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ABSTRACT
Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model 
reliability based on such calibration is problematic, as it does not guarantee the correct representation of 
internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibra
tion framework using remote sensing vegetation data and hydrological signatures (flow duration curve – 
FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the 
Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach 
outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of 
vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the 
following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and 
pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach 
could be used in other data-scarce regions with complex topography.
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1 Introduction

The understanding of hydrological processes and vegetation 
dynamics within a basin is crucial for better water resources 
management. For this purpose, hydrological models that 
integrate hydrological processes, vegetation, and biogeo
chemical cycles (carbon, nitrogen, and phosphorus) have 
been used, often called eco-hydrological river basin models 
(Krysanova and Arnold 2008). Examples of well-supported 
models are the Soil and Water Assessment Tool (SWAT; 
Arnold et al. 1998), Soil and Water Integrated Model 
(SWIM) (Krysanova et al. 1998), Variable Infiltration 
Capacity (VIC) (Liang et al. 1994), and Hydrological 
Predictions for the Environment (HYPE) (Lindström et al. 
2010). In this study, SWAT is applied since it is internation
ally accepted as a robust tool for interdisciplinary modelling 
of basin water resources (Gassman et al. 2007, Abbaspour et 
al., 2017) and ecosystem services (Francesconi et al. 2016). It 
has been applied and evaluated in diverse climates from arid 
and semi-arid regions (Brouziyne et al. 2017, Jajarmizadeh et 
al. 2017) to wet and tropical areas (Strauch and Volk 2013, 
Alemayehu et al. 2017).

Regardless of the choice of hydrologic model, one primary 
task in any hydrological modelling is the determination of 
model parameters during the model calibration procedure, 
owing to the mismatch between model complexity and avail
able data (Devak and Dhanya 2017, Razmkhah et al. 2017). 
Estimation of model parameters is commonly performed using 
manual and automatic calibration approaches, with discharge- 

related measures (e.g. Nash-Sutcliffe efficiency, NSE) most 
commonly used as the objective function because discharge 
at the basin outlet integrates all hydrological processes 
upstream. However, it has been argued that model calibration 
based solely on discharge does not guarantee the credibility of 
a hydrological model since the water balance components can 
be misrepresented despite the performance statistics being 
accurate (Hattermann et al. 2005, Pokhrel and Yilmaz 2012, 
Guse et al. 2016, Pfannerstill et al. 2017, Larabi et al. 2018, 
Acero Triana et al. 2019). Recognizing this deficiency, other 
strategies have been focused on improving the calibration to 
better represent hydrological processes and system dynamics. 
For this, hydrological signatures mostly derived from stream
flow time series, e.g. the flow duration curve (FDC), have been 
used. The application of signatures related to FDC provides 
more information about the hydrological behaviours of the 
modelled basin (Hrachowitz et al. 2014) and their underlying 
processes (Yilmaz et al. 2008, Gupta et al. 2009). FDC has often 
been used for model evaluation (Yilmaz et al. 2008, Pokhrel 
and Yilmaz 2012, Hrachowitz et al. 2014, Pfannerstill et al. 
2014, 2017) and lately as an objective in model calibration 
(Shafii and Tolson 2015, Chilkoti et al. 2018, Sahraei et al. 
2020). These studies have demonstrated that signature-based 
calibration approaches (using discharge and FDC) lead to a 
more accurate discharge simulation and the reduction of pre
dictive uncertainty. However, Shafii et al. (2017) argued that 
these approaches do not necessarily guarantee correct flow 
partitioning among the different flowpaths, which is critical 
when modelling hydrology-related processes like solute 
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transport, erosion, surface runoff, and baseflow contribution. 
Therefore, to properly reproduce flow partitioning, the inclu
sion of another hydrological signature such as the baseflow 
index (the ratio of long-term mean base flow to total stream
flow) in the multi-objective calibration framework is proposed 
in this study. The baseflow index represents the baseflow 
component of streamflow, which is critical for regulating sea
sonal distribution of river flows, and is associated with climatic 
and physiographic (e.g. soil type, geology, topography, and 
vegetation) characteristics of the basin (Beck et al. 2013, 
Mohammed and Scholz 2018, Singh et al. 2019). Baseflow, or 
the baseflow index, is crucial to develop appropriate water 
resources management strategies, such as aquatic ecosystem 
preservation, hydropower generation, and low-flow forecast
ing (Beck et al. 2013, Singh et al. 2019). Previously mentioned 
and proposed calibration approaches have been focused 
mainly on the identification of physical parameters related to 
streamflow, evapotranspiration, and flow components. 
However, additional identification of vegetation parameters 
is crucial for models integrating vegetation dynamics. Indeed, 
leaf area index (LAI) is a key driver of the water balance of a 
landscape and is considered in SWAT for subsequent estima
tion of other processes, such as evapotranspiration, biomass 
accumulation, sediment, baseflow, and surface runoff (Ma et 
al. 2019). Only a few hydrological studies in general and 
SWAT-related publications in particular have considered the 
combined model calibration of LAI and streamflow dynamics 
and proved that this calibration leads to improved streamflow 
and evapotranspiration simulations (Strauch and Volk 2013, 
Alemayehu et al. 2017, Ha et al. 2018, Rajib et al. 2018). These 
studies showed also the utility of remotely sensed LAI data to 
calibrate the SWAT LAI-related parameters (i.e. plant para
meters) in data-scarce basins. It is important to mention that 
the SWAT LAI estimation is based on heat units (Neitsch et al. 
2011), and for that, the total number of heat units needed to 
bring the plant to maturity (PHU_PLT) must be estimated by 
the user for the vegetation growth simulation. Previous studies 
have used satellite-based LAI to identify SWAT plant para
meters considering a constant PHU_PLT value for each plant 
type throughout the basin. However, this could be critical, 
especially in basins with complex topography – in particular 
high altitudinal differences – since the air temperature (bio
physical variable) that controls the PHU_PLT (Neitsch et al. 
2011) depends on the altitude. To overcome this, we used the 
satellite-based LAI data to identify not only plant parameters 
but also PHU_PLT for each plant in each hydrological 
response unit (HRU). Moreover, we investigated the relation
ship between the elevation and PHU_PLT, which could be 
useful for application in other data-scarce regions with com
plex topography.

In general, some previous studies have reported the benefits 
of incorporating hydrological signatures (e.g. FDC signatures) 
and remote sensing data (e.g. LAI) in the calibration of hydro
logical models (Shafii and Tolson 2015, Chilkoti et al. 2018, Ha 
et al. 2018, Rajib et al. 2018, Sahraei et al. 2020). However, to 
the best of our knowledge, no previous study has taken into 
account both datasets for hydrological model calibration. We 
consider that inclusion of these variables, in addition to 
streamflow, in the calibration can improve the model 

reliability in representing the hydrological system. Hence, 
one of the objectives of this study is to develop a multi- 
objective calibration framework that exploits the benefits of 
using both hydrological signatures and satellite-based LAI data 
for eco-hydrological models. This study is the first of its kind 
considering these benefits for a more realistic hydrological 
modelling not only of streamflow but also of vegetation 
dynamics and flow partitioning. As such, we hope to contri
bute to hydrological modelling science with a new way of 
understanding the eco-hydrological processes of basins with 
complex topography for efficient water resource management.

We conducted our study in the tropical Andes of Peru 
where there is a paucity of research. Most existing studies 
related to Andes hydrology have focused mainly in Andean 
basins dominated by Páramo ecosystems, which span the 
Andean region of Venezuela, Colombia, Ecuador, and north
ern Peru (e.g. Buytaert et al. 2007, Guzmán et al. 2015, 
Mosquera et al. 2015, Hill et al. 2018, Carrillo-Rojas et al. 
2019). Only a few studies have focused on the hydrology of 
Peruvian Andean basins, and most of these in small catch
ments dominated by a glacier (Somers et al. 2019), forest 
(Clark et al. 2014), páramo, and puna biome (Ochoa-Tocachi 
et al. 2016). Therefore, another objective of this study is to 
contribute to the basic understanding of hydrological pro
cesses of the tropical Andes of Peru. To this end, we selected 
the Vilcanota River basin (VRB), which is dominated by land 
uses such as pasture of the puna biome, forest, and agriculture, 
to better understand its hydrology (e.g. water budget) and to 
analyse the hydrological services offered by each land-use type 
regarding the water yield and baseflow.

For this purpose, our proposed novel multi-objective cali
bration framework for eco-hydrological models such as 
SWAT, and for basins with complex terrain such as the VRB, 
consists of a step-wise calibration scheme. First, SWAT LAI- 
related parameters are calibrated using satellite LAI data. In 
the second step, parameters related to streamflow, evapotran
spiration, and flow components are calibrated. For the latter 
step, we propose the inclusion of the baseflow index in addi
tion to discharge-related performance metrics and signatures 
based on FDC within a multi-objective calibration approach to 
better constrain the flow partitioning during the calibration 
process. This approach is compared to conventional discharge- 
based and signature-based calibration approaches in order to 
test the model’s ability to simulate vegetation dynamics, 
streamflow, and flow partitioning in the Andean VRB. 
Furthermore, we address how streamflow calibration strategies 
impact parameter identifiability and equifinality.

2 Materials and methods

2.1 Study area

The VRB is located in the southern Andes of Peru in the Cuzco 
region (Fig. 1). Its drainage area is 9617 km2, and the topo
graphy within the basin is characterized by a terrain with steep 
slopes and elevations that range from 2136 to 6301 m a.s.l. 
Predominant soils are Lithosols (67%) and Kastanozems (23%) 
(FAO-UNESCO 1988). The land use is dominated by natural 
pasture (68%) with a minor contribution of mixed forest 
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(15%), agriculture (8%) and evergreen forest (4%). The latter 
mainly spans the area which is close to the basin outlet (Fig. 1) 
and experiences higher amounts of precipitation. The annual 
mean precipitation is 748.5 mm/year (1985–2015), with more 
than 80% of the rainfall occurring during the rainy season 
(October–March). Hydrologically, VRB shows high variability 
of daily discharge, ranging from 20 m3/s in the dry season to 
1100 m3/s in the rainy season, and an average daily discharge 
of 120 m3/s (1985–2015 period). In VRB there are several 
natural lakes, but since 1996, Lake Sibinaccocha (Fig. 1) has 
been dammed for water storage during the wet season and to 
supply water to the Machu Picchu Hydroelectric Power Plant 
(EGEMSA company) during the dry season (Catacora- 
Acevedo 2008). This dam has 120 hm3 active storage volume 
with a small sub-drainage basin surface (137 km2 being 1.4% of 
the VRB area). The Vilcanota River provides water for drink
ing, irrigation, and energy production, hence understanding 
the hydrologic system and accurate simulation of streamflow 
are important for appropriate water resources management.

2.2 SWAT model

The SWAT model is a process-oriented, semi-distributed and 
time-continuous river basin model used to simulate hydrolo
gical processes as well as vegetation dynamics, nutrients, pes
ticides, and sediment loads within a basin (Arnold et al. 1998, 
Neitsch et al. 2011). It is also possible to include water manage
ment activities such as reservoirs for hydrological simulation 
of managed basins (Neitsch et al. 2011). SWAT divides a basin 
into sub-basins, which are then further subdivided into HRUs 
representing unique combinations of land use, soil type, and 
slope classes (Neitsch et al. 2011). SWAT differentiates 
between the land phase that controls the water, sediment, 

and solute loads to the main channel in each sub-basin and 
the routing phase that defines water, solute, and sediment, 
movement through the channel network to the basin outlet 
(Arnold et al. 1998, Neitsch et al. 2011). The water balance 
computation is performed at the HRU level considering four 
water storage types (snow, soil profile, and shallow and deep 
aquifers), as follows: 

ΔS ¼
XN

i¼1
P � WYLD � ET � lossesð Þ (1) 

where ΔS is the change in water storage (mm); N is the time in 
days; and P, WYLD, ET, and losses are the amounts of pre
cipitation (mm), water yield (mm), evapotranspiration (mm), 
and groundwater losses (mm), respectively. Water yield 
(WYLD) is given by the contribution of surface runoff 
(Qsurf), lateral flow (Qlat), and return flow (Qgw) from the 
aquifers (shallow and deep).

In SWAT, the vegetation dynamics (e.g. LAI) are simulated 
based on the simplified version of the Environmental Policy 
Integrated Climate (EPIC) plant growth model (Neitsch et al. 
2011). The vegetation growth is simulated based on daily 
cumulative heat units (plant heat requirements) reflecting the 
fact that plant growth only occurs on the days when daily mean 
temperature exceeds the base temperature for growth (Neitsch 
et al. 2011). This means that temperature is the main vegeta
tion growth controlling factor in SWAT but is restricted by 
temperature, water, and nitrogen or phosphorous stress 
(Neitsch et al. 2011). For a detailed description of the SWAT 
vegetation module, readers are advised to read Neitsch et al. 
(2011).

In this study, we used SWAT-T (Alemayehu et al. 2017), a 
modified SWAT version based on SWAT 2012 (Rev. 627), 
which provides an improved vegetation growth module for a 

Figure 1. (a) Location of the Vilcanota River Basin (VRB); (b) Terrain elevation, sub-basins, and river network ; and (c) land-use map. Dashed areas represent sample site 
locations for the major vegetation classes (1: FETZ, 2: AGRL, 3: FRST and 4:PAST) which were used to mask the MODIS (Moderate Resolution Imaging Spectroradiometer) 
LAI.
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better simulation of plant growth dynamics in tropical regions. 
SWAT-T uses the soil moisture index – a quotient of rainfall 
and potential evapotranspiration – as an indicator to initiate a 
new growth cycle within a predefined period as the months 
when the rainy season starts, e.g. October to November for 
Andean basins. This SWAT-T feature was introduced to over
come SWAT’s shortcomings in simulating the seasonal growth 
cycles for trees and perennials in the tropics, where rainfall 
rather than temperature is the dominant plant growth control
ling factor (Strauch and Volk 2013, Alemayehu et al. 2017). 
Moreover, SWAT-T uses a logistic function to simulate the 
LAI curve during the senescence stage (Strauch and Volk 
2013), instead of the linear decreasing LAI curve which could 
underestimate evapotranspiration (Wei et al. 2018). SWAT-T 
is referred to as SWAT in this paper.

2.3 Input data

The inputs (e.g. topography, land use, soil, and meteorology) 
and their sources are summarized in Table 1. As geographical 
input data, a digital elevation model (DEM) of 90 m resolution, a 
land-use map obtained from European Space Agency and 
Climate Change Initiative – Land Cover Project (ESA CCI- 
LC), and a soil map from the Harmonized World Soil 
Database (HWSD) that includes soil properties were used for 
the hydrological model. The daily gridded PISCO (Peruvian 
Interpolated data of SENAMHI’s Climatological and 
Hydrological Observations) meteorological forcing data 

(precipitation, and maximum and minimum temperature) for 
driving SWAT model simulations was used, as provided by the 
National Service of Meteorology and Hydrology of Peru 
(SENAMHI). Controlled outflow data from the Sibinaccocha 
Dam was used to consider its impact on downstream runoff 
since 1996.

2.4 Reference data for model calibration and verification

2.4.1 Leaf area index
The satellite-based Moderate Resolution Imaging 
Spectroradiometer (MODIS) LAI product (Yuan et al. 2011) 
was used as a reference to calibrate LAI dynamics of perennial 
plants. MODIS LAI has been proven capable of reproducing 
vegetation timely and accurately (Yuan et al. 2011, Ma et al. 
2019) and has been used successfully in the calibration and/or 
validation of SWAT plant parameters (e.g. Strauch and Volk 
2013, Alemayehu et al. 2017, Ha et al. 2018, Rajib et al. 2018).

To derive the reference LAI data, we selected 200 pixels for 
pasture, 100 for the mixed forest, 405 for the evergreen forest, 
and 35 for agriculture, using as a mask the corresponding 
representative area (polygon) defined in Fig. 1 with the help 
of the land-use map and Google Earth images. Then, from 
these subsets, we derived the 8-day median LAI time series for 
each of the land-use types. Note that the identified representa
tive areas for evergreen forest and mixed forest span areas 
outside of the basin (Fig. 1). This was necessary to obtain 
MODIS LAI pixels with better LAI temporal patterns, because 
forest areas located inside the basin mostly present noisy LAI 
time series with breaks, which could be attributed to the cloud 
contamination of the MODIS LAI in those areas.

2.4.2 Streamflow
Daily observed discharge series (1958–2015) at the km-105 
gauging station located at the VRB basin outlet was used 
(Fig. 1) for model calibration and validation of streamflow 
simulation.

2.5 SWAT model set-up

The SWAT model was set up for the VRB based on the 
available input data listed in Table 1. The model includes one 
reservoir, 53 sub-basins, and 320 HRUs (Fig. 1). The modified 
Soil Conservation Service Curve Number method, the 
Hargreaves method, and the variable storage method were 
used to simulate surface runoff and infiltration, potential eva
potranspiration, and river flow routing, respectively. The 
Sibinaccocha Reservoir outflow was simulated using a prede
fined daily outflow option in SWAT to account for the effects 
of this dam on downstream runoff. For more details about the 
SWAT model configuration, see Neitsch et al. (2011).

The periods considered for model warm-up, calibration, 
and validation for simulation of LAI were 2001–2004, 2005– 
2010, and 2011–2015, and those for streamflow were 1981– 
1984, 1985–1990, and 1991–2015, respectively. Note that the 
model calibration for streamflow was carried out in the pre- 
damming period of the river, while the LAI calibration and 
validation periods were constrained based on LAI data 
availability.

Table 1. Data type, resolution, and data source.

Data type Resolution Description/source

Topography 90 m Digital elevation of the Shuttle Radar 
Topography Mission (SRTM v. 4.1) product 
(Jarvis et al. 2008) (http://srtm.csi.cgiar.org/)

Land use 300 m Land-use classification representative for the 
year 2010 obtained from ESA CCI-LC (http:// 
maps.elie.ucl.ac.be/CCI/viewer/)

Soil 1000 m Horizon-specific soil properties for each soil 
type based on the HWSD (Abbaspour and 
Ashraf Vaghefi 2019)

Soil 
thickness

1000 m Gridded global data of soil thickness (Pelletier 
et al. 2016) used to implement variable soil 
thicknesses at HRUs

Hydrologic 
soil group

250 m Global gridded hydrologic soil group data 
(Ross et al. 2018) used to update the curve 
number (CN) parameter at HRUs after the 
model creation; this step helped to identify 
appropriate CN values, mainly in current 
urban areas

Temperature Daily/10 km 
(1981–2016)

Gridded temperature (maximum and 
minimum) dataset for Peru (PISCO 
temperature V1.1, Huerta et al. 2018) 
provided by SENAMHI (ftp:// 
publi_dgh2:123456@ftp.senamhi.gob.pe/)

Precipitation Daily/10 km 
(1981–2016)

Gridded rainfall dataset for Peru (PISCO 
precipitation V2.1, Aybar et al. 2019) 
provided by SENAMHI (ftp:// 
publi_dgh2:123456@ftp.senamhi.gob.pe/)

Reservoir Daily 
(1996–2015)

Controlled outflow data from Sibinaccocha 
Dam obtained from Electricity Generation 
Company of Machupicchu (EGEMSA)

Discharge Daily 
(1958–2015)

Flow data at km-105 hydrological station 
(EGEMSA)

LAI 8 d/1000 m 
(2000–2016)

Improved MODIS LAI data based on the 
MODIS collection 5 LAI product (MOD15A2) 
(Yuan et al. 2011) (http://globalchange.bnu. 
edu.cn/research/lai)

62 C. A. FERNANDEZ-PALOMINO ET AL.

http://srtm.csi.cgiar.org/
http://maps.elie.ucl.ac.be/CCI/viewer/
http://maps.elie.ucl.ac.be/CCI/viewer/
http://globalchange.bnu.edu.cn/research/lai
http://globalchange.bnu.edu.cn/research/lai


2.6 SWAT calibration and evaluation framework

We propose the following step-wise framework for SWAT 
model calibration for basins with complex terrain (Fig. 2).

First, SWAT LAI-related parameters are calibrated using 8- 
day MODIS LAI as a reference for each perennial tropical 
vegetation type (e.g. pasture, mixed forest, forest evergreen, 
and agriculture) at the HRU level. To do so,

(a) The simulated LAI is calibrated against MODIS LAI to 
identify SWAT LAI-related parameters (see Section 
3.2) for a specific HRU. This procedure helps to build 
a SWAT plant database (plant.dat) for the study area, 
which is used for the next steps.

(b) As the total number of heat units needed to bring the 
plant to maturity parameter (PHU_PLT) depends on 
temperature data (Neitsch et al. 2011), PHU_PLT is 
calibrated for each HRU using MODIS LAI as a refer
ence since the temperature varies with height in moun
tainous regions. This step is important for better 
modelling of vegetation LAI dynamics in HRUs defined 
by trees and perennials.

In this study, NSE is used as the objective function for LAI 
and PHU_PLT calibration.

The second part of the calibration strategy deals with the 
calibration of the SWAT parameters that mainly control stream
flow, evapotranspiration, and discharge components. For this 
purpose, we propose a multi-objective calibration approach that 
includes the baseflow index to constrain the model calibration 
in addition to discharge-related performance metrics and 
hydrological signatures related to FDC. This approach is com
pared to approaches applied before, where only hydrograph 
goodness-of-fit metrics (e.g. NSE or the log NSE, lNSE) and 
signatures related to FDC were used. Table 2 shows the single- 
and multi-objective optimization approaches tested in this 
study, and Table 3 shows the objective metrics. In the formula
tion of multi-objective calibration approaches, we selected lNSE 
instead of NSE as part of the objectives for flow timing and 
magnitude to avoid overfitting discharge peaks, since NSE is 

more sensitive to larger errors that often occur in high-flow 
periods (Krause et al. 2005, Gupta et al. 2009). To quantify 
catchment overall behaviour and flashiness, several aspects of 
FDC were considered to evaluate the model performance in 
emulating the FDC. Following Chilkoti et al. (2018), FDC is 
divided into four segments, of peak flow volume (0–2%), high 
flow volume (2–20%), mid-segment slope (20–70%), and low 
flow volume (70–100%). The respective FDC partitioning repre
sents peak flow events occurring rarely, quick runoff (due to 
snow-melt and/or rainfall), the quickness of a basin’s response, 
and baseflow components of the streamflow (Yilmaz et al. 2008, 
van Werkhoven et al. 2009, McMillan et al. 2017, Chilkoti et al. 
2018). To properly reproduce flow partitioning, the baseflow 
index is used to constrain the slow-flow component.

For the model evaluation, discharge statistics and individual 
hydrological signatures defined in Table 3 are used. The conven
tional hydrograph goodness-of-fit metrics (NSE, lNSE, and 
Percent bias (PBIAS)) are used to evaluate the model performance 
in streamflow simulation (Krause et al. 2005, Moriasi et al. 2007). 
Note that in this study, PBIAS is not included as an objective 
function for model calibration but is only used to evaluate model 
performance. PBIAS measures the average tendency of the simu
lated discharge, which can be larger or smaller than the measured 
values. The optimal value of PBIAS is 0.0, with low values indicat
ing accurate model simulation. A positive (negative) value of this 
measure indicates overestimation (underestimation). FDC signa
tures (Speak, Shigh, Smid, and Slow) are used to assess the model 
performance through biases in the flow distributional response 
(Chilkoti et al. 2019). PBIAS_BFI (introduced in this study) is 
used to evaluate the model capability in the simulation of flow 
partitioning in terms of the baseflow index. The overall goal of 

Figure 2. Flowchart of the SWAT model calibration framework. OF: objective function, PHU_PLT: total number of heat units needed to bring the plant to maturity. In the 
case of LAI calibration, the Nash-Sutcliffe efficiency (NSE) is the OF. The OF for streamflow and flow partitioning calibration is defined in Table 2 for each calibration 
strategy applied in this study.

Table 2. Optimization problems. In the optimization process, NSE and lNSE (log 
NSE) were maximized while the absolute values of FDCsign (FDC signature) and 
BIAS_BFI (bias of baseflow index) were minimized.

Number Approach Formulation Optimization problem

1 Applied before Single-objective NSE
2 Applied before Single-objective lNSE
3 Applied before Bi-objective lNSE, FDCsign

4 Proposed in this study Multi-objective lNSE, FDCsign, BIAS_BFI
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this multi-criteria evaluation design is to assess how realistically 
the model represents the hydrologic system response, which is 
crucial both for hydrological models intended to operate in a 
predictive mode and for projecting climate change impacts 
(Krysanova et al. 2018).

2.7 Baseflow index estimation

The reference baseflow index (BFI) was estimated from 
streamflow using two baseflow separation techniques. The 
baseflow filter program (BFLOW, http://swat.tamu.edu/) 
(Arnold and Allen 1999) and the Eckhardt filter using the 
Web GIS-based Hydrograph Analysis Tool system were 
applied (WHAT, https://engineering.purdue.edu/mapserve/ 
WHAT/) (Lim et al. 2005). For a detailed description of the 
filter methods, the reader is referred to Arnold et al. (1995), 
Arnold and Allen (1999), and Lim et al. (2005). BFLOW and 
WHAT have been used successfully in many studies related to 
the SWAT model (e.g. Luo et al. 2012, Meaurio et al. 2015, 
Yesuf et al. 2016, Jang et al. 2018).

Following Jang et al. (2018), the simulated baseflow index 
(SWAT_BFI) was computed as follows: 

SWAT BFI ¼ QlatþQgwsþQgwd½ �=

Qsurf þQlatþ Qgwsþ Qgwd½ �
(2) 

where Qsurf is the surface runoff, Qlat is the lateral flow, Qgws 
is the return flow from the shallow aquifer, and Qgwd is the 
return flow from the deep aquifer.

2.8 Multi-objective optimization algorithm

We applied the Borg Multi-Objective Evolutionary Algorithm 
(Borg MOEA) (Hadka and Reed 2013) to achieve the optimum 
solutions for SWAT parameters based on the calibration strategies 
defined in Section 2.6, as Borg MOEA has superior performance 

when compared with a range of state-of-the-art multi-objective 
algorithms (Hadka and Reed 2012, 2013). Moreover, it was 
applied successfully in the calibration of SWAT in which hydro
graph goodness-of-fit metrics and signatures related to FDC were 
included in the objective function (Chilkoti et al. 2018). The Borg 
MOEA is an auto-adaptive optimization algorithm that uses a 
population-based search to find the archived non-dominated 
solutions (Pareto approximate set) at the end of the optimization. 
The Borg MOEA parameterization was based on its default 
recommended parameter values (Hadka and Reed 2013). The 
initial population size was set to 100, generated based on random 
parameter sampling. To achiev a reasonable trade-off between 
objectives, the ε-precision level was set to 0.01 for the NSE family 
and a difference of 1% for FDCsign and BIAS_BFI. The total 
number of objectives for the evaluation was set to 500 for LAI 
calibration, 500 for PHU_PLT, and 1000 for streamflow. For more 
details on Borg MOEA theory and features, readers are advised to 
see Hadka and Reed (2013).

3 Results and discussion

3.1 BFI estimation

Baseflow index estimation (the ratio of long-term mean base
flow to total streamflow) was conducted from daily streamflow 
data recorded at the km-105 hydrological station for 1964– 
1990 since this period does not include the potential effects of 
the Sibinaccocha Dam on runoff (from 1996 onwards). The 
baseflow indices estimated by BFLOW and WHAT were 0.76 
and 0.78, respectively. The mean of these values was consid
ered the reference baseflow index (BFI = 0.77); it means that 
around 77% of the river discharge at gauge km-105 can be 
attributed to baseflow. The latter is consistent with the base
flow index reported for the neighbouring Andean Kosñypata 
basin with similar geology, topography, and vegetation, where 
77% of annual flow was attributed to baseflow (Clark et al. 

Table 3. Mathematical formulation of goodness-of-fit metrics and hydrological signatures. O and S are observed and simulated flow, respectively (in m3/s); EP is 
exceedance probability; P, H, and L are the indices of the minimum flow of the peak-flow, high-flow and low-flow segments, respectively.

Criterion (reference) Equation Description

Discharge-related performance measures
Nash-Sutcliffe efficiency (Nash and 

Sutcliffe 1970) NSE ¼ 1 �
Pn

i¼1
Si � Oið Þ

2

Pn

i¼1
Oi � Oað Þ

2

Oa is the average of the observed flow and n is the number of observations 
under evaluation

Nash-Sutcliffe efficiency-log (Krause et 
al. 2005) lNSE ¼ 1 �

Pn

i¼1
lnðSiÞ� lnðOiÞð Þ

2

Pn

i¼1
lnðOiÞ� lnðOpÞð Þ

2

Percent bias 
(Gupta et al. 1999) PBIAS ¼

Pn

i¼1
Si � Oið Þ

Pn

i¼1
Oi
� 100

Signature measures
Percent bias in FDC peak-segment 

volume 
(Yilmaz et al. 2008)

Speak ¼

PP

p¼1
Sp � Opj j�100
PP

p¼1
OP

p = 1, 2, . . ., P are flow indices located within the FDC peak-flow segment (EP 
lower than 2%)

Percent bias in FDC high-segment 
volume 
(Yilmaz et al. 2008)

Shigh ¼

PH

h¼1
Sh � Ohj j�100
PH

h¼1
Oh

h = 1, 2, . . ., H are flow indices located within the high-flow segment (2–20% 
flow EP)

Percent bias in FDC mid-segment slope 
(van Werkhoven et al. 2009; Yilmaz et 
al. 2008)

Smid ¼
Sm1 � Sm2ð Þ� Om1 � Om2ð Þj j�100

Om1 � Om2ð Þ
m1 and m2 are the lowest and highest flow EP, respectively, within the mid- 

segment (20–70%)

Percent bias in FDC low-segment 
volume 
(Yilmaz et al. 2008)

Slow ¼

PL

l¼1
Sl � Olj j�100
PL

l¼1
Ol

l = 1, 2, . . ., L are flow indices located within the low-flow segment (70–100% 
flow EP)

FDC signature 
(Chilkoti et al. 2018)

FDCsign ¼
1
4 Speak þ Shigh þ Smid þ Slow
� �

FDCsign is the aggregated FDC signature

Bias of baseflow index BIAS BFI ¼ SWAT BFI � BFI SWAT_BFI is the simulated baseflow index and BFI the reference
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2014). In addition, BFLOW estimated the flow recession con
stant from the shallow aquifer (ALPHA_BF equal to 0.0351) 
which was used to replace the default ALPHA_BF value of the 
model.

3.2 Performance of LAI simulation

Table 4 presents the optimized plant parameter values for mixed 
forest (FRST), evergreen broadleaf forest (FETZ), pasture 
(PAST), and agricultural areas (AGRL). Using these optimal 
parameter values, the PHU_PLT (head unit) parameter was 
calibrated for all HRUs covered by perennial plants so that the 
SWAT-simulated LAI mimics the MODIS 8-day LAI as close as 
possible. Note that AGRL was considered perennial in this study 
to simulate the LAI decline during senescence using a logistic 
function (a feature of the SWAT version used here), since the 
AGRL MODIS LAI curve follows a logistic curve instead of a 
linear curve during the senescence stage (Fig. 3(b,c)). This is in 
agreement with Wei et al. (2018), who recommended the use of 
the logistic LAI curve during senescence for agricultural crops.

Figure 3(a) shows the strong negative relationship 
(R2 ≥ 0.83) between calibrated PHU_PLT values and elevation 
for PAST, AGRL, and FRST. This means that the total number 
of heat units required for a plant to reach maturity 
(PHU_PLT) decreases with altitude, and this can be used as a 
descriptor variable to estimate PHU_PLT in basins showing 
high elevation gradients. As a result, the plant parameters and 
the relationship between PHU_PLT and elevation derived in 
this study can be used in other Andean basins.

Comparing the temporal variation of LAI dynamics (Fig. 3(b)), 
in general, SWAT-simulated LAI corresponds well with MODIS 
LAI data during both calibration and validation periods for all 
perennial plants. This observation is supported by good model 
performance statistics (NSE ≥ 0.63, R2 ≥ 0.76, and PBIAS within 
reasonable limits ±15%) in simulating LAI dynamics for both 
evaluation periods as shown in Table 5. In addition, Figs 3(c) 
and A1 (see Appendix) show that the spatio-temporal variability 
of the seasonal LAI simulated by SWAT agrees well with MODIS 
LAI for all perennials. Since LAI in SWAT influences the simula
tion of hydrological and vegetation processes such as evapotran
spiration, biomass accumulation, streamflow, and sediments 
(Strauch and Volk 2013, Alemayehu et al. 2017, Ha et al. 2018, 
Rajib et al. 2018, Ma et al. 2019), the good model performance in 

LAI simulation found here increases the quality of the simulation 
of these processes.

Figure 3(c) shows a similar seasonal LAI pattern for PAST, 
FRST, and AGRL, and it follows the seasonal rainfall pattern of 
the Andes. However, the onset/end (February–March/ 
October–November) of LAI development for FETZ is delayed 
regarding the onset/end (October/March) of the rainy season 
in the rainforest area. This behaviour was also observed in 
other tropical regions with natural ecosystems (e.g. 
Alemayehu et al. 2017).

We found in the literature that only a few SWAT-related 
studies have reported the calibration of plant parameters, and 
most of these have only considered a constant PHU_PLT value 
for each plant type. To simulate appropriately the vegetation 
dynamics and hydrological processes that depend on LAI, 
however, the calibration of plant parameters is crucial, parti
cularly the parameter that controls plant development such as 
the PHU_PLT, which varies with altitude in mountain basins, 
as demonstrated in this study. We believe that our results and 
proposed LAI calibration strategy can support modellers for a 
better simulation of vegetation dynamics.

3.3 Model performance in streamflow simulation

The Borg MOEA approach (see Section 2.8) was used to 
calibrate the SWAT model according to the aforementioned 
calibration strategies (see Table 2) and the parameters 
obtained are shown in Table 6. These model parameters were 
chosen to correct the deficiencies of the uncalibrated model 
(e.g. systematic flow underestimation being higher during low- 
flow periods, strong simulated peak discharges, etc.), for which 
the authors’ knowledge about basin characteristics, model 
structure, and how each model parameter influences the 
hydrological processes was important.

For single-objective, bi-objective, and multi-objective cali
bration, the Pareto front solution consisting of one, three, and 
six sets of parameters were obtained, respectively. Figure 4 
summarizes the results of different calibration strategies. 
Furthermore, the hydrographs, the FDCs, and the mean sea
sonal flow dynamics of the different objective calibrated simu
lations are shown in Figs 5(a,b), and 6, respectively.

In terms of the temporal variation of discharge dynamics 
(Fig. 5(a)), FDCs (Fig. 5(b)), and seasonal discharge dynamics 

Table 4. Calibrated SWAT plant parameter values for HRUs with perennial plants: mixed forest (FRST), evergreen broadleaf forest (FETZ), pasture (PAST), and agricultural 
areas (AGRL).

Calibrated valuesParameter Parameter description

PAST AGRL FRST FETZ

BIO_E Radiation-use efficiency ((kg/ha)/(MJ/m2)) 17.04 13.92 1.10 0.56
BLAI Maximum potential leaf area index (m2/m2) 1.10 2.74 1.70 5.30
FRGRW1 Fraction of PHU corresponding to the first point on the optimal leaf area development curve 0.06 0.07 0.02 0.10
LAIMX1 Fraction of BLAI corresponding to the first point on the optimal leaf area development curve 0.02 0.17 0.10 0.20
FRGRW2 Fraction of PHU corresponding to the second point on the optimal leaf area development curve 0.49 0.38 0.44 0.50
LAIMX2 Fraction of BLAI corresponding to the second point on the optimal leaf area development curve 0.90 0.92 0.98 0.90
DLAI Fraction of total PHU when leaf area begins to decline 0.48 0.59 0.40 0.48
ALAI_MIN Minimum leaf area index for plant during dormant period (m2/m2) 0.31 0.58 0.32 0.90
T_BASE Minimum temperature for plant growth (°C) 2.07 3.46 2.00 0.05
T_OPT Optimal temperature for plant growth (°C) 18.16 10.00 14.50 13.18
PHU_PLT Total number of heat units needed to bring plant to maturity Variable for each HRU
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(Fig. 6), the NSE calibrated simulation corresponds well with 
observed daily discharge during high discharge season but fails 
(flow underestimation) during the low discharge season. This 
observation is supported by the higher (lower) performance 
value for NSE (lNSE) as shown in Fig. 4. Moreover, hydro
logical signatures based on FDC (Fig. 4) show that this calibra
tion approach is primarily focused on the peak, high, and mid 
flows at the expense of improvements to the low-flow predic
tions. This finding is congruent with previous studies (Krause 
et al. 2005, Chen et al. 2018, Zhang et al. 2018b).

Nevertheless, lNSE calibrated simulations match well with 
observed discharge in all aspects of the hydrograph (Fig. 5) 
although discharges are moderately underestimated during 
high-discharge season (Fig. 6). Hence, lNSE is used in this study 
as part of the multi-objective calibration approaches to drive the 
model in simulating all hydrograph aspects in the calibration.

The results for bi-objective and multi-objective approaches 
show that the observed and simulated hydrographs match each 

other to a high degree (Fig. 5), and all performance measures 
(goodness of fit and FDC signature metrics; Fig. 4) show that 
these formulations are superior to the results of single-objec
tive approaches. This finding demonstrates that the inclusion 
of FDC signatures in addition to discharge-based performance 
measures within a multi-objective calibration leads to 
improved discharge simulation, which is in agreement with 
previous studies (Pokhrel and Yilmaz 2012, Hrachowitz et al. 

Figure 3. (a) (a) Scatterplot of PHU_PLT against elevation. (b) Simulated daily LAI (range over HRUs and area weighted HRU mean) and the 8-day MODIS LAI. (c) Long- 
term (2005–2015) average daily (8-day) LAI based on SWAT (MODIS). The vertical grey line marks the end of the calibration period and the beginning of the validation 
period. R2 is the coefficient of determination.

Table 5. Performance metrics for the SWAT for simulating LAI in the calibration 
(validation) period. Note that performance refers to 8-day aggregated data. R2 is 
the coefficient of determination.

PAST AGRL FRST FETZ

NSE 0.78 (0.72) 0.77 (0.63) 0.91 (0.83) 0.81 (0.81)
R2 0.79 (0.76) 0.81 (0.76) 0.91 (0.85) 0.82 (0.81)
PBIAS % −0.90 (−6.20) 0.20 (−1.10) 1.90 (0.00) 1.00 (2.20)

Table 6. Selected parameters and their ranges for model calibration for stream
flow. In the “Change type” column, R refers to a relative change of parameter 
values during the calibration, and V to absolute change. “Adjusted value” refers to 
the parameter mean values associated with the Pareto set obtained in the multi- 
objective scenario.

Parameter Description Range Change 
type

Adjusted 
value

CN2 Runoff curve number for 
moisture condition II

[−0.15, 
0.15]

R 0.06

SURLAG Surface runoff delay coefficient [0.1, 2] V 0.11
SOL_BD Wet bulk density [−0.25, 

0.25]
R 0.09

SOL_K Soil hydraulic conductivity [−0.25, 
0.25]

R −0.15

SOL_AWC Available water capacity of the 
soil layer

[−0.5, 
0.25]

R −0.31

GW_DELAY Groundwater delay time [1, 100] V 42.16
RCHRG_DP Deep aquifer percolation 

fraction
[0.05, 1] V 0.52
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2014, Shafii and Tolson 2015, Pfannerstill et al. 2017, Chilkoti 
et al. 2018, Sahraei et al. 2020).

Regarding the model performance in simulating the flow 
components, Fig. 4 shows the smaller values of PBIAS_BFI 
for the multi-objective calibration approach, which demon
strates that our approach leads to a more accurate 

representation of the flow partitioning into surface runoff 
and baseflow. Whereas approaches applied before (single- 
objective and bi-objective approaches) fail in simulating the 
partitioning into flow components according to the base
flow index, this agrees with the findings of Shafii et al. 
(2017), who reported that traditional signature-based 

Figure 4. Parallel coordinates plot of the Pareto front optimal solutions obtained by different calibration strategies. For each solution, optimal parameter values, 
discharge-based performance measures (NSE, lNSE, and PBIAS), and hydrological signatures (Speak, Shigh, Smid, Slow, and BIAS_BFI) are displayed. _cal (_val) indicates 
the measurements for the calibration (validation) period. Qsurf is the mean surface runoff in mm. A description of the SWAT parameters is provided in Table 6. A 
description of objective functions (OFs) is provided in Table 3.

Figure 5. Comparison of the observed (black line) and simulated (red line/area) (a) daily discharges and (b) simulated and observed FDC for four calibration strategies. 
In the case of the bi-objective (lNSE and FDCsign) and multi-objective (lNSE, FDCsign, and BIAS_BFI) optimization, the red area indicates optimal Pareto solutions and 
NSE and PBIAS are the mean of Pareto solutions. The grey line marks the end of the calibration period and the beginning of the validation period.
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calibration (using discharge and FDC) does not necessarily 
guarantee correct flow partitioning in a Hydrologic Model 
(HYMOD) hydrology model application.

Considering the rating performance criteria of Moriasi et al. 
(2007), NSE greater than 0.75 and PBIAS less than 10% are 
indicative of very good model performance for streamflow 
simulation; therefore, model performance was very good in 
both calibration (NSE ≥ 0.8, |PBIAS| ≤ 10%) and validation 
(NSE ≥ 0.8, |PBIAS| ≤ 8.7%) for daily streamflow simulation in 
all calibration strategies performed in this study. The results of 
this study (Fig. 4), however, clearly demonstrate that practi
tioners must be careful judging model credibility using only 
these discharge-based metrics, since good model performance 
for streamflow and FDC simulation does not guarantee inter
nal consistency of all simulated processes (e.g. surface runoff 
and baseflow).

In this study, additional calibration strategies (Appendix 
Fig. A2) that do not include FDC signatures were performed, 
and their results suggest that our proposed multi-objective 
approach is much more robust.

3.4 Parameter identifiability

The identification of physically plausible, representative, and 
robust model parameter sets for the basin under investigation 
is an important task in hydrologic modelling (Wagener et al. 
2001, Shafii and De Smedt 2009). For this purpose, we focused 
on the range of parameter values associated with the Pareto 
optimal solutions, as suggested by Gupta et al. (1998), and 
particularly on the parameters retained by bi-objective and 
multi-objective calibration strategies. A parameter becomes 
more identifiable when the parameter range is narrower and/ 
or its optimum values are located in a particular region of the 
feasible range.

Figure 4 shows that in the bi-objective calibration scenario, 
four parameters (Wet bulk density (SOL_BD), Soil hydraulic 
conductivity (SOL_K), Available water capacity of the soil 
layer (SOL_AWC), and Groundwater delay time 
(GW_DELAY)) are identifiable and three parameters (Runoff 
curve number for moisture condition II (CN2), Surface runoff 
delay coefficient (SURLAG), and Deep aquifer percolation 
fraction (RCHRG_DP)) are barely or not identifiable, since 
different values of these parameters give similar results in 
combination with the other parameters. Otherwise, six para
meters (CN2, SURLAG, SOL_K, SOL_AWC, GW_DELAY, 
and RCHRG_DP) – influencing main hydrologic processes 
such as surface runoff, lateral flow, evapotranspiration, and 
return flow from aquifers – are well identifiable, and only the 
parameter SOL_BD is hardly identifiable in the multi-objective 
calibration strategy. The larger number of identifiable para
meters in the latter approach is due to the inclusion of the 
baseflow index in the multi-objective calibration, which guides 
the optimization algorithm to identify parameters related to 
processes that impact the baseflow index. Therefore, when 
more information (objectives) is fed (required) into model 
calibration, the number of identifiable parameters will also 
increase.

Comparing the robustness of parameter sets obtained by 
each calibration strategy, the parameter sets of models cali
brated based on single-objective and bi-objective optimization 
performed satisfactorily in simulating streamflow but for the 
unrealistic representation of surface runoff (Fig. 4) as well as of 
the basin baseflow index. On the contrary, the parameter sets 
obtained by a multi-objective strategy led to appropriate repre
sentation of the baseflow index as well as streamflow and FDC 
simulation, and hence these parameter sets can be catalogued 
as representative for the study basin. The superiority of the 
multi-objective strategy in simulating flow partitioning is 
related to the better identification of the CN2 parameter, 

Figure 6. The mean seasonal dynamics of simulated discharge (red line/area) and observed discharge (black line) for each calibration strategy in the calibration period 
(left) and validation period (right).
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which directly impacts surface runoff and infiltration partition 
and alters water balance components (Arnold et al. 2012, Qi et 
al. 2020). Here, only representative parameters are described, 
and the narrower ranges of CN2, SURLAG, and RCHRG_DP 
obtained by the multi-objective approach indicate that the 
basin response is very sensitive to surface runoff and deep 
aquifer contribution. The obtained optimum values for CN2 
(Fig. 4) must lead to the increase of surface runoff, and conse
quently to simulated high peaks. Hence, SURLAG values con
tributed to smoothing the simulated hydrograph in the 
channel due to the delay in surface runoff release from the 
HRUs (Neitsch et al. 2011). The resulting optimal values of 
SOL_K (SOL_AWC) were identified to overcome the initial 
issue of the fast water movement through the soil (flow under
estimation). Optimal values of RCHRG_DP (mean value 0.52) 
indicate that from the total water for aquifer recharge, approxi
mately 52% (48%) recharges the deep aquifer (shallow aquifer). 
The high percentage of water reaching the deep aquifer is 
important for return flow from this aquifer to improve the 
streamflow simulation in the low-flow period. This agrees with 
the finding of Clark et al. (2014), who demonstrated the 
importance of return flow from deep aquifers to explain the 
sustained dry season flow in the neighbouring Andean 
Kosñypata basin.

3.5 Equifinality

Figure 4 shows that each calibration strategy produces a model 
or several models with good performance in streamflow simu
lation despite each model having a different set of parameters. 
This result demonstrates that model outputs are subjected to 
the effects of equifinality or the non-uniqueness issue (different 
sets of parameters in the calibration procedure resulting in 
similar simulations – see Beven 2006). This issue is common 
in complex nonlinear models such as SWAT (Shen et al. 2012, 
Ficklin and Barnhart 2014, Her and Chaubey 2015, Zhang et 
al. 2018a), which presents interactions among its parameters as 
reported by Zhang et al. (2018a).

Controlling the equifinality to arrive at meaningful parameter 
sets and solutions is a challenge. For instance, Fig. 4 shows that 
conventional calibration strategies based on hydrograph good
ness-of-fit optimization (approaches 1 and 2 with NSE or lNSE 
only) produce pseudo-accurate models (with unrealistic para
meter values), showing accurate performance statistics in stream
flow simulation while incorrectly representing some internal 
basins processes. This study also reveals that even the bi-objective 
calibration strategy including FDC signature as criterion in addi
tion to lNSE does not improve the equifinality. However, our 
proposed multi-objective calibration strategy improves parameter 
identifiability and reduces the equifinality because the inclusion of 
the baseflow index as part of the objective function leads to better 
identification of the CN parameter, which controls the flow 
partitioning into surface runoff and baseflow.

Overall, model calibration using only discharge is not suffi
cient to judge the validity of a model in representing the 
hydrologic system. Therefore, we suggest including more vari
ables (e.g. LAI, evapotranspiration, snow, baseflow, and hydro
logical signatures) to better constrain the calibration process 
(which was also suggested by Krysanova et al. 2018). Likewise, 

we suggest the use of multi-objective evolutionary algorithms 
that search for acceptable trade-offs between objectives, since 
these methods can help to mitigate the parameter uncertainty 
partly due to equifinality during the calibration. Otherwise, 
practitioners must be careful using single-objective optimiza
tion algorithms, since no sampling design schemes used in 
these algorithms consider the interactions among the para
meters (Song et al. 2015, Devak and Dhanya 2017, 
Razmkhah et al. 2017), and hence the solution can be subjected 
to equifinality.

3.6 Basin water balance and vegetation response

For a better understanding of the water budget for VRB, Table 7 
shows the long-term average annual values (1985–2015 period) 
for the most relevant water balance and flow components. The 
results show that annual precipitation in the basin is 748 mm, of 
which about 50% is lost from the system by evapotranspiration 
(ET = 375 mm), and 50% is the water yield of the basin 
(WYLD = 373 mm). Similar ratios (44.6–51%) of ET over 
precipitation in Ecuadorian Andean basins were reported 
(Guzmán et al. 2015, Mosquera et al. 2015, Carrillo-Rojas et al. 
2019). Regarding the WYLD components, the contribution of 
baseflow (BF = 291 mm, 78%) is higher than that of surface 
runoff (Qsurf = 82 mm, 22%). The main component of baseflow 
is the lateral flow (Qlat = 137 mm, 47%), followed by return flow 
from the deep aquifer (Qgwd = 79 mm, 27%) and the return 
flow from the shallow aquifer (Qgws = 75 mm, 26%). Our results 
indicate that the large baseflow contribution plays a key role in 
modulating the flow regime of VRB, and the important ground
water contribution explains the dry-season baseflow. This out
come is consistent with the findings for Peruvian Andean basins 
draining into the Amazon River, such as the Kosñypata (Clark et 
al. 2014) and upper Marañon River basin (Hill et al. 2018), 
where the substantial dry-season discharge was attributed to 
return flow from deep aquifers.

To evaluate the role of tropical Andean vegetation on water 
yields and baseflow, the baseflow index estimated by SWAT – 
SWAT_BFI (ratio of water yield over precipitation) for each land- 
use type and its spatial variability at the HRU level is shown in Fig. 
7e,c (Fig. 7d,b). The results show that the greatest ratio (~0.63) of 
water yield over precipitation is produced in pasture (PAST) areas 
which span the middle and upper part of the basin mainly (Fig. 1). 
Urban (URML) and barren (BARR) areas can produce water 

Table 7. Long-term average annual water balance (1985–2015 period) for the 
VRB.

Water balance components Value

Precipitation, P (mm) 748
Evapotranspiration, ET (mm) 375
Water yield, WYLD (mm) 373
Surface runoff, Qsurf (mm) 82
Baseflow, BF = Qlat + Qgws + Qgwd (mm) 291
Lateral flow, Qlat (mm) 137
Return flow from the shallow aquifer, Qgws (mm) 75
Return flow from the deep aquifer, Qgwd (mm) 79
Checks
BFI 0.77
SWAT_BFI 0.79
BIAS_BFI 0.02
ET/P 0.50

HYDROLOGICAL SCIENCES JOURNAL 69



yields of ~43% and ~52% of precipitation, respectively, contrib
uted by surface runoff mainly, as the baseflow index (SWAT_BFI) 
values are very low in these land uses. Although the evergreen 
broadleaf forest (FETZ) areas located around the basin outlet 
experience the greatest amount of precipitation, the water yield 
in those areas is lower (< 37% of precipitation), as for example in 
agricultural areas (AGRL) and mixed forest (FRST).

Figure 7(e) shows lower values of baseflow indices for agricul
tural areas, compared to pasture for instance, which may indicate 
the poor hydrological regulation capacity of cultivated areas. 
Otherwise, mixed forest, evergreen broadleaf forest, and pasture 
exhibit higher rates (> ~0.89) of baseflow to water yield, which 
highlights the features of these land uses in improving the infil
tration and subsurface processes. We observed, however, that 
pasture presents important hydrological services such as greater 
water yields and higher rates of baseflow simultaneously in com
parison to forest, which shows higher baseflow but poor water 
yields in VRB. The negative impacts of forest on water yield are 
consistent with the findings of previous studies in Andean basins 
(e.g. Buytaert et al. 2007, Ochoa-Tocachi et al. 2016).

Finally, the verification of BIAS_BFI being equal to 0.02 (2%; 
Table 7) highlights the SWAT model’s capability in simulating 
surface runoff and baseflow, which is essential to help the local 
water resources management including water supply services, 
identification of critical areas for soil conservation intervention, 
hydroelectric energy production, and preventing floods and 
droughts.

3.7 Limitations and perspectives

Despite the efforts of this study to reduce parameter uncer
tainty during the calibration procedure, we note that our 
results are still subject to uncertainties in the input data (e.g. 

climate, soil, and land use), data used for model calibration (e. 
g. discharge, BFI, and LAI), and model structure due to the 
simplification of hydrologic processes as well as to uncertain
ties in remaining model parameters. For instance, despite the 
utility of the climate data used in this study to drive hydrologic 
model in a basin with data scarcity, such as VRB, gridded 
climate data are subject to uncertainties in the observed data 
and spatial interpolation procedures. In particular, precipita
tion may have systematic bias caused by wind, which is inher
ent in precipitation measurements and introduces an 
unquantified error (Pollock et al. 2018). We assumed that 
BFI, which was estimated using digital filter methods based 
on daily discharge and used to constrain the flow partitioning, 
gives a physically plausible result. However, future work 
should involve the use of tracers and/or stable isotopes to 
estimate BFI and validate the indirect methods used in this 
study. We rely on discharge data from the km-105 hydro
metric station for model calibration and validation. However, 
discharge data may have errors because of inherent uncertain
ties in flow measurement and rating curves (Tomkins 2014). 
Uncertainties up to ±20% in flow measurement using the 
traditional area-velocity method and the current meter were 
reported in Andean basins of Colombia (Parra et al. 2016). 
Hence, future studies are needed to quantify uncertainties in 
hydrologic modelling owing to errors in observed discharge 
data in Andean basins. Finally, in this study, only one stream
gauge was used for model calibration and validation because of 
data scarcity, but we are confident in the robustness of our 
methodology which can be used in instrumented basins to 
perform the calibration/validation at multiple sites within the 
catchment, and even in ungauged basins where FDC and base
flow index can be obtained through regionalization 
approaches (e.g. Beck et al. 2013, Atieh et al. 2017).

Figure 7. Above is (a) the spatial variability at HRU level of precipitation, (b) ratio of water yield (WYLD) over precipitation, and (c) simulated baseflow index (SWAT_BFI). 
Below is (d) the ratio of WYLD over precipitation and (e) SWAT_BFI for each land-use type.
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4 Summary and conclusions

This study developed a step-wise, multi-objective calibration frame
work applied to the SWAT model for the simulation of vegetation 
dynamics, streamflow, and flow partitioning. The first part of the 
framework deals with model calibration of leaf area index dynamics, 
for which the SWAT LAI-related parameters of perennial plants 
were calibrated using MODIS LAI data as a reference and following 
the LAI calibration scheme proposed in this study (see Section 2.6). 
The second part of the calibration strategy deals with model calibra
tion of streamflow and flow partitioning, for which the inclusion of 
the baseflow index as well as discharge and FDC signatures within a 
multi-objective calibration approach is proposed. This approach is 
compared to discharge-based (single-objective, e.g. NSE) and sig
nature-based (bi-objective, which includes criterion for discharge 
and FDC signatures) calibration strategies. The data-scarce 
Vilcanota River basin located in the Peruvian Andes served as a 
case study to demonstrate the advantages of the proposed model 
calibration framework, with a view to providing a better under
standing of the basin’s internal hydrological processes. The follow
ing conclusions can be drawn from the study:

● The LAI calibration scheme led to good model perfor
mance in the simulation of LAI when compared to 
MODIS LAI. Moreover, our findings shed light on the 
fact that in basins with high elevation gradients, heat 
units change with altitude; therefore, the SWAT para
meter that controls the plant growth (PHU_PLT) 
decreases with height, and its calibration is crucial for 
correct LAI simulation in mountainous regions.

● Our results also show that better model performance in 
streamflow, FDC, and flow partitioning simulation is 
achieved when the model is calibrated using the proposed 
multi-objective calibration approach, whereas calibration 
approaches applied previously led to an unrealistic repre
sentation of flow partitioning even though good model 
performance for streamflow simulation is achieved with 
these strategies.

● The proposed methodology was observed to increase the 
identifiability of SWAT parameters related to evapotran
spiration, streamflow, and flow partitioning, whereas the 
parameter values obtained by previous calibration 
approaches were unrealistic.

● This study shows that the solution of the SWAT model, 
which presents interactions among its parameters (Zhang et 
al. 2018a), using previous calibration approaches is sub
jected to equifinality since these approaches produced 
pseudo-accurate models, showing good model performance 
for streamflow simulation while incorrectly representing 
some internal basin processes. In contrast, the proposed 
multi-objective calibration, which includes the baseflow 
index, was observed to reduce the parameter equifinality.

● Regarding the eco-hydrology of the Andean Vilcanota 
River basin, it was found that evapotranspiration repre
sents 50% of the average annual precipitation. The base
flow is the main component of the long-term streamflow 
(78% of it, on average) with an important contribution 
from deep aquifers that sustains the dry-season baseflow. 
Our findings further illustrate that areas covered by 

pasture offer better hydrological services regarding the 
water yield and baseflow in comparison to other land 
uses. The ability of the SWAT model to realistically 
simulate vegetation dynamics, streamflow and baseflow 
can contribute to improving water resources manage
ment of the VRB and similar water catchments.

Overall, our proposed calibration and validation framework 
for hydrologic models such as SWAT increases the chances of 
obtaining the right answer for the right reason in hydrologic 
modelling, which is a crucial step toward more realistic hydro
logical applications. Examples include a better understanding 
of basin hydrology and water resources and an evaluation of 
the impacts of land-use changes and climate change. The 
proposed calibration framework can be applied in any moun
tain basin and can be adapted to the calibration of other 
physically or process-based hydrological models.
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Appendix.

Figure A1. Spatio-temporal variability of average monthly LAI values for the period 2005–2015 estimated by MODIS and SWAT at HRU level. The spatial correlation (r) 
between MODIS and SWAT LAI is shown in parentheses.

Figure A2. Parallel coordinates plot of the Pareto front optimal solutions obtained by additional calibration strategies: the traditional biobjective function based on 
discharge only (NSE and PBIAS) and the objectives defined by discharge measures and baseflow index, such as “NSE and BIAS_BFI,” “lNSE and BIAS_BFI,” and “NSE, 
PBIAS, and BIAS_BFI.” For each solution, optimal parameter values, discharge-based performance measures (NSE, lNSE and PBIAS), and hydrological signatures (Speak, 
Shigh, Smid, Slow, and BIAS_BFI) are displayed. _cal (_val) indicates the measurements for the calibration (validation) period. Qsurf is the mean surface runoff in mm. A 
description of SWAT parameters is provided in Table 6. A description of objective functions (OFs) is provided in Table 3. All calibration strategies shown in this figure 
perform worse than those calibration strategies that include lNSE, FDC signatures, and baseflow index within a multiobjective calibration framework as shown in Fig. 4.
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