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“There’s Plenty of Room at the Bottom”

Richard P. Feynman





Abstract

Molecules are often naturally embedded in a complex environment. As a consequence, char-
acteristic properties of a molecular subsystem can be substantially altered or new properties
emerge due to interactions between molecular and environmental degrees of freedom. The
present thesis is concerned with the numerical study of quantum dynamical and stationary
properties of molecular vibrational systems embedded in selected complex environments.
In the first part, we discuss “strong-coupling” model scenarios for molecular vibrations
interacting with few quantized electromagnetic field modes of an optical Fabry-Pérot cavity.
We thoroughly elaborate on properties of emerging “vibrational polariton” light-matter
hybrid states and examine the relevance of the dipole self-energy. Further, we identify
cavity-induced quantum effects and an emergent dynamical resonance in a cavity-altered
thermal isomerization model, which lead to significant suppression of thermal reaction rates.
Moreover, for a single rovibrating diatomic molecule in an optical cavity, we observe non-
adiabatic signatures in dynamics due to “vibro-polaritonic conical intersections” and discuss
spectroscopically accessible “rovibro-polaritonic” light-matter hybrid states.
In the second part, we study a weakly coupled but numerically challenging quantum me-
chanical adsorbate-surface model system comprising a few thousand surface modes. We
introduce an efficient construction scheme for a “hierarchical effective mode” approach to
reduce the number of surface modes in a controlled manner. In combination with the multi-
layer multiconfigurational time-dependent Hartree (ML-MCTDH) method, we examine the
vibrational adsorbate relaxation dynamics from different excited adsorbate states by solving
the full non-Markovian system-bath dynamics for the characteristic relaxation time scale.
We examine half-lifetime scaling laws from vibrational populations and identify prominent
non-Markovian signatures as deviations from Markovian reduced system density matrix
theory in vibrational coherences, system-bath entanglement and energy transfer dynamics.
In the final part of this thesis, we approach the dynamics and spectroscopy of vibronic
model systems at finite temperature by formulating the ML-MCTDH method in the non-
stochastic framework of thermofield dynamics. We apply our method to thermally-altered
ultrafast internal conversion in the well-known vibronic coupling model of pyrazine. Numer-
ically beneficial representations of multilayer wave functions (“ML-trees”) are identified for
different temperature regimes, which allow us to access thermal effects on both electronic
and vibrational dynamics as well as spectroscopic properties for several pyrazine models.
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Kurzfassung

Moleküle sind für gewöhnlich in komplexe Umgebungen eingebettet. In Folge werden
charakteristische Eigenschaften des molekularen Subsystems durch Wechselwirkung mit
Umgebungsfreitheitsgraden potentiell deutlich verändert. Die vorliegende Dissertation be-
handelt die numerische Untersuchung von quantendynamischen und stationären Eigen-
schaften molekularer Schwingungen unter dem Einfluss ausgewählter komplexer Umgebun-
gen. Im ersten Teil werden stark gekoppelte Modelsysteme betrachtet, die durch Wech-
selwirkung von molekulare Schwingungen mit wenigen quantisierten, elektromagnetischen
Feldmoden einer Fabry-Pérot Kavität realisiert werden. Die Eigenschaften von Schwingungs-
polaritonen und die Relevanz der Dipolselbstenergie werden im Detail untersucht. Weit-
erhin werden quantenmechanische Effekte sowie ein dynamisches Resonanzphänomen in
einem Modelsystem für thermische Isomerisierung unter dem Einfluss einer Kavität iden-
tifiziert, die zu signifikant reduzierten thermischen Reaktionsraten führen. Für ein frei
rotierendes, schwingendes CO Molekül in einer Kavität finden sich nicht-adiabatische Sig-
naturen in Form von schwingungspolaritonischen konischen Durchschneidungen sowie spek-
troskopisch identifizierbaren rovibratorischen Licht-Materie-Hybridzustände. Im zweiten
Teil wird ein schwach gekoppeltes, numerisch anspruchsvolles Adsorbat-Oberflächen-Model
mit einigen tausend Oberflächenmoden diskutiert. Es wird ein numerisch effizientes Ver-
fahren zur Konstruktion einer Hierarchie effektiver Moden vorgestellt, wodurch die An-
zahl an Oberflächenmoden kontrolliert reduziert wird. In Kombination mit der multi-
layer multiconfigurational time-dependent Hartree (ML-MCTDH) Methode, wird der Re-
laxationsprozess der Adsorbatmode für verschiedene Anfangszustände durch Lösung der
nicht-Markovschen System-Bad Dynamik auf der charakteristische Relaxationszeitskala un-
tersucht. Skalierungsgesetze von Halbwertszeiten werden aus Schwingungspopulationen er-
halten und prominente nicht-markovsche Signaturen in Schwingungskohärenzen, in System-
Bad-Verschränkung und in der Energietransferdynamik werden durch Vergleich mit markov-
scher reduzierter Dichtematrixtheorie identifiziert. Im letzten Teil wird vibronische Dy-
namik bei endlichen Temperaturen untersucht und die ML-MCTDH Methode im Rahmen
der nicht-stochastischen Thermofield Theory formuliert. Der thermisch beeinflusste, ul-
traschnelle interne Konversionsprozess in Pyrazin wird betrachtet. Numerisch effiziente
Darstellungen der ML-MCTDH Wellenfunktionen für verschiedene Temperaturen werden
vorgestellt und thermische Effekte auf Dynamik und Spektroskopie werden diskutiert.
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Chapter 1
Introduction

Vibrational, free-space rotational and translational motion constitute the nuclear degrees
of freedom in molecules. Fully determined by Coulomb interactions of both electrons and
nuclei, molecular vibrations are intimately connected to the concept of molecular structure
and are accordingly key in understanding chemistry and molecular physics in their many
facets. The most basic description of molecular vibrations relies on small amplitude mo-
tion of nuclei in the harmonic approximation, which provides a powerful but approximate
perspective on molecular optical properties as probed by the infrared region of the electro-
magnetic spectrum. Commonly, every scenario which does not respect restrictions of the
harmonic approximation is referred to as involving anharmonic effects. Where harmonic
normal modes are by construction a collection of non-interacting vibrational entities, anhar-
monicity manifests in interactions between individual modes as well as significantly altered
energetic properties of molecular modes.

In chemistry, anharmonic effects naturally play a role in the majority of molecular transfor-
mations as for example bond breaking or isomerization reactions, which are tightly related
to large amplitude motion of molecular fragments build from individual nuclei. Moreover,
molecular vibrations do not only interact anharmonically but naturally couple to both ro-
tational and electronic molecular degrees of freedom. Resulting interactions are essential
for understanding both thermal ground state chemistry as well as excited state chemistry
involving multiple electronic states. Interactions are particularly relevant for molecules in
condensed phase composite systems, as for example molecular reactants in liquid solvents,
impurities in crystal lattices or adsorbate molecules on (crystalline) surfaces, to name just a
few. Such composite systems are naturally characterized by emerging properties, resulting
from the interplay of its different constituents, the molecular “subsystem” and a complex
“environment”.

Besides the coupling of molecular vibrational modes in matter, their interaction with static
and dynamic electromagnetic “light” fields takes a prominent role with relevance ranging
from structural spectroscopic studies to light-induced control of chemical reactions. Tra-
ditionally, the interaction of electromagnetic radiation with molecules is discussed from a
semiclassical perspective. Here, molecules interact with one or multiple electromagnetic
fields, which are described from the perspective of classical electrodynamics as governed
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2 CHAPTER 1. INTRODUCTION

by Maxwell’s equations. In contrast, the molecular system of interest is subject to a fully
quantum mechanical description in terms of Schrödinger’s equation. The full quantum me-
chanical description of both electromagnetic radiation and molecular degrees of freedom has
been traditionally abandoned to highly specialized topics, which seemed to be rather unre-
lated to “everyday chemistry”. However, this paradigm has changed drastically over the last
decade due to seminal experiments in the field of molecular cavity quantum electrodynamics
(cQED), which demonstrated the transformative influence of quantized cavity light-fields
on both thermal ground state chemistry and photochemistry. As a result, the emerging
field of polaritonic chemistry was born, which constitutes a highly interdisciplinary scien-
tific “melting pot” of concepts from chemistry and quantum optics, eventually reformulating
the goal of controlling chemistry by radiation fields.

In this thesis, we are concerned with the numerically study of quantum mechanical sta-
tionary and dynamical vibrational properties of molecules interacting with complex envi-
ronments at zero and finite temperature. Such composite or system-bath type problems
pose challenging issues due to the nature of the system-bath interaction, the possibly high-
dimensional nature of the bath or thermally induced excitations of molecular degrees of
freedom. In detail, we present results on three different topics. Firstly, strongly interacting
(ro)vibrational light-matter hybrid systems and their role in polaritonic chemistry from the
perspective of molecular cavity quantum electrodynamics. Secondly, vibrational relaxation
dynamics for a realistic high-dimensional, weakly interacting adsorbate-surface model sys-
tem and its efficient numerical description. Finally, a promising numerical approach to (non-
adiabatic) quantum dynamics at finite temperature combining field theoretical techniques
with numerical wave function methods. In order to access those problems successfully,
we rely on two different approaches: Powerful numerical techniques to solve the quantum
mechanical equation of motion computationally and the power of unitary transformations
in quantum mechanics, which provide the freedom of choosing a useful “perspective” on
individual problems and render the latter accessible for our purposes.

In Chapter 2, we provide the theoretical framework of this thesis and introduce relevant
numerical tools. We first set the stage by presenting the framework for the quantum me-
chanical description of molecules followed by the central concepts of the Born-Oppenheimer
approximation and electronic structure theory, which allow to efficiently approximate the
numerical solution of the electronic many-body problem. Further, we introduce the basics
for the non-relativistic description of quantized electromagnetic field modes in the setting
of molecular cQED, which provides the theoretical framework for polaritonic chemistry and
benefits from a cavity Born-Oppenheimer formulation naturally extending concepts from
molecular quantum mechanics to cQED. The dynamics of quantum mechanical systems is
considered from both a wave function and density operator perspective and the multiconfig-
urational time-dependent Hartree (MCTDH) method with its variants is introduced, which
provides a powerful numerical approach to the time-evolution of quantum mechanical sys-
tems. Eventually, we discuss the basics of thermal reaction rate theory for a fully quantum
mechanical approach based on the concept of cumulative reaction probabilities as well as
the well known approximative framework of Eyring transition state theory.

Turning to the results starting with Chapter 3, we first elaborate on vibrational and rovibra-
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tional model systems in the framework of non-relativistic cQED as described by a Pauli-Fierz
Hamiltonian in long-wavelength approximation. A particular useful perspective on those
problems has been established in terms of the length-gauge representation, which allows
to naturally extend basic concepts from quantum chemistry to (ultra)strongly interacting
light-matter hybrid systems. In detail, we examine three different aspects of (ro)vibrational
light-matter hybrid systems: First, basic properties of vibro-polaritonic ground states and
infrared spectroscopic characterization of excited states possibly subject to symmetry con-
straints of the light-matter hybrid system in dependence of light-matter interaction strength.
All aspects are discussed with an emphasize on the role of the dipole self-energy in the effec-
tive vibrational Pauli-Fierz Hamiltonian in length-gauge representation. Second, the impact
of molecular rotations on energetic, dynamical and infrared spectroscopic properties of a
rovibrating diatomic molecule in a fully quantized light-matter interaction model scenario.
We identify non-adiabatic signatures in terms of “vibro-polaritonic conical intersections”
and “rovibro-polaritonic” light-matter hybrid state exhibiting vibrational, rotational and
photonic contributions. Third, the role of light-matter interactions is studied for a ther-
mal isomerization reaction model, which allows us to elaborate on the possible relevance of
quantum mechanical effects in (vibro)polaritonic thermal ground state chemistry and re-
veals an anharmonic dynamical reactant localization effect due to coherent energy exchange
between molecular and cavity modes.
In Chapter 4, we change paradigm away from strongly interacting, vibrational light-matter
hybrid systems to a realistic high-dimensional, weakly interacting vibrational adsorbate
surface model problem. Here, the vibrational relaxation dynamics of an excited adsorbate
mode is numerically non-trivial due to the interaction with more than 2000 phonon modes
of a semiconductor surface, which renders a straightforward quantum dynamical study
prohibitively expensive. We show how to efficiently mitigate this so called “curse of dimen-
sionality” by combining a hierarchical effective mode approach, for which we introduce a
numerically efficient construction scheme, with the powerful multilayer multiconfigurational
time-dependent Hartree method. Consequently, we are able to extract half-lifetimes of sev-
eral excited vibrational states and provide a thorough comparison to simplified descriptions
in terms of Markovian open system density matrix theory, which reveals intriguing dynam-
ical details of the non-Markovian relaxation process.
Eventually, the third part of the result discussion as presented in Chapter 5, we consider
a more general problem opposed to different interaction regimes: The efficient inclusion
of finite temperature effects in the quantum dynamical description of vibrational systems.
Here, the “curse of dimensionality” is even enhanced due to a density operator descrip-
tion of the thermal quantum system, which lies at heart of quantum statistical mechanics.
We approach this issue by extending the multilayer multiconfigurational time-dependent
Hartree method to the finite temperature regime by exploiting the originally field theoreti-
cal framework of thermofield dynamics. Our approach augments a set of existing methods,
which have been developed throughout the last six years in the field of chemical physics, by
a numerically powerful alternative in a methodologically well-established setting. We suc-
cessfully apply our approach to the description of a widely-studied vibronic model system
of pyrazine featuring interactions of thermally excited molecular vibrations and electronic
states. We thoroughly discuss the efficient numerical inclusion of finite temperature effects
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for the thermally-altered ultrafast internal conversion dynamics.
Finally, Chapter 6 closes this thesis by providing a summary and conclusion with respect
to herein presented results.



Chapter 2
Theoretical Foundations

Here, we introduce main concepts of the quantum theory of molecules and electronic struc-
ture theory in Section 2.1, as well as its extension to non-relativistic cavity quantum elec-
trodynamics including the quanitzed electromagnetic field of an optical Fabry-Pérot cavity
in Section 2.2, respectively. Further, we discuss the time-evolution of quantum mechanical
systems from both a wave function and a (reduced) density operator perspective, followed
by a thorough overview over the multiconfigurational time-depenendent Hartree approach
and its variants in Section 2.3. We close by section 2.4, which introduces thermal rate theory
from both a fully quantum mechanical perspective based on cumulative reaction probabili-
ties and the traditional but approximative Eyring transition state theoretical formulation.

2.1 Molecular Quantum Mechanics

2.1.1 The Molecular Many-Body Problem

In the non-relativistic limit, the molecular many-body problem for Ntot = Ne+Nk particles
with Ne electrons and Nk nuclei is fully described by the molecular Hamiltonian

Ĥ = T̂k + Ĥe + Vkk . (2.1)

Here, T̂k is the nuclear kinetic energy operator (KEO)

T̂k =

Nk∑
a=1

P̂
2

a

2Ma

, (2.2)

with nuclear masses, Ma, and nuclear momentum operators, P̂ a = −i~∇a, where ∇a =(
∂

∂Xa
, ∂
∂Ya

, ∂
∂Za

)T

is the nuclear gradient operator for the ath-nucleus with nuclear Cartesian

coordinates Xa, Ya and Za. Further, Ĥe in Eq.(2.1) is the electronic Hamiltonian

Ĥe = T̂e + Vee(r) + Vek(r, R) , (2.3)

5



6 CHAPTER 2. THEORETICAL FOUNDATIONS

with electronic KEO, T̂e, electron-electron repulsion, Vee(r), and electron-nuclear attraction

potential, Vek(r, R). Here, r =
(
r1, . . . , rNe

)T
and R =

(
R1, . . . , RNk

)T
are 3Ne-dimensional

electronic and 3Nk-dimensional nuclear Cartesian coordinate vectors, respectively. The
electronic KEO is explicitly given by

T̂e =
Ne∑
i=1

p̂2

i

2me

, (2.4)

with electronic momentum operators, p̂
i

= −i~∇i, and electron mass, me. The electronic

gradient operator reads, ∇i =
(

∂
∂xi
, ∂
∂yi
, ∂
∂zi

)T

, for the ith-electron with electronic Cartesian

coordinates xi, yi and zi, respectively. Further, the nuclear-nuclear repulsion potential,
Vkk(R), in Eq.(2.1) provides together with Vee(r) and Vek(r, R) the molecular potential as
given by

V (r, R) = Vee(r) + Vek(r, R) + Vkk(R) (2.5)

=
Ne∑
i>j

e2

4πε0|ri − rj|
−

Ne∑
i=1

Nk∑
a=1

Zae
2

4πε0|ri −Ra|
+

Nk∑
a>b

ZaZbe
2

4πε0|Ra −Rb|
. (2.6)

Here, ri = (xi, yi, zi)
T and rj = (xj, yj, zj)

T are electronic Cartesian coordinate vectors,
Ra = (Xa, Ya, Za)

T and Rb = (Xb, Yb, Zb)
T, are nuclear Cartesian coordinate vectors, e is

the elementary charge, ε0 is the vacuum permittivity and Za, Zb are nuclear charge numbers,
respectively. Stationary states, Ψ(r, R), of the molecular Hamiltonian satisfy the molecular
time-independent Schrödinger equation (TISE)(

T̂k + Ĥe + Vkk

)
Ψ(r, R) = EΨ(r, R) , (2.7)

with corresponding molecular energy, E. In this thesis, we consider only bound states and
neglect continuum states, which are assumed to be not relevant for the physical processes
studied here.

2.1.2 The Born-Oppenheimer Approximation

In order to solve the molecular Schrödinger equation (2.7), a molecular state is commonly
written in terms of a Born-Huang expansion[1]

Ψ(r, R) =
∑
ν

χkν(R)ψeν(r;R) , (2.8)

with nuclear wave functions, χkν(R), providing the expansion coefficients and adiabatic elec-
tronic states, ψeν(r;R), respectively. The latter only parametrically depend on the nuclear
coordinates, R, and provide a complete orthonormal basis for fixed nuclear configurations.
By inserting Eq.(2.8) into the molecular TISE (2.7), two coupled equations are obtained:
One for the adiabatic electronic states

Ĥe ψ
e
ν(r;R) = Ee

ν(R)ψeν(r;R) , (2.9)
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with adiabatic electronic energies, Ee
ν(R), and a second one satisfied by nuclear states(

T̂k + Ee
ν(R) + Vkk(R)

)
χkν(R) +

∑
µ

Ĉνµχ
k
µ(R) = E χkν(R) , (2.10)

with total molecular energy, E. The νth-adiabatic potential energy surfaces (PES) is defined
as

Vν(R) = Ee
ν(R) + Vkk(R) , (2.11)

and provides a potential in Eq.(2.10), which depends on both the electronic quantum num-
ber, ν, and nuclear coordinates, R. Further, Ĉνµ in Eq.(2.10) corresponds to the non-
adiabatic coupling operator[2]

Ĉνµ = −
Nk∑
a=1

~2

2Ma

(
Gνµ,a + 2F νµ,a · ∇a

)
, (2.12)

with

Gνµ,a = 〈ψeν(R)|∇2
a|ψeµ(R)〉

r
, F νµ,a = 〈ψeν(R)|∇a|ψeµ(R)〉

r
, (2.13)

where integration with respect to electronic coordinates, 〈. . .〉r, is indicated. In the Born-

Oppenheimer approximation (BOA)[5, 6], non-adiabatic coupling elements, Ĉνµ, are set to
zero, which effectively decouples the slow nuclear dynamics from the fast electronic dynam-
ics. The underlying idea is, that electronic degrees of freedom (DoF) are assumed to adapt
instantaneously to a dynamically changing nuclear configuration. The BOA offers a valid
perspective, if relevant adiabatic electronic states are energetically well separated from each
other and breaks down for close lying or even crossing electronic states.
Finally, the choice of adiabatic electronic states in the Born-Huang expansion Eq.(2.8) is
not unique. Alternatively, diabatic electronic states can be considered, which are not eigen-
states of the electronic Hamiltonian and accordingly lead to off-diagonal potential energy
couplings. In particular, diabatic electronic states can be chosen such that the nuclear KEO
is approximately diagonal and, hence, the non-adiabatic couplings, Ĉνµ, negligible.[3] In this
thesis, we employ the diabatic representation in the framework of vibronic coupling theory
in Ch.5.[4]

2.1.3 Electronic Structure Theory

In this thesis, we are mainly concerned with molecular vibrational problems in the BOA,
where electrons occupy the respective adiabatic ground state. The latter formally solves
the electronic TISE (2.9), however is not exactly accessible for Ne interacting electrons due
to the high complexity of the electronic many-body problem. In the following, we briefly
review the most important approximative approaches of calculating adiabatic electronic
ground states for molecules, which can be conceptually divided into wave function-based
and density-based approaches.
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Wave Function Theory

From a wave function perspective[7, 8], the exact non-relativistic Ne-electron ground state
in the BOA, |ψ0〉, can be expanded in a basis of orthonormal Slater determinants, which
span the Ne-electron Hilbert space

|ψ0〉 = C0 |ψHF〉+
Ne∑
a

Nvirt∑
r

Cr
a |ψra〉+

Ne∑
a<b

Nvirt∑
r<s

Crs
ab |ψrsab〉+ . . . , (2.14)

known as full configuration interaction (FCI) ansatz, where Nvirt is the number of unoccu-
pied, virtual orbitals (more details below). Here, |ψHF〉 is the single-reference Hartree-Fock
(HF) Slater determinant, while |ψra〉 and |ψrsab〉 are singly- and doubly-excited Slater deter-
minants, and C0, C

r
a, C

rs
ab are corresponding expansion coefficients, respectively. Coefficient

indices a, b relate to occupied and r, s to unoccupied or virtual orbitals. The normalized
Hartree-Fock Slater determinant is given by

ψHF(x1, . . . , xNe) =
1√
Ne!

∣∣∣∣∣∣∣
χ1(x1) . . . χNe(x1)

...
...

χ1(xNe) . . . χNe(xNe)

∣∣∣∣∣∣∣ . (2.15)

It is composed of Ne orthonormal spin-orbitals, χi(xj), with coordinates xj = (rj, ωj), where
rj is the jth-electron’s cartesian coordinate vector and ωj is the corresponding spin coordi-
nate. A Slater determinant naturally accounts for the correct anti-symmetry of a fermionic
many-particle wave function and vanishes for two electrons being identical in all quantum
numbers, which resembles Pauli’s exclusion principle.
Furthermore, a single Slater determinant provides the basis of Hartree-Fock theory, which is
the starting point for single-reference wave function methods in electronic structure theory
and resembles a mean-field theory of the electronic many-body problem. In Hartree-Fock
theory, the spin-orbitals in Eq.(2.15) are determined variationally by minimizing the corre-
sponding Hartree-Fock energy

EHF = min
{χi}
〈ψHF|Ĥe|ψHF〉 > E0 , (2.16)

with exact electronic ground state energy, E0, constituting a lower bound for EHF. The
energy difference

Ecorr = E0 − EHF (2.17)

resembles the electronic correlation energy, Ecorr, which is by definition not accounted for
in Hartree-Fock theory. Variational minimization of the functional in Eq.(2.16) leads to a
set of coupled non-linear, integro-differential equations known as Hartree-Fock equations
for spin-orbitals, χi(x1), as given by(

ĥ(x1) +
Ne∑
b=1

(
Ĵb(x1)− K̂b(x1)

))
χi(x1) = εi χi(x1) , (2.18)
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which are effective single electron equations with orbital energies εi, respectively. Spin-
orbitals corresponding to the lowest orbital energies, εi, determine the Hartree-Fock Slater
determinant. In Eq.(2.18), ĥ(x1) is a single-electron operator, which contains a single
electron KEO and single electron-nuclear repulsion as

ĥ(x1) = − ~2

2me

∆1 −
Nk∑
a=1

Zae
2

4πε0|r1 −Ra|
, (2.19)

with electronic Laplace operator, ∆1 = ∇2
1 = ∂2

∂x21
+ ∂2

∂y21
+ ∂2

∂z21
. Further, Ĵb(x1) and K̂b(x1)

are Coulomb- and exchange-operators, which account for the interaction of a single electron
with a mean-field of Ne − 1 electrons and act as

Ĵb(x1)χa(x1) =

[∫
χ?b(x2)

e2

4πε0 r12

χb(x2) dx2

]
χa(x1) , (2.20)

K̂b(x1)χa(x1) =

[∫
χ?b(x2)

e2

4πε0 r12

χa(x2) dx2

]
χb(x1) . (2.21)

Both terms result from the electron-electron interaction, e2

4πε0 r12
= e2

4πε0 |r1−r2|
. Additionally,

the exchange term is a consequence of the anti-symmetric nature of the Slater determinant
ansatz in Eq.(2.15) and acts exclusively between electrons of identical spin.

Turning back to the FCI expansion in Eq.(2.14), excited Slater determinants are obtained
by promoting electrons from occupied to formerly unoccupied, virtual orbitals (Nvirt is the
number of virtual orbitals in Eq.(2.14)), e.g., in |ψra〉 a single electron was promoted from an
initially occupied spin-orbital, χa(x1), to a virtual one, χr(x1), respectively. As noted above,
in Eq.(2.14) indices a, b run over occupied and indices r, s run over virtual spin-orbitals.
In general, the FCI approach is only feasible for very small molecules due to the exponential
scaling of the electronic Hilbert space with number of particles. Hence, one has to rely
on truncated configuration interaction (CI) expansions, where one includes for instance
only single or both single and double excitations, resulting in configuration interaction
singles (CIS) and configuration interaction singles doubles (CISD) approaches, respectively.
Although CISD is able to account for a significant portion of electron correlation, it is not
size-consistent for Ne > 2, i.e., the correct energy of two isolated molecular fragments is
not reproduced, which prevents a correct description of dissociation reactions. We note for
Ne = 2, CISD is equivalent to FCI and is therefore size-consistent.

A prominent, size-consistent alternative to truncated CI methods is coupled cluster (CC)
theory, which has been employed in this thesis. In CC theory, the corresponding wave
function, |ψCC〉, is written in terms of an exponential ansatz[8]

|ψCC〉 = exp

(∑
ra

τ ra ĉ
†
rĉa︸ ︷︷ ︸

=T̂1

+
∑

r>s,a>b

τ rsab ĉ
†
rĉ
†
sĉbĉa︸ ︷︷ ︸

=T̂2

+ . . .

)
|ψHF〉 , (2.22)

where the exponent is given by a non-Hermitian cluster operator

T̂ = T̂1 + T̂2 + . . . . (2.23)
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Here, T̂1 and T̂2 correspond to single- and double-excitation operators, which are given in
Eq.(2.22) in terms of (coupled) cluster amplitudes τ ra , τ

rs
ab and electronic creation/annihila-

tion operators ĉ†r, ĉ
†
s and ĉa, ĉb, respectively.

A hierarchy of CC wave functions is obtained by truncating the cluster operator in Eq.(2.23),
which leads at the simplest level to coupled cluster singles (CCS) and coupled cluster sin-
gles doubles (CCSD) methods, where one only keeps T̂1 or both T̂1 and T̂2, respectively. In
this thesis, we employ the “gold standard” of quantum chemistry given by coupled cluster
singles doubles with perturbative triples, CCSD(T)[9]. The latter perturbatively includes
effects of triple excitations, i.e., the next term T̂3 in Eq.(2.23), and has turned out to be
particularly powerful with respect to accuracy relative to numerical costs.

Kohn-Sham Density Functional Theory

A paradigmatically different approach to electronic structure theory is based on the electron
density, ρ(r) = ρ(x, y, z), which is a function of three spatial coordinates compared to 3Ne

electronic coordinates in wave function theory. The resulting density functional theory
(DFT) has developed into a powerful and very versatile approach in electronic structure
theory of both molecular and extended systems. Here, we give a brief overview of DFT
basics[10].
The formal pillars of DFT are provided by the first and second Hohenberg-Kohn-(HK)-
Theorems (HK-1 and HK-2). According to HK-1, the electronic ground state energy, E0, is
a unique functional of the electron density

E0 = EHK
0 = T [ρ] + Vne[ρ] + J [ρ] + Exc[ρ] . (2.24)

Further, HK-2 provides a variational principle for electron densities satisfying

E0 ≤ EHK
0 [ρ] with

∫
ρ(r) dr = Ne , (2.25)

where the exact electronic ground state energy, E0 = EHK
0 [ρ0], is only obtained if ρ = ρ0

is the exact electronic ground state density. The energy, EHK
0 , in Eq.(2.24) is determined

by the kinetic energy functional, T [ρ], the electron-nuclei interaction, Vne[ρ], the classical
electronic Coulomb interaction, J [ρ], and the exchange-correlation functional, Exc[ρ], which
resembles all non-classical, static electron-electron interactions, respectively.
The major advantage of DFT is the reduction of the 3Ne-dimensional problem as treated
in wave function theory to a 3-dimensional problem solely based on electron density. On
the other hand, the major drawback emerges from the fact, that neither T [ρ] nor Exc[ρ] in
Eq.(2.24) are known exactly for all but the simplest model systems. Here, tremendous ongo-
ing scientific effort has led to a series of approximations with increasing complexity. Starting
with the representation of the kinetic energy functional, presumably the most prominent
and widespread formulation of practical DFT is given by Kohn-Sham DFT (KS-DFT). In
KS-DFT, the kinetic energy functional is approximated as, T [ρ] ≈ TKS[ρ], with

TKS[ρ] = − ~2

2me

Ne∑
i=1

〈χKS
i |∇2|χKS

i 〉 , (2.26)
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where Kohn-Sham orbitals, |χKS
i 〉, solve the Hartree-Fock like Kohn-Sham equations, which

describe a hypothetical system of Ne non-interacting electrons in an external potential. This
potential is chosen such, that the orbitals |χKS

i 〉 reproduce the exact electronic ground state
density and it can be shown that TKS[ρ] < T [ρ].
For the exchange-correlation functional, Exc[ρ], a certain hierarchy of approximations with
increasing complexity has been developed. The simplest approximation is based on the uni-
form electron gas and denoted as local density approximation (LDA), where ρ(r) = const. for
all r. At the next complexity level, the spatial inhomogeneity of molecular electron densities
due to the presence of nuclei is taken into account by higher order spatial derivatives, i.e.,
Exc[ρ,∇ρ,∇2ρ, . . . ]. This approach leads to the exchange-correlation functionals in gener-
alized gradient approximation (GGA) with Exc[ρ,∇ρ] and meta-GGA functionals, which in
addition include higher order derivatives, respectively. In even more involved functionals,
the exact exchange interaction of Hartree-Fock theory enters, which provides the class of
hybrid functionals. Among others, the latter contains the B3LYP functional[11], which
has developed into one of the standard functionals employed in computational chemistry
and is relevant for this thesis. Even more sophisticated approaches to Exc[ρ] may subse-
quently combine elements of previously mentioned classes leading to “hybrid-meta-GGA”
functionals, for instance, among others.

2.2 Molecular Cavity Quantum Electrodynamics

2.2.1 The Molecular Pauli-Fierz Hamiltonian

We now consider the theoretical description of molecular systems interacting with quan-
tized electromagnetic field modes of an optical Fabry-Pérot cavity in the framework of
cavity quantum electrodynamics (cQED). In the non-relativistic limit, a molecular sys-
tem composed of Ntot = Ne + Nk particles, which interacts with a quantized electromag-
netic field is described by the molecular Pauli-Fierz Hamiltonian in its minimal coupling
representation[12, 13]

Ĥ =
Ne∑
i=1

(
p̂
i
+ e Â(r)

)2

2me

+

Nk∑
a=1

(
P̂ a − ZaeÂ(r)

)2

2Ma

+ V (r, R) + ĤC , (2.27)

with molecular potential, V (r, R), as introduced in Eq.(2.6). Further, ĤC is the quantized
transverse field Hamiltonian and Â(r) is the corresponding quantized transverse vector
potential in the Coulomb gauge, i.e., ∇ · Â(r) = 0, which reads[12, 14, 15]

Â(r) =
2∑

λ=1

Nc∑
k=1

eλk
ωk

√
~ωk

2ε0Vc

(
âλk S

?
k(r) + â†λk Sk(r)

)
, (2.28)

with field mode index, k, and polarization index, λ, for 2Nc quantized field modes with har-
monic frequencies, ωk, and polarization vectors, eλk, respectively. We note, the longitudinal
contribution of the electric field in the Coulomb gauge enters the Hamiltonian in Eq.(2.27)
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via the instantaneous Coulomb interaction of the molecular potential, V (r, R).[16] Further,
for every mode index, k, in Eq.(2.28), there are two degenerate cavity modes satisfying the
orthogonality conditions[12]

eλk · eλ′k = δλλ′ , eλk · kk = 0 , (2.29)

with wave vector, kk, of the kth-cavity mode. Moreover, â†λk and âλk are photon creation
and annihilation operators, which satisfy the canonical commutation relations[12][

âλk, â
†
λ′k′

]
= δλλ′δkk′ . (2.30)

Additionally, ε0 is the vacuum permittivity and Vc is the quantization volume of the field,
which determines the boundary conditions and accordingly the form of the cavity mode
functions, Sk(r), respectively. Here, we approximately consider Sk(r) for a free field and
invoke the dipole or long-wavelength approximation[15]

Sk(r) = e−i kk·r = 1− i (kk · r) + · · · ≈ 1 , (2.31)

which is justified as the considered cavity mode wavelengths are significantly larger than
the spatial extensions of molecular systems in an infrared optical cavity as considered in
this thesis. In turn, the transverse vector potential in Eq.(2.28) is approximately spatially
uniform, Â(r) ≈ Â. Further, the ensemble of quantized cavity field modes in Eq.(2.27) is
described by[12]

ĤC =
2∑

λ=1

Nc∑
k=1

~ωk
(
â†λkâλk +

1

2

)
︸ ︷︷ ︸

=ĥλk

, (2.32)

which resembles a collection of NC doubly-degenerate, quantized harmonic oscillators with
harmonic frequencies, ωk, and single-mode Hamiltonians, ĥλk, respectively. The eigenstates
of ĥλk are common harmonic oscillator states, which satisfy in number state representation
the relations

âλk |0λk〉 = 0 ,

(
â†λk

)n
√
n!
|0λk〉 = |nλk〉 , 〈nλk|mλk〉 = δnm . (2.33)

Here, |0λk〉 is a single-mode vacuum state and provides with {|nλk〉} an orthonormal basis,
which spans the corresponding single-cavity-mode Hilbert space. Further, nλk is the number
of photons in the kth-mode with polarization direction, λ. The eigenstates of ĤC follow
straightforwardly as multi-mode product states constructed from the single-mode states.

2.2.2 The Length-Gauge Representation

Power-Zienau-Woolley Transformation

An appealing form of the Pauli-Fierz Hamiltonian in long-wavelength approximation is given
by its length-gauge representation[17, 18, 19], equivalently known as dipolar or multipolar
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gauge representation[20, 21, 22, 23]. The length-gauge representation is obtained via a
unitary transformation mediated by the operator

Û = exp

(
i

~
Â · d(r, R)

)
, (2.34)

known as Power-Zienau-Woolley (PZW) transformation with molecular dipole moment

d(r, R) = −e
Ne∑
i=1

ri + e

Nk∑
a=1

ZaRa . (2.35)

Under the PZW-transformation, the KEO of the minimal-coupling Pauli-Fierz Hamiltonian
Eq.(2.27) in long-wavelength approximation turns into

Û †
( Ne∑
i=1

(
p̂
i
+ e Â

)2

2me

+

Nk∑
a=1

(
P̂ a − ZaeÂ

)2

2Ma

)
Û =

Ne∑
i=1

p̂2

i

2me

+

Nk∑
a=1

P̂
2

a

2Ma

, (2.36)

i.e., the quantized transverse vector potential is removed from the expression on the right-
hand side. Details on the PZW-transformation in Eq.(2.36) are provided in Appendix A.
Further, the molecular potential energy, V (r, R), is invariant under Û as it commutes with
both Â and d(r, R). In contrast, the cavity mode Hamiltonian, ĤC , transforms as (cf.
Appendix A)

Û †ĤC Û =
2∑

λ=1

Nc∑
k=1

~ωk
(
â†λkâλk +

1

2

)
+

2∑
λ=1

Nc∑
k=1

i gk

(
eλk · d(r, R)

)(
â†λk − âλk

)
+

2∑
λ=1

Nc∑
k=1

g2
k

~ωk

(
eλk · d(r, R)

)2

. (2.37)

Here, the first term on the right-hand side corresponds to the bare cavity mode Hamiltonian,
ĤC , and the second term resembles the imaginary light-matter interaction, ∆ĤSC , which
is mediated by the projection of the molecular dipole moment, d(r, R), on the polarization
vector, eλk, respectively. The term in the second line, quadratic in the molecular dipole
moment, is known as dipole self-energy (DSE)

ĤDSE =
2∑

λ=1

Nc∑
k=1

g2
k

~ωk

(
eλk · d(r, R)

)2

. (2.38)

Further, an additional unitary rotation in the cavity mode subspace, as mediated by[24]

Ŝ = exp

(
i
π

2

2∑
λ=1

Nc∑
k=1

â†λkâλk

)
, (2.39)



14 CHAPTER 2. THEORETICAL FOUNDATIONS

leads to a real light-matter interaction term

∆ĤSC =
2∑

λ=1

Nc∑
k=1

gk

(
eλk · d(r, R)

)(
â†λk + âλk

)
, (2.40)

but leaves both the cavity mode Hamiltonian and the DSE-term invariant (cf. Appendix A).
Hence, with Eqs.(2.34) and (2.39), the minimal-coupling Pauli-Fierz Hamiltonian Eq.(2.27)
in dipole-approximation Eq.(2.31) is mapped to

Ŝ†Û †Ĥ Û Ŝ = T̂k + T̂e + V (r, R) + ĤC + ĤSC , (2.41)

with, ĤSC ≡ ∆ĤSC + ĤDSE. In Eqs.(2.38) and (2.40), gk is a mode specific light-matter
interaction parameter

gk =

√
~ωk

2ε0Vc
, (2.42)

which resembles the vacuum field strength of the respective quantized field mode and is of
dimension [gk] = V/m=̂Eh/(ea0) (atomic units).
We close by pointing out, that the DSE-term in Eq.(2.38) has been proven central for
a correct description of bound light-matter hybrid states in ideal optical cavities with
a discrete mode spectrum as described by the Pauli-Fierz Hamiltonian in length-gauge
representation.[26, 27] In particular, ĤDSE ensures a bound ground state of the Pauli-Fierz
Hamiltonian[26], provides translational invariance and renders the molecular Pauli-Fierz
Hamiltonian gauge invariant[27]. Further, as we consider here an idealized closed Fabry-
Pérot cavity, which hosts a discrete set of quantized field modes, ĤDSE depends quadrat-
ically on gk in contrast to the multipolar gauge for a mode continuum, where this term
is independent of the light-matter coupling strength.[25] Finally, as noted before under
the long-wavelength approximation the minimal-coupling representation in Eq.(2.27) and
the length-gauge representation in Eq.(2.41) are equivalent due to the unitary character of
the PZW-transformation. However, this equivalence is flawed for a Pauli-Fierz Hamilto-
nian projected on a restricted electronic subspace, which has been subject to some recent
discussions[33, 34, 35, 36, 37, 38, 36, 39].

Cavity Mode Coordinate Representation

From a quantum chemist’s perspective, a coordinate representation of quantized cavity
modes turns out to be tempting as it allows to generalize the concept of potential energy
surfaces to molecular cQED.[28] One exploits the well-known identities

p̂λk = i

√
~ωk

2

(
â†λk − âλk

)
, xλk =

√
~

2ωk

(
â†λk + âλk

)
, (2.43)

to introduce a “cavity momentum operator”, p̂λk = −i~ ∂
∂xλk

, and a “cavity displacement
coordinate”, xλk, in mass-weighted harmonic oscillator units, which satisfy the canonical
commutation relations

[xλk, p̂λ′k′ ] = i~ δλλ′δkk′ . (2.44)



2.2. MOLECULAR CAVITY QUANTUM ELECTRODYNAMICS 15

With the identities in Eq.(2.43), the cavity Hamiltonian takes the familiar form

ĤC =
1

2

2∑
λ=1

Nc∑
k=1

(
p̂2
λk + ω2

k x
2
λk

)
. (2.45)

By additionally taking into account both the bare light-matter interaction, ∆ĤSC , and the
dipole self-energy, ĤDSE, one finds

ĤC + ∆ĤSC + ĤDSE =
1

2

2∑
λ=1

Nc∑
k=1

(
p̂2
λk + ω2

k

(
xλk +

√
2

~ω3
k

gk

(
eλk · d(r, R)

))2)
,

(2.46)

which resembles a collection of displaced cavity mode harmonic oscillators depending on
the molecular dipole moment, d(r, R), respectively. Next, by separating-off the cavity mode
KEO

T̂c =
1

2

2∑
λ=1

Nc∑
k=1

p̂2
λk , (2.47)

a cavity potential energy can be introduced as

Vc(r, R, x) =
1

2

2∑
λ=1

Nc∑
k=1

ω2
k

(
xλk +

√
2

~ω3
k

gk

(
eλk · d(r, R)

))2

, (2.48)

with cavity displacement coordinate vector, x = (x11, x21, . . . , x1Nc , x2Nc), of length 2Nc,
respectively.
In this thesis, we consider the single-cavity mode limit with Nc = 1 in Eq.(2.48) and we
denote the remaining harmonic cavity mode frequency as ωc and the light-matter interaction
strength as g. The latter can be related to a Rabi frequency, ΩR, defined in the Jaynes-
and Tavis-Cummings models as[29, 30, 31]

~ΩR = 2 g |dfi|
√
Nm , (2.49)

with transition dipole moment, dfi, between molecular states f and i of a single molecule,
which resonantly interact with a cavity mode of appropriate frequency, and Nm is the
number of molecules interacting with the cavity mode. Next, a dimensionless light-matter
coupling parameter, η, can be introduced[32]

η =
g |dfi|
~ωc

=
~ΩR

2~ωc
1√
Nm

, (2.50)

where the second equality results from Eq.(2.49). Here, we consider only a single molecule
interacting with the cavity mode, i.e., we set Nm = 1, respectively. The parameter η then
allows for a characterization of the light-matter interaction regimes according to[32]

η

≤ 0.1 , VSC

> 0.1 , VUSC
. (2.51)
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where one distinguishes the vibrational strong coupling (VSC) regime from the vibrational
ultrastrong coupling (VUSC) regime. The lower boundary of the VSC regime is at non-zero
η and formally determined by the onset of intra-cavity light-matter interaction overcompen-
sating dissipative effects. Then, cavity photons are coherently exchanged between cavity
modes and molecular DoF and not preferably emitted to the extra-cavity radiation contin-
uum, which is an ubiquitous process due to non-ideal characteristics of cavity mirrors. The
latter is conveniently characterized by a cavity quality factor, Q = ~ωc/κ, where κ is an
effective cavity decay rate, which resembles spontaneous emission effects.[32, 123, 145]

2.2.3 The Cavity Born-Oppenheimer Approximation

Cavity Born-Huang Expansion

The eigenstates of the Pauli-Fierz Hamiltonian in length-gauge representation and long-
wavelength approximation, Eq.(2.41), satisfy the full molecule-photon TISE(

T̂k + T̂c + Ĥec + Vkk(R)

)
Ψ(r, R, x) = E Ψ(r, R, x) , (2.52)

with light-molecule hybrid states, Ψ(r, R, x), total energy, E , and electron-photon Hamilto-
nian

Ĥec = T̂e + Vee(r) + Vek(r, R) + Vc(r, R, x) = Ĥe + Vc(r, R, x) , (2.53)

where Vc(r, R, x) is the cavity potential energy as defined in Eq.(2.48). One route to the
(approximative) solution of Eq.(2.52) is the cavity Born-Oppenheimer (cBO) approach[28],
which naturally extends concepts from molecular quantum mechanics to molecular cQED.
In the cBO-framework, the full molecule-photon wave function is written in terms of a cavity
Born-Huang expansion[28]

Ψ(r, R, x) =
∑
ν

χkcν (R, x)ψecν (r;R, x) , (2.54)

with adiabatic electron-photon states, ψecν (r;R, x), which parametrically depend on both
nuclear, R, and cavity mode displacement coordinates, x, respectively. Further, χkcν (R, x),
are nuclear-photon wave functions and provide expansion coefficients of the cavity Born-
Huang expansion. By inserting Eq.(2.54) into the molecule-photon TISE (2.52), one obtains
two coupled equations, one for the adiabatic electron-photon states

Ĥec ψ
ec
ν (r;R, x) = Eec

ν (R, x)ψecν (r;R, x) , (2.55)

with adiabatic electron-photon energies, Eec
ν (R, x), and a second one satisfied by nuclear-

photon states(
T̂k + T̂c + Eec

ν (R, x) + Vkk(R)

)
χkcν (R, x) +

∑
µ

(
Ĉνµ + Ĉc

νµ

)
χkcµ (R, x)

= E χkcν (R, x) . (2.56)



2.2. MOLECULAR CAVITY QUANTUM ELECTRODYNAMICS 17

In line with Eq.(2.11), one defines the νth-adiabatic cavity potential energy surface (cPES)
as

Vν(R, x) = Eec
ν (R, x) + Vkk(R) , (2.57)

which now depends on both cavity displacement coordinates, x, and nuclear coordinates,
R, respectively. The electron-photon TISE (2.55) provides now the counterpart of the elec-
tronic TISE (2.9) in the light-molecule hybrid many-body problem. Recent effort lead to a
series of approaches to its numerical solution, namely the cQED-extension of DFT denoted
as QEDFT[17, 18, 19, 40] and wave function-based approaches as QED-HF, QED-CI and
QED-CC theories[41, 42, 43, 44, 45, 46, 47, 48].

Further, Eq.(2.56) generalizes the nuclear TISE (2.10) to the light-matter hybrid scenario
and is analogously subject to non-adiabatic derivative couplings, which are now, how-
ever, related to both nuclear, Ĉνµ, and cavity DoF, Ĉc

νµ, respectively. The latter, cav-
ity non-adiabatic coupling terms stem from the parametric dependence of electron-photon
states, ψecν (r;R, x), on cavity mode displacement coordinates.[28] In analogy to nuclear
non-adiabatic couplings in Eq.(2.12), we introduce

Ĉc
νµ = −~2

2

2∑
λ=1

Nc∑
l=1

(
Gc
νµ,λl + 2F c

νµ,λl

∂

∂xλl

)
, (2.58)

with

Gc
νµ,λl = 〈ψν(R, x)|∂2

xλl
|ψµ(R, x)〉

r
, F c

νµ,λl = 〈ψν(R, x)|∂xλl|ψµ(R, x)〉r , (2.59)

where, ∂xλl ≡ ∂
∂xλl

and ∂2
xλl
≡ ∂2

∂x2λl
, and integration with respect to electronic coordinates,

〈. . .〉r, is indicated.

Effective Vibrational Pauli-Fierz Hamiltonian in cBOA

In this thesis, we study vibrational strong coupling problems[49], where molecular vibrations
strongly couple to the quantized modes of an infrared cavity. Accordingly, we employ the
cavity Born-Oppenheimer approximation (cBOA)[28], by neglecting both types of non-
adiabatic coupling contributions in Eq.(2.56), i.e., Ĉνµ and Ĉc

νµ. Under this approximation,
the adiabatic electron-photon states and the corresponding cPES are decoupled and we
concentrate on the corresponding adiabatic ground state, ψec0 (r;R, x). Generally, the cBOA
is valid, if (i) the cPES are energetically well separated and (ii) if the cavity momenta p̂λk
are sufficiently small, in analogy to the arguments concerning nuclear motion.[28]
Further, due the different energy scales of electronic and vibrational/cavity mode excitation
in VSC problems, we assume that the adiabatic electron-photon ground state is in first order
well approximated by its purely electronic counterpart

ψec0 (r;R, x) ≈ ψe0(r;R) , (2.60)

which is equivalent to effectively neglecting radiative, dipole-induced correlations between
electrons and photons. In turn, we obtain an approximated adiabatic ground state cPES



18 CHAPTER 2. THEORETICAL FOUNDATIONS

given by

V0(R, x) ≈ V0(R) + V 0
c (R, x) = V0(R) + 〈ψe0(R)|Vc(r, R, x)|ψe0(R)〉r , (2.61)

with Born-Oppenheimer PES, V0(R), as given in Eq.(2.11) and Born-Oppenheimer-ground-
state-projected cavity potential energy, V 0

c (R, x) (cf. Eq.(2.48)). We now introduce the
nuclear-photon TISE under cBOA as(

T̂k + T̂c + V0(R) + V 0
c (R, x)

)
χn(R, x) = εnχn(R, x) , (2.62)

which is satisfied by (ro)vibro-polaritonic states, χn(R, x), with energies, εn, respectively.
The approximated ground state cPES in Eq.(2.62) is then given by

Vη(R, x) ≡ V0(R) +
2∑

λ=1

Nc∑
k=1

ω2
k

2

(
xλk +

√
2

~ω3
k

gk

(
ελk · d0(R)

))2

︸ ︷︷ ︸
=V 0

c (R,x)

, (2.63)

where, d0(R), is the permanent molecular ground state dipole moment and η characterizes
the light-matter interaction as introduced in Eq.(2.50). Hence, the (ro)vibro-polaritonic
states, χn(R, x), in Eq. (2.62) are eigenstates of an effective vibrational Pauli-Fierz Hamil-
tonian

Ĥ = T̂k + T̂c + Vη(R, x) , (2.64)

which is given for the molecular electronic ground state in the BOA and neglects correlations
between electrons and cavity degrees of freedom. In Ch.3, we discuss different realizations
of Eq.(2.64) in the context of polaritonic chemistry and spectroscopy of (ro)vibrational
polaritons.

2.3 Quantum Molecular Dynamics

We now turn to the time-evolution of non-relativistic molecular and light-matter hybrid
systems. At T = 0 K, the time-evolution of a quantum mechanical system is determined by
the time-dependent Schrödinger equation (TDSE)

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (2.65)

with initial condition |Ψ(t0)〉 = |Ψ0〉, where |Ψ(t)〉 is a general wave packet and Ĥ is the
Hamiltonian of the system, generating the dynamics, respectively. The eigenstates {|Ψn〉}
of Ĥ are characterized by a trivial time-evolution

|Ψn(t)〉 = e−iEnt/~ |Ψn〉 , (2.66)

with energies, En, providing a complex time-dependent phase factor. In this thesis, we
are mainly concerned with vibrational (vibro-polaritonic) problems in the electronic ground
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state. Accordingly, we numerically study the time-evolution of a f -dimensional vibrational
wave packet, |ψv(t)〉, by expanding it in an orthonormal, time-independent vibrational basis,

{|χ(κ)
ik
〉}, spanning the vibrational Hilbert space as

|ψv(t)〉 =

N1∑
i1=1

· · ·
Nf∑
if=1

Ci1...if (t)

f∏
κ=1

|χ(κ)
ik
〉 , (2.67)

with expansion coefficients, Ci1...if (t), and Nκ vibrational basis functions for the κth-mode,
respectively. This approach is straightforwardly generalized to vibrational strong coupling
problems in molecular cQED by including appropriate basis states for cavity modes. Fur-
ther, an extension to non-adiabatic problems involving several electronic states is analo-
gously straightforward with a vibronic wave function given by

|Ψ(t)〉 =
Me∑
ie=1

|ψiev (t)〉 |ψie〉 , (2.68)

where Me is the number of electronic states, |ψie〉, and the time-dependent vibrational
wave packets, |ψiev (t)〉, now carry an additional electronic index, ie, characterizing the cor-
responding electronic state, |ψie〉, respectively. A vibronic problem at finite temperature is
discussed in Ch.5 of this thesis.

The standard approach in Eq.(2.67) can be graphically depicted by means of a diagram-
matic representation[51, 52] as shown in Fig.2.1(a), where the rank-f tensor Ci1...if (t) is
represented by a single node with f legs holding “physical” indices iκ and corresponding
physical dimension Nκ, respectively.

a) b)

Figure 2.1: Diagrammatic representation of (a) the standard expansion in Eq.(2.67) with
physical dimensions, Nκ, equivalent to the number of vibrational basis functions and (b)
the corresponding bra-state where physical dimensions, Nκ, are assumed implicitly.

Further, in Fig.2.1(b) we display the bra-state corresponding to the expansion in Eq.(2.67).
The problematic aspect of the standard approach to quantum dynamics is related to the
exponential scaling of the Hilbert space as

∏f
κNκ for vibrational problems (or Me

∏f
κNκ

for vibronic problems), which is known as “curse of dimensionality” (CoD) and prohibits
the study of quantum systems with many DoF. In order to mitigate the CoD, one has to re-
fer to advanced approaches as for example the multiconfigurational time-dependent Hartree
(MCTDH) method and its multilayer extension (ML-MCTDH), which have been employed
in this thesis and will be introduced below. Beforehand, we turn to the quantum statistical
description of quantum dynamics and introduce the concept of a density operator.
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2.3.1 Density Operator Theory

For temperatures, T ≥ 0 K, a quantum system is in general fully described by its den-
sity operator ρ̂(t), which evolves in time according to the Liouville-von Neumann (LvN)
equation[53, 54, 55]

∂

∂t
ρ̂(t) = − i

~
[Ĥ, ρ̂] , (2.69)

with commutator, [Ĥ, ρ̂] = Ĥρ̂ − ρ̂Ĥ, and initial state, ρ̂(t0) = ρ̂0, respectively. In the
zero-temperature limit, the LvN equation (2.69) is equivalent to the TDSE (2.65). Further,
for a system in thermal equilibrium, the initial state resembles the canonical thermal state

ρ̂0(β) =
e−βĤ

Z(β)
, (2.70)

with inverse temperature β = (kBT )−1, Boltzmann constant kB, temperature T and canon-
ical partition function

Z(β) =
∑
k

e−βεk , (2.71)

with εk being eigenvalues of Ĥ in Eq.(2.70), respectively. In analogy to Eq.(2.67), the LvN-
equation for a f -dimensional vibrational problem can be solved by expanding a vibrational
density operator in a basis of vibrational states as

ρ̂v(t) =

N1∑
i1,i′1=1

· · ·
Nf∑

if ,i
′
f=1

Ci1...if ,i′1...i′f (t)

f∏
κ=1

|χ(κ)
ik
〉 〈χ(κ)

i′k
| , (2.72)

with expansion coefficients, Ci1...if ,i′1...i′f (t). As for the wave function approach above, a

straightforward generalization to vibronic problems (cf. Ch.5 for an application) is given
by

ρ̂(t) =
Me∑

ie,je=1

ρ̂iejev (t) |ψie〉 〈ψje| , (2.73)

where the vibrational density operator, ρ̂iejev (t), is now additionally characterized by elec-
tronic indices, ie, je, respectively. Following the diagrammatic notation introduced in Fig.2.1,
a pictorial representation of the expansion in Eq.(2.72) is given in Fig.2.2, where the num-
ber of vibrational basis functions, Nκ, i.e., the physical dimensions, have been omitted for
clarity.
The basis expansion in Eq.(2.72) scales exponentially as

∏f
κN

2
κ (or as M2

e

∏f
κN

2
κ for

Eq.(2.73)), which is even more severe compared to the wave function approach. Accord-
ingly, the solution of the LvN-equation imposes an intricate numerical problem, which is
either only tractable for very small systems or requires powerful numerical methods for
larger problems. An approximative but numerically efficient alternative relies on the direct
propagation of the reduced system density operator, which we introduce in the following.
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Figure 2.2: Diagrammatic representation of standard expansion for vibrational density
operators in Eq.(2.72) where indices iκ related to ket-states, |χ(κ)

ik
〉, point downwards and

indices i′κ related to bra-states, 〈χ(κ)

i′k
|, point upwards. Physical dimensions, Nκ, are assumed

implicitly.

Reduced System Density Operator Theory

The reduced system density operator is given by

ρ̂S(t) = trB{ρ̂v(t)} , (2.74)

where ρ̂v(t) is the vibrational density operator of the full system and trB{. . . } resembles
the trace over a set of residual “bath” DoF. The reduced system density operator is equally
important at finite and zero temperature and at T = 0 K, we have ρ̂v(t) = |Ψv(t)〉 〈Ψv(t)|,
where |Ψv(t)〉 is the full vibrational wave function of a composite “system-bath” problem.
In order to avoid the propagation of ρ̂v(t) at finite temperature (or propagation of |Ψv(t)〉
at T = 0 K), one can directly propagate the reduced density operator, ρ̂S(t), where the
effects of the bath on the (vibrational) subsystem are only implicitly taken into account. A
prominent approach following this paradigm is given by the open-system LvN-equation in
Lindblad form, which provides a Markovian quantum master equation by definition, and
reads[53]

∂

∂t
ρ̂S(t) = L ρ̂S(t) , (2.75)

with Lindblad-Liouvillian, L, most generally acting as[56, 57]

L ρ̂S = − i

~
[ĤS, ρ̂S] +

1

2

∑
i,j

Γij

([
Âi, ρ̂SÂ

†
j

]
+
[
Âiρ̂S, Â

†
j

])
. (2.76)

where Γij constitute elements of a positive semi-definite matrix, Γ, which can be diagonalized
to yield[53]

L ρ̂S = − i

~
[ĤS, ρ̂S]︸ ︷︷ ︸

=L0 ρ̂S

+
∑
j

(
Âj ρ̂S Â

†
j −

1

2

[
Â†jÂj, ρ̂S

]
+

)
︸ ︷︷ ︸

=LD ρ̂S

, (2.77)

with anti-commutator,
[
Â†jÂj, ρ̂S

]
+

= Â†jÂj ρ̂S + ρ̂SÂ
†
jÂj. The first term, L0 ρ̂S, on the

right-hand side of Eq.(2.77) constitutes the unitary time-evolution of the reduced system,
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which is generated by the system Hamiltonian ĤS. The second term, LD ρ̂S, relates to
the non-unitary dissipator, LD, which induces dissipation and decoherence in the system.
The latter are induced by Lindblad operators, Âj =

√
γj Ĉj, with rates, γj, and projectors,

Ĉj(Ĉ
†
j ), acting on the subsystem Hilbert space, respectively. The Lindblad operators in-

duces transitions between system eigenstates with rates γj. Thus, the dissipator implicitly
accounts for the action of a (Markovian) bath coupled to the reduced system. Specific
examples for reduced system density operator dynamics with rates, γj, and projectors, Ĉj,
are provided in Ch.4 and Appendix C.

The benefit of Eqs.(2.75) to (2.77) manifests in a significantly smaller Hilbert space, i.e.,
only the system Hilbert space is relevant, which allows to handle the exponential scaling
efficiently from a numerical perspective. However, this gain comes at the cost of a series
of approximations, which are inherit in the LvN-equation in Lindblad form[53]: The Born-
Markov approximation and the secular approximation, respectively. The former imposes a
product structure on the full density operator, ρ̂(t) = ρ̂S(t)⊗ ρ̂B(t), for all times t, which is
equivalent to a weak system-bath interaction (Born), and assumes the bath correlations to
decay significantly faster than a characteristic time-scale of the system dynamics. Hence,
“memory” effects in the bath (Markov) are neglected, i.e., Eq.(2.75) with Eq.(2.76) is local in
time. Finally, the LvN-equation in Lindblad form respects the secular approximation, which
resembles the rotating-wave-approximation (RWA)[53], and neglects energy non-conserving
contributions in the system-bath interaction. Hence, a unidirectional energy-flow from the
system to the bath is provided at T = 0 K. Notably, at finite temperature there is no
unidirectional energy-flow as the system can be thermally excited.

Reduced System Properties

We access properties of the reduced system density operator, in particular purity, von
Neumann-entropy and an system energy current. The purity of the reduced system is given
by

ps(t) = trS{ρ̂2
S(t)} ≤ 1 , (2.78)

where the equality holds only, if ρ̂S(t) corresponds to a pure state, e.g., ρ̂S = |s〉 〈s| with
some eigenstate |s〉 of the system. Otherwise the reduced system is referred to being in a
mixed state. Further, the complementary von Neumann-entropy is defined as[53]

SvN(t) = −kB trS{ρ̂S(t) ln ρ̂S(t)} ≥ 0 , (2.79)

which measures the entanglement between the reduced system and the surrounding bath
degrees of freedom. The equality SvN(t) = 0 holds, either if the full system-bath wave
function |ΨSB(t)〉 is in a product state, i.e., |ΨSB(t)〉 = |ΨS(t)〉 |ΨB(t)〉, which is non-
entangled by definition, or if ρ̂S(t) resembles a pure state. Finally, inspired by Ref.[58], a
system energy current is introduced as

JS(t) =
∂

∂t
〈ĤS〉 (t)

{
< 0, S → B

> 0, S ← B
, (2.80)
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which allows to quantify both the magnitude and the direction of the energy transfer be-
tween system and bath. We use the convention JS(t) < 0 for an energy-flow directed
from the system to the bath (S → B) and JS(t) > 0 for the reverse process (S ← B),
respectively.

2.3.2 Multiconfigurational Time-Dependent Hartree Theory

In this thesis, we approach the time-evolution of molecular and hybrid light-matter sys-
tems for T ≥ 0 K numerically by means of the multiconfigurational time-dependent Hartree
method[59, 60, 61, 62, 63, 64, 65] and its multilayer extension[68, 69, 70, 71, 72]. The
MCTDH approach was initially formulated for distinguishable DoF and the zero-temperature
regime, but later extended to many-body theory of indistinguishable particles[85, 86, 87, 88,
89, 90, 91, 92, 93] and the finite temperature regime comprising stochastic approaches[95,
96, 97, 98, 99] and density operator theory[105, 106, 107, 108, 109], respectively. In the
following, we discuss the basics of the MCTDH ansatz and its extensions as implemented
in the Heidelberg MCTDH package[84].

The MCTDH Ansatz

The MCTDH ansatz for a f -dimensional vibrational wave function is given by[61, 63]

|ψv(t)〉 =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1...jf (t)

f∏
κ=1

|ϕ(κ)
jκ

(t)〉 , (2.81)

with tensorial coefficients, Aj1...jf (t), and time-dependent, orthonormal single-particle func-

tions (SPFs), |ϕ(κ)
jκ

(t)〉, respectively. The advantage of the MCTDH ansatz manifests in the
flexibility of time-dependent SPFs, which mitigates the exponential scaling of the standard
approach in Eq.(2.67) as in general nκ < Nκ.
The time-evolution of coefficients and SPFs is determined by a set of non-linear equations
of motion (EoM) derived from the Dirac-Frenkel variational principle (DFVP)[100, 101]

〈δψ(t)|i~ ∂
∂t
− Ĥ|ψ(t)〉 = 0 , (2.82)

for a wave packet, |ψ(t)〉, expanded as in Eq.(2.81), which leads to EoM[63, 65]

i~ȦJ =
∑
L

〈ΦJ |Ĥ|ΦL〉AL

i~ |ϕ̇(κ)
j 〉 =

(
1− P̂ (κ)

) nκ∑
k,l=1

(
ρ(κ)−1

)
jk
〈Ĥ〉

(κ)

kl |ϕ
(κ)
l 〉

, (2.83)

which are norm- and energy-conserving for time-independent Hamiltonians.[63] In the first
line of Eq.(2.83), J and L are composite indices, i.e., J = (j1, . . . , jf ) and L = (l1, . . . , lf ),

while in the second line, |ϕ̇(κ)
j 〉 denotes a time-derivative of a SPF, P̂ (κ) is a projector on the
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κth-mode’s subspace spanned by the SPFs, 〈Ĥ〉
(κ)

kl are the corresponding mean-fields and

ρ(κ)−1
is the inverted density matrix, respectively. In order to numerically solve Eqs.(2.83),

the SPFs are regularly expanded in a basis of time-independent, orthonormal primitive
basis functions

|ϕ(κ)
jκ

(t)〉 =
Nκ∑
iκ=1

B
(κ)
jκiκ

(t) |χ(κ)
iκ
〉 , (2.84)

with basis size Nκ and time-dependent coefficients, B
(κ)
jκiκ

(t), respectively. In this thesis, we

consider basis functions, |χ(κ)
iκ
〉, either in terms of a discrete variable representation (DVR)

or in terms of bosonic number states, when employing second quantization representation
(SQR), respectively.
The MCTDH expansion in Eq.(2.81) can be interpreted as decomposition of the standard
approach coefficient tensors, Ci1...if (t), in Eq.(2.67) according to[52, 66]

Ci1...if (t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1...jf (t)

f∏
κ=1

B
(κ)
jκiκ

(t) , (2.85)

which corresponds to a Tucker tensor decomposition[67] of Ci1...if (t) and is diagrammati-
cally depicted in Fig.2.3. Here, the orthonormal tensor Aj1...jf constitutes the root node,

a) b)

Figure 2.3: Diagrammatic representation of (a) the MCTDH expansion in Eq.(2.81) with
“virtual” bond dimensions, nκ, equivalent to the number of SPFs and physical dimensions,
Nκ, equivalent to primitive basis functions and (b) diagrammatic representation of corre-
sponding bra-state where, nκ and Nκ, are assumed implicitly.

which shares “virtual” bonds characterized by bond dimensions, nκ, resembling the num-
ber of SPFs with nodes Bjκiκ , respectively. The standard approach Eq.(2.67) is recovered
by summing over “virtual” indices jκ in Eq.(2.85), which corresponds to a contraction of
virtual bonds in Fig.2.3(a) reproducing Fig.2.1(a) with “physical” indices iκ, respectively.
An extension of the MCTDH ansatz to vibronic problems is given by the multi-set for-
malism, which straightforwardly follows from Eq.(2.68) by expanding the state-dependent
vibrational wave packets, |ψiev (t)〉, via the MCTDH ansatz in Eq.(2.81).



2.3. QUANTUM MOLECULAR DYNAMICS 25

Mode-Combination

It is instructive to recognize, that the MCTDH expansion resembles a partitioning of the
f -dimensional vibrational Hilbert space as a tensor product of the form[89]

Hv(f) = H(1)
v (1)⊗H(2)

v (1)⊗ · · · ⊗ H(f)
v (1) , (2.86)

where H(κ)
v (1) is the vibrational single-mode subspace of the κth-mode, respectively. How-

ever, this partitioning is not unique and can be generalized by grouping single-mode sub-
spaces into multi-mode subspaces[63, 68, 108]

Hv(f) = H(1)
v (d1)⊗H(2)

v (d2)⊗ · · · ⊗ H(p)
v (dp) , (2.87)

with
∑p

κ=1 dκ = f where p < f , such that H(κ)
v (dκ) is a dκ-dimensional subspace. Accord-

ingly, the MCTDH-expansion in single-mode SPFs (cf. Eqs.(2.81) and (2.84)) is also not
unique, which leads to the concept of mode-combination in terms of multi-mode SPFs as
given by

|ϕ(κ)
jκ

(t)〉 =

N1∑
i1=1

· · ·
Ndκ∑
idκ=1

B
(κ)
jκi1...idκ

(t) |χ(κ)
i1
〉 . . . |χ(κ)

idκ
〉 , (2.88)

which span the corresponding dκ-dimensional multi-mode subspace. A corresponding MCTDH
expansion is diagrammatically depicted in Fig.2.4, where an example with two-dimensional
SPFs, conveniently denoted as combined modes, is considered.

Figure 2.4: Exemplary diagrammatic representation of a MCTDH expansion including
combined modes. Number of SPFs, nκ, and primitive basis functions, Nκ, are assumed
implicitly.

The advantage of the mode-combination scheme manifests in a significantly shorter A-
vector in Eq.(2.83), which allows for a more efficient study of larger systems. However, this
benefit comes at the cost of multidimensional SPFs, which need to be propagated at higher
numerical effort, such that only a small number of modes should be combined in order to
balance the benefits and disadvantages of mode-combination.[63]

The Multilayer Scheme

The mode-combination scheme leads to the multilayer extension of MCTDH (ML-MCTDH)[68,
69, 70, 71, 72], which has been shown to be a very powerful method for approaching high-
dimensional problems[73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83] and belongs to the more
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general family of tree tensor network states (TTNS)[52]. In the ML-MCTDH approach,
multi-mode SPFs are not expanded in a basis of time-independent primitive basis functions
but rather in a new basis of time-dependent SPFs

|ϕ(1;κ)
jκ

(t)〉 =

m1∑
l1=1

· · ·
mdκ∑
ldκ=1

A
(2;κ,jκ)
l1...ldκ

(t)
dκ∏
κ′=1

|ϕ(2;κ,jκ)
lκ′

(t)〉 , (2.89)

where SPFs, |ϕ(2;κ,jκ)
lκ′

(t)〉, now form a third layer in the expansion of the f -dimensional

vibrational wave packet |ψv(t)〉, respectively. The SPFs of the new layer may subsequently
be expanded in yet another set of SPFs constituting a fourth-layer, which underlines the
recursive character of this approach. The expansion is truncated by introducing a time-
independent primitive basis as in Eqs.(2.84) or (2.88), which results in a tree with L layers,
where the primitive one does not count as an individual layer here.[63] The diagrammatic

a) b)

Figure 2.5: Exemplary diagrammatic representations of multilayer expansions for (a) a
symmetric three-layer tree and (b) a highly asymmetric tree with three- and four-layer
sub-trees. Number of SPFs, nκ, and primitive basis functions, Nκ, are assumed implicitly.

representation of wave functions is particularly instructive for the ML-MCTDH approach
due to its complexity and the resulting diagrams are known as “ML-trees” in the MCTDH
community.[69] In Fig.2.5, two different examples for multilayer trees are shown: A sym-
metric tree with three layers on the left-hand side and a highly asymmetric tree, which has
three- and four-layer sub-trees, respectively, on the right-hand side. From the perspective
of tensor decomposition, the ML-MCTDH approach corresponds to a hierarchical Tucker
decomposition[67] of the rank-f tensor Ci1...if (t) in the standard approach, Eq.(2.67). No-
tably, the “standard” MCTDH expansion in Eq.(2.81) resembles a two-layer tree in the
language of ML-MCTDH.

Improved and Block-Improved Relaxation

The MCTDH approach is not restricted to real-time evolution but applies equivalently
to imaginary-time problems, which allows to access the calculation of bound states. The
imaginary-time TDSE governing the energy relaxation dynamics reads[102]

~
∂

∂τ
|ψ(τ)〉 = Ĥ |ψ(τ)〉 , (2.90)
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where an initial vibrational wave packet is propagated in imaginary time, τ = −i t, which
allows to access the ground state of the system in case the initial state shows a partial
overlap with the ground state. In this thesis, we employed the improved relaxation and the
block-improved relaxation (BIR) schemes, which allow for a more efficient calculation of the
ground state and the calculation of excited states, respectively.[103, 104] For the MCTDH-
BIR approach, the A-vector is obtained as eigenvector of the Hamiltonian represented a
basis of SPFs, HJK , according to[63]∑

K

HJK AK = E AJ , (2.91)

whereas the SPFs, |ϕ(κ)
j (τ)〉, are propagated in negative imaginary time

~ |ϕ̇(κ)
j 〉 = −

(
1− P̂ (κ)

) nκ∑
k,l=1

(
ρ(κ)−1

)
jk
〈Ĥ〉

(κ)

kl |ϕ
(κ)
l 〉 = 0 . (2.92)

Here, |ϕ̇(κ)
j 〉 denotes here a derivative with respect to τ , respectively. In this thesis, we

employ the improved and block-improved relaxation approaches to calculate ground and
excited vibro-polaritonic states of effective vibrational Pauli-Fierz Hamiltonians.

Density Operator MCTDH

The MCTDH approach has been generalized to time-evolution of density operators[105, 106,
107, 108], denoted as ρMCTDH . In the following, we consider the ρMCTDH(2) approach
(type-2 density operator), where the vibrational density operator ρ̂v(t) of a f -dimensional
vibrational problem is written as[105]

ρ̂v(t) =

n1∑
j1,l1=1

· · ·
nf∑

jf ,lf=1

Bj1...jf ,l1...lf (t)

f∏
κ=1

|ϕ(κ)
jκ

(t)〉 〈ϕ(κ)
lκ

(t)| , (2.93)

with hermitian coefficients, Bj1...jf ,l1...lf (t), and “ket-bra”-products of SPFs. The latter

relate to single-particle density operators (SPDOs), σ̂
(κ)
τκ (t), via

|ϕ(κ)
jκ

(t)〉 〈ϕ(κ)
lκ

(t)| = σ̂(κ)
τκ (t) , (2.94)

with composite index τκ = (jκ, lκ), where the SPDOs determine the type-1-version of
ρMCTDH, i.e., ρMCTDH(1). The SPFs are subsequently represented in a time-independent
primitive basis as in Eq.(2.84) and in analogy with Fig.2.3, a diagrammatic representation
of Eq.(2.93) can be introduced as shown in Fig.2.6.
The EoM are derived by employing the Dirac-Frenkel/MacLachlan variational principle in
combination with the Liouville space formulation of density operator theory[105]

〈〈δρ̂| ˙̂ρ− L(ρ̂)〉〉 = 0 , (2.95)
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Figure 2.6: Diagrammatic representation of the ρMCTDH expansion in Eq.(2.93) for type-
2 density operators. Number of SPFs, nκ, and primitive basis functions, Nκ, are assumed
implicitly.

where L is the Liouvillian, which has been given for closed systems by L0(ρ̂) = − i
~ [Ĥ, ρ]

in Eq.(2.76) and is augmented by LD(ρ̂) for open systems following Lindblad dynamics (cf.
Sec.2.3.1). The ρMCTDH approach has been applied to relatively small problems with a
couple of vibrational modes and/or electronic states due to the strong exponential scaling
of density operator propagation.[105, 106, 110, 111]

2.4 Thermal Reaction Rate Theory

In the last part of this theory section, we turn to the time-independent quantum theory of
thermal reaction rates, which is applied to the study of coupled light-matter hybrid systems
in molecular cQED.

2.4.1 The Cumulative Reaction Probability Approach

A fully quantum mechanical approach to thermal reaction rates, which takes a scattering-
type perspective, defines the thermal rate constant, k(T, η), in terms of a cumulative reaction
probability (CRP), N(E, η), as[112, 113]

k(T, η) =
1

2π~QR(T, η)

∫ ∞
0

N(E, η) e−βE dE , (2.96)

which here explicitly depends on η, as introduced in Eq.(2.50), that characterizes the light-
matter interaction regime according to Eq.(2.51). Here, QR(T, η) is the reactant partition
function, which in harmonic approximation is given for a collection of f classical oscillators
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by

QR(T, η) =

f∏
κ=1

(
1− e−β~ω

(κ)
R (η)

)−1

︸ ︷︷ ︸
=Q

(κ)
R (T,η)

, (2.97)

with single-mode harmonic partition functions, Q
(κ)
R (T, η), and corresponding harmonized

reactant frequencies, ω
(κ)
R , respectively. We note, a different notation for the harmonic

partition functions is chosen in this section to distinguish them from the general partition
function, Z(β), in Eq.(2.71). Further, the CRP accounts for both quantum tunneling and
anharmonicites of the transition state region. In order to calculate the CRP, a Green’s
function approach with absorbing boundary conditions (ABC) formalism is employed in
this thesis.[114, 115] Accordingly, the CRP is evaluated as

N(E, η) = tr
{

Γ̂R Ĝ(E, η) Γ̂P Ĝ
†(E, η)

}
, (2.98)

where the trace runs over a basis spanning the vibro-polaritonic Hilbert space. Further,
Ĝ(E, η) is the vibro-polaritonic Green’s function

Ĝ(E, η) =

(
E − Ĥ +

i

2
Γ̂

)−1

, (2.99)

with vibrational Pauli-Fierz Hamiltonian, Ĥ, as defined in Eq.(2.64) and Γ̂ is a complex
absorbing potential (CAP)

Γ̂ = Γ̂R + Γ̂P , (2.100)

with contribution located in the reactant region, Γ̂R, and the product region, Γ̂P , of the
cavity potential energy surface. Explicit examples for CRP, N(E, η), corresponding rates,
k(T, η), and complex absorbing potentials, Γ̂R and Γ̂P , are given in Ch.3 and Appendix B.

2.4.2 Eyring Transition State Theory

An approximate but well-known framework to thermal reaction rates is provided by Eyring
transition state theory (TST). Eyring TST is based on the assumption of an equilibrium
between reactants and the activated complex, the absence of barrier-recrossing from the
product state and the neglect of quantum tunneling effects, respectively. The corresponding
thermal rate constant is written as[117]

kTST(T, η) =
1

2π~β
Q‡(T, η)

QR(T, η)
exp

(
−β∆Ea

eff(η)

)
, (2.101)

which in molecular cQED additionally depends on the light-matter coupling indicated by
η. Here, QR(T, η) is the classical harmonic reactant partition function as given in Eq.(2.97)
and Q‡(T, η) is the classical transition state partition function, here also in harmonic ap-
proximation,

Q‡(T, η) =

f−1∏
κ=1

(
1− e−β~ω̄

‡
κ(η)

)−1

︸ ︷︷ ︸
=Q‡κ(T,η)

, (2.102)
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with harmonic frequencies, ω̄‡κ, of f -1 bound modes at the transition state. Further, ∆Ea
eff(η)

in Eq.(2.101) is an effective activation energy taking into account quantum corrections,
which is defined as

∆Ea
eff = Ea

cl + E‡0(η)− E0
R(η) , (2.103)

with classical activation energy, Ea
cl, as well as both harmonic transition state and reactant

zero-point energies

E‡0(η) =

f−1∑
κ=1

~ω̄‡κ(η)

2
, E0

R(η) =

f∑
i=κ

~ω(κ)
R (η)

2
. (2.104)

In general molecular cQED settings, both E‡0(η) and E0
R(η) are functions of the light-matter

interaction as the cPES varies with η. Naturally, kTST(T, η) does not account for quantum
tunneling opposed to the fully quantum mechanical rates in Eq.(2.96). An approximative
way, to account for tunneling in Eyring TST is given by the Wigner correction

κW (T, η) = 1 +
1

24

(
β ~|ω‡|

)2
, (2.105)

which depends on the imaginary “barrier” frequency, |ω‡|, at the transition state, and is used
as a prefactor on the right-hand side of Eq.(2.101). In the molecular cQED framework, |ω‡|
generally depends on the light-matter interaction regimes and so does the Wigner correction
factor, κW (T, η), respectively.

2.4.3 Thermodynamic Perspective of Eyring TST

Adopting a thermodynamic perspective, the Eyring rate constant can be rewritten as[116,
118]

kTST(T, η) =
1

2π~β
exp

(
−β∆G‡(T, η)

)
, (2.106)

where the Gibbs activation free energy, ∆G‡(T, η), depends on the light-matter coupling
and is given by

∆G‡(T, η) = ∆H‡(T, η)− T ∆S‡(T, η) (2.107)

with activation enthalpy[118]

∆H‡(T, η) = Ea
eff(η)−RT , (2.108)

and activation entropy, ∆S‡(T, η), respectively. The thermal rate constant in Eq.(2.106)
can now be rewritten as

kTST(T, η) =
1

2π~β
exp

(
1 +

∆S‡(T, η)

R

)
exp

(
−β∆Ea

eff(η)

)
, (2.109)

and by comparison with Eq.(2.101), one identifies

exp

(
1 +

∆S‡(T, η)

R

)
=
Q‡(T, η)

QR(T, η)
. (2.110)
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The latter equation allows to obtain an explicit expression for the activation entropy in
terms of classical harmonic partition functions[118]

∆S‡(T, η) = R

(
ln

(
Q‡(T, η)

QR(T, η)

)
− 1

)
. (2.111)

Hence, with ∆H‡(T, η) in Eq.(2.108) a thermodynamic characterization of Eyring TST
thermal rates is obtained from the parameters determining Eq.(2.101).
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Chapter 3
Vibrational Polaritons in Small Molecules

3.1 Motivation

Traditionally, quantum electrodynamics only played a minor role in molecular sciences as
for example in spontaneous emission processes and radiative corrections relevant for high-
resolution spectroscopy.[12] This paradigm changed significantly after a series of seminal
experiments by Ebbesen and coworkers, who employed optical cavities to reveal the im-
pact of fully quantized light-molecule interactions on chemistry[119, 120, 121, 122] and
spectroscopy[123, 124, 125]. Hereafter, the concepts of electronic strong coupling (ESC)
and vibrational strong coupling (VSC) have been established related to whether the cav-
ity field influences photochemistry or thermal ground state chemistry. From a conceptual
perspective, strong coupling effects manifest in the rather peculiar concept of light-matter
hybrid states, which emerge from the mixing of either electronic or vibrational states with
bound states of quantized electromagnetic field modes of optical cavities.[126]
The experimental success induced a significant theoretical effort aiming at a detailed under-
standing of both ESC and VSC. In combination with experiment, the recently rapidly grow-
ing, highly interdisciplinary field of polaritonic chemistry was born.[127, 128] The influence
of electronic strong coupling on charge transfer processes, photochemistry and electronic
spectroscopy, see for example Refs.[129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 24, 139,
140, 141, 142, 143, 144, 145, 146], has been successfully approached by merging concepts
from molecular quantum mechanics beyond the BOA and cavity QED. In contrast, the
nature of vibrational strong coupling and especially its role in polaritonic chemistry is still
under dispute, which recently culminated in a series of articles reviewing the state of the
art and pointing at theoretical challenges.[147, 148, 149, 150, 151]
From the broader perspective of system-bath type problems, the vibrational strong cou-
pling scenario can be interpreted as interaction of a molecular system with a “bath” of
quantized cavity field modes. However, characteristically the “bath” is here only composed
of a few modes and more importantly (ultra)strongly coupled to the molecular vibrations.
The latter means that the interaction energy is a significant fraction of characteristic funda-
mental transition energies in the subsystems. Notably, such a coupling situation renders the
system-bath type system to be more accurately described as highly entangled composite

33
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entity, characterized by hybrid states combining properties of both system and bath. A
rather contrary scenario characterized by a high-dimensional but only weakly coupled bath,
will be discussed in Ch.4.

In the first part of this thesis, we aim at contributing to resolve open questions in VSC
polaritonic chemistry by studying the (ultra)strong interactions of molecular vibrations
with quantized field modes in an optical Fabry-Pérot cavity for selected model systems.
In section 3.2, we will discuss ground and excited state properties for anharmonic vibra-
tional polaritons formed in small molecules via the interaction with a single cavity mode.
In particular, we provide a thorough discussion of the influence of the dipole self-energy
contribution in the effective vibrational Pauli-Fierz Hamiltonian on different ground and
exited state properties of model light-matter hybrid system. In section 3.3, we will lift the
restriction of fixed molecular orientation and provide a detailed model study of a rovibrat-
ing diatomic and its orientation dependent interaction with doubly degenerate, orthogonally
polarized cavity modes. By combining ideas from beyond-BOA quantum mechanics and
quantum vibrational dynamics, we identify three-state vibro-polaritonic conical interactions
and rovibropolaritonic light-matter hybrid states in corresponding infrared spectra. In the
final section 3.4, we will address the influence of VSC on a minimal thermal isomerization
model. From a combined analysis based on quantum reaction rate theory and dynamical
considerations, we examine the influence of quantum effects on cavity-suppressed inversion
rates and identify a dynamical reactant localization manifesting as cavity-molecule reso-
nance effect.

3.2 Ground and Excited State Properties

We discuss ground and excited state properties of anharmonic vibrational polaritons formed
in small molecules and thoroughly examine the role of the dipole self-energy term in the
effective vibrational Pauli-Fierz Hamiltonian. As model systems, we consider molecular vi-
brational model systems for anharmonic Morse-type and symmetric double-well potentials,
which interact with a single cavity mode. The single-mode limit is realized by aligning the
molecular dipole moment with a cavity polarization vector as shown in Fig.3.1. The re-
sulting minimal two-dimensional models systems are discussed with respect to ground and
excited state properties. Excited states are accessed by means of autocorrelation-function
based vibro-polaritonic infrared spectra. Particularly, we will discuss the dipole self-energy
and its impact on both vibro-polaritonic properties and spectra as its relevance has been
thoroughly discussed in Refs.[26, 27], but was neglected in recent studies on anharmonic
vibrational polaritons[49, 153].

Results discussed in this chapter are reproduced from “E.W. Fischer, P. Saalfrank. Ground
state properties and infrared spectra of anharmonic vibrational polaritons of small molecules
in cavities. J. Chem. Phys. 154, 104311, (2021).”[152] with permission of AIP Publishing.
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(a) (b)

Figure 3.1: Schematic sketch of (a) a diatomic molecule with vibrational coordinate, r, and
(b) the ammonia molecule in an optical two-mode cavity with polarization vectors εz, εy,
wavevector, k, and molecular space-fixed frame with axis x, y, z. In the single-mode limit,
both molecules couple exclusively to the z-polarized cavity mode and molecular rotations
are neglected.

3.2.1 Molecular Model Systems

We consider the stretching mode in LiH, a localized OH-stretching mode in a deuterated
water molecule (HOD) and a one-dimensional model for the ammonia inversion mode, which
all couple via their respective nonlinear dipole functions to a single cavity mode. The LiH-
and OH-stretching modes provide paradigmatic examples for Morse-type medium and high
frequency anharmonic molecular potentials, whereas the NH3 inversion mode resembles a
prototypical symmetric double-well potential. The resulting minimal two-mode problems
are described by a two-dimensional effective vibrational Pauli-Fierz Hamiltonian

Ĥ = ĤS + ĤC + ĤSC , (3.1)

where the first term resembles the molecular “system” Hamiltonian

ĤS = − ~2

2µ

∂2

∂q2
+ V (q) , (3.2)

with molecular coordinate, q, and reduced mass, µ. The second term in Eq.(3.1) is the
single-mode cavity Hamiltonian in coordinate representation

ĤC = −~2

2

∂2

∂x2
c

+
ω2
c

2
x2
c , (3.3)

with cavity displacement coordinate, xc, and harmonic cavity mode frequency, ωc. Finally,
the third term, ĤSC , combines the bare light-matter interaction, ∆ĤSC , and the dipole
self-energy, ĤDSE, as

ĤSC = ∆ĤSC + ĤDSE =

√
2ωc
~
g xc d(q) +

g2

~ωc
d2(q) , (3.4)
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with light-matter interaction strength, g, and molecular dipole function, d(q), respectively.
We recall, according to Eq.(2.50) the light-matter interaction strength, g, can be expressed
in terms of a dimensionless parameter, η, which in turn allows to characterize the VSC and
VUSC regimes following Eq.(2.51).
Molecular potentials, V (q), molecular dipole functions, d(q), and energetically lowest lying
eigenstates of the vibrational (model) systems considered here are depicted in Fig.3.2.

(a) LiH (b) OH (c) NH3

Figure 3.2: Molecular potential functions, V (q), dipole functions, d(q), and lowest lying
eigenstates for a stretching modes in (a) LiH, (b) an OH-bond in HOD and (c) the NH3

inversion mode.

The adiabatic ground state PES of LiH has been calculated on the CCSD(T)/cc-pVQZ
level of theory as implemented in Gaussian16[156]. The corresponding dipole function
was taken from Ref.[157] and calculated on the FCI/cc-pVQZ level of theory. The OH-
stretching mode is modeled by a Morse potential

VM(q) = De

(
e−a(q−qe) − 1

)2
, q ∈ [0.5, 9] a0 , (3.5)

and the NH3 inversion mode is modeled by a symmetric double-well potential

VDW(q) = A0 + A2 q
2 + A4 q

4 , q ∈ [−1.6, 1.6] a0 , (3.6)

with either, V (q) = VM(q), or, V (q) = VDW(q), in Eq.(3.2). Further, we consider a model
dipole function of Mecke type[158, 159] for the OH-Morse oscillator

dM(q) = −α q e−β q , q ∈ [0.5, 9] a0 , (3.7)

and an asymmetric model dipole function for the inversion mode

dDW(q) = −γ q e−δ q2 , q ∈ [−1.6, 1.6] a0 . (3.8)

The ammonia inversion potential in Eq.(3.6) is given by a fourth-order polynomial in the
inversion coordinate, with a barrier height of A0 = 9.249 · 10−3Eh = 2030 cm and a low-
est tunneling splitting of ~ω0+0− = 0.92 cm−1 (exp. 0.79 cm−1[160]). The corresponding
dipole function in Eq.(3.8) is constructed such, that the maximal value is found at the
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two double-well minima with |d0| = 1.47 D = 0.551 ea0 in agreement with experiment[161],
and a sign change occurs at the origin (q = 0). We note that both more accurate model
potentials (e.g., of Mannig form[162, 163]) and dipole functions[164] exist, however, our
approximative treatment here is sufficient for our purposes. All parameters specifying
VM(q), VDW(q) and dM(q), dDW(q) are provided in Tab.3.1, with reduced masses obtained
as, µ = mHmOD/mHOD, for the OH-bond and, µ = m3HmN/mNH3 , for the ammonia inver-
sion mode. For LiH, we find a reduced mass of, µ = mHmLi/mLiH = 1573.99me.

Table 3.1: Parameters for molecular model potentials and dipole functions besides reduced
masses for the OH-stretching[158, 159] and NH3 inversion modes, respectively.

OH µ/me De/Eh qe/a0 a/a−1
0 α/|e| β/a−1

0

1728.54 0.1994 1.821 1.189 1.634 0.8818

NH3 µ/me A0/Eh A2/Eh a−2
0 A4/Eh a−4

0 γ/|e| δ/a−2
0

4533.52 9.249 · 10−3 −3.289 · 10−2 2.923 · 10−2 1.271 0.8887

Here, we study (ultra)strongly coupled vibrational light-matter hybrid model systems for
a cavity mode frequency, ωc, chosen resonant to the fundamental (symmetry allowed) vi-
brational transition of the molecular mode, with details provided in Tab.3.2. We note, for
the ammonia inversion model, the fundamental symmetry allowed transition is between
the symmetric ground state |0+〉 and the anti-symmetric first excited state, |1−〉, due to
symmetry reasons as discussed in detail below.

Table 3.2: Transition energies, ~ωfi, and transition dipole moments, dfi, for the lowest
allowed transitions, starting from the ground state, for all three model systems.

system |i〉 → |f〉 ~ωfi / cm−1 dfi / ea0

LiH |0〉 → |1〉 1348 0.092
OH |0〉 → |1〉 3784 0.025
NH3 |0+〉 → |1−〉 1039 0.027

Ground and excited vibro-polaritonic states as well as infrared spectra have been obtained
via the MCTDH method as implemented in the Heidelberg MCTDH package[84], employing
Block-Improved Relaxation and real-time evolution, respectively. Technical parameters for
converged calculations are given in Tab.3.3. Further, we obtain infrared (IR) spectra as

σ(ω) =

∫ T

0

C(t) fW (t) e+i(ω−ω0)te−(t/τ)2dt , (3.9)
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Table 3.3: Number of SPFs ns and nc, Harmonic Oscillator (HO) DVR grid points ms,
mc and DVR lattice endpoints q0/qf and xc0/xcf (given in atomic units) for the molecular
system and the cavity mode, respectively, used for MCTDH calculations. Here, “s” stands
for system and “c” for cavity mode.

ns nc ms mc q0/qf xc0/xcf

LiH (stretch) 24 24 251 151 [1.7, 13.3] ∓212.9
OH (stretch) 24 24 151 151 [0.5, 9.0] ∓127.1

NH3 (inversion) 28 28 251 251 [−1.6,+1.6] ∓242.6

with T = 2 tf , ground-state energy off-set, ~ω0, damping time, τ ∈ {500, 200, 1000} fs, for
LiH, OH and NH3, respectively, and window function

fW (t) =

(
1− t

T

)
cos
(π
T
t
)

+
1

π
sin
(π
T
t
)

. (3.10)

The dipole-dipole autocorrelation function is given by[166]

C(t) =

∫ qf

q0

∫ xcf

xc0

ψ?(q, xc, 0)ψ(q, xc, t) dxc dq , (3.11)

with initial state, ψ(q, xc, 0) = d(q)χ0(q, xc), where χ0(q, xc) is the vibro-polaritonic ground
state of the effective vibrational Pauli-Fierz Hamiltionian and d(q) is the dipole function of
the respective molecular system.

3.2.2 Vibro-Polaritonic Ground State Properties

We first discuss properties of vibro-polaritonic ground states as function of η related to
the light-matter interaction regime and examine their dependence on the dipole self-energy
contribution. Explicitly, we consider the energy difference

∆ε0 = 〈Ĥ〉0 − 〈Ĥ0〉0 , (3.12)

between the interacting vibro-polaritonic ground state energy, 〈Ĥ〉0, and its non-interacting

zero-order counterpart, 〈Ĥ0〉0, with Ĥ0 = ĤS + ĤC (cf. Eqs.(3.2) and (3.3)), and provide
a detailed analysis of individual energetic contributions. Afterwards, we turn to dissoci-
ation energies, activation energies as well as equilibrium bond lengths and discuss their
dependence on the DSE.

Vibro-Polaritonic Ground State Energy

Starting with the vibro-polaritonic ground state energy, we show ∆ε0 in the upper row
of Fig.3.3 for all model system as function of η as obtained with and without the DSE
contribution.
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Figure 3.3: Top row: Energy difference, ∆ε0, of vibro-polaritonic ground state energy and
non-interacting ground state energy. Shown are values obtained with (w/) and without
(w/o) dipole self-energy (DSE) contribution, all as a function of the coupling strength
parameter, η. Bottom row: Energy decomposition for LiH, OH and NH3 models obtained
with DSE contribution as function of η. Insets show cavity ∆ΣC and system ∆ 〈ĤS〉0
contributions (see text for definitions) to ∆ε0.

In absence of ĤDSE, we observe ∆ε0 to decrease monotonically by several thousand wavenum-
bers as η increases. This finding resembles the instability of the vibro-polaritonic ground
state as discussed in Refs.[26, 27]. In contrast, in presence of ĤDSE we observe ∆ε0 to
slightly increase by several tens of wavenumbers as η increases, as depicted in insets of
Fig.3.3 top-row. In order to address energetic details, we perform an energy decomposition
analysis of 〈Ĥ〉0 in terms of individual contributions

〈Ĥ〉0 = 〈ĤS〉0 + 〈ĤC〉0 + 〈∆ĤSC〉0 + 〈ĤDSE〉0 , (3.13)

and study their behavior as function of η. First, we discuss the last three contributions,
which resemble the cavity mode, 〈ĤC〉0, the bare light-matter interaction, 〈∆ĤSC〉0, and the

dipole self-energy ground state expectation values, 〈ĤDSE〉0. We obtain analytic expressions
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for the latter contributions, which explicitly reveal the functional dependence on η as

〈ĤC〉0 = ~ωc
η2

d2
fi

〈d2〉+ ~ωc
(
〈â†â〉+

1

2

)
, (3.14)

〈∆ĤSC〉0 = 〈ĤSC〉0 − 〈ĤDSE〉0 = −2~ωc
η2

d2
fi

〈d2〉 , (3.15)

〈ĤDSE〉0 = ~ωc
η2

d2
fi

〈d2〉 . (3.16)

In order to derive the latter, we exploited the second quantization representation for the
cavity mode and performed a projected PZW-transformation, which exclusively acts on the
electronic ground state subspace[36]. Our results are shown in the lower row of Fig.3.3.
In the non-interacting limit (η = 0), the bare light-matter interaction and DSE contribution
vanish identically, i.e., 〈ĤSC〉0 = 〈ĤDSE〉0 = 0, and only the cavity-mode zero point energy

contributes, 〈ĤC〉0 = ~ωc
2

. For η > 0, we find a monotonic increase 〈ĤC〉0 ∼ η2 and

〈ĤDSE〉0 ∼ η2, where the two terms differ by the cavity contribution, ~ωc
(
〈â†â〉+ 1/2

)
.

Moreover, we find the bare light-matter interaction to decrease as 〈∆ĤSC〉0 ∼ −2η2 for

increasing η. Hence, in absence of the DSE one finds for Eq.(3.13), that 〈Ĥ〉0 ∼ −η2 as
η →∞. This behavior results from the dominant bare light-matter interaction contribution
to the ground state energy (〈∆ĤSC〉0) in the limit of large η. In contrast, for the complete
Pauli-Fierz Hamiltonian the cavity mode and DSE contributions exactly counterbalance
〈∆ĤSC〉0, which prevents divergence of ∆ε0. We note, that identical trends are found for
all studied systems with energetic changes in the order of several thousand wavenumbers.
In order to shine some light on the increase of ∆ε0 for the scenario with DSE, we compare
the zero-point energy corrected system energy, ∆ 〈ĤS〉0, with the total cavity contribution

∆ΣC = 〈ĤC〉0 + 〈∆ĤSC〉0 + 〈ĤDSE〉0 , (3.17)

which sum up to, 〈Ĥ〉0 = ∆ 〈ĤS〉0 + ∆ΣC , respectively. As can be observed from the insets

in the lower row of Fig.3.3, both ∆ 〈ĤS〉0 and ∆ΣC increase with η and contribute nearly

identically to 〈Ĥ〉0. For the ammonia inversion model, we observe a slightly dominant cavity

contribution, ∆ΣC , compared to the system energy, ∆ 〈ĤS〉0. Hence, the increase of ∆ε0

with η is traced back to an increase in bare system and cavity mode contributions to the
vibro-polaritonic ground state energy.

Dissociation Energies, Activation Energies and Bond Lengths

We now turn to bond dissociation energies for Morse-type model systems and activation
energy for the ammonia inversion mode. To proceed, we introduce the cavity potential
energy surface for two-dimensional models systems as

Vη(q, xc) = V (q) +
ω2
c

2
x2
c +

√
2ωc
~
g xc d(q) +

g2

~ωc
d2(q) . (3.18)
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For Morse-type oscillators, we consider a classical dissociation energy as defined by

Dcl = lim
q→∞

min
xc

(
Vη(q, xc)− Vη(q0, xc0)

)
, (3.19)

with classical cPES minimum, Vη(q0, xc0), and a vibro-polaritonic zero-point energy cor-
rected dissociation energy, Dqu = Dcl−ε0(η). Dcl resembles energy required for dissociation,
which minimizes the energy with respect to changes in the cavity displacement coordinate,
xc. Further, we discuss the classical activation energy for the cavity-ammonia inversion
model as defined by

Ea
cl = Vη(q

‡, x‡c)− Vη(q0, xc0) , (3.20)

where Vη(q
‡, x‡c) is the energy at the cavity transition state with coordinates {q‡, x‡c}. Ad-

ditionally, we consider a vibro-polaritonic zero-point energy corrected activation energy,
Ea
qu = Ea

cl − ε0(η), where we explicitly neglect any corrections due to the transition state,
which will be subject of a detailed discussion in Sec.3.4. In Fig.3.4, both classical (top
row) and quantum dissociation/activation energies (bottom row) are depicted as function
of η. Again, we compare scenarios where we include or exclude the DSE-contribution to
the cPES.

Figure 3.4: Classical Dcl (cf. Eq.(3.19)) and quantum (initial-state zero-point energy cor-
rected) Dqu dissociation energies of LiH and OH, besides classical, Ea

cl, and initial-state
zero-point energy corrected activation energies, Ea

qu, of the NH3 inversion mode, respec-
tively. All as function of η with (w/) and without (w/o) DSE contribution. Insets show
curves obtained with DSE on a larger scale.
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Beginning with classical dissociation and activation energies, Dcl and Ea
cl, we observe a

strong increase with η when ĤDSE has been neglected. However, we find both Dcl and Ea
cl

to be independent of the light-matter interaction in presence of the DSE contribution for
all values of η studied here. Results are shown in insets of Fig.3.4, top row.
Further, zero-point energy corrected dissociation, Dqu, and activation energies, Ea

qu, show
a similar behavior as their classical counterparts and increase by several thousand wave
numbers in absence of the DSE. In contrast, a decrease of both Dqu and Ea

qu by several tens

of wave numbers with increasing η is found in presence of ĤDSE. This trend opposes the
classical equivalents, which were found to be independent of the light-matter interaction,
and points at the relevance of quantum corrections.

In the following, we shall provide a rigorous justification for the η-independence of classical
quantities Dcl and Ea

cl. To this end, we consider a general cPES, Vη(s, {qi}, {xk}), with reac-
tion coordinate, s, a set of molecular vibrational coordinates, {qi}, and cavity displacement
coordinates, {xk}, respectively. A path on the cPES, which minimizes the energy along the
reaction coordinates, s, satisfies the constraints

∂

∂qj
Vη(s, {qi}, {xk}) = 0 , (3.21)

∂

∂xl
Vη(s, {qi}, {xk}) = 0 . (3.22)

The second condition allows to determine a set of minimizing cavity displacement coordi-
nates given by

xmin
k = −

√
2

~ω3
k

gk d(s, {qi}) , (3.23)

with kth-cavity mode frequency, ωk, and interaction strength, gk, which leads with the
corresponding minimized cPES, Vη(s, {qi}, {xmin

k }), to

∂

∂qj
Vη(s, {qi}, {xmin

k }) =
∂

∂qj
V (s, {qi}) = 0 . (3.24)

The latter equality states, that the minimizing condition with respect to molecular coor-
dinates solely depends on the Born-Oppenheimer PES, V (s, {qi}), if the energy is already
minimal with respect to changes in cavity displacement coordinates. In particular, the min-
imizing condition does not depend on the cPES. This property resembles the DSE-induced
translational invariance of the Pauli-Fierz Hamiltonian and formally resembles properties
of the renormalization term in the Caldeira-Leggett Hamiltonian[17, 154, 155].
The consequences of this analysis are three-fold: (i) Extrema on Born-Oppenheimer PES
and cPES share the same molecular coordinates, (ii) extremal molecular coordinates are
independent of light-matter interaction and (iii) locations of extrema with respect to cavity
displacement coordinates depend on the light-matter interaction dependent values of xmin

k .
Accordingly, under constrained xmin

k , the minimum condition of the cPES with respect to
molecular coordinates reduces to the minimum condition for the Born-Oppenheimer PES.
Hence, there exists no classical minimum energy path on a cPES, which is lower in energy
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LiH OH

Vη(q, xc)

Figure 3.5: Top row: Molecular equilibrium bond length, 〈q̂〉0, for LiH and OH obtained
with (w/) and without (w/o) DSE contribution. Bottom row: cPES for LiH-cavity hybrid
system as function of stretching mode coordinate, q, and cavity displacement coordinate,
xc, in the VUSC regime with η = 0.2. Minimum energy path (bold) and linear transit
pathways from initial to final configurations (dashed).

compared to its analog on the conventional molecular PES. Therefore, a purely classical
cPES analysis seems to be inadequate to resolve the details of vibro-polaritonic ground
state chemistry and the inclusion of quantum corrections seems mandatory, at least from
the time-independent perspective. Another consequence of the latter analysis implies that
equilibrium bond lengths, 〈q̂〉0, are actually independent of η as shown in Fig.3.5. We
note that in absence of the DSE term, we observe an apparent bond stretching (LiH) and
shortening (OH), which do not occur for the full Pauli-Fierz Hamiltonian.

Before turning to excited vibro-polaritonic states, we like to stress that our results are
independent of the particular form of Vη(s, {qi}, {xk}), however, they only hold for vibra-
tional strong coupling problems in the limit of vanishing electron-photon correlation (cf.
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Eq.(2.60)). Here, the latter is a valid simplification, as for cavity modes in the IR regime
the contribution of excited electronic states to the ground state cPES is assumed to be
small as indicated by recent ab initio QED-CC results[47].
We close this section, by pointing out that significantly altered cPES barriers were recently
reported for ground state proton-transfer reactions obtained with fully correlated electron-
photon approaches[48], which seem to apparently contradict our reasoning. However, the
authors of this study considered a cavity mode frequency of ωc = 3 eV ≈ 24000 cm−1, which
is well beyond the energetic range of vibrational strong coupling scenarios. Accordingly, it
has to be assumed that this scenario is not covered by arguments given here and presumably
bridges VSC and ESC problems, i.e., thermal ground-state chemistry probably changes due
to cavity-induced “admixing” of electronically excited state contributions to the ground
states cPES.

3.2.3 Vibro-Polaritonic Excited States

We now turn vibro-polaritonic excited states and infrared spectra. As reference states,
we consider eigenstates of the zeroth-order non-interacting Hamiltonian, Ĥ0 = ĤS + ĤC ,
which are exact in the limit, η → 0. For the following discussion, we restrict zeroth-order
states to ground-state (X0), single-excitation (X1) and double-excitation (X2) manifolds,
respectively. The manifolds are characterized by the number of quanta in the zero-order
states and are sufficient to properly describe the low-energy properties of our model systems,
which are regularly probed in infrared spectroscopic experiments.

Morse-type Oscillators: LiH and OH Stretching Modes

For Morse-type oscillators, we consider zeroth-order reference states, {|vs, nc〉}, with

X0 = {|0s, 0c〉}
X1 = {|1s, 0c〉 , |0s, 1c〉}
X2 = {|2s, 0c〉 , |1s, 1c〉 , |0s, 2c〉}

. (3.25)

The X1-manifold is doubly degenerate due to the resonance condition, ωc = ω10. For the
X2-manifold, two degenerate states |1s, 1c〉 and |0s, 2c〉 are accompanied by |2s, 0c〉, which is
slightly lower in energy due to anharmonicity of the molecular stretching mode. In Fig.3.6,
we show energy level diagrams for the non-interacting limit and a fully interacting scenario
(η = 0.2), which comprises the lowest six vibro-polaritonic states provided by (3.25) with
corresponding densities on the corresponding cPES.
For η > 0, one finds bright lower and upper vibro-polaritonic states, |L1〉 and |U1〉, spanning
X1 and bright states |L2〉 , |M2〉 and |U2〉 for the X2-manifold. In order to make this state-
ment quantitative, we discuss in the following vibro-polaritonic eigenenergies and IR spectra
as a function of η. In Fig.3.7 top row, the eigenvalues of vibro-polaritonic states formed in
both LiH (left) and OH modes (right) are depicted as function of η relative to the respective
ground state energy. Again, we distinguish scenarios where the dipole self-energy term has
been taken into account or alternatively neglected. Starting with the full description, one
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Figure 3.6: Schematic representation of IR active vibro-polaritonic transitions indicated by
arrows for Morse-type anharmonic vibrational polaritons in the non-interacting limit (left)
and the interacting case (right). Schematic densities shown for non-interacting zeroth-order
states and vibro-polaritonic eigenstates, |L1〉 , |U1〉 and |L2〉 , |M2〉 , |U2〉, for LiH at η = 0.0
(left) and η = 0.2 (right) besides contours of the cPES, Vη(q, xc), with DSE.

observes the well-known characteristic formation of two non-degenerate vibro-polaritonic
states emerging from the X1-manifold, i.e., the lower and upper vibrational polaritons |L1〉
and |U1〉, respectively. Their energetic separation, known as Rabi splitting, increases with
η. Further, three non-degenerate states |L2〉 , |M2〉 and |U2〉 emerge from the X2-manifold,
with a middle vibrational polariton |M2〉. As η increases, |L2〉 experiences a red-shift and
|U2〉 is blue-shifted, while |M2〉 does not vary significantly. These findings hold for both
Morse-type models due to the similarities in the molecular potential. Notably, this quali-
tative equivalence is absent, if ĤDSE is neglected. Then, we observe most vibro-polaritonic
eigenstates in LiH to decrease in energy with increasing η, passing a minimum around
η = 0.13 and increasing in energy for stronger couplings. In contrast, the OH counterparts
all tend to higher energies as η increases.
From a spectroscopic perspective, we observe bright transitions, X0 → X1, which allow to
identify the two spectroscopically bright vibro-polaritonic states |L1〉 and |U1〉. Notably,
overtone transitions, X0 → X2, are found to be significantly weaker in intensity and will
therefore not be discussed in what follows. We observe a slightly asymmetric splitting of
L1- and U1-peaks, which leads to a slightly stronger blue-shift of the upper polariton state
relative to the red-shifted lower polariton. For η ≤ 0.15, the two bright states are well
described as superposition states

|L1〉 =
1√
2

(
|1s, 0c〉 − |0s, 1c〉

)
|U1〉 =

1√
2

(
|1s, 0c〉+ |0s, 1c〉

) , (3.26)

with some deviations for stronger coupling, where contributions from higher-lying states
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Figure 3.7: Top row: Vibro-polaritonic energy eigenvalues of LiH (left) and OH (right) for
X1- (lower manifold) and X2-manifolds (upper manifold) as function of the light-matter
coupling ratio η with (light blue curves, crosses) and without (orange curves, circles) dipole
self-energy contribution included. Bottom row: Vibro-polaritonic IR spectra of LiH (left)
and OH (right) for different values of η for transitions X0 → X1. In both cases the full
Hamiltonian with DSE was considered.

become relevant. As to be expected from the eigenvalues analysis, the spectra change
significantly in absence of the DSE contribution as shown in Fig.3.8. Here, we find dif-
ferent peak positions as expected from the analysis of vibro-polaritonic eigenvalues shown
in Fig.3.7, but in particular also very different intensities. We can identify two peaks for
η ≤ 0.1, with a significantly more intense L1-transition for LiH in contrast to OH, where the
U1-peak dominates. As η increases, intensities decrease, the U1-peak experiences as strong
blue-shift and the L1-peak experiences a strong red-shift in both models.

Symmetric Double-Well Potential: NH3 Inversion Mode

The zero-order basis for the symmetric double-well potential can be characterized by the
symmetry of the corresponding vibrational Pauli-Fierz Hamiltonian. For η = 0, the latter
and its eigenstates transform as the irreducible representations of C2v, i.e., A1, A2 and
B1, B2, respectively. We take into account the same manifolds as for the Morse oscillator
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LiH OH

Figure 3.8: Vibro-polaritonic IR spectra of LiH (left) and OH (right) for different values of
η for transitions X0 → X1 where the DSE was neglected.

models, here with a total of twelve states given by

X0 =

{
|0+
s , 0c〉 (A1), |0−s , 0c〉 (B1)

}
X1 =

{
|1+
s , 0c〉 (A1), |1−s , 0c〉 (B1), |0+

s , 1c〉 (B2)︸ ︷︷ ︸
degenerate

, |0−s , 1c〉 (A2)

}

X2 =


|2+
s , 0c〉 (A1), |2−s , 0c〉 (B2), |1+

s , 1c〉 (B1),

|0+
s , 2c〉 (A1), |1−s , 1c〉 (A2)︸ ︷︷ ︸

degenerate

, |0−s , 2c〉 (B2)


, (3.27)

where transformation properties according to irreducible representations of C2v are given in
parenthesis. At η > 0, the symmetry of the vibrational Pauli-Fierz Hamiltonian is reduced,
C2v → C2, such that (A1, A2) → A and (B1, B2) → B. Hence, the vibro-polaritonic states
can be grouped into two sets, a symmetric and an anti-symmetric one transforming as the
corresponding irreducible representations of C2, i.e., A and B.
In Fig.3.9(a), we depict vibro-polaritonic eigenvalues of states forming X1- andX2-manifolds
as function of η. In presence of the DSE contribution, we observe the formation of four
non-degenerate vibro-polaritonic states in the X1-manifold, two symmetric (A) and two
anti-symmetric (B) ones. With increasing η, the lower two polariton states are red-shifted,
while the upper two states experience a blue-shift. In the ultrastrong coupling regime for
η = 0.2, the X1-manifold resembles a pair of two-fold accidentally degenerate states.
For the energetically higher lying X2-manifold, we observe a qualitatively similar behavior:
The degeneracy of zero-order states is lifted as η increases and six vibro-polaritonic states
form, three symmetric and three anti-symmetric ones. Under VUSC, the lowest two states
and the intermediate pair become accidentally degenerate. Additionally at η = 0.2, also the
remaining upper two states are degenerate resulting in three pairs of accidentally two-fold
degenerate states. Notably, a pair is composed of states with symmetrically inequivalent
transformation properties.
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Figure 3.9: (a) Vibro-polaritonic energy eigenvalues for NH3-cavity problem with (optically

bright in light blue/ stars; optically dark in dark blue/squares) and without (orange, circles)

DSE contribution resulting from X1- (lower manifold) and X2-manifolds (upper manifold),

respectively. Energies in dependence of light-matter coupling parameter, η, and relative to

the ground state energy. (b) Vibro-polaritonic IR spectrum obtained with DSE contribution

for different η values. (c) Schematic representation of IR active vibrational transitions

indicated by arrows for double-well-type anharmonic polaritons. Schematic densities of

vibro-polaritonic states transforming as anti-symmetric irreducible representations of C2v

in the non-interacting limit and as anti-symmetric irreducible representations of C2 at finite

light-matter interaction strength (η = 0.2, DSE included). Dark vibro-polaritonic states

are indicated by dashed lines, bright ones by solid lines. In all cases, the harmonic cavity

frequency is chosen as ωc = (ε−1 − ε+
0 )/~.

In absence of the dipole self-energy contribution, we find a significant blue shift for nearly
all vibro-polaritonic eigenstates. In particular, some states from X1 are strongly shifted to
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high energies characteristic for states spanning the X2-manifold.

We now turn to the corresponding linear IR spectra. Here, it is beneficial to reconsider
symmetry arguments: The vibro-polaritonic ground state transforms as A and the molecular
dipole function as B. Hence, only vibro-polaritonic states transforming as B are “bright”
in the IR spectrum. The latter are contrasted by symmetry-forbidden, symmetric “dark”
vibro-polaritonic states transforming as A. Importantly, optical transitions to “dark” vibro-
polaritonic states are forbidden by symmetry. This is contrasted by dark or non-interacting
states in polaritonic systems, which resemble purely molecular contributions that do not
hybridize with cavity mode states.
In Fig.3.9(b) and (c), we show the corresponding IR spectrum obtained with DSE contri-
bution besides an excitation scheme and densities of “bright” vibro-polaritonic states and
contours of the corresponding cPES. For η = 0, we observe a single peak for both X1- and
X2-manifolds, which correspond to molecular transitions

|0+, 0c〉 (A1)→ |1−, 0c〉 (B2)

|0+, 0c〉 (A1)→ |2−, 0c〉 (B2)
. (3.28)

For η > 0, two “bright” lower and upper vibro-polaritonic states, |L1〉 and |U1〉, are formed
in the X1-manifold, which can be understood as linear combinations of zeroth-order states
|1−, 0c〉 and |0+, 1c〉, respectively. The slightly higher intensity of the L1-transition indicates
a higher matter contribution to |L1〉 opposed to a slightly higher photon character of |U1〉.
As η increases, intensities of both peaks reduces significantly, which indicates an increase
in photonic character of the corresponding states.

NH3

Figure 3.10: Vibro-polaritonic IR spectra of NH3 for different values of η for transitions
X0 → X1 where the DSE was neglected.

In the X2-manifold, we observe three peaks corresponding to “bright” vibro-polaritonic
states, a lower |L2〉, a middle |M2〉 and an upper vibro-polaritonic state |U2〉, respectively.
They can be interpreted as linear combinations of zeroth-order states |2−, 0c〉 (B2), |1+, 1c〉 (B1)
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and |0−, 2c〉 (B2) as deduced from nodes in densities shown in Fig.3.9(c). Again, we observe
an intensity reduction for all X2-transitions with increasing η, i.e., an increasing photonic
contribution to the vibro-polaritonic states, as in case of X1-transitions. Further, |L2〉 expe-
riences a red-shift while |M2〉 is gradually blue-shifted. Notably, the U1-transition is subject
to a blue-shift and an intensity gain up to roughly η ≈ 1.2, which turns for even stronger
coupling into a slight red-shift accompanied by a drastic intensity reduction (cf. Fig.3.9(a)).
We finally note, that infrared spectra differ substantially in absence of the DSE (cf. Fig.3.10).
Here, we observe blue-shifted transitions for increasing η and significantly reduced inten-
sities. In particular, for η > 0.05 the lowest lying bright states are hardly observable and
higher lying transitions seem to be suppressed for even larger values of η.

3.2.4 Summary and Outlook

We studied ground and excited state properties of minimal two-dimensional model systems
related to anharmonic molecular modes interacting with a single quantized cavity mode
tuned resonant to the fundamental vibrational transition. We considered anharmonic po-
tentials of Morse-type besides a symmetric double-well potential and thoroughly examined
the impact of the dipole self-energy term in the effective vibrational Pauli-Fierz Hamilto-
nian. First, we identified the divergence of the vibro-polaritonic ground state energy in
absence of the DSE to behave as ∼ η2 for η → ∞, which is traced back to a diverging
bare light-matter interaction contribution. Notably, this divergence is exactly canceled by
the bare cavity mode and DSE contributions, when the full Pauli-Fierz Hamiltonian is em-
ployed. Second, we found classical dissociation and activation energies for cavity potential
energy surfaces to be independent of the light-matter interaction when the DSE is included.
Further, we showed that no minimum energy path exists on a cPES, which is lower in en-
ergy than its counterpart on molecular PES, and molecular coordinates of extrema on cPES
are identical to the values on molecular PES. The latter finding additionally implied that
molecular ground state equilibrium bond lengths are also independent of the light-matter
interaction as studied here. Our results hold for VSC scenarios in the limit of vanishing
electron-photon coupling, which is assumed to be a valid approximation for infrared cavities.
Third, excited state energies and vibro-polaritonic infrared spectra reveal well known fea-
tures as upper and lower vibro-polaritonic states for Morse-type oscillators but also more
complex, symmetry characterized light-matter states for the double-well system. In particu-
lar, we identified for the latter symmetry-allowed “bright” and symmetry-forbidden “dark”
vibro-polaritonic states in corresponding infrared spectra. As observed before, also excited
state energies and IR spectra are strongly altered when comparing scenarios with and with-
out the dipole self-energy. In the latter case, we observed irregular and partially divergent
behavior of energy eigenvalues as function of the light-matter interaction. Additionally,
intensities of infrared transition to vibro-polaritonic excited states are strongly altered.
As an outlook, we point at a possible perturbative treatment of electron-photon correlation
in VSC problems as characteristic infrared cavity mode energies differ significantly from
electronic excitation energies. This would probably allow for refining our findings by ac-
cessing respective correlations in cPES normal mode analysis and vibro-polaritonic infrared
spectra, with some relevance as recently pointed out in Ref.[165].
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3.3 Dynamics and Spectroscopy of Rovibrational Po-

laritons

In the previous section, we discussed the properties of vibrational polaritons formed in a
diatomic molecule, which interacted only with a single cavity mode and was aligned with
the latters polarization direction. In this second part, we lift the alignment restriction and
consider a freely rovibrating CO molecule, which now interacts with both degenerate and
orthogonally polarized cavity modes as depicted in Fig.3.11(a).

(a) (b)

Figure 3.11: (a) Schematic sketch of diatomic molecule with vibrational coordinate r and
angular coordinates θ, φ in optical two-mode cavity with polarization vectors εz, εy and
wavevector k and molecular space-fixed frame with axes x, y, z. A z-polarized cavity mode
is indicated in yellow. (b) Anharmonic potential, V (r), and dipole function, d(r), of CO
stretching mode in units of Debye (Db) (interpolated CCSD(T)/aug-cc-pV5Z results) with
vibrational ground state |0r〉 and first excited state |1r〉.

The impact of molecular rotations on (vibrational) polaritons was studied only by few
authors recently[167, 168, 169, 170], where the dipole moment was allowed to vary with
respect to the polarization direction of a single cavity mode. Here, we extend work in this
direction by including the second, orthogonally polarized cavity mode present in the Pauli-
Fierz Hamiltonian. In particular, we follow the non-adiabatic perspective of Vibók and
coworkers[170], identify previously unknown rotation induced, three-state vibro-polaritonic
conical intersections (VPCI) in the X1-manifold and thoroughly characterize the non-
adiabatic system by means of dynamical and spectroscopic studies.

Results presented in this section are reproduced from “E.W. Fischer, P. Saalfrank. Cavity-
induced Non-Adiabatic Dynamics and Spectroscopy of Molecular Rovibrational Polaritons
studied by Multi-Mode Quantum Models. arXiv:2205.00945, (2022). Under revision at
Journal of Chemical Physics”[171].
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3.3.1 Theory and Model

Rovibrational Pauli-Fierz Hamiltonian

We consider an effective rovibrational Pauli-Fierz Hamiltonian for a single rovibrating di-
atomic carbon monoxide (CO) molecule, which interacts with two degenerate cavity modes
polarized along z- and y-axis of the molecular center of mass frame (cf. Fig.3.11)

Ĥ = ĤS +
∑
λ=z,y

~ωc
(
â†λâλ +

1

2

)
+ ĤSC . (3.29)

The second term resembles the cavity mode Hamiltonian in second quantization repre-
sentation with polarization index, λ = z, y, and cavity mode frequency, ωc. Further, the
molecular rovibrational “system” Hamiltonian reads

ĤS =
ĵ2

2I
− ~2

2µ

∂2

∂r2
+ V (r)︸ ︷︷ ︸

=Ĥvib

, (3.30)

with moment of inertia, I = µ r2, reduced mass µ, CO-stretching coordinate r, and vibra-
tional Hamiltonian, Ĥvib, as determined by the adiabatic ground state PES of CO, V (r).
The angular momentum operator, ĵ2, is given by

ĵ2 = −~2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
, (3.31)

with polar angle, θ ∈ [0, π], and azimuthal angle, φ ∈ [0, 2π), respectively. The light-matter
interaction is mediated by the molecular ground state dipole moment

d(r, θ, φ) = d(r)

sin θ cosφ

sin θ sinφ

cos θ

 , (3.32)

where d(r) is the molecular dipole moment along the CO-bonding axis. Further, as before
we have in Eq.(3.29), ĤSC = ∆ĤSC +ĤDSE, where the bare light-matter interaction Hamil-
tonian contains here the projections of d(r, θ, φ) on both z- and y-polarization vectors of
the cavity modes, i.e., (eλ · d(r, θ, φ)) with λ = z, y, and is given by

∆ĤSC =
∑
λ=z,y

g

(
eλ · d(r, θ, φ)

)(
â†λ + âλ

)
,

= g d(r)

((
â†z + âz

)
cos θ +

(
â†y + ây

)
sin θ sinφ

)
. (3.33)

The dipole self-energy term is proportional to (eλ · d(r, θ, φ))2 and with the dipole moment
in Eq.(3.32) obtained as

ĤDSE =
∑
λ=z,y

g2

~ωc

(
eλ · d(r, θ, φ)

)2

=
g2

~ωc
d2(r)

(
cos2 θ + sin2 θ sin2 φ

)
. (3.34)
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Here, we assume that the center of mass of the rovibrating CO is fixed in the cavity, such
that the full Hamiltonian is five-dimensional with three molecular coordinates, r, θ and φ,
and two cavity modes. We note that the center of mass motion would be only relevant
for the light-matter interaction in case of a molecular ion. Further, we introduce a mixed
basis composed of a grid basis for the angular coordinates and a state-representation for the
vibro-polaritonic modes (see below). The latter are characterized by quantum numbers, vr,
for the CO-vibration and, nz, ny, for the cavity modes. The dynamics as generated by the
rovibrational Pauli-Fierz Hamiltonian is governed by the TDSE

i~
∂

∂t
Ψ(vr, nz, ny, θ, φ, t) = Ĥ Ψ(vr, nz, ny, θ, φ, t) , (3.35)

where, Ψ(vr, nz, ny, θ, φ, t), is a five-dimensional rovibro-polaritonic wave packet. Below,
we will discuss two different initial states to solve Eq.(3.35), which are given by either
an isolated rovibrational excitation of the molecule or a light-matter superposition state,
respectively.

Molecular Model

We consider a single CO molecule with reduced mass, µ = mCmO/mCO = 12506me (elec-
tron mass me). The molecular ab initio PES, V (r), and molecular dipole function, d(r),
were calculated on the CCSD(T)/aug-cc-pV5Z level of theory via the software package
Gaussian16[156] as function of the CO-bond-length r (cf. Fig.3.11(b)). For the ground
state equilibrium bond length, we obtain a value of re = 2.145 a0 and for the rotational
constant we find B = ~

4πcµr2e
= 1.91 cm−1, which is in close agreement with experiment

where Bexp = 1.92 cm−1[172].

Further, the two lowest vibrational eigenvalues/eigenstates (cf. Fig.3.11(b)) of the vibra-
tional Hamiltonian, Ĥvib, are otbained numerically via a Colbert-Miller discrete variable
representation[173] with Nr = 1501 grid points. The corresponding fundamental anhar-
monic transition frequency is found as, ~ω10 = 2137 cm−1, which compares well with
an experimental value of 2143 cm−1[174]. In the following, we set the cavity mode fre-
quency, ~ωc = ~ω10. Further, the fundamental vibrational transition dipole moment is
obtained as d10 = 0.066 ea0, which is in agreement other work[175]. Finally, the molecular
dipole function, d(r), which changes roughly linearly in the r-range depicted in Fig.3.11(b),
takes an absolute equilibrium value of |d(re)| = 0.12 Db, which is in close agreement with
literature[176].

Diabatic Vibro-Polaritonic Basis

We recognize that the rotational constant, B, and the fundamental vibrational transition
energy, ~ω10, set two different excitation energy scales with B � ~ω10, which allow for adia-
batic separation of vibrational (“fast”) and rotational (“slow”) degrees of freedom following
arguments by Vibók and coworkers[170]. Hence, we introduce a restricted basis of zero-order
“vibro-polaritonic” states, |vr, nz, ny〉, which constitute eigenstates to Ĥ0 = Ĥvib + ĤC . In



54 CHAPTER 3. VIBRATIONAL POLARITONS IN SMALL MOLECULES

the following, we concentrate on the low-energy properties of the rovibrational light-matter
hybrid system, i.e., X0- and X1-manifolds as introduced in Sec. 3.2, which are given byX0 : |0r, 0z, 0y〉

X1 : |1r, 0z, 0y〉 , |0r, 1z, 0y〉 , |0r, 0z, 1y〉
, (3.36)

In the VSC regime, the three-dimensional single-excitation manifold, X1, properly accounts
for the description of the lowest lying excited vibro-polaritonic states. We note, higher-lying
excited state manifolds, e.g., X2 and X3 are neglected here, as they are energetically well
separated from X1 and not primarily probed in conventional IR experiments. Based on
Eq.(3.36), a rovibro-polaritonic wave packet is expanded as

Ψ(vr, nz, ny, θ, φ, t) =
∑
k

ϕk(θ, φ, t) |Dk〉 , (3.37)

where we denote the zero-order basis states generically as |Dk〉, and ϕk(θ, φ, t) are time-
dependent, rotational wave packets. Further, in the zero-order basis the rovibrational Pauli-
Fierz Hamiltonian constitutes a matrix operator in (θ, φ)-space, as given by

H = T (θ, φ) + V (θ, φ) . (3.38)

Here, T (θ, φ) is a is a 4× 4-rotational KEO matrix and V (θ, φ) the corresponding potential
energy matrix, respectively. The rotational KEO matrix is given by

T (θ, φ) =
ĵ2

2µ


〈0r| 1

r2
|0r〉 〈0r| 1

r2
|1r〉 0 0

〈1r| 1
r2
|0r〉 〈1r| 1

r2
|1r〉 0 0

0 0 〈0r| 1
r2
|0r〉 0

0 0 0 〈0r| 1
r2
|0r〉

 , (3.39)

where 〈. . . 〉 indicates integration with respect to the molecular stretching coordinate, r.
The zero-point energy shifted potential energy matrix is given by

V (θ, φ) =



g2

~ωc
fθφ 〈d2〉00

g2

~ωc
fθφ 〈d2〉10 g d00 cos θ g d00 sin θ sinφ

g2

~ωc
fθφ 〈d2〉10 ~ω10 +

g2

~ωc
fθφ 〈d2〉11 g d10 cos θ g d10 sin θ sinφ

g d00 cos θ g d10 cos θ ~ωc +
g2

~ωc
fθφ 〈d2〉00 0

g d00 sin θ sinφ g d10 sin θ sinφ 0 ~ωc +
g2

~ωc
fθφ 〈d2〉00


,

(3.40)

with dipole self-energy matrix elements, 〈d2〉vrv′r = 〈vr|d2
z(r)|v′r〉, and rotational potential

fθφ = cos2 θ + sin2 θ sin2 φ . (3.41)

The first diagonal entry in V (θ, φ), corresponds to the zero-order ground state and the
diagonal elements of the lower 3× 3-block resemble states forming the X1-manifold in the
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order given by Eq.(3.36). Equivalently, the same assignment holds for the kinetic-energy
matrix elements in Eq.(3.39).
The X0- and X1-manifolds are energetically well separated by ~ω10 = ~ωc and subject to a
weak anharmonic coupling (g2 〈d2〉10) induced by the dipole self-energy and comparatively
strong light-matter coupling (g d00). Further, the DSE constitutes a potential in angular
coordinates on the diagonal (g2 〈d2〉vrvr fθφ) and the singly-excited molecular state couples
to the two singly-excited cavity mode states (g d10).

As the rovibrational coupling in the KEO, induced by ĵ2

2µ
〈0r| 1

r2
|1r〉, is weak, the Pauli-

Fierz Hamiltonian takes a diabatic-like representation in the zero-order basis, Eq.(3.36).
We interpret “adiabatic” eigenstates diagonalizing V (θ, φ) as vibro-polaritonic states[170],
which resemble the vibro-polaritonic ground state |G〉, a lower |L1〉, a middle |M1〉 and
an upper |U1〉 vibro-polaritonic state, respectively. Further, the corresponding eigenvalues
εG(θ, φ), εL1(θ, φ), εM1(θ, φ) and εU1(θ, φ), are functions of the angular coordinates, θ and φ,
and provide vibro-polaritonic PES for the rotational dynamics of the molecule.

3.3.2 Vibro-Polaritonic Conical Intersections

In the first part of this discussion, we consider cavity-induced non-adiabatic effects in the
vibro-polaritonic single-excitation manifold resulting from the adiabatic decoupling of rota-
tional and vibro-polaritonic degrees of freedom. Under VSC, the vibro-polaritonic surfaces
εL1(θ, φ), εM1(θ, φ) and εU1(θ, φ) are subject to three-state vibro-polaritonic conical inter-
sections (VPCIs) under the conditions

~ω10 = ~ωc , θ =
π

2
, φ = 0, π . (3.42)

The three-state VPCIs, as shown in Fig.3.12a) and b) for η = 0.05 and η = 0.1, are located
in a two-dimensional branching space spanned by angular coordinates. We identify two

(a) VSC, η = 0.05 (b) VSC, η = 0.1

Figure 3.12: Three-state vibro-polaritonic conical intersections (VPCIs) between lower
vibro-polaritonic, εL1(θ, φ), middle vibro-polaritonic, εM1(θ, φ), and upper vibro-polaritonic
surfaces, εU1(θ, φ), for (a) VSC regime with η = 0.05 and (b) onset of VUSC regime with
η = 0.1.

distinct intersections located at (θ, φ) = (π
2
, 0) and (θ, φ) = (π

2
, π) due to the periodicity of
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the azimuthal angle φ. The three-state VPCIs exhibit a characteristic double-cone topology
formed by the L1- and U1-surfaces. Further, they are triple-degenerate at the intersection
point due to an additional crossing with the middle vibro-polaritonic surface, εM1(θ, φ),
which exhibits a local minimum here. In the VSC regime (here with η = 0.05), the splitting
of the L1- and U1-surfaces is slightly asymmetric with respect to the M1-surface as can be
seen in Figs.3.12(a) and (c). At the onset of the VUSC regime, the L1/U1-splitting turns
out to be strongly asymmetric (cf. Figs.3.12(b) and (d)), with a dominant inverse cone
in εU1(θ, φ). The M1-surface forms more pronounced minima at the intersection points for
stronger light-matter interaction and the L1-surface is subject to mild “mexican-hat”-type
potentials close to the intersection coordinate.

(a) εl(θ, φ = 0), η = 0.05 (b) εl(θ = π
2
, φ), η = 0.05

(c) εl(θ, φ = 0), η = 0.1 (d) εl(θ = π
2
, φ), η = 0.1

Figure 3.13: One dimensional cuts through vibro-polaritonic surfaces (bold), linear (dotted-
dashed) and quadratic approximations (dotted) with εl(θ, φ = 0), (a) and (c), and εl(θ =
π
2
, φ), (b) and (d), for η = 0.05 (top row) and η = 0.1 (bottom row) with, l = L1,M1, U1.

In order to reveal the detailed characteristics of a VPCI close to the intersection point, we
expand V (θ, φ) up to first order in angular coordinates θ and φ around the intersection



3.3. DYNAMICS AND SPECTROSCOPY OF ROVIBRATIONAL POLARITONS 57

point at (θ, φ) = (π
2
, 0). There, we have

cos θ ≈ θ − π

2
, sin θ sinφ ≈ φ , (3.43)

and

f(θ, φ) ≈ φ2 +
(
θ − π

2

)2

= f (1)(θ, φ) . (3.44)

The corresponding approximate potential energy matrix reads

V (1)(θ, φ) =


G00 f

(1)
θφ G10 f

(1)
θφ −g00

(
θ − π

2

)
g00 φ

G10 f
(1)
θφ ~ω10 +G11 f

(1)
θφ −g10

(
θ − π

2

)
g10 φ

−g00

(
θ − π

2

)
−g10

(
θ − π

2

)
~ωc +G00 f

(1)
θφ 0

g00 φ g10 φ 0 ~ωc +G00 f
(1)
θφ

 (3.45)

with, f
(1)
θφ = f (1)(θ, φ), ~ω10 = ~ωc, Gvrv′r = g2

~ωc 〈d
2〉vrv′r and gvrv′r = g dvrv′r where vr, v

′
r =

0, 1. In Figs.3.13, we show cuts through the VPCI along θ and φ, with exact surfaces (bold),
linear (dotted-dashed) and quadratic (dotted) approximations. The latter are obtained

from diagonalizing V (1)(θ, φ) without (linear, f
(1)
θφ ≈ 0) and with (quadratic, f

(1)
θφ 6= 0) DSE

contribution.
We observe three characteristic features of the VPCI: (i) For small values of both θ and φ

in εL1(θ, φ) and εU1(θ, φ), we have f
(1)
θφ ≈ 0 and the degeneracy is lifted linearly in angular

coordinates, (ii) εM1(θ, φ) exhibits a harmonic character at the intersection point, which

results from the potential character of the dipole self-energy (f
(1)
θφ in Eq.(3.45)) and (iii) the

mild “mexican-hat”-type nature of εL1(θ, φ) at η = 0.1 also stems from the DSE.
We finally note that the topological motive of a cavity-induced three-state VPCI is similar
to accidental three-state conical intersections in molecular vibronic coupling theory.[177,
178, 179, 180]

3.3.3 Rovibro-Polaritonic Dynamics

We now turn to the dynamics of different rovibro-polaritonic wave packets, which mimic an
externally driven rovibrating light-matter hybrid system subject to a classical z-polarized
driving laser field. The latter could be directly included in the rovirational Pauli-Fierz
Hamiltonian, however, we assume here simply that the excitation process already hap-
pened resulting in appropriately prepared initial states. In order to simulate different laser-
polariton coupling scenarios, we consider two different initial states given by

Ψ
(r)
0 = |1r, 0z, 0y〉 Y 1

0 (θ, φ) , (3.46)

Ψ
(r,z)
0 =

1√
2

(
|1r, 0z, 0y〉+ |0r, 1z, 0y〉

)
Y 1

0 (θ, φ) . (3.47)

with singly-excited rotational state, Y 1
0 (θ, φ). Here, Ψ

(r)
0 constitutes a rovibrational excita-

tion of the molecule and Ψ
(r,z)
0 corresponds to a superposition of singly-excited molecular
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rovibrational and single-photon cavity mode states. The first state resembles an excitation
scenario, where the external laser field couples exclusively to the molecule, whereas the
second accounts additionally for a coupling to the z-polarized cavity mode. Both scenarios
are accounted for by transition dipole moments

µ(r) = d
(r)
10 |1r, 0z, 0y〉 〈0r, 0z, 0y| cos θ , (3.48)

µ(r,z) = d
(r,z)
10

(
|1r, 0z, 0y〉 〈0r, 0z, 0y|+ |0r, 1z, 0y〉 〈0r, 0z, 0y|

)
cos θ . (3.49)

The initial states (3.46) and (3.47) follow as, Ψ
(r)
0 = µ(r) |0r, 0z, 0y〉 Y 0

0 (θ, φ), and, Ψ
(r,z)
0 =

µ(r,z) |0r, 0z, 0y〉 Y 0
0 (θ, φ), where we set, d

(r)
10 = d

(r,z)
10 = 1 in the following.

We discuss the time-evolution of those initial states from the perspective of zero-order
(diabatic) populations

P
(k)
dia (t) =

∫ 2π

0

∫ π

0

|ϕk(θ, φ, t)|2 sin θ dθ dφ , (3.50)

with rotational wave packets, ϕk(θ, φ, t), introduced in Eq.(3.37) and their vibro-polaritonic

(adiabatic) equivalents, P
(l)
ad (t), with l = G,L1,M1, U1, respectively. The latter result from

adiabatic rotational wave packets, ϕad
l (θ, φ, t), entering an expansion similar to Eq.(3.37)

in terms of adiabatic vibro-polaritonic basis states |G〉 , |L1〉 , |M1〉 and |U1〉. Moreover, we
study the adiabatic rotational dynamics by means of adiabatic reduced rotational densities

ρad
l (θ, t) =

∫ 2π

0

|ϕad
l (θ, φ, t)|2 dφ , (3.51)

which resemble the reduced dynamics of rotational wave packets, ϕad
l (θ, φ, t), on differ-

ent vibro-polaritonic surfaces as shown in Fig.3.12. We note that the dynamics along the
θ-coordinate turns out to be particularly illustrative compared to the φ-coordinate. The
TDSE (3.35) is solved by means of the MCTDH approach in its multi-set formulation as
implemented in the Heidelberg MCTDH package[84]. We obtain converged results for prop-
agation time tf = 3000 fs by employing a two-dimensional Legendre DVR (PLeg) for angular
coordinates with grid points, Nθ = 51 and Nφ = 37, and ns = 3 SPFs per vibro-polaritonic
state. Vibro-polaritonic populations and reduced rotational densities are equivalently ob-
tained via the MCTDH method.

Vibropolaritonic Population Dynamics

We first access zero-order state contributions to different vibro-polaritonic states, which we
extract from vibro-polaritonic populations at t = 0 for both initial states Ψ

(r)
0 and Ψ

(r,z)
0 as

shown in Figs.3.14 and 3.15. For Ψ
(r)
0 , we find both |L1〉 and |U1〉 to be populated to the

same extent at t = 0. Additionally, there is no contribution from |M1〉, i.e., no molecular
excited state contributes to the middle polariton, which identifies |M1〉 as purely photonic in

nature. Further, for Ψ
(r,z)
0 , we observe contributions from all three vibro-polaritonic states,

with equally populated |L1〉 and |U1〉 and minor contributions of |M1〉. Hence, |L1〉 and |U1〉
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(a) Ψ
(r)
0 , η = 0.05

(b) Ψ
(r)
0 , η = 0.1

Figure 3.14: Zero-order (diabatic), Pdia(t), (left column) and vibro-polaritonic (adiabatic),
Pad(t), (right column) population dynamics for rovibrational singly-excited initial state,

Ψ
(r)
0 , with (a) η = 0.05 and (b) η = 0.1 for propagation time, tf = 3000 fs.

are identified as light-matter hybrid states containing contributions from both molecular
and cavity mode excitations.

As time evolves, we observe a fast initial population transfer to both singly-excited cavity
mode states followed by a coherent exchange dynamics, which is dominated by the molecular
and the z-polarized excited states and subject to quantum beats with a period of roughly
1000 fs. For an increased light-matter interaction strength (η = 0.1), the quantum beat
period is shortened to roughly 600 fs and the frequency of coherent zero-order population
transfer is strongly enhanced. In contrast, vibro-polaritonic dynamics (cf. Figs.3.14(a) and
(b), right column) is dominated by slow population transfer from |U1〉 to |L1〉, accompanied
by a gradual population of the |M1〉. For η = 0.05, we observe a characteristic maximum
in the |L1〉-population at around 700 fs, which is shifted to roughly 500 fs for η = 0.1. Later
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times are characterized by several decaying recurrences in |U1〉.

(a) Ψ
(r,z)
0 , η = 0.05

(b) Ψ
(r,z)
0 , η = 0.1

Figure 3.15: Zero-order (diabatic), Pdia(t), (left column) and vibro-polaritonic (adiabatic),

Pad(t), (right column) population dynamics for singly-excited superposition state, Ψ
(r,z)
0 ,

with (a) η = 0.05 and (b) η = 0.1 for propagation time, tf = 3000 fs.

For the dynamics initiated by Ψ
(r,z)
0 , we find a significantly slower zero-order population

transfer between the molecular and the z-polarized excited mode states for both coupling
scenarios (cf. Figs.3.15(a) and (b), left column). From the vibro-polaritonic perspective, as
depicted in the right column of the same figure, |U1〉 is initially depopulated again in favor
of |L1〉, accompanied by a slight population increase in |M1〉. The first maximum in |L1〉
appears at same times as observed above and for longer times, the population dynamics is
less structured here. We note, for both Ψ

(r)
0 and Ψ

(r,z)
0 the zero-order ground state is weakly

contributing at η = 0.1 and exhibits a strongly oscillatory dynamics, which is especially
pronounced for Ψ

(r,z)
0 .
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From this population-based perspective, we finally conclude that (i) only |L1〉 and |U1〉 are
light-matter hybrid states opposed to the purely photonic |M1〉 state and (ii) the inclusion
of rotational degrees of freedom provides a cavity-induced transfer channel between vibro-
polaritonic excited states. Notably, the latter is absent in purely vibrational problems, where
an additional “bath” is required to mediate population transfer between vibro-polaritonic
states.

Reduced Rotational Dynamics

We now change perspective and consider reduced dynamics of vibro-polaritonic reduced
rotational densities, ρ

(r)
l (θ, t), and, ρ

(r,z)
l (θ, t), for the two different initial states, where l

labels the vibro-polaritonic surface. In particular, we focus on non-adiabatic signatures of
the three-state VPCI in reduced rotational densities.

(a) ρ
(r)
U1

(θ, t) : η = 0.05 (b) ρ
(r)
M1

(θ, t) : η = 0.05 (c) ρ
(r)
L1

(θ, t) : η = 0.05

ρ
(r)
U1

(θ, t) : η = 0.1 ρ
(r)
M1

(θ, t) : η = 0.1 ρ
(r)
L1

(θ, t) : η = 0.1

Figure 3.16: Time-evolution of adiabatic reduced rotational densities, ρ
(r)
l (θ, t), for rovibra-

tional singly-excited initial state, Ψ
(r)
0 , with vertical time-axis and horizontal θ-axis on (a)

upper vibro-polaritonic surface, εU1(θ, φ), (b) middle vibro-polaritonic surface, εM1(θ, φ),
and (c) lower vibro-polaritonic surface, εL1(θ, φ), for η = 0.05 (top row) and η = 0.1

(bottom row). Total adiabatic reduced rotational density, ρ(r)(θ, t) =
∑

l ρ
(r)
l (θ, t), with

l = G,L1,M1, U1 normalized for fixed time t.

In Figs.3.16 and 3.17, the time-evolution of ρ
(r)
l (θ, t) and ρ

(r,z)
l (θ, t) is shown for the excited-

state surfaces εU1(θ, φ) (left column), εM1(θ, φ) (middle column) and εL1(θ, φ) (right col-
umn), respectively, with η = 0.05 (top row) and η = 0.1 (bottom row). The horizontal axis
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covers the θ-coordinate and the vertical time-axis runs from 0 fs to 3000 fs (top to bottom).
The position of the interaction point at θ = π

2
is marked by a vertical blue line.

Starting with ρ
(r)
l (θ, t), we find density initially symmetrically distributed with respect to

the intersection point on both L1- and U1-surfaces with larger amplitude for the latter in
line with Figs.3.14. Under VSC with η = 0.05, the density symmetrically approaches the
intersection region on εU1 followed by a transfer to the L1-surface with minor contributions
on M1. On the lower-polariton surface, the density tends initially away from the VPCI. At
around 700 fs, a rich interference pattern can be observed. From the perspective of rotational
wave packets, we observe a non-adiabatic transfer between U1- and L1-surfaces, where wave
packets initially located on different surfaces interfere with each other. As time progresses,
ρ

(r)
L1

(θ, t) reenters the intersection region and a recurrence on εU1 is observed, which manifests

as second maximum in ρ
(r)
U1

(θ, t) occurring around 1300 fs and 2000 fs. Throughout the

(a) ρ
(r,z)
U1

(θ, t) : η = 0.05 (b) ρ
(r,z)
M1

(θ, t) : η = 0.05 (c) ρ
(r,z)
L1

(θ, t) : η = 0.05

ρ
(r,z)
U1

(θ, t) : η = 0.1 ρ
(r,z)
M1

(θ, t) : η = 0.1 ρ
(r,z)
L1

(θ, t) : η = 0.1

Figure 3.17: Time-evolution of adiabatic reduced rotational densities, ρ
(r,z)
l (θ, t), for singly-

excited superposition state, Ψ
(r,z)
0 , with vertical time-axis and horizontal θ-axis on (a) upper

vibro-polaritonic surface, εU1(θ, φ), (b) middle vibro-polaritonic surface, εM1(θ, φ), and (c)
lower vibro-polaritonic surface, εL1(θ, φ), for η = 0.05 (top row) and η = 0.1 (bottom row).

Total adiabatic reduced rotational density, ρ(r,z)(θ, t) =
∑

l ρ
(r,z)
l (θ, t), with l = G,L1,M1, U1

normalized for fixed time t.

recurrence event, we observe a stronger population of the M1-surface, with density restricted
to the harmonic vicinity of the intersection region. For η = 0.1, we observe the transfer
process to be faster but qualitatively equivalent to the VSC regime. Interestingly, at the
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onset of VUSC the reduced density is severely concentrated in the region close to the
intersection point and only sparely explores the M1-surface. This effect results from the
enhanced population transfer between the upper and lower polariton surfaces.

For dynamics resulting from, Ψ
(r,z)
0 , reduced vibro-polaritonic rotational density is initially

distributed over all three vibro-polaritonic surfaces (cf. Fig.3.17) in line with the population

analysis. Further, ρ
(r,z)
L1

(θ, t) and ρ
(r,z)
U1

(θ, t) show a highly asymmetric distribution relative

to the intersection point, whereas ρ
(r,z)
M1

(θ, t) is symmetric with respect to the intersection
and significantly weaker in magnitude. The time-evolution manifests again as non-adiabatic
density transfer between U1- and L1-surfaces mediated by the VPCI, which leads to interfer-
ence of rotational wave packets on the L1-surface. In contrast to the rovibrationally excited
initial state, Ψ

(r)
0 , the M1-surface is here significantly stronger explored. We attribute this

effect to the presence of a finite population at t = 0, as the non-adiabatic population trans-
fer from L1-/U1-surfaces to the M1-surface is rather inefficient as seen before. Further,
the asymmetric character of the reduced densities on the U1- and L1-surfaces dominates
the dynamics roughly up to 1500 fs and gradually decreases for latter times. In line with
previous arguments, a stronger light-matter interaction enhances the density transfer and
interference effects turn out to be more pronounced. Additionally, the M1-surface is less
homogeneously populated and the density is contracted around the intersection coordinate.

In summary, adiabatic rotational densities reveal VPCI-mediated population transfer be-
tween vibro-polaritonic surfaces, which is dominated by (i) a funneling effect of the VPCI
and (ii) interference of rotational wave packets initially located at different vibro-polaritonic
surfaces.

3.3.4 Rovibro-Polaritonic Infrared Spectroscopy

We now discuss infrared spectra of the rovibro-polaritonic system and examine spectral
signatures of the three-state VPCI. We calculate infrared spectra, σ(ω), without damping
function as

σ(ω) = A

∫ T

0

C(t) fW (t) e+iω tdt , (3.52)

with autocorrelation function, C(t), window function, fW (t), as given in Eq.(3.10) and a
constant, which we here set A = 1. Further, the dipole-dipole autocorrelation function
reads

C(t) = 〈Ψ0|
(
µ(i)
)†

exp
(
−iHt/~

)
µ(i)|Ψ0〉 , (3.53)

where, |Ψ0〉 = |0r, 0z, 0y〉Y 0
0 , and, µ(i), with i = r, (r, z) is given in Eqs.(3.48) and (3.49).

We note that the latter is an approximation, as we do not account for an excitation out of
the vibro-polaritonic ground state and set the prefactors of the transition dipole moments
to unity.

All spectra have been obtained for a total propagation time of T = 2tf = 6000 fs. As
a reference, we consider IR spectra obtained for a purely vibro-polaritonic system in the
single-mode limit, i.e., a CO molecule solely interacting with the z-polarized cavity-mode,
which allows us to address both rotational effects and contributions of the second cavity
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mode. In this case, we consider “single-mode limit” initial states

ψ̃
(r)
0 = |1r, 0z〉 , ψ̃

(r,z)
0 =

1√
2

(
|1r, 0z〉+ |0r, 1z〉

)
, (3.54)

Further spectroscopic details are revealed by identifying contributions of eigenstates, φi, of
the effective Hamiltonian, H, in Eq.(3.38) to initial states via intensities

I(r) =
∑
i

| 〈Ψ(r)
0 |φi〉 |2 δ(~ω − εi) , I(r,z) =

∑
i

| 〈Ψ(r,z)
0 |φi〉 |2 δ(~ω − εi) . (3.55)

Eigenvalues, εi, and intensities are obtained by diagonalizing H in Eq.(3.38) via a Lanczos
algorithm as implemented in the Heidelberg MCTDH package[84] with the same primitive
basis as employed for the dynamics.

Cavity IR Spectra

We begin our discussion with IR spectra in the VSC regime with η = 0.05 as shown in
Fig.3.18(a) and (b) for initial states Ψ

(r)
0 and Ψ

(r,z)
0 . For both initial states, we observe a se-

ries of transitions with a dominant L1-peak at 2076 cm−1 below the intersection point energy
of 2137 cm−1. In the region of the U1-surface, we find a progression of five peaks between
2207 cm−1 and 2309 cm−1 depending on the initial state with spacing 17 − 33 cm−1. The
peak intensity increases with energy with a significantly less intense high-energy peak termi-
nating the progression. For Ψ

(r,z)
0 , we additionally observe a prominent peak at 2171 cm−1,

which resembles an excitation of the purely photonic intermediate polariton state and is
absent for Ψ

(r)
0 .

The single mode limit reveals the well-known L1- and U1-peaks for ψ̃
(r)
0 with a Rabi-splitting

of ΩR = 214 cm−1 (grey curves). For ψ̃
(r,z)
0 , the chosen linear combination exactly captures

the U1-state leading to a single peak in the spectrum. Accordingly, the inclusion of rotational
effects leads to a much richer excitation spectrum (colored curves) compared to the single-
mode limit (grey curves).
By analyzing intensities, I(r) and I(r,z), we extract the detailed character of observed exci-
tations, which are hidden in spectra due to finite peak widths. The latter result from finite
propagation times of rovibro-polaritonic wave packets. Both I(r) and I(r,z) show similar
dominant contributions to the light-matter hybrid L1- and U1-peaks. Only I(r,z) exhibits
the purely photonic M1-peak as expected. Interestingly, I(r,z) shows additional contributions
from multiple energetically close lying states with varying intensity to individual peaks. As
those contributions are absent for the rovibrationally excited initial state, we attribute them
a dominant rotational light-matter hybrid character, i.e., the additional peaks seem to be
dominated by photonic contributions.
For IR spectra obtained at the onset of the VUSC regime (η = 0.1), we find an overall broad-
ening of the spectrum and observe the emergence of additional peaks as shown in Fig.3.18(c)
and (d). In the single-mode limit, we obtain a large Rabi-splitting of ΩR = 433 cm−1. Fur-
ther, the rovibro-polaritonic progression in the U1-spectral region turns out to be more
pronounced with seven peaks showing slightly increased spacing of 29−49 cm−1. The latter
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(a) Ψ
(r)
0 , η = 0.05 (b) Ψ

(r,z)
0 , η = 0.05

(c) Ψ
(r)
0 , η = 0.1 (d) Ψ

(r,z)
0 , η = 0.1

Figure 3.18: Vibro-polaritonic infrared spectra for different initial states and light-matter
interaction parameters η with single-mode limit initial states, ψ̃

(r)
0 and ψ̃

(r,z)
0 , (grey curves) in

Eq.(3.54) , VPCI energy (grey vertical lines) and intensities, I(r) and I(r,z), in Eq.(3.55). Top
row: Infrared-spectra for the vibrational strong coupling (VSC) regime with η = 0.05 for

(a) molecular rovibrationally excited initial state, Ψ
(r)
0 , and (b) light-matter superposition

state, Ψ
(r,z)
0 . Bottom row: (c) and (d) analogous to (a) and (b) in top row for onset of

vibrational ultrastrong strong coupling (VUSC) regime at η = 0.1.

again decreases for increasing peak energy. The middle-polariton peak at 2171 cm−1 for the
light-matter excited initials state now splits into three peaks at 2116, 2239 and 2258 cm−1,
respectively. As previously for VSC, we observe a number of rovibro-polaritonic hybrid
states with lower intensity, which contribute to peaks in the spectrum obtained from Ψ

(r,z)
0

as indicated by I(r,z) and I(r) and are potentially close in energy.

We conclude that rovibro-polaritonic IR spectra indicate the formation of light-matter hy-
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brid states with contributions from both molecular rotations and vibrations as well as cavity
mode excitations, i.e., rovibro-polaritonic states, with non-adiabatic signatures prominently
manifesting in terms of a rovibro-polaritonic progression in the spectral region of the U1-
inverse cone.

Cavity Loss Effects

Finally, we consider the impact of experimentally ubiquitous spontaneous emission effects
from cavity modes on rovibro-polaritonic infrared spectra. Spontaneous emission manifests

(a) Ψ
(r)
0 , η = 0.05 (b) Ψ

(r,z)
0 , η = 0.05 (c) η = 0.05, κ = 43 cm−1

(d) Ψ
(r)
0 , η = 0.1 (e) Ψ

(r,z)
0 , η = 0.1 (f) η = 0.1, κ = 43 cm−1

Figure 3.19: Vibro-polaritonic infrared spectra subject to dissipation (colored) with cavity
decay rate, κ, for different initial states and light-matter interaction regimes with non-
dissipative reference (grey) and VPCI energy (vertical line). Top row: Infrared-spectra for
the vibrational strong coupling (VSC) regime with η = 0.05 for (a) molecular rovibrationally

excited initial state Ψ
(r)
0 , (b) light-matter superposition state Ψ

(r,z)
0 and (c) comparison of

both dissipative spectra. Bottom row: (d)-(f) analogous to (a)-(c) in top row for onset of
vibrational ultrastrong strong coupling (VUSC) regime at η = 0.1.

in finite cavity mode excitation lifetimes, which we consider by means of a phenomenological
approach recently employed in electronic strong coupling studies[142, 144, 145]. There, the
cavity mode Hamiltonian, ĤC , is replaced by a non-Hermitian operator

Ĥ
(κ)
C =

∑
λ=z,y

(
~ωc − i

κ

2

)
â†λâλ , (3.56)
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where the imaginary contribution is determined by an effective cavity decay rate, κ, respec-
tively. Here, we set κ = 43 cm−1 to model a infrared cavity with quality factor Q = ~ωc

κ
= 50,

being slightly lower as in Ref.[123] for example. We note that the zero-point energy contri-
bution is neglected in Eq.3.56 to avoid artificial ground state decay[145].
In Fig.3.19, we compare infrared spectra subject to spontaneous emission induced dissipa-
tion with non-dissipative results as already presented in Fig.3.18. Most notably, cavity-
loss-effects manifest as significant intensity reduction and peak broadening in addition to
a suppression of the purely photonic M1-peak. For the VSC scenario with η = 0.05, spec-
tra resulting from Ψ

(r)
0 and Ψ

(r,z)
0 only slightly differ in their intensity as observable from

Figs.3.19(a)-(c), with slightly more intense L1-/U1-transitions for Ψ
(r)
0 . Further, the rovibro-

polaritonic progression induced by the VPCI is only weakly observable and resembles a cou-
ple of shoulders in the U1-spectra region. For increased light-matter interaction strength,
however, the progression is clearly visible for both initial state although it suffers from the
peak broadening effects.

3.3.5 Summary and Outlook

We studied a model for a freely rovibrating diatomic molecule (CO) interacting with two
orthogonally polarized degenerate cavity modes tuned resonant to the fundamental vibra-
tional transition of CO. A non-adiabatic perspective as motivated by significantly different
energy scales of rotational and vibro-polaritonic degrees of freedom allowed us to identify
the formation of three-state vibro-polaritonic conical intersections (VPCI) between three
singly-excited vibro-polaritonic surfaces. From a dynamical perspective, the VPCI provide
an effective transfer channel between upper and lower polariton states, whereas the purely
photonic middle polariton state is only weakly populated. Further, non-adiabatic effects
manifest especially in rotational dynamics, where passage of rotational density through the
VPCI leads to rich interference patterns between rotational wave packets initially located
on different surfaces. Finally, the non-adiabatic properties of the rovibrating light-matter
hybrid system manifest in infrared spectra as pronounced multi-peak progression in the
spectral region of the upper vibro-polaritonic surface. We assigned the peaks to rovibro-
polaritonic hybrid states containing contributions from all degrees of freedom and examined
the spontaneous emission induced peak broadening due to finite cavity mode line-widths in
experimentally accessible Fabry-Pérot cavities.
For future studies, we point foremost to ensemble effects of multiple rovibrating diatomics
interacting with orthogonally polarized cavity modes. Ensemble effects are assumed to alter
the character of vibro-polaritonic states and spectra, respectively. Especially the nature of
the middle-polariton state in an ensemble of molecules, the emergence of dark molecular
states, i.e., states assumed to have no photonic contributions, as well as cavity-induced
energy transfer dynamics for interacting and non-interacting ensembles might be of interest
under the influence of molecular rotations.
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3.4 A Cavity-Altered Thermal Isomerization Model

In this last section of Ch.3, we reconsider the ammonia inversion process in the single-cavity-
mode limit from the perspective of a minimal cavity-altered thermal isomerization model.
This project has been inspired by celebrated VSC experiments of Thomas et al., who studied
cavity-altered, selective cleavage of Si-C and Si-O bonds in silane molecules[122]. Significant
theoretical efforts were made contributing to the detailed understanding of reactivity under
VSC[181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199], which is, however, still under dispute.

(a) (b)

Figure 3.20: (a) Symmetric double-well potential, V (q) (cf. Eq.(3.6)), modeling ammonia
inversion mode, a model dipole function, d(q) (cf. Eq.(3.8)), as well as symmetric ground
state, |0+〉, and anti-symmetric first excited state, |1−〉 (dashed-black line indicates sym-
metric, first excited state |1+〉; close-up of Fig.3.2c)). The inversion coordinate and dipole
moment are given in atomic units (a0 and ea0 with Bohr radius a0 and elementary charge e).
(b) Two-dimensional cavity potential energy surface, Vη(q, xc), of non-interacting (η = 0)
cavity-plus-ammonia inversion model with minimum energy path (MEP) given in red. Co-
ordinates are given in atomic units (a0 for q and

√
me a0 for xc), the potential energy in

wavenumbers, cm−1.

Here, we study the cavity-altered ammonia-inversion model and discuss effects of VSC on
the cPES, thermal reaction kinetics and quantum dynamics. We give a detailed characteri-
zation of the model cPES, the corresponding minimum energy path and transition state as
function of light-matter interaction regime and cavity mode frequency. Further, we obtain
thermal rates characterizing the cavity-altered inversion process from the perspective of
Eyring TST and fully quantum mechanical rate theory. In combination with the topolog-
ical cPES analysis, we identify the crucial role of quantum effects, which lead to both a
strong cavity-induced suppression of the inversion process and tunneling. We finally discuss
an emergent resonance effect in our minimal model, which manifests as dynamical localiza-
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tion of a reactant wave packet for a cavity mode tuned resonant to a harmonized reactant
frequency.

Results discussed in this chapter are reproduced from “E.W. Fischer, J. Anders, P. Saal-
frank. Cavity-Altered Thermal Isomerization Rates and Dynamical Resonant Localization
in Vibropolaritonic Chemistry. J. Chem. Phys. 156, 154305, (2022).”[200] with permission
of AIP Publishing.

3.4.1 Cavity Potential Energy Surface Analysis

We start the discussion by examining properties of the cPES, Vη(q, xc), as function of the
light-matter interaction strength as parametrized by η. The molecular symmetric double-
well potential, the dipole function as well as the two eigenstates with energy difference
resonant to the cavity mode (~ωc = ~ω1−0+ = 1039 cm−1) are shown again in Fig.3.20a.
Further, we depict once more the corresponding two-dimensional cPES in Fig.3.20b for the
non-interacting limit with η = 0.0.

In Fig.3.21(a)-(d), Vη(q, xc) is shown for selected values of η. For increasing light-matter
interaction, we observe a distortion of the cPES, which leads to a symmetry reduction
from the molecular point group C2v in the non-interacting limit to C2 at finite interaction
strength as already discussed in Sec.3.2. Accordingly, the two double-well minima located
at q±0 = ±0.75 a0 remain invariant under two-fold rotation and the cavity transition state
is located at the origin of the q-xc-plane for all values of η.

Further, we introduce a cavity minimum energy path (cMEP), rη(Q), which provides a
geodesic curve on the cPES in the q-xc-plane.[201] The path-length can be defined as

L
[
rη(Q)

]
=

∫ Qf

Q0

√√√√(∂ r(1)
η (Q′)

∂Q′

)2

+

(
∂ r

(2)
η (Q′)

∂Q′

)2

dQ′ , (3.57)

with mass-weighted molecular coordinate, Q =
√
µ q, and, Q0 and Qf , being initial and

final points along the path. The cMEP length allows us to introduce a reaction coordinate,
s, and the corresponding cavity reaction potential, Vη(s). In Fig.3.21(a)-(d), the cMEP is
indicated by red lines. As η increases, we observe a transition from a linear to a “s”-shaped
path, which comes in hand with an increase of the path length, L. The corresponding Vη(s)
for different path lengts are shown in Fig.3.22 for selected η. As shown in Sec.3.2, we find
the double-well structure of the reaction potential and the classical activation energy to
be conserved at finite light-matter interaction. However, for increasing η the double-well
potential is “stretched” due to the elongation of the cMEP, which results in a considerable
barrier broadening effect. We will quantify the latter observation below.

A quantitative characterization of the cPES is possible by means of harmonic analysis at
the stationary points, i.e., at a minimum and at the first-order saddle point resembling
the cavity transition state. First, we expand V (Q, xc) up to second order in Q around the
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(a) η = 0.05 (b) η = 0.1

(c) η = 0.15 (d) η = 0.2

Figure 3.21: Cavity potential energy surfaces, Vη(q, xc), for ammonia inversion model and
(a)-(d) selected values of η at resonance (ωc = ω1−0+), with minimum energy paths indicated
by red lines (see text for details). Coordinates, q and xc, are given in atomic units as in
Fig.3.20(a), and energy scale in wavenumbers, cm−1.

“reactant” minimum at Q0 =
√
µ q−0 , as

V 0
η (Q, xc) =

1

2

(
Q−Q0 xc

)2 (6A4Q
2
0 + A2 µs)

µ2
s

0

0 ω2
c

(Q−Q0

xc

)

+

√
2ωc
~
g xc d0(Q0) +

g2

~ωc
d2

0(Q0) , (3.58)

where the mass-weighted reactant Hessian reads

W 0 =

2 (6A4Q
2
0 + A2 µ)

µ2
0

0 ω2
c

 . (3.59)
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Figure 3.22: Cavity reaction potential, Vη(s), along the cavity minimum energy path for
selected values of η with mass-weighted atomic units for cavity reaction coordinate, s.

As W 0 is already diagonal, the reactant normal-mode frequencies, ω
(1)
R and ω

(2)
R , are directly

obtained as

ω
(1)
R =

√
2 (6A4Q

2
0 + A2 µ)

µ2
, (3.60)

ω
(2)
R = ωc . (3.61)

In our model, both ~ω(1)
R = 1182 cm−1 and ~ω(2)

R = 1039 cm−1 are independent of light-
matter coupling, which vanishes here in the double-harmonic approximation. The two
frequencies resemble the harmonized molecular reactant mode and the cavity mode fre-
quency, respectively. We note that both minima located at q±0 are equivalent by symmetry
and we could have analogously considered the minimum at q+

0 as reactant minimum.

Next, we consider a quadratic approximation to the cPES at the cavity transition state
with coordinate Q† = 0, where

V ‡η (Q, xc) =
1

2

(
Q xc

)


2

µs

(
g2 γ2

~ωc
+ A2

)
−
√

2ωc
~µs

g γ

−
√

2ωc
~µs

g γ ω2
c


︸ ︷︷ ︸

=W ‡

(
Q
xc

)
, (3.62)

with mass-weighted Hessian, W ‡, which now explicitly contains off-diagonal coupling ele-
ments linear and a diagonal DSE correction quadratic in the light-matter coupling strength,
g, appearing in the upper molecular “block”. In the non-interacting limit (η = 0.0), one
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(a) (b)

(c)

Figure 3.23: (a) Harmonic cTS barrier frequency, |ω‡|, and “valley” frequency, ω̄‡, besides
anharmonic “valley” frequency, ω̄‡10, as functions of η with ωc = 1039 cm−1. (b) Harmonic
cTS barrier frequency, |ω‡|, (logarithmic ωc-axis) and (c) “valley” frequency, ω̄‡, as function
of cavity mode frequency, ωc, for selected values of η.

obtains two normal modes with frequencies

ω‡ = i

√
2 |A2|
µ
≡ i |ω‡| , (3.63)

ω̄‡ = ωc , (3.64)

where, ~|ω‡| = 836 cm−1, resembles an imaginary barrier frequency characteristic for a first-
order saddle point and ω̄‡ is a “valley” frequency of the corresponding orthogonal normal
mode.
In Fig.3.23(a), both frequencies are shown as function of η. We observe a substantial
decrease of ~|ω‡| from 836 to 284 cm−1 (η = 0.2), which is contrasted by a significant
increase of ~ω̄‡ from 1039 to 3062 cm−1 (η = 0.2). The barrier broadening effect observed
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in Fig.3.22 directly translates to the decrease in ~|ω‡|, which determines the curvature of
the cPES at the transition state. The second aspect, i.e., the increase in ~ω̄‡ with η, can be
interpreted as “narrowing” effect of the valley at the transition state of the cPES. Notably,
this “valley-narrowing” effect is very well described in the double harmonic approximation
and we find only minor deviations in anharmonically corrected ~ω̄‡10 (cf. Fig.3.23(a)).

We now proceed by discussing |ω‡| as function of ωc at fixed η. For |ω‡|, we observe the
formation of a minimum at non-zero η when the cavity frequency is close to the barrier fre-
quency as shown in Fig.3.23(b). As |ω‡| relates to the barrier width, this effect corresponds
to a barrier broadening maximum and resembles a “barrier resonance effect”. We note, a
similar effect has been recently identified in a Shin-Metiu model, where it has been inter-
preted from a classical perspective as caging effect.[194] However, it misses direct connection
to experimentally observed resonance phenomena.[121] In particular, we shall show below
that the herein observed barrier resonance has no effect on reaction rates in our inversion
model when a fully quantum mechanical treatment is considered.

Further, we find the effective activation energy, ∆Ea
eff , Eq.(2.103), to exhibit a strongly non-

linear increase with ωc at fixed η. In detail, the nonlinear behavior restricts to small cavity
frequencies for all η and tends to η-dependent constant values as ωc becomes large. For small
cavity mode frequencies, the nonlinear character stems from the dominant contribution of
ω̄‡, which depends on both η and ωc in contrast to the reactant mode frequencies (cf.
Eqs.(3.60) and (3.61)), which are independent of η in our model. For large ωc, both ω̄‡ and

ω
(2)
R increase linearly with ωc at the same rate, such that ∆Ea

eff ∝ const. at fixed η with
respect to variations in ωc.

In summary, the cPES analysis allows us to deduce two consequences of light-matter in-
teraction, which are relevant for thermal reaction rates to be discussed in the next section.
First, the “valley narrowing” effect at the cavity transition state, which is equivalent to
a “stiffening” of the valley mode, leads to a decrease of energetically accessible states at
the cavity transition state as η increases. Hence, a decrease of thermal reaction rates with
increasing η is suggested. Second, the “barrier broadening” effect indicates a cavity induced
suppression of tunneling, which further decreases thermal reaction rates especially at low
temperatures. We emphasize that both effects are purely quantum mechanical in character
and we observe no classical cavity-induced effects on our model cPES.

3.4.2 Cavity-Altered Thermal Isomerization Rates

We now connect our findings of the cPES analysis to cavity-altered thermal reaction rates.
In particular, we compare results obtained from a fully quantum mechanical rate theory
formulated in terms of cumulative reaction probabilities with harmonic Eyring transition
state theory (cf. Secs.2.4.1 and 2.4.2). The CRP-based approach allows us to discuss the
deep tunneling regime relevant at low temperatures and thus consequences of the barrier
broadening effect.
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Cavity Eyring TST Thermal Rates

In Fig.3.24(a), we show Arrhenius plots, i.e., ln kTST vs. 1/kBT = β, for Eyring TST ther-
mal rates, kTST (cf. Eq.(2.101)), at selected values of η. We consider β ∈ [0.001, 0.02] cm,
which corresponds to a temperature range of [1438, 72] K.

(a) (b)

Figure 3.24: (a) Arrhenius plot of logarithmic harmonic Eyring TST rates, ln kTST(T, η),
as function of inverse temperature, 1/kBT , at ωc = 1039 cm−1 for selected η (black,
dashed-line indicates T = 298 K). (b) Natural logarithm of harmonic Eyring TST rates,
ln kTST(ωc; T, η), as function of cavity frequency, ωc, with (dashed) and without (bold)
Wigner tunneling correction for T = 298 K.

As a general trend, we observe ln kTST to decrease with increasing light-matter coupling
strength. In the high-temperature limit, thermal rates for different interaction regimes
converge to a similar value, but diverge in the low temperature limit, where a significant
rate suppression is observed. By reconsidering the topological analysis of the cPES at the
cavity transition state, the decrease in thermal reaction rates can be rationalized by the
“valley narrowing” effect related to the increase of ω̄‡ with η (cf. Fig.3.23)(a)). Importantly,
this effect is purely quantum mechanical in nature and results from the zero-point energy
corrections of the light-matter hybrid valley mode to the effective activation energy, ∆Ea

eff .
The classical activation energy, Ea

cl, is independent of the light-matter interaction regime
in the herein studied cPES framework as shown in Sec.3.2.2.
From a thermodynamic perspective, the Eyring TST thermal rate Eq.(2.109) can be written
as

ln kTST(T, η) = lnB(T )− β
(
Ea
cl − E0

R +
~ω̄‡(η)

2

)
, (3.65)

with

B(T ) =
1

2π~β
exp

(
1 + ∆S‡(T, η)/R

)
, (3.66)

where, B(T ), turns out here to only weakly depend on both T and η. Hence, kTST(T, η)
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mainly changes due to the activation enthalpy as given by Eq.(2.108), which is significantly
determined by cavity-induced zero-point energy effects.
Further, we consider ln kTST(T, η) as a function of harmonic cavity mode frequency, ωc, at
constant temperature T = 298 K for selected values of η. Here, we additionally consider
the Wigner correction (cf. Eq.(2.105)), which approximately accounts for tunneling and
allows us to additionally access the impact of the “barrier resonance effect” in |ω|‡ (cf.
Fig.3.23(b)), from the perspective of Eyring TST. With and without Wigner correction, we
find ln kTST(T, η) to monotonically decrease with increasing ωc for all values of η considered
here. The Wigner correction turns out to be small for large ωc and η, and slightly more
important for small ωc and η. In particular, we do not observe a signature of the barrier
resonance in the Wigner corrected rates (note, bare kTST(T, η) are independent of |ω|‡). In
contrast, the nonlinear dependence on ωc for small cavity mode frequencies and a linear
η-dependent regime for large ωc, can be traced back to ∆Ea

eff as shown in Fig.3.23(c), i.e.,
this effect is again the result of cavity-induced zero-point energy effects.

Cavity CRP Thermal Rates

We now turn to fully quantum mechanical thermal rates based on cumulative reaction prob-
abilities. CRP thermal rates allow us to address details of tunneling, while fully accounting
for anharmonic effects of the cPES. Numerical details are provided in Appendix B.

(a) (b)

Figure 3.25: (a) Cumulative reaction probability, N(E, η), for cavity-altered ammonia inver-
sion model as a function of energy, E, above the reactant well minimum for selected values
of η. Classical barrier height, Ea

cl = 2030 cm−1, is indicated by a vertical dashed black line.
(b) Arrhenius plot of logarithmic thermal rate constants, ln k(T, η), obtained from CRP as
a function of inverse temperature, 1/kBT , for selected values of η (here black, dashed-line
indicates T = 298 K). In both plots (a) and (b), the cavity frequency is ωc = 1039 cm−1.

We first discuss the CRP, N(E, η), as function of energy for selected values of η (cf.
Fig.3.25(a)). The energy scale is given with respect to the classical reactant minimum,
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where E = 0 and the classical activation energy, Ea
cl = 2030 cm−1, is indicated by a vertical

black-dashed line.
We observe N(E, η) to increase in a step-like fashion with an onset in the vicinity of Ea

cl,
which is blue-shifted onset for increasing η. The number of steps in N(E, η) and its average
slope decreases with increasing η. The step-like increase resembles the successive opening
of reactive channels, which correspond to the number of bound states at the cavity tran-
sition state. The distance between two steps in the CRP is roughly given by ~ω̄‡, which
reflects the quantized nature of the related valley mode. Notably, the reduction of reactive
channels (steps) with increasing light-matter interaction strength can be directly related
to the “valley narrowing” effect and the reduction of energetically accessible states for a
given thermal energy. Further, small deviations occurring at larger energies and η, which
manifest as shorter step intervals, are related to small anharmonic effects as already noted
with respect to Fig.3.23(a).
We now discuss Arrhenius plots for CRP rates as shown in Fig.3.25(b) for the same param-
eter regimes as discussed in Fig.3.24(a). For the high-temperature regime, we find a similar
behavior as for the Eyring TST rates and at ambient temperatures an overall reduction
of the thermal reaction rate for increasing light-matter interaction strength is found. At
low temperatures the Arrhenius plot deviate substantially from the Eyring TST results.
Here, ln k(T, η) is dominated by plateaus, which resemble the (deep) tunneling regime. In
particular, we observe a decrease of constant ln k(T, η) with increasing η, which relates to
significantly attenuated tunneling rates for increasing light-matter interaction strength.
In summary, we find two key signatures for cavity-induced effects on thermal reaction rate
constants in our model, which directly connect to findings of the cPES analysis. First,
an overall rate reduction with increasing η, which resembles the “valley narrowing” effect
that effectively lowers the number of thermally accessible reaction channels at the cavity
transition state. Second, a cavity-induced tunneling attenuation in the (deep) tunneling
regime, which relates to a barrier broadening effect of the cPES.

3.4.3 Resonant Dynamical Reactant Localization

In the third part of this discussion, we consider the time-dependent perspective on the
cavity-altered ammonia inversion model and identify a dynamical resonance effect, which
leads to reactant wave packet localization and consequently suppressed inversion probabil-
ities.

A Dynamical Resonance Effect

We solve the time-dependent Schrödinger equation for the cavity-altered ammonia inversion
model with initial state

ψ0(q, xc) = ψG(q; qi)φ0(xc) . (3.67)

Here, ψG(q; qi) is a molecular Gaussian wave packet, which is obtained by displacing the

ground state of the molecular harmonized reactant mode with frequency ω
(1)
R = 1182 cm−1

to qi = −0.9 a0. Further, φ0(xc) is the bare cavity mode ground state wave function, i.e.,
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we consider a cavity without any photons. We follow the time-evolution of the wave packet
by means of an inversion probability defined as

Pinv(t) =

∫ ∞
−∞

dxc

∫ ∞
−∞

dq θ(q) |ψ(q, xc, t)|2 , (3.68)

where θ(q) is the Heaviside step function centered at q0. Pinv(t) resembles the probability of
populating the “product”-well of the two-dimensional cPES, which is specified by molecular
coordinates q > 0, respectively.

(a) η = 0.06 (b) ωc = ωr

(c) 〈q〉(η, ωc)/a0

Figure 3.26: (a) Inversion probability, Pinv(t), as function of time for selected values of cavity
frequency, ωc, at η = 0.06 (blue horizontal line in (c)). (b) Inversion probability, Pinv(t), for
selected values of η at ωc = ωr = 1182 cm−1 (red vertical line in (c)). (c) Contour plot of
interpolated time-averaged position expectation values, 〈q〉 (color bar in atomic units, a0),
as function of η and ωc obtained from 81 pairs (η, ωc).
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We discuss Pinv(t) for a propagation time of tf = 1000 fs and two scenarios depicted in
Fig.3.26: (a) We fix the light-matter interaction regime with η = 0.06 and vary the cav-

ity frequency as multiples of the harmonized molecular reactant frequency ωr = ω
(1)
R =

1182 cm−1. (b) We fix the cavity frequency ωc = ωr and vary the light-matter interaction
via η. Technical details concerning converged MCTDH calculations are provided in Tab.3.4.

Table 3.4: Number of single particle functions (SPFs) (ns, nc), primitive harmonic oscilla-
tor DVR basis functions (ms,mc) and molecular/cavity grid endpoints q0/qf , xc0, xcf for
different light-matter interaction regimes (η).

η ns nc ms mc q0/qf xc0/xcf

0.0− 0.08 20 20 251 251 [−1.6,+1.6] ∓316.39
0.1− 0.14 24 24 301 301 [−1.6,+1.6] ∓347.61

0.16 26 26 301 301 [−1.6,+1.6] ∓347.61

Starting with Fig.3.26(a), we observe Pinv(t) to increase with time, if the cavity mode is
“off-resonant” to the harmonized molecular reactant mode, i.e., ωr 6= ωc. Further, the
inversion probability is characterized by several dynamical revivals and interference events
in the reactant well. An increase in Pinv(t), with Pinv(tf ) > 0.25, resembles a wave packet
passage of the cavity transition state and population of the product well. In contrast, for
the resonant case with ωr = ωc, we observe a drastic suppression of Pinv(t), with Pinv(tf ) ≈
0.035, i.e., less then 4 % of the wave packet reaches the product-well after 1 ps.
Turning to Fig.3.26(b), we observe a strong dependence of Pinv(t) on the light-matter in-
teraction regime for ωr = ωc. In the VUSC regime with η > 0.1, Pinv(t) takes larger values
for the studied time-interval, while in the VSC regime with 0 < η < 0.1, the inversion yield
turns out to be reduced.

The reduction of Pinv(t) suggests a temporary localization of the vibro-polaritonic wave
packet in the reactant region for specific parameter combinations (η, ωc). In order to quan-
tify the localization effect, we consider a time-averaged molecular displacement expectation
value[199]

〈q〉(η, ωc) =
1

tf

∫ tf

0

dt′
∫ ∞
−∞

dxc

∫ ∞
−∞

dq q |ψ(q, xc, t
′)|2 , (3.69)

as function of cavity frequency, ωc, and light-matter interaction, η. In Fig.3.26(c), we
show 〈q〉 as contour plot, where the color-bar indicates the mean displacement with 〈q〉 ∈
[−0.7, 0.0] a0, the vertical axis resembles η ∈ [0.0, 0.16] and the horizontal axis ωc ∈
[0.5ωr, 1.5ωr] cm−1, respectively. The horizontal blue line and the vertical red line relate to
scenarios (a) and (b) as depicted in the corresponding Figs.3.26(a) and (b).
We observe a rather uniform behavior of the mean displacement for small η and all ωc
considered here. For η ≥ 0.03 (VSC), the formation of a global minimum at ωc ≈ ωr is
observed, which is blue shifted with increasing η. Further, we find 〈q〉 ≈ −0.7 a0 for η = 0.06
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in resonance, which resembles the suppressed Pinv(tf ) in Fig.3.26. Accordingly, we argue
that the vibro-polaritonic wave packet is effectively localized close to the classical reactant
well minimum at q0 = −0.75 a0 over the time interval studied here. Hence, a population of
the product region on the cPES is suppressed, which is equivalent to a suppression of Pinv,
respectively. Notably, we observe this dynamical resonant localization effect to be quite
sensitive to changes in both the cavity frequency and the light-matter interaction regime.
Before turning to energetic aspects of the localization mechanism, we like to point out
the absence of the herein discussed resonance effect when considering the normal-mode
perspective discussed above. This circumstance points at an anharmonic effect, i.e., at
least a cubic coupling term, q2xc, is required for the coupling between reactant and cavity
mode, which is not captured under double-harmonic approximation.

Energy Analysis of Dynamical Localization

We further examine the details of the resonant localization by performing a time-dependent
energy analysis of the model system. In particular, we discuss the time-evolution of ex-
pectation values 〈ĤS〉 (t), 〈ĤC〉 (t), 〈∆ĤSC〉(t) and 〈ĤDSE〉 (t). We briefly recall, ∆ĤSC , is
the bare light-matter interaction. Further, we set η = 0.06 and consider cavity frequencies
ωc = 0.8ωr, ωc = ωr and ωc = 1.5ωr with results shown in Figs.3.27(a)-(c), respectively.
We note, the total energy at t = 0 is given by 〈Ĥ〉 = 〈ĤS〉 + ~ωc

2
+ 〈ĤDSE〉 and conserved

as we neglect dissipative effects.
For t > 0, dominant contributions to 〈Ĥ〉 (t) stem from bare cavity mode, 〈ĤC〉 (t), and
bare light-matter interaction, 〈∆ĤSC〉(t), respectively. The dipole self-energy 〈ĤDSE〉(t)
contributes only weakly. 〈ĤC〉 (t) and 〈∆ĤSC〉(t) show large amplitude oscillations roughly
with opposite phase. For ωc = ωr, the dynamics exhibits a coherent character modulated
by small quantum beats, which turns into incoherent small-amplitude time-evolution for
ωc 6= ωr. Notably, the system contributions oscillates at significantly smaller amplitude but
in phase with the bare interaction contribution. The dominant contribution of 〈∆ĤSC〉(t)
in resonance can be rationalized in terms of post-rotating-wave contributions to the bare
light-matter interaction, which simultaneously excite both molecular system and cavity
mode. Hence, both the bare cavity mode and the system are coherently excited, however,
the system only “locally” in the reactant region, which motivates the comparatively lower
amplitudes here.
We finally turn to the time-evolution of molecular and cavity displacement coordinate ex-
pectation values, 〈q〉(t) and 〈xc〉(t). In Figs.3.27(d) and (e), we show the corresponding
graphs for η and cavity frequencies as before. As the cPES is twisted for η > 0, the vibro-
polaritonic wave packet needs a significant contribution along both the molecular and the
cavity displacement coordinate to effectively traverse the cavity transition state region and
populate the product well. This is the case for ωc 6= ωr, where we find the molecular dis-
placement as well as the cavity displacement to approach values close to the transition state
in a rather irregular oscillatory fashion. In contrast, the resonance scenario is dominated
by coherent oscillations of both expectation values around a mean value of roughly −0.7 a0

for the molecular coordinate and −25
√
me a0 for the cavity displacement coordinate. This

resembles a coherent excitation of the vibro-polaritonic wave packet perpendicular to the
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(a) ωc = 0.8ωr (b) ωc = 1.0ωr (c) ωc = 1.5ωr

(d) (e)

Figure 3.27: Time-evolution of energy expectation values 〈ĤS〉(t), 〈ĤC〉(t), 〈ĤDSE〉(t),
〈∆ĤSC〉(t) and 〈Ĥ〉(t) in the VSC regime with η = 0.06 for cavity frequencies (a) ωc = 0.8ωr,
(b) ωc = ωr and (c) ωc = 1.5ωr. Expectation values of molecular displacement coordinate
〈q〉(t) (d) and cavity coordinate 〈xc〉(t) (e) as function of time t for the three cavity fre-
quencies and the VSC regime as considered in (a),(b) and (c).

cavity reaction path, i.e., the wave packet is hindered in efficiently reaching the transition
state region as a necessary molecular component is missing in favor of the cavity component.
Consequently, the inversion probability is significantly reduced for the studied time-interval
as a result of coherent energy transfer between molecular and cavity degrees of freedom.

3.4.4 Summary and Outlook

We studied a cavity-altered thermal isomerization model for the ammonia inversion mode
and a single cavity mode from a fully quantum mechanical perspective. Our main findings
relate to a cavity-induced reactive slow-down of the isomerization process, which has two
quantum mechanical origins: First, the number of thermally accessible states at the cavity
transition state decreases for increasing light-matter interaction (“valley-narrowing-effect”)
and second, tunneling between reactant and product sites is strongly attenuated due to a
cavity-induced increase of the reaction barrier’s width (“barrier-broadening-effect). Both
findings manifest in significantly reduced thermal inversion rates, where the former aspect
plays a major role at ambient temperature and the latter takes over in the (deep) tunneling
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regime at low temperature. Moreover, we identified an emergent presumably anharmonic
dynamical resonance effect, which manifests as localization of a reactant wave packet when
the cavity mode is tuned resonant to a harmonized reactant mode frequency. From an
energetic analysis, we characterize the resonance to induce a strongly coherent excitation of
the vibro-polaritonic wave packet perpendicular to the cavity reaction path, which efficiently
suppresses the inversion probability.
Overall, we identify the cavity as having a “negative” decelerating impact on thermal reac-
tion rates in our minimal model, which is at least qualitatively comparable to experimental
findings of Ebbesen and coworkers[121, 122]. Notably, the cavity acts as an energy acceptor
in the dynamical study and significantly changes the nature of the “ground-state reactivity
landscape”[122] when taking the cPES perspective.
In future studies, one might in particular overcome the minimal character of our model tak-
ing into account more degrees of freedom, potentially in the framework of a cavity reaction
path Hamiltonian formalism. This could allow for approaching still open questions from
the experimental side on cavity-related resonance effects[122] and, especially, the possibly
“positive” cavity-controlled acceleration of thermal ground state reactions in a quantum
mechanical framework as experimentally reported in Ref.[202] for a reactant-solvent system
under VSC.
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Chapter 4
Phonon-Driven Vibrational Adsorbate
Relaxation

4.1 Motivation

We now turn to phonon-driven vibrational relaxation dynamics for a high-dimensional
adsorbate-surface model, which we study from a system-bath perspective.[203, 204, 205,
206, 207] Vibrational dynamics of adsorbates near surfaces takes an important role in both
(applied) surface science and as a paradigmatic model for an open quantum system. The
dissipation of excess vibrational energy and decoherence inherently influences for example
spectral line broadening in spectroscopy[208], inelastic scattering processes[209, 210], chem-
ical surface reactivity[211, 212] and protective effects in microelectronic devices[213, 214].
Vibrational relaxation processes at semiconductor surfaces as considered here are dominated
by adsorbate vibration-phonon coupling, in contrast to electron-hole excitation relevant for
dissipative processes at metal surfaces.[215, 216, 217]
Opposed to previously discussed (ultra)strong vibrational coupling scenarios in light-matter
hybrid systems (cf. Ch.3), adsorbate-surface type system-bath models usually comprise
weak system-bath couplings and a high-dimensional phonon bath. The issue now turns
from describing very strongly interacting subsystems to an efficient treatment of the high-
dimensional bath Hilbert space suffering from the “curse of dimensionality”. Specifically,
we study here an adsorbate-surface type system-bath model constructed in the Saalfrank
group, which describes a low frequency D-Si-Si bending mode on a fully deuterium-covered,
reconstructed silicon surface D:Si(100)-(2 × 1).[205] The bending mode effectively couples
to the phonon band of the silicon surface via one-phonon processes. Recent studies of this
quantum mechanics/molecular mechanics (QM/MM) system-bath model were restricted to
relaxation processes involving the first and second excited vibrational system states with
quantum numbers, v0 = 1, 2, due to the high-dimensional harmonic surface-phonon bath
comprising more than 2000 modes.[206, 207]
Here, we significantly improve on those results by combining an effective mode approach
with the multilayer-MCTDH method allowing for the study of relaxation processes involv-
ing higher-lying excited initial states (here up to v0 = 5), which have been inaccessible in

83



84 CHAPTER 4. PHONON-DRIVEN VIBRATIONAL ADSORBATE RELAXATION

previous studies. Further, we introduce a numerically efficient approach to the construction
of “hierarchical” effective modes. Moreover, as the adsorbate-surface system-bath model
constitutes a realistic open quantum system, it allows for the study of non-Markovian ef-
fects from a fully quantum mechanical perspective. The latter is contrasted by Markovian
reduced density matrix dynamics described in terms of the open-system Liouville-von Neu-
mann equation in Lindblad form.

Results discussed in this chapter are reproduced from “E.W. Fischer, M. Werther, F. Bouak-
line, P. Saalfrank. A hierarchical effective mode approach to phonon-driven multilevel vi-
brational relaxation dynamics at surfaces. J. Chem. Phys. 153, 064704, (2020).”[218] and
“E.W. Fischer, M. Werther, F. Bouakline, F. Grossmann, P. Saalfrank. Non-Markovian
Vibrational Relaxation Dynamics at Surfaces. J. Chem. Phys. 156, 214702, (2022).”[219]
with permission of AIP Publishing.

4.2 Adsorbate-Surface System-Bath Dynamics

4.2.1 The D:Si(100) Adsorbate-Surface Model

We introduce the main characteristics of the D:Si(100) adsorbate-surface model, which has
been constructed in the spirit of a QM/MM embedded cluster model in Ref.[205].

Figure 4.1: Left: Adsorbate-surface clusters modeling D-covered Si(100) surface in spirit
of embedded quantum mechanics/molecular mechanics model with small system cluster
(DFT/B3LYP, top) and large bath cluster (Brenner-type force-field, bottom). Right: Linear
coupling coefficients, ck, for NB = 2259 modes as function of harmonic bath frequency, ωk,
with fundamental system frequency, ω10 = 458 cm−1 (red), and bath Debye frequency,
ωD = 534 cm−1 (blue).

A single adsorbate D-Si-Si mode has been extracted from a normal mode analysis of a
small Si70D54 cluster (cf. Fig.4.1, left), treated quantum mechanically by means of DFT
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via the hybrid functional B3LYP. Subsequently, an anharmonic vibrational potential has
been computed along the corresponding system normal mode coordinate q, and the corre-
sponding one-dimensional vibrational TISE has been solved for vibrational energies, {εv},
and eigenstates, {|v〉}, respectively. The zero-point energy is 228 cm−1 and the vibrational
level spacing for the five lowest vibrational states read ω10 = 458 cm−1, ω21 = 459 cm−1,
ω32 = 461 cm−1, ω43 = 463 cm−1 and ω54 = 466 cm−1, which indicates an overall mild
anharmonicity.
The harmonic surface vibrations (“phonons”) have been described by means of molecular
mechanics employing a Brenner-type force field for a large Si602D230 cluster (cf. Fig.4.1, left).
A constrained normal mode analysis excluding the system vibrations gives 832×3−7 = 2489
normal modes. The latter are subsequently reduced to NB = 2259 by neglecting high fre-
quency modes, which do not participate in the vibrational relaxation process of interest.
The phonon bath is characterized by harmonic frequencies, ωk ∈ [9.8, 534] cm−1, with the
Debye frequency of silicon at ωD = 534 cm−1, respectively. The D-Si-Si fundamental tran-
sition energy, ~ω10, lies in the phonon band (cf. Fig.4.1, right), which renders one-phonon
processes for energy transfer between system and bath efficient. The interaction is bilin-
ear in the system and bath displacement coordinates, and characterized by a set of linear
coupling coefficients, {ck}, as shown on the right-hand side of Fig.4.1.

4.2.2 An Adsorbate-Surface System-Bath Hamiltonian

The D:Si(100)-adsorbate-surface model is realized by a system-bath Hamiltonian of the
form[205, 206, 207]

Ĥ = ĤS + ĤI + ĤB , (4.1)

with vibrational adsorbate system contribution, ĤS, and phonon-bath contribution, ĤB,
which we group into a zero-order Hamiltonian[206, 207]

Ĥ0 = ĤS + ĤB =
p̂2
s

2
+ V (q) +

NB∑
k=1

~ωk
2

(
p̂2
k + x2

k

)
. (4.2)

Here, the first two terms on the right-hand side resemble the system Hamiltonian with
system momentum operator, p̂s, coordinate, q, and potential, V (q). The third term resem-
bles NB non-interacting harmonic oscillators in dimensionless coordinates with harmonic
frequencies, ωk, momenta, p̂k, and displacement coordinates, xk, respectively. Further, the
interaction Hamiltonian, ĤI , has been obtained from an expansion of the full system-bath
interaction up to first order in bath coordinates, i.e., considering one-phonon processes only,
and reads[206, 207]

ĤI =

NB∑
k=1

λk(q)xk , (4.3)

with nonlinear coupling function, λk(q), in the system coordinate, q, for the kth-bath os-
cillator. In the following, we employ a spectral representation for the system Hamiltonian
based on

ĤS |v〉 = εv |v〉 , 〈v|v′〉 = δvv′ ,
∑
v

|v〉 〈v| = 1̂ , (4.4)
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with eigenvalues, εv, and corresponding orthonormal system eigenstates, |v〉. Further, we
consider a second quantization representation of harmonic bath modes with

p̂k = i

√
~
2

(
b̂†k − b̂k

)
, xk =

√
~
2

(
b̂†k + b̂k

)
, (4.5)

where, [b̂k, b̂
†
k′ ] = δkk′ . Then the zero-order system-bath Hamiltonian can be rewritten as

Ĥ0 =

NS−1∑
v=0

εv |v〉 〈v|+
NB∑
k=1

~ωk
(
b̂†kb̂k +

1

2

)
. (4.6)

Further, the interaction Hamiltonian now takes the form

ĤI =

NS−1∑
v,v′

NB∑
k=1

λkvv′

√
~
2
|v〉 〈v′|

(
b̂†k + b̂k

)
, (4.7)

with coupling matrix elements, λkvv′ = 〈v|λk(q)|v′〉q, where integration with respect to the
system coordinate is indicated. In the following, we further simplify the problem by lin-
earizing the coupling functions, λk(q) ≈ ck q, with linear system-bath coupling coefficients,
ck, such that, λkvv′ ≈ ck 〈v|q|v′〉q ≡ ck qvv′ . By introducing system raising (P̂ †vv′) and lowering

(P̂vv′) operators as

P̂ †vv′ ≡ |v〉 〈v
′| , P̂vv′ ≡ |v′〉 〈v| , v > v′ , (4.8)

we can rewrite the full system-bath Hamiltonian now as

Ĥ =

NS−1∑
v=0

εv |v〉 〈v|+
NS−1∑
v>v′

qvv′
(
P̂ †vv′ + P̂vv′

) NB∑
k=1

ck

√
~
2

(
b̂†k + b̂k

)
+

NB∑
k=1

~ωk
(
b̂†kb̂k +

1

2

)
, (4.9)

where we introduced the restriction, v > v′, in the second term. The interaction Hamiltonian
now factorizes into a system and a bath contribution, i.e., is bilinear in nature, which
allows to capture one-phonon processes composed of two types of contributions: (i) Energy
conserving one-phonon processes mediated by P̂ †vv′ b̂k and P̂vv′ b

†
k, which lead to energy

exchange between system and bath, and (ii) energy non-conserving processes induced by
P̂ †vv′ b̂

†
k and P̂vv′ b̂k, which simultaneously excite system and bath modes due to energy stored

in the interaction term. The latter terms are regularly neglected in the rotating wave
approximation (RWA), such that we denote them as post-RWA contributions. Here, we do
not invoke the RWA but discuss the relevance of post-RWA terms on vibrational relaxation
in a weak-coupling, system-bath scenario.

The time-evolution of phonon-driven vibrational system relaxation is fully governed by the
system-bath wave function, |ΨSB(t)〉, evolving according to the system-bath TDSE

i~
∂

∂t
|ΨSB(t)〉 =

(
ĤS + ĤI + ĤB

)
|ΨSB(t)〉 , (4.10)
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with initial state given by

|ΨSB(t0)〉 = |v0〉 |01, . . . , 0NB〉 = |v0〉 |0B〉 . (4.11)

Here, |ΨSB(t0)〉 resembles an uncorrelated initial system-bath state composed of an initially
excited system state, |v0〉, with quantum number, v0 ≥ 1, and the harmonic multi-mode
bath ground state, |0B〉 = |01, . . . , 0NB〉, respectively. Vibrational system relaxation is study
by means of the reduced system density matrix

ρ̂S(t) = trB{|ΨSB(t)〉 〈ΨSB(t)|} , (4.12)

which is obtained from the full system-bath density operator, |ΨSB(t)〉 〈ΨSB(t)| = ρ̂(t),
by tracing out the bath degrees of freedom, trB{. . . }. In the basis of vibrational system
eigenstates, {|v〉}, the system reduced density matrix, ρ̂S(t), has elements

ρvv(t) = 〈v|ρ̂S(t)|v〉 , ρvv′(t) = 〈v|ρ̂S(t)|v′〉 , v 6= v′ , (4.13)

which are known as vibrational populations, ρvv(t), and vibrational coherences, ρvv′(t),
respectively.

4.3 The Hierarchical Effective Mode Representation

4.3.1 An Overview

The main issue with the bilinear system-bath Hamiltonian in Eq.(4.9) results from the strong
exponential scaling of the bath Hilbert space due to the large number (NB) of harmonic
bath modes. This renders a numerical solution of system-bath TDSE (4.10) prohibitively
expensive for initial system states, |v0〉, with quantum numbers, v0 > 2.
In order to mitigate this bath “curse of dimensionality”, we here employ a hierarchial
effective mode (HEM) representation of the system-bath Hamiltonian, following results
obtained by Gindensperger, Cederbaum and co-workers[220, 221, 222] as well as Hughes,
Burghardt and co-workers[223, 224, 225, 226, 227, 228, 229, 230]. Before turning to the
details, we note that there are similar hierarchical approaches in surface and condensed
matter physics.[231, 232, 233, 234, 235, 236]
The HEM representation of a bilinear system-bath Hamiltonian is obtained by a series of
unitary transformations schematically depicted as

ĤS + ĤI + ĤB

U(0)

−→ ĤS + ĥ
(1)
eff + Ĥ

(1)
R

U(1)

−→ . . .
U(M−1)

−→ ĤS +
M∑
m=1

ĥ
(m)
eff + Ĥ

(M)
R , (4.14)

mediated by M unitary transformation matrices, {U (0), U (1), . . . , U (M−1)}. The transforma-

tions iteratively generate, M � NB, effective single-mode Hamiltonians, ĥ
(m)
eff , accompanied

by a M th-order residual-bath contribution, Ĥ
(M)
R , respectively.

In Fig.4.2, the iterative transformation, Eq.(4.14), is depicted graphically: In the original
bilinear system-bath Hamiltonian, Eq.(4.9), the bath modes are arranged in a star-like
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Figure 4.2: Pictorial representation of original bilinear system-bath Hamiltonian in Eq.(4.9)
with a star-like configuration (left) and its transformation into chain-like structures within
the HEM representation resulting in Hamiltonian Eq.(4.15) (right).

configuration around the central system, which resembles the bilinear coupling between
individual (uncoupled) bath modes and the system mode, respectively. In contrast, for
a M th-order HEM representation, effective bath modes form a M -mode chain with next-
neighbor interactions and a residual bath with (NB − M) non-interacting modes. The
residual bath modes arrange in a star-like configuration “around” the M th-effective mode,
i.e., interact bilinearly only with the last mode on the chain (note, they do not couple
among each other). As indicated in the scheme (4.14), the corresponding bilinear HEM-
Hamiltonian reads

Ĥ = ĤS +
M∑
m=1

ĥ
(m)
eff + Ĥ

(M)
R , (4.15)

with unaltered system Hamiltonian, ĤS, effective single-mode Hamiltonians, ĥ
(m)
eff and resid-

ual bath Hamiltonian, Ĥ
(M)
R , respectively. The first effective mode term, ĥ

(1)
eff , contains the

unitarily transformed system-bath interaction and reads

ĥ
(1)
eff =

NS−1∑
v>v′

qvv′ C̄0

(
P̂ †vv′ + P̂vv′

)√~
2

(
B̂†1 + B̂1

)
+ ~Ω1

(
B̂†1B̂1 +

1

2

)
, (4.16)

with effective coupling coefficient, C̄0, effective bosonic phonon excitation and annihilation
operators, B̂†1 and B̂1, and effective harmonic bath mode frequency, Ω1. The remaining
(M − 1)-effective mode contributions are given by

ĥ
(m)
eff = C̄m−1

(
B̂†m−1B̂m + B̂m−1B̂

†
m

)
+ ~Ωm

(
B̂†mB̂m +

1

2

)
, (4.17)

with coupling coefficients, C̄m−1, and harmonic frequencies, Ωm, for 2 ≤ m ≤ M . Finally,
the residual bath takes the form

Ĥ
(M)
R =

NB∑
j=M+1

dMj

(
B̂†M B̂j + B̂M B̂

†
j

)
+

NB∑
j=M+1

~Ωj

(
B̂†j B̂j +

1

2

)
, (4.18)
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with coupling coefficients, dMj, and frequencies, Ωj, for (NB −M)-residual effective modes.
An explicit approach to construct the HEM-Hamiltonian in Eq.(4.15) will be presented in
detail below.
Further, the HEM-Hamiltonian in Eq.(4.15) is unitarily equivalent to the system-bath
Hamiltonian in Eq.(4.9). However, in contrast to the latter, NB bath modes are now
divided into a subset of M effective modes forming an M -member chain and the residual
bath. The advantage of the HEM representation is, that the Hamiltonian Eq.(4.15) can be

truncated at M th-order by neglecting the residual part, Ĥ
(M)
R . Despite the missing residual

bath, a truncated HEM system-bath Hamiltonian reproduces the exact dynamics of a bi-
linear system-bath problem up to a finite time, which increases with the truncation order,
M .[222] This property allows to systematically access the exact system-bath dynamics over
finite time intervals of increasing length. In particular, vibrational relaxation processes as
studied here can be fully captured by truncation orders significantly smaller than the orig-
inal number of bath modes, M � NB, as discussed below, which efficiently mitigates the
bath scaling problem.

4.3.2 Derivation of 1st-Order HEM Hamiltonian

As a first step, we explicitly derive the 1st-order HEM-Hamiltonian with the transformed
system-bath interaction in ĥ

(1)
eff as given by Eq.(4.16). We start from the bilinear system-

bath interaction in Eq.(4.9), which is rewritten as

ĤI =

NS−1∑
v>v′

qvv′
(
P̂ †vv′ + P̂vv′

)√~
2

NB∑
k=1

ck

(
b̂†k + b̂k

)
, (4.19)

=

NS−1∑
v>v′

qvv′
(
P̂ †vv′ + P̂vv′

)
C̄0

√
~
2

(
B̂†1 + B̂1

)
, (4.20)

with effective system-bath coupling constant

C̄0 =

√√√√ NB∑
k=1

c2
k (4.21)

and effective mode creation and annihilation operators defined by

B̂
(†)
1 =

NB∑
k=1

ck
C̄0

b̂
(†)
k ≡

NB∑
k=1

t1k b̂
(†)
k . (4.22)

The expansion coefficients, {t1k}, form a normalized vector, t1 with normalization constant,
C̄0. More generally, one obtains NB-effective mode operators

B̂
(†)
i =

NB∑
k=1

tik b̂
(†)
k ,

NB∑
k=1

tiktkj = δij , (4.23)



90 CHAPTER 4. PHONON-DRIVEN VIBRATIONAL ADSORBATE RELAXATION

where {tik} are elements of an orthogonal transformation matrix, T (0), with first line given

by t1k in Eq.(4.22). From the inverse of Eq.(4.23), one obtains for ĤB

ĤB = ~Ω1

(
B̂†1B̂1 +

1

2

)
+

NB∑
j=2

~d1j

(
B̂†1B̂j + B̂1B̂

†
j

)
+

NB∑
j=2

~Ωj

(
B̂†j B̂j +

1

2

)

+

NB∑
i>j=2

~dij
(
B̂†i B̂j + B̂iB̂

†
j

)
. (4.24)

The first term resembles the first effective mode, the second term couples the first effective
mode to (NB − 1)-“residual” interacting bath modes, which are given by terms three and
four. Effective mode frequencies, Ωi, and coupling coefficients, dij, read

Ωi =

NB∑
k=1

ωk t
2
ik , dij =

NB∑
k=1

tik ωk tkj . (4.25)

The 1st-HEM representation is finally obtained by diagonalizing the residual mode bath.
Hence, a second orthogonal transformation is introduced with

B̂
′ (†)
1 = B̂

(†)
1 , B̂

′ (†)
i =

NB∑
m=2

zimB̂
(†)
m , i ≥ 2 , (4.26)

where {zim} are the elements of an orthogonal matrix, Z(0), respectively. Accordingly, ĤB

turns into

ĤB = ~Ω1

(
B̂†1B̂1 +

1

2

)
+

NB∑
j=2

~d′1j
(
B̂†1B̂

′
j + B̂1B̂

′ †
j

)
+

NB∑
j=2

~Ω′j

(
B̂′ †j B̂

′
j +

1

2

)
, (4.27)

where the second and third terms resemble the first order residual bath with Hamiltonian

Ĥ
(1)
R =

NB∑
j=2

~d1j

(
B̂†1B̂j + B̂1B̂

†
j

)
+

NB∑
j=2

~Ωj

(
B̂†j B̂j +

1

2

)
, (4.28)

where we dropped the primes (cf. Eq.(4.18) with M = 1).

4.3.3 Derivation of M th-Order HEM Hamiltonian

In the following, we introduce a numerically efficient approach to calculate all frequencies
and coupling coefficients for a M th-order HEM representation based on a set of orthogonal

transformation matrices,
{
U (m) = Z(m)T (m)

}
, with m = 0, 1, . . .M−1. In order to proceed,

the NB-mode harmonic bath Hamiltonian is rewritten as

ĤB = b†H
B
b+

NB∑
k=1

~ωk
2

, (4.29)
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with diagonal Hessian

H
B

= diag(ω1, ω2, . . . , ωNB) ≡ H(0)

R
, (4.30)

which we denote as zeroth-order residual bath Hessian, H(0)

R
, in the following. The creation

and annihilation operators are grouped in vectors

b = (b1, b2, . . . , bNB)T , b† = (b†1, b
†
2, . . . , b

†
NB

) , (4.31)

where the superscript “T” denotes the vector transpose.

1st-Order Transformation

In the following, the general procedure is outlined by explicitly constructing the first-order
HEM representation of the bath Hessian, H(1)

B
, which can be written as

H(1)

B
= U (0) H(0)

R

(
U (0)

)T
. (4.32)

with orthogonal transformation matrix

U (0) = Z(0) T (0) . (4.33)

The first transformation step is mediated by T (0) (cf. Eq.(4.23)) and leads to

T (0) H(0)

R

(
T (0)

)T

=

(
Ω1 d̃

T

d̃ W (1)

R

)
= W (0)

B
, (4.34)

with first effective mode harmonic frequency, Ω1, and bilinear coupling coefficient vector,
d̃, which contains coupling coefficients between first effective and all remaining residual
modes. Further, W (1)

R
resembles the fully coupled first-order residual bath. In this work,

the orthogonal transformation matrix, T (0), is constructed as Householder matrix

T (0) = 1− 2w ⊗ w , T (0)
(
T (0)

)T

= 1 , (4.35)

with Kronecker product, ⊗, under the constraint that

t1 = (t11, t12, . . . , t1NB)T =

(
c1

C̄0

,
c2

C̄0

, . . . ,
cNB
C̄0

)T

, (4.36)

constitutes the first row, which is realized by determining vector elements of w as

w1 =

√
1− t11

2
, wj = − t1j√

2(1− t11)
, (4.37)

with j ≥ 2. The advantage of a Householder ansatz for T (0) is twofold: (i) The remain-

ing (NB − 1)-rows of T (0) are unambiguously determined by t1 and (ii) T (0) is orthogonal
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by construction, which speeds up the numerical realization of the transformation approx-
imately by a factor of five compared to standard Gram-Schmidt based orthogonalization
schemes[222, 225].

In a second transformation step, W (0)

B
in Eq.(4.34) is transformed to H(1)

B
by

Z(0) =

(
1 0T

0 R(0)

)
, Z(0)

(
Z(0)

)T

= 1 , (4.38)

where R(0) contains orthonormal eigenvectors of W (1)

R
, i.e., diagonalizes the latter, such that

Z(0)W (0)

B

(
Z(0)

)T

=

(
Ω1 dT

d H(1)

R

)
= H(1)

B
. (4.39)

The transformed vector d contains (NB − 1)-coefficients coupling the first effective mode
with frequency Ω1 to the non-interacting, first-order residual bath with diagonal Hessian

H(1)

R
= diag(Ω2,Ω3, . . . ,ΩNB) = R(0)W (1)

R

(
R(0)

)T

, (4.40)

as given in Eq.(4.28). In summary, we find for Eq.(4.32)

H(1)

B
= Z(0) T (0)H(0)

R

(
T (0)

)T (
Z(0)

)T
=

(
Ω1 dT

d H(1)

R

)
. (4.41)

M th-Order Transformation

The diagonal 1st-order residual bath Hessian, H(1)

R
, resembles an equivalent starting point as

H(0)

R
before, however, now for a new orthogonal transformation mediated acting in the (NB−

1)-dimensional residual mode subspace. In general, the M th-order HEM representation is
obtained iteratively via a series of orthogonal transformation of the (m−1)th-order residual
bath Hessian

H(m)

B
= U (m−1)H(m−1)

R

(
U (m−1)

)T
. (4.42)

for m = 1, 2, . . . ,M with

U (m−1) = Z(m−1) T (m−1) . (4.43)

In every step, effective mode frequency Ωm and the corresponding on-chain coupling coef-
ficient Cm−1 is obtained besides the residual bath parameters. Further, T (m−1) resembles a

Householder matrix and Z(m−1) diagonalizes the (m − 1)th-order residual bath, and both
matrices are equivalently constructed as discussed above.
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4.3.4 Properties of Truncated HEM Representation

The main advantage of the truncated M th-order HEM representation, as noted above,
manifests in its ability to exactly reproduce the time-evolution of the herein studied type
of system-bath problems over time-intervals which increase with M . For the M th-order
truncated HEM system-bath Hamiltonian

Ĥ(M) = ĤS +
M∑
m=1

ĥ
(m)
eff , (4.44)

it is sufficient to exactly reproduce all moments, C(k), of the autocorrelation function,
C(t) = 〈ΨSB(0)|e−i Ĥt/~|ΨSB(0)〉, up to, k ≤ 2M + 1[222, 223, 224]

C(t) ≈
2M+1∑
k=1

(−i t/~)k

k!
C(k) =

2M+1∑
l=1

(−i t/~)l

l!
C(l) , (4.45)

with, C(l) = 〈ΨSB(0)|
(
Ĥ(M)

)l
|ΨSB(0)〉, respectively. As a (vibrational) relaxation process

naturally occurs on a finite time scale, this aspect allows to drastically reduce the number
of bath modes to be considered throughout the time-evolution.

4.4 Phonon-Driven Vibrational Multilevel Relaxation

4.4.1 Convergence of Truncated HEM Representation

We start our discussion by examining convergence properties of the HEM representation
with respect to different truncation orders M and two different initial states, |ΨSB(t0)〉 =
|v0〉 |0B〉, with v0 = 1, 2, respectively. As |ΨSB(t0)〉 is only an eigenstate to the zero-order
Hamiltonian, Ĥ0, a non-trivial dynamics emerges due to energy exchange between initially
excited system and bath. The time-evolution is studied by means of the ML-MCTDH
method as implemented in the Heidelberg MCTDH package, version 8.6[84].
In Fig.4.3, system populations, ρvv(t), are shown for initial system vibrational quantum
numbers v0 = 1 (left column) and v0 = 2 (right column) for different HEM-truncation
orders, M = 10, 25, 40 (top to bottom). The reference calculation, which reproduces the
“exact” relaxation dynamics up to tf = 2000 fs, is obtained with a truncation order of
M = 60 (cf. grey graphs in Fig.4.3). The relaxation process is characterized by an initial
state decay up to 500 fs, followed by two damped recurrences at around 1000 and 1750 fs.
A detailed discussion of the relaxation dynamics is given below. Here, we concentrate on
the convergence properties of the HEM-representation.
For a truncation order of M = 10, the initial relaxation process is accurately described up
to 500 fs for both initial states. With M = 25 effective modes, the onset of the recurrence
at t = 1000 fs is captured and system populations diverge for both initial states around
t = 1100 fs. In order to fully capture recurrences details, the number of effective modes
has to be increased up to M = 40, which indicates a nonlinear increase of the time-interval
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Figure 4.3: Time-evolution of vibrational populations, ρvv(t), of adsorbate bending mode
obtained with different HEM truncation orders, M = 10 (upper panels), M = 25 (middle
panels), and M = 40 (lower panels), for two different initial system states, v0 = 1 (left
column) and v0 = 2 (right column). The grey solid lines correspond to the “exact reference”
with M = 60.

with the number of effective modes. The differences between dynamics with M = 40 and
fully converged results (M = 60) are already rather small and slightly increase with the
quantum number of the system initial state. Notably, we observe convergence to the exact
result, independent of the initial system state, v0. Increasing complexity and correlation



4.4. PHONON-DRIVEN VIBRATIONAL MULTILEVEL RELAXATION 95

between system and bath manifests in an increase of required SPFs in the ML-MCTDH
wave function to converge the natural populations to ≤ 10−4, respectively.

(a)

(b)

(c)

Figure 4.4: (a) First, (b) second and (c) third branch of the Multilayer-tree as employed
for vibrational relaxation dynamics with initial system states, |v0〉, for vibrational quantum
numbers, v0 = 1 to v0 = 5. Numbers next to edges correspond to SPFs employed with
smaller numbers for v0 = 1, . . . , 4 and higher numbers for v0 = 5. Numbers at edges
connecting to lowest layer correspond to primitive basis functions with sin-DVR for SQR
effective bath modes and system eigenstates formally treated as “electronic states” in a
non-adiabatic (ML)-MCTDH run.

In Fig.4.4, we show the ML-tree as considered in this chapter for a truncated HEM-
Hamiltonian with M = 60 modes. Note, as we consider the system in eigenstate representa-
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tion, the system states are treated formally equivalent to electronic states in non-adiabatic
(ML)-MCTDH runs.

4.4.2 Truncated HEM-Bath Scaling and Dynamics

We discuss the reduced scaling of the truncated HEM bath compared to the full harmonic
bath as well as properties and dynamics of selected effective bath modes. For an initial
state, |ΨSB(t0)〉 = |v0〉 |0B〉, the vibrational relaxation process can be depicted by a cascade
of next-neighbor transitions between system eigenstates

|v0〉 → |v0 − 1〉 → · · · → |2〉 → |1〉 → |0〉 , (4.46)

which are accompanied by single-phonon excitations of bath modes. Notably, overtone
transitions as for example, |v0〉 → |v0 − 2〉, do not provide primary relaxation channels here
because (i) our model phonon bath does not support appropriate frequencies for single-
phonon processes and (ii) possible two-phonon processes are not dominant.[205]

Truncated HEM-Bath Scaling

Recently, it has been shown that the number of effective bath mode basis states, nv0B , required
to appropriately describe one-phonon induced relaxation processes scales polynomially with
the number of bath modes NB as[207]

nv0B =

v0∑
k=1

(NB + k − 1)!

k! (NB − 1)!
, v0 = 1, 2, . . . . (4.47)

For a high dimensional bath, Eq.(4.47) behaves in leading order as

nv0B ∼ N v0
B , NB large , (4.48)

which renders a straightforward study of a vibrational relaxation process with NB = 2259
bath modes and the Hamiltonian in Eq.(4.9) already for initial system states, v0 > 2,
prohibitively expensive for the “tier model” approach in Ref.[207]. In Fig.4.5, we show a
comparison of vibrational populations obtained with both methods for v0 = 1, 2, respec-
tively, where very good agreement with some small deviations is observed. The latter are
traced back to minor differences in linearization schemes employed to obtain the bilinear
coupling coefficients, ck.
Now, for the M th-order truncated HEM representation, NB in Eq.(4.47) is replaced by M
and the leading order scaling in Eq.(4.48) reduces to nv0B ∼M v0

B . Here, we find the relaxation
dynamics for initial system states, v0 = 1, 2, . . . , 5, to be converged for a time-interval of
tf = 2000 fs with only M = 60 effective modes, respectively. In contrast to the full bath
with NB = 2259 modes, this implies a significantly milder scaling of the truncated HEM
basis size with M v0 � N v0

B .

In general, the truncation order M of the HEM representation is assumed to depend on the
natural time-scale of the process under study, the initial system state and the explicit nature



4.4. PHONON-DRIVEN VIBRATIONAL MULTILEVEL RELAXATION 97

Figure 4.5: Vibrational population dynamics of adsorbate bending mode from trun-
cated HEM-ML-MCTDH approach with M = 60 effective modes (bold lines) and Bixon-
Jortner/“tier model” with 2259 bath modes (dashed lines) for system initial states, v0 = 1
(left) and v0 = 2 (right). For both methods, the full bilinear system-bath interaction
Hamiltonian including post-RWA contributions was employed.

of bilinear system-bath couplings. Therefore, a truncation order of M = 60 as reported here
is problem specific and does not provide a general result. Further, the independence of M
with respect to the initial system state quantum number, v0, as observed here has also to
be assumed a non-general result. We finally note, that although the basis scaling issue can
be efficiently mitigated via a truncated HEM representation, an efficient approach to the
numerical solution of the system-bath TDSE (4.10) is still required.

Truncated HEM Properties and Dynamics

The properties of the truncated HEM-bath are determined by effective frequencies and
couplings, which subsequently determine the excitation dynamics of effective modes. In
Fig.(4.6), effective mode coupling parameters, C̄i, and frequencies, Ωi, are shown for M =
100 effective modes. The coupling coefficients, which mediate the energy transfer between
adjacent effective modes, are found to be non-uniformly distributed around a mean value
of about 125 cm−1. The effective mode frequencies show a mean value of around 270 cm−1

for M = 100 modes. Interestingly, the effective system-bath coupling, C̄0, takes a value
of 105 cm−1, which is a substantial fraction of the first effective mode frequency with
Ω1 = 205.4 cm−1. Hence, the system-bath coupling situation changes from weak for the
“star”-type system-bath Hamiltonian to strong for the (truncated) HEM representation.

In order to gain some insights into the effective mode dynamics as initiated by the system
vibrational relaxation, we a M = 10 truncated HEM representation and discuss selected
energy expectation values as function of time. The chosen HEM-Hamiltonian is sufficient
to exemplarily illustrate the main dynamical characteristics of effective modes over a time-
interval of tf = 500 fs for an initial system state with v0 = 1. In Fig.4.7(a), energy ex-

pectation values are shown for the system Hamiltonian, 〈ĤS〉, and the bare effective mode
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Figure 4.6: Effective coupling coefficients, C̄i, (left) and effective mode frequencies, Ωi,
(right) for M = 100 effective modes.

bath Hamiltonian, 〈ĤB〉, where the system ground state energy and the bath zero-point
energy are chosen as reference. Further, the time-evolution of the interaction energy expec-
tation value, 〈ĤI〉, which includes all next-neighbor contributions between adjacent modes
along the chain, is shown. All three contributions sum to the total energy, 〈Ĥ〉, which is
conserved for the unitary dynamics of the system-bath TDSE. As time evolves, the vi-
brational relaxation process manifests as a decrease in system energy and an increase in
both bath and interaction energies. Notably, the latter contributes significantly due to the
enhanced coupling in the HEM representation. A particularly characteristic feature of 〈ĤI〉
are small oscillations at short times and values, 〈ĤI〉 < 0, around t = 20 fs, which result
from post-RWA, P̂ †vv+1B̂

†
1 and P̂vv+1B̂1.

Turning to a more detailed perspective, we consider the time-evolution of bare effective
mode energies in Fig.4.7(b) and (c). As energy is transferred from the system to the
bath, effective modes are consecutively excited due to the chain character of the truncated
HEM bath. Notably, the energies of individual modes show a complex time-evolution
determined by a series of quantum beats and energy expectation values slightly out-of-phase.
These signatures result from the interplay of unequal next-neighbor coupling coefficients
and effective mode frequency related detunings. In general, the HEM bath dynamics is
determined by non-resonant, next-neighbor energy transfer with rates governed by inter-
mode coupling strengths.
The inter-mode interaction energies, as displayed in Fig.4.7(d), exhibit weaker signatures of
quantum beats compared to the bare effective mode energies. The “S-B1” contribution is
particularly prominent as it is mostly negative for the studied time-interval, which relates to
post-RWA effects showing small but non-negligible contributions up to 500 fs. Further, post-
RWA interaction contributions are also responsible for population transfer to system states
lying energetically above the initial system state, despite the overall relaxation process. We
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Figure 4.7: Time-dependent energy expectation values of a truncated HEM model with
M = 10 effective modes and initial system quantum number, v0 = 1. Corresponding HEM-
Hamiltonian graphically illustrated on top of the figure. (a) Time evolution of system
energy, 〈ĤS〉, bath energy, 〈ĤB〉, interaction energy, 〈ĤI〉, and total energy, 〈Ĥ〉. (b) and
(c), Time evolution of bare effective mode energy and (d) individual inter-mode coupling
contributions.

finally note that for larger initial system vibrational quantum numbers, v0 > 1, a similar
dynamics is observed (not shown here), which differs only in the magnitude of expectation
values as a result of higher amount of energy initial stored in the system mode.

4.4.3 One-Phonon-Driven Multilevel Relaxation

In the following, we systematically discuss the vibrational relaxation dynamics of an ini-
tially excited system D-Si-Si bending mode for initial vibrational quantum numbers, v0 =
1, 2, . . . , 5. We concentrate here on non-Markovian signatures in the full dynamics, which
are to be contrasted by purley Markovian results below. Further, we provide a basis for
discussing vibrational half-liftimes and possible scaling laws. The reduced system dynamics
is obtained by numerically solving the full system-bath TDSE via the ML-MCTDH ap-
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proach for a truncated HEM bath with M = 60 effective modes and a propagation time of
tf = 2000 fs, respectively.

Non-Markovian Vibrational Population Dynamics

In Fig.4.8(a)(-e), the time-evolution of the vibrational populations, ρvv(t), is shown for
different initial system states. The vibrational relaxation process follows the cascade (4.46)
and the onset of the first prominent recurrence is observed at around 500 fs, independent of
the initial system quantum number, v0. Two damped recurrences in ρ11(t) and ρ22(t) are
observed around 1000 fs and 1750 fs, which increase in magnitude with v0, i.e., population
back-transfer from the bath to the system is more pronounced for energetically higher lying
initial system states. The recurrences can be related to damped Rabi-type oscillations
between the system and a few dominant bath modes due to a non-trivial bath vibrational
density of states. Note that this argument holds only implicitly for the HEM representation,
where a single effective mode is responsible for this “collective” effect.
Although vibrational relaxation is the dominant process here, we additionally observe non-
zero population of system states lying energetically above the initial state, i.e., processes
following the scheme

· · · ← |v0 + 2〉 ← |v0 + 1〉 ← |v0〉 . (4.49)

The latter result from post-RWA contributions in the system-bath Hamiltonian and in
particular influence the initial decay of the excited system for short times up to 100 fs.
Post-RWA effects manifest as damped low-amplitude oscillations in populations of states
|v0 + 1〉 and |v0 + 2〉, which fully decay for longer times. From a numerical perspective, the
inclusion of post-RWA effects does not substantially alter the truncated HEM bath basis
scaling.

ML-MCTDH vs. multi-Davydov D2 Ansatz

An alternative, variational approach to the solution of the full system-bath TDSE is the
coherent state based multi-Davydov-D2 (mD2) ansatz, which has been studied extensively in
recent years.[237, 238, 239, 240, 241, 242, 243, 244, 245] Here, we compared the performance
of combined HEM-mD2 and HEM-ML-MCTDH approaches to the adsorbate-surface model.
The mD2-system-bath wave function is defined as[237]

|ΨD2
SB(t)〉 =

K∑
j=1

(
NS−1∑
v=0

Avj(t) |v〉

)
|αj(t)〉 , (4.50)

with time-dependent coefficients, Avj(t), system eigenstates, |v〉, and M -dimensional ef-
fective mode coherent states, |αj(t)〉, describing the bath. The parameter K is known as
multiplicity and determines the convergence behavior of the mD2-ansatz, i.e., in the “large
K”-limit the exact system-bath wave function is recovered.[237] Further, details on mD2-
theory, implementation and numerical details on regularization procedures as employed here
can be found in Ref.[243].
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Figure 4.8: Time-evolution of reduced vibrational system populations, ρvv(t), for initial
vibrational system states, |v0〉, with quantum numbers, v0 = 1, 2, . . . , 5, (a)-(e) as obtained
from full system-bath TDSE with truncated HEM Hamiltonian for M = 60 effective modes.

In Fig.4.9, we show a comparison of results (HEM-mD2 vs. HEM-ML-MCTDH) for initial
system quantum numbers, v0 = 3, 4, 5, an effective mode chain with truncation order M =
60 and a multiplicity of K = 30 for |ΨD2

SB(t)〉 in Eq.(4.50), respectively. Both methods give
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(a) (b)

(c)

Figure 4.9: Reduced vibrational system population dynamics from multi-Davydov-D2
ansatz (colored) and ML-MCTDH approach (grey) for initial vibrational system states,
|v0〉, with quantum numbers (a) v0 = 3, (b) v0 = 4 and (c) v0 = 5, obtained from full
system-bath TDSE with truncated HEM Hamiltonian for M = 60 effective modes and
mD2 multiplicity K = 30.

identical results (to within line thickness) for t 6 500 fs, with slight deviations occurring
later which increase with increasing v0. As both methods are converged with respect to
primitive basis/SPFs (ML-MCTDH) and multiplicity (mD2), we qualitatively attribute
the deviations to differences in implementations and numerical details of the underlying
equations of motion, but cannot give a precise reason at the present.

More generally, we find the mD2-ansatz (i) to follow a ratio, K/M � 1, i.e., the multi-
plicity is significantly smaller than the number of effective modes (as in Ref.[241]), (ii) to
show only weak dependence of multiplicity K on truncation order M , and (iii) to perform
numerically faster than the HEM-ML-MCTDH approach by roughly a factor of three for
the bilinear model system studied here. For the first and second aspect, we checked with
M = 100 effective modes (not shown here) and observed converged results with K = 30
identically to the M = 60 scenario. Further, concerning computational time savings of
the mD2-ansatz, we note that this is to be understood as a rough estimate, which points
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at the capabilities of the mD2-ansatz to handle high-dimensional (bilinear) system-bath
model problems. However, the herein employed ML-tree was not optimized with respect to
computation time, i.e., a rather strict convergence criterion with lowest natural population
≤ 10−4 for every node was considered, which might definitively be weakened.

In summary, we find the HEM-mD2 ansatz to constitute a promising approach to the study
of high-dimensional model system-bath systems, which benefits from a comparatively fast
performance and its “simplicity” in terms of a single convergence parameter given by the
multiplicity, K. However, although the mD2 ansatz has been shown to have a favorable
linear scaling of K up to 300 bath modes[240] (without HEM Hamiltonian), it remains to be
seen how its performs for spin-boson models with several thousand harmonic bath modes,
which has been successfully described by the ML-MCTDH approach[80] (also without HEM
Hamiltonian). Another aspect concerns the study of anharmonic systems, whose description
benefits from the high-flexibility of the (ML)-MCTDH ansatz but might be an interesting
problem for the coherent state based mD2 ansatz.

Vibrational Coherence Dynamics

Additional insight into vibrational relaxation is obtained by analyzing vibrational coher-
ences, ρvv+1(t), which we consider for energetically adjacent system eigenstates. In Fig.4.10,
we show the time evolution of the corresponding real part, Re[ρvv+1(t)], complementing vi-
brational population dynamics discussed in Fig.4.8. For all initial states, we observe small
but non-zero oscillatory coherences emerging roughly after t = 50 fs, which increase in am-
plitude with time and are dominated by contributions ρ01(t) and ρ12(t), i.e., involving the
three lowest lying system vibrational states. The overall time-evolution is dominated by
“beat”-like signatures, which parallel the population recurrence events, i.e., where several
system states contribute coherently to the full system-bath wave function. Note, as a re-
currence event relates to a re-excitation of the system, the full wave function acquires a
coherent contribution of several system states, which in turn manifests in enhanced coher-
ence amplitudes Intestingly, coherences involving higher lying system states additionally
play a role for increasing v0, i.e., ρ23(t) shows significant contributions for all v0 and ρ34(t)
contributes for v0 ≥ 3, respectively. For later times with t > 1000 fs, ρ01(t) and ρ12(t) oscil-
late in phase at the same frequency but different amplitudes. The oscillation period of about
T ≈ 73 fs nicely reflects the energy difference between system states |0〉 and |1〉 or |1〉 and
|2〉 as the system mode is only mildly anharmonic (ω10 ≈ ω21) with T = 2π/ω10 ∼ 2π/ω21,
respectively.

Both, vibrational coherences and non-exponential decay of an initially pure system state
are signatures of non-Markovian dynamics, which we will discuss in the following in greater
detail. We finally note, that we did not discuss the full time-interval necessary for both
recurrences and coherences to completely decay but concentrated exclusively on the main
features of the relaxation dynamics at early times.



104 CHAPTER 4. PHONON-DRIVEN VIBRATIONAL ADSORBATE RELAXATION
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Figure 4.10: Time-evolution for real part of vibrational system coherences, Re[ρvv+1(t)],
for energetically adjacent system eigenstates for initial vibrational system states, |v0〉, with
quantum numbers, v0 = 1, 2, . . . , 5, (a)-(e) obtained from full system-bath TDSE with
truncated HEM Hamiltonian for M = 60 effective modes.
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4.4.4 Markovian vs. Non-Markovian Relaxation Dynamics

We now turn to a detailed comparison of Markovian relaxation dynamics as governed by
open-system Liouville-von Neumann equation in Lindblad form (cf. Sec.2.3.1) and the
non-Markovian full system-bath dynamics. Non-Markovian signatures are discussed from
four perspectives: (i) vibrational populations extracted from the Markovian reduced system
density matrix, (ii) half-lifetimes (iii) purity and von Neumann-entropy, and (iv) the energy
exchange of system and bath in terms of a system energy current.

Vibrational Population Dynamics

We first consider vibrational population dynamics with Markovian (bold lines) and non-
Markovian (dashed lines) results shown in Fig.4.11. The “non-Markovian” vibrational pop-
ulations are obtained with the truncated HEM representation in combination with the
ML-MCTDH approach as discussed above. We observe two main differences in the Marko-
vian regime: First, Markovian initial state populations, ρv0v0(t), decay exponentially with
time and, secondly, both no oscillatory fine-structure and no recurrences are observed in
the Markovian limit. The latter two aspects relate to two approximate properties of the
Lindblad-approach: (i) The bath is assumed to be infinitely large with a constant vibra-
tional density of states and, (ii) the population transfer is exclusively unidirectional from
system to bath.

Half-Lifetimes for Relaxation Process

Although the non-Markovian vibrational population decay is highly non-exponential, as ob-
servable from Fig.4.11, it turns out to be illustrative to define corresponding non-Markovian
half-lifetimes, T

(v0)
1/2 , after which the population of initial system state, |v0〉, has dropped to

1/2. Further, we introduce a Markovian half-lifetime, T (v0)
1/2 , which is determined either by

Fermi’s Golden Rule (FGR) or equivalently by solving the LvN-equation in Lindblad form.

From Tab.4.1 and Fig.4.12, we find non-Markovian half-lifetimes to range from T
(v0)
1/2 = 145 fs

for v0 = 1 to T
(v0)
1/2 = 41 fs for v0 = 5. For low lying excited states with v0 = 1 and v0 = 2,

we find these lifetimes to be in good agreement with results obtained by employing the “tier
model” to solve the system-bath TDSE for D:Si(100)-(2×1) (cf. Fig.4.5).[207]
For a harmonic oscillator bilinearly coupled to a harmonic bath, it is well-known that Fermi’s
Golden Rule provides at T = 0 K a strict selection rule, ∆v = −1, as well as a half-lifetime
scaling law[246]

T
(v0)
1/2 =

T
(1)
1/2

v0

. (4.51)

This ideal scaling law is not well fulfilled for the “exact” HEM-ML-MCTDH solution of the
system-bath TDSE, despite fitting trends. For example, we find Markovian T (5)

1/2 = 23 fs for

v0 = 5 following Eq.(4.51), which turns out to be T
(v0)
1/2 = 41 fs (non-Markovian) according

to Tab.4.1 and Fig.4.12. Nevertheless, the ideal scaling law is well reproduced by the FGR
half-lifetimes, ln(2) γ−1

v , where only for larger v0 a small deviation from ideal scaling is seen



106 CHAPTER 4. PHONON-DRIVEN VIBRATIONAL ADSORBATE RELAXATION
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Figure 4.11: Markovian reduced vibrational system populations (bold) compared to non-
Markovian populations (dashed) for, v0 = 1, 2, . . . , 5, (a)-(e) obtained from open-system
Liouville-von Neumann equation in Lindblad form and full system-bath TDSE with trun-
cated HEM Hamiltonian for M = 60 effective modes.

(note that the half-lifetime for v0 = 5 should be 24 fs, not 23 fs), which resembles the weak
anharmonicity of the system mode. Moreover, the “exact” non-Markovian half-lifetimes
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Table 4.1: Initial state vibrational quantum numbers, v0, energies difference initial sys-
tem state/ground state energy, (εv0 − ε0), Fermi’s Golden Rule (FGR) relaxation rates γv,
FGR half-lifetimes ln(2) γ−1

v , half-lifetimes from HEM-ML-MCTDH solution of system-bath

TDSE, T
(v0)
1/2 , and half-lifetimes obtained from solving the Lindblad-LvN equation, T (v0)

1/2 .

v0 (εv0 − ε0)/cm−1 γv/fs
−1 ln(2) γ−1

v /fs T
(v0)
1/2 /fs T (v0)

1/2 /fs

1 458 0.00578 120 145 120
2 917 0.01160 60 102 60
3 1379 0.01759 39 79 39
4 1842 0.02376 29 51 29
5 2308 0.03013 23 41 23

are additionally consistently larger than the FGR ones, which is in agreement with findings
reported in Ref.[207]. Finally, we point at the absence of coherences in the Markovian
framework as employed here. For pure initial states, ρS(t0) = |v0〉 〈v0|, the decoherences
are initially zero and stay zero throughout the time-evolution of the reduced system as
population and coherence dynamics are strictly decoupled in the open-system Liouville-von
Neumann-equation in Lindblad form. Hence, the emergence of vibrational coherences in the
full dynamics additionally accounts for a non-Markovian signature opposed to a Markovian
perspective based on the LvN-equation in Lindblad form.

Purity and von Neumann-Entropy

We now turn to reduced system properties to disucss non-Markovian signatures emerging
as deviations from the Markovian dynamics. In particular, we discuss purity, pS(t), and
von Neumann-entropy, SvN(t), of the reduced system density matrix, ρ̂S(t), as introduced
in Eqs.(2.78) and (2.79) of Sec.2.3.1. In Fig.4.13, the time-evolution of pS(t) and SvN(t)
is shown for different initial system quantum numbers, v0, and Markovian (dashed) and
non-Markovian (bold) dynamics.
At t = 0, the system-bath wave function is in an uncorrelated product state, |ΨSB(0)〉 =
|v0〉 |0B〉, such that SvN(0) = 0, which results in a pure reduced system state with pS(0) = 1.
As time evolves, the system is found to be in a mixed state due to finite system-bath en-
tanglement, i.e., the full system-bath wave function has a multiconfigurational character
and cannot be represented by a single product state. Accordingly, we find pS(t) < 1
and SvN(t) > 0 for t > 0, respectively. The Markovian dynamics qualitatively repro-
duce non-Markovian trends and display the mixed state character of the reduced system
throughout the relaxation process. For small times, purity/von Neumann-entropy exhibits
a minimum/maximum, which is gradually shifted to smaller times for increasing v0. Fur-
ther, the magnitude of both quantities increases with v0. For times t > 1500 fs, both
Markovian purity and von Neumann-entropy tend against their pure state limiting val-
ues as the Markovian relaxation process is complete, i.e., the system is fully relaxed to
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Figure 4.12: Initial relaxation dynamics of Markovian reduced vibrational system popula-
tions (bold) compared to non-Markovian populations (dashed) for, v0 = 1, 2, . . . , 5, (a)-(e)

with Markovian, T (v0)
1/2 , and non-Markovian (truncated HEM representation) half-lifetimes,

T
(v0)
1/2 , in dependence of v0.
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(a) (b)

Figure 4.13: Time-evolution of purity, pS(t), (a) and von Neumann-entropy, SvN(t), (b)
for Markovian (dashed) and non-Markovian (bold) system reduced dynamics for different
initial system quantum numbers, v0 = 1, 2, . . . , 5.

its ground state (cf. Fig.4.11). In passing, we note that an analytical expression for
the von Neumann-entropy can be derived in the Lindblad framework for v0 = 1, namely,
SvN(t) = kB [γ1t e

−γ1t − (1− e−γ1t) ln (1− e−γ1t)].[246]
The non-Markovian dynamics deviate from the latter observations in two main aspects:
Firstly, both purity and von Neumann-entropy capture the relaxation process as well as
the recurrence events at later times, which are absent in the Markovian picture. Sec-
ondly, the non-Markovian reduced system stays in a mixed state due to finite system-bath
entanglement for the time-interval studied here. This observation can be understood by
remembering the non-zero vibrational coherences between low-lying system eigenstates as
depicted in Fig.4.10. However, in the long-time limit a similar result as the Markovian one
is to be expected, as the system ground state will be the dominant system contribution
to the full system-bath wave function, while the bath resembles a correlated superposition
state of excited bath modes.

System Energy Current

We finally turn to the energy exchange dynamics between system and bath, which we
approach from the perspective of non-Markovian and Markovian system energy currents,
JS(t) and JL(t), respectively. For the former, the general expression holds

JS(t) =

NS−1∑
v=0

εv
∂ρvv(t)

∂t
, (4.52)

which turns for the LvN-equation in Lindblad form, Eq.(2.75), into

JL(t) = −
NS−1∑
v=0

γv ∆εv ρvv(t) , (4.53)
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with energy difference, ∆εv = εv − εv−1, and Fermi’s golden rule relaxation rate, γv, for
|v〉 → |v − 1〉, respectively. Details on FGR rates, γv, and a derivation of the Markovian
current, JL(t), are provided in Appendix C.
The system energy current allows to quantify both magnitude and direction of bath-induced
energy transfer. We briefly recall our convention, that J (t) < 0 resembles energy transfer
from system to bath (S → B) and J (t) > 0 relates to the reverse process (S ← B),
respectively. Note that the expression JS(t) in Eq.(4.52) is in principle generally applicable
for both populations obtained from Markovian and non-Markovian approaches, however, we
here restrict ourselves to the second case and accordingly refer to JS(t) as “non-Markovian”
current. In Fig.4.14, the time-evolution of both JS(t) and JL(t) (inset) are shown. At t = 0,

Figure 4.14: Time-evolution of non-Markovian JS(t) and Markovian JL(t) (inset) reduced
system energy current for different initial system quantum numbers, v0 = 1, 2, . . . , 5.

the energy current is negative in both scenarios, which resembles the onset of the relaxation
process with energy flow, S → B. The amplitude of the currents differ significantly, i.e.,
the Markovian one is larger, which directly reflects the exponential decay and subsequently
shorter Markovian half-lifetimes. Further, the Markovian current tends monotonically to
zero over a time interval of roughly 1500 fs, which resembles the completion of the Markovian
relaxation process. For increasing v0, the current amplitude naturally increases, which
directly relates to the higher amount of energy initially stored in the system. Notably,
JL(t) ≤ 0 for all times, i.e., the Markovian energy flow is exclusively unidirectional.
In contrast, the non-Markovian current exhibits an envelope taking a minimum around
100 fs and shows a rich structure dominated by oscillations, i.e., system energy is released
in a series of “bursts” to the bath with a maximum transfer rate reached around 100 fs. This
behavior relates to the non-trivial character of the bath vibrational density of states. A
second major difference to the Markovian limits relates to time-intervals where JS(t) > 0,
i.e., where the energy-flow is reversed, S ← B. This is the case for small times, where
post-RWA effects play a role and for recurrence events, where the system is essentially re-
exited by the bath. Interestingly, in the long-time limit the non-Markovian current exhibits
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small amplitude oscillations around a mean value of zero. Equivalently as purity and von
Neumann-entropy, the current amplitude increases with initial state quantum number v0,
respectively.

4.5 Summary and Outlook

We discussed the phonon-driven adsorbate relaxation dynamics for a bilinear system-bath
Hamiltonian modeling a anharmonic adsorbate mode (system) coupled to a high dimen-
sional phonon bath and the construction of a hierarchical effective mode (HEM) represen-
tation. We presented an efficient algorithm based on Householder matrices to numerically
generate all relevant parameters of the HEM representation and combined the latter with
the ML-MCTDH approach to numerically study phonon-driven vibrational adsorbate re-
laxation of a D-Si-Si bending mode due to vibration-phonon coupling at T = 0 K. The
efficiency of the HEM model in combination with ML-MCTDH allowed us to study initial
vibrational systems states up to v0 = 5, avoiding thus the “curse of dimensionality” issue,
which would otherwise make this problem with > 2000 bath modes intractable for a pre-
viously applied “tier model” approach, because the effort scales roughly as ∼ P v0 . Here,
P = NB if no HEM representation is used, with NB > 2000, and P = M if the HEM
representation is employed, with M = 60 effective modes. With this method, we found
that the excited state lifetimes decay faster with increasing v0, however, not according to
an ideal scaling law, T

(v0)
1/2 ∝ v−1

0 , despite the system being rather harmonic in our example.
The vibrational density of states and the coupling functions, however, are non-trivial in
our case. This in turn causes non-trivial behavior of state populations, ρvv(t), including
damped oscillations and recurrences. Further, with the “exact” system-bath dynamics for
a non-trivial problem at hand, we were able to compare them to more approximate, re-
duced approaches in terms of Lindblad open-system density matrix theory. The Markovian
approximation was tested in this way for a specific and realistic example. Non-Markovian
signatures, i.e., deviations from the Markovian dynamics, manifest in the “exact model”
as oscillatory and non-smooth behavior of vibrational populations, purity of the reduced
density matrix, the von Neumann-entropy and energy flow between system and bath. For
the latter, one in fact finds some back-flow of energy from bath to system, in contrast to
what Lindblad theory would predict. Further, the exact solution of the TDSE shows the
occurrence of non-vanishing coherences, in contrast to the Lindblad model, for pure initial
system states.
In conclusion, we have tested efficient numerical tools to study system-bath dynamics in
non-trivial, realistic cases as they emerge, for example, in surface science. Possible next lines
of research are to extend this work to finite temperature, to multi-dimensional (adsorbate)
systems, more complicated system-bath couplings (including multi-phonon processes), and
(adsorbate) systems or baths driven by external radiation.
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Chapter 5
Thermofield-MCTDH for Non-Adiabatic
Dynamics

5.1 Motivation

In the final chapter of this thesis, we consider the time-evolution of molecular quantum
systems at finite temperature. Finite temperature constitutes an ubiquitous situation in
chemical physics[53, 55] and naturally suffers from an enhanced scaling problem, which we
here consider from the perspective of a density operator description. One class of non-
stochastic approaches, which tries to directly tackle the full thermal dynamics, relies on
mapping the density operator to a pure state defined on an enlarged Hilbert space, i.e.,
the concept of purification[247, 248, 249] and the theoretical framework of thermofield dy-
namics (TFD)[250, 251, 252, 253, 254, 255]. The full “machinery” of wave function theory
is then accessible for the solution of the Liouville-von Neumann equation for closed quan-
tum systems, which is here formally equivalent to a Schrödinger-type equation. In the
chemical physics community, especially TFD has been applied to both time-independent
and time-dependent problems in recent years[256, 257, 258, 259, 260, 261, 262, 264, 265,
266, 263, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276], where time-dependent sce-
narios were mainly approached by means of time-dependent matrix product states/tensor
trains[258, 259, 260, 262, 263, 269, 270, 271, 273] to handle the severe scaling issues. In this
thesis, we augment the set of time-dependent wave function/TFD approaches by formu-
lating the MCTDH ansatz in the thermal quasi-particle representation of TFD. We apply
our approach exemplarily to non-adiabatic dynamics and spectroscopy of the well studied
pyrazine model at finite temperature.

Results discussed in this chapter are reproduced from “E.W. Fischer, P. Saalfrank. A
thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-
adiabatic quantum dynamics at finite temperature. J. Chem. Phys. 155, 134109, (2021).”[277]
with permission of AIP Publishing.
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5.2 A Thermofield-based MCTDH Approach

We review the main concepts of thermofield dynamics and how it applies to the description of
non-adiabatic dynamics in the framework of vibronic coupling Hamiltonians[4, 258], before
combining it with the MCTDH ansatz.

5.2.1 Thermofield Dynamics

Basic Theory

In the symmetric formulation of TFD, a density operator ρ̂(t) is given by[250, 251]

ρ̂(t) = trH̃ {|ψβ(t)〉 〈ψβ(t)|} , (5.1)

where |ψβ(t)〉 is a normalized, time-dependent thermofield state, which explicitly depends
on the inverse temperature, β, and is defined on a thermal Fock space[251]

Hβ = H⊗ H̃ . (5.2)

The latter decomposes into the conventional “physical” Fock space, H, and an exact copy
denoted as “tilde” or “auxiliary” Fock space, H̃, which provides an artificial thermal bath
in TFD[254, 255]. The density operator ρ̂(t) in Eq.(5.1) is recovered from the thermofield
state by exclusively tracing out the auxiliary DoF. Further, the time evolution of |ψβ(t)〉 is
governed by[251]

∂

∂t
|ψβ(t)〉 = − i

~

(
Ĥ − H̃

)
|ψβ(t)〉 , |ψβ(t0)〉 = |ψβ〉 , (5.3)

with initial state, |ψβ〉, and Hermitian thermofield Hamiltonian, Ĥ − H̃ = H̄, where

H̃ is an exact copy of the physical Hamiltonian, Ĥ, and acts exclusively on H̃. The
Schrödinger-like EoM (5.3) resembles the Liouville-von Neumann Eq.(2.69) on the ther-
mal Fock space, Hβ, and is denoted as thermofield time-dependent Schrödinger equation
(TF-TDSE), respectively.[254] Thermal ensemble averages in symmetric TFD take the form
of conventional quantum mechanical expectation values with respect to time-dependent
thermofield states[251]

〈Ô〉β (t) = 〈ψβ(t)|Ô|ψβ(t)〉 ≡ trH

{
ρ̂(t)Ô

}
, (5.4)

where Ô acts exclusively on the physical Fock space and the second equality holds due
to the definition in Eq.(5.1). For systems in thermal equilibrium, the canonical ensemble
average in TFD takes the form

〈Ô〉β = 〈0β|Ô|0β〉 , (5.5)

with normalized thermal vacuum state[251]

|0β〉 =
e−βĤ/2√

Zβ

∑
n

|n, ñ〉 . (5.6)
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Here, n = (n1, . . . , nf ) is a multi-index for both the physical and auxiliary system with
f -DoF and, {|n, ñ〉}, are basis states spanning the thermal Fock space, Hβ, respectively.

The symmetric formulation of TFD provides an alternative representation of quantum sta-
tistical dynamics in the language of wave function theory. Accordingly, powerful methods
for the numerical solution of the conventional TDSE can directly be transferred to the TFD
framework and applied to the propagation of a thermofield state evolving in time according
to the TF-TDSE (5.3). This is particularly relevant as the “curse of dimensionality” is here
severely enhanced due to the structure of Hβ in Eq.(5.2), where the original physical prob-
lem is effectively doubled. In this thesis, we aim at tackling the enhanced scaling problem
by extending the (multilayer) MCTDH approach to the TFD framework.

Non-Adiabatic Quantum Dynamics in TFD

We apply the formalism of TFD to non-adiabatic quantum dynamics at finite temperature,
where we assume a temperature range, which is only sufficient to thermally excite vibrational
degrees of freedom but not electronic DoF. Hence, we restrict the quantum statistical
description to vibrational modes as the characteristic energy range of electronic excitations
is assumed to be far larger than the thermal energy.[258, 259, 260]
For a vibronic problem involving Me diabatic electronic states {|Si〉}, the corresponding
thermofield Hamiltonian reads[258]

H̄ =
Me∑
i=1

(
Ei + V̂c,i + Ĥ0 − H̃0

)
|Si〉 〈Si|+

Me∑
i 6=j

V̂ij |Si〉 〈Sj| , (5.7)

with electronic energies, Ei, diagonal inter-mode couplings, V̂c,i, and diabatic inter-state

couplings, V̂ij, respectively. Here, only the normal-mode Hamiltonian, Ĥ0, is considered
from the perspective of TFD[258] and augmented by its auxiliary counterpart, H̃0, which
leads to

H̄0 = Ĥ0 − H̃0 =

f∑
k=1

~ωk
(
â†kâk − ã

†
kãk

)
, (5.8)

with physical, â†k, âk, and auxiliary normal mode operators, ã†k, ãk, for f vibrational degrees
of freedom.[251] The latter operators satisfy the canonical bosonic commutation relations,
where all commutators containing both physical and auxiliary operators vanish identically,
and generate the basis states |n〉 and |ñ〉 in Eq.(5.6), respectively. Here, we assume H̄0

to be independent of the electronic state. A time-dependent, vibronic thermofield state in
diabatic representation reads

|Ψβ(t)〉 =
Me∑
i=1

|ψiβ(t)〉 |Si〉 , (5.9)

with time-dependent, vibrational thermofield states, |ψiβ(t)〉, depending on the diabatic
electronic state, |Si〉. As initial state, we consider |Ψβ(t0)〉 = |0β〉 |Se〉 for some fixed initial
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state index, e, with normal mode thermal vacuum state

|0β〉 =
e−βĤ0/2√

Z0
β

∑
n

f∏
k=1

(
â†k

)nk
√
nk!

(
ã†k

)nk
√
nk!
|0, 0̃〉 , (5.10)

multi-index, n = (n1, . . . , nk, . . . , nf ), physical normal mode Hamiltonian, Ĥ0, and corre-
sponding normal mode partition function, Z0

β, respectively.

5.2.2 Thermal Quasi-Particle MCTDH

The numerical solution of the TF-TDSE (5.3) suffers from two bottlenecks: Firstly, the
ansatz for |Ψβ(t)〉 in Eq.(5.9) scales strongly exponentially as MeM

2f
v , with Mv vibrational

basis function per normal-mode and, secondly, the complexity of the thermal vacuum state
|0β〉, which contains strongly correlated pairs of physical and auxiliary states. In order
to mitigate the complexity of |0β〉, we consider the thermal quasi-particle representation of
TFD[251, 266], which additionally provides a natural starting point for the MCTDH ansatz.

The Thermal Quasi-Particle Representation

In the thermal quasi-particle (TQP) representation of TFD (TQP-TFD), one introduces
TQP normal-mode operators b̂†k, b̂k and b̃†k, b̃k, respectively. The operators, b̂k and b̃k, anni-
hilate the corresponding thermal vacuum state identically

b̂k |0(k)
β 〉 = b̃k |0(k)

β 〉 = 0 , (5.11)

and identify |0(k)
β 〉 as two-mode vacuum state for physical and auxiliary DoF.[251] The TQP

operators are obtained from â†k, âk and ã†k, ãk by means of a unitary thermal Bogoliubov
transformation (TBT)[251]

b̂k = cosh θk(β) âk − sinh θk(β) ã†k , (5.12)

b̃k = cosh θk(β) ãk − sinh θk(β) â†k , (5.13)

with thermal mixing angles

θk(β) = arctanh
(
e−β~ωk/2

)
, (5.14)

which are determined by the harmonic frequency, ωk, and the inverse temperature, β. The
advantage of the TQP representation manifests in a Hartree product structure of the multi-
mode thermal vacuum state, |0β〉, as given by

|0β〉 = |0(1)
β 〉 |0

(2)
β 〉 . . . |0

(f)
β 〉 , (5.15)

where the highly correlated nature of Eq.(5.10) is now only of implicit nature. The sim-
plicity of |0β〉 in Eq.(5.15), however, comes at the cost of a more complex TQP thermofield
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Hamiltonian, H̄β, which now contains interaction terms coupling physical and auxiliary

TQP modes. Further, an orthonormal basis of TQP number states {|n(k)
β 〉 , |ñ

(k)
β 〉}, which

spans the kth-mode’s thermal Fock subspace, is generated by acting with b̂†k and b̃†k on the

vacuum state |0(k)
β 〉, respectively. Hence, in TQP representation, the TFD treatment of

an f -dimensional vibrational problem at finite temperature turns into a 2f -dimensional
problem similar to the zero-temperature limit. We note, the temperature-dependence is
still present in coupling terms of H̄β as shown below. Finally, by employing the second
quantization representation of the vibrational problem, we can now transfer the bosonic
many-body formulation of the MCTDH method[89] to thermal quasi-particle TFD.

The MCTDH-TQP Ansatz

The MCTDH expansion of the vibronic thermofield state in Eq.(5.9), which we abbreviate
in the following as MCTDH-TQP, is straightforwardly written as

|Ψβ(t)〉 =
Me∑
i=1

n1,...,nf∑
j1,...,jf

m1,...,mf∑
i1,...,if

A
(1)
J,I,i(t, β)

(
f∏

κ,τ=1

|ϕ(1,κ)
jκ

(t, β)〉 |ϕ̃(1,τ)
iτ

(t, β)〉

)
|Si〉 , (5.16)

with multi-indices, J = (j1, . . . , jf ) and I = (i1, . . . , if ), coefficients, A
(1)
J,I,i(t, β), which

depend on both time and inverse temperature, analogously to the orthonormal “thermal”
SPFs, |ϕ(1,κ)

jκ
(t, β)〉 and |ϕ̃(1,τ)

iτ
(t, β)〉 (tSPFs). Physical tSPFs can subsequently be expanded

in a primitive basis of TQP number states, {|n(lκ)
β 〉}, as

|ϕ(1,κ)
jκ

(t, β)〉 =
Nκ∑
lκ=1

B
(κ)
jκlκ

(t, β)

(
b̂†κ

)nlκ
√
nk!

|0(k)
β 〉︸ ︷︷ ︸

=|n(lκ)
β 〉

, (5.17)

and the expansion of auxiliary tSPFs, |ϕ̃(1,τ)
iτ

(t, β)〉, follows analogously with respect to

auxiliary TQP states, |ñ(lτ )
β 〉. The EoM are identical to standard MCTDH theory and

follow from the Dirac-Frenkel variational principle

〈δΨβ(t)|i~ ∂
∂t
− H̄β|Ψβ(t)〉 = 0, β = const., (5.18)

for the thermofield state, |Ψβ(t)〉, with TQP Hamiltonian, H̄β, at fixed inverse temperature,
β. Further, the concepts of mode combination and multilayer extension of Eq.(5.16) apply
directly as in case of the zero-temperature formalism. The construction of combined modes
and in particular access to multilayer expansion provide the necessary numerical capabilities
to solve the TF-TDSE. Mode combination and multilayer expansion are not restricted to a
separation of physical and auxiliary DoF but allow for combined modes/ML-tree branches of
mixed character. Besides the well-known advantages necessary for treating high-dimensional
systems, the explicit combination of physical and auxiliary DoF turns out to be beneficial
for treating the herein studied vibronic coupling Hamiltonians at elevated temperature as
discussed below.
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5.3 Thermal Effects on Ultrafast Relaxation of Pyrazine

We apply the MCTDH-TQP ansatz to examine temperature effects on the ultrafast non-
adiabatic relaxation dynamics in the well-known pyrazine model[278, 279], which has pre-
viously been studied by the ρMCTDH(2) approach[105, 106] as introduced in Sec.2.3.2.
In pyrazine, the electronically excited states S1(π, π?) and S2(n, π?) are subject to a con-
ical intersection, providing an ultrafast internal conversion pathway. A minimal model
of this process is given by a vibronic coupling model Hamiltonian in the two-dimensional
S1/S2-subspace with four normal modes, M4 = {v6a, v9a, v1, v10a}, providing three tuning,
Mt = {v6a, v9a, v1}, and a single coupling mode, v10a, respectively. In an extended model,
the remaining twenty normal modes of pyrazine are taken additionally into account. All
calculations were performed with the Heidelberg MCTDH package, version 8.5.[84]
In the following, we introduce the TQP representation of the vibronic coupling Hamiltonian
for pyrazine and the observables relevant for non-adiabatic dynamics.

5.3.1 Model Hamiltonian and Observables

TQP-Vibronic Coupling Hamiltonian for Pyrazine

In the thermal quasi-particle representation, the TFD vibronic coupling Hamiltonian for
the 2-state-4-mode pyrazine model in Eq.(5.7) takes the form

H̄β =
2∑
i=1

(
Ei + H̄

(0)
β + H̄

(1)
β,i + H̄

(2)
β,i

)
|Si〉 〈Si|+

(
V̂

(1)
β + V̂

(2)
β

) 2∑
i 6=j=1

|Si〉 〈Sj| . (5.19)

The first term resembles the diagonal terms with energies, E1 = −∆ and E2 = +∆, where,
2∆ = E2−E1, is the energy difference between diabatic S2- and S1-potential energy surfaces
evaluated at the ground state equilibrium position. Further, we have the normal mode TQP
Hamiltonian, H̄

(0)
β , linear and bilinear intra-state vibronic coupling terms, H̄

(1)
β,i , and H̄

(2)
β,i ,

as well as linear and quadratic vibronic coupling contributions, V̂
(1)
β and V̂

(2)
β . Explicit

expressions for the latter contributions are provided in Appendix D. In the following, we
consider both the quadratic TQP-Hamiltonian in Eq.(5.19), and a simpler linear version,

where terms H̄
(2)
β,i and V̂

(2)
β,i are neglected.

As noted above, an extended linear 2-state-24-mode model is also studied. The correspond-
ing model Hamiltonian takes into account the remaining twenty normal modes of pyrazine
in terms of a tuning mode bath and is given by

H̄SB
β =

2∑
i=1

(
Ei + H̄

(0)
β + H̄

(1)
β,i + Ĥ

(SB)
β,i + H̄

(B)
β

)
|Si〉 〈Si|+ V̂

(1)
β

2∑
i 6=j=1

|Si〉 〈Sj| , (5.20)

with on-diagonal bilinear system-bath interaction, Ĥ
(SB)
β,i , and bath Hamiltonian, H̄

(B)
β (cf.

Appendix D for details). In the following, we refer to the TQP representation of the 2-state-
4-mode pyrazine model as (4 + 4)D-model to explicitly indicate the doubling of the normal
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mode DoF. Analogously, we denote the extended 2-state-24-mode model as (24 + 24)D-
model.
Further, the initial vibronic thermofield states considered here are given by

|Ψβ(t0)〉 = |S2〉 |0β〉 , (5.21)

|Ψβ(t0)〉 = |S2〉 |0β〉 |0
(B)
β 〉 , (5.22)

where an instantaneous excitation from the electronic ground state, |S2〉 = µ̂ |S0〉, as medi-
ated by the electronic dipole operator, µ̂ = µ20 (|S0〉 〈S2|+ |S2〉 〈S0|) (with µ20 = 1 in the
following), is assumed. In Eq.(5.21), the thermal four-mode vacuum state reads

|0β〉 = |0v10a
β 〉 |0v6a

β 〉 |0v9a
β 〉 |0v1

β 〉 , (5.23)

which resembles a Hartree-product of two-mode states for both identical physical and aux-
iliary DoF. For the extended pyrazine model with TFD-Hamiltonian Eq.(5.20), the initial
state (cf. Eq.(5.22)) is augmented by a bath thermal vacuum state

|0(B)
β 〉 =

20∏
k=1

|0(b),k
β 〉 , (5.24)

with two-bath-mode thermal vacuum states, |0(b),k
β 〉, respectively.

Observables in TQP-TFD

We now turn to the TQP-TFD expressions for observables considered here, which directly
result from the definition in Eq.(5.4). The time-evolution of the electronic DoF is studied
by means of electronic diabatic populations

P
(Si)
β (t) = 〈Ψβ(t)|

(
|Si〉 〈Si|

)
|Ψβ(t)〉 , i = 1, 2 . (5.25)

The vibrational dynamics of both coupling and tuning modes is studied via time-dependent
mean occupation numbers

〈n̂k〉β (t) = cosh2 θk 〈b̂†kb̂k〉β (t) + sinh2 θk 〈b̃†kb̃k〉β (t)

+ cosh θk sinh θk

(
〈b̃†kb̂

†
k〉β (t) + 〈b̃kb̂k〉β (t)

)
+ n̄k(β) , (5.26)

with physical normal mode number operator, n̂k, and Bose-Einstein distribution, n̄k(β) =(
eβ~ωk − 1

)−1
, for the kth-normal mode. Each vibrational mode is initially in a thermal

equilibrium state, i.e., 〈n̂k〉β (0) = n̄k(β). Further, we obtain linear absorption spectra at
finite temperature as

σβ(ω) ∝ Im

∫ ∞
0

Cβ(t) eiω t dt , (5.27)

with thermal autocorrelation function

Cβ(t) = 〈Ψβ|e−iH̄β t/~|Ψβ〉 = tr

{(
eiĤ t/~µ̂ e−iĤ t/~µ̂

)
ρ̂(t0)

}
, (5.28)

where, |Ψβ(t)〉 = e−iH̄β t/~ |Ψβ〉, and, ρ̂(t0) = ρ̂0
β |S0〉 〈S0|, respectively. We note, this result

resembles a special case of higher-order response functions recently derived in Ref.[270].
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5.3.2 Multilayer Expansion of TQP-States

We begin our discussion by examining different multilayer expansions of TQP thermofield
states for the linear and bilinear (4 + 4)D-models based on their numerical performance in
terms of CPU time.

Figure 5.1: Multilayer trees for thermofield states of linear (lin.) and bilinear (bilin.)
(4+4)D-pyrazine models with number of tSPFs given next to edges (at bottom layer, num-
bers correspond to primitive TQP number states). Physical primitive modes are specified as
{v10a, v6a, v9a, v1} and auxiliary primitive modes as {tv10a, tv6a, tv9a, tv1}. Top row:

Symmetric binary 4-layer trees, T
(4)
bin , for (a) linear and (b) bilinear (4+4)D-model with low-

temperature (T
(4)
bin,−) and high-temperature (T

(4)
bin,+) mode combination schemes. Bottom

row: Symmetric, T
(7)
sy,−, and asymmetric, T

(7)
as,+, 7-layer trees for (c) linear and (d) bilinear

(4+4)D-mode models with low-temperature (index ”−”) and high-temperature (index ”+”)
mode combination schemes.

In Fig.5.1, we distinguish between binary symmetric trees with four layers, T
(4)
bin , and bi-

nary seven-layer trees in a symmetric, T
(7)
sy , and an asymmetric version, T

(7)
as , respectively.
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The superscripts indicate the number of layers and the index refers to binary (“bin”),
symmetric (“sy”) or asymmetric (“as”) ML-trees. Further, we distinguish a “low”- and
“high”-temperature regime, where the former corresponds to T = 1-300 K and the latter
to T = 500 K, which is a model-specific categorization and not a general statement. This
distinction allows us to consider a low-temperature mode combination scheme with com-
bined modes (v10a, v6a), (v9a, v1), (tv10a, tv6a), (tv9a, tv1), i.e., physical and auxiliary DoF
are fully separated, besides a high-temperature scheme with combined modes (v10a, tv10a),
(v6a, tv6a), (v1, tv1), (v9a, tv9a), where physical modes are paired with their auxiliary coun-
terparts. Further, for the low-temperature regime, which we indicate by a minus as index,
we consider ML-trees, T

(4)
bin,− and T

(7)
sy,−, and for the high-temperature regime, T

(4)
bin,+ and

T
(7)
as,+, (additional plus as index), respectively. We note, all ML-trees considered here are

identical for the linear and bilinear (4+4)D-models with respect to their topology, however,
they differ in the numbers of tSPFs necessary to converge the calculations.

We propagate the initial vibronic thermofield state, |Ψβ〉 = |S2〉 |0β〉, up to tf = 150 fs
and identify a propagation as converged, if the highest natural population ≤ 1.0 × 10−3,
respectively. As a reference, we consider a standard MCTDH expansion of the thermofield
states with tree, T

(2)
0 .

Table 5.1: CPU time (h:m) for linear (4+4)D-model Hamiltonian of pyrazine with different
ML-tree topologies and propagation time, tf = 150 fs (Intel(R) Xeon(R) CPU E5-2650 v2
@ 2.60GHz, 126 GB RAM) at different temperatures.

Linear (4+4)D-Model

Temp. T
(4)
bin,− T

(4)
bin,+ T

(7)
sy,− T

(7)
as,+ T

(2)
0

1 K 0:06 0:08 0:02 0:05 0:03

100 K 0:08 0:17 0:04 0:08 0:04

300 K 3:54 0:29 0:24 1:02 0:05

500 K 3:07 0:52 3:09 0:53 0:29

For both models and all ML-trees (cf. Tabs.5.1 and 5.2), we observe an increase in CPU time
with increasing temperature, which directly relates to the increasing temperature-dependent
interactions in the TQP-Hamiltonian (cf. Appendix D) and the related complexity of the
propagated thermofield state. We observe the low- and high-temperature expansions (recall,
T = 500 K for the latter) to perform favorably in their respective regimes, which results
in a CPU time reduction of factors 2 − 4, depending on the ML-tree. In this context, we
observe a more compact wave function representation for the high-temperature mode com-
bination scheme in hand with an improved memory requirement for the high-temperature
propagation runs. We note, however, that the interplay of different mode combination
schemes and temperature effects is not yet fully understood besides those observations and
requires further studies. Moreover, the seven-layer trees, T

(7)
sy,− and T

(7)
as,+, surpass their four

layer counterparts in terms of CPU times, which is particularly apparent for the bilinear
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Table 5.2: CPU time (h:m) for bilinear (4+4)D-model Hamiltonian of pyrazine with different
ML-tree topologies and propagation time, tf = 150 fs (Intel(R) Xeon(R) CPU E5-2650 v2
@ 2.60GHz, 126 GB RAM) at different temperatures.

Bilinear (4+4)D-Model

Temp. T
(4)
bin,− T

(4)
bin,+ T

(7)
sy,− T

(7)
as,+ T

(2)
0

1 K 0:19 0:21 0:05 0:17 0:15

100 K 0:38 1:06 0:10 0:39 0:37

300 K 3:29 2:12 1:25 1:29 3:01

500 K 7:16 4:17 8:41 2:44 9:36

(4 + 4)D-model, while in the linear model a standard MCTDH expansion is numerically
optimal.

The MCTDH-TQP ansatz is an alternative to the stochastic MCTDH[95, 96, 97] and
density-operator based ρMCTDH[105, 106, 107] approaches to study finite temperatures.
Stochastic approaches aim at converging thermal ensemble averages by sampling over in-
dependent trajectories, which initially require an imaginary-time propagation to prepare
a proper initial state followed by a real-time propagation to capture the dynamics of the
system. For an increasing number of DoF, the ML-MCTDH approach becomes manda-
tory and for higher temperatures, a growing number of realizations is required to converge
a thermal ensemble average, which renders the stochastic approach numerically demand-
ing. The MCTDH-TQP ansatz requires only a single run independent of temperature, but
doubles the number of degrees of freedom. At the moment it remains an open question,
which approach might be numerically favorable for a given problem at hand. Further, the
ρMCTDH approach allows to propagate the density operator at different temperatures in a
single propagation run, however, is currently restricted to small systems where it has been
shown to be numerically efficient.[105] Here, the MCTDH-TQP approach can be favorable
as it applies straightforwardly to large systems, based on the benefits of the multilayer
format.

5.3.3 Finite Temperature Effects on Internal Conversion

We now turn to finite temperature effects on internal conversion dynamics in pyrazine and
examine the time-evolution of diabatic electronic populations, P

(Si)
β (t) (cf. Eq.(5.25)), and

vibrational mean occupation numbers, 〈n̂k〉β (t) (cf. Eq.(5.26)), respectively.

We first consider diabatic populations for linear and bilinear (4 + 4)D-models in Fig.5.2.
There, we compare MCTDH-TQP and ρMCTDH results, where the latter were repro-
duced from Ref.[105]. Note, both methods are considered for the same temperatures. The
MCTDH-TQP results have been obtained with the numerically most performant ML-trees
discussed in the last section. In general, the internal conversion dynamics is qualitatively
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Figure 5.2: Time-evolution of diabatic electronic populations, P
(S1)
β (t) and P

(S2)
β (t), for

electronic states, |S1〉 and |S2〉, at selected temperatures for linear (left) and bilinear (right)
(4+4)D pyrazine models obtained with MCTDH-TQP approach in comparison to ρMCTDH
results (dashed lines; same temperatures with color code as MCTDH-TQP) reproduced from
Ref.[105].

characterized by an ultrafast initial decay of the S2 excited state and a recurrence at around
100 fs. For the linear model, finite temperature effects manifest in a slightly faster initial
relaxation and a mild damping of the recurrence. Although qualitatively identical, the ef-
fects in the linear model are smaller in magnitude compared to the bilinear (4+4)D-mode
model. Our findings agree well with the ρMCTDH results at early times, however, showing
a slightly less thermally damped recurrence at later times. One possible source for this
deviation relates to the different representations of the Hamiltonian, i.e., bosonic number
states vs. DVR, employed in the two approaches.

Next, we discuss the vibrational dynamics in terms mean occupation numbers, 〈n̂k〉β (t),
(cf. Fig.5.3). Here, the dynamics of the low-frequency tuning mode, v6a, and the coupling
mode, v10a, can be distinguished from the high-frequency tuning modes (v9a, v1). The
high-frequency modes show only small-amplitude Rabi-type oscillations over the studied
time-interval and a very weak response to thermal effects, while modes v6a and v10a are
irregularly excited. In particular, the low-frequency tuning mode, v6a, shows significant
thermal excitations at T = 500 K for long times in both the liner and bilinear modes.
Notably, the thermal effects on the coupling mode, v10a, are more pronounced in the
bilinear (4 + 4)D-model, due to the inter-mode coupling term V̂

(2)
β,i , respectively.

Lastly, we consider the extended linear (24 + 24)D-model, where the effects of a bilinearly
coupled twenty-mode bath on the inversion dynamics is taken into account. This model
exceeds the actual capabilities of the ρMCTDH approach due to its enlarged vibrational
space of 24 normal modes. The multilayer expansion of the underlying vibronic thermofield
state is based on the binary four-layer tree, T

(4)
bin , which comprises the four-mode system and

augmented by a five-layer sub-tree for the bath connected to node 3 in the original T
(4)
bin ,

respectively.

We employed the high-temperature mode combination scheme here for T = 300 K and
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Figure 5.3: Time-evolution of the state averaged thermal mean occupation numbers,
〈n̂k〉β (t), of coupling mode, v10a, and tuning modesm {v6a, v9a, v1}, for the linear (left)
and bilinear (right) (4+4)D pyrazine models obtained with MCTDH-TQP approach for
selected temperatures.

Figure 5.4: Time-evolution of diabatic electronic populations, P
(Si)
β (t) (left), and time-

evolution of state-averaged thermal mean occupation numbers, 〈n̂k〉β (t) (right), obtained
with MCTDH-TQP approach for linear (24+24)D system-bath pyrazine model at selected
temperatures.

T = 500 K. On the left-hand side of Fig.5.4, we show the diabatic electronic populations,
which are subject to a more pronounced population transfer from the S2- to the S1-state
compared to the reduced (4 + 4)D-models. Thermal effects turn out to be rather small for
the diabatic populations similar to the reduced four-mode scenario, which results from the
relatively high harmonic frequencies of the normal modes compared to the thermal energy at
selected temperatures. On the right-hand side of Fig.5.4, the vibrational mean occupation
numbers are shown, which experience a similar dynamics as in the linear (4 + 4)D-model
and only the low-frequency tuning mode, v6a, is subject to significant thermal excitations.
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Figure 5.5: Exemplary ML-tree for a vibronic thermofield state of the linear (24+24)D
pyrazine model.

5.3.4 Finite Temperature Effects on Vibronic Spectra

We finally consider the finite temperature effects on vibronic spectra of the pyrazine models
as obtained from the thermal autocorrelation function, Cβ(t).

Figure 5.6: Time-evolution of the thermal autocorrelation function, Cβ(t), for linear (left)
and bilinear (right) (4+4)D pyrazine models obtained with MCTDH-TQP approach at
selected temperatures.

The time-evolution of the latter is shown for the linear and bilinear (4 + 4)D-models in
Fig.5.6 and is dominated by an ultrafast initial decay up to 20 fs followed by a series of
recurrences. Finite temperature effects manifest in a more pronounced initial decay and
significantly damped recurrences at T = 500 K for both models. The corresponding linear
absorption spectra, σβ(ω), are shown in Fig.(5.7) for the linear and bilinear models. The
presentation follows Ref.[278], where the origin of the energy axis resembles half the energy
gap between the two diabatic surfaces and the spectra have been artificially broadened to
account for the twenty residual modes in the (4 + 4)D-models. The low-intensity part of
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Figure 5.7: Temperature-dependent linear absorption spectra, σβ(ω), calculated from TFD
autocorrelation function, Cβ(t), obtained with MCTDH-TQP approach for linear (left) and
bilinear (right) (4+4)D pyrazine models at selected temperatures.

the spectrum is located below the conical intersection between the S1 and S2 states, and
dominated by a series of peaks referring to vibrational states, which exhibit only weak ther-
mal effects. In contrast, the broad and intense peak lying energetically above the conical
intersection, here positive energies, is subject to thermal broadening accompanied by an
intensity reduction.
For the (24+24)D-model, we find the temperature effects in Fig.5.8 small as already seen
in the last section (cf. Fig.5.4). The thermal autocorrelation function is subject to ther-
mal damping, which are in particular dominant for the recurrence at around 100 fs. The

Figure 5.8: Time-evolution of thermal autocorrelation function, Cβ(t), (left) and cor-
responding temperature-dependent linear absorption spectra, σβ(ω), (right) of linear
(24+24)D system-bath pyrazine model for selected temperatures.

absorption spectrum is here broadened due to two effects: (i) the explicit inclusion of the



5.4. SUMMARY AND OUTLOOK 127

twenty-mode bath, which provides the dominant contribution and (ii) mild thermal effects
accompanied by a slight intensity reduction.

5.4 Summary and Outlook

We introduced a thermofield-based formulation of the multilayer multiconfigurational time-
dependent Hartree (ML-MCTDH) method for the treatment of non-adiabatic quantum
dynamics at finite temperature. Our approach is based on the thermal quasi-particle (TQP)
representation of symmetric thermofield dynamics (TFD), which provides a formulation
of quantum statistical mechanics in the language of many-body theory. We introduced
the ML-MCTDH approach for thermofield states by exploiting the formal equivalence of
thermal quasi-particle TFD at fixed finite temperature and bosonic many-body theory at
zero temperature with a doubled number of degrees of freedom. This equivalence allows for
a transfer of bosonic many-body MCTDH, i.e., MCTDH-SQR, to the thermal quasi-particle
TFD framework. In particular, the thermal quasi-particle representation of TFD provides
an appealing form of the multi-mode thermal vacuum state in terms of a Hartree product of
single-mode thermal vacuum states, which constitutes an ideal initial state for the MCTDH
method. From a practical point of view, the method presented here can be directly adapted
via the ML-MCTDH-SQR method as implemented in the Heidelberg MCTDH package[84].
We applied our ansatz, abbreviated as MCTDH-TQP, to the well-studied two-state-four-
mode vibronic coupling model of pyrazine and its two-state-24-mode extension, including
an additional bilinearly coupled harmonic bath. From a computational point of view, the
effect of temperature, which manifests as increased interactions in the TQP thermofield
Hamiltonian, can be beneficially accounted for in the multilayer expansion of thermofield
states by properly combining physical and auxiliary DoF. For the multilayer trees used in
this work, it turned out to be computationally advantageous to fully separate physical and
auxiliary DoF at “low” temperatures (T = 1−300 K) and combine two similar physical and
auxiliary modes at “high” temperature (T = 500 K). We note, the distinction between “low”
and “high” temperature is of course problem dependent. Further, we observed temperature
effects to manifests as faster decay of electronic populations and autocorrelation function
as well as thermal excitation of low frequency normal modes and thermal broadening in
optical absorption spectra. Our approach allows to overcome the actual capabilities of the
ρMCTDH ansatz, as shown for a linear two-state-24-mode system-bath model accessible
via the ML-MCTDH-TQP approach.
A very promising route to future applications of the ML-MCTDH-TQP approach is provided
by a recently formulated and refined dynamical spawning of single particle functions[280,
281], which opens the door to fully automatized convergence of SPFs. Furthermore, a
comparison of the numerical performance of MCTDH-TQP with respect to stochastic and
density operator approaches in the MCTDH framework as well as the numerical details of the
high-temperature mode combination scheme is desirable. Finally, application to potentially
laser-driven anharmonic vibrational problems featuring multiple low frequency modes or
suited rotational (model) systems might benefit from the advantages of the thermofield
dynamics approach.
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Chapter 6
Summary & Conclusions

In this thesis, we numerically studied properties, dynamics and spectroscopy of selected
molecular vibrational models interacting with complex vibrational environments from a
quantum mechanical perspective. In particular, we studied vibrational polaritons in small
molecules, phonon-driven vibrational adsorbate relaxation dynamics for a realistic adsorbate-
surface model and introduced the thermofield formulation of the MCTDH method, which
provides a non-stochastic approach to (non-adiabatic) quantum dynamics at finite temper-
ature.

In Chapter 3, we studied rovibrational light-matter hybrid states in small molecules in the
framework of non-relativistic cavity quantum electrodynamics as described by an effective
rovibrational Pauli-Fierz Hamiltonian in length-gauge representation and long-wavelength
approximation. Additionally, we considered the cavity Born-Oppenheimer approximation
as well as neglected electron-photon correlation, which are reasonable approximations for
infrared cavities. In the first part, we thoroughly discussed the non-trivial role of the
dipole self-energy (DSE) for minimal models comprising a single molecular and a single
cavity mode. The DSE manifest itself in three aspects: First, in absence of the DSE, the
instability of the vibro-polaritonic ground state energy is found to result from a diverging
bare light-matter interaction contribution, which is exactly canceled by the dipole self-
energy. Second, classical dissociation and activation energies are independent of the light-
matter interaction in the limit of vanishing electron-photon correlation on cavity potential
energy surfaces (cPES) accounting for the DSE. As a consequence, we showed that no
minimum energy path exists on a full cPES, which is lower in energy than its molecular
counterpart on a corresponding conventional Born-Oppenheimer potential energy surface
as obtained in the limit of vanishing light-matter interaction strength. Third, we discussed
vibro-polaritonic infrared spectra and showed for a symmetric double-well model potential
how symmetry properties of the system allow to distinguish between “dark” and “bright”
vibro-polaritonic states. Both vibro-polaritonic excited states and infrared spectroscopic
intensities are severely altered in absence of the DSE contribution.
In the second part, we considered a model for a freely rovibrating diatomic molecule, which
interacts with two orthogonally polarized, degenerate cavity modes depending on its spa-
tial orientation. By adiabatically separating low-energy rotational and high-energy vibro-
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polaritonic degrees of freedom, we identified the formation of three-state vibro-polaritonic
conical intersections (VPCI) between singly excited vibro-polaritonic states. The VPCI are
located in a two-dimensional angular coordinate branching space and provide an effective
transfer channel between different vibro-polaritonic states. Transfer dynamics manifest in
a rich interference pattern in rotational densities, induced by the passage of rotational wave
packets from different vibro-polaritonic surfaces. Spectroscopically, non-adiabatic cavity-
induced effects result in a rich multi-peak progression in the spectral region of the up-
per vibro-polaritonic surface, which can be assigned to rovibratonal light-matter hybrid
states containing contributions from all present degrees of freedom. Finally, spontaneous
emission from cavity modes has been taken into account by means of a phenomenological
non-Hermitian approach, which results in a strong intensity reduction of a purely photonic
middle polariton peak and severe broadening of peaks in the rovibro-polaritonic progression.

The last part of Ch.3 was concerned with a cavity-altered thermal isomerization model in
two dimensions. Here, we combined a harmonic analysis of extremal points on the cPES
with full quantum rate theory based on cumulative reaction probabilities (CRP) and Eyring
transition state theory to characterize the isomerization process in the light-matter hybrid
system. Where CRP-based thermal rates account for the all quantum mechanical effects
as tunneling besides anharmonicity of the cPES, Eyring thermal rates provide qualitatively
correct results at ambient temperature, if light-matter interaction dependent zero-point en-
ergies are properly accounted for. We identified a reduction of thermal inversion rates as
result of light-matter interaction, which we traced back to two quantum effects: First, the
light-matter induced deformation of the cPES leads to a “valley-narrowing” effect at the
cavity transition state, which significantly reduces the thermally accessible bound states.
Second, a “barrier-broadening” effect was observed, which manifests itself in significantly
attenuated tunneling rates at low temperatures. Further, we identified a dynamical reso-
nance effect, which manifests itself in a localization of a reactant wave packet due to strong
coherent energy transfer between a harmonized reactant mode and the cavity mode, if the
latter is in resonance with the former.

In Chapter 4, we turned to a high-dimensional adsorbate-surface model problem and studied
the phonon-induced vibrational relaxation dynamics of a single, mildly anharmonic D-Si-
Si-bending mode coupled to more than 2000 harmonic surface (phonon) modes of a fully
deuterium-covered, reconstructed silicon surface D:Si(100)-(2 × 1) at T = 0 K. In order
to mitigate the “curse of dimensionality” induced by the high-dimensional phonon-bath
Hilbert space, we combined a hierarchical effective mode (HEM) approach for the bilinear
system-bath Hamiltonian with the multilayer-MCTDH method. For the HEM-approach,
we introduced an efficient algorithm for the generation of effective mode coupling and fre-
quency parameters, by employing beneficial properties of Householder matrices. The HEM
approach allowed us to significantly reduce the full bath to M = 60 relevant effective modes,
which were sufficient to fully account for the exact relaxation dynamics of the system mode
on the relaxation time scale of tf = 2000 fs. Notably, we found the number of effective
modes to be independent of the initial systems states for examples studied herein with
system quantum numbers, v0 ≤ 5. Further, we compared the performance of the HEM-
ML-MCTDH approach with the recently introduced, coherent state based multi-Davydov
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D2 (mD2) ansatz. We found the latter to be straightforwardly convergeable for the bilin-
ear system-bath model by increasing the “multiplicity” (number) of multi-mode coherent
states. Moreover, only a weak dependence of the multiplicity on the number of effective
modes was observed and the mD2-ansatz showed a promising numerical performance with
respect to computation time. Turning back to the properties of the system-bath model,
we examined on non-Markovian signatures compared to results obtained from Markovian
open system density matrix theory as described by a Liouville-von Neumann equation in
Lindblad form. Here, we first addressed initial state half-lifetimes in presence of a non-
trivial bath density-of-states. As a general trend, non-Markovian dynamics provide longer
half-lifetimes compared to the Markovian limit, as in the latter the initial state population
is subject to a fast exponential initial decay. Further, we observed the formation of small
amplitude but clearly non-zero vibrational coherences in the non-Markovian scenario, when
starting from a pure initial system state. As vibrational population and coherence dynam-
ics is strictly decoupled in the Markovian limit as described by the Lindblad formalism, a
pure initial state does not give rise to vibrational coherences here. Finally, we considered
reduced system properties in terms of purity, von Neumann-entropy and a system energy
current. The former two allowed us to access system-bath entanglement, which is on aver-
age qualitatively well described by the Lindblad approach. However, we found significant
differences on short time scales, where the non-Markovian properties are characterized by
a oscillatory fine structure, and in the “long-time limit” considered here, which is subject
to weak but non-zero system-bath entanglement. Eventually, the system energy current
allowed us to address both the rate of energy transfer as well as the transfer direction. In
the non-Markovian scenario, we observed a non-monotonic energy transfer subject to reg-
ularly occurring energy back-transfer events leading to re-excitation of the system mode.
In contrast, in the Markovian limit the current is exclusively unidirectional, i.e., energy is
only transferred from the system to the bath.

In the final Chapter 5, we approached the time-dependent description of quantum me-
chanical systems at finite temperature. By employing the theory of thermofield dynamics
(TFD), we extended the powerful numerical machinery of the multilayer MCTDH approach
to the finite temperature regime. We applied our MCTDH-TQP approach to the well-known
vibronic coupling model of pyrazine, with molecular normal modes subject to thermal ex-
citations. A beneficial theoretical framework was identified as the thermal quasi-particle
representation of TFD, which allows to map a system with f vibrational modes at finite
temperature to an artificially enlarged system of 2f interacting normal modes at vanishing
temperature. We presented numerically advantageous topologies for multilayer represen-
tations of vibronic thermofield states (“ML-trees”), which are able to efficiently describe
dynamics at both low and elevated temperatures. Further, we studied linear and bilin-
ear variants of the 2-state-4-mode vibronic coupling model of pyrazine and examined the
finite temperature effects on electronic, vibrational and spectroscopic properties. In partic-
ular, the numerical power of the ML-MCTDH-TQP approach allowed us to approach the
2-state-24-mode linear vibronic coupling model of pyrazine at selected temperatures, which
overcomes the actual capabilities of the well-known direct propagation of the density matrix
via the MCTDH ansatz (ρMCTDH) for closed systems.
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Chapter 8
Appendix

A Details on Power-Zienau-Woolley Transformation

Here, we provide details on the Power-Zienau-Woolley Transformation as considered in
Sec.2.2.2 of Ch.2. We recall that the quantized transvers vector potential in Eq.(2.28) is
spatially uniform in the dipole/long-wavelength-approximation (cf. Eq.(2.31)), i.e.,

Â(r) ≈ Â =
2∑

λ=1

Nc∑
k=1

eλk
ωk

√
~ωk

2ε0Vc

(
âλk + â†λk

)
. (A.1)

The length-gauge representation of the Pauli-Fierz Hamiltonian is obtained as Û †ĤÛ with
molecular minimal coupling Hamiltonian, Ĥ, in Eq.(2.27) and PZW transformation, Û , as
introduced in Eq.(2.34). In order to keep this appendix consistent, we restate here that the
molecular potential, V (r, R) is invariant under the PZW-transformation as it commutes
with both d and A, respectively.

A.1 PZW-Transformation of Kinetic Energy Operators

We first consider the transformation of the kinetic energy terms (cf. Eq.(2.36)). We note, as
the electronic and nuclear contribution in molecular dipole moment Eq.(2.35) commute, we
can write Û = Ûe Ûn, with electronic, Ûe, and nuclear, Ûn, PZW-contribution, respectively.
Accordingly, we can consider the transformation of the two kinetic energy contributions
individually, where we restrict ourselves here to the electronic part as the result is directly
transferable to the nuclear contribution. Expanding the electronic KEO gives

Û †e

 Ne∑
i=1

(
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i
+ e Â

)2
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 Ûe = Û †e
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2

))
Ûe , (A.2)

where one directly observes the third term to be invariant under the PZW-transformation

e2

2me

Û †e Â
2
Ûe =

e2

2me

Â
2

, (A.3)
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as both Â and de commute with Â
2
. Turning to the second term, linear in electronic

momentum, and concentrating on the ith-contribution, we employ the Baker-Campbell-
Hausdorff (BCH) expansion and obtain

e

me

Û †e
(
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i
· Â
)
Ûe =

e

me

(
p̂
i
· Â− i

~

[
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, (A.4)

where the commutator simplifies to[
Â · de, p̂i · Â

]
= Â

2
[
de, p̂i

]
= −eÂ
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2
i~ , (A.5)

with,
[
rj, p̂i

]
= i~δij, for the last equality. Notably, the result is independent of electronic

momenta p
i
, such that the BCH expansion already truncates here as higher order nested

commutators vanish identically, e.g.,
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Further, we consider the transformation of the bare electronic kinetic energy, which turns
with the BCH expansion into
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For the second term on the right-hand side, it holds that
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Here, we used,
[
de, p̂i

]
= −e i~, for the second equality as found in Eq.(A.5). Accordingly,

the first-order term in Eq.(A.7) turns into
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With this result, we are now in the position to evaluate the nested, second-order commutator
as [
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As the second order commutator results in an expression independent of electronic momenta,
the BCH-expansion truncates here. Hence, we obtain
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and finally for the transformed bare electronic KEO
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By collecting expressions in Eqs.(A.3), (A.6) and (A.14),
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2
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one finds, that
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The same reasoning holds for the transformation of the nuclear contribution to the KEO in
the minimal-coupling Pauli-Fierz Hamiltionian Eq.(2.27), which leads to Eq.(2.36).

A.2 PZW-Transformation of Cavity Mode Hamiltonian

We now consider the transformation properties of the cavity Hamiltonian, with

Û †ĤC Û =
∑
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2

)
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and as the PZW-transformation is unitary, it holds that
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(
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For the first factor, we find with the BCH-expansion
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and obtain with
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where we used the canonical commutation relation Eq.(2.30) to obtain the second line.
Hence, the BCH-expansion in Eq.(A.19) truncates at first order and we find for Eq.(A.19)
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and immediately as hermitian conjugate
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With Eq.(2.42), we accordingly have
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which reads after expansion
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â†λkâλk +
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The second term resembles the imaginary light-matter interaction, which can be written
in terms of the quantized transvers component of the cavity electrical field in the dipole
approximation, Ê, as
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âλk − â†λk
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Finally, to obtain the expression in Eq.(2.37), one additionally considers the unitary rotation
mediated by Ŝ in Eq.(2.39), which factorizes for every mode with, Ŝλk = eiπ

2
n̂λk , where,

n̂λk = â†λkâλk, is a single cavity mode number operator. Further, we employ the BCH-
expansion to obtain
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Accordingly, we have

Ŝ†λkâ
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The first and third term in Eq.(A.25) are invariant under this unitary transformation,
whereas the second term turns into∑
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as given in Eq.(2.37), respectively.

B Numerical Details on CRP-ABC

Here, we provide numerical details on the cumulative reaction probability with absorbing
boundary conditions (CRP-ABC) approach as employed in Sec.3.4 of Ch.3. We consider a
Colbert-Miller DVR[173] of the vibrational Pauli-Fierz Hamiltonian, Ĥ, the corresponding
Green’s function, Ĝ, and the complex absorbing potential, Γ̂, in order to compute cumulative
reaction probabilities, N(E). For the cavity-altered ammonia inversion model, the matrix
elements of the DVR-Hamiltonian read(

H
)
ii′jj′

= Tmii′ δjj′ + T cjj′δii′ + V (qi, xcj) δii′δjj′ , (B.1)

with i, i′ = 1, . . . , Nq and j, j′ = 1, . . . , Nc for the molecular coordinate and cavity coordinate
grid, respectively. Further, the KEO takes in the Colbert-Miller DVR the form[173]
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π2

3
, i = i′

2

(i− i′)2
, i 6= i′

, (B.2)

for coordinates, sa = (q, xc). Each coordinate is discretized on an equidistant grid with
qi = i∆q, xcj = j∆xc and i, j = 0,±1,±2, . . . ,±Ns

2
, where Ns = Nq, Nc is the number of

DVR grid points for the respective DoF. For the cumulative reaction probability, N(E, η),
one has in DVR

N(E, η) = tr{Γ
R
GΓ

P
G†} , (B.3)

with, Γ
R

and Γ
P

, being matrix representations of reactant and product CAPs, while G is
the matrix representation of the Green’s function, respectively. In particular, Γ

R
and Γ

P

are matrix representations of the reactant and product absorbers Γ̂R and Γ̂P , which were
introduced in Eq.((2.100)), with defined as

Γ̂P = θP [f ] Γ̂ , Γ̂R = θR[f ] Γ̂ , (B.4)

where θP [f ] = θ[f(q, xc)] is the Heaviside step function, such that θR[f ] = (1 − θP [f ]).
The step function depends on a coordinate dependent function f(q, xc), which specifies a
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separating surface between reactant and product regions on the cPES via the condition
f(q, xc) = 0[114]. The DVR of the absorbing potentials are given by

ΓRii′jj′ = θRii Γmii′ δjj′ + θRii Γcjj′ , (B.5)

ΓPii′jj′ = θPii Γmii′ δjj′ + θPii Γcjj′ , (B.6)

where we choose f(q, xc) = q and

Γm(q) =
4 k0

1 + exp ((qm − q)/k1)
+

4 k0

1 + exp ((qm + q)/k1)
, (B.7)

Γc(xc) = Γc0
(xc − xc0)n

(xcm − xc0)n
. (B.8)

The CAPs define two stripes along the q-coordinate, in which it increases from 0 in the
interval [qi0, q

+
0 ] in a smoothed-step like fashion to some finite value (k0) at larger |q|. Ad-

ditionally, the CAPs are turned on along xc in a quartic-power fashion. After performing
the trace, N(E, η) can be written as

N(E, η) =
N∑
i=1

N∑
j=1

ΓRii |Gij|2 ΓPjj , (B.9)

with N = NqNc, i.e., only matrix elements, Gij, coupling grid points in the reactant and
product stripes contribute.

Convergence has been reached with parameters k0 = 0.08Eh, k1 = 0.1 a0, qm = 0.75 a0

for Eq.(B.7) and Γc0 = 0.09Eh, n = 4, xc0 = 0.0
√
me a0, xcm = 200

√
me a0 for Eq.(B.8).

The thermal rate constant, k(T, η) as defined in Eq.(2.96), is numerically evaluated via the
composite trapezoidal rule. An energy interval [E0, E1] has been chosen with E0 = 0 and
E1 = 5Ea

cl = 10149 cm−1, and discretized via Ne = 30 equidistant grid points with spacing
∆E = E1/Ne. All numerical results for CRP and corresponding rates have been obtained
by means of a private code based on the NumPy library, version 1.20, of Python version
3.8.

C Details on Relaxation Rates and Energy Current

C.1 Fermi’s Golden Rule One-Phonon Relaxation Rates

Relaxation rates following Fermi’s Golden Rule for one-phonon transitions in the open-
system LvN-equation in Lindblad form (2.75) at T = 0 K are given by[205, 207]

γv = π |qvv−1|2
NB∑
k=1

c2
k

ωk
δ(∆εvv−1 − ~ωk) , (C.1)

with coupling coefficients, ck, harmonic bath frequencies, ωk, and vibrational transition
matrix elements

qvv−1 = 〈v|q|v − 1〉 . (C.2)
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The Dirac delta function, δ(∆εvv−1−~ωk), depends on both the energy difference, ∆εvv−1 =
εv−εv−1, between two system eigenstates |v〉 and |v − 1〉 and the harmonic bath frequencies,
ωk. We approximate δ(∆εvv−1 − ~ωk) by a Lorentzian

δ(∆εvv−1 − ~ωk) ≈
1

π

σ

σ2 + (∆εvv−1 − ~ωk)2
, (C.3)

where we chose a finite width of, σ = 10 cm−1, following Ref.[207]. Here, only next-neighbor
transitions v → v − 1 are considered in the rate expressions, i.e., overtone transitions,
v → v− 2, v− 3 . . . , are neglected. These overtone transition rates were found to be several
orders of magnitude smaller than the fundamental transitions and were therefore neglected.

C.2 Derivations of the System Energy Current

We derive expressions of the system energy current for the full system-bath dynamics and the
reduced Markovian dynamics described by the Liouville-von Neumann equation in Lindblad
form.

Non-Markovian System Energy Current

The non-Markovian system energy current for the full system-bath quantum dynamics can
be written, with the definition in Eq.(2.80), as

JS(t) =
∂

∂t
trS{ρ̂S(t)ĤS} =

NS−1∑
v=0

εv
∂ρvv(t)

∂t
, (C.4)

where the trace trS{. . . } runs over the system energy eigenstates, |v〉, and we employed,
ĤS =

∑
v εv |v〉 〈v|. Here, ρvv(t) are vibrational populations for the full non-Markovian

system-bath dynamics and εv are eigenenergies of the vibrational system, respectively.
We note, Eq.(C.4) holds in principle for arbitrary populations obtained from both non-
Markovian and Markovian approaches.

Markovian System Energy Current

The Markovian system energy current is derived from the Liouville-von Neumann equation
in Lindblad form (2.75). We rewrite the latter in compact form as

∂

∂t
ρ̂S(t) = L ρ̂S(t) , (C.5)

with Lindblad-Liouvillian, L = L0 + LD, comprising the unitary part L0 and LD the
dissipative part on the r.h.s of Eq.(C.5). Following the same argument as in the last section,
we find

JL(t) =
∂

∂t
trS{ρ̂S(t)ĤS} = trS{

∂

∂t
ρ̂S(t)ĤS} , (C.6)
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as ĤS is not explicitly time-dependent. Accordingly, we have with Eq.(C.5)

JL(t) = trS{ĤS L ρ̂S(t)} , (C.7)

which turns with the explicit form of, L, taking into account energy-conservation of the
unitary part, into

JL(t) = trS{ĤS

∑
v

γv

(
Ĉvρ̂S(t)Ĉ†v −

1

2
[Ĉ†vĈv ρ̂S(t)]+

)
} . (C.8)

Expanding the latter equation gives

JL(t) =
∑
v=1

γv trS{ĤS Ĉvρ̂S(t)Ĉ†v} −
∑
v=1

γv
2

trS{ĤS Ĉ
†
vĈv ρ̂S(t)}

−
∑
v=1

γv
2

trS{ĤS ρ̂S(t)Ĉ†vĈv} , (C.9)

which turns with ĤS =
∑

v εv |v〉 〈v| after performing the traces into

JL(t) =
∑
v=1

γv εv−1 ρvv(t)−
∑
v=1

γv
2
εv ρvv(t)−

∑
v=1

γv
2
εv ρvv(t) . (C.10)

The desired result is finally obtained as

JL(t) = −
∑
v=1

γv ∆εv ρvv(t) , (C.11)

with, ∆εv = εv − εv−1, and properties

JL(t) ≤ 0, ∀t ≥ 0 , JL(0) = −γv0 ∆εv0 . (C.12)

In the “ideal scaling” case (linear oscillator bilinearly coupled to a harmonic bath), we have,
γv0 = γ1v0, and thus (ρv0v0 = 1), the initial energy current is, JL(0) ∝ v0.

D Details on TQP Vibronic Coupling Hamiltonian

Here, we provide explicit expressions for terms in TQP vibronic coupling Hamiltonians,
Eq.(5.19) and Eq.(5.20), as discussed in Ch.5. The normal mode TQP Hamiltonian reads

H̄
(0)
β =

∑
k∈M4

~ωk
(
b̂†kb̂k − b̃

†
kb̃k

)
, (D.1)

with normal mode frequencies, ωk. The linear intra-state vibronic coupling term involving
tuning modes is given by

H̄
(1)
β,i =

∑
k∈Mt

a
(i)
k√
2

(
cosh θk

(
b̂†k + b̂k

)
+ sinh θk

(
b̃†k + b̃k

))
, (D.2)
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with linear coupling coefficients, a
(i)
k . Further, the bilinear intra-state vibronic coupling

contribution reads

H̄
(2)
β,i =

∑
k,k′∈Mt

a
(i)
kk′

2

(
cosh θk cosh θk′

(
b̂†k + b̂k

)(
b̂†k′ + b̂k′

)
+ cosh θk sinh θk′

(
b̂†k + b̂k

)(
b̃†k′ + b̃k′

)
+ sinh θk cosh θk′

(
b̃†k + b̃k

)(
b̂†k′ + b̂k′

)
+ sinh θk sinh θk′

(
b̃†k + b̃k

)(
b̃†k′ + b̃k′

))
, (D.3)

with bilinear couplings, a
(i)
kk′ , respectively. Notably, H̄

(2)
β,i couples physical and auxiliary DoF

via the second and third terms. Next, the linear vibronic coupling contribution reads

V̂
(1)
β =

c10a√
2

(
cosh θ10a

(
b̂†10a + b̂10a

)
+ sinh θ10a

(
b̃†10a + b̃10a

))
(D.4)

and the quadratic vibronic coupling term is given by

V̂
(2)
β,i =

∑
k∈Mt

c10a,k

2

(
cosh θ10a cosh θk′

(
b̂†10a + b̂10a

)(
b̂†k′ + b̂k′

)
+ cosh θ10a sinh θk′

(
b̂†10a + b̂10a

)(
b̃†k′ + b̃k′

)
+ sinh θ10a cosh θk′

(
b̃†10a + b̃10a

)(
b̂†k′ + b̂k′

)
+ sinh θ10a sinh θk′

(
b̃†10a + b̃10a

)(
b̃†k′ + b̃k′

))
. (D.5)

Again, the quadratic contribution, V̂
(2)
β,i , couples physical and auxiliary DoF of the coupling

mode to the respective tuning mode DoF. All parameters ∆, ωk, a
(i)
k , a

(i)
kk′ , c10a and c10a,k in

Eq.(5.19) have been taken from Ref.[279]. For the extended system-bath Hamiltonian in
Eq.(5.20), the diagonal contribution is augmented by a bilinear system-bath interaction

Ĥ
(SB)
β,i =

20∑
k=1

κ
(i)
k√
2

(
coshb,k

(
b̂†b,k + b̂b,k

)
+ sinhb,k

(
b̃†b,k + b̃b,k

))
, (D.6)

with linear coupling coefficients, κ
(i)
k , as well as physical, b̂†b,k and b̂b,k, and auxiliary, b̃†b,k and

b̃b,k, bath creation and annihilation operators, respectively. The corresponding twenty-mode
TQP bath Hamiltonian reads

H̄
(B)
β =

20∑
k=1

~ωb,k
(
b̂†b,kb̂b,k − b̃

†
b,kb̃b,k

)
, (D.7)

with bath mode frequencies, ωb,k, respectively. The latter frequencies and linear coupling

coefficients, κ
(i)
k , in Ĥ

(SB)
β,i haven been taken from Ref.[278].
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E Abbreviations

KEO Kinetic energy operator

TISE Time-independent Schrödinger equation

PES Potential energy surfaces

BOA Born-Oppenheimer approximation

DoF Degrees of freedom

FCI Full configuration interaction

HF Hartree-Fock

CI Configuration interaction

CIS Configuration interaction singles

CISD Configuration interaction singles doubles

CC Coupled cluster

CCS Coupled cluster singles

CCSD Coupled cluster singles doubles

CCSD(T) Coupled cluster singles doubles with perturbative triples

DFT Density functional theory

HK Hohenberg-Kohn

HK-1 First Hohenberg-Kohn theorem

HK-2 Second Hohenberg-Kohn theorem

KS-DFT Kohn-Sham density functional theory

LDA Local density approximation

GGA Generalized gradient approximation

PZW Power-Zienau-Woolley

DSE Dipole self-energy

cQED Cavity quantum electrodynamics

VSC Vibrational strong coupling

VUSC Vibrational ultrastrong coupling

cBO Cavity Born-Oppenheimer

cBOA Cavity Born-Oppenheimer approximation

cPES Cavity potential energy surface

QEDFT Quantum electrodynamical density-functional theory

QED Quantum electrodynamics

TDSE Time-dependent Schrödinger equation

CoD Curse of dimensionality

MCTDH Multiconfigurational time-dependent Hartree

ML-MCTDH Multilayer multiconfigurational time-dependent Hartree
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LvN Liouville-von Neumann

SPFs Singe-particle functions

EoM Equations of motion

DFVP Dirac-Frenkel variational principle

DVR discrete variable representation

SQR second quantization representation

TTNS Tree tensor network states

BIR Block-improved relaxation

SPDOs Single-particle density operators

CRP Cumulative reaction probability

ABC Absorbing boundary conditions

CAP Complex absorbing potential

TST Transition state theory

ESC Electronic strong coupling

HO Harmonic oscillator

IR Infrared

VPCI Vibro-polaritonic conical intersection

MEP Minimum energy path

cMEP Cavity minimum energy path

QM/MM Quantum mechanics/molecular mechanics

RWA Rotating wave approximation

HEM Hierarchical effective mode

mD2 multi-Davydov D2

TFD Thermofield dynamics

TF-TDSE Thermofield time-dependent Schrödinger equation

TQP Thermal quasi-particle

TBT Thermal Bogoliubov transformation

tSPFs Thermal singe-particle functions

BCH Baker-Campbell-Hausdorff
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[48] F. Pavǒsević, S. Hammes-Schiffer, A. Rubio, J. Flick. Cavity-Modulated Proton
Transfer Reactions. J. Am. Chem. Soc. 11, 144, (2022).

[49] F. Hernández, F. Herrera. Multi-level quantum Rabi model for anharmonic vibrational
polaritons. J. Chem. Phys. 151, 144116, (2019).

[50] J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, A. Rubio. Light–matter response
in nonrelativistic quantum electrodynamics. ACS Photonics 6, 2757, (2019).

[51] R. Orus. A Practical Introduction to Tensor Networks: Matrix Product States and
Projected Entangled Pair States. Ann. Phys. 349, 117, (2014).

[52] H. Larsson. Computing vibrational eigenstates with tree tensor network states
(TTNS). J. Chem. Phys. 151, 204102, (2019).

[53] H. P. Breuer, F. Petruccione. The Theory of Open Quantum Systems. Oxford Univer-
sity Press, (2007).



BIBLIOGRAPHY 153

[54] K. Blum. Density Matrix Theory and Applications. Springer, Berlin, Heidelberg,
(2012).

[55] A. Nitzan. Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Re-
actions in Condensed Molecular Systems. (Oxford University Press, 2014).

[56] G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math.
Phys. 48, 119, (1976).

[57] V. Gorini, A. Kossakowski, E. C. G. Sudarshan. Completely positive dynamical semi-
groups of N-level systems. J. Math. Phys. 17, 821, (1976).

[58] K. A. Velizhanin, H. Wang, M. Thoss. Heat transport through model molecular junc-
tions: A multilayer multiconfiguration time-dependent Hartree approac. Chem. Phys.
Lett. 460, 325, (2008).

[59] H.-D. Meyer, U. Manthe, L. S. Cederbaum. The multi-configurational time-dependent
Hartree approach. Chem. Phys. Lett. 165, 73, (1990).

[60] U. Manthe, H.-D. Meyer, L. S. Cederbaum. Wave-packet dynamics within the multi-
configuration Hartree framework: General aspects and application to NOCl. J. Chem.
Phys. 97, 3199, (1992).
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