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1 Introduction

Pollution is an important determinant of urban quality of life. Households have flocked to
cities over the last centuries and decades, attracted by various agglomeration economies,
such as higher productivity and wages. However, city life has been and still is, to different
extents, plagued by agglomeration costs stemming from crime, congestion, and pollution.
Besides, urbanization and environmental degradation are not evenly spread throughout
the world. While developed countries were already more than 50% urbanized by 1950,
this threshold has been reached by less developed countries only in 2020.1 Accordingly,
the bulk of the recent and imminent increase in world urbanization will occur in devel-
oping regions. This is also where urban air pollution is most severe. For example, taking
the average PM2.5 concentration value from the WHO air quality database from 2022,2

20 of the 25 dirtiest cities were located in India, China, Bangladesh or Pakistan, with the
remaining in Cameroon, Iran, Mongolia, Madagascar and Afghanistan. Therefore, the
relationship between agglomeration and pollution is also a question of socio-economic
development. Reigning in pollution, especially in large cities, will be important as de-
veloping countries thrive to improve their citizens’ well-being. Yet, while there is an
extensive literature on the benefits stemming from agglomeration economies, there is
much less research on the costs of agglomeration (Ahlfeldt and Pietrostefani, 2019).

In this paper, we contribute to filling this gap. We use global gridded data on air
pollution and population to analyse how agglomeration, in the form of large and densely
populated cities, affects exposure to PM2.5 and NO2 pollution.

In theory, population density might increase or decrease pollution concentration in
cities. Borck and Schrauth (2021) present a model where residents of a monocentric
city pollute due to commuting and residential energy use for heating, electricity, etc.
They show that population density increases pollution concentration. The reason is
that larger and more densely populated cities have more aggregate commuting and that
residential energy use increases as well, even though residents live in smaller dwellings on
average.3 However, there are some countervailing forces. For instance, public transit is
more viable in large and densely populated cities due to economies of density, and denser
housing is more energy efficient. Therefore, the relation between density and pollution
is theoretically ambiguous.

Similar opposing forces determine whether cities with larger total population (as op-
posed to density) are more polluted (see Borck and Pflüger, 2019; Borck and Tabuchi,
2019). Further, the relation between population density and pollution is likely to depend

1See UN Urbanization Prospects, https://population.un.org/wup/.
2See WHO Air Quality Database from April, 2022, https://www.who.int/data/gho/data/themes/

air-pollution/who-air-quality-database.
3In the model, total pollution increases more than urban area, which means that pollution concen-

tration increases.
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on many factors that vary between regions, such as geography, institutions (environmen-
tal policies) etc. Therefore, an interesting question that we look at is how pollution and
its relation with density varies between regions with different characteristics.

We use 11-16 years (depending on the pollutant) of gridded satellite data to document
the distribution of pollution over space and time. There are several main findings. First,
we show that about 3/4 of the world population and about 79 percent of city dwellers
live in places with particulate pollution above thresholds as recommended by the WHO.
Thus it seems that pollution is especially severe in cities. We go on to estimate the
elasticity of pollution with respect to population density for PM2.5 and NO2. Using
OLS regressions with country fixed effects, we find elasticities of 0.15-0.16 for NO2 and
0.02-0.03 for PM2.5. To tackle concerns of reverse causality and omitted variables, we
also instrument population density using historical populations from different periods in
time. Doing so has only a very small effect on the estimated elasticities.

We present our results using both grid cells and cities (Functional Urban Areas, FUA)
as units of observation. Examining cities allows us to explicitly differentiate between the
different effects of agglomeration size versus population density on exposure. For cities,
we find that population size seems to be more important than density. Furthermore,
using the definition of FUAs allows us to differentiate between the core city and its
surrounding commuting zone. In fact, it turns out that pollution exposure is not signifi-
cantly affected by core city population, but does rise significantly with population living
in FUAs’ commuting zone.

Moreover, we study how the pollution-density relationship varies over continents and
by income. For the rasterized global data, we find that the pollution-density relation is
strongest in middle income countries and in Asia. For the city data, population/density
affect pollution most in upper middle and high income countries as well as in Europe
and North America.

We also present outcomes on a more local level by estimating the effect of within-city
variations in density. Again, we find positive effects of density on exposure, but the effects
are mostly smaller in size. Additionally, we estimate spatial first difference regressions,
where the estimated elasticities are based on changes between neighbouring grid cells
(Druckenmiller and Hsiang, 2018). The corresponding coefficient estimates turn out to
be positive, but again smaller in size.

Lastly, we perform a simple counterfactual simulation. Using the exposure–population
elasticity from our city analysis, estimated separately for each country, we ask how each
country’s total exposure would be affected by an equal redistribution of population across
cities. We find that for PM2.5, exposure falls by 36.5% for the country with the largest
drop (Indonesia), which has a large estimated elasticity. Conversely, there are some
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countries with negative elasticities, so exposure would rise in this counterfactual by a
maximum of 22.5% in Senegal.

The study contributes to a small but growing economic literature on urban pollution
generally, and on the relation between agglomeration and pollution in particular. Em-
pirical papers in fields other than economics have largely been confined to cross-sectional
studies.4 However, omitted variables and reverse causality are difficult to tackle in these
settings. Among the few serious efforts to identify the causal effect of population density
on pollution are Borck and Schrauth (2021) and Carozzi and Roth (2022). Borck and
Schrauth (2021) use panel data from German districts, while Carozzi and Roth (2022) use
cross-sectional data from US metropolitan areas. Both papers instrument density with
a variety of historical and geological instruments. Castells-Quintana et al. (2021) and
Aldeco et al. (2019) also study global pollution. Aldeco et al. (2019) focus on studying
the effect of various policies using a spatial equilibrium model. Castells-Quintana et al.
(2021) is also closely related to our paper, but there are several differences. They study
emissions in a global panel of cities, while we analyse exposure in both cities and raster
cells, which allows for a truly global analysis and lets us study the urban-rural pollution
gradient in addition to cross-city differences. Moreover, we do a variety of heterogeneity
analyses, and instead of emissions, we look at pollution exposure which is more tightly
linked to local welfare.

The paper is organized as follows. The next section presents our data, descriptive
analyses and empirical approach. Section 3 shows the results. In Section 4, we simulate
how total exposure would change if, within countries, we were to redistribute population
equally among all cities. The last section concludes the paper.

2 Data and estimation

2.1 Data

Most data sets we use are derived from satellites and are provided as a grid of raster
cells covering the entire world. Those rasterized grid maps come in different resolutions,
mostly between 0.01 and 0.25 decimal degrees. We transform all data to 0.25 degree
raster cells, which is a compromise between the different levels of aggregation of the
native data and moreover alleviates concerns about auto-correlation at finer scales. At
the equator, a quarter degree grid corresponds to 27.8 kilometres into one direction or

4See, e.g. Sarzynski (2012) and Lamsal et al. (2013). See also Borck and Schrauth (2021) for further
references.
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roughly 775 square kilometres overall.5 For our analyses, we use the years 2000, 2010
and 2015. In the following, the different data sets are described in more detail.6

2.1.1 Units of observation

In the analyses we use two types of observational units. The first are raw grid cells from
the raster data. The second are cities or “functional urban areas” (FUA) as defined by
Moreno-Monroy et al. (2020). These FUA are cities and their surrounding areas with
strong internal commuting links. We view these two data sets as providing complemen-
tary results. On the one hand, defining cities gets us closer to measuring activity in
economically meaningful areas. On the other hand, using all grid cells – even very thinly
populated ones – allows us to measure an urban-rural gradient of pollution. Thus, our
paper differs from and complements other papers that have mostly studied cities only
(e.g. Carozzi and Roth, 2022; Castells-Quintana et al., 2021).7

Raster data. The first units of observations in our analysis are grid cells of a rasterized
world map. The majority of the data we use is provided as raster maps, which then can
be matched to each other geographically. The advantage of looking at grid cells is that
we abstract from defining cities or urban areas and that there is an increasing database of
worldwide data covering a wide range of topics. In addition, it will allow us to measure an
urban-rural pollution gradient since observations take into account any type of inhabited
land and do not depend on city definitions. We use grids of 0.25 decimal degrees and
aggregate all the other raster maps to this size. This leaves us with more than 240,000
cells that fall on land to which we make some minor adjustments.8 The chosen grid size
is a compromise between data that is available at relatively fine grid scale, and data
that is available at coarser levels only. It also mitigates concerns about spatial auto
correlations.9

5Moving away from the equator means that equally sized grids cover smaller areas due to the curvature
of the earth. At the 45th degree of latitude for example, which crosses South Dakota, Mongolia, France
and Italy, 0.01 decimal degrees are equal to 787.1 meters in one direction. The value approaches zero
at the poles. Most of human activity takes place between the 50th parallel south and the 60th parallel
north.

6The NO2 data is only available from the years 2000 to 2012, of which we use the years 2000 and
2010. The PM2.5 data is available until 2015.

7Castells-Quintana et al. (2021) also look at the effect of density and polycentricity on pollution at
the country level.

8We drop grid cells which cannot be assigned unambiguously to one single country. As a consequence,
about 21,400 grid cells that lie at country borders are dropped from the sample. Furthermore, we
harmonize the country composition of our city and grid cell samples. Thus, all countries which do not
contain at least one Functional Urban Area are dropped.

9For variables available at higher grid resolutions, e.g. 0.1 decimal degrees, we re-project the data
to 1

4 degrees using an appropriate function: For continuous variables, we calculate either the mean
of all smaller grids within the respective quarter degree grid (pollution exposure for example is mean
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Cities. There are several reasons why we want to define city delineations. First,
defining cities allows us to distinguish between city size and density. In a grid with
equally sized grid cells, density would be strictly proportional to population. While
basic urban economic theory also predicts a positive relation between population size and
density (e.g. Brueckner (1987)), in practice the two vary independently, for instance, due
to differences in zoning policies across cities. Since different agglomeration economies
and diseconomies may operate at different spatial scales, population size and density
might then affect pollution differently (Ahlfeldt and Pietrostefani, 2019; Cheshire and
Magrini, 2008). Second, some of the PM2.5 pollution stems from sources not directly
attributable to daily human activities such as volcanoes or wildfires (see e.g. NASA
Earth Observatory (2015)). While this may be interesting in its own right (if it leads
to rural areas being dirtier than they would otherwise be), abstracting from these types
of events by focusing on urban areas allows us to concentrate on the effect of human
activity in cities on pollution. Third, we can conduct between city analyses to supplement
the rural-urban gradient. This type of city size effect helps us connect the empirical
analysis with theoretical considerations about optimal city size (see e.g. Borck and
Tabuchi (2019)). Fourth, we can detect within city differences. Thus, we can study
whether there is a core-periphery gradient of pollution exposure within cities and we
can compare it to between-city effects or the urban-rural gradient of pollution exposure.
Lastly, our historical population instruments consist of geo-coded city locations. Directly
instrumenting urban areas rather than grid cells thus seems more adequate.

We define cities as Functional Urban Areas (FUA) following Moreno-Monroy et al.
(2020). They use population and travel time data in 2015 to define unique urban centres
including their commuting zones.10 Thus, our city definitions do not vary over time.
A FUA consists of an urban core with at least 50,000 inhabitants and the surrounding
commuting zone, which is constructed using travel times. FUA were originally defined
by the OECD for OECD countries and Colombia. Moreno-Monroy et al. (2020) use those
OECD-defined FUAs to estimate city boundaries for the rest of the world.

Figure 1 shows our two main units of analysis and the population distribution as
provided by LandScan for the north-eastern USA. More precisely, the figure visualizes
the New York, Philadelphia, Baltimore and Washington, D.C. area and the area’s FUAs.
Grid-cell analyses consider all the non-white grid cells that fall on land. Densely pop-
ulated city cores are shown in red, and less dense suburbs and rural areas are shown
in yellow and blue. The greyish transparent polygons overlaying the population grids
depict the resulting FUAs.

exposure within a quarter degree grid) or sum the values of these finely scaled grids, as appropriate. For
categorical variables we take the modal value within a quarter degree grid.

10The geo-package with the FUA shapefile is publicly available at
https://ghsl.jrc.ec.europa.eu/download.php.
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Overall, there are 9,031 FUAs in 188 countries and about 245,000 grid cells in 185
countries. Since the main part of analyses contains within-country effects, we mostly
restrict the samples such that very small countries with very few raster cells or cities are
dropped.

Figure 1: Grid-cell units, Functional Urban Areas and LandScan population. New York,
Philadelphia, Washington D.C.

Note: The graph depicts a small section of the entire sample. White areas are water surfaces (lakes
and oceans) that are excluded from estimations. The overlying grid corresponds to the raster units,
while the greyish transparent polygons show single FUAs. Within both observation units, LandScan
population data are shown in different colour gradations. Blue indicates very low population density
and red indicates very high population density.

2.1.2 Air pollution data

The most direct measure of ground-level pollution concentration would be measurements
from in-situ monitors. However, these are not widely available, especially in many lower
income countries. Even among high income countries, only selected areas contain mon-
itoring stations. To get coverage of world wide pollution we use satellite data, which
captures air pollution concentration as vertical column densities in the troposphere. For
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ground-level observations, we resort to data sets that use chemical transport models to
translate satellite measures into ground-level pollution.11 The data products are annual
means of dust and sea-salt removed PM2.5 from 2000 until 2015 at 0.01x0.01 decimal de-
gree (dd) resolution and annual means of NO2 without corrections from 2000 until 2010
at 0.1x0.1 dd resolution.12 For most of our analysis, we use the data that are weighted
using geographically weighted regression (GWR), but outcomes are not sensitive to using
the non-weighted data.13

This native data serves to construct our pollution measure of interest, which is pol-
lution exposure (see e.g. Carozzi and Roth (2022) or Aldeco et al. (2019)). Population-
weighted pollution exposure E in grid cell G is then given by:

EG =
∑
i∈G

PG,i × NG,i∑
j∈G NG,j

,

where i indexes small grid cells within a large grid cell G.14 Average pollution concen-
tration in cell i is given by PG,i and population in i is represented by NG,i. Average
pollution exposure is therefore the sum of grid-specific pollution exposure divided by
overall population in a large unit G. We also repeat the analysis with our FUA dataset,
where G represents a city instead of a raster cell.

2.1.3 Population density

Present population and density. For measures of population and population den-
sity, we use LandScan data (LandScan, 2018). Population in this data set is provided
on a very fine spatial scale (30 arc-seconds)15, obtained from censuses and other sources
worldwide. The data aims to show where people are located on average over the course
of 24 hours. Thus, it includes place of residence and of work in its estimations.16 How-
ever, there is no information about how exactly the information is implemented in the
population grid estimates. Henderson et al. (2021) provide a “ground-truthing” exercise

11See Hammer et al. (2020) and Van Donkelaar et al. (2016) for PM2.5 and Lamsal et al. (2008) for
NO2. This data is available online (Atmospheric Composition Analysis Group, 2018).

12Satellite measurements of pollution are captured between 8:30 a.m. and 11:00 a.m. local time,
depending on the satellite. The cell size means that a raster contains about one square kilometre at the
equator compared to the 120 km2 NO2 raster cells.

13GWR uses in-situ (on the ground) monitors to detect regional biases of satellite optical depth
measurements. This bias is estimated and then corrected using different predictors like land cover
or elevation difference (Van Donkelaar et al., 2015). The advantage of GWR is the more accurate
representation of ground-level PM2.5.

14For example, a PM2.5 observation in a cell of 0.01x0.01 dd within a larger grid cell that spans over
0.25x0.25 dd.

1530 arc seconds correspond to a little less than 0.01x0.01 dd, which is about 1km at the equator.
16By contrast, other data sets distribute population obtained from administrative sources equally in

space or use buildings as a proxy for where people live without distinguishing whether those buildings
are commercial or residential ones.
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and conclude that LandScan data perform well and are suitable for analyses on a global
scale.17

Historical population measures. We also instrument population or density using
historical population data, following a large literature in urban and regional economics
since Ciccone and Hall (1996).

The data comes from Reba et al. (2016), who provide geo-referenced population data
worldwide ranging from 3700 B.C. to 2000 A.D. using historical, archaeological, and
census-based estimates. This data set comprises about 1500 settlements worldwide. We
use it to construct two different instruments. The main instrument will be the population
in 1900. This is the year with most observations in the historic population sample prior
to 1914 and represents the population in industrialized times before the two world wars.
The second instrument is population in the last year of observation before 1750, and
thus in pre-industrialized times. In Section 2.3 below, we will come back to the issue of
instrument relevance and exogeneity.

In the raster analysis, we assign historical population to single grid cells. Thus, each
grid cell is instrumented with the historical population data of the settlement that lies
within this grid cell. Some grid cells contain several data points. In this case, we sum
up the population over these data points. The drawback of instrumenting with historical
population counts is that the estimation sample is drastically reduced and that there is
a concentration of settlements in economically developed countries. Since using those
instruments therefore deprives us of much valuable information, we mainly present the
IV results in order to compare them with OLS outcomes on a harmonized sample. For
most of this study, we will concentrate on within-country OLS estimates.

2.1.4 Controls

We use a number of variables in order to control for potential observable factors that
may be correlated with population density and pollution. Income is an obvious candidate
variable that correlates with population density (Combes and Gobillon, 2015) and affects
pollution. To control for economic development, we therefore use GDP from the dataset
provided by Kummu et al. (2018). It is based on subnational accounts, like states in
the U.S. or districts in Germany. In some specifications we control for the presence of
coal-fired and other highly polluting power plants in a grid cell.18 Since power plants may
be close to dense areas, this may be one channel through which density affects pollution.

17This finding is confirmed by Galdo et al. (2019) who use machine learning combined with human
judgment to identify urban areas in India and compare their outcomes with LandScan data.

18The data is available at https://datasets.wri.org/dataset/globalpowerplantdatabase.
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We also control for a variety of topological and climatological variables that may be
correlated with density and pollution, such as ruggedness, temperature, wind speed, and
precipitation. We compute ruggedness following Nunn and Puga (2012), which is roughly
the grid-cell average difference in elevation between a point and the terrain surrounding
it. Our ruggedness measure is calculated over land surface only, leaving out water.19

Temperature and precipitation are taken as long-run averages over the 30 year period
between 1960 and 1990 (FAO/IIASA, 2012). Wind data is retrieved from the global wind
atlas (Davis et al., 2019).

In addition to weather, we control for variables that might influence pollution through
their suitability for trade on the one hand and through their climatological impact on the
other. These controls consist of three dummy variables (whether a major river, a large
lake, or a coastline is within 25 kilometres of a grid centroid) and a continuous variable
(distance of grid centroid to coast). In our city-level analysis, we measure the distance
of a city border to the respective first nature characteristic. Data for coastlines, rivers
and lakes come from Natural Earth (2018).20

Moreover, we control for the agricultural suitability of a raster cell or city (compare
Henderson et al., 2018). Locations that are densely populated due to their fertile soil
may also suffer from high pollution, since agriculture is a strong producer of particulate
matter pollution. We thus take into account land suitability (as continuous variable), and
a set of biome indicators. Land suitability for agriculture is based on measures of climate
and soil and predicts the probability of land to be cultivated (Ramankutty et al., 2002).
Biomes describe the ecological system of an area and its dominant natural vegetation.
These categories include for instance “tundras”, “tropical and subtropical dry broadleaf
forests”, or “Deserts & Xeric Shrublands”. The 14 biome indicators we use are taken
from Olson et al. (2001).21

We want to assess a variety of country features that may influence the relation between
population and pollution. In order to do so, we make use of a large set of national
indicators from the World Bank that contains economic performance, energy use or
demographic characteristics (World Bank, 2019). This data set ranges from 1960 to
2018, which allows us to calculate for instance means of urbanization rates and their

19In order to calculate the fraction of water surface we use the world map gridded at 1 km resolution
provided by Lloyd et al. (2017), which is based on a global water mask dummy variable gridded at very
high resolution (Feng et al., 2016).

20We take the “high” resolution datasets from Natural Earth (2018). Rivers are categorized into 10
size ranks, where 1 are the largest and 10 the smallest rivers. We only consider rivers between the ranks
1-6. Large lakes are those with a surface area greater than 5,000 square kilometres, excluding unnatural
dams. This leaves us with 29 major lakes.

21Just like Henderson et al. (2018) we combine the categories “tropical and subtropical dry broadleaf
forests” with “tropical and subtropical coniferous forests” as well as “tropical and subtropical grasslands
and savannas and shrublands” with “flooded grasslands and savannas”. Furthermore, we drop areas
historically covered by ice or rocks from the analysis. Doing so does not, however, change our results.
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growth, residents of large agglomerations or energy use over different time periods. In
our analysis below, we will correlate some of these measures with the density-elasticity
of pollution.

2.2 Descriptive analysis

Human health is vulnerable to pollution. The WHO has set short- and long-run thresh-
olds to indicate very high pollutant concentration levels that presumably pose major
threats to human health. Short-run refers to the average value over 24 hours for PM10

and one hour for NO2, while long-run means the annual mean. In our sample, the long-
term threshold of 40µg/m3 for NO2 is not exceeded in a single raster or city, which would
seem to suggest that this pollutant does not constitute a major health threat.22 However,
Borck and Schrauth (2021) show that NO2 levels for both the short- and the long-run
thresholds are transgressed in Germany on a more local level. The respective data is
taken from in-situ monitors and therefore provides a more accurate local measure of air
pollution. Indeed, the raster size we have available for NO2 does not allow for a very
local consideration of this pollutant. Furthermore, we only have available annual means,
so we cannot analyse short-run threshold transgressions.

Things look different for PM2.5-pollution. Table 1 shows the share of population that
lives in raster cells or cities where annual mean PM2.5 pollution exceeds the short-run
(25µg/m3) or long-run (10µg/m3) WHO thresholds. In 2015, out of the 7.26 billion
people in the sample, about 5.52b lived in raster cells with mean PM2.5-levels beyond
the long-term threshold of 10 µg/m3. This corresponds to around 76 percent of the
overall world population. Approximately 39 percent were even permanently exposed
to concentrations beyond 25 µg/m3, which is the WHO 24-hour mean and therefore
recommended to be avoided over periods longer than a day. Note, however, that within
a raster cell there is variation in pollution concentrations such that not everybody is
actually exposed to those pollution concentrations. Therefore, the actual number of
people permanently exposed to such high concentrations may lie below 75 percent.

If we only consider FUA, there are about 4 billion people living in urban areas (this
is in line with the UN’s estimate of worldwide city population) of whom about 79% live
in cities with long-term mean PM2.5 pollution beyond 10µg/m3. About 44% are in cities
where average annual urban pollution even exceeds the short-term threshold of 25µg/m3.

There are marked differences between continents. In Asia, 92 percent of the popu-
lation face an annual average PM2.5-pollution beyond 10µg/m3. In Europe the corre-

22The WHO has recently updated its thresholds (for example, the annual thresholds are now 10 µg/m3

for NO2 and 5 µg/m3 for PM2.5.), but we use the thresholds that were published during the period we
study.
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Table 1: Descriptive statistics

Raster Cities
Mean Min Mean Min
(Std) Max (Std) Max

PM2.5 8.07 0 31.46 .9
(8.51) 104.94 (24.82) 119.57

NO2 .38 0 1.70 0.01
(0.77) 28.7 (2.31) 17.85

Population 29,779 0 435,016 50,079
(158,719) 11,501,275 (1,384,120) 36,471,787

Overall population 7.26 billion 3.93 billion
Share population exposed to:
PM2.5 > 10 µg/m3 76% 79%
PM2.5 > 25 µg/m3 39% 44%
Countries 185 188
Observations 244,649 9031

Note: Own calculations. The table shows descriptives of unweighted pollution provided by Atmospheric
Composition Analysis Group (2018) for the years 2010 (NO2) and 2015 (PM2.5). Population data is
shown for the year 2015 and is taken from LandScan (2018). For the calculation of PM2.5-exposure with
values larger than 10 µg/m3 or 25 µg/m3 we sum the population in grid cells (FUAs) that match a
pollution cell that is higher than the respective value in 2015 and divide it by the overall population in
the respective sample.

sponding number is 67 percent, in Africa 62 percent, in North-America 37 percent, and
in South America 32 percent.23

Figure 2 shows the geographical distribution of PM2.5 in 2015 and its change from
2000 to 2015. Dark grey/black areas in panel (a) are highly polluted with values close to
or larger than 25 µg/m3 while light grey/white ones may have values close to or below
the annual WHO threshold of 10 µg/m3. In Panel (b), dark grey/black areas have seen
an increase in PM2.5-concentrations between 2000 and 2015, while light grey/white areas
experienced little change or even a decline. Apparently, many of the highly polluted areas
in 2015 either developed into highly polluted areas or became even more polluted over
the course of 15 years. The pollution problem has become much more serious especially
in India and China, but also in Africa south of the equator (net of dust and sea salt).
Many areas in the U.S., especially in the east, have improved their air quality over time,
which is also the case in parts of Western Europe.

Pollution of NO2 is much more concentrated in a few areas as shown in Figure 3a.
The highest concentration exposure is found in North-eastern China, Middle Europe,

23These numbers are based on the raster data.
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Figure 2: PM2.5 concentration and development over time
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Note: Figure 2a shows the worldwide distribution of PM2.5 concentrations in 2015. White/light grey
depicts low and dark grey/black high concentration levels. Figure 2b shows developments of PM2.5
levels between 2000 and 2015. White/light grey areas saw negative, little or no change in pollution
concentration; dark grey/black areas have experienced large increases in PM2.5 pollution.

parts of the United States and parts of Russia. The range of values is much smaller for
NO2. The maximum value reached is 30 µg/m3 in 2010. Figure 3b shows the change
in NO2 concentration levels. Again, dark grey/black areas are those where pollution
most strongly increased from 2000 until 2010. Some parts of the U.S. and Europe have
experienced air quality improvements. In Africa, Australia, and South America, NO2

concentrations barely changed. Predominantly densely populated metropolitan areas
such as Santiago de Chile, Cairo, or São Paulo seem to have higher pollution levels in
2015 compared to 2010.
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Figure 3: NO2 concentration and change over time
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Note: Figure 3a shows the worldwide distribution of NO2 concentrations in 2010. White/light grey de-
picts low and dark grey/black high concentration levels. Figure 3b shows changes of NO2 levels between
2000 and 2010. White/light grey areas saw negative, little or no change in pollution concentration; dark
grey/black areas have experienced large increases in NO2 pollution.

We now turn to our regression framework for estimating the effect of population on
pollution exposure.

2.3 Estimation

In a first step, we run simple Ordinary Least Square (OLS) regressions of air pollution
exposure on population (density) and control variables. To mitigate concerns about
spatial autocorrelation, we analyse pollution within relatively large 1

4 decimal degree
grids and we cluster standard errors within three-by-three squares of grid cells times
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year of analysis (following Henderson et al., 2018). This clustering approach accounts
for the potential correlation of pollution in space since particulates for instance disperse
spatially with the wind. In a second step, we restrict the sample to cities as defined
above.

The OLS regression equation is:24

ln(EGtS)) = β + ρ ln(DGtS) + γXGtS + αt + ϵGtS, (1)

where EGtS is exposure to NO2 or PM2.5 in grid cell/FUA G and year t in country S (in
our baseline regressions we only include the last year of observation, i.e. 2010 for NO2

and 2015 for PM2.5). Our parameter of interest, ρ, measures the elasticity of pollution
exposure with respect to population density DGtS (or population NGtS, depending on the
specification). XGtS is a vector of control variables. As explained above, these contain
the log of GDP, several variables about the suitability for trade (whether the raster/city
lies on a river, on a lake or on the coast) and agriculture (land suitability, and biome
indicators), temperature, precipitation (both as 1960-1990 long term means), wind speed,
the presence of dirty power plants, ruggedness and latitude.

We will compare OLS results to within-country estimates, which include a country
dummy θS. These within-country regressions compare raster cells/cities within a country
to each other. The rationale is to control for any countrywide unobserved geographic or
political features that may be correlated with both pollution and population (density).

Even though country fixed effects already account for a large portion of unobserv-
ables, OLS regressions may still be biased due to reverse causality or omitted variables.
Economic theory and empirical evidence suggests that households would want to move
to cleaner areas (Chen et al., 2022). Hence, population would be endogenous to pol-
lution exposure. Moreover, within countries, there may be unobservable differences in
policies, attitudes, and the like that are correlated with population measures and pol-
lution. We therefore follow the urban economics literature in instrumenting population
with historical population levels.25

The main assumptions for using historical population data have been widely discussed
in the urban economic literature. First, the distribution of population and economic ac-
tivity tends to be persistent over time (see for instance Davis and Weinstein, 2002). This
is intuitive, since infrastructure and buildings are durable and thus population changes
are sluggish. Therefore, historical population is a good predictor of current agglomer-
ations. Second, the exclusion restriction states that historical population should affect

24Note that in the main analysis, we only look at a cross-section. We keep the time index because we
run fixed-effects panel regressions as a robustness check.

25See, e.g. Combes et al. (2010) for a classic application and discussion of the issues in estimating
agglomeration economies. See Borck and Schrauth (2021) and Carozzi and Roth (2022) for the same
approach in estimating density effects on pollution in Germany and the US.
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pollution only through its effect on current population. The argument is that, if we go
back in time far enough, structural change will have led to a reshaping of local economies
such that historic population levels should be exogenous to current pollution levels. Sup-
pose, for instance, that a city formed close to a river in pre-industrial times in order
to benefit from the trade advantage conferred by the river. It may have grown into a
densely populated and highly polluted place nowadays due to industrial and traffic pol-
lution. Then, the exogeneity assumption would be satisfied, since today’s agglomeration
pattern and its effect on pollution (namely, motorized traffic and industrial production)
differs from the historic one (trade).

In constructing historical instruments, there is a trade-off: on the one hand, the ex-
ogeneity argument forces us to go back sufficiently long in time. On the other hand,
availability constraints force us to use more recent data in order to have a sufficient
number of observations.26 With respect to exogeneity, we believe that population counts
prior to 1750 have the stronger arguments compared to more recent population instru-
ments. Before the industrial revolution, which started in the second half of the 18th
century, air pollution was probably not a decisive factor for migration decisions, whereas
during industrialization, there seems to be already some evidence of sorting with respect
to pollution (Heblich et al., 2021).27 Using population in 1900, however, provides us
with at least twice as many observations than more historical population counts. We
will use population in 1900 as our main instrument, but outcomes do not differ much
using population from pre-industrialized times.28

We instrument population (density) as follows:

ln(DGtS)) = α + B2XGtS + B3ZGtS + ηGtS, (2)

where the instrument Z is historical population. The predicted values for population,
ln(D̂GtS), are then used in the second stage instead of actual measures of population in
equation (1).

We also present results from long-difference estimations. These regress the changes in
exposure between the last and first year of observation on changes in population/density.
The idea here is that there may be some unobserved differences between units that
simultaneously affect population density and pollution. For instance, sorting of “green”
individuals into large cities might lead to a negative correlation between density and

26We also experimented with soil quality and other natural causes as instruments like Borck and
Schrauth (2021) and Combes et al. (2010). However, we were not able to find strong instruments that
could explain agglomerations all around the world.

27Heblich et al. (2021) argue that more polluted parts of cities in England were poorer as the rich
sorted into less polluted areas. The authors find that those sorting patterns have persisted until today.

28Borck and Schrauth (2021) analyse German data and show that historically dense places have no
more industrial employment than less dense ones. Since industry was a prime polluter following the
industrial revolution, this lends some credibility to the exclusion restriction.
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exposure. This kind of heterogeneity is, given that it is time invariant, differenced out
in the long-difference estimation.

We also estimate city level regressions, using FUAs as units of observation. This
approach compares cities (between city estimates) within countries, but in addition also
allows us to look at within-city effects. In within-city grid-level regressions we estimate

ln(EGtC) = β + ρ ln(DGtC) + αt + θC + ϵitC , (3)

where C is the city index. We drop all the city-specific control variables since we now
control for city fixed effects θC and only look at within-city differences.

In addition, we estimate spatial first difference (SFD) models, following the approach
proposed by Druckenmiller and Hsiang (2018). This transfers the idea of first differences
in time into physical space. In short, SFD regresses the differences in outcomes between
neighbouring grid cells on the differences in controls between these same cells. Since
the estimation differences out any unobserved factors that are common to neighbouring
cells (such as possibly geographic and institutional factors that may be correlated with
population density and pollution), this mitigates omitted variable bias. On the downside,
some interesting variation is lost by only considering variation between neighbouring cells.
Further details are in Appendix C.

3 Results

Before presenting our main outcomes using within-country OLS, we briefly compare OLS
and IV coefficients first. We estimate IV regressions in order to gauge the magnitude
and direction of potential biases. The reason for not using IV results as our favoured
outcomes, as described above, is that we are only able to instrument a small subsample of
all observed units, which moreover is primarily restricted to a developed world sample.29

To compare OLS and IV results, we harmonize the sample to those cities or grid cells
for which the corresponding instrument is available. In all regressions we control for the
full set of trade, agricultural, and weather variables as well as logged GDP, ruggedness,
latitude and an indicator for the presence of a dirty power plant. We show results with
population in 1900 as instrument in Table 2. The first insight is that the sample size is
drastically reduced when considering instrumental variables. With raster cells as units
of observation, only slightly more than 1000 grid cells of the roughly 200,000 total cells
in the whole sample remain. Regarding FUAs, we have historic population for about
10% of all cities. The comparison of OLS and IV results shows only very small and

29The historical population data by Reba et al. (2016) only covers less than 0.7 percent of all inhabited
grid cells in the sample when taking population from 1900 as instrument, and only slightly more than
0.3 percent of all cells when instrumenting with pre-industrial population.
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Table 2: IV and OLS regressions

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Raster-level estimations
log(Sum of population) 0.119∗∗∗ 0.0902∗∗∗ 0.0593∗∗∗ 0.0556∗∗∗ 0.435∗∗∗ 0.424∗∗∗ 0.375∗∗∗ 0.387∗∗∗

(0.0219) (0.0263) (0.0195) (0.0168) (0.0266) (0.0356) (0.0328) (0.0318)
N 1022 1022 1022 1022 1024 1024 1024 1024
R2 0.588 0.587 0.853 0.853 0.637 0.637 0.793 0.793
Countries 99 99 99 99 99 99 99 99
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV
Panel B: FUA-level estimations
log(Sum of population) 0.0701∗∗∗ 0.0720∗∗∗ 0.0475∗∗∗ 0.0480∗∗∗ 0.294∗∗∗ 0.321∗∗∗ 0.274∗∗∗ 0.286∗∗∗

(0.0167) (0.0199) (0.0120) (0.0123) (0.0202) (0.0290) (0.0215) (0.0243)
N 836 836 836 836 836 836 836 836
R2 0.656 0.656 0.884 0.884 0.662 0.661 0.801 0.801
Countries 96 96 96 96 96 96 96 96
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV

Note: The table presents coefficients of OLS and IV regressions for both raster-level and city-level (FUA)
results. The instrument used is population in 1900. Samples are harmonized such that OLS regressions
only include those raster cells/cities for which we have the instrument available. The first two columns
of each pollutant show results without country fixed effects, while the latter two of each show results
including country FE. All estimations include the following control variables: Trade controls (river, lake,
coastline within 25km and continuous distance to coast measure), agricultural ones (biome indicators,
land suitability for agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness,
latitude, log(GDP), and and indicator for a dirty power plant nearby. Standard errors (in parentheses)
are clustered within three-by-three squares of grid cells times year. Statistical significance indicators:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

insignificant differences as soon as we include country fixed effects (columns 3,4,7, and
8). Using population before industrialization as instrument yields similar results (see
Appendix Table A.1). The population instruments are exactly identified. Table 3 shows
the first stage regressions. The F-statistic indicates that the instruments are strong.

Hence, it seems like omitted variable bias or reverse causality does not cause large
biases in the estimates.30 In the remainder of the paper we focus on within-country
regressions using the whole sample available for both grid cells and cities.

3.1 Raster-level outcomes

We first consider raster-level outcomes. Table 4 compares outcomes between simple OLS
and within country regressions using the entire sample for both pollutants, NO2 and
PM2.5. As this will become important in our city-level results, we differentiate between
the sum of population within a grid cell and population density of a cell. All specifi-
cations include our baseline covariates, i.e. weather, GDP, geographical characteristics,

30Note, however, that this conclusion holds only for the selective sample of cities where we have
long-lagged historical population.
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Table 3: First stages with Population instruments

Population 1900 Population 1650-1750
PM2.5 NO2 PM2.5 NO2 PM2.5 NO2 PM2.5 NO2

Population 1900 0.642∗∗∗ 0.624∗∗∗ 0.844∗∗∗ 0.830∗∗∗

(0.0266) (0.0265) (0.0253) (0.0251)
Population 1650-1750 0.479∗∗∗ 0.464∗∗∗ 0.603∗∗∗ 0.584∗∗∗

(0.0605) (0.0608) (0.0826) (0.0826)
N 1022 1024 836 836 357 358 322 322
Countries 99 99 96 96 73 73 70 70
First-stage Statistic 583.5 553.2 1114.4 1096.6 62.76 58.20 53.34 49.91

Note: The table presents first stage results for the population instruments for both raster-level and city-
level first stage regressions. Columns 1/2 and 5/6 depict raster-level first stage results, while columns 3/4
and 7/8 show FUA-level coefficients. The source of historical population is Reba et al. (2016). Population
1900 is the population count in year 1900, while population 1650-1750 takes the last population count
before 1750 observed in the dataset, which we refer to as pre-industrialized population. Standard
errors (in parentheses) are clustered within three-by-three squares of grid cells times year. Statistical
significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 4: Raster-level OLS regressions

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
log(Sum of population) 0.102∗∗∗ 0.0294∗∗∗ 0.191∗∗∗ 0.157∗∗∗

(0.00172) (0.00149) (0.00233) (0.00275)
log(pop density) 0.0943∗∗∗ 0.0180∗∗∗ 0.184∗∗∗ 0.146∗∗∗

(0.00169) (0.00135) (0.00179) (0.00175)
log(GDP) -0.105∗∗∗ -0.111∗∗∗ 0.0468∗∗∗ 0.0440∗∗∗ 0.217∗∗∗ 0.213∗∗∗ 0.124∗∗∗ 0.121∗∗∗

(0.00541) (0.00543) (0.00672) (0.00673) (0.00526) (0.00511) (0.00876) (0.00877)
Temperature 0.00521∗∗∗ 0.00672∗∗∗ 0.0249∗∗∗ 0.0265∗∗∗ 0.0657∗∗∗ 0.0672∗∗∗ 0.108∗∗∗ 0.110∗∗∗

(0.00107) (0.00107) (0.00101) (0.00101) (0.00118) (0.00116) (0.00151) (0.00147)
Precipitation -0.000918∗∗∗ -0.000975∗∗∗ -0.000286∗∗∗ -0.000348∗∗∗ -0.0000865 -0.000195 -0.00155∗∗∗ -0.00165∗∗∗

(0.000116) (0.000117) (0.0000978) (0.0000975) (0.000135) (0.000131) (0.000143) (0.000136)
Wind speed -0.189∗∗∗ -0.194∗∗∗ -0.118∗∗∗ -0.120∗∗∗ -0.0100∗∗ -0.0134∗∗∗ 0.00931∗∗ 0.00831∗∗

(0.00395) (0.00398) (0.00324) (0.00325) (0.00440) (0.00414) (0.00436) (0.00393)
1(On coast) -0.799∗∗∗ -0.859∗∗∗ -0.688∗∗∗ -0.694∗∗∗ -0.265∗∗∗ -0.348∗∗∗ -0.300∗∗∗ -0.345∗∗∗

(0.0180) (0.0183) (0.0146) (0.0147) (0.0199) (0.0159) (0.0192) (0.0143)
1(Close to lake) -0.360∗∗∗ -0.371∗∗∗ -0.260∗∗∗ -0.254∗∗∗ 0.198∗∗∗ 0.195∗∗∗ 0.131∗∗∗ 0.136∗∗∗

(0.0328) (0.0335) (0.0335) (0.0336) (0.0372) (0.0301) (0.0347) (0.0273)
1(Close to river) 0.0275 0.0330∗ -0.0224∗ -0.0160 -0.118∗∗∗ -0.113∗∗∗ -0.0593∗∗∗ -0.0551∗∗∗

(0.0172) (0.0173) (0.0128) (0.0128) (0.0206) (0.0207) (0.0180) (0.0181)
1(Close to dirty powerplant) 0.0790∗∗∗ 0.105∗∗∗ 0.103∗∗∗ 0.131∗∗∗ 0.310∗∗∗ 0.328∗∗∗ 0.226∗∗∗ 0.243∗∗∗

(0.0190) (0.0191) (0.0139) (0.0139) (0.0242) (0.0242) (0.0214) (0.0211)
Ruggedness -0.00183∗∗∗ -0.00119∗ -0.00324∗∗∗ -0.00309∗∗∗ -0.0151∗∗∗ -0.0143∗∗∗ -0.00680∗∗∗ -0.00617∗∗∗

(0.000702) (0.000703) (0.000658) (0.000660) (0.00103) (0.00101) (0.000965) (0.000934)
Latitude 0.00288∗∗∗ 0.00261∗∗∗ -0.0116∗∗∗ -0.0116∗∗∗ 0.0596∗∗∗ 0.0580∗∗∗ 0.0686∗∗∗ 0.0668∗∗∗

(0.000799) (0.000805) (0.000957) (0.000958) (0.000855) (0.000836) (0.00125) (0.00124)
N 175237 175235 175237 175235 178535 178507 178535 178507
R2 0.386 0.378 0.607 0.606 0.604 0.652 0.675 0.732
Countries 161 161 161 161 160 160 160 160
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of OLS regressions including all relevant controls. Apart from
those that are listed in the table, the estimations additionally account for all biome indicators, and
land suitability. Columns 3,4,7 and 8 additionally include country-fixed effects (Country FE). Standard
errors (in parentheses) are clustered within three-by-three squares of grid cells times year. Statistical
significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

suitability for trade and agriculture, and a dummy for whether there is at least one highly
polluting power plant within a grid cell. Examining the results shows that the coeffi-
cients for both total population and density are reduced in magnitude when we include
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country fixed effects to the PM2.5-exposure estimations, while the difference between the
estimates is smaller for NO2. In other words, the within-country effect of density on
pollution exposure is much smaller than the overall effect. This suggests, for PM2.5, that
the effect of density is partly driven by certain highly polluted countries with densely
populated grid cells. It might be, for instance, that some countries have policies that
both limit migration to large cities and pollution.

Taking the within-country estimates, our main results show an elasticity of pollution
exposure with respect to density of 0.02 in the PM2.5 regressions and 0.15 in the NO2

regressions. This implies that doubling population density would result in a 1.3 percent
increase in PM2.5 exposure and a 10.7 percent increase in NO2 exposure.

Looking at the other coefficients, we find that once we control for country fixed
effects, grid cells with higher GDP are more polluted.31 Pollution exposure rises with
temperature. By contrast, precipitation and wind speed are negatively correlated with
pollution exposure. Exposure is also strongly affected by dirty power plants.

Using the log of pollution exposure leads to the treatment of all zero observations
as missing. To avoid this, we repeat the estimation by replacing all zero values to the
minimum non-zero values observed in the data.32 Interestingly, the pollution-density
elasticity for both pollutants becomes significantly higher (0.2 for PM2.5 and 0.24 for
NO2 in the regressions with country fixed effects, see Tab. A.2).

That the elasticity is so much lower when we exclude grid cells with zero outcome
points to a significant non-linearity in the effect of (log) density on (log) exposure. To ad-
dress this question from a slightly different angle, we now present non-linear regressions,
where we include categorical variables for large and densely populated areas instead of
continuous variables. We thus attempt to more directly measure an urban-rural gap.
In order to do so, we categorize grid cells with less than 50,000 inhabitants and those
with density below 100 persons per sq. km as ‘rural’.33 The results are shown in Ta-
ble A.3. The urban-rural gap is clearly evident: Going from rural to urban raster cells
significantly increases pollution exposure. We redo the exercise with 4 instead of only 2
categories (see Table A.4). There is some variation in the effects; still, we find that the
effect of going from what we call ‘rural’ to ‘urban’ is larger than the effect of going from
one urban category to the next (e.g. from low to moderate density). In summary, there

31Interestingly, the coefficient on GDP is negative in the PM2.5 regression without country fixed
effects. This suggests that around the world, grid cells in higher income regions tend to be less exposed
to pollution, but this effect is driven by the fact that these grid cells are predominantly located in less
polluted high income countries.

32This follows Henderson et al. (2018), who use the approach of setting observations with a zero for
night lights to the minimum value in the sample in their estimates presented as main results.

33This follows the density category ‘extremely low’ in
https://www.yourarticlelibrary.com/population/population-density-classification-of-the-spatial-
distribution-of-population-density/19853.
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is an urban-rural gap in pollution exposure which trumps the effect of increasing density
within urban areas.

In the remainder of the raster-level results, we will mainly report within-country ef-
fects and focus on population density, which makes results more comparable to previous
literature. The main estimates in Table 4 assume a homogeneous relationship between
pollution and population in the entire world. In order to check whether this relation-
ship changes with geography, country income, and the like, we now consider various
interactions to analyse the heterogeneity of this effect.

Heterogeneity and robustness. We now turn to analysing heterogeneities in the
pollution-density gradient across continents and countries at different stages of devel-
opment. Figure 4 shows the results of running within-country regressions by country
income groups and by continents, where income groups follow the World Bank classi-
fication into low, lower middle, upper middle, and high income. Population density is
a significant determinant of pollution over all income groups and continents, but to a
different extent. Figure 4a exhibits that the strongest within-country effects of density
are found in low middle income countries regarding PM2.5-exposure and in upper middle
income countries for NO2. Hence, it seems like the density effect is to some extent non-
linear in income, and middle-income countries tend to have a stronger effect of density
on pollution than both low and high-income countries. A potential reason is that density
is not “dirty” (Carozzi and Roth, 2022) in low income countries, because there is little
dirty activity such as driving and heating, whereas in high income cities, cleaner trans-
port modes (e.g. public transport) and residential energy use (heating and cooking with
electricity or “modern fuels”) may mitigate the effects of density.34 In contrast, middle
income country agglomerations may be dirtier than low income ones because there is
more driving and residential energy use, but technologies for these activities are not as
clean as in high income country cities.

Fig. 4b shows differences by continent. For NO2, the density effect is smallest in
Africa and largest in Asia. In Fig. 5 and 6, we further show the density coefficients
for each country from individual within-country regressions on world maps. The maps
show some interesting ramifications. The NO2 density elasticities in Fig. 5 suggest that
China and India – where most of the biggest and most polluted cities in the world are
located – seem to have the strongest effect of density on NO2 pollution exposure in Asia.
In North America, Mexico and the US have larger effects than Canada, while within
Europe countries from the south seem to have higher elasticities than countries in the
north.

34See Borck and Mulder (2022) for a model with dirty and clean energy use as well as transport modes
in developing countries.
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Figure 4: Heterogeneity of density effect by subgroup

(a) By income group

(b) By continent

Note: The graphs show coefficients of separate regressions for each of the respective subgroups. The
y−axes represent the coefficient sizes. All estimations include within-country fixed effects, and all the
control variables from our standard estimations (compare Table 4). Income group definitions are taken
from the World Bank.
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Fig. 6 shows the country-specific density elasticities for PM2.5. In Asia and Europe,
most of the countries that have large density elasticities for NO2 also have large elasticities
for PM2.5, while the density effect in the Americas seems to be smaller for PM2.5 than
for NO2.

Figure 5: Density coefficients for NO2 by country

Note: The map shows a graphical representation of the effect of population density on NO2, where
regressions are performed for each country individually. Dark colors represent coefficients at the upper
end of the density-pollution gradient, light colors show those at the lower end. All relevant control
variables are included in the estimations.

Figure 6: Density coefficients for PM2.5 by country

Note: The map shows a graphical representation of the effect of population density on PM2.5, where
regressions are performed for each country individually. Dark colours represent coefficients at the upper
end of the density-pollution gradient, light colours show those at the lower end. All relevant control
variables are included in the estimations.
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The Landscan data distribute population to grid cells using certain grid character-
istics, but the exact algorithm is not known. While Henderson et al. (2021) provide a
ground-truthing exercise, it might still be the case that the data generation biases the
results. As a robustness check, we therefore run the regressions using administrative
areas as units of observations35. In these data, where population is smoothly distributed
among all grid cells within an administrative unit.36 We present the results in Table A.5.
Again, they hardly differ from our previous results.37

Lastly, we run long-difference regressions of pollution changes between the last and
first year in our sample on population or density changes in the same period. Thus,
we control for any time-invariant unobserved heterogeneity between administrative units
that might affect both population and pollution. For instance, it might be that within
countries, population sorting leads to residents of dense cities being ‘greener’ on average,
which would bias our estimates (downwards in this case). Analysing long differences
within rasters differences out these time invariant unobserved heterogeneities. Results
are shown in Table A.6.38 In the long-difference estimates, all the variables that are
time-constant drop out, so the only explanatory variable left besides the population data
is GDP. As the Table shows, the long-difference estimates again show a positive and
significant effect of both population and density on both pollutant-exposure measures.
The magnitudes are now reversed, however: it seems that population changes now affect
NO2-exposure more strongly than PM2.5. A potential explanation is that the variation in
the cross section as well as over time is much lower for NO2 than for PM2.5. This implies
that a given change in population over time affects changes in NO2 less than changes in
PM2.5.

Channels. An interesting question in interpreting the findings is what mechanisms
could be responsible for the observed relationship between density and pollution expo-
sure (see also Borck and Schrauth, 2021; Carozzi and Roth, 2022). While a complete
investigation is made difficult by the scarcity of available data at a worldwide scale, we
nonetheless try to shed some light on these channels here. We follow the analysis in
Borck and Schrauth (2021) and leave out some sets of explanatory variables. We then
compare the density coefficient with and without these variables. The direction of change

35We use gridded population of the world (GPWv4) data on administrative (GADM) level, see https:
//sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11.

36This obviously introduces other biases. Nonetheless, it is reassuring to find that the results do not
seem to be driven by biases in the computation of grid specific density.

37Using the gridded GPW data without aggregating it to GADM level does not change the results
either (results not shown here).

38These estimates are also based on the GPWv4 data on the GADM (administrative unit)
level. The reason is that the quality of LandScan data significantly improved over time and
therefore comparisons over time should not be made, as stated by the data provider itself (see
https://gistlandscan01.ornl.gov/frequently-asked-questions).
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of the coefficient then allows us to determine how these variables affect pollution directly
and indirectly through their correlation with density.

We report the results of leaving out, one by one, different groups of our explanatory
variables in Tab. A.7. Column (1) shows the baseline regression results, col. (2) leaves
out GDP, (3) the weather variables, (4) the trade variables (closeness to river, lake or
coast) and (5) the agricultural variables (land suitability and biomes).

As can be seen in the table, the density coefficient rises in all columns compared
to the baseline. For both pollutants, we find the largest increase when we leave out
weather and agricultural suitability. This seems to imply that the density effect is driven
most by the fact that dense areas are located, on average, in areas that have weather
that is conducive to high pollution exposure (such as hot, dry areas with little wind).
Moreover, dense areas seem, on average, to be located in places with a first nature that
is advantageous to agriculture, which tends to increase pollution. Higher income and
suitability for trade apparently drive the density effect to a lesser extent.

Figure 7: Distribution of country-specific density coefficients

(a) PM2.5 (b) NO2

Note: The graphs show the distribution of the population density / pollution exposure gradient, when
running estimations for each country in the world separately. The coefficients are obtained from regres-
sions for each country separately, controlling for trade variables (river, lake, coastline within 25km and
continuous distance to coast measure), agricultural ones (biome indicators, land suitability for agricul-
ture), weather (wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP), and
an indicator for a dirty power plant nearby. The green hollow diamond is the coefficient for Germany
(DEU), and the red hollow triangle the one for the United States (USA). These are highlighted in order
to compare them with findings by Borck and Schrauth (2021) and Carozzi and Roth (2022) respectively.
Outliers (2.5% highest and lowest coefficients) are excluded from the graphical representation.

Raster-level outcomes and country characteristics. We now look at how the
pollution-density relation changes with country characteristics to get additional insights
into its determinants. Figure 7 ranks all country-specific coefficients and plots them by
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their size.39 All coefficients plotted come from regressions including control variables as
presented in Table 4. The green hollow diamond and the red hollow triangle show the
coefficients for Germany (DEU) and the US, in order to compare them to prior papers
in the field (Carozzi and Roth, 2022; Borck and Schrauth, 2021). Both coefficients are
somewhat smaller than the ones in those papers. Both Carozzi and Roth (2022) and
Borck and Schrauth (2021) run extensive tests to more credibly estimate a causal effect
within one country; however, the samples differ from the one used here. In particular,
Borck and Schrauth (2021) study German counties (Kreise) and Carozzi and Roth (2022)
US CBSA. This difference notwithstanding, we think it is reassuring to see that the
magnitude of the coefficients is roughly in line with previously estimated ones from
studies that are better able to address causality issues than we are.40

About 70% of PM2.5 coefficients and 75% of NO2 coefficients lie in a range between 0
and .3. About 82% of PM2.5 coefficients and about 85% of NO2 coefficients are positive,
where about half of the cases with negative coefficients have negative ones for both
pollutants. It is interesting to briefly look at the outliers, i.e. countries with the 2.5
percent highest and lowest (negative) coefficients. In most instances, these turn out to
be small island states such as Jamaica, Malta, East Timor (downward) or Bahamas,
Barbados, Cap Verde (upwards).

Figure 8 shows simple scatter plots between the country-specific density elasticity
estimates of our within-country regressions and urbanization patterns (where, again,
the density coefficients stem from regressions with all basic controls described above).
In general, most of the correlations seem insignificant for PM2.5, while we do find some
interesting correlations for NO2. As the figure shows, the more people live in urban areas,
the stronger is the density effect on pollution, while the effect of the urbanization rate is
also positive but somewhat weaker. This suggests that density is more likely to increase
NO2 pollution when many people live in cities, which underlines the non-linear effects
described above. It also links the paper’s results to the theory of city systems; indeed it
seems like total exposure will be reduced by shifting individuals from denser to less dense
regions (Borck and Tabuchi, 2019). Moreover and interestingly, the density coefficients
are negatively correlated with renewable energy use (figure not shown). Intuitively,
when energy use is relatively clean, packing residents densely together does not produce
as much pollution as when countries rely largely on fossil fuels.

In the next subsection, we examine regression results when we explicitly consider
cities defined as functional urban areas.

39We excluded the lowest and the highest 2.5% of the sample as outliers, thus removing 5 percent of
country coefficients.

40See also Ahlfeldt and Pietrostefani (2019).
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Figure 8: Country-specific density effects and urbanization

(a) Urban Population total (PM2.5) (b) Urban Population total (NO2)

(c) Urbanization rate (PM2.5) (d) Urbanization rate (NO2)

(e) Large Agglomerations (PM2.5) (f) Large Agglomerations (NO2)

Note: Scatter plots of the country-specific population density effect on pollution exposure correlated
with different World Bank indicators as specified by each subtitle. The coefficients are obtained from
regressions for each country separately, controlling for trade variables (river, lake, coastline within 25km
and continuous distance to coast measure), agricultural ones (biome indicators, land suitability for
agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP),
and an indicator for a dirty power plant nearby. Outliers (2.5% highest and lowest coefficients) are
excluded from the graphical representation.
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3.2 City-level outcomes

We now present results from regressions on the FUA sample. We use different variables to
analyse the effect of population on pollution: (i) logged mean population density within
a city polygon, and (ii) the logged total population. In addition, we can differentiate
between the core city population (log(Pop urban centre)) and that of the surrounding
commuting area (log(Pop commuting)). This allows us to move in the direction of con-
sidering mechanisms for the relation we study. Sprawling cities with many commuters
and single family homes might have different pollution levels compared to dense cities
with high-rise buildings and without much long-distance commuting.

Table 5: Within-country regressions for FUA

PM2.5 NO2

(1) (2) (3) (4) (5) (6)
log(pop density) -0.00435 0.00227

(0.0134) (0.0102)
log(Sum of population) 0.0791∗∗∗ 0.0947∗∗∗

(0.00512) (0.00535)
log(Pop urban center) 0.00963 0.0402∗∗∗

(0.00790) (0.0109)
log(Pop commuting) 0.0752∗∗∗ 0.112∗∗∗

(0.00725) (0.00815)
log(GDP) 0.0547∗∗∗ 0.0397∗∗ 0.0362∗∗ 0.331∗∗∗ 0.312∗∗∗ 0.313∗∗∗

(0.0163) (0.0161) (0.0159) (0.0242) (0.0236) (0.0239)
Temperature 0.0130∗∗∗ 0.0148∗∗∗ 0.0151∗∗∗ 0.000608 0.00355 0.00275

(0.00278) (0.00273) (0.00268) (0.00389) (0.00380) (0.00387)
Precipitation -0.000334 -0.000294 -0.000274 -0.00208∗∗∗ -0.00204∗∗∗ -0.00205∗∗∗

(0.000208) (0.000206) (0.000199) (0.000162) (0.000161) (0.000169)
Wind speed -0.0697∗∗∗ -0.0679∗∗∗ -0.0649∗∗∗ -0.00759 -0.00511 -0.00472

(0.00799) (0.00788) (0.00766) (0.00950) (0.00935) (0.00973)
1(On coast) -0.384∗∗∗ -0.429∗∗∗ -0.437∗∗∗ 0.0457∗∗ -0.00609 -0.0175

(0.0225) (0.0226) (0.0221) (0.0231) (0.0225) (0.0225)
1(Close to lake) -0.265∗∗∗ -0.282∗∗∗ -0.259∗∗∗ 0.192∗∗∗ 0.179∗∗∗ 0.179∗∗∗

(0.0701) (0.0693) (0.0642) (0.0591) (0.0570) (0.0600)
1(Close to river) 0.0560∗∗∗ 0.0362∗∗ 0.0363∗∗∗ 0.0621∗∗∗ 0.0371∗∗ 0.0277

(0.0146) (0.0145) (0.0140) (0.0173) (0.0170) (0.0178)
1(Close to dirty powerplant) 0.140∗∗∗ 0.0773∗∗∗ 0.0663∗∗∗ 0.502∗∗∗ 0.429∗∗∗ 0.391∗∗∗

(0.0138) (0.0139) (0.0136) (0.0207) (0.0205) (0.0206)
Ruggedness -0.000298∗∗∗ -0.000280∗∗∗ -0.000286∗∗∗ -0.000511∗∗∗ -0.000486∗∗∗ -0.000532∗∗∗

(0.0000287) (0.0000281) (0.0000287) (0.0000354) (0.0000354) (0.0000378)
Latitude 0.0126∗∗∗ 0.0134∗∗∗ 0.0138∗∗∗ 0.00918∗∗∗ 0.0109∗∗∗ 0.0103∗∗∗

(0.00178) (0.00176) (0.00175) (0.00248) (0.00245) (0.00249)
N 8871 8871 8249 8861 8861 8219
R2 0.688 0.699 0.726 0.786 0.795 0.790
Countries 136 136 136 134 134 134
No. of cities 8871 8871 8249 8861 8861 8219
Controls Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes

Note: The table presents coefficients of OLS regressions with FUA as units of observations. All es-
timations include the following control variables: Trade controls (river, lake, coastline within 25km),
land suitability for agriculture, temperature, precipitation as well as ruggedness, latitude log(GDP),
and country-fixed effects (Country FE). Standard errors are robust. t statistics are in parentheses. Sta-
tistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5 compares the effects of population density with those of total city population
and additionally differentiates between population in the urban centre in commuting
zones. Interestingly, for both pollutants, the effect of population density is not significant,
while total population positively affects pollution. The coefficients indicate that a 1%
increase in total population increases PM2.5 exposure by 0.08 percent and NO2 exposure
by 0.95 percent. Compared to raster-level results, the population coefficient is larger
for PM2.5 and smaller for NO2. Hence, it seems that density per se does not drive
higher pollution exposure; rather, the relation seems to be driven by the way that large
populations are organized spatially within cities.

To elaborate on this theme, in columns (3) and (6), we distinguish between core city
and commuting population. For PM2.5, we find that the coefficient of core city population
is insignificant, while that on commuting population is positive and significant. For NO2,
both are significant, but the coefficient on commuting population is about three times as
large. Consequently, it seems that large cities per se are not more polluted than smaller
ones. Rather, pollution seems to be significantly higher in cities with a large fraction of
people commuting into the city from satellite cities. These findings thus shed more light
on the link between density, population distribution and pollution exposure. It seems
that, when we only look at cities, large and dense development does not need to be bad
for the environment. This may be due to the fact that these urban features promote the
use of clean public transport and energy efficient buildings, which may partly offset the
increased pollution exposure stemming from a high concentration of polluting activities.41

Figures 9 and 10 again show the distribution of coefficients by continents and income
groups. For PM2.5, there is no clear trend by income. For NO2, however, the population
effect is strongest among upper middle and high income countries. The upper panel of
Fig. 10 shows that for PM2.5, there are no pronounced differences in the density effect
between continents. For NO2, the population and density effects are lowest in Africa and
Asia. The effect of commuting population is also lowest in Africa.

City level outcomes and country characteristics. Just as for the raster-level
results, we repeat the exercise of relating the country-specific population-pollution co-
efficients to country characteristics, such as urbanization rates and income. We again
present scatter plots, where each point shows the country-specific coefficient of popula-
tion on pollution exposure. Figure 11 shows the plots. The correlations for NO2 again
seem to be stronger than for PM2.5. We find that agglomeration seems to affect pollu-
tion more the higher the urbanization rate and the share of population living in large
agglomerations of more than 1 million people.

41See Brownstone and Golob (2009) for the effect of density on driving, Borck and Brueckner (2018)
for the link between density and energy efficiency, and Carozzi and Roth (2022) on the interpretation of
higher exposure due to the density of economic activity.
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Figure 9: Population/density effect by income

(a) PM2.5

(b) NO2

Note: Coefficients of different population measures on pollution exposure by subgroups. The coefficients
are obtained from regressions for each subgroup separately, controlling for trade variables (river, lake,
coastline within 25km and continuous distance to coast measure), agricultural ones (biome indicators,
land suitability for agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness,
latitude, log(GDP), and an indicator for a dirty power plant nearby.
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Figure 10: Population/density effect by continent

(a) PM2.5

(b) NO2

Note: Coefficients of different population measures on pollution exposure by subgroups. The coefficients
are obtained from regressions for each subgroup separately, controlling for trade variables (river, lake,
coastline within 25km and continuous distance to coast measure), agricultural ones (biome indicators,
land suitability for agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness,
latitude, log(GDP), and an indicator for a dirty power plant nearby.
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Figure 11: Country-specific population effects and urbanization

(a) Urban Population total (PM2.5) (b) Urban Population total (NO2)

(c) Urbanization rate (PM2.5) (d) Urbanization rate (NO2)

(e) Large Agglomerations (PM2.5) (f) Large Agglomerations (NO2)

Note: Scatter plots of the country-specific population density effect on pollution exposure correlated
with different World Bank indicators as specified by each subtitle. The coefficients are obtained from
regressions for each country separately, controlling for trade variables (river, lake, coastline within 25km
and continuous distance to coast measure), agricultural ones (biome indicators, land suitability for
agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP),
and an indicator for a dirty power plant nearby. Outliers (2.5% highest and lowest coefficients) are
excluded from the graphical representation.
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3.2.1 Local level outcomes

Table 6: Within City regressions

PM2.5 NO2

(1) (2)
log(pop density) 0.0215∗∗∗ 0.0425∗∗∗

(0.000351) (0.000839)
N 66118 66127
R2 0.995 0.971
Countries 187 175
City FE Yes Yes

Note: The table presents coefficients of within-FUA-effects. Each pollution cell is matched to a popula-
tion cell. Since the within-city-fixed effects capture all relevant control variables we use in other tables,
no additional variables are controlled for.
Standard errors are robust. t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Within city regressions. Tab. 6 shows the results of within-city regressions, that
is, we compare raster cells that lie within the same FUA. Since we control for city fixed
effects, all FUA-level variables are absorbed by them, so there are no additional control
variables. The table shows that the population effect for PM2.5 is about the same as in
the baseline raster results. For NO2, however, the coefficient is much lower. This may be
due to the smaller variation within cities, or the fact that densely populated raster cells
tend to lie in polluted cities. Beyond that, the smaller variation within cities for NO2 is
somewhat mechanically caused by the larger size of the grid cells.

Figure 12 shows differences of results by income groups and by continents. Within
cities, the pollution-population gradient steadily increases with income. Hence, different
from what we observed before, higher income countries seem to have especially strong
pollution in densely populated areas within cities. Looking at differences by continents,
American cities exhibit the highest and African cities the lowest pollution-population
gradient.

Spatial First Differences. Tab. A.8 in the Appendix shows the results from spatial
first differences (SFD) regressions. Again, we find that for both pollutants, the results
remain positive and significant. This result is reassuring. The SFD estimate differences
out any unobserved heterogeneity that is common to neighbouring cells. The result thus
further lends credence to the relationship between density and pollution exposure at a
local level.

However, the effect of density on pollution is much smaller when we consider differ-
ences between neighbouring cells than when we compare the entire sample, especially
for NO2. Intuitively, the variation in pollution exposure and density is much smaller

32



Figure 12: Population effect within city by sub-sample

(a) PM2.5 by income (b) NO2 by income

(c) PM2.5 by continent (d) NO22 by continent

Note: Coefficients of population on pollution exposure by subgroups within cities. The coefficients are
obtained from regressions for each subgroup separately. The results stem from within-city estimations,
comparing pollution exposure of small grid cells within cities.

between neighbouring cells than in the entire sample, which likely explains the smaller
effects.

4 Counterfactual simulation

In order to quantify the effects of the population exposure relation by country, we present
results from a counterfactual simulation in this section, where we compute the country-
specific change in exposure from equalizing population across all cities in a country. We
do this counterfactual with the FUA sample. We thus assume that a country’s population
is given by its population living in FUAs. The counterfactual then answers the question:
what would be the effect on total exposure if all cities had the same population?
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Let country S have MS cities with population Ni and total population NS = ∑MS
j=1 ni.

We want to compute the effect of redistributing population equally among cities within a
country. Consequently, all cities have identical counterfactual population N ′

i = NS/MS.
From our estimates, we predict current total exposure for city i as Ẽi = N1+ρ

i , where ρ

is the estimated exposure-population elasticity. Total exposure is then E = ∑
j Ẽj.42

Now consider a counterfactual where city i’s population is changed to N ′
i = NS/MS,

so all cities are equally large. The counterfactual exposure in city i is E ′
i = N ′

i
1+ρ =

(NS/MS)1+ρ. The proportional counterfactual change in city i is Êi = E ′
i/Ẽi = N̂1+µ

i ,
where N̂i = N/MS

Ni
is the proportional change in population.

Total counterfactual exposure in the country is E ′ = ∑
j E ′

j. We can then compute
the percentage change in exposure, ∆E = Ê − 1 = E ′/E − 1.

We estimate ρ for all countries with at least 15 FUAs in our sample. We report
the estimates of ρ along with total population, number of cities and the counterfactual
change in exposure, ∆E, for the 10 countries with the smallest and largest change in
Tab. 7 for PM2.5 and in Tab. 8 for NO2.

Since total exposure is convex in population if and only if ρ > 0, all countries with a
positive estimated population elasticity would benefit from a reduction in total exposure
induced by population smoothing. It is apparent from Tab. 7 and 8 that the countries
with the largest percentage drop in total exposure are those with the largest population
elasticity. There are, however, some differences in the composition of countries. For
PM2.5, we see the largest drops in total exposure in countries in East Asia/Pacific and
Sub-Saharan Africa, plus two in Latin America/Caribbean. The countries with the
largest increase in exposure (where the population elasticity is negative) tend to be
lower income countries in Latin America/Caribbean and Sub-Saharan Africa, plus two
in Middle East/North Africa.

For NO2, the countries with the largest percentage drop in total exposure tend to
be in East Asia/Pacific and Latin America/Caribbean, while the ones with increases in
exposure are almost all in Sub-Saharan Africa, with the exception of North Korea.

5 Conclusion

This paper has studied the effect of population and population density on pollution expo-
sure using worldwide gridded data. We find that population density increases exposure.
Using city-level data, we find that population size, rather than density, increases expo-
sure. Further, the reason seems not to be a large core city population, but rather a large

42Note that we do not use our usual control variables in these estimates, so their influence is subsumed
in the effect of city population. Redoing the counterfactual with controls does not have a large effect on
the results.
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Table 7: Counterfactual change in exposure for PM2.5

Country Population (mill.) # cities ρ ∆E Rank
A: 10 lowest ranked

Indonesia 139.491 249 0.240 -36.494 1
Haiti 4.024 21 0.215 -31.816 2
Peru 16.998 41 0.194 -30.862 3
Nigeria 87.799 351 0.182 -30.166 4
Togo 2.953 15 0.205 -27.798 5
Vietnam 38.426 99 0.174 -27.086 6
D.R. Congo 23.493 125 0.159 -26.751 7
Malaysia 19.432 31 0.240 -22.821 8
Sudan 11.219 72 0.131 -22.080 9
Philippines 46.653 67 0.123 -21.646 10

B: 10 highest ranked
Colombia 28.753 85 -0.020 2.932 67
Tunisia 4.824 24 -0.035 3.586 68
Ecuador 9.361 29 -0.057 5.551 69
Yemen 6.285 23 -0.073 7.622 70
Venezuela 21.008 65 -0.129 9.436 71
Mozambique 5.143 48 -0.067 9.994 72
Uganda 5.300 21 -0.070 10.360 73
Angola 11.281 46 -0.072 13.524 74
Tanzania 10.234 40 -0.109 14.669 75
Senegal 6.291 29 -0.188 22.535 76

Note: ρ is the estimated within-country population elasticity of exposure. ∆E is the percentage change
in exposure in the counterfactual relative to the baseline.

population commuting into the core city. Lastly, we find positive but smaller effects of
density on pollution exposure at more local levels.

We also document heterogeneities of the density effects across countries. Using the
entire rasterized data as observational units, the influence of population seems largest in
Asia and in middle-income countries. In the FUA sample, population affects pollution
most in upper middle and high income countries as well as in Europe and North America.

Finally, we study how reallocating population among cities within countries affects
exposure. For most countries, exposure would fall if population were equalized across
cities, since total city exposure is convex in city population. This allows us to connect
the paper to the literature on optimal city size (Borck and Tabuchi, 2019). Using country
specific exposure-population elasticities, we could in principle study how the distribution
of optimal city size is determined by the trade-off between agglomeration benefits and
costs, stemming from the increase in exposure.
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Table 8: Counterfactual change in exposure for NO2

Country Population (mill.) # cities ρ ∆E Rank
A: 10 lowest ranked

Peru 16.438 41 0.365 -53.175 1
China 567.218 1539 0.408 -46.429 2
Thailand 16.893 37 0.292 -45.821 3
Japan 105.882 88 0.298 -44.340 4
Guatemala 5.372 34 0.302 -43.668 5
Indonesia 133.417 249 0.269 -40.361 6
Iran 50.591 165 0.277 -38.800 7
Argentina 27.907 64 0.230 -37.419 8
Chile 12.235 31 0.275 -36.070 9
Australia 15.575 20 0.419 -34.052 10

B: 10 highest ranked
Guinea 2.659 17 -0.024 3.059 66
Benin 2.934 21 -0.040 4.122 67
D.R. Congo 18.242 125 -0.023 4.476 68
Togo 1.924 15 -0.045 5.078 69
Burkina Faso 2.689 32 -0.031 5.558 70
Uganda 4.291 21 -0.042 6.011 71
North Korea 10.764 80 -0.073 6.400 72
Tanzania 7.210 40 -0.053 6.429 73
Cote d’Ivoire 6.953 35 -0.076 12.491 74
Ghana 8.090 51 -0.137 26.080 75

Note: ρ is the estimated within-country population elasticity of exposure. ∆E is the percentage change
in exposure in the counterfactual relative to the baseline.

Some avenues for future research suggest themselves. First, it would obviously be of
interest to study how differences in the population-pollution elasticities between countries
are shaped by institutional determinants, urban structure, and other factors. Second,
although we have tried to come close to estimating causal effects, we think it would be
fruitful to merge this more descriptive global evidence with the more causal national
evidence as in Borck and Schrauth (2021) and Carozzi and Roth (2022). As more data
becomes available for more countries and longer time periods, more robust evidence on
the agglomeration costs of pollution will certainly be forthcoming.
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Appendix

A Ground-level pollution data

Pollution data as measured by satellites comes in the form of Aerosol Optical Depth
(AOD), which deduct pollution concentration from the intensity of light that is reflected
into space. However, this measure is not the same as ground-level pollution concentration,
which reflects actual pollution exposure. As we are interested in actual exposure, we use
ground-level pollution as described by Hammer et al. (2020) for PM2.5. They deduct
their estimates by using a GEOS-chem chemical transport model, relating measures
from ground-level monitors with satellite measured AOD. The PM2.5-data comes in two
versions: one that applies geographically weighted regression (GWR) and one that does
not. If GWR is applied, then the correlation of ground-monitor measurements with AOD
measurements is even higher than without the GWR application (with a slope of up to
.97 using GWR compared to one of 0.90 without GWR). We stick to the data product,
which is closest to ground-based monitors, which are the GWR products.
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B Additional results

Table A.1: IV and OLS regressions with population before 1750 as IV

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Raster-level estimations
log(Sum of population) 0.172∗∗∗ 0.251∗∗∗ 0.0822∗∗∗ 0.111∗∗∗ 0.380∗∗∗ 0.498∗∗∗ 0.304∗∗∗ 0.371∗∗∗

(0.0262) (0.0600) (0.0226) (0.0356) (0.0299) (0.0891) (0.0378) (0.0799)
N 357 357 357 357 358 358 358 358
R2 0.580 0.445 0.879 0.837 0.765 0.489 0.890 0.815
Countries 73 73 73 73 73 73 73 73
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV
Panel B: FUA-level estimations
log(Sum of population) 0.116∗∗∗ 0.207∗∗∗ 0.0816∗∗∗ 0.0339 0.300∗∗∗ 0.333∗∗∗ 0.298∗∗∗ 0.258∗∗∗

(0.0240) (0.0530) (0.0234) (0.0333) (0.0281) (0.0607) (0.0365) (0.0564)
N 322 322 322 322 322 322 322 322
R2 0.598 0.578 0.876 0.873 0.768 0.767 0.887 0.886
Countries 70 70 70 70 70 70 70 70
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV

Note: The table presents coefficients of OLS and IV regressions for both raster-level and city-level (FUA)
results. The instrument used is population between 1650 and 1750. Samples are harmonized such that
OLS regressions only include those raster cells/cities for which we have the instrument available. The
first two columns of each pollutant show results without country fixed effects, while the latter two of
each show results including country FE. All estimations include the following control variables: Trade
controls (river, lake, coastline within 25km and continuous distance to coast measure), agricultural ones
(biome indicators, land suitability for agriculture), weather (wind speed, temperature, precipitation) as
well as ruggedness, latitude, log(GDP), and and indicator for a dirty power plant nearby. Standard
errors (in parentheses) are clustered within three-by-three squares of grid cells times year. Statistical
significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

42



Table A.2: Raster-level OLS regressions with non-zero pollution

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
log(Sum of population) 0.278∗∗∗ 0.242∗∗∗ 0.253∗∗∗ 0.258∗∗∗

(0.00348) (0.00401) (0.00698) (0.00730)
log(pop density) 0.251∗∗∗ 0.206∗∗∗ 0.238∗∗∗ 0.239∗∗∗

(0.00345) (0.00390) (0.00672) (0.00691)
log(GDP) -0.0581∗∗∗ -0.0767∗∗∗ 0.0340∗∗ 0.0228 0.322∗∗∗ 0.312∗∗∗ 0.229∗∗∗ 0.220∗∗∗

(0.00767) (0.00773) (0.0148) (0.0149) (0.0179) (0.0178) (0.0382) (0.0382)
Temperature -0.00297∗ 0.00199 0.0220∗∗∗ 0.0279∗∗∗ 0.0873∗∗∗ 0.0904∗∗∗ 0.173∗∗∗ 0.177∗∗∗

(0.00179) (0.00180) (0.00233) (0.00233) (0.00525) (0.00524) (0.00727) (0.00725)
Precipitation 0.000235 0.0000804 0.000832∗∗∗ 0.000623∗∗∗ -0.00748∗∗∗ -0.00765∗∗∗ -0.00747∗∗∗ -0.00767∗∗∗

(0.000167) (0.000168) (0.000186) (0.000186) (0.000678) (0.000678) (0.000755) (0.000755)
Wind speed -0.180∗∗∗ -0.196∗∗∗ -0.114∗∗∗ -0.130∗∗∗ -0.259∗∗∗ -0.268∗∗∗ -0.273∗∗∗ -0.282∗∗∗

(0.00637) (0.00648) (0.00680) (0.00689) (0.0200) (0.0199) (0.0213) (0.0213)
1(On coast) -1.425∗∗∗ -1.593∗∗∗ -1.329∗∗∗ -1.461∗∗∗ -0.998∗∗∗ -1.115∗∗∗ -0.756∗∗∗ -0.867∗∗∗

(0.0335) (0.0347) (0.0342) (0.0354) (0.0932) (0.0932) (0.0890) (0.0885)
1(Close to lake) -0.934∗∗∗ -0.969∗∗∗ -0.869∗∗∗ -0.888∗∗∗ 0.189∗ 0.159 0.338∗∗∗ 0.308∗∗∗

(0.0836) (0.0859) (0.0819) (0.0839) (0.0984) (0.0993) (0.105) (0.105)
1(Close to river) -0.0731∗∗ -0.0562 -0.103∗∗∗ -0.0845∗∗ -0.00942 0.00141 -0.0592 -0.0493

(0.0367) (0.0369) (0.0364) (0.0365) (0.0444) (0.0444) (0.0427) (0.0428)
1(Close to dirty powerplant) -0.227∗∗∗ -0.138∗∗∗ -0.259∗∗∗ -0.163∗∗∗ 0.0922 0.138∗∗ -0.0389 0.00367

(0.0258) (0.0262) (0.0252) (0.0253) (0.0668) (0.0668) (0.0582) (0.0582)
Ruggedness -0.00243∗ -0.000409 0.00137 0.00238∗ -0.158∗∗∗ -0.157∗∗∗ -0.131∗∗∗ -0.130∗∗∗

(0.00128) (0.00128) (0.00138) (0.00138) (0.00820) (0.00820) (0.00781) (0.00780)
Latitude -0.000609 -0.000914 -0.0145∗∗∗ -0.0157∗∗∗ 0.0551∗∗∗ 0.0537∗∗∗ 0.0918∗∗∗ 0.0896∗∗∗

(0.00115) (0.00116) (0.00190) (0.00190) (0.00353) (0.00353) (0.00641) (0.00641)
N 180489 180453 180489 180453 181663 181629 181663 181629
R2 0.276 0.260 0.310 0.296 0.196 0.196 0.271 0.271
Countries 161 161 161 161 161 161 161 161
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of OLS regressions including all relevant controls. Apart from
those that are listed in the table, the estimations additionally account for all biome indicators, and land
suitability. Columns 3,4,7 and 8 additionally include country-fixed effects (Country FE). All pollution
observations that are zero are replaced by the minimum pollution value in the sample. Standard errors (in
parentheses) are clustered within three-by-three squares of grid cells times year. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table A.3: Raster-level OLS regressions - urban-rural gradient

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
Urban population 0.710∗∗∗ 0.294∗∗∗ 0.988∗∗∗ 0.761∗∗∗

(0.0109) (0.00792) (0.0151) (0.0153)
Urban pop density 0.717∗∗∗ 0.265∗∗∗ 1.012∗∗∗ 0.774∗∗∗

(0.0117) (0.00855) (0.0159) (0.0156)
N 175390 175388 175390 175388 179484 179466 179484 179466
R2 0.370 0.366 0.605 0.604 0.211 0.215 0.261 0.266
Countries 177 177 177 177 171 171 171 171
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of estimations using population (density) categories instead of
continuous population density or the sum of population. All estimations include the following control
variables: Trade controls (river, lake, coastline within 25km and continuous distance to coast measure),
agricultural ones (biome indicators, land suitability for agriculture), weather (wind speed, temperature,
precipitation) as well as ruggedness, latitude, log(GDP), and and indicator for a dirty power plant
nearby. Columns 3,4,7 and 8 include country-fixed effects (Country FE). Standard errors (in parentheses)
are clustered within three-by-three squares of grid cells times year. Statistical significance indicators:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table A.4: Raster-level OLS regressions with population categories

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
50k to 100k 0.473∗∗∗ 0.211∗∗∗ 0.760∗∗∗ 0.560∗∗∗

(0.0109) (0.00778) (0.0144) (0.0136)
100k to 500k 0.820∗∗∗ 0.334∗∗∗ 1.083∗∗∗ 0.861∗∗∗

(0.0132) (0.00972) (0.0182) (0.0180)
500k to 1m 1.144∗∗∗ 0.533∗∗∗ 1.367∗∗∗ 1.219∗∗∗

(0.0252) (0.0178) (0.0378) (0.0305)
>1m 1.123∗∗∗ 0.569∗∗∗ 1.767∗∗∗ 1.637∗∗∗

(0.0364) (0.0269) (0.0614) (0.0521)
Low Density 0.553∗∗∗ 0.196∗∗∗ 0.822∗∗∗ 0.608∗∗∗

(0.0116) (0.00853) (0.0150) (0.0142)
Moderate Density 0.792∗∗∗ 0.278∗∗∗ 1.084∗∗∗ 0.851∗∗∗

(0.0166) (0.0118) (0.0215) (0.0198)
High Density 1.024∗∗∗ 0.436∗∗∗ 1.340∗∗∗ 1.065∗∗∗

(0.0216) (0.0160) (0.0298) (0.0244)
Very High Density 1.064∗∗∗ 0.496∗∗∗ 1.535∗∗∗ 1.382∗∗∗

(0.0279) (0.0217) (0.0425) (0.0366)
N 175390 175388 175390 175388 179484 179466 179484 179466
R2 0.376 0.371 0.607 0.605 0.212 0.216 0.262 0.268
Countries 177 177 177 177 171 171 171 171
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of estimations using population (density) categories instead of
continuous population density or the sum of population. The population categories are: 0 to 50.000 (50k)
[base category], 50k-100k, 100k-500k, 500k-1million or more than 1 million inhabitants. The density
categories are: very low density [base category], low density, moderate density, and very high density.
All estimations include the following control variables: Trade controls (river, lake, coastline within
25km and continuous distance to coast measure), agricultural ones (biome indicators, land suitability for
agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP),
and and indicator for a dirty power plant nearby. Columns 3,4,7 and 8 include country-fixed effects
(Country FE). Standard errors (in parentheses) are clustered within three-by-three squares of grid cells
times year. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table A.5: GADM-level OLS regressions

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
log(Sum of population) 0.108∗∗∗ 0.0289∗∗∗ 0.143∗∗∗ 0.114∗∗∗

(0.00203) (0.00162) (0.00257) (0.00323)
log(pop density) 0.112∗∗∗ 0.0569∗∗∗ 0.245∗∗∗ 0.207∗∗∗

(0.00172) (0.00144) (0.00194) (0.00214)
log(GDP) -0.0276∗∗∗ -0.0374∗∗∗ 0.101∗∗∗ 0.0933∗∗∗ 0.363∗∗∗ 0.357∗∗∗ 0.228∗∗∗ 0.202∗∗∗

(0.00403) (0.00391) (0.00522) (0.00516) (0.00463) (0.00405) (0.00679) (0.00590)
Temperature -0.00859∗∗∗ -0.0120∗∗∗ -0.0163∗∗∗ -0.0163∗∗∗ -0.00983∗∗∗ -0.0232∗∗∗ -0.0115∗∗∗ -0.0113∗∗∗

(0.000839) (0.000803) (0.000920) (0.000882) (0.00119) (0.000982) (0.00150) (0.00129)
Precipitation -0.000105∗∗∗ -0.000118∗∗∗ 0.0000690∗∗∗ 0.0000710∗∗∗ -0.000141∗∗∗ -0.000152∗∗∗ -0.000141∗∗∗ -0.000132∗∗∗

(0.00000828) (0.00000828) (0.00000847) (0.00000819) (0.00000881) (0.00000760) (0.0000103) (0.00000893)
Wind Speed -0.181∗∗∗ -0.172∗∗∗ -0.0778∗∗∗ -0.0683∗∗∗ 0.0270∗∗∗ 0.0588∗∗∗ -0.0175∗∗∗ 0.0167∗∗∗

(0.00314) (0.00311) (0.00311) (0.00305) (0.00398) (0.00344) (0.00388) (0.00348)
1(On coast) -0.380∗∗∗ -0.385∗∗∗ -0.178∗∗∗ -0.192∗∗∗ -0.164∗∗∗ -0.222∗∗∗ -0.128∗∗∗ -0.175∗∗∗

(0.0102) (0.0101) (0.00760) (0.00749) (0.0116) (0.0101) (0.0104) (0.00906)
1(Close to lake) -0.0936∗∗∗ -0.00463 0.0964∗∗∗ 0.0928∗∗∗ -0.327∗∗∗ -0.223∗∗∗ 0.0621∗∗ 0.0536∗∗

(0.0306) (0.0297) (0.0196) (0.0190) (0.0336) (0.0279) (0.0306) (0.0268)
1(Close to river) -0.00559 0.110∗∗∗ -0.0176∗∗ 0.00774 -0.136∗∗∗ 0.0472∗∗∗ -0.134∗∗∗ -0.0376∗∗∗

(0.0107) (0.0106) (0.00690) (0.00676) (0.0136) (0.0110) (0.0115) (0.00985)
1(Dirty power plant in district) 0.0452∗∗∗ 0.188∗∗∗ 0.103∗∗∗ 0.0881∗∗∗ 0.00618 0.145∗∗∗ 0.129∗∗∗ 0.0837∗∗∗

(0.0127) (0.0126) (0.00956) (0.00928) (0.0162) (0.0138) (0.0147) (0.0126)
N 44933 44933 44933 44933 44560 44560 44560 44560
R2 0.397 0.407 0.760 0.769 0.637 0.722 0.775 0.823
Countries 154 154 154 154 152 152 152 152
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of estimations using population data by global administrative
areas (GADM) rather than LandScan data. All estimations include the following control variables: Trade
controls (river, lake, coastline within 25km), land suitability for agriculture, temperature, precipitation as
well as ruggedness, latitude, and log(GDP). Columns 3,4,7 and 8 include country-fixed effects (Country
FE). Standard errors are robust. t statistics are in parentheses. Statistical significance indicators:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table A.6: GADM-level long differences regressions

PM2.5 NO2

(1) (2) (3) (4)
log(Sum of population) 0.146∗∗∗ 0.0591∗∗∗

(0.0115) (0.00759)
log(pop density) 0.147∗∗∗ 0.0597∗∗∗

(0.0115) (0.00763)
N 90396 90396 90010 90010
R2 0.136 0.136 0.087 0.087
Countries 159 159 157 157

Note: The table presents coefficients of long differences estimations on sub-national administrative level
comparable to NUTS-3 regions. This corresponds to districts in Germany. All estimations include
the following control variables: Trade controls (river, lake, coastline within 25km), land suitability for
agriculture, temperature, precipitation as well as ruggedness, latitude, and log(GDP). Columns 3,4,7 and
8 include country-fixed effects (Country FE). Standard errors are robust. t statistics are in parentheses.
Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table A.7: Raster-level OLS regressions with varying sets of control variables

(1) (2) (3) (4) (5)
Panel A: PM2.5 Estimates
log(Sum of population) 0.0294∗∗∗ 0.0357∗∗∗ 0.0481∗∗∗ 0.0326∗∗∗ 0.0517∗∗∗

(0.00149) (0.00144) (0.00148) (0.00147) (0.00134)
N 175237 175274 175237 175237 175237
R2 0.607 0.605 0.589 0.582 0.592
Countries 161 162 161 161 161
Country FE Yes Yes Yes Yes Yes
Panel B: NO2 Estimates
log(Sum of population) 0.157∗∗∗ 0.172∗∗∗ 0.209∗∗∗ 0.173∗∗∗ 0.222∗∗∗

(0.00275) (0.00262) (0.00263) (0.00261) (0.00244)
N 178535 178579 178535 178535 178535
R2 0.675 0.666 0.614 0.665 0.606
Countries 160 161 160 160 160
Country FE Yes Yes Yes Yes Yes

Note: The table presents coefficients of OLS regressions including different sets of control variables.
The first column of each panel is the reference outcome as presented in Table 4, that includes all con-
trol variables. Column 2 excludes GDP, column 3 excludes weather variables (temperature, wind,
precipitation), and column 4 does not take into account trade-specific controls (distance to lake,
river, coast). Finally, column 5 excludes the biome indicators. Standard errors (in parentheses) are
clustered within three-by-three squares of grid cells times year. Statistical significance indicators:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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C Spatial First Differences

The SFD estimation considers only differences between neighbouring cells. The crucial
assumption to hold in this context is that

E[yi|xi−1] = E[yi−1|xi−1]∀ {i, i − 1},

which states that pollution y in adjacent neighbouring grid cells i and i − 1 would be
equal if they had the same population density xi−1. The authors refer to this as the
“Local Conditional Independence Assumption” (LCIA).

We estimate the following equation:

∆yi = ∆xiβSF D + θc + ∆ϵi,

where ∆ is the difference operator. To make sure that the LCIA assumption holds, we add
country fixed effects θc to our regressions. In a nutshell, we then compare neighbouring
cells within countries.

Since there are neighbouring cells in North-South and in East-West direction, we will
always run two separate regressions: one for horizontal neighbours (East-West direction)
and one for vertical neighbours (North-South). We consider the SFD results as a lower
bound on the density effects, since it does not allow to account for many potentially
important differences between non-neighbouring cells.
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Table A.8: Spatial first differences

NO2 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8)
WE NS WE NS WE NS WE NS

log(pop density) 0.0313∗∗∗ 0.0613∗∗∗ 0.0313∗∗∗ 0.0368∗∗∗ 0.0266∗∗∗ 0.00986∗∗∗ 0.0203∗∗∗ 0.00596∗∗∗

(0.00149) (0.00225) (0.00127) (0.00137) (0.00179) (0.00188) (0.00169) (0.00182)
log(GDP) 0.0409∗∗∗ 0.277∗∗∗ -0.00301 0.0829∗∗∗

(0.0149) (0.0180) (0.0138) (0.0143)
Temperature 0.0453∗∗∗ 0.0741∗∗∗ -0.00588∗∗∗ -0.00111

(0.00308) (0.00323) (0.00186) (0.00205)
Precipitation -0.000344∗ 0.00159∗∗∗ 0.000798∗∗∗ -0.000262∗

(0.000197) (0.000265) (0.000144) (0.000159)
Wind Speed -0.0257∗∗∗ -0.0341∗∗∗ -0.127∗∗∗ -0.105∗∗∗

(0.00416) (0.00389) (0.00403) (0.00405)
1(Close to river) 0.0199∗ -0.00441 -0.00935 0.00519

(0.0121) (0.0138) (0.0130) (0.0134)
1(Close to lake) 0.0696∗∗∗ 0.0348 -0.107∗∗∗ -0.0808∗∗

(0.0233) (0.0315) (0.0259) (0.0368)
1(On coast) 0.00119 -0.0371∗∗∗ -0.313∗∗∗ -0.245∗∗∗

(0.00976) (0.00971) (0.0155) (0.0156)
Ruggedness -0.00428∗∗∗ -0.00130∗∗∗ 0.000767∗ -0.000117

(0.000530) (0.000459) (0.000443) (0.000425)
N 162268 163530 159674 160907 158506 159646 156380 157456
R2 0.019 0.060 0.177 0.204 0.009 0.004 0.063 0.025
No. of grids 162268 163530 159674 160907 158506 159646 156380 157456

Note: The table presents coefficients of Spatial first differences regressions including different sets of
control variables. For all control variables, coefficients are provided in the table. Standard errors (in
parentheses) are clustered within three-by-three squares of grid cells times year. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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