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SPECTRAL PROJECTION FOR THE ∂̄ -NEUMANN PROBLEM

A. ALSAEDY AND N. TARKHANOV

Abstract. We show that the spectral kernel function of the ∂̄ -Neumann prob-
lem on a non-compact strongly pseudoconvex manifold is smooth up to the

boundary.
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Introduction

The ∂̄ -Neumann problem appears naturally in studying the Dirichlet form for
the Dolbeault complex on a compact complex manifold Z with boundary. More
precisely, one minimizes the Dirichlet norm over the space of differential forms of
bidegree (0, q) on Z whose complex normal parts on the boundary of Z vanish.
The Euler-Lagrange equations of this variational problem just amount to the ∂̄ -
Neumann problem.

While the differential equation in Z in the ∂̄ -Neumann problem is a generalized
Laplace equation, the boundary conditions fail to satisfy the Shapiro-Lopatinskii
condition. Hence, the elliptic regularity in Sobolev spaces on Z is violated. The
main a priori estimate for (0, 1) -forms on compact strongly pseudoconvex manifolds
was proved by Morrey, see the references in [Mor66]. When compared with a
priori estimates for elliptic boundary value problems, the estimate of Morrey bears
loss of 1 in the regularity. For differential forms of arbitrary bidegree (0, q) with
q ≥ 1 on strongly pseudoconvex manifolds the main a priori estimate was later
proved by Kohn [Koh63] who extended in this way the theory of harmonic integrals
by W. Hodge (1941) and K. Kodaira (1953) to compact strongly pseudoconvex
manifolds.
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2 A. ALSAEDY AND N. TARKHANOV

The ∂̄ -Neumann problem initiated readily the study of so-called subelliptic op-
erators which occured intensively in the 1970s and 1980s. In complex analysis this
study was mostly focused upon the regularity of solutions of the ∂̄ -Neumann prob-
lem in pseudoconvex domains of finite type. For a current survey in this direction
we refer the reader to [BS99].

The most difficult part of [Koh63] is the proof of regularity of solutions up to
the boundary ∂Z. This proof was simplified by Kohn and Nirenberg in [KN65].
To this end, they had elaborated calculus of pseudodifferential operators which are
nowadays referred to as classical ones.

The proof of regularity in the ∂̄ -Neumann problem raised the problem of con-
structing explicit integral formulas for the solution. A satisfactory theory is nowa-
days available in [LM02]. We also mention an earlier paper [BS91] which studied
estimates for the kernel function of the ∂̄ -Neumann operator. First steps towards
calculus of pseudodifferential operators relevant to several complex variables were
summarized in [NS79].

For compact strongly pseudoconvex manifolds Z the ∂̄ -Neumann operator sat-
isfies a pseudolocal estimate with gain 1 in the Sobolev scale. Combining this
estimate with a familiar argument of topological tensor products shows that the
spectral kernel function of the ∂̄ -Neumann problem is smooth up to the boundary
of Z × Z.

The present paper is motivated by the question of M. Shubin whether the spectral
kernel function of the complex Laplacian under its natural boundary conditions is
still C∞ up to the boundary of Z×Z, if Z is not compact. We answer the question
in the affirmative. To this end we prove that a pseudolocal estimate holds even for
non-compact strongly pseudoconvex manifolds. A close result was established in
[Eng01] using different techniques.

The spectral theory of the ∂̄ -Neumann problem has been previously studied
in [Meti81, BS87] for compact manifolds with boundary. In [MO91], heat kernel
asymptotics are developed for the heat kernel of a general elliptic operator with
non-coercive boundary conditions.

1. The ∂̄ -Neumann problem

Let Z be a Hermitian complex manifold of dimension n with C∞ boundary ∂Z.
We always think of Z as a closed subdomain of a larger Hermitian complex manifold
Z ′ of the same dimension.

Suppose Z is strongly pseudoconvex, i.e., at each point of ∂Z the Levi form
restricted to the tangent hyperplane has n − 1 positive eigenvalues. This slightly
differs from the usual notation, for we don’t control ∂Z at the points at infinity if
there are any.

Let F be a Hermitian holomorphic vector bundle over Z ′. For q = 0, 1, . . . , n,
we set Fq = F ⊗C

∧0,q
T ∗(Z ′). This bundle is the one we are interested in, since

its sections are the differential forms of type (0, q) on Z ′ with coefficients in F .
The operator ∂̄ gives rise to a differential operator ∂̄F on the F -valued differential
forms by ∂̄F = 1⊗ ∂̄.

A Hermitian metric on Z ′ induces a volume element dv on Z ′. When combined
with a Hermitian metric on F , this allows one to define a conjugate linear isomor-
phism of bundles ∗ : Fq → Fq ′ by ∗v = (·, v)zdv. Here, Fq ′ = F ′⊗C

∧n,n−q
T ∗(Z ′)

stands for the dual bundle of Fq.
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Furthermore, in the space C∞comp(Z ′,Fq) we can introduce an inner product by
the formula

(u, v)L2(Z′,Fq) =

∫
Z′

(u(z), v(z))zdv

=

∫
Z′
〈∗v, u〉z

for u, v ∈ C∞comp(Z ′,Fq). We say that a form u is square integrable on Z ′ if the
function (u, u)z is integrable with respect to dv. As usual, the space of square
integrable (0, q) -forms with coefficients in F on Z ′ is denoted by L2(Z ′,Fq). The
inner product (u, v)L2(Z′,Fq) actually turns L2(Z ′,Fq) into a Hilbert space with
norm

‖u‖L2(Z′,Fq) :=
√

(u, u)L2(Z′,Fq),

as is easy to check.
We now restrict our section spaces and operators thereon to the manifold Z,

thus obtaining

Eq := C∞(Z,Fq),
Lq := L2(Z,Fq),

etc. It is obvious that Lq just amounts to the completion of {u ∈ Eq : ‖u‖Lq <∞}
in the norm ‖ · ‖Lq .

Let DqT be the set of all sections u ∈ Lq, for which there is a sequence {uν} with
the following properties:

1) uν ∈ Lq ∩ Eq;
2) {uν} converges to u in Lq; and
3) {∂̄Fuν} is a Cauchy sequence in Lq+1.
The mapping T : DqT → Lq+1 defined by Tu = lim ∂̄Fuν , where {uν} is a

sequence with properties 1)–3), is called the maximal operator generated by ∂̄F .
Note that T is well defined. Indeed, if {u′ν} is another sequence satisfying 1)–3),

and f = lim ∂̄Fu
′
ν , then for all g ∈ C∞(Z,Fq+1′) with a compact support in the

interior of Z we get

〈Tu− f, g〉 = lim
〈
∂̄Fuν − ∂̄Fu′ν , g

〉
= lim

〈
uν − u′ν , ∂̄′Fg

〉
= 0,

whence Tu = f .
We will think of T as an unbounded operator from Lq to Lq+1, whose domain

is DqT . Since DqT contains Lq ∩ Eq the operator T is densely defined and closed.
From the lemma of du Bois-Reymond and the uniqueness of a weak limit it

follows that if u ∈ DqT then Tu = ∂̄Fu in the sense of distributions in the interior
of Z.

Lemma 1.1. As defined above, T satisfies TDqT ⊂ D
q+1
T and T 2 = 0.

Proof. Assume that u ∈ DqT and {uν} is a sequence with properties 1)–3). We set

fν = ∂̄Fuν . Then Tu = lim fν . And since ∂̄Ffν = 0, we obtain that Tu ∈ Dq+1
T

and T (Tu) = 0. �
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Thus we have the following complex of Hilbert spaces and their closed linear
mappings:

L· : 0 −→ L0 T−→ L1 T−→ . . .
T−→ Ln −→ 0. (1.1)

The L2 -cohomology of the Dolbeault complex on Z with coefficients in F is just
the cohomology of complex (1.1). More precisely, the cohomology at step q denoted
by Hq(L·) is defined to be the quotient of the null-space of T : DqT → Lq+1 over the

range of T : Dq−1
T → Lq.

We now define T ∗, the adjoint of T , as usual for unbounded operators. Namely,
let DqT∗ be the set of all forms g ∈ Lq with the property that there is v ∈ Lq−1

satisfying (Tu, g)Lq = (u, v)Lq−1 for all u ∈ Dq−1
T . We define T ∗ : DqT∗ → Lq−1 by

T ∗g = v.
The operator T ∗ is well defined because the domain Dq−1

T is dense in Lq−1. It is
easy to see that if g ∈ DqT∗ ∩Eq then T ∗g = ∂̄∗Fg, where ∂̄∗F = ∗−1∂̄′F∗ is the formal
adjoint of ∂̄F .

Moreover, the Stokes theorem tells us that the elements ofDqT∗ , which are smooth
up to the boundary of Z, satisfy certain conditions on ∂Z. We write these in the
form n(g) = 0 on ∂Z, where n(g) is the complex normal component of g, cf. Section
3.2.2 in [Tar95]. The equality n(g) = 0 means that the coefficients of g at each point
of ∂Z satisfy a homogeneous system of linear equations, the latter varying smoothly
over ∂Z.

Lemma 1.2. T ∗DqT∗ ⊂ D
q−1
T∗ and T ∗2 = 0.

Proof. Indeed, if g ∈ DqT∗ and u ∈ Dq−2
T then by the very definition and Lemma

1.1 we get

(Tu, T ∗g)Lq−1 = (T (Tu), g)Lq

= 0.

Therefore, T ∗g ∈ Dq−1
T∗ and T ∗(T ∗g) = 0, as desired. �

Let us introduce an operator L on Lq with a domain DqL, which has the property
that if u ∈ DqL ∩ Eq then Lu = ∆u, where ∆ = ∂̄∗F ∂̄F + ∂̄F ∂̄

∗
F is the Laplacian of

the Dolbeault complex on Z ′ with coefficients in F . Namely, write DqL for the set

of all u ∈ DqT ∩D
q
T∗ with the property that Tu ∈ Dq+1

T∗ and T ∗u ∈ Dq−1
T . Then the

operator L : DqL → Lq is defined by

Lu = T ∗Tu+ TT ∗u,

cf. § 4.2 in [Tar95].
The ∂̄F -Neumann problem on the manifold Z in the L2 setting consists in the

following: Given a section f ∈ Lq, when is there u ∈ DqL such that Lu = f , and
how does u depend on f?

The weak orthogonal decomposition is actually the first step in solving the ∂̄F -
Neumann problem. Set

Hq = {u ∈ DqT ∩ D
q
T∗ : Tu = T ∗u = 0},

for q = 0, 1, . . . , n. Since the operators T and T ∗ are closed, Hq is a closed subspace
of Lq. Denote by H : Lq → Hq the orthogonal projection of Lq onto Hq.

Lemma 1.3. u ∈ Hq if and only if u ∈ DqL and Lu = 0.
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Proof. If u ∈ Hq then obviously u ∈ DqL and Lu = 0. If Lu = 0 then (Lu, u)Lq = 0,
and since

(Lu, u)Lq = ‖Tu‖2Lq+1 + ‖T ∗u‖2Lq−1

we have u ∈ Hq. �

Lemma 1.4. The operator L is selfadjoint, and (L+ 1)−1 exists, is bounded, and
is everywhere in Lq defined.

Proof. Since T is a closed operator and the domain of T is dense, the same is also
true for T ∗, and (T ∗)∗ = T .

It follows that the operators (TT ∗ + 1)−1 and (T ∗T + 1)−1 exist, are bounded,
selfadjoint and defined everywhere in Lq, cf. [RS52, 118].

We now easily verify that (L + 1)−1 exists, is bounded, is everywhere defined,
and is given by the formula

(L+ 1)−1 = (TT ∗ + 1)−1 + (T ∗T + 1)−1 − 1,

which completes the proof. �

Corollary 1.5 (weak orthogonal decomposition). The range of L is orthogonal to
Hq, and

Lq = Hq ⊕ LDqL, (1.2)

where LDqL denotes the closure of LDqL in Lq.

Proof. This follows immediately from the selfadjointness of L and Lemma 1.3. �

In particular, if LDqL is closed then we arrive at the “strong orthogonal decom-
position”

Lq = Hq ⊕ T ∗TDqL ⊕ TT
∗DqL. (1.3)

2. The ∂̄ -Neumann operator

Definition 2.1. Let LDqL be closed and f ∈ Lq, then f = Hf +Lu where u ∈ DqL.
The ∂̄F -Neumann operator N : Lq → DqL is defined by Nf = u−Hu.

Note that N is well defined. Indeed, if also f = Hf + Lu′ where u′ ∈ DqL then
L(u− u′) = 0 whence

(u−Hu)− (u′ −Hu′) = (u− u′)−H(u− u′)
= 0.

We summarize the properties of the ∂̄F -Neumann operator. They generalize
those of the Green operator from the Hodge theory, for the ∂̄F -Neumann problem
itself stems from the desire to extend the Hodge theory to the case of manifolds
with boundary.

Lemma 2.2. Suppose LDqL is closed. Then the ∂̄F -Neumann operator N has the
following properties:

1) N is bounded, selfadjoint, HN = NH = 0, and we have the orthogonal
decomposition

f = Hf + T ∗TNf + TT ∗Nf (2.1)

for all f ∈ Lq.
2) If f ∈ DqT and Tf = 0 then TNf = 0. If moreover LDq+1

L is closed then
TNf = NTf .
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3) If f ∈ DqT∗ and T ∗f = 0 then T ∗Nf = 0. If moreover LDq−1
L is closed then

T ∗Nf = NT ∗f .

Proof. 1) The equalities HN = NH = 0 and formula (2.1) follow immediately from
the definition of N .

Further, by the Closed Graph Theorem there exists a constant c > 0 such that
if u ∈ DqL is orthogonal to Hq then we have ‖Lu‖Lq ≥ c‖u‖Lq . Applying this to
Nf , we obtain

‖Nf‖Lq ≤ 1

c
‖LNf‖Lq

=
1

c
‖f −Hf‖Lq

≤ 1

c
‖f‖Lq .

Hence N is bounded.
Finally, the selfadjointness of the ∂̄F -Neumann operator follows immediately

from Lemma 1.4 because

(Nf, g)Lq = (Nf,Hg + LNg)Lq

= (Nf,LNg)Lq

= (LNf,Ng)Lq

= (f,Ng)Lq .

2) Let f ∈ DqL. Then from (2.1) and Lemma 1.1 we get T ∗TNf ∈ DqT , and
Tf = 0 implies TT ∗TNf = 0. Hence it easily follows that TNf = 0.

If also LDq+1
L is closed then for any f ∈ DqT we have Tf = TT ∗TNf on the

one hand, and Tf = TT ∗NTf on the other hand. Hence L(TNf − NTf) = 0,
and since TNf −NTf is orthogonal to Hq+1 we deduce that TNf −NTf = 0, as
required.

3) The proof is analogous to that of part 2). �

The Laplacian ∆ is well known to be an elliptic differential operator on Z ′. Hence
it follows that the harmonic differential forms u ∈ Hq are infinitely differentiable in
the interior of Z, and the ∂̄F -Neumann operator N , if exists, preserves the interior
regularity.

Beginning with its classical forms, the Dirichlet norm has been an important
technical tool in studying the ∂̄F -Neumann problem. Given any u, v ∈ DqT ∩ D

q
T∗ ,

the Dirichlet inner product of these differential forms is defined by

D(u, v) = (Tu, Tv)Lq+1 + (T ∗u, T ∗v)Lq−1 + (u, v)Lq ,

and the Dirichlet norm is D(u) =
√
D(u, u).

The space DqT ∩D
q
T∗ with the Dirichlet norm is a complete (Hilbert) space. It is

denoted by Dq.
Since D(u) ≥ ‖u‖Lq for all u ∈ Dq there exists only one selfadjoint operator S

with a domain DqS ⊂ Dq, such that if u ∈ DqS and v ∈ Dq then

D(u, v) = (Su, v)Lq . (2.2)

The following lemma gives a useful description of the operator L because our
estimates will be in the norm D(u).
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Lemma 2.3. The equalities hold DqL = DqS and L = S − 1, where the operator S
is defined by (2.2).

Proof. If u ∈ DqL and v ∈ Dq, then D(u, v) = ((L+ 1)u, v)Lq is fulfilled. Hence by
the uniqueness of S, we have S = L+ 1. �

3. Completely continuous norms

Let ‖ · ‖1 and ‖ · ‖2 be two norms on a vector space L. We will say that the norm
‖ · ‖1 is completely continuous with respect to the norm ‖ · ‖2 if every sequence in
L which is bounded in the norm ‖ · ‖1 has a convergent subsequence in the norm
‖ · ‖2.

Lemma 3.1. If the norm D on Dq is completely continuous with respect to ‖ · ‖Lq

then Hq is finite dimensional.

Proof. Observe that if u, v ∈ Hq then D(u, v) = (u, v)Lq . Suppose that the dimen-
sion of Hq is infinite. Then there exists an infinite sequence {uν} of orthonormal
elements in Hq. Since D(uν) = ‖uν‖Lq = 1 the sequence {uν} contains a con-
vergent subsequence. But this is at variance with the fact that if ν 6= µ then
‖uν − uµ‖Lq =

√
2. �

Lemma 3.2. If the norm D on Dq is completely continuous with respect to ‖ · ‖Lq

then there exists a constant c > 0 such that for all u ∈ Dq orthogonal to Hq, we
have

‖Tu‖2Lq+1 + ‖T ∗u‖2Lq−1 ≥ c ‖u‖2Lq .

Proof. Consider the Hilbert space Lq+1 × Lq−1 which is equipped with the norm

‖{f, v}‖ =
(
‖f‖2Lq+1 + ‖v‖2Lq−1

)1/2
.

Let M : Dq → Lq+1 × Lq−1 be the mapping defined by Mu = {Tu, T ∗u}. Note
that M is a closed operator.

We will prove that the range of M is closed. Suppose that MDq is not closed.
Then there exists a sequence {uν} in Dq, such that limMuν = {f, v} and {f, v} 6∈
MDq.

Set u′ν = uν − Huν , then u′ν are orthogonal to Hq and limMu′ν = {f, v}.
If ‖u′ν‖Lq are bounded then D(u′ν) = (‖Mu′ν‖2 + ‖u′ν‖2Lq )1/2 are bounded, too.
Then by hypothesis {u′ν} has a convergent subsequence with a limit u, and since
M is closed then Mu = {f, v} which contradicts the assumption that {f, v} 6∈
MDq. Thus by choosing a subsequence, if necessary, we may actually assume that
lim ‖u′ν‖Lq =∞.

Now set Uν = u′ν/‖u′ν‖Lq . Then lim ‖MUν‖ = 0 and D(Uν) are bounded.
Therefore {Uν} has a convergent subsequence {Uνk} such that

limUνk = U,
limMUνk = {0, 0}.

Hence MU = 0 so that U ∈ Hq. Since Uν is orthogonal to Hq we have U = 0, but
‖Uν‖Lq = 1. This contradiction proves that the range MDq is closed in Lq+1×Lq−1.

Let R be the restriction of M to the orthogonal complement of Hq in Dq. Then
R is one-to-one and has a closed range. By the closed graph theorem, the inverse
R−1 is bounded. Hence there is c > 0 such that ‖Ru‖2 ≥ c ‖u‖2Lq . This proves the
lemma. �



8 A. ALSAEDY AND N. TARKHANOV

Theorem 3.3. If the norm D on Dq is completely continuous with respect to the
norm ‖ · ‖Lq , then LDqL is closed.

Proof. By Lemma 3.2, there exists c > 0 with the property that for all u ∈ DqL
which are orthogonal to Hq we have

(Lu, u)Lq ≥ c ‖u‖2Lq ,

so that ‖Lu‖Lq ≥ c ‖u‖Lq .
Set f = limLuν . We may assume that uν are orthogonal to Hq, and then ‖uν‖Lq

are uniformly bounded. Therefore, {uν} has a subsequence whose arithmetic means
converge, cf. [RS52, 32, 38] Denoting this limit by u, we get f = Lu, which
completes the proof. �

The question of when the norm D on Dq is completely continuous with respect
to the norm ‖ · ‖Lq , is very difficult in the general case and it requires special
consideration. We present some consequences here.

Corollary 3.4. Suppose the norm D on Dq is completely continuous with respect
to the norm ‖ · ‖Lq . Then the ∂̄F -Neumann problem is solvable at step q in the
sense that there exist operators H and N in Lq with properties 1)–3) of Lemma
2.2.

Proof. This follows immediately from Lemma 2.2 and Theorem 3.3. �

For compact manifolds with boundary Z the subspaceH0 is usually of infinite di-
mension. So by Lemma 3.1 the Dirichlet norm D may not be completely continuous
with respect to the norm ‖ · ‖L0 on D0. However, the following result holds.

Theorem 3.5. If the norm D on D1 is completely continuous with respect to the
norm ‖ · ‖L1 then LD0

L is closed.

Proof. It suffices to prove that there exists a constant c > 0 with the property that
‖Lf‖L0 ≥ c ‖f‖L0 for all f ∈ D0

L which are orthogonal to H0.
First, if u ∈ D0

L then Tu ∈ D1 and Tu ⊥ H1. By Lemma 3.2, we readily deduce
that

‖T ∗Tu‖2L0 = ‖Lu‖2L0

≥ c ‖Tu‖2L1 .

Further, since f ⊥ H0 then by the weak orthogonal decomposition (1.2) we see

that f ∈ LD0
L. Hence, for each ε > 0 there is u ∈ D0

L such that ‖f −Lu‖L0 < ε. It
follows that

‖f‖2L0 ≤ (Lu, f)L0 + ε ‖f‖L0

≤ ‖Tu‖L1‖Tf‖L1 + ε ‖f‖L0

≤ 1

c
‖Lu‖L0‖Lf‖L0 + ε ‖f‖L0

≤ 1

c
‖f‖L0‖Lf‖L0 + ε

(
1

c
‖Lf‖L0 + ‖f‖L0

)
.

Since ε can be made arbitrarily small by choosing Lu close enough to f we obtain
‖Lf‖L0 ≥ c ‖f‖L0 , which concludes the proof. �

The next result immediately follows from Lemma 2.2 and Theorem 3.3. Recall
that H0 = kerT 0.
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Corollary 3.6. Suppose the norm D on D1 is completely continuous with respect
to the norm ‖ · ‖L1 . Then f = Hf + T ∗NTf for any section f ∈ D0

T , where
H : L0 → H0 is the orthogonal projection.

When acting on sections of F0 = F , the differential operator ∂̄F has injective
symbol. Since

H0 = {u ∈ L0 ∩ C∞loc(Zo,F) : ∂̄Fu = 0},
where Zo stands for the interior of Z, the operator H0 is a generalisation of the
classical Bergman projector. Corollary 3.6 gives H0 = 1− T ∗NT .

4. Pseudolocal estimates

The regularity of the ∂̄F -Neumann operator near the boundary of Z is a much
more delicate problem. It initiated the study of non-elliptic boundary value prob-
lems, thus motivating a development of pseudodifferential theory, cf. [KN65]. Kohn
proved in [Koh63] that if Z is a compact strongly pseudoconvex manifold then the
norm D on Dq is completely continuous with respect to the norm ‖ · ‖Lq for all
q = 1, . . . , n. Moreover, the ∂̄F -Neumann operator preserves the regularity up to
the boundary in the scale of Sobolev spaces Hs(Z,Fq), with s = 0, 1, . . ., in the
sense that f ∈ Hs(Z,Fq) implies Nf ∈ Hs(Z,Fq). Kohn’s original approach was
considerably simplified in [KN65] in a very general framework via elliptic regulari-
sation.

One says that a subelliptic estimate of order ε > 0 holds for the ∂̄F -Neumann
problem at step q in a neighbourhood U of a boundary point z0 ∈ ∂Z if there is a
constant c such that

‖u‖Hε(Z,Fq) ≤ cD(u) (4.1)

for every smooth form u which is supported in Z ∩ U and satisfies the boundary
condition n(u) = 0 on ∂Z ∩ U .

The systematic study of subelliptic estimates in [KN65] provides the following
“pseudolocal estimate.”

Theorem 4.1. Let Z be a compact pseudoconvex manifold with C∞ boundary.
Suppose a subelliptic estimate (4.1) holds in a neighbourhood U of a boundary point
z0. Pick arbitrary functions ϕ,ψ ∈ C∞comp(U), such that ψ ≡ 1 in a neighbourhood
of the support of ϕ. Then, for every non-negative s there is a constant C with the
property that

‖ϕNf‖Hs+2ε(Z,Fq) ≤ C (‖ψf‖Hs(Z,Fq) + ‖f‖Lq )

for all f ∈ Lq ∩Hs(U,Fq).

Proof. See Theorem 4 and Remark 6.2 in [KN65]. This result is actually mentioned
in [BS99], cf. Theorem 8. �

For a compact strongly pseudoconvex manifold Z, a subelliptic estimate (4.1)
with ε = 1/2 holds in a neighbourhood of every boundary point, provided 1 ≤ q ≤ n.
It follows that for such manifolds the ∂̄F -Neumann operator is continuous from
Hs(Z,Fq) to Hs+1(Z,Fq).

If Z is not compact then the ∂̄F -Neumann problem on Z need not be solvable
in the sense that the range LDqL is closed in Lq. In order to guarantee the normal
solvability one has to arrange the problem with the points at infinity. As usual, this
would require pseudodifferential analysis in weighted Sobolev spaces. Still, we may



10 A. ALSAEDY AND N. TARKHANOV

try to maintain the pseudolocal estimate of Theorem 4.1, thus showing the local
regularity for the ∂̄F -Neumann problem on a non-compact strongly pseudoconvex
manifold Z.

Corollary 4.2. Assume that U is a neighbourhood of a boundary point z0, V a
relatively compact open subset of U , and s a non-negative integer. If u ∈ DqL
satisfies Lu ∈ Hs(U,Fq) then u ∈ Hs+1(V,Fq) and

‖u‖Hs+1(V,Fq) ≤ C (‖Lu‖Hs(U,Fq) + ‖u‖L2(U,Fq)),

where C depends on U , V and s but not on u.

Proof. In case the closure of V does not meet ∂Z the assertion follows from the in-
terior regularity of the ∂̄F -Neumann. Hence we can assume that V is small enough,
for if not, we shrink it. Since each boundary point of Z possesses a neighbourhood
whose closure is a compact strongly pseudoconvex manifold, we can assume with-
out loss of generality that Ū is a compact strongly pseudoconvex manifold with
C∞ boundary. It is convenient to choose U sufficiently small, so that the harmonic
spaces on U be trivial.

For every q = 0, 1, . . . , n, choose a parametrix Gq of the Laplacian ∆q on Z ′.
This is a classical pseudodifferential operator of order −2 and type Fq → Fq on
Z ′. The Schwartz kernel KGq of Gq is a C∞ section of the bundle Fq � Fq ′ away
from the diagonal of Z ′ × Z ′.

Fix any z in the interior of U and denote by Cq(z, ·) the unique solution of the
∂̄F -Neumann problem

∆Cq(z, ·) = 0 in U,
n(Cq(z, ·)) = n(∗−1KGq (z, ·)) on ∂U,

n(∂̄FC
q(z, ·)) = n(∂̄F ∗−1 KGq (z, ·)) on ∂U

(4.2)

in Ū . The kernel

Kq(z, ·) := ∗−1KGq (z, ·)− Cq(z, ·)
gives a parametrix of the ∂̄F -Neumann problem at step q in Ū in the sense that
the Green formula

u(z) =

∫
∂U

(n(u), t(∂̄∗FK
q(z, ·)))ζ + (n(∂̄Fu), t(Kq(z, ·)))ζ ds+

∫
U

(∆u,Kq(z, ·))ζ dv

(4.3)
holds for all u ∈ H2(U,Fq) up to a term Su, where S is a smoothing operator on
Ū . By t(f) is meant the complex tangential component of f on ∂U , cf. Section
3.2.2 in [Tar95].

Formula (4.3) is actually valid for all u ∈ L2(U,Fq) with ∆u ∈ L2(U,Fq). In this
case the values n(u) and n(∂̄Fu) on ∂U are interpreted in a weak sense. To make it
more precise it suffices to assume that the neighbourhood U is small enough. Using
a local fundamental solution of ∆ on Z ′ we find a differential form u0 ∈ H2(U,Fq)
which satisfies ∆u0 = ∆u in U . Obviously, the traces of n(u0) and n(∂̄Fu0) on
∂U are well defined. Furthermore, the difference v = u − u0 lies in L2(U,Fq) and
satisfies ∆v = 0 in U . Hence both n(v) and n(∂̄Fv) possess weak limit values
on ∂U , cf. [Roi96] and elsewhere. We set n(u) = n(u0) + n(u − u0) on ∂U , and
similarly for n(∂̄Fu0).

Having disposed of this preliminary step, we can now return to the proof of the
estimate. Let u ∈ DqL be an arbitrary form with Lu ∈ Hs(U,Fq). Write NU for the
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∂̄F -Neumann operator on the manifold Ū . By Theorem 4.1, u′ = NULu belongs
to Hs+1(U,Fq) and satisfies

‖u′‖Hs+1(U,Fq) ≤ C ′ ‖Lu‖Hs(U,Fq), (4.4)

where C ′ is a constant independent of u. Since

∆u′ = Lu in U,
n(u′) = 0 on ∂U,

n(∂̄Fu
′) = 0 on ∂U,

the difference u′′ = u − u′ lies in L2(U,Fq) and fulfills ∆u′′ = 0 weakly in the
interior of U . Moreover, both n(u′′) = n(u) and n(∂̄Fu

′′) = n(∂̄Fu) vanish on
∂Z ∩ U . Applying (4.3) yields

u′′(z) =

∫
∂U

(n(u′′), t(∂̄∗FK
q(z, ·)))ζ + (n(∂̄Fu

′′), t(Kq(z, ·)))ζ ds

up to a term Su′′. It follows that u′′ ∈ C∞(V̄ ,Fq).
Since V ⊂⊂ U , there is a function χ ∈ C∞(Ū) which is equal to 1 in a neighbour-

hood of ∂U \ ∂Z and vanishes near V̄ . By the Stokes theorem, the above formula
transforms to

u′′(z) =

∫
U

(u′′,∆(χK(z, ·)))ζ dv + Su′′

for all z ∈ V . Hence

‖u′′‖Hs+1(V,Fq) ≤ C ′′ (‖u‖L2(U,Fq) + ‖u′‖L2(U,Fq)) (4.5)

with C ′′ a constant independent of u. Combining (4.4) and (4.5) completes the
proof. �

Perhaps, there is a direct proof of Corollary 4.2 using Theorem 4.1 but we have
not been able to do this.

5. Spectral projection

By Lemma 1.4, the operator L in Lq is selfadjoint, and (L+ 1)−1 is defined on
all of Lq. If the operator (L+ 1)−1 is compact then the spectrum of L consists of
at most countable many eigenvalues λj ≥ 0 which have no accumulation point but
+∞. However, (L+1)−1 fails to be compact for non-compact strongly pseudoconvex
manifolds Z.

By the spectral theorem, for L there exists a unique orthogonal resolution Et,
t ≥ 0, of the identity on Lq, such that

ϕ(L) =

∫ ∞
0−

ϕ(t) dEt

for all admissible functions ϕ on R. It is easy to see from this that the spectrum of L
coincides with the union of the sets of points of increase of all functions (Etu, u)Lq ,
where u ∈ Lq.

The operator Pλ := Eλ+0 − Eλ is an orthogonal projection of Lq onto the
corresponding eigenspace of L. The spectral function Et of L is thus a ‘sum’ of Pλ
over all λ < t, i.e.,

Et =

∫ t

0−
Pλ dm(λ) (5.1)

where m(λ) is a non-decreasing function on R.
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For any interval I = [a, b], the operator EI := Eb−Ea is an orthogonal projection
in Lq. It commutes with L, i.e., the equality EIL = LEI holds on the domain of
L. We see that L keeps invariant the range of EI .

By the spectral kernel function of the operator Lq is meant the Schwartz kernel
KEq

t
of the operator Eqt . This is an element of D′(Z ′ ×Z ′,Fq �Fq ′) with support

in Z × Z, such that

〈Eqt u, v〉Z = 〈KEq
t
, v ⊗ u〉Z×Z

for all u ∈ C∞comp(Z,Fq) and v ∈ C∞comp(Z,Fq ′).
Taking liberties one writes

Eqt u (z) =

∫
Z

〈KEq
t
(z, ·), u〉ζ (5.2)

for u ∈ C∞comp(Z,Fq). We next show that the integral makes sense for all distribu-
tions u ∈ E ′Z(Z ′,Fq), i.e., for all generalized sections of Fq with compact support
in Z.

Theorem 5.1. The spectral kernel function of Lq is infinitely differentiable up to
∂Z, i.e., KEq

t
∈ C∞loc(Z × Z,Fq � Fq ′).

Proof. Since

C∞loc(Z × Z,Fq � Fq ′) = C∞loc(Z,Fq)⊗̂πC∞loc(Z,Fq ′)
top.∼= Lb(E ′Z(Z ′,Fq), C∞loc(Z,Fq)),

the last equality being a consequence of the Schwartz kernel theorem, cf. for in-
stance [Tar95, § 1.5.1], it suffices to show that Et extends to a continuous map
of E ′Z(Z ′,Fq) to C∞loc(Z,Fq). If we prove that Et extends to a continuous map of
H−scomp(Z,Fq) to Hs

loc(Z,Fq) for each non-negative integer s, the assertion readily
follows.

As mentioned, Et is an orthogonal projection in Lq. It follows that EtEt = Et
and E∗t = Et. Using the connection between the adjoint and transposed operators,
we arrive at the formula

Et = Et ∗−1 E′t ∗ . (5.3)

If Et maps L2(Z,Fq) continuously to Hs
loc(Z,Fq), then the transpose E′t maps

H−scomp(Z,Fq ′) continuously to L2(Z,Fq ′). Hence the equality (5.3) allows one

to extend Et to a continuous map of H−scomp(Z,Fq) to Hs
loc(Z,Fq). We are thus

reduced to proving that Et maps L2(Z,Fq) continuously to Hs
loc(Z,Fq) for each

non-negative integer s.
To this end, pick an arbitrary form u ∈ Lq. Using formula (5.1) for Et, we easily

find

LsEtu =

∫ t

0−
λsPλu dm(λ)

and

‖LsEtu‖2Lq =

∫ t

0−
‖λsPλu‖2Lq dm(λ)

≤ t2s ‖Etu‖2Lq ,

which is due to the Pythagor theorem. Applying Corollary 4.2 we conclude that
Etu ∈ Hs

loc(Z,Fq).
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To estimate a seminorm of Etu in Hs
loc(Z,Fq), we fix a relatively compact open

set V ⊂ Z. Choose relatively compact open sets V1, . . . , Vs in Z with the property
that

V ⊂⊂ U1 ⊂⊂ . . . ⊂⊂ Us.
We now appeal to Corollary 4.2 to successively estimate the norm of Pλu in
Hs(V,Fq), namely

‖Pλu‖Hs(V,Fq) ≤ Cs (‖LPλu‖Hs−1(U1,Fq) + ‖Pλu‖L2(U1,Fq))

≤ Cs (λ ‖Pλu‖Hs−1(U1,Fq) + ‖Pλu‖L2(U1,Fq)),

and similarly

‖Pλu‖Hs−j(Uj ,Fq) ≤ Cs−j (λ ‖Pλu‖Hs−j−1(Uj+1,Fq) + ‖Pλu‖L2(Uj+1,Fq))

for each j = 1, . . . , s − 1. Substituting these estimates into each other, we easily
obtain

‖Pλu‖Hs(V,Fq) ≤ const(s)
( s∑
j=0

λj
)
‖Pλu‖L2(Us,Fq)

≤ const(s)
( s∑
j=0

λj
)
‖Pλu‖Lq

whence

‖Etu‖Hs(V,Fq) ≤
∫ t

0−
‖Pλu‖Hs(V,Fq) dm(λ)

≤ const(s)

∫ t

0−

( s∑
j=0

λj
)
‖Pλu‖Lq dm(λ)

≤ C ‖u‖Lq .

Here, the constant C depends on s, V and t but not on u. This completes the
proof. �
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