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Abstract: Symmetric, elegantly entangled structures are a curious mathematical construction that
has found their way into the heart of the chemistry lab and the toolbox of constructive geometry. Of
particular interest are those structures—knots, links and weavings—which are composed locally of
simple twisted strands and are globally symmetric. This paper considers the symmetric tangling of
multiple 2-periodic honeycomb networks. We do this using a constructive methodology borrowing
elements of graph theory, low-dimensional topology and geometry. The result is a wide-ranging
enumeration of symmetric tangled honeycomb networks, providing a foundation for their exploration
in both the chemistry lab and the geometers toolbox.

Keywords: tangles; knots; networks; periodic entanglement; molecular weaving; graphs

1. Introduction

The (6,3) tiling is the tiling of the plane by regular hexagons, with three hexagons
around each vertex. The vertices and edges of this tiling form a 2-periodic graph or network,
which is commonly known as the hexagonal or honeycomb network or hcb [1]. It is a motif
well recognised in many disciplines across the natural sciences. In the same way that a loop
can be knotted or linked in a multitude of different ways, graphs—and periodic graphs like
hcb—can also be entangled into a wide variety of more complicated structures. Figure 1
shows the entanglement of three hcb networks in two distinct ways.

Figure 1. Two distinct entanglements of three hcb networks. The patterns have indices (Left)
(

0.5
2

)3

and (Right)
(

0.5
4

)3
. The construction and characterisation of these entanglements come from the

gluing of 2-fold and 4-fold helices, respectively.

This example already highlights a hierarchy of structural information, which can be
made more precise through concepts from geometry and topology. When we talk about
the entanglement of a structure, we are really referring to the ambient isotopy class of the
structure, which dictates that all structures that can be transformed into one another via
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a smooth deformation of the ambient space (not allowing the entangled strands to pass
through each other) are equivalent [2]. Across literature in the sciences, this is sometimes
referred to as topology, topological isomerism [3], or a variety of other terms, but we
consider this more precisely as extrinsic topology. The two structures in Figure 1 have
different extrinsic topology, or entanglement. Embedded entanglements also have an
intrinsic topology, which refers to the graph type of the underlying structure. In the patterns
in Figure 1, both structures have the same intrinsic topology, i.e., three hcb networks.
Mathematically, intrinsic topology refers to topological equivalence under homeomorphism,
and extrinsic topology refers to topological equivalence via ambient isotopy. In addition to
these ideas, patterns can also be described through the lens of geometry, which refers to
the specific geometric arrangement. The structures in Figure 1 are symmetric, which is a
geometric property. In general, the search for optimal geometric embeddings of entangled
structures bridges the ideas of extrinsic topology and geometric embedding [4].

The term Chemical Topology was described by Wasserman in a seminal paper in
1961 [5]. It refers to the same chemical backbones being entangled in space in different ways,
so different extrinsic topology, such as two loops being linked together. The construction of
simple knots and links at the molecular scale occurred throughout the 1990s by Sauvage and
others, using a linear helicate approach [6]. When the intrinsic topology of the structure is
changed, such that the finite loop-like structure is changed to a finite network-like structure,
or a graph, a slightly more complicated structure is created. A simple example of this is the
θ-ravel theoretically described and later synthesised in a supramolecular setting [7,8]. It is
the entanglement of a θ-graph, which consists of two vertices connected by three edges,
which is non-trivial yet contains no knotted or linked cycles. Entanglement in specific
contexts also induces chirality of the structure [9,10]

If we step away from finite entanglements and look at periodic structures, the main
domain of research is in the direction of entangled periodic networks in metal-organic
frameworks and other related structures. The entanglement of these structures has been
understood through crystallography and symmetry, as well as looking for knots and links
in the smallest cycles of the networks [11–14]. Some particular entanglements of multiple
2-periodic hcb networks have been chemically synthesised and described in various con-
texts [15]. The theoretical design of entangled hcb networks has been explored from a few
different but limited perspectives, including hyperbolic tilings [16], constructions using
only straight edges [17], and other geometric techniques [18–20]. We will present here a
comprehensive enumeration of the most symmetric entanglements of hcb networks up to a
given complexity, also demonstrating with an explicit construction that these entanglements
can be constructed with an infinitely large number of components.

Our study here takes the intrinsic topology of a 2-periodic hcb network, and looks
at different entanglements (different extrinsic topology) of that network in a systemetic
way. We considered twisted helical segments of n strands arranged along the edges of an
underlying graph that carries the entanglement, in this case the 2-periodic hcb network,
where the helical motifs are joined together in a simple way. Enumeration through the
number of strands n in our helices, and their helical pitch t produces a wide variety
of entangled structures with systematically increasing complexity. This technique has
been used previously arranging helices on the edges of platonic polyhedra, giving an
enumeration of symmetric tangled platonic polyhedra [21].

The construction relies on a hierarchy of geometric structures, glued together in the
spirit of low-dimensional topology. It begins with an underlying graph, in this case the
2-periodic hcb network, but the method can be applied to any graph. This graph can be
tubified, which is akin to inflating the vertices and edges of the graph like a balloon, to
form a surface surrounding the original graph. Our entangled structure will sit as curves
on this tubified surface. In a sense, we are utilising the symbiosis of a helical twist and a
cylinder to exploit 2-dimensional surface topology for our entanglement purposes.

The initial decoration onto this tubified surface is a set of three even-stranded helices,
positioned such that their helical axes lie on the three distinct graph edges of hcb within a
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single periodic unit cell. These helices sit as non-intersecting curves on the tubified surface.
For simplicity, we dictate that all of these helices have the same number of strands; however,
the technique can be applied more generally, and will be described elsewhere. The ends of
these helical strands get connected around the 3-fold junction of the underlying graph: the
even number of strands allows this to happen seamlessly, where exactly half of the strands
will be attached to the adjacent helix on the left, and the other half of the strands to the right,
without crossing over the vertical plane into the page that runs along the original graph
edge. An illustration is given in Figure 2a. This process gives us that all “entanglement”
is restricted to the helices, and does not occur in the connections of the strands around
the junction.

We now have a decoration of the tubified surface by curves, which we can describe
with the indices t1

n
t2
n

t3
n , where the three n-fold helices twist an amount of 2πti

n , for ti ∈ Z
and n ∈ 2N. Enumeration of these woven structures is in itself an interesting problem,
and will be discussed elsewhere. These constructed curves carve the tubified surface into
multiple branched regions, where the medial axes of these regions define networks with
long entangled edges. These network-like medial axes are our entangled networks. We
only consider only alternating, non-adjacent branched regions of the surface, such that
the cycle double cover of the resulting medial axis graph is the original even-stranded curve
pattern: Choosing the “other” region of the surface will either give an equivalent pattern,
or something that is not network-like. Some illustrations are shown in Figure 2. There
are four possible locations for each vertex in these medial axis networks, in front of and
behind each of the two vertices of the underlying hcb graph. Depending on the twists, some
combination of two or four vertices in the network will be present at these branch locations.

(a) (b)

(c) (d)

Figure 2. (a) One repeat unit of the hcb network, the full network can be formed by repeating
periodically. (b) The tubified surface around the network is shown in pink. (c) Three distinct 6-helices
wind on the surface, and are connected together around the junctions of the surface, where three
strands pass to the right of the helix and three to the left (as you travel along the underlying graph
edge. (d) The blue network is constructed as the medial axis of the region on the surface defined by
the black curves.

The new network-like medial axis structure is our end result, and is composed of
n
2 -strand helices, with a twist of ti

2 , connected at degree-3 vertices. We can then also describe
this structure with indices t1

n
t2
n

t3
n , where now ti ∈ Z/2 and n ∈ N. We note that ti can also

be negative, indicating a left-handed twist of the helix, rather than the right-handed twist of
a positive ti. Where all three twists are equivalent, we can write the structure index as

( t
n
)3.



Symmetry 2022, 14, 1805 4 of 13

This general technique should give all entanglements of multiple hcb networks, pro-
vided that we enumerate through all combinations of twists and the number of strands.
Those structures with the highest symmetry will come from indices of the form

( t
n
)3, where

all twists and strand numbers are equivalent. We explore these structures here, and defer
the most complete enumeration of lower symmetry cases to be published elsewhere.

For structures
( t

n
)3, we call prime tangles those of the form:(

a
2b + 1

)3
for a ∈ Z, b ∈ N, where a and 2b + 1 are coprime,

(
a± 0.5
2b + 1

)3
, for a ∈ Z, b ∈ N, where 2a± 1 and 4b + 2 are coprime,

(
a± 0.5

2b

)3
for a ∈ Z, b ∈ N, where 2a± 1 and 4b are coprime.

These prime structures have only two of the four possible vertex positions of the
underlying graph occupied with actual vertices of the entangled networks, which allows
us to interweave a second symmetric copy of the structure to give what we call a complete
structure. For a prime structure

( t
n
)3, the related complete structure is

( 2t
2n
)3

.
A final class is then all other possible indices, including where t and n have common

factors. These give entanglements with both network-like components and long filaments
woven together. These structures are also very interesting, and will be published elsewhere.

We can consider the symmetry of these cases from multiple perspectives, including
as an in-surface orbifold ([22]) of the pattern, as a 2D orbifold, or as a 3D layer group.
From our enumeration, we get 4 distinct symmetry cases. The complete structures will
be most symmetric, having in-surface orbifold 2223, a 2D planar symmetry of 236, and a
3D layer group of p622. The prime structures all have in-surface orbifold 2233, 2D planar
symmetry of either 236 or 333, and 3D layer group of either p312, p321 or p6. These three
variants are determined by which pair of the four possible vertices are occupied. These
three layer groups coincide with the three index forms of the prime structures listed above.
The first index form will have layer group p6, the second p321, and the third p312. An

example structure is shown in Figure 3, which shows the pattern with index
(

1
3

)3
, which

has in-surface orbifold 2233, 2D planar symmetry 236 and layer group p6.

Figure 3. (Left) The curved lines of the
(

1
3

)3
structure as they wind around the tubified surface

of the underlying hcb network. (Right) When this motif is repeated in a periodic way, the global
arrangement is the entanglement of seven hcb networks, each with a different colour. The pattern
has in-surface orbifold 2233, 2D planar symmetry 236 and layer group p6.
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For the prime and complete entanglements, the indices ( t
n

3) provide a convenient route
to compute the number of components in the resulting structure directly from the indices.
To do so, we begin with a simple string of numbers (not necessarily integers) given by

{0, t, 2t, 3t, ...}.

We then truncate this string within the periodic interval
(
− n

2 , n
2
]
, where the entry in

this interval, p, has the property p + nl = kt for some l ∈ Z. Note that the choice of open
or closed ends of the interval is arbitrary. For example, the structure

( 3.5
9
)3

will give the
initial string

{0, 3.5, 7, 10.5, ...},

which will in turn give an interval string of

{0, 3.5,−2, 1.5,−4,−0.5, 3,−2.5, 1, 4.5}.

The string terminates when it reaches either 0 or ± n
2 . Taking this string, we can

construct a new string of elements L and R, which refer to a left handed or right handed
turn along the (6,3) network. The end points (0 or± n

2 ) are discarded, every positive number
is replaced by an R, and every negative number is replaced by an L. For example, the above
string will give us

{R, L, R, L, L, R, L, R}.

This sequence of right and left handed turns can be used to establish the path that
a single edge of the entangled network takes in relation to the underlying (6,3) network.
It stems from the geometry of the tubes that the strands are passing along, and how far
around those tubes the strand twists. A schematic of this is shown in Figure 4.

20CONSTRUCTING 3-PERIODIC TANGLES

n/2

…

-2 2

-1
1

0

… right hand turnleft hand turn

Figure 4. A single tube of the surface along which our strands wind, we can see that twisting an
amount that is below n

2 means that the strand will exit to the right, and when it twists beyond n
2 (which

is then symbolised as a negative number in the string), it will then exit to the left. Hence positive
numbers in our string symbolise a right handed turn, and negative numbers left handed turns.

The simple description of paths in a hexagonal lattice has been used extensively in
the description of virus self-assembly, first through the work of Goldberg [23], and later
by Casper and Klug [24,25] as well as Coxeter [26]. We call a particular translation from
one vertex of the lattice to another a Goldberg vector (a, b), and it can be described by
a translation along a staircase direction of the hexagonal pattern by a hexagons, and a
subsequent translation along another staircase direction at an angle of 3π

2 by b hexagons. To
obtain the Goldberg vector of a single component within our entangled structure, we need
to trace along two consecutive edges of the entangled network. The second edge will be in
the reverse order to the original one, and can be found by interchanging R and L elements
in the sequence, and then reversing the sequence. So the second sequence to follow for the
second edge will then be (for our example above)

{L, R, L, R, R, L, R, L}.
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Considering that there is either a left-handed or right-handed turn at the vertex of the
entangled network between the edges (the choice here is arbitrary), we get the following
total string for finding the Goldberg vector:

{R, L, R, L, L, R, L, R, R or L, L, R, L, R, R, L, R, L}.

This sequence of turns gives the Goldberg vector (7, 0), as seen in Figure 5 (Left).

Figure 5. (Left) The path of left and right handed turns that an edge of the
(

3.5
9

)3
structure takes

through the underlying tiling. The resulting Goldberg vector is (7, 0), which is obtained by the
traversing of two edges. (Centre) The width of a single hexagon in the underlying graph is set to

1, and this hexagon has an area of 3
√

3
2 . (Right) The Goldberg vector defines the width of the larger

hexagon defined by a single component of the entangled structure. The length of this vector, c,
given coordinates of (a, b) is c2 = a2 + ab + b2, which means that the area of this larger hexagon is
3
√

3
2 c2 = 3

√
3

2 (a2 + ab + b2).

Given a Goldberg vector, we can then compute the number of distinct components
in structure as follows. If we set the width of a single hexagon in the underlying pattern
to 1 (see Figure 5 (Centre)), then the area of this hexagon is 3

√
3

2 , and it has a total of two
vertices within this area (six vertices each divided across three cells). This gives us the
density of vertices in the underlying graph, where actual vertices of the tangled networks
are potentially located.

The Goldberg vector defines the width of the larger hexagon defined by a single com-
ponent of the entangled structure (see Figure 5 (Right)). The length of this vector, c, given
coordinates of (a, b) is c2 = a2 + ab + b2 (this can be computed using some simple trigonom-
etry), which means that the area of this larger hexagon is 3

√
3

2 c2 = 3
√

3
2 (a2 + ab + b2).

Given the area of the larger hexagon defined by a single component, and the density
of vertices, we get that the number of vertices of the underlying hcb graph within this
hexagon is exactly 2(a2 + ab + b2), and these are the locations of the vertices of all other
components in the structure. Given the symmetry of the structure, each component will
have two vertices within the region, and we can thus conclude that the structure has exactly
a2 + ab + b2 components. This calculation works for prime weaves, with complete weaves
having double the number of components.
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2. Results

The following Tables 1 and 2 summarise the possible numbers of components of
different entangled structures, as well as the indices that lead to that structure.

Table 1. Tabulation of the results of the constructive technique, ordered by the Goldberg vectors of
the entangled structures, showing the number of components. The first row associated with each
vector refers to the prime structures, and the second row the complete structures.

Goldberg Components Layer Group Examples (by Twist Indices, where a ∈ Z, b = 1, 2, ...)

(1,0) 1 p6 or p321
( 0

1
)3

,
( 5a ± 0.5

5
)3

,
( 7a ± 0.5

7
)3

,
(
(6b ± 1)a ± 0.5

(6b ± 1)

)3

2 p622
( a

2
)3

(1,1) 3 p312
( a ± 0.5

2
)3

,
(

4a ± 0.5
4

)3
,
(

6a ± 1.5
6

)3
,
( 8a ± 0.5

8
)3

6 p622
(

4a ± 1
4

)3
,
(

8a ± 1
8

)3

(2,0) 4 p321
( 3a ± 0.5

3
)3

,
( 9a ± 0.5

9
)3

,
(

9a ± 1.5
9

)3

8 p622
(

6a ± 1
6

)3
,
(

18a ± 1
18

)3
,
(

18a ± 3
18

)3

(2,1) 7 p6
(

3a ± 1
3

)3
,
(

9a ± 1
9

)3

14 p622
( 6a ± 2

6
)3

,
(

18a ± 2
18

)3

(2,2) 12 p312
(

4a ± 1.5
4

)3
,
(

12a ± 4.5
12

)3

24 p622
( 8a ± 3

8
)3

,
(

24a ± 9
24

)3

(3,0) 9 -
18 -

(3,1) 13 p6
(

5a ± 1
5

)3
,
(

7a ± 1
7

)3
,
(
(6b ± 1)a ± 1

(6b ± 1)

)3

26 p622
(
(6b ± 1)2a ± 2

2(6b ± 1)

)3

(3,2) 19 p6
( 5a ± 2

5
)3

38 p622
(

10a ± 4
10

)3

(3,3) 27 p312
( 6a ± 2.5

6
)3

,
(

8a ± 1.5
8

)3
,
( 8a ± 2.5

8
)3

,
(

10a ± 1.5
10

)3
,
(

10a ± 3.5
10

)3

54 p622
(

12a ± 5
12

)3
,
(

16a ± 3
16

)3
,
(

16a ± 5
16

)3
,
( 20a ± 3

20
)3

,
( 20a ± 7

20
)3

(4,0) 16 p321
(

5a ± 1.5
5

)3

32 p622
(

10a ± 3
10

)3

(4,1) 21 -
42 -

(4,2) 28 -
56 -

(4,3) 37 p6
( 7a ± 3

7
)3

74 p622
(

14a ± 6
14

)3

(4,4) 48 p312
( 8a ± 3.5

8
)3

,
(

12a ± 2.5
12

)3

96 p622
(

16a ± 7
16

)3
,
(

24a ± 5
24

)3



Symmetry 2022, 14, 1805 8 of 13

Table 2. Tangled hcb weavings, ordered by the Goldberg vectors of the entangled structures, and
showing the number of components. The first row associated with each vector refers to the prime
structures, and the second row the complete structures.

Goldberg Components Layer Group Examples (by twist indices, where a ∈ Z)

(5,0) 25 p321
(

7a ± 1.5
7

)3
,
( 7a ± 2.5

7
)3

,
(

11a ± 1.5
11

)3

50 p622
(

14a ± 3
14

)3
,
(

14a ± 5
14

)3
,
( 22a ± 3

22
)3

(5,1) 31 p6
( 7a ± 2

7
)3

62 p622
(

14a ± 4
14

)3

(5,3) 49 p6
(

11a ± 2
11

)3

98 p622
(

22a ± 4
22

)3

(5,4) 61 p6
(

9a ± 4
9

)3

122 p622
(

18a ± 8
18

)3

(5,5) 75 p312
(

10a ± 4.5
10

)3
,
(

12a ± 3.5
12

)3

150 p622
( 20a ± 9

20
)3

,
(

24a ± 7
24

)3

(6,0) 36 -
72 -

(6,1) 43 p6
( 9a ± 2

9
)3

86 p622
(

18a ± 4
18

)3

(7,0) 49 p321
( 9a ± 2.5

9
)3

,
( 9a ± 3.5

9
)3

98 p622
(

18a ± 5
18

)3
,
(

18a ± 7
18

)3

The patterns in Tables 1 and 2 demonstrate the high level of complexity of the struc-
tures that can be achieved with a very simple construction, all while preserving maximal
symmetry. If we examine the possible number of components, increasing the Goldberg
vector should theoretically lead to structures with increasing component numbers. How-
ever, we cannot guarantee that entanglement can be constructed with a given Goldberg
vector, for example, there are no structures appearing in our enumeration with vectors
(3, 0), (4, 1) or (4, 2). However, there are a few particular relations which show that we
can in fact get an infinite sequence of structures with increasing component numbers, for
example that any index of the form

( c
2c+1

)3 will have the Goldberg vector (c, c + 1) and

hence 3c(c + 1) + 1 components, and any index of the form
( c−0.5

2c
)3

will have the Goldberg
(c, c) and hence 3c2 components.

Some examples with low numbers of components are shown in Tables 3 and 4).
The explicit geometries of the structures are obtained using the periodic knot-tightening
algorithm PB-SONO to gain a symmetric and optimised geometry for the structure [4].
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Table 3. Selected patterns from Table 1, listed by constituent helices t
n , the number of distinct nets,

and the corresponding layer group symmetry. Crystallographic files (CIF) are given for each of these
structures as supplementary information.

( 0
1
)3 − 1 × hcb

( 0.5
5
)3 − 1 × hcb − p321

(
1
2

)3
− 2 × hcb − p622

( 0.5
2
)3 − 3 × hcb − p312

( 0.5
3
)3 − 4 × hcb − p321

(
1
4

)3
− 6 × hcb − p622

(
1
3

)3
− 7 × hcb − p6

(
1
6

)3
− 8 × hcb − p622
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Table 4. Selected patterns from Table 1. Crystallographic files (CIF) are given for each of these
structures as supplementary information.(

1.5
4

)3
− 12 × hcb − p312

(
1
5

)3
− 13 × hcb − p6

( 2
6
)3 − 14 × hcb − p622

(
1.5
5

)3
− 16 × hcb − p321

3. Discussion

We can see a wide variety of entanglements with an equally rich diversity of numbers
of components, giving a broad enumeration of entangled hcb networks.

Of particular interest are the structures
( 2

11
)3

and
( 2.5

9
)3

, which both have 49 compo-
nents, but with distinct Goldberg coordinates, (5, 3) and (7, 0). They also have different
layer symmetry, namely p6 and p321, respectively. The two structures are shown in Table 5,
and we conjecture that these are distinct ambient isotopy classes of structures, that they
are distinct entanglements, based on their differing twist constructions and Goldberg
coordinates.

Some of the simpler structures in this enumeration have been constructed or observed

elsewhere, in particular the structures
( 0

2
)3

,
(

1
2

)3
and

( 2
2
)3

have been constructed using

some group theoretic arguments [20]. The structures
( 0.5

2
)3

(three components),
( 0.5

4
)3

(three components),
( 0.5

6
)3

(four components),
( 0.5

9
)3

(four components) have all been

constructed via symmetric hyperbolic tilings [16]. Additionally, the structures
( 0.5

2
)3

(three

components),
(

1
4

)3
(six components) and

(
1
3

)3
(seven components) have been constructed

via crystallographic methods using only straight edges [17]. The structure
( 0.5

2
)3

(three
components) is also the well-known 3-borromean structure, discussed broadly in the
literature [15,19].
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Table 5. Two structures with 49 components, but different Goldberg vectors. It could be assumed
that the distinct Goldberg vectors imply that the structures are not ambient isotopic to each other.
The upper two images show a single component highlighted in yellow, and the bottom two images
show each of the 49 nets coloured differently. Crystallographic files (CIF) are given for each of these
structures as supplementary information.( 2

11
)3 − 49 × hcb − p6

( 2.5
9
)3 − 49 × hcb − p321

The enumerative technique that we presented here extends beyond those structures
explicitly discussed. We have begun our enumeration on a tubified surface of the lowest
genus, which restricts us to at most three distinct helices along the edges of the hcb
network. In this article, these three helices are all the same, giving the high symmetry.
This starting point gives several directions of increasing complexity of the structures. The
first is increasing n and t in the current setting. The second is relaxing the condition that
all three helices are the same: this would result in different symmetry settings, and likely
cover many of the entanglements of hcb observed in the synthetic chemistry literature,
such as [19]. Beyond this, we can increase complexity by enumerating beyond the genus-2
structure of the tubified hcb to a larger unit cell, which has a higher genus, and thus more
distinct edges along which to place helices.

One such way to move to a structure with a higher genus while maintaining much
of the symmetry is to consider larger unit cells in the existing structure, and then take
a subset of components. One such example of this is a high symmetry nine-component
hcb structure, which has symmetry p321 and sits on a tubified genus-4 hcb surface. This
structure has been derived by an anonymous referee applying the methods described
in [27]. It is related to the

( 5
12
)3

structure listed in Table 1, which has 54 components.
Exactly six copies of the 9 hcb structure, which reticulates a genus-4 surface, will give the( 5

12
)3

, which reticulates a genus-2 surface. We can consider this structure as one with index(
5
6
2

)9
, where the larger genus is dictated by the fractional twist 5

6 . The structure is shown

in Figure 6 . Beyond this, we are also able to enumerate structure on other underlying
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graphs, both 2-periodic and 3-periodic. These extensions will be presented elsewhere in
the near future.

Figure 6. (Left) A nine-component hcb structure, which sits on a tubified genus-4 hcb surface. This
surface has nine distinct edges along which helices lie, which then branch around 6 vertices. This

structure will have an index of
(

5
6
2

)9
. This structure has symmetry p321. (Right) The extended

structure, showing the nine hcb components.

In summary, we can see here that the described methodologies of this article are able
to enumerate far beyond previous attempts while maintaining control of the component
numbers. All of these structures have maximal symmetry within the construction method,
and this carries over to maximal layer group symmetry. In addition, all of the structures are
chiral, stemming from the chirality of the n-helices used in the construction. This provides a
foundation for their exploration in both the chemistry lab and in further geometric studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym14091805/s1, CIF files for all structures that are displayed as Figures.
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