced Record Linkage Techniques for Com-
plex Population Reconstruction. Computing Research Repository (CoRR), 2016. –
arXiv:1612.04286

[42] Christen, Peter ; Goiser, Karl: Quality and Complexity Measures for Data
Linkage and Deduplication. In: Guillet, Fabrice J. (Ed.) ; Hamilton, Howard J.
(Ed.): Quality Measures in Data Mining. Berlin : Springer, 2007, P. 127–151

[43] Christen, Peter ; Pudjijono, Agus: Accurate Synthetic Generation of Realistic
Personal Information. In: Proceedings of the Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining, 2009, P. 507–514

[44] Christen, Peter ; Ranbaduge, Thilina ; Schnell, Rainer: Linking Sensitive
Data: Methods and Techniques for Practical Privacy-Preserving Information Shar-
ing. Cham : Springer International Publishing, 2020

[45] Christophides, Vassilis ; Efthymiou, Vasilis ; Palpanas, Themis ; Papadakis,
George ; Stefanidis, Kostas: An Overview of End-to-End Entity Resolution for
Big Data. In: ACM Computing Surveys 53(6), 2020. – Article No. 127

[46] Christophides, Vassilis ; Efthymiou, Vasilis ; Stefanidis, Kostas: Entity Res-
olution in the Web of Data (Synthesis Lectures on the Semantic Web: Theory and
Technology). Morgan and Claypool Publishers, 2015

[47] Citron, Danielle ; Pasquale, Frank: The scored society: Due process for auto-
mated predictions. In: Washington Law Review 89(1), 2014, P. 1–33

[48] Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. In:
Communications of the ACM 13(6), 1970, P. 377–387

[49] Cohen, William W. ; Ravikumar, Pradeep ; Fienberg, Stephen E.: A Compar-
ison of String Distance Metrics for Name-Matching Tasks. In: Proceedings of the
International Conference on Information Integration on the Web, 2003, P. 73–78

[50] Coy, Peter: Xerox Can Fix Number-Switching Scanners, but Not Al-
tered Docs. https://www.bloomberg.com/news/articles/2013-08-23/xerox-
can-fix-number-switching-scanners-but-not-altered-docs. Version: 2013,
Last checked: 2021-05-27

[51] Damerau, Fred J.: A Technique for Computer Detection and Correction of Spelling
Errors. In: Communications of the ACM 7(3), 1964, P. 171–176

[52] Dean, Jeffrey ; Ghemawat, Sanjay: MapReduce: Simplified Data Processing on
Large Clusters. In: Communications of the ACM 51(1), 2008, P. 107–113

135

https://www.bloomberg.com/news/articles/2013-08-23/xerox-can-fix-number-switching-scanners-but-not-altered-docs
https://www.bloomberg.com/news/articles/2013-08-23/xerox-can-fix-number-switching-scanners-but-not-altered-docs

Bibliography

[53] Deutsche Post Direkt GmbH: Adress Report 2016 - Erhebung typischer An-
schriftenfehler. https://www.deutschepost.de/content/dam/dpag/images/D_d/
DDP/Downloads/studien/2016_Studie_Adress_Report.pdf. Version: 2016, Last
checked: 2022-01-07

[54] Devlin, Jacob ; Chang, Ming-Wei ; Lee, Kenton ; Toutanova, Kristina: BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In:
Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2019, P. 4171–4186

[55] Di Cicco, Vincenzo ; Firmani, Donatella ; Koudas, Nick ; Merialdo, Paolo ;
Srivastava, Divesh: Interpreting Deep Learning Models for Entity Resolution: An
Experience Report Using LIME. In: Proceedings of the International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management, 2019. – Article
No. 8

[56] Doan, AnHai ; Halevy, Alon Y. ; Ives, Zachary G.: Principles of Data Integration.
Boston : Morgan Kaufmann, 2012

[57] Doan, AnHai ; Konda, Pradap ; Suganthan G. C., Paul ; Govind, Yash ;
Paulsen, Derek ; Chandrasekhar, Kaushik ; Martinkus, Philip ; Christie,
Matthew: Magellan: Toward Building Ecosystems of Entity Matching Solutions.
In: Communications of the ACM 63(8), 2020, P. 83–91

[58] Doidge, James ; Christen, Peter ; Harron, Katie: Quality assessment in data
linkage. In: Joined up data in government: the future of data linking methods. UK
Office of national Statistics, 2020

[59] Doidge, James ; Harron, Katie: Demystifying probabilistic linkage: Common
myths and misconceptions. In: International Journal of Population Data Science
3(1), 2018. – DOI: 10.23889/ijpds.v3i1.410

[60] Doidge, James ; Harron, Katie: Reflections on modern methods: linkage error
bias. In: International Journal of Epidemiology 48(6), 2019, P. 2050–2060

[61] Dong, Xin ; Halevy, Alon ; Madhavan, Jayant: Reference reconciliation in
complex information spaces. In: Proceedings of the ACM International Conference
on Management of Data (SIGMOD), 2005, P. 85–96

[62] Dongen, Stijn van: Graph Clustering by Flow Simulation, University of Utrecht,
Diss., 2000

[63] Draisbach, Uwe ; Christen, Peter ; Naumann, Felix: Transforming Pairwise
Duplicates to Entity Clusters for High-Quality Duplicate Detection. In: Journal of
Data and Information Quality (JDIQ) 12(1), 2020. – Article No. 3

136

https://www.deutschepost.de/content/dam/dpag/images/D_d/DDP/Downloads/studien/2016_Studie_Adress_Report.pdf
https://www.deutschepost.de/content/dam/dpag/images/D_d/DDP/Downloads/studien/2016_Studie_Adress_Report.pdf

Bibliography

[64] Draisbach, Uwe ; Naumann, Felix: A Comparison and Generalization of Blocking
and Windowing Algorithms for Duplicate Detection. In: Proceedings of the Inter-
national Workshop on Quality in Databases (QDB), 2009

[65] Draisbach, Uwe ; Naumann, Felix: DuDe: The Duplicate Detection Toolkit. In:
Proceedings of the International Workshop on Quality in Databases (QDB), 2010

[66] Draisbach, Uwe ; Naumann, Felix: A Generalization of Blocking and Windowing
Algorithms for Duplicate Detection. In: Proceedings of the International Conference
on Data and Knowledge Engineering (ICDKE), 2011, P. 18–24

[67] Draisbach, Uwe ; Naumann, Felix: On Choosing Thresholds for Duplicate De-
tection. In: Proceedings of the International Conference on Information Quality
(ICIQ), 2013

[68] Draisbach, Uwe ; Naumann, Felix ; Szott, Sascha ; Wonneberg, Oliver: Adap-
tive Windows for Duplicate Detection / Hasso-Plattner-Institut für Softwaresys-
temtechnik an der Universität Potsdam. 2011 (49). – Research Report

[69] Draisbach, Uwe ; Naumann, Felix ; Szott, Sascha ; Wonneberg, Oliver: Adap-
tive Windows for Duplicate Detection. In: Proceedings of the International Confer-
ence on Data Engineering (ICDE), 2012, P. 1073–1083

[70] During, Rainer W.: Straßennamen in Berlin: Jeder Bezirk regelt die Namensfrage
anders. https://www.tagesspiegel.de/berlin/strassennamen-in-berlin-von-
pankow-bis-spandau-alle-machen-es-anders/10985490-2.html. Version: 2014,
Last checked: 2022-01-07

[71] Ebraheem, Muhammad ; Thirumuruganathan, Saravanan ; Joty, Shafiq ; Ouz-
zani, Mourad ; Tang, Nan: Distributed Representations of Tuples for Entity Res-
olution. In: Proceedings of the VLDB Endowment 11(11), 2018, P. 1454–1467

[72] Eckerson, Wayne W.: Data Quality and the Bottom Line: Achieving Business
Success through a Commitment to High Quality Data / The Data Warehouse Insti-
tute. 2002. – TDWI Report Series

[73] Efthymiou, Vasilis ; Papadakis, George ; Papastefanatos, George ; Stefani-
dis, Kostas ; Palpanas, Themis: Parallel meta-blocking: Realizing scalable entity
resolution over large, heterogeneous data. In: Proceedings of the IEEE International
Conference on Big Data, 2015, P. 411–420

[74] Elfeky, Mohamed ; Verykios, Vassilios ; Elmagarmid, Ahmed: TAILOR: A
Record Linkage Tool Box. In: Proceedings of the International Conference on Data
Engineering (ICDE), 2002, P. 17–28

137

https://www.tagesspiegel.de/berlin/strassennamen-in-berlin-von-pankow-bis-spandau-alle-machen-es-anders/10985490-2.html
https://www.tagesspiegel.de/berlin/strassennamen-in-berlin-von-pankow-bis-spandau-alle-machen-es-anders/10985490-2.html

Bibliography

[75] Elmagarmid, Ahmed K. ; Ipeirotis, Panagiotis G. ; Verykios, Vassilios S.: Du-
plicate Record Detection: A Survey. In: IEEE Transactions on Knowledge and Data
Engineering (TKDE) 19(1), 2007, P. 1–16

[76] Elsner, Micha ; Schudy, Warren: Bounding and Comparing Methods for Corre-
lation Clustering Beyond ILP. In: Proceedings of the Workshop on Integer Linear
Programming for Natural Langauge Processing, 2009, P. 19–27

[77] European Parliament and Council: Regulation (EU) 2016/679 on the pro-
tection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). In: Official Journal of the European Union 59(L 119), 2016,
P. 1–88

[78] Feldman, Michael: New GPU-Accelerated Supercomputers Change the Bal-
ance of Power on the TOP500. https://www.top500.org/news/new-gpu-
accelerated-supercomputers-change-the-balance-of-power-on-the-
top500/. Version: 2018, Last checked: 2021-03-21

[79] Fellegi, Ivan P. ; Sunter, Alan B.: A Theory for Record Linkage. In: Journal of
the American Statistical Association 64(328), 1969, P. 1183–1210

[80] Ferreira, Anderson A. ; Gonçalves, Marcos A. ; Laender, Alberto H.: A Brief
Survey of Automatic Methods for Author Name Disambiguation. In: SIGMOD
Record 41(2), 2012, P. 15–26

[81] Fisher, Jeffrey ; Wang, Qing: Unsupervised Measuring of Entity Resolution Con-
sistency. In: Proceedings of the IEEE International Conference on Data Mining
Workshop (ICDMW), 2015, P. 218–221

[82] Forchhammer, Benedikt ; Papenbrock, Thorsten ; Stening, Thomas ;
Viehmeier, Sven ; Draisbach, Uwe ; Naumann, Felix: Duplicate Detection
on GPUs. In: Proceedings of the Symposium on Database Systems for Business,
Technology, and Web (BTW), 2013, P. 165–184

[83] Friedman, Carol ; Sideli, Robert: Tolerating Spelling Errors during Patient Vali-
dation. In: Computers and Biomedical Research 25(5), 1992, P. 486–509

[84] Garey, Michael R. ; Johnson, David S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York : W. H. Freeman And Company, 1979

[85] Giang, Phan H.: A machine learning approach to create blocking criteria for record
linkage. In: Health Care Management Science 18(1), 2015, P. 93–105

138

https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500/
https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500/
https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500/

Bibliography

[86] Goder, Andrey ; Filkov, Vladimir: Consensus Clustering Algorithms: Compar-
ison and Refinement. In: Proceedings of the Workshop on Algorithm Engineering
and Experiments (ALENEX), 2008, P. 109–117

[87] Gomatam, Shanti ; Larsen, Michael D.: Record Linkage and Counterterrorism.
In: CHANCE 17(1), 2004, P. 25–29

[88] Hall, Patrick A. V. ; Dowling, Geoff R.: Approximate String Matching. In: ACM
Computing Surveys 12(4), 1980, P. 381–402

[89] Hamming, R. W.: Error Detecting and Error Correcting Codes. In: The Bell
System Technical Journal 29(2), 1950, P. 147–160

[90] Hand, David ; Christen, Peter: A Note on Using the F-measure for Evaluating
Record Linkage Algorithms. In: Statistics and Computing 28(3), 2018, P. 539–547

[91] Hassanzadeh, Oktie ; Chiang, Fei ; Miller, Renée J. ; Lee, Hyun C.: Framework
for Evaluating Clustering Algorithms in Duplicate Detection. In: Proceedings of the
VLDB Endowment 2(1), 2009, P. 1282–1293

[92] Hassanzadeh, Oktie ; Miller, Renée J.: Creating Probabilistic Databases from
Duplicated Data. In: The VLDB Journal 18(5), 2009, P. 1141–1166

[93] Haveliwala, Taher H. ; Gionis, Aristides ; Indyk, Piotr: Scalable Techniques for
Clustering the Web. In: Proceedings of the ACM SIGMOD Workshop on the Web
and Databases (WebDB), 2000, P. 129–134

[94] Heinrich, Bernd ; Klier, Mathias ; Obermeier, Andreas ; Schiller, Alexander:
Event-Driven Duplicate Detection: A probability based Approach. In: Proceedings
of the European Conference on Information Systems (ECIS), 2018. – Research Paper
198

[95] Hernández, Mauricio ; Koutrika, Georgia ; Krishnamurthy, Rajasekar ; Popa,
Lucian ; Wisnesky, Ryan: HIL: A High-Level Scripting Language for Entity In-
tegration. In: Proceedings of the International Conference on Extending Database
Technology (EDBT), 2013, P. 549–560

[96] Hernández, Mauricio A. ; Stolfo, Salvatore J.: The Merge/Purge Problem for
Large Databases. In: Proceedings of the ACM International Conference on Manage-
ment of Data (SIGMOD), 1995, P. 127–138

[97] Hernández, Mauricio A. ; Stolfo, Salvatore J.: Real-world Data is Dirty: Data
Cleansing and The Merge/Purge Problem. In: Data Mining and Knowledge Discov-
ery 2(1), 1998, P. 9–37

139

Bibliography

[98] Herschel, Melanie ; Naumann, Felix ; Szott, Sascha ; Taubert, Maik: Scalable
Iterative Graph Duplicate Detection. In: IEEE Transactions on Knowledge and
Data Engineering (TKDE) 24(11), 2012, P. 2094–2108

[99] Herzog, Thomas N. ; Scheuren, Fritz J. ; Winkler, William E.: Data Quality
and Record Linkage Techniques. New York : Springer, 2007

[100] Horn, Roger A. ; Johnson, Charles R.: Matrix Analysis. 2nd edition. New York :
Cambridge University Press, 2012

[101] IBM Big Data and Analytics Hub: Extracting business value from the
4 V’s of big data. https://web.archive.org/web/20210224165554/https:
//www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-
big-data. Version: 2016, Last checked: 2022-01-10

[102] Jaro, Matthew A.: Advances in Record-Linkage Methodology as Applied to Match-
ing the 1985 Census of Tampa, Florida. In: Journal of the American Statistical
Association 84(406), 1989, P. 414–420

[103] Jonas, Jeff ; Harper, Jim: Effective Counterterrorism and the Limited Role of
Predictive Data Mining. In: Policy Analysis (584), 2006, P. 1–12

[104] Khan, Asif R. ; Garcia-Molina, Hector: Attribute-Based Crowd Entity Resolu-
tion. In: Proceedings of the International Conference on Information and Knowledge
Management (CIKM), 2016, P. 549–558

[105] Kim, Kunho ; Khabsa, Madian ; Giles, C. L.: Inventor name disambiguation
for a patent database using a random forest and DBSCAN. In: Proceedings of the
IEEE/ACM Joint Conference on Digital Libraries (JCDL), 2016, P. 269–270

[106] King, Steve: Multiple-source Record Linkage in a Rural Industrial Community,
1680-1820. In: History and Computing 6(3), 1994, P. 133–142

[107] Kleppmann, Martin: Designing Data-Intensive Applications. Sebastopol : O’Reilly,
2017

[108] Klier, Mathias ; Heinrich, Bernd: Datenqualität von Big Data als Erfolgsfaktor
im Customer Relationship Management. In: Horváth, Péter (Ed.) ; Michel, Uwe
(Ed.): Digital Controlling & Simple Finance. Stuttgart : Schäffer-Poeschel Verlag,
2016, P. 13–24

140

https://web.archive.org/web/20210224165554/https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
https://web.archive.org/web/20210224165554/https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
https://web.archive.org/web/20210224165554/https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data

Bibliography

[109] Konda, Pradap ; Das, Sanjib ; Suganthan G. C., Paul ; Doan, AnHai ;
Ardalan, Adel ; Ballard, Jeffrey R. ; Li, Han ; Panahi, Fatemah ; Zhang,
Haojun ; Naughton, Jeff ; Prasad, Shishir ; Krishnan, Ganesh ; Deep, Rohit ;
Raghavendra, Vijay: Magellan: Toward Building Entity Matching Management
Systems over Data Science Stacks. In: Proceedings of the VLDB Endowment 9(12),
2016, P. 1197–1208

[110] Köpcke, H. ; Rahm, E.: Training selection for tuning entity matching. In: Proceed-
ings of the Sixth International Workshop on Quality in Databases and Management
of Uncertain Data (QDB/MUD), 2008, P. 3–12

[111] Köpcke, Hanna ; Rahm, Erhard: Frameworks for entity matching: A comparison.
In: Data and Knowledge Engineering (DKE) 69(2), 2010, P. 197–210

[112] Köpcke, Hanna ; Thor, Andreas ; Thomas, Stefan ; Rahm, Erhard: Tailoring
Entity Resolution for Matching Product Offers. In: Proceedings of the International
Conference on Extending Database Technology (EDBT), 2012, P. 545–550

[113] Koumarelas, Ioannis ; Jiang, Lan ; Naumann, Felix: Data Preparation for
Duplicate Detection. In: Journal of Data and Information Quality (JDIQ) 12(3),
2020. – Article No. 15

[114] Koumarelas, loannis ; Papenbrock, Thorsten ; Naumann, Felix: MDedup:
Duplicate Detection with Matching Dependencies. In: Proceedings of the VLDB
Endowment 13(5), 2020, P. 712–725

[115] Kreuz, Roger J.: The subjective familiarity of English homophones. In: Memory
& Cognition 15(2), 1987, P. 154–168

[116] Kukich, Karen: Techniques for Automatically Correcting Words in Text. In: ACM
Computing Surveys 24(4), 1992, P. 377–439

[117] Lee, Dongwon ; Kang, Jaewoo ; Mitra, Prasenjit ; Giles, C. L. ; On, Byung-
Won: Are Your Citations Clean? In: Communications of the ACM 50(12), 2007,
P. 33–38

[118] Lee, Yang W. ; Pipino, Leo L. ; Funk, James D. ; Wang, Richard Y.: Journey to
Data Quality. Cambridge : The MIT Press, 2006

[119] Leitão, Luís ; Calado, Pável ; Herschel, Melanie: Efficient and Effective Du-
plicate Detection in Hierarchical Data. In: IEEE Transactions on Knowledge and
Data Engineering (TKDE) 25(5), 2013, P. 1028–1041

[120] Leitão, Luís ; Calado, Pável ; Weis, Melanie: Structure-based inference of XML
similarity for fuzzy duplicate detection. In: Proceedings of the International Con-
ference on Information and Knowledge Management (CIKM), 2007, P. 293–302

141

Bibliography

[121] Leser, Ulf ; Naumann, Felix: Informationsintegration : Architekturen und
Methoden zur Integration verteilter und heterogener Datenquellen. Heidelberg :
dpunkt.verlag, 2007

[122] Levenshtein, Vladimir I.: Binary codes capable of correcting deletions, insertions,
and reversals. In: Soviet Physics Doklady 10(8), 1966, P. 707–710

[123] Li, Bo-Han ; Liu, Yi ; Zhang, An-Man ; Wang, Wen-Huan ; Wan, Shuo: A Survey
on Blocking Technology of Entity Resolution. In: Journal of Computer Science and
Technology 35(4), 2020, P. 769–793

[124] Li, Juan ; Dou, Zhicheng ; Zhu, Yutao ; Zuo, Xiaochen ; Wen, Ji-Rong: Deep
cross-platform product matching in e-commerce. In: Information Retrieval Journal
23(2), 2020, P. 136–158

[125] Li, Yuliang ; Li, Jinfeng ; Suhara, Yoshihiko ; Wang, Jin ; Hirota, Wataru ; Tan,
Wang-Chiew: Deep Entity Matching: Challenges and Opportunities. In: Journal of
Data and Information Quality (JDIQ) 13(1), 2021. – Article No. 1

[126] Library of Congress: General Information. https://www.loc.gov/about/
general-information/. Version: 2019, Last checked: 2021-05-13

[127] Lisbach, Bertrand ; Meyer, Victoria: Linguistic Identity Matching. Wiebaden :
Springer, 2013

[128] Liu, Qiaoling ; Javed, Faizan ; Mcnair, Matt: CompanyDepot: Employer Name
Normalization in the Online Recruitment Industry. In: Proceedings of the ACM
SIGKDD International Conference of Knowledge Discovery and Data Mining, 2016,
P. 521–530

[129] Liu, Yinhan ; Ott, Myle ; Goyal, Naman ; Du, Jingfei ; Joshi, Mandar ; Chen,
Danqi ; Levy, Omer ; Lewis, Mike ; Zettlemoyer, Luke ; Stoyanov, Veselin:
RoBERTa: A Robustly Optimized BERT Pretraining Approach. Computing Research
Repository (CoRR), 2019. – arXiv:1907.11692

[130] Loster, Michael ; Koumarelas, Ioannis ; Naumann, Felix: Knowledge Transfer
for Entity Resolution with Siamese Neural Networks. In: Journal of Data and
Information Quality (JDIQ) 13(1), 2021. – Article No. 2

[131] Lünendonk GmbH: Revival der Stammdaten. https://www.kps.com/assets/
documents/Stammdatenstudie.pdf. Version: 2017, Last checked: 2022-01-10

[132] Menestrina, David ; Whang, Steven ; Garcia-Molina, Hector: Evaluating
Entity Resolution Results. In: Proceedings of the VLDB Endowment 3(1), 2010, P.
208–219

142

https://www.loc.gov/about/general-information/
https://www.loc.gov/about/general-information/
https://www.kps.com/assets/documents/Stammdatenstudie.pdf
https://www.kps.com/assets/documents/Stammdatenstudie.pdf

Bibliography

[133] Mestre, Demetrio G. ; Pires, Carlos E. ; Nascimento, Dimas C.: Adaptive
Sorted Neighborhood Blocking for Entity Matching with MapReduce. In: Proceed-
ings of the ACM Symposium on Applied Computing (SAC), 2015, P. 981–987

[134] Milano, Diego ; Scannapieco, Monica ; Catarci, Tiziana: Structure Aware
XML Object Identification. In: Proceedings of the International VLDB Workshop
on Clean Databases (CleanDB), 2006

[135] Monge, Alvaro ; Elkan, Charles: An Efficient Domain-Independent Algorithm
for Detecting Approximately Duplicate Database Records. In: Proceedings of the
SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery
(DMKD), 1997

[136] Monge, Alvaro E. ; Elkan, Charles P.: The Field Matching Problem: Algorithms
and Applications. In: Proceedings of the ACM SIGKDD International Conference
of Knowledge Discovery and Data Mining, 1996, P. 267–270

[137] Monroe, Don: AI, Explain Yourself. In: Communications of the ACM 61(11),
2018, P. 11–13

[138] Moore, Susan: How to Create a Business Case for Data Quality Im-
provement. https://www.gartner.com/smarterwithgartner/how-to-create-a-
business-case-for-data-quality-improvement/. Version: 2018, Last checked:
2022-01-07

[139] Mudgal, Sidharth ; Li, Han ; Rekatsinas, Theodoros ; Doan, AnHai ; Park,
Youngchoon ; Krishnan, Ganesh ; Deep, Rohit ; Arcaute, Esteban ; Raghaven-
dra, Vijay: Deep Learning for Entity Matching: A Design Space Exploration. In:
Proceedings of the ACM International Conference on Management of Data (SIG-
MOD), 2018, P. 19–34

[140] Nambiar, Athira ; Bernardino, Alexandre ; Nascimento, Jacinto C.: Gait-
Based Person Re-Identification: A Survey. In: ACM Computing Surveys 52(2),
2019. – Article No. 33

[141] Nanayakkara, Charini ; Christen, P. ; Ranbaduge, Thilina ; Garrett, Eilidh:
Evaluation measure for group-based record linkage. In: International Journal for
Population Data Science 4(1), 2020. – DOI: 10.23889/ijpds.v4i1.1127

[142] Nascimento, Dimas C. ; Pires, Carlos Eduardo S. ; Mestre, Demetrio G.: Ex-
ploiting block co-occurrence to control block sizes for entity resolution. In: Knowl-
edge and Information Systems 62(1), 2020, P. 359–400

[143] Naumann, Felix ; Herschel, Melanie: An Introduction to Duplicate Detection
(Synthesis Lectures on Data Management). Morgan and Claypool Publishers, 2010

143

https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement/
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement/

Bibliography

[144] Neiling, Mattis ; Jurk, Steffen ; Lenz, Hans-J. ; Naumann, Felix: Object Identi-
fication Quality. In: Proceedings of the International Workshop on Data Quality in
Cooperative Information Systsems (DQCIS), 2003, P. 187–198

[145] Nentwig, Markus ; Groß, Anika ; Rahm, Erhard: Holistic Entity Clustering for
Linked Data. In: Proceedings of the IEEE International Conference on Data Mining
Workshop (ICDM), 2016, P. 194–201

[146] Nentwig, Markus ; Hartung, Michael ; Ngonga Ngomo, Axel-Cyrille ; Rahm,
Erhard: A survey of current Link Discovery frameworks. In: Semantic Web 8(3),
2017, P. 419–436

[147] Newcombe, H. B. ; Kennedy, J. M. ; Axford, S. J. ; James, A. P.: Automatic
Linkage of Vital Records. In: Science 130(3381), 1959, P. 954–959

[148] Ngai, Eric W. T. ; Gunasekaran, Angappa ; Wamba, Samuel F. ; Akter,
Shahriar ; Dubey, Rameshwar: Big data analytics in electronic markets. In: Elec-
tronic Markets 27(3), 2017, P. 243–245

[149] O’Hare, Kevin ; Jurek-Loughrey, Anna ; Campos, Cassio d.: A Review of
Unsupervised and Semi-supervised Blocking Methods for Record Linkage. In: P,
Deepak (Ed.) ; Jurek-Loughrey, Anna (Ed.): Linking and Mining Heterogeneous
and Multi-view Data. Cham : Springer International Publishing, 2019, P. 79–105

[150] O’Hare, Kevin ; Jurek-Loughrey, Anna ; de Campos, Cassio: An unsuper-
vised blocking technique for more efficient record linkage. In: Data & Knowledge
Engineering 122, 2019, P. 181–195

[151] Papadakis, George ; Koutrika, Georgia ; Palpanas, Themis ; Nejdl, Wolfgang:
Meta-Blocking: Taking Entity Resolution to the Next Level. In: IEEE Transactions
on Knowledge and Data Engineering (TKDE) 26(8), 2014, P. 1946–1960

[152] Papadakis, George ; Papastefanatos, George ; Koutrika, Georgia: Supervised
Meta-Blocking. In: Proceedings of the VLDB Endowment 7(14), 2014, P. 1929–1940

[153] Papadakis, George ; Papastefanatos, George ; Palpanas, Themis ;
Koubarakis, Manolis: Boosting the Efficiency of Large-Scale Entity Resolution
with Enhanced Meta-Blocking. In: Big Data Research 6, 2016, P. 43–63

[154] Papadakis, George ; Skoutas, Dimitrios ; Thanos, Emmanouil ; Palpanas,
Themis: Blocking and Filtering Techniques for Entity Resolution: A Survey. In:
ACM Computing Surveys 53(2), 2020. – Article No. 31

[155] Papadakis, George ; Svirsky, Jonathan ; Gal, Avigdor ; Palpanas, Themis:
Comparative Analysis of Approximate Blocking Techniques for Entity Resolution.
In: Proceedings of the VLDB Endowment 9(9), 2016, P. 684–695

144

Bibliography

[156] Papadakis, George ; Tsekouras, Leonidas ; Thanos, Emmanouil ; Gian-
nakopoulos, George ; Palpanas, Themis ; Koubarakis, Manolis: Domain- and
Structure-Agnostic End-to-End Entity Resolution with JedAI. In: SIGMOD Record
48(4), 2020, P. 30–36

[157] Papenbrock, Thorsten ; Heise, Arvid ; Naumann, Felix: Progressive Duplicate
Detection. In: IEEE Transactions on Knowledge and Data Engineering (TKDE)
27(5), 2015, P. 1316–1329

[158] Philips, Lawrence: The Double Metaphone Search Algorithm. In: C/C++ Users
Journal 18(6), 2000, P. 38–43

[159] Pollock, Joseph J. ; Zamora, Antonio: Collection and characterization of spelling
errors in scientific and scholarly text. In: Journal of the American Society for
Information Science 34(1), 1983, P. 51–58

[160] Pollock, Joseph J. ; Zamora, Antonio: Automatic Spelling Correction in Scien-
tific and Scholarly Text. In: Communications of the ACM 27(4), 1984, P. 358–368

[161] Postel, Joachim H.: Die Kölner Phonetik: Ein Verfahren zur Identifizierung von
Personennamen auf der Grundlage der Gestaltanalyse. In: IBM Nachrichten 19,
1969, P. 925–931

[162] Quass, Dallan ; Starkey, Paul: Record Linkage for Genealogical Databases. In:
Proceedings of the ACM SIGKDD Workshop on Data Cleaning, Record Linkage, and
Object Consolidation, 2003, P. 40–42

[163] Rahm, Erhard ; Do, Hong H.: Data Cleaning: Problems and Current Approaches.
In: IEEE Data Engineering Bulletin 23(4), 2000, P. 3–13

[164] Ramadan, Banda ; Christen, Peter ; Liang, Huizhi ; Gayler, Ross W.: Dynamic
Sorted Neighborhood Indexing for Real-Time Entity Resolution. In: Journal of Data
and Information Quality (JDIQ) 6(4), 2015

[165] Ramadan, Banda ; Christen, Peter ; Liang, Huizhi ; Gayler, Ross W. ; Hawk-
ing, David: Dynamic Similarity-Aware Inverted Indexing for Real-Time Entity Res-
olution. In: Proceedings of the International Workshop on Data Mining Applications
in Industry and Government, 2013, P. 47–58

[166] Rao, Yizhuo ; Duan, Chengyuan ; Wei, Xiao: Review on Deep Adversarial Learn-
ing of Entity Resolution for Cross-Modal Data. In: Proceedings of the International
Conference on Information Technology and Computer Application (ITCA), 2020, P.
582–587

145

Bibliography

[167] Redman, Thomas C.: Second Generation Data Quality Systems. In: Juran,
Joseph M. (Ed.) ; Godfrey, A. B. (Ed.): Juran’s Quality Handbook. 5th edition.
New York : McGraw-Hill, 1999, P. 34.1–34.14

[168] Reid, Alice ; Davies, Ros ; Garrett, Eilidh: Nineteenth-Century Scottish De-
mography from Linked Censuses and Civil Registers. In: History and Computing
14(1–2), 2002, P. 61–86

[169] Reid, Andrea ; Catterall, Miriam: Invisible data quality issues in a CRM imple-
mentation. In: Journal of Database Marketing & Customer Strategy Management
12(4), 2005, P. 305–314

[170] Richards, Keith ; Jones, Eli: Customer relationship management: Finding value
drivers. In: Industrial Marketing Management 37(2), 2008, P. 120–130

[171] Robson, J. M.: Algorithms for Maximum Independent Sets. In: Journal of Algo-
rithms 7(3), 1986, P. 425–440

[172] Russell, Robert C.: INDEX. 1918. – US Patent 1261167

[173] Sabanoglu, Tugba: Number of paying Amazon Prime members worldwide as
of 1st quarter 2021. https://www.statista.com/statistics/829113/number-of-
paying-amazon-prime-members/. Version: 2021, Last checked: 2021-05-12

[174] Saeedi, Alieh ; Nentwig, Markus ; Peukert, Eric ; Rahm, Erhard: Scalable
Matching and Clustering of Entities with FAMER. In: Complex Systems Informatics
and Modeling Quarterly 16, 2018, P. 61–83

[175] Saeedi, Alieh ; Peukert, Eric ; Rahm, Erhard: Using Link Features for Entity
Clustering in Knowledge Graphs. In: Proceedings of the European Semantic Web
Conference (ESWC), 2018, P. 576–592

[176] Sanh, Victor ; Debut, Lysandre ; Chaumond, Julien ; Wolf, Thomas: Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter. In: Proceed-
ings of the EMC2 Workshop on Energy Efficient Machine Learning and Cognitive
Computing (5th edition), 2019

[177] Sarawagi, Sunita ; Bhamidipaty, Anuradha: Interactive Deduplication Using
Active Learning. In: Proceedings of the ACM International Conference on Knowledge
discovery and data mining (SIGKDD), 2002, P. 269–278

[178] Sehili, Ziad ; Kolb, Lars ; Borgs, Christian ; Schnell, Rainer ; Rahm, Erhard:
Privacy Preserving Record Linkage with PPJoin. In: Proceedings of the Symposium
on Database Systems for Business, Technology, and Web (BTW), 2015, P. 85–104

146

https://www.statista.com/statistics/829113/number-of-paying-amazon-prime-members/
https://www.statista.com/statistics/829113/number-of-paying-amazon-prime-members/

Bibliography

[179] Singla, Parag ; Domingos, Pedro: Object Identification with Attribute-Mediated
Dependences. In: Proceedings of the European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD), 2005, P. 297–308

[180] Smith, T. F. ; Waterman, M. S.: Identification of common molecular subsequences.
In: Journal of Molecular Biology 147(1), 1981, P. 195–197

[181] Snae, Chakkrit: A Comparison and Analysis of Name Matching Algorithms. In:
Proceedings of World Academy of Science, Engineering and Technology 21, 2007, P.
252–257

[182] Statista Reasearch Department: Prognose zum weltweit gespeicherten
Datenvolumen in Rechenzentren bis 2021. https://de.statista.com/statistik/
daten/studie/819487/umfrage/prognose-zum-weltweit-gespeicherten-
datenvolumen-in-rechenzentren/. Version: 2021, Last checked: 2021-05-12

[183] Stoyanovich, Julia ; Howe, Bill ; Jagadish, H. V.: Responsible Data Manage-
ment. In: Proceedings of the VLDB Endowment 13(12), 2020, P. 3474–3488

[184] Sweeney, Latanya: K-Anonymity: A Model for Protecting Privacy. In: Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 2002, P. 557–570

[185] Talburt, John R.: Entity Resolution and Information Quality. Boston : Morgan
Kaufmann, 2011

[186] Talburt, John R. ; Sarkhi, Awaad K. A. ; Pullen, Daniel ; Claassens, Leon ;
Wang, Richard: An Iterative, Self-Assessing Entity Resolution System: First Steps
toward a Data Washing Machine. In: International Journal of Advanced Computer
Science and Applications 11(12), 2020, P. 680–689

[187] Tankovska, H.: Most popular social networks worldwide as of January 2021, ranked
by number of active users. https://www.statista.com/statistics/272014/
global-social-networks-ranked-by-number-of-users/. Version: 2021, Last
checked: 2021-05-12

[188] Tarjan, Robert E. ; Trojanowski, Anthony E.: Finding a Maximum Independent
Set. In: SIAM Journal on Computing 6(3), 1977, P. 537–546

[189] Tejada, Sheila ; Knoblock, Craig A. ; Minton, Steven: Learning object identi-
fication rules for information integration. In: Information Systems 26(8), 2001, P.
607–633

[190] Tejada, Sheila ; Knoblock, Craig A. ; Minton, Steven: Learning domain-
independent string transformation weights for high accuracy object identification. In:
Proceedings of the ACM SIGKDD International Conference of Knowledge Discovery
and Data Mining, 2002, P. 350–359

147

https://de.statista.com/statistik/daten/studie/819487/umfrage/prognose-zum-weltweit-gespeicherten-datenvolumen-in-rechenzentren/
https://de.statista.com/statistik/daten/studie/819487/umfrage/prognose-zum-weltweit-gespeicherten-datenvolumen-in-rechenzentren/
https://de.statista.com/statistik/daten/studie/819487/umfrage/prognose-zum-weltweit-gespeicherten-datenvolumen-in-rechenzentren/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

Bibliography

[191] Thirumuruganathan, Saravanan ; Ouzzani, Mourad ; Tang, Nan: Explaining
Entity Resolution Predictions: Where Are We and What Needs to Be Done? In:
Proceedings of the Workshop on Human-In-the-Loop Data Analytics (HILDA), 2019.
– Article No. 10

[192] Thor, Andreas ; Rahm, Erhard: MOMA - A Mapping-based Object Matching
System. In: Proceedings of the Conference on Innovative Data Systems Research
(CIDR), 2007, P. 247–258

[193] Torra, Vicen: Data Privacy: Foundations, New Developments and the Big Data
Challenge. Cham : Springer International Publishing, 2017

[194] Vatsalan, Dinusha ; Sehili, Ziad ; Christen, Peter ; Rahm, Erhard: Privacy-
Preserving Record Linkage for Big Data: Current Approaches and Research Chal-
lenges. In: Zomaya, Albert Y. (Ed.) ; Sakr, Sherif (Ed.): Handbook of Big Data
Technologies. Cham : Springer International Publishing, 2017, P. 851–895

[195] Verroios, Vasilis ; Garcia-Molina, Hector ; Papakonstantinou, Yannis:
Waldo: An Adaptive Human Interface for Crowd Entity Resolution. In: Proceedings
of the ACM International Conference on Management of Data (SIGMOD), 2017, P.
1133–1148

[196] Visengeriyeva, Larysa ; Abedjan, Ziawasch: Anatomy of Metadata for Data
Curation. In: Journal of Data and Information Quality (JDIQ) 12(3), 2020. –
Article No. 16

[197] Vogel, Tobias ; Heise, Arvid ; Draisbach, Uwe ; Lange, Dustin ; Naumann,
Felix: Reach for Gold: An Annealing Standard to Evaluate Duplicate Detection
Results. In: Journal of Data and Information Quality (JDIQ) 5(1-2), 2014. – Article
No. 5

[198] Voigt, Paul ; Bussche, Axel von d.: The EU General Data Protection Regulation
(GDPR): A Practical Guide. Cham : Springer International Publishing, 2017

[199] Wang, Gang ; Chen, Hsinchun ; Atabakhsh, Homa: Automatically Detecting
Deceptive Criminal Identities. In: Communications of the ACM 47(3), 2004, P.
70–76

[200] Wang, Hongzhi ; Li, Jianzhong ; Gao, Hong: Efficient entity resolution based on
subgraph cohesion. In: Knowledge and Information Systems 46(2), 2015, P. 285–314

[201] Wang, Jiannan ; Kraska, Tim ; Franklin, Michael J. ; Feng, Jianhua: Crow-
dER: Crowdsourcing Entity Resolution. In: Proceedings of the VLDB Endowment
5(11), 2012, P. 1483–1494

148

Bibliography

[202] Wang, Jiannan ; Li, Guoliang ; Kraska, Tim ; Franklin, Michael J. ; Feng,
Jianhua: Leveraging Transitive Relations for Crowdsourced Joins. In: Proceedings
of the ACM International Conference on Management of Data (SIGMOD), 2013, P.
229–240

[203] Wang, Richard Y. ; Strong, Diane M.: Beyond Accuracy: What Data Quality
Means to Data Consumers. In: Journal of Management Information Systems 12(4),
1996, P. 5–33

[204] Wang, Sibo ; Xiao, Xiaokui ; Lee, Chun-Hee: Crowd-Based Deduplication: An
Adaptive Approach. In: Proceedings of the ACM International Conference on Man-
agement of Data (SIGMOD), 2015, P. 1263–1277

[205] Warren Jr., Henry S.: A modification of Warshall’s algorithm for the transitive
closure of binary relations. In: Communications of the ACM 18(4), 1975, P. 218–220

[206] Warshall, Stephen: A Theorem on Boolean Matrices. In: Journal of the ACM
9(1), 1962, P. 11–12

[207] Weis, Melanie ; Naumann, Felix: DogmatiX Tracks down Duplicates in XML. In:
Proceedings of the ACM International Conference on Management of Data (SIG-
MOD), 2005, P. 431–442

[208] Weis, Melanie ; Naumann, Felix ; Brosy, Franziska: A duplicate detection bench-
mark for XML (and relational) data. In: Proceedings of the SIGMOD International
Workshop on Information Quality for Information Systems (IQIS), 2006

[209] Weis, Melanie ; Naumann, Felix ; Jehle, Ulrich ; Lufter, Jens ; Schuster,
Holger: Industry-scale duplicate detection. In: Proceedings of the VLDB Endowment
1(2), 2008, P. 1253–1264

[210] Whang, Steven E. ; Lofgren, Peter ; Garcia-Molina, Hector: Question Selec-
tion for Crowd Entity Resolution. In: Proceedings of the VLDB Endowment 6(6),
2013, P. 349–360

[211] Whang, Steven E. ; Menestrina, David ; Koutrika, Georgia ; Theobald, Mar-
tin ; Garcia-Molina, Hector: Entity resolution with iterative blocking. In: Pro-
ceedings of the ACM International Conference on Management of Data (SIGMOD),
2009, P. 219–232

[212] Wilke, Moritz ; Rahm, Erhard: Towards Multi-Modal Entity Resolution for Prod-
uct Matching. In: Proceedings of the GI-Workshop Grundlagen von Datenbanken,
2021. – Article No. 10

149

Bibliography

[213] Winkler, William E.: String Comparator Metrics and Enhanced Decision Rules
in the Fellegi-Sunter Model of Record Linkage. In: Proceedings of the Section on
Survey Research, 1990, P. 354–359

[214] Winkler, William E. ; Thibaudeau, Yves: An Application Of The Fellegi-Sunter
Model Of Record Linkage To The 1990 U.S. Decennial Census. In: U.S. Decennial
Census. Technical report, US Bureau of the Census, 1991, P. 11–13

[215] Wonneberg, Oliver: Adaptive Fenstergröße bei der Sorted Neighborhood Methode,
Hasso-Plattner-Institute, University of Potsdam, Master thesis, 2009

[216] Yan, Baoshi ; Bajaj, Lokesh ; Bhasin, Anmol: Entity Resolution Using Social
Graphs for Business Applications. In: Proceedings of the International Conference
on Advances in Social Networks Analysis and Mining, 2011, P. 220–227

[217] Yan, Su ; Lee, Dongwon ; Kan, Min-Yen ; Giles, C.: Adaptive Sorted Neighbor-
hood Methods for Efficient Record Linkage. In: Proceedings of the ACM Interna-
tional Conference on Digital Libraries, 2007, P. 185–194

[218] Yu, Shao-Qing: Entity Resolution with Recursive Blocking. In: Big Data Research
19–20, 2020. – Article No. 100134

[219] Zhao, Huimin ; Ram, Sudha: Entity identification for heterogeneous database
integration: a multiple classifier system approach and empirical evaluation. In:
Information Systems 30(2), 2005, P. 119–132

150

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Application Areas for Duplicate Detection
	Challenges of Duplicate Detection
	Linguistic Challenges
	Non-Linguistic Challenges

	Contributions and Outline

	The Duplicate Detection Process
	Preprocessing
	Pair Selection
	Pair Classification
	Evaluation
	Further Related Work

	On Choosing Thresholds for Duplicate Detection
	The DuDe Toolkit
	DuDe Architecture
	Datasets

	Threshold Experiments
	Datasets and Configuration
	Experimental Results

	The Duplicate Count Strategy for Pair Selection
	Motivation for Windowing Approaches
	Related Work
	Duplicate Count Strategy
	Basic Strategy
	Multiple Record Increase

	Experimental Evaluation
	Datasets and Configuration
	Experimental Results: Perfect Classifier

	Effect of an Imperfect Classifier on DCS++
	Analysis of the Effects of an Imperfect Classifier
	Experimental Results: Imperfect Classifier

	Conclusion

	Clustering
	Problem Description
	Related Work
	Maximum Clique Clustering
	Maximum Clique Clustering (MCC)
	Extended Max. Clique Clustering (EMCC)

	Global Edge Consistency Gain (GECG)
	Prior Clustering Algorithms
	Transitive Closure
	GCluster
	Markov Clustering
	Merge-Center Clustering
	Modified Star Clustering
	Correlation Clustering
	Complexity Analysis

	Evaluation
	Baseline Clustering Algorithms
	Datasets
	Evaluation Approach and Results

	Conclusion

	Conclusion and Outlook
	DuDe Experiment
	Bibliography

