Exploratory Tool-Building Platforms
for Polyglot Virtual Machines

Fabio Niephaus

N H
: a asso
.z [u ﬂ Plattner
< Institut

Digital Engineering * Universitdt Potsdam

Exploratory Tool-Building Platforms
for Polyglot Virtual Machines

Fabio Niephaus

Dissertation
zur Erlangung des Doktorgrades der
Digital Engineering Fakultat
der Universitdt Potsdam

This work is licensed under a Creative Commons License:
Creative Commons Attribution-ShareAlike 4.0 International.
This does not apply to quoted content from other authors.

To view a copy of this license visit
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Betreuer: Prof. Dr. Robert Hirschfeld
Software Architecture Group
Hasso Plattner Institute
Digital Engineering Faculty
University of Potsdam
Germany

Gutachter: Prof. Dr. Elisa Gonzalez Boix
Distribution and Concurrency Research Group
Software Languages Lab
Faculty of Sciences, DINF
Vrije Universiteit Brussel
Belgium
Prof. Laurence Tratt, PhD
Software Development Team
Department of Informatics
King’s College London
United Kingdom

Datum der Einreichung: 1. Dezember 2021
Datum der Disputation: 22. Juli 2022

Online verdffentlicht auf dem

Publications-Server der Universitdt Potsdam:
https://doi.org/10.25932/publishup-57177
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-571776

[@)ov-sa |

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://doi.org/10.25932/publishup-57177
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-571776

Abstract

Polyglot programming allows developers to use multiple programming lan-
guages within the same software project. While it is common to use more
than one language in certain programming domains, developers also apply
polyglot programming for other purposes such as to re-use software written in
other languages. Although established approaches to polyglot programming
come with significant limitations, for example, in terms of performance and
tool support, developers still use them to be able to combine languages.

Polyglot virtual machines (VMs) such as GraalVM provide a new level
of polyglot programming, allowing languages to directly interact with each
other. This reduces the amount of glue code needed to combine languages,
results in better performance, and enables tools such as debuggers to work
across languages. However, only a little research has focused on novel tools
that are designed to support developers in building software with polyglot
VMs. One reason is that tool-building is often an expensive activity, another
one is that polyglot VMs are still a moving target as their use cases and
requirements are not yet well understood.

In this thesis, we present an approach that builds on existing self-sustaining
programming systems such as Squeak/Smalltalk to enable exploratory pro-
gramming, a practice for exploring and gathering software requirements,
and re-use their extensive tool-building capabilities in the context of polyglot
VMs. Based on TruffleSqueak, our implementation for the GraalVM, we fur-
ther present five case studies that demonstrate how our approach helps tool
developers to design and build tools for polyglot programming. We further
show that TruffleSqueak can also be used by application developers to build
and evolve polyglot applications at run-time and by language and runtime
developers to understand the dynamic behavior of GraalVM languages and
internals. Since our platform allows all these developers to apply polyglot
programming, it can further help to better understand the advantages, use
cases, requirements, and challenges of polyglot VMs. Moreover, we demon-
strate that our approach can also be applied to other polyglot VMs and that
insights gained through it are transferable to other programming systems.

We conclude that our research on tools for polyglot programming is an
important step toward making polyglot VMs more approachable for develop-
ers in practice. With good tool support, we believe polyglot VMs can make it
much more common for developers to take advantage of multiple languages
and their ecosystems when building software.

Zusammenfassung

Durch Polyglottes Programmieren konnen Softwareentwickler:innen mehre-
re Programmiersprachen fiir das Bauen von Software verwenden. Wahrend
diese Art von Programmierung in einigen Programmierdoménen {iblich ist,
wenden Entwickler:innen Polyglottes Programmieren auch aus anderen Griin-
den an, wie zum Beispiel, um Software iiber Programmiersprachen hinweg
wiederverwenden zu konnen. Obwohl die bestehenden Ansédtze zum Poly-
glotten Programmieren mit erheblichen Einschrankungen verbunden sind,
wie beispielsweise in Bezug zur Laufzeitperformance oder der Unterstiitzung
durch Programmierwerkzeuge, werden sie dennoch von Entwickler:innen
genutzt, um Sprachen kombinieren zu kdnnen.

Mehrsprachige Ausfithrungsumgebungen wie zum Beispiel GraalVM bie-
ten Polyglottes Programmieren auf einer neuen Ebene an, welche es Sprachen
erlaubt, direkt miteinander zu interagieren. Dadurch wird die Menge an
notwendigem Glue Code beim Kombinieren von Sprachen reduziert und die
Laufzeitperformance verbessert. Auflerdem konnen Debugger und andere
Programmierwerkzeuge tiber mehrere Sprachen hinweg verwendet werden.
Jedoch hat sich bisher nur wenig wissenschaftliche Arbeit mit neuartigen
Werkzeugen beschiftigt, die darauf ausgelegt sind, Entwickler:innen beim
Polyglotten Programmieren mit mehrsprachigen Ausfithrungsumgebungen
zu unterstiitzen. Ein Grund dafiir ist, dass das Bauen von Werkzeugen tibli-
cherweise sehr aufwendig ist. Ein anderer Grund ist, dass sich mehrsprachige
Ausfiihrungsumgebungen immer noch stindig weiterentwickeln, da ihre
Anwendungsfille und Anforderungen noch nicht ausreichend verstanden
sind.

In dieser Arbeit stellen wir einen Ansatz vor, der auf selbsttragenden
Programmiersystemen wie zum Beispiel Squeak/Smalltalk aufbaut, um Ex-
ploratives Programmieren, eine Praktik zum Explorieren und Erfassen von
Softwareanforderungen, sowie das Wiederverwenden ihrer umfangreichen
Fahigkeiten zum Bauen von Werkzeugen im Rahmen von mehrsprachigen
Ausfiihrungsumgebungen zu erméglichen. Basierend auf TruffleSqueak, un-
serer Implementierung fiir die GraalVM, zeigen wir anhand von fiinf Fallstudi-
en, wie unser Ansatz Werkzeugentwickler:innen dabei hilft, neue Werkzeuge
zum Polyglotten Programmieren zu entwerfen und zu bauen. Aufierdem de-
monstrieren wir, dass TruffleSqueak auch von Anwendungsentwickler:innen
zum Bauen und Erweitern von polyglotten Anwendungen zur Laufzeit ge-
nutzt werden kann und Sprach- sowie Laufzeitentwickler:innen dabei hilft,

Vil

das dynamische Verhalten von GraalVM-Sprachen und -Interna zu verstehen.
Da unsere Plattform dabei all diesen Entwickler:innen Polyglottes Program-
mieren erlaubt, tragt sie aufSerdem dazu bei, dass Vorteile, Anwendungsfille,
Anforderungen und Herausforderungen von mehrsprachigen Ausfiihrungs-
umgebungen besser verstanden werden konnen. Dariiber hinaus zeigen wir,
dass unser Ansatz auch auf andere mehrsprachige Ausfithrungsumgebungen
angewandt werden kann und dass die Erkenntnisse, die man durch unseren
Ansatz gewinnen kann, auch auf andere Programmiersysteme {ibertragbar
sind.

Wir schlussfolgern, dass unsere Forschung an Werkzeugen zum Polyglotten
Programmieren ein wichtiger Schritt ist, um mehrsprachige Ausfiithrungs-
umgebungen zugénglicher fiir Entwickler:innen in der Praxis zu machen.
Wir sind davon tiberzeugt, dass diese Ausfiihrungsumgebungen mit guter
Werkzeugunterstiitzung dazu fithren konnen, dass Softwareentwickler:innen
hdufiger von den Vorteilen der Verwendung mehrerer Programmiersprachen
zum Bauen von Software profitieren wollen.

viii

Acknowledgments

I have been fortunate enough to be surrounded by many kind, generous, and
smart people. Without their support, encouragement, guidance, and feedback,
this work would not have been possible.

I would like to thank Robert Hirschfeld, Tim Felgentreff, and the HPI
Software Architecture Group, including Tom Beckmann, Michael Haupt,
Johannes Henning, Eva Krebs, Bastian Kruck, Jens Lincke, Toni Mattis, Tobias
Pape, Michael Perscheid, Patrick Rein, Stefan Ramson, Matthias Springer,
Marcel Taeumel, Marcel Weiher, and the many students I have worked with.

I am very grateful for the support from the HPI Research School and
the Hasso Plattner Institute, including Prof. Dr. Tobias Friedrich, Prof. Dr.
Christoph Meinel, Prof. Dr. Andreas Polze, and Sabine Wagner, as well as
from Mario Wolczko and Oracle Labs, including Christian Humer, Thomas
Wiirthinger, Eric Sedlar, and many others from the GraalVM project.

I would further like to thank Elisa Gonzalez Boix, Laurence Tratt, Michael
Van De Vanter, and many others from the programming language and virtual
machine research communities, including Lars Bak, Edd Barrett, Carl Friedrich
Bolz-Tereick, Alan Borning, Gilad Bracha, Matthew Flatt, Richard P. Gabriel,
Antony Hosking, Stefan Marr, Hidehiko Masuhara, and Chris Seaton.

Moreover, I want to thank the Smalltalk community, including Clément
Bera, Vanessa Freudenberg, Dan Ingalls, Alan Kay, Craig Latta, Florin Mateoc,
Eliot Miranda, Yoshiki Ohshima, Hernan Wilkinson, and many others.

Finally, I would like to thank my best friend and partner Nicole Loyeck,
my family, and my friends, who always believe in me and support me in
everything I do.

X

Contents

I. Programming in a World of Many Languages

1. Introduction
11. Challenges
1.2. Contributions
1.3. Outline

2. State of the Art of Polyglot Programming
21 UseCases
2.2. Established Language Integration Techniques
2.3. Polyglot Virtual Machines

II. Background

3. Introduction to Programming Languages, VMs, and Tools
3.1. Programming Languages
3.2. Virtual Machines
3.3. ProgrammingTools
3.4. Developer Roles and Responsibilities

4. GraalVM and Its Infrastructure for Polyglot Programming
41. TheGraalCompiler
4.2. The Truffle Language Implementation Framework
4.3. GraalVM Languagesand Tools

III. Exploratory Tool-Building Platforms for Polyglot VMs

5. Bringing Exploratory Programming to Polyglot VMs
5.1. Exploratory Programming for Polyglot VMs
5.2. Building on Self-Sustaining Programming Systems
5.3. Opening the Programming System to Other Languages
5.4. API Requirements for Exploratory Programming

17
17
19
22

25

27
27
28
30
34

37
37
38
41

45

47
48
51
53

xi

Contents

6. Extending Exploratory Tools for Polyglot VMs 59
6.1. Revealing Interfaces of Objects 59
6.2. Providing Context About Languages 60
6.3. Incorporating Additional Features of Polyglot VMs 61

7. Expanding Polyglot Programming to the Platform Itself 65
7.1. Building Polyglot Tools for Polyglot Programming 65
7.2. Building Polyglot Applications at Run-Time 66
7.3. Exploring the Internals of Polyglot VMs 67

IV. Implementation for the GraalVM 71

8. Integrating Squeak/Smalltalk Into GraalVM 73
8.1. Building on Squeak/Smalltalk 73
8.2. Opening Squeak/Smalltalk to Other GraalVM Languages .. 80
8.3. Re-Using Exploratory Tools for GraalVM Languages 83

9. Extending Exploratory Tools of Squeak/Smalltalk for GraalvVM 87
9.1. Revealing All Interoperability Members of Objects 87
9.2. Providing Context About GraalVM Languages 89
9.3. Incorporating Additional Features of Truffle. 92

10. Expanding Polyglot Programming to Squeak/Smalltalk 97
10.1. Building Polyglot Tools for Polyglot Programming 97
10.2. Building Polyglot Applications at Run-Time 98

10.3. Exploring Language Implementations and GraalVM Internals 100

V. Evaluation 105
11. TruffleSqueak: Squeak/Smalltalk on the GraalVM 107
11.1. Compatibility 107
11.2. UI Performance Evaluation 108
11.3. Requirement Evaluation 118
11.4. Limitations e 122
12. Case Studies Based on TruffleSqueak 129
12.1. Building a Polyglot Notebook System 129
12.2. Adding Support for Polyglot APIs to Code Editors 135
12.3. Helping Developers to Find Re-Usable Code 142
12.4. Understanding Run-Time Behavior of the Graal Compiler . . . 146

12.5. Extending Squeak/Smalltalk With a Polyglot Drawing Engine 156

Xii

Contents

13. Case Studies Beyond TruffleSqueak 165
13.1. Applying Our Approach to a Polyglot VM Built With RPython 165
13.2. Bringing Polyglot Notebooks to Jupyter and VS Code 171

VI. Discussion and Conclusions 179

14. General Observations and Insights 181
14.1. Advantages of Polyglot VMs 181
14.2. Disadvantages of Polyglot VMs 182
14.3. Reasoning About Multiple Languages at the Same Time 184
14.4. Dealing With Interface and Type Mismatches 185

15. Related Work 189
15.1. Exploratory Programming Environments 189
15.2. Dynamic Tools With Multi-Language Support 191
15.3. Tools for Building Polyglot Applications 192
15.4. Platforms for Language and Tool Development 194
15.5. Dynamic Run-Time Dataand Tools 195

16. Conclusions and Future Work 197
16.1. Future Work o oo 197
16.2. Conclusions 198

VII.Appendix 205

A. Bytecode Interpreter Loop Implementations 207

B. Language Performance Evaluation 211

C. Additional Screenshots 217

Publications 221

Bibliography 225

xiii

List of Figures

1.1.
1.2.
1.3.
1.4.

3.1
3.2.

4.1.
4.2.

5.1
5.2.
5.3.

8.1.
8.2.
8.3.

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.

10.1.
10.2.
10.3.
10.4.

11.1.
11.2.
11.3.
11.4.

12.1.

Development-time vs. run-time 8
Developing software at run-time 9
Supporting multiple languagesinIDEs 1
Language-agnostictools 12
Exploratory programming tools in Squeak/Smalltalk 33
Developer roles and responsibilities 34
The GraalVM technology stack 37
Polyglot Truffle ASTs 40
General overview of our approach 47
An SSPS as a guest language of a polyglot VM 52
Implementing language interoperability within an SSPS . . . 53
Bytecode to AST transformation 75
Using a workspace to evaluate foreigncode 84
Inspecting foreign objects L. 85
Displaying Truffle interop members in an inspector 88
TruffleSqueak’s PolyglotObjectExplorer 89
TruffleSqueak’s PolyglotWorkspace 91
Exploring the top scopes of GraalVM languages 91
TruffleSqueak’s PolyglotInspector 93
Emphasizing language interoperability in tools 94

Ruby-provided syntax highlighting in the PolyglotWorkspace 98

TruffleSqueak’s RPlotMorph 99
Introspecting TruffleSqueak’s language implementation . . . 101
Inspecting the TruffleRuntime object 102
IDE Benchmark: Screenshot 110
IDE Benchmark: Results 11
Ul Benchmark: Screenshot 115
Ul Benchmark: Results 116
A polyglot notebook example 132

XV

List of Figures

Xvi

12.2. An example of code boxes in TruffleSqueak’s PolyglotEditor . 137
12.3. Nested code boxes in TruffleSqueak’s PolyglotEditor 140
12.4. The polyglot code findertool 143
12.5. A code cell inserted by the polyglot code finder 144
12.6. Monitoring the activity of the Graal compiler 148
12.7. TruffleSqueak’s CallTargetBrowser 149
12.8. Code coverage in the CallTargetBrowser 152
12.9. A CallTargetBrowser for TruffleRuby 153
12.10. A Browser built with JavaSwingToolBuilder 157
12.11. TruffleSqueak’s World drawn on a SwingCanvas 158
13.1. Architectural overview of Squimera 166
13.2. Squimera’s polyglot workspace 167
13.3. Squimera’s polyglotinspector 168
13.4. A polyglot tool built in Squimera 168
13.5. Debugging a Python exception in Squimera. 169
13.6. A polyglot notebook in Jupyter 173
13.7. A polyglot notebookin VSCode 175
B.1. AWFY Benchmarks: Peak Performance Plots 213
C.1. A polyglot notebook analyzing object layouts in TruffleSqueak 217
C.2. A polyglot notebook analyzing the Graal compilation queue . 218
C.3. A cCallTargetBrowser for GraalPython 219

List

4.1.

11.1.
11.2.
11.3.

12.1.

B.1.

of Tables

List of official and third-party languages for GraalVM 42
IDE Benchmark: System Resource Usages 113
UI Benchmark: System Resource Usages 118
Exploratory Programming API Comparison 119
The core polyglot APIs of different GraalVM languages 136
AWFY Benchmarks: Peak Performance Result Table 214

XVil

List

8.1.
8.2.

12.1.
12.2.
12.3.
12.4.
12.5.
12.6.
12.7.

Al
A2.

B.1

of Listings

ForeignObject>>doesNotUnderstand: 81
Interop>>isString: 83
PNBCodeCellContainer class>>isValidNBJson: 133

Excerpt from the report.js generated by our PolyglotEditor 139
Contents of the read-csv.rb generated by our PolyglotEditor 140

Simplified search action of our polyglot code finder 144
CompiledMethod>>callTarget 150
Simplified AWT ActionListener of our JavaSwingToolBuilder 160
Simplified JavaEventSensor>>processEvents 160
SimpleExecuteBytecodeNode 207
ExtendedExecuteBytecodeNode 209

Command used to run AWFY benchmarks on TruffleSqueak . 212

X1X

List of Abbreviations

AOT
API
AST
AWFY
CFFI
CLR
DAP
DSL
FFI
GC
IDE
IPC
IR
JIT
JSON
JVM
LSP
OOoP
0S
REPL
SLOC
SSPS
UI
VM

ahead-of-time

application programming interface
abstract syntax tree

Are We Fast Yet

C-based foreign function interface
Common Language Runtime
Debug Adapter Protocol
domain-specific language

foreign function interface

garbage collector

integrated development environment
inter-process communication
intermediate representation
just-in-time

JavaScript Object Notation

Java HotSpot Virtual Machine
Language Server Protocol
object-oriented programming
operating system
read-eval-print-loop

source lines of code

self-sustaining programming system
user interface

virtual machine

XX1

Part 1.

Programming in a World of
Many Languages

1. Introduction

Today, there are many programming languages for many different purposes
that developers can use for building software. Each language usually not only
comes with its own syntax and semantics but also with its own set of libraries
and frameworks as well as different programming tools. Learning all of this
takes considerable time.

Even though general-purpose programming languages, such as C++, Java, or
Python, are designed to build a wide variety of different types of applications,
there are none that fit best in all situations. Software written in one language
can often only make use of a single language ecosystem. Developers, however,
sometimes would like to re-use and combine the knowledge and experience
they had to acquire for each language they have previously worked with.

Polyglot programming is the practice of writing software in multiple program-
ming languages within the same software project. In some programming do-
mains, it is common to work with different languages at the same time. Prime
examples are database applications. They typically make use of a data lan-
guage such as SQL for accessing a database, while the rest of the application
is written in another, often general-purpose language such as Java. In other
domains, polyglot programming may not be common practice. Nonetheless,
the sheer number of libraries and frameworks written in different languages
and for many different domains and purposes often make it hard to decide
on a particular language. Therefore, developers would often like to be able to
use more than one language in their software applications.

Different language integration techniques exist that allow developers to
combine multiple languages: Foreign function interfaces (FFIs), for example,
allow developers to call out to routines written in other programming lan-
guages. They are often used to connect low-level application programming
interfaces (APIs) or to accelerate high-level languages with more efficient,
low-level code. Similarly, inter-process communication (IPC) allows subcom-
ponents of a software system running in different processes to communicate
with each other independently from the languages they are written in.

The different techniques for language integration, however, also come with
different limitations: They often use a lower-level abstraction, the operat-
ing system (OS), or a network connection for example. These abstractions
require non-trivial glue code and can cause performance overheads, data
duplication, and data synchronization problems. Furthermore, programming

1. Introduction

tools are often unable to see through low-level abstractions because they
usually operate on the language level. As a consequence, developers have to
switch between tools whenever they switch between languages, which adds
additional cognitive overhead and increases the potential for errors. In some
cases, developers can only use OS-level tools that have no understanding of
higher-level languages to analyze language integration problems.

Polyglot virtual machines (VMs) provide a new approach to polyglot
programming. These virtual machines allow the execution of code written in
different programming languages, often referred to as guest languages, within
the same VM instance. By avoiding low-level abstractions, they can provide
high-level language interoperability, which in turn allows direct exchange of
data, objects, and messages between their guest languages. As a result, less
glue code is required for the integration and more code from other languages
can be re-used. At the same time, developers can be better supported through
tools that work across all guest languages. Overall, polyglot VMs have a clear
goal: increase developer productivity by allowing developers to re-use and
write code across multiple languages.

While programming with polyglot VMs has many advantages for developers
and can potentially solve some development problems in new ways, it also
provides new opportunities and faces new challenges:

Many mainstream tools for software development already come with sup-
port for multiple languages. General-purpose code editors, for example, allow
developers to write code in different languages. However, the majority of
tools with multi-language support assume that only one language is used at a
time. To help developers to build polyglot applications, existing tools must be
extended to support multiple languages at the same time. Since polyglot VMs
allow tools to operate across languages, there is an opportunity to further
support polyglot programming with new tools that are specifically designed
for it. Extensions for existing tools and new tooling ideas must be explored
somehow.

Since language interoperability as provided by polyglot VMs is dynamic
and can thus best be observed at run-time, tools based on static analysis [117]
are put at a disadvantage. Moreover, these static tools are usually limited
to a fixed number of languages, requiring additional work to support each
language. Polyglot VMs can provide tools based on dynamic run-time data
that are language-agnostic, which allows them to operate across all existing
and future guest languages of a polyglot VM [210]. These dynamic tools must,
however, usually communicate through dedicated tool interfaces provided by
polyglot VMs, which are commonly designed for debugging and monitoring
purposes and, therefore, limit the scope of exploration.

Dynamic tools built in a language-agnostic way are a good step forward, es-
pecially for polyglot programming which provides language interoperability
in a dynamic way. However, these tools can also only provide language-
agnostic views. To understand dynamic behavior and state in polyglot ap-
plications, tools must be extended so that they are aware of a polyglot VM.
This way, they can, for example, provide additional information on language
interoperability to help developers to understand the interaction of languages
or to reason about multiple language semantics at the same time.

Apart from this, polyglot programming with polyglot VMs is relatively new
and not yet as well-understood as C-based foreign function interfaces (CFFIs),
IPC, and other approaches to polyglot programming. More data points are
needed to better understand and showcase how developers can benefit from
polyglot VMs. Example applications help to demonstrate how programming
with polyglot VMs can be applied and may convince developers that polyglot
VMs are viable foundations that allow them to build polyglot production
systems.

Self-sustaining programming systems (SSPSs) such as Smalltalk [52], Lively
Kernel [74], or Self [208] provide two means that are well-suited to explore
tooling ideas for polyglot programming: On the one hand, they come with
tools for exploratory programming [172, 175, 203]. These tools are designed
to help developers explore and gather requirements interactively for the
software they want to build. With them, we could, for example, interact with
different languages at run-time or explore sources for dynamic run-time data
that could be useful in tools in detail. On the other hand, they support rapid
tool-building through live programming [156]. Just like other applications
and parts of the system, tools can be built and evolved at run-time with short
feedback loops. However, self-sustaining programming systems and their
exploratory tools are usually based on a particular programming language
and designed for exploration within the system they belong to, not necessarily
for exploration of external components such as other languages or a polyglot
virtual machine.

In this thesis, we present an approach that allows the reuse of tools for
exploratory programming across the guest languages of a polyglot VM and the
VM itself. We show that the tools of an existing self-sustaining programming
system can be re-used with little to no modification. Since they only access
information through reflection, the reflection interface of an SSPS’s object
protocol must be redirected through the language interoperability protocol of
apolyglot VM for them to operate across languages. The implementation effort
for this is low and more importantly, these redirections must be implemented
only once for the exploratory tools to work for all existing and future languages
of a polyglot VM.

1. Introduction

While such tools may already be useful for the exploration of language
interoperability and polyglot VMs, they may not always provide enough
context about the languages used in polyglot applications as they were
originally designed for one particular language. For this reason, we further
propose extensions for these tools that make them aware of the polyglot VM
they run on. This way, they provide additional information in the presence of
multiple languages to better support polyglot programming.

Moreover, we demonstrate that polyglot programming can also be applied
to tool-building and within an SSPS. This not only makes tool-building more
productive because more software can be re-used and can help to improve
SSPSs. It also provides more insights into programming with polyglot VMs
and helps us to better understand advantages and challenges.

With TruffleSqueak, we present an implementation of our approach based
on Squeak/Smalltalk, an open-source self-sustaining programming system.
It provides tools for exploratory programming, short feedback loops through
live programming, and extensive tool-building capabilities for and hosted on
top of the GraalVM, a state-of-the-art polyglot virtual machine. TruffleSqueak’s
exploratory tools allow users to explore high-level interactions between
GraalVM languages, all the way down to the level of its protocol for lan-
guage interoperability, the host language, and the runtime system. Moreover,
we can use the tool-building infrastructure of Squeak/Smalltalk to prototype
and build new tools and applications in a polyglot way.

Further, we evaluate both our approach and our implementation. We assess
the compatibility and the run-time performance of TruffleSqueak and show
that it fulfills the requirements of our approach. With the aid of several case
studies, we illustrate how different ideas for polyglot applications and new
tools for polyglot programming can be explored with our platform. Moreover,
we demonstrate that our approach can also be applied to other polyglot VMs
and that insights gained through a platform like TruffleSqueak can further
be transferred to other programming systems. We discuss our observations
and insights, compare our research with related work, provide an outlook of
future work, and end the thesis with a conclusion.

[]]

Thesis Statement To use and evolve polyglot virtual machines effec-
tively, we must be able to explore tooling ideas, polyglot applications,
language implementations, and the VMs themselves at run-time.

1.1. Challenges

1.1. Challenges

While polyglot virtual machines provide a new level of polyglot programming
that comes with many advantages over established approaches, they also come
with new challenges. In the following, we highlight some of them and explain
how they are addressed in this thesis.

Tools for Polyglot Programming With Polyglot VMs

Developers need and use tools to build software systems. They can choose
from a wide variety of tools that support different tasks during the software
development process. Most of the tools that developers use, however, are
designed to support one programming language at a time. This is also true
for general-purpose tools that support multiple languages individually, but
not their integration to support polyglot programming.

Polyglot programming with CFFIs and IPC use OS-provided abstractions
that are usually boundaries for tools. As a consequence, developers often
have to switch between different sets of tools when using multiple languages
through such language integration techniques. Polyglot VMs avoid these
abstractions and allow tools to operate across their guest languages at the
same time. These VMs are, however, relatively new compared with CFFIs
and IPC and, therefore, there are not many tools that help developers to build
polyglot applications that make use of them.

Figure 1.1 illustrates how many developers build software in general and
how this looks like when building polyglot applications. They often distin-
guish between development-time, during which they write the software, and
run-time, during which their applications run. Development usually happens
in an edit-compile-run cycle. At development-time, developers often use static
tools such as code editors, for example, to read and write code. These tools
perform static code analysis [117] to gather the information they need for syn-
tax highlighting, code completion, and other features they provide. Dynamic
tools such as debuggers, on the other hand, are connected with the VM and
have access to dynamic run-time data containing information on concrete
program behavior and state. This data can only be observed and captured
during the execution of an application. However, many developers often only
use dynamic tools to debug and monitor running applications, not to build
them.

Although there has been research on static tools for polyglot programming
(e.g., [35,97,103]), these tools often only support a fixed number of languages.
To add another language, their static analysis must be extended for that
language as well as for its integration with all other languages () in Figure 1.1).

1. Introduction

e E e e e e e e e e e, e, m - —-., e meememmm—————————

] Polyglot Polyglot ':
! Code Application :
E | Language A | :
| 1 OOIOIN
' Language B ! X ; :
E Language A E : - @ !
E analyze T : E Texecutes '
: Static Code L1] E : {
. Analyzers ! : Polyglot VM !
\ modify : : debug or monitor !
: : 1 application via tool interface. :
Static Tools ' Dynamic Tools ,

-

Developers

Figure 1.1.: Developers often distinguish between development-time and run-
time. This is often reflected by the types of tools they commonly use: static
tools for development and dynamic tools at run-time. Static tools such as code
editors usually base their assistive features on static code analysis. For polyglot
code, they typically support multiple languages and their combinations (D).
Dynamic tools such as debuggers and profilers allow developers to inspect
their applications at run-time. For this, they usually interact with the VM
through an appropriate interface ((2)). Such dynamic tools are, however,
restricted to the capabilities of these tool interfaces, which are usually designed
for debugging and monitoring purposes. These tools can thus not directly
interact with running applications and other components of a polyglot VM.

1.1. Challenges

e e e e m e m m e m == ===

Self-Sustaining Programming System

*runs on
Virtual Machine

Y explore User)

: and evolve A Applications E

: Tools X

use: Class Libraries || !

. Programming ,

E - Compilers :

Developers I

Figure 1.2.: Self-sustaining programming systems do not distinguish between
development-time and run-time. Their tools run on the same VM alongside
all other components of the SSPS. As a result, different tools, such as tools for
exploratory programming, can explore and modify not only user applications
but also themselves, other tools, class libraries, compilers, and all other
components at run-time. This way, the SSPS can be evolved over time.

How languages are integrated, however, depends on the polyglot VM that is
used to execute a polyglot application.

In this thesis, we focus on dynamic tools, which can be built based on
infrastructures provided by polyglot VMs, which allow them to work across all
existing and future guest languages [210]. Similar to other VMs, polyglot VMs
provide dedicated tool interfaces for debuggers, profilers, and other dynamic
tools ((2) in Figure 1.1). These tool interfaces, however, clearly separate tools
from applications and are often geared towards debugging and monitoring
purposes, which limits the exploration space for tooling ideas. Monitoring
tools such as samplers typically only observe running applications. And
during debugging, developers can only interact with and change applications
when they are paused.

Although for different reasons, ideas for both static and dynamic tools that,
for example, support the construction of polyglot applications can thus be
difficult to explore in the context of polyglot VMs. Nonetheless, developers
can benefit from both kinds of tools for polyglot programming throughout
the development process.

In self-sustaining programming systems such as Smalltalk, Lively Kernel, or
Self, development always happens at run-time as illustrated in Figure 1.2.
Therefore, there is no distinction between development-time and run-time.
Their support for live programming shortens the development cycle as appli-

1. Introduction

cations can be evolved while they are running [156]. This makes tool-building
more productive because tools are also just applications from the perspective
of the system. Moreover, these systems are built in such a way that they can
even evolve themselves. Most of their components are written in the language
they use, starting with the language’s compiler and class libraries all the way
up to user applications. They also provide many reflective facilities that are
not limited to introspection [44]. Through intercession [86], it is possible to
manipulate any object and meta-level data structure such as classes, methods,
and even stack frames. Dynamic run-time data is, therefore, always accessible
and editable, and can be used in tools.

Moreover, self-sustaining programming systems usually provide tools for
exploratory programming. These tools allow evaluation of code as well as inspec-
tion and modification of objects at run-time in an interactive way. Exploratory
tools are designed to help developers explore and gather requirements for the
software they want to build and to better understand the dynamic behavior
of their applications. This makes them a good fit for exploring tooling ideas
for polyglot programming, allowing us, for example, to interact with different
languages at run-time or to explore different sources for dynamic run-time
data in detail.

In this thesis, we present an approach that enables exploratory programming
and tool-building on top of polyglot VMs. Instead of creating a platform
for exploratory programming and tool-building from scratch, we propose to
build on an existing SSPS. We show what is required to adapt the exploratory
tools of such a system so that they can be re-used across all guest languages of
a polyglot VM. The effort to adapt these tools is low and needs to be done only
once. We illustrate what APIs polyglot VMs need to provide to implement
this. As a result, adapted exploratory tools can be used for any language
of a polyglot VM, including its host language and future guest languages.
At the same time, they can directly interact with applications at run-time.
Exploration is thus no longer restricted to the capabilities of the tool interface
provided by a polyglot VM.

With a platform like this, we can explore new ideas for tools that help
developers to build polyglot applications. We further show that the platform
can also help other developers. Since language implementations and other
components of a polyglot VM are not implemented as part of the SSPS, it
may not be possible to evolve them at run-time. Nonetheless, our platform
can also help language and runtime developers to explore the components of
polyglot VMs while they are running, which can provide insights into how
they can be evolved in general.

10

1.1. Challenges

Language4 /Language1
Tool (|

e F

Protocol \
Languagey Languagey

(a) State of the art: To support N pro- (b) Tool protocols reduce the complexity
gramming languages in M IDEs, M * N to support N languages in M IDEs to
adapters are required. M+ N.

Figure 1.3.: The complexity of supporting N languages in M IDEs without
and with a common protocol for tools.

The Need for Polyglot-Aware Tools

Many tools for software development are designed for one specific language,
often because they are built by the maintainers or the community of that
language. As such, they can provide common features but also language-
specific ones. Developers, however, must learn how to use these tools for each
language. Tools often have different user interfaces (Uls) and can provide
similar features in different ways. To reduce this burden for developers,
general-purpose integrated development environments (IDEs) come with
tools that support multiple programming languages. This way, developers
can use one familiar set of tools for developing code in different languages.

However, the construction of such general-purpose IDEs faces scalability
issues. As illustrated in Figure 1.3a, M * N adapters are needed to support N
languages in M IDEs. Keidel, Pfeiffer, and Erdweg call this the IDE portability
problem [83]. Since each adapter is specific to a particular language, there is
only little potential for code reuse.

In recent years, there have been several efforts to decouple IDEs and
tools from languages with the goal to reduce this complexity. Figure 1.3b
illustrates how a common protocol for tools can reduce the complexity to
support multiple languages in IDEs to M + N. The Language Server Protocol
(LSP) [111], for example, is such a protocol and supports code navigation, code
completion, and other IDE features. For each language, a language-specific
server provides these features through the protocol. Developers can thus use
their preferred IDE to develop in different languages, given that the IDE has
support for the LSP and that there are appropriate language servers. The
Debug Adapter Protocol (DAP) [110] works in a similar way but focuses on
debugging. It decouples debugging Uls from specific debugging interfaces
provided by different language runtimes. Monto [83] is another, more generic
protocol that decouples IDEs from languages.

11

1. Introduction

Polyglot VM

IDE; Language, |- !
Tool _:_ Language-agnostic| | | !

Protocol Implementation

IDEy, provides? Languagey -
' Languaée Implementation |,

Framework written in.

Figure 1.4.: In polyglot VMs, dynamic tools and even entire tool protocols
can be implemented on top of language implementation frameworks. These
language-agnostic tools reduce implementation efforts and can operate across
guest languages at the same time. Without appropriate extensions, however,
they usually only provide language-agnostic views.

Although general-purpose IDEs support multiple languages, they usually
assume that only one is used at a time, independently of whether they
deploy language-specific adapters or use a protocol for tools. This assumption,
however, no longer holds for polyglot programming, which allows multiple
languages to be used simultaneously. Polyglot VMs often use a common
intermediate representation (IR) across the languages they support. Such IRs
can be used to provide language interoperability but also to build dynamic
tools that work across languages.

Van De Vanter et al. [210] have presented an approach that takes this idea
even further. With an appropriate tooling infrastructure in the language im-
plementation framework of a polyglot VM, it is possible to build dynamic
tools independently from specific languages as shown in Figure 1.4. Instead
of implementing tools or entire tool protocols for each language individually,
language-agnostic implementations on top of the language implementation
framework can be shared across guest languages, which reduces implemen-
tation efforts. Therefore, language developers only need to provide language-
specific functionality required by the tooling infrastructure to unlock several
tools for their language. This approach has been applied in GraalVM to build
various dynamic tools. As an example, GraalVM provides an implementation
of the DAP written in its Truffle framework. GraalVM languages only need
to provide language-specific debugging functionality. The implementation of
the server and other sharable components are provided by Truffle.

While such language-agnostic tools are a good step forward, they can also
only provide language-agnostic views. In debuggers and other tools that
incorporate source code or files, this problem may not be obvious. GraalVM’s

12

1.1. Challenges

support for the DAP, for example, allows developers to step through code
written in different languages. Since debuggers display source code for stack
frames, developers usually know what language is being executed. When
inspecting variables and values stored in scopes, however, developers are
presented with a language-agnostic view that is not linked to source code.
Therefore, the view does not help developers to understand from what
languages specific objects come from. This makes it hard to understand
polyglot data structures and other complex objects in polyglot applications as
well as the interaction between them.

In general, tools that were initially designed to support one language fail
to support developers whenever dynamic program behavior and run-time
state within polyglot applications need to be understood in detail. In these
situations, it is often hard to map dynamic behavior and state to specific source
code locations. To better support developers to use polyglot programming,
we thus believe that tools need to be extended so that they are aware of the
polyglot VM. We call such tools polyglot-aware tools.

As part of this work, we show how to enable exploratory programming
on top of polyglot VMs. One of the goals of exploratory programming is
that the means of exploration must always be explainable. In a first step,
we show that existing tools for exploratory programming can be re-used for
other languages. Since these tools were also initially built for one language,
we propose extensions that make them polyglot-aware. With these extensions,
they can, for example, always provide sufficient information on the language,
structure, interfaces, and specific interoperability features of any object.

Our approach further enables the construction of new tools for polyglot
programming. Since we build on an existing self-sustaining programming
system, we can use its extensive tool-building capabilities to explore different
ways of providing context for polyglot programming in tools, including its
tools for exploratory programming and other existing tools. As we demon-
strate in different case studies, the infrastructure required for our extensions
can also be used to build entirely new polyglot-aware tools.

Making Effective Use of Programming With Polyglot VMs

Although programming with polyglot virtual machines has many advantages
over established approaches to polyglot programming, it has not yet been
widely applied in production systems. For one, polyglot VMs are relatively
new and still rapidly evolving because their requirements, such as the ones
for language interoperability, have not yet been fully understood. Further
exploration of different use cases and ideas is needed.

13

1. Introduction

Moreover, only a few polyglot VMs provide a high level of compatibility
across all languages they support. Language compatibility, however, is an
important factor for developers. If alternative language implementations
of polyglot VMs are not fully compatible with the corresponding reference
runtime, some libraries, frameworks, or language features may not be available
for development. Finding out which parts work and which do not is additional
work that developers would like to avoid.

Many alternative language implementations struggle to provide and retain
full compatibility with low-level C extensions. These extensions are often used
when high-level languages fail to provide good run-time performance for
performance-critical operations. In the case of Python, for example, CPython,
its reference VM, is known to be slow compared with VMs for other lan-
guages (e.g., [4, 101]). Therefore, Python libraries and frameworks, such as
Tensorflow and NumPy, heavily rely on C code to provide competitive per-
formance. PyPy, GraalPython, and other alternative VMs for Python can
significantly improve the run-time performance of Python code through just-
in-time (JIT) compilation. JIT compilers, however, perform best if most of
the code they should optimize is visible to them and not hidden in a shared
library. Calling out to shared libraries written in low-level C code is, there-
fore, often counterproductive but it is something that established language
integration techniques have led to. This is an example where there is a clear
difference between programming with polyglot VMs and other techniques
for language integration. Differences like this must be both well-understood
and well-communicated to developers to allow them to use polyglot VMs
effectively.

Apart from that, full language compatibility is rarely needed to support
the majority of applications, libraries, and frameworks written in a particular
language. Another, maybe more important reason for the slow adoption
of polyglot VMs is that established language integration techniques have
influenced the way developers think about polyglot programming. Since
language integrations usually introduce performance overheads, developers
may think that using multiple languages slows down their applications. Or
they may tend to structure their code in such a way that the number of cross-
language calls is kept to a minimum to avoid these performance overheads.
Furthermore, callbacks are often poorly supported by language integration
techniques. Consequently, developers may think that libraries are easier to
re-use than frameworks.

Similarly, developers may refrain from mixing languages because they think
that language integrations are poorly supported by their tools. For example,
they may decide against using low-level C code in their Python application,
because they do not want to give up the programming experience they are used

14

1.1. Challenges

to from Python tools such as the debugger. Developers are often not aware that
polyglot VMs can provide better tool support and thus a better programming
experience compared with other language integration techniques. Ultimately,
their goal is to increase software reuse and to allow developers to always use
the “best” language, framework, library, or tool for the task without sacrificing
performance or tool support. However, just because something is possible
and better, in theory, does not mean that developers will use this new level
of polyglot programming in practice, let alone that companies are willing to
run such polyglot applications in production. More practical experiences on
polyglot programming with polyglot VMs are needed to streamline APIs and
tools for developers, distill best practices, and make this type of programming
more approachable in practice.

The approach presented in this thesis builds on an existing self-sustaining
programming system and makes its tools for exploratory programming avail-
able to the languages of a polyglot VM. This makes it possible to use them
not only to explore polyglot user applications but also tools, language im-
plementations, and the internals of the polyglot VM they run on. Moreover,
SSPSs allow developers to extend existing tools for specific needs such as new
capabilities for polyglot programming. Since these systems typically provide
extensive tool-building capabilities, they can also be used to build entirely
new tools that are designed for building polyglot applications for example.

We show that polyglot programming can also be applied to tool-building
to increase software reuse and to improve the productivity of tool developers.
This way, for example, new tools for polyglot programming can themselves
be built in a polyglot way. Polyglot programming can even be expanded to
an entire self-sustaining programming system. Every component written in
the language of the system is a user application from the perspective of the
polyglot VM and can thus make use of all supported languages. While this
can improve reuse and productivity, such efforts also help to gather new data
points and practical experience on polyglot programming.

We present case studies of several polyglot tools and applications built in
TruffleSqueak, an implementation of our approach for the GraalVM. In one of
these studies, we also explore how TruffleSqueak itself can be extended with a
polyglot drawing backend. We report lessons learned and insights on polyglot
programming with polyglot VMs for each study based on our practical
experiences. With another case study, we further show that these learnings
and insights are not limited to our platform and can also be transferred to
other programming systems. While some of our case studies explore specific
advantages or challenges of programming with polyglot VMs, we believe
others demonstrate the potential of polyglot VMs and possibly inspire other
developers to create more polyglot applications.

15

1. Introduction

1.2. Contributions

The main contributions of this thesis are as follows:

1. An approach enabling exploratory programming and tool-building on top
of polyglot virtual machines.

2. Extensions for exploratory programming tools that make them polyglot-
aware.

3. A proposal to further explore polyglot programming by applying it to
tool-building and within a self-sustaining programming system.

4. An implementation of said approach and extensions for the GraalVM and
based on Squeak/Smalltalk.

5. Case studies that demonstrate how our approach enables further research
on tools for polyglot programming and polyglot virtual machines, as well
as a synthesis of our findings.

1.3. Outline

The remainder of this thesis is structured as follows: In Chapter 2, we illustrate
the state-of-the-art of polyglot programming. Then, in Part II, we introduce
programming languages, virtual machines, developer tools, and GraalVM,,
a state-of-the-art polyglot VM. We present our approach in Part III and
show an implementation of it in Part IV. We evaluate our approach and
implementation in Part V. Finally, in Part VI, we discuss our observations
and insights, compare our research with related work, provide an outlook of
future work, and conclude the thesis.

16

2. State of the Art of Polyglot
Programming

This chapter gives an overview of the state of the art of polyglot program-
ming. We discuss different motivations for polyglot programming, describe
established approaches that enable it, and elaborate on the opportunities of
polyglot VMs. Our work builds on previous work on polyglot VMs and aims
at advancing the level of polyglot programming they provide.

2.1. Use Cases

Today, developers can build software with thousands of different program-
ming languages. Languages provide different programming paradigms and
levels of abstraction, have different performance characteristics, and suit some
programming domains better than others (e.g., [108, 149, 151, 171, 174]).

Low-level programming languages such as C, for example, provide few ab-
stractions and are thus closer to the hardware. While having fewer abstractions
often translates to more work for developers, developers can use low-level
languages to write highly efficient code for specific hardware platforms.

High-level programming languages, on the other hand, provide rich ab-
stractions that allow developers to write, for example, more expressive, secure,
or portable code and, therefore, can increase productivity. Java, for example,
provides automatic garbage collection, memory safety, and a type system
among others and since it is interpreted by a VM, code written in Java is
portable across different hardware platforms.

Domain-specific languages (DSLs) go even further in terms of abstractions:
They are specifically designed for particular domains and allow developers
to write very expressive code [107]. SQL, for example, is designed for writing
database queries. However, writing complex algorithms in SQL is often
cumbersome, sometimes even impossible.

Moreover, some languages are particularly common in certain program-
ming domains. The Python language, for example, is very popular for scientific
computing [133]. Different programming domains frequently evaluate how
suitable different languages are for their needs (e.g., [3, 14, 32, 45, 76, 176]).

17

2. State of the Art of Polyglot Programming

In addition, new trends influence what kind of languages developers prefer
for certain programming domains [26, 147]. JavaScript, for example, started
out as and still is the programming language used in web browsers. With
Node.js, however, JavaScript has also become very popular for writing server
applications.

As a result, developers have different reasons to use polyglot programming:
Programming domains can overlap, especially when building complex soft-
ware systems. Polyglot programming allows developers to write different
parts of their applications in the languages they prefer. Popular examples for
this are database applications. These applications often use SQL for querying
the database, while the business logic and other parts of the application are
written in, for example, a general-purpose language such as Java.

A related motivation is software reuse [90]. Using a single language means
that developers can only build on the libraries and frameworks available
in that language. If they want to re-use software from another language,
they usually have two choices: a) port the software to their language, which
can be a time-consuming and, therefore, expensive activity, or b) integrate
the existing software into their codebase through polyglot programming.
Moreover, and with every additional language they can use within their
project, the entire repertoire of libraries and frameworks written in that
language becomes accessible and thus re-usable. Developers building, for
example, server applications with Node.js in JavaScript, may for example
use libraries such as NumPy created in Python by the scientific computing
community for number crunching.

Another reason for using multiple languages within software projects is
related to different performance characteristics of languages: While program-
ming with high-level programming languages such as Python or Ruby can
be more productive, their abstractions can sometimes introduce significant
performance overheads. Therefore, developers using high-level languages
sometimes want to accelerate performance-critical parts of their applications
with more efficient, low-level code. For this reason, VMs for Python and Ruby,
for example, provide dedicated means for integrating C or C++ code [10, 153,
170].

Apart from that, there are many other reasons for using polyglot program-
ming. Sometimes, the software development process leads to it, for example,
when different developer teams work with different languages. In other cases,
parts of a software project can evolve over time into a DSL or some other form
of programming language. External factors, such as customer requirements,
can also lead to the use of polyglot programming. Some computer games,
for example, can be extended by end-users through appropriate program-
ming interfaces using different languages. Other examples are REST APIs

18

2.2. Established Language Integration Techniques

or pre-compiled libraries that developers can use to interact with an external
service independently from the language the service is written in. Similarly,
software vendors sometimes provide software development kits in different
languages to interact with their services. Therefore, developers sometimes
even use polyglot programming unknowingly in some form.

2.2. Established Language Integration Techniques

As the previous section has illustrated, developers have an increasing need to
combine languages. Interoperability between languages has therefore become
more and more important [27]. This section gives an overview of commonly
used techniques for language integration, provides examples of how they
are used, and shows up their limitations. This helps to better understand the
potential of polyglot VMs as well as the contributions of this work.

C-Based Foreign Function Interfaces FFIs generally allow programming
languages to call out to functions written in other languages. While the term
FFI can generally be used to describe any kind of language interoperability
interface, most implementations present in many VMs for high-level pro-
gramming languages commonly target native code written, for example, in C
or C++. Examples are Python’s CFFI [164], the Fiddle module in Ruby [169],
or the Java Native Interface [135]. These CFFIs are often used to interact
with low-level APIs from the operating system, to connect database drivers
and other components typically written in low-level languages, to accelerate
interpreted languages with C code, and to re-use functionalities provided by
shared libraries.

To execute foreign functions, CFFIs leverage a mechanism provided by the
operating system to load shared libraries into the VM process executing the
high-level language. This can be done using the dlopen system call on Unix
systems and LoadLibrary on Windows. Once a library is loaded, it is possible
to lookup pointers for functions and other data. To call such a function, the
VM needs to marshal high-level language arguments so that they match the
calling convention of the underlying architecture.

To connect shared libraries with a codebase, non-trivial glue code is usually
required. This glue code must often be written by the developer, which can
distract from the actual work and imposes a maintenance burden. Some of
this work, however, can also be automated with SWIG [9] and other tools [159]
that help to generate such code. For some libraries, developers can use
existing language bindings that provide the necessary glue code to connect
these libraries with particular languages. For Tensorflow, a popular machine

19

2. State of the Art of Polyglot Programming

learning framework, there are several language bindings, for example, for
Java [199].

Furthermore, some language VMs provide shared libraries to interact with
them on the C level. By embedding the shared library from a VM for language
B into another for language A, it is possible to allow language A to call into
low-level code but also to execute code written in language B. PyCall.rb [115],
for example, embeds CPython into Ruby, PyCalljl [79] embeds it into the
Julia language. Exec]S [191] can embed different JavaScript VMs into Ruby
and rpy2 [168] is a binding for R in Python.

However, CFFIs also come with significant limitations: Apart from the
need for glue code, they usually impose performance overheads [190]. CFFIs
can also lead to memory leaks and other interferences with garbage collectors
(GCs) [31]. More importantly for developers, however, is that CFFI calls are
hard to debug. Debuggers of high-level languages usually cannot step into
native code, which means that developers often also need to use low-level,
OS-provided tools such as gdb. Moreover, errors in use can cause invalid
memory accesses, which in turn often result in crashes and give developers
no chance to recover these errors at run-time.

Languages Built on Top of Others Another common technique to integrate
languages is to build them on top of others. This can be done, for example,
by implementing an interpreter for a language on top of another. Such inter-
preters often provide interoperability between the guest language and their
host language. JRuby [130], for example, is a Ruby implementation written
in Java and was built specifically to allow interoperability between Ruby and
Java based on the Java HotSpot Virtual Machine (JVM). MagLev [184], on the
other hand, is a Ruby written in Smalltalk and runs on the GemStone/S VM.

Instead of an interpreter, languages can also run on top of others based
on source-to-source translation. Whalesong [224], for example, is a compiler
that translates Racket to JavaScript and provides interoperability between
them. Similarly, a Smalltalk implementation in Self is based on source-to-
source translation and allows communication between the two languages [217]
Amber [2], on the other hand, is a Smalltalk dialect and translates Smalltalk
code to JavaScript.

Moreover, the translation of source code can also target other IRs such as
abstract syntax trees (ASTs) or bytecode [28]. Racket, for example, provides
an API for building languages on top of it based on AST transformation [201].
JVM-based languages, such as Scala [132] or Groovy [87], compile to Java
bytecode and provide interoperability with Java. Java bytecode is generally a
popular compilation target also used by compilers for many other languages
such as, for example, Scheme [16] or Standard ML [11]. WebAssembly [59]

20

2.2. Established Language Integration Techniques

and LLVM bitcode [93] are two instruction formats designed to accommodate
a wide variety of programming languages and can, therefore, also be used as
shared IRs to combine languages and to facilitate interoperability between
them.

Languages built on top of others typically avoid low-level abstractions. As
a result, languages can interoperate on a higher level, which usually reduces
the amount of glue code required compared with CFFIs. This also means
that debuggers and other tools, at least those of the host language, can be
used across languages. To improve tools for guest languages, additional
work is often required. Source maps, for example, allow debuggers to map
the execution of translated code back to the origin language. In addition,
the runtime performance of a guest language usually depends on the host
language.

This type of language integration is, however, often limited to two languages:
the guest and the host language. Therefore, developers can usually only make
use of libraries and frameworks from two specific language ecosystems.

Inter-Process Communication Operating systems provide several mecha-
nisms for IPC, such as files, sockets, and shared memory, that allow different
processes to communicate with each other [57]. While these mechanisms are
often used to build distributed systems, they can also enable interoperabil-
ity between languages [213]. A simple example of this is the PythonBridge
for Pharo, which allows the execution of Python code from Smalltalk using
a Python-based server through a network connection [19]. With interface
description languages [91], as used in CORBA [131], Apache Thrift [178], or
Google’s Protocol Buffers [54] among others, more complex systems can be
built with different languages and on top of IPC mechanisms. These de-
scription languages allow developers to define data structures and interfaces
independently from specific languages. Based on such definitions, concrete
definitions for specific languages and appropriate serialization code can be
generated and then used on top of an IPC mechanism.

This approach, however, has several constraints: First of all, it enforces a
distributed architecture, which may not be suitable or overcomplicated for
some polyglot applications. In addition, remote procedure calls and other
means for IPC impose performance overheads. Objects and messages need to
be serialized, transmitted, deserialized, and are often duplicated across mul-
tiple processes. Data duplication not only increases the overall consumption
of memory and disk resources. It also requires synchronization in case two
or more processes operate on the same piece of shared data at the same time.
Due to the distributed architecture, debugging across multiple processes that
are part of an IPC-based polyglot application can be cumbersome: Similar to

21

2. State of the Art of Polyglot Programming

FFI calls, high-level language debuggers are usually unable to step through
a remote procedure call or some other mechanism and into the code written
in some other language running in some other process.

2.3. Polyglot Virtual Machines

Polyglot VMs such as .NET’s Common Language Runtime (CLR) [18] and
GraalVM [222] are virtual machines designed to support multiple program-
ming languages and typically provide interoperability between the languages
they support. Although the CLR and GraalVM are among the most advanced
polyglot VMs, there are several other polyglot VMs such as the Portable
Common Runtime [214], the Virtual Virtual Machine [43], Seam [20], Mote
Runner [22], Smalltalk/X [66], or Unipycation [6].

In polyglot VMs, common VM components, such as garbage collector and
JIT compilers among others, can be re-used across multiple languages. This
reduces the burden of maintaining individual VMs for different languages.
Improving one of these components consequently extends to multiple lan-
guages. New optimizations added to the Graal compiler, for example, can be
applied to improve the run-time performance of all GraalVM languages.

Moreover, many polyglot VMs use a shared IR to represent different
languages based on which language interoperability can be provided. In the
NET framework, for example, all languages are compiled to the Common
Intermediate Language, which can then be executed onits CLR [60]. GraalVM
languages, on the other hand, are implemented as AST interpreters and when
multiple languages are combined, ASTs from these languages are mixed. The
Virtual Virtual Machine and Smalltalk /X support multiple bytecode sets to
allow the execution and integration of different languages.

What sets polyglot VMs apart from other approaches based on shared
IRs is that they provide the infrastructure for language interoperability, not
others. This, however, usually means that reference language implementa-
tions cannot be re-used and that new implementations are needed instead.
Therefore, polyglot VMs are usually complex software systems and expensive
to build. To lower these costs, they sometimes provide different means that
help to implement languages. As part of the Dynamic Language Runtime,
for example, .NET provides re-usable components for the implementation
of dynamic languages [61]. GraalVM, on the other hand, provides a lan-
guage implementation framework including a DSL for implementing AST
interpreters [69].

In terms of runtime performance, polyglot VMs have several advantages
over other established approaches for language integration. Compared with
CFFIs and IPC, they do not rely on external, OS-provided abstractions.

22

2.3. Polyglot Virtual Machines

As a consequence, performance overheads imposed by marshaling can be
avoided. Objects can be directly passed between languages by reference,
which avoids data duplication and with that additional synchronization
overheads. Furthermore, recent research has demonstrated that JIT compilers
deployed within polyglot VMs can perform performance optimizations across
language boundaries, which further improves the performance of language
interoperability [5, 58].

By avoiding external abstractions, polyglot VMs also have another advan-
tage over CFFIs and IPC: Based on their internal abstractions, they can pro-
vide infrastructures that allow tools to work across their guest languages. The
NET framework, for example, provides a profiling API and cross-language
debugging based on its CLR [60]. Recent work on GraalVM has shown that
debuggers and other tools can be provided through its language implemen-
tation framework [210]. With this, language developers can unlock numerous
tools for their language with less effort compared to writing these tools from
scratch. Similar to improvements for internal VM components, improvements
for tools and new tools can be shared across guest languages.

1]

Polyglot VMs such as GraalVM and .NET already provide many opportunities
for developers in practice. Nonetheless, polyglot VMs are still an interesting
research topic as their use cases and requirements are not as well understood
as those of other language integration techniques. They need to stay general
enough to accommodate different types of programming languages. At the
same time, they want to make as much code as possible re-usable, which
requires appropriate concepts for language interoperability.

Overall, we think that polyglot VMs have the potential to change the way
developers approach and apply polyglot programming. So far, it has often
been either a necessity or an alternative, for example, to avoid porting code
from one language to another. The easier it is to combine the strengths,
libraries, and frameworks of different programming languages, the more
likely developers are going to use polyglot programming to build complex
applications.

Appropriate tools are key to make polyglot programming more approach-
able for developers. Polyglot VMs have already demonstrated that debuggers
and other common programming tools can be provided across multiple lan-
guages. While this is a good starting point, we believe that some tools also
need to be extended and new tools need to be built that support polyglot pro-
gramming. For this reason, this work presents an approach for an exploratory
tool-building platform. On the one hand, such a platform helps tool develop-
ers to explore tooling ideas that support application developers in building

23

2. State of the Art of Polyglot Programming

polyglot applications in new ways. On the other hand, exploratory program-
ming also helps language and runtime developers to better understand how
polyglot VMs can or should be evolved.

Summary In some programming domains, such as when building
database applications, it is already common to apply polyglot pro-
gramming. Developers also use it for other purposes such as to re-use
existing code across languages as an alternative to porting code.

Established language integration techniques such as C-based foreign
function interfaces or inter-process communication are usually based
on low-level abstractions provided by the operating system. These
abstractions come with limitations, for example, in terms of run-time
performance and tool support. Languages built on top of others can
avoid some of these limitations but are often limited to only a pair of lan-
guages. Consequently, polyglot programming has been limited in use
so far, often involves tradeoffs, and is sometimes applied unknowingly
or only out of necessity.

Polyglot VMs, on the other hand, are designed to support multiple
languages and provide a new level of polyglot programming that does
not compromise on run-time performance or tool support. GraalvVM
and .NET already provide many of these opportunities for developers
in practice. With appropriate programming tools and good application
examples, we believe polyglot VMs can change the way developers
approach and apply polyglot programming.

24

Part II.

Background

25

3. Introduction to Programming
Languages, VMs, and Tools

This chapter provides a general introduction to programming languages,
virtual machines, programming tools including tools for exploratory pro-
gramming, and different developer roles and responsibilities.

3.1. Programming Languages

Programming languages allow developers to write programs that can run on
computers. In the context of polyglot programming, it makes sense to look at
four general differences of programming languages.

The first difference is how languages are executed: An implementation of
a language either compiles or interprets code, using a compiler or an interpreter
respectively. When source code is compiled, it is translated to machine code
before execution. An interpreter, on the other hand, translates code during
execution. While a language is typically designed for one of the two execution
modes, it is possible to interpret languages that are typically compiled and
vice versa.

The second notable difference is the type system of a programming lan-
guage [150]: Statically-typed programming languages usually perform static
type checking. Languages that perform dynamic type checking are referred
to as dynamically-typed programming languages. Some languages check types
both statically and dynamically. Types are checked statically based on the
source code, so type safety is guaranteed to some extent before the program is
executed. Dynamic type checking, on the other hand, is performed at run-time.
Type-checking errors that occur at run-time usually lead to program errors.
Some languages allow developers to recover from such errors, others might
not and crash instead.

The third difference is the level of abstraction that languages provide. Low-
level programming languages are very close to the hardware and therefore
provide only little to no abstraction from the underlying architecture. While it
is easier to write code that makes good use of a system in a low-level language,
the code is usually not portable and missing abstractions require additional
work on the side of the developer. High-level programming languages abstract

27

3. Introduction to Programming Languages, VMs, and Tools

from the underlying architecture and provide developers with abstractions to
write portable code and in a more expressive and concise way. On the other
hand, these additional abstractions might cause performance overheads. A
lot of work has been done to reduce such performance overheads, for example
with JIT compilers using sophisticated optimization techniques.

The fourth difference is in the programming paradigms that languages
support [49, p. 137]. Imperative programming languages allow developers
to write programs by providing step-by-step instructions to be executed by
a computer. Common imperative paradigms are procedural programming,
in which procedures are composed to build programs, and object-oriented
programming (OOP), which is based on the idea of objects that have state,
behavior, and identity. In declarative programming languages, on the other
hand, developers declare properties of the result that should be computed, not
instructions for how it can be computed. Examples of declarative paradigms
are functional programming and constraint programming. In the former,
developers can specify a series of functions that should be applied to compute
a result. The latter allows them to declare constraints that should be solved
by the computer. Many languages support more than one programming
paradigm and sometimes even combine imperative and declarative elements.
They are thus referred to as multi-paradigm programming languages.

3.2. Virtual Machines

Virtual machines are software systems that, from a high-level perspective,
provide emulation as an abstraction for other software that runs on top of
them. In general, there are two kinds of VMs: system and process VMs [179,
p- 23]. The former provides emulation of real hardware, allowing the execution
of entire operating systems. Process VMs, on the other hand, usually run
on top of an OS and allow the execution of application code. These VMs
usually consist of different components that interact with each other, such
as an interpreter, a garbage collector, and a JIT compiler. In the following,
whenever use the term virtual machine, we refer to process VMs.

One of the main components of a VM is an interpreter [179, pp. 29-32].
An interpreter can execute source code directly, as opposed to compiling
all sources to machine code prior to execution using a compiler. For this,
interpreters usually process source code with a parser first. The result could,
for example, be an abstract syntax tree that can be directly executed or
another intermediate representation, such as bytecode, which can then be
executed by the interpreter. AST interpreters usually evaluate an AST from
the leaf nodes to the root node, each of them encapsulating the semantics
and behavior of the corresponding language for the corresponding program.

28

3.2. Virtual Machines

Bytecode interpreters, on the other hand, commonly use some sort of bytecode
loop that fetches, decodes, and then executes pre-compiled bytecode for the
program in question. While interpreters themselves are usually implemented
for specific hardware platforms and OSs, they allow application code to be
written in a platform-agnostic way, hence making it portable. This makes it
easier for developers to target different platforms and operating systems.

Virtual machines also provide automatic memory management and garbage
collection [80]. Allocating and freeing up memory manually is an additional
burden for developers. More importantly, it is prone to errors. VMs usually
deploy garbage collectors to automate this process. Garbage collectors fre-
quently scan and free the heap from obsolete chunks of used memory. For this,
many different algorithms and heuristics exist. Nonetheless, many VMs allow
comprehensive configuration of their GC, some VMs even allow the user
to choose from a list of different GCs and GC algorithms. While automatic
memory management is a common feature of high-level languages, it does
not always avoid memory-related issues such as memory leaks.

In addition, some virtual machines also come with a JIT compiler to accel-
erate the execution of application code at run-time [179, pp. 147-218]. In a first
step, they often profile a running application to determine which parts of the
codebase are frequently used and could benefit from dynamic optimizations.
Code that is marked as hot is usually then further analyzed by the JIT com-
piler. Oftentimes, they perform many different optimizations, such as inlining
or dead code elimination, as part of different phases. Finally, they produce
optimized machine code that can be executed instead of interpreting the
corresponding code as usual. Some optimizations make certain assumptions,
for example about types or ranges of specific values. If such an assumption
is no longer valid, optimized machine code must be thrown away and may
be replaced with a more general version. For this purpose, optimized code
often contains special guard instructions that allow the VM to fall back to the
interpreter from running optimized code.

While most VMs are designed for a single programming language, there
are different approaches that allow the execution of different languages on
top of the same VM. A common way is to use a shared IR across different
languages. Some languages, for example, can be compiled to bytecode of
other languages. Polyglot VMs can also be built in different ways: They can
use different parsers that produce the same kind of ASTs as shared IR. Other
approaches compose multiple interpreters within the same polyglot VM.
These and other approaches to language integration are discussed in more
detail in Section 2.2.

29

3. Introduction to Programming Languages, VMs, and Tools

3.3. Programming Tools

Programming tools are applications designed to support developers through-
out the software development process. For code reading and writing, develop-
ers often use interactive code editors, such as EMACS [189] or VS Code [113].
These editors usually operate on files and provide syntax highlighting and
help developers to navigate through their codebases. Version control systems,
on the other hand, allow fine-grained versioning of source code based on files.
And build tools help to automate the build process of applications. Further-
more, there are numerous tools based on static program analysis that help
with the code writing activity: With linters, developers can find syntactical
and stylistic problems in their code. Other static tools help, for example, to
detect duplicated code or security issues.

While static tools can help to find many errors at development-time, some
programming errors manifest themselves only at run-time and usually require
dynamic tools to be understood and caught. Common examples of this
are performance problems. Performance analysis tools such as tracing and
sampling profilers, for example, help developers to understand where most
of the time is spent in their applications. Debuggers, on the other hand,
support developers to identify and fix unexpected or erroneous run-time state
within their applications. Read-eval-print-loops (REPLs) allow developers
to evaluate expressions, for example, to try out code snippets and to explore
APIs. With code coverage tools, developers can check which parts of their
codebase are covered by tests.

Some programming tools are designed for one specific programming lan-
guage or virtual machine, for example, when they provide language-specific
feedback on code style or run-time state. Others support multiple languages
so that developers can use the same set of tools for developing code in different
languages. These general-purpose tools, however, usually assume that only
one language is used at a time. Integrated development environments increase
developer productivity further by bundling different tools, such as code ed-
itors and debuggers, in one environment. Similar to individual tools, IDEs
can also be language-specific. General-purpose IDEs, such as Eclipse [33]
or Visual Studio [112], on the other hand, provide comprehensive means for
software development across a wide variety of mainstream programming
languages.

Tools for Exploratory Programming

The goal of exploratory programming [172, 175, 203] is to help developers
to understand the dynamic behavior of the programs that they build. For

30

3.3. Programming Tools

this, exploratory tools rely on and visualize dynamic run-time data and
therefore operate at run-time and can co-exist with other applications. The
two essential features are interactive code evaluation and object inspection.
More features for exploratory programming may, for example, be provided
by the underlying programming language of the programming system that
provides the tools.

Interactive Evaluation of Code The most basic features of exploratory pro-
gramming are based on the ability to interactively evaluate expressions within
a REPL or another running system, such a self-sustaining programming sys-
tem or a testing environment, and to see the result somehow. These basic
teatures are usually provided through different commands that developers
can trigger individually, such as:

e an evaluate expression command that evaluates selected code and does
nothing else,

e a display expression command that evaluates selected code and displays the
result,

e an inspect expression command that evaluates selected code and opens the
result in an inspection tool, and

e adebug expression command that evaluates selected code in an interactive
debugger. This is a good example of how exploratory tools can be connected
with tools for debugging and other purposes.

In many programming systems that support exploratory programming,
these commands are globally accessible. Wherever text can be written, it is
possible to trigger these commands for a specific selection or the current line.
In addition, they often provide a dedicated workspace tool that can be used
as a playground for more complex tasks. For this, these workspaces provide
additional features, such as syntax highlighting, a dedicated scope specific to
each instance of the tool, and the ability to save code in external files.

Inspection Tools Exploratory programming systems further provide tools
for the inspection of objects. These tools visualize the internal structure of
objects in different ways, for example with tree lists, which are often sufficient
to explore smaller object graphs. For this, they use reflection to list variables
as well as variable parts and to access meta-objects such as classes. Moreover,
they provide the ability to jump to other tools that, for example, reveal the
interface of the inspected object. In addition to commands for interactive code
evaluation, they also allow developers to send individual messages to the
object under inspection.

31

3. Introduction to Programming Languages, VMs, and Tools

Language Features Some systems provide additional features that are use-
ful, but not limited to exploratory programming. Some languages, for example,
provide the ability to enumerate all instances for a given class. This mechanism
can be a powerful meta-programming tool for applications. It can also be very
useful for exploratory programming as it allows developers to find all other
versions of a particular instance. In addition to this, languages may provide
special means for extending software at run-time, which also aids exploration.
An example of this is the ability to change class schemes at run-time. When-
ever an instance variable, for example, is added or deleted, all instances of the
corresponding class may need to be migrated to reflect this change. Another
language feature that can be useful for exploratory programming is a facility
for swapping the identities of two objects. With this, it is easy to replace a
means for exploration with a different version or an entirely different artifact
throughout the entire system.

Figure 3.1shows a screenshot of the basic tools for exploratory programming
in the Squeak /Smalltalk 1.13u programming environment. The “Workspace”
tool allows interactive evaluation of Smalltalk expressions. On the right, there
is a “Wandering Letters” demo application that was launched by evaluating
the second line of the workspace. The demo, written by Ted Kaehler, visualizes
an algorithm for the computation of line breaks. Two object inspectors are
opened on this demo: one on a “Folder3” object that holds the contents for
the demo and one on “SqueakView”, the actual view of the application. These
two inspectors list the instance variables and their contents and allow the user
to evaluate code in the context of the inspected object. Interactive evaluation
of code is not limited to the workspace and can be done throughout the entire
system using different commands: With dolts, selected text can be quickly
evaluated. printlts do the same and display the evaluation result at the end
of the selected text. To open the result in an inspector, the inspectIt command
can be used. And the debuglt command starts a debugger session for the
selected text. Furthermore, Squeak/Smalltalk provides support for finding
all instances of a given class. Instead of navigation through the object graph
of the demo to find the view object, the “SqueakView” inspector was opened
through the third line in the workspace using the allInstances language
feature.

32

Workspace

3.3. Programming Tools

Wandering Letters

1+ 2% 735 "o

SqueakSupport runWanderinglLetters,

SqueakView alllnstances first inspect,

SqueakView

‘model:
Letters:
controller: a

SqueakController

all inst vars
model
controller

superView
subWViews
transformatio
Fiewport
window

superView: nil
subViews

OrdetredCollect:
SqueakHaloView)

transformation:

Wandering

Hawve vou ever
thought what a
letter must go
throug h

zelf printString 'a SqueakView'

all inst vars
dependents
objectContaine
wiorkingsBack
workitigaDicti
contents
COSTMDES
currentCostum

OrderedCollection («wild:
leftMargin:
wrightMargine <He <ar o>
<BF 4 r AWE AOr Al £ 1rocelr
wly e < < 2 <ty <hir
<l culy o <hle <l < 3
wrr <h2y aly a2 ¢ 4 g2
< S ol T <3 ode ceds
]y 4 By e <3Er <3y 45 «

parameters

T o<gly w2 < 8 <t <3

zelf contents size G0 \

Figure 3.1.: Screenshot of some of the exploratory programming tools in the
Squeak/Smalltalk 1.13u programming environment (released in 1996). The
“Workspace” tool allows interactive evaluation of code. The second line of the
workspace started the “Wandering Letters” demo on the right. The windows
labeled “SqueakView” as well as “Folder3” show the object inspector tool.
The former is opened on the view object of the running demo, the latter on
some user-defined folder object that contains the contents displayed in the
demo. In the lower part of the object inspector, code can be evaluated in the
context of the inspected object.

33

3. Introduction to Programming Languages, VMs, and Tools

application _ -
developers User Applications
language _
developers " | Language A |Language B |Language C|... 3| o tool
i } 2 | A developers
) Language Implementation Framework
runtime
developers .
Shared Runtime System

Operating System ‘

Figure 3.2.: Overview of the different developer roles and their responsibilities
within the ecosystem of a polyglot virtual machine.

3.4. Developer Roles and Responsibilities

Figure 3.2 provides an overview of the different developer roles and their
responsibilities within the ecosystem of a polyglot VM. In the remainder of
this thesis, we use the following names to refer to specific developer roles:

Application developers build and maintain user applications using one or
more programming languages and can therefore be seen as the end-users
of the ecosystem. The programming tools usually used by application
developers are code editors, build systems, and debuggers. They often use
and sometimes develop software libraries and frameworks.

Language developers build and maintain implementations of programming
languages, for example in the form of compilers or interpreters. Language
implementation frameworks allow these developers to use high-level pro-
gramming languages and to re-use appropriate components.

Tool developers build and maintain tools and IDEs for software development.
Sometimes language developers slip into this role and build tools for their
language implementations. Tools, however, can also be built and provided
by third parties. Tool developers often use tool-building and UI frameworks.

Runtime developers build and maintain runtime systems including compo-
nents such as JIT compilers or garbage collectors. They may also develop
language implementation frameworks that language developers can use
for implementing languages for their runtime systems.

34

3.4. Developer Roles and Responsibilities

Summary There are many different kinds of programming languages:
They can be compiled or interpreted, statically-typed or dynamically-
typed, high-level or low-level, and support different programming
paradigms. Developers must be aware of such differences when apply-
ing polyglot programming.

Process VMs allow the execution of application code and can provide
portability across different hardware platforms and operating systems.
They deploy interpreters, garbage collectors, as well as JIT compilers,
and can be built in such a way that they support multiple languages at
the same time.

Furthermore, there a numerous programming tools, such as code edi-
tors and debuggers, that support developers in building software. Such
tools are sometimes bundled in general-purpose IDEs that support a
wide variety of different programming languages.

Moreover, tools for exploratory programming help developers to
understand the dynamic behavior of the programs that they build by
allowing them to interact with their programs at run-time.

In the remainder of this thesis, we distinguish between four kinds of
developers: application, language, tool, and runtime developers.

35

4, GraalVM and Its Infrastructure for
Polyglot Programming

GraalVM is a high-performance, polyglot virtual machine developed by
Oracle Labs. The project builds on the Java HotSpot Virtual Machine and
consists of many different components as shown in Figure 4.1. The central
component is the Graal compiler, a versatile JIT compiler written in Java. This
compiler supports the execution of programming languages implemented in
the Truffle language implementation framework [69]. In addition to re-usable
components for implementing languages, Truffle provides several APIs that
allow interoperability between different languages and the instrumentation
of code. In the context of GraalVM, all languages implemented in Truffle are
referred to as guest languages, as opposed to the host language Java. Furthermore,
GraalVM provides various tools for application, language, tool, and runtime
developers. In the following, we explain these key components in more detail.
Any highlighted implementation detail is taken from the GraalVM 21.2.0
release [29].

4.1. The Graal Compiler

Graal is a modern Java compiler that supports different modes and use cases.
Unlike the two default Java compilers of the JVM, C1 and C2, which are
written in C++, Graal is written in Java.

User Applications

Graal.js | TruffleRuby | Espresso
(Javascript) | (Ruby) (Java)

Truffle Language Implementation Framework

S|00] NAleelD

Graal Compiler

JVMCI (JEP 243)

Java HotSpot Virtual Machine

Figure 4.1.: Overview of the GraalVM technology stack.

37

4. GraalVM and Its Infrastructure for Polyglot Programming

Internally, the compiler uses a graph-based IR that allows dynamic spec-
ulative optimizations [36]. It hooks into a JVM through the JVM Compiler
Interface (JEP 243 [30]) and can be used as Java compiler instead of C2 and
in conjunction with C1. In this VM mode, Graal performs numerous, state-
of-the-art optimizations including aggressive inlining, on-stack replacement,
scalar replacement, and stack allocation [114, 188].

In addition, the Graal compiler supports ahead-of-time (AOT) compila-
tion [216]. GraalVM Native Image leverages this AOT mode of the compiler
and allows the translation of Java applications into native executables. These
executables have a low number of dependencies and are independent of the
JVM.

Furthermore, the Graal compiler has dedicated support for language imple-
mented in the Truffle framework. In this mode, the Graal compiler performs
partial evaluation [173, 194], which allows GraalVM to be used as a high-
performance, polyglot VM.

4.2. The Truffle Language Implementation Framework

Truffle is GraalVM’s language implementation framework and used to im-
plement all languages supported by the VM [221]. It is written in Java and
designed for building AST interpreters. Instead of having to implement lan-
guages from scratch, Truffle provides re-usable components for language
implementations, such as a dynamic object storage model or an infrastructure
for managing stack frames. It also provides several tooling APIs, for exam-
ple an Instrument API for building tools such as debuggers and profilers
in a language-agnostic way [210]. Since GraalVM is based on Java and the
JVM, Truffle interpreters are also written in Java (or other JVM-based lan-
guages such as Kotlin) and can re-use the Java ecosystem including its object
model and garbage collectors. Truffle ASTs are used as the common IR of all
GraalVM guest languages. Furthermore, Truffle interpreters are normal Java
applications that can run on stock JVMs. Only when running on the Graal
compiler, however, these interpreters benefit from being partially evaluated,
which can significantly improve their run-time performance.

Partially Evaluating Truffle Interpreters The Graal compiler performs par-
tial evaluation to optimize Truffle AST interpreters at run-time [221]. That is,
it specializes Truffle ASTs by rewriting AST nodes for the currently running
user application. The idea of partially evaluating an interpreter was first
discussed by Futamura and is known as the first Futamura projection [48].
The way Graal applies this optimization technique can be described in three
phases:

38

4.2. The Truffle Language Implementation Framework

In the first phase, an AST interpreter runs as a normal Java application on
top of GraalVM. This is often referred to as interpreted mode during which the
user application is profiled. Profiling an application in the context of Truffle
means collecting run-time information such as concrete values or types, or
the control flow branches that were taken. Graal uses different heuristics
to identify hot methods of the running application. These are, for example,
methods that are called thousands of times and that may benefit from being
JIT-compiled.

Graal maintains a compilation queue to which hot methods are added
at run-time. For each method in the queue, it specializes the Truffle AST
representing the method for the collected profiling data. This is the second
phase of the specialization process. The output of this partial evaluation
process is optimized machine code that can run when the method is called.
This machine code is specialized because it only contains code for the profiled
characteristics of the user application.

In case control flow leads to a program state not covered by the machine
code, for example when the method is called with arguments of new types,
Graal reconstructs the corresponding state of the interpreter and falls back to
the interpreted mode. This third phase is referred to as deoptimization.

At this point, the method re-enters phase one and more run-time informa-
tion is collected for it in the interpreter. Based on that, the Graal compiler
may later decide to re-specialize the method. The resulting machine code will
then be more general than the previous version, but it can of course lead to
deoptimization again as well.

The assumption behind this optimization technique is that program be-
havior eventually stabilizes and respecialization is no longer required. This,
however, can take a significant amount of time, especially when the user
application is large and different parts of the application are used at different
times. Running a large test suite is another example of a workload that may
benefit from JIT compilation only to a limited extent because tests usually
only run once, and the overhead of specialization may not be amortized.

High-Performance Language Integrations Languages implemented in the
Truffle framework produce Truffle ASTs, which the Graal compiler can heavily
optimize. Every node of such an AST must inherit from the same Node class
in Truffle. Therefore, Truffle ASTs can be viewed as a common intermediate
representation for all GraalVM languages.

Figure 4.2 illustrates what happens when methods of different Truffle lan-
guages are mixed. a) and b) of Figure 4.2 show ASTs for two methods written
in two different languages. The first method performs string concatenation
and appends a unit to a number. The second method converts a value from

39

4. GraalVM and Its Infrastructure for Polyglot Programming

a [, b) o [,

X IIOCII . llOCll
Language A

Language B 0 @

Figure 4.2.: Polyglot Truffle ASTs. a) AST for a simple method performing
string concatenation in language A (pseudo-code: x+"°C"). b) AST for a
method to convert a value from Fahrenheit to Celsius in language B (pseudo-
code: (f-32)*5.0/9.0). c) Polyglot AST resulting from combining both meth-
ods.

Fahrenheit to Celsius. These two methods can be combined to create a new
method that accepts a Fahrenheit value and returns a string of the corre-
sponding Celsius value and the unit. The representation of this combination
on the AST level is visualized in ¢): The result is still a Truffle AST but it
now contains nodes from two different languages. And since each language
implements its semantics within its nodes, the combination will indeed return
the expected result.

The origin language of a node is not required for partial evaluation. Conse-
quently, there is no difference between monoglot and polyglot ASTs from the
perspective of the compiler. Note that different language semantics may still
have different performance characteristics, which is reflected when languages
are mixed. Mixing, for example, a language that safely accesses memory
(e.g. JavaScript) with one that does not (e.g. C) will lead to code with both
safe and unsafe memory accesses. When memory is accessed safely, bounds
checks introduce a performance overhead. Consequently, the overall run-time
performance of polyglot code can heavily depend on the language in which
more memory accesses are performed [58].

Language Interoperability A common representation for code of different
languages is important but not sufficient to integrate languages. Objects
from different languages must also have a common way to communicate
with each other, for example, based on a shared internal representation and
an appropriate protocol. In Truffle, objects from guest languages must be
represented by host Java objects. Language developers can either use Java

40

4.3. GraalVM Languages and Tools

primitive types, Java’s String type, or custom Java classes that implement the
TruffleObject [144] interface.

Based on this shared representation for guest objects, the framework pro-
vides a dedicated, reflective language interoperability protocol. This proto-
col is based on message passing and allows language developers to define
how their objects interoperate with others. For this, classes that implement
TruffleObject can export the messages of Truffle’s InteropLibrary [139].
The interoperability behavior of Java primitive types and the String type are
predefined by Truffle.

The language interoperability protocol supports several types and traits.
Interoperability types, such as Null, Number, Exception, or Meta-object, are
mutually exclusive. An object can thus only represent one or none of these
types. An object may, however, have an arbitrary number of interoperability
traits. The executable and instantiable traits, for example, allow language de-
velopers to mark certain objects of their language so that they can be called
or instantiated from other languages. The array elements trait can be used
to expose language objects as array-like objects. At the time of writing, the
protocol is still actively extended by the GraalVM community.

Moreover, there must be a way to express the combination of languages
from within code and an infrastructure for sharing objects between languages.
It is the language developer’s responsibility to provide appropriate means for
this based on dedicated Truffle APIs and on the level of their language. Official
GraalVM languages typically provide a polyglot API through builtins or a
dedicated language module. This API usually allows application developers
to evaluate foreign code and to share values using Truffle’s polyglot bindings
object, a dedicated polyglot namespace. The underlying infrastructure for
building such an API is provided by TruffleLanguage.Env [143], another
Truffle-internal API that languages can use to interact with the execution
environment.

4.3. GraalVM Languages and Tools

Several programming language interpreters have been implemented in the
Truffle framework for the GraalVM. Table 4.1 shows the language implemen-
tations that are developed and maintained as part of the GraalVM project as
well as several third-party language implementations. From the nine official
languages, only Graaljs and Sulong are officially supported. All others are
considered experimental, mostly for compatibility and performance reasons.
In addition to those, third parties have also created several language imple-
mentations. Enso, grCuda, and Yona are, for example, entirely new languages
built with Truffle. TruffleSqueak is based on Squeak /Smalltalk and the system

41

4. GraalVM and Its Infrastructure for Polyglot Programming

Table 4.1.: List of official and some notable third-party language imple-
mentations for the GraalVM.

Name Description
Espresso Meta-circular Java bytecode interpreter.
FastR Implementation of GNU R.
Graal js ECMAScript 2020-compliant implementation of JavaScript.
= GraalPython Implementation of Python 3.
:é’ GraalWasm Interpreter for WebAssembly.
O SimpleLanguage Toy language to demonstrate Truffle features.
Sulong LLVM bitcode interpreter.
TRegex Regular expression engine for other Truffle languages.
TruffleRuby Implementation of Ruby.
Enso A visual language for data science.
», grCuda Truffle-based CUDA integration for GPU programming,.
% SOMns Newspeak implementation for concurrency research.
_;“ TruffleSqueak Squ.eak /Smalltalk VM and polyglqt prggramming
-2 environment. (The system presented in this work.)
H TrufflesSOM SOM Smalltalk implementation.
Yona A minimalistic functional programming language.

presented in this work. SOMns and TruffleSOM are related to it in terms of
the language, but do not provide a programming environment.

Furthermore, GraalVM also provides tools for different purposes and types
of developers, such as the following:

Debugging Protocols GraalVM supports the Chrome DevTools Protocol as
well as the Debug Adapter Protocol for its guest languages. This allows
developers to choose from a wide range of debugger UI that support one
of the two protocols, such as the Chrome debugger or the debugger of
VS Code. The implementations of both protocols are based on Truffle’s
Instrument API, which means that it is not only possible to debug a single
guest language but also to debug across multiple guest languages at the
same time.

Language Server Protocol GraalVM experimentally supports the LSP, which
decouples IDEs from specific languages [192]. This means that developers
are free to choose any IDE or code editor with an LSP client. Based on
dynamic run-time data, the GraalVM language server can then provide sug-
gestions for code completion and other features supported by the protocol
and across all guest languages.

Profiling Command Line Tools GraalVM comes with a set of profiling tools
that work across its guest languages: The CPU sampler helps to understand
in which code most of the execution time is spent. The CPU tracer traces
through individual statements and accurately counts their number of

42

4.3. GraalVM Languages and Tools

invocations in the interpreter or from JIT-compiled code. The memory
tracer tracks the number of allocations and corresponding source code
locations.

MultiLanguage Shell GraalVM provides a MultiLanguage Shell, an interac-
tive REPL that allows the execution of guest language code.

Moreover, GraalVM provides an extension for Visual Studio Code that helps
developers to set up and manage GraalVM installations and provides code
completion support for its polyglot API. Language and runtime developers
can further use GraalVM'’s Ideal Graph Visualizer to inspect and analyze
compiler graphs. Since GraalVM builds on the Open]JDK, VisualVM and
other tools for Java can be used to monitor and interact with the runtime.

Summary GraalVM is a state-of-the-art polyglot VM built on top of
the Java HotSpot Virtual Machine. Its Graal compiler performs partial
evaluation to optimize AST interpreters written in Truffle, GraalVM’s
language implementation framework. This framework also provides a
dedicated protocol for language interoperability.

Several Truffle-based language implementations, such as for Java,
JavaScript, Python, or Ruby, are officially maintained as part of the
GraalVM project. Others have been created and are maintained by
third parties. In addition, the GraalVM ecosystem also provides sev-
eral programming tools and tool interfaces. Some of these tools and
interfaces, such as different profilers and debugging protocols, are
implemented in a language-agnostic way and thus work across all
GraalVM languages.

43

Part I11.

Exploratory Tool-Building
Platforms for Polyglot VMs

45

5. Bringing Exploratory Programming
to Polyglot VMs

Polyglot VMs are complex software systems consisting of many different,
intertwined components such as compilers, garbage collectors, language
implementation frameworks, as well as several language implementations.
They can provide language interoperability on a high level, which allows
languages to interact directly with each other and tools to operate across
them. This interaction always happens at run-time and is therefore dynamic,
even if static languages are involved. Supporting developers in writing code
in dynamic programming languages can be challenging for purely static tools.
Therefore, we argue that polyglot programming can be better supported with
tools based on dynamic run-time data. Self-sustaining programming systems,
on the other hand, have demonstrated that it possible to deal with a high level
of dynamicity through tools for exploratory programming.

= = == = = = = = = = = = = e = = e = = e = = e = === ==

S, L I
@~ . W run on

extended for -~ % Polyglot VM

| | Exploratory 1) explore Polyglot |

E Tools inspect and evolve Applications f .

use! & 4 :

(: H ... H :) Polyglot (BB E

Tools @ :

Developers @ :
N Self-Sustaining Programming System !

Figure 5.1.: General overview of our approach: (1) The tools for exploratory
programming of an existing self-sustaining programming system can be re-
used across all languages of a polyglot VM. (2) The exploratory tools are
extended so that they provide additional context about language interoper-
ability. (3) Since these tools, just like all other tools of the SSPS, are also just
applications, it is possible to evolve them and to build new ones in a polyglot
way.

47

5. Bringing Exploratory Programming to Polyglot VMs

Our approach brings these exploratory tools, tool-building capabilities, and
the live programming experience of self-sustaining programming systems
to polyglot VMs. Figure 5.1 gives a high-level overview of the approach:
(1) We show that the tools for exploratory programming of an existing self-
sustaining programming system can be re-used across all languages of a
polyglot VM. For this to work, an SSPS is integrated in such a way that it runs
as a guest language of the polyglot VM. In return, its tools for exploratory
programming need little to no changes to be re-usable for other languages.
(2) While these tools are already useful, they do not incorporate any means
to provide context about language interoperability. We, therefore, propose
appropriate extensions for these tools that make them polyglot-aware so that
they provide additional information about language interoperability, which
helps developers to better understand the dynamic runtime behavior within
polyglot applications. (3) We demonstrate that polyglot programming can be
applied to the entire SSPS when running on a polyglot VM. Existing tools
and applications can be extended with other languages and new ones can be
built at run-time. This means that we can leverage the extensive tool-building
capabilities of self-sustaining programming systems to build new tools for
polyglot programming in a polyglot way, allowing us to also gain further
insights into polyglot programming by applying it ourselves.

As part of our work, we mostly focus on interpreted, OOP-based pro-
gramming languages and interoperability between them. As we show in our
evaluation in Part V, interoperability between these programming languages
already provides a lot of potential for exploration and leads to interesting
challenges. Nonetheless, we believe that our approach is not limited to such
languages. Since compiled languages can also be interpreted, they can also
be combined with other types of languages. GraalVM demonstrates this with
its LLVM bitcode interpreter that can interpret C, C++, or Rust code.

In the following, we discuss the potential of exploratory programming
in the context of polyglot VMs and explain how the exploratory tools of
a self-sustaining programming system can be re-used. Extensions for these
tools are presented in Chapter 6. Chapter 7 describes the third aspect of
our approach: Polyglot programming can be expanded to our exploratory
tool-building platform itself, allowing us to build and evolve polyglot tools
and applications at run-time and to learn more about advantages, potential
use cases, as well as challenges of polyglot VMs.

5.1. Exploratory Programming for Polyglot VMs

An important activity during the development of any software is to reveal,
understand, and specify requirements [51, pp. 391-394]. Only if the require-

48

5.1. Exploratory Programming for Polyglot VMs

ments are sufficiently understood and specified can a software project succeed.
This also applies to developing polyglot applications and polyglot VMs. One
important way to understand and to find requirements is through explo-
ration [175]. Exploratory programming tools are designed to help developers
in this process.

In a survey of exploratory software development, Trenouth [203] describes
four principles of exploratory software as follows:

Principle of Execution During the exploration process, the means for explo-
ration must always be “continuously executable”. Although this artifact
is meant to gain knowledge, it can be entirely different from the software
under development. Static representations of the software, on the other
hand, fail to provide appropriate means for trying out ideas.

Principle of Extension The means for exploration must always be “easily ex-
tendible”. Exploratory programming is about experimenting with running
software. Developers must be able to modify it quickly. The longer the
feedback loop, the harder it is for them to understand the effects of their
changes, and to make many changes in quick succession.

Principle of Exploration The means for exploration must always be “conve-
niently explorable”. It must be possible to explore alternatives and to go
back to previous versions of the running software. This can be provided
through a version control system or copies of the artifact.

Principle of Explanation The means for exploration must always be “usefully
explainable”. The goal of the exploration process is to allow developers to
examine a particular problem or explore a specific design space. At any
point in time, they must be able to fully understand their running software.

In the context of polyglot VMs, these four principles have the following
meaning. The Principle of Execution fits well with our observation thatlanguage
interoperability as provided by polyglot VMs happens at run-time. While
it is possible to write polyglot applications with static tools, developers can
only be certain that they work as intended by running them on a polyglot
VM. With an artifact that is always running, on the other hand, they can get
accurate information about the dynamic behavior of the software artifacts
they would like to combine.

The Principle of Extension imposes first requirements on polyglot VMs: Run-
ning artifacts must be extendible. This means that it must be possible to change
existing and to evaluate new code without having to restart the VM. Many
dynamic programming languages provide means for dynamic evaluation of
code. Furthermore, some of them provide additional means for the extension
of application at run-time, for example through incremental compilation and

49

5. Bringing Exploratory Programming to Polyglot VMs

hot-code reloading. Static languages, however, usually require recompilation
of the code that has changed. Since they run interpreted on polyglot VMs, the
VM must at least allow the dynamic evaluation of code from static languages
at run-time. Another requirement imposed by this principle is independent
from specific languages: Run-time performance must be good enough to
provide short feedback loops and low response times. If the evaluation of
code takes too long, it may be hard to understand how it influences existing
behavior or how it adds new behavior.

The Principle of Exploration adds further requirements: It must be possible
to finely version polyglot applications. Most version control systems operate
on the level of files and are therefore not necessarily the best option for
versioning running artifacts. Alternatively, the polyglot VM could provide
the ability to clone running artifacts. At the very least, it must be possible to
re-create different versions of the artifact, for example by allowing code to be
re-evaluated.

The Principle of Explanation is the most important aspect of exploratory
programming and distinguishes it from conventional dynamic tools such as
debuggers and profilers. The running artifact must be explainable at any point
in time. Tools for exploratory programming and the running artifact must be
able to co-exist. Debuggers stop the execution of the artifact and only provide
information about it at a particular point in time. While it is possible to step
through code, the amount of information they provide is usually too large to
be comprehensible over thousands or millions of steps over time. Profilers,
on the other hand, run alongside code. Their task is, however, predefined:
Measure or trace specific aspects of the execution, such as the time spent per
method, until the program terminates. Unlike debuggers and profilers, live
object inspectors allow developers to freely explore different aspects of their
running applications and are therefore a good example of an exploratory
programming tool. The goal of exploratory programming is to enhance the
understanding of the software and as this happens, developers might have
new questions they want to examine.

Moreover, the last principle has another meaning with regard to polyglot
VMs: Everything must be explainable, and different types of developers may
want to explore on different levels. Remote tools, such as debuggers that
connect to VMs through debugging protocols, are limited to what these
protocols allow them to do. Extending such protocols is usually not possible
at run-time, which can cause long feedback loops as parts of the polyglot
VM need to be rebuilt and restarted after a change to the protocol. We,
therefore, argue that it is best for exploratory tools to avoid remote tooling
protocols. Instead, they should be integrated into polyglot VMs as closely
as possible. Similarly, guest languages may only provide high-level means

50

5.2. Building on Self-Sustaining Programming Systems

for language interoperability. Exploratory tools on top of one of the guest
languages of a polyglot VM could therefore be restricted in a similar way
and can consequently be less useful for exploration. In addition, the different
components of polyglot VMs are usually connected through well-defined
APIs. It is good practice to keep the size of public APIs small and to hide
as much information as possible. This also makes it easier to evolve them
over time, as they provide a small surface for dependencies. Another reason
for some APIs to be kept private is because of security concerns. Security
mechanisms or best practices such as information hiding, however, can be
counterproductive for exploration and therefore are non-goals for us, unless
they are one of the aspects under exploration. The more open different
components of polyglot VMs are, the better they can be explored.

5.2. Building on Self-Sustaining Programming Systems

If we build tools for exploratory programming from scratch and connect
them to the polyglot VM, similar to how remote tools such as debuggers
connect to them, our tools are limited to the functionality of the public
communication protocol. Another option is to implement these tools on top
of an existing guest language. Not all languages, however, provide means
for building interactive tools. More importantly, they usually do not allow
direct interaction with the language interoperability protocol of the polyglot
VM. Our tools would therefore be limited to the functionality provided
by the guest language. Instead, we suggest hosting our exploratory tools
on a dedicated guest language so that our system is independent and it is
up to us to decide what functionalities are made available. Designing and
implementing a language from scratch, and then building a tool-building
framework and tools for exploratory programming, however, would require
a lot of work. To build on previous work, we propose to re-use an existing self-
sustaining programming system that already comes with exploratory tools
and tool-building capabilities. Another reason for re-using an SSPS is that,
by definition, most of its components are fully accessible and can be evolved
from within the system. This sets them apart from many other mainstream
development environments, which are often hard to extend because they are
complex, proprietary, or deploy a restrictive plugin system for extensions.
Figure 5.2 illustrates what this would look like: To host an existing SSPS
on top of a polyglot VM, only its VM interface needs to be implemented as
a guest language in the corresponding language implementation framework.
Its tools, class libraries, compilers, and other parts of the system are built
and maintained within itself and can be re-used without further ado. For
other languages, on the other hand, libraries, compilers, and other required

51

5. Bringing Exploratory Programming to Polyglot VMs

SSPS

Tools User Applications

SSPS Langugage | Language B | Language C

Langupge Implementation Framework

*Polyglot Virtual Machine

Operating System

Figure 5.2.: A self-sustaining programming system implemented as a guest
language of a polyglot VM. Compared with other guest languages, the
language implementation it requires to run is small as most of the components
such as class libraries are self-sustained and, therefore, built and maintained
within the system. A separate language implementation also makes the
programming system independent and allows us to open it up not only
to other guest languages but also all the way down to the polyglot virtual
machine. As a result, the system can co-exist with user applications, and its
tools for exploratory programming can be used to explore them.

components must usually be provided by the corresponding language im-
plementation. Similar to self-sustaining programming systems, portions of
this can also be implemented in the language they implement. Unlike in such
systems, however, these components are not maintained at run-time and are
usually not intended to be changed by application developers. Consequently,
the implementation effort required to host an SSPS is lower compared with
other language implementations.

Nonetheless, the language implementation needs to properly support all
requirements for a particular SSPS. This usually includes an interpreter
as well as several language primitives the SSPS relies on. Some of these
requirements, however, may be rather uncommon compared with other
languages. For one, self-sustaining programming systems usually provide
an interactive user interface for both its tools as well as user applications.
The language implementation must therefore provide appropriate graphics
and windowing facilities. It must also support all language features required
by the SSPS. Some of them are related to exploratory programming, such
as the capability to enumerate the instances of a particular class that we
discussed in the previous chapter. But there may be additional features, such
as continuations, interrupt routines, or a mechanism to persist and load
snapshots of the system.

52

5.3. Opening the Programming System to Other Languages

SSPS

Object-to-Foreign— & User Applications
ools - - =
Foreign-to-Oblect—S | [Tioraries Jl [l | (Tioraries | -
Polyglot API g Object-to-Foreign Object-to-Foreign
o Foreign-to-Object Foreign-to-Object

- ﬂ | Interop API ™ | T Polyglot API Polyglot API

SSPS Language Language B | Language C | ...

] 1 1

| |nter0p Protocol }(‘I imp[ement and use
Language Implementation Framework

Polyglot Virtual Machine | ““Fost Language

Operating System

Figure 5.3.: All languages of a polyglot VM need to implement its language
interoperability protocol and use it to provide three components: a user-facing
polyglot API for evaluating code in different languages, a mapping for their
objects going out through the protocol, and a mapping for incoming, foreign
object to their objects. Commonly, these three components are implemented on
the language level. To enable further exploration of language interoperability,
we lift their implementation into the user space of the SSPS.

5.3. Opening the Programming System to Other
Languages

The next step towards re-using the tools for exploratory programming is to
open up the SSPS to all other languages of the polyglot VM. To provide
access to other languages, language developers commonly need to implement
and use the language interoperability protocol of the polyglot VM’s language
implementation framework.

Figure 5.3 shows the three main components, highlighted in green, that
language developers need to provide to enable language interoperability:

1. A polyglot API that enables user applications to evaluate code written in
other languages. This API is usually provided through a dedicated, global
module, class, or set of functions.

2. A mapping from objects of their language to the interoperability protocol.
This mapping is used when objects are passed over to and accessed from
within other languages.

3. A mapping from foreign objects implementing the protocol to the lan-
guage’s object model. For this, one or more dedicated types are often
introduced for representing foreign objects.

53

5. Bringing Exploratory Programming to Polyglot VMs

These three required components are usually implemented as part of a
language implementation. We propose to lift these implementations into
the user space of the SSPS, not just because it follows the self-sustaining
philosophy of the system, but also because it allows direct and fine-grained
access to the protocol. On the one hand, this allows us to build and explore
higher-level abstractions and implementation strategies of the interoperability
protocol at run-time. On the other hand, direct access to the protocol enables
the construction of polyglot-aware tools. It also makes it possible to use
exploratory tools on the level of interoperability protocol, allowing us to
understand the effect of specific interoperability messages when sent between
specific languages. Instead of implementing the interoperability protocol,
the language implementation for the SSPS therefore only needs to make it
directly accessible from within the system.

Furthermore, language interoperability is not limited to guest languages.
As depicted in Figure 5.3, a polyglot VM can also implement these three
components to expose its host language through the interoperability protocol.
This can allow guest languages not only to evaluate code in that language
but also to access the internals of the polyglot VM at run-time, enabling VM
introspection capabilities.

5.4. API Requirements for Exploratory Programming

An important goal of integrating a self-sustaining programming system into
a polyglot VM is to re-use its tools for exploratory programming. These tools
usually consist of different components such as an interactive user interface,
event handling, other internal logic providing tool-specific features, or live
feedback mechanisms. More importantly, these tools usually access object
information entirely through reflective operations of the language they are
designed for. This means that all we have to do to make them work for
other languages is to route these reflective operations through the protocol
for language interoperability. For this, we override appropriate parts of the
object protocol of the SSPS’s language within the type or the types used to
represent foreign objects. As an example, a display expression command can
now be used to evaluate foreign code through the polyglot API. Through the
interoperability protocol, the command can retrieve a textual representation
of the result in a language-agnostic way, which it can then display to the user.

For the tools of exploratory programming presented in Section 3.3, we
gather the requirements for the language interoperability protocol of a poly-
glot VM. With this, we can override the reflective operations of the object
protocol in our foreign object types so that the exploratory tools can work
across other languages without any further modification. In the following,

54

5.4. API Requirements for Exploratory Programming

we list individual API capabilities that the interoperability protocol needs
to provide in detail. Note that some of these capabilities could make use of
exceptions to signal errors. For simplicity, we let them return boolean values
to indicate whether an operation was successful or not.

Basic Capabilities

For the most basic interaction with other languages, only two simple capa-
bilities are required: A means to request the evaluation of code written in a
particular language and the ability to retrieve a textual representation for any
object that can be displayed to the user.

evaluate(String:language,String:code) :0bject

Evaluate code written in a specific language and returns the result.
printString(Object:object):String

Retrieve a textual representation for a given object.

Access to Identity and Meta-Objects of Objects

For exploration, it must further be possible to check whether two objects are
identical and to access meta-objects of objects. With meta-objects, alternative
versions of objects can be identified during exploration and new ones can be
created.

areldentical(Object:objectl,Object:object2):Bool
Returns true if both given objects are identical, false otherwise.
getMetaObject(Object:object) :MetaObject
Retrieve the meta-object of an object, such as its class, constructor, or
prototype.
isInstance(Object:object,MetaObject:metalbject):Bool
Returns true if a given object is an instance of a particular meta-object,
false otherwise.
createInstance(MetaObject:metaObject):0bject
Create a new instance of a given meta-object.

Access to Properties of Objects
Exploratory tools help developers to understand the internal structure of

their objects. For this, the tools must be able to access a list of all enumerable
properties and to read and write specific properties of objects. Most languages

55

5. Bringing Exploratory Programming to Polyglot VMs

distinguish between named properties, such as fields or variables, and num-
bered properties, such as for arrays or other variable-sized parts. Our API is
kept more general to allow any kind of property type. Through printString,
tools can always obtain a textual representation for any property. Note that
some objects may have dynamic or unknown properties, depending on the
language, that cannot be listed and are therefore not part of the result of
listProperties.

listProperties(Object:object):0bject[]
List all enumerable properties of a given object.
readProperty(Object:object,0Object:property):0bject
Read a specific property from a given object.
writeProperty(Object:object,Object:property,Object:value):Bool
Write a value to a property of a given object. Returns true if successful,
false otherwise.

Access to Interfaces of Objects

To interact with objects, developers must be able to send messages to a specific
object through exploratory tools. In case the interface of an object is unknown,
it must be possible to list possible messages. Similar to properties, however,
some languages allow objects to understand dynamic messages that cannot
be listed and can thus not be reported as part of the result of listMessages.

listMessages(Object:object):String[]
List all enumerable messages that can be sent to a given object.
send(Object:object,String:message,Object[]:arguments):0bject
Send a specific message with arguments to a given object.

Optional Exploratory Programming Features

In addition, we identified additional features of exploratory programming
that polyglot VMs could optionally provide across languages. While these
features are not directly required by the exploratory tools, they can be helpful
when using these tools.

Objects can potentially have dynamic properties and understand messages
dynamically, both of which cannot be listed. In Python, _ getattr_ () and
__getattribute_ () can be overridden to control property access, for exam-
ple, to return computed values based on property names or a Python callable
to dispatch messages dynamically. Similarly, Ruby and Smalltalk support the

56

5.4. API Requirements for Exploratory Programming

method_missing() and doesNotUnderstand: methods respectively, which can
both be overridden to handle messages dynamically based on message names
and arguments. To make these mechanisms for dynamic behavior more discov-
erable, we propose a check for each, innumerable properties and innumerable
messages. If an object has none, developers know that the property and mes-
sage lists are complete. The checks otherwise indicate to developers that more
information, for example from the implementation or documentation, may
be needed to further understand the structure or behavior of an object under
inspection.

While the previous requirements allow the creation of alternatives, dedi-
cated support for cloning makes it easier to fork certain objects. To find other
versions of an object during exploration, a mechanism for listing all instances
of a specific meta-object is helpful. Similarly, an ability to swap the identities
of two objects can be helpful during exploration, for example, to trying out
different alternatives or for evolving a running artifact without altering object
identities.

hasInnumerableProperties(Object:object):Bool

Returns true if a given object has innumerable properties that cannot be

listed as part of listProperties, false otherwise.
understandsInnumerableMessages(Object:object):Bool

Returns true if a given object understands innumerable messages that

cannot be listed as part of listMessages, false otherwise.
clone(Object:object,Bool:shallow):0bject

Create a shallow or deep copy of a given object depending on the shallow

arqument being true or false.
findAllInstances(MetaObject:metaObject):0bject|[]

Find all instances for a specific meta-object.
swap(Object:objectl,Object:object2) :Bool

Swap the identities of object1and object2. Returns true if successful, false

otherwise.

1]

Note that most of these capabilities are not specific to exploratory tools.
Since they are also needed to support language interoperability and other
tools such as debuggers, polyglot VMs usually already provide appropriate
infrastructures that can be re-used and extended. An evaluate hook and a
hook to send messages, for example, are crucial for integrating languages in
general. MetaObjects allow languages to implement an instanceof operator
for other languages. Similarly, some of these capabilities may also be used by
other languages to implement reflection and by debuggers and other tools

57

5. Bringing Exploratory Programming to Polyglot VMs

that perform introspection. A printString hook is usually needed in almost
all kinds of tools that display values in some form. Additional capabilities
for exploration, on the other hand, may be helpful to enhance exploratory
programming but are not necessarily required to allow exploration to a
reasonable degree. Also note that while information on possible arguments for
messages would be useful, we believe the effort to unify keyword arguments,
which can also be innumerable, and other types of arguments across languages
outweighs the benefits for exploration. Since polyglot VMs are dynamic
systems, we instead assume that objects respond to messages sent with
incorrect arguments with useful errors that provide information on, for
example, their arity or expected argument names.

Summary Language interoperability as provided by polyglot VMs
is dynamic and can best be observed at run-time. Therefore, we argue
that exploratory programming is a useful practice to understand the
requirements of tools for polyglot programming, polyglot applications,
and polyglot VMs. Unlike static tools and many conventional dynamic
tools such as debuggers and profilers, exploratory tools co-exist with
running exploration artifacts and allow developers to understand the
dynamic behavior of these artifacts at run-time.

Instead of creating exploratory tools from scratch, we propose to
build on an existing self-sustaining programming system. This allows
us not only to re-use its exploratory tools but also its tool-building
capabilities and live programming experience. This way, we can build
and evolve tools and polyglot applications at run-time, which makes
for short feedback loops and thus improves productivity. We show
how an SSPS can be integrated as a language of a polyglot VM and
how it can be opened to other guest languages. We also list the API
requirements in detail that a polyglot VM needs to provide to support
exploratory programming. Since these requirements overlap in large
part with what these VMs already need to provide to support language
interoperability and tools such as debuggers, their implementation can
usually build on an already existing infrastructure.

An exploratory tool-building platform as proposed by our approach
makes it possible to explore ideas and rapidly build tools for polyglot
programming that incorporate dynamic run-time data. This addresses
the first challenge from Section 1.1 and thus constitutes the first contri-
bution of this work.

58

6. Extending Exploratory Tools for
Polyglot VMs

The exploratory tools of an SSPS commonly use reflection to access informa-
tion on objects. We have shown that this can be routed through the language
interoperability protocol and therefore, these tools need little to no modifica-
tion to work across the languages of a polyglot VM. However, they sometimes
fail to provide enough context about different languages and language inter-
operability as they were originally designed for one specific language. Since
these tools allow exploration of dynamic object state at run-time, they are also
further away from code compared with, for example, debuggers that overlay
code with run-time state. In this chapter, we propose different extensions that
make exploratory tools polyglot-aware and thus more useful to the different
developers working with polyglot VMs.

6.1. Revealing Interfaces of Objects

Exploratory tools for object inspection usually focus on the visualization of
program state. For exploring the interfaces of objects, they often provide quick
access to other tools that are designed for listing, implementing, and extending
interfaces. While this works well in a monoglot SSPS, it is hard to provide the
same experience in a polyglot environment as languages might have different
approaches to how interfaces are defined and managed. Some languages, for
example, allow interfaces of particular classes or even particular objects to
be extended dynamically, for example through monkey patching. The actual
interface of an object at run-time can therefore be hard to determine with
static code analysis.

We thus propose to extend exploratory tools so that they also list the
interfaces of objects explicitly alongside object state at run-time. This extension
is relatively simple and only needs to be implemented once if based on the
language interoperability protocol of the polyglot VM. Having access to the
lists of object interfaces is particularly helpful when trying to connect different
pieces of software. If developers must consult the API documentation of one
piece of software written in one language and the implementation of another
piece of software written in another, this not only is time-consuming but

59

6. Extending Exploratory Tools for Polyglot VMs

also prone to errors. With exploratory tools displaying interfaces at run-time,
developers can always see and understand how objects of different languages
with different interfaces can interact in polyglot applications, following the
Principle of Explanation of exploratory software.

6.2. Providing Context About Languages

By looking at state and interfaces of objects, developers may be able to guess
the language of the objects in their polyglot applications. This, however, re-
quires a good understanding of each language and is an additional burden for
a developer. In a polyglot programming system, tools can support developers
by incorporating language information. We propose to extend the exploratory
tools for object inspection with the ability to explicitly display the language
of a particular object.

Furthermore, exploratory tools that allow interactive evaluation of code,
such as a display expression command or a workspace, can be inconvenient
to use because developers are forced to use the polyglot API to call out
to other languages. This can be avoided and the experience streamlined by
extending these tools with the ability to switch between different languages.
The language used for a display expression command and others could be a
global preference for example. Similarly, a workspace tool could hide the
polyglot API by letting developers select a particular language. For this, the
polyglot VM must provide a list of all languages that it supports. Tools must
further be able to pass in a local scope when evaluating code. An object
inspection tool, for example, usually binds the inspected object to a keyword
such as “this” or “self” in its embedded workspace.

Moreover, developers and tools may want to access the globals of a particular
language for different purposes. Developers, for example, may need to explore
or modify some global state in a specific language or would like to find
a specific capability without knowing anything about the syntax of that
language. Tools, on the other hand, can use access to globals to automate
certain operations in a language-agnostic way. For example, they can identify
newly introduced globals by tracking a list of all global names across code
evaluations. By writing new globals from one language into the globals of
another, they can automate sharing between languages.

In the following, we list the additional capabilities that a polyglot VM needs
to provide to support our proposed extensions.

60

6.3. Incorporating Additional Features of Polyglot VMs

Basic Capabilities

Tools and developers must be able to determine the origin language of any
object at all times. They must also be able to retrieve a list of all languages
supported by the polyglot VM at run-time. To allow tools to evaluate code
within a certain context, the evaluate capability should be extended with the
ability to pass in specific local variables that are then available during the
evaluation of code.

getLanguage (Object:object):String
Get the language of a given object.
listLanguages():String[]
List all languages supported by the polyglot VM.
evaluate(String:language,String:code,Map:locals):0bject
Evaluate code written in a specific language with a map of local variable
names to values and returns the result.

Accessing Language Globals

We further propose a simple API that can be used to list, get, and set globals
of the languages of a polyglot VM. The API gives developers an additional
starting point for exploration and allows tools, for example, to manage and
share global state between languages,

listGlobals(String:language):Stringl[]

List the names of all globals for a given language.
getGlobal(String:language,String:name) :Object

Get a specific global from a given language.
setGlobal(String:language,String:name,Object:value):Bool

Set a particular global of a language to a specific value. Returns true if

successful, false otherwise.

6.3. Incorporating Additional Features of Polyglot VMs

For exploratory programming on the level of polyglot user applications, the
previously discussed requirements are sufficient to understand and explore
program behavior at run-time. The exploratory tools, however, can also be
extended with additional features of the polyglot VM.

The language interoperability protocols of polyglot VMs usually support
different data types and traits to enable high-level interaction between lan-

61

6. Extending Exploratory Tools for Polyglot VMs

guages. Since such a protocol is directly accessible from within our SSPS, it is
possible to extend tools so that they display detailed information on different
interoperability properties of objects. As an example, the exploratory tools for
object inspection can explicitly list the interoperability types and traits sup-
ported by an object. They can also provide views that show how these types
and traits are implemented in more detail. On the one hand, this is helpful
to language developers because it allows them to understand how their lan-
guage integrates the protocol for language interoperability. More specifically,
they are interested in both how objects from other languages appear in their
language and how objects from their language appear within others. On the
other hand, runtime developers can further benefit from the exploration of the
language interoperability protocol, the language implementation framework,
and other facilities from the runtime such as its JIT compiler or its garbage
collector. The exploratory tools can be used, for example, to compare imple-
mentations of the interoperability protocol from different guest languages, to
spot inconsistencies across them, and to help gather new requirements for
evolving the protocol. To allow exploration of additional runtime facilities
such as data structures managed by JIT compilers, these facilities must only
be exposed to the self-sustaining programming system through its language
implementation, similar to how the interoperability protocol is exposed. At
run-time, existing tools can then be extended and new ones can be built
around these facilities for specific purposes. If a JIT compiler uses, for exam-
ple, a data structure to manage compilation tasks, it is possible to build tools
that can monitor, analyze, and even change these tasks while the compiler is
running.

62

6.3. Incorporating Additional Features of Polyglot VMs

Summary In the previous chapter, we have shown how the ex-
ploratory tools of an existing self-sustaining programming system can
be re-used across the languages of a polyglot VM. Since these tools
make use of a uniform set of capabilities provided by all languages,
they are no longer language-specific. This, however, also means that
they can only provide language-agnostic views.

To make them aware of a polyglot VM, we propose extensions
for these exploratory tools and list corresponding API requirements.
Object inspection tools should provide information on the interfaces
and languages of objects, which helps developers to understand how
to combine objects from different languages without having to read
code or documentation. Tools such as a workspace or commands for
interactive code execution can hide the polyglot API of a polyglot VM
to streamline the experience for developers. Moreover, access to the
globals of languages is useful for exploration purposes and allows tools,
for example, to manage and share state between languages. We argue
that our extensions not only make the exploratory tools polyglot-aware,
the required API can also be used to build other polyglot-aware tools.

This step toward polyglot-aware tools is in line with the second chal-
lenge presented in Section 1.1 and constitutes the second contribution
of this work.

63

7. Expanding Polyglot Programming to
the Platform Itself

A self-sustaining programming system hosted as a guest language on top
of a polyglot VM can be used for more than exploratory programming. In
this chapter, we show how the tool-building capabilities of such a platform
can be used to explore tooling ideas for polyglot programming. At the same
time, tools themselves can be built in a polyglot way. While this is useful
for tool developers, an SSPS is not limited to building tools. Other parts of
the system can also make use of polyglot programming as they are all user
applications from the perspective of the polyglot VM. Lastly, we illustrate how
both language and runtime developers can also benefit from the capabilities
of self-sustaining programming systems.

7.1. Building Polyglot Tools for Polyglot Programming

Interactive dynamic tools are usually expensive to build as they consist of
many different parts such as a user interface with event handling, internal
processing logic, and different inputs and outputs for information. The process
of designing tools can be even more expensive. When requirements for a tool
are not yet well-understood, exploring different ideas can be time-consuming.
Moreover, existing tools that someone else has built are often hard to extend,
if they even provide appropriate means for extension. And if they do, they
oftentimes impose limitations on what third-party extensions are allowed to
do.

In self-sustaining programming systems, on the other hand, everything can
be extended, no matter whether it is a tool, an application, a class library, or
its compiler. To support tool developers, they usually come with frameworks
for tool-building that provide different re-usable components such as for
text editing, windowing, or event handling. Furthermore, self-sustaining
programming systems often support mechanisms for rapid prototyping, for
example, through incremental compilation and hot-code reloading. This way,
it is possible to modify and extend a tool while one or more instances of the
tool are running. This provides short feedback loops so that tool developers
can alter and evolve the behavior of their tools quicker.

65

7. Expanding Polyglot Programming to the Platform Itself

Since our exploratory platform has direct access to the language interop-
erability protocol and other APIs of the polyglot VM, new polyglot-aware
tools can be prototyped and built at run-time. For this, it is possible to re-use
any component, library, framework, or tool that already exists in the SSPS.
By composing two or more existing tools, new tools for different purposes
can be created.

Furthermore, the integration of the polyglot API is not only useful for
exploration. The API can also be used from within tools. This way it is possible
to make use of libraries and frameworks written in other languages in the
context of tools. This can be useful, for example, when a tool should support
different file formats. If one of the guest languages of the polyglot VM comes
with a library for reading and writing a specific format, it can be used within
the tool. Similarly, it is common that interactive tools provide visualizations
of data, such as charts, graphs, and plots. With polyglot programming, tool
developers can re-use visualization libraries from different languages within
their tools. Also, the existing tools for code editing of an SSPS usually only
support syntax highlighting for the language they are designed for. Through
the polyglot API, these tools can be easily extended with libraries for syntax
highlighting that support many different languages.

Building tools for polyglot programming in a polyglot way allows tool
developers to re-use more software. At the same time, it also provides new
data points allowing us to learn more about programming with polyglot
VMs. As we show in Section 13.2, the insights gained through an exploration
platform for polyglot VMs are not limited to the system and can also be
applied in other programming systems. This means that our platform can
also be used for exploration and prototyping when building other systems.

7.2. Building Polyglot Applications at Run-Time

Apart from tools, self-sustaining programming systems can, of course, also
be used by developers to build all kinds of other applications. From the
perspective of a polyglot VM, everything that is part of the SSPS is a user
application. And since development happens at run-time, our platform can
be used by application developers to build polyglot applications at run-time,
at least to some extent. The language of an SSPS often supports mechanisms
to incrementally build applications and to recover from run-time errors.
These mechanisms, however, cannot always be made available to other
guest languages of the polyglot VM. This is also the case for the snapshotting
mechanism of an SSPS: While snapshotting of our platform must be properly
supported to allow its evolution, it is hard to extend this capability to other
guest languages. Most programming languages do not support taking and

66

7.3. Exploring the Internals of Polyglot VMs

loading arbitrary snapshots of their object spaces. Nonetheless, other guest
languages could make use of the snapshotting mechanisms of the SSPS’s
language. For this, they only need to manage the information they want to
persist in data structures of the SSPS’s language and they need to know how
to take and restore snapshots.

This also has a consequence for applications directly built in our platform:
Snapshots of the platform can be taken at any point in time and do not
persist objects from other guest languages. Therefore, these objects are no
longer available after resuming from a snapshot. From the perspective of an
application written in the SSPS, it appears as if they suddenly vanished. As
most languages have no general support for persistent object memory, we
leave cross-language persistence for future work. Instead, applications in our
SSPS must always be able to re-create objects from other languages. We found
that in many cases, the lazy-initialization pattern [50, p. 112] can help with
this.

7.3. Exploring the Internals of Polyglot VMs

Although our platform is designed for exploratory programming and tool-
building in the context of polyglot VMs, it can also be useful for language
developers and the developers of the runtime.

Language developers can, for example, use our platform to understand
interoperability of their language with others in more detail. The exploratory
tools allow them to inspect how objects of their language implement the
language interoperability protocol of the polyglot VM at run-time. At the
same time, they can see how other languages implement this protocol and how
objects of other languages appear within their language. Furthermore, they
can explore different implementation strategies on the basis of the platform’s
language. Since we propose to implement the interoperability protocol for
both outgoing and incoming objects within the SSPS, the implementation
can also be changed at run-time.

If the host language of the polyglot VM is supported through the language
interoperability protocol, as previously depicted in Figure 5.3, it is possible
to access and introspect internals of language implementations, the language
implementation framework, and the VM itself from within our platform.
This allows language developers to explore their language implementations
at run-time. For example, they can use our platform to statistically analyze
certain characteristics of their language that are only visible at run-time. Or
they could observe how effective a particular optimization is that they have
built into their language implementation. For this, they are not limited to the

67

7. Expanding Polyglot Programming to the Platform Itself

exploratory tools. They can, of course, also build their own dynamic tools for
their language implementation.

The same applies to runtime developers. They can explore specific com-
ponents, such as the garbage collector or a JIT compiler, of the runtime at
run-time with the exploratory tools. Since these components can be quite
complicated, custom dynamic tools can be built for them in our platform. JIT
compilers, for example, often perform powerful but complex performance
optimizations. Our platform can, therefore, help them to better understand in-
ternal state, such as optimization heuristics, and identify issues and potential
for improvements.

The only part of our platform that is not self-sustained is its language
implementation. Therefore, it is not possible to change it in the same way the
rest of the system can be changed at run-time. As discussed in Section 5.2,
the language implementation is relatively small, not just compared with
our platform but also with implementations of other languages. From the
perspective of a polyglot VM, most of our platform is built on the level of
user applications, which can provide valuable feedback for language and
runtime developers. On the one hand, the programming system itself can
produce realistic and non-trivial workloads that are typical for IDEs or Ul
applications, as we demonstrate in Section 11.2. This can be useful to assess
how well the polyglot VM supports such workloads, something that, for
example, micro-benchmarks usually do not provide. On the other hand, their
small language implementation allows for additional experimentation with
different strategies to implement languages in the language implementation
framework. This way, for example, new framework components or perfor-
mance optimizations can be tested and evaluated with lower effort. In other
language implementations, this would require more work because they are
more complex and, therefore, less flexible.

68

7.3. Exploring the Internals of Polyglot VMs

Summary A platform based on our approach can be used for more
than exploratory programming and tool-building. Since the platform is
integrated as a guest language of a polyglot VM, it is possible to apply
polyglot programming in different ways:

Tool developers can apply polyglot programming to provide, for
example, support for different file formats, visualizations, syntax high-
lighting, or other features in their tools. Application developers can
use the language of the SSPS to glue together code from different
languages, which enables the construction of polyglot applications
at run-time. Language and runtime developers can explore language
implementations and the internals of their polyglot VMs at run-time
through VM introspection enabled by interoperability with the host
language. It is also possible to apply polyglot programming to extend
the self-sustaining programming system itself.

By applying polyglot programming in these different ways, we can
gain further insights into advantages, potential use cases, as well as
challenges of polyglot VMs and discover new requirements based on
practical experiences. This helps to tackle the third challenge discussed
in Section 1.1 and is the third contribution of our work.

69

Part IV.

Implementation for the
GraalVM

71

8. Integrating Squeak/Smalltalk Into
GraalVM

In this chapter, we present TruffleSqueak, an implementation of our approach.
TruffleSqueak is based on Squeak/Smalltalk and an exploratory tool-building
platform for the GraalVM. It is open-source, available on GitHub [183], and
consists of three main components: 1) an implementation of the VM interface
for Squeak/Smalltalk in GraalVM'’s Truffle framework, 2) a VM-level plugin
that grants access to other languages and the underlying runtime system,
and 3) Squeak/Smalltalk code that implements and integrates GraalVM’s
language interoperability protocol allowing the exploratory tools of Squeak/
Smalltalk to operate across GraalVM languages. In the following, we highlight
some of TruffleSqueak’s implementation details.

8.1. Building on Squeak/Smalltalk

Squeak/Smalltalk [70] is an open-source Smalltalk implementation and a
direct descendant of the Smalltalk-80 system and its specification [53]. It was
created by Alan Kay and Dan Ingalls, who were involved in the original de-
sign and development of Smalltalk-80 at the Xerox PARC Learning Research
Group. The Smalltalk language is an object-oriented, reflective, dynamically
typed, and interpreted programming language. What sets Smalltalk apart
from many mainstream programming languages are its self-sustaining pro-
gramming system as well as the infrastructure that enables it, such as its
become mechanism or its support for persistent object memory. Smalltalk and
hence Squeak/Smalltalk provide different tools for exploratory programming
and means for rapid prototyping [172]. In addition, its implementation of
the Morphic UI framework [99, 100] as well as its ToolBuilder and other
tool-building facilities allow Squeak/Smalltalk to be used as a sophisticated
tool-building platform [197].

The virtual machine interface that Squeak /Smalltalk requires to run is well-
documented. There are different VMs that demonstrate how this interface can
be implemented: The OpenSmalltalkVM [73], the reference VM for Squeak/
Smalltalk, is written in a subset of Smalltalk that translates to C, Squeak]S [47]

73

8. Integrating Squeak/Smalltalk Into GraalVM

and RSqueak/VM [41] are alternative implementations written in JavaScript
and Python respectively.

The first step to use Squeak/Smalltalk as an exploratory tool-building
platform for GraalVM is to implement this VM interface in Truffle, GraalVM’s
Java-based language implementation framework. For this, all Smalltalk objects
from a Squeak/Smalltalk snapshot, a so-called image, must be represented
by an appropriate Java object. Apart from a reader for Squeak/Smalltalk
images, our language implementation also needs to provide an interpreter
for Squeak /Smalltalk bytecode as well as a list of required primitives. Their
implementations are now explained in more detail.

Creating a Squeak/Smalltalk Bytecode Interpreter in Truffle

The original Smalltalk-80 specification includes a well-defined bytecode set.
GraalVM’s Truffle framework, on the other hand, is designed for building AST
interpreters. The first challenge to support Squeak/Smalltalk on the GraalVM
thus is to find a way to implement a bytecode interpreter in Truffle. Squeak/
Smalltalk makes assumptions about certain bytecodes and their execution, so
correctly implementing a bytecode interpreter is important for compatibility.
This challenge, however, is not specific to Smalltalk. Other languages such as
Java are also bytecode-based and need a bytecode interpreter for compatibility
reasons. This is also the case for intermediate representations such as LLVM
bitcode or WebAssembly that allow the execution of compiled languages such
as C, C++, or Rust.

In TruffleSqueak, there is a dedicated Truffle node for each Smalltalk
bytecode. Consequently, the bytecode of a method is transformed into an
almost linear AST. Each AST node either has one successor node for the next
bytecode, or two in case of a conditional jump bytecode. In the latter case, the
node points to its direct successor as well as to either another successor or a
predecessor if it is a back jump.

Figure 8.1 shows bytecode (blue) for an example method: Bytecode #1 and
#3 are simple bytecodes with a direct successor. Bytecode #2 is a conditional
jump that only jumps to bytecode #5 if and only if some condition is met.
Otherwise, bytecode #3 is executed. Bytecode #4 is an unconditional jump
back to bytecode #2, while bytecode #5 is a return bytecode that signals that
the execution of the corresponding method has been completed. This method
may therefore be incrementing some value in a loop until some condition is
met. This is a common scenario when searching for the index of a specific
character in a string for example. The transformation of bytecodes into Truffle
AST nodes (green) results in an AST with appropriate edges.

74

8.1. Building on Squeak/Smalltalk

Al

BC1 | BC2 | BC3 | BC4 | BC5

L)

Figure 8.1.: Bytecode (blue) for an example method transformed into a corre-
sponding AST (green).

While the transformation is straightforward, the Graal compiler fails to
produce efficient machine code for these special types of ASTs. For this reason,
the Truffle framework provides several hints that a language implementation
needs to use to help the compiler, for example, to detect loops in application
code. Providing these hints in the right way, however, can be challenging and
increases the complexity of the bytecode interpreter loop (see Appendix A).
On the other hand, similar runtime performance compared with standard
Truffle AST interpreters can be achieved, as we show in Part V.

In addition to a bytecode interpreter, some primitives, for example for
arithmetic and input-output operations, need to be implemented to be able
to run Squeak/Smalltalk. These are also well-documented. While there are
hundreds of supported primitives, not all of them are required. Most optional
primitives come with appropriate fallback code that provides the same func-
tionality but may be less efficient. The overall strategy is therefore simple:
start with implementing all required primitives, then implement optional
primitives for better performance and additional features.

A bytecode interpreter with required primitives is able to run the Squeak/
Smalltalk compiler. With this, it is possible to evaluate arbitrary Smalltalk
expressions. From this point on, we can run the SUnit tests of Squeak/
Smalltalk to understand which parts of the Smalltalk system are working
and which are incorrect or not yet implemented. For good practice, we set
up a continuous integration pipeline that runs all SUnit tests and reports the
results every time we push new commits. This feedback cycle helps us to keep
track of our progress and to detect regressions early.

75

8. Integrating Squeak/Smalltalk Into GraalVM

Supporting Smalltalk Language Features

A VM for Squeak /Smalltalk needs to provide some powerful, yet uncommon
mechanisms for hosting the self-sustaining programming system. This in turn
allows many Smalltalk language features, such as exception handling or a
mechanism for schema migrations, to be implemented in Smalltalk itself.

Context Objects Squeak/Smalltalk provides reification of method and block
activations through first-class Context objects. To access the Context object
from within a method, Smalltalk provides a dedicated pseudo-variable called
thisContext. Since these objects are first-class, they can be accessed and
modified just like any other Smalltalk object.

While modifying the sender of a context appears to be a dangerous oper-
ation, it is frequently used in Squeak/Smalltalk to modify the control flow.
Exception handling is, for example, based on this: If an exception is thrown,
the sender chain is traversed until an appropriate exception handler is found.
By changing the sender of the current context to the exception-handling con-
text, all intermediate sender contexts are removed and control flow continues
executing the exception handler.

The Truffle framework provides a Frame infrastructure for managing acti-
vation records in guest languages. Since the allocation of such frame objects
per activation is expensive, the Graal compiler aggressively tries to avoid
allocations on the heap. If possible, it only allocates the required parts of
a language-level frame on the stack. In most cases, it can even avoid the
allocation of a frame entirely. Language developers can mark a Truffle frame
for materialization, which instructs the compiler that allocation on the heap
is required for a particular frame.

TruffleSqueak makes use of Truffle frames and tries to avoid materialization
of them as much as possible. Allocation on the heap is only required in few
cases, for example when a process switch is triggered. Other common cases
are non-local returns: In order to allow blocks to trigger an early return within
a method, the corresponding block closure needs to be aware of the target
context. While marking such target contexts for materialization cannot be
avoided, the Graal compiler often decides to inline blocks as they tend to
be small. When blocks are inlined, the Graal compiler can detect that the
context object does not escape the compilation unit of the method. Therefore,
it is again able to allocate only the required parts of the frame or avoid its
allocation entirely.

allInstances Squeak/Smalltalk allows the lookup of all instances for a
specific class object through the allInstances method, which makes use of

76

8.1. Building on Squeak/Smalltalk

a corresponding primitive. While the object memory can easily be scanned
for specific instances by the GC in the OpenSmalltalkVM, it is a challenge to
mimic this behavior correctly in Truffle. One reason is that Java itself does
not provide any APIs for interacting with the garbage collector apart from
System.gc (), which only suggests to run the GC. The same holds true for
Truffle: Although it makes some runtime-specific APIs accessible to language
developers, there are none for interacting with the GC.

In TruffleSqueak, we thus need to walk over all objects in the heap manually
to find all instances of a class, starting from Squeak /Smalltalk’s special objects
array, an array of objects for the VM that we can use as a GC root. While this
approach does not provide the same performance that a GC could achieve, it
works well enough in TruffleSqueak. Nonetheless, there are some performance
optimizations for allInstances in TruffleSqueak: To avoid the allocation of
large sets to track seen objects, for example, all objects in TruffleSqueak come
with a field to store a marking flag. This is a common GC strategy, only that
the information is usually managed within an object’s header, not within a
field of the object. Another optimization is to avoid marking context objects
for materialization by traversing stack frames with read-only access.

become: and becomeForward: A well-known language feature available in
Smalltalk is a mechanism to swap object pointers. With become:, all pointers to
the receiver object are changed to point to the argument object, and vice-versa.
Since this mechanism only needs to support to swap pointers of objects of
similar or identical classes, these objects are represented by instances of the
same Java class from TruffleSqueak’s object model. Therefore, the become
mechanism can be implemented by simply swapping the contents of all fields
of the two objects in question.

Implementing becomeForward:, however, requires additional work. This
mechanism works in a similar way, except that only all pointers to the re-
ceiver are changed to point to the argument and not the other way around.
In this case, the contents of all fields cannot be simply swapped. Instead,
TruffleSqueak needs to walk all objects in the heap, similar to how it imple-
ments allInstances, and update all pointers to the receiver. For this, the
implementation of becomeForward: can make use of the same optimizations
that TruffleSqueak uses for allInstances.

Image Snapshots Another powerful but uncommon feature of Smalltalk is
its support for image snapshots. For this, the OpenSmalltalkVM can simply
dump its allocated object memory into a file. When an image is opened, it
loads the file back into memory.

77

8. Integrating Squeak/Smalltalk Into GraalVM

All objects and data of Truffle languages need to be represented by Java
objects, and TruffleSqueak is not an exception. Similar to the rest of the
Smalltalk VM, the image format is well-documented. TruffleSqueak, therefore,
knows how to read the image header and what kind of Java object it needs to
allocate for each Smalltalk object. For saving image snapshots, TruffleSqueak
again makes use of its allInstances infrastructure: It manually walks over all
objects in memory and writes out each object in the corresponding format. As
a result, TruffleSqueak is fully compatible with the original image format and
can therefore load and save images that can then again be opened and saved
by the OpenSmalltalkVM and other compatible VMs for Squeak/Smalltalk.

Supporting the Squeak/Smalltalk Programming System

To support the Squeak/Smalltalk programming system, a VM not only needs
to be able to interpret bytecode correctly and provide primitives that enable
language features. It also needs to support two plugins that provide dedicated
drawing primitives: The BitBlt plugin is used for various drawing operations
and Balloon for rendering TrueType fonts. Both are traditionally implemented
in Slang, a subset of Smalltalk that translates to C, and compiled into the
binary of an OpenSmalltalkVM. While it is possible to interpret their original
Slang implementations with a simulation infrastructure [73], we manually
port the C version of both plugins to Java instead. The main reason for this is
that the performance of the two plugins directly influences the responsiveness
of the user interface. Simulating the plugins would significantly increase the
time until the Ul is usable as the simulator and the Slang code of the plugins
need to be JIT-compiled first to provide reasonable performance.

Displaying the programming system is, however, only a matter of rendering
the display buffer maintained by Squeak/Smalltalk. This display buffer is
registered during startup in a primitive. In TruffleSqueak, this primitive uses
Java’'s AWT and Swing to create a window that renders the buffer. Another
primitive is used by Squeak/Smalltalk to force updates to the screen. And for
user input events from mouse and keyboard, TruffleSqueak instructs AWT
and Swing to put all events into a queue that is frequently polled and emptied
by Squeak/Smalltalk’s EventSensor.

Performance Optimizations in TruffleSqueak
TruffleSqueak deploys a number of optimizations to improve the performance
of the language and, hence, the usability and responsiveness of the program-

ming system. Some of them are commonly known optimizations for dynamic
languages, some are specific to TruffleSqueak.

78

8.1. Building on Squeak/Smalltalk

Its bytecode loop is not only heavily tweaked with hints for the compiler.
It also tries to keep overhead in the interpreter low, for example by avoiding
boxing. Furthermore, bytecode nodes are lazily initialized for each bytecode.
On the one hand, this reduces memory consumption as only AST nodes are
allocated that are actually needed. At the same time, this also reduces the size
of the Graal compiler’s output significantly. A branch, for example, that has
never been taken will also never be part of compiled code, except if it is taken
at some point. While this improves compilation times and sizes and therefore
warmup, this optimization can potentially lead to more deoptimizations at
run-time and thus more work for the JIT compiler.

Moreover, TruffleSqueak comes with an object model that consists of more
than 15 different classes for representing Smalltalk objects. Each of them is
optimized to represent the corresponding type of Smalltalk object in an effi-
cient way. ClassObject, for example, is used for representing Smalltalk class
and additionally manages compiler assumptions about the stability of a class’
method dictionary, its overall class hierarchy, and its format. ArrayObject
makes use of storage strategies to optimize their allocations as well as the repre-
sentations of their contents. Similar to other Truffle languages, TruffleSqueak
also uses Java primitive types for representing boolean values, numbers, and
characters as well as a singleton for its nil value.

The most complex optimization within the object model can be found in
the three classes used for representing fixed-size, variable-sized, and weak
pointers objects. For these kinds of objects, TruffleSqueak uses a custom shape-
based object layout inspired by maps from Self [23] and the implementation
in SOMns. Each class object for such objects manages a layout description.
Such a description maintains a mapping from a slot location of the Smalltalk
object to a specific field or array offset in the object model. The corresponding
model classes have three inline Object fields, three inline long fields, as well
as two fields for potential extension arrays, Object[] and long[]. Figure C.1
shows how we determined the number of inline Object fields. Slot locations
start uninitialized, returning nil when they are read from. They can then
be specialized to a Java primitive type stored as an unboxed long value.
If specialization is not possible, slot locations are marked as generic and
assigned to an Object field or an offset in the Object[] array. The goal of this
optimization is to make the best use of the inline fields and extension arrays
for the objects of a specific Smalltalk class. This can avoid boxing, which in
turn reduces memory consumption and run-time performance. When such
objects are accessed, TruffleSqueak looks up and potentially caches the layout
attached to the object’s class. It then knows which Java field it needs to read
from or write to for the corresponding slot of the Smalltalk object. In case
a value needs to be written that cannot be represented by the assigned Java

79

8. Integrating Squeak/Smalltalk Into GraalVM

field or array offset, a respecialization is performed and the corresponding
layout is evolved appropriately.

Although Truffle provides DynamicObject, a similar, shape-based represen-
tation for objects of guest languages [220], the implementation is designed
for objects of variable size. The size of Smalltalk objects, however, is known at
allocation-time. While DynamicObject provides performance enhancements
over a simple Object[] representation that we could have also used for point-
ers objects, we found that it adds unneeded complexity and overheads. For
example, it uses a map from any given key to a storage location. Smalltalk ob-
jects cannot grow or shrink, so a simple index is sufficient and more memory
efficient.

Furthermore, TruffleSqueak implements numerous primitives and VM
plugins that are optional, but performance-critical for some operations. It, for
example, provides FloatArrayPlugin and Float64ArrayPlugin for efficient
access of arrays of 32bit and 64bit floating-point numbers. Similar to BitBlt
and Balloon, we manually port the C sources of the JPEGReaderPlugin and
the ZipPlugin to speed up the encoding and decoding of JPEG images, ZIP
files, as well as PNG images.

In Section 11.2, we evaluate TruffleSqueak’s UI performance in detail. Ad-
ditional performance benchmarks can be found in Appendix B.

8.2. Opening Squeak/Smalltalk to Other GraalVM
Languages

The next step for turning Squeak/Smalltalk into an exploratory tool-building
platform for GraalVM is to connect the language interoperability protocol. In
this chapter, we explain how TruffleSqueak implements this protocol and how
this allows interaction with other languages. Since language interoperability
is bidirectional, we first show how TruffleSqueak provides access to other
guest languages. Then, we illustrate how objects from Squeak/Smalltalk are
exposed to other languages.

Providing Access to the Language Interoperability Protocol

Each GraalVM guest language provides a polyglot API that allows the ex-
ecution of code written in other languages. This is usually done via a ded-
icated module, class, or a set of builtins. The TruffleSqueak programming
environment comes with a dedicated Polyglot class that allows the eval-
uation of a string or a file written in one of GraalVM’s guest languages.
The following expression, for example, returns JavaScript’s Math module:
Polyglot eval: #js string: 'Math'. On the VM level, TruffleSqueak im-

80

8.2. Opening Squeak/Smalltalk to Other GraalVM Languages

Listing 8.1: Simplified implementation of the
ForeignObject>>doesNotUnderstand: method.

doesNotUnderstand: aMessage
| member arguments |

member := aMessage selector asString copyUpTo: $:.
arguments := aMessage arguments.
(member = 'new' and: [Interop isInstantiable: self])

ifTrue: [~ Interop instantiate: self with: arguments].
(Interop isMemberInvocable: self member: member)
ifTrue: [~ Interop invokeMember: self member: member arguments: arguments].
(arguments size = 1 and: [Interop isMemberWritable: self member: member 1)
ifTrue: [~ Interop writeMember: self member: member value: arguments first].
~ (Interop isMemberReadable: self member: member)
ifTrue: [| result |

result := Interop readMember: self member: member.
(Interop isExecutable: result)
ifTrue: [Interop execute: result with: arguments]
ifFalse: [result] 1

ifFalse: [super doesNotUnderstand: aMessage |

plements a PolyglotPlugin that provides corresponding primitives for the
evaluation of foreign code and files.

This plugin also exposes GraalVM’s message-based protocol for language
interoperability directly: For each message supported by the protocol, the
plugin provides an appropriate Smalltalk primitive. Within TruffleSqueak’s
programming environment, all of them are accessible through the Interop
class. With Interop hasMembers: anObject, for example, itis possible to send
a message through the interoperability protocol to check whether anObject
has members according to the protocol.

Access to the host Java is available through another set of functions, which
the PolyglotPlugin exposes in a similar fashion. Within the programming
environment, they can be accessed through the Java class. For example,
Java type: 'java.lang.System' returns the System class from host Java.

Furthermore, TruffleSqueak comes with a ForeignObject class that is used
to represent objects from other guest languages and host Java. This class is
registered on the VM level during startup of the environment and then used
to access all foreign objects. Various core methods of Squeak/Smalltalk’s
Object class are overridden in ForeignObject and make use of the interoper-
ability protocol. Instead of calling out to primitiveAt, ForeignObject>>at:, for
example, sends either an interoperability message to read an array element
or a member depending on whether the argument is a number or not.

An important method override is ForeignObject>>doesNotUnderstand:.
TruffleSqueak leverages the Smalltalk doesNotUnderstand: mechanism [53,
pp- 589-590] to forward Smalltalk messages to foreign objects: If a Small-
talk message is not understood by ForeignObject, its doesNotUnderstand:
method is invoked and used to map the semantics of a Smalltalk message
send to the interoperability protocol. A simplified version of this method

81

8. Integrating Squeak/Smalltalk Into GraalVM

is depicted in Listing 8.1. First, the method converts the message’s selector
to an interoperability member name. For this, it simply turns the selector
into a string and copies it until the first colon. Then, it loads the message’s
arguments into a temporary variable. Afterward, the actual dispatch begins:
If the member name equals 'new', an instantiate message is sent through
the interoperability protocol with the arguments provided. Otherwise, the
methods sends an invoke member message if the object has an invocable mem-
ber for the given member name. If that is not the case, the methods sends
a write member message if and only if one argument was provided and an
appropriate writable member exists in the receiver. If that is also not the
case, an is member readable message is sent to check whether a member can be
read. If that is true, a read member message is dispatched and if the result is
executable according to the protocol, the method will also execute the result
before returning it. If none of the checks succeed, the method will fall back to
Object>>doesNotUnderstand:. This code path will open the usual debugger
window in the environment to inform the user of a MessageNotUnderstood
error.

Different parts of Squeak/Smalltalk’s object protocol are also routed
through the language interoperability protocol for foreign objects: The
ForeignObject>>instVarNamed: method, for example, sends a read member
message while ForeignObject>>instVarNamed:put: sends a corresponding
write member message. Since Squeak/Smalltalk’s tools for object inspection
use reflection to access objects, these method overrides are crucial for tool
support, as we show in Section 8.3.

Exposing Squeak/Smalltalk Objects to Other Languages

To be able to pass Squeak/Smalltalk objects to other languages supported
by GraalVM, TruffleSqueak’s object model needs to implement the interop-
erability protocol. Usually, this is done entirely on the level of the language
implementation in Truffle. TruffleSqueak, however, follows a different ap-
proach: Similar to how Smalltalk messages are forwarded as interop messages,
interop messages are also forwarded and dispatched on Smalltalk objects. On
the language implementation level, interop messages are only translated to
corresponding Smalltalk messages. Instead of doing this for every message
supported by the interoperability protocol, TruffleSqueak makes use of Truf-
fle’s ReflectionLibrary, which allows us to redirect all messages in a single
reflective send message.

There are two important reasons for implementing the interoperability
protocol within Smalltalk: First, it allows changes of the implementation at run-
time. By redefining methods used for language interoperability, it is possible

82

8.3. Re-Using Exploratory Tools for GraalVM Languages

Listing 8.2: Implementation of Interop>>isString:.

isString: anObject
<primitive: 'primitiveIsString' module: 'PolyglotPlugin's>
~ anObject interopIsString

to change how Squeak/Smalltalk objects are exposed to other languages
without having to restart the entire system. And second, many higher-level
types, such as iterators or dictionaries, are supported by the protocol, but
unknown to the Squeak/Smalltalk VM. A Dictionary, for example, is built
on top of Arrays in Squeak/Smalltalk. If a Dictionary runs out of free slots,
it decides when and how to grow its internal Array as new key-value pairs
are being added. To implement the hash API of the interoperability protocol,
the VM implementation would not only need to know the Dictionary class
but also about how it manages keys and values in Arrays. By dispatching
interop messages on the object, the object can decide how to respond. Another
advantage of this approach is that it allows developers to define how their
domain-specific objects implement the interoperability protocol. This allows
another dimension for exploration. A morph visualizing a seven-segment
display, for example, could be exposed as a string when passed to another
GraalVM language.

Another detail of TruffleSqueak implementation of the interoperability
protocolis thatit does not rely on VM support. When the VM does not provide
the PolyglotPlugin, all corresponding primitives fail. The fallback code of
these primitives can also handle interop messages. Listing 8.2, for example,
shows the implementation of Interop>>isString:. On TruffleSqueak, the
primitive would send an is string interop message, which either returns true
or false. On an OpenSmalltalkVM, on the other hand, the primitive fails.
Instead, the fallback code of the primitive calls the #interopIsString message
on anObject. This makes it possible to test and explore the implementation
of the interoperability protocol without even running on GraalVM.

8.3. Re-Using Exploratory Tools for GraalVM
Languages

One goal of TruffleSqueak is to provide exploratory tools for GraalVM lan-
guages. Since these tools mostly operate on the reflection interface of Squeak/
Smalltalk objects, which we have overridden and mapped onto the inter-
operability protocol in ForeignObject, most of their features work across
languages without any further modifications.

Figure 8.2 shows that an unmodified workspace from Squeak/Smalltalk
can be used to interactively evaluate code and send messages across languages.

83

8. Integrating Squeak/Smalltalk Into GraalVM

£) Workspace (v X+

pythonList := Polyglot eval: #python string: °'[42, object()] .
pythonList

append: (Polyglot eval: #js string: ‘Math’);

append: Smalltalk.

pythonList [42, <object object at 0x5d2613ee>, <foreign
object at 0x172ee667>, <foreign object at 0x514a128e>]

Figure 8.2.: An unmodified Squeak/Smalltalk workspace can be used to eval-
uate code written in different languages through the polyglot API and to send
messages to foreign objects. In this example, Python code is evaluated that
creates a Python 1ist with two elements. Then, the JavaScript Math module as
well as the global Smalltalk object representing the Smalltalk environment
are appended to the list. Finally, a printlt reveals that the pythonList now
contains four elements: the two Python objects and two foreign objects, the
Math module, and the Smalltalk object.

Users, however, must explicitly use the polyglot API to evaluate code from
other languages because the workspace itself only supports the evaluation
of Smalltalk code as it directly interacts with the Squeak /Smalltalk compiler.
On the other hand, it behaves in the same way and provides the same
features independently from what languages are evaluated and interacted
with. With a printlt, for example, any expression can be evaluated and the
textual representation of the result is displayed.

Similarly, foreign objects can be inspected in an unmodified object inspec-
tion tool. Figure 8.3 depicts two inspectors opened on the pythonList object
from Figure 8.2. Both inspectors automatically display the elements of the
list. This is possible for two reasons: First, we have mapped the Array trait of
GraalVM’s interoperability protocol to the indexed field concept of Squeak/
Smalltalk’s object protocol in our ForeignObject. And second, GraalPython
exposes this trait for Python list objects.

The unmodified inspector from Squeak/Smalltalk shown in Figure 8.3a,
however, does not list any instance variables of pythonList, nor will it dis-
play any instance variables for any other ForeignObject. The reason for this
is that it looks up the list of instance variables through the object’s class,
which for foreign objects is always ForeignObject. ForeignObject, how-
ever, is only used to represent foreign objects and does not have instance
variables nor actual instances in the first place. While looking up instance
variables in the object’s class is correct for Smalltalk, other languages may
allow objects to have additional, instance-specific variables. For this reason,
the meta-object type from GraalVM’s interoperability protocol cannot be
used to look up variables and therefore cannot be directly mapped to Small-

84

8.3. Re-Using Exploratory Tools for GraalVM Languages

) ForeignObject o0 &) ForeignObject (v X+
self {E: 2.718281828459045, PI: self _ class__: <class 'list’>

all inst vars 3.141592653589793, LN10: all inst vars __doc__: ’Built-in mutable

; 2.302585092994046, LN2: 'g':gs' sequence.

3 0.6931471805599453, LOG2E: “hash™

4 1.4426950408889634, LOG10E: :init_sibclass If no argument is given, the

0.4342944819032518, SQRT1_2: subclasshoo| || constructor creates a new empty

0.7071067811865476, SQRT2: 1 list.

1.4142135623730951, abs: 2 The argument must be an iterable if

function abs() { [native code] }, 3 specified.’

anne: finatinn anac/) [Inatiua 4 hach . NMana
self allinstVarNames #("__class_ ’’_ doc_ ’ self at: 3 {E: 2.718281828459045, PI:
’__hash__’’__init_subclass__’ explore 3.141592653589793, LN10: explore
’__subclasshook__’) 2.302585092994046, LN2:

0.60244740NEE00AED | ACOE.

(a) The unmodified inspector from (b) A PolyglotInspector, a subclass of
Squeak/Smalltalk shows the elements of the inspector specifically for foreign ob-
the pythonList. The third element is the jects, asks the object, not the class, for a list
Math module from JavaScript and the in- of all readable, but not invocable members
spector reveals what kind of textual repre- and displays them as instance variables
sentation Graal.js provides for it through alongside the object’s array elements.

the interoperability procotol.

Figure 8.3.: Two object inspectors opened on the pythonList from Figure 8.2.
They allow further inspection of the pythonList and its elements from differ-
ent languages. In the bottom part of each inspector, further interaction with
the inspected object is possible.

talk’s concept of classes and its meta-object protocol. To fix the inspector,
we instead create a new subclass of the original inspector and change the
lookup from object class allInstVarNames to object allInstVarNames.
The hooks for reading and writing instance variables, on the other hand,
also require the object and are therefore already implemented on the instance
side and appropriately overridden in ForeignObject. Figure 8.3b shows a
screenshot of TruffleSqueak’s PolyglotInspector, which lists all readable,
but not invocable members as instance variables of the object. By overriding
ForeignObject>>inspectorClass so that it returns the new subclass, we can
further instruct Squeak/Smalltalk to use our adapted inspector whenever a
foreign object is inspected.

Although TruffleSqueak properly supports allInstances, become:, and
other features that are helpful for exploratory programming for Squeak/
Smalltalk, these features require far more work to be adapted to other lan-
guages. For cross-language allInstances, for example, it must be possible to
walk all objects from all languages, not just the ones reachable from Squeak/
Smalltalk. Other language implementations must provide appropriate means
for this, a list of GC roots or an iterator for all objects for example. This and
other limitations are left for future work and discussed in Section 11.4 in more
detail.

85

8.

86

Integrating Squeak/Smalltalk Into GraalVM

Summary We present TruffleSqueak, an implementation of our ap-
proach for the GraalVM. It is based on Squeak /Smalltalk and consists
of mainly three components:

1. an implementation of the Squeak/Smalltalk VM written as an
AST interpreter in GraalVM’s Truffle framework, supporting stock
Squeak/Smalltalk images, all required language features, and two
bytecode sets,

2. adedicated VM plugin providing access to the language interoper-
ability protocol of GraalVM and other components of the runtime
system, and

3. Squeak/Smalltalk code that implements and integrates this protocol.

TruffleSqueak enables exploratory programming across all GraalVM
languages, allowing developers to interactively evaluate code through
GraalVM'’s polyglot API and to interact with objects from different
languages. At the same time, TruffleSqueak makes it possible to use the
Morphic UI framework as well as the ToolBuilder infrastructure from
Squeak/Smalltalk to build and evolve tools for polyglot programming
at run-time. TruffleSqueak is, therefore, the foundation of our fourth
contribution.

9. Extending Exploratory Tools of
Squeak/Smalltalk for GraalVM

With the polyglot API and our ForeignObject implementation, only little
modification was required to make the exploratory tools of Squeak /Smalltalk
work for other languages. Nonetheless, the tools only allow users to interact
with other languages indirectly through Smalltalk and its polyglot API. In
the following, we describe how we extend these tools so that they provide and
incorporate information on language interoperability, making them aware of
other languages and additional capabilities of the GraalVM.

9.1. Revealing All Interoperability Members of Objects

The inspector tool in Squeak/Smalltalk is designed to show the instance
variables as well as indexed variables of an object. So far, this also applies to our
subclass depicted in Figure 8.3, which shows the attributes of a Python 1ist
as instance variables and its items as indexed variables. For understanding an
object’s interface, a browser tool can be opened on the class of the inspected
object from within an inspector in Squeak /Smalltalk. The browser can then
be used to inspect and modify the interface of a Smalltalk object.

In Squeak/Smalltalk, however, classes are organized in a defined structure
reflected in the browser tool. Lively Kernel has shown that this structure can
be mapped to files, which are required to manage code in JavaScript and most
other languages. Since we do not want to enforce Squeak/Smalltalk’s struc-
ture for managing code across languages, we instead extend TruffleSqueak’s
PolyglotInspector so that it also lists the interfaces of objects.

The easiest way to do this would be to list all interoperability members as
part of ForeignObject>>allInstVarNames. For a simple Python list object,
however, this would mean that another 40 invocable members are shown.
Other languages, such as Ruby and Smalltalk itself, have much larger object
protocols and can expose hundreds of invocable members. Developers, on the
other hand, are often interested in either the structure or the interface of an
object, rarely in both at the same time. Furthermore, it is not uncommon for
objects from other languages to have a large number of instance variables. In
addition to that, some languages may also expose more than instance variables

87

9. Extending Exploratory Tools of Squeak/Smalltalk for Graal VM

£ ForeignObject (v N+]
self __ftruffle_richcompare__ (readable)

members (readable) _sort (readable)

members (invocable) append (readable)

1 clear (readable)

2 copy (readable)

2 count (readable)

5 extend (readable)

index (readable)
insert (readable)
pop (readable)
remove (readable)

rovarca (raadahla)

self append: (Polyglot eval: #R string: 'data.frame()’) None explore

Figure 9.1.: Instead of listing readable members individually as instance
variables, PolyglotInspector now displays two groups explicitly. The first
shows a list of all readable, but not invocable members of the object. The
second lists all invocable members and whether they are also readable or not.
With that additional information, both the structure and the interface of an
object can be explored.

as readable members. To avoid clutter and ambiguity, we thus replace the
infrastructure for listing instance variables with two individual member
groups, readable and invocable members. The distinction between readable
and invocable members is discussed in Section 11.3. The infrastructure for
indexed variables, on the other hand, can be re-used for foreign objects with
large numbers of interop array elements because it supports smart truncation
for large indexable objects.

Figure 9.1shows a screenshot of TruffleSqueak’s PolyglotInspector opened
on the pythonList from Figure 8.2 and after implementing this additional
extension: In addition to the structure of the object, the inspector now also
reveals the interface of the object, which helps developers to understand how
the object can be interacted with, without having to read the implementation
or documentation. For example, now that it is clear that new elements can
be added to the list through an append message, a data frame object from R
can be added. The result of the printlt further makes clear that append returns
None, unlike other languages that return the appended object or the list itself.

To provide live feedback, the Squeak/Smalltalk inspector frequently re-
freshes its view in case the inspected object has been changed. This mechanism
is fully functional in TruffleSqueak’s PolyglotInspector and thus available to
other languages. In this example, the inspector thus lists a fifth array element
almost immediately after we appended the R object.

88

9.2. Providing Context About Graal VM Languages

£ list (Python) (v N+
= root " [42, <object object at 0x2d839402>, <foreign object at Oxab
+ Readable members 5 in total
b class__ # <class ’list’>
__doc__ . ’Built-in mutable sequence. If no argument is given, the cc
__hash__ None

B
k- init_subclass__ r' <built-in method __init_subclass__ of type object at 0x6cf(
b _ subclasshook__ # <built-in method __subclasshook__ of type object at 0x6cf

I Invocable members 42 in total
1 42
B2 - <object object at 0x2d839402>
3 15 {E: 2.718281828459045, PI: 3.141592653589793, LN10: 2.30:
B4 4+ Smalltalk

self.min(42, 12) 12

inspect

Figure 9.2.: TruffleSqueak’s PolyglotObjectExplorer extends the object ex-
plorer of Squeak/Smalltalk and reveals information about the languages of
objects. This additional information can uncover and explain unexpected
characteristics of an object. In addition, the embedded workspace of the ex-
tended explorer is no longer limited to Smalltalk and allows developers to
select different languages.

9.2. Providing Context About GraalVM Languages

In addition to interoperability members and array elements, we further ex-
tend the exploratory tools to provide additional context about languages.
Developers, for instance, should be able to see the language of an object in the
PolyglotInspector, for example, in the window title. Otherwise, the concrete
semantics of the objects under inspection may not always be clear, which
would violate the Principle of Explanation of exploratory software. At the
same time, the exploratory tools of Squeak/Smalltalk are designed for and
thus limited to evaluating Smalltalk code. By integrating the polyglot API
and other GraalVM capabilities, we can make them aware of the polyglot
environment and more convenient to use for other languages. Since we are
working with a self-sustaining programming system, we are free to extend
all tools and other parts of Squeak/Smalltalk through different means such
as subclassing, method redefinitions, and extension methods.

A screenshot of TruffleSqueak’s PolyglotObjectExplorer, again opened
on the pythonList from Figure 8.2, is shown in Figure 9.2. Similar to the
PolyglotInspector, the extended explorer tool lists readable and invocable
members as well as array elements. The window label now shows the name
of the inspected object’s meta-object instead of its printString. More im-
portantly, the language of the inspected object is explicitly mentioned in the
window label as well. Items in the tree view used by the object explorer

89

9. Extending Exploratory Tools of Squeak/Smalltalk for Graal VM

support icons, which the PolyglotObjectExplorer further uses to display
the language of each object. This can uncover and explain unexpected char-
acteristics of the inspected object and therefore helps to further understand
language interoperability in detail.

Although it is a Python string, the value of the _ doc_ member, for
example, appears as a string from Squeak/Smalltalk. The reason for this is
that Python strings are immutable and therefore, TruffleSqueak’s language
implementation lets them appear as Smalltalk strings automatically. This
increases portability when Python strings are passed into Smalltalk code,
allowing Smalltalk string methods to be invoked on the Python object.

Another interesting object is the number 42, the first array element of the
pythonList. According to GraalVM'’s interoperability protocol, it does not
have a language. This is a design decision of the Truffle framework shin-
ing through our exploratory tool: Java primitive types, such as boolean and
double, are often used by Truffle languages to represent booleans, numbers,
characters, and other primitive guest values efficiently. While Truffle does not
expose a language for these Java primitive types, it does provide an imple-
mentation of the interoperability protocol for them that is shared across all
languages. Similar to Python strings, TruffleSqueak’s language implementa-
tion lets these primitive values from Java appear as corresponding Smalltalk
objects for portability reasons.

Moreover, the embedded workspace of the extended explorer is no longer
limited to evaluating Smalltalk code. Through the context menu, it is possible
to select one of the languages supported by the running GraalVM instance.
Code evaluation requests are then automatically routed through the polyglot
API. To provide access to the selected object of a PolyglotObjectExplorer or
the inspected object of a PolyglotInspector, the tools bind “self” to the
object via TruffleLanguage.Env.parsePublic(source,names).call(args),
Truffle’s infrastructure to evaluate code with a specific local scope. This way,
it is possible to interact with the Math module from JavaScript, for example,
through Python or Smalltalk but also through JavaScript.

TruffleSqueak further supports two additional options in terms of the
language selection: The default language used by our extended tools can be
changed globally to any supported language in Squeak /Smalltalk’s preference
browser. TruffleSqueak also provides an adaptive language selection mode,
which lets the embedded workspaces of the inspection tools automatically
follow the language of the currently selected object. To help the user, the
current language is always explicitly mentioned in the help text of such a
workspace, which is shown initially and when no text is entered.

Similar to the embedded workspaces, we have also extended Squeak/
Smalltalk’s standard workspace tool. A screenshot of this PolyglotWorkspace

90

9.2. Providing Context About Graal VM Languages

£ Python Workspace (v I]

import polyglot

encode_uri_component = polyglot.eval(language=’js’, string="encodeURIComponent’)
encode_uri_component(’https://example.com/?foo=bar&hello=world’)
’https%3A%2F%2Fexample.com%2F%3Ffoo%3Dbar%26hello%3Dworld’

Figure 9.3.: TruffleSqueak’s PolyglotWorkspace allows developers to switch
between different languages. The tool’s window label reveals that it is in
Python mode and can therefore be used to interactively evaluate Python code
without having to use the polyglot API.

3 GraalVM Language Scopes (v X+

+ root 4/ {livm-global . explicit environment: R_GlobalEnv . g
I Invocable members 1054 in total

B 1 *.']lvm-global

2 R explicit environment: R_GlobalEnv
3 J5 global

k4 ™ _ main__

B 5 & interactive local variables

b 6 _ a SmalltalkinteropScope
7 wasm-global-scope[]

Interop getMembers: self #(’PlayerType’ 'ReadStreamTest’
’SquotDictionarySlot’ ’‘BrowserUrl’ ‘'MCSnapshotTest’
’LayoutProperties’ 'MouseEventSequenceMorph’ ’'SMSqueakMap’
’DialectParser’ ’EnvironmentTest’ ’EventRollCursor’ ’ReleaseBuilder’

inspect

Figure 9.4.: With a simple Smalltalk expression, developers can easily explore
the top scopes of all GraalVM guest languages.

is shown in Figure 9.3. Through its context menu, developers can switch
between the languages supported by the running GraalVM. This hides the
polyglot API from the user, making it more convenient to evaluate code from
different languages. Since we only changed how the tool evaluates code, it
otherwise still behaves in the same way as before.

Moreover, the ability to access the globals of a particular language provides
an additional starting point for exploration and allows tools to be built that,
for example, can automate sharing between languages. The closest concept to
globals that Truffle provides is its support for top scopes. Each language can
provide an object that describes its top scope. This API, however, is not part of
the interoperability protocol. But it is accessible through Truffle’s Instrument
APTI for tools, which TruffleSqueak’s language implementation also exposes
to the programming system. With that, it is possible to access the top scope
of a language from any tool or application and for exploration. The following

91

9. Extending Exploratory Tools of Squeak/Smalltalk for Graal VM

Smalltalk expression, for example, opens an explorer on the top scopes of all
guest languages:
(Polyglot availablelLanguages collect: [:ea |

Polyglot primitiveGetScope: ea getId asSymbol])
exploreWithLabel: 'GraalVM Language Scopes'.

A screenshot of the resulting explorer is depicted in Figure 9.4. The
SmalltalkInteropScope provided by TruffleSqueak is implemented on the
language level similar to the rest of its implementation of the interoperability
protocol. It exposes all classes of the entire TruffleSqueak environment as
readable members as specified by the protocol. Other language implementa-
tions such as Graal js, FastR, and GraalWasm expose their globals through
this API. Since this API is relatively new, the explorer also uncovers some
inconsistencies: At the time of writing, the top scope returned by TruffleRuby
is called “interactive local variables”. Closer inspection reveals that this top
scope, unlike the ones from other languages, has two additional parent scopes:
a scope for global variables and one for Ruby’s main object. Another observa-
tion is that neither the top scopes of Graal .js nor the one of GraalWasm provide
any meaningful members. While both inconsistencies may be surprising for
application and tool developers, they are good examples of something that
needs further discussion between language developers and the maintainers
of Truffle.

9.3. Incorporating Additional Features of Truffle

GraalVM’s language interoperability protocol supports more types and traits
than required for TruffleSqueak’s exploratory programming tools, and it is
still evolving. Whenever new capabilities are added to the protocol, language
developers must provide appropriate implementations for their languages. To
better understand how their languages as well as other languages implement
certain parts of the interoperability protocol, the object inspection tools can
easily be extended, similar to how we extended them with the ability to list
different interoperability members.

Figure 9.5 shows a screenshot of our fully extended PolyglotInspector.
The tool inspects a ZeroDivisionError from Ruby, which has different in-
teroperability members but no array elements. According to the protocol,
however, the object also provides a meta-object, a language, and implements
the exception type. Information on each of these is shown in the inspector.
Truffle, for example, manages additional information, such as full name, ver-
sion number, and supported mime-types, for each language. This and more
information are visible under “language info”. The “exception info”, on the
other hand, shows details on how this ZeroDivisionError implements the

92

9.3. Incorporating Additional Features of Truffle

£) ZeroDivisionError (Ruby) (v X +]
self Message: n/a

members (readable) Cause: n/a

members (invocable) Type: RUNTIME ERROR

meta object info

language info

exception info Stack trace:
-n/a

(((Interop hasSourceLocation: self) or: [
Interop hasHashEntries: self]) or: [
Interop islterator: self]) or: [

Interop hasBufferElements: self] false

explore

Figure 9.5.: The full PolyglotInspector shows additional information on
how the inspected object implements interoperability traits and types. In this
case, the ZeroDivisonError provides members, a meta-object, a language,
and implements the exception type. The inspector, however, also reveals that
the exception type is not fully implemented. A message, a cause, and a stack
trace are not available for this object. Other interoperability traits and types,
such as source location, hash entries, iterator, and buffer elements, are also
not exposed by this object as the embedded workspace shows.

exception type. The only information available for this object, however, is the
type of the exception. The object does not provide a message, cause, or a stack
trace. For the maintainers of TruffleRuby, this type of information is helpful to
understand which parts of the protocol are correctly implemented, have errors
in their implementation, or are still missing. Since the PolyglotInspector
accesses the interoperability protocol directly, new extensions only need to
be implemented once and can then be used across all GraalVM languages.

Moreover, TruffleSqueak has an “emphasize language interoperability”
preference that changes the textual representation of foreign objects in the
entire programming system. Instead of retrieving the text through the to display
string message of GraalVM'’s interoperability protocol, the text consists of the
ForeignObject class and a list of all interoperability types and traits provided
by the corresponding foreign object. This preference, therefore, gives language
developers a better overview of how various objects from different languages
implement the language interoperability protocol of GraalVM. Figure 9.6
shows two screenshots of a PolyglotObjectExplorer to demonstrate the
effect of the preference: By default, the text is retrieved through the to display
string message, which the language developers of the object’s language have
implemented. With the preference globally enabled, the textual representation
is language-agnostic and provides an overview of what interoperability types
and traits a foreign object provides.

93

9. Extending Exploratory Tools of Squeak/Smalltalk for Graal VM

£} Array (Squeak/Smalltalk) (v 1+]-]
= root .. {NULL . foo . [1] 42 . 2021-06-28 12:06:52.132244 +0200 . Error . java.lang.In
- Invocable members 1054 in total
1 R NULL
B2 &l foo
B3 R[1]42
4 &l 2021-06-28 12:06:52.132244 +0200
5 Js Error
b6 < java.lang.Integer
B 7 # citerator object at 0x5647954e>
8 R function (..., row.names = NULL, check.rows = FALSE, check.names = TRU
9 15 Map(2){"a" => 42, "b" => 21}
k10 &N, 23,4,5]
1 Js ArrayBuffer{}
| | | inspect |

(a) By default, textual representations for foreign objects are retrieved through the fo
display string message of GraalVM’s interoperability protocol.

£ Array (Squeak/Smalltalk) v JHE—
= root ..+ {ForeignObject[null] . ForeignObject[string,identity,memberSize=264] . For
I Invocable members 1054 in total
1 R ForeignObject[null]
B2 & ForeignObject[string,identity, memberSize=264]
B3 R ForeignObject[number,arraySize=1]
4 &l ForeignObject[date,instant,time,timezone,identity,memberSize=191]
5 15 ForeignObject[exception,identity,memberSize=0]
b6 +. ForeignObject[meta,host,instantiable,meta,identity,memberSize=35]
B 7 [ForeignObject[iterator,identity,memberSize=28]
8 R ForeignObject[executable]
9 15 ForeignObject[identity,memberSize=0,hashSize=2]
k10 &l ForeignObject[identity,arraySize=5,memberSize=295]
1 s ForeignObject[identity,memberSize=0,bufferSize=128]

| | inspect |

(b) When the “emphasize language interoperability” preference is enabled, the
textual representation reveals the interoperability traits and types that foreign objects
provide.

Figure 9.6.: A PolyglotObjectExplorer tool opened on an array of objects
from different languages. The “emphasize language interoperability” prefer-
ence allows developers to switch the textual representation of foreign objects
globally.

94

9.3. Incorporating Additional Features of Truffle

Additional information on interoperability features is also helpful for the
runtime developers maintaining Truffle. It helps them to better understand
how different languages implement certain interoperability APIs. Since they
design these APIs, they are interested in identifying potentials for incon-
sistencies or misuses across languages. In addition to the interoperability
protocol, Truffle also provides other APIs for language and tool developers.
One example is Truffle’s polyglot bindings object that language developers
use to implement the export-import functionalities of their language’s poly-
glot API. By exposing it directly in TruffleSqueak, it is possible to inspect its
contents at run-time. At the same time, tools like the PolyglotWorkspace can
access and modify these bindings. And they can make them directly available
to all languages during code evaluation by passing the object into the eval
function of the polyglot API as a dedicated local variable. Another example
is Truffle’s Instrument API, which allows tool developers to instrument lan-
guage interpreters, for example, to perform dynamic program analysis. This
can also be accessed at run-time from within TruffleSqueak.

Summary We show how TruffleSqueak implements different exten-
sions for the exploratory tools of Squeak/Smalltalk that make them
aware of the GraalVM and its language interoperability protocol, which
is an important part of our fourth contribution.

In a first step, we extend the tools for object inspection so that they
not only reveal the structure of objects but also their interfaces, which
helps developers to understand how to combine objects from different
languages without having to read code or documentation. We also let
these tools provide context about GraalVM languages, for example,
by revealing the language of an object or by hiding the polyglot API
from the user. Finally, we incorporate other GraalVM capabilities into
TruffleSqueak such as support for meta-objects, exceptions, and other
interoperability types in the object inspection tools and an “empha-
size language interoperability” preference, all of which are helpful to
language and runtime developers.

95

10. Expanding Polyglot Programming
to Squeak/Smalltalk

With the extended tools for exploratory programming, it is possible to explore
user applications and GraalVM components at run-time. Squeak /Smalltalk,
however, provides additional building blocks for writing tools and applica-
tions that are useful in the context of GraalVM. Moreover and since Squeak/
Smalltalk is a self-sustaining programming system, most of it runs on the
same level as user applications on the GraalVM. As a result, polyglot pro-
gramming can be applied to the entire programming system, for example, to
extend it with new capabilities that are provided by libraries and frameworks
written in other languages. In this chapter, we present some use cases and im-
plementation details that give impressions of how polyglot programming can
be extended to Squeak/Smalltalk: First, we discuss how TruffleSqueak allows
us to apply polyglot programming to tool-building. Then, we demonstrate
that TruffleSqueak allows the creation of polyglot applications at run-time.
And lastly, we explain how interoperability with the host language allows
further exploration of GraalVM internals.

10.1. Building Polyglot Tools for Polyglot Programming

The tools we have presented so far were entirely written and extended in
Smalltalk. Since all tools run as part of TruffleSqueak’s programming system
and on top of GraalVM, the tools themselves can make use of polyglot
programming. This allows tool developers to re-use libraries and frameworks
from different languages, for example, to create visualizations, to support
certain file formats, or to provide other tooling features. This way, existing
Squeak/Smalltalk tools can also be turned into polyglot applications and
provide realistic use cases from which we can learn more about polyglot
programming.

The exploratory tools of Squeak/Smalltalk, for example, provide support
for syntax highlighting, which helps developers in reading and writing code.
For this, the tools use Shout, a dedicated parser for Smalltalk written in
Smalltalk. To enable syntax highlighting for other languages in our extended
tools, we need to either extend Shout or replace it. With Rouge, a Ruby library

97

10. Expanding Polyglot Programming to Squeak/Smalltalk

£ Python Workspace (v I 4]

import polyglot

encode_uri_component = polyglot.eval(language=’js’, string="encodeURIComponent’)
encode_uri_component(’https://example.com/?foo=bar&hello=world’)
"https%3A%2F%2Fexample.com%2F%3Ffoo%3Dbar%26hello%3Dworld’

Figure 10.1.: A screenshot of the PolyglotWorkspace from Figure 9.3. This
time, syntax highlighting is provided by Rouge, a library written in Ruby.

for syntax highlighting with support for more than 100 languages, we found
an appropriate replacement that TruffleSqueak allows us to re-use.

Figure 10.1 shows a screenshot of the same PolyglotWorkspace from Fig-
ure 9.3. This time, it uses the Rouge library from Ruby for syntax highlighting.
For a given code string and a given language, the library highlights code and
returns an HTML-formatted string. In Squeak /Smalltalk, the HtmlReadWriter
allows the conversion of this string into a styled Text object, which is then
displayed in the corresponding view. With this simple change, we have turned
the extended workspace and object inspection tools into polyglot applications.
Furthermore, syntax highlighting can be requested on every keystroke by an
editor as the user types code. Our integration shows that it is not a problem to
support such performance-critical operations through polyglot programming
with GraalVM.

Squeak/Smalltalk’s extensive capabilities for tool-building can further be
used to extend other tools and to build entirely new tools, now with the
additional ability to apply polyglot programming. Since the interoperabil-
ity protocol and other language-agnostic APIs are accessible from within
TruffleSqueak, new polyglot-aware tools that work across all GraalVM lan-
guages can be built for different purposes. As part of our case studies in
Chapter 12, we present several tools that are implemented in a polyglot way
and are designed to support developers in creating polyglot applications.

10.2. Building Polyglot Applications at Run-Time

While Squeak/Smalltalk is a good tool-building platform, it can also be
used to build all kinds of other applications at run-time. The Morphic Ul
framework, for example, allows the construction of graphical applications such
as simulations and games. Through live programming, Squeak/Smalltalk
further allows developers to evolve running applications, which makes for
short feedback loops compared with the conventional edit-compile-run cycle.
Although this ability relies on incremental compilation and other mechanisms
that are supported by Smalltalk and not necessarily by other languages, live
programming can still be used when Smalltalk is involved or at least used

98

10.2. Building Polyglot Applications at Run-Time

[JON) TruffleSqueak.image
Apps Do Extras Windows Help

22:20:34

Squeak/Smalitalk Workspace

| RPlotMorph example

a RPlotMorph(539671)

2seater

submorphs sun.java2d.SunGraphics2D
fullBounds [font=java.awt.Font[family
R color =Dialog,name=Default,styl
midstze extension || e=plain,size=11],color=jav

minivan ‘g’;‘:g*r:ﬁ;'zfgage a.awt.Color{r=0,g=0,b=0]]

form
pickup plotCode
#borderStyle
subcompact #hasHalo

plotCode 'print(ggplot{impg,
aes(displ, hwy, colour = class)) + explore
geom_point())'

campact

Figure 10.2.: TruffleSqueak’s RPlotMorph is a Morphic component that renders
itself through R’s graphics backend. In this screenshot, an instance of this
morph renders an example from the ggplot2 package. Through Morphic’s
halo feature, the RPlotMorph can be further interacted with, for example, to
resize or rotate it.

as glue between other languages. We have used this capability when we
extended the PolyglotWorkspace with multi-language syntax highlighting,
but we can also demonstrate this with an example application in Morphic:
A common functionality of UI applications, and tools for that matter, is to
visualize data. For this, there are numerous visualization libraries written in
different languages. Through polyglot programming, TruffleSqueak makes
it possible to combine such libraries with Morphic. Figure 10.2 shows a
screenshot of an RPlotMorph that we built in TruffleSqueak. This morph
renders itself through R’s graphics backend. The integration makes use
of FastR’s support for rendering into Graphics2D objects from Java’s AWT
framework. Instances of the Form class manage bitmaps that are rendered
by Morphic. In TruffleSqueak’s language implementation, the bitmap of a
Form is represented by an int[] in Java. The missing piece to connect R’s
graphics backend with Morphic is a primitive that can be used to obtain a
BufferedImage that wraps around the int[] of a given Form. By instructing
the graphics backend to use the Graphics2D object of such a BufferedImage,
it can render directly into Form objects. As the inspector to the right of the
morph shows, the RPlotMorph holds a reference to a BufferedImage and
its Graphics2D object. In addition, it also remembers the R code that is
used for plotting. This is necessary to allow the morph to redraw itself, for

99

10. Expanding Polyglot Programming to Squeak/Smalltalk

example when it was resized. After a resize event, the morph requests a
new BufferedImage for the resized Form object, sets its Graphics2D as the
new rendering target at the new dimension of the Form, and re-evaluates the
plotting code. Moreover, the two Java objects that are referenced by RPlotMorph
cannot be persisted as part of snapshots. When a Squeak/Smalltalk image
is saved, these references are niled out. To remain functional after an image
was loaded, an RPlotMorph uses the lazy-initialization pattern, which can
always re-create these Java objects when they are needed for the next drawing
operation.

Apart from the required primitive, we were able to build the RPlotMorph by
evolving a running instance. With the VM introspection capabilities described
in the next section, the primitive can be replaced with a Smalltalk method that
performs the same operation through interoperability with the host Java lan-
guage and thus does not need any modification on the level of TruffleSqueak’s
language implementation. The RPlotMorph is, therefore, an example of how
TruffleSqueak enables developers to build non-trivial polyglot applications
at run-time. As we show in Section 12.1 and Section 12.4, the morph is also a
polyglot building block that can be re-used in other applications that want to
make use of R plotting libraries.

10.3. Exploring Language Implementations and
GraalVM Internals

In GraalV}, it is possible to give guest languages access to the host Java
language. This is usually done through a dedicated API, in TruffleSqueak
accessible through the Java class, that is independent of the polyglot API.
This API does not allow dynamic evaluation of Java code, but it can be used,
for example, to look up Java classes and to extend the Java classpath. With
that, it is possible to interact with Java classes through the interoperability
protocol, which allows their instantiation for example.

Figure 10.3 demonstrates the introspection of host-level objects. The lan-
guage implementation of TruffleSqueak uses Java’s AWT framework for draw-
ing the programming system. The AWT Frame class allows enumeration of
all frames through Frame.getFrames (). With TruffleSqueak’s Java class, the
Frame class can be interacted with. Since TruffleSqueak opens exactly one
native window for rendering the programming environment, the getFrames
message returns an array with exactly one element. This Frame instance is
the very object representing TruffleSqueak’s native window. This way it is
possible to interact with the Java object that manages its native window from
within TruffleSqueak, for example, to change the window title.

100

10.3. Exploring Language Implementations and Graal VM Internals

[] New title for TruffleSqueak's window

Ly Apps Do Extras Windows Help

PoylotWorkspace open

Squeak/Smalltalk Workspace

(Java type: 'java.awt.Frame') getFrames at: 1

£ java.awt.Frame (Host)

self setPreferredSize (readabie)
members (readable) ||setResizable (readable)
members (invocable) || cotshape (readable)

meta Obfe.rr info setSize (readable)
language info setState (readabie)
setTitle (readable)

setType (readabie)
setUndecorated (readable)
setVisible (readable)

show (readable)

size (readable)

toBack (readabie)

toFront (readable)

to5tring (readabile) O

self setTitle: 'New title for TruffleSqueak"s window' null
explore

Figure 10.3.: With access to the host language, it is possible to introspect
TruffleSqueak’s language implementation from within itself. In this case, the
first and only AWT Frame object is inspected. This very object represents the
native window used to display TruffleSqueak’s programming system and is
managed in its language implementation. By invoking its setTitle() method,
for example, we can change the window title at run-time and thus without
recompiling its language implementation.

GraalVM, however, deploys a complex security model that allows fine-
grained access control and sandboxing of guest languages [136]. Internally, it
builds on different security mechanisms of Java, such as its module system or
classloader isolation. This means that not every Java class can be looked up for
security reasons, which makes it hard to explore language implementations
and runtime components. Again, TruffleSqueak’s language implementation
can be extended with additional primitives that expose arbitrary Java classes
and objects to guest languages. However, HostObject, Truffle’s builtin facility
for exposing host objects to guest languages, takes GraalVM'’s security model
into consideration. This means that the visibility of methods, fields, and
packages is strictly enforced by HostObject. To allow extensive exploration of
host objects, TruffleSqueak circumvents these security measures: It comes with
a JavaObjectWrapper that can be requested through an appropriate primitive

101

10. Expanding Polyglot Programming to Squeak/Smalltalk

3 org.graalvm.compiler.truffle...LibGraalTruffleRuntime (Host) (v N}

self getCapability (non-readable)

members (readable) getClass (non-readable)

members (invocable) | | getCompilationQueueSize (non-readable)

gﬁ;i:‘g)/:gf?fo getCompileQueue (non-readable)
getCompilerConfigurationName (non-readable)
getCompilerldleDelay (non-readable)
getConstantFieldinfo (non-readable)
getCurrentFrame (non-readable)
getEngineCacheSupport (non-readable)

aetEnaineData (non-readahble)

self getCompilationQueueSize 214

Figure 10.4.: The TruffleRuntime object of a GraalVM instance can be in-
spected at run-time. Through this object, it is possible to explore different
parts of Truffle and the Graal compiler from within TruffleSqueak. In the
embedded workspace, for example, the current size of Graal’s compilation
queue is determined.

for any Java host object. For convenience, the VM-level object for any object
can further be accessed through the vmObject method that TruffleSqueak adds
to the Object class. This wrapper is derived from HostObject but ignores
visibility. Instead, it tries to open up fields and methods through Java reflection.
For this to work, some Java modules and packages must be explicitly opened
up through the module system, which happens as part of TruffleSqueak’s
launcher script. With this infrastructure, language and runtime developers
can introspect and explore the internals of language implementations and the
runtime, as the following example illustrates.

Figure 10.4 shows GraalVM’s TruffleRuntime object, typically inaccessible
from GraalVM languages, opened in a PolyglotInspector. An appropriate
primitive grants access to this object through the JavaObjectWrapper. To make
all its fields and methods visible, the package of GraalTruffleRuntime which
implements TruffleRuntime, is explicitly opened up in the module system.
The TruffleRuntime object plays a central role in GraalVM and provides
access to different parts of Truffle and the Graal compiler. As the embedded
workspace of the inspector shows, it is, for example, possible to determine
the current size of Graal’s compilation queue.

With this type of VM introspection capabilities, language and runtime
developers can use TruffleSqueak to explore GraalVM internals at run-time.
As we show in Section 12.4, it is possible to build tools based on these
capabilities that help runtime developers to understand the behavior of the
dynamic Graal compiler. To some extent, this information can also be useful

102

10.3. Exploring Language Implementations and Graal VM Internals

to application developers to understand how the Graal compiler optimizes
their applications.

Summary We illustrate the impact of our third contribution with
different examples of how polyglot programming can be applied within
TruffleSqueak from the perspective of different developers:

Tool developers can re-use libraries and frameworks from other
languages to provide various features in their tools. We demonstrate
this with the example of syntax highlighting for multiple languages in
our exploratory tools, which can be provided by a Ruby library. This
simple change turns these tools into polyglot applications.

Moreover, TruffleSqueak allows application developers to build on
the live programming experience of Squeak/Smalltalk and use Small-
talk to glue together different languages. This way, it is possible to build
and evolve polyglot applications while they are running, which makes
for short feedback loops. We illustrate this with a new UI component
written in Smalltalk that uses a package from R for rendering.

Furthermore, TruffleSqueak provides extensive VM introspection
capabilities based on the interoperability with GraalVM’s host language.
This can be used by language and runtime developers to explore
the dynamic behavior of language implementations and GraalVM
internals that can only be observed at run-time. We demonstrate this
with two examples: We show how the native window of TruffleSqueak
maintained on the language implementation level can be manipulated
and how the size of Graal’s compilation queue can be determined, both
from within TruffleSqueak.

103

Part V.

Evaluation

105

11. TruffleSqueak: Squeak/Smalltalk
on the GraalVM

In this chapter, we evaluate TruffleSqueak as a Smalltalk implementation
for the GraalVM, show that it fulfills the requirements of our approach,
and discuss its limitations. For this, we compare both its compatibility and
performance with the OpenSmalltalkVM, a state-of-the-art Smalltalk VM
and the reference virtual machine for Squeak/Smalltalk. The overall goal of
this chapter is to demonstrate that platforms based on our approach can be
sufficiently compatible and fast to be used for exploratory programming and
tool-building. Moreover, we show that further insights about the performance
characteristics of polyglot VMs such as GraalVM can be gained through
self-sustaining programming systems hosted as part of guest languages.

11.1. Compatibility

Compatibility is an important aspect for users of any virtual machine. When
certain language or runtime features are not correctly supported, developers
may not be able to use the implementation for some use cases. In the case of
TruffleSqueak, exploratory programming tools and tool-building capabilities
must be fully supported for the platform to be a useful implementation of our
approach.

TruffleSqueak aims to be as compatible as possible with both GraalVM and
the OpenSmalltalkVM. Each release of TruffleSqueak comes with pre-built
TruffleSqueak components for all operating systems, hardware architectures,
and JDK versions supported by the corresponding GraalVM release. For
GraalVM 21.2.0, components are available for the JDK8-based, JDK11-based,
and JDK16-based GraalVM distributions for Linux (amd64 and aarch64),
macOS, and Windows. In terms of the OpenSmalltalkVM, TruffleSqueak
supports the latest, 64-bit Spur image format. This means that stock Squeak /
Smalltalk images can be loaded and that images saved with TruffleSqueak
are interchangeable with the OpenSmalltalkVM. Although not all of them are
fully implemented, TruffleSqueak 21.2.0 has support for around 28 VM-level
plugins and implements 741 different primitives in total. Furthermore, it also
supports both bytecode sets used in Squeak/Smalltalk: the V3 bytecode set as

107

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

well as the Sista bytecode set [12]. Even though not fully tested, TruffleSqueak
can also open images from Cuis, another Smalltalk dialect that runs on the
OpenSmalltalkVM.

From the 4263 SUnit tests that come with Squeak /Smalltalk 6.0alpha-20288-
64bit, the image on which the test image of TruffleSqueak 21.2.0 is based,
3935 tests (x92.31 %) successfully pass on a JDK11-based GraalVM 21.2.0 and
Ubuntu 20.04.2. 197 tests (~4.62 %) are marked as passing but are not executed
on our continuous integration infrastructure because they take too long to
run. 40 of the remaining 131 tests are ignored for different reasons, such as
incompatibilities with the headless execution mode used during testing. 31
tests are expected to fail. They are, for example, used to document specific
issues within Squeak/Smalltalk. 25 tests also fail in Squeak/Smalltalk on
the OpenSmalltalkVM. 18 tests (x0.42 %) are failing only in TruffleSqueak.
The remaining 17 tests are marked as flaky as they sometimes succeed or
fail, for example, because they interact with weak data structures or external
resources from the web.

These SUnit tests cover most of the Squeak /Smalltalk programming system
including its compiler, the Ul system, its standard library, its ToolBuilder
framework, as well as almost all of its tools. Almost 97 % of all tests pass
in TruffleSqueak and we found that the exploratory tools and the tool-
building capabilities can be used without limitations. Therefore, we argue
that TruffleSqueak’s language implementation is sufficiently compatible with
GraalVM and the OpenSmalltalkVM to be used for exploratory programming
and tool-building.

11.2. Ul Performance Evaluation

In addition to compatibility, TruffleSqueak must provide good UI perfor-
mance to be used as an interactive platform for exploratory programming
and tool-building. Since it is a self-sustaining programming system, the run-
time performance of TruffleSqueak’s language implementation has a direct
impact on the performance of its programming system. In the following, we
assess the Ul performance of TruffleSqueak with two benchmarks. Additional
benchmarks in Appendix B evaluate TruffleSqueak’s language performance
in more detail.

Running an IDE Workload on TruffleSqueak and GraalVM
The goal of the first benchmark is to demonstrate that the Squeak/Smalltalk

programming system runs “fast enough” on TruffleSqueak to be usable. For
this, we want to perform different development activities on it to create a

108

11.2. UI Performance Evaluation

realistic, heterogeneous IDE workload. To quantify what “fast enough” means,
we use the frame rate of the programming system as a metric. For interactive
Ul applications such as programming systems, a frame rate of 10 fps is often
considered to be the minimum for many tasks [177, pp. 472-473, 25]. We
use this value as a lower bound in the benchmark and want TruffleSqueak
to provide frame rates that are well above it most of the time. Our goal in
terms of Ul performance was to come close to the frame rates provided by
the OpenSmalltalkVM or even outperform it. For comparison, we thus want
the benchmark to be reproducible on both VMs.

Setup In this benchmark, we use the EventRecorder tool from Squeak/
Smalltalk to record mouse and keyboard events from an interactive ses-
sion in which we simulate the development of a visual CounterTool. The
EventRecorder allows us to prepare a Squeak/Smalltalk image that auto-
matically re-plays these events on startup. This way, we can reproduce the
same IDE workload over and over again, on TruffleSqueak as well as on the
OpenSmalltalkVM. To measure the frame rate at which Squeak/Smalltalk
refreshes its display buffer, we build a utility tool based on its FrameRateMorph.
In addition to the frame rate, the tool also measures the number of compilation
tasks in the Graal compilation queue through VM introspection if it runs on
TruffleSqueak. This additional metric is a good indication of the activity of
the dynamic Graal compiler. The frame rate, the queue size, and the current
timestamp are periodically printed to stdout so that we can capture them
over time.

Figure 11.1 shows a screenshot of the prepared benchmark image running
on TruffleSqueak. In the menu bar, our utility tool displays the current frame
rate and queue size in blue. On the bottom left are the EventRecorder and
some additional buttons that we used to prepare the image. The interactive
session is split into five different phases, each of which is roughly one minute
long. During these phases, we perform the following development activities:

Phase 1 We start the programming system, use the workspace to open dif-
ferent instances of the CounterTool, and interact with them.

Phase 2 We inspect different aspects of one of these instances and manipulate
its state.

Phase 3 We browse the implementation of the CounterTool and change it at
run-time.

Phase 4 We repeatedly introduce errors in a method used by the CounterTool,
trigger its execution, and recover from the errors using the debugger.

Phase 5 We combine and repeat different activities from the previous phases.

109

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

[] [] ide-benchmark.image running on TruffleSqueak
I.J) Apps Do Extras Windows Help 46.784fps; Graal queue: 0
Workspace

CounterTool

CounterTool open

a PluggableSystemWindow<1>(2782682

self Form(200x100x32)
all inst vars
extent 3

3
bounds
System Browser: Counter owner
TruffleSqueak-Tools-SL Counter —all - submorphs R —
Tr Tools-E CounterTool accessing fullBounds
TruffleSqueak-Tools-Cc color
TruffleSqueak-Utilities extension
1 TruffleSqueak-Tools-Nc borderWidth
TruffleSqueak-Tools-Ec
Tr Ered explare
UserObjects | € ZeroDivide: Y)
Increment ool
Counter.Core] Counter>>reset [
unter-Core | CounterTool>>actionReset
3 browse | || &P lorphPlus(F sttonMorph)=>>performAction
t +P pt >performAction
3 rese +(]inP phPlus(P \Morph)>>mouseUp:
self curre|| 4 ary ollection)>>do:
S |‘Restzrt H Into ” Over H Through H Full Stack H Where ” Tally It
reset
self currentValue: 1
1
1 n 7/24/2021
self thisContext
all inst vars stackTop
currentValue all temp vars
FileStream

shrink createPlayButton
record 5tnp phy TheWorldMainDockingBar instance closeAllWindowsUnsafe

flesques o
writeTape readTape [smaiitalk snapshot: true andQuit: true. eventRecarder play Tru es Ak

Figure 11.1.: Screenshot of the prepared IDE benchmark image running on
TruffleSqueak.

The screenshot in Figure 11.1 shows instances of the CounterTool on the left
as well as the different kinds of tools we used throughout the session. It is,
therefore, taken during the last phase.

We run the IDE benchmark 10 times on each VM, TruffleSqueak 21.2.0
and the OpenSmalltalkVM 202003021730 (64-bit). In addition to the values
collected with our utility tool, we use the time command to measure overall
CPU and memory usage. To be as realistic as possible, we used an off-the-shelf
developer laptop for all runs: a Dell XPS 13 7390 2-in-1 (Quad-Core Intel Core
i7-1065G7 CPU @ 1.30 GHz, 31.14 GiB memory, Intel Iris Plus Graphics G7)
running on elementary OS 6, a Linux distribution based on Ubuntu 20.04
LTS.

Results Figure 11.2a shows a plot of the frame rates over time comparing
TruffleSqueak and the OpenSmalltalkVM, Table 11.2b lists corresponding
frame rate distributions, and Figure 11.2¢ visualizes the size of the Graal
compilation queue over time when running on TruffleSqueak.

The first plot shows that TruffleSqueak reaches close to 50 fps most of the
time, which is well above the minimum of 10 fps highlighted with a red line.

110

11.2. UI Performance Evaluation

Frame Rates
] TruffleSqueak OpenSmalltalkVM l

,.g 50 Fogngmmmion ‘a} e AN IR TN SRR K S K i CIMT N SRR K XL ir ot
g 1 H) :f',-,r LA RLDRORY Sl W K B] e s Ty
l
g 30"
Q. [
8 20
g i
(¢
& 10
0 I | | | | L
0 60 120 180 240 300

time in seconds

(a) Frame rates measured on TruffleSqueak and the OpenSmalltalkVM over time.

Interval (fps) | [0,10[| [10,20[| [20,30[| [30,40[| [40, o)
TruffleSqueak 0.392% | 0.750% | 1.722% | 3.853% | 93.282 %
OpenSmalltalkVM | 0.000% | 0.000% | 0.000% | 0.103% | 99.897 %

(b) Distributions of the measured frame rates after the first second.

Graal Compilation Queue

2 300 4 |

g 250 |7

2 N |

£ 200 by x

S 150! W) t

‘46 150 [; ¢ ' .. 3:

g 100 [14 T { !

e oo Vi .

§ 50| W i ,
| ' ey 1NN 1 ‘5{' W .‘,' Y \'*""‘ Py ‘::' Ity o

= 0 \M"\L'J Vel N WAL By Nl o Mg b |
0 60 120 180 240 300

time in seconds

(c) Size of the Graal compilation queue over time when running on TruffleSqueak.

Figure 11.2.: Results of the IDE benchmark running on TruffleSqueak and the
OpenSmalltalkVM.

111

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

Only in phases 3 and 4, the frame rate drops below 10 fps for a very short time.
The OpenSmalltalkVM, on the other hand, reaches around 46 fps most of the
time for the same workload. The reason the frame rate usually stays below
50 fps on both VMs is a performance option in Squeak /Smalltalk: To reduce
CPU usage, Squeak /Smalltalk delays redraws of its user interface by 20 ms by
default. Since its idle process consumes another millisecond, the maximum
measurable value is around 47.62 fps in theory. TruffleSqueak, however, ex-
ceeds this limit continuously. We believe this is because it uses millisecond
resolution for timing events while the OpenSmalltalkVM uses microsecond
resolution. Consequently, timing events such as delays are less precise in
TruffleSqueak. According to our measurements, this imprecision accounts for
at least one millisecond, which explains why TruffleSqueak reaches close to
50 fps most of the time and slightly higher frame rates occasionally. From the
user’s perspective, however, this difference between TruffleSqueak and the
OpenSmalltalkVM is hardly noticeable and thus neglectable.

More interesting are the raindrop-like patterns. These sudden drops in
the frame rate that reoccur across runs manifest themselves as visual stutter
to the user. As Table 11.2b shows, more than 6 % of all values measured on
TruffleSqueak are between 10 fps and 40 fps. Nonetheless, more than 90 % of all
values are above 40 fps and only less than 1 % are below the 10 fps mark. On the
OpenSmalltalkVM, on the other hand, almost 99.9 % of all measured values are
above 40 fps. There are mostly two reasons for TruffleSqueak’s performance
characteristics. One reason is that certain operations such allInstances or
become are significantly slower on TruffleSqueak. In phases 3 and 5, for
example, we change code, which invalidates method dictionaries and causes
deoptimization in the Graal compiler. Another example is materializing stack
frames, which is needed for the debuggers in phases 4 and 5. The frequent
drops below 10 fps in phase 4 are also due to the debugging infrastructure
becoming visible to the Graal compiler.

The second reason is warmup behavior [7], which is revealed in Figure 11.2c:
At the beginning of each phase, the size of the Graal compilation queue grows
substantially. As new code of the programming system is executed, more
methods are identified as hot and scheduled for JIT compilation. This shows
that the different development activities are rather distinct and, therefore, the
IDE workload is indeed heterogeneous. Moreover, the fifth phase confirms
what we expect to see: Since we did not perform any new development
activities during this phase and only used tools that we used before, the
warmup effect is less noticeable and substantially fewer compilation tasks are
added to the queue. As a result, drops in the frame rate occur less often in
the fifth phase. Nonetheless, keep in mind that the system has already been
running for four minutes when this happens.

112

11.2. UI Performance Evaluation

Table 11.1.: Summary of the system resource usages during the executions of
the IDE benchmark shown in Figure 11.2, measured with the time command.
For each metric, the first row shows absolute mean values and 95 % confidence
intervals derived with the bootstrapping technique described in [81]. The
second row shows those values relative to the OpenSmalltalkVM as a factor.
The CPU load is user plus system times divided by wall-clock time. “RSS”
stands for resident set size.

‘ TruffleSqueak ‘OpenSmalltalkVM

Wall time 306.729 s+0.068 301.409 s+0.012
1.018+0.000

User time 785.539 s+1.238 18.013 s+0.062
43.609+0.172

System time 8.2945+0.113 5.867 5+0.059
1.413+0.026

CPU load 258.806 %+0.393 7.923 %+0.017
32.666+0.089

Max. RSS 1662.13 MB+63.766 | 105.83 MB+1.218
15.701+0.670

Moreover, TruffleSqueak requires substantially more resources for running
the same workload as revealed by Table 11.1: The Graal compiler uses multiple
threads by default to JIT compile methods in the background. The number of
threads depends on the number of CPU cores of the machine. For running the
IDE workload, TruffleSqueak uses more than 32 times more CPU resources
than the OpenSmalltalkVM, which compiles methods as part of its main pro-
cess instead. Similarly, GraalVM’s default garbage collector allocates memory
adaptively according to the running application and the amount of memory
available on the machine. In this benchmark, TruffleSqueak uses more than
15 times more memory compared with the OpenSmalltalkVM: For the pre-
pared image with a size of roughly 80 MB, TruffleSqueak allocates more than
1.66 GB of memory, while the OpenSmalltalkVM only needs around 106 MB.
Furthermore, the wall-clock times show that the benchmark ran around 5s
longer on TruffleSqueak, which we believe is the result of the imprecise timing
events that were mentioned before.

Overall, we believe this benchmark reflects our experience working with
TruffleSqueak: Compared with the OpenSmalltalkVM, the programming sys-
tem feels a bit less smooth, especially at the beginning when TruffleSqueak is
warming up. Nonetheless, the system is fully functional for its intended pur-
pose: exploratory programming and tool-building. TruffleSqueak’s CPU and
memory usage is significantly higher compared with the OpenSmalltalkVM,
especially at the beginning, but well below the resources that modern de-
velopment machines usually provide. Over time, CPU consumption usually

113

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

decreases noticeably as the system warms up and stays within reasonable
bounds. This is also the reason why we neither tweaked the Graal compiler
nor the GC. Both provide many options to specific limits, for example, for the
number of compiler threads or the maximum heap size. The only exception
is the Graal compiler mode, which TruffleSqueak sets to “latency” by default.
The following benchmark analyzes the effect of this mode in more detail. The
high consumption of resources and other limitations are further discussed in
Section 11.4.

Evaluating Warmup and UI Performance in More Detail

In the second benchmark, we evaluate the UI performance of TruffleSqueak
further and show how different modes influence warmup and peak perfor-
mance. We run two experiments, one with the Graal compiler in “throughput”
mode and one in “latency” mode. The former is typically used across GraalVM
languages and provides higher peak performance. TruffleSqueak, however,
uses the “latency” mode by default, which disables inlining and splitting, two
important performance optimizations. Additionally, we also measure the per-
formance of TruffleSqueak’s AST interpreter by disabling Truffle compilation,
profiling, and splitting. Note that in this configuration, the AST interpreter is
still being JIT-compiled on the Java level. Furthermore, we enable the higher-
performance mode in Squeak /Smalltalk, which reduces the redrawing delay
from 20 ms to 1 ms. Considering the additional millisecond spent in the idle
process, the maximum measurable frame rate is increased to 500 fps. At the
same time, we also reduce the number of variables that could influence the
performance.

Setup Similar to the previous benchmark, we prepare a Squeak/Smalltalk
image and measure the frame rate of the programming system as well as
the size of the Graal compilation queue. Figure 11.3 shows a screenshot of
this image running at full speed on TruffleSqueak. The menu bar shows our
utility tool that we also used in the previous benchmark to measure frame
rates and the sizes of the Graal compilation queue over time. To avoid that
any new code becomes visible to, and causes additional work in the Graal
compiler over time, we do not re-play mouse and keyboard events in the
programming system. Instead, we use the BouncingAtomsMorph from Squeak/
Smalltalk, a simple gas simulation, as the benchmark application. Although
this simulation is written in only around 276 source lines of code (SLOC),
it exercises the Morphic Ul framework in which most of the tools and other
interactive components of Squeak/Smalltalk are built.

114

11.2. UI Performance Evaluation

€] bouncing-atom-benchmark.image running on TruffleSqueak
Apps Do Extras Windows Help 476fps; Graal queue: 0 [14:44:50 []

|

Figure 11.3.: Screenshot of the prepared UI benchmark image running at full
speed on TruffleSqueak.

We run the prepared benchmark image 10 times for eight minutes on each
configuration: on TruffleSqueak 21.2.0 with the Graal compiler in latency
mode, TruffleSqueak with Graal in throughput mode, TruffleSqueak without
Truffle compilation, profiling, and splitting, and on the OpenSmalltalkVM
202003021730 (64-bit). Instead of using a developer machine, we run all
benchmarks on a dedicated benchmark server: a Dell PowerEdge 2950 (Two
Quad-Core Intel Xeon E5410 CPUs @ 2.33 GHz, 32.18 GiB ECC memory)
running on Debian 9. Support for hyper-threading, Intel Turbo Boost, and
Intel P-States has been disabled. Since we run on a server, we use Xvfb to
create a virtual display.

Results Figure 11.4a shows a plot of the measured frame rate values for all
four configurations. In Figure 11.4b, on the other hand, only the queue sizes
for the latency and throughput modes are shown. When Truffle compilation
is disabled to measure the AST interpreter performance, the queue stays
empty.

The first plot demonstrates that the performance characteristics of the four
configurations are very different: The OpenSmalltalkVM reaches a some-
what stable frame rate range from approximately 250 fps to 290 fps almost
immediately.

When the latency mode of Graal is used, TruffleSqueak reaches comparable
performance after roughly 20 s and then continues to increase until it maxes
out at around 400 fps to 450 fps after approximately 50 s in total. Figure 11.4b
confirms that Graal has processed all compilation tasks after that time for

115

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

Frame Rates

Latency mode Throughput mode AST Interpreter OpenSmalltalkVM '_
2 500 oS URRRNG
S 400 | i e O
0
2, 300 RO IRPTE F2 Y D
g 200/
= &
(4] 73
H 100 [}

50 1 | | | | | |
0 I
0 2 #2160 120 180 240 300 360
time in seconds
(a) Frame rates measured for the different configurations over time.
Graal Compilation Queue
[|
Latency mode Throughput mode
2 500 il s |
8
Y 400 /ﬁ
a, ~ e S
£ 300 & -
= i W
S 200 f; X
%] RN
e 100 ™
é 0] ! I . | . I I | l\74- I
0 60 120 180 240 300 0 360

50
time in seconds

(b) Size of the Graal compilation queue over time when running on TruffleSqueak
with the latency and throughput modes.

Figure 11.4.: Results of the UI benchmark running on four different configu-
rations.

116

11.2. UI Performance Evaluation

the latency configuration, which indicates that peak performance has been
reached.

In throughput mode, TruffleSqueak needs about 42 s and thus more than
twice as long to reach performance comparable to the OpenSmalltalkVM.
While TruffleSqueak can reach the maximum measurable frame rate of 500 fps
in that mode, it also takes much longer to reach steady performance. Although
it reaches that maximum in the second minute for the first time, Figure 11.4b
shows that it takes roughly five and a half minutes until Graal has processed
all compilation tasks and peak performance is reached at around 445 fps to
500 fps. During that time, frame rates are high but unstable, especially in the
third minute in which they drop below those of the latency configuration.
Also, the queue sizes become less predictable over time across the different
runs of the throughput configuration.

Furthermore, the queue sizes in Figure 11.4b show multiple spikes, for
example, at around 45s when running in latency mode. These spikes are
caused by multi-tier compilation among other performance optimizations
performed by the Graal compiler. To improve warmup times, Graal uses
two tiers for JIT compilation by default: a fast tier that only applies some
optimizations and a second tier that is slower but optimizes methods more
aggressively.

TruffleSqueak’s AST interpreter is with a peak frame rate of roughly 50 fps
the slowest of the four configurations. On the other hand, the frame rate stays
very close to 50 fps and is therefore much more consistent compared with the
others. Even though profiling and splitting are disabled in this configuration,
some minor warmup behavior is noticeable in the first minute. We believe this
is due to the initialization of different caches, several AST respecializations
in TruffleSqueak, and possibly also due to JIT compilation on the Java level.

Table 11.2 gives an overview of the resource usage of each configuration. As
in the previous benchmark, all TruffleSqueak configurations use significantly
more CPU and memory resources compared with the OpenSmalltalkVM. The
overall CPU load when running the benchmark on the OpenSmalltalkVM is
around 25 %. The load caused by TruffleSqueak in latency mode is more than
five times higher, and almost 11 times higher in throughput mode. Running
TruffleSqueak without Truffle compilation causes the lowest load and requires
the least memory. With more than 1.9 GB, however, it still needs more than
25 times more memory than the OpenSmalltalkVM.

Overall, this benchmark illustrates how the Graal compiler influences the
overall UI performance of a self-sustaining programming system, or in a more
general sense, the performance of UI applications written in GraalVM guest
languages. In UI applications, fast warmup and predictable performance
are more important than peak performance. This is also why we decided

117

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

Table 11.2.: Summary of the system resource usages during the executions of
the UI benchmark shown in Figure 11.4, measured with the time command.
For each metric, the first row shows absolute mean values and 95 % confidence
intervals derived with the bootstrapping technique described in [81]. The
second row shows those values relative to the OpenSmalltalkVM as a factor.
The CPU load is user plus system times divided by wall-clock time. “RSS”

stands for resident set size, “OSVM” for OpenSmalltalkVM.

TruffleSqueak OSVM

Latency Mode ‘ Throughput Mode ‘ AST Interpreter

Wall time 480.209 s+0.021 480.209 5+0.015 480.168 5+0.017 | 480.000 s0.000
1.000+0.000 1.000+0.000 1.000+0.000

User time 590.4525+1.252 | 1253.1025+14.825| 496.8535+0.783 | 95.683 5+1.084
6.177+0.081 13.104+0.224 5.196+0.069

System time 67.046 s+1.014 51.281 5+2.803 9.9075+0.738 | 24.6855+0.335
2.716+0.059 2.080+0.112 0.401+0.031

CPU load 136.919 %+0.183 | 271.628 %=+3.126 | 105.538 %=+0.075 | 25.077 %=0.170
5.461+0.046 10.828+0.158 4.210+0.031

Max. RSS |2191.46 MB=+14.593|2365.04 MB=+18.420 | 1902.18 MB+24.445 | 75.14 MB+0.031

29.164+0.201

31.475+0.250

25.315+0.355

to use Graal’s latency mode by default in TruffleSqueak. Although Graal’s
throughput mode can provide even better peak performance, it requires
considerably more work and time to reach it.

11.3. Requirement Evaluation

With the assessment of TruffleSqueak’s compatibility and performance, we
have demonstrated that the exploratory programming tools and the tool-
building capabilities can be used in their original form on top of the GraalVM.
In this section, we show that TruffleSqueak also fulfills the requirements
of our approach, allowing it to be used across the languages supported by
GraalVM.

Table 11.3 provides a side-by-side overview and comparison of the API
requirements described in our approach, the corresponding API provided
by GraalVM, and the API in Squeak/Smalltalk. The table is divided into
two parts: The upper part shows the required API hooks for exploratory
programming tools described in Section 5.4. In the lower part of the table are
the hooks required for our extensions proposed in Section 6.2.

Furthermore, we have used mathematical operators to compare the APIs
from our approach with GraalVM’s language interoperability API in the
column “C1”, and the GraalVM API with the API from Squeak/Smalltalk in
the column “C2”:

118

11.3. Requirement Evaluation

“(1'g Bumsr 99s) : puelsIapuUNIONS20p<<1I [qouUBTEI04 Ul pI[puey A[euonippy ,

"» JO ynsax e se squedwoouy ,

14V ALiqeradorajur a8en3uer s N ATeeIn) 03 Surpiodoe Teuondo are syoalqoeiaw asnedaq spqredwoduy ,

3nd:le<<juswuodTAU3 C (an1en‘Jaquaw ‘2dods)JaquapalTim Adeaqi]dodaiul ~ (an)eA‘sweu‘sbenbuey)ieqo)9ias
1}B<<}UBWUOJTAU] C (Joquaw ‘adods)Jaquappead "Adeaqridoasiul = (sweu ‘sbenbuey)1eq019313b6
sA9¥<<juswuodTAU3 C (ojuebenbue))adodsiab Auz - juswniisuralsini] = (sbenbuey)s1eqo1931ST
10}:UT:931BNBAS<<dd Tdwo) C (sbue)q1ed- (ssweu‘sdunos)dT1gndasdJed Aug-abenbueisaryjni)l = (S1e20] ‘Spod‘sbenbuey)aleniens
Juaainba ou (sbae‘[qo)sabenbueidri1qndiab - Auj-abenbueiarsini] = ()sabenbueqisty
Juapainba ou ([go)abenbueqiab-Adeaqridosaiur = ([qo)abenbueiiab
suorsuajxyg pasodorg Jo 14V
I puR}SJ9pUNIONSS0p<<1Ia[qQ ~ (sbae‘ (Jaquaw’ [qo)J2qualypead Aieiqr1dosalur) 91NDIX " Arelqridosaiur - (sBue Bsu’ [q0) puss
(:s3usawnbuyylTm: w0 aad<<123[qQ) (sbae‘uaquaw‘ [qo) aquapa0AUT " Adeaqr]doaaluT
sd01d9)@s<<JoTARYRg ,F ([qo)saaquapiab Aueaqridodsiur =~ ([qo)sabessapisty
11nd:1ydTseq<<1ialqy = (en1en‘xaput‘ [qo)juswa)JAeduyarTdm - Aueaqridodajur = paxapui (190)A115d0uga1TIM
1and:pawenJeplsuT<<123[q0 L& (sn1en‘uaquaw’ [qo)aaquapdlTam Aueaqridoasjul = pouivu
11ydTSseq<<idalqp = (xoput‘[qo)juswa)JAeduaypead *Auseaqridodazur = paxapui () B
IpaweNJeAISUT<<128[q0 =~ (Joquaw‘ [qo)Jaquappesad *Adeaqridodaiur = pauvu
9z1501Seq<<1oalqp = ([go)azT1SAeduyiab-Adeaqridoaaiur = paxapul (1q0)$0T115d04d1ST]
SaWeNJeAYsUT11B<<JOTARYDE ,# ([go)saaquapiabAseaqridodaiur = pauivu
MaU<<IOTARYDE , 7 (eyjaw)ajeryuelsut-Adeaqridoasiur = (e3aw)aduelsuraiesdd
1JOPUTYST<<31da[qQ = ([go‘eyaw)aduejsurelspst - Adeaqridoasjur = (ey3aw’[go)sduelsSuIsT
sse1d<<1dafqo ,# (fqo)31dafqoerswisb Aueaqridodaiur ,# (fgo)3123[qgoeiswiab
==<<323[q0 = (qr1dosaiut‘zlqo‘1(qo)1edTIUspIST Adeaqridosdul = (zfgo'1fqo)1edTIUBpPTIAIE
1uQlutdd<<idalqp = ([qo)buTtuaisAe1dstgol-Aueaqridodaiuy = ([go)buTa3zsiutud
191en)eAd<<daTdwo) C ()11e2° (@24n0S)dT1qndasJed Aug-abenbueialtini)] = (opod ‘abenbuey)aieniens

119

14V Jreirewspesanbg 7o 1dV Aniqersdorsjuy aGenGue] WATERID 1D 14V Suruwrurexgorg Aroyerordxg

‘() 13q30ue Jo 3as1adns e st auo 10 “(#) ajqrreduwoour ‘Ajfeuondouny ut (x) refruars 1o (=) Tenba 1oy are syooy
IV oMmI, eyrews /yeanbg pue ‘A AeeIn) goeordde mo jo s[Iy oy} Jo uostreduwod pue MIIAISAO PIS-AG-9PI§ ¢ TT d[qeL

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

e The “=" operator means that two API hooks are equal in functionality.

e The “~” operator indicates that two hooks are similar so that hooks from
one API can be mapped to appropriate hooks from the other.

e The “#” operator implies incompatibilities between hooks, which require
tools to be adapted.

e The “D” operator denotes that one hook is a superset of another, which
also requires adaptations.

As shown in the table, GraalVM’s language interoperability protocol suf-
ficiently covers the API requirements for both, exploratory programming
as well as our proposed extensions. The only exception is getMetaObject
because, in GraalVM, the hook is allowed to throw an error if an object has no
known metaobject. Similar but not equal in functionality are GraalVM’s API
hooks to access the structures and interfaces of objects, to send messages, and
to access language globals. GraalVM’s interoperability protocol only supports
named and indexed object properties. Other types of properties are not sup-
ported. Indexed properties map well to the array trait of the interoperability
protocol, which in turn maps well to indexable variables in Squeak /Smalltalk.

Truffle’s member trait, on the other hand, distinguishes between several
different types of members, such as readable and invocable members among
others. Because of that, it can be ambiguous whether a member is a named
property (readable) or a message (invocable) because they can be both, read-
able and invocable, at the same time and return two different things (e.g., the
value of a property and a bound method respectively). In TruffleSqueak, we
decided to map readable but not invocable members to the concept of named
variables in Squeak/Smalltalk. This, however, requires an additional check
of all members to split the list into two, readable but not invocable members
(named variables) and invocable and possibly readable members (messages).
The member trait is also ambiguous when it comes to sending messages:
Members may not be invocable, but readable members may return objects
that are executable according to the interoperability protocol. While this is
seldomly the case, language developers are allowed to expose the objects of
their languages in that way.

As discussed in Section 9.2, GraalVM allows tools to access the top scope
of each language. The idea behind top scopes is similar to our concept of
language globals. GraalVM languages are, however, allowed to expose more
than their globals through this API. TruffleRuby, for example, returns a top
scope object that contains interactive local variables, global variables, and the
members of Ruby’s main object. Since top scopes must use the member trait,
they can be accessed in the same way as other foreign objects.

Moreover, GraalVM’s protocol for language interoperability is mostly com-
patible with the API from Squeak/Smalltalk. In Section 8.3, we demonstrated

120

11.3. Requirement Evaluation

that most of the exploratory tools of Squeak /Smalltalk can be used without
any modification. Some hooks from Squeak/Smalltalk, however, are too spe-
cific to Smalltalk to be re-used and thus provide only a subset of the required
functionality. The Compiler interface, for example, only allows the evaluation
of Squeak/Smalltalk code. As described in Section 9.2 for example, tools can
be adapted to use the API hooks from GraalVM for polyglot access. Similarly,
the two hooks to access languages have no equivalent in Squeak/Smalltalk,
which requires tools to be adapted to take advantage of them.

Furthermore, there are four incompatibilities due to a mismatch between
GraalVM'’s concept of metaobjects and the Smalltalk object model [53, pp. 269-
272]: Object>>class cannot be mapped to GraalVM’s getMetaObject because
Smalltalk objects must always have a metaobject, while metaobjects are op-
tional in GraalVM. We decided against modifying ForeignObject>>class.
Instead, tools must request metaobjects through the interoperability protocol
explicitly and handle the case when no metaobject is available. In addition,
instance variables of an object and the selectors that it understands are looked
up in the object’s class in Squeak/Smalltalk, not in the object itself. To resolve
these incompatibilities, however, only little work was required to adjust the
affected exploratory tools. In Section 8.3, we illustrate how this was done with
appropriate subclasses.

For sending messages to foreign objects, TruffleSqueak does not override
Object>>perform:withArguments:, which is comparable to the send hook
for exploratory programming. This would require users to always use the
perform:withArguments: meta-programming facility explicitly. Instead and
as discussed in Section 8.2, TruffleSqueak leverages the doesNotUnderstand:
mechanism from Squeak/Smalltalk, which allows users to directly dispatch
messages to foreign objects. This mechanism is further used to provide
shortcuts for instantiating metaobjects and for accessing instance variables
of objects, as ¢ indicates in Table 11.3. A simplified implementation of this
ForeignObject>>doesNotUnderstand: method can be found in Listing 8.1.

Although supported by Squeak /Smalltalk, GraalVM’s language interoper-
ability protocol does not support any of the optional exploratory programming
features described in Section 5.4. This and other limitations of TruffleSqueak
are discussed in more detail in the following section.

In this and the previous sections, we have shown, at least in theory, that
TruffleSqueak is sufficiently compatible with GraalVM and Squeak /Smalltalk,
fast enough to host its programming system, and that it fulfills the require-
ments of our approach. With the case studies that we present in Chapter 12,
we further provide practical evidence that TruffleSqueak can be used as an
exploratory tool-building platform for the Graal VM.

121

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

11.4. Limitations

Although TruffleSqueak is a functional implementation of our approach,
it comes with different limitations concerning the approach, Truffle and
GraalVM, and Squeak/Smalltalk. These are now discussed in more detail.

Optional Exploratory Programming Features Some programming lan-
guages support mechanisms that allow objects to have innumerable prop-
erties and understand an arbitrary number of messages. In Python, for ex-
ample, property access can be customized by overriding the _ getattr_ ()
and _ getattribute () methods. These methods can also return Python
callables, which can be used to allow Python objects to understand an ar-
bitrary number of messages. The same is possible with doesNotUnderstand:
in Smalltalk and method_missing() in Ruby. Truffle’s member trait, how-
ever, can only be used to expose known properties and messages. Therefore,
language-agnostic checks for innumerable properties and messages cannot
be supported in TruffleSqueak. Users can, however, fall back to checking
language-specific mechanisms in some cases.

Furthermore, GraalVM’s language interoperability protocol does not sup-
port cloning objects across languages, which would make it easy to create
copies for exploration. In some cases, it is possible to create copies manually
by creating a new instance of an object’s metaobject and copying over values
for all readable but not invocable members. While this is not always possible,
for example, if languages choose to hide certain properties, users can fall back
to language-specific mechanisms for copying objects.

TruffleSqueak properly supports the al1Instances and become mechanisms
for Smalltalk, which correspond to the optional findAllInstances and swap
exploratory tools described in our approach. For that, it manually walks all
Smalltalk objects reachable from Squeak/Smalltalk’s special objects array, as
described in Section 8.1. It would be possible to extend its object walking
algorithm so that it traces across other GraalVM languages based on the
language interoperability protocol. This, however, would mean that only
objects that are reachable from Smalltalk can be found. To find all objects,
language implementations need to provide similar functionality or at least
a hook that provides their GC roots that can be used as additional starting
points for a language-agnostic object walking algorithm. Nonetheless, these
exploratory tools are typically implemented as part of the garbage collector
of a VM, but neither Java nor Truffle provide appropriate APIs to interact
with the GCs from the JVM.

122

11.4. Limitations

Further Differences Between Truffle and Squeak/Smalltalk Smalltalk is
an interesting edge case for Truffle in many regards. A simple example is the
fact that it provides an interactive user interface. Although not supported
in any way by Truffle, it is possible to implement the needed infrastructure
based on UI frameworks from Java. More interesting differences are due to
some assumptions and design decisions made in Truffle: Truffle languages
must, for example, provide a hook for parsing that turns a ParsingRequest
for the language into a corresponding CallTarget. Here, Truffle assumes that
the parser for the language is part of the language implementation, which is
true in many cases. In Squeak/Smalltalk, however, the parser is part of the
self-sustaining programming system and therefore implemented in Smalltalk.
TruffleSqueak could implement its own parser for Smalltalk code, but that
would break the idea of a self-sustaining programming system. Instead, it calls
out to Squeak/Smalltalk code to use its parser to generate a CompiledMethod
object, for which it then creates a call target in response to parsing requests.
Implementing Truffle APIs with appropriate functionalities from Squeak/
Smalltalk is, however, not always possible. An example of this is Truffle’s API
for source locations. This API is required for instrumentation and allows tools,
such as debuggers and profilers, to look up the sources for a given Truffle AST
node. In Squeak/Smalltalk, the #getSource message can be sent to compiled
methods to retrieve their source code, independently of whether it is stored
in the changes file or needs to be reconstructed with its decompiler. This
infrastructure, however, cannot be used to implement the source location API
of Truffle because it would cause the execution of more guest code in Truffle.
This in turn can potentially trigger new additional calls to the source location
API, which ultimately result in infinite recursions during instrumentation.
Due to time constraints, TruffleSqueak works around this problem by using
its bytecode decoders to generate a formatted string of bytecodes for compiled
methods, similar to the string used to display bytecodes in the browser tool
from Squeak/Smalltalk.

Another set of problems arise from the choice of Java as the host language:
For example, Java neither supports resumable exceptions nor continuations.
Since both need to be supported in TruffleSqueak, alternative implementation
strategies are needed. They, however, require additional work, make the lan-
guage implementation more complex, and introduce performance overheads.
More importantly, Truffle assumes that exceptions from guest languages gen-
erally unwind the stack. This means that the exception model from Squeak/
Smalltalk breaks the moment another guest language is involved because
non-Smalltalk stack frames cannot be resumed after the stack was unwound
on the Truffle level. This is one reason why TruffleSqueak’s debugger cannot
be used to debug foreign code. Another reason is a mismatch in the execu-

123

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

tion model of Smalltalk and Java: As a self-sustaining programming system,
Squeak/Smalltalk uses a language-level scheduler that controls the execution
of language-level processes. Since these processes run as part of green threads,
rather than in separate OS-level processes, TruffleSqueak is unable to control
the execution when another guest language is running. Starting a foreign,
long-running application, such as a web server, through its polyglot API in
the main thread will freeze the programming system until the application ter-
minates. It is, however, possible to run code from other languages in separate
threads. Since debugging was not a main concern of this work, we did not
further work on allowing TruffleSqueak’s debugger to be used across other
languages due to time constraints. However, we believe this could be done by
running TruffleSqueak in a dedicated Java thread, allowing its UI process to
run and debug code on the main thread. Similarly, the idea of Multiprocessor
Smalltalk [145] could be applied to TruffleSqueak so that Smalltalk processes
run, for example, in separate Java threads to enable debugging. In Section 13.1,
we present another implementation of our approach that has support for
cross-language debugging because we were in control of the execution model.

Another limitation is related to the snapshotting mechanism from Squeak/
Smalltalk. Since most languages have no support for persistent object memory,
it is hard to persist non-Smalltalk objects as part of the image snapshots. In
TruffleSqueak, references to foreign objects are simply niled out. When an
image is saved in which, for example, an inspector is opened on a Python
object, the inspector will show the nil object the next time the image is
loaded. While it would be possible to extend the Squeak/Smalltalk image
format with support for other languages, re-instantiating objects from other
Truffle language implementation requires additional work. More importantly,
however, some types of objects, such as objects representing external resources
such as sockets or file handles, cannot simply be re-instantiated. Extending
languages with proper support for persistent object memory requires further
research, which is out of the scope of this work.

Incompatibilities and Performance Concerns As mentioned in Section 11.1,
TruffleSqueak is not fully compatible with the OpenSmalltalkVM. Some lan-
guage features, such as object pinning, immutability, or image segments,
are not fully supported due to time constraints. The same is true for some
VM-level plugins, such as the FFIPlugin and the 0SProcess. At the same
time, these features and plugins are neither required to use TruffleSqueak
for exploration nor tool-building. Furthermore, TruffleSqueak cannot fully
implement the GC interface of the OpenSmalltalkVM because it must use the
GCs from the JVM. Another cause for incompatibilities is TruffleSqueak’s
interrupt handler: The execution model of Squeak/Smalltalk requires fre-

124

11.4. Limitations

quent checks for interrupts, for example, for scheduling and timing events.
The OpenSmalltalkVM performs these checks frequently after activations of
methods and block closures as well as on backward jumps. TruffleSqueak, on
the other hand, checks for interrupts only before activations of methods with
more than 32 bytecodes. A process switch triggered by the interrupt handler
forces the entire stack to be materialized to the heap, which is an expensive
operation in Truffle, especially when processes are switched frequently. More-
over, the materialization of stack frames to Smalltalk Context objects can also
trigger deoptimizations in the compiler in some cases. Therefore, the reduced
number of checks for interrupts is a performance tradeoff in TruffleSqueak.
On the other hand, this means that timing events, as briefly discussed in Sec-
tion 11.2, are less precise. Since TruffleSqueak does not perform such checks
after backward jumps also implies that it is impossible to interrupt tight loops,
in which only primitive methods are sent. This shortcoming in turn is the
reason why some of the SUnit tests from Squeak/Smalltalk do not terminate
on TruffleSqueak because they test the interruption of empty or tight loops.

In Section 11.2, we also found that TruffleSqueak requires significantly more
CPU and memory resources than the OpenSmalltalkVM for running the same
image. This is true in general for mostly three reasons:

1. By default, GraalVM uses multiple threads for JIT compilation. The
OpenSmalltalkVM JIT compiles code from Squeak/Smalltalk as part of
the main process and requires less CPU cycle, possibly because it optimizes
code less aggressively compared with Graal.

2. In TruffleSqueak, each Smalltalk object must be represented by a corre-
sponding Java object on the Truffle level. Java objects are, however, roughly
three to four times larger than those of the image format used by the
OpenSmalltalkVM.

3. The amount of memory allocated by the GCs from the JVM often depends
on the available memory of the machine and is often much higher by
default compared to the GC from the OpenSmalltalkVM.

This also explains why the memory consumption we reported in Section 11.2
is much higher than a factor in the range of three to four. Since GraalVM is
based on the JVM, its installation sizes are also considerably larger compared
with the OpenSmalltalkVM: A stock, JDK11-based GraalVM CE 21.2.0 installa-
tion for macOS, for example, is more than 880 MB in size with Graal.js being
the only pre-installed language, while the file size of the OpenSmalltalkVM
used for the benchmark in Section 11.2 is only 3.6 MB.

In addition, TruffleSqueak uses the latency mode of the Graal compiler by de-
fault. While this is the only compiler configuration changed in TruffleSqueak,
the latency mode has a significant impact on both the overall run-time perfor-

125

11. TruffleSqueak: Squeak/Smalltalk on the GraalVM

mance and warmup: The mode disables inlining and splitting in the compiler,
two important compiler optimizations that enable additional optimizations.
Due two this, peak performance is reduced but so are the sizes of compiled
code and the work for the compiler. At the same time, the decreased amount
of work leads to noticeable better warmup behavior, which is preferred in
UI applications such as TruffleSqueak. In Section 11.2 and Appendix B, we
evaluate the effect of the latency mode in more detail.

Other Truffle-based language implementations face similar challenges and
limitations. The GraalVM team is aware of them and is working on different
ideas to resolve them in the future. One approach to improve warmup, for
example, is to snapshot compiled code similar to Sista [13]. This way, the
compiler does not have to optimize the parts of a language ecosystem that
never or rarely change, such as a standard library, from scratch on every
startup. Moreover, memory footprint of GraalVM languages can also be re-
duced through AOT compilation with GraalVM Native Image. Preliminary
experiments suggest that this is also true for TruffleSqueak. Another improve-
ment is the support for language safepoints [140] that was added to Truffle
in GraalVM 21.1. These safepoints are designed to interrupt the execution of
guest languages and could help to improve TruffleSqueak’s interrupt handler.
Similarly, fibers and continuations in Java, as developed as part of Project
Loom [134], could further be used to make switching between Smalltalk pro-
cesses more efficient in TruffleSqueak. Overall, we believe that the technical
limitations of TruffleSqueak are interesting challenges for future work.

126

11.4. Limitations

Summary TruffleSqueak is both sufficiently fast and compatible
with Squeak/Smalltalk and GraalVM to be used as an exploratory
tool-building platform. Two benchmarks demonstrate that its UI per-
formance is comparable to the OpenSmalltalkVM.

Although TruffleSqueak can even outperform the OpenSmalltalkVM
in some cases at the cost of higher CPU and memory consumption,
the two benchmarks also illustrate that UI applications are particularly
sensitive to slow warmup behavior and performance cliffs that can be
caused by the Graal compiler. While this may seem plausible in theory,
TruffleSqueak shows it in practice and provides more reason to further
improve the Graal compiler in the future.

Moreover, we show that TruffleSqueak implements all API require-
ments of our approach except the optional features of exploratory
programming, which is one of its limitations. This and other limita-
tions, such as support for cross-language snapshotting and debugging,
require additional research and engineering efforts and are left for
future work.

As our fourth contribution, TruffleSqueak demonstrates that our
approach is feasible to implement. In addition, it shows that there is a
lot to be learned just from supporting a self-sustaining programming
system on a polyglot VM, for example, in terms of the VM’s perfor-
mance characteristics or the design decisions made by its language
implementation framework.

127

12. Case Studies Based on
TruffleSqueak

As an exploratory tool-building platform, TruffleSqueak can be used by four
types of developers working with GraalVM for different purposes: Tool de-
velopers can build on existing tools and rapidly create new ones, for example,
to support developers in writing polyglot applications. TruffleSqueak allows
application developers to build polyglot applications at run-time. It also
makes dynamic run-time data explorable, which can help these developers to
understand how different languages interact with each other and how they
can be combined effectively. This capability of TruffleSqueak can also be used
by language and runtime developers to explore GraalVM internals while they
are running.

This chapter presents five different case studies based on TruffleSqueak
that give concrete examples of how different developers can use and benefit
from it. For building these examples, we used the exploratory tools from
TruffleSqueak and its ability to build tools and applications at run-time.
Each case study starts with a research question followed by a short problem
statement, a description of the project outcome, a selected implementation
detail, and finally a summary of insights and lessons learned.

12.1. Building a Polyglot Notebook System

Research Question How could polyglot VMs enable and support
data scientists and researchers to use multiple programming languages
within a single notebook?

Problem Statement Computational notebook systems, such as Jupyter [88]
and Google Colab [56], have become popular tools for data scientists and
researchers in recent years. Inspired by Literate Programming [89], notebooks
allow their users to combine code with text, for example, to document instruc-
tions, to explain algorithms, or to discuss results. For this, users can typically
add two types of cells to a notebook: text cells and code cells. Code cells can
usually be evaluated by a notebook kernel, a server that often runs on a remote,
high spec machine or cluster to allow computationally intensive workloads.

129

12. Case Studies Based on TruffleSqueak

Evaluation results of code cells are then displayed in corresponding output
cells, which often support different MIME media types and can therefore
provide different types of visualizations.

Since the scientific community uses many different programming lan-
guages, especially in fields such as data analysis and machine learning, note-
book systems usually support multiple languages, often by allowing users to
connect to kernels for different languages. The Jupyter project, for example,
started with support for Julia, Python, and R and today supports many other
languages through over 150 different kernels [152]. Standard notebooks, how-
ever, are usually limited to a single programming language. To build data
processing pipelines with more than one language, files and databases are
often used to exchange data between languages. Polyglot notebook systems,
such as SoS Notebook [148] and BeakerX [206], demonstrate that there is a
need for being able to use multiple languages in the same notebook. These
systems, however, usually use IPC and orchestrate and combine multiple
kernels for different languages.

Large data sets, complex objects, and frequent interactions between lan-
guages can, however, pose problems for these systems. Polyglot VMs, on
the other hand, can avoid data duplication, data synchronization, and other
disadvantages of common language integration techniques. In this case study,
we built a polyglot notebook system in TruffleSqueak and based on GraalVM.

Project Outcome Initially, TruffleSqueak’s PolyglotWorkspace tool allowed
us to mimic a very basic notebook experience without any further work: For
each notebook cell, we could open a new instance of the tool and select a
particular language. And the shared polyglot bindings object could be used
as a global namespace for sharing objects between languages.

We then built a new PolyglotNotebook tool that allows chaining of the same
text editors that are also used in the workspace tool. This means that they
also support syntax highlighting for different languages through the Rouge
library from Ruby, which we presented in Section 10.1. Since it is important to
know what is shared between languages, we further embedded our polyglot
object explorer in the sidebar of the PolyglotNotebook. To complete the first
version of the notebook system, we added some controls for adding, removing,
re-arranging, and running code cells, for selecting the language of a code cell,
as well as for loading and saving the notebook. Since then, we have explored
different ideas and extended our polyglot notebooks in different ways.

As a data analysis example, assume we are interested in the number of
contributors per country of a particular conference. For this, we need to
take care of mainly three tasks: First, we need to download the list of all
contributors from the conference website and extract the data from the HTML

130

12.1. Building a Polyglot Notebook System

file. Second, we need to perform some form of data cleansing because the data
may be incomplete or inconsistent. From that, we can derive a list of countries.
And lastly, the list needs to be aggregated and visualized, for example, with
a plot.

Although all these three steps can be done in one language, different
languages may suit one task better than others. The PolyglotNotebook, on the
other hand, allows us to choose a different language for each task. Figure 12.1
shows the notebook we created for our data analysis example. On the left,
there are three text cells and three code cells with corresponding output cells.
The sidebar on the right displays the notebook’s bindings object. While the
text cells document the analysis task using the Markdown format, the three
code cells make use of three different languages:

Ruby code cell (red) The nokogiri parsing library from Ruby makes it easy
to download and parse an HTML file. In this case, we use this library to
extract the affiliation column and the country column from the contributor
list of the conference website. The result, a Ruby array of arrays of strings,
is stored in the notebook’s bindings object under the name “rows”.

Python code cell (blue) The pycountry library written in Python provides ac-
cess to a list of all countries. With this library, we search for country names
within the Ruby array using Python list comprehension. The result of the
cell is a Python list of country names and stored under the name “countries”
in the notebook’s bindings object. The explorer on the right can be used
to explore the contents of the notebook’s bindings object including the
elements of the Python list and its interoperability members.

R code cell (gray) Finally, we wrap this list in an R data frame object and use
the aggregate() builtin to aggregate the countries before passing it into
ggplot2, an R package for data visualization. The %ggplot2 notebook magic
command at the beginning of the cell instructs our notebook system to use
an RPlotMorph, a polyglot UI component we presented in Section 10.2, for
rendering the resulting plot within the output cell.

The PolyglotNotebook tool provides different features that we now explain
in more detail. The most noticeable feature is that code cells highlight the
selected language with colors and an icon of the language. This helps users
to keep track of the language they use throughout their notebooks. Instead
of Truffle’s polyglot bindings object, each notebook uses an instance-specific
PNBKeyValueStore object for sharing objects between languages, to avoid pol-
luting the global bindings namespace and interferences with other notebook
instances. This PNBKeyValueStore makes use of TruffleSqueak’s language-
level implementation of the language interoperability protocol from GraalVM

131

12. Case Studies Based on TruffleSqueak

& Polyglot Notebook

M3 Markdown

Conference Contributors per Country

We are interested in how many people per country are contributing to <Programmings. First,
we download the ‘people-index‘ from the conference’s website and extract the data from the
‘#results-table’ using Ruby and its powerful Nokogiri HTML parsing library. The result is stored
in the notebook’s bindings object as ‘rows’.

require "nokogiri"; require "open-uri"

url = "https://2021.programming-conference.org/people-index”

doc = Nokogiri::HTML(URI.open(url))

bindings["rows"] = doc.css("#results-table .row").map{ | row |
row.css(".pers-affiliation,.pers-country”).map(&:content)}

bindings["rows"].size

B root 215

[M3] Markdown

Then, we use the Python library ‘pycountry’ which provides a database of all country names to
filter and transform the list of participants into a list of country names. This list is stored
in ‘countries’.

import pycountry

bindings["countries”] = [c.name for ¢ in pycountry.countries

for row in bindings["rows"] if c.name in str(row[0]) or c.name in str(row[1])]
len(bindings["countries™])

b root 140

[Markdown

Finally, we can use ggplot2, a data visualization package written in R, to visualize the number of
contributors per country as a bar chart. For this, our notebook implementation supports a
‘%ggplot2° magic which provides convenient access to the visualization package. We
instantiate a new ‘data.frame’ object from the list of ‘countries’. Then, we aggregate this data
before passing it into the ‘ggplot’ function. Lastly, we can further configure the plot to display

a sorted bar chart as well as a mean line.

%ggplot2

values <- data.frame(contributors = bindings["countries™])

data <- aggregate(x = values, by = li S ibutors), FUN = length)
print(ggplot(data, aes(x = reorder(countries, +contributors), contributors)) +
"identity™) + xlab(""') + ylab("") + coord_flip() +

ercept = ibutors))))

ies =

United Kingdom -
United States -
Germany -
Belgium -
Netherlands -
Japan -
Switzerland -
France -
Sweden -
Portugal -
Canada -
Denmark -
Austria -

New Zealand -
Italy -

Spain -
Poland -
Ireland -

India -
Australia -
Argentina -

0 5 10 15 20

Run all Add cell

~+ bindings
= countries
I Readable members
+ Invocable members
_add__
__contains__
__delattr__
__delitem__
_ dir__
—eq__
__format__

_ge__
__getattribute__
__getitem__

J | S
__jadd__
__imul__
—init__
__iter__

__reduce_ex__
__repr__
__rmul__
__setattr__
__setitem__
__sizeof _
__str__

_sort
append
clear
copy
count
extend
index
insert
pop
remove
reverse
sort

R R R e

__truffle_richcompare__

o0e

Load Save

2 members in total
[['Argentina’, ’Australia’, ’/

6 in total

42 in total

<built-in method __add__
#* <built-in method __contai
#* <built-in method __delattr
 <built-in method __deliter
#* <bound method __dir__o
#* <built-in method __eq__ ¢
 <built-in method __formal
 <built-in method __ge__ ¢
#* <built-in method __getattr
#* <built-in method __getiter
#* <built-in method __gt__ o
#* <built-in method __iadd__|
#* <built-in method __imul__|
#* <built-in method __init__|
#* <built-in method __iter _
#* <built-in method __le__ of
#* <built-in method __len__«
* <built-in method __It__ of
 <built-in method __mul__
<built-in method __ne__¢
<built-in method __new__|
#* <built-in method __reduc
#* <built-in method __reduc
#* <built-in method __repr___
#* <built-in method __rmul__
#* <built-in method __setattr
#* <built-in method __setiter
#* <built-in method __sizeof,
 <built-in method __str__ ¢
<built-in method __truffle,
#* <bound method _sort of [
#* <built-in method append ¢
* <built-in method clear of |
<built-in method copy of |
* <built-in method count of
* <built-in method extend o
 <built-in method index of
* <built-in method insert of
#* <built-in method pop of lit
* <built-in method remove
* <built-in method reverse ¢
<built-in method sort of li:
'y ’Argentina’

'y ’Austria’

4/ ’Belgium’
'/ ’Belgium’
'/ ’Belgium’
4/ 'Belgium’
'y ’Belgium’

Belgium
Belgium’
'/ ’Belgium’
\y/’Canada’
'y/’Canada’
'y/’Canada’
W

4
W

Switzerland’
Switzerland’
./ ’Switzerland’
Switzerland’
Switzerland’
'/ 'Switzerland’
',/ Switzerland’
4/ 'Germany’

'y Germany’

'y’ Germany’

/’Germany’

Germany’
‘y/’Germany’
4/ 'Germany’
',/ 'Germany’

b
b

4
g

Figure 12.1.: A polyglot notebook example visualizing the number of contrib-
utors per country of the Programming> 2021 conference using Ruby, Python,

R, and a tool built in Squeak/Smalltalk.

132

12.1. Building a Polyglot Notebook System

Listing 12.1: Simplified implementation of the
PNBCodeCellContainer class>>isValidNBJson: utility used by
PolyglotNotebook for validating saved notebooks with nbformat.

isValidNBJson: alsonString
isValidateNBJson ifNil: [
[isValidateNBJson := Polyglot eval: #python string: 'import nbformat
def is valid nb json(nb _json):
try:
nbformat.validate(nbformat.reads(nb json, 4)) # use version 4
return True
except:
return False
is valid nb json' 1 on: Error do: [:e |
self error: 'Failed to load nbformat. Install via “pip install
— nbformat™."'.
~ false] 1.
~ isValidateNBJson value: aJsonString

to control its appearance in other languages. For this, it remaps the member
trait of the protocol onto a Smalltalk dictionary that it internally uses. It does
this for two reasons: First, to disallow other languages to access its Smalltalk
methods and instance variables, and second and more importantly, to ensure
that languages can only use strings as keys. An option for the object explorer
in the sidebar can further be used to add the top scopes of all languages
to the explorer’s tree. This allows users to explore global modules, classes,
functions, and other components provided by different languages. Further-
more, PolyglotNotebook can load and save notebooks in the Jupyter notebook
format, which allows sharing across notebook systems.

Selected Implementation Detail The official Jupyter notebook format is
based on the JavaScript Object Notation (JSON) format. For this reason,
PolyglotNotebook uses a JSON implementation written in Smalltalk for
loading and saving notebook files. This makes it possible to use the notebook
system even when it is not running on GraalVM, but then it is limited to
Smalltalk code cells. More importantly, the notebook format supports per-
notebook and per-cell metadata, which our system uses to persist the selected
language per code cell. To ensure that the JSON output of our tool can be read
by other notebook systems, we have added a validation step to the saving
process. This validation step is only triggered if Python is supported and
checks that the JSON output conforms to the official notebook format schema.
This is done through an integration of nbformat, the reference implementation
of the Jupyter notebook format written in Python.

Listing 12.1 contains the code of a utility method used for validating saved
notebooks with nbformat. The method is implemented on the class side and
uses the isValidateNBJson class variable for referencing a Python method.
The lazy-initialization pattern makes sure that the variable is always correctly

133

12. Case Studies Based on TruffleSqueak

initialized. This happens when the method is used for the first time. But
because Python objects are not persisted as part of Smalltalk images, the
variable can also be nil after an image is loaded. The Python code evaluated
through TruffleSqueak’s polyglot API tries to import the nbformat module.
It then creates a helper method that reads a JSON string in version 4 of
the file format and calls the validate() function on the result. If any of this
fails with an exception, the JSON does not conform to the Jupyter notebook
format. Therefore, the helper returns true if validation is successful, and false
otherwise. If the import statement fails, however, an error is thrown. In this
case, the utility method informs the user about the error and suggests installing
nbformat. Otherwise, the polyglot API returns the result of the last line of the
Python code, which is the helper method. According to GraalVM'’s language
interoperability protocol, Python methods are executable. In TruffleSqueak,
executables can be invoked with one argument through the value: message
of Smalltalk BlockClosures.

Lastly, the integration of nbformat is an example of how polyglot program-
ming can be applied in tools. With a few lines of code, the output of a tool
can be validated with the reference implementation of a specific file format
to ensure compatibility.

Insights and Lessons Learned This project demonstrates that the ability to
compose existing tools to build new ones at run-time makes TruffleSqueak a
useful tool-building platform. Moreover, its exploratory tools are suitable for
data analysis, which in itself is often exploratory [205].

In terms of sharing objects between languages, the system allows us to
explore different ideas: The example from Figure 12.1 shows that objects can
be exchanged explicitly through a bindings object. Initially, we used Truffle’s
polyglot bindings object for this. But because it is a global namespace without
any support for scoping, we decided to use a dedicated key-value store per
notebook instance. This avoids name clashes and interferences with other
notebooks and applications that use the global polyglot bindings object in
some way.

Furthermore, we also experimented with approaches to automate sharing
of variables between languages. Whenever a code cell is executed, the tool
takes a snapshot of all keys available in the top scope of the corresponding
language before the execution. After the execution, it compares these keys
against the current set of keys to identify newly introduced variables. The tool
keeps track of all variables and their languages introduced by all code cells
of a notebook. Based on this information, it can copy corresponding objects
from one top scope into the top scope of another language before a code cell
is executed. This way; it is possible to automatically share variables instead of

134

12.2. Adding Support for Polyglot APIs to Code Editors

having to explicitly use the bindings object. This approach, however, has some
disadvantages and relies on some requirements that all GraalVM languages
must fulfill: First, each language must provide a top scope, which is currently
an optional feature. Second, local variables defined as part of code evaluated
through the polyglot API must be stored in the top scope. Moreover, variable
names may clash with the elements in the top scopes or the keywords of other
languages. A local variable named import, for example, cannot be used in
Python because import is a keyword of the language. Another requirement is
that top scopes are writable, which some languages may not support. Instead
of copying values across top scopes, the tool could also pass in the variables
through a local scope when evaluating code. The support for this in Truffle,
however, is still experimental and inconsistently implemented across different
languages. A third option is to generate import statements for the current
language and prepend them to a code evaluation request. This, however,
requires the tool to have knowledge about all languages. This means that the
tool is no longer language-agnostic and therefore no longer works for newly
added languages automatically.

Furthermore, we realized that the PolyglotNotebook can also be a helpful
tool for language and runtime developers. Through introspection, it is easy to
analyze language internals or GraalVM internals and to create visualizations.
As an example, we analyzed the number of slots of classes and their types
across Squeak/Smalltalk at run-time to determine reasonable numbers for
inline fields in TruffleSqueak’s object layout (see Figure C.1). In another
example, we used a notebook to analyze the compilation queue of the dynamic
Graal compiler (see Figure C.2).

TruffleSqueak allowed us to better understand the requirements for a
notebook system built on top of Graal VM. In Section 13.2, we show that the
insights gained from this project are not specific to TruffleSqueak and can
also be applied to other notebook implementations, such as an actual Jupyter
kernel or the notebook system of VS Code.

12.2. Adding Support for Polyglot APIs to Code Editors

Research Question How could code editors support developers in
using the polyglot APIs from different GraalVM languages?

Problem Statement To enable polyglot programming, GraalVM languages
provide access to other languages through polyglot APIs. Table 12.1 gives
an overview of the core polyglot APIs of five different GraalVM languages.
Each of them allows strings and files to be evaluated for a given language. In

135

12. Case Studies Based on TruffleSqueak

Table 12.1.: Overview of the core polyglot APIs provided by five different
GraalVM languages. Although all of them provide means to evaluate strings
and files as well as to export and import values to and from Truffle’s bindings
object, the APIs are different across languages.

GraalVM Language Core Polyglot API

eval.polyglot(id, string)
eval.polyglot(id, path=path)
FastR polyg p p

export(name, value)

import(name)

Polyglot.eval(id, string)
Polyglot.evalFile(id, path)
Polyglot.export(name, value)

Graal js

Polyglot.import(name)

import polyglot # import the module before use

polyglot.eval(string=string, language=id)
(3raau?yth(nl polyglot.eval(path=path, language=id)

polyglot.export_value(value, name=name)

polyglot.import_value(name)

Polyglot.eval(id, string)
Polyglot.eval file(id, path)
Polyglot.export(name, value)

TruffleRuby

Polyglot.import(name)

Polyglot eval: id string: string.
Polyglot eval: id file: path.
TruffleSqueak ye P

Polyglot export: name value: value.
Polyglot import: name.

addition, objects can be shared between languages through an import/export
mechanism. Although they support the same set of core features, the way
these features can be used differs across languages. Graal js, TruffleRuby, and
TruffleSqueak, for example, provide a dedicated, preloaded Polyglot module
or class. In GraalPython, on the other hand, the polyglot module needs to
be explicitly imported before use. It further needs to avoid a name clash
with Python’s import keyword, which is why the import/export functions
are called import_value() and export_value(). FastR provides its polyglot
API through a set of builtins instead. Moreover, the eval functions of FastR
and GraalPython support strings and files through keyword arguments. The
other three languages provide two functions, one for evaluating strings and
one for files. Furthermore, each polyglot API follows the established naming
conventions of the corresponding language, such as camel case or snake case.

From the perspective of developers, these differences in the APIs of
GraalVM languages are problematic. Having to think about the correct usage
of each API adds additional cognitive overhead for developers and therefore
increases the potential for errors. Appropriate suggestions for code comple-

136

12.2. Adding Support for Polyglot APIs to Code Editors

@ Polyglot Editor

oS

Choose new root directory...

Split Pane " Export... "

.||

Evaluate... || Code Box

+ example
benchmark_results.csv
report.js

+ snippets
aggregate-values.py
read-csv.rb

SqueakV50.sources
TruffleSqueak-21.2.0.ch:
TruffleSqueak-21.2.0.im:

report.js

var csvPath = "./benchmark_results.csv"

require "csv"
csv = CSV.read(csvPath, col_sep: "\t", converters: :numeric)

csv.shift # skip header
rows = csv.to_a

var benchmarkValues = new Map()
for (const row of rows) {
if (!benchmarkValues.has(row[4])) benchmarkValues.set(row[4], []) // ensure array for benchmark exists
benchmarkValues.get(row[4]).push(row[1]) // push values
}
var results = {}; for (const benchmarkName of benchmarkValues.keys()) { results[benchmarkName] = {} }

aggregate-values [~ |

Values, results

import statistics

for benchmark_name, all_values in benchmarkValues:
values = all_values[50:] # ignore first 50 iterations
benchmark_results = results[benchmark_name]
benchmark_results["min"] = min(values)

results[" ic_mean"] =

k. ic_mean(values)

benchmark_results["median"] = statistics.median(values)
benchmark_results["mean"] = statistics.mean(values)

benchmark_results["max"] = max(values;

JSON.stringify(results)
LF 12021-07-01 9:12:39 am

JavaScript

Figure 12.2.: A screenshot of TruffleSqueak’s PolyglotEditor demonstrating
its support for code boxes.

tion, as provided by GraalVM’s extension for VS Code [137], can help to avoid
the worst case of having to refer to the documentation. The correct name for
an API, however, can be hard to discover through code completion. Think
about FastR’s builtins for example. More importantly, the polyglot APIs still
add additional cognitive overhead and additional work for developers: They
must keep track of all exported and imported values and maintain a correct
order within their polyglot application. Also, they might want to structure
code of different languages in separate files, which they have to manage. In
this case study, we explored how code editors can support developers in using
the polyglot APIs of GraalVM languages beyond code completion.

Project Outcome Although Squeak/Smalltalk code is managed in objects,
not in files, a file-based code editor was easy to build in TruffleSqueak. Similar
to the PolyglotNotebook tool, TruffleSqueak’s PolyglotEditor is composed
of existing components from Squeak/Smalltalk, such as a tree view for
visualizing a folder structure on the file system and the text editor with
polyglot support for syntax highlighting.

Figure 12.2 shows a screenshot of the PolyglotEditor tool. The sidebar
on the left visualizes a selected folder structure. From there, files can be
opened within tabs underneath the top bar that provides different controls.
The “Split Pane” button allows users to open two files side by side. “Run”

137

12. Case Studies Based on TruffleSqueak

evaluates the currently opened file and opens an inspector on the result of
the execution. The “Export...” button opens a dialog that asks the user for a
name, followed by a dialog asking for a value. For a given name-value pair,
the editor inserts an export statement for the language of the current file at
the current position of the cursor. Furthermore, it keeps track of the exported
names. The “Import...” button opens a list that consists of both, the names of
values that have been exported as part of this editor instance as well as the
names that are currently present in Truffle’s polyglot bindings object. Similar
to the previous two buttons, the “Evaluate...” button allows developers to
generate a code evaluation statement in the current language. First, it provides
a list of all languages that are available in the active GraalVM installation.
Developers are then prompted to enter the code they want to evaluate in the
selected language. Lastly, the button on the very right inserts a new code box at
the cursor’s position. These code boxes are inspired by language boxes [157]
and are editors embedded in an editor that can be set to different languages.
Alongside code, each code box has a name and language. Polyglot imports
and exports can optionally be set. With this information, the editor creates a
file in the snippets directory in the current working directory. The file name
is derived from the code box’s name and the selected language. If imports
or exports are defined, the editor generates appropriate import and export
statements for the corresponding language and adds them to the file. Lastly,
it inserts a polyglot evaluate file request into the parent file of the code box.
When creating new code boxes, the editor further offers to re-use existing
code boxes if any are found in the snippets directory. Moreover, code boxes
can be collapsed and expanded by clicking on the small ~ button displayed
in the top right corner of each box. This way, foreign code within code cells
can be easily hidden from the overall view.

The example opened in the editor shown in Figure 12.2 makes use of
two code boxes. Similar to the PolyglotNotebook tool, the editor encodes
language selections with colors. The report.js file opened in the editor
creates performance reports in the JSON format for a given CSV file with
benchmark results. The benchmark results analyzed in this example are from
the Are We Fast Yet (AWFY) benchmarks presented in Appendix B.

The first code box is set to Ruby and loads and parses the CSV file into
an array. For this, it imports the csvPath variable from JavaScript and ex-
ports the Ruby array stored in the rows variable. In JavaScript, a map of
values per benchmark and a results object are created from the rows Ruby
array. The second code box uses Python and imports both, the map stored
in benchmarkValues and the results object. For each benchmark, the first
50 values are skipped to reduce the effect of warmup in benchmarks. The
remaining values are then aggregated with Python’s statistics module and

138

12.2. Adding Support for Polyglot APIs to Code Editors

Listing 12.2: Excerpt from the actual report. js file that was generated as part
of the example shown in Figure 12.2.

var csvPath = "./benchmark results.csv"

// CODE BOX BEGIN:./snippets/read-csv.rb
Polyglot.export("csvPath", csvPath)
Polyglot.evalFile("ruby", "./snippets/read-csv.rb")
var rows = Polyglot.import("rows")

// CODE BOX END

var benchmarkValues = new Map()

// ...

the min and max builtins. Since the Python code box stores aggregated values
in the results object from JavaScript, it does not need to export anything.
Finally, the results object is converted into a JSON string with JavaScript’s
JSON module.

When the report.js is executed, the result is a JSON-formatted string
containing statistical information about the benchmarks, such as the geometric
mean per benchmark. The code written in this file could, for example, be used
further within a webhook of Node.js server that provides performance results
through a REST API.

Note that although this example uses Graal.js” polyglot API to evaluate
two files, the API usage is completely hidden from the user. The Ruby and
Python files managed by the editor can, however, be found in the snippets
directory listed as part of the folder structure.

Selected Implementation Detail One of the main features explored in the
PolyglotEditor project are the code boxes for hiding polyglot evaluate file
requests from the users. For this, the editor creates and manages files in the
background and generates appropriate polyglot API calls. In the following,
we show some of the actual output created by the editor for the example from
Figure 12.2.

Listing 12.2 shows the first seven lines of the report. js from the example
shown in Figure 12.2. The PolyglotEditor uses code comments to persists
meta-information about code boxes in files. In this case, the code for the
Ruby code box is in between lines two and six: Line three exports the csvPath
variable through the polyglot API. In the next line, the read-csv. rb file stored
in the snippets directory is evaluated. And line five makes the rows array
from Ruby available in the rest of the report.js.

Listing 12.3 shows the contents of this read-csv. rb file: The first line imports
the csvPath variable from JavaScript. Line two contains the begin tag for code
boxes as well as the metadata entered through the UI. Lines three to six are
the actual lines written in the code box, followed by the end tag for code boxes.
And the last line exports the rows variable through the polyglot API.

139

12. Case Studies Based on TruffleSqueak

Listing 12.3: Contents of the read-csv. rb file generated by the PolyglotEditor
for the Ruby code box shown in Figure 12.2.

csvPath = Polyglot.import(“csvPath")

CODE BEGIN:{"boxName":"read-csv",

— "exportVariables":["rows"],"importVariables":["csvPath"], "language":"ruby"}
require "csv"

csv = CSV.read(csvPath, col sep: "\t", converters: :numeric)

csv.shift # skip header

rows = csv.to a

CODE END

Polyglot.export("rows", rows)

Split Pane Run Export... Import... Evaluate... Code Box

polyglot_fibonacci.py

import polyglot
def python_fibonacci(n):
return n if n <= 1 else r_fibonacci(n - 1) + jsFibonacci(n - 2)

Name: [fibonacci-js I JavaScript 1

Imports: [python_fibonacci][Code Box |
Name: [fibonacci-r Il R I[~]
Imports: [python_fibonacci || Code Box |

def ruby_fibonacci(n)

n <=1 ? n : $python_fibonacci.call(n - 1) + $python_fibonacci.call(n - 2)
end

r_fibonacci <- function(n) {
ifelse(n <= 1, n, python_fibonacci(n - 1) + ruby_fibonacci(n - 2))

Export: [ruby_fibonacci, r_fibonacci

function jsFibonacci(n) {
return n <=1 ? n : r_fibonacci(n - 1) + python_fibonacci(n - 2)

}

Export: [ruby_fibonacci, r_fibonacci, jsFibonacci

assert python_fibonacci(20) == 6765

LF

Figure 12.3.: A polyglot, recursive algorithm to calculate Fibonacci numbers
using the nested code boxes feature of TruffleSqueak’s PolyglotEditor.

In terms of the Ul, the PolyglotEditor makes use of TextAnchors. Such a
TextAnchor can be added as an attribute of the editor’s Text object to display
a Morph object at a specified position. Code boxes are therefore implemented
as morphs and added to text using TextAnchors. This, however, has an
interesting side-effect: Since code boxes contain an embedded editor that also
has a Text object, code boxes can be nested indefinitely.

In Figure 12.3, we have used nested code boxes to implement a polyglot,
recursive Fibonacci algorithm. Each implementation of the algorithm in one

140

12.2. Adding Support for Polyglot APIs to Code Editors

language uses the implementation of one or two other languages recur-
sively. The r_fibonacci function, for example, uses python_fibonacci and
ruby fibonacci if n > 1. While this is a toy example, the assertion in line
five of the main Python file demonstrates that this polyglot implementation
can compute correct Fibonacci numbers. More importantly, it shows that the
editor generates correct files for nested code boxes across different languages.

Insights and Lessons Learned The PolyglotEditor project demonstrates
that TruffleSqueak also allows the exploration of ideas for commonly static
tools such as code editors and gives examples of how such tools can be
enhanced with dynamic run-time data. The basic UI and features of the
code editor were easy to build with the ToolBuilder infrastructure and the
Morphic framework from Squeak/Smalltalk. Furthermore, TextAnchors not
only made it easy to implement code boxes but also enabled nesting.

Moreover, this project allowed us to better understand the requirements
and language specifics for integrating polyglot APIs of GraalVM languages
in code editors: Similar to code completion, the PolyglotEditor needs to
know how to generate statements for evaluating strings and files as well as for
exporting and importing values across all languages. In addition, the editor
must have an understanding of how assignments are defined in all languages
so that it can make imported values available under a given variable name.
GraalPython further demonstrated that the editor also needs to know how to
manage and extend language imports. Since we decided to manage metadata
within the files, as opposed to separate metadata files, the PolyglotEditor
also knows about how comments work across languages.

Another takeaway from this project is that code editors can allow developers
to use polyglot APIs in a consistent way. The steps for creating polyglot
evaluate, export, and import requests and for code boxes are always the same,
even if developers switch between files written in different languages. As the
detection of currently exported values through the polyglot bindings object
demonstrates, dynamic run-time data can further enhance the features of the
editor with accurate information.

As part of this project, we further experimented with ideas that help devel-
opers to switch between languages. Through linter-like annotations, we tried
to highlight programming and stylistic errors that often occur during polyglot
programming. The first two of such errors we identified are semicolons used
or not used at the end of each line as well as the use of parentheses and
brackets. Ultimately, we concluded that editors should support linting for the
languages in use, similar to syntax highlighting and for example through a
combination of linters for different languages.

141

12. Case Studies Based on TruffleSqueak

12.3. Helping Developers to Find Re-Usable Code

Research Question How could we help developers to find appropriate,
re-usable code for building polyglot applications?

Problem Statement Many developers are familiar with more than one
programming language and polyglot programming allows them to combine
their knowledge and thus languages, which increases productivity. Due to
many different reasons such as personal preferences, education, or work
experience, it is common that developers know some languages better than
others, including the libraries, frameworks, and tools that each language
provides. Furthermore, many of the underlying programming techniques and
concepts are universal across languages. Therefore, experienced developers
can often read and understand code of a language, even if they are not familiar
with writing code in that language.

A crucial factor with regard to software reuse is to know about and have
experience with existing software that can be re-used. Programming with
polyglot VMs further allows developers to re-use code across languages.
With every additional language that a polyglot VM supports, the libraries
and frameworks of an entire language ecosystem are made available for reuse.
Additionally, the idea behind polyglot programming is to allow developers
to always use the “best” language for the task. But what if developers do not
know that some tasks can be implemented much easier in some languages
than others? In this case study, we explored ideas that help developers to find
re-usable code when building polyglot applications.

Project Outcome Developers often use the internet to search through pro-
gramming resources and to exchange knowledge with others. StackOverflow,
for example, is a popular online platform that developers use to ask and
answer programming questions [204]. Many of these programming answers
contain code snippets to illustrate possible solutions. An analysis of code
snippets from StackOverflow suggests that for natural language texts, some
of them even provide running solutions that work out-of-the-box [223].

As part of this project, we designed and implemented a tool that allows
developers to search StackOverflow from within their IDE, thus reducing ex-
pensive switches between the programming environment and a web browser
redundant. Through exploratory programming features, developers can fur-
ther explore search results interactively and adapt them for their needs.

Figure 12.4 shows a screenshot of the polyglot code finder tool, which can
be opened from within a PolyglotNotebook or a PolyglotEditor. Developers
can enter a search query and select the languages that they would like results

142

12.3. Helping Developers to Find Re-Usable Code

£ Polyglot Code Finder (v 1+
bubble sort | Example Filter |
| Search |mr [] Javaeript [m] Python o] Ruby [] 5queakiSmalitalk [] Apply Example Filter
gor:l zg::ble_stﬁﬂt: (nums) =>{ def bubble_sort(l):
r dzf b:bbl:(_tf:(;l.(i;st)? for passes_left in range(len(l)-1, 0, -1):

@ def bubble(values): for index in range(passes_left):

& for if Ilindex] < I[index + 1]:
function bubbleSort(a, par) I[index], I[index + 1] = I[index + 1], I[index]
'*s def perform_bubble_sort(blist): return |

¢ def bubble_sort(l):

’ arr = [4,2,5,1]
n=9

s for (var j=records.length; j<1; j--){

R inversionNumber <- function(x){

1s arrayOfPeople.sort(function(a,b) {return a.age-b.age;});
§x<-sample(1 :100,10)

bubble_sort([3,1,6,2,5,4]) [6, 5, 4, 3, 2, 1]

def bubble_sort(array)
def bubble(arr):
&) def bubble_sort(list)

Query completed. [Insert as new cell |

Figure 12.4.: The polyglot code finder allows developers to search for re-usable
code snippets from StackOverflow.

for. In this example, the search query is “bubble sort” and the languages R,
JavaScript, Python, and Ruby are selected. After clicking the “Search” button,
the tool performs the search through StackOverflow’s public API. Content
can be tagged on StackOverflow and the tool uses this to filter for the selected
set of languages. Results appear in the list on the left as a query is running and
can be sorted by the score of an answer, the number of lines of code, or by the
initial order they were received. The status bar next to the “Sort” button on
the bottom informs users about whether a query is currently running or has
been completed. Each item in the list shows an icon of the snippet’s language
as well as the first line. When users select an item, the corresponding code
snippet is shown in the upper text editor on the right. In this case, it shows an
implementation of a bubble sort algorithm written in Python. Users can adjust
code snippets for their needs and use the embedded workspace underneath
the editor to interactively evaluate code to try out the snippet. Once users
are happy with a snippet, they can insert it directly into the corresponding
PolyglotNotebook or PolyglotEditor that opened the tool.

Figure 12.5 shows the code cell added to a PolyglotNotebook by the code
finder tool. In addition to the code snippet, the cell also includes information
on the StackOverflow source, the author, as well as the license as a comment.
In a PolyglotEditor, the tool inserts an appropriate code box in the currently
opened file and at the cursor’s position.

Inspired by the MethodFinder [187], a Squeak/Smalltalk tool that helps
users to find methods for a given pair of input and output objects, the code
finder supports example filters. An example filter, which consists of a list
of input objects as well as an expected output object, can be set through
the button on the top right corner of the tool. When the filter is applied
through the corresponding radio box, the code finder will try to find snippets

143

12. Case Studies Based on TruffleSqueak

Answer URL: https:/stackoverflow.com/a/895748
Author: https://stackoverflow.com/users/104345/mtasic85
License: CC BY-SA 3.0
def bubble_sort(l):

for passes_left in range(len(l)-1, 0, -1):

for index in range(passes_left):

if I[index] < I[index + 1]:

I[index], I[index + 1] = I[index + 1], I[index]
return |

Figure 12.5.: A code cell added through the polyglot code finder from Fig-
ure 12.4 contains the code snippet as well as information about the original
StackOverflow source, the author, as well as the license.

Listing 12.4: Simplified implementation of a performSearchAction method
that is invoked when users click on the code finder’s “Search” button.

performSearchAction
rubyQuery := Polyglot eval: #ruby string: self newQueryCode
names: #('query string' 'add snippets callback')
arguments: {self queryString. [:snippets | self addSnippets: snippets]}.
self updateStatusBar: 'Processing query...'.
rubyQuery start.

[(Delay forSeconds: 2) wait. rubyQuery poll] whileTrue.
self updateStatusBar: 'Query completed.'.
] fork.

that correctly transform the input objects into the output object. For this, it
evaluates each code snippet with the given input and rejects snippets that fail
or that do not produce the expected result. Since code snippets can potentially
contain harmful instructions, the tool can make use of GraalVM’s sandboxing
feature designed to run untrusted code, for example, by restricting access to
the file system. Depending on the number of snippets, this process can take
some time. The remaining items in the code snippet list, however, produce
the correct output for the given input objects and may therefore be good
candidates for reuse.

Selected Implementation Detail The polyglot code finder is written in a
polyglot way from the very start. Its UI is built using ToolBuilder from
Squeak/Smalltalk. For performing and extracting code snippets from web
requests in parallel, it uses Ruby. And extracted code snippets are managed
in Python objects.

Listing 12.4 shows how the method that initiates a new code search is
conceptually implemented. The expression from lines two to four evaluates
Ruby code that allocates a new StackOverflowQuery instance initialized with
the current query string and an add_snippets_callback for adding new

144

12.3. Helping Developers to Find Re-Usable Code

snippets to the list of snippets displayed in the tool’s UI. The fifth line
updates the status bar of the tool. The following line instructs the Ruby object
to start querying StackOverflow. Internally, the object starts multiple, OS-level
threads for downloading result pages and as well as answer pages in parallel.
It then parses the JSON data from StackOverflow using Ruby’s json module
and the nokogiri parsing library to extract code snippets from HTML code
blocks found in the HTML body of each answer. All code snippets found are
then stored in objects of a Python model. The BlockClosure from lines seven
to ten finally spawns a new Smalltalk process that periodically updates the UI
with newly found snippets. For this, the process runs another BlockClosure
that waits for two seconds and then invokes the pol1 method of the rubyQuery
object until it returns false. Within this method, the rubyQuery invokes the
add_snippets_callback with all snippets found since the last invocation of
the method and signals whether the query is still running by return true.
Once the execution of the query has been completed, poll returns false and
line nine updates the status bar again, before the Smalltalk process completes.

Insights and Lessons Learned This project is an example of how new
tooling ideas for polyglot programming can be explored and implemented
in a polyglot way with TruffleSqueak. Moreover, the tool demonstrates that
new tools can easily be integrated into other TruffleSqueak tools, such as the
polyglot notebook or editor tools.

Depending on the query, StackOverflow can provide multiple search result
pages as well as answer pages for each listed question. All of which need to
be requested individually by our tool. For speeding up the querying process
and to run it independently from the UI, we wanted to use OS-level threads.
While Squeak/Smalltalk only supports green threads, polyglot programming
allowed us to use other languages that support OS-level threading. Initially,
we thought we could use Python for this. But after creating a model for code
snippets, we realized that GraalPython, at that time, neither supported the
urllib module for querying the StackOverflow API nor the threading mod-
ule. TruffleRuby, on the other hand, did support both Ruby’s Net: :HTTP client
and the concurrent-ruby gem for threading. Instead of porting the model
we had written in Python to Ruby, polyglot programming further allowed
us to use the existing Python model from within Ruby. The use of Ruby is
therefore incidental and due to lacking support for modules in GraalPython.
Nonetheless, it is not uncommon that during the implementation process,
something turns out to be impractical for other reasons than runtime com-
patibility. Hence, this is an example of how polyglot programming provides
developers with more flexibility: They can try out different implementation
strategies across multiple languages without having to port existing code.

145

12. Case Studies Based on TruffleSqueak

Furthermore, we made a few interesting observations with regard to code
snippets that our tool finds on StackOverflow: The number of code snippets
is different across languages, which makes sense considering that language
communities are different in size and differently represented on StackOver-
flow. Another reason for this could be that some languages are indeed used
more often for specific tasks than others. In the example shown in Figure 12.4,
the number of code snippets written in R was noticeably lower than the ones
found for JavaScript, Python, and Ruby. The example also shows another
observation that we made: Code snippets shared on StackOverflow do not
always contain pure functions. Sometimes the code is unstructured, taken
from an interactive shell session, or contains a class definition. Although
developers can oftentimes adapt such code easily, it poses a problem for our
example filters as code evaluation may fail due to a compilation error or
because the wrong object is returned. In the future, the tool could further
be connected to code hosting platforms such as GitHub that may provide
more structured code. Another observation that we made is that the language
version plays an important role: Many results for Python, for example, were
written in Python 2. GraalPython, on the other hand, only supports a specific
version of Python 3. Other GraalVM languages, such TruffleRuby or FastR,
also only support one specific version of the language they implement.

12.4. Understanding Run-Time Behavior of the Graal
Compiler

Research Question How could we help runtime and language devel-
opers to better understand the complex behavior of the Graal compiler
at run-time?

Problem Statement The Graal compiler is a modern JIT compiler for Java
as well as for languages implemented in the Truffle framework. As such, it
performs state-of-the-art performance optimizations and interacts with other
complex components of the JVM. The main Ul-based tool for the compiler
is GraalVM'’s Ideal Graph Visualizer, which can be used to inspect compiler
graphs interactively and after they were dumped. Most other tools for lan-
guage and runtime developers are command-line based and usually designed
for one specific task, such as logging the behavior of specific performance
optimizations. Sometimes, however, the interaction of different components
and optimization strategies are responsible for specific behavior. Warmup
behavior, for example, plays an important role and can be influenced in many
ways [7].

146

12.4. Understanding Run-Time Behavior of the Graal Compiler

An instance of GraalVM, however, needs to be restarted whenever develop-
ers want to change the set of command-line flags and tools. A restart always
causes run-time state to be lost, which is especially costly when a specific
state is hard if not even impossible to reproduce. In this case study, we used
TruffleSqueak’s VM introspection capabilities and built three tools that allow
exploration of the Graal compiler at run-time.

Project Outcome Unlike other GraalVM languages, TruffleSqueak supports
a full-fledged programming system self-sustained on the user application
level. This has two interesting consequences: First, the Graal compiler can
significantly influence the responsiveness of TruffleSqueak’s programming
system. If warmup, for example, is slow, it takes more time for the program-
ming system to become usable. And second, a key assumption of partial
evaluation as performed by the Graal compiler is that code stabilizes over
time. In TruffleSqueak, however, new tools and applications can not only
be opened at any point in time, opened tools and applications can also be
changed at run-time. For this reason, we built a tool for monitoring the Graal
compilation queue from within TruffleSqueak.

Figure 12.6 shows a screenshot of the TruffleSqueak programming system
demoing the GraalInfoMorph. In this instance of TruffleSqueak, the polyglot
notebook from Figure 12.1is opened and was fully executed. We also disabled
multi-tier compilation and the traversing compilation queue option in the
Graal compiler and enabled its throughput mode to simulate its default
behavior in GraalVM 21.1.0 and earlier, which often led to large compilation
queues in TruffleSqueak. We dropped the GraalInfoMorph into the middle
of the menu bar on the top to display the current size of Graal’s compilation
queue. As shown in Figure 10.4, this information is easy to access through
the TruffleRuntime object. Depending on the current size of the queue, the
text is either gray, orange, or red. The thresholds for this as well as the update
interval can be adjusted easily by changing its implementation at run-time.
More importantly, the GraalInfoMorph keeps track of the sampled values over
time using a collection. A click on the morph opens an RLivePlotMorph on
this collection. The RLivePlotMorph is a subclass of the RPlotMorph presented
in Section 10.2 with the additional ability to redraw plots derived from a
specific collection periodically. In this case, the morph visualizes the sampled
values in a scatterplot and updates the plot every two seconds. The screenshot
in Figure 12.6 demonstrates that the polyglot notebook from Figure 12.1 fills
the compilation queue with more than 1500 compilation tasks quickly. On
the one hand, this is because Ruby, Python, and R, alongside Smalltalk, are
being loaded into the GraalVM process including their standard libraries.
This makes a lot of new code visible to the Graal compiler. At the same time,

147

12. Case Studies Based on TruffleSqueak

[] [] TruffleSqueak.image
] Apps Do Extras Windows Help Graal Queue: 544 2 O
© Polyglot Notebook [+ I+1=]
3] Markdown Runal Addce Load Save
Conference Contributors per Country ~ bindings aZ'H’\embt
We are interested in how many people per country are contributing to <Programming=. First, b countries ¢ ['Argent

"
we download the "people-index’ from the conference's website and extract the data from the [0 a[[FEUP,

“#results-table” u: o
in the notebook's Graal Compilation Queue

require "nokogiri";
url = "https://202 ~ & .
doc = Nokogiriz:H 1500+ i
bindings["rows"] : r =
row.css(".pers- -
bindings["rows"].¢ - *

b root 215

1000- =

size

Then, we use the

to 500- x"‘-_ e
filter and transforr . - o
in “countries®. . \-_‘\\ s

import pycountry
bindings[“countrie
for row in binc

len{bindings["cou
P root 140

Figure 12.6.: Screenshot of the TruffleSqueak programming system showing
the polyglot notebook from Figure 12.1, the GraalInfoMorph in the middle
of the menu bar, and an RLivePlotMorph visualizing the size of the Graal
compilation queue over time.

more Smalltalk code is also being executed as we interact with the notebook
system. For demonstration purposes, we stopped interacting with the system
after evaluating the full notebook. After that, the number of tasks in the
compilation queue decreased somewhat steadily. Shortly after the compilation
queue was emptied, we clicked on the GraalInfoMorph, which again added
more compilation tasks to the queue as the opened RLivePlotMorph warmed
up. This is a good example of a characteristic of self-sustaining programming
systems to be aware of: Since everything runs on the level of user applications,
TruffleSqueak can measure itself. This can be useful or counterproductive
depending on the use case. During performance benchmarking, for example,
such behavior can result in undesired noise and inaccuracies of measurement
and need to be considered carefully. As the following example shows, this
capability can also be used to learn more about the system itself at run-time.

Figure 12.7 shows a screenshot of the CallTargetBrowser tool. It is a direct
subclass of the Browser, the main tool for navigating through the classes of
Squeak/Smalltalk and for reading and writing code. As its name suggests,

148

12.4. Understanding Run-Time Behavior of the Graal Compiler

£ CallTarget Browser: Behavior

v LH

Kernel-Classes
Kernel-Exceptions
Kernel-Exceptions-Kerr
Kernel-Methods
Kernel-Models
Kernel-Numbers
Kernel-Numbers-Exceptf
Kernel-Objects
Kernel-Pools
Kernel-Processes
Kernel-Processes-Varia
KernelTests-Classes
KernelTests-Methods
KernelTests-Numbers
KernelTests-Objects
KernelTests-Processes

-- all -- [l

Behavior
ClassDescription
Class
Metaclass
Categorizer
BasicClassOrganizer
ClassOrganizer
ClassBuilder
ClassCategoryReader
ClassCommentReader

class

| “instance |

|

adding/removing meth:
comparing

compiling

copying

enumerating
initialize-release
instance creation
obsolete subclasses
printing

private

queries

read-only objects
system startup
testing

testing class hierarch
testing method diction
user interface

methodDict
includesSelector:
compiledMethodAt:
>>

inheritsFrom:
instSpec

hash

isWeak
canUnderstand:
isBytes

isBits

new

new:
compiledMethodAt:ifAl
allSubclasses
allinstVarNames
instSize

browse " senders

" implementors ” versions

" inheritance " hierarchy

vars | | call target

name:
highestCompiledTier:
callCount:
callAndLoopCount:
knownCallSiteCount:
nonTrivialNodeCount:
profiled return value:
profiled arguments:
included call nodes:

Behavior>>includesSelector:

2
1118430
1118430
8

31
Boolean

CompiledCodeObject, FrameMarker, n/a, ClassObject, NativeObject

- Behavior>>methodDict
- Dictionary>>includesKey: <split-43fd558a>

di 3/27/1999 23:20 * Dan Ingalls * testing method dictionary * 7 implementors * in no change set *

Figure 12.7.: The CallTargetBrowser integrates information on the
CallTarget objects for Smalltalk methods into the Browser tool of Squeak/
Smalltalk. The list of methods of a class can be sorted by different criteria,
for example, by the callAndLoopCount or the nonTrivialNodeCount. In the
lower pane of the CallTargetBrowser, users can switch from the source code
and bytecode views to a new view that gives detailed information on the call
target of the selected method.

149

12. Case Studies Based on TruffleSqueak

Listing 12.5: Implementation of CompiledMethod>>callTarget, an extension
method added by TruffleSqueak that provides access to the CallTarget object
of a Smalltalk method.

callTarget
~ self vmObject ifNotNil: [:c | c callTarget]

the CallTargetBrowser incorporates additional information on CallTarget
objects into the normal browser. These CallTargets are part of Truffle and
must be used by language developers to represent methods and other callable
objects within their language implementation. They commonly have a di-
rect reference to the AST, often to an AST’s RootNode. The Graal compiler
collects profiling information for CallTargets and produces machine code
for the ASTs of the CallTargets it has decided to JIT compile. Some of
this profiling information is directly stored within call targets. Therefore,
method objects and call targets are usually connected within Truffle language
implementations.

In Squeak/Smalltalk, methods are represented by CompiledCode objects,
which TruffleSqueak manages in instances of CompiledCodeObject of its object
model. TruffleSqueak’s VM introspection infrastructure, which we presented
in Section 10.3, allows the CallTargetBrowser to easily access the CallTarget
object for any Smalltalk method through the extension method shown in
Listing 12.5. Since this infrastructure uses JavaObjectWrappers to provide
unrestricted access to host Java objects, call targets of Smalltalk methods can be
accessed without having to modify TruffleSqueak’s language implementation.

The CallTargetBrowser uses information from CallTargets in two ways:
As the screenshot from Figure 12.7 shows, the method list on the right of
the tool can be sorted by different criteria, such as the callAndLoopCount or
the nonTrivialNodeCount, of the corresponding CallTargets. The extended
browser further uses colors to encode the values of the selected criteria rel-
ative to each other with colors ranging from red (high) to blue (low). Since
CallTargets are lazily initialized within TruffleSqueak, Smalltalk methods
that have not been executed yet do not have a CallTarget object. These meth-
ods are listed below the blue ones and colored in gray. In addition, the code
pane of the CallTargetBrowser provides an additional view for CallTargets.
Developers can therefore easily switch from existing views, such as to view
the source code or bytecodes of a method, to the new view that reveals de-
tailed information on the corresponding call target. In the example shown
in Figure 12.7, this view is opened on the Behavior>>includesSelector:
method. The view shows that at the time TruffleSqueak was running, the
Graal compiler has profiled more than one million calls to this method.
As a result of the high call count, the highestCompiledTier value confirms

150

12.4. Understanding Run-Time Behavior of the Graal Compiler

that the Graal compiler has compiled this method in its second tier that
needs more time than tier one but optimizes code more aggressively. A
highestCompiledTier value of zero, on the other hand, indicates that a
method has not been JIT-compiled at all. Since the method does not con-
tain a loop, the values for callCount and callAndLoopCount are identical.
Furthermore, the Graal compiler also identified eight known call sites. Ac-
cording to Truffle’s cost model, the call target has a nonTrivialNodeCount
of 31. Additionally, the compiler has profiled the types of the return value
and the arguments used to invoke this method on the language implemen-
tation level. So far, the selected Smalltalk method has always returned a
Java Boolean. The list of profiles arguments reveals the Frame layout used by
TruffleSqueak: The CompiledCodeObject of the method is always passed in
as the first argument. This argument is followed by either a FrameMarker or
a ContextObject that represents the sender or the NilObject if the invoca-
tion has none. The third argument references a BlockClosure0Object or null
if none exists. The fourth argument is always the receiver, a ClassObject
in this case because the method is implemented on Behavior. The last ar-
gument is therefore the first argument passed into the Smalltalk method,
which so far has always been a NativeObject. NativeObjects are used in
TruffleSqueak to represent Smalltalk Symbols among others. Lastly, the call
target for Behavior>>includesSelector: includes other TruffleCallNodes.
This is the case if the Graal compiler has decided to inline other methods
into a call target. The implementation of Behavior>>includesSelector: in-
cludes exactly two sends, both of which have been inlined by the compiler.
Behavior>>methodDict looks up the methodDict. Dictionary>>includesKey:
then checks whether the methodDict contains the Symbol provided as an argu-
ment. The name of this call node has been extended with a “<split>" suffix to
hint at another compiler optimization called splitting [141]. This optimization
aims at reducing polymorphism in code, which can lead to more efficient
machine code. In this case, for example, the splitting heuristic has decided
that it makes sense to inline a split version of Dictionary>>includesKey:, that
is a copy of the original call target for Dictionary>>includesKey: allowing to
be re-profiled in the context of Behavior>>includesSelector:. Furthermore,
the Browser from Squeak/Smalltalk can update itself periodically to always
provide an accurate view of the system. The CallTargetBrowser builds on this
live feedback mechanism. The method list, for example, is updated periodi-
cally allowing developers to see how the CallTargets of Smalltalk methods
change over time. Similarly, the call target view is refreshed, which allows
developers to observe how the Graal compiler profiles their code at run-time.

An additional feature of the CallTargetBrowser is illustrated in Figure 12.8:
The screenshot shows the Integer>>+ method opened in the tool. Instead of

151

12. Case Studies Based on TruffleSqueak

€3 CallTarget Browser: Integer (~ 1+
Kernel-Numbers Integer -all - noMask:
Kernel-Numbers-Exceptions LargePositivelnteger *60Deprecated-Kernel-Methoc || byteEncode:base:
Kernel-Objects [instance | FIEEs | *Etoys-Squeakland-mathemat ||+

| browse " senders " i " i " il i " i y " vars | ‘ source

+ aNumber
"Refer to the comment in Number + "
aNumber isinteger ifTrue:
[self negative == aNumber negative
ifTrue: [* (self digitAdd: aNumber) normalize]
ifFalse: [* self digitSubtract: aNumber]].
aNumber isFraction ifTrue:
[*Fraction numerator: self * aNumber denominator + aNumber numerator denominator: aNumber denominator].
A aNumber adaptTolnteger: self andSend: #+

nice 3/11/2013 08:12 * Nicolas Cellier * arithmetic * 28 implementors * in no change set *

Figure 12.8.: TruffleSqueak’s CallTargetBrowser can display code coverage
information based on Truffle ASTs accessible through call targets.

highlighting the syntax, the code view displays information on code coverage,
again periodically updating at run-time. Executed send, return, and store
statements are highlighted in green. Red means that they have not been
reached yet. Internally, the Java array of bytecode nodes is accessed through
the corresponding call target. In TruffleSqueak’s language implementation,
these bytecode nodes are lazily inserted into the Truffle AST of a method
upon first execution of a specific bytecode. To check whether a bytecode
has been executed, the tool can therefore simply check whether the array
of bytecode nodes contains a node at the corresponding index. Through
the DebuggerMethodMap of a Squeak/Smalltalk method, bytecodes can be
mapped back to source code ranges. This particular example tells us that so
far, the Integer>>+ method has only been called with Fraction objects as
the aNumber argument. This, for example, further implies that the method
overrides in SmallInteger and LargePositivelInteger have either never seen
an integer argument, which is unlikely, or that their primitives do not fail to
handle an integer argument, which could be a performance problem. Similarly,
other methods of the system could be explored to understand in more detail
which parts of the codebase are actively being used or not. While this feature
comes for free, it is only possible because of an implementation detail in
TruffleSqueak’s language implementation.

To demonstrate that the general idea of the CallTargetBrowser can not
only be applied to Squeak/Smalltalk and TruffleSqueak, we have further
designed and built CallTargetBrowserRuby. This tool allows the exploration
of CallTarget objects specifically from TruffleRuby. Figure 12.9 shows a
screenshot of the tool. The list on the left reveals all constants of Ruby’s
Object class. In this example, the File class is selected. The second list,
therefore, shows the methods of this File class and similarly allows sorting
by different call target criteria. For the selected Ruby method, fnmatch() in

152

12.4. Understanding Run-Time Behavior of the Graal Compiler

£ CallTargetBrowser for TruffleRuby: File (v N+]
Enumerable expand_path name: File.fnmatch
Enumerator file? highestCompiledTier: 1

Errno . basename callCount: 420

Exception fnmatch

FALSE extname callAndLoopCount: 420

FalseClass dirname knownCallSiteCount: 1

Fiber last_nonslash nonTrivialNodeCount: 109

FiberError symlink? profiled return value: Boolean

File absolute_path? profiled arguments: n/a, n/a, InternalMethod,
FileTest directory? DeclarationContext, n/a, RubyClass, Nil, n/a,
Fixnum exist?

RubyString, Integer

Float realpath . .
FloatDomainError | |join included call nodes:

FrozenError absolute_path - Kernel#StringValue

GC atime - Truffle::Type.check_null_safe
Gem atime - Truffle::Type.coerce_to_path
Hash blockdev? - BasicObject#!= <split-4a96541>
10 braces

IOError chardev?

Figure 12.9.. The CallTargetBrowserRuby tool allows wusers to ex-
plore CallTarget objects from TruffleRuby at run-time similar to how
CallTargetBrowser allows it for TruffleSqueak.

this case, detailed information on the call target is displayed in the panel on
the right, in the same way this information is displayed in the code pane of
the CallTargetBrowser. This time, however, it is necessary to understand the
Frame layout used by TruffleRuby to understand profiled arguments. Although
the callCount is low compared with Behavior>>includesSelector: from the
previous example, the call target has already been compiled in tier one and
includes four other call nodes, one of which was split. The additional callnodes
reveal an implementation detail of fnmatch(): While CRuby implements
famatch() in C, TruffleRuby has implemented this function in pure Ruby. If
this function was implemented on the level of the language implementation,
there would have been no call nodes to inline. Furthermore, the example
from Figure 12.9 also shows that a major part of the File class has not
been used yet. Only 13 methods have a call target, the rest is grayed out.
CallTargetBrowserRuby also supports periodic updates. If, for example, code
runs that exercises more of the File class, the list of methods would be
refreshed allowing developers to observe how Truffle and Graal profile more
of the class. Code coverage, on the other hand, is not supported because
the required information cannot be derived from TruffleRuby ASTs, which
always contain all syntactic nodes on the first execution of a call target.

Selected Implementation Detail TruffleSqueak’s VM introspection capabil-
ities make it possible to build tools such as the GraalInfoMorph or browsers for
call target information. These capabilities are based on GraalVM'’s support for
interoperability with the host Java and on TruffleSqueak’s JavaObjectWrapper,

153

12. Case Studies Based on TruffleSqueak

which provides unrestricted access to VM-level objects. As a result, language-
specific or compiler-specific tools can be built at run-time and do not require
any modification on the side of language implementations or the compiler.
Furthermore, the ToolBuilder framework from Squeak/Smalltalk and the
Smalltalk programming experience make the creation of tools very produc-
tive. The CallTargetBrowserRuby tool is a good example of this: Although
it is a self-contained tool, not a subclass of an existing one, it is written in
43 methods with a total of only 193 SLOC. Moreover, only three of these
methods are specific to the Ruby language, and one to TruffleRuby:

1. The moduleAndClassList method returns a list of all Ruby module and
class names of the top scope.

2. The methodList: method returns a list of method names for a given Ruby
module or class name.

3. The methodFor:of: method returns a Ruby Method object for a given
method name and a module or class name.

4. The callTargetFor:of: method uses methodFor:of: to retrieve a Ruby
Method object and returns the corresponding CallTarget object from Truf-
fleRuby via TruffleSqueak’s vmObject infrastructure.

The rest of the tool can be re-used to provide a similar browser for call
targets of other GraalVM languages. With only five method overrides and
25 additional SLOC, we created a CallTargetBrowserPython subclass for
GraalPython to demonstrate this (see Figure C.3).

Insights and Lessons Learned This project demonstrates that TruffleSqueak
is a useful exploratory tool-building platform not only for application and
tool developers but also for language and runtime developers.

For TruffleSqueak, we needed to implement a Truffle language and both
the GraalInfoMorph and the CallTargetBrowser have proven to be helpful
tools to understand how the Graal compiler optimizes a self-sustaining pro-
gramming system such as Squeak/Smalltalk. The tools can also be used for
teaching purposes and to explain the inner works of the compiler. With the
GraalInfoMorph, it is possible to monitor Graal’s compilation activity from
within Squeak/Smalltalk to get an understanding of how much work it does
over time but also to identify compilation issues. The tool helped us not only
to identify regressions in TruffleSqueak’s language implementation but also
problems and bugs in the Graal compiler. After upgrading to a new release
of GraalVM, for example, we noticed that the compilation queue grew exces-
sively in size, which helped to uncover a bug in Graal’s splitting heuristic. The
large queue sizes we could observe when running polyglot notebooks are an-
other example and were an additional reason for the GraalVM team to rework

154

12.4. Understanding Run-Time Behavior of the Graal Compiler

Truffle’s queuing algorithm. Based on the simple feedback on compilation
queue sizes, we further used other tools of TruffleSqueak to examine specific
aspects of the compiler in more detail. One example of this is the polyglot
notebook in Figure C.2 that we used to analyze snapshots of the compilation
queue.

The CallTargetBrowser, on the other hand, helped us to understand how
Smalltalk methods are optimized by the Graal compiler in more detail. The
highestCompiledTier value, for example, is a simple indicator for how much
effort, if any, Graal has put into optimizing a specific method. Another inter-
esting piece of information that is easily accessible through the tool is whether
a primitive method has a call target or not. Since TruffleSqueak tries to eagerly
evaluate primitives, a primitive method with a call target reveals that the
corresponding VM primitive has failed and as a result, a call target for the
method’s fallback code was created. Oftentimes, this suggests that something
is wrong with the implementation of the primitive, for example, that a Truffle
specialization for specific arguments is missing.

Moreover, the fact that TruffleSqueak is a self-sustaining programming
system can have side effects when it comes to the compiler and other VM in-
ternals. This means that tools built in TruffleSqueak can have a larger influence
on the runtime system compared with remote tools. As the GraalInfoMorph
example shown in Figure 12.6 has demonstrated, tools for inspecting certain
aspects of the runtime system can directly influence them and therefore falsify
the data they show. The RLivePlotMorph visualizing compilation queue sizes
over time, for example, can add new compilation tasks to the queue. Similarly,
the CallTargetBrowser may exercise certain parts of the system more than
usual and therefore presents a somewhat biased view over the actual state of
call targets present in the system.

Furthermore, the CallTargetBrowser allowed us to explore the potential
of call target information for application developers: The information on
inlined call targets, for example, can be used to allow developers to browse
actual implementors of a specific method, not just all implementors found in
Squeak/Smalltalk. Similarly, refactoring tools could be improved to allow the
renaming of actual implementors. Instead of the knownCallSiteCount, call
targets also included detailed information on known call sites in an earlier
version of Graal. Similar to inline call targets, we could use this information
to allow developers to browse actual senders and not just all senders found
throughout the system. Moreover, the type information on profiled arguments
and return values could also be used for other development features such as
code completion. For comparison, the Live Typing project [215] required non-
trivial changes to the OpenSmalltalkVM to provide the same functionalities.
In TruffleSqueak, on the other hand, all of this comes for free because the

155

12. Case Studies Based on TruffleSqueak

Graal compiler already collects a lot of profiling information that can easily
be accessed, for example, through call targets.

Lastly, we learned that the use of command-line flags often influences the
implementation of compiler optimizations and options: Since command-line
flags cannot be changed at run-time, their input values are often assumed to
be immutable. This means that, although it is possible to inspect values, for
example, that configure compiler heuristics, they are often not designed to
be changed while the compiler is running. Revising compiler optimizations
and options so that they can handle configuration changes at run-time, on the
other hand, would allow further exploration of compiler internals through
systems such as TruffleSqueak. The same applies to Truffle-based language
implementations. With TruffleMATE [24], Chari et al. have shown that it is
possible to build a fully reflective VM in Truffle. Expanding this idea to the
host VM and combining it with our approach could allow developers to
evolve polyglot VMs and language implementations at run-time, but is left
for future work.

12.5. Extending Squeak/Smalltalk With a Polyglot
Drawing Engine

Research Question What are the benefits and drawbacks of using
polyglot programming with GraalVM to build a new drawing engine
for Squeak/Smalltalk?

Problem Statement Squeak/Smalltalk uses the BitBlt and Balloon VM
plugins for rendering its programming system. As discussed in Section 8.1,
we ported these two plugins from C to Java to improve TruffleSqueak’s UI
performance. BitBlt, however, was originally designed for the Xerox Alto in the
1970s [71]. Although the BitBlt implementation used by Squeak /Smalltalk has
evolved over the years, it conceptually still works the same. The way graphics
work today, on the other hand, has changed significantly. Both rendering
plugins, for example, run on the CPU and consequently do not benefit from
hardware acceleration provided by modern GPUs.

The outdated architectures of BitBlt and Balloon, however, have become
more and more noticeable with the increase in display resolutions. As a result,
the Smalltalk community has explored different approaches (e.g., [40, 98, 186])
to build new drawing engines that, for example, support vector rendering
and are based on more recent graphics technologies such as OpenGL [200],
Cairo [219], or Skia [55]. These approaches often use C-based foreign function
interfaces for integrating low-level graphics libraries. In this case study, we

156

12.5. Extending Squeak/Smalltalk With a Polyglot Drawing Engine

@ O System Browser: Behavior
i system startup hasMethods
Kernel-Classes ClassDescription testing includesLocalSelector:
Kernel-Exceptions Class testing class hierarchy includesSelector:
Kernel-Exceptions-Kernel Metaclass testing method dictionary whichClassIncludesSelector
Varnal Mathade R EISPRY S, wihirhMathadeCraralnta:
instance class
browse senders implementors versions inheritance hierarchy vars

includesSelector: aSymbol
"Answer whether the message whose selector is the argument is in the
method dictionary of the receiver's class."

A self methodDict includesKey: aSymbol

di 3/27/1999 23:20 | Dan Ingalls | testing method dictionary | 7 implementors | in no change set |

Figure 12.10.: The Browser tool from Squeak/Smalltalk built in Java Swing
through our JavaSwingToolBuilder.

explored how a new drawing engine for Squeak/Smalltalk could be built
through polyglot programming with GraalVM.

Project Outcome Many tools in Squeak/Smalltalk are implemented using
ToolBuilder. The ToolBuilder framework follows the builder pattern [50,
pp- 97-106] and constructs tools from appropriate specifications provided
by tool developers. More specifically, MorphicToolBuilder constructs tools
using the Morphic Ul framework.

In the first exploration phase, we created a JavaSwingToolBuilder that
can construct tools with Java Swing for the same tool specifications. Apart
from Smalltalk, Java is the only other language well-supported by GraalVM
that provides UI frameworks as part of its standard library. Since Espresso,
the Java language implemented in Truffle, did not support Swing at that
time, we used the host Java instead. Since interoperability with the host Java
works through GraalVM’s interoperability protocol the same way it works
for guest languages, this gave us a realistic impression of building a polyglot
drawing engine. Multi-language debugging and dynamic code evaluation
are, however, limited to guest languages. On the other hand, host Java does
not suffer from warmup issues that were present in Espresso at that time.

Figure 12.10 shows a screenshot of Squeak/Smalltalk’s Browser tool built
with the JavaSwingToolBuilder. Internally, this builder implements different,
abstract specifications for UI components using appropriate Swing com-
ponents. For a PluggableButtonSpec, for example, JavaSwingToolBuilder
creates a Swing JButton, a PluggableTextSpec creates a JTextArea, and so
on. As a result, the Ul is entirely rendered by Swing widgets with proper
support for high-resolution displays. User events, however, are forwarded
to and still handled by the Squeak/Smalltalk model. As Figure 12.10 demon-

157

12. Case Studies Based on TruffleSqueak

(] [] World
,v‘;_‘_-_{l Tools Apps Do Extras Windows Help 10:34:22 B
—
£3 RootCommand@12c76d6e (v X+ 1=]
¥ root RootCommand@12c76d6e
B members 15 in total
¥ commands 1 in total

+ MorphNodeCommand
P members
¥ commands
b FrameAndFillRectangleCommand
= ClipByCommand
b~ members
¥ commands
B MorphNodeCommand
B MorphNodeCommand
B MorphNodeCommand
= MorphNodeCommand
I members
+ commands
b FrameAndFillRectangleCommand
B FrameAndFillRectangleCommand
B MorphNodeCommand

MorphNodeCommand@279c4e3b (a PasteUpMorph(2434915) [world])

16 in total

2 in total

FrameAndFillRectangleCommand@2095c331

ClipByCommand@1bdafb0l

10 in total

5 in total

MorphNodeCommand@3041beb3 (an ImageMorph(2044870))
MorphNodeCommand@1la34a51e (a PluggableSystemWindow<System Browse
MorphNodeCommand@280d5a82 (a PluggableSystemWindow<Workspace>(4’
MorphNodeCommand@69069866 (a PluggableSystemWindow<RootCommand
16 in total

15 in total

FrameAndFillRectangleCommand@5e05a706
FrameAndFillRectangleCommand@27746c5e
MorphNodeCommand@342alf84 (a LeftGripMorph(546631))

inspec

toggle

System Browser: Behavior

Workspace

: - [% nasvietnoas | :
-- all -- | Behavior " testing M innaclluldeZL:caISelect canvas := SwingCanvas
Kernel-CIassesl ClassDescription testing class hierarchy includesSelector: |~ | newWithTitleAndEventListeners:
Kernel-Exceptions Class testing method dictior . rywe "World'
Kernel-Exceptions-Kerr || [interf: whichClassinclude: ’
instance| class Iﬂ user interface 1 wmhichMathadeGta canvas exploreTree.

browse H senders H implemen!H versions H inheritanoH hierarchy H vars source canvas fullDraw: World.

includesSelector: aSymbol

"Answer whether the message whose selector is the argument is in the
method dictionary of the receiver's class."

self methodDict includesKey: aSymbol

di 3/27/1999 23:20 | Dan Ingalls | testing method dictionary | 7 implementors | in no change set |

Figure 12.11.: The TruffleSqueak World drawn by Java Swing through a
SwingCanvas.

strates, tools can further be built in individual native windows, which enables
a multi-window experience in Squeak/Smalltalk.

This prototype only required 59 SLOC of Java code and thus was mostly
built in Squeak/Smalltalk. However, the JavaSwingToolBuilder approach
has a major limitation. Some tools, such as the PreferenceBrowser, are not
implemented in the ToolBuilder framework and can therefore not be built by
JavaSwingToolBuilder. The same is true for some tools that work around the
framework to implement certain features directly in Morphic. TruffleSqueak’s
PolyglotNotebook, for example, allows code cells to be added, removed, and
reordered, something that ToolBuilder does not support.

In the second phase of exploration, we thus focused on the Morphic frame-
work and worked on a new Canvas implementation based on Java Swing. This
way, all tools and applications written in Morphic can be supported.

The result can be seen in Figure 12.11: Since the Squeak/Smalltalk World
object uses Morphic, the entire programming system can be drawn with
our SwingCanvas using Java Swing. The screenshot in Figure 12.11 shows a
TruffleSqueak environment with three open tools. The window on the top is
a DrawTreeExplorer, a tool we built during the development of SwingCanvas.

158

12.5. Extending Squeak/Smalltalk With a Polyglot Drawing Engine

With this tool, we can explore two aspects of our SwingCanvas implementation:
The tree of draw commands that our SwingCanvas has recorded following
the command pattern [50, pp. 233-242] and the tree of Swing components
that were created for these draw commands. The “toggle” button underneath
the “inspect” can be used to switch between these two views allowing us
to compare the two trees, which helps to identify transformation issues
among others. In this case, the RootCommand opened in the tool contains one
MorphNodeCommand. As suggested by their display string, all these objects
are Java objects. The one MorphNodeCommand, in particular, is responsible
for drawing the PasteUpMorph that represents the World object in Squeak/
Smalltalk. This command, in turn, contains two sub-commands: A command
for drawing a filled rectangle and a ClipByCommand. The latter again has sub-
commands, which are MorphNodeCommands. The one selected is responsible
for drawing this very DrawTreeExplorer opened in the screenshot. Its first
two sub-commands, for example, draw the outermost border and the gray
background rectangle of the tool. For comparison, the screenshot also shows
a Browser tool opened on the same method that is also shown in Figure 12.10.
The workspace above the TruffleSqueak logo contains the dolt that created a
new SwingCanvas, opened the upper DrawTreeExplorer, and instructed the
canvas to draw the World object.

The screenshot also shows some limitations of the implementation, mostly
due to time constraints: At the time of writing, SwingCanvas can only draw
Smalltalk Forms of 32-bit depths and does not properly support transparent
Forms yet. Although the font used by AWT for rendering matches the one
used in Squeak/Smalltalk, the positioning of text is not always aligned, and
different font widths are not yet considered. This is due to subtle differences
in how Squeak/Smalltalk and Swing layout texts.

Selected Implementation Detail Swing is based on Java AWT, which uses
OS-level threads for rendering. In Squeak/Smalltalk, on the other hand, ren-
dering happens as part of the main thread. This architectural difference has
consequences in both the JavaSwingToolBuilder and the SwingCanvas imple-
mentations. Mouse and keyboard events, for example, are handled in AWT
threads. From there, however, they cannot invoke the corresponding event han-
dler in Smalltalk as it does not support OS-level multi-threading. To compen-
sate for that, JavaSwingToolBuilder uses a dedicated AWT ActionListener
that records events in a Java queue, which is then processed through a
JavaEventSensor in Smalltalk and on the main thread.

A simplified implementation of this ActionListener is depicted in List-
ing 12.6: To instantiate such a listener, an eventCallback of the type Value is
passed in. The Value typeis provided by the GraalVM SDK [138], used to repre-

159

12. Case Studies Based on TruffleSqueak

Listing 12.6: Simplified implementation of an AWT ActionListener that adds
event callbacks to a thread-safe Queue.

public class ToolBuilderActionListener implements java.awt.event.ActionListener {
private static Queue<Value> EVENT QUEUE = new ConcurrentLinkedQueue<>();

private Value eventCallback;

public ToolBuilderActionListener(final Value eventCallback) {
this.eventCallback = eventCallback;

}

@Override

public void actionPerformed(final ActionEvent e) {
EVENT QUEUE.add(eventCallback);

}

Listing 12.7: Simplified implementation of the
JavaEventSensor>>processEvents method that polls the Java Queue
for event callbacks and activates them in a new Smalltalk process.

processEvents
| eventCallback |
[eventCallback := self eventQueue poll] whileNotNil: [eventCallback fork]

sent guest language objects, and facilitates communication through GraalVM’s
interoperability protocol. The JavaSwingToolBuilder creates these listener
objects passing in an appropriate Smalltalk BlockClosure as eventCallback
and adds them to Swing UI components such as JButtons. When such a
button is clicked, for example, the ToolBuilderActionListener adds the
corresponding BlockClosure to the EVENT_QUEUE.

A Smalltalk-level JavaEventSensor process, inspired by Squeak /Smalltalk’s
EventSensor, frequently invokes its processEvents method shown in List-
ing 12.7. This method has access to the Java queue, polls for event callbacks
represented by Smalltalk BlockClosures, and activates them through fork in
a new Smalltalk-level process. This way, callbacks run independently from
the JavaEventSensor process. A closure handling a button click event, for
example, invokes the corresponding method that was specified as part of the
PluggableButtonSpec that was part of the tool’s original specification.

Note that for this prototype, this infrastructure was sufficient. To distinguish
between different types of events, the ActionEvent objects could further be
made available to Smalltalk event callbacks. For this, both the event callback
and the corresponding ActionEvent object could be added to the event queue.
In the JavaEventSensor, event callbacks can then be activated supplying
the ActionEvent object as an argument. Moreover and in addition to its
EventSensor, Squeak/Smalltalk also processes user events on every frame.
This could also be done for events from Java to further improve responsiveness.

160

12.5. Extending Squeak/Smalltalk With a Polyglot Drawing Engine

Insights and Lessons Learned This project has demonstrated that not only
TruffleSqueak’s tools but also a large part of the programming system can be
turned into non-trivial polyglot applications. From these efforts, we gained
further insights, for example, into what it means to use frameworks through
polyglot programming as opposed to libraries. Although Swing and AWT
are often referred to as toolkits, some parts of them make use of inversion
of control [50, p. 27], a characteristic that typically distinguishes frameworks
from libraries. As illustrated as part of the selected implementation detail, for
example, event handling is implemented in AWT that way.

An insight gained through this particular example is that polyglot program-
ming across languages that support threading in different ways, if at all, can
be challenging. Appropriate implementation strategies are needed to make
this possible. Another example of this is SwingCavas’ use of the command
pattern to record drawing operations from Morphic in Java objects within the
main thread, which are then accessed by AWT’s rendering thread.

Furthermore, we encountered situations where objects from one language
need to be copied into corresponding objects from the other language, some-
thing that polyglot programming with polyglot VM tries to avoid. Examples
are Smalltalk Rectangle objects that we needed to copy to AWT Rectangle
objects or Point and Dimension objects from AWT from which we created
Smalltalk Point objects. Some reasons for this are interface mismatches,
which are not uncommon during polyglot programming. The values for x
and y of a Smalltalk Point, for example, can be set through the setX:setY:
method. AWT’s Point class, on the other hand, provides multiple, over-
loaded setLocation() methods for this, while corresponding methods in
its Dimension class are called setSize(). But even if there were no interface
mismatches, we would have needed to copy some Smalltalk objects or in-
troduce appropriate adapters, if possible, due to Java’s type system. Target
type mappings [142], a feature supported by GraalVM’s SDK [138], helps
to automate the conversion of guest language objects to objects of the host
language. Nonetheless, these mappings do not avoid object copies or alloca-
tions of appropriate adapters. In Section 14.4, the topic of interface and type
mismatches is discussed further.

Moreover, we found that the overall programming experience building
JavaSwingToolBuilder and SwingCanvas was better compared with CFFI-
based approaches. The main reason for this is that we were able to stay on the
level of two high-level programming languages and could focus on connecting
APIs that work on comparable levels of abstraction. Integrating OpenGL and
other low-level graphics APIs, on the other hand, usually requires additional
knowledge on low-level abstractions such as on the architecture and the
mechanics of modern GPUs. Some of these low-level APIs are sometimes even

161

12. Case Studies Based on TruffleSqueak

platform-specific, which can require platform-specific glue code. Our polyglot
implementation, on the other hand, is fully portable. Another advantage of
working with two high-level and memory-safe languages is better error
handling. In case of errors, we were able to use high-level debuggers for
Smalltalk and Java, which can be especially helpful when exploring APIs.
Once Espresso can be used, we can even step from Smalltalk code into Java
code and vice-versa within a single debugger. When working with CFFIs,
on the other hand, crashes due to invalid memory accesses or other incorrect
uses are not uncommon, especially during exploration. Since the debugger
of the high-level language cannot step into a CFFI call, developers have to
switch to OS-level debuggers such as gdb to debug crashes in C.

162

12.5. Extending Squeak/Smalltalk With a Polyglot Drawing Engine

Summary As part of our fifth contribution, we present five case
studies that show how TruffleSqueak can be used to approach various
research questions on tools for and applications of polyglot program-
ming:

1. By composing existing tools, we can quickly build a Jupyter-inspired
polyglot notebook system on top of GraalVM. Based on this, we
explore, for example, how variables can be shared across languages
automatically to improve usability.

2. We build a code editor that allows us to explore how the different
polyglot APIs of GraalVM languages can be integrated into an
editor. Code boxes, for example, allow developers to embed code
from other languages within our editor and within other boxes while
completely automating the use of the polyglot APIs for the user.

3. Our polyglot code finder tool allows developers to search for re-
usable code written in different languages on StackOverflow and
from within other tools such as our notebook or editor. Code from
search results can be interactively evaluated before use and even
filtered by providing example input and output values.

4. The VM introspection capabilities of TruffleSqueak allow us to
build tools that help to understand the dynamic behavior of the
Graal compiler. Based on this, we build a tool to monitor the size of
Graal’s compilation queue while it is running. Another tool connects
profiling information collected by the compiler with source code,
allowing developers to observe how the compiler optimizes user
applications as well as the entire programming system at run-time.

5. We conduct two experiments that make extensive use of polyglot pro-
gramming to allow Squeak/Smalltalk tools to be rendered through
Java UI frameworks. GraalVM and TruffleSqueak allow us to build
appropriate infrastructures based entirely on the high-level APIs
of these frameworks, create cross-language helper tools, and use
high-level debuggers in case of errors.

All of these tools and prototypes are themselves built in a polyglot
way. This allowed us to gain practical experiences applying polyglot
programming, which we summarized for each study:.

163

13. Case Studies Beyond
TruffleSqueak

With TruffleSqueak, we have presented an implementation of our approach
for the Graal VM. The case studies from Chapter 12 have further demonstrated
how it can be used to explore different tooling ideas in the context of polyglot
VMs. This chapter presents two case studies that go beyond TruffleSqueak:
The first study demonstrates that our approach can also be applied to a
polyglot VM built with RPython. For this, we compose existing interpreters
for Python, Smalltalk, and Ruby, and show that the meta-object protocol from
Squeak/Smalltalk can be used to provide language interoperability. In the
second study, we present and discuss two polyglot notebook systems that
are based on insights gained through the PolyglotNotebook presented in
Section 12.1. This illustrates that insights from TruffleSqueak are not limited
to it and can be transferred to other programming systems.

13.1. Applying Our Approach to a Polyglot VM Built
With RPython

In Part IV, we have shown how our approach can be applied to create an ex-
ploratory tool-building platform for the GraalVM. While GraalVM is among
the most advanced VMs designed specifically for polyglot programming, our
approach is neither limited to it nor its general architecture. This section gives
a brief overview of Squimera, an exploratory tool-building platform for a poly-
glot VM based on the RPython language implementation framework [165].
Instead of building another language implementation to host a self-sustaining
programming system on another polyglot VM, we apply interpreter compo-
sition [5] to compose three existing interpreters in RPython to create our own
polyglot VM: 1) PyPy [165], a Python interpreter as part of which RPython
is maintained, 2) RSqueak/VM [15, 42], another Squeak/Smalltalk VM, and
3) Topaz [202], a Ruby interpreter. While this allows us to re-use existing
language implementations, we need to build our own infrastructure to allow
the three languages to communicate with each other. In the following, we
present Squimera, discuss lessons learned, and compare it with TruffleSqueak
and GraalVM.

165

13. Case Studies Beyond TruffleSqueak

Squimera Virtual Machine Squimera Programming System

\ (iqnj[n-q'j'??t-_% wth - beeeeeees -| PythonProcess
: PythonObject I("_e_rﬁi_té_nl

' interact with

1 interact with

. : RubyObject |<---2™% .,
communicate with s RubyProcess
5 e

Figure 13.1.: Architectural overview of Squimera’s virtual machine and its
programming system.

Project Outcome Although Squimera also uses Squeak/Smalltalk as its
self-sustaining programming system, it is different from TruffleSqueak in
many ways. One example is that its VM contains three bytecode interpreter
loops, one for each language. In Truffle, on the other hand, all languages are
implemented as AST interpreters. Another important difference is that the
languages supported by Squimera do not run on top of Python, the language
they are implemented in. All Truffle languages, on the other hand, run on top
of Java because GraalVM is based on the JVM. This also means that Squimera
needs to deploy its own execution model to interpret different languages. To
give the SSPS full control over the execution of code from other languages,
Squimera builds on the execution model of Squeak /Smalltalk. Since RPython
does not provide any means for language interoperability, Squimera’s VM
only provides a basic set of primitives to evaluate code in Ruby and Python, to
send messages to foreign objects, to interact with stack frames, and to convert
foreign objects to Smalltalk. The rest of the infrastructure for languages to
interoperate is implemented within Squimera’s programming system.
Figure 13.1 provides an overview of Squimera’s architecture. It shows the
interpreter loops of RSqueak/VM for Smalltalk, of PyPy for Python, and of
Topaz for Ruby. Through two VM-level plugins, the Squeak/Smalltalk-based
programming system can interact with the interpreters for Python and Ruby.
Inside the programming system, there are three different classes for each
Python and Ruby: The Python and Ruby classes provide access to the corre-
sponding language, allowing, for example, the evaluation of code. When code
from Python and Ruby is executed, either a PythonProcess or RubyProcess is
created and activates the corresponding interpreter loop from PyPy or Topaz.

166

13.1. Applying Our Approach to a Polyglot VM Built With RPython

Python Workspace

from pattern.db import Datasheet, INTEGER, STRING, uid

ds = Datasheet(rows=[

[uid(), "asparagus", "vegetable"],

[uid(), "banana"”, "fruit"],
1, fields=[

("id", INTEGER), ("name", STRING), ("type", STRING)
D

ds Python [[1, ’broccoli’, 'vegetable’], [2, ’asparagus’, 'vegetable’], [3, ’banar

Figure 13.2.: Interactively evaluating Python code in Squimera’s polyglot
workspace.

We have patched both interpreters so that they periodically yield back to
the Smalltalk interpreter loop. This allows the Squeak/Smalltalk scheduler
to switch to another Smalltalk-level process, which can be another language
process, its UI process, or some other process from Squeak/Smalltalk. This
way, our system remains in control over the execution of foreign code.

Furthermore, foreign objects are represented by either the PythonObject
class or the RubyObject class. Similar to TruffleSqueak’s ForeignObject, these
two classes override the reflective methods used by the exploratory tools
of Squeak/Smalltalk to access information on the structures and interfaces
of foreign objects. This means that Squimera uses the meta-object protocol
from Squeak/Smalltalk as its interoperability protocol. The implementation
is entirely built on the VM primitives to evaluate code, to send messages to
foreign objects, and to convert foreign objects to Smalltalk.

In addition and similar to TruffleSqueak, Squimera provides adaptations of
different tools of Squeak /Smalltalk including its exploratory programming
tools as well as an adaption of the debugger:

Figure 13.2 shows a screenshot of Squimera’s polyglot workspace tool. Its
base language is set to Python, which allows the interactive evaluation of
Python code. In this case, the user interacts with pattern, a web mining
module for Python, to create a new Datasheet object. The dolt in the last line
gives a glimpse of what the resulting object looks like. The language of foreign
objects, Python in this case, is used as a prefix in the display string to make
it clear from which language an object is from. Similar to TruffleSqueak’s
PolyglotWorkspace, the workspace also supports syntax highlighting for
Python and Ruby code. Instead of the Rouge library for Ruby, it uses Pygments,
a similar syntax highlighter written in Python.

167

13. Case Studies Beyond TruffleSqueak

Datasheet: Python [[1, ’broccoli’, veg...

headers Python <bound method
html Datasheet.pop of [[1, ’broccoli’,
index ‘vegetable’], [2, "asparagus’,
insert *vegetable’]]>

json

load

map

pop g

recor

remove |:|
Lreverse
self.pop() Python [3, ’banana’, *fruit’]

explore

Figure 13.3.: A polyglot inspector opened on the Datasheet object instantiated
in Figure 13.2.

* Multi-language Wikipedia Word Frequency Tool LI

Smalltalk

’Squeak’

wikipedia.summary(self) """

Ruby

self.downcase.gsub(
— IIIIIIIII
o Smalltalk
(Bag withAll: self) malta L]
= [~ [(2]
sortedCounts e 20 R P=E838S 2L QERELE53022223 2
= o =°cE3gs Eos> 585358288 £2%
3 S52 8983 £SEcETS 3% 3
a £ =02 oo SF T =T 0

Figure 13.4.: A tool for measuring the word frequency of summaries from
Wikipedia built with Vivide and written in Smalltalk, Python, and Ruby:.

Squimera’s polyglot inspector is shown in Figure 13.3. The inspected object
is the Datasheet object created in the workspace from Figure 13.2. The left
pane lists the elements as well as the interface of the object under inspection.
With that information, the user can find out that the object implements a
pop method. On the right, the inspector reveals that pop is indeed a method
bound to the Datasheet object. Using the embedded workspace, which also
supports syntax highlighting based on Pygments, it is possible to evaluate
code in the context of the inspected object using the language of its origin. In
this case, the user has called the pop method on the object, which returned
the last element from the Datasheet object. The live feedback mechanism of
the original inspector tool from Squeak/Smalltalk can also be re-used. This
is, for example, the reason that the display string for the bound method of
the Datasheet object shown in the right pane has already been updated and
no longer shows the third element because it was removed from the object.

Furthermore, we can also build polyglot applications and tools in Squimera.
Figure 13.4, for example, shows a notebook-like tool for measuring the word fre-

168

13.1. Applying Our Approach to a Polyglot VM Built With RPython

ZeroDivisionError: integer division by zero

def average(iterable): (line 2 in <string>)

average([]) (line 1 in <string>)
PythonProcess(ForeignLanguageProcess)>>vmResume
[1 in PythonProcess(ForeignLanguageProcess)>>vmEval
BlockClosure>>on:do:
PythonProcess(ForeignLanguageProcess)>>vmEval
Python class>>exec:breakOnExceptions:
Python class>>run:breakOnExceptions:
Python class>>evaluateExpression:breakOnExceptions:
FLWorkspace>>evaluateExpression:
SmalltalkEditor(TextEditor)>>evaluateSelectionAndDo:
SmalltalkEditor(TextEditor)>>printit

ILEditar(T.

Proceed " Restart ” Into " Over " Through " Full Stack " Where ” Tally

def average(iterable):
print sum(iterable) / len(iterable)

all elements - filename -
__class__ iterable
__delattr__

self |:1 Python None - thisContext - Python]

Figure 13.5.: Debugging a ZeroDivisionError from Python in Squimera.

quency of Wikipedia summaries built with Vivide [196], a Squeak /Smalltalk
framework for data-driven tool construction. The tool consists of four con-
nected, workspace-like boxes. Each of them can be set to a different language.
The first box contains the search term as a Smalltalk string, which is passed
to the next box. In the Python box, the result from the previous box is bound
to self. More importantly, the Python box passes the Smalltalk string into
the summary method of the wikipedia library, which queries the Wikipedia
API and returns the summary text found for the given search term. The next
box uses Ruby to extract a list of lowercase words from the Python string.
Afterward, a Smalltalk Bag is used to aggregate the list of words before the
result is visualized with a histogram on the right.

Since Smalltalk is in control of the execution of foreign code, we can
extend the debugger in Squimera with support for foreign languages. Fig-
ure 13.5 shows a screenshot of the debugger opened on a ZeroDivisionError
from Python. The list of stack frames reveals that this error occurred in an
average method, which was called as part of a printlt triggered in Squimera’s
workspace. A little icon indicates which stack frames are from Python. Further-
more, the code pane shows the source of the average method with Pygments-
provided syntax highlighting. Since the method is defined in Python’s top
scope, self is bound to Python’s None object. More importantly, the scope in-
spector on the lower right shows that iterableis an empty Python list, which
hasled to the ZeroDivisionError. Squimera patches PyPy and Topaz not only
so that they periodically yield back to the interpreter from RSqueak/VM but
also with experimental support for hot-code reloading. This means that within
this debugger session, the code of the shown stack frame can be changed.
When a change is applied, the debugger will restart the current stack frame

169

13. Case Studies Beyond TruffleSqueak

with the updated code. This way, it is possible to recover from Python and
Ruby errors, similar to how it is possible to recover from errors in Smalltalk.

Lessons Learned and Comparison to TruffleSqueak Squimera demon-
strates that our approach can also be applied to a polyglot VM based on
RPython. Both Truffle and RPython provide appropriate building blocks for
the construction of interpreters and make implementing languages more
productive by allowing language developers to use high-level languages. The
two frameworks also come with noteworthy differences that have a direct
impact on our two implementations.

Truffle languages and thus TruffleSqueak run on top of Java, which prede-
termines the default execution model and allows VM introspection through
interoperability with the host language. Although RPython allows language
developers to write interpreters in a subset of Python, it uses a C backend to
translate implementations to C, which is then compiled into a binary. This
means that RPython-based interpreters and consequently their compositions
including Squimera do not use Python as a host language. This means that
inspecting VM internals cannot easily be done through interoperability with
the host language. Due to time constraints, we did not work on an infrastruc-
ture that makes, for example, the RPython JIT compiler or garbage collector
accessible from within Squimera. For the same reason, we also did not fully
implement the ability to call Smalltalk methods from Python or Ruby.

The lack of a protocol for language interoperability in RPython caused
additional work as we had to manually connect both languages with Smalltalk
and Squimera’s programming system. This as well as the fact that PyPy is
the only production-level language implementation in RPython are further
reasons why we did not incorporate additional languages such as Racket [8]
or Prolog [6]. On the other hand, the additional work of mapping languages
to the Smalltalk meta-object protocol, which we used as our interoperability
protocol, enabled the construction of language-agnostic and polyglot-aware
tools.

Moreover, Squimera has more control over the execution model. As we
were able to demonstrate, this makes it possible to re-use the debugger
from Squeak/Smalltalk for Python and Ruby, without having to run these
languages in separate threads or processes. The use of Smalltalk processes
also allows interruption of long-running evaluation requests, such as when
launching server applications. The additional control over the execution of
foreign languages also allowed us to explore approaches to enable hot-code
reloading in RPython-based language implementations. The fact that Python,
Ruby, and many other languages follow the termination model for exception
handling [21], however, makes it hard to detect unhandled exceptions at the

170

13.2. Bringing Polyglot Notebooks to Jupyter and VS Code

time they are raised and before the stack is unwound. The resumption model
as used in Smalltalk, on the other hand, does not have this problem because
control flow can return to the raise point, for example, through the use of
continuations [161] or similar mechanisms.

Even though Squimera can be used as a platform for exploratory program-
ming and tool-building in the context of an RPython-based polyglot VM,
it is not as extensive as TruffleSqueak. For one, the protocol for language
interoperability is limited to the capabilities of the basic Object protocol of
Squeak /Smalltalk. Truffle’s protocol, on the other hand, supports several
interoperability traits and types. It also does not properly allow the evalu-
ation of Smalltalk code from Python or Ruby. Furthermore, Squimera does
not provide extensive VM introspection capabilities and is, therefore, less
useful to language and runtime developers. While it is possible to expose VM
internals to guest languages, additional work is required. Since Truffle and
GraalVM provide access to the host language through the interoperability
protocol, VM introspection comes almost for free in TruffleSqueak. Only the
JavaObjectWrapper infrastructure and some configuration of the Java module
system were needed to provide unrestricted access to GraalVM internals.
Nonetheless, we believe that Squimera demonstrates that our approach is not
limited to GraalVM and that it can also be applied to other polyglot virtual
machines.

13.2. Bringing Polyglot Notebooks to Jupyter and
VS Code

In TruffleSqueak, we were able to compose existing exploratory tools to
rapidly build a simple notebook system, as illustrated in Section 12.1. This
system then allowed us to explore how GraalVM languages can be integrated
into notebooks and how users of such polyglot notebooks can be further
supported with features such as automatic variable sharing across languages
and an object inspector for these shared variables. While TruffleSqueak’s
PolyglotNotebook supports the Jupyter notebook format, it does not imple-
ment the client-server-based architecture that is commonly used by notebook
systems such as Jupyter or Google Colab. Since it is built and runs inside a
self-sustaining programming system, it can, however, directly interact with
the underlying runtime system, for example, to execute code cells written in
different languages.

To evaluate the extent to which the insights we gained when exploring
polyglot notebooks in TruffleSqueak are transferable to other systems, we
conduct two experiments: In the first experiment, we want to find out what
it takes to bring features of our polyglot notebook system to Jupyter. The

171

13. Case Studies Beyond TruffleSqueak

second experiment explores a new implementation strategy for a polyglot
notebook system based on the Language Server Protocol and for the notebook
UI provided by VS Code. These two experiments further allow us to get
an impression of how productive exploration in TruffleSqueak is compared
with other programming systems. In the following, we present the results
of both experiments and compare them with our experiences building the
PolyglotNotebook in TruffleSqueak.

Polyglot Kernel and Extension for Jupyter To allow polyglot programming
within Jupyter notebooks, we need to implement a notebook kernel based on
GraalVM. But instead of creating a new kernel from scratch, we choose to
build on IJavascript [162], a JavaScript kernel implemented on top of Node.js.
On the one hand, this keeps the implementation effort low because IJavascript
already implements the protocol of notebook kernels. On the other hand, a
Node js-based kernel also allows the reuse of Node.js packages, something
that is not supported by GraalVM’s polyglot API at the time of writing.

The main work required to turn IJavascript into our IPolyglot kernel [182]
is to redefine how the kernel evaluates code. Instead of evaluating code
through Node.js” vm. runInThisContext API, we patch the NEL module that
IJavascript uses so that it can call out to other languages through Graal.js’
polyglot API. Since Graal.js neither provides access to the polyglot bindings
object nor the ability to pass in a local scope when evaluating code in other
languages, we can only implement automatic variable sharing in a language-
specific way. This involves language-specific methods to identify language
globals as well as to generate code for exporting and important variables across
GraalVM languages. Furthermore, the system uses a simple JavaScript object
instead of the polyglot bindings object as a key-value store for shared variables.
In addition to that, we also build on the Variable Inspector extension [75] for
Jupyter to create an inspector for automatically shared variables, similar to
the explorer in the sidebar of TruffleSqueak’s PolyglotNotebook tool.

Figure 13.6 shows a screenshot of a polyglot notebook in our extended
version of Jupyter, inspired by the notebook shown in Figure 12.1. The top
right corner of the navigation bar reveals that the Jupyter notebook UI is
connected to our IPolyglot kernel, which runs on top of Graal.js and hence
GraalVM. Jupyter’s Ul, however, is based on the assumption that only one
language is used in a notebook. Therefore, it does not provide any means to
select a specific language per code cell. Instead, we introduce a new %polyglot
magic command that can be used in the first line of a code cell to specify
the language. This way, no additional work is needed to persist language
selections in Jupyter notebook files. Apart from that, the three code cells
written in Ruby, Python, and R do conceptually the same as the notebook

172

13.2. Bringing Polyglot Notebooks to Jupyter and VS Code

~ Jupyter Polyglot Notebook Last Checkpoint: 15 minutes ago (unsaved changes) Logout
File dit View Insert Cell Kernel Widgets Help # | Polyglot (GraalJs) O
B + % @ B 4 & MARn B C M Code t @O
X Polyglot Inspector
Polyglot Jupyter Notebook: Ct Contributi per Country
»rows
»countries
Scraping the conference data from a web table using Ruby's nokogiri library »data

In [3]: tpolyglot ruby
Tequire "nokogiri'; require "open-uri
url = “https://2019.splashcon.org/people-index
doc = Nokogiri::HTML(open(url))
Srows = doc.css("#results-table .row").map { |row| row.css("div').map(s:content) }
$rows.length

out(3): 616

Compiling a list of all contributing countries using Python's pycountry library

In [17): %polyglot python

import pycountry
countries = [c.name for c in pycountry.countries for row in rows if c.name in str(row(2]) or c.name in str(row(1])] svg_data

1en(countries) »values

out(17]: 389

Plotting the conference contributions per country using R's ggplotz2 library

In [31): %polyglot R
Library(ggplot2)

values <- data.frame(contributors = countries)
data <- aggregate(x = values, by = list(countries = values$contributors), FUN = length)

ibutors)) +

plt <- , aes(x = i i , cont:
geom_bar(stat = "identity’) + xlab("") + ylab("") + coord_£lip() +
geom_hline(aes (yintercept = mean(contributors)))

print(plt)

svg_data <- svg.off()

nchar (svg_data)

out(31): 13803

Render generated SVG

In [): $5.5vg(svg_data)

Figure 13.6.: A polyglot notebook for analyzing conference contributions per
country in Jupyter, inspired by the notebook from Figure 12.1, and executed
by IPolyglot.

in Figure 12.1: The Ruby code cell downloads a list of all contributors from
a conference website and uses nokogiri to extract a Ruby array containing
affiliations and countries from the HTML file. In Python, the pycountry library
is used to find country names within the array. The third code cell aggregates
the Python list of country names in R and generates an SVG string for a
plot with the ggplot2 R package. The last code cell runs a command from
the original IJavascript, which instructs the notebook UI to render a string
as an SVG within the corresponding output cell. While interacting with the
notebook and IPolyglot, the polyglot inspector on the right provides an up-to-
date overview of the variables that are automatically shared. The inspector
has detected that the svg_data variable holds a valid SVG string and thus
renders the SVG inline. All other variables can be inspected in a tree-like
manner similar to how the object explorer tool works in Squeak/Smalltalk.

Polyglot Notebooks via the LSP in VS Code Since IPolyglot is a con-
ventional notebook kernel, it can also be used from within other notebook
Uls such as Google Colab or VS Code notebooks. As the previous experi-
ment has shown, official GraalVM guest languages such as Graal.js neither
allow language-agnostic nor polyglot-aware tool-building as supported by

173

13. Case Studies Beyond TruffleSqueak

TruffleSqueak. Instead of repeating the previous experiment based on a Java-
based kernel implemented in the GraalVM SDK [138], we want to explore
an entirely new approach for the execution of notebooks: via the Language
Server Protocol [111]. The LSP is designed to decouple IDEs and tools from
languages. In addition to language features, such as for code completion
or go-to definition, the protocol supports custom commands that a client
can trigger within a language server. Similarly, language servers can send
custom notification messages to LSP clients. GraalVM already provides a
language-agnostic LSP server as well as an extension for VS Code that takes
care of connecting VS Code with GraalVM'’s language server. Therefore, we
can extend both components to create another polyglot notebook system. On
the server side, we add new custom LSP commands for creating notebook
sessions, for executing code of code cells for a particular language in a specific
notebook session, and for interrupting the execution of code with a session.
Execution results, the output of stdout and stderr, error messages, and other
data for notebooks are transmitted via appropriate notification messages. For
the client, we have to create a new VS Code extension to connect its notebook
UI with the extended GraalVM language server based on the connection
provided by GraalVM’s extension for VS Code. This also allows us to instruct
the Ul to display the language of each code cell and to provide a dialog that
can be opened to select a specific language.

A screenshot of a polyglot notebook opened in our LSP-based polyglot
notebook system is shown in Figure 13.7. Again, the example is inspired by
the notebook from Figure 12.1. The language of each code cell is displayed in
the bottom right corner and can be changed with two clicks. In this prototype,
however, the export-import functionality of the polyglot APIs must be used
explicitly because automatic variable sharing is not yet supported. Since
the language server extension is completely language-agnostic, automatic
variable sharing can, however, be implemented without having to rely on
language specifics. The GraalVM SDK further provides access to the list of
available languages, which makes it possible to build polyglot-aware features
such as the dialog for selecting languages.

Observations and Findings The two experiments on GraalVM-based note-
book systems provide good grounds for discussing some advantages and
limitations of our approach.

For creating the IPolyglot kernel, only a small patch [181] with 143 SLOC for
IJavascript’s NEL module was needed to route evaluation requests through
Graal.js” polyglot API. While this kept the effort of implementing a kernel
low, language-agnostic tool-building is limited to Graaljs’ polyglot API.
Additional features such as automatic variable sharing cannot be implemented

174

13.2. Bringing Polyglot Notebooks to Jupyter and VS Code

I
B

polyglot-notebook2.notebook @ >3

~ Polyglot jJupyter Notebook: Conference Contributions per Country

require "nokogiri"; require "open-uri"

url = "https://2020.splashcon.org/people-index"

doc = Nokogiri::HTML(open(url))

rows = doc.css("#results-table .row").map { |row| row.css("div").map(&:content) }
Polyglot.export("rows", rows)

rows. length

Vv 1.6s Ruby
1304

o
I
E}

import pycountry, polyglot

rows = polyglot.import_value('rows')

countries = [c.name for c in pycountry.countries for row in rows if c.name in str(row[2]) or c.name in str(row[1])]
polyglot.export_value(countries, ‘countries')

len(countries)

W 295 Python

680

library(ggplot2)

countries <- import(“countries")

values <- data.frame(contributors = countries)

data <- aggregate(x = values, by = list(countries = values$contributors), FUN = length)

sva()

plt <- ggplot(data, aes(x = reorder(countries, +contributors), contributors)) +
geom_bar(stat = "identity") + xlab("") + ylab("") + coord_flip() +
geom_hline(aes(yintercept = mean(contributors)))

print(plt)

svg <- svg.off()

v 0.6s R

-

United States-
Germany -

United Kingdom =
France-
Switzerland -
Japan -

Figure 13.7.: A polyglot notebook for analyzing conference contributions per
country within VS Code, inspired by the notebook from Figure 12.1, and
executed by the GraalVM language server through the LSP.

in a language-agnostic way because the API neither provides access to the
interoperability protocol or globals of languages nor does it allow users to
pass in a local scope when evaluating code in other languages. Similarly, there
is no way to make the notebook system aware of the polyglot environment.
A list of available languages can, for example, not be retrieved from within
Graal js.

These limitations do not apply to our LSP-based notebook system. Instead,
we needed to create two independent extensions, one for GraalVM’s language
server and one for VS Code. The implementation of each of these components
is, however, larger than the entire implementation of the PolyglotNotebook in
TruffleSqueak: The VS Code extension is written in 804 SLOC of TypeScript,
the extension for GraalVM’s language server in 788 SLOC of Java, and
the PolyglotNotebook in 725 SLOC of Smalltalk. Since the two extensions
build on non-trivial components, the overall complexity of the two notebook

175

13. Case Studies Beyond TruffleSqueak

systems developed in the two experiments is also much higher compared
with the system we built in TruffleSqueak. We found that this complexity as
well as the client-server architecture used in both systems make exploration
of user-facing features harder compared with TruffleSqueak. While we could
quickly build a first prototype in TruffleSqueak that was tailored to our
exploration needs, a lot of boilerplate code was needed to build the other
two systems. More importantly, the separation of notebook UI and kernel
hinders debugging and can increase feedback loops significantly: A UI change
typically requires the Ul to be reloaded entirely. To see the effect of a kernel
change, kernels usually need to be restarted. And two different debuggers
are needed to debug each of these components. In contrast, TruffleSqueak
provides the Smalltalk programming experience, which allowed us to build
and evolve the PolyglotNotebook at run-time and to resolve errors within the
Smalltalk debugger while it is running.

Furthermore, extension mechanisms often impose limitations on what
third parties are allowed to do. We especially noticed this when we built
the extension for VS Code: Although VS Code’s Ul is based on JavaScript
and HTML, third-party extensions are not allowed to take full advantage of
this. Instead, they are only allowed to use what VS Code exposes through
public APIs for third-party extensions. In TruffleSqueak, on the other hand,
we not only have full control over the Ul components in our tools. As a
self-sustaining programming system, all parts of the system are accessible
and can be changed by the user.

176

13.2. Bringing Polyglot Notebooks to Jupyter and VS Code

Summary We present two additional case studies that go beyond
TruffleSqueak and demonstrate the generalizability and advantages of
our approach:

In the first study, we show that our approach can be applied to a poly-
glot VM based on a composition of RPython interpreters for Python,
Ruby, and Squeak/Smalltalk. Since the RPython framework does not
provide any means to accommodate multiple languages, we build an
appropriate infrastructure and show that the meta-object protocol of
Squeak/Smalltalk can be used as a language interoperability protocol.
Although the system is not as extensive as TruffleSqueak, it enables
exploratory programming across all supported languages and makes it
possible to build polyglot-aware tools for polyglot programming. Since
we are in full control of the execution model, we also adapt the debug-
ger of Squeak/Smalltalk so that it can be used across all languages,
including experimental support for hot-code reloading in Python and
Ruby.

The second study illustrates how we build two polyglot notebook
systems, transferring the insights we gained through building the
PolyglotNotebook in TruffleSqueak to create similar experiences in
Jupyter and VS Code. When re-using an existing kernel for Jupyter
written in JavaScript, the implementation effort is low but access to lan-
guage interoperability is limited to Graal js” polyglot API. We conclude
that without extending Graaljs, it is hard to build tools for polyglot
programming this way because features such as variable sharing can
neither be implemented in a language-agnostic nor polyglot-aware way.
Furthermore, we show that it is possible to create a polyglot notebook
system on top of GraalVM’s LSP implementation. While this does allow
us to implement language-agnostic and polyglot-aware features, it also
requires us to build an extension for VS Code to connect the extended
LSP server with its notebook UI. Overall, we find that exploration
of ideas for polyglot notebooks is more productive in TruffleSqueak
compared with Jupyter or VS Code. As a self-sustaining programming
system, it imposes fewer limitations because everything can be easily
accessed and changed, which allows us to focus on the aspects we
want to explore. Moreover, TruffleSqueak makes it possible to build
and evolve a notebook tool at run-time and thus without losing state
due to restarting the UI or a kernel. At the same time, our exploration
revealed knowledge that can be transferred to the two other systems.

177

Part VI.

Discussion and Conclusions

179

14. General Observations and Insights

Throughout the process of conducting our research, we made a number of
observations and gained different types of insights into polyglot program-
ming and polyglot VMs. As part of our case studies, we experienced polyglot
programming with polyglot VMs from the perspective of both tool and appli-
cation developers. During the development of TruffleSqueak and Squimera,
we acted as runtime and language developers, which helped us to under-
stand various advantages and challenges on the level of runtimes and their
language interoperability protocols. In this chapter, we discuss these obser-
vations as well as insights and highlight some more general challenges of
polyglot programming and polyglot VMs.

14.1. Advantages of Polyglot VMs

First of all, the widespread use of C-based foreign function interfaces, inter-
process communication, and language bindings demonstrates that there is a
clear need for integrating different languages. This goes so far that developers
are even willing to trade run-time performance and tool support for the ability
to use more than one language.

Polyglot VMs provide a powerful approach to polyglot programming that
comes with many advantages over established approaches: They, for example,
provide the necessary infrastructure to facilitate communication between the
languages they support. This means that developers no longer have to deal
with low-level details of an FFI, serialization of the data structures they would
like to share across languages, or other glue code needed for the integration
of particular libraries, frameworks, and languages. Instead, they can share
complex objects across languages without further ado and focus more on the
components they would like to combine. An example of this is our integration
of a Ruby library for syntax highlighting into the tools of Squeak/Smalltalk:
The integration combines a formatter with different lexers from the library
as if they were objects from Smalltalk. Apart from using the polyglot API,
no additional glue code was required which would justify the creation of a
language binding or wrapper library. In general, we believe that language
bindings and wrapper libraries can be replaced with appropriate calls to the
polyglot API of a polyglot VM.

181

14. General Observations and Insights

Moreover, the direct exchange of objects and messages between languages
has another advantage: It can avoid performance overheads caused by serial-
ization as well as data duplication and synchronization problems. Polyglot
VMs such as GraalVM have demonstrated that their approach to polyglot
programming can be fast [58], for example, by deploying JIT compilers that
can perform optimizations across language boundaries.

The high-level integration of languages as provided by polyglot VMs
further allows the construction of tools that work across languages. Therefore,
developers are not required to switch between tools for different languages.
gdb and other low-level tools from the OS that usually have no understanding
of high-level abstractions of languages but that are often needed to debug
FFI calls can be avoided. Furthermore, language interoperability protocols
as deployed by some polyglot VMs allow tools to be built in a language-
agnostic and polyglot-aware way. This reduces the costs of tool-building as
most of a tool’s implementation can be shared across languages. At the same
time, developers can benefit from a more consistent programming experience,
using one familiar set of tools to develop code in multiple languages. With
our work, we have shown that polyglot VMs make it possible to re-use
the exploratory tools and even the live programming experience of a self-
sustaining programming system across languages, which goes beyond the
reuse of libraries and frameworks and demonstrates the capabilities and
potential of polyglot VMs further.

14.2. Disadvantages of Polyglot VMs

While the approach of polyglot VMs to polyglot programming provides many
opportunities for developers, it also has some conceptual disadvantages. Many
language implementations are usually maintained on their own and are thus
not designed to be re-used in polyglot VMs. Instead, a substantial amount
of work is often put into implementing languages from scratch as GraalVM
demonstrates: Although it is designed to be a polyglot VM from the start
and has seen years of development, only two of its language implementations
are officially supported. At the time of writing, those are Graal.js and Sulong.
All other GraalVM languages are considered experimental and are not fully
compatible with their reference implementations. In a polyglot VM ecosystem
with many users, however, it is expected that this work is amortized over time
as more code can be re-used with less glue code and as developers benefit
from better tool support.

Another problem is that polyglot VMs often require more resources to
operate: As our benchmarks in Section 11.2 have shown, TruffleSqueak
requires significantly more CPU cycles and memory compared with the

182

14.2. Disadvantages of Polyglot VMs

OpenSmalltalkVM. And that is without interacting with any other language.
Although additional work can make TruffleSqueak more efficient, GraalVM
and Truffle are known to be resource hungry. Nonetheless, we believe there
are reasons why other polyglot VMs may face the same problem, albeit maybe
on a different scale. One such reason is that language developers are not al-
ways free to make certain design decisions because they have been made
by the developers of the polyglot VM. The OpenSmalltalkVM, for example,
can deploy a JIT compiler designed specifically for Smalltalk and an object
layout that is more efficient than that of TruffleSqueak, which must use Java
objects to represent Smalltalk objects. Another reason for the increased use
of resources is directly caused by polyglot programming: For each language
used in a polyglot application, more code is loaded and more memory is
required. This is because all languages including their standard libraries must
be fully initialized, even if application code only uses a small fraction of them.
Although modern computers provide sufficient resources for polyglot VMs,
projects such as GraalVM Native Image are actively working on reducing
their CPU and memory footprint, for example, through AOT compilation
and optimizations based on a closed-world assumption [216].

The fact that polyglot VMs deploy alternative language implementations
has further disadvantages: Many programming languages are still evolving.
Therefore, alternative implementations in polyglot VMs often require contin-
uous maintenance to stay up to date with the reference implementation or
the language specification. At the same time, the protocol for language inter-
operability of a polyglot VM may also be evolving. Every time this protocol
is extended, language implementations as well as tools based on the protocol
need to be updated to make use of newly introduced capabilities. Moreover,
some programming languages lack proper specifications, which makes it
hard to provide full compatibility. Some incompatibilities can also not be
avoided due to particular design decisions and assumptions made by the
developers of a polyglot VM. All GraalVM languages, for example, must use
the GCs from the JVM, which makes it cumbersome to provide compatibility
with specific garbage collection algorithms used by corresponding reference
implementations. The use of Java has many other implications for language
implementations, for example, in terms of the execution model or exception
handling. Its poor support for continuations makes it hard to support contin-
uations in guest languages, and doing so also comes at a performance penalty.
Moreover, language incompatibilities can hinder the adoption of alternative
implementations. GraalPython, for example, does not properly support many
Python libraries and frameworks, which is especially limiting when it comes
to use cases involving machine learning or data science, two domains that
heavily rely on Python.

183

14. General Observations and Insights

14.3. Reasoning About Multiple Languages at the Same
Time

High-level language interoperability as provided by polyglot VMs makes it
easier to combine more software written in different languages. At the same
time, combining languages can add additional cognitive overhead in some
cases: With every language used in a software system, developers have to think
about more syntaxes, semantics, as well as programming concepts, paradigms,
and best practices at the same time. Sometimes, however, it is already hard
enough to handle of all this when using just one language. During polyglot
programming with GraalVM, we observed that even language specifics that
are usually simple to think about can lead to scenarios where such specifics
need to be carefully considered by developers. Examples of this are differences
across languages in terms of object equality, identity, the precision of floating-
point numbers and arithmetic operations, type coercion, mutability and
immutability, among others.

One way to decrease this cognitive overhead is through maintaining a
coarse granularity when writing polyglot applications: We experimented
with combining languages on the level of functions, expressions, or even
sub-expressions, but found that modules provide the best level for polyglot
programming. We believe one reason for this is that software is often split into
modules to separate concerns [51, pp. 44-46] and that such concerns provide
a good basis for developers to think about different languages. Another
indication for this is that the API of a module often plays a more important role
than the language it is implemented in, especially when their implementation
is treated as a black box. Public APIs allow developers to re-use libraries and
frameworks independently from the languages they are written in.

Another way to reduce additional cognitive overhead is through appro-
priate tool support based on dynamic run-time data as well as through ex-
ploratory programming as some of our case studies have shown. Interactive
evaluation of code makes it easy to try something out, validate assumptions,
and observe and understand the interaction between languages in specific
scenarios. Tools that are aware of the polyglot VM can provide additional
information about the supported languages, hide polyglot APIs from the
developers, and help them to understand how objects and messages are
exchanged between languages. For us, the ability to quickly build tools for
specific purposes has also proven to be useful in the context of polyglot
programming and GraalVM.

184

14.4. Dealing With Interface and Type Mismatches

14.4. Dealing With Interface and Type Mismatches

Although polyglot VMs allow developers to share complex objects between
languages, libraries and frameworks can sometimes not directly be re-used due
to interface and type mismatches. For types and interfaces directly supported
by the language interoperability protocol of a polyglot VM, portability of
code can be improved by mapping types and interfaces between languages
automatically. While this works well for primitive values, such as numbers and
strings, it is sometimes unclear how complex types should be mapped between
languages. In GraalVM, for example, Ruby strings appear as JavaScript strings
in JavaScript, exposing the interface of JavaScript strings through its String
prototype. This is not the case for Hash and Array objects from Ruby, which the
developers of Graal.js decided to expose as normal JavaScript objects with the
original interfaces from Ruby. For portability reasons, however, developers
may want these objects to use the JavaScript prototypes for Map and Array
instead. So far, GraalVM does not provide any means for developers to
control how objects appear in different languages on the guest language level.
TruffleSqueak demonstrates a flexible but language-specific solution to this
problem: Since it implements the language interoperability protocol from
GraalVM on the language level, developers can adjust the behavior of their
Smalltalk objects and can control how objects from other languages appear
within Smalltalk at run-time. We used this capability, for example, to control
how a Smalltalk dictionary is exposed as a key-value store in other languages
within the PolyglotNotebook presented in Section 12.1. As an alternative,
developers can apply the adapter pattern to map different interfaces across
languages manually [122]. This, however, only works if identity is irrelevant.
GraalVM'’s target type mappings [142] automate this idea to some extent on
the level of its host language. These mappings, however, can only control how
objects from the host language are exposed in guest languages.

Another problem is caused by the fact that values of GraalVM guest lan-
guages are allowed to have multiple traits and thus, it is not always clear
how values should appear across different languages. Language developers
could, for example, decide that particular objects of their language expose
hash entries, array entries, and possibly other traits all at the same time. It
may be possible to expose each of these traits individually in a language.
In TruffleSqueak, for example, we experimented with a ForeignArray class
that developers can request explicitly for any foreign object with the array
trait through an asArray method, which returns a wrapper for the object
that exposes the Smalltalk collection protocol. However, exposing separate
types for every possible combination of interoperability traits appears to
be impractical, not just because of scalability concerns. For one, most lan-

185

14. General Observations and Insights

guages do not support traits, mixins, or multiple inheritance, which could
be used to create, for example, a ForeignArrayDictionaryAndStream class in
TruffleSqueak for representing values with the traits for array elements, hash
entries, and buffer elements. This approach can further lead to name clashes
between language-specific interfaces for corresponding traits. In Squeak/
Smalltalk, for example, Dictionary and Array have different implementa-
tions for the at: and at:put: methods, which would already cause problems
ina ForeignArrayAndDictionary class. Consequently, we argue that it makes
sense to give developers some control over this, for example, by providing ap-
propriate wrappers through helper methods such as asArray, asDictionary,
and so on. This allows developers to choose a particular trait explicitly in case
the default representation does not fit their use case.

The problems, however, are not limited to the level of languages and their
implementations. A recurring challenge that we observed while working with
our polyglot notebook systems is related to data frames, a data structure
commonly used for data analysis. Data frames can be first-class objects of a
language, which is the case in R. The data structure can also be defined as
part of a third-party framework or library. An example of this is pandas [105],
a data analysis library written in Python. Its DataFrame implementation is
inspired by the one in R so one would expect that developers can use the
two interchangeably. Although they are conceptually the same, they expose
similar but different interfaces and are distinct types. As a consequence, it
is not possible to plot a pandas DataFrame, for instance, with the ggplot2
package from R due to failing is.data.frame type checks in ggplot2. In
Section 12.5, we encountered the same problem for a different data type when
building a polyglot drawing engine for Squeak/Smalltalk: Rectangle objects
from Squeak /Smalltalk and Java are not interchangeable because they are of
different types and have different interfaces.

Overall, we believe that interface and type mismatches cannot be avoided
by language and runtime developers. GraalVM can only provide compatibil-
ity between values of different languages on a best effort basis. And some
mismatches can only be resolved by application developers and through ap-
propriate wrappers. For this, however, application developers need additional
control over the appearance of their objects in different languages, which in
turn is an additional responsibility and can lead to additional work.

186

14.4. Dealing With Interface and Type Mismatches

Summary As the last part of our fifth contribution, we summarize
our observations and insights into polyglot programming and polyglot
VMs that we gained throughout conducting our research.

Polyglot VMs allow direct communication between languages with-
out the need to serialize, duplicate, or synchronize data and thus reduce
the amount of glue code and can make language bindings and wrapper
libraries redundant. We have also shown that reuse is not limited to
libraries and frameworks. TruffleSqueak demonstrates that polyglot
VMs allow us to re-use the exploratory tools and the live program-
ming experience of a self-sustaining programming system for other
languages and polyglot programming.

However, polyglot VMs need separate language implementations,
which causes a substantial amount of work and can lead to incom-
patibilities with corresponding reference implementations. They also
consume more memory not only because multiple languages run at
the same time but also because they must provide infrastructures that
are general enough to accommodate different languages. This in turn
makes language-specific features and efficient object representations
harder to implement.

Moreover, reasoning about multiple languages at the same time
can add cognitive overhead for developers. We found that combining
code from different languages on the module level can help to deal
with this overhead. Similarly, exploratory programming tools can help
developers to observe and understand how languages interact with
each other in detail and at run-time.

Similar objects from different languages may provide different in-
terfaces and are usually of different types, which both reduce the
portability of code across languages. While this can be additional work,
we argue that these mismatches can best be mitigated by the user. For
this, polyglot VMs must allow developers to control how objects appear
in different languages.

187

15. Related Work

In this chapter, we present five categories of related work: Section 15.1 de-
tails related environments for exploratory programming. In Section 15.2, we
present related tools designed to support multiple languages. Related work on
tools that support developers in building polyglot applications are discussed
in Section 15.3, platforms for developing languages and tools in Section 15.4.
In Section 15.5, we go into detail about related work on dynamic run-time
data and its use in tools.

15.1. Exploratory Programming Environments

Our approach enables exploratory programming in the context of polyglot
VMs by re-using the tools of an existing self-sustaining programming system.
In the following, we present several other programming systems that support
exploratory programming in different contexts.

Self [207] is a programming language, environment, and VM with support
for exploratory programming [208]. Its language is dynamic, object-oriented,
and uses prototypes instead of classes for inheritance. Its graphical program-
ming environment is self-sustaining and based on the Morphic framework,
which was created as part of the Self project. Furthermore, the project led to
many advances in JIT compilation techniques that are still used by modern
JIT compilers today.

It comes as no surprise that Self has had a strong influence on GraalVM and
Squeak/Smalltalk, based on both we built TruffleSqueak. Not only has a lot of
the VM work been applied in VMs for Squeak/Smalltalk but also in the JVM
on which GraalVM is based. As part of the Klein project, Self’s exploratory
programming environment was used for research on metacircularity [209],
an idea that can also be found in Squeak/Smalltalk [70] and GraalVM [222].
While our approach does not increase the level of metacircularity of polyglot
VMs, it enables exploratory programming and tool-building on top of them.
Our implementation has shown that exploratory tools can be used not only
for user applications. They can also be used for guest languages and internal
components of the polyglot VM if they are written in the host language and in-
teroperability with the host language is supported. Extending metacircularity
across an entire polyglot VM would, for example, allow the development of

189

15. Related Work

the Graal compiler from within TruffleSqueak and is an interesting direction
for future work. Moreover, prior work also explored how Smalltalk and Java
can be implemented on top of Self so that they can benefit from the adaptive
optimizations of the Self VM [218]. Re-using the tools from the Self environ-
ment for Smalltalk or Java and exploring ideas for new ones was, however, not
a goal of the work. For Smalltalk, for example, common Smalltalk tools were
re-created in Self instead. Our work, on the other hand, primarily focuses on
the reuse of existing exploratory tools as well as on exploring tooling ideas
for polyglot programming.

Lively Kernel [74] is a self-sustaining programming system for the web with
support for live and exploratory programming. It is inspired by Smalltalk,
written in JavaScript, builds on an implementation of the Morphic framework,
and provides tool-building capabilities. Over the years, Lively Kernel has
been used as an exploratory platform for different web technologies but also
for native applications as well as for 3D and mobile applications [72]. In
Lively4 [96], a successor of Lively Kernel, the abstractions on top of which
its exploratory tools work have been lowered from Morphic and a specific
JavaScript code structure to HTML DOM and plain JavaScript. This way,
Lively4 can also be used as an exploratory programming environment for
external web and JavaScript applications that are not directly built within the
system.

While Lively Kernel and Lively4 provide exploratory programming and
tool-building capabilities for the web, our work provides similar means for
polyglot VMs. Similar to Lively4, our approach allows exploratory tools of
a self-sustaining programming system to be used for other languages and
applications that are outside of the system. This is possible because the
tools use the language interoperability protocol of the polyglot VM as an
abstraction.

Moreover, and although both re-use concepts from Smalltalk and Morphic,
Lively Kernel and Lively4 are built entirely from scratch. Our approach, on
the other hand, proposes to re-use an existing SSPS, which TruffleSqueak has
demonstrated to be possible.

Squeak]S [47] is a Smalltalk VM written in JavaScript and can run stock
Squeak/Smalltalk images in web browsers. It also provides interoperability
between Smalltalk and JavaScript through a bi-directional bridge between
the guest and the host language. This bridge has been extensively used by
Caffeine [92] to use Squeak/Smalltalk as a live and exploratory programming
environment on top of web browsers, for example, to explore ideas for virtual
reality live-coding spaces in 3D.

To use Squeak /Smalltalk on top of Squeak]S as an exploratory tool-building
platform following our approach, a polyglot VM would need to support

190

15.2. Dynamic Tools With Multi-Language Support

JavaScript and web browser capabilities. Since Squeak]S is implemented on
top of a high-level language, it faced similar challenges as TruffleSqueak
and because of that, inspired several implementation strategies in our imple-
mentation. To improve UI performance, for example, Squeak]S also deploys
JavaScript ports of BitBlt, Balloon, and other VM plugins.

Poplog [17] is an Al development environment with support for exploratory
programming and multiple languages. It uses incremental compilers for
Common Lisp, Pop-11, Prolog, and Standard ML and a two-level virtual ma-
chine [180] for execution. Furthermore, it provides a screen editor called VED
and other programming tools, for example, to incorporate other languages
into Poplog.

Poplog mainly focuses on the use and development of languages in the
context of AI. While it provides several tools, the lack of a common infras-
tructure for language interoperability makes it hard to explore and apply
tooling ideas that work across all existing and future languages of the system.
Our approach requires such a common infrastructure to provide exploratory
programming and tool-building capabilities on top of polyglot VMs.

15.2. Dynamic Tools With Multi-Language Support

Tools play a central role in our work. For polyglot programming, tools must
support multiple languages at the same time. This section presents related
work on tools and tooling infrastructures that are designed for this.

Multi-Language Debugging is among the most researched topics in the field
of polyglot programming. Numerous approaches have been explored in
several polyglot systems (e.g., [95, 106, 125, 193, 210, 211]). Debuggers are
important programming tools and because of that, their general features and
requirements are mostly well-understood. This, however, is not true for their
implementations, which heavily rely on the execution environments that they
target.

While debugging is also crucial for polyglot programming, our work aims
at exploring new tools as well as features of tools that support developers in
writing polyglot applications in entirely new ways. Nonetheless, the require-
ments of debuggers and exploratory tools overlap. Both, for example, provide
means for object inspection. We, therefore, believe that implementations of
our approach can benefit from efforts to support multi-language debugging
in a polyglot VM.

Truffle’s Instrument API [210] provides a language-agnostic infrastructure
for instrumenting GraalVM languages. This API operates on the AST level
and allows tools to perform operations before, instead of, or after the execution

191

15. Related Work

of specific AST nodes. For this, appropriate wrapper nodes are inserted into
an AST for all instrumented nodes. The Instrument API makes it possible
to implement debuggers, profilers, and similar tools in such a way that they
work across all GraalVM languages. It can further be used to collect dynamic
run-time data for dynamic program analysis [195] and to build tools that
support developers in building software with one or more languages (see
Section 15.5).

While our research builds on the idea of language-agnostic tool-building,
it is different to the work on the Instrument API in four ways:

1. The language-agnostic approach to tool-building allows tools to be built
once and re-used across all languages of a polyglot VM. To better support
polyglot programming, we extend the idea of language-agnostic tools and
propose to make them aware of the polyglot environment. Only if tools are
polyglot-aware, they can, for example, hide polyglot APIs from the users
and help them to distinguish between objects from different languages.

2. Instead of treating tools as external actors that must communicate through
a possibly restrictive interface for tools, our approach allows tools to be
built on the guest language level at run-time and to communicate directly
with applications through the language interoperability protocol. From
the perspective of the GraalVM, there is no difference between tools built
in TruffleSqueak and user applications.

3. We showed that existing tools can be adapted so that they work across dif-
ferent languages of a polyglot VM. GraalVM’s debugging and monitoring
infrastructure, on the other hand, was entirely built from scratch with the
Instrument API.

4. And lastly, we demonstrated that polyglot programming can be applied to
tool-building, not only to make tool-building more productive but also to
gain further insights into polyglot programming itself.

15.3. Tools for Building Polyglot Applications

As part of Chapter 12, we have used an implementation of our approach to
explore tooling ideas that help developers to build polyglot applications. In
the following, we present some related tools and systems.

Some IDEs support developers in building applications using multiple
languages. Intelli] IDEA [77], for example, not only supports Java but also
other JVM-based languages, such as Kotlin, Scala, or Groovy, that can be used
within the same project. Visual Studio [112] allows developers to combine
multiple .NET languages in a similar way.

192

15.3. Tools for Building Polyglot Applications

IDEs like this provide well-understood tools such as code editors and
debuggers and often support a specific set of languages. They, however,
commonly run separately from the runtime, and therefore, their tools are
restricted to the capabilities of the runtime’s tool interface. At the same time,
such IDEs are often complex, proprietary, and provide restrictive plugin
systems for extensions. Our approach, on the other hand, allows tools to run
and to be built in the same runtime process that also executes user applications.
Since we propose to re-use a self-sustaining programming system, tools can
freely be built and evolved just like the rest of the system.

Polyglot Notebook Systems allow data scientists and researchers to use
multiple languages within the same notebook [94]. SoS Notebook [148],
BeakerX [206], and many other systems orchestrate multiple notebook kernels
for different languages through inter-process communication. Polynote [116]
supports Scala and Python by embedding the CPython interpreter through
the Java Native Interface. NET Interactive Notebooks [109], on the other hand,
provides access to and interoperability between .NET languages within a
notebook through a single, NET-based kernel.

In terms of language integration, the polyglot notebook systems we pre-
sented in Section 12.1 and Section 13.2 can best be compared with .NET
Interactive Notebooks: All of them are based on polyglot VMs. Nonetheless,
the NET-based kernel is with approximately 2900 SLOC also more complex
compared with the 725 SLOC required to build the entire notebook system in
TruffleSqueak. This is therefore another example of how our approach allows
the exploration of specific tooling ideas with relatively low costs.

Eco [35] is an editor for building polyglot applications and allows fine-
grained language compositions. For this, it uses an incremental parser with
support for different languages to maintain an AST-based representation
across all languages it supports. Moreover, the parser has been extended to
automatically detect different languages [34].

Eco is a static tool and as such, does not have access to dynamic run-time
data. To support another language, its parser must be extended appropriately.
Also, the execution of polyglot applications is not a primary concern of Eco.
Our polyglot editor presented in Section 12.2, on the other hand, specifically
integrates the polyglot APIs of GraalVM languages to allow the execution on
top of the GraalVM. Nonetheless, the work on Eco has served as an inspiration
for the code boxes supported in the polyglot editor. While Eco supports both
implicit and explicit switches between languages, code boxes in our editor
can only be added explicitly by the user.

193

15. Related Work

15.4. Platforms for Language and Tool Development

Language and tool development often go hand in hand, not just when it
comes to polyglot VMs. There are many different platforms that enable both
and we present some that are related to our work in the following.

Helvetia [158] is a Smalltalk-based environment for language development.
Smalltalk is used as both the development environment and the host language
for building embedded languages. DSLs and other languages implemented
in Helvetia are represented using Smalltalk ASTs. This allows different tools
from Smalltalk, such as its code browser, parser, or debugger, to be re-used
across languages.

Helvetia and our work share the same idea: re-using existing tools across
different languages. Helvetia does that for languages embedded in Smalltalk,
where languages are integrated vertically, and focuses on language develop-
ment. Our approach, on the other hand, enables exploratory programming
and focuses on tool-building for polyglot VMs, where guest languages are
integrated horizontally, so on the same level.

Gramada [154] is another Smalltalk-based environment for language devel-
opment. It builds on the Ohm parser generator [212] and aims at enabling live
programming in language development. For this, it provides immediate and
continuous feedback through, for example, syntax tests that run automatically,
an interactive debugger, and a visualization tool for parse trees.

While our approach does not aim at the live development of languages, it
enables exploratory tools to be used by language developers of polyglot VMs
to explore their languages at run-time. These tools support live programming
to some extent. As our implementation has shown, GraalVM languages can
be explored with TruffleSqueak but their implementation cannot be changed
arbitrarily at run-time as they are written in Truffle and Java.

Language Workbenches [46], such as Spoofax [82], Xtext [39], or JetBrains
MPS [78], are related platforms for language development. While they are
designed to support language developers to create and evolve languages,
many workbenches also provide means to generate different static tools,
such as syntax highlighting, code navigation, or refactoring, from language
definitions [38].

The primary goal of language workbenches is to support the development
of new languages. Tool development, which is often limited to static tools, and
language interoperability are often secondary concerns. Instead of focusing
on language development, our approach makes exploratory programming
tools available across different languages and allows the construction of both
static and dynamic tools at run-time.

194

15.5. Dynamic Run-Time Data and Tools

15.5. Dynamic Run-Time Data and Tools

Dynamic tools have demonstrated that dynamic run-time data can be used
to support developers in writing code in dynamic programming languages.
In this thesis, we argue that such tools can also support them during poly-
glot programming with polyglot VMs because language interoperability is
dynamic and can best be observed at run-time. In general, two main aspects
are often researched in related work: The collection of dynamic run-time data
and how this data can be put to use within dynamic tools.

Hermion [167], for example, is an IDE based on Squeak/Smalltalk and uses
partial behavioral reflection [198] to obtain dynamic run-time data on the
language level. Based on this information, tools for code navigation can be
improved and source code can be annotated with type information to aid
program comprehension.

Senseo [166] and work by Holmes and Notkin [67] use Aspect-Oriented
Programming (AOP) [85] through Aspect] [84] to collect dynamic trace data,
which they then incorporate into Eclipse. Similar to Hermion, the data is used
to annotate code with type information and to improve the precision in the
“find references” tool from Eclipse.

The work on Type Harvesting [62], on the other hand, is primarily concerned
with the collection of type information at run-time. It is based on the stepwise
execution of code to observe and collect values and their concrete types, again,
during test execution.

Live Typing [215], on the other hand, collects dynamic type information on
the VM level. Its implementation is based on Cuis Smalltalk and a modified
OpenSmalltalkVM that stores type information during the execution of spe-
cific bytecodes in data structures that can be accessed from within Cuis. The
collected dynamic run-time data is again used to improve code navigation
but also to improve code completion and to provide better refactoring tools.

Truffle’s Instrument API [210] allows dynamic program instrumentation,
which can also be used to collect dynamic run-time data for tools supporting
developers in building applications with one or more languages. In related
work, we demonstrated that is possible to build an LSP server based on
this that provides, for example, code completion or go-to definition across
GraalVM languages [192]. In addition, we showed that an example-based live
programming system can be built on top of such an LSP server [128].

In self-sustaining programming systems, reflective facilities always pro-
vide access to dynamic run-time data. Our approach, however, shows up
another way to acquire dynamic run-time data: Instead of collecting such
data yourself, data already collected on the VM level can be accessed and
re-used. Language implementations and JIT compilers, for example, manage

195

15. Related Work

and collect a lot of data at run-time. This often includes profiling information,
numerous caches such as polymorphic inline caches [68], state for different
performance optimizations, and IRs of the compiler infrastructure among oth-
ers. In TruffleSqueak, we have shown that it is possible to access profiling and
other information collected within GraalVM languages or the Graal compiler.
Graal’s call target objects, for example, provide access to invocation counts
as well as type information for arguments and return values of methods. In
Section 12.4, we have further presented two tools that help not only runtime
and language developers to understand the behavior of the Graal compiler at
run-time. The CallTargetBrowser can also be used by application developers
to find, for example, unused code or performance issues within their appli-
cations. The exploratory tools from TruffleSqueak and its VM introspection
capabilities allow further exploration of other GraalVM internals to identify
other useful sources of dynamic run-time data.

196

16. Conclusions and Future Work

This chapter presents directions for future work and concludes the thesis.

16.1. Future Work

Future work can be grouped into four areas: technical limitations, opportu-
nities to build on our work on tools, challenges of polyglot VMs, and best
practices for polyglot programming.

Limitations of TruffleSqueak and GraalVM As discussed in Section 11.4,
TruffleSqueak has several limitations and raised some challenges that are spe-
cific to GraalVM and Squeak/Smalltalk. These could be addressed in future
work. GraalVM’s language interoperability protocol could be extended with
our optional features for exploratory programming such as findAl1Instances
or swap to allow them to work across all GraalVM languages. It would also be
interesting to enable cross-language debugging from within TruffleSqueak,
for example, by running it or only its UI process in a separate Java thread.
Moreover, its run-time performance and memory footprint could be improved
further with more efficient object representations, additional optimizations,
or through AOT compilation with GraalVM Native Image. TruffleSqueak
could also be extended with more plugins, primitives, and other missing VM
features to increase its compatibility and to allow other dialects or descendants
of Smalltalk such as Cuis or Newspeak to run on GraalVM.

Taking Our Work on Tools Further Future work could also build on the
results of our case studies from Chapter 12 and Chapter 13 and push these
ideas forward. It could also use TruffleSqueak to explore additional ideas for
tools that help developers, for example, to deal with the cognitive overhead
of polyglot programming or to find and combine appropriate languages,
frameworks, and libraries when building polyglot applications. Before our
and other ideas can be applied in practice and turned into products, it makes
sense to evaluate them further with appropriate user studies. In addition, our
approach could also be applied to .NET and other polyglot VMs. Similarly,
other self-sustaining programming systems such as Self, Cuis, or Lively Kernel
could be investigated instead of Squeak/Smalltalk.

197

16. Conclusions and Future Work

Challenges of Polyglot VMs Moreover, we discussed several advantages,
disadvantages, and challenges of polyglot VMs in Chapter 14 that are not spe-
cific to GraalVM and could also be the subject of future research. Future work
could investigate how type and interface mismatches across languages can
be mitigated to further improve the portability of code. Another interesting
challenge to solve is how different languages can co-exist and interoperate
with each other without breaking each other’s models for exception handling,
continuations, and other mechanisms beyond call-and-return control flow.
The same is true for combining different programming paradigms and other
language concepts, such as inheritance, garbage collection, or object persis-
tence, across languages. An additional direction for future work is to research
how the idea of self-sustainability could be expanded across languages and
a polyglot VM so that all components of a polyglot VM’s ecosystem can be
evolved through itself at run-time. In the case of TruffleSqueak, this would
allow the development of performance optimizations for the Graal compiler
with shorter feedback loops.

Toward Best Practices for Polyglot Programming Best practices for polyglot
programming with polyglot VMs are needed to make it more approachable
in practice. Therefore, future work also needs to research other aspects of soft-
ware engineering in the context of polyglot programming. It could examine
the impact of this type of programming on the readability and maintain-
ability of code as well as on developer productivity. It could also focus on
software design patterns, software testing, software maintenance, depen-
dency management, and other software development activities, practices,
and methodologies with regard to building polyglot applications.

16.2. Conclusions

Polyglot VMs provide a new level of polyglot programming that comes with
many advantages over C-based foreign function interfaces, inter-process com-
munication, and other established approaches. Through high-level language
interoperability protocols, they allow languages to directly interact with each
other. This allows developers to re-use and combine libraries and frameworks
written in different languages with less glue code and lower performance
overheads compared with other approaches. At the same time, it is possible
to build tools that support developers across multiple languages. While prior
research has investigated how debuggers and other conventional tools can be
built for polyglot VMs, our work focuses on novel tools that are specifically
designed to support developers in building polyglot applications.

198

16.2. Conclusions

Contribution1 An approach enabling exploratory programming and
tool-building on top of polyglot virtual machines.

In this thesis, we presented an approach for an exploratory tool-building
platform for polyglot VMs. With exploratory programming tools, developers
can build, evolve, inspect, and interact with their applications at run-time,
allowing them to explore and gather software requirements. Such tools, how-
ever, are usually built for and limited to a particular programming language
ecosystem.

Our approach builds on a self-sustaining programming system and shows
that it is possible to re-use existing tools for exploratory programming. For
this, we propose to integrate other languages of a polyglot VM into such a
programming system based on the VM'’s protocol for language interoperabil-
ity. This way, the exploratory tools require little to no modification and work
across the existing and all future languages supported by a polyglot VM.
We described the API requirements for such an integration, which overlap
in large part with what polyglot VMs already have to support for language
interoperability. Although an SSPS needs to run as a guest language of a
polyglot VM for this, we argue that the required language implementation is
usually small compared to the rest of the system.

In return, it is possible to re-use and build on the entire SSPS including its
standard library, Ul system, features such as live programming, and especially
its extensive tool-building capabilities. Development in such programming
systems happens at run-time. Therefore, dynamic run-time data is always
accessible for the construction of dynamic tools. Since the language interoper-
ability protocol is directly exposed within the SSPS for the exploratory tools,
we showed that it can also be used to extend other tools and to build new
ones that work across multiple languages.

Contribution 2 Extensions for exploratory programming tools that
make them polyglot-aware.

While language-agnostic tools as proposed by prior research are a good step
toward providing better tool support across languages, we argue that devel-
opers need more than language-agnostic views to build polyglot applications.
Tools must be polyglot-aware so that they support developers with features
specifically designed for polyglot programming and polyglot VMs. This also
applies to the exploratory tools that our first contribution enables. Therefore,
we propose extensions that make these tools aware of, and with that even
more useful for polyglot VMs. In addition to the structure of an object, inspec-
tion tools can further help developers by revealing the interface of an object
and its language of origin. Exploratory tools that are aware of the polyglot

199

16. Conclusions and Future Work

VM they run on can also provide a better user experience, for example, by
hiding the polyglot API from users. By incorporating additional features of a
polyglot VM’s language interoperability protocol into these tools, we showed
that they can also support language and runtime developers in understanding
dynamic behavior within, and requirements of their polyglot VM.

Contribution 3 A proposal to further explore polyglot programming
by applying it to tool-building and within a self-sustaining programming
system.

We further propose to apply polyglot programming to tool-building to in-
crease the productivity of tool developers. More importantly, this helps to
gain new insights into polyglot programming with polyglot VMs and to
identify potential use cases and challenges, which our case studies have
demonstrated. We showed that polyglot programming can also be applied
for the same purposes by application, language, and runtime developers and
even within the components of a self-sustaining programming system. That
way, the ecosystem of a polyglot VM not only benefits from the capabilities of
an SSPS, the SSPS can also benefit from the polyglot VM and its supported
languages.

Contribution 4 An implementation of said approach and extensions
for the GraalVM and based on Squeak/Smalltalk.

Furthermore, we presented TruffleSqueak, an implementation of our approach
for the GraalVM and based on Squeak/Smalltalk. TruffleSqueak not only
shows that our approach is feasible but also that the implementation in itself
helps to test and validate various assumptions, design decisions, and APIs
of GraalVM. Although its language implementation is small compared to the
rest of TruffleSqueak, some language features of Squeak/Smalltalk, such as
its become: or snapshotting mechanisms, require appropriate implementation
strategies in Truffle. Even without the integration of other languages, we were
and still are able to generate useful feedback for the evolution of GraalVM
based on implementation challenges and our experiences using TruffleSqueak.
Our Ul performance benchmarks, for example, illustrate that the latency mode
of the Graal compiler is to be preferred over the default throughput mode for
TruffleSqueak’s programming system, because short warmup times are more
important than peak performance for UI applications. Our benchmarks thus
help to assess the impact of new compiler features that improve warmup or
performance in GraalVM.

With our integration of GraalVM’s language interoperability protocol into
TruffleSqueak, we can observe how GraalVM languages interoperate with

200

16.2. Conclusions

each other in detail and at run-time. This helped us not only to uncover many
inconsistencies and bugs across different GraalVM languages but also to
provide further feedback for the GraalVM team and discuss how the protocol
could be evolved. An example is an API hook for determining the language
of an object, a simple but important feature required for building polyglot-
aware tools. We further demonstrated that TruffleSqueak and its tools can
be extended through polyglot programming. Examples are a Ruby library
that we integrated to provide syntax highlighting for hundreds of languages
within the exploratory tools as well as an R package that we combined with
Squeak/Smalltalk’s Morphic framework to provide live data visualizations.

Overall, TruffleSqueak shows that polyglot VMs allow more than libraries
and frameworks to be shared across different languages. It also enables the
reuse of tools including those for exploratory programming across languages
and brings the programming experience from Squeak/Smalltalk including
live programming to polyglot VMs. We believe this is a good demonstration
of how much more capable polyglot VMs are compared with established
approaches to polyglot programming.

Contribution 5 Case studies that demonstrate how our approach
enables further research on tools for polyglot programming and polyglot
virtual machines, as well as a synthesis of our findings.

Moreover, we presented five case studies that show how TruffleSqueak can
be used to explore different research questions on tools for polyglot pro-
gramming. By composing workspaces and inspection tools, for example, we
quickly created a Jupyter-like notebook system that allows data scientists
and researchers to use more than one language at the same time. All tools
we presented are themselves built in a polyglot way, which allowed us to
gain further insights into polyglot programming and how it can be applied
when building tools. In an additional study, we demonstrated that the insights
gained through the notebook system in TruffleSqueak are transferable to other
notebook systems such as Jupyter and VS Code notebooks. In another study,
we further showed that our approach can also be applied to an RPython-based
polyglot VM.

We summarized the insights and lessons learned for each of our case
studies and present a synthesis of our findings. Overall, we believe these
studies give a good impression of the potential of polyglot VMs. These VMs
allow developers to combine high-level languages without having to deal
with low-level abstractions, which increases reuse and thus developer pro-
ductivity. Our extended exploratory tools and other polyglot-aware tools can
help developers to deal with the additional cognitive overhead introduced by
polyglot programming. We found that the extent of this overhead not only

201

16. Conclusions and Future Work

depends on the number of languages in use but also on the granularity of
their combination. The finer languages are combined, such as on the level
of functions, the harder it is, for example, to keep track of the semantics of
different languages. Modules, on the other hand, allow developers to think
about APIs rather than about implementation details such as the language
they are written in and thus provide a reasonable granularity for polyglot
programming. Other challenges resulting from high-level language integra-
tions are type and interface mismatches across languages. These mismatches
can cause additional work for developers and need to be addressed to make
more code portable and with that easier to re-use across languages.

Thesis Statement To use and evolve polyglot virtual machines effec-
tively, we must be able to explore tooling ideas, polyglot applications,
language implementations, and the VMs themselves at run-time.

Language interoperability as provided by polyglot VMs can best be observed
at run-time. Many developers, however, distinguish between development-
time and run-time. Self-sustaining programming systems such as Squeak/
Smalltalk, Lively Kernel, or Self have demonstrated that development at
run-time can improve productivity through shorter feedback loops. At the
same time, dynamic run-time data is always accessible, which can be used in
tools to better support developers when writing code in dynamic program-
ming languages. Our approach brings this idea to polyglot VMs and helps
tool, application, language, and runtime developers to use and evolve them
effectively.

1]

Developers strive to improve their productivity. Yet they usually limit them-
selves to a single programming language when building applications. Polyglot
programming allows them to use multiple languages but is often only used
out of necessity. Established approaches to polyglot programming come with
significant limitations, for example, in terms of tool support, which can make
for a poor programming experience. Polyglot VMs can avoid many of these
limitations but they are also relatively new and not yet well-understood.

In this thesis, we presented an approach for a platform that enables ex-
ploratory programming and tool-building in the context of polyglot VMs.
On top of such a platform, we further showcased several polyglot applica-
tions and tools for building them, demonstrating both the potentials and
challenges of polyglot VMs. With good tool support, we believe that polyglot
programming with polyglot VMs can be made more approachable in practice.
Ultimately, we think that polyglot VMs have the potential to turn polyglot

202

16.2. Conclusions

programming from a necessity into a real opportunity for developers, making
it much more common for them to take advantage of multiple languages and
their ecosystems when building software.

203

Part VII.

Appendix

205

Appendix A.

Bytecode Interpreter Loop
Implementations

In this chapter, we present an implementation of a bytecode interpreter
loop for Squeak/Smalltalk in Truffle, GraalVM’s language implementation
framework that is originally designed to implement AST interpreters. We
further explain how this implementation needs to be extended so that the
Graal compiler can detect and optimize it well.

Listing A.1 shows a simple Truffle node implementation to interpret se-
quences of Squeak/Smalltalk bytecodes. This node extends Truffle’s Node
class and contains appropriate nodes for each bytecode of the target Squeak/
Smalltalk method as child nodes (lines 2 and 6). Within the executeLoop()
method, the pc (program counter) is set to zero to select the first bytecode
of the corresponding Smalltalk method before the interpretation loop is en-
tered. Within the loop, the bytecode node for the current pc is fetched (line
12). If it is a ReturnNode, the loop is left returning the result of the node’s

Listing A.1: A simple Truffle node implementation for interpreting sequences
of Squeak/Smalltalk bytecodes represented as AST nodes.

class SimpleExecuteBytecodeNode extends Node {
@Children AbstractBytecodeNode[] bytecodeNodes;

SimpleExecuteBytecodeNode(CompiledCodeObject smalltalkMethod) {

super();

bytecodeNodes = smalltalkMethod.toBytecodeNodes();
}
Object executeLoop(VirtualFrame frame) {

int pc = 0;

while (true) {
AbstractBytecodeNode node = bytecodeNodes|[pc];
if (node instanceof ReturnNode) {
return ((ReturnNode) node).executeReturn(frame);
} else {
pc = node.executeInt(frame);

207

Appendix A. Bytecode Interpreter Loop Implementations

executeReturn() method (line 14). Otherwise, the executeInt () of all other
AbstractBytecodeNodes is executed (line 16), which performs the appropriate
bytecode operation and returns the next pc for the next iteration of the loop.
Although this simple node implementation can correctly interpret a sequence
of bytecode nodes, the Graal compiler requires additional hints to produce
efficient machine code for it.

Listing A.2 shows the loop after extending it with hints for the Graal
compiler. While this is still a slightly simplified version of the loop used in
TruffleSqueak, it covers the important parts that allow the compiler to produce
efficient machine code for our bytecode interpreter. The most important hint
is the @ExplodeLoop annotation of the kind MERGE_EXPLODE in line 9. This
loop explosion kind is specifically designed for bytecode interpreter loops
as it instructs the compiler to explode the loop in the annotated method
while merging all copies of the loop body with identical state. To avoid
any confusion in the compiler, we mark the VirtualFrame parameter, the
node variable, and others as final, label the while loop, and continue to that
label specifically from all loop ends (lines 22, 25, 33, 37, and 40). Instead of
returning in case of a ReturnNode, the pc is set to a well-known negative value
and checked in the while condition in line 15. We also assert that the number
of bytecodeNodes and the pc per loop iteration are constant during partial
evaluation (lines 11 and 16). This helps to ensure that the MERGE_EXPLODE
loop explosion kind is applied correctly. Furthermore, we have to help the
compiler to detect loops within bytecode sequences by counting back jumps.
For this, we introduce a backJumpCounter in line 14, which is incremented
in case the successor is less or equal to the current pc (line 30). This can
only happen in the case of an unconditional jump bytecode (lines 27 to 33),
which the Squeak/Smalltalk compiler uses to generate loops. We also only
increment the counter in the interpreter to avoid the profiling overhead in
compiled code. Before the executeLoop() method returns, we assert that
the backJumpCounter did not overflow (line 43) and report it to the compiler
through LoopNode. reportLoopCount () (line 44). Additionally, we further help
the compiler to understand how often a conditional jump bytecode jumps
or not by profiling the result of executeCondition() with a CountingProfile
from Truffle (line 20). Internally, this type of profile reports the probability
of a branch to the compiler. This information is then used, for example, to
decide whether the bytecode nodes behind a certain branch should become
part of compiled code or not and in which order.

Moreover, Listing A.2 also shows an optimization: Since each bytecode
node usually has additional child nodes, ASTs of bytecode interpreters
implemented this way in Truffle tend to be rather large compared with
normal AST interpreters. The larger an AST, the more memory is consumed

208

Listing A.2: The node from Listing A.1 extended with hints and an optimiza-
tion for the Graal compiler.

class ExtendedExecuteBytecodeNode extends Node {
@Children AbstractBytecodeNode[] bytecodeNodes;

ExtendedExecuteBytecodeNode (CompiledCodeObject smalltalkMethod) {
super();
bytecodeNodes = smalltalkMethod.createEmptyBytecodeNodesArray();
}

@ExplodeLoop(kind = ExplodelLoop.LoopExplosionKind.MERGE EXPLODE)
Object executeLoop(final VirtualFrame frame) {
CompilerAsserts.partialEvaluationConstant(bytecodeNodes.length);
int pc = 0;
Object returnValue = null;
int backJumpCounter = 0;
bytecode loop: while (pc != LOCAL RETURN PC) {
CompilerAsserts.partialEvaluationConstant(pc);
final AbstractBytecodeNode node = fetchNextBytecodeNode(pc);
if (node instanceof ConditionalJumpNode) {
final ConditionalJumpNode jumpNode = (ConditionalJumpNode) node;
if (jumpNode.profile(jumpNode.executeCondition(frame))) {
pc = jumpNode.getJumpSuccessor();
continue bytecode loop;
} else {
pc = jumpNode.getNoJumpSuccessor();
continue bytecode loop;

} else if (node instanceof UnconditionalJumpNode) {
final int successor = ((UnconditionallJumpNode) node).getJumpSuccessor();
if (CompilerDirectives.inInterpreter() && successor <= pc) {
backJumpCounter++;
}
pc = successor;
continue bytecode loop;
} else if (node instanceof ReturnNode) {
returnValue = ((ReturnNode) node).executeReturn(frame);
pc = LOCAL_RETURN PC;
continue bytecode loop;
} else {
pc = node.executeInt(frame);
continue bytecode loop;

}

assert backJumpCounter >= 0;
LoopNode. reportLoopCount(this, backJumpCounter);
return returnValue;

}

AbstractBytecodeNode fetchNextBytecodeNode(final int pc) {
if (bytecodeNodes[pc] == null) {
CompilerDirectives.transferToInterpreterAndInvalidate();
bytecodeNodes[pc] = insert(smalltalkMethod.createBytecodeNodeAt(pc));
notifyInserted(bytecodeNodes[pc]);

return bytecodeNodes[pc];

}

/...
}

209

Appendix A. Bytecode Interpreter Loop Implementations

but also more time is needed to process it in the compiler, which in turn
results in longer warmup times. To reduce AST sizes and with that memory
footprint and warmup times, we allocate an empty AbstractBytecodeNode[]
in line 6. Instead of directly reading from this array, bytecode nodes are
fetched in line 17 via fetchNextBytecodeNode (). This helper method inserts
bytecode nodes on demand. For this, it checks whether the bytecode node
for a given pc already exists in the array and simply returns it if it does.
Otherwise, it creates an appropriate node and inserts it correctly into the AST
(line 51). Since this can happen as part of compiled code, we must instruct the
Graal compiler to transfer to the interpreter and invalidate any compiled code
for this node (line 50) before modifying the AST. After inserting the new
node, we must also notify the Truffle framework about the operation (line
52) to ensure that instrumentation works correctly. Before the Graal compiler
optimizes a Smalltalk method, the method is executed in the interpreter
and thus it is likely that all required bytecode nodes are allocated when JIT
compilation occurs. Since the compiler treats the AbstractBytecodeNode[]
as final at compilation time due to the @Children annotation from Truffle,
the fetchNextBytecodeNode () helper can be completely optimized away in
compiled code. As a result, only nodes for reached bytecodes are allocated,
which can reduce AST sizes significantly, for example, when methods contain
bytecodes for platform-specific code that will never be executed. On the other
hand, this means that as new bytecodes become reachable, compiled code
must be thrown away and re-optimized, which is additional work for the
compiler.

Although the extended version of the loop is around four times larger in
terms of SLOC than the simple loop, it is still reasonable in terms of implemen-
tation complexity. However, the process of applying the right hints in the right
places is not straightforward and requires good knowledge about both the
Graal compiler and the language in question. In Espresso and GraalWasm, the
GraalVM team has explored a different implementation strategy for bytecode
interpreters that implements the loop and all bytecode operations in a single
node to further reduce interpreter overhead and memory footprint. In the
future, it would be great if the Truffle framework helps language developers
by providing appropriate infrastructures and components for building fast
and efficient bytecode interpreters for the GraalVM.

210

Appendix B.
Language Performance Evaluation

In Section 11.2, we evaluate the UI performance of TruffleSqueak to show that
its programming system is usable on the GraalVM. Since these UI perfor-
mance benchmarks rely on the Morphic framework, they not only exercise
a lot of Smalltalk code but also the BitBlt primitives of the corresponding
VM as well as platform-specific code for rendering the display buffer from
Squeak/Smalltalk. To measure the run-time performance of the language and
to compare the effect of different GraalVM modes in more detail, we run the
Are We Fast Yet benchmark suite [102], a set of macro and micro benchmarks,
on different TruffleSqueak configurations as well as on the OpenSmalltalkVM.
We also use this benchmark suite for continuous performance tracking of
TruffleSqueak: During development, the benchmark suite is frequently run
against new changes of TruffleSqueak, and the benchmark results are added
as comments to the corresponding commits on GitHub. This helps us to
understand how changes affect the run-time performance and thus allows us
to detect and avoid performance regressions.

Setup Allbenchmarks run on the same dedicated benchmark server that we
set up for continuous performance tracking and that we also use in the second
UI benchmark from Section 11.2: a Dell PowerEdge 2950 (Two Quad-Core
Intel Xeon E5410 CPUs @ 2.33 GHz, 32.18 GiB ECC memory) running on
Debian 9. Hyper-threading, Intel Turbo Boost, and Intel P-States are disabled.
We use ReBench, a benchmark runner maintained as part of the AWFY
project, to execute each benchmark 250 times on each VM configuration:
TruffleSqueak on the JDK11-based distribution of GraalVM 21.2.0 CE— the
community edition of GraalVM—in latency mode, in throughput mode, on
the JDK11-based GraalVM 21.2.0 EE— the commercial enterprise edition—
in both modes, and on the OpenSmalltalkVM 202003021730 (64-bit). All
configurations use the default problem size for each benchmark and the same
prepared image based on Squeak6.0alpha-20089-64bit with the Sista bytecode
set and FullBlockClosures enabled.

The command that ReBench uses to run the AWFY benchmarks on
TruffleSqueak is shown in Listing B.1. The image startup routine and interrupt

211

Appendix B. Language Performance Evaluation

Listing B.1: The command used to run AWFY benchmarks on TruffleSqueak.

bin/trufflesqueak --experimental-options \

--smalltalk.disable-startup \ # skip the image startup routine
--smalltalk.disable-interrupts \ # disable the interrupt handler
--engine.Mode="${GRAALVM MODE}" \ # set the corresponding GraalVM mode
--engine.MultiTier=false \ # disable multi-tier compilation
--engine.DynamicCompilationThresholds=false \ # disable dynamic thresholds
--engine.TraceCompilation \ # trace compilation of Smalltalk methods
--engine.CompilationStatistics \ # print compilation statistics on exit

--log. flle— ${BENCHMARK NAME}.log" \ # redirect logging into a file

--code "FileStream startUp: true. Harness new run: #(nil '${BENCHMARK NAME}'
— 250 ${PROBLEM SIZE})" \ # Smalltalk code to execute the benchmark
AWFY.image # prepared AWFY Smalltalk image

handler are disabled to reduce the amount of additional code executed before
and when a benchmark runs. Multi-tier compilation is disabled to ensure that
benchmark code is only optimized in the highest tier. We also disable dynamic
compilation thresholds to avoid additional compilations, for example, of the
benchmark harness after the compilation of the actual benchmark is done. For
analysis purposes, compilation traces and statistics are enabled and logged
into a file. We use these traces to check that each benchmark stabilizes within
the first 50 iterations that we use for warmup. Although this is a fixed number
of iterations, the Graal compiler has more time to optimize benchmarks that
need longer to warm up and run. Since we disabled the startup routine,
the FileStream class>>startUp: method needs to be manually invoked to
ensure that the stdio handles are set in TruffleSqueak before the benchmark
harness can report timing information via stdout.

Note that, due to stack overflow errors, we excluded the CD benchmark,
a simulation of a collision detector, from our performance tracking infras-
tructure and disabled it for this performance evaluation. After this thesis
was submitted, we found out that these errors were caused by a bug in the
Smalltalk port of the benchmark. The bug resulted in excessive stack depths,
which exceeded the default thread stack size of GraalVM and thus caused the
CD benchmark to fail on TruffleSqueak.

Results Figure B.1 shows plots for 200 iterations of the AWFY benchmarks
for all five VM configurations after 50 iterations of warmup. The configura-
tions are sorted in descending order by the total time to run all benchmarks.
Table B.1 lists corresponding mean values, 95 % confidence intervals, factors
relative to the OpenSmalltalkVM, and geometric means of these factors. To
derive the mean values and confidence intervals, we used the bootstrapping
technique described in [81].

The four macro benchmarks— DeltaBlue, Havlak, [son, and Richards— show
that TruffleSqueak on GraalVM in latency mode is slower than in throughput
mode, which is expected and in line with our observations in Section 11.2.

212

Bounce DeltaBlue Havlak
1,000 [1 4,000 | == |

" 1,000 TT f 3,000 ™ |
500 - o ol 500 |- | 2,000 |- S
e o ; 1,000 =]
0 0 0
Json List 500 Mandelbrot
2,000 [== 1 1,000 —— o~
- + 600 |- .
e
1,000+ 500F 400 -]
- 200 F &= 5
0 0 0
NBody Permute Queens
1,000 =+ -~ . - +
=*= 400 ,é.;éi; | 400+ - s
i
500 - . 200 B 200 | I
—+
0 0 0
Richards Sieve Storage
au;q; 800 - b . 100 %

2,000] Zgg — | oy
1,000 .| I | 200 | -
200 f+4 4,

0 0 0
Towers
1,000 F = =)
+ i ¢ H| TruffleSqueak on GraalVM CE in latency mode
i § H| TruffleSqueak on GraalVM EE in latency mode
500 |- - i ¢ H| OpenSmalltalkVM

S ' i'$ H| TruffleSqueak on GraalVM CE in throughout mode
TruffleSqueak on GraalVM EE in throughout mode

0

Figure B.1.: Peak performance plots for the AWFY benchmarks in milliseconds
per VM configuration sorted by the total time to run all benchmarks. Lower
is better. Each Tukey boxplot [104] visualizes the quartiles of 200 iterations
per VM (after 50 iterations of warmup). The median is highlighted with a
diamond marker. The ends of the whiskers represent the lowest and highest
datum within 1.5 IQR of the corresponding quartile.

213

Table B.1.: Peak performance result table for the AWFY benchmarks shown in Figure B.1. For each benchmark, the first row
shows absolute mean values and 95 % confidence intervals for 200 iterations and after 50 iterations of warmup. The second
row shows those values relative to the OpenSmalltalkVM as a factor. The best and worst benchmark results are underlined in
green and red respectively. The last row contains the geometric mean of the relative factors

Appendix B. Language Performance Evaluation

Benchmark TruffleSqueak in Latency Mode OpenSmalltalkVM | TruffleSqueak in Throughput Mode
(problem size) GraalVM CE 7 GraalVM EE GraalVM CE 7 GraalVM EE
Bounce (1500) 938.270 ms+1.063 674.580 ms+1.217 420.218 ms+0.017 182.695 ms+1.116 368.605 ms+1.082
2.233+0.003 1.605+0.003 0.435+0.004 0.877+0.003
DeltaBlue (12000) | 1209.120 ms+6.930 | 1004.155 ms+7.436 250.906 ms+5.931 321.850 ms=+1.125 150.975 ms+1.987
4.820+0.140 4.004+0.119 1.283+0.037 0.602+0.021
Havlak (1500) 3983.160 ms+3.491 | 3299.310 ms+2.599 | 2865.806 ms+6.263 1573.135 ms+3.163 | 1053.280 ms+2.459
1.390+0.004 1.151+0.003 0.549+0.002 0.368+0.001
Json (100) 2049.190 ms=+1.752 | 1698.275ms+1.913 | 1058.888 ms+3.527 535.910ms+0.845 | 226.130 ms+0.782
1.935+0.008 1.604+0.007 0.506+0.002 0.214+0.001
List (1500) 606.875 ms+0.919 376.440 ms+0.841 507.136 ms+0.005 902.750 ms+1.960 | 454.665ms+0.594
1.197+0.002 0.742+0.002 1.780+0.005 0.897+0.001
Mandelbrot (500) 158.385ms+0.807 | 149.995 ms+0.829 738.596 ms+0.004 145.680 ms+0.565 140.640 ms+0.249
0.214+0.001 0.203+0.001 0.197+0.001 0.190+0.000
NBody (250000) 1041.260 ms=+1.650 892.445ms+1.251 | 1036.211 ms=+0.039 279.940 ms+0.912 197.615 ms+0.684
1.005+0.002 0.861+0.001 0.270+0.001 0.191+0.001
Permute (1000) 455.080 ms=+0.877 470.890 ms=+1.045 542.213 ms=+0.034 237.210 ms=+0.681 213.070 ms=+0.709
0.839+0.002 0.868+0.002 0.437+0.002 0.393+0.002
Queens (1000) 475.140 ms=+0.873 384.660 ms+1.105 395.362 ms+0.015 260.710 ms+0.371 177.770 ms+1.316
1.202+0.003 0.973+0.003 0.659+0.001 0.450+0.004
Richards (100) 2661.565 ms+1.867 | 2226.210ms+1.904 | 1138.765 ms+0.174 1114.975 ms+1.029 882.705 ms+1.049
2.337+0.002 1.955+0.002 0.979+0.001 0.775+0.001
Sieve (3000) 222.140 ms+1.614 | 235.605ms+1.196 713.322 ms+2.111 218.760 ms+1.478 169.130 ms+0.903
0.311+0.003 0.330+0.002 0.307+0.003 0.237+0.002
Storage (1000) 329.000 ms+1.114 318.210 ms=+0.968 479.860 ms+1.794 304.785 ms=+0.753 185.270 ms+0.871
0.686+0.004 0.663+0.004 0.635+0.003 0.386+0.003
Towers (600) 910.670 ms+1.200 | 823.625ms+1.814 | 441.156 ms+0.017 372.420ms+2.437 | 275.885ms+0.714
2.064+0.003 1.867+0.005 0.844+0.008 0.625+0.002
Geometric mean 1.171+0.004 1.003+0.004 0.571+0.003 0.414+0.002

214

However, the performance impact of the latency mode, which disables inlining
and splitting in the compiler, is much larger compared with the difference in
frame rates measured as part of the UI benchmark shown in Figure 11.4a. In
throughput mode, so with inlining and splitting, the macro benchmarks run
more than twice as fast. DeltaBlue, a constraint solver benchmark, and Havlak,
a loop recognition algorithm, are almost four times faster.

Another expected result demonstrated by these macro benchmarks is that
GraalVM EE, which performs additional performance optimizations, is gen-
erally faster than GraalVM CE. Richards, an OS kernel simulation benchmark,
on TruffleSqueak in throughput mode, for example, needs around 1115 ms on
GraalVM CE and 883 ms on GraalVM EE. Json, a JSON string parsing bench-
mark, is more than twice as fast on GraalVM EE compared with GraalVM CE.
The OpenSmalltalkVM is somewhere between TruffleSqueak on GraalVM EE
in latency and throughput mode in terms of performance. For Havlak, it is close
to the performance of GraalVM EE in latency mode but close to the through-
put mode for Richards. In the DeltaBlue benchmark, the OpenSmalltalkVM also
comes close to GraalVM EE in throughput mode and outperforms GraalVM
CE in that mode.

From the nine remaining benchmarks, all of which are considered mi-
cro benchmarks, only Queens, an eight queens puzzle solver, and Towers, a
solver for the Towers of Hanoi game, produce results similar to the macro
benchmarks. All others deviate from this pattern. In NBody, a solar system
simulation, the OpenSmalltalkVM is slower than TruffleSqueak on GraalVM
EE in latency mode but still comparable to GraalVM CE. In four bench-
marks, however, the OpenSmalltalkVM performs significantly worse than all
TruffleSqueak configurations: 1) Mandelbrot, a fractal generator, 2) Permute, a
benchmark generating permutations of an array, 3) Sieve, an implementation
of the sieve of Eratosthenes algorithm for finding prime numbers, and 4)
Storage, a benchmark building up a tree of arrays to exercise the GC.

The two remaining micro benchmarks — Bounce and List —show unex-
pected results: In Bounce, a benchmark simulating a ball bouncing in a box,
TruffleSqueak on GraalVM EE in throughput mode performs worse than
GraalVM CE. Since this is considered a performance issue, we reported it
to the GraalVM team. For List, a benchmark creating and traversing lists
recursively, the compilation statistics reveal that 387 method splits occurred
when running on GraalVM CE in throughput mode. This in turn led to 148
successful compilations in total and run-times at around 903 ms. Although
GraalVM CE in latency mode only compiled 39 compilations for the same
benchmark, it performed with around 607 ms per iteration much better than
in throughput mode. The high number of splits that led to significantly more
compiled code is caused by TruffleSqueak reporting polymorphism to Truffle

215

Appendix B. Language Performance Evaluation

in one of its nodes for message dispatching. That the run-time performance of
the List benchmark is better when inlining and splitting is disabled is a result
of this particular performance evaluation. Our continuous performance track-
ing infrastructure did not reveal this problem because it only runs the AWFY
benchmarks against GraalVM CE in throughput mode. After further inves-
tigation, we found out that the List benchmark on TruffleSqueak is a worst
case for the splitting heuristic of the Graal compiler. The reason for this is that
the benchmark is not only highly recursive but also polymorphic in Squeak/
Smalltalk due to the isNil method, which is implemented on ProtoObject
and UndefinedObject. We reported our findings to the GraalVM team, which
plans to improve the splitting heuristic in a future GraalVM release. In the past,
similar splitting misbehavior that we observed with TruffleSqueak helped to
detect a serious performance regression caused by a bug in Graal’s splitting
heuristic.

Overall, we conclude that TruffleSqueak in latency mode needs around
117.1 % of the time of the OpenSmalltalkVM and almost the same on GraalVM
EE to run all benchmarks. With the throughput mode, performance is in-
creased significantly so that TruffleSqueak only needs approximately 57.1 %
of the time on GraalVM CE compared with the OpenSmalltalkVM. On
GraalVM EE, it is with only around 41.4% of the time even more than
twice as fast. We believe that TruffleSqueak’s performance advantages over
the OpenSmalltalkVM are due to the significantly larger engineering efforts
that went into GraalVM, the JVM, the JVM garbage collectors. As discussed
in Section 11.2, however, TruffleSqueak generally requires significantly more
CPU and memory resources to run compared with the OpenSmalltalkVM.
While first experiments with GraalVM'’s Native Image technology suggest
that AOT compilation can reduce CPU and memory footprint, we expect to
see further improvements in both performance and footprint for GraalVM in
general.

216

Appendix C.
Additional Screenshots

In this chapter, we show and describe additional screenshots of two polyglot
notebooks as well as a CallTargetBrowser tool for GraalPython.

Polyglot Notebook Analyzing Object Layouts in TruffleSqueak Figure C.1
shows a polyglot notebook for analyzing TruffleSqueak’s object layout op-
timizations (see Section 8.1) at run-time. It uses Smalltalk (green code cell)
to enumerate all classes for pointers objects and to find the corresponding
layout objects from its language implementation through VM introspection
and interoperability with the host language. Finally, it extracts and exports a

@ Polyglot Notebook [~ 1+1-]
./ Squeak/Smalltalk Run all Add cell Load Save
bindings at: #objectLayouts put: (((= bindings 2 members in
(Class allSublnstances asArray select: [:ea | ea instSpec = 1]) "PointersObjects” b genericFieldCounts y2#(1348341
collect: [:ea | ea vmObject) NgopiectCayouts ¥/ {JavaObjectig
I Invocable members 1054 in total
select: [:ea | ea hasLayout]) b1 . JavaObject[dt
collect: [:ea | ea getLayout]). B2 . JavaObiject[d¢
bindings at: #genericFieldCounts put: ((bindings at: #objectLayouts) b3 £ JavaObject[d¢
collect: [:ea | ea getLocations asCollection v4 . JavaObject[d¢
count: [:slot | slot isGeneric 1]). + Readable members 5 in total
b isValidA i JavaObiji
= root ,»#(1348341360122220200042031012335 - locations : }_-JavaObiec![[L
I Invocable members 1054 in total » Invocable members 10 in total
(2] 4 JavaObject[d¢
B3 . JavaObject[d¢
%ggplot2 B4 £ JavaOl
df <- data.frame(values = bindings["genericFieldCounts"]) b5 + JavaObject[d¢
print(ggplot(df, aes(x=values)) + geom_histogram(binwidth=.5) + : (75 - j:z:g::::g:{g'
labs(x="number of generic slot locations", y="number of classes") + b8 JavaOl)
geom_vline(aes(xinter 1(values)), color="blue")) () JavaObiject[d¢
B 10 JavaObject[d¢
100 - P11 JavaObject[d¢
B 12 JavaObiject[d¢
EH B 13 JavaObject[d¢
@ e » 14 JavaObject[d¢
E T b 15 JavaObject[d¢
= b 16 JavaObject[d¢
[T p 17 JavaObject[d¢
E 50 - b 18 JavaObject[d¢
1] B 19 JavaObject[d¢
o B 20 £ JavaObject[d¢
E 35 » numObjectExtension 5
2 b numPrimitiveExtension 8
B squeakClass £ JavaObject[d¢
I I I I 1 b Invocable members 32in total
0- e I = b5 . JavaObject[d¢
! ! ! ! b6 £ JavaObject[d¢
0 10 20 30 b7 £ JavaObject[dt
= = B8 £ JavaObject[d¢
number of generic slot locations Lo . JavaObjectldq
b 10 JavaObiectld¢

Figure C.1.: A polyglot notebook analyzing object layouts in TruffleSqueak.

217

Appendix C. Additional Screenshots

@ Polyglot Notebook [~ T+1-]
_‘/' Squeak/SmaIItalk Run all Add cell Load Save
| callTargets | = bindings 1 me

= nonTrivialNodeCount ',/ #(10

callTargets :=
(Graal runtime getCompileQueue compilationQueue toArray asCollection : I1nvocab|e members }gg“
collect: [:ea | ea compileTask targetRef get]) reject: #isNil. b2 5
bindings at: #nonTrivialNodeCount put: (b3 128
callTargets collect: [:ea | ea getNonTrivialNodeCount]). b4 237
callTargets collect: [:ea | b5 40
ea toString asString -> ea getNonTrivialNodeCount] b6 181
F 19< -‘I PDEYUETILEAVIELUIIELUVINISSALITAUSETIL. <SPII-O- ’ 7 36
b 143 w/’Integer>>printAsLiteralOn:’->23 >8 65
b 144) 'SequenceableCollection>>copyFrom:to: <split- +9 237
b 145 .,/ ’Dictionary>>scanFor: <split-75a4fa16>"->135 »10 6
b 146) ’setviewport’->48 B 11 577
b 147) ’CompiledCode>>literalAt:put:’->29 : 15 };1
» 14 7
o 2
array <- bindings["nonTrivialNodeCount"]@asArray() b 18 266
values <- data.frame(x=1:array@size(), y=array) B 19 171
print(ggplot(values, aes(x=x, y=y)) + geom_point(size = .5) + B 20 62
labs(x="queue items", y="non-trivial node count") + S g; ;27
. X C v . .
geom_hline(yintercept=mean(values$y), color="blue")) Vo 50
b 24 98
& b 25 54
S b 26 84
S 600- B 27 69
w 28 19
'g k29 294
€ 400- I 30 37
= B 31 22
= b 32 36
= _— b33 71
L200- o . = b 34 53
o . b 35 128
< g B RO T b 36 6
0- e W =t See R e e I O b 37 8
| i ' |
] 50 100 150 : gg gg
gueue items 40 315
4 23

Figure C.2.: A polyglot notebook analyzing the Graal compilation queue.

list of generic field counts. In R (gray code cell), these counts are visualized
with the ggplot2 package. In this case, the histogram shows how many of
these Smalltalk classes have how many generic slot locations in their object
layouts. This type of analysis can help to verify that the optimization in the
object model works as intended. We further used such run-time data to find
appropriate sizes for optimizations in TruffleSqueak. The plot shows that the
mean of generic locations is around four. In TruffleSqueak, we decided to use
three inline Object fields to keep some room for improvements when needed.
With this notebook, it is also straightforward to examine other aspects of the
object layout optimization such as the number of primitive or uninitialized
locations or the sizes of extension arrays.

Polyglot Notebook Analyzing the Graal Compilation Queue Figure C.2
shows a polyglot notebook for analyzing the items of the Graal compilation

218

£ CallTargetBrowser for GraalPython: builtins

v L+

__graalpython__ getattr name: <builtin function
—_main__ dir BuiltinFunctions.dir at 44beee7b>

—codecs complle highestCompiledTier: 1

_descriptor exec

_frozen_importlib globals callCount: 31
_frozen_importlib_extel || abs callAndLoopCount: 31

_imp ascii knownCallSiteCount: 1

_io bin nonTrivialNodeCount: 97

_struct breakpoint profiled return value: PList

_thread callable profiled arguments: Object[], PKeyword][],
—a::ll(';?s fi:Irattr n/a, n/a, n/a, n/a, n/a, n/a, n/a, PythonModule,
builtins divmod . PythonModule

codecs eval included call nodes:

encodings format - <builtin function

encodings.aliases hash ModuleBuiltins.__getattribute__ at 3d849187>
importlib._bootstrap hex

importlib._bootstrap_ex ||id

marshal isinstance

Figure C.3.: The CallTargetBrowserPython tool for GraalPython.

queue according to their nonTrivialNodeCount at run-time. This value indi-
cates how complex the AST for a method is according to the corresponding
language implementation. It is used for different purposes within the Graal
compiler. Prior to GraalVM 20.2.0, for example, the count was used for inlin-
ing and splitting and is still used for other optimizations. The first code cell
(green) uses Smalltalk to take a snapshot of the call targets that are currently in
the Graal compilation queue through VM introspection and interoperability
with the host language. It also extracts and exports a list of non-trivial node
counts and outputs a list of the call targets and their corresponding node
count. According to this list, many of the call targets in the queue represent
Smalltalk methods and come thus from TruffleSqueak. The 146th call target,
however, is attached to an R method that is called as part of FastR’s grid
package. This means that R code was executed before the last execution of the
green code cell. In the gray code cell, the list of node counts is visualized with
the ggplot2 package from R. The plot shows that most of the 147 call targets
that were snapshotted have a non-trivial node count below 100. However,
two call targets have counts above 500 and are thus interesting candidates for
further investigations. These can reveal problems in TruffleSqueak’s language
implementation or in the Graal compiler. A large non-trivial node count can,
for example, indicate an important method that has been subject to a lot of
inlining but also problems in how TruffleSqueak constructs ASTs or estimates
the costs of specific nodes.

A CallTargetBrowser for GraalPython Figure C.3 shows a screenshot of a

CallTargetBrowserPython tool in TruffleSqueak for GraalPython. It is used to
inspect the Python dir built-in function at run-time. The tool is implemented

219

Appendix C. Additional Screenshots

as a subclass of the CallTargetBrowserRuby shown in Figure 12.9 with five
method overrides and 25 SLOC, providing the same set of features but for
call targets from GraalPython. It is thus another example of how quickly tools
can be built and adapted for specific purposes and language implementations
in TruffleSqueak.

220

Publications

Journals

e Fabio Niephaus, Tim Felgentreff, Tobias Pape, Robert Hirschfeld, and Mar-
cel Taeumel. “Live Multi-language Development and Runtime Environ-
ments”. In: The Art, Science, and Engineering of Programming 2.3 (Mar. 2018).
I1SSN: 2473-7321. pOI: 10.22152/programming-journal.org/2018/2/8

Conferences

e Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian Konig,
Kolya Opahle, Nico Scordialo, and Robert Hirschfeld. “Example-Based
Live Programming for Everyone: Building Language-Agnostic Tools for
Live Programming with LSP and GraalVM”. In: Proceedings of the 2020
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. New York, NY, USA: Association
for Computing Machinery, 2020, pages 1-17. 1sBN: 978-1-4503-8178-9

e Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. “GraalSqueak:
Toward a Smalltalk-Based Tooling Platform for Polyglot Programming”. In:
Proceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes. MPLR 2019. Athens, Greece: Associa-
tion for Computing Machinery, 2019, pages 14-26. 1sBN: 978-1-4503-6977-0.
DOI: 10.1145/3357390.3361024

e Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and
Robert Hirschfeld. “Language-Independent Development Environment
Support for Dynamic Runtimes”. In: Proceedings of the 15th ACM SIGPLAN
International Symposium on Dynamic Languages. DLS 2019. Athens, Greece:
Association for Computing Machinery, 2019, pages 80-90. 1sBN: 978-1-4503-
6996-1. DOI1: 10.1145/3359619.3359746

e Matthias Springer, Fabio Niephaus, Robert Hirschfeld, and Hidehiko Ma-
suhara. “Matriona: Class Nesting with Parameterization in Squeak/S-
malltalk”. In: Proceedings of the 15th International Conference on Modularity.
MODULARITY 2016. Malaga, Spain: Association for Computing Machin-
ery, 2016, pages 118-129. 1sBN: 978-1-4503-3995-7. DO1: 10.1145/2889443.
2889457

221

https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3359619.3359746
https://doi.org/10.1145/2889443.2889457
https://doi.org/10.1145/2889443.2889457

Publications

Workshops

e Alexander Riese, Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld.
“User-Defined Interface Mappings for the GraalVM”. In: Conference Com-
panion of the 4th International Conference on Art, Science, and Engineering of
Programming. <Programming> 20. Porto, Portugal: Association for Comput-
ing Machinery, 2020, pages 19-22. 1sBN: 978-1-4503-7507-8. poO1: 10.1145/
3397537.3399577

e Jan Ehmueller, Alexander Riese, Hendrik Tjabben, Fabio Niephaus, and
Robert Hirschfeld. “Polyglot Code Finder”. In: Conference Companion of the
4th International Conference on Art, Science, and Engineering of Programming.
Programming> "20. Porto, Portugal: Association for Computing Machinery,
2020, pages 106-112. 1sBN: 978-1-4503-7507-8. po1: 10 . 1145/3397537 .
3397559

e Johannes Henning, Tim Felgentreff, Fabio Niephaus, and Robert Hirschfeld.
“Toward Presizing and Pretransitioning Strategies for GraalPython”. In:
Conference Companion of the 4th International Conference on Art, Science, and
Engineering of Programming. <Programming> "20. Porto, Portugal: Association
for Computing Machinery, 2020, pages 41-45. 1sBN: 978-1-4503-7507-8. DO1:
10.1145/3397537.3397564

e Johannes Henning, David Stangl, Fabio Niephaus, Bastian Kruck, and
Robert Hirschfeld. “Hot Code Patching in CPython: Supporting Edit-and-
Continue Debugging in CPython with Less Than 300 Lines of Code”. In:
Proceedings of the 14th Workshop on Implementation, Compilation, Optimization
of Object-Oriented Languages, Programs and Systems. ICOOOLPS "19. London,
United Kingdom: Association for Computing Machinery, 2019. 1sBN: 978-
1-4503-6862-9. DO1: 10.1145/3340670.3342424

e Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus,
and Robert Hirschfeld. “Implementing Babylonian/S by Putting Examples
Into Contexts: Tracing Instrumentation for Example-Based Live Program-
ming as a Use Case for Context-Oriented Programming”. In: Proceedings
of the Workshop on Context-Oriented Programming. COP "19. London, United
Kingdom: Association for Computing Machinery, 2019, pages 17-23. 1SBN:
978-1-4503-6863-6. DOI: 10.1145/3340671.3343358

e Fabio Niephaus, Eva Krebs, Christian Flach, Jens Lincke, and Robert
Hirschfeld. “PolyJuS: A Squeak/Smalltalk-Based Polyglot Notebook Sys-
tem for the GraalVM”. In: Proceedings of the Conference Companion of the
3rd International Conference on Art, Science, and Engineering of Programming.
Programming> "19. Genova, Italy: Association for Computing Machinery,
2019. 1sBN: 978-1-4503-6257-3. DOI: 10.1145/3328433.3328434

222

https://doi.org/10.1145/3397537.3399577
https://doi.org/10.1145/3397537.3399577
https://doi.org/10.1145/3397537.3397559
https://doi.org/10.1145/3397537.3397559
https://doi.org/10.1145/3397537.3397564
https://doi.org/10.1145/3340670.3342424
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.1145/3328433.3328434

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. “Towards Polyglot
Adapters for the GraalVM”. In: Proceedings of the Conference Companion of the
3rd International Conference on Art, Science, and Engineering of Programming.
Programming> "19. Genova, Italy: Association for Computing Machinery,
2019. 1sBN: 978-1-4503-6257-3. pO1: 10.1145/3328433.3328458

Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld. “Effi-
cient Implementation of Smalltalk Activation Records in Language Imple-
mentation Frameworks”. In: Proceedings of the Conference Companion of the
3rd International Conference on Art, Science, and Engineering of Programming.
Programming> "19. Genova, Italy: Association for Computing Machinery,
2019. 1sBN: 978-1-4503-6257-3. DOI: 10.1145/3328433.3328440

Tobias Pape, Tim Felgentreff, Fabio Niephaus, and Robert Hirschfeld. “Let
Them Fail: Towards VM Built-in Behavior That Falls Back to the Program”.
In: Proceedings of the Conference Companion of the 3rd International Conference
on Art, Science, and Engineering of Programming. Programming> '19. Genova,
Italy: Association for Computing Machinery, 2019. 1sBN: 978-1-4503-6257-3.
DOI: 10.1145/3328433.3338056

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. “GraalSqueak: A
Fast Smalltalk Bytecode Interpreter Written in an AST Interpreter Frame-
work”. In: Proceedings of the 13th Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems. ICOOOLPS
'18. Amsterdam, Netherlands: Association for Computing Machinery, 2018,
pages 30-35. 1sBN: 978-1-4503-5804-0. DO1: 10.1145/3242947.3242948
Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld.
“Squeak Makes a Good Python Debugger: Bringing Other Programming
Languages Into Smalltalk’s Tools”. In: Companion to the First International
Conference on the Art, Science and Engineering of Programming. <Programming>
"17. Brussels, Belgium: Association for Computing Machinery, 2017. 1sBN:
978-1-4503-4836-2. DO1: 10.1145/3079368.3079402

Fabio Niephaus. “Towards A Squeak/Smalltalk-Based Python IDE: An
Interpreter-Level Integration of Python with Smalltalk”. In: Companion to
the First International Conference on the Art, Science and Engineering of Program-
ming. Programming> 17. Brussels, Belgium: Association for Computing
Machinery, 2017. 1sBN: 978-1-4503-4836-2. po1: 10.1145/3079368.3079370
Fabio Niephaus, Dale Henrichs, Marcel Taeumel, Tobias Pape, Tim Fel-
gentreff, and Robert Hirschfeld. “SmalltalkCI: A Continuous Integration
Framework for Smalltalk Projects”. In: Proceedings of the 11th Edition of the
International Workshop on Smalltalk Technologies. INST’16. Prague, Czech
Republic: Association for Computing Machinery, 2016. 1sBN: 978-1-4503-
4524-8. po1: 10.1145/2991041.2991044

223

https://doi.org/10.1145/3328433.3328458
https://doi.org/10.1145/3328433.3328440
https://doi.org/10.1145/3328433.3338056
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.1145/3079368.3079402
https://doi.org/10.1145/3079368.3079370
https://doi.org/10.1145/2991041.2991044

Publications

e Fabio Niephaus, Matthias Springer, Tim Felgentreff, Tobias Pape, and
Robert Hirschfeld. “Call-Target-Specific Method Arguments”. In: Proceed-
ings of the 10th Workshop on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems. ICOOOLPS “15. Prague,
Czech Republic: Association for Computing Machinery, 2015. 1sBN: 978-1-
4503-3657-4. po1: 10.1145/2843915.2843919

Technical Reports

e Christian Adriano, Tobias Bleifufy, Lung-Pan Cheng, Kiarash Diba, An-
dreas Fricke, Andreas Grapentin, Lan Jiang, Robert Kovacs, Martin Krejca,
Sankalita Mandal, Sebastian Marwecki, Christoph Matthies, Toni Mattis,
Fabio Niephaus, Lukas Pirl, Francesco Quinzan, Stefan Ramson, Mina
Rezaei, Julian Risch, Ralf Rothenberger, Thijs Roumen, Vladeta Stojanovic,
and Johannes Wolf. Technical report: Fall Retreat 2018. Technical report 129.
Hasso-Plattner-Institut, 2019. por1: 10.25932/publishup-42753

e Jakob Reschke, Marcel Taeumel, Tobias Pape, Fabio Niephaus, and Robert
Hirschfeld. Towards Version Control in Object-Based Systems. Technical report
121. Hasso-Plattner-Institut, 2018

e Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. Squimera: A Live,
Smalltalk-Based IDE for Dynamic Programming Languages. Technical report
120. Hasso-Plattner-Institut, 2017. por1: 10.25932/publishup-40338

e Eva-Maria Herbst, Fabian Maschler, Fabio Niephaus, Max Reimann, Julia
Steier, Tim Felgentreff, Jens Lincke, Marcel Taeumel, Robert Hirschfeld,
and Carsten Witt. ecoControl: Entwurf und Implementierung einer Software
zur Optimierung heterogener Energiesysteme in Mehrfamilienhdusern. Technical
report 93. Hasso-Plattner-Institut, 2015

224

https://doi.org/10.1145/2843915.2843919
https://doi.org/10.25932/publishup-42753
https://doi.org/10.25932/publishup-40338

Bibliography

[1]

(2]

[4]

6]

[7]

Christian Adriano, Tobias Bleifufs, Lung-Pan Cheng, Kiarash Diba,
Andreas Fricke, Andreas Grapentin, Lan Jiang, Robert Kovacs, Martin
Krejca, Sankalita Mandal, Sebastian Marwecki, Christoph Matthies,
Toni Mattis, Fabio Niephaus, Lukas Pirl, Francesco Quinzan, Stefan
Ramson, Mina Rezaei, Julian Risch, Ralf Rothenberger, Thijs Roumen,
Vladeta Stojanovic, and Johannes Wolf. Technical report: Fall Retreat 2018.
Technical report 129. Hasso-Plattner-Institut, 2019. por: 10.25932/
publishup-42753.

Amber contributors. Amber Smalltalk. 2021. URL: https://amber -
lang.net (visited on 2021-08-17).

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. “Pro-
gramming Languages for Distributed Computing Systems”. In: ACM
Comput. Surv. 21.3 (Sept. 1989), pages 261-322. 1ssN: 0360-0300. por:
10.1145/72551.72552.

Gergo Barany. “Python Interpreter Performance Deconstructed”. In:
Proceedings of the Workshop on Dynamic Languages and Applications.
Dyla’14. Edinburgh, United Kingdom: Association for Computing
Machinery, 2014, pages 1-9. 1sBN: 978-1-4503-2916-3. po1: 10.1145/
2617548.2617552.

Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. “Approaches
to Interpreter Composition”. In: Computer Languages, Systems and
Structures. Volume abs/1409.0757. Elsevier, Mar. 2015. por: http:
//dx.doi.org/10.1016/j.c1.2015.03.001.

Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. “Unipycation: A
Case Study in Cross-Language Tracing”. In: Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages. VMIL "13.
Indianapolis, Indiana, USA: Association for Computing Machinery,
2013, pages 31-40. 1sBN: 978-1-4503-2601-8. pOI: 10.1145/2542142.
2542146.

Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount,
and Laurence Tratt. “Virtual Machine Warmup Blows Hot and Cold”.
In: Proc. ACM Program. Lang. 1.O0OPSLA (Oct. 2017). po1: 10.1145/
3133876.

225

https://doi.org/10.25932/publishup-42753
https://doi.org/10.25932/publishup-42753
https://amber-lang.net
https://amber-lang.net
https://doi.org/10.1145/72551.72552
https://doi.org/10.1145/2617548.2617552
https://doi.org/10.1145/2617548.2617552
https://doi.org/http://dx.doi.org/10.1016/j.cl.2015.03.001
https://doi.org/http://dx.doi.org/10.1016/j.cl.2015.03.001
https://doi.org/10.1145/2542142.2542146
https://doi.org/10.1145/2542142.2542146
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876

Bibliography

(8]

[10]

[11]

(12]

[13]

(14]

[15]

226

Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kir-
ilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-Hochstadt. “Py-
cket: A Tracing JIT for a Functional Language”. In: Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming. ICFP 2015. Vancouver, BC, Canada: Association for Com-
puting Machinery, 2015, pages 22-34. 1sBN: 978-1-4503-3669-7. DOI:
10.1145/2784731.2784740

David M. Beazley. “SWIG: An Easy to Use Tool for Integrating Script-
ing Languages with C and C++". In: Proceedings of the 4th Conference
on USENIX Tcl/Tk Workshop, 1996 - Volume 4. TCLTK’96. Monterey,
California: USENIX Association, 1996, page 15.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag
Sverre Seljebotn, and Kurt Smith. “Cython: The Best of Both Worlds”.
In: Computing in Science Engineering 13.2 (2011), pages 31-39. por:
10.1169/MCSE.2010.118

Nick Benton, Andrew Kennedy, and George Russell. “Compiling
Standard ML to Java Bytecodes”. In: Proceedings of the Third ACM
SIGPLAN International Conference on Functional Programming. ICFP "98.
Baltimore, Maryland, USA: Association for Computing Machinery,
1998, pages 129-140. 1sBN: 1-58113-024-4. pO1: 10 . 1145 /289423 .
289435.

Clément Béra and Eliot Miranda. “A bytecode set for adaptive opti-
mizations”. In: Proceedings of the 6th Edition of the International Workshop
on Smalltalk Technologies. INST"14. Cambridge, England, 2014.

Clément Béra, Eliot Miranda, Tim Felgentreff, Marcus Denker, and
Stéphane Ducasse. “Sista: Saving Optimized Code in Snapshots for
Fast Start-Up”. In: Proceedings of the 14th International Conference on
Managed Languages and Runtimes. ManLang 2017. Prague, Czech Re-
public: Association for Computing Machinery, 2017, pages 1-11. 1SBN:
978-1-4503-5340-3. por1: 10.1145/3132190.3132201

Brian Blount and Siddhartha Chatterjee. “An Evaluation of Java for
Numerical Computing”. In: Computing in Object-Oriented Parallel Envi-
ronments. Edited by Denis Caromel, Rodney R. Oldehoeft, and Mary-
dell Tholburn. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pages 35-46. 1sBN: 978-3-540-49372-3.

Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas D. Mat-
sakis, Oscar Nierstrasz, Lukas Renggli, Armin Rigo, and Toon Ver-
waest. “Back to the Future in One Week — Implementing a Smalltalk
VM in PyPy”. In: Self-Sustaining Systems: First Workshop, S3 2008 Pots-

https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1145/289423.289435
https://doi.org/10.1145/289423.289435
https://doi.org/10.1145/3132190.3132201

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

dam, Germany, May 15-16, 2008 Revised Selected Papers. Edited by Robert
Hirschfeld and Kim Rose. Berlin, Heidelberg: Springer-Verlag, 2008,
pages 123-139. 1sBN: 978-3-540-89275-5. po1: 10.1007/978-3-540-
89275-5 7.

Per Bothner. “Kawa: Compiling Dynamic Languages to the Java VM”.
In: Proceedings of the Annual Conference on USENIX Annual Technical
Conference. ATEC "98. New Orleans, Louisiana: USENIX Association,
1998, page 41.

Benedict du Boulay. “POPLOG for Beginners: A Powerful Environ-
ment for Learning Programming”. In: Artificial Intelligence Program-
ming Environments. USA: John Wiley & Sons, Inc., 1987, pages 31-42.
1sBN: 0-470-20989-5.

Don Box and Chris Sells. Essential .NET: The Common Language Runtime.
Addison-Wesley, 2002. 1sBN: 0-201-73411-7.

Experience in Bridging Keras for Python with Pharo. “Infante, Ale-
jandro and Bergel, Alexandre”. In: Proceedings of the 13th Edition of
the International Workshop on Smalltalk Technologies. IWST "18. Cagliari,
Italy, 2018.

Thorsten Brunklaus and Leif Kornstaedt. A Virtual Machine for Multi-
Language Execution. Submitted. Nov. 2002.

P.A. Buhr and W.Y.R. Mok. “Advanced exception handling mech-
anisms”. In: IEEE Transactions on Software Engineering 26.9 (2000),
pages 820-836. DOI: 10.1109/32.877844.

A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and
I. Romanov. “Mote Runner: A Multi-language Virtual Machine for
Small Embedded Devices”. In: 2009 Third International Conference on
Sensor Technologies and Applications. 2009, pages 117-125. por1: 10.1109/
SENSORCOMM. 2009.27.

C. Chambers, D. Ungar, and E. Lee. “An Efficient Implementation of
Self a Dynamically-Typed Object-Oriented Language Based on Proto-
types”. In: Conference Proceedings on Object-Oriented Programming Sys-
tems, Languages and Applications. OOPSLA "89. New Orleans, Louisiana,
USA: Association for Computing Machinery, 1989, pages 49-70. 1sBN:
0-89791-333-7. poI: 10.1145/74877.74884.

Guido Chari, Diego Garbervetsky, Stefan Marr, and Stéphane Ducasse.
“Fully Reflective Execution Environments: Virtual Machines for More
Flexible Software”. In: IEEE Transactions on Software Engineering 45.9
(2019), pages 858-876. por: 10.1109/TSE. 2018.2812715.

227

https://doi.org/10.1007/978-3-540-89275-5_7
https://doi.org/10.1007/978-3-540-89275-5_7
https://doi.org/10.1109/32.877844
https://doi.org/10.1109/SENSORCOMM.2009.27
https://doi.org/10.1109/SENSORCOMM.2009.27
https://doi.org/10.1145/74877.74884
https://doi.org/10.1109/TSE.2018.2812715

Bibliography

[25]

[33]

[34]

[35]

228

Jessie Y. C. Chen and Jennifer E. Thropp. “Review of Low Frame Rate
Effects on Human Performance”. In: IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 37.6 (2007), pages 1063
1076. DOI: 10.1109/TSMCA.2007.904779.

Yaofei Chen, R. Dios, A. Mili, Lan Wu, and Kefei Wang. “An empirical
study of programming language trends”. In: IEEE Software 22.3 (2005),
pages 72-79. po1: 10.1109/MS.2005.55.

David Chisnall. “The Challenge of Cross-Language Interoperability”.
In: Commun. ACM 56.12 (Dec. 2013), pages 50-56. 1ssN: 0001-0782.
DOI: 10.1145/2534706.2534719.

Fred Chow. “Intermediate Representation: The Increasing Significance
of Intermediate Representations in Compilers”. In: Queue 11.10 (Oct.
2013), pages 30-37. 1ssN: 1542-7730. DOI: 10.1145/2542661.2544374.

GraalVM Community. Graal VM CE vm-21.2.0 release tag. 2021. URL:
https://git.io/JuDzb (visited on 2021-09-13).

Open]DK Community. JEP 243: Java-Level JVM Compiler Interface. 2014.
URL: https://openjdk.java.net/jeps/243 (visited on 2021-02-05).

Marcus Crestani. “Foreign-Function Interfaces for Garbage-Collected
Programming Languages”. In: Proceedings of the Workshop on Scheme
and Functional Programming 2008. 2008.

Andrew Davison, Michael Hines, and Eilif Muller. “Trends in pro-
gramming languages for neuroscience simulations”. In: Frontiers in
Neuroscience 3 (2009), page 36. 1ssN: 1662-453X. DO1I: 10.3389/neuro.
01.036.2009.

J. Des Rivieres and J. Wiegand. “Eclipse: A Platform for Integrating
Development Tools”. In: IBM Syst.]. 43.2 (Apr. 2004), pages 371-383.
1ssN: 0018-8670. po1: 10.1147/sj.432.0371.

Lukas Diekmann and Laurence Tratt. “Default Disambiguation for
Online Parsers”. In: Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering. SLE 2019. Athens, Greece:
Association for Computing Machinery, 2019, pages 88-99. 1sBN: 978-
1-4503-6981-7. po1: 10.1145/3357766.3359530.

Lukas Diekmann and Laurence Tratt. “Eco: A Language Composition
Editor”. In: Software Language Engineering. Edited by Benoit Combe-
male, David J. Pearce, Olivier Barais, and Jurgen]. Vinju. Cham:
Springer International Publishing, 2014, pages 82-101. 1sBN: 978-3-
319-11245-9.

https://doi.org/10.1109/TSMCA.2007.904779
https://doi.org/10.1109/MS.2005.55
https://doi.org/10.1145/2534706.2534719
https://doi.org/10.1145/2542661.2544374
https://git.io/JuDzb
https://openjdk.java.net/jeps/243
https://doi.org/10.3389/neuro.01.036.2009
https://doi.org/10.3389/neuro.01.036.2009
https://doi.org/10.1147/sj.432.0371
https://doi.org/10.1145/3357766.3359530

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Gilles Duboscq, Thomas Wiirthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Méssenbdck. “An Intermediate Rep-
resentation for Speculative Optimizations in a Dynamic Compiler”.
In: Proceedings of the 7th ACM Workshop on Virtual Machines and Inter-
mediate Languages. VMIL “13. Indianapolis, Indiana, USA: Association
for Computing Machinery, 2013, pages 1-10. 1sBN: 978-1-4503-2601-8.
DOI: 10.1145/2542142.2542143.

Jan Ehmueller, Alexander Riese, Hendrik Tjabben, Fabio Niephaus,
and Robert Hirschfeld. “Polyglot Code Finder”. In: Conference Compan-
ion of the 4th International Conference on Art, Science, and Engineering
of Programming. <Programming> 20. Porto, Portugal: Association for
Computing Machinery, 2020, pages 106-112. 1sBN: 978-1-4503-7507-8.
DOI: 10.1145/3397537.3397559.

Sebastian Erdweg, Tijs van der Storm, Markus Vélter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriél D. P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido
H. Wachsmuth, and Jimi van der Woning. “The State of the Art in
Language Workbenches”. In: Software Language Engineering. Edited by
Martin Erwig, Richard F. Paige, and Eric Van Wyk. Cham: Springer
International Publishing, 2013, pages 197-217. 1sBN: 978-3-319-02654-1.

Moritz Eysholdt and Heiko Behrens. “Xtext: Implement Your Lan-
guage Faster than the Quick and Dirty Way”. In: Proceedings of the ACM
International Conference Companion on Object-Oriented Programming Sys-
tems Languages and Applications Companion. OOPSLA ’10. Reno/Tahoe,
Nevada, USA: Association for Computing Machinery, 2010, pages 307-
309. 1sBN: 978-1-4503-0240-1. DO1: 10.1145/1869542.1869625.

feenk GmbH, Switzerland. Sparta. 2021. URL: https://github.com/
feenkcom/sparta (visited on 2021-07-11).

Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirschfeld.
“How to Build a High-Performance VM for Squeak /Smalltalk in Your
Spare Time: An Experience Report of Using the RPython Toolchain”.
In: Proceedings of the 11th Edition of the International Workshop on Small-
talk Technologies. INST’16. Prague, Czech Republic: Association for
Computing Machinery, 2016. 1sBN: 978-1-4503-4524-8. po1: 10.1145/
2991041.2991062.

Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirschfeld.
“How to Build a High-Performance VM for Squeak/Smalltalk in Your
Spare Time: An Experience Report of Using the RPython Toolchain”.

229

https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/3397537.3397559
https://doi.org/10.1145/1869542.1869625
https://github.com/feenkcom/sparta
https://github.com/feenkcom/sparta
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/2991041.2991062

Bibliography

[43]

[45]

[46]

[49]

[50]

[51]

230

In: Proceedings of the 11th Edition of the International Workshop on Smalltalk
Technologies. IWST "16. Prague, Czech Republic: ACM, 2016, 21:1-21:10.
1SBN: 978-1-4503-4524-8. DOI1: 10.1145/2991041.2991062.

Bertil Folliot, Ian Piumarta, and Fabio Riccardi. “A Dynamically Con-
figurable, Multi-Language Execution Platform”. In: Proceedings of the
8th ACM SIGOPS European Workshop on Support for Composing Dis-
tributed Applications. EW 8. Sintra, Portugal: Association for Com-
puting Machinery, 1998, pages 175-181. 1sBN: 978-1-4503-7317-3. DoOI:
10.1145/319195.319222.

B. Foote and R. E. Johnson. “Reflective Facilities in Smalltalk-80”. In:
Conference Proceedings on Object-Oriented Programming Systems, Lan-
guages and Applications. OOPSLA "89. New Orleans, Louisiana, USA:
Association for Computing Machinery, 1989, pages 327-335. 1SBN:
0-89791-333-7. pOI: 10.1145/74877.74911

Mathieu Fourment and Michael R. Gillings. “A comparison of common
programming languages used in bioinformatics”. In: BMC Bioinformat-
ics 9.1 (2008), page 82. DO1: 10.1186/1471-2105-9-82.

Martin Fowler. Language Workbenches: The Killer-App for Domain Specific
Languages? 2005. URL: https://martinfowler.com/articles/
languageWorkbench.html (visited on 2021-08-01).

Bert Freudenberg, Dan H.H. Ingalls, Tim Felgentreff, Tobias Pape, and
Robert Hirschfeld. “Squeak]S: A Modern and Practical Smalltalk That
Runs in Any Browser”. In: SIGPLAN Not. 50.2 (Oct. 2014), pages 57-66.
1ssN: 0362-1340. por: 10.1145/2775052.2661100.

Yoshihiko Futamura. “Partial Evaluation of Computation Process—An
Approach to a Compiler-Compiler”. In: Higher Order Symbol. Comput.
12.4 (Dec. 1999), pages 381-391. 1ssN: 1388-3690. por: 10.1023/A:
1010095604496.

Maurizio Gabbrielli and Simone Martini. Programming Languages: Prin-
ciples and Paradigms. Springer-Verlag, 2010. por: 10 .1007 /978 -1 -
84882-914-5.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. USA:
Addison-Wesley Longman Publishing Co., Inc., 1995. 1sBN: 0-201-
63361-2.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. second. Prentice-Hall, Inc., Sept. 2003. 1sBN: 81-
203-2242-8.

https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/319195.319222
https://doi.org/10.1145/74877.74911
https://doi.org/10.1186/1471-2105-9-82
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1145/2775052.2661100
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1007/978-1-84882-914-5
https://doi.org/10.1007/978-1-84882-914-5

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

Adele Goldberg. Smalltalk-80: The Interactive Programming Environment.
USA: Addison-Wesley Longman Publishing Co., Inc., 1984. 1sBN: 0-
201-11372-4.

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its
Implementation. USA: Addison-Wesley Longman Publishing Co., Inc.,
1983. 1sBN: 0-201-11371-6.

Google. Protocol Buffers. 2021. URL: https://developers.google.com/
protocol-buffers (visited on 2021-08-05).

Google. Skia. 2021. URL: https://skia.org/ (visited on 2021-07-11).

Google Research. Colaboratory. 2021. URL: http://colab.research.
google. com (visited on 2021-07-03).

Alfred Gray. Interprocess Communication in Linux. Prentice Hall Profes-
sional Technical Reference, 2002. 1sBN: 0-13-046042-7.

Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger,
and Hanspeter Mossenbock. “High-Performance Cross-Language In-
teroperability in a Multi-Language Runtime”. In: Proceedings of the
11th Symposium on Dynamic Languages. DLS 2015. Pittsburgh, PA, USA:
Association for Computing Machinery, 2015, pages 78-90. 1sBN: 978-
1-4503-3690-1. pO1: 10.1145/2816707.2816714.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. “Bringing the Web up to Speed with WebAssembly”. In: Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 2017. Barcelona, Spain: Association for
Computing Machinery, 2017, pages 185-200. 1sBN: 978-1-4503-4988-8.
DOI: 10.1145/3062341.3062363.

Jennifer Hamilton. “Language Integration in the Common Language
Runtime”. In: SIGPLAN Not. 38.2 (Feb. 2003), pages 19-28. 1ssN: 0362-
1340. po1: 10.1145/772970.772973.

Jeff Hardy. “The Dynamic Language Runtime and the Iron Lan-
guages”. In: The Architecture of Open Source Applications (2008).

Michael Haupt, Michael Perscheid, and Robert Hirschfeld. “Type
Harvesting: A Practical Approach to Obtaining Typing Information
in Dynamic Programming Languages”. In: Proceedings of the 2011
ACM Symposium on Applied Computing. SAC "11. TaiChung, Taiwan:
Association for Computing Machinery, 2011, pages 1282-1289. 1sBN:
978-1-4503-0113-8. po1: 10.1145/1982185.1982464.

231

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://skia.org/
http://colab.research.google.com
http://colab.research.google.com
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/772970.772973
https://doi.org/10.1145/1982185.1982464

Bibliography

[63]

[65]

[66]

[67]

[68]

[69]

232

Johannes Henning, Tim Felgentreff, Fabio Niephaus, and Robert
Hirschfeld. “Toward Presizing and Pretransitioning Strategies for
GraalPython”. In: Conference Companion of the 4th International Confer-
ence on Art, Science, and Engineering of Programming. <Programming> 20.
Porto, Portugal: Association for Computing Machinery, 2020, pages 41—
45. 1sBN: 978-1-4503-7507-8. DOI: 10.1145/3397537.3397564.

Johannes Henning, David Stangl, Fabio Niephaus, Bastian Kruck, and
Robert Hirschfeld. “Hot Code Patching in CPython: Supporting Edit-
and-Continue Debugging in CPython with Less Than 300 Lines of
Code”. In: Proceedings of the 14th Workshop on Implementation, Compila-
tion, Optimization of Object-Oriented Languages, Programs and Systems.
ICOOOQOLPS '19. London, United Kingdom: Association for Computing
Machinery, 2019. 1sBN: 978-1-4503-6862-9. po1: 10.1145/3340670 .
3342424.

Eva-Maria Herbst, Fabian Maschler, Fabio Niephaus, Max Reimann,
Julia Steier, Tim Felgentreff, Jens Lincke, Marcel Taeumel, Robert
Hirschfeld, and Carsten Witt. ecoControl: Entwurf und Implementierung
einer Software zur Optimierung heterogener Energiesysteme in Mehrfami-
lienhiusern. Technical report 93. Hasso-Plattner-Institut, 2015.

Marcel Hlopko, Jan Kur$, Jan Vrany, and Claus Gittinger. “On the Inte-
gration of Smalltalk and Java: Practical Experience with STX:LIBJAVA”.
In: Proceedings of the International Workshop on Smalltalk Technologies.
IWST “12. Ghent, Belgium: Association for Computing Machinery,
2012. 1sBN: 978-1-4503-1897-6. DOI: 10.1145/2448963.2448968.

Reid Holmes and David Notkin. “Enhancing Static Source Code Search
with Dynamic Data”. In: Proceedings of 2010 ICSE Workshop on Search-
Driven Development: Users, Infrastructure, Tools and Evaluation. SUITE "10.
Cape Town, South Africa: Association for Computing Machinery, 2010,
pages 13-16. 1sBN: 978-1-60558-962-6. DOI: 10.1145/1809175.1809179.

Urs Holzle, Craig Chambers, and David Ungar. “Optimizing
dynamically-typed object-oriented languages with polymorphic
inline caches”. In: ECOOP’91 European Conference on Object-Oriented
Programming. Edited by Pierre America. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1991, pages 21-38. 1sBN: 978-3-540-47537-8.

Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wo8,
and Thomas Wiirthinger. “A Domain-Specific Language for Building
Self-Optimizing AST Interpreters”. In: Proceedings of the 2014 Interna-
tional Conference on Generative Programming: Concepts and Experiences.
GPCE 2014. Vésteras, Sweden: Association for Computing Machinery,

https://doi.org/10.1145/3397537.3397564
https://doi.org/10.1145/3340670.3342424
https://doi.org/10.1145/3340670.3342424
https://doi.org/10.1145/2448963.2448968
https://doi.org/10.1145/1809175.1809179

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

2014, pages 123-132. 1sBN: 978-1-4503-3161-6. DO1: 10.1145/2658761.
2658776.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
“Back to the Future: The Story of Squeak, a Practical Smalltalk Written
in Itself”. In: Proceedings of the 12th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA
'97. Atlanta, Georgia, USA: Association for Computing Machinery,
1997, pages 318-326. 1sBN: 0-89791-908-4. po1: 10 . 1145 /263698 .
263754.

Daniel Ingalls. “The Evolution of Smalltalk: From Smalltalk-72 through
Squeak”. In: Proc. ACM Program. Lang. 4 HOPL (June 2020). por:
10.1145/3386335.

Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert Krahn, Jens
Lincke, Marko Roder, Antero Taivalsaari, and Tommi Mikkonen. “A
World of Active Objects for Work and Play: The First Ten Years of
Lively”. In: Proceedings of the 2016 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software.
Onward! 2016. Amsterdam, Netherlands: Association for Computing
Machinery, 2016, pages 238-249. 1sBN: 978-1-4503-4076-2. po1: 10.
1145/2986012.2986029.

Daniel Ingalls, Eliot Miranda, Clément Béra, and Elisa Gonzalez Boix.
“Two decades of live coding and debugging of virtual machines
through simulation”. In: Software: Practice and Experience 50.9 (2020),
pages 1629-1650. po1: https://doi.org/10.1002/spe.2841. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2841.

Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari,
and Tommi Mikkonen. “The Lively Kernel A Self-supporting System
ona Web Page”. In: Self-Sustaining Systems. Edited by Robert Hirschfeld
and Kim Rose. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pages 31-50. 1sBN: 978-3-540-89275-5.

IPython-contrib Developers. Variable Inspector. 2021. URL: https://
git.io/JCOXC (visited on 2021-07-14).

David Jackson and Gary Clynch. “An Investigation of the Impact
of Language Runtime on the Performance and Cost of Serverless
Functions”. In: 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion). 2018, pages 154-160.
DOI: 10.1109/UCC- Companion.2018.00050.

JetBrains. Intellil IDEA. 2021. URL: https://www. jetbrains.com/idea/
(visited on 2021-08-10).

233

https://doi.org/10.1145/2658761.2658776
https://doi.org/10.1145/2658761.2658776
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/3386335
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1145/2986012.2986029
https://doi.org/https://doi.org/10.1002/spe.2841
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2841
https://git.io/JC0XC
https://git.io/JC0XC
https://doi.org/10.1109/UCC-Companion.2018.00050
https://www.jetbrains.com/idea/

Bibliography

[78]

[79]

[80]

[81]

[82]

[83]

[86]

[87]

234

JetBrains. Meta Programming System. 2021. URL: https://www.jetbrai
ns.com/mps/ (visited on 2021-08-01).

Steven G. Johnson. PyCall.jl: Calling Python functions from the Julia
language. 2021. URL: https://github.com/JuliaPy/PyCall. jl
(visited on 2021-04-07).

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management. 1st. Chapman &
Hall/CRC, 2011. 1sBN: 1-4200-8279-5.

Tomas Kalibera and Richard Jones. Quantifying Performance Changes
with Effect Size Confidence Intervals. Technical Report 4-12. University
of Kent, June 2012, page 55.

Lennart C.L. Kats and Eelco Visser. “The Spoofax Language Work-
bench: Rules for Declarative Specification of Languages and IDEs”.
In: Proceedings of the ACM International Conference on Object-Oriented
Programming Systems Languages and Applications. OOPSLA "10. Reno/-
Tahoe, Nevada, USA: Association for Computing Machinery, 2010,
pages 444-463. 1sBN: 978-1-4503-0203-6. pOI1: 10 .1145 /1869459 .
1869497.

Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg. “The IDE Porta-
bility Problem and Its Solution in Monto”. In: Proceedings of the 2016
ACM SIGPLAN International Conference on Software Language Engineer-
ing. SLE 2016. Amsterdam, Netherlands: Association for Comput-
ing Machinery, 2016, pages 152-162. 1sBN: 978-1-4503-4447-0. por:
10.1145/2997364.2997368.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. “An Overview of Aspect]”. In: ECOOP
2001— Object-Oriented Programming. Edited by Jergen Lindskov Knud-
sen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pages 327-
354. 1sBN: 978-3-540-45337-6.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-oriented
programming”. In: ECOOP’97 — Object-Oriented Programming. Edited
by Mehmet Aksit and Satoshi Matsuoka. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1997, pages 220-242. 1sBN: 978-3-540-69127-3.

Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol.
Cambridge, MA, USA: MIT Press, 1991. 1sBN: 0-262-11158-6.

Paul King. “A History of the Groovy Programming Language”. In:
Proc. ACM Program. Lang. 4 HOPL (June 2020). po1: 10.1145/3386326.

https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
https://github.com/JuliaPy/PyCall.jl
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1145/3386326

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jes-
sica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damidn Avila,
Safia Abdalla, Carol Willing, and Jupyter development team. “Jupyter
Notebooks ? a publishing format for reproducible computational work-
flows”. In: Positioning and Power in Academic Publishing: Players, Agents
and Agendas. Edited by Fernando Loizides and Birgit Scmidt. IOS Press,
2016, pages 87-90.

D. E. Knuth. “Literate Programming”. In: The Computer Journal 27.2
(Jan. 1984), pages 97-111. 1ssN: 0010-4620. po1: 16.1093/comjnl/27.2.
97.

Charles W. Krueger. “Software Reuse”. In: ACM Comput. Surv. 24.2
(June 1992), pages 131-183. 1ssN: 0360-0300. po1: 10.1145/130844..
130856.

David Alex Lamb. “IDL: Sharing Intermediate Representations”. In:
ACM Trans. Program. Lang. Syst. 9.3 (July 1987), pages 297-318. 1ssN:
0164-0925. po1: 10.1145/24039.24040.

Craig Latta. Caffeine — Livecode the Web! 2021. URL: https://caffeine.
js.org (visited on 2021-08-05).

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization. CGO '04. Palo Alto, California: IEEE
Computer Society, 2004, page 75. 1sBN: 0-7695-2102-9.

Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. “The Design
Space of Computational Notebooks: An Analysis of 60 Systems in
Academia and Industry”. In: 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 2020, pages 1-11. por: 10.
1109/VL/HCC50065.2020.9127201

Byeongcheol Lee, Martin Hirzel, Robert Grimm, and Kathryn S.
McKinley. “Debug All Your Code: Portable Mixed-Environment De-
bugging”. In: Proceedings of the 24th ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications. OOP-
SLA ’09. Orlando, Florida, USA: Association for Computing Machin-
ery, 2009, pages 207-226. 1sBN: 978-1-60558-766-0. por1: 10.1145/
1640089.1640105.

235

https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/24039.24040
https://caffeine.js.org
https://caffeine.js.org
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1145/1640089.1640105
https://doi.org/10.1145/1640089.1640105

Bibliography

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

236

Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel
Taeumel, and Tim Felgentreff. “Designing a Live Development Expe-
rience for Web-Components”. In: Proceedings of the 3rd ACM SIGPLAN
International Workshop on Programming Experience. PX/17.2. Vancouver,
BC, Canada: Association for Computing Machinery, 2017, pages 28-35.
ISBN: 978-1-4503-5522-3. por: 10.1145/3167109.

PXK. Linos. “PolyCARE: a tool for re-engineering multi-language pro-
gram integrations”. In: Proceedings of First IEEE International Confer-
ence on Engineering of Complex Computer Systems. ICECCS’95. 1995,
pages 338-341. pOI1: 10.1109/ICECCS.1995.479355.

Stephan Lutz. Squeak Graphics OpenGL. 2021. URL: https://github.
com/hpi-swa-lab/squeak-graphics-opengl (visited on 2021-07-11).

John Maloney. Morphic: The Self User Interface Framework. Sun Microsys-
tems Laboratories. 1995.

John H. Maloney and Randall B. Smith. “Directness and Liveness in the
Morphic User Interface Construction Environment”. In: Proceedings of
the 8th Annual ACM Symposium on User Interface and Software Technology.
UIST ’95. Pittsburgh, Pennsylvania, USA: Association for Computing
Machinery, 1995, pages 21-28. 1sBN: 0-89791-709-X. por1: 10.1145/
215585.215636.

Ami Marowka. “Python accelerators for high-performance comput-
ing”. In: The Journal of Supercomputing 74.4 (2018), pages 1449-1460.
DOI: 10.1007/s11227-017-2213-5.

Stefan Marr, Benoit Daloze, and Hanspeter Mossenbock. “Cross-
Language Compiler Benchmarking: Are We Fast Yet?” In: Proceedings
of the 12th Symposium on Dynamic Languages. DLS 2016. Amsterdam,
Netherlands: Association for Computing Machinery, 2016, pages 120
131. 1sBN: 978-1-4503-4445-6. DOI: 10.1145/2989225.2989232.

Philip Mayer and Andreas Schroeder. “Cross-Language Code Analysis
and Refactoring”. In: 2012 IEEE 12th International Working Conference
on Source Code Analysis and Manipulation. 2012, pages 94-103. por:
10.1109/SCAM.2012.11.

Robert McGill, John W. Tukey, and Wayne A. Larsen. “Variations of
Box Plots”. In: The American Statistician 32.1 (1978), pages 12-16. 1SSN:
00031305. por: 10.2307/2683468.

Wes McKinney. “pandas: a Foundational Python Library for Data
Analysis and Statistics”. In: Python High Performance Science Computer
14.9 (Jan. 2011), pages 1-9.

https://doi.org/10.1145/3167109
https://doi.org/10.1109/ICECCS.1995.479355
https://github.com/hpi-swa-lab/squeak-graphics-opengl
https://github.com/hpi-swa-lab/squeak-graphics-opengl
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/215585.215636
https://doi.org/10.1007/s11227-017-2213-5
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1109/SCAM.2012.11
https://doi.org/10.2307/2683468

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Michael S. Meier, Kevan L. Miller, Donald P. Pazel, Josyula R. Rao, and
James R. Russell. “Experiences with Building Distributed Debuggers”.
In: Proceedings of the SIGMETRICS Symposium on Parallel and Distributed
Tools. SPDT ’96. Philadelphia, Pennsylvania, USA: Association for
Computing Machinery, 1996, pages 70-79. 1sBN: 0-89791-846-0. po1:
10.1145/238020.238043.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and
How to Develop Domain-Specific Languages”. In: ACM Comput. Surv.
37.4 (Dec. 2005), pages 316-344. 1ssN: 0360-0300. por: 10 . 1145/
1118890.1118892.

Leo A. Meyerovich and Ariel S. Rabkin. “Empirical Analysis of Pro-
gramming Language Adoption”. In: Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object-Oriented Programming Systems
Languages & Applications. OOPSLA “13. Indianapolis, Indiana, USA:
Association for Computing Machinery, 2013, pages 1-18. 1sBN: 978-1-
4503-2374-1. por: 10.1145/2509136.2509515.

Microsoft. .NET Interactive. 2021. URL: https://github.com/dotnet/
interactive (visited on 2021-08-01).

Microsoft. Debug Adapter Protocol. 2021. URL: https://microsoft.
github.io/debug-adapter-protocol/ (visited on 2021-08-10).

Microsoft. Language Server Protocol. 2021. URL: https://microsoft.
github.io/language-server-protocol/ (visited on 2021-08-10).

Microsoft. Visual Studio. 2021. URL: https://visualstudio.microsof
t.com (visited on 2021-08-02).

Microsoft. Visual Studio Code. 2021. URL: https://code.visualstudio.
com (visited on 2021-08-03).

Raphael Mosaner, David Leopoldseder, Manuel Rigger, Roland Schatz,
and Hanspeter Mossenbdck. “Supporting On-Stack Replacement in
Unstructured Languages by Loop Reconstruction and Extraction”.
In: Proceedings of the 16th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes. MPLR 2019. Athens,
Greece: Association for Computing Machinery, 2019, pages 1-13. 1SBN:
978-1-4503-6977-0. por1: 10.1145/3357390.3361030.

Kenta Murata. PyCall: Calling Python functions from the Ruby language.
2021. URL: https://github.com/JuliaPy/PyCall. j1 (visited on
2021-04-07).

Netflix. Polynote — The polyglot Scala notebook. 2021. URL: https://
polynote.org (visited on 2021-08-01).

237

https://doi.org/10.1145/238020.238043
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/2509136.2509515
https://github.com/dotnet/interactive
https://github.com/dotnet/interactive
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://code.visualstudio.com
https://code.visualstudio.com
https://doi.org/10.1145/3357390.3361030
https://github.com/JuliaPy/PyCall.jl
https://polynote.org
https://polynote.org

Bibliography

[117]

[118]

[119]

[120]

[121]

[122]

[123]

238

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. 1st. Springer-Verlag Berlin Heidelberg, 1999. por:
10.1007/978-3-662-03811-6.

Fabio Niephaus. “Towards A Squeak /Smalltalk-Based Python IDE: An
Interpreter-Level Integration of Python with Smalltalk”. In: Companion
to the First International Conference on the Art, Science and Engineering of
Programming. <Programming> "17. Brussels, Belgium: Association for
Computing Machinery, 2017. 1sBN: 978-1-4503-4836-2. DOI: 10.1145/
3079368.3079370.

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. “GraalSqueak:
A Fast Smalltalk Bytecode Interpreter Written in an AST Interpreter
Framework”. In: Proceedings of the 13th Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and
Systems. ICOOOLPS “18. Amsterdam, Netherlands: Association for
Computing Machinery, 2018, pages 30-35. 1sBN: 978-1-4503-5804-0.
DOI: 10.1145/3242947.3242948.

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. “GraalSqueak:
Toward a Smalltalk-Based Tooling Platform for Polyglot Program-
ming”. In: Proceedings of the 16th ACM SIGPLAN International Con-
ference on Managed Programming Languages and Runtimes. MPLR 2019.
Athens, Greece: Association for Computing Machinery, 2019, pages 14—
26. 1sBN: 978-1-4503-6977-0. DOI1: 10.1145/3357390.3361024.

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. Squimera: A
Live, Smalltalk-Based IDE for Dynamic Programming Languages. Technical
report 120. Hasso-Plattner-Institut, 2017. por: 10.25932/publishup-
40338.

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. “Towards
Polyglot Adapters for the GraalVM”. In: Proceedings of the Conference
Companion of the 3rd International Conference on Art, Science, and En-
gineering of Programming. <Programming> "19. Genova, Italy: Associa-
tion for Computing Machinery, 2019. 1sBN: 978-1-4503-6257-3. por:
10.1145/3328433.3328458.

Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld.
“Efficient Implementation of Smalltalk Activation Records in Lan-
guage Implementation Frameworks”. In: Proceedings of the Conference
Companion of the 3rd International Conference on Art, Science, and En-
gineering of Programming. <Programming> "19. Genova, Italy: Associa-
tion for Computing Machinery, 2019. 1sBN: 978-1-4503-6257-3. por:
10.1145/3328433.3328440.

https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3079368.3079370
https://doi.org/10.1145/3079368.3079370
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.25932/publishup-40338
https://doi.org/10.25932/publishup-40338
https://doi.org/10.1145/3328433.3328458
https://doi.org/10.1145/3328433.3328440

[124]

[125]

[126]

[127]

[128]

[129]

Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld.
“Squeak Makes a Good Python Debugger: Bringing Other Program-
ming Languages Into Smalltalk’s Tools”. In: Companion to the First In-
ternational Conference on the Art, Science and Engineering of Programming.
Programming> "17. Brussels, Belgium: Association for Computing
Machinery, 2017. 1sBN: 978-1-4503-4836-2. DO1: 10.1145/3079368.
3079402.

Fabio Niephaus, Tim Felgentreff, Tobias Pape, Robert Hirschfeld, and
Marcel Taeumel. “Live Multi-language Development and Runtime
Environments”. In: The Art, Science, and Engineering of Programming
2.3 (Mar. 2018). 1ssN: 2473-7321. por: 10 .22152 /programming -
journal.org/2018/2/8.

Fabio Niephaus, Dale Henrichs, Marcel Taeumel, Tobias Pape, Tim
Felgentreff, and Robert Hirschfeld. “SmalltalkCI: A Continuous Inte-
gration Framework for Smalltalk Projects”. In: Proceedings of the 11th
Edition of the International Workshop on Smalltalk Technologies. IWST’16.
Prague, Czech Republic: Association for Computing Machinery, 2016.
ISBN: 978-1-4503-4524-8. pO1: 10.1145/2991041.2991044.

Fabio Niephaus, Eva Krebs, Christian Flach, Jens Lincke, and Robert
Hirschfeld. “PolyJuS: A Squeak/Smalltalk-Based Polyglot Notebook
System for the GraalVM”. In: Proceedings of the Conference Compan-
ion of the 3rd International Conference on Art, Science, and Engineering
of Programming. <Programming> '19. Genova, Italy: Association for
Computing Machinery, 2019. 1sBN: 978-1-4503-6257-3. pO1: 10.1145/
3328433.3328434.

Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bas-
tian Konig, Kolya Opahle, Nico Scordialo, and Robert Hirschfeld.
“Example-Based Live Programming for Everyone: Building Language-
Agnostic Tools for Live Programming with LSP and GraalVM”. In:
Proceedings of the 2020 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software.
New York, NY, USA: Association for Computing Machinery, 2020,
pages 1-17. 1sBN: 978-1-4503-8178-9.

Fabio Niephaus, Matthias Springer, Tim Felgentreff, Tobias Pape, and
Robert Hirschfeld. “Call-Target-Specific Method Arguments”. In: Pro-
ceedings of the 10th Workshop on Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages, Programs and Systems. ICOOOLPS "15.
Prague, Czech Republic: Association for Computing Machinery, 2015.
ISBN: 978-1-4503-3657-4. po1: 10.1145/2843915.28439109.

239

https://doi.org/10.1145/3079368.3079402
https://doi.org/10.1145/3079368.3079402
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.1145/2991041.2991044
https://doi.org/10.1145/3328433.3328434
https://doi.org/10.1145/3328433.3328434
https://doi.org/10.1145/2843915.2843919

Bibliography

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

240

Charles O. Nutter, Thomas Enebo, Nick Sieger, Ola Bini, and Ian Dees.
Using JRuby: Bringing Ruby to Java. 1st. Pragmatic Bookshelf, 2011. 1sBN:
978-1-934356-65-4.

Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification. Document Revision 2.0. OMG, July 1995.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-
tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Erik Stenman, and Matthias Zenger. An Overview of the Scala Program-
ming Language. Technical report. 2004.

Travis E. Oliphant. “Python for Scientific Computing”. In: Computing
in Science Engineering 9.3 (2007), pages 10-20. por1: 10.1109/MCSE.
2007.58.

Open]DK Community. Project Loom Wiki. 2021. URL: https://wiki.
openjdk.java.net/display/loom/Main (visited on 2021-07-28).

Oracle. Java Native Interface Specification. 2020. URL: https://docs.
oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.
html (visited on 2021-04-07).

Oracle Labs. Graal VM Security Guide. 2021. URL: https://www.graalvm.
org/security-guide/ (visited on 2021-06-29).

Oracle Labs. GraalVM VS Code Extensions. 2021. URL: https://github.
com/graalvm/vscode-extensions (visited on 2021-07-05).

Oracle Labs. oracle/graal Repository: Graal VM SDK. 2021. URL: https:
//git.io/JubDoo (visited on 2021-09-13).

Oracle Labs. oracle/graal Repository: InteropLibrary.java. 2021. URL: http
s://git.i0/JzZpY (visited on 2021-09-20).

Oracle Labs. oracle/graal Repository: Safepoints.md. 2021. URL: https:
//git.io/JuDr5 (visited on 2021-09-13).

Oracle Labs. oracle/graal Repository: Splitting.md. 2021. URL: https :
//9it.io/JuDVM (visited on 2021-09-13).

Oracle Labs. oracle/graal Repository: Target Type Mappings. 2021. URL:
https://git.io/JB2H] (visited on 2021-07-30).

Oracle Labs. oracle/graal Repository: TruffleLanguage.Env. 2021. URL:
https://git.io/Jub2n (visited on 2021-09-13).

Oracle Labs. oracle/graal Repository: TruffleObject. 2021. URL: https:
//git.io/JuDan (visited on 2021-09-13).

https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://wiki.openjdk.java.net/display/loom/Main
https://wiki.openjdk.java.net/display/loom/Main
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://www.graalvm.org/security-guide/
https://www.graalvm.org/security-guide/
https://github.com/graalvm/vscode-extensions
https://github.com/graalvm/vscode-extensions
https://git.io/JuDoo
https://git.io/JuDoo
https://git.io/JzZpY
https://git.io/JzZpY
https://git.io/JuDr5
https://git.io/JuDr5
https://git.io/JuDVM
https://git.io/JuDVM
https://git.io/JB2HJ
https://git.io/JuD2n
https://git.io/JuDan
https://git.io/JuDan

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

J. Pallas and D. Ungar. “Multiprocessor Smalltalk: A Case Study of a
Multiprocessor-Based Programming Environment”. In: Proceedings of
the ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation. PLDI '88. Atlanta, Georgia, USA: Association for
Computing Machinery, 1988, pages 268-277. 1sBN: 0-89791-269-1. por:
10.1145/53990.54017.

Tobias Pape, Tim Felgentreff, Fabio Niephaus, and Robert Hirschfeld.
“Let Them Fail: Towards VM Built-in Behavior That Falls Back to
the Program”. In: Proceedings of the Conference Companion of the 3rd
International Conference on Art, Science, and Engineering of Programming.
Programming> "19. Genova, Italy: Association for Computing Machin-
ery, 2019. 1sBN: 978-1-4503-6257-3. DO1I: 10.1145/3328433.3338056.

Linda Dailey Paulson. “Developers shift to dynamic programming
languages”. In: Computer 40.2 (2007), pages 12-15. por: 10.1109/MC.
2007.53.

Bo Peng, Gao Wang, Jun Ma, Man Chong Leong, Chris Wakefield,
James Melott, Yulun Chiu, Di Du, and John N Weinstein. “SoS Note-
book: an interactive multi-language data analysis environment”. In:
Bioinformatics 34.21 (May 2018), pages 3768-3770. 1ssN: 1367-4803. por1:
10.1093/bioinformatics/bty405. eprint: https://academic.oup.
com/bioinformatics/article-pdf/34/21/3768/26146920/bty405.
pdf.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jacome Cunha,
Jodo Paulo Fernandes, and Jodo Saraiva. “Energy Efficiency across
Programming Languages: How Do Energy, Time, and Memory Re-
late?” In: Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering. SLE 2017. Vancouver, BC, Canada:
Association for Computing Machinery, 2017, pages 256-267. 1SBN:
978-1-4503-5525-4. po1: 10.1145/3136014.3136031.

Benjamin C. Pierce. Types and Programming Languages. 1st. The MIT
Press, 2002. 1sBN: 0-262-16209-1.

L. Prechelt. “An empirical comparison of seven programming lan-
guages”. In: Computer 33.10 (2000), pages 23-29. por: 16.1109/2.
876288.

Project Jupyter. Jupyter kernels. 2021. URL: https://github.com/
jupyter/jupyter/wiki/Jupyter-kernels (visited on 2021-07-03).

Python Software Foundation. Extending and Embedding the Python
Interpreter. 2021. URL: https://docs.python.org/3/extending/
index.html (visited on 2021-06-04).

241

https://doi.org/10.1145/53990.54017
https://doi.org/10.1145/3328433.3338056
https://doi.org/10.1109/MC.2007.53
https://doi.org/10.1109/MC.2007.53
https://doi.org/10.1093/bioinformatics/bty405
https://academic.oup.com/bioinformatics/article-pdf/34/21/3768/26146920/bty405.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/21/3768/26146920/bty405.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/21/3768/26146920/bty405.pdf
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1109/2.876288
https://doi.org/10.1109/2.876288
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://docs.python.org/3/extending/index.html
https://docs.python.org/3/extending/index.html

Bibliography

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

242

Patrick Rein, Robert Hirschfeld, and Marcel Taeumel. “Gramada: Im-
mediacy in Programming Language Development”. In: Proceedings of
the 2016 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. Onward! 2016. Amsterdam,
Netherlands: Association for Computing Machinery, 2016, pages 165—
179. 1sBN: 978-1-4503-4076-2. DOI: 10.1145/2986012.2986022.

Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus,
and Robert Hirschfeld. “Implementing Babylonian /S by Putting Exam-
ples Into Contexts: Tracing Instrumentation for Example-Based Live
Programming as a Use Case for Context-Oriented Programming”.
In: Proceedings of the Workshop on Context-Oriented Programming. COP
"19. London, United Kingdom: Association for Computing Machinery,
2019, pages 17-23. 1sBN: 978-1-4503-6863-6. DOI: 10.1145/3340671.
3343358.

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and
Tobias Pape. “Exploratory and Live, Programming and Coding”. In:
The Art, Science, and Engineering of Programming 3.1 (July 2018). 1ssN:
2473-7321. por: 10.22152/programming- journal.org/2019/3/1.

Lukas Renggli, Marcus Denker, and Oscar Nierstrasz. “Language
Boxes”. In: Software Language Engineering. Edited by Mark van den
Brand, Dragan Gasevi¢, and Jeff Gray. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pages 274-293. 1sBN: 978-3-642-12107-4.

Lukas Renggli, Tudor Girba, and Oscar Nierstrasz. “Embedding Lan-
guages without Breaking Tools”. In: ECOOP 2010 — Object-Oriented
Programming. Edited by Theo D’Hondt. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pages 380-404. 1sBN: 978-3-642-14107-2.

John Reppy and Chunyan Song. “Application-Specific Foreign-
Interface Generation”. In: Proceedings of the 5th International Conference
on Generative Programming and Component Engineering. GPCE ’06.
Portland, Oregon, USA: Association for Computing Machinery, 2006,
pages 49-58. 1sBN: 1-59593-237-2. pO1: 10.1145/1173706.1173714.

Jakob Reschke, Marcel Taeumel, Tobias Pape, Fabio Niephaus, and
Robert Hirschfeld. Towards Version Control in Object-Based Systems.
Technical report 121. Hasso-Plattner-Institut, 2018.

John C. Reynolds. “The Discoveries of Continuations”. In: Lisp Symb.
Comput. 6.3-4 (Nov. 1993), pages 233-248. 1ssN: 0892-4635. por: 10.
1007/BF01019459.

Nicolas Riesco and contributors. IJavascript. 2021. URL: https://
github.com/n-riesco/ijavascript (visited on 2021-07-14).

https://doi.org/10.1145/2986012.2986022
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/1173706.1173714
https://doi.org/10.1007/BF01019459
https://doi.org/10.1007/BF01019459
https://github.com/n-riesco/ijavascript
https://github.com/n-riesco/ijavascript

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

Alexander Riese, Fabio Niephaus, Tim Felgentreff, and Robert
Hirschfeld. “User-Defined Interface Mappings for the GraalVM”. In:
Conference Companion of the 4th International Conference on Art, Science,
and Engineering of Programming. <Programming> '20. Porto, Portugal:
Association for Computing Machinery, 2020, pages 19-22. 1SBN:
978-1-4503-7507-8. pO1: 10.1145/3397537.3399577.

Armin Rigo and Maciej Fijalkowski. CFFI Documentation. Technical
report Release 1.14.6. 2021.

Armin Rigo and Samuele Pedroni. “PyPy’s approach to virtual ma-
chine construction”. In: Companion to the 21st ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and applications.
OOPSLA ’06. Portland, USA: ACM, 2006, pages 944-953. 1sBN: 1-
59593-491-X. pDO1: 10.1145/1176617.1176753.

David Rothlisberger, Marcel Harry, Alex Villazon, Danilo Ansaloni,
Walter Binder, Oscar Nierstrasz, and Philippe Moret. “Augmenting
static source views in IDEs with dynamic metrics”. In: 2009 IEEE
International Conference on Software Maintenance. 2009, pages 253-262.
DOI: 10.1109/ICSM.2009.5306302.

David Roéthlisberger, Orla Greevy, and Oscar Nierstrasz. “Exploiting
Runtime Information in the IDE”. In: 2008 16th IEEE International
Conference on Program Comprehension. 2008, pages 63-72. poI: 10 .
1109/ICPC.2008.32.

rpy2 Developers. rpy2 - R in Python. 2021. URL: https://rpy2.github.
io (visited on 2021-08-16).

Ruby Community. Module: Fiddle (Ruby 3.0.2). 2021. URL: https :
//docs .ruby-lang.org/en/3.0.0/Fiddle.html (visited on
2021-08-16).

Ruby Community. To Ruby From C and C++. 2021. URL: https://
www . ruby - lang .org/en/documentation/ruby - from-other -
languages/to- ruby- from-c-and-cpp/ (visited on 2021-08-16).

J. E. Sammet. “An Overview of Programming Languages for Special-
ized Application Areas”. In: Proceedings of the May 16-18, 1972, Spring
Joint Computer Conference. AFIPS "72 (Spring). Atlantic City, New Jer-
sey: Association for Computing Machinery, 1971, pages 299-311. 1SBN:
978-1-4503-7909-0. pDO1: 10.1145/1478873.1478912.

D. W. Sandberg. “Smalltalk and Exploratory Programming”. In: SIG-
PLAN Not. 23.10 (Oct. 1988), pages 85-92. 1ssN: 0362-1340. por: 10.
1145/51607.51614.

243

https://doi.org/10.1145/3397537.3399577
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1109/ICSM.2009.5306302
https://doi.org/10.1109/ICPC.2008.32
https://doi.org/10.1109/ICPC.2008.32
https://rpy2.github.io
https://rpy2.github.io
https://docs.ruby-lang.org/en/3.0.0/Fiddle.html
https://docs.ruby-lang.org/en/3.0.0/Fiddle.html
https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-from-c-and-cpp/
https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-from-c-and-cpp/
https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-from-c-and-cpp/
https://doi.org/10.1145/1478873.1478912
https://doi.org/10.1145/51607.51614
https://doi.org/10.1145/51607.51614

Bibliography

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

244

Amin Shali and William R. Cook. “Hybrid Partial Evaluation”. In:
Proceedings of the 2011 ACM International Conference on Object-Oriented
Programming Systems Languages and Applications. OOPSLA "11. Portland,
Oregon, USA: Association for Computing Machinery, 2011, pages 375
390. 1sBN: 978-1-4503-0940-0. por: 10.1145/2048066.2048098.

M. Shaw. “Abstraction Techniques in Modern Programming Lan-
guages”. In: IEEE Softw. 1.4 (Oct. 1984), pages 10-26. 1ssN: 0740-7459.
DOI: 10.1109/MS.1984.229453.

Beau Sheil. “Datamation®: Power Tools for Programmers”. In: Readings
in Artificial Intelligence and Software Engineering. Edited by Charles Rich
and Richard C. Waters. Morgan Kaufmann, 1986, pages 573-580. 1sBN:
978-0-934613-12-5. po1: https://doi.org/10.1016/B978-0-934613-
12-5.50048-3.

Tomomi Shimazaki, Masatomo Hashimoto, and Toshiyuki Maeda.
“Developing a High-Performance Quantum Chemistry Program with
a Dynamic Scripting Language”. In: Proceedings of the 3rd International
Workshop on Software Engineering for High Performance Computing in
Computational Science and Engineering. SE-HPCCSE “15. Austin, Texas:
Association for Computing Machinery, 2015, pages 9-15. 1sBN: 978-1-
4503-4012-0. po1: 160.1145/2830168.2830170.

Ben Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. 3rd. USA: Addison-Wesley Longman
Publishing Co., Inc., 1997. 1sBN: 0-201-69497-2.

Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. “Thrift: Scalable
cross-language services implementation”. In: Facebook White Paper 5.8
(2007).

Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture and
Design). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2005. 1sBN: 1-55860-910-5.

Robert Smith, Aaron Sloman, and John Gibson. “POPLOG’s Two-
level virtual machine support for interactive languages”. In: Research
Directions in Cognitive Science Volume 5: Artificial Intelligence. Edited
by D. Sleeman and N. Bernsen. Lawrence Erlbaum Associates, 1992,
pages 203-231.

Software Architecture Group, Hasso Plattner Institute. [Polyglot patch
for the Node.js Evaluation Loop (NEL) module. 2021. URL: https://git.
io/JCOWE (visited on 2021-07-14).

https://doi.org/10.1145/2048066.2048098
https://doi.org/10.1109/MS.1984.229453
https://doi.org/https://doi.org/10.1016/B978-0-934613-12-5.50048-3
https://doi.org/https://doi.org/10.1016/B978-0-934613-12-5.50048-3
https://doi.org/10.1145/2830168.2830170
https://git.io/JC0WE
https://git.io/JC0WE

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

Software Architecture Group, Hasso Plattner Institute. IPolyglot: A
polyglot kernel for Jupyter notebooks based on Graal VM. 2021. URL: https:
//github.com/hpi-swa/ipolyglot (visited on 2021-07-14).

Software Architecture Group, Hasso Plattner Institute. TruffleSqueak.
2021. URL: https://github.com/hpi-swa/trufflesqueak/ (visited
on 2021-07-05).

Matthias Springer. Inter-language Collaboration in an Object-oriented
Virtual Machine. 2016. arXiv: 1606.03644 [cs.PL].

Matthias Springer, Fabio Niephaus, Robert Hirschfeld, and Hide-
hiko Masuhara. “Matriona: Class Nesting with Parameterization in
Squeak/Smalltalk”. In: Proceedings of the 15th International Conference
on Modularity. MODULARITY 2016. Malaga, Spain: Association for
Computing Machinery, 2016, pages 118-129. 1sBN: 978-1-4503-3995-7.
DOI: 10.1145/2889443.2889457

Squeak/Smalltalk Community. Block / Brick (Pharo). 2021. URL: https:
//wiki.squeak.org/squeak/3806 (visited on 2021-07-11).

Squeak/Smalltalk Community. Method Finder. 2019. URL: https://
wiki.squeak.org/squeak/1916 (visited on 2021-07-07).

Lukas Stadler, Thomas Wiirthinger, and Hanspeter Mossenbock. “Par-
tial Escape Analysis and Scalar Replacement for Java”. In: Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization. CGO “14. Orlando, FL, USA: Association for Comput-
ing Machinery, 2014, pages 165-174. 1sBN: 978-1-4503-2670-4. DoOTI:
10.1145/2544137.2544157.

Richard M. Stallman. “EMACS the Extensible, Customizable Self-
Documenting Display Editor”. In: Proceedings of the ACM SIGPLAN
SIGOA Symposium on Text Manipulation. Portland, Oregon, USA: Asso-
ciation for Computing Machinery, 1981, pages 147-156. 1sBN: 0-89791-
050-8. DO1: 10.1145/800209.806466

Levon Stepanian, Angela Demke Brown, Allan Kielstra, Gita Koblents,
and Kevin Stoodley. “Inlining Java Native Calls at Runtime”. In: Pro-
ceedings of the 1st ACM/USENIX International Conference on Virtual
Execution Environments. VEE "05. Chicago, IL, USA: Association for
Computing Machinery, 2005, pages 121-131. 1sBN: 1-59593-047-7. po1:
10.1145/1064979.1064997.

Sam Stephenson and Josh Peek. Exec/S. 2021. URL: https://github.
com/rails/execjs (visited on 2021-08-16).

245

https://github.com/hpi-swa/ipolyglot
https://github.com/hpi-swa/ipolyglot
https://github.com/hpi-swa/trufflesqueak/
https://arxiv.org/abs/1606.03644
https://doi.org/10.1145/2889443.2889457
https://wiki.squeak.org/squeak/3806
https://wiki.squeak.org/squeak/3806
https://wiki.squeak.org/squeak/1916
https://wiki.squeak.org/squeak/1916
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/800209.806466
https://doi.org/10.1145/1064979.1064997
https://github.com/rails/execjs
https://github.com/rails/execjs

Bibliography

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

246

Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and
Robert Hirschfeld. “Language-Independent Development Environ-
ment Support for Dynamic Runtimes”. In: Proceedings of the 15th ACM
SIGPLAN International Symposium on Dynamic Languages. DLS 2019.
Athens, Greece: Association for Computing Machinery, 2019, pages 80—
90. 1sBN: 978-1-4503-6996-1. DO1: 10.1145/3359619.3359746.

Dennis Strein and Hans Kratz. “Design and Implementation of a
high-level multi-language .NET Debugger”. In: Proceedings of the NET
Technologies 2005 conference. 2005, pages 57-64. 1sBN: 80-86943-01-1.

Gregory T. Sullivan. “Dynamic Partial Evaluation”. In: Programs as
Data Objects. Edited by Olivier Danvy and Andrzej Filinski. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pages 238-256. 1SBN:
978-3-540-44978-2.

Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder.
“Efficient Dynamic Analysis for Node.Js”. In: Proceedings of the 27th
International Conference on Compiler Construction. CC 2018. Vienna,
Austria: Association for Computing Machinery, 2018, pages 196-206.
ISBN: 978-1-4503-5644-2. po1: 10.1145/3178372.3179527.

Marcel Taeumel. “Data-driven Tool Construction in Exploratory Pro-
gramming Environments”. PhD thesis. University of Potsdam, Dig-
ital Engineering Faculty, Hasso Plattner Institute, Feb. 2020. por:
10.25932/publishup-44428.

Marcel Taeumel and Robert Hirschfeld. “Evolving User Interfaces
From Within Self-Supporting Programming Environments: Exploring
the Project Concept of Squeak/Smalltalk to Bootstrap Uls”. In: Pro-
ceedings of the Programming Experience 2016 (PX/16) Workshop. PX/16.
Rome, Italy: Association for Computing Machinery, 2016, pages 43-59.
ISBN: 978-1-4503-4776-1. DO1: 10.1145/2984380.2984386.

Eric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. “Partial
Behavioral Reflection: Spatial and Temporal Selection of Reification”.
In: Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications. OOPSLA "03.
Anaheim, California, USA: Association for Computing Machinery,
2003, pages 27-46. 1sBN: 1-58113-712-5. DOI: 10.1145/949305.949309.

TensorFlow JVM Special Interest Group. TensorFlow for Java. 2021. URL:
https://github.com/tensorflow/java (visited on 2021-08-16).

The Khronos Group. OpenGL. 2021. URL: https://www.opengl.org
(visited on 2021-07-11).

https://doi.org/10.1145/3359619.3359746
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.25932/publishup-44428
https://doi.org/10.1145/2984380.2984386
https://doi.org/10.1145/949305.949309
https://github.com/tensorflow/java
https://www.opengl.org

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. “Languages as Libraries”. In: Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI "11. San Jose, California, USA: Association for
Computing Machinery, 2011, pages 132-141. 1sBN: 978-1-4503-0663-8.
DOI: 10.1145/1993498.1993514.

Topaz Developers. Topaz. 2017. URL: https://github.com/topazproj
ect/topaz (visited on 2021-07-15).

J. Trenouth. “A Survey of Exploratory Software Development”. In: The
Computer Journal 34.2 (Jan. 1991), pages 153-163. 1ssN: 0010-4620. por:
10.1093/comjnl/34.2.153. eprint: https://academic.oup.com/
comjnl/article-pdf/34/2/153/1400604/340153. pdf.

Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. “How
Do Programmers Ask and Answer Questions on the Web? (NIER
Track)”. In: Proceedings of the 33rd International Conference on Software
Engineering. ICSE "11. Waikiki, Honolulu, HI, USA: Association for
Computing Machinery, 2011, pages 804-807. 1sBN: 978-1-4503-0445-0.
DOI: 10.1145/1985793.1985907.

John W Tukey. Exploratory Data Analysis. Addison-Wesley, 1977. 1SBN:
978-0-201-07616-5.

Two Sigma Open Source, LLC. BakerX. 2018. URL: http://beakerx.com
(visited on 2021-07-03).

David Ungar and Randall B. Smith. “Self”. In: Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages. HOPL
I1I. San Diego, California: Association for Computing Machinery, 2007,
9-1-9-50. 1sBN: 978-1-59593-766-7. DOI: 10.1145/1238844.1238853.

David Ungar and Randall B. Smith. “Self: The Power of Simplic-
ity”. In: Conference Proceedings on Object-Oriented Programming Sys-
tems, Languages and Applications. OOPSLA ’87. Orlando, Florida, USA:
Association for Computing Machinery, 1987, pages 227-242. 1SBN:
0-89791-247-0. por: 10.1145/38765.38828.

David Ungar, Adam Spitz, and Alex Ausch. “Constructing a Metacir-
cular Virtual Machine in an Exploratory Programming Environment”.
In: Companion to the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA
’05. San Diego, CA, USA: Association for Computing Machinery, 2005,
pages 11-20. 1sBN: 1-59593-193-7. DO1: 10.1145/1094855.1094865.

247

https://doi.org/10.1145/1993498.1993514
https://github.com/topazproject/topaz
https://github.com/topazproject/topaz
https://doi.org/10.1093/comjnl/34.2.153
https://academic.oup.com/comjnl/article-pdf/34/2/153/1400604/340153.pdf
https://academic.oup.com/comjnl/article-pdf/34/2/153/1400604/340153.pdf
https://doi.org/10.1145/1985793.1985907
http://beakerx.com
https://doi.org/10.1145/1238844.1238853
https://doi.org/10.1145/38765.38828
https://doi.org/10.1145/1094855.1094865

Bibliography

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

248

Michael Van De Vanter, Chris Seaton, Michael Haupt, Christian Humer,
and Thomas Wiirthinger. “Fast, Flexible, Polyglot Instrumentation
Support for Debuggers and other Tools”. In: The Art, Science, and
Engineering of Programming 2.3 (Mar. 2018). 1ssN: 2473-7321. por:
10.22152/programming-journal.org/2018/2/14.

Jan Vrany and Michal PiSe. “Multilanguage Debugger Architecture”.
In: SOFSEM 2010: Theory and Practice of Computer Science. Edited by
Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav Pokorny, and
Bernhard Rumpe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pages 731-742. 1sBN: 978-3-642-11266-9.

Alessandro Warth, Patrick Dubroy, and Tony Garnock-Jones. “Modu-
lar Semantic Actions”. In: Proceedings of the 12th Symposium on Dynamic
Languages. DLS 2016. Amsterdam, Netherlands: Association for Com-
puting Machinery, 2016, pages 108-119. 1sBN: 978-1-4503-4445-6. DOTI:
10.1145/2989225.2989231.

Peter Wegner. “Interoperability”. In: ACM Comput. Surv. 28.1 (Mar.
1996), pages 285-287. 1ssN: 0360-0300. pDoO1: 10.1145/234313.234424.

M. Weiser, A. Demers, and C. Hauser. “The Portable Common Run-
time Approach to Interoperability”. In: Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles. SOSP ’89. New York, NY,
USA: Association for Computing Machinery, 1989, pages 114-122. 1sBN:
0-89791-338-8. DOI: 10.1145/74850.74862.

Hernédn Wilkinson. “VM Support for Live Typing: Automatic Type
Annotation for Dynamically Typed Languages”. In: Proceedings of the
Conference Companion of the 3rd International Conference on Art, Science,
and Engineering of Programming. Programming "19. Genova, Italy: As-
sociation for Computing Machinery, 2019. 1sBN: 978-1-4503-6257-3.
DOI: 10.1145/3328433.3328443.

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul
Wogerer, Peter B. Kessler, Oleg Pliss, and Thomas Wiirthinger. “Initial-
ize Once, Start Fast: Application Initialization at Build Time”. In: Proc.
ACM Program. Lang. 3.00PSLA (Oct. 2019). po1: 16.1145/3360610.

Mario Wolczko. self includes: Smalltalk. Presented at the Workshop on
Prototype-Based Languages, ECOOP’96, Linz, Austria. 1996.

Mario Wolczko, Ole Agesen, and David Ungar. “Towards a Univer-
sal Implementation Substrate for Object-Oriented Languages”. In:
OOPSLA workshop on Simplicity, Performance, and Portability in Virtual
Machine Design. 1999.

https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.1145/2989225.2989231
https://doi.org/10.1145/234313.234424
https://doi.org/10.1145/74850.74862
https://doi.org/10.1145/3328433.3328443
https://doi.org/10.1145/3360610

[219]

[220]

[221]

[222]

[223]

[224]

Carl Worth and contributors. Cairo. 2021. URL: https://www.cairogr
aphics.org (visited on 2021-07-11).

Andreas Wofs, Christian Wirth, Daniele Bonetta, Chris Seaton, Chris-
tian Humer, and Hanspeter Mossenbock. “An Object Storage Model
for the Truffle Language Implementation Framework”. In: Proceedings
of the 2014 International Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Languages, and Tools.
PPPJ "14. Cracow, Poland: Association for Computing Machinery, 2014,
pages 133-144. 1sBN: 978-1-4503-2926-2. po1: 10 . 1145 /2647508 .
2647517.

Thomas Wiirthinger, Christian Wimmer, Christian Humer, Andreas
Wofs, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and
Matthias Grimmer. “Practical Partial Evaluation for High-Performance
Dynamic Language Runtimes”. In: Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
PLDI 2017. Barcelona, Spain: Association for Computing Machinery,
2017, pages 662-676. 1sBN: 978-1-4503-4988-8. DOI: 10.1145/3062341.
3062381.

Thomas Wiirthinger, Christian Wimmer, Andreas Wo6f3, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. “One VM to Rule Them All”. In: Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software. Onward! 2013. Indianapolis,
Indiana, USA: Association for Computing Machinery, 2013, pages 187-
204. 1sBN: 978-1-4503-2472-4. pOI: 10.1145/2509578.2509581.

Di Yang, Aftab Hussain, and Cristina Videira Lopes. “From Query
to Usable Code: An Analysis of Stack Overflow Code Snippets”. In:
Proceedings of the 13th International Conference on Mining Software Repos-
itories. MSR "16. Austin, Texas: Association for Computing Machinery,
2016, pages 391-402. 1sBN: 978-1-4503-4186-8. DO1: 10.1145/2901739.
2901767.

Danny Yoo and Shriram Krishnamurthi. “Whalesong: Running Racket
in the Browser”. In: Proceedings of the 9th Symposium on Dynamic Lan-
guages. DLS “13. Indianapolis, Indiana, USA: Association for Com-
puting Machinery, 2013, pages 97-108. 1sBN: 978-1-4503-2433-5. DoI:
10.1145/2508168.2508172.

249

https://www.cairographics.org
https://www.cairographics.org
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2508168.2508172

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	I Programming in a World of Many Languages
	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 Outline

	2 State of the Art of Polyglot Programming
	2.1 Use Cases
	2.2 Established Language Integration Techniques
	2.3 Polyglot Virtual Machines

	II Background
	3 Introduction to Programming Languages, VMs, and Tools
	3.1 Programming Languages
	3.2 Virtual Machines
	3.3 Programming Tools
	3.4 Developer Roles and Responsibilities

	4 GraalVM and Its Infrastructure for Polyglot Programming
	4.1 The Graal Compiler
	4.2 The Truffle Language Implementation Framework
	4.3 GraalVM Languages and Tools

	III Exploratory Tool-Building Platforms for Polyglot VMs
	5 Bringing Exploratory Programming to Polyglot VMs
	5.1 Exploratory Programming for Polyglot VMs
	5.2 Building on Self-Sustaining Programming Systems
	5.3 Opening the Programming System to Other Languages
	5.4 API Requirements for Exploratory Programming

	6 Extending Exploratory Tools for Polyglot VMs
	6.1 Revealing Interfaces of Objects
	6.2 Providing Context About Languages
	6.3 Incorporating Additional Features of Polyglot VMs

	7 Expanding Polyglot Programming to the Platform Itself
	7.1 Building Polyglot Tools for Polyglot Programming
	7.2 Building Polyglot Applications at Run-Time
	7.3 Exploring the Internals of Polyglot VMs

	IV Implementation for the GraalVM
	8 Integrating Squeak/Smalltalk Into GraalVM
	8.1 Building on Squeak/Smalltalk
	8.2 Opening Squeak/Smalltalk to Other GraalVM Languages
	8.3 Re-Using Exploratory Tools for GraalVM Languages

	9 Extending Exploratory Tools of Squeak/Smalltalk for GraalVM
	9.1 Revealing All Interoperability Members of Objects
	9.2 Providing Context About GraalVM Languages
	9.3 Incorporating Additional Features of Truffle

	10 Expanding Polyglot Programming to Squeak/Smalltalk
	10.1 Building Polyglot Tools for Polyglot Programming
	10.2 Building Polyglot Applications at Run-Time
	10.3 Exploring Language Implementations and GraalVM Internals

	V Evaluation
	11 TruffleSqueak: Squeak/Smalltalk on the GraalVM
	11.1 Compatibility
	11.2 UI Performance Evaluation
	11.3 Requirement Evaluation
	11.4 Limitations

	12 Case Studies Based on TruffleSqueak
	12.1 Building a Polyglot Notebook System
	12.2 Adding Support for Polyglot APIs to Code Editors
	12.3 Helping Developers to Find Re-Usable Code
	12.4 Understanding Run-Time Behavior of the Graal Compiler
	12.5 Extending Squeak/Smalltalk With a Polyglot Drawing Engine

	13 Case Studies Beyond TruffleSqueak
	13.1 Applying Our Approach to a Polyglot VM Built With RPython
	13.2 Bringing Polyglot Notebooks to Jupyter and VS Code

	VI Discussion and Conclusions
	14 General Observations and Insights
	14.1 Advantages of Polyglot VMs
	14.2 Disadvantages of Polyglot VMs
	14.3 Reasoning About Multiple Languages at the Same Time
	14.4 Dealing With Interface and Type Mismatches

	15 Related Work
	15.1 Exploratory Programming Environments
	15.2 Dynamic Tools With Multi-Language Support
	15.3 Tools for Building Polyglot Applications
	15.4 Platforms for Language and Tool Development
	15.5 Dynamic Run-Time Data and Tools

	16 Conclusions and Future Work
	16.1 Future Work
	16.2 Conclusions

	VII Appendix
	A Bytecode Interpreter Loop Implementations
	B Language Performance Evaluation
	C Additional Screenshots

	Publications
	Bibliography

