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Abstract. Quantifying the extremeness of heavy precipita-
tion allows for the comparison of events. Conventional quan-
titative indices, however, typically neglect the spatial extent
or the duration, while both are important to understand po-
tential impacts. In 2014, the weather extremity index (WEI)
was suggested to quantify the extremeness of an event and to
identify the spatial and temporal scale at which the event was
most extreme. However, the WEI does not account for the
fact that one event can be extreme at various spatial and tem-
poral scales. To better understand and detect the compound
nature of precipitation events, we suggest complementing the
original WEI with a “cross-scale weather extremity index”
(xWEI), which integrates extremeness over relevant scales
instead of determining its maximum.

Based on a set of 101 extreme precipitation events in Ger-
many, we outline and demonstrate the computation of both
WEI and xWEI. We find that the choice of the index can
lead to considerable differences in the assessment of past
events but that the most extreme events are ranked consis-
tently, independently of the index. Even then, the xWEI can
reveal cross-scale properties which would otherwise remain
hidden. This also applies to the disastrous event from July
2021, which clearly outranks all other analyzed events with
regard to both WEI and xWEI.

While demonstrating the added value of xWEI, we also
identify various methodological challenges along the re-
quired computational workflow: these include the parame-
ter estimation for the extreme value distributions, the defini-
tion of maximum spatial extent and temporal duration, and
the weighting of extremeness at different scales. These chal-
lenges, however, also represent opportunities to adjust the re-
trieval of WEI and xWEI to specific user requirements and
application scenarios.

1 Introduction

Quantifying heavy precipitation events (HPEs) is important
as these events can have significant impacts on nature and
society (Lengfeld et al., 2020). The devastating flood fol-
lowing the event in July 2021 in western Germany is a re-
cent example. Extreme precipitation can cause different flood
types (flash, pluvial, and fluvial floods), erosion, and land-
slides (Leonarduzzi et al., 2021; Ozturk et al., 2018; Zêzere
et al., 2005). While HPEs are already among the costliest
natural disasters in Europe (Gvoždíková et al., 2019), cli-
mate change conditions are expected to lead to an increase in
the frequency and intensity of HPEs (Christensen and Chris-
tensen, 2003; Pryor et al., 2014). Warmer and wetter con-
ditions could additionally impact the spatial extent of pre-
cipitation features, which might lead to rain cells capable of
producing up to almost 20 % more rain per degree of warm-
ing (Lochbihler et al., 2019), whereas Prein et al. (2017) state
an expected increase in precipitation intensities of about 7 %
per degree of warming. Despite the different numbers, this
suggests a significant increase in HPEs and the connected
impacts (Zhang et al., 2019). Only an enhanced understand-
ing regarding the severity, duration, and frequency of HPEs
will enable us to adapt to these events through appropriate
hazard mitigation and management strategies.

Impacts following HPEs are manyfold and caused by dif-
ferent mechanisms. Short-duration rainfall with high intensi-
ties is associated with flash or pluvial floods, while persistent
precipitation episodes on the daily scale can lead to large-
scale fluvial floods (Ramos et al., 2017). As one HPE can be
extreme on different spatiotemporal scales simultaneously, it
can trigger different types of impacts which can overlay each
other. Impacts from extreme weather events can be caused
by a single variable being extreme or an accumulation of
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not necessarily extreme variables (Liu et al., 2018). The lat-
ter is also referred to as a compound event, which the IPCC
(Seneviratne et al., 2012) defined as

1. two or more extreme events occurring simultaneously
or successively,

2. combinations of extreme events with underlying condi-
tions that amplify the impact of these events, and/or

3. combinations of events that are not extreme themselves
but lead to an extreme event or impact when combined.

Thieken et al. (2022) adopted this concept and described
some of the most destructive floods that have been observed
in Germany as compound inland floods, as these were a
chain of interacting and cascading events. In August 2002,
for example, the city of Dresden was hit by consecutive flood
events which were effectively triggered by the same rainfall
event. First, pluvial flooding occurred due to high-intensity
rainfall with short duration (12 August 2002). The follow-
ing day the city was hit by a flash flood originating from
the small rivers Weißeritz and Lockwitzbach. This was fol-
lowed on 17 August by a flood wave of the river Elbe (flu-
vial flooding). Further downstream, this led to dike breaches
and caused huge inundations of the hinterland (Grünewald
et al., 2003; Thieken et al., 2022). This flood from 2002 is
just one example of how one rainfall event can be extreme
– and hence impactful – on various spatiotemporal scales.
The event contained high-intensity episodes that were ex-
treme at short durations (hours), while the cumulative event
depth was extreme at a long duration (days), too. Rainfall at
long durations increases the soil moisture content, which can
in turn amplify the impacts of pluvial and flash floods caused
by extreme precipitation at shorter durations (Schröter et al.,
2015). The compound nature of impacts following an HPE
is therefore often caused by the compound nature of the pre-
cipitation event itself.

A precipitation event involves substantial precipitation ac-
tivity that displays a certain level of temporal and spatial
coherence. Traditionally, the definition of precipitation ex-
tremeness is based on the occurrence probability (or return
period) at a specific point (e.g., a rain gauge) and a specific
duration. However, point-based measures do not account for
the area affected by extreme precipitation, which is a fun-
damental property: hydrologically, the affected area controls
the scale at which runoff can concentrate within a network of
streams and rivers, which again influences the type of impact.
At the same time, and more intuitively, it describes the area
in which certain local impacts such as pluvial flooding can
occur. We often implicitly assume that high-intensity rainfall
at short durations affects small areas, while extreme rainfall
at long durations comes with large affected areas (Lengfeld
et al., 2021a; Orlanski, 1975). However, this implicit assump-
tion might hide fundamental properties that could define the
impact relevance of an event and could be replaced by ex-
plicitly accounting for the affected area at various durations.

Müller and Kaspar (2014) addressed exactly that gap.
They quantified, for a fixed spatial domain and a fixed
time window, the extremeness of an event at different spa-
tial and temporal scales, and they suggested the “weather
extremity index” (WEI) that corresponds to the maximum
value of extremeness over all considered spatial and tem-
poral scales. The WEI was used for detecting and ranking
HPEs (Gvoždíková et al., 2019; Minářová et al., 2018) and
was adopted by Germany’s national meteorological service
(Deutscher Wetterdienst; DWD hereafter) to evaluate HPEs
for the event catalog called CatRaRE (CATalogue of Radar-
based heavy Rainfall Events; Lengfeld et al., 2021a). An-
other approach that takes into account the spatiotemporal ex-
tremeness of precipitation events was suggested by Ramos
et al. (2017). In their study they considered the affected area
by accumulating grid cells with precipitation anomalies over
each timescale and ranked past HPEs for each duration for
the Iberian Peninsula (Ramos et al., 2017). A similar study
was conducted for the Indian western Himalayas (Raj et al.,
2021). Looking at different durations independently, Ramos
et al. (2017) and Raj et al. (2021) observed that the same
event can be extreme at different durations, which could be
considered a property of a compound event. Reducing the
extremeness of one event to only the scale of maximum
extremeness could hence conceal how extremeness extends
across temporal or spatial scales or, in other words, to what
degree the event was “extreme across scales”. Concentrating
only on the duration and extent to which an HPE showed its
maximum extremeness might be valid for some application
contexts, but for others it is important to quantify how much
the extremeness extended across scales. This might not only
apply to the causation of impacts such as floods and land-
slides, but also to adequate disaster response: a severe lo-
cal impact attracts disaster response resources from a certain
radius, depending on severity. If an event is extreme across
scales, these radii might overlap in a way that multiple local
events draw required resources away from each other.

In this study, we therefore suggest a simple but important
extension (or complement) of the WEI suggested by Müller
and Kaspar (2014), and we demonstrate that this “cross-scale
index” is able to shed new light on the compound proper-
ties of extreme precipitation. To that end, we will compare
the original WEI to the proposed cross-scale index for a set
of 100 precipitation events selected from the CatRaRE pub-
lished by the DWD (Lengfeld et al., 2021a). In addition, we
analyzed the event in July 2021 in western Germany in order
to put its extremeness into context.

The analysis is based on a gauge-adjusted, radar-based
precipitation product which provides 20 years of quality-
controlled hourly rainfall depths (from 2001 to 2020) on a
1 km grid across Germany (the RADKLIM dataset, Win-
terrath et al., 2018b). Hence, this study also addresses the
methodological challenges and opportunities that arise from
the use of such a dataset with regard to the estimation of
extreme value distributions at individual grid points. More
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specifically, the use of the RADKLIM dataset constitutes an
inherent trade-off: as opposed to sparse rain gauge data, it
provides high spatial resolution, coverage, and representa-
tiveness, yet the length of the time series (20 years) intro-
duces uncertainties as to the estimation of precipitation lev-
els at long return periods. We hence explore options for a
robust estimation of GEV (generalized extreme value distri-
bution) parameters on a per-pixel basis, including the region-
of-interest method (Burn, 1990) and the duration-dependent
GEV parameter estimation (Koutsoyiannis et al., 1998; Ul-
rich et al., 2020; Fauer et al., 2021). We would like to em-
phasize, though, that the present study is about the concept
of a cross-scale extremity index; spatially distributed val-
ues of return periods are required to obtain the index, but
other sources or methods to obtain the required return peri-
ods could be used.

In Sect. 2 of this paper, we will briefly introduce the two
datasets, RADKLIM and CatRaRE. Section 3 will outline
the methodological details, including the estimation of GEV
parameters as well as the computation of the original WEI
and the suggested cross-scale extension. Section 4 presents
the results of our analysis: we demonstrate the effect of the
proposed index on the ranking of precipitation events with
regard to extremeness and highlight the properties of the new
index for two case studies.

2 Data

2.1 Precipitation data

For this study, we use the RADKLIM_RW_2017.002 dataset
by the DWD (Winterrath et al., 2018b). Since 2001, the DWD
has been operating a network of C-band weather radars (17
radars as of today). The product chain to the hourly precipi-
tation estimate is referred to as RADOLAN (RADar OnLine
ANeichung, see Winterrath et al., 2012) and includes com-
prehensive steps of quality control and corrections, including
the final step of adjustment by rain gauges. The DWD devel-
oped RADKLIM with the intent to enable radar-based clima-
tological research, especially heavy rainfall analysis (Krek-
low et al., 2019; Winterrath et al., 2018a). Therefore, the data
from 2001 to 2020 were reanalyzed by using consistent state-
of-the-art algorithms as well as an extended set of rain gauge
observations for the adjustment step. It was shown that this
procedure minimizes the occurrence of artifacts (Lengfeld
et al., 2019), making RADKLIM a promising dataset for
climatological applications (Pöschmann et al., 2021). The
resulting dataset is a Germany-wide precipitation field of
hourly precipitation sums at an extent of 1100× 900 km and
at a resolution of 1× 1 km that is available on the DWD open
data server (Winterrath et al., 2018b). To compile the radar
datasets we used the Python package “radolan_to_netcdf”
(Chwala, 2021). Parts in the very north, east, and south of
Germany were only covered for a few years. Otherwise, the

data coverage is good over Germany with missing hours of
less than 10 % in most areas (Lengfeld et al., 2019). As the
event in July 2021 was not yet included in the latest RAD-
KLIM reanalysis, we used the operational RADOLAN prod-
uct instead for this one event (Winterrath et al., 2018b). The
hourly dataset was accumulated to a set of durations. We
chose commonly used duration levels, most of which are also
used by the DWD, that represent intense precipitation with
short durations as well as moderate to intense long-lasting
precipitation episodes (Fauer et al., 2021; Lengfeld et al.,
2021a):

d ∈ {01h,02h,04h,06h,12h,24h,48h,72h}

d = duration. (1)

2.2 CatRaRE

The DWD extracted more than 20 000 HPEs with durations
between 1 h and 72 h from 20 years of radar data (RAD-
KLIM) in Germany. Each HPE is listed with parameters such
as date, time, duration, mean and maximum precipitation,
severity indices, and geographical and demographical infor-
mation. There are two versions of the catalog that use dif-
ferent thresholds (exceedance of warning level three for se-
vere precipitation by the DWD and the exceedance of a re-
turn period of 5 years). The catalog is updated every year
and is openly available (Lengfeld et al., 2021b). The WEI
was used to determine the most extreme duration level of an
event and is one of the attributes listed in CatRaRE. For this
study, we used the CatRaRE version that is based on the ex-
ceedance of warning level three (25 mm in 1 h or 35 mm in
6 h; CatRaRE_2001_2020_W3_Eta_v2021_01) as an objec-
tive basis to select the 100 most extreme precipitation events
in Germany between 2001 and 2020. Nine HPEs will be
specifically discussed in this study and are hence detailed in
Table 1.

3 Methods

In this study we evaluate HPEs based on the WEI by Müller
and Kaspar (2014) and extend this index to represent ex-
tremeness across spatiotemporal scales. We will refer to this
as the cross-scale weather extremity index, xWEI. As both
indices are based on the calculation of return periods and
therefore rely on extreme value statistics, we will first de-
scribe the three different methods we used to derive the pa-
rameters for the GEV distribution and then outline the calcu-
lation of WEI and xWEI. The process is as follows.

1. Calculate the parameters of the GEV distribution for
each pixel in the RADKLIM_RW_2017.002 dataset
with different methods (cell-wise GEV, region of inter-
est, duration-dependent GEV distribution).

2. Evaluate 101 selected HPEs using the WEI and xWEI
based on each method of GEV parameter estimation.
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Table 1. Events used for case studies. The short name was constructed from an acronym that specifies the region in which the event occurred
(mostly the federal state), the month, and the year.

Short name Region CatRaRE ID Start End

BE/Jun2017 Berlin 17 695 29 Jun 2017, 10:50 30 Jun 2017, 10:50
BW/May2016 Baden Württemberg 16 058 29 May 2016, 12:50 30 May 2016, 06:50
LS/Jul2002 Lower Saxony 1239 17 Jul 2002, 01:50 19 Jul 2002 01:50
LS/Jul2017 Lower Saxony 17 961 24 Jul 2017, 07:50 26 Jul 2017, 07:50
NW/Jul2014 North Rhine-Westphalia 14 213 28 July 2014, 13:50 28 Jul 2014, 22:50
SL/May2018 Saarland 19 168 30 May 2018, 19:50 01 Jun 2018, 19:50
SN/Aug2002 Saxony 1798 12 Aug 2002, 02:50 13 Aug 2002, 02:50
SN/May2018 Saxony 12 316 30 May 2013, 15:50 02 Jun 2013, 15:50
WG/Jul2021 Western Germany – 12 Jul 2021, 00:50 17 Jul 2021, 00:50

3. Select events for case studies based on ranking results.

3.1 Calculation of return periods

WEI and xWEI require return periods for each pixel and each
duration in the spatial domain. We estimated return periods
for each pixel of the RADOLAN grid using the GEV distri-
bution, which was found to be suitable for modeling precip-
itation extremes (Fowler and Kilsby, 2003) and which was
used in previous studies that applied the WEI (Gvoždíková
et al., 2019; Minářová et al., 2018; Müller and Kaspar, 2014).
While Müller and Kaspar (2014) proposed an interpolation
of return periods derived from station data to a grid, we in-
stead use gridded precipitation data and perform cell-wise
extreme value statistics to derive return periods. This way
we avoid the uncertain interpolation, yet the time series used
for estimating the GEV parameters are comparatively short
(20 years). To address this issue, we compared different
methods that help improve the robustness of the parameter
estimation, all of which are based on the annual maximum
values for each duration and each grid cell.

1. As a reference method, we fitted the GEV distribution
to the series of annual maxima for each cell and each
duration with the R package “extRemes” (Gilleland and
Katz, 2016).

2. Region of interest (ROI): we included information from
neighboring cells to make the GEV parameter esti-
mation more robust towards small-scale variability in
the RADKLIM_RW_2017.002 dataset. The series of
annual maxima from the pixels in a 19× 19 km box
around the pixel of interest are weighted by distance to
the center and are included in the estimation of the GEV
parameters for this pixel. This method, described in de-
tail in Burn (1990), was also used by Müller and Kaspar
(2014).

3. Alternatively, we took advantage of the parameter de-
pendence between different durations in order to make
the parameter estimation more robust (Koutsoyiannis

et al., 1998). While the reference approach fits the GEV
parameters independently for each duration, this ap-
proach introduces a duration-dependent scale and loca-
tion parameter in the GEV distribution, which is then es-
timated simultaneously for all durations. This approach
is considered consistent because it prevents the crossing
of quantiles (Fauer et al., 2021), but it is also compu-
tationally more efficient. To fit the parameters for this
duration-dependent GEV (dGEV) distribution for each
pixel we used the R package “IDF” by Ulrich et al.
(2019).

3.2 Calculation of WEI

The WEI is based on the assumption that increased extreme-
ness of an event is either due to an increase in intensity or
an increase in spatial extent. Hence, the WEI is a measure
of rarity and spatial extent (Müller and Kaspar, 2014). For a
specific duration and a fixed spatial domain, we compute an
event’s return period for each pixel and sort the pixels in de-
scending order based on their return period. The maximum
considered return period was set to 1000 years following the
example of Müller and Kaspar (2014). We will refer to the
following exemplary event, shown in Fig. 1, which lasts 4 h
and for which the EtA is calculated for four durations t1, ...,4.
This means that the EtA is calculated for every hour and ev-
ery duration: starting with the pixel that has the highest re-
turn period, we then successively add one more pixel with
the next lower return period. For each set of pixels that re-
sults from this incremental process, we compute a measure
of extremeness (Fig. 1). This measure, EtA, quantifies the
intensity (the average of the return periods) at a specific spa-
tial extent (the number and size of pixels). More specifically,
the extremeness EtA for a duration t of a set of n pixels is
the product of the mean of the common logarithm of the
return periods pt,i and a weighted measure of the area (for
which Müller and Kaspar suggested the radius R of a circle
whose area A is equal to the pixel group area). The radius
R therefore represents a weighting function of the area. We
will discuss the choice of this weighting function further in
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Sect. 4.3.1. The highest EtA value found in this procedure is
chosen to define the extremeness of the event (WEI).

EtA =

∑n
i=1 ln(pt,i)

n
·

√
A
√
π
[ln(year)km] (2)

As the pixels are sorted, the average of the return periods
continuously decreases with each pixel that is added, while
the area A continuously increases. Hence, the extremeness
EtA increases as long as cells with high return periods are ac-
cumulated. At some point, when more and more pixels with
lower return periods are added, the expanding area does not
compensate for the decrease in the mean return period, thus
leading to a decrease in EtA. EtA curves are then calculated
for each duration t of interest (Eq. 2) and for each hour (mov-
ing window for durations longer than 1 h) of the event. The
WEI is the maximum EtA value found during this procedure.
This way the most extreme duration and the spatial extent of
an event can be estimated (Fig. 1).

3.3 The cross-scale weather extremity index

The calculation of the proposed cross-scale index, xWEI,
directly builds on the procedure to compute the WEI (see
Sect. 3.2). We just interpret the EtA curves differently. Each
EtA curve displays how the extremeness of an event extends
across spatial scales. Hence, such a curve contains more in-
formation than just the maximum value (Fig. 2a): the distri-
bution of EtA across scales. The curve informs us whether
EtA is high across a larger range of spatial scales (i.e., areas)
or whether high values are rather limited to a specific spatial
scale. Consequently, the extremeness of an event across spa-
tial scales could be described by the integral of the EtA curve
(Fig. 2b). Analogously, we can also integrate EtA across du-
rations in order to measure by how much the extremeness
extends across temporal scales. If the EtA curves are rep-
resented by a two-dimensional grid along the dimensions
area [km2] and duration [h], the EtA curves define a surface
that illustrates the extremeness of an event across spatial and
temporal scales (Fig. 2c). Even though it is computationally
more demanding, we chose to interpolate a surface instead of
just summing up the integrals of the individual curves (Fig. 1)
to ensure that we seamlessly represent all possible durations
and to avoid overemphasizing the arbitrary choice of specific
duration levels. Furthermore, we consider the volume under
the surface to be a more intuitive representation of the index.
To ensure that we do not overemphasize long durations in
the integral, we used the natural logarithm of the duration.
We propose that the volume underneath this surface repre-
sents the cross-scale extremeness of an HPE and can be used
as a corresponding index, which we refer to as xWEI. For-
mally, xWEI corresponds to the double integral of EtA over
ln(t) and A.

xWEI=
∫

ln(t)

∫
A

EtA dAd(ln(t)) (3)

3.4 Choosing the size of the spatial domain

WEI and xWEI can be computed for arbitrarily defined spa-
tial domains. The selection of the domain is a subjective de-
cision to be made by the user and could have an essential
impact on the resulting values of WEI and xWEI. Müller and
Kaspar (2014) selected the whole country of the Czech Re-
public as a spatial domain. Lengfeld et al. (2021a) computed
the WEI for groups of contiguous grid cells for which a spe-
cific precipitation threshold was exceeded.

In general, WEI and xWEI of different events are com-
parable only if the size and shape of the spatial domain
are the same across events. The location of the spatial do-
main can be fixed (e.g., in the case of a country or a river
basin), but it could also vary in space in the case that we
want to compare events that took place in different parts of
a larger region (e.g., a large country, continent, or model do-
main). The latter applies to our study in which we compare
events that occurred in different parts of Germany. As we
are most interested in the cross-scale extremeness of precip-
itation events in relation to compound inland flooding and
disaster response, we did not compute WEI and xWEI for
the entire spatial RADKLIM domain of 1100× 900 km. In-
stead, we used the centroid of each event selected from the
CatRaRE (see Sect. 2.2) and then chose a 200× 200 km win-
dow around that centroid as the spatial domain to compute
WEI and xWEI. While this is an arbitrary choice, we con-
sidered this size to be an adequate compromise: it is large
enough to capture properties that are relevant for the gener-
ation of large river floods but small enough so that small-
scale intense precipitation features (relevant for pluvial and
flash floods) are not outweighed by large-scale features. It
is possible that events are not fully captured by this window
shape and size, but to keep events comparable we decided
to stick to a uniform window for all events. Events which are
located close to the national border of Germany contain more
missing rainfall values, which adds uncertainty to the evalu-
ation of these events. In some cases the centroid of the event
was outside the national border of Germany. In this case we
moved the centroid to the closest pixel with higher rainfall
and thereby shifted the spatial domain of the event slightly
inside the borders of Germany. Potential implications of such
choices are discussed in Sect. 4.3.2.

3.5 Ranking of extreme events

In order to demonstrate the informational value and the be-
havior of the cross-scale index, xWEI, in comparison to the
established WEI, we analyzed the 100 HPEs with the highest
WEI in the CatRaRE. The event WG/Jul2021, which caused
the floods in western Germany in July 2021, was added to
this list although it was not yet included in the catalog, lead-
ing to a total of 101 analyzed events. We only used the
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Figure 1. Explanation of the WEI. (a) Rasters with rainfall intensities at duration ti for a spatial domain (red) that captures an HPE for
each hour (ti,1–ti,4) of the event. (b) For each pixel and for each time step (j = 1, . . .,4), the return period is calculated. (c) The pixels are
sorted by return period in descending order. (d) For each group of ranked pixels, EtA is calculated. The steps in (b) to (d) are repeated for
all durations ti . In this exemplary case with four time steps and four durations (i = 1, . . .,4), this results in 16 EtA curves. Panel (d) shows
only the EtA curve with the highest maxima for each duration t1, ...,4. The maximum of all the resulting curves is the WEI (49 [ln(year)km],
encircled in red). The maximum was achieved at t3 at a spatial extent of 607 km2.

CatRaRE to select events, but we computed both WEI and
xWEI uniformly based on our above definition of the spatial
domain of analysis. Both WEI and xWEI were then used to
rank the events and to compare both rankings. Furthermore,
we investigated how the choice of the GEV parameter esti-
mation method (Sect. 3.1) affected the computation of WEI
and xWEI and hence the ranking results.

4 Results and discussion

4.1 Effects of GEV parameter estimation method,
ranking of events

We calculated the WEI and xWEI for 101 HPEs. Figure 3
shows the corresponding rankings with regard to both in-
dices. Before we discuss whether and how these rankings
depend on the choice of one of the two indices, we would
like to briefly evaluate the sensitivity of the indices to the
method to estimate the GEV parameters. The calculation of
WEI and xWEI is based on calculating the return periods
for each duration and each grid cell which is affected by the
event. We used three different methods to derive the return
periods (cell-wise fitting of GEV distribution, region of in-

terest, and duration-dependent GEV distribution). Figure 3
shows the xWEI results for each estimation method and each
of the 101 evaluated HPEs. Generally, all three methods lead
to very similar results for WEI and xWEI. The xWEI and
WEI values achieved with the cell-wise GEV method devi-
ate most from the results of the other two methods, while the
results of the ROI method and the dGEV are more similar.
This is presumably caused by the fact that the GEV method
is less robust, as parameters are estimated separately for each
grid cell and duration. This could affect the ranking, espe-
cially for the lower ranks, which is why we discarded this
method. The differences between ROI and dGEV are less
pronounced. However, we chose the results obtained from
the dGEV method for all of the following analysis. This way,
we avoid inconsistencies across durations (such as quantile
crossing, see Koutsoyiannis et al., 1998), which is an im-
portant feature for the computation of WEI and xWEI (both
indices put return periods from different durations into one
context).

With regard to the ranking of events, the WG/Jul2021
event stands out as the most extreme event for both WEI
and xWEI. Uncertainty regarding this result arises from the
fact that the year 2021 was not included in the calculation
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Figure 2. (a) EtA curves for different durations plotted along the
spatial dimension (area), with the WEI marked by a red circle.
(b) The same EtA curves as in (a), but aligned along the tempo-
ral dimension (duration). (c) EtA values from (b) interpolated on a
regular grid of logarithmic values of durations and area. All plots
display the same extreme precipitation event (NW/Jul2014).

of the GEV parameters because the reprocessed RADOLAN
data were not yet available (see Sect. 2.1). For this reason,
it is possible that the extremeness of the event was overes-
timated. Furthermore, the events SN/Aug2002, BE/Jun2017,
LS/Jul2017, and LS/Jul2002 are ranked among the six most
extreme events for both the WEI and xWEI. Interestingly, the
LS/Jul2017 (WEI rank: 2, xWEI rank: 6) event outranks the
famous SN/Aug2002 event that flooded the city of Dresden
(WEI rank: 3, xWEI rank: 2) when ranked by the WEI. How-
ever, we need to be aware that the SN/Aug2002 event might
not have been captured in its full extent by the RADKLIM
data as it also affected significant parts of the Czech Repub-
lic (Müller et al., 2015). Figure 4 shows four of the highest-
ranking events with regard to xWEI. The surfaces illustrate
the cross-scale extremeness of these events, but they also il-
lustrate, in comparison, the unique level of extremeness of
the WG/Jul2021 event.

In this study, however, we are specifically interested in
events for which the rank substantially differs between WEI
and xWEI. The BW/May2016 event, for instance, caused a
series of devastating flash floods in southwestern Germany,
including the notorious flash flood in the village of Brauns-
bach (Bronstert et al., 2018): this event is ranked at position
19 using the WEI but among the top five events based on
the xWEI. Figure 5a provides a more systematic represen-
tation of how the ranks change subject to the chosen index.
The mean absolute deviation between the two rankings is 18
ranks. For 60 events, the ranks based on WEI and xWEI de-
viate by 10 ranks or more, for 39 events by 20 ranks or more,
and for 10 events by 40 ranks or more; the maximum differ-
ence is 65 ranks (SN/May2013). To better understand these
differences, we selected two case studies: for case study 1,
the rank based on xWEI is lower than the respective WEI
rank by 47 points (event SL/May2018, see Sect. 4.2.1); for
case study 2, it is higher by 65 points (event SN/May2013,
see Sect. 4.2.2).

Surely, we need to be aware that a small change in the
index value could cause a notable change in rank, specifically
beyond the “top 10” ranks with the curves in Fig. 3 being less
steep. Hence, the rankings and their comparison, are, to some
extent, sensitive to random effects. Still, Fig. 5b confirms that
the scatter which we observe in Fig. 5a is not just caused by
small differences in the index values, but also that plotting
xWEI over WEI exhibits considerable scatter.

4.2 Case studies

4.2.1 Case study 1: SL/May2018

In the night from 30 May to 1 June 2018, the small towns
of Kleinblittersdorf, Bliesransbach, and St. Ingbert in the
federal state of Saarland were hit by a flash flood that also
carried a lot of sediment and debris, hence causing essen-
tial damage. The event’s rank based on WEI is 65; based on
xWEI, it is 18 – the difference in ranks is hence 47. How can
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Figure 3. (a) Ranking the 101 most extreme precipitation events according to CatRaRE based on the novel xWEI. The xWEI was calculated
with three different methods: cell-wise GEV (blue), region of interest (ROI, red), and duration-dependent GEV (dGEV, black). The ranking
was carried out based on the values obtained from the dGEV method. (b) Comparison of dGEV and ROI methods for the calculation of
xWEI. (c) Comparison of dGEV and cell-wise GEV. (d) Ranking the 101 most extreme precipitation events according to CatRaRE based on
the WEI. (e) Comparison of dGEV and ROI methods for the calculation of WEI. (f) Comparison of dGEV and cell-wise GEV methods for
the calculation of WEI.

we explain such a difference? The plot of the EtA surface
(Fig. 6) reveals that this HPE was extreme across temporal
scales. For all durations, the maximum EtA values were high
(Table 2) and even exhibited two local maxima, one around
4–6 h and one around 48 h duration with the maximum EtA
at a spatial extent of 5377 km2. In total, that leads to a large
volume under the surface spanned by the EtA curves (Fig. 6).
The resulting xWEI is 1745 [–]. The fact that this event was

obviously not only extreme at a duration of around 4 h is not
captured by the WEI. Lengfeld et al. (2021a) mention an-
other event in a case study that caused considerable damage
in the city of Münster (NW/Jul2014, Fig. 1), which was eval-
uated with a surprisingly low WEI in CatRaRE. Although
this event is not included in the original top 101 HPEs in
CatRaRE, we re-evaluated this event with WEI and xWEI.
Due to the extremeness on various scales, the xWEI would
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Figure 4. Comparison of xWEI for four high-ranking HPEs. WG/Jul2021 (a), SN/Aug2002 (b), BE/Jun2017 (c), BW/May2016 (d). The red
lines indicate the spatial and temporal scale at which the event reached its maximum extremeness.

have ranked this event in the top 100 HPEs of CatRaRE
(rank 76) and evaluated this event as more extreme than the
WEI (xWEI: 1017, WEI: 68 [ln(year)km]). Because our WEI
value for this event would have also ranked it in the top
100 of CatRaRE (rank 96), we have to consider that our ap-
proach regarding the selection of the spatial domain of an
event differs from the method chosen in CatRaRE (connected
cells), which also affects the evaluation of the extremeness of
events.

4.2.2 Case study 2: SN/May2013

The second case study shows different cross-scale charac-
teristics compared to the first. This event lasted from the
30 May to 2 June 2013, with its center in Steinberg/Sax-
ony, and shows extreme precipitation at rather longer dura-
tions, with the maximum EtA value observed at the longest
analyzed duration of 72 h (Table 2 and Fig. 7) and an area
of 18 211 km2. The WEI rank for this event is 14, while
the xWEI rank is 79. During this event, extreme precipita-
tion on sub-daily timescales is less pronounced. Compared
to the SL/May2018 event (case study 1), the maximum EtA

Table 2. Maximum EtA values for all considered durations. The
WEI of this event (the maximum EtA value regarding all durations)
is in bold.

Duration Max. EtA Max. EtA
[h] SL/May2018 SN/May2013

01 58 11
02 80 10
04 112 18
06 112 27
12 90 49
24 68 79
48 94 133
72 72 190

values for the durations 1–6 h are relatively low; the xWEI
for this event is 993 [–]. The maximum EtA at 72 h is rep-
resented by WEI (190 [ln(year)km]). Based on WEI, this
event ranks higher than the BW/May2016 event (WEI: 176
[ln(year)km]) and the SL/May2018 event (case study 1, WEI:
112 [ln(year)km]). But the xWEI for these events tells a dif-
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Figure 5. (a) The xWEI ranks plotted over WEI ranks. Please note that the values on both axes are decreasing in order to enhance the
comparability to panel (b), which shows xWEI values plotted over WEI values.

ferent story: the xWEI for the BW/May2016 event (2326 [–])
is 2.3 times higher and the WEI for the SL/May2018 event
(WEI: 1745 [–]) is 1.7 times higher than the WEI for the
SN/May2013 event (WEI: 993 [–]). While the SN/May2013
event (case study 2) did not show extremeness across tempo-
ral scales, the BW/May2016 event was extreme on all tem-
poral scales with EtA maxima ranging from 60 (1 h duration)
to 176 (12 h). Similarly, but less pronounced, this can be ob-
served for the SL/May2018 event.

4.3 Required parameter choices for the computation of
EtA, WEI, and xWEI

In this section, we will discuss three parameters that affect
the computation of EtA, WEI, and xWEI and which need
to be set by users interested in quantifying the cross-scale
extremity of precipitation events. These parameters are the
weight of the area in the computation of EtA, the choice of

the spatial domain of analysis, and the choice of duration lev-
els.

4.3.1 Weighting the spatial extent of an event

According to Müller and Kaspar (2014), the WEI is the prod-
uct of a measure of rarity (mean return periods) and a mea-
sure of the spatial extent (or area). To avoid the EtA curves
continuously growing with increasing area A, the authors
suggested representing the spatial extent by the radius

√
A
π

of an imaginary circle with area A (see Eq. 2). While this is
an intuitive and illustrative way to reduce the weight of the
area, we need to be aware that the decision to weight the area
based on

√
A
π

is arbitrary. Weighting the spatial extent differ-
ently will change the resulting values of WEI and xWEI and
hence the corresponding rankings. This arbitrariness should,
however, be seen as an opportunity to express preferences
with regard to the spatial scale of interest: if we are more
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Figure 6. Kleinblittersdorf, Saarland, May 2018 (SL/May2018).
Surface defined by EtA curves. The red lines indicate the spatial
and temporal scale at which the event reached its maximum ex-
tremeness.

Figure 7. Steinberg, Saxony, May 2013 (SN/May2013). Surface de-
fined by EtA curves. The red lines indicate the spatial and temporal
scale at which the event reached its maximum extremeness.

interested in local impacts such as flash floods, it might be
informative to put less weight on the size of the affected area
and thus more weight on cells with high-intensity rainfall.
This could, for example, be achieved by replacing A with
ln(A) when calculating EtA instead of the radius R.

Figure 8 demonstrates how such a choice affects the re-
sulting ranks. While the results are quite similar for the top
10 ranks, we can observe deviations of 26 ranks for the xWEI
and up to 59 ranks for the WEI (not shown).

4.3.2 Setting the spatial domain of analysis

In our analysis, we used a square of 200× 200 km around
the event centroid in order to define the spatial domain for
which the EtA curves as well as WEI and xWEI were com-
puted for each event. Generally, we observed that most high-
ranking HPEs affected a large spatial domain and that, for
many events, EtA does converge towards zero for very large

Figure 8. The xWEIs compared with each other for two differ-
ent methods of weighting the area for the calculation of EtA. The
xWEI rank describes the weighting proposed by Müller and Kaspar
(2014). xWEImod was calculated by using the natural logarithm of
the area when calculating EtA.

spatial extents (see, e.g., Fig. 4 for the most extreme events).
In Sect. 4.3.1, we already discussed the role of weighting
the spatial extent of an event when computing EtA. Decreas-
ing the weight of the spatial extent, e.g., by using ln(A) in-
stead of A, will probably make the falling limbs of the EtA
curves steeper and enhance the convergence of EtA to val-
ues of zero with increasing spatial extent. For many events,
though, the value of xWEI will grow further if we increase
the spatial domain of analysis. Furthermore, the square shape
of the spatial domain might not be an optimal choice to ap-
preciate the extremity of elongated precipitation structures as
they, e.g., occur along frontal lines. The seemingly arbitrary
choice of the spatial domain of analysis could once more
be considered an opportunity to consider user preferences:
while in the present study we followed the aim of detect-
ing and ranking events across the entire RADKLIM domain,
the definition of the spatial domain might be more evident
in other contexts. For example, the choice might be a river
basin (see, e.g., Gvoždíková et al., 2019) or an administrative
unit within which resources for disaster response are man-
aged. Once fixed, the spatial domain provides a valid frame
to compare the cross-scale extremeness of different events up
to a maximum spatial scale of interest. In the context of the
spatial domain, we also need to be aware that the resulting in-
dices might not represent the full level of extremeness in the
case that the spatial domain of analysis is partly outside the
spatial domain for which observations are available. For ex-
ample, the WG/Jul2021 event extended considerably towards
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Belgium so that parts of the event were not captured by the
radar composite (RADKLIM) of the DWD. The same applies
to the SN/Aug2002 event, which extended far into the Czech
Republic. In fact, we need to acknowledge that the extreme-
ness of events close to the edges of the dataset will, on av-
erage, be systematically underestimated. We still decided for
this study not to discard events that occurred close to the Ger-
man borders – otherwise, some of the most important events
would be entirely missing. Future research, however, could
attempt to quantify the systematic errors that are introduced
by edge effects.

4.3.3 Selection and weighting of duration levels

Similar to the above issues of weighting the spatial extent
and setting the spatial domain of analysis, the choice of the
maximum duration as well as the choice and weighting of
duration levels up to this maximum are subject to arbitrari-
ness, or, in other words, to user preferences. This issue is
more delicate for the computation of xWEI than for the com-
putation of WEI: EtA is a function of spatial extent and dura-
tion, and as long as the maximum analyzed duration is large
enough to detect a local maximum of EtA, the computation
of WEI is not a problem. The value of xWEI, however, will
not converge but grow further with increasing duration lev-
els for as long as EtA does not converge to zero. And even if
we chose the maximum duration level large enough for EtA
to converge, we need to decide how to integrate EtA over
different duration levels in order to compute xWEI. Imagine
we analyzed all duration levels from 1 to 72 h with an in-
crement of 1 h: in that case, we would have 72 nodes along
the duration dimension, only 24 of which would represent
extremeness at sub-daily timescales. This imbalance would
overemphasize EtA values at long durations in the resulting
estimate of xWEI. In the present study, we decided to use
72 h as the maximum duration and to integrate EtA along the
natural logarithm of duration levels (see Sect. 3.3). That way,
the EtA curves for all durations are almost evenly spaced on
the two-dimensional grid. Still, users might prefer a differ-
ent maximum duration and also a different conversion of du-
ration values for the step of integration (which effectively
corresponds to putting different weights to different duration
levels).

5 Conclusions and outlook

The WEI as suggested by Müller and Kaspar (2014) repre-
sents the extremeness of an event at the spatial and temporal
scale at which the extremeness reaches its maximum. While
such a maximum typically exists, the extremeness of an event
can extend across multiple scales – an important property
that is not represented by the original WEI. The proposed
cross-scale index, xWEI, is able to capture cross-scale ex-
tremeness in space and time. Accordingly, HPEs might be

ranked very differently depending on which index, WEI or
xWEI, is used. While we do not recommend replacing the
original WEI, we are confident that the novel xWEI can pro-
vide valuable complementary information with regard to po-
tential impacts of HPEs. As the computational steps towards
the establishment of the underlying EtA curves are the same
for the WEI and xWEI, the added cost of retrieving xWEI
on top of WEI is negligible compared to the informational
benefit.

In our study, we demonstrated the application and be-
havior of the xWEI in comparison to the WEI for a set of
101 extreme precipitation events from 2001 to 2021 based
on hourly radar-based precipitation composite data from the
DWD (RADKLIM, RADOLAN, Sect. 4.1). We found that,
based on current data, the disastrous July 2021 precipita-
tion event in western Germany stood out with regard to both
WEI and xWEI. This similarly applies to other high-ranking
events: in our analysis, the events BE/Jun2017, SN/Aug2002,
and LS/Jul2002 ranked among the top five for both WEI
and xWEI. Other events were rated as considerably more
extreme based on the xWEI. Several among these events
have become infamous for causing essential damage (e.g.,
BW/May2016, SL/May2018, and NW/Jul2014 events). As
described by Thieken et al. (2022), such damage is often
caused by compound inland floods. Once the reprocessed
RADOLAN data for the year 2021 are available, the year
2021 should be included in the extreme value statistics to
ensure a consistent calculation for all events and for better
comparability regarding the WG/Jul2021 event. Generally,
we could show that the xWEI contains important informa-
tion about the cross-scale extremeness of HPEs and could
thus be used as complementary to the WEI, which gives in-
formation only about the maximum extent and the most ex-
treme duration. The xWEI could be a suitable instrument to
describe the potential of an HPE to cause impacts, such as
floods, and future studies should investigate this potential by
systematically linking the WEI and xWEI to observed im-
pacts and damage inventories. To extend the limited scope of
this study, future applications should aim at a comprehensive
detection and ranking of extreme events from the RADKLIM
dataset or other similar datasets. That way, we might possi-
bly find events with a very high xWEI which were not yet
represented in the 100 events selected for the present study
(based on the CatRaRE). The method as described in this
study is applicable to any multi-annual gridded time series
of precipitation with high resolution in space and time, in-
cluding radar data and regional climate models. Apart from
the need to explore the informational value of this novel in-
dex in more comprehensive application studies, prospective
research should further scrutinize and develop the theoreti-
cal foundations of both WEI and xWEI, as well as explore
the role of subjective choices in the computation of these in-
dices. That particularly applies to the following.
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– The definition of the spatial domain. In this study, the
spatial domain was a window of 200× 200 km, the
center of which varied across the RADKLIM domain.
Other window sizes could be used depending on user
preferences (see Sects. 3.4 and 4.3.2). In general, the
spatial domain should be adjusted to the underlying
study objectives: e.g., users could choose the fixed area
of a specific river catchment or an administrative unit
that accounts for specific tasks of disaster response.

– The minimum and maximum duration. In the present
study, the maximum duration was set to 72 h accord-
ing to the standards for extreme value statistics estab-
lished at the DWD. In analogy to the size of the spatial
domain reflecting the maximum spatial scale of inter-
est, the maximum duration level reflects the maximum
temporal scale of interest and could be set accordingly
based on user preferences. The minimum duration level
was set to 1 h but could be reduced, at least with the
RADKLIM data, to 5 min. Accounting for sub-hourly
durations might shed new light on processes related to
pluvial and flash floods, as well as to erosion and land-
slides.

– Representing the spatial extent for computing. EtA rep-
resents the product of rarity and spatial extent. Müller
and Kaspar (2014) represented the spatial extent by the
radius of a circle with an equivalent area. While this is
illustrative, other transformations of the area are con-
ceivable. For example, the natural logarithm of the area
would put more emphasis on smaller spatial extents and
cause the EtA curves to drop at a higher rate with in-
creasing spatial extents (see Sect. 4.3.1).

– Weighting spatial extent and duration. This computa-
tional step is specific to xWEI; for the computation of
WEI, we only need to retrieve the maximum value of
EtA across duration and spatial extent. For xWEI, how-
ever, we need to compute the integral of EtA along two
dimensions. We noticed that high values of EtA often
come along with long durations and large extents. Us-
ing different transformations along these two dimen-
sions could put more emphasis on smaller scales (see
Sect. 4.3.3 and 4.3.1). Furthermore, it would be more
consistent and hence preferable to use the same repre-
sentation of spatial extent (e.g., the natural logarithm)
for the computation of EtA and for the integration of
EtA.

Combining a more comprehensive retrieval and compari-
son of WEI and xWEI (from RADKLIM or other data) with
an improvement of the theoretical and computational foun-
dations of these indices might open the way to better under-
stand how the scaling properties of extreme precipitation af-
fect the interaction of processes in compound events and how
they might affect the processes of disaster risk management
across scales.
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