
Hasso Plattner Institute for Digital Engineering
at the University of Potsdam

Enterprise Platform and Integration Concepts Research Group

A Benchmark for
Enterprise Stream Processing Architectures

Dissertation
submitted in partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

in the academic discipline of practical computer science
to the Digital Engineering Faculty

at the University of Potsdam

Guenter Hesse, M.Sc.

Supervisors:

Prof. Dr. h.c. mult. Hasso Plattner, University of Potsdam
Prof. Dr. Manfred Hauswirth, Technical University of Berlin
Prof. Dr. Matthias Weidlich, Humboldt University of Berlin

Potsdam, November 2021

Unless otherwise indicated, this work is licensed under a Creative Commons License Attribution –
NonCommercial – NoDerivatives 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by-nc-nd/4.0

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup- 56600
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4- 566000

ABSTRACT

Data stream processing systems (DSPSs) are a key enabler to integrate continu-

ously generated data, such as sensor measurements, into enterprise applications.

DSPSs allow to steadily analyze information from data streams, e.g., to mon-

itor manufacturing processes and enable fast reactions to anomalous behavior.

Moreover, DSPSs continuously filter, sample, and aggregate incoming streams

of data, which reduces the data size, and thus data storage costs.

The growing volumes of generated data have increased the demand for high-

performance DSPSs, leading to a higher interest in these systems and to the

development of new DSPSs. While having more DSPSs is favorable for users as

it allows choosing the system that satisfies their requirements the most, it also

introduces the challenge of identifying the most suitable DSPS regarding current

needs as well as future demands. Having a solution to this challenge is important

because replacements of DSPSs require the costly re-writing of applications if

no abstraction layer is used for application development. However, quantifying

performance differences between DSPSs is a difficult task. Existing benchmarks

fail to integrate all core functionalities of DSPSs and lack tool support, which

hinders objective result comparisons. Moreover, no current benchmark covers

the combination of streaming data with existing structured business data, which

is particularly relevant for companies.

This thesis proposes a performance benchmark for enterprise stream pro-

cessing called ESPBench. With enterprise stream processing, we refer to the

combination of streaming and structured business data. Our benchmark design

represents real-world scenarios and allows for an objective result comparison as

well as scaling of data. The defined benchmark query set covers all core func-

tionalities of DSPSs. The benchmark toolkit automates the entire benchmark

process and provides important features, such as query result validation and a

configurable data ingestion rate.

iii

To validate ESPBench and to ease the use of the benchmark, we propose an

example implementation of the ESPBench queries leveraging the Apache Beam

software development kit (SDK). The Apache Beam SDK is an abstraction

layer designed for developing stream processing applications that is applied in

academia as well as enterprise contexts. It allows to run the defined applications

on any of the supported DSPSs. The performance impact of Apache Beam is

studied in this dissertation as well. The results show that there is a significant

influence that differs among DSPSs and stream processing applications. For val-

idating ESPBench, we use the example implementation of the ESPBench queries

developed using the Apache Beam SDK. We benchmark the implemented queries

executed on three modern DSPSs: Apache Flink, Apache Spark Streaming, and

Hazelcast Jet. The results of the study prove the functioning of ESPBench and

its toolkit. ESPBench is capable of quantifying performance characteristics of

DSPSs and of unveiling differences among systems.

The benchmark proposed in this thesis covers all requirements to be applied

in enterprise stream processing settings, and thus represents an improvement

over the current state-of-the-art.

iv

ZUSAMMENFASSUNG

Data Stream Processing Systems (DSPSs) sind eine Schlüsseltechnologie, um

kontinuierlich generierte Daten, wie beispielsweise Sensormessungen, in Un-

ternehmensanwendungen zu integrieren. Die durch DSPSs ermöglichte perma-

nente Analyse von Datenströmen kann dabei zur Überwachung von Produktion-

sprozessen genutzt werden, um möglichst zeitnah auf ungewollte Veränderungen

zu reagieren. Darüber hinaus filtern, sampeln und aggregieren DSPSs einkom-

mende Daten, was die Datengröße reduziert und so auch etwaige Kosten für die

Datenspeicherung.

Steigende Datenvolumen haben in den letzten Jahren den Bedarf für per-

formante DSPSs steigen lassen, was zur Entwicklung neuer DSPSs führte.

Während eine große Auswahl an verfügbaren Systemen generell gut für Nutzer

ist, stellt es potentielle Anwender auch vor die Herausforderung, das für aktuelle

und zukünftige Anforderungen passendste DSPS zu identifizieren. Es ist wichtig,

eine Lösung für diese Herausforderung zu haben, da das Austauschen von einem

DSPS zu teuren Anpassungen oder Neuentwicklungen der darauf laufenden

Anwendungen erfordert, falls für deren Entwicklung keine Abstraktionsschicht

verwendet wurde. Das quantitative Vergleichen von DSPSs ist allerdings eine

schwierige Aufgabe. Existierende Benchmarks decken nicht alle Kernfunktion-

alitäten von DSPSs ab und haben keinen oder unzureichenden Tool-Support,

was eine objektive Ergebnisberechnung hinsichtlich der Performanz erschwert.

Zudem beinhaltet kein Benchmark die Integration von Streamingdaten und

strukturierten Geschäftsdaten, was ein besonders für Unternehmen relevantes

Szenario ist.

v

Diese Dissertation stellt ESPBench vor, einen neuen Benchmark für Stream

Processing-Szenarien im Unternehmenskontext. Der geschäftliche Kontext

wird dabei durch die Verbindung von Streamingdaten und Geschäftsdaten

dargestellt. Das Design von ESPBench repräsentiert Szenarien der realen

Welt, stellt die objektive Berechnung von Benchmarkergebnissen sicher und er-

laubt das Skalieren über Datencharakteristiken. Das entwickelte Toolkit des

Benchmarks stellt wichtige Funktionalitäten bereit, wie beispielsweise die Au-

tomatisierung den kompletten Benchmarkprozesses sowie die Überprüfung der

Abfrageergebnisse hinsichtlich ihrer Korrektheit. Um ESPBench zu validieren

und die Anwendung weiter zu vereinfachen, haben wir eine Beispielimplemen-

tierung der Queries veröffentlicht. Die Implementierung haben wir mithilfe

des in Industrie und Wissenschaft eingesetzten Softwareentwicklungsbaukastens

Apache Beam durchgeführt, der es ermöglicht, entwickelte Anwendungen auf

allen unterstützten DSPSs auszuführen. Den Einfluss auf die Performanz des

Verwendens von Apache Beam wird dabei ebenfalls in dieser Arbeit untersucht.

Weiterhin nutzen wir die veröffentlichte Beispielimplementierung der Queries

um drei moderne DSPSs mit ESPBench zu untersuchen: Apache Flink, Apache

Spark Streaming und Hazelcast Jet. Der Ergebnisse der Studie verdeutlichen

die Funktionsfähigkeit von ESPBench und dessen Toolkit. ESPBench befähigt

Performanzcharakteristiken von DSPSs zu quantifizieren und Unterschiede zwis-

chen Systemen aufzuzeigen.

Der in dieser Dissertation vorgestellte Benchmark erfüllt alle Anforderun-

gen, um in Stream Processing-Szenarien im Unternehmenskontext eingesetzt zu

werden und stellt somit eine Verbesserung der aktuellen Situation dar.

vi

ACKNOWLEDGEMENTS

All good things must come to an end, this dissertation being no exception.

It would not have been possible without the many inspiring and supporting

people I met along the way. First, I would like to thank my advisor Prof. Hasso

Plattner, who enabled my research through his extraordinary commitment and

support for the academic world. His tremendous energy and experiences in the

area of enterprise software gave me great motivation for my research endeavor.

I further want to thank Prof. Felix Naumann, Prof. Tilmann Rabl, Prof.

Manfred Hauswirth, and Prof. Matthias Weidlich for their support and valuable

feedback on my work. Moreover, I want to thank the many people at the En-

terprise Platform and Integration Concepts chair that supported and inspired

me during the last couple of years. Thank you Dr. Matthias Uflacker and Dr.

Michael Perscheid for constantly fostering my research as chair representatives,

thanks to all my fellow research associates for the motivation and discussions.

I especially want to thank Stefan Halfpap, Christoph Matthies, and Jan Koss-

mann, with whom I shared the office during the last couple of years as well

as many great moments in private gatherings. I also want to thank Benjamin

Reissaus, whom I could give advice and support for his master thesis, Kelvin

Glaß for his support on the Apache Beam analysis, as well as Marilena Davis,

Andrea Lange, Marcus Wacke, and all the other great people at the chair who

made sure that everything is running smoothly.

I finally want to thank my former colleagues at SAP, my friends who have

not been mentioned so far, my partner Dr. Milena Quittnat, as well as my family,

who supported me in challenging and fun times of my life. I especially want to

thank my parents Veronika and Heinz Hesse, who always gave me the freedom

to pursue whichever projects I chose.

vii

CONTENTS

1. Introduction 1

1.1. Data Stream Processing and the Need for a New Performance

Benchmark . 4

1.2. Research Questions . 6

1.3. Contributions . 6

1.4. Outline . 9

2. Background 11

2.1. Data Stream Processing and Related Technologies 11

2.1.1. Data Stream Processing Systems 13

2.1.2. Apache Beam . 24

2.1.3. Messaging System Apache Kafka 27

2.2. Performance Benchmarking . 30

2.2.1. Definition of Benchmarking 30

2.2.2. Benchmark Classifications 32

2.2.3. Design Principles for Performance Benchmarks 36

3. ESPBench - The Enterprise Stream Processing Benchmark 38

3.1. Scenario . 38

3.2. Data . 40

3.2.1. Sensor Data . 40

3.2.2. Business Data . 44

3.3. Architecture . 45

3.3.1. Input Data . 46

3.3.2. Data Generator . 46

3.3.3. Data Sender . 47

viii

CONTENTS

3.3.4. Message Broker . 47

3.3.5. System Under Test . 49

3.3.6. Validator and Result Calculator 49

3.4. Benchmark Process . 50

3.5. Queries . 52

3.6. Review of Design Principles . 55

4. Experimental Evaluation 59

4.1. Validation of ESPBench . 60

4.1.1. Benchmark Setup . 60

4.1.2. Benchmark Results . 62

4.1.3. Lessons Learned . 75

4.2. Performance Impact of Apache Beam 76

4.2.1. Benchmark Setup . 76

4.2.2. Performance Results . 79

4.2.3. Lessons Learned . 91

4.3. Performance Capabilities of Apache Kafka 92

4.3.1. Ingestion Rate Capabilities 92

4.3.2. Delay Evaluation of Apache Kafka Log Timestamps . . . 105

4.4. Threats to Validity . 108

4.4.1. Internal Validity . 109

4.4.2. External Validity . 110

4.4.3. Construct Validity . 111

5. Related Work 113

5.1. Data Stream Processing Benchmarks 113

5.2. Performance Impact of Apache Beam 119

5.3. Apache Kafka Capability Analysis 121

6. Conclusion 123

6.1. Summary . 123

6.2. Future Work . 125

List of Figures 127

List of Tables 131

Bibliography 132

ix

1

INTRODUCTION

Due to the increasing volumes of generated streams of data caused by acceler-

ating digitization and automation, new challenges and opportunities in the area

of data processing arise. An example of this development with respect to data

is the media services provider Spotify, which processes different kinds of events

such as user registrations or any other kind of interaction with Spotify apps.

While Spotify encountered a data stream with about 1.5 million events/second

in 2016, this number increased to 8 million events/second in 2018 [JS19, Ser19].

Such large occurring data masses are not phenomena that are exclusively visible

at Spotify. On a daily basis, a single sensor on a General Electric jet engine

creates 500 GB of data [DD13], the sensors of an oil field generate more than

1 TB [HSK+19], and Facebook’s data warehouse receives 600 TB [VW14]. These

examples highlight the huge data masses that companies across different indus-

try sectors face today.

In certain industry sectors, such as mechanical engineering or automotive,

Industry 4.0 and Internet of Things (IoT) have gained traction to describe de-

velopments that bring new possibilities with respect to business models. New

IoT technologies are being created, sensor accuracy increases, and new analyt-

ical IT systems are being developed that allow to query huge amounts of data

within seconds. On the economic side, a substantial and steady price decrease

for sensor IoT equipment has occurred, which is expected to continue in the

following years [McK15, CMN18]. These developments foster an increased de-

ployment of IoT technologies in companies and as a result, more IoT data is

available to enterprises [WL14]. Monetarily expressed, the total global worth of

IoT technology is expected to reach USD 6.2 trillion by 2025 [Int14].

1

chapter 1: Introduction

One of the sectors involved most in IoT is industrial manufacturing [Int14].

That is the case because manufacturers see great potential in unlocking further

efficiency potential and reducing costs at their production facilities through

these technologies [MCB+15]. An example of a factory that already captures

high volumes of data with high velocity is the General Electric battery produc-

tion plant in New York State. There are 10,000 different data attributes created

at this plant, some as often as every 250 ms [WL14]. An ultrasonic sensor pro-

duction plant in Hungary creates about 170 GB of data per day [NOE+18].

Manufacturing equipment, such as a single saw, generates 50,000 messages or

1.2 GB of data on a daily basis1. Injection molding machines even produce up to

multiple terabytes of sensor data in 24 hours [HVN16]. Such data streams pro-

vide detailed information about the current state of machines and allow timely

reactions to events, e.g., failures or altered temperatures. However, added value

can only be created if the data stream is analyzed within an adequate timeframe.

The value and relevance of high-frequency streaming data rapidly decrease with

the amount of time that has passed since its creation. In case of a failure event,

actions need to be taken as soon as possible to minimize its negative impact.

Despite the importance of IoT data, industry studies reveal that most of the

data gathered today is not used at all. Furthermore, the remaining data that is

incorporated and analyzed is not exploited in its entirety [MCB+15].

Analyzing captured IoT data and combining it with existing structured busi-

ness data leads to a holistic view of the value chain, i.e., of the entire process

of creating value in companies. Examples of such business data are supplier or

customer information. This combination of data from different technical levels

is known as vertical data integration. A practical example of vertical integra-

tion is a printing machine, where the humidity is regulated depending on sensor

measurements (streaming data) as well as the used colors and paper (struc-

tured manufacturing data) to optimize the print quality and reduce the number

of defective goods. Another example is the healthcare service provider BJC

HealthCare, which adopts IoT technologies for their inventory and supply chain

management to enable a live-tracking of their stocks. This detailed inventory

overview allows for more need-specific purchases and resulted in a reduction of

onsite stock at each facility by 23 % [Ltd19].

Additional to IoT, Industry 4.0 is the other related term in the context of

manufacturing that gained attention in the past years. This is due to the large

estimated added value achievable for businesses, especially when integrating

available data, both horizontally and vertically. Such data integrations in the

1https://crate.io/customers/senseforce-iot/, accessed: 2020-11-10

2

https://crate.io/customers/senseforce-iot/

chapter 1: Introduction

context of Industry 4.0 are conceptually visualized in Figure 1.1. Horizontal

data integration is a traditional topic in which software companies and their

customers have a comparatively high degree of experience. More recent devel-

opments exist in the area of inter-company integrations. Besides, there is the

vertical integration of technical data and business data. The technical data,

such as sensor measurements, is thereby produced in high volumes over a short

period of time. Since sensor values only have a local semantic, they need to be

integrated with enterprise data to get a global semantic, and to gain in business

value.

Figure 1.1: Conceptual overview of horizontal and vertical data integration in
the context of Industry 4.0 ([HSMU19])

A survey conducted by McKinsey & Company in January 2016 amongst com-

panies in the United States, Germany, and Japan with at least 50 employees,

highlights the significance of Industry 4.0 [McK16]. Particularly, the assess-

ments of 300 domain experts on this topic were gathered using 23 questions,

which asked for, e.g., importance or significance ratings. The involved com-

panies cover various industries, such as automotive suppliers, chemicals, and

healthcare. As one outcome, the study reveals that the majority of companies

expect Industry 4.0 to increase their competitiveness [McK16], which highlights

its business value. According to a more recent survey of more than 400 compa-

nies worldwide, the COVID-19 pandemic even caused an increase regarding the

perceived value of Industry 4.0 at most of the companies [ADKM21]. One of the

identified key challenges for adopting Industry 4.0 concepts is the integration

of different data sources. Especially with the emerging importance of IoT data,

the fairly old challenge of integrating disparate data sources becomes highly

relevant [McK16, RS94]. Data Stream Processing Systems (DSPSs) represent a

technology suitable for tackling the challenge of data integration.

3

chapter 1: Introduction

1.1 Data Stream Processing and the Need for a

New Performance Benchmark

DSPSs are capable of handling streams of data with high volume and velocity

that are created by, e.g., IoT devices. These systems analyze streams of data

on the fly using continuously running queries, i.e., queries that are executed for

a potentially infinite time and accordingly produce results during this period.

DSPSs filter, aggregate, or further transform data streams and can combine

other data sources, such as databases storing business data, with streaming data.

Figure 1.2 visualizes a typical stream processing architecture. This architecture

enables the analysis of streaming data and its combination with business data.

Moreover, data transformed by a data stream processing application can be

persisted in, e.g., another message queue, a database, or a data lake.

Streaming Data

Data Ingestion
Service

Data Stream
Processing
Application

Application Data

Sensor Data
Message Queue

Data Lake

Database

Figure 1.2: A common data stream processing architecture visualized in Fun-
damental Modeling Concepts (FMC[KGT05], based on2)

High volumes of streaming data, such as sensor measurements or application

data (e.g., user click events), are ingested into a message queue, which is used

to make the data broadly available. A stream processing application running

on a DSPS retrieves the streaming data via the queue, analyzes or alters it, and

stores results in a storage solution if desired. DSPSs enable the management of

continuously generated data and thus, making use of this data. This capability

of handling potentially indefinite data sets has led to the crucial role DSPSs

play in the data-intensive scenarios faced by enterprises today.

The increased importance of streaming data, and thus DSPSs, fostered

the development of a multitude of new systems and frameworks in recent

years [IAM+19, HL15], such as Kafka Streams3, Hazelcast Jet4, Apache

2https://www.ververica.com/what-is-stream-processing, accessed: 2020-11-30
3https://kafka.apache.org/documentation/streams/,accessed:2021-03-08
4https://jet-start.sh, accessed: 2020-11-10

4

https://www.ververica.com/what-is-stream-processing
https://kafka.apache.org/documentation/streams/, accessed: 2021-03-08
https://jet-start.sh

chapter 1: Introduction

Flink [CKE+15], Apache Spark Streaming [ZDL+13], and Apache Apex 5. Next

to these open-source systems, there are also commercial closed-source DSPSs,

like IBM Streams6, and Google Cloud Dataflow7. Contrary to the group of

recently developed DSPSs, Aurora [ACÇ+03] and STREAM [ABB+03b], for

instance, are early DSPSs that were already presented in the early 2000’s.

While having more DSPSs is favorable for users as it allows choosing the

system that satisfies their requirements the most, it also introduces the chal-

lenge of identifying the most suitable DSPS regarding current needs as well as

future demands. Having a solution to this challenge is important, as replace-

ments of DSPSs require costly re-writes of applications. The common way of

quantitatively comparing systems to decide which one to choose is performance

benchmarking. However, quantifying performance differences between DSPSs

is currently a difficult task, because existing benchmarks fail to integrate all

core functionalities of DSPSs and lack tool support, which hinders objective

result calculations. Moreover, no current benchmark covers the combination of

streaming data with structured business data, which is particularly relevant for

companies.

A reason for the lack of satisfying DSPSs benchmarks is complexity. Com-

pared to the thematically close domain of database benchmarks, where many

well-established and standardized performance benchmarks exist, a DSPS

benchmark requires more tool support. For instance, one or multiple data

streams need to be created to simulate a stream processing scenario. The

streams have to ingest data at reproducible rates in order to enable comparable

benchmark results. For scaling this data ingestion and decoupling it from the

system under test (SUT), performance benchmarks often incorporate a message

queue. This additional component also adds to the benchmark’s complexity.

Moreover, there is not only a single query result that needs to be checked with

respect to its correctness, but multiple results as the queries run and produce

results continuously. These requirements lead to an increased effort for build-

ing a performance benchmark for DSPSs compared to benchmarks of related

domains, such as database management systems.

We propose to close this gap with ESPBench, a new performance benchmark

for enterprise stream processing architectures that is presented within this dis-

sertation.

5https://apex.apache.org/docs/apex/, accessed: 2020-11-10
6https://www.ibm.com/de-en/marketplace/stream-computing, accessed: 2020-11-10
7https://cloud.google.com/dataflow/, accessed: 2020-11-10

5

https://apex.apache.org/docs/apex/
https://www.ibm.com/de-en/marketplace/stream-computing
https://cloud.google.com/dataflow/

chapter 1: Introduction

1.2 Research Questions

The identified need for a new enterprise stream processing benchmark leads to

the following research question:

What is a suitable architecture of an enterprise stream processing bench-

mark that satisfies the demands on relevance, portability, scalability, and

simplicity, i.e., the four requirements of good benchmarks?

These requirements on good benchmarks defined by Jim Gray [Gra93] impact,

e.g., the incorporated data, the benchmark workload, the toolkit, and the perfor-

mance result calculation. Moreover, these demands influence the overall bench-

mark architecture, such as the question of whether or not to incorporate a mes-

sage broker. Based on this research question, the following related questions

evolve.

• How does the usage of an abstraction layer for the development of stream

processing applications impact the performance regarding latencies?

Businesses and academia make use of such abstraction to gain flexibility re-

garding the choice of DSPS, i.e., to diminish the required migration efforts

for exchanging a DSPS. It is of importance to understand the resulting

performance impact of incorporating an abstraction layer for application

development. A central performance indicator in this context is latency,

i.e., the time difference between retrieving an input record and outputting

the corresponding application result.

• What are the performance limitations of the benchmark components and

its toolkit with regard to the configurable data ingestion rate?

The complexity of DSPS benchmarks requires to employ components next

to the SUT, e.g., for providing data streams. Furthermore, DSPS bench-

marks often support scalability with respect to the data ingestion rate.

Accordingly, the performance limits of the benchmark components and

tools need to be acquainted with people who use the benchmark to ensure

an intended benchmark process. If benchmark tools are overburdened,

their lack of performance is studied instead of the SUT’s performance.

1.3 Contributions

In the following, we briefly highlight the main contributions of this disserta-

tion and present the corresponding peer-reviewed publications, which describe

substantial parts of this work.

6

chapter 1: Introduction

A Benchmark for Enterprise Stream Processing Architectures

We propose ESPBench, a performance benchmark for enterprise stream process-

ing architectures that satisfies the mentioned requirements on a good bench-

mark: relevance, portability, scalability, and simplicity. By enterprise stream

processing, we refer to the combination of streaming and structured business

data. Our benchmark design represents real-world scenarios and allows for an

objective result calculation as well as scaling of data. The defined benchmark

query set covers all core functionalities of DSPSs that are described in detail in

Chapter 2. The benchmark toolkit automates the entire benchmark process and

provides important features, such as query result validation and a configurable

data ingestion rate. To validate ESPBench and to ease the use of the benchmark,

we propose an example implementation of the ESPBench queries leveraging the

Apache Beam software development kit (SDK). Apache Beam is an abstraction

layer for developing stream processing applications, that is applied in academia

and enterprise contexts. It allows for the execution of the defined programs

on any of the supported DSPSs. We use the example query implementation to

benchmark three modern DSPSs. The results of the study prove the functioning

of ESPBench and its toolkit. ESPBench is capable of quantifying performance

characteristics of DSPSs and of unveiling relevant differences among systems.

The following publications contain work related to the contribution that is

described in this dissertation:

• Conceptual Survey on Data Stream Processing Systems [HL15]

This publication conceptually compares selected state-of-the-art DSPSs.

The comparison focuses on architectural aspects of the systems. Chapter 2

of this dissertation presents the technological background. It includes the

description of DSPSs relevant for this thesis, which is partly influenced by

the publication.

• Application of Data Stream Processing Technologies in Industry 4.0 - What

is Missing? [HSMU19]

This work highlights the aspects that are missing for a broader application

of data stream processing technologies. One facet is the need for a sat-

isfying benchmark for DSPSs. Furthermore, it presents industry insights

derived from site inspections at manufacturing companies with a focus on

Industry 4.0. The work mainly influenced Chapter 1 of this dissertation.

• Adding Value by Combining Business and Sensor Data: An Industry 4.0

Use Case [HMSU19]

This publication presents an Industry 4.0 demo application, which includes

7

chapter 1: Introduction

the generation of business and sensor or streaming data. It allows for ad-

hoc data exploration as well as horizontal and vertical data integration.

This prototype highlights the potential of Industry 4.0 and sophisticating

stream processing technologies. Parts of the paper were incorporated in

Chapter 1 as well as in Chapter 3.

• A New Application Benchmark for Data Stream Processing Architectures

in an Enterprise Context: Doctoral Symposium [HMRU17]

This work presents the identified gap in the area of stream processing

benchmarks. It further illustrates the idea of a new benchmark for data

stream processing architectures. The article highlights related research

questions and the importance of this work. Moreover, first architectural

ideas are introduced that are partly taken up in Chapter 3.

• Senska - Towards an Enterprise Streaming Benchmark [HRM+17]

This publication introduces Senska, which is the theoretical blueprint be-

hind ESPBench. It presents basic concepts and ideas of ESPBench and

thus, its content can be found mainly in Chapter 3.

• ESPBench: The Enterprise Stream Processing Benchmark [HMP+21]

This work presents ESPBench, a new performance benchmark for enter-

prise stream processing architectures. Its intended functioning is validated

by benchmarking three state-of-the-art DSPSs, using a developed exam-

ple implementation of the benchmark queries. The developed benchmark

concepts and experimental evaluation results are described in Chapter 3

and Chapter 4.

Study of the Performance Impact of Apache Beam

Apache Beam is a popular abstraction layer for developing data stream process-

ing applications. We analyze how the use of Apache Beam impacts performance.

Our analysis compares the latencies of a selected microbenchmark workload, im-

plemented using native system SDKs with their counterparts developed using

the Apache Beam SDK on three different systems. We evaluate the performance

penalties when using Apache Beam depending on the system, query, and level

of parallelism. The results serve as a reference point for estimating the perfor-

mance decrease that needs to be accepted for the gain in flexibility regarding

the choice of DSPS. The results are discussed in Chapter 4.

The following publication contains substantial parts of the contribution:

Quantitative Impact Evaluation of an Abstraction Layer for Data Stream Pro-

cessing Systems [HMG+19]

8

chapter 1: Introduction

Empirical Evaluation of the Achievable Apache Kafka Input Rate and

Timestamp Characteristics

Apache Kafka [KNR11] is a popular messaging system that we employ in the

ESPBench architecture. Specifically, it provides the input data streams for the

SUT without being part of the SUT. We analyze how many input records per

second Apache Kafka can handle with the configuration settings employed in

ESPBench. Moreover, we study the impact of selected configuration and ex-

ecution options that Apache Kafka and its tools provide. In the context of

ESPBench, it is crucial to ensure that Apache Kafka does not become a bottle-

neck when benchmarking the SUT, because this would lead to benchmarking

Apache Kafka instead of the SUT.

ESPBench further uses the LogAppendTime feature of Apache Kafka, which,

if enabled, makes Apache Kafka store a timestamp along with a data record that

represents the time when the record is appended to the Apache Kafka log. Due

to batching mechanisms, these timestamps can be delayed and thus influence

the calculated latencies. We analyze how large these delays are and how selected

configuration options impact them. The content of this work mainly influenced

parts of Chapter 4.

The following publication contains substantial parts of the contribution:

How Fast Can We Insert? An Empirical Performance Evaluation of Apache

Kafka [HMU20]

1.4 Outline

The remainder of this dissertation is structured as follows:

Chapter 2 describes the background of data stream processing and perfor-

mance benchmarking.

Chapter 3 depicts our proposed benchmark. It highlights the design objec-

tives that are taken into account, the benchmark scenario, and its architecture.

Furthermore, the chapter presents the benchmark process, the used data, and

the queries defined by ESPBench.

Chapter 4 illustrates the experimental evaluations of this dissertation. These

analyses comprise the validation of ESPBench and its functioning by bench-

marking three modern DSPSs in combination with the provided example query

implementations, which were developed using the Apache Beam software de-

velopment kit. Further experimental evaluations study the performance impact

9

chapter 1: Introduction

of the abstraction layer Apache Beam as well as the achievable data ingestion

rates of Apache Kafka.

Chapter 5 presents related work in the area of data stream processing bench-

marks, with respect to the performance impact analysis of Apache Beam, as well

as in the context of the conducted Apache Kafka study.

Chapter 6 concludes the dissertation with a summary as well as an outlook

on future research directions.

10

2

BACKGROUND

This chapter describes the background of this thesis, which includes an intro-

duction to data stream processing and related technologies as well as to the area

of performance benchmarking.

2.1 Data Stream Processing and Related Tech-

nologies

This section gives an overview of data stream processing in general and presents

selected data stream processing systems (DSPSs) as well as related technologies

that are relevant for the area of stream processing and the conducted exper-

iments in this thesis. Particularly, next to the DSPSs, we describe Apache

Beam, the abstraction layer for developing stream processing applications, and

the messaging system Apache Kafka.

Stream processing can be described as the processing of unbounded data sets,

i.e., the permanent processing of data with an unbound or possibly infinitely

emitting data source. A data stream S is an unbound data set which contains

values v associated with a timestamp t. Multiple values might have the same

timestamp [KKLLC15]. Accordingly, a data stream S can be defined as follows:

S := {(v1, t1), (v2, t2), (v3, t3), ...}.

DSPSs have the purpose to perform stream processing, frequently referred to

as executing continuous queries [ABW04, BW01]. Timestamps play a crucial

11

chapter 2: Background

role in this context as they define an order among records that might arrive

disorderly at the DSPS. Systems often distinguish between the following three

time categories [Rab17]:

• Event time: when the data is created

• Ingestion time: when the data is received (system time)

• Processing time: when the data is processed (system time).

Typically, there is a skew between event time and processing time, i.e., the

delta between both is not constant over time [ABC+15, Rab17]. Such a skew

is exemplarily visualized in Figure 2.1. Applications may want to consider this

fact depending on the use case. So, e.g., if a streaming application works with

time-based windows using processing time, results could look different compared

to the same application making use of event time for its window calculation.

Data records with a high skew at the end of a window would not be considered

for a corresponding processing time window. Besides, being aware of these

differences between time categories is important for performance benchmarking.

E.g., using processing times when calculating latencies could, depending on the

DSPS implementation, lead to ignoring queuing times and thus, lead to latencies

that do not reflect an end users experience.

Figure 2.1: Exemplary visualization of the skew between event time and pro-
cessing time in data stream processing systems ([ACL18])

Stream processing applications can be visualized as a dataflow, which is

a directed graph. It consists of nodes and edges, representing operators or

data and connections between nodes, respectively. Depending on the DSPS as

well as the requirements and preferences of the software engineer, such stream

processing applications can be developed using a high-level, often SQL-like,

12

chapter 2: Background

interface or lower-level interfaces offered in programming languages such as Java

or Scala [CGH+17]. However, the latter is currently more common since high-

level abstractions are not offered by every DSPS. Moreover, there is no SQL-like

dialect yet that is generally accepted among DSPSs [HMG+19].

Input Window Count Output

Figure 2.2: Example of a dataflow representing a stream processing application
that counts elements of a window (based on [CGH+17])

An example of a dataflow is visualized in Figure 2.2. The first and the last

node represent the data source and the data sink, respectively. The applica-

tion transforms the incoming data into windows, whose elements are counted

afterward. That can be useful, e.g., for counting the number of click events on

an e-commerce website during the last ten seconds to analyze a user’s activity

level and provide assistance if needed. A window can be defined using various

criteria, e.g., based on a timespan or the number of its elements. It is an op-

erator that splits the stream into smaller batches. That is often required as a

potentially infinite data stream does not fit into the memory of a server. Two

major sub-categories of time-based windows are tumbling and sliding windows.

While tumbling windows do not overlap, there is an intersection between con-

secutive sliding windows. The decision for a certain kind of window is up to the

application developer and depends on the use case, i.e., on the question which

data needs to be analyzed [CGH+17, Rab17].

The fields of application for stream processing technologies are manifold and

generally exist where high volumes of data need to be managed with high veloc-

ity. Examples range from the manufacturing industry, which is the domain of the

benchmark presented in this dissertation, over social media analyses [NWZ+19],

to Semantic Web, i.e., Resource Description Framework (RDF) stream process-

ing for querying heterogeneous streams of data [DBE15, DTC+19].

2.1.1 Data Stream Processing Systems

This section gives a brief historical overview of DSPSs, highlights the core func-

tionalities of these systems, and conceptually describes selected systems that

are relevant to the area of data stream processing. Particularly, the DSPSs

Apache Flink, Apache Spark, Apache Apex, and Hazelcast Jet are presented in

the following. All of these systems are used in performance investigations that

are part of Chapter 4.

13

chapter 2: Background

Figure 2.3: Excerpt of the release dates of new data stream processing systems
between 2010 and 2020 (image sources1)

History of Data Stream Processing Systems

One of the early DSPSs, which aimed at processing data in a streaming fashion

rather than using an approach based on data batches, is Aurora [ACÇ+03].

While this system was designed for a single-server deployment, distributed

DSPSs emerged soon after its release. One example is the succeeding project

called Borealis [AAB+05], which built on top of it. Comprehensive scale-out

abilities were introduced by Google’s programming model MapReduce [DG04],

which focused on batch processing. These ideas were adapted in later developed

DSPSs, such as Apache Storm [TTS+14]. Afterward, stream processing increas-

ingly gained attention, and many more distributed DSPSs were developed, an

excerpt of them being depicted in Figure 2.3. The systems shown in Figure 2.3

cover both, open-source and closed-source DSPSs [LKT18].

Core Functionalities

We use the core set of operations for event processing systems presented by

Mendes [Men14] as a basis for defining the functionality that should be covered

by DSPSs and thus, by the workload of ESPBench. Although this list of op-

1
all images accessed 2020-12-04: IBM Streams: https://rhc4tp-cms-prod-vpc-76857813.s3.amazonaws.com/

s3fs-public/ibm-streams-logo-readme-lg.png, Alibaba JStorm: http://cdn.huodongxing.com/logo/org/201405/
3941603602732/781790435449755.jpg, Apache Storm: https://storm.apache.org/images/logo.png, Apache Samza:
https://upload.wikimedia.org/wikipedia/en/thumb/f/fb/Apache Samza Logo.svg/1200px-Apache Samza Logo.svg.png, Apache
Spark Streaming: https://dvirgiln.github.io/assets/images/spark streaming.png, Apache Flink: https://encrypted-

tbn0.gstatic.com/images?q=tbn:ANd9GcSnv7ifl2 Rvz3Za9Phpw3hmjOQsaalL7eCzA&usqp=CAU, Microsoft Azure Stream An-
alytics: https://pbs.twimg.com/profile images/932734446062641153/vvYmgGZ- 400x400.jpg, Apache Heron: https:

//raw.githubusercontent.com/apache/incubator-heron/master/website2/docs/assets/HeronTextLogo.png, Google Cloud
Dataflow: https://codelabs.developers.google.com/codelabs/cloud-dataflow-starter/img/62b0919755804bea.png, Apache
Kafka: https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Apache kafka.svg/1200px-Apache kafka.svg.png, Apache Apex:
https://upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Apache Apex Logo.svg/1200px-Apache Apex Logo.svg.png, Confluent KSQL:
https://pbs.twimg.com/profile images/1197163687217266688/MEIl-K0w.png, Apache Nemo: https://nemo.apache.org/img/nemo-logo.png,
Hazelcast Jet: https://repository-images.githubusercontent.com/48046454/d0528f00-7b37-11e9-81bc-c62e692b8ef3

14

chapter 2: Background

erations is defined for event processing systems, it is applicable to data stream

processing in general [HRM+17]. To incorporate the benchmark’s enterprise

character and increase relevance, we extend the original list. Particularly, we

broaden the term pattern detection by altering it to machine learning. Fur-

thermore, we add the aspects of transforming data, which is also included in an

earlier work of Mendes et al. [MBM09], and combining streaming with historical

data. In the course of this dissertation, historical data is defined as data that

is durably stored, e.g., business data persisted in a database. The challenge of

integrating stored data is also mentioned as one out of eight requirements of

real-time stream processing by Stonebraker, Çetintemel, and Zdonik [SÇZ05],

which emphasizes its importance for the stream processing domain. The specific

list of operations is shown in the following:

1. Windowing

Analyzing data organized in windows, i.e., in sets of data defined by certain

characteristics, e.g., time.

2. Transformation

Modifying incoming data, e.g., through calculations or string operations.

3. Aggregation/Grouping

Combining multiple incoming values into a single characteristic, e.g., by

calculating an average or a count over data streams.

4. Filtering (Selection/Projection)

Excluding certain data fields or records based on defined criteria, e.g.,

based on a certain value included in the data.

5. Correlation/Enrichment (Join)

Combining multiple data streams to a single stream, e.g., measurements

of different sensors.

6. Machine Learning

Applying machine learning algorithms to data streams, e.g., for detecting

outliers.

7. Combination with Historical Data

Combining streaming data with historical data stored in a database, e.g.,

to get a better understanding of processes.

15

chapter 2: Background

Apache Flink

Apache Flink is an open-source DSPS with batch and stream processing ca-

pabilities. It resulted out of Stratosphere [ABE+14], an open-source research

project for big data analytics. In 2014, the creators of Apache Flink founded

the company data Artisans in Berlin. The startup was acquired in 2019 for

$103 million by Alibaba, which uses Apache Flink in their system’s landscape.

A few weeks after Alibaba acquired data Artisans, it got renamed to verver-

ica [ABE+14, Rus19, Tzo19].

Apache Flink offers comprehensive Java and Scala application programming

interfaces (APIs) for developing applications. There are libraries built on top of

Apache Flink that extend its functionalities, such as the library Gelly for graph

processing [CKE+15, HL15].

Flink Client

Job Manager

Task Manager

Task Manager

...

Figure 2.4: Architecture of an Apache Flink cluster with one Job Manager,
multiple Task Manager instances, and one connecting client (based on[CKE+15,
HL15])

The conceptual architecture of an Apache Flink cluster is visualized in Fig-

ure 2.4. It shows an Apache Flink client, a Job Manager, and Task Manager

instances. When deploying a program to the Apache Flink system, the client

first transforms it into a dataflow graph, i.e., a directed acyclic graph (DAG),

and sends it to the Job Manager. The client itself is not part of the program

execution and can, after transmitting the dataflow graph, either disconnect from

the Job Manager or stay connected in order to receive information about the

execution progress [CKE+15, HL15, HMG+19]. The Job Manager or master is

responsible for scheduling work amongst the Task Manager instances and for

keeping track of the execution. There can be multiple Job Manager instances

whereas only one Job Manager can be the leader. Others are standby and take

over in case of a failure [CKE+15, HL15, HMG+19].

16

chapter 2: Background

The Task Manager instances execute the assigned parts of the program.

Technically, a Task Manager is a Java Virtual Machine (JVM) process. There

must be at least one Task Manager within an Apache Flink deployment. Task

Managers exchange data amongst each other where needed. Each of them pro-

vides at least one task slot in which subtasks are executed in multiple threads. A

task slot can be shared by multiple subtasks as long as they belong to the same

application, even if they are part of different tasks. While one task is executed

by one thread, Apache Flink chains multiple operator subtasks into a single task,

such as two subsequent map operations. A benefit of this optimization is, e.g.,

reduced overhead for inter-thread communication [CKE+15, HL15, HMG+19].

Every task slot is assigned a subset of the resources that belong to its corre-

sponding Task Manager. Particularly, the available memory is split amongst

task slots. Corresponding CPU separation is not supported in the current

Apache Flink version [CKE+15, HL15, HMG+19].

Apache Spark Streaming

Apache Spark is another open-source system for distributed data processing. Its

initial version was developed in 2009 at the University of California Berkeley (UC

Berkeley). Members of this research project founded the company Databricks in

2013. It builds commercial services around Apache Spark 2 [HL15, HMG+19].

Apache Spark offers, next to batch processing functionalities, stream pro-

cessing features as part of its library Apache Spark Streaming. However, stream

processing is implemented using micro-batches, i.e., it is not a tuple-by-tuple

processing. This concept distinguishes Apache Spark Streaming from many

other DSPSs, such as Apache Flink. Apache Spark Streaming applications can

be written in, e.g., Java, Scala, or Python. Next to the stream processing li-

brary, there are other add-ons built on top of Apache Spark, e.g., for machine

learning and graph processing [AXL+15, HMG+19, SS15, ZXW+16].

The architecture of an Apache Spark deployment is shown in Figure 2.5.

An application is executed in the form of multiple independent processes dis-

tributed across a cluster. The SparkContext coordinates these processes. This

coordinator is an object in the main() function of the application, which is called

Driver Program. Moreover, the SparkContext connects to a Cluster Manager

that takes care of resource allocation.

Currently, there are four Cluster Managers supported by Apache Spark -

Spark Standalone, Apache Mesos [HKZ+11], Apache Hadoop YARN (Yet An-

other Resource Negotiator) [VMD+13], and Kubernetes [Bre15]. As soon as a

2https://databricks.com/spark/about, accessed: 2020-12-08

17

https://databricks.com/spark/about

chapter 2: Background

Driver Program

SparkContext

Cluster
Manager

Worker Node

Worker Node

...

Figure 2.5: Architecture of an Apache Spark deployment in cluster mode with
multiple Worker Nodes (based on [HL15, HMG+19])

connection is established, the SparkContext acquires so-called executors on the

Worker Node instances. Each executor is a process belonging to exactly one ap-

plication. It stores data and performs computations. So different applications

running on the same Apache Spark cluster are executed in different JVMs, which

separates it, e.g., from the execution concept of Apache Flink [HMG+19].

Once executors are acquired, the SparkContext transmits the program in

the form of a JAR or Python file to them. Afterward, it sends tasks to the

executor processes. One process can run multiple tasks in several threads [HL15,

LWI+14]. Figure 2.6 visualizes a worker process architecture that also fits this

Apache Spark concept.

ExecutorWorker
Process

Task

Figure 2.6: Architecture of an Apache Spark Worker Process (based on [HL15,
TTS+14])

A central data structure that is used in Apache Spark is the Resilient

Distributed Dataset (RDD). An RDD is a distributed memory abstraction.

To be more concrete, it is a partitioned and read-only collection of records.

Apache Spark Streaming employs a processing model called discretized streams

(DStreams). Such a DStream is a sequence of RDDs. An incoming data stream

is divided into batches stored in RDDs. Data transformations are then per-

formed on these RDDs as visualized in Figure 2.7. The output is again repre-

sented as a DStream [HL15, ZCD+12, ZDL+13].

Apache Apex

Apache Apex is a stream and batch processing system, which was originally

developed at the company DataTorrent in 2012. In 2015, Apache Apex became

18

chapter 2: Background

Data
Stream

Batches of
Data Stream

Batches of
Results

Spark
Streaming

Spark
Engine

Figure 2.7: Stream processing concept in Apache Spark Streaming (based on
[HL15, ZDL+13])

an incubator project of the Apache Software Foundation. In September 2019,

the project retired3. Apache Apex is technically based on Apache Hadoop,

an open-source implementation of the MapReduce programming model, which

allows to store and process large amounts of data [VMD+13]. Hadoop comprises

the components Apache Hadoop YARN and Hadoop Distributed File System

(HDFS)4. Similarly to, e.g., Apache Flink, stream processing is implemented in

a tuple-by-tuple-processing fashion [Bha16, DF16, HMG+19].

The high-level architecture of Apache Hadoop 2 is depicted in Figure 2.8.

The distributed file system HDFS at the bottom serves as the storage layer.

Apache Hadoop YARN acts as a resource manager on top of HDFS. Multiple

data processing frameworks can run on top of these two layers. They provide

different functionality, such as batch or stream processing capabilities. Two of

them are Hadoop MapReduce and Apache Apex [SSS+15]. Apache Spark5 and

Apache Flink6 are further systems that can run on Apache Hadoop YARN as

one of multiple deployment options they offer.

Apex Flink Spark MapReduce ...

YARN
Yet Another Resource Negotiator

HDFS
Hadoop Distributed File System

Figure 2.8: Architecture of Apache Hadoop 2 (based on [HMG+19, SSS+15])

Apache Hadoop YARN’s internal architecture is illustrated in Figure 2.9.

The depicted installation runs a single application. The application compo-

nents are marked with dashed lines. A central element within Apache Hadoop

YARN that exists once per cluster is the Resource Manager. Technically, it is

a daemon process running on a dedicated machine. It represents the interface

3https://attic.apache.org/projects/apex.html, accessed: 2020-12-08
4http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/

HdfsDesign.html, accessed: 2020-12-08
5https://spark.apache.org/docs/latest/running-on-yarn.html, accessed: 2020-12-08
6https://ci.apache.org/projects/flink/flink-docs-master/deployment/resource-

providers/yarn.html, accessed: 2020-12-08

19

https://attic.apache.org/projects/apex.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://ci.apache.org/projects/flink/flink-docs-master/deployment/resource-providers/yarn.html
https://ci.apache.org/projects/flink/flink-docs-master/deployment/resource-providers/yarn.html

chapter 2: Background

for client applications and monitors the status of the cluster nodes. Moreover,

the Resource Manager decides about resource distribution among programs. It

thereby allocates and leases resources in form of Containers. A container can

be viewed as ”a logical bundle of resources (e.g., <2 GB RAM, 1 CPU>) bound

to a particular node” [VMD+13].

Client

Resource
Manager

Node Manager Container

App Master

Node Manager
Container

...

Figure 2.9: Architecture of an Apache Hadoop YARN cluster with one client
(based on [HMG+19, VMD+13])

A Node Manager daemon is running on each node for managing the available

cluster resources. It keeps track of the node’s resources and notifies about

failures should the occasion arise. The Resource Manager and the Node Manager

communicate using a heartbeat mechanism [VMD+13].

After the Resource Manager accepts an application submitted by a client, it

allocates containers and starts the Application Master within it. This master

process also sends heartbeats to the Resource Manager. There may be additional

message exchange on application level between the Application master and its

assigned containers [HMG+19, VMD+13].

The Application Master manages the program execution with respect to

aspects such as resource needs and fault management. That covers coordi-

nating the logical execution plans by requesting resources and generating the

physical execution plans according to the actually assigned resources. To get

new resources, an Application Master has to send a request to the Resource

Manager. As soon as a resource lease on behalf of an Application Master

is created, the corresponding container is pulled by the Master’s next heart-

beat [HMG+19, VMD+13].

Apex Malhar is a library built on top of the Apache Apex core. It provides

different input, output, and compute operators, which are used for develop-

ing stream processing applications running on Apache Apex. These operators

provide capabilities for, e.g., communicating with Apache Kafka [HMG+19].

20

chapter 2: Background

Hazelcast Jet

Hazelcast Jet is the name of Hazelcast’s stream processing engine. Hazelcast

itself is a distributed in-memory data grid (Hazelcast IMDG, short Hazelcast).

Similar to, e.g., Apache Spark and Apache Flink, Hazelcast is developed using

a JVM language, namely Java. The development of Hazelcast started as an

open-source project under the Apache License 2.0. The same-named Hazelcast

incorporation added commercially licensed enterprise features in 2013. In 2014,

the company bundled these additional functionalities into Hazelcast Enterprise.

Currently, Hazelcast Inc. offers the commercial versions named Hazelcast IMDG

Enterprise and Hazelcast IMDG Enterprise HD. The latter one extends Hazel-

cast IMDG Enterprise by, e.g., a high-density memory store. Additionally, there

is a Hazelcast Jet Enterprise component. It extends Hazelcast Jet by, e.g., se-

curity features and a lossless restart functionality7[Luc15].

From an architectural point of view, Hazelcast Jet is different from both,

Apache Spark and Apache Flink, due to its so called masterless design. The

oldest node a cluster represents the de facto leader. As such, it manages, e.g.,

data responsibilities within the cluster. Hazelcast organizes the data in shards

or partitions, which are distributed equally among the cluster. Furthermore,

it keeps data backups at multiple nodes to prevent data loss in case of a node

failure [Joh15].

Application
——————
Hazelcast Jet

Application
——————
Hazelcast Jet

Application
——————
Hazelcast Jet

Figure 2.10: Architecture of a Hazelcast Jet deployment in the embedded mode
with three nodes (based on7,[Joh15])

There are two deployment modes supported for both, Hazelcast IMDG and

Hazelcast Jet: the embedded mode and the client-server mode. Figure 2.10 and

Figure 2.11 visualize the embedded and client-server deployment respectively.

Each architecture illustration comprises three Hazelcast Jet nodes. Both figures

7https://docs.hazelcast.org/docs/3.12.4/manual/html-single/index.html, accessed:
2020-12-09

21

https://docs.hazelcast.org/docs/3.12.4/manual/html-single/index.html

chapter 2: Background

show the mentioned absence of a dedicated master within a Hazelcast cluster.

In the embedded deployment mode of Figure 2.10, both the application as well

as Hazelcast Jet share a single JVM. This design has the advantage of, e.g.,

low-latency data access due to the tight coupling of application and Hazelcast

Jet. A downside of the embedded mode is its inability to scale the application

and data processing engine/data persistence independently7[Joh15].

Figure 2.11 visualizes a client-server deployment with three nodes and two

applications. The Hazelcast Jet cluster can be created, scaled, and managed

independently from any application that is supposed to run on this cluster. This

setup brings isolation or separation of application and cluster but also introduces

challenges. For instance, one has to pay more attention to the classpaths of both,

application and cluster nodes [Joh15].

ApplicationApplication

Hazelcast Jet

Hazelcast Jet

Hazelcast Jet

Figure 2.11: Architecture of a Hazelcast Jet deployment in the client-server
mode with three nodes and two applications (based on7,[Joh15])

Comparison of the Presented Data Stream Processing Systems

In the following, we compare the presented DSPSs with regard to selected as-

pects to create a consolidated overview.

Organisational Background

Except for Hazelcast Jet, all DSPSs represent a project of the Apache Software

Foundation. All of them are open-source or at least there is an open-source

version of the system. Apache Flink and Apache Spark originate from university

projects, while the others have evolved from the industry. Hazelcast already

started as an open-source project. Furthermore, behind Apache Flink, Apache

Spark, Apache Apex, and Hazelcast Jet, there is or used to be a company making

contributions to the system or monetizing an extended enterprise version or

services around it.

22

chapter 2: Background

Programming Languages

Each of the presented DSPSs is mainly written in a JVM language. While

Apache Spark is mainly written in Scala, all other systems are primarily devel-

oped using Java. For application development, all systems offer comprehensive

Java APIs. Writing stream processing programs in Scala or Python is also sup-

ported by, e.g., Apache Spark Streaming and Apache Flink. SQL can be used

to a limited functional degree within Apache Flink8, Apache Spark Streaming9,

and Apache Apex10. Hazelcast Jet has no plans to enable SQL support as

it focuses on Java as the language for application development11. All of the

presented DSPSs support the abstraction layer Apache Beam for the develop-

ment of stream processing programs12. With respect to programming languages,

Apache Beam offers a Java, Python, Go, and Scala software development kit

(SDK)13. Section 2.1.2 introduces the abstraction layer Apache Beam in more

detail.

System Architecture

The vast majority of the presented DSPSs follow a master-worker pattern, mean-

ing there is a kind of master node with a coordinating character and multiple

worker nodes that perform the data processing. The only exception is Hazelcast

Jet. In a Hazelcast cluster, all nodes are of the same type, i.e., a cluster only

consists of worker nodes.

Data Processing Model

All presented DSPSs except for Apache Spark Streaming analyze data in a tuple-

by-tuple fashion. Apache Spark Streaming processes data in micro-batches.

Data Processing Guarantees

All presented systems guarantee exactly-once processing, i.e., each input tuple

is processed exactly once. This ensures correct results also in recovery scenar-

ios [HMG+19].

8https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/, ac-
cessed: 2020-12-09

9https://spark.apache.org/docs/latest/streaming-programming-guide.html, accessed:
2020-12-09

10https://apex.apache.org/docs/malhar-3.7/apis/calcite/, accessed: 2020-12-09
11ttps://jet.hazelcast.org/faq/, accessed: 2020-12-09
12https://beam.apache.org/documentation/runners/capability-matrix/, accessed; 2020-

12-09
13https://beam.apache.org/get-started/beam-overview/, accessed; 2020-12-09

23

https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://apex.apache.org/docs/malhar-3.7/apis/calcite/
ttps://jet.hazelcast.org/faq/
https://beam.apache.org/documentation/runners/capability-matrix/
https://beam.apache.org/get-started/beam-overview/

chapter 2: Background

2.1.2 Apache Beam

Apache Beam describes itself as a unified programming model, which allows

defining batch and stream processing applications. Multiple Apache Beam SDKs

are provided for this purpose. Currently, there are SDKs for four programming

languages: Java, Python, Go, and Scala13. The Apache Beam project itself

mainly contains Java code14.

Instead of developing an application for a single DSPS, Apache Beam allows

writing programs that are compatible with any of the execution engines it sup-

ports. Engine-specific runners translate the Apache Beam code to the target

runtime. Using such an abstraction layer theoretically allows for an arbitrary

exchange of engines without the need for code adaption.

Next to Apache Flink, Apache Spark, Apache Apex, and Hazelcast Jet, there

are further frameworks that support the execution of applications developed

with the Apache Beam SDK12. These are, e.g., Apache Samza [NPP+17], IBM

Streams15, and Google Cloud Dataflow16. So the group of supported execution

engines covers both, closed-source systems, such as Google Cloud Dataflow and

IBM Streams, as well as open-source systems. Apache Beam itself resulted out

of the donation of the Cloud Dataflow SDKs and programming model [ABC+15]

to the Apache Software Foundation17.

For supporting Apache Beam, a DSPS needs to have a corresponding Apache

Beam runner. This runner transforms an Apache Beam application to a pro-

gram, which can be executed on the corresponding DSPS. The runner only

provides the asynchronous method run(Pipeline), which takes and executes the

developed Apache Beam application. The function returns a runner-specific

PipelineResult object, which is an application descriptor for the DSPS that

offers functionality for, e.g., checking the program’s status or cancelling it18.

The Apache Beam project provides central components for application de-

velopment. Selected core components are, based on [ABC+15, HMG+19] and

online ressources19,20, presented in the following:

• Pipeline represents the entire application definition, including data input,

transformation, and output.

14https://github.com/apache/beam, accessed: 2020-12-09
15https://www.ibm.com/de-en/marketplace/stream-computing, accessed: 2020-12-15
16https://cloud.google.com/dataflow/, accessed: 2020-12-15
17lhttps://cloud.google.com/blog/products/gcp/cloud-dataflow-apache-beam-and-

you, accessed: 2020-12-17
18https://beam.apache.org/contribute/runner-guide/, accessed: 2020-12-17
19https://beam.apache.org/documentation/programming-guide/, accessed: 2020-12-17
20https://github.com/apache/beam/blob/master/website/src/contribute/runner-

guide.md, accessed: 2020-12-17

24

https://github.com/apache/beam
https://www.ibm.com/de-en/marketplace/stream-computing
https://cloud.google.com/dataflow/
lhttps://cloud.google.com/blog/products/gcp/cloud-dataflow-apache-beam-and-you
lhttps://cloud.google.com/blog/products/gcp/cloud-dataflow-apache-beam-and-you
https://beam.apache.org/contribute/runner-guide/
https://beam.apache.org/documentation/programming-guide/
https://github.com/apache/beam/blob/master/website/src/contribute/runner-guide.md
https://github.com/apache/beam/blob/master/website/src/contribute/runner-guide.md

chapter 2: Background

• PCollection embodies an immutable distributed data set that can be

either bounded or unbounded. The latter is used for data stream process-

ing applications. It can be created through, e.g., reading from an external

source, such as Apache Kafka. Different Pipeline objects cannot share a

PCollection object. Random access of data elements is not supported.

• PTranform represents a data transformation. It receives one or more

PCollection objects and applies a transformation on each input record.

The transformation itself is provided as a function object and might be

distributed across worker nodes, depending on, e.g., the runner and execu-

tion engine. Applying a transformation to data leads to an output of zero

or more PCollection objects. Moreover, read or write operations on exter-

nal storage systems are realized using PTransform objects. Apache Beam

provides some core transforms as well as composite transforms, which are

a combination of core transforms. Examples for the latter are functions

for counting or combining collection records. It is also possible to cre-

ate custom composite transforms. Selected standard Apache Beam core

transforms are outlined in the following:

– ParDo is a parallel element-by-element processing of data. The pro-

cessing of a single element can lead to zero or more elements in the

output PCollection. The actual transformation needs to be defined

as a DoFn object, which represents a distributed processing func-

tion in the context of Apache Beam. Such a distributed processing

function, which is technically a subclass of DoFn, has to fulfill two

requirements due to Apache Beam’s concept of distributed data pro-

cessing:

∗ Serializability, as the serialized function needs to be transmitted

to remote worker nodes. Although the parent class is serializ-

able, it is important as non-serializable attributes must not be

added in the subclass. It impacts application design as, e.g.,

loading large amounts of data into fields should be avoided prior

to serialization for performance reasons.

∗ Thread-Compatibility - the Apache Beam SDK is not thread-safe.

A function object is only accessed by one thread at a time, but

a subclass can create its own threads. Due to this absence of

thread-safety in the Apache Beam SDK, thread synchronization

is up to the application developer.

Additionally, it is recommended but not required to implement a

25

chapter 2: Background

DoFn function object in an idempotent fashion. Doing so ensures it

can be executed multiple times without causing unintended effects.

That is since Apache Beam does not provide guarantees on the num-

ber of executions.

These two outlined requirements also hold true for the Combine and

Window transforms of Apache Beam, i.e., for subclasses of Com-

bineFn as well as WindowFn, respectively. Both of them are ex-

plained later on.

– GroupByKey, as the name already states, processes key-value pairs

and collects all values belonging to the same key. It is an aggregation

operation that outputs pairs consisting of a key and a collection of

values that belong to this key. For use with streams, one must use an

aggregation trigger or non-global windowing to enable the grouping

to be applied to a finite data set.

– CoGroupByKey is similar to GroupByKey. The difference is that

there are two or more key/value PCollection objects, on which

CoGroupByKey performs a relational join. Regarding its use with

unbounded data sets, the same holds true as for GroupByKey.

– Combine melds a collection of values. This can either done in an

entire PCollection or by key, e.g., in succession of a GroupByKey op-

eration to combine multiple values associated with a certain key to

a single value. For applying the Combine transform, a correspond-

ing function has to be passed. For advanced combine algorithms,

Apache Beam provides the CombinFn class, similar to the previously

described DoFn class. So subclasses can be developed, for which the

same requirements exist as for DoFn subclasses.

– Flatten merges the data of multiple PCollection objects that contain

data of the same type into a single PCollection.

– Partition allows to split a single PCollection object that contains

data of the same type into multiple smaller PCollection objects based

on a passed partitioning function. The number of partitions needs to

be determined at graph construction time, i.e., it cannot be defined

or changed based on calculations within the application.

Moreover, Apache Beam supports windowing, which divides a PCollection

based on, e.g., its elements’ timestamps. Aggregating transforms like Group-

ByKey, CoGroupByKey, and Combine implicitly work with windows as they

can only process finite data sets. A trigger defines when to emit results of

26

chapter 2: Background

an aggregation on a data stream. Apache Beam provides standard window

functions, but also allows for creating individual ones. For that, it offers the

WindowFn class, which has the same restrictions and design principle as DoFn

and CombineFn. Provided window functions are, e.g.,:

• Fixed Time Window is used to divide a PCollection into tumbling,

i.e., not overlapping windows of a defined period of time, e.g., 60 seconds.

Assuming the application starts at 12:00:00, the first window contains all

elements with a timestamp up to but not including 12:01:00. Accordingly,

the second window comprises elements with timestamps belonging to the

interval [12:01:00, 12:02:00).

• Sliding Time Window is like a fixed time window, but with a possi-

ble overlap, i.e., elements might belong to more than one window. An

example is a window of 60 seconds, which is recalculated every 30 sec-

onds. Referring to the previous example, the first window is identical,

with the timestamp interval [12:00:00, 12:01:00). However, the second

window contains elements belonging to the interval [12:00:30, 12:01:30).

Consequently, there could be elements belonging to both windows.

Besides these two common window types, Apache Beam supports, e.g., a

single global window as well as session and calendar-based windows. The lat-

ter represents a time-based window with large time spans, particularly days,

months, or years 21.

2.1.3 Messaging System Apache Kafka

Apache Kafka was originally developed at LinkedIn in 2010 [Kos16] and is of-

ten employed in combination with a DSPS for storing data, e.g., at Bouygues

Telecom [Abd15] and Zalando [VL16]. Kreps, Narkhede, and Rao [KNR11]

described Kafka in 2011 as a distributed messaging system for log processing.

To be more concrete, the core of Apache Kafka is a publish-subscribe system

implemented as a distributed commit log, in which applications can store data.

Over the years, Apache Kafka enlarged its scope through extensions that were

built around or on top of it. An example is Kafka Streams22, a client library for

developing stream processing applications. When talking about Apache Kafka

within this dissertation, we refer to its message broker core.

On a technical level, an Apache Kafka cluster consists brokers and is con-

nected to producers, i.e., applications that send data to Apache Kafka, and

21https://beam.apache.org/releases/javadoc/2.0.0/org/apache/beam/sdk/transforms/
windowing/CalendarWindows.html, accessed: 2021-07-17

22https://kafka.apache.org/documentation/streams/, accessed: 2020-12-18

27

https://beam.apache.org/releases/javadoc/2.0.0/org/apache/beam/sdk/transforms/windowing/CalendarWindows.html
https://beam.apache.org/releases/javadoc/2.0.0/org/apache/beam/sdk/transforms/windowing/CalendarWindows.html
https://kafka.apache.org/documentation/streams/

chapter 2: Background

consumers, i.e., application that retrieve data from Apache Kafka. A cluster

consists of multiple, numbered Apache Kafka brokers. These brokers store data

assigned to topics. Data producers send data to a certain topic, stored in the

cluster. Multiple messages can be published with a single send request for per-

formance reasons. Consumers subscribe to a topic and are forwarded new values

sent to this topic as soon as they arrive. Similar to send requests, a data pull can

also retrieve multiple messages, although Apache Kafka consumer APIs might

make it look like there is a single request per message [HMU20, KNR11].

Data stored in Apache Kafka is organized in topics, which are divided into

partitions. The number of topic partitions can be configured at the time of topic

creation. Partitions of a single topic can be distributed across different brokers

of a cluster. Additionally, it is possible to define a replication factor for each

topic, with one being the minimum. Using this approach, data loss in the case

of a broker failure can be prevented. In the context of replication, Apache Kafka

defines a so-called leader and followers for each partition. The leader handles

all reads and writes for the corresponding topic partition, whereas the followers

copy or replicate the inserted data.

An example architecture of an Apache Kafka cluster with three brokers, two

topics, three producers, and three consumers is visualized in Figure 2.12. While

topic1 has two partitions, named part1 and part2, topic2 only has one parti-

tion. The leading partitions are marked in bold type. The remaining partitions

represent replicas. While topic1 has a replication factor of one, meaning one

replica for each partition, the second topic has two replicas.

Broker #1

topic1 / part1
topic1 / part2
topic2 / part1

Producer A

Consumer A Consumer C

Producer B

Consumer B

Broker #2

topic1 / part1

topic2 / part1

Broker #3

topic1 / part2
topic2 / part1

Apache Kafka Cluster

Figure 2.12: Example architecture of an Apache Kafka cluster with three bro-
kers, two topics, two producers, and three consumers (based on [KNR11])

23https://kafka.apache.org/documentation/, accessed: 2020-12-18

28

https://kafka.apache.org/documentation/

chapter 2: Background

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5

Partition 0

Partition 1

old new

writes

Figure 2.13: Storage concept of an Apache Kafka topic with two partitions
(based on23)

Figure 2.13 visualizes the structure of an Apache Kafka topic with two

partitions. Each of these partitions is an ordered and immutable record se-

quence where new values are appended. A sequential number is added to each

record within a topic partition, which is referred to as the offset in the con-

text of Apache Kafka. The absence of an explicit message id reduces over-

head for Apache Kafka, as, e.g., auxiliary random-access index structures be-

come obsolete. A message order across partitions is not guaranteed by Apache

Kafka [HMU20, KNR11].

Apache Kafka provides the topic consumer offsets for storing the offsets.

However, consumers must manage their offset. They can commit their current

offset either automatically in certain intervals, or manually. The latter can

be done either synchronously or asynchronously. A consumer needs to pass

the offset to the cluster when polling new records. Apache Kafka returns all

messages with a greater offset, i.e., all new messages that have not already been

sent to this consumer. As the consumer has control over its offset, it can also

decide to start from the beginning and so to reread messages23.

Not managing consumer offsets at the brokers reduces their complexity. Con-

sequently, Apache Kafka brokers do not know which messages have been already

polled by a consumer, which otherwise could be a criterion for deleting messages

from the log. Instead, messages are deleted either based on their age, meaning

there is a configurable retention time, or after a certain configurable amount of

data has been reached [HMU20, KNR11].

Technically, a topic partition consists of a set of segment files of approxi-

mately the same size, e.g., 1 GB. New data will be appended to the last segment

file. To increase performance, the segment files are not necessarily flushed to

disk each time after a new record is appended. Particularly, flushing is config-

urable and done based on the number of published messages or the elapsed time.

In this context, it is important to take into account that only after messages are

flushed, they become available for consumption [HMU20, KNR11].

29

chapter 2: Background

Apache Kafka provides the LogAppendTime setting, which induces Apache

Kafka to assign a timestamp to each message once it is appended to the log.

The existing alternative is CreateTime, which represents the default mode. In

this setting, the timestamp created by the Apache Kafka producer when creat-

ing the message, i.e., before sending it, is stored along with the message. For

transmitting messages, a producer can require multiple retries, which increases

the difference between the timestamp assigned to a message and the time when

it is appended to the log and thus, made available for consuming applications.

This potential delay can influence design of consuming applications.

All in all, Apache Kafka provides flexible message storing capabilities, which

are useful for data stream processing scenarios. With its distributed architec-

ture, it further provides scale-out possibilities for adapting to changed work-

loads.

2.2 Performance Benchmarking

Performance benchmarking is a wide research area that is omnipresent in sci-

entific discussions and industry. Since the 1960s, people know about the need

for evaluation methodologies for computer systems. Nowadays, we can find per-

formance benchmarks in various areas. Be it the newest graphics performance

numbers or the results of car tests comparing acceleration capabilities and the

range limits of electric vehicles, the performance of systems is often analyzed

and compared. This is crucial to get a better understanding of how such systems

behave and relate to each other, which impacts decision-making processes, e.g.,

the decision of which one to buy. This section introduces the topic of perfor-

mance benchmarking by elaborating on its definition, benchmark classifications,

and design principles for benchmarks [LC85].

2.2.1 Definition of Benchmarking

A popular book in the area of performance benchmarking for information tech-

nology (IT) is The Benchmark Handbook - For Database and Transaction Pro-

cessing Systems, which was written by Jim Gray [Gra93]. It inspired the work

presented in this dissertation. Gray describes the question performance bench-

marks in the area of IT are trying to answer as: ”What computer should I

buy?” [Gra93]. Moreover, he elaborates on the answer to this question. Ac-

cording to him, the computer or system with the lowest total cost of ownership

(TCO) that achieves the needed performance should be chosen. In contrast to

Gray, Joslin [Jos65] disregards the costs and additionally mentions that costs,

30

chapter 2: Background

as well as other factors, become irrelevant if ”the system cannot do the work-

load” [Jos65]. For Joslin, the most important question any computer evaluation

should try to answer is about how long the system will need to process the given

workload [Jos65]. However, assuming that multiple systems or configurations

can process a workload in a reasonable time, regardless of how that is defined,

money may become a relevant factor when deciding which system to buy. This

dissertation uses the definition of Vieira et al. [VMSK12] because of its universal

character. They describe performance benchmarks as ”standard procedures and

tools aiming at evaluating and comparing different systems or components in a

specific domain (e.g., databases, operating systems, hardware, etc.) according

to specific performance measures” [VMSK12]. The domain of the benchmark

presented in this work is enterprise stream processing architectures.

The idea behind the TCO mentioned by Gray is to consider not only the

purchase price when evaluating a possible acquisition of a good, but also to

include additional costs that will occur when buying it. Such costs could be

associated with the use or maintenance of the product to purchase, such as

training or service and support expenditures. Costs can be distinguished in

many ways, e.g., as fixed and variable costs or direct and indirect costs. However,

the calculation of TCO is often complex as certain aspects are hard to quantify.

This also holds true for the TCO of data stream processing landscapes when

it comes to, e.g., programming or operations costs. Moreover, many factors

cannot be assessed in isolation. The existing workforce and their skillsets or the

availability of experts are examples of aspects that impact the costs of using and

operating a certain system. Other costs, such as hardware or software costs, are

easier to determine [ES93].

The performance can be expressed in, e.g., response times or throughput key

performance indicators (KPIs). In enterprise contexts, a service level agreement

(SLA) is often used for assuring a certain performance, for instance regarding

system availability. If performance results are satisfying, benchmarks are also

used for marketing purposes, so that companies can claim that their system are

superior to the systems of their competitors. However, this imposes the dangers

of optimizing a benchmark for a certain system or optimizing a system for a

specific benchmark to improve on their results. Therefore, benchmarks should

be viewed critically regarding, e.g., whether they test the core set of system

functionalities or only a selected subset, and how the computations and results

fit the benchmark purpose [Gra93].

Besides, benchmarks are also used for system development. By using them,

efforts in the area of performance improvement can be assessed or the overall

31

chapter 2: Background

performance characteristics can be monitored over time. For instance, each code

contribution can trigger a benchmark run and the results can be compared to

the previous ones to ensure that there is no performance decrease introduced

with the new changes [Gra93].

2.2.2 Benchmark Classifications

There are different types of performance benchmarks that distinguish based on

independent aspects such as workload complexity, domain, or standardization.

Thus, classifications are multidimensional and benchmarks can belong to more

than one group. Selected benchmark categories are presented in the following

to give a brief overview of the domain. This enumeration does not aim to be a

complete summary.

One way of classifying benchmarks is by using workload characteristics and

targeted systems under test. In the following, we present selected benchmark

categories, which are determined by these aspects.

Micro and Functional Benchmarks

Micro benchmarks investigate the performance of systems when executing rather

low-level atomic operations, such as file system operations. Functional bench-

marks are located on a slightly higher level. They evaluate, e.g., a join operation

in a database context or applying a filter to a data stream. However, one can

find different classifications in literature. While, e.g., Rabl et al. [RFD+15] con-

sider the evaluation of a sorting algorithm as a functional benchmark, Huang et

al. [HHD+10] classify sorting as a micro benchmark. To overcome the question

of correct classification, we regard micro benchmarks and functional benchmarks

as one group and use both terms synonymously in the following.

Micro benchmarks are well-suited for evaluating very distinct functionality.

They allow, e.g., for comparing different implementations of a certain operator

on the same system without having to implement much code around. This would

be unnecessary code for the desired goal, i.e., benchmarking only the existing

operator implementations. The simplicity that comes with such a relatively

simple workload eases result interpretation and benefits result credibility.

The situation looks different when aiming at more complex systems, such

as business applications. These programs usually do not consist of a single

operator call. Micro and functional benchmarks provide limited insights in such

a case, because they measure only a small subset of the overall system. Having

a great performance in smaller benchmark scenarios does not necessarily result

32

chapter 2: Background

in an equally good performance when these atomic operations are combined in

a business application.

An example for a micro benchmark is HiBench [HHD+10], which is a

benchmark suite for Apache Hadoop that contains various benchmarks work-

loads. StreamBench [LWXH14] is another example, which aims at benchmark-

ing DSPSs and is presented in more detail in Chapter 5.

Application Benchmarks

Application benchmarks, in contrast to micro benchmarks, compare rather com-

prehensive programs, such as business applications. This analysis of real-world

scenarios introduces complexity, e.g., when it comes to implementing and using

the benchmark. Moreover, complex applications could make it difficult, e.g., to

understand performance differences between benchmark scenarios or interpret

results correctly.

An example for such an application benchmark is TPC Benchmark C

(TPC-C) [Cou90], a standard application benchmark for on-line transaction

processing (OLTP) defined by the Transaction Processing Performance Coun-

cil (TPC). LinearRoad [ACG+04] is another example, which represents one of

the most popular benchmarks for DSPSs. Chapter 5 presents the idea and

characteristics of LinearRoad.

Genre-Specific Benchmarks

Another classification variant for benchmarks is the division by its genre

or the domain of systems to be benchmarked. Examples are the Graph

500 [MWBA10] benchmark focusing on graph data, MLBench for machine

learning workloads [LZZ+18], and benchmarks focusing on DSPSs, such as the

afore-mentioned LinearRoad and StreamBench.

Standardized Benchmarks

To create reliability and credibility, standard bodies emerged for defining per-

formance benchmarks. Having such bodies is supposed to reduce the danger

of developing a benchmark in a way that benefits the developer’s own system

most. Popular standard bodies are, e.g.,:

• Business Application Performance Consortium (BAPCo)

This non-profit consortium was founded in 1991 and aims to develop objec-

tive performance benchmarks for popular application and industry stan-

dard operating systems (OSs). A popular BAPCo benchmark is SYSmark,

SYSmark 2018 being its latest version. It focuses on office-centric user

activities. The BAPCo website shows about 300 SYSmark 2018 results.

33

chapter 2: Background

The list of BAPCo members includes, e.g., Intel, Microsoft, and Sam-

sung24,25,26.

Although BAPCo is a standard body, they got accused by Advanced Micro

Devices (AMD) of favoring Intel in SYSmark in the early 2000s. About

ten years later, AMD left the BAPCo consortium and Intel got fined for

false advertising, amongst others, related to the BAPCo SYSmark bench-

mark [Smi10, Ung16].

• Standard Performance Evaluation Corporation (SPEC)

SPEC is a non-profit corporation founded in 1988. Similar to BAPCo, it

develops performance benchmarks and publishes benchmark results on its

website. SPEC comprises about 120 organizations, including, e.g., AMD,

Intel, and educational institutions27. It is organized into four groups:

– Graphics and Workstation Performance Group (GWPG) de-

velops graphics and workstation benchmarks and is subdivided into

three groups. These project groups are the application, graphics, and

workstation performance characterization groups. SPECviewperf is

one of the belonging benchmarks, which evaluates 3D graphics per-

formance on systems using the Open Graphics Library (OpenGL)

and the Microsoft DirectX APIs27,28.

– High Performance Group (HPG) targets high-performance sys-

tem architectures with their benchmarks. The SPEC ACCEL bench-

mark suite is one example of a benchmark belonging to HPG. This

benchmark analyzes the performance of a system when executing

computationally intense applications using hardware accelerators and

corresponding APIs for target offloading27,29.

– Open Systems Group (OSG) develops benchmarks for worksta-

tions or servers running open operating system (OS) environments.

SPEC CPU is one benchmark belonging to this group, which con-

tains a CPU or compute intense workload27,30.

– Research Group (RG) aims to promote research in the area of

performance benchmarking for both, established as well as emerging

24https://bapco.com/about/, accessed: 2020-12-20
25https://bapco.com/products/sysmark-2018/, accessed: 2020-12-20
26https://results.bapco.com/results/benchmark/SYSmark 2018, accessed: 2020-12-20
27https://www.spec.org/spec/faq/, accessed: 2020-12-20
28https://www.spec.org/gwpg/gpc.static/vp13info.html, accessed: 2020-12-20
29https://www.spec.org/accel/, accessed: 2020-12-20
30https://www.spec.org/cpu2017/, accessed: 2020-12-20

34

https://bapco.com/about/
https://bapco.com/products/sysmark-2018/
https://results.bapco.com/results/benchmark/SYSmark_2018
https://www.spec.org/spec/faq/
https://www.spec.org/gwpg/gpc.static/vp13info.html
https://www.spec.org/accel/
https://www.spec.org/cpu2017/

chapter 2: Background

technologies. Moreover, the group’s objective is to foster collabora-

tion between academia and industry. The RG is again divided into

multiple working groups based on their focus topics, e.g., big data

and cloud27,31.

• Transaction Processing Performance Council (TPC)

TPC is another non-profit corporation. It was founded in 1988 to overcome

the issue of inadequate use of benchmark results for marketing reasons.

However, even after the publication of the first standardized benchmark,

there were still complaints about misleading uses of benchmark results. In

response, TPC introduced a review process for performance benchmarks.

This process introduced requirements for extensive documentation as well

as an independent audit. All imposed qualifications need to be satisfied

before benchmark results get officially published. Nowadays, there are

certified TPC auditors for verifying the validity of such benchmark re-

sults [NLW+09].

Regarding the benchmark domain, TPC’s original objective was to cre-

ate transaction processing and database benchmarks, for which it is

well-known. Organizationally, TPC is headed by the General Council,

which consists of all TPC member companies. This group includes, e.g.,

AMD, Intel, and IBM. Underneath, there are standing and technical

subcommittees. The standing committee takes care of administrative,

public relations, and documentation topics. The technical group’s re-

sponsibilities include proposing new benchmarks and maintaining existing

ones32 [NLW+09].

One of the most popular TPC benchmarks is the before-mentioned TPC-C

benchmark, which describes itself as an OLTP benchmark. Even though

TPC-C got already approved in 1992, it is still relevant. It is still being

applied by academia and industry, which is indicated by, e.g., the TPC-

C results website. The website lists multiple recent result publications

from 201933 [Cou90]. However, Krüger et al. showed through analyzing

an SAP Business Suite system that the TPC-C workload is at least not

representative for all enterprise OLTP systems, as it contains too many

write operations [KKG+11]. This analysis showed that also standardized

benchmarks can fail to represent real-word scenarios.

31https://research.spec.org/en/working-groups.html, accessed: 2020-12-20
32http://www.tpc.org/information/who/whoweare5.asp, accessed: 2020-12-20
33http://www.tpc.org/tpcc/results/tpcc last ten results5.asp, accessed: 2020-12-20

35

https://research.spec.org/en/working-groups.html
http://www.tpc.org/information/who/whoweare5.asp
http://www.tpc.org/tpcc/results/tpcc_last_ten_results5.asp

chapter 2: Background

2.2.3 Design Principles for Performance Benchmarks

Jim Gray [Gra93] defined four criteria a benchmark designed for a certain do-

main should fulfill. These criteria influenced other publications that provide

benchmarks or guidelines in the area of benchmark development, which illus-

trates their impact [Hup09, FAS+12, BKD+14]. The benchmark proposed in

this dissertation is also based on these aspects, which are:

• Relevance, meaning that the workload should represent typical opera-

tions of the corresponding domain,

• Portability, meaning that a benchmark implementation on different sys-

tems and architectures should not be an issue,

• Scalability, meaning a benchmark should be compatible with small as

well as large architectures, and

• Simplicity, meaning a benchmark needs to be understandable to ensure

credibility [Gra93].

There is also newer work in the area of benchmark design, such as the work

by Karl Huppler [Hup09]. He defines five characteristics of good benchmarks

and mentions that it is not possible to be perfect in every aspect. According to

him, it is rather usual to have strengths in one or two of these areas. Specifically,

Huppler states that a good benchmark is:

• Relevant, i.e., results should convey they are showing something of im-

portance,

• Repeatable, i.e., multiple runs should result in the same results,

• Fair, i.e., all systems involved can equally participate, including that a

benchmark should, e.g., be portable and not be optimized for a certain

environment,

• Verifiable, i.e., there should be confidence that the benchmark results

actually represent the system under test’s (SUT’s) performance, and

• Economical, i.e., it should be affordable to implement or use the bench-

mark, not only considering the monetary costs but also, e.g., implemen-

tation efforts [Hup09].

Another work by v. Kistowski et al. [vKAH+15] analyzes multiple definitions

and summarizes the relevant aspects very similar to Huppler. The only major

36

chapter 2: Background

distinction is related to the last characteristic, i.e., the requirement of being

economical. Particularly, v. Kistowski et al. view this criteria from a broader

perspective summarized as usability. This usability aspect reflects the need

to allow benchmark users to execute a benchmark in their test environments,

without facing major obstacles. Economical hurdles can be seen as an example

of such an obstacle.

Overall, all descriptions of desired benchmark characteristics are free of con-

tradiction and have certain overlaps, e.g., with respect to workload relevance

or portability. Moreover, it is likely that the simpler a benchmark, the easier

to implement or use, and hence, more economical due to lower implementation

efforts. So there are aspects from the mentioned authors that might be viewed

differently, but that closely relate to each other.

37

3

ESPBENCH - THE ENTERPRISE

STREAM PROCESSING BENCHMARK

This chapter introduces ESPBench, the enterprise stream processing benchmark

that is one of the main contributions of this thesis. After describing the bench-

mark scenario, we introduce input data.. Subsequently, we present ESPBench’s

architecture, the benchmarking process, and the benchmark queries. At the

end of this chapter, we recapitulate the design objectives for developing a good

benchmark and how they apply for ESPBench.

The included artifacts, such as the ESPBench toolkit and the example query

implementations, have been published in a public software repository1 as well

as in an open-access research repository [HM20].

3.1 Scenario

The benchmark scenario used in the following is inspired by the Grand Chal-

lenge published in 2012 at the ACM International Conference on Distributed

and Event-Based Systems (DEBS) [JHF+12]. The scenario simulates the set-

ting of a manufacturing company that purchases materials and semi-finished

goods, which are being processed and assembled to a finished product at cer-

tain workplaces. Along this process, high-tech manufacturing machines are used

for production.

The company aims to improve monitoring and analytical possibilities regard-

ing its manufacturing processes through the use of data stream processing. It

wants to reduce the effect of irregularities by, e.g., identifying them earlier and

1https://github.com/hpi-epic/ESPBench

38

https://github.com/hpi-epic/ESPBench

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

having more information on their impact and character. Added values, e.g., a

better understanding of processes, are also created through the combination of

sensor and business data, often referred to as data integration or vertical inte-

gration in the context of Industry 4.0. While horizontal integration describes a

data integration along the value chain, e.g., by combining business data through

foreign key dependencies within the corresponding database tables, vertical in-

tegration is different. Vertical integration depicts the combination of data from

different technical levels. It stands for the connection of business data stored

in an enterprise resource planning (ERP) system with technical data, such as

sensor measurements captured at manufacturing machines. In between, there

might be other data sources that can be integrated, like machine execution

systems (MES) [HSMU19].

For realizing such a detailed production overview, sensors are employed to

the technical equipment. They keep track of multiple aspects, e.g., the amount of

electrical power consumed or the state of a release valve for a chemical additive.

Data stream processing systems (DSPSs) are a natural fit for such a use case

where continuous data analysis is needed. In order to allow interpretations of

measurements and further sense-making, the captured streaming data needs to

be integrated with traditional business data.

Manufacturing Equipment

Sensor 1

Sensor 2

Sensor 3

Embedded
PC

Message
Broker

Analysis/
Storage

Figure 3.1: Sensor architecture at the manufacturing equipment in ESPBench
(based on [JHF+12])

Figure 3.1 visualizes the sensor arrangement at the manufacturing equip-

ment. Multiple sensors are installed on a single machine. The measured data is

collected using an embedded PC, which provides the data for further analyses.

Within the benchmark scenario, there are two such machines sending sensor

values of the same structure.

39

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

3.2 Data

The data used for ESPBench comprises two major kinds of data, traditional

business data as well as sensor data. The ESPBench repository contains in-

structions on how to obtain these types of data, which is by either downloading

them from the internet or generating them using the provided benchmark tools.

Both types of data distinguish themselves from each other in multiple as-

pects, such as volume and velocity. A general overview of how the two types of

data compare with respect to selected characteristics is given in Table 3.1.

Characteristic Sensor Data Business Data

Volume and Velocity Up to multiple terabytes
created by a single
manufacturing machine,
daily [HVN16]

Multiple terabytes in
total, e.g., for a 20
years old SAP ERP in-
stallation at a leading
Canadian energy com-
pany [Sou17]

Data Quality Measurement errors,
lost data

Correctness crucial for
business

Data Manipulations No updates Updates exist
References Strong time and location

reference
Strong business process
reference

Value for Enterprises Usually not crucial for
daily business

Essential for daily busi-
ness

Table 3.1: Conceptual comparison of sensor and business data (based
on [HRM+17])

3.2.1 Sensor Data

ESPBench uses two types of data streams that need to be processed by the

SUT. The first one is based on the data set used at the DEBS Grand Challenge

2012, which contains measurements from multiple sensors combined to single

records. It is collected using an embedded PC as shown in Figure 3.1. There

are two machines sending this kind of data. The record’s structure is shown in

Table 3.2, which is almost identical to the structure used at the DEBS Grand

Challenge 2012. ESPBench extends the existing structure by a single column

containing the generated workplace id, which identifies the workplace where the

data is captured. It enables combining sensor and business data.

The original DEBS Grand Challenge 2012 data contains measurements from

analog as well as binary sensors installed at high-tech manufacturing equipment.

The latter kind produces either 0 or 1 as a value. Analog sensors send data either

40

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

Technical Information Description

1 required fixed64 ts timestamp
2 required fixed64 index message index
3 required fixed32 mf01 electrical power main phase 1
4 required fixed32 mf02 electrical power main phase 2
5 required fixed32 mf03 electrical power main phase 3
6 required fixed32 pc13 anode current drop detection cell

1
7 required fixed32 pc14 anode current drop detection cell

2
8 required fixed32 pc15 anode current drop detection cell

3
9 required uint32 pc25 anode voltage drop detection cell

1
10 required uint32 pc26 anode voltage drop detection cell

2
11 required uint32 pc27 anode voltage drop detection cell

3
12 required uint32 res unknown
13-
18

required bool bm05-bm10 chemical additive information

19-
66

optional bool pp01-pp36, pc01-
pc06, pc19-pc24

unknown

67 required fixed32 workplaceid workplace ID

Table 3.2: Data structure of the sensor measurements stream (based
on [JHF+12])

in the range of 0 to 216 − 1 or −(215) to 215. The actual data can be obtained

online2 and only requires minor benchmark-specific modifications. Particularly,

the file needs to be duplicated and each of the resulting files needs to be extended

by the workplace ID column. That can be done via a command line operation,

which is explained in the ESPBench software repository. One resulting data file

belongs to workplace one, while the other one is associated with workplace two.

The columns used for the first stream of sensor data for ESPBench queries

are mf01, mf02, and mf03, i.e., the electrical power on main phases one, two, and

three. It represents the energy consumption of the manufacturing tools. This

data is valuable for, e.g., identifying irregularities in the production process.

The data distributions of these three columns are visualized in Figure 3.2. It is

important to note that all sub-figures use a logarithmic y-axis.

The value distribution for column mf01 in Figure 3.2a shows that most values

are in the range of [13,000, 14,000). ESPBench query 3 for instance filters for

2ftp://ftp.mi.fu-berlin.de/pub/debs2012/

41

ftp://ftp.mi.fu-berlin.de/pub/debs2012/

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

[1
2
,0
0
0
,
1
3
,0
0
0
)

[1
3
,0
0
0
,
1
4
,0
0
0
)

[1
4
,0
0
0
,
1
5
,0
0
0
)

[1
5
,0
0
0
,
1
6
,0
0
0
)

[1
6
,0
0
0
,
1
7
,0
0
0
)

[1
7
,0
0
0
,
1
8
,0
0
0
)

[1
8
,0
0
0
,
1
9
,0
0
0
)

102

103

104

105

Value intervals for electrical power main phase 1

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

(a) Histogram visualizing the value distribution of column mf01 - electrical power
on main phase 1

[1
4
,0
0
0
,
1
5
,0
0
0
)

[1
5
,0
0
0
,
1
6
,0
0
0
)

[1
6
,0
0
0
,
1
7
,0
0
0
)

[1
7
,0
0
0
,
1
8
,0
0
0
)

[1
8
,0
0
0
,
1
9
,0
0
0
)

[1
9
,0
0
0
,
2
0
,0
0
0
)

[2
0
,0
0
0
,
2
1
,0
0
0
)

102

103

104

105

Value intervals for electrical power main phase 2

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

(b) Histogram visualizing the value distribution of column mf02 - electrical power
on main phase 2

[7
,3
0
0
,
7
,6
0
0
)

[7
,6
0
0
,
7
,9
0
0
)

[7
,9
0
0
,
8
,2
0
0
)

[8
,2
0
0
,
8
,5
0
0
)

[8
,5
0
0
,
8
,8
0
0
)

[8
,8
0
0
,
9
,1
0
0
)

[9
,1
0
0
,
9
,4
0
0
)

103

104

105

Value intervals for electrical power main phase 3

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

(c) Histogram visualizing the value distribution of column mf03 - electrical power
on main phase 3

Figure 3.2: Histograms visualizing the value distributions of columns mf01 –
mf03 - electrical power on main phases 1-3

42

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

values higher than about 15,000. That is where the 99.5th percentile is located.

Figure 3.2a depicts that such values exist, while not being the majority.

Figure 3.2b shows a slightly different value distribution for mf02 with the

majority of values belonging to the first bin, i.e., to the range [14,000, 15,000).

In contrast to that, the value distribution of mf03, which is visualized in Fig-

ure 3.2c, shows only a few values in the first two bins as well as in the last bin.

Most of the values of mf03 concentrate in the middle three to four bins. How-

ever, the power distribution of main phase three distinguishes from the other

two as its overall range is smaller, so the power consumption on main phase

three is less volatile. While the other two span a range of about 7,000, a range

of 2,100 is already enough to cover all values existing for main phase three.

Most of the values of mf03 are distributed across three bins. However, they

only span a range of [7,900, 8,800), which is a spread even smaller than one bin

in the previous two histograms.

The second type of data stream coming from the manufacturing equipment

consists of data about the production times, i.e., no measurements of energy

usage or comparable environment characteristics. Having these data allows for

combining sensor and business data. The data set is not part of the DEBS

Grand Challenge, but created by the ESPBench data generator tool. The data

stream’s structure is depicted in Table 3.3. It contains the order id, order line

number, production order line number, and a column that indicates whether the

corresponding product entered or left the workplace.

Technical Information Description

1 required uint32 pt o id order id
2 required uint32 pt ol number order line number
3 required uint32 pt pol number production order line number
4 required bool pt is end indicates whether a product is en-

tering or leaving a workplace

Table 3.3: Structure of the sensor data used for production time determination

The structure of the business data, which is visualized in Figure 3.3, reveals

that the first three columns shown in Table 3.3 are the primary key of the ta-

ble PRODUCTION ORDER LINE, and thus can identify the workplace. Data

specifying when products enter and leave a workplace are needed for time-based

vertical data integration. Such a scenario is, e.g., linking sensor measurements

at manufacturing machines to products, which are or have been processed at

these machines. Having such a holistic view of the value chain with detailed

production information is a significant asset for businesses, as it enables them

43

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

to gather valuable insights. These insights can lead to competitive advantages,

e.g., by providing a better customer experience through offering more details on

the production process with regard to customer orders [HMSU19].

Figure 3.3: Business data in ESPBench in Crow’s Foot Notation [Hit02] -
adapted TPC-C schema (based on [HMP+21])

3.2.2 Business Data

The schema of the business data is depicted in Figure 3.3. It is based on the

TPC-C benchmark data schema [LD93]. The data model covers basic relations,

such as CUSTOMER and ORDER, that are representative for any manufac-

turing company as well as for other industries like, e.g., consumer goods and

energy. In the context of ESPBench, we simplified the TPC-C table design with-

out impacting the query costs as we removed tables not used by the benchmark

queries. Inspired by modern ERP systems, we also added new relations, which

incorporate the domain character of industrial manufacturing. In particular, we

removed the tables WAREHOUSE, STOCK, DISTRICT, HISTORY, and NEW-

ORDER. We extended the schema by the tables PRODUCTION ORDER,

PRODUCTION ORDER LINE, and WORKPLACE, which are highlighted in

green in Figure 3.3. In the default configuration, to have a representative data

44

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

size, the business data is generated with a scale factor of three, which equals

a TPC-C setting with three warehouses. This scale factor impacts the overall

business data size and can be altered for scaling reasons.

The WORKPLACE contains information about scheduled downtimes.

These data allow to distinguish planned downtimes from irregularities that re-

quire reactions. The other two added tables store data about the production

orders, which are linked to the customer orders and workplaces. Storing business

entities, such as sales or production orders, in a header and an item table is a

common and thus a relevant concept in modern ERP systems [HMSU19, Pla09].

3.3 Architecture

Figure 3.4 shows the high-level overview of our idea of an architecture for a per-

formance benchmark focused on DSPSs. Knowing about this simplified view

helps getting a better understanding of the idea beyond ESPBench’s architec-

ture. Figure 3.4 shows three main components: the data sender, the system

under test, and the validator and result calculator.

Data Sender System Under Test
(Query Implementation)

Validator and
Result Calculator

Figure 3.4: General architecture of a data stream processing benchmark in FMC
(based on [HMRU17])

The data sender is responsible for transmitting data to the system under

test (SUT), i.e., for creating the data stream. In the context of ESPBench, or

stream processing benchmarks in general, the SUT processes incoming data and

responds according to the defined queries. Produced results are evaluated by a

result validator in order to ensure the correctness of the query implementations.

This component can also calculate benchmark result metrics, e.g., the latencies.

Computing results independently from metrics that might be provided by an

SUT ensures objectivity and comparability, as metric calculations among SUTs

might differ.

The detailed architecture of ESPBench is visualized in Figure 3.5. The com-

ponents labeled as toolkit are provided as part of ESPBench. They simplify the

application of the benchmark and ensure objective results. The single compo-

nents are introduced in detail in the following.

45

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

ESPBench
Toolkit

System
Under
Test

Data Sender

DSPS

Validator and Result Calculator

Files

Ansible Scripts

Data Sender Config

Benchmark Config

DBMS
PRODUCTION_ORDER

Table
Query

Implementation

Message Broker (Apache Kafka)

Data Generation ConfigData Generator

Input Data
Sensor

Stream #1
Sensor

Stream #2Production Times Stream Business Data

Figure 3.5: Architecture of ESPBench in FMC ([HMP+21])

3.3.1 Input Data

The input data is present as files in comma-separated values (CSV) format.

Section 3.2 describes the data characteristics and how to obtain the data. The

Sensor Stream #1 and Sensor Stream #2 files illustrated in Figure 3.5 are

slightly modified versions of the DEBS Grand Challenge data set, which can be

found online3. The other two files, i.e., the Business Data and the Production

Times Stream, are generated by the provided Data Generator tool.

3.3.2 Data Generator

The Data Generator is one of the provided benchmark tools. It is responsible

for creating two types of data as mentioned before, Business Data and the

Production Times Stream data. This data generation is fully automated by

ESPBench. The benchmark defines a configuration file for data generation that

determines the scale factor as well as the output directory for the CSV files.

3ftp://ftp.mi.fu-berlin.de/pub/debs2012/, accessed: 2021-08-28

46

ftp://ftp.mi.fu-berlin.de/pub/debs2012/

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

3.3.3 Data Sender

The Data Sender is another part of the ESPBench toolkit. It is used for two

tasks: the import of the business data into the DBMS, which is part of the SUT,

as well as the ingestion of streaming data into the Message Broker. There is

also a configuration file for the data sender. It is used for defining parameters,

such as the data input rate or the locations of the CSV files that serve as input

data.

3.3.4 Message Broker

ESPBench incorporates the message broker Apache Kafka as the interface to

the SUT. This combination of a message broker with data processing systems,

e.g., a DSPS, can be found in various existing data processing landscapes in

academia as well as industry [HRM+17]. Thus, the architectural decision to

include a message broker represents real-world environments. The message bro-

ker’s role in ESPBench reflects reality and so adds relevance to the benchmark.

Besides, message brokers are also part of other performance benchmark de-

signs [HMRU17, HRM+17, LWXH14, vDdP20].

An additional reason for using Apache Kafka is scalability with respect to

ingesting data. If the data sender was to directly send data via sockets to

the SUT, a change in the number of sockets would require changing the query

implementations, since the additional connections would need to be handled

by the SUT. Apache Kafka topics provide a solution to this challenge. As

mentioned in Section 2.1.3, an arbitrary number of Apache Kafka producers can

send data to a certain topic, which is internally distributed across the cluster

by Apache Kafka. The SUT application receives data from a topic, allowing the

number of producers to be adapted independently. The use of Apache Kafka

topics therefore allows for an arbitrary number of data senders, e.g., for scaling

data ingestion rates, without the need to modify query implementations. To

ensure the correct order of records within Apache Kafka topics, we use topics

with a single partition, which allows order preservation in Apache Kafka. This

design is visualized in Figure 3.6. This single partition allows for sufficiently

high ingestion rates as shown in Section 4.3. If higher data ingestion rates

are required and result order is not of importance, ESPBench also allows for

multiple partitions. The modification only requires an adaption of the result

validator tool.

Another reason for using Apache Kafka is latency measurements. In or-

der to achieve latency results that are as correct and comparable as possible,

47

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

Figure 3.6: Detailed view on the role of Apache Kafka within the ESP-
Bench architecture as data source and result data storage for the SUT (based
on [HRM+17])

we leverage Apache Kafka’s timestamp functionality. Specifically, we use the

LogAppendTime configuration described in Section 2.1.3. The correspondingly

captured timestamps, which represent the time when input data is made avail-

able to the SUT and when results are stored, are taken into account for latency

calculations. By doing so, it is possible to keep those calculations independent of

the SUT. Thus, no modifications of query implementations for result calculation

reasons are needed. Additionally, system-dependent differences or variations in

terms of time measurements can be preempted. That allows retrieving objective

and comparable results.

The downside of this approach is the included overhead time that is needed

for transferring messages from the Apache Kafka broker to the SUT and back.

This overhead time does not reflect the actual computation time of the SUT.

However, we do not consider that as an issue for the latency measurements

of ESPBench. Since all benchmarked systems follow the same approach, the

overhead is included in all measurements and so results remain comparable in

similar environments. This situation is given if influencing parts, such as the net-

work connection between Apache Kafka and the SUT, stay constant. Another

potential influence on the latency measurements using the proposed approach

is the batching mechanism of Apache Kafka producers. However, our analy-

ses presented in Section 4.3.2 indicate that the impact is neglectable. Thus,

48

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

the presented latency measurement approach is an objective way of calculating

latencies in the context of ESPBench. It allows for benchmarking any imple-

mentation that is able to retrieve and send data to and from Apache Kafka.

Besides, it is crucial to ensure that the message broker does not become a

bottleneck. This has to be prevented since the objective of a benchmark is to

analyze the SUT and not any of the surrounding tooling components. So in the

context of ESPBench, an input rate that Apache Kafka can manage needs to

be configured.

3.3.5 System Under Test

The SUT is responsible for answering the defined benchmark queries and is sup-

posed to comprise a DSPS and a DBMS. PostgreSQL [SR86], as a well-known

and widely used DBMS, is the default database for ESPBench. It can be ex-

changed by any other DBMS, e.g., Hyrise [GKP+10] or SAP HANA [FCP+11],

which requires minor adaptions in the toolkit. Particularly, the components

communicating with the DBMS, i.e., the data sender and validator, need to be

adapted accordingly. The SUT reads the input data from Apache Kafka and, if

needed, from the DBMS. It writes results back to either Apache Kafka or the

DBMS, depending on the query. The flexible benchmark architecture allows

analyzing applications, which are able to read from and write to Apache Kafka

and the used DBMS. So the concrete SUT architecture is up to the ESPBench

user, which means the user has a certain degree of freedom with respect to

design decisions.

3.3.6 Validator and Result Calculator

To determine the correctness of the query answers and to calculate objective

benchmark results, we provide the Validator and Result Calculator. This com-

ponent runs after the data sender and the SUT have finished. It leverages the

Akka4 framework for processing data streams. The application rereads and re-

processes the input data from Apache Kafka and, if needed, PostgreSQL. It

then calculates the query results and compares them to the output created by

the SUT.

Moreover, the Validator and Result Calculator computes latencies, i.e.,

timestamp differences. It uses the Apache Kafka timestamps or DBMS times-

tamps for that, so the times taken when a record is written to the Apache Kafka

log or DBMS. By doing so, we ensure objectivity as we do not rely on perfor-

4https://akka.io, accessed: 2020-12-22

49

https://akka.io

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

mance measurements of DSPSs, which can conceptually differ. Additionally,

performance characteristics created by systems might ignore queuing, which

would not represent the real experiences of system users. That can be avoided

by using Apache Kafka and DBMS timestamps as previously mentioned. This

concept is similar to the separation of the driver, i.e., the data sender in the

context of ESPBench, and the SUT as presented by Karimov et al. [KRK+18].

3.4 Benchmark Process

The activity diagram shown in Figure 3.7 gives a brief overview of the ESPBench

benchmark process. The visualized process steps are exchangeable and can be

extended. The entire process sums up the ansible5 scripts that we developed

for automating ESPBench in order to simplify its usage. One benchmark run

corresponds to executing all steps of Figure 3.7. Starting a benchmark run only

requires the execution of a single script. The modularization in different files

eases process adaptions, such as re-orderings, extensions, or replacements of

benchmark steps. The published ESPBench repository contains all ansible files.

Figure 3.7: ESPBench process visualized as an Activity Diagram [DtH01]
([HMP+21])

The single process steps of Figure 3.7 are described in the following:

1. At the beginning, the script sets benchmark parameters and compiles the

ESPBench project to a fat Java Archive (JAR) file using the sbt-assembly6

plugin. This tool is an extension to sbt7, a build tool for, e.g., Scala

and Java projects. The parameter setting is only relevant if parameters

are passed to the ansible script as command line parameters. If not, all

parameters are read from the configuration files defined by ESPBench.

5https://www.ansible.com, accessed: 2020-12-22
6https://github.com/sbt/sbt-assembly, accessed: 2020-12-22
7https://www.scala-sbt.org, accessed: 2020-12-22

50

https://www.ansible.com
https://github.com/sbt/sbt-assembly
https://www.scala-sbt.org

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

2. In the second step, the script creates the needed Apache Kafka topics

according to the configuration and the naming schema defined by ESP-

Bench. Furthermore, it reassigns the created topics to assure an even topic

distribution across the Apache Kafka brokers.

3. The ansible script triggers the data generator tool to perform the genera-

tion of business data according to the configuration.

4. The created business data files are copied to the DBMS server and im-

ported into the database system using the data sender tool. If tables

that are to be imported already exist in the database schema, e.g., due to

previous benchmark runs, they are truncated.

5. Afterward in the fifth step, the tool collectd8 is started on all servers to

gather system data during the benchmark run. Doing so allows to inves-

tigate detailed differences between systems or system configurations, e.g.,

with respect to the memory consumption or CPU utilization. Collecting

such data can also benefit the analyses of discovered bottlenecks.

6. Step six starts the benchmark query or queries that are to be executed in

the current benchmark run.

7. After a few seconds wait time for allowing the DSPS to process the sub-

mitted application, the script invokes the data sender tool. It sends the

streaming data to the corresponding Apache Kafka topic(s). The data

sender runs for the configured period of time. The ESPBench naming con-

vention allows query implementations to identify the needed topic names

with the data available in the configuration files.

8. Once the data sender tool finishes, the ansible script waits for some seconds

for the benchmark query or queries to finish data processing.

9. collectd is stopped and the recorded data is fetched to the server where the

ansible script was invoked, i.e., to the location where all logs and result

files are gathered.

10. At the end, the validator and result calculator tool is executed. It checks

the query result correctness and computes the benchmark results. The tool

determines aggregated results, such as the mean latency and percentiles, as

well as the single latencies for each output record. It writes the output to

log and CSV files, which can be used for further analysis, such as plotting

of single query result latencies.
8https://collectd.org, accessed: 2020-12-22

51

https://collectd.org

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

3.5 Queries

This section presents the benchmark queries designed by ESPBench that the

SUT is tasked with. When defining benchmark queries, relevance and simplic-

ity need special consideration. Having easily understandable queries is a crucial

requirement for, e.g., result credibility reasons. Without knowing what is hap-

pening during benchmark runs, it is hard to draw conclusions based on the

benchmark results. Moreover, trusting results becomes a challenge if it is un-

clear how they arose. Another aspect influenced by simplicity is the application

of the benchmark. Understanding the workload is essential for implementing

the queries for other stream processing architectures, and thus for using the

benchmark. Regarding the design goal of query relevance, the proximity of

the benchmark workload to real-world scenarios and the coverage of important

stream processing functionality need to be considered. To ensure the latter

aspect, we cover all core functionalities of DSPSs presented in Section 2.1.1.

Table 3.4 shows the queries defined by ESPBench. They fully cover the

before-mentioned core operations of DSPSs. The complete coverage ensures the

relevance of the benchmark and adds to the conducted validation of the queries

with industry partners from the industrial manufacturing domain. Next to the

use case behind each query, the covered DSPS functionalities are referenced

in Table 3.4. A query definition and a description are also part of this table.

Queries are defined using a syntax inspired by the continuous query language

(CQL) [ABW06]. Example implementations using the Apache Beam software

development kit (SDK) are available in the ESPBench software repository.

Query 1 - Check Sensor Status

The query Check Sensor Status monitors the sensor value mf01, i.e., the electri-

cal power in main phase one. This provides insights into irregularities to oper-

ators as soon as possible by calculating useful and up-to-date key performance

indicators (KPIs). The query computes the average, minimum, maximum, and

the overall number of sensor values in tumbling windows of one second. The

result records contain the four calculated values separated by a comma.

Query 2 - Determine Outliers The second query determines outliers based

on the values mf01 and mf02, i.e., the electrical power measurements for main

phases one and two of the manufacturing equipment. The query results give

hints on possible irregularities in the manufacturing equipment. We employ the

stochastic outlier selection algorithm [Jan13] on count-based tumbling windows

of 500 elements. The output consists of records with a probability of being

52

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

Use Case Tested
As-
pects*

Query Definition Description

1 Check Sen-
sors

1;2;3 SELECT AVG(mf01), MIN(mf01),

MAX(mf01), COUNT(mf01)

FROM STREAM SENSOR

TUMBLING WINDOW 1 SECONDS

Calculate avg, min,
max, count for the last
1sec for mf01 for mon-
itoring.

2 Determine
Outliers

1;6 SELECT

STOCHASTIC OUTLIERS(mf01, mf02),

outlier probability

FROM STREAM SENSOR

CUSTOM WINDOW 500 ELEMENTS

WHERE threshold >= 0.5

Calculate outliers using
Stochastic Outlier Se-
lection [Jan13] for com-
bination of mf01 and
mf02. Output records
that are an outlier with
at least 50% probabil-
ity.

3 Identify
Errors

4 SELECT * FROM STREAM SENSOR

WHERE mf01 > 14,963

Log if sensor value
electrical power main
phase 1 exceeds limit of
14,963.

4 Check
Machine
Power

5;7 SELECT * FROM

STREAM SENSOR1 AS s1,

STREAM SENSOR2 AS s2,

DB TABLE 1 AS t

WHERE (s1.M ID = t.M ID AND

s1.mf03 < 8,105 AND

(s1.TS > t.DOWNT END OR

s1.TS < t.DOWNT START))

OR (s2.M ID = t.M ID AND

s2.mf03 < 8,105 AND

(s2.TS > t.DOWNT END OR

s2.TS < t.DOWNT START))

Log if any machine
is in an unscheduled
phase of being turned
off or on stand-by
(assumption: there
is always the next
downtime stored in
DB TABLE 1).

5 Persist
Processing
Times for
Products

4;7 UPDATE PRODUCTION ORDER LINE

IF (STREAM TIMES.PT IS END == 0)

{
SET POL START TS =

(SELECT TIMESTAMP

FROM STREAM TIMES) }
ELSE {
SET POL END TS =

(SELECT TIMESTAMP

FROM STREAM TIMES) }
WHERE

POL O ID = STREAM TIMES.PT O ID

AND POL OL NUMBER =

STREAM TIMES.PT OL NUMBER

AND

POL NUMBER =

STREAM TIMES.PT POL NUMBER

Whenever a product
enters or leaves a
workplace, log the
time to the corre-
sponding DBMS entry
(PRODUCTION
ORDER LINE table).

Table 3.4: Query set of ESPBench (based on [HRM+17, HMP+21])

* 1. Windowing, 2. Transformation, 3. Aggregation/Grouping, 4. Filtering (Selec-
tion/Projection), 5. Correlation/Enrichment (Join), 6. Machine Learning, 7. Combination
with Historical Data

53

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

an outlier that is equal to or higher than 50%. This allows to identify possible

irregularities. Structurally, the output is represented as the corresponding input

sensor record plus the outlier probability correct to two decimal places, which

is separated from the corresponding sensor record by a comma.

Query 3 - Identify Errors

Query three reports actual errors. These errors are defined by the unusually

high power consumption of a manufacturing machine, i.e., a value greater than

14,963, the 99.5 percentile in the main phase one, see Figure 3.2a. The output

of query three are the corresponding input sensor records that indicate an error

situation.

Query 4 - Check Machine Power

The fourth query checks the machine power, i.e., if the electrical power is un-

expectedly low. Such a situation requires action. As input, this query gets

two structurally identical input streams from two workplaces, i.e., two manu-

facturing machines. If any of the machines are in an unplanned phase of being

shut-down or on standby, the corresponding record needs to be logged. This

is the case if the electrical power in main phase three, i.e., column mf03, falls

below the value of 8,105, the 9th percentile, and there is no downtime planned

for the machine. Planned downtimes have to be looked up in the DBMS, which

is part of the SUT. Query four creates a holistic view of a part of the manufac-

turing process by combining sensor data and historical business data. The table

WORKPLACE stores the beginning (WP DOWNTIME START) and the end

(WP DOWNTIME END) of the next scheduled downtime for any workplace,

which is identifiable by its ID (WP ID). This information is also part of the

sensor data as presented in Table 3.2.

Query 5 - Persist Processing Times

Query five represents another use case where sensor data and business data

are combined. It stores time information in the database, which allows for

the mentioned data integration, i.e., for connecting sensor data with business

data by using a timestamp-based approach. Precisely, the DBMS relation

DB PRODUCTION ORDER LINE, which contains information about the fac-

tory’s production orders, needs to be updated in query five. So contrary to

query four, which reads business data, query five manipulates data stored in

the DBMS, specifically the production times. The data input for this query is

the second type of data stream with its structure shown in Table 3.3. This data

indicates when a product or a part of it entered or left a workplace or machine.

54

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

The current timestamp needs to be set in the corresponding table column of

PRODUCTION ORDER LINE, i.e., either the start or end timestamp column

needs to be updated, depending on the incoming sensor record.

3.6 Review of Design Principles

The ESPBench design decisions are based on the four criteria defined by

Gray [Gra93], namely relevance, portability, scalability, and simplicity. Al-

though these aspects defined by Gray were already published in the early 90s,

several later work builds upon them, and thus they are still valid for state-of-

the-art benchmarks [Hup09, FAS+12, BKD+14, HRM+17]. Moreover, the great

popularity of Gray’s criteria indicates their value for the area of performance

benchmarking. The four benchmark characteristics and their translation to the

context of DSPS benchmarks are illustrated in the following.

Relevance

To satisfy the aspect of relevance, the benchmark architecture aims to repre-

sent real-world scenarios and system environments as realistically and represen-

tatively as possible. This covers data characteristics, the defined benchmark

queries, as well as involved benchmark components.

One major aspect with respect to data is the incorporation of business data

to fully reflect data characteristics at enterprises. Furthermore, relevance can be

achieved by employing real-world data in the benchmark, which ideally reflects

the characteristics of all industries. However, getting sufficient rights to use real-

world data, especially when it comes to enterprise business data, is a challenge

as many companies keep their data as a secret. That might help, e.g., to keep

or enhance possibly existing competitive advantages or to be less predictable

for competitors. Not publishing data used within a benchmark hinders the

reproduction of results and the application of the benchmark in other scenarios.

A lack of available data results in low result credibility and an overall limited

value of a benchmark for the community. This is why ESPBench only employs

data that is accessible without any restriction.

If no fitting data set is obtainable, one can generate synthetic data. This data

should be as close to real-world data as possible for relevance reasons. It can

be achieved through generating data based on previously collected real-world

data sets, which alone, i.e., without the generated part of data, would not be

sufficient regarding their size. This technique is applied by several benchmarks

as presented in Chapter 5. The details of ESPBench’s input data are described

in Section 3.2.

55

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

With respect to the data input rate, i.e., the number of incoming records per

time unit which need to be processed by the SUT, ESPBench can be configured

according to a user’s needs. This freedom of choice ensures a lasting relevance as

the user of ESPBench can adapt the data input rate in accordance with altered

environments. Technology developments that might lead to increasing input

rates in real-world scenarios thus can be benchmarked using ESPBench in its

current version.

Another area, where relevance needs to be considered, is the queries, i.e., the

logic that is going to be executed by the SUT. These queries have the objective to

answer useful and practically beneficial questions, while covering the core func-

tionalities of DSPSs. The ESPBench queries satisfy these requirements. The

relevance in terms of closeness to real-world scenarios is ensured by, e.g., validat-

ing the queries with two industry partners from the corresponding benchmark

domain, namely industrial manufacturing. Although the benchmark focuses

on a single domain, query characteristics and used functions, such as filtering

or aggregating values of a data stream, are applicable to domains apart from

manufacturing. Hence, benchmark results are also beneficial for users from dif-

ferent industries [HRM+17]. Moreover, ESPBench’s architecture and tools can

be leveraged as a platform, which can be used for defining a new benchmark

workload belonging to another domain.

Portability

To recap the portability definition, a benchmark shall be as independent from

the operating system and system as possible. As one step towards this di-

rection, ESPBench enables implementing the benchmark for as many different

environments as possible. As a consequence, a potentially large number of im-

plementations or usages can be reached, due to the obsolete or comparatively

low porting efforts. A high number of implementations contributes to a high

relevance and result credibility.

ESPBench further ensures portability by allowing for a free choice of op-

erating systems or employed technologies for the benchmark implementation.

Although DSPSs might seem like a natural fit for data stream processing, a

DSPS can potentially be exchanged with any other system or implementation

that is able to answer the defined queries. ESPBench also provides freedom of

choice when it comes to the DBMS as a recommended part of the SUT.

While minor adaptions in the toolkit are required when changing data pro-

cessing systems used as the SUT, aspects like the CPU architecture or the server

operating system can be altered without the need for code adaptions. With re-

56

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

spect to the benchmark toolkit itself, it is compatible with many operating

systems and platforms as it is developed using the Java Virtual Machine (JVM)

language Scala.

Scalability

To satisfy the requirement of scalability, ESPBench supports smaller as well

as bigger systems with regard to scale-up and scale-out architectures. Adding

main memory or CPUs to an SUT, i.e., scaling it up, might benefit the system’s

performance, while increasing the price for the tested architecture. The same

holds true for scaling out, i.e., for distributing the load on more server nodes

inside the SUT. Both scenarios are supported by ESPBench’s architecture and

its tools. ESPBench leverages a message broker as the interface to the SUT

and the result calculator. Query implementations simply subscribe to topics to

retrieve data and publish query results to a topic. This design decision creates

single endpoints. So neither a change of message broker nodes nor of SUT

nodes would require code adaptions, which means ESPBench ensures effortless

scalability in this context. In other words, ESPBench can handle any degree

of parallelism an SUT incorporates without the need for changes in the toolkit.

Additional servers result in an increased price for the benchmark architecture,

similar to upgraded hardware in scale-up scenarios.

The benchmark tools further allow to scale with regard to the size of business

data, the duration of a benchmark run, and the data input rate of the streams,

i.e., how many records are sent on the stream per time unit.

Simplicity

Simplicity is one of the most important requirements in our opinion. One action

to keep ESPBench as simple as adequate is the provision of a comprehensive and

benchmark toolkit. The toolkit comprises applications for data ingestion, query

result validation, and latency calculation. Moreover, ESPBench comes with

scripts for automating the entire benchmark process. These scripts include an

optional component for capturing system variables, such as used main memory

or CPU utilization. This functionality helps to get full insights into a system’s

behavior, without the need for benchmark users to develop their own monitoring

framework.

As a second pillar next to the toolkit, ESPBench provides an example imple-

mentation of the benchmark queries. This implementation is used for evaluating

ESPBench by benchmarking selected DSPSs. Publishing an example implemen-

tation of the queries not only allows for getting an extensive query description,

57

chapter 3: ESPBench - The Enterprise Stream Processing Benchmark

but also represents an artifact that can already be used for benchmarking differ-

ent architectures with only minor adoptions required. Multiple DSPSs can be

benchmarked with this implementation as we used the abstraction layer Apache

Beam for development. It allows executing applications on any of the supported

DSPSs.

Consequently, ESPBench is usable out-of-the-box, i.e., there is no need to

develop a data sender, result validator, latency calculator, or even to implement

the benchmark queries. Furthermore, the entire benchmark process is fully

automated. These design decisions largely contribute to ESPBench’s simplicity.

58

4

EXPERIMENTAL EVALUATION

This chapter presents the experimental evaluations of this dissertation. It is

divided into three main sections. The first section of this chapter shows the

experimental performance evaluation of selected data stream processing systems

(DSPSs) using ESPBench and the provided example query implementations.

The employed example implementations are developed using the Apache Beam

software development kit (SDK). The system under test comprises PostgreSQL

as the database management system (DBMS). Moreover, three state-of-the-art

DSPSs, namely Apache Flink, Apache Spark Streaming, and Hazelcast Jet, are

benchmarked and the benchmark results are discussed. The objective of these

experiments is the validation of ESPBench. To be more concrete, this section

showcases the functioning of the overall benchmark concept and its toolset to

gain credibility.

The second section analyzes the performance impact of Apache Beam, the

abstraction layer used in academia and industry, which we also applied for the

provided example implementation of the ESPBench queries. We study the per-

formance differences of Apache Beam applications compared to implementations

using native DSPS SDKs.

The third section evaluates the performance capabilities of Apache Kafka,

the message broker employed in ESPBench’s architecture. We study Apache

Kafka’s capabilities with respect to sustaining data ingestion rates. Knowing

about the performance limits of Apache Kafka is crucial for a correct benchmark

execution. If Apache Kafka was a bottleneck within ESPBench, Apache Kafka

itself would be benchmarked instead of the actual system under test (SUT).

59

chapter 4: Experimental Evaluation

Furthermore, we analyze the impact of batching on the timestamps taken

by Apache Kafka. As these timestamps are used for latency calculations within

ESPBench, it is crucial to understand if the batching mechanisms employed by

Apache Kafka can distort benchmark results. If so, that has to be taken into

account when calculating or analyzing latencies computed by ESPBench.

A section discussing the threats to validity with regard to the proposed

performance benchmark concludes this chapter.

4.1 Validation of ESPBench

This section presents the results of the experimental evaluation of ESPBench.

After giving an overview of the benchmark setup, we present the benchmark

results in detail as well as the lessons learned.

4.1.1 Benchmark Setup

The overall setup contains eight server nodes. We initiate the benchmark start

from one dedicated server. Particularly, we start the ansible script on this node,

which automates the benchmark execution. The DBMS PostgreSQL is deployed

on another dedicated machine. Three nodes build the Apache Kafka cluster and

the remaining three nodes contain the DSPS.

Characteristic Value

Operating System Ubuntu 18.04 LTS
CPU Intel(R) Xeon(R) CPU X7560 @ 2.27 GHz, 8 cores

(2x),
Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60 GHz, 8 cores
(1x)

RAM 57 GB (2x), 32 GB (1x)
Network 1Gbit/s:

- measured bandwidth between nodes: 117.5 MB/s
- measured bandwidth intra-node transfer: 908 MB/s

Disk 13 Seagate ST320004CLAR2000 in RAID 6, access via
Fibre Channel with 8 Gbit/s:
measured write performance about 70 MB/s

Hypervisor VMware ESXi 6.7.0
Apache Kafka Version 2.3.0
Scala Version 2.12.8
Java Version OpenJDK 1.8.0 222

Table 4.1: System characteristics of the Apache Kafka brokers for the ESPBench
validation

60

chapter 4: Experimental Evaluation

Property Value

key-serializer-class org.apache.kafka.common.serialization.StringSerializer
value-serializer-class org.apache.kafka.common.serialization.StringSerializer
batch-size 16,384 bytes
buffer-memory-size 33,554,432 bytes
acks 1
linger-time 0 ms

Table 4.2: Apache Kafka producer properties used by the data sender for the
ESPBench validation

The system characteristics of the Apache Kafka servers are listed in Table 4.1.

Table 4.2 shows the Apache Kafka producer properties that are applied by the

data sender. To ensure that Apache Kafka does not become a bottleneck, i.e., to

make sure that the SUT is benchmarked as intended, we use selected data input

rates. Particularly, we use data rates that can provenly be handled by Apache

Kafka in a setup as used. The study presented in Section 4.3 indicates that

Apache Kafka can easily handle 10,000 messages/second, which is a satisfying

ingestion rate for many current real-world scenarios. Additionally, the study

shows that input rates in such a range with the used input data characteristics

clearly do not saturate the network capacities [HMU20].

The system characteristics of the SUT nodes are listed in Table 4.3. The

evaluation benchmarks the query implementations developed using the Apache

Beam SDK, which are executed on Apache Flink, Apache Spark Streaming,

and Hazelcast Jet, each in combination with PostgreSQL. Specifically, we use

Apache Beam 2.16.0. The level of effort put into Apache Beam support by the

DSPSs is likely to be reflected in the results. Using Apache Beam for application

development is a relevant approach, which is employed by companies, such as

Lyft [KW19] and Spotify [Li17], in their data processing landscapes. However,

it is important to keep in mind that implementations using system SDKs are

likely to show a different performance [HMG+19]. The main objective of the

experiments is to validate the functioning of ESPBench with its queries and

tools.

For evaluating ESPBench, we use Hazelcast Jet’s client-server deployment

as this deployment mode provides the greatest flexibility. Due to the separation

of applications from the Hazelcast Jet cluster, one can, e.g., scale independently

regarding the application and so easily adapt to changing environments. As

scalability and flexibility are common requirements for enterprise applications,

we view the client-server deployment as the more suitable deployment option

for ESPBench and choose it over the embedded mode [Joh15]. Apache Spark

61

chapter 4: Experimental Evaluation

Characteristic Value

Operating System Ubuntu 18.04 LTS
CPU Intel(R) Xeon(R) CPU E5450 @ 3.00 GHz, 8 cores
RAM 57 GB
Network 1Gbit/s:

- measured bandwidth between nodes: 117.5 MB/s
- measured bandwidth intra-node transfer: 908 MB/s

Disk 13 Seagate ST320004CLAR2000 in RAID 6, access via
Fibre Channel with 8 Gbit/s:
measured write performance about 70 MB/s

Hypervisor VMware ESXi 6.7.0
Apache Flink Version 1.8.2
Hazelcast Jet Version 3.0
Apache Spark Version 2.4.4
PostgreSQL Version 9.6.12
Scala Version 2.12.8
Java Version OpenJDK 1.8.0 222

Table 4.3: System characteristics of the SUT nodes for the ESPBench validation

Streaming and Apache Flink, which, contrary to Hazelcast Jet, both follow a

master-worker pattern as explained before, use two nodes as workers and one

node as the master. The Hazelcast Jet installation is also distributed across

three nodes, i.e., all DSPS deployments use the same server resources. The

detailed system configurations are part of the ESPBench software repository.

4.1.2 Benchmark Results

This section presents the results of the experimental evaluation performed us-

ing ESPBench. All implementation details can be obtained in the published

benchmark artifacts, e.g., the Apache Beam query implementations or the result

validator implementation. Next to latencies, we analyze the observed memory

usage and system loads of the involved servers in order to get an understanding

of how each DSPS utilized the available resources.

Result Overview

Table 4.4 shows the overall results, i.e., the latencies for the different ESPBench

queries, which were introduced in Table 3.4, and benchmark settings. Each

query was executed three times on every system and with each data input rate,

which is sufficient due to the low variance of latency results. Table 4.4 presents

the averages of all three runs. We benchmarked data input rates of 1,000 and

10,000 messages/second, both of which are proven to be manageable by Apache

62

chapter 4: Experimental Evaluation

Query Input Rate System 90%tile in s Min in s Max in s Mean in s
1 - Sensor Status 1,000 msg/s Apache Flink 10.659 0.049 18.591 4.269

Hazelcast Jet 0.024 0.009 0.691 0.020
Apache Spark n/a n/a n/a n/a

10,000 msg/s Apache Flink 16.492 0.048 33.423 5.767
Hazelcast Jet 0.036 0.012 1.030 0.029
Apache Spark n/a n/a n/a n/a

2 - Outliers 1,000 msg/s Apache Flink 615.078 9.352 676.535 358.076
Hazelcast Jet 533.177 5.353 590.170 304.689
Apache Spark n/a n/a n/a n/a

10,000 msg/s Apache Flink 8,175.784 40.446 9,147.738 4,599.666
Hazelcast Jet 7,425.443 24.564 8,282.022 4,140.149

Apache Spark n/a n/a n/a n/a
3 - Errors 1,000 msg/s Apache Flink 0.011 0.001 0.045 0.005

Hazelcast Jet 0.021 0.004 0.158 0.017
Apache Spark 0.534 0.121 1.248 0.387

10,000 msg/s Apache Flink 14.979 0.002 19.058 4.581
Hazelcast Jet 0.016 0.005 0.795 0.014
Apache Spark 1.557 0.137 5.380 0.780

4 - Machine Power 1,000 msg/s Apache Flink 0.717 0.003 2.792 0.251
Hazelcast Jet 0.371 0.006 4.082 0.195
Apache Spark 1.008 0.141 1.966 0.644

10,000 msg/s Apache Flink 470.689 1.936 517.291 275.096
Hazelcast Jet 87.299 6.008 94.599 56.236
Apache Spark 303.432 4.255 325.951 188.158

5 - Processing Times 1,000 msg/s Apache Flink 106.892 0.506 114.750 65.261
Hazelcast Jet 88.006 1.823 96.316 51.278
Apache Spark 102.736 0.803 112.815 61.820

10,000 msg/s Apache Flink 2,028.137 2.274 2,211.899 1,136.910
Hazelcast Jet 2,129.287 6.202 2,345.790 1,170.944
Apache Spark 1,863.259 1.941 2,061.002 1,041.930

Table 4.4: Latency overview of the experimental analysis using ESPBench and
query implementations based on Apache Beam

Kafka in the employed settings [HMU20]. Thus, we ensure that the SUT is

benchmarked and not Apache Kafka. Every benchmark run lasted exactly five

minutes.

Overall, the latency results are diverse, with Hazelcast Jet often performing

best with respect to the 90th percentile of mean latencies. In the following, we

elaborate on the results of the single queries.

Query 1 - Check Sensor Status

The overall results shown in Table 4.4 reveal that Hazelcast Jet performed

significantly better than Apache Flink. Although Apache Flink’s minimum

latency is very low with a value of 49 ms, we also experienced remarkably higher

response times. The maximum response time of the Apache Flink runs is greater

than 18 s. The 90th percentile exceeds 10 s. In contrast, Hazelcast Jet’s worst

response time is about 700 ms.

Apache Spark’s response times are not taken into consideration, because the

query results were wrong, i.e., the query outputs differed from the expected

results. This is the case although we used the same Apache Beam application

63

chapter 4: Experimental Evaluation

0 50 100 150 200 250 300
10−2

10−1

100

101

Result Record Index

Latency in s
Apache Flink
Hazelcast Jet

Figure 4.1: Latencies for query 1 - check sensor status on Apache Flink and
Hazelcast Jet for a data input rate of 1,000 messages/second - Apache Spark
results not shown due to wrong query results

for all systems. It is an important finding, which highlights the necessity of

having a query result validation for performance benchmarks as published with

ESPBench.

An explanatory hypothesis for the false results can be found in Apache

Spark’s data architecture, i.e., the use of micro-batches. This concept distin-

guishes Apache Spark Streaming from the other DSPSs. Through batching

mechanisms, windows might be different. If a micro-batch represents the finest

granularity and cannot be split, it could be left out of a window even though

most of the contained records semantically belong to the window, depending on

the window semantics of the DSPS. The work by Botan et al. [BDD+10] studies

the heterogeneity in window semantics that exists among DSPSs.

Figure 4.1 visualizes the result latencies of two benchmark runs with an

input rate of 1,000 messages/second, one executed on Apache Flink and one

on Hazelcast Jet. It becomes visible that there are upward outliers for both

systems, while the overall latencies on Apache Flink are significantly higher as

mentioned before. After the Apache Flink latency reaches a new local maximum,

the latencies slowly decline step-by-step. This behavior is different from the

latency development that we can observe for Hazelcast Jet runs. For these

runs, the latency immediately jumps back to normal, i.e., the value range to

which most latencies belong, after facing an upward outlier. Figure 4.2 shows

the results for an input rate of 10,000 messages/second. It shows a very similar

result. One difference is the comparatively steady and high latencies at the

beginning of the benchmark run with Apache Flink.

64

chapter 4: Experimental Evaluation

0 50 100 150 200 250

10−1

100

101

Result Record Index

Latency in s
Apache Flink
Hazelcast Jet

Figure 4.2: Latencies for query 1 - check sensor status on Apache Flink and
Hazelcast Jet for a data input rate of 10,000 messages/second - Apache Spark
results not shown due to wrong query results

Query 2 - Determine Outliers

The overall latencies of Table 4.4 show significantly higher values for the second

query than for query one. Hazelcast Jet again outperforms Apache Flink. How-

ever, there is only a relatively small difference between both systems. Executing

the query implementation for Apache Spark revealed a valuable finding. The

Apache Spark system throws an exception when submitting the Apache Beam

query implementation to it: java.lang.IllegalStateException: No TransformEval-

uator registered for UNBOUNDED transform View.CreatePCollectionView.

This exception is related to the missing support for side inputs for Apache

Spark1. The observation overall indicates that the DSPS exchangeability of

Apache Beam applications is limited.

Figure 4.3 shows the latencies for the two 1,000 messages/second runs on

Apache Flink and Hazelcast Jet. Due to the high number of almost 21,000 re-

sult records, only every 500th latency is plotted. This figure illustrates another

interesting finding. The latencies of both systems show the same pattern, a

steadily growing latency, which is an indicator for records queuing in the sys-

tem. That means the outlier detection cannot be performed fast enough for the

configured input rate. This fact does not become visible when looking at the

overall latency numbers shown in Table 4.4, which indicates the importance of

the ESPBench validator feature to output single record latencies.

1https://issues.apache.org/jira/browse/BEAM-1564, accessed: 2021-08-28

65

https://issues.apache.org/jira/browse/BEAM-1564

chapter 4: Experimental Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·104

0

200

400

600

Result Record Index

Latency in s
Apache Flink
Hazelcast Jet

Figure 4.3: Latencies for query 2 - determine outliers on Apache Flink and
Hazelcast Jet for a data input rate of 1,000 messages/second - Apache Spark
results not shown due runtime exception

Query 3 - Identify Errors

The conducted benchmark runs for query three output about 1,250 er-

rors and 12,250 errors for the input rates of 1,000 messages/second and

10,000 messages/second, respectively. Figure 4.4 visualizes the latencies for the

smaller input rate, particularly every tenth latency for readability reasons. The

results of Figure 4.4 show that there are ups and downs, while all systems stay

in a certain range. Apache Spark Streaming even shows a pattern-like trend,

which might be caused by its use of micro-batches.

0 200 400 600 800 1,000 1,200

10−2

10−1

Result Record Index

Latency in s

Apache Flink
Hazelcast Jet
Apache Spark

Figure 4.4: Latencies for query 3 - identify errors for a data input rate of
1,000 messages/second

66

chapter 4: Experimental Evaluation

0 0.2 0.4 0.6 0.8 1 1.2
·104

10−3

10−2

10−1

100

101

Result Record Index

Latency in s
Apache Flink
Hazelcast Jet
Apache Spark

Figure 4.5: Latencies for query 3 - identify errors for a data input rate of
10,000 messages/second

Figure 4.5 shows the latencies for an input rate of 10,000 messages/second

on a logarithmic scale, this time every 100th latency. Hazelcast Jet and Apache

Spark Streaming again show ups and downs within a comparatively small range.

The previously observable stepwise pattern for Apache Spark Streaming is not

present anymore.

Apache Flink shows different behavior. For about half of the five-minute

benchmark run, the latencies are on a relatively high level. After this period,

the latencies drop and stay on the new level, although with relatively high

swings. This unique progress was observed in all Apache Flink runs for this

data input rate and query. It again indicates the importance of capturing and

investigating single latencies to get full insights.

Query 4 - Check Machine Power

Figure 4.6 visualizes the latencies for a run with an input rate of

1,000 messages/second. Relatively small peaks can be identified for all sys-

tems, which may be caused by garbage collection runs. Overall, there is not

a surprising insight. While peaks for Apache Spark are comparatively high

and constant throughout the five minute runtime, the peaks for Apache Flink

and Hazelcast Jet are bigger at the beginning with a decreasing trend. For

10,000 messages/second, steadily increasing latencies can be observed, similar

to the latency trend for query two visualized in Figure 4.3. It again indicates

that records were queuing up, i.e., the SUT could not keep up with the data

input rate in the benchmarked setting.

67

chapter 4: Experimental Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
·104

0

0.5

1

1.5

2

Result Record Index

Latency in s
Apache Flink
Hazelcast Jet
Apache Spark

Figure 4.6: Latencies for query 4 - check machine power for a data input rate
of 1,000 messages/second

Query 5 - Persist Processing Times

The latencies for query five are visualized in Figure 4.7. The experimental

evaluation shows steadily increasing latencies as for query two, whose latencies

are visualized in Figure 4.3. This result again shows that the SUT cannot handle

the load properly. Furthermore, the gathered results reveal that the DBMS is

the bottleneck for this write-heavy query with about 300,000 required updates

for the five-minute runs with 1,000 messages/second as data input rate.

0 0.5 1 1.5 2 2.5
·105

0

50

100

Result Record Index

Latency in s Apache Flink
Hazelcast Jet
Apache Spark

Figure 4.7: Latencies for query 5 - persist processing times for a data input rate
of 1,000 messages/second

68

chapter 4: Experimental Evaluation

System Utilizations

This section presents the measured system utilizations for the benchmark runs

highlighted before. Particularly, we analyze the system load and the used mem-

ory for query runs with an input rate of 10,000 messages/second. The measure-

ments were captured using collectd, which collected corresponding values every

ten seconds in the used settings. All figures in this subsection show 36 values,

i.e., represent a period of 360 seconds or six minutes. This allows to investigate

the systems’ behavior for the conducted five-minute benchmark runs. Values

for Apache Spark Streaming runs are not presented for the first two queries,

because these settings failed to produce correct results as explained previously

in Section 4.1.2 and Section 4.1.2. Out of the multiple benchmark runs, an

exemplary run is plotted in the following. As we did not discover noticeable

outliers or differences between benchmark runs, the plots can be considered

representative for the measured setting.

System Load

The system load gives an overview over the CPU and I/O utilization of a server,

i.e., also reflecting performance limits regarding disk writes. It is defined as the

number of processes demanding CPU time, specifically processes that are ready

to run or waiting for disk I/O. The following figures show one-minute-averages

of the system loads. This key performance indicator (KPI) is also known as

short-term system load. As we are using servers with an eight-core CPU, each

as described in Table 4.3, it is desirable that no node exceeds a system load of

eight to not over-utilize a machine [Gre17].

Overall, there is no over-utilization recognizable in the analyzed scenarios.

The highest system load is generated by Hazelcast Jet. Among the queries, the

greatest load of about five was observed for the first query.

Figure 4.8 visualizes the short-term system loads for the SUT server nodes

while executing the first query of ESPBench. Two major differences between

Apache Flink and Hazelcast Jet become visible. Firstly, all Hazelcast Jet nodes

show a higher system load than the Apache Flink node with the highest uti-

lization. Secondly, while Hazelcast Jet utilizes all three nodes, which results in

a load between approximately three and five, there is only one Apache Flink

node that shows a system load considerably greater than zero. Specifically, the

Apache Flink node with the highest utilization shows system loads between one

and two most of the time. The better system utilization of Hazelcast Jet is

likely to be a reason for the lower latencies that are associated with it for query

one compared to Apache Flink, cf. Table 4.4.

69

chapter 4: Experimental Evaluation

0 5 10 15 20 25 30 35
0

2

4

Record Index

System Load

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 Hazelcast Jet Node #1

Hazelcast Jet Node #2 Hazelcast Jet Node #3

Figure 4.8: Short-term system load for query 1

0 5 10 15 20 25 30 35
0

1

2

Record Index

System Load

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 Hazelcast Jet Node #1

Hazelcast Jet Node #2 Hazelcast Jet Node #3

Figure 4.9: Short-term system load for query 2

Figure 4.9 shows a slightly different picture. The highest values for the short-

term system loads are overall smaller compared to the observations related to

the first query, with the maximum system load being below three. The server

nodes maximally utilized by Apache Flink and Hazelcast Jet show about the

same system load level on average. While the third node is almost not utilized

by Apache Flink, the first node shows a peak at the beginning. Particularly, this

peak amounts to a system load of about 0.8. From there, it drops to utilization

of about zero. Hazelcast Jet utilizes the further two nodes slightly more, with

values fluctuating between 0.1 and 0.8. The overall schema is similar among the

systems, i.e., both DSPSs have a higher utilized node and two nodes with lower

system loads.

70

chapter 4: Experimental Evaluation

0 5 10 15 20 25 30 35
0

2

4

Record Index

System Load

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 Hazelcast Jet Node #1

Hazelcast Jet Node #2 Hazelcast Jet Node #3

Apache Spark Node #1 Apache Spark Node #2

Apache Spark Node #3

Figure 4.10: Short-term system load for query 3

Figure 4.10 visualizes the system loads for query three. The utilization

of the Hazelcast runs is similar to the one shown in Figure 4.8, i.e., higher

utilization of all three nodes. Moreover, the utilization of each Hazelcast node

is greater than the highest node utilization of all other runs. The system loads

for the Hazelcast nodes fluctuate between 2 and 4.4 most of the time. Apache

Flink again only causes a system load noticeably higher than zero at one node.

Apache Spark utilizes two nodes on about the same level as the Apache Flink

node with the highest system load. The third Apache Spark node shows a load

of approximately zero.

0 5 10 15 20 25 30 35
0

2

4

Record Index

System Load

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 PostgreSQL Node (Flink)

Hazelcast Jet Node #1 Hazelcast Jet Node #2

Hazelcast Jet Node #3 PostgreSQL Node (Hazelcast)

Apache Spark Node #1 Apache Spark Node #2

Apache Spark Node #3 PostgreSQL Node (Spark)

Figure 4.11: Short-term system load for query 4

71

chapter 4: Experimental Evaluation

Figure 4.11 and Figure 4.12 visualize the short-term system loads for query

four and five, respectively. Additionally to the content of the figures before,

these illustrations also show the utilizations of the database node, which is

incorporated for these two queries.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Record Index

System Load

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 PostgreSQL Node (Flink)

Hazelcast Jet Node #1 Hazelcast Jet Node #2

Hazelcast Jet Node #3 PostgreSQL Node (Hazelcast)

Apache Spark Node #1 Apache Spark Node #2

Apache Spark Node #3 PostgreSQL Node (Spark)

Figure 4.12: Short-term system load for query 5

Figure 4.11 draws a similar picture as Figure 4.10. One difference is the

utilization of the Hazelcast nodes, which is slightly lower than before. The

PostgreSQL node has very low utilization of less than one for all settings. Fig-

ure 4.12 shows overall lower loads with a maximum below two. Both, a Hazelcast

node and an Apache Spark node show a small peak during the run. The Post-

greSQL node load never surpasses a value of one for query five as well. So for

none of these two workloads, PostgreSQL caused a significant increase of the

system load on the server it was running on.

Used Memory

The following figures show the amount of main memory used by the SUT nodes

during the query execution. As shown in Table 4.3, each SUT node is equipped

with 57 GB of main memory. Overall, none of the nodes has used more than

18 GB RAM for any benchmark run. For every query, the overall highest mem-

ory usage can be observed for a Hazelcast Jet run. To be more concrete, query

two executed on Hazelcast Jet resulted in the greatest usage of roughly 18 GB.

Figure 4.13 shows the used main memory for the execution of query one. The

picture is similar to the corresponding system load charts, meaning Hazelcast Jet

utilizes the nodes most. While the used memory stays approximately constant

for two out of three nodes for both, Apache Flink and Hazelcast Jet, a slight

increase can be observed for one node in both settings. The used memory of

72

chapter 4: Experimental Evaluation

0 5 10 15 20 25 30 35
0

5

10

15

Record Index

Memory Used in GB

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 Hazelcast Jet Node #1

Hazelcast Jet Node #2 Hazelcast Jet Node #3

Figure 4.13: Used main memory - query 1

0 5 10 15 20 25 30 35
0

5

10

15

Record Index

Memory Used in GB

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 Hazelcast Jet Node #1

Hazelcast Jet Node #2 Hazelcast Jet Node #3

Figure 4.14: Used main memory - query 2

Hazelcast Jet nodes ranges from 7 to 16 GB. The Apache Flink cluster uses

between 1.5 to 3.5 GB of main memory on each node.

Figure 4.14 visualizes the memory usages for query two. We see a similar pat-

tern as before with two nodes having a constant memory usage and one node’s

usage increasing. However, the increase is slightly bigger than in Figure 4.13,

which results in a maximum memory usage of about 18 GB for Hazelcast Jet

and 5 GB for Apache Flink.

Figure 4.15 also looks very similar to Figure 4.13 with respect to Apache

Flink and Hazelcast Jet. The Apache Spark nodes show different behavior the

other two DSPSs. The memory consumption of node two stays almost constant

at close to 5 GB. Node one shows a slight increase at the beginning, which can be

observed for a Hazelcast Jet and Apache Flink node as well. Node three shows

73

chapter 4: Experimental Evaluation

0 5 10 15 20 25 30 35
0

5

10

15

Record Index

Memory Used in GB

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 Hazelcast Jet Node #1

Hazelcast Jet Node #2 Hazelcast Jet Node #3

Apache Spark Node #1 Apache Spark Node #2

Apache Spark Node #3

Figure 4.15: Used main memory - query 3

0 5 10 15 20 25 30 35
0

5

10

15

Record Index

Memory Used in GB

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 PostgreSQL Node (Flink)

Hazelcast Jet Node #1 Hazelcast Jet Node #2

Hazelcast Jet Node #3 PostgreSQL Node (Hazelcast)

Apache Spark Node #1 Apache Spark Node #2

Apache Spark Node #3 PostgreSQL Node (Spark)

Figure 4.16: Used main memory - query 4

a new behavior, a step-wise increase of used memory over time, which results in

a relatively high overall increase. Specifically, the memory consumption grows

from about 4.5 GB to about 13 GB.

The memory consumptions for query four are shown in Figure 4.16. While

the pattern for Apache Spark nodes looks similar to Figure 4.15, Hazelcast

Jet and Apache Flink show new patterns. Particularly, these two systems also

caused a step-wise increase in memory usage for query four. Overall, Apache

Flink nodes again use the least memory. Hazelcast Jet nodes occupy slightly

more memory than its Apache Spark counterparts. The memory usage of Post-

greSQL is identical for all setups, i.e., constant on a low level of about 1 GB.

The results for query five displayed in Figure 4.17 reveal a memory con-

sumption for the PostgreSQL nodes that is identical to query four. Thus,

74

chapter 4: Experimental Evaluation

0 5 10 15 20 25 30 35
0

5

10

15

Record Index

Memory Used in GB

Apache Flink Node #1 Apache Flink Node #2

Apache Flink Node #3 PostgreSQL Node (Flink)

Hazelcast Jet Node #1 Hazelcast Jet Node #2

Hazelcast Jet Node #3 PostgreSQL Node (Hazelcast)

Apache Spark Node #1 Apache Spark Node #2

Apache Spark Node #3 PostgreSQL Node (Spark)

Figure 4.17: Used main memory - query 5

these two queries did not noticeably impact the memory consumption of the

database node. The remaining memory consumption trends are also similar to

Figure 4.16, with a lower overall increase.

4.1.3 Lessons Learned

There are three main lessons we learned from evaluating ESPBench. The first is

the importance of having a result validation. Unfortunately, most of the existing

benchmarks lack concepts or proper tool support for this aspect. We highlight

the importance of result validation, e.g., through pointing to differing results

for the same application executed on different systems. Depending on the use

case, this might or might not be acceptable. However, it is crucial to be aware

of such a system’s behavior.

A second lesson we learned is that the portability of Apache Beam appli-

cations is not always given, i.e., it is not guaranteed that the paradigm ’write

once, execute anywhere’ holds true. In particular, we logged an exception when

running the application for query two with Apache Spark, despite successfully

executing it on Apache Flink and Hazelcast Jet.

The third main learning is that it is crucial to look at single response times.

Aggregated KPIs, such as a mean latency, often do not allow us to understand

the system’s behavior and thus, can lead to misleading conclusions. That is the

case, e.g., if latencies are steadily growing, i.e., a system cannot handle the load

and queues incoming records. It can be falsely assumed that the mean latency

determined after a limited benchmarking period is the one that can be expected

in a productive deployment, i.e., when the application is running permanently.

75

chapter 4: Experimental Evaluation

4.2 Performance Impact of Apache Beam

This section describes the conducted performance analysis of Apache Beam,

which compares stream processing applications developed using the Apache

Beam SDK with applications developed using a DSPS SDK. After presenting

the benchmark setup, the performance results are discussed. The section ends

with the lessons learned. Query implementations, as well as further applications

and scripts used for the study, can be obtained online2.

4.2.1 Benchmark Setup

This section presents the general benchmark architecture and process for analyz-

ing the performance impact of Apache Beam. That includes details on the data

ingestion concept, the query execution, and the result calculation. Moreover,

the employed benchmark queries are described.

Benchmark Architecture and Process

The overall benchmark architecture is depicted in Figure 4.18. The benchmark

process is divided into three separate and consecutive phases. The architectural

components, which are involved in the corresponding part of the process, are

marked in the figure by dashed curly brackets.

System Under Test

Message Broker
(Apache Kafka)

Data Sender
(Toolkit)Input Data Benchmark Query

Implementation

Result Calculator
(Toolkit)

1

2

3

Figure 4.18: Overview about the benchmark architecture and process for ana-
lyzing the performance impact of Apache Beam visualized using Fundamental
Modeling Concepts (FMC) (based on [HMG+19])

On the left-hand side of Figure 4.18, there is the input data. This data is

present as a text file. The data sender reads this data and forwards it to the

message broker, which in particular is Apache Kafka. The data sender tool is

taken from ESPBench. So it allows to define certain configuration parameters,

2https://github.com/guenter-hesse/ApacheBeamImpactEvaluation

76

https://github.com/guenter-hesse/ApacheBeamImpactEvaluation

chapter 4: Experimental Evaluation

such as the data ingestion rate or the level of applied Apache Kafka Producer

acknowledgments. The system under test on the right-hand side, i.e., the DSPS

to be benchmarked, executes the implemented queries. Thereby, it reads the

input data from and writes query results to the message broker. Moreover, there

is a result calculator tool developed in Scala. It reads the query output from

the message broker and, identically to ESPBench, leverages the timestamps

captured by Apache Kafka for the calculation of execution times. The three

different benchmark process steps marked in Figure 4.18 are described in the

following:

1. Data Ingestion

Firstly, the data sender inserts the input data into an Apache Kafka topic.

Particularly, the 1,000,001 records of the AOL Search Query Log3 dataset are

ingested. This dataset is also used in the StreamBench [LWXH14] benchmark.

The input topic is created with a replication factor of one and one partition in

order to ensure the correct order of messages as Apache Kafka only guarantees

the correct order for entries within a single partition. Structurally, the data file

consists of records with five tab-separated columns. These columns contain a

user ID, the query issued by the user, the time at which the query was issued,

the search result rank the user clicked on if applicable, and the search result

Uniform Resource Locator (URL) the user clicked on if applicable.

2. Query Execution

During the execution phase, each query runs ten times for each execution setup.

Meanwhile, there are no other programs executed on the system. Each DSPS

is restarted at the beginning of this benchmarking step. The stream processing

program computes the output and sends it to an Apache Kafka topic. This result

topic is also created with a replication factor of one and one partition for the

same reasons as mentioned previously. Each query is executed with a parallelism

of one and two, ten times each. Moreover, every query is implemented using

the APIs provided by the DSPS as well as using the Apache Beam SDK. So for

each query, there are twelve different query execution setups: three DSPSs ×
two parallelisms × two SDK options per system.

The mentioned parallelism is set differently depending on the system and

the used APIs. Regarding Apache Flink, it is configured using the command

line option -p or --parallelism. This parameter can be passed when sub-

3http://www.researchpipeline.com/mediawiki/index.php?title=AOL Search Query Logs,
accessed: 2020-12-29

77

http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs

chapter 4: Experimental Evaluation

mitting an application for specifying the desired degree of parallelism4. For

programs executed on Apache Spark Streaming, the configuration parameter

spark.default.parallelism5 is used. Apache Apex does not explicitly provide

an option for configuring the parallelism. So instead, we set the number of

VCOREs accordingly in the Apache Hadoop YARN configuration6 as well as

in the Apache Apex application as a directed acyclic graph (DAG) attribute7.

The approach of using this configuration option is also applied for the programs

running on Apache Apex, which are developed using the Apache Beam SDK.

All details can be found in the published artifacts2.

3. Result Calculation

Lastly, the result records are read from Apache Kafka for each query and the

time difference between the firstly inserted and the lastly inserted record is

computed. Apache Kafka is configured to use its LogAppendTime feature, i.e.,

the timestamp when a record is appended to the Apache Kafka log is stored to-

gether with the record itself. For the calculation of execution times, we use these

timestamps, which allow keeping the measurements application- and system-

independent. That is a crucial benefit with respect to result correctness, as

definitions of performance criteria vary among systems. Consequently, one can-

not rely on performance data provided by DSPSs [KRK+18]. The overhead

between having the correct result computed within the SUT and having it ap-

pended to Apache Kafka log is identical for every system and hence, results are

comparable.

With regard to the hard- and software setup, virtual machines are used

for all nodes. The Apache Kafka version 2.11-0.10.1.0 is installed on a three-

node cluster with 64 GB main memory and an Intel(R) Xeon(R) CPU E5-2697

v3 @ 2.60 GHz CPU with eight cores each. The DSPSs are installed on two

server nodes, where both nodes act as worker nodes or the equivalent. These

two nodes are identical to the Apache Kafka nodes with regard to both, main

memory and CPU. Ubuntu 14.04 is installed as the operating system on all

servers. Regarding system and framework versions, Apache Apex 3.7.0, Apache

Hadoop 2.7.3, Apache Spark 2.3.0, Apache Flink 1.4.0, and Apache Beam 2.3.0

are used. The configuration files for the different systems can be found in the

published repository2.

4https://ci.apache.org/projects/flink/flink-docs-release-1.6/ops/cli.html, ac-
cessed: 2020-12-29

5https://spark.apache.org/docs/latest/configuration.html, accessed: 2020-12-29
6http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-common/yarn-

default.xml, accessed: 2020-12-29
7https://ci.apache.org/projects/apex-core/apex-core-javadoc-release-3.6/com/

datatorrent/api/Context.OperatorContext.html, accessed: 2020-12-29

78

https://ci.apache.org/projects/flink/flink-docs-release-1.6/ops/cli.html
https://spark.apache.org/docs/latest/configuration.html
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
https://ci.apache.org/projects/apex-core/apex-core-javadoc-release-3.6/com/datatorrent/api/Context.OperatorContext.html
https://ci.apache.org/projects/apex-core/apex-core-javadoc-release-3.6/com/datatorrent/api/Context.OperatorContext.html

chapter 4: Experimental Evaluation

Query Description

Identity Read the input and output it, without performing any data trans-
formation. Can be seen as a baseline query with respect to com-
putational complexity.

Sample Read input and output only a certain percentage of data that is
randomly chosen. The number of output tuples is as big as about
40% of the number of input tuples.

Projection Read input and output only a certain column of the input record.
In the presented measurements, the values of the first column are
chosen for being included in the output.

Grep Read input and output only records that match a certain regex.
The search string used for the measurements is ”test”, which
leads to an output of 3,003 records or about 0.3 % of the number
of input records.

Table 4.5: Overview of the stateless StreamBench queries used for evaluating
the Apache Beam performance impact (based on [LWXH14])

Benchmarked Queries

The executed queries are taken from the StreamBench [LWXH14] performance

benchmark. StreamBench defines seven different queries. Four of these are

stateless, i.e., it is not required for an application to keep a state for producing

correct answers. The remaining three queries are stateful. The stateless queries

used for the benchmark presented in this paper are listed in Table 4.5. Stateful

queries are excluded as Apache Beam, at the time this study was conducted,

did not support stateful processing when programs were executed on Apache

Spark [HMG+19].

4.2.2 Performance Results

This section illustrates the performance results with regard to the measured

execution times. Moreover, the standard deviations of these execution times

and the performance impacts of using the Apache Beam SDK are presented in

detail.

Execution Times

The following charts visualize the measured average execution times for the four

benchmarked queries. On the y-axis, the combinations of system, parallelism,

and kind of implementation, i.e., using Apache Beam or system APIs, are listed.

The x-axis shows the times in seconds. The letter P denotes the degree of

parallelism.

79

chapter 4: Experimental Evaluation

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Apex Beam P1

Apex Beam P2

Apex P1

Apex P2

Flink Beam P1

Flink Beam P2

Flink P1

Flink P2

Spark Beam P1

Spark Beam P2

Spark P1

Spark P2

237.53

241.01

3.35

5.71

30.28

32.97

6.52

3.74

7.51

12.75

3.26

3.23

237.53

241.01

3.35

5.71

30.28

32.97

6.52

3.74

7.51

12.75

3.26

3.23

Average Execution Time in s

Figure 4.19: Average execution times - identity query

Figure 4.19 shows the results for the identity query. The average execution

times range from 3.23 s for Apache Spark Streaming with a parallelism of two,

to 241.01 s for the Apache Beam implementation running on Apache Apex with

the same parallelism factor. It can be seen that the query implementations

using Apache Beam are slower compared to the implementations using the APIs

provided by the corresponding systems in all cases. That is true for almost all

measurements presented in the following.

The overall shortest execution times belong to queries run on Apache Spark

Streaming, closely followed by Apache Apex and Apache Flink, both of which

have a noticeable slower average runtime for one kind of parallelism. That could

be due to outliers in the series of runs. The absolute and relative standard

deviations are shown later on in Figure 4.23 and Figure 4.24, respectively.

When looking at the runtimes of the queries implemented using the Apache

Beam SDK, differences are significantly larger. While these queries are again

fastest when running on Apache Spark, with times of 7.51 s and 12.75 s for par-

allelisms of one and two respectively, Apache Flink follows with times between

30 s and 33 s. Apache Beam queries running on Apache Apex have by far the

highest execution times with around 240 s. So the differences between the ex-

ecution times of the analyzed systems are significantly higher for the queries

implemented using Apache Beam compared to those developed using native

system APIs. In comparison to the size of these variances, distinctions between

parallelism factors are very small. These observations lead to the conclusion

80

chapter 4: Experimental Evaluation

0 20 40 60 80 100 120 140

Apex Beam P1

Apex Beam P2

Apex P1

Apex P2

Flink Beam P1

Flink Beam P2

Flink P1

Flink P2

Spark Beam P1

Spark Beam P2

Spark P1

Spark P2

118.74

125.67

4.1

3.55

26.62

26.88

2.09

3

11

11.48

2.23

2.16

118.74

125.67

4.1

3.55

26.62

26.88

2.09

3

11

11.48

2.23

2.16

Average Execution Time in s

Figure 4.20: Average execution times - sample query

that the translation of the Apache Beam runner for Apache Apex created an

execution plan that is far away from what is possible with the DSPS with respect

to performance. While there is also a performance gap for the other systems,

the one for Apache Apex is by far the largest one.

Besides, the response time difference between parallelism factors of the

Apache Beam query running on Apache Spark Streaming is noticeable. The

average execution time for the parallelism of two is close to 70 % higher com-

pared to these for the parallelism of one. As the average relative standard

deviation for these benchmark runs is low as illustrated later on, the high exe-

cution time is not caused by outliers. A reason for this observation could be the

introduced overhead regarding, e.g., data transfer, that comes with the split-up

of tasks due to parallelization, which may not pay off for simple queries like the

identity query.

Figure 4.20 displays the results for the sample query. Again, it can be seen

that the query implementations using native system APIs outperform these us-

ing the Apache Beam SDK. Moreover, the execution times of the programs that

were developed using the system APIs do not differ significantly between the

analyzed systems and parallelism factors. Compared to identity query results,

times are slightly lower overall, which could be a result of the lower number of

output records. So for, e.g., Apache Spark Streaming, the average execution

times are about 1 s lower for the sample query compared to the results for the

identity query. The Apache Beam query implementation executed on Apex is

81

chapter 4: Experimental Evaluation

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Apex Beam P1

Apex Beam P2

Apex P1

Apex P2

Flink Beam P1

Flink Beam P2

Flink P1

Flink P2

Spark Beam P1

Spark Beam P2

Spark P1

Spark P2

229.91

241.35

4.75

3.52

33.54

33.33

6.1

5.47

10.07

14.73

3.18

3.48

229.91

241.35

4.75

3.52

33.54

33.33

6.1

5.47

10.07

14.73

3.18

3.48

Average Execution Time in s

Figure 4.21: Average execution times - projection query

an exception as there is a major difference recognizable. Specifically, the average

execution times for the sample query amount to only about 50 % of the identity

query times.

With average execution times of about 2.09 s and 3 s for the sample query

developed using Apache Flink APIs for parallelisms of one and two respectively,

these numbers are below the corresponding times for Apache Apex. Thus, the

performance ranking between systems for the sample query is identical to the

ranking for the identity query. So concretely, the times for Apache Spark are

lowest, followed by these of Apache Flink and Apache Apex for both kinds of

implementation.

The results of the projection query are visualized in Figure 4.21. They are

similar to the numbers for the identity query in all aspects. This closeness leads

to the conclusion that splitting a string and accessing one column of the resulting

list does not introduce a noticeable overhead. Regarding the number of output

tuples, both queries are identical. However, the size of the result records differs.

The tuple size for the output of the projection query is smaller, as only a subset

of the columns is sent to the output topic. This reduction in output size does

not have a noticeable impact on the query performances as the results reveal.

Figure 4.22 visualizes the measurements for the grep query. These execution

times are overall the lowest ones. There are again differences between systems

and used APIs. Especially the implementations using the native APIs offered by

Apache Spark Streaming and Apache Flink have relatively low execution times

82

chapter 4: Experimental Evaluation

0 2 4 6 8 10 12 14 16 18 20 22

Apex Beam P1

Apex Beam P2

Apex P1

Apex P2

Flink Beam P1

Flink Beam P2

Flink P1

Flink P2

Spark Beam P1

Spark Beam P2

Spark P1

Spark P2

3.76

2.58

3.58

3.37

20.03

20.46

1.58

1.43

6.34

11.8

1.28

1.21

3.76

2.58

3.58

3.37

20.03

20.46

1.58

1.43

6.34

11.8

1.28

1.21

Average Execution Time in s

Figure 4.22: Average execution times - grep query

in comparison to the corresponding numbers for the other three queries. With

about 20 s, the Apache Beam version for Apache Flink is close to 7 s faster than

the corresponding sample query result with about 27 s. There is no noticeable

difference between parallelism factors.

Contrary to Apache Flink, the average execution times for queries developed

using Apache Beam and running on Apache Spark differ amongst parallelism

factors. Similar to the corresponding times for the identity query depicted

in Figure 4.19, the average execution time for a parallelism factor of two is

noticeably higher. In particular, with absolute times of about 11.8 s and 6.34 s,

a parallelism factor of two slows down the average execution time by more than

85 % in comparison to the time measured for a parallelism of one. Reasons for

that are likely the same as described for the identity query results.

A surprising result is the Apex Beam performance for Apache Apex. While

the times for the native Apache Apex implementation are about on the same

level as the corresponding results for all other queries, the ones for the query

developed using Apache Beam are remarkably lower. For the projection and the

identity query, Apex Beam results are approximately between 230 s and 240 s.

With about 120 s, the sample query performance is already significantly better.

However, with 2.58 s and 3.76 s, the execution times for the Apache Beam version

of the grep query executed on Apex are orders of magnitude lower.

A reason for the relatively low execution times could lie in the number of

output records and the resulting smaller effort that is needed for emitting query

83

chapter 4: Experimental Evaluation

outcomes. To be more concrete, the output for the grep query is significantly

lower than for the other three queries, though, the sample query already outputs

fewer tuples than the projection and the identity query.

Standard Deviations in Measured Execution Times

Figure 4.23 visualizes the absolute standard deviations with respect to the ex-

ecution times, while Figure 4.24 shows the corresponding relative standard de-

viations. The absolute standard deviations are a valuable metric to directly

asses how large the deviations might be that a user of a DSPS application has

to face. All deviation values are calculated for every system-query-SDK com-

bination. The dimension SDK distinguishes between using the Apache Beam

SDK or native system APIs for application development. Deviations for the two

parallelism factors are averaged and condensed in this way. This is done since

separate visualizations for different parallelisms would not reveal any further

insights. Additionally, the reduced number of values simplifies the analysis of

standard deviations.

0 2 4 6 8 10 12 14 16 18

Apex Beam Grep

Apex Beam Identity

Apex Beam Projection

Apex Beam Sample

Apex Grep

Apex Identity

Apex Projection

Apex Sample

Flink Beam Grep

Flink Beam Identity

Flink Beam Projection

Flink Beam Sample

Flink Grep

Flink Identity

Flink Projection

Flink Sample

Spark Beam Grep

Spark Beam Identity

Spark Beam Projection

Spark Beam Sample

Spark Grep

Spark Identity

Spark Projection

Spark Sample

0.4

7.52

10.74

17.4

0.31

0.67

0.47

0.36

0.9

0.98

2.09

1.31

0.17

3.23

0.49

0.63

0.4

0.86

1.1

0.63

0.1

0.5

0.78

0.44

0.4

7.52

10.74

17.4

0.31

0.67

0.47

0.36

0.4

7.52

10.74

17.4

0.31

0.67

0.47

0.36

0.9

0.98

2.09

1.31

0.17

3.23

0.49

0.63

0.4

0.86

1.1

0.63

0.1

0.5

0.78

0.44

Standard Deviation in s

Figure 4.23: Standard deviations for system-query-SDK combinations

84

chapter 4: Experimental Evaluation

When looking at Figure 4.23, it can be seen that there are noticeable dif-

ferences amongst systems, queries, and implementation variants. The largest

absolute standard deviations are found for queries executed on Apache Apex

and implemented using Apache Beam, the grep query being the only exception.

Between the absolute standard deviations for these three queries, there are also

noticeable differences. The sample query implemented using Apache Beam and

executed on Apache Apex shows the highest absolute standard deviation with

about 17.4 s. The projection query and the identity query follow with devia-

tions of 10.74 s and 7.52 s respectively. Apart from the Apache Apex-Apache

Beam combinations, the highest absolute standard variation belongs to the na-

tive Apache Flink identity query. In summary, the highest absolute standard

deviations vary by multiple seconds and belong to the highest overall average

execution times.

0 0.1 0.2 0.3 0.4 0.5

Apex Beam Grep

Apex Beam Identity

Apex Beam Projection

Apex Beam Sample

Apex Grep

Apex Identity

Apex Projection

Apex Sample

Flink Beam Grep

Flink Beam Identity

Flink Beam Projection

Flink Beam Sample

Flink Grep

Flink Identity

Flink Projection

Flink Sample

Spark Beam Grep

Spark Beam Identity

Spark Beam Projection

Spark Beam Sample

Spark Grep

Spark Identity

Spark Projection

Spark Sample

0.12
3.15 · 10−2

4.57 · 10−2

0.14
9.04 · 10−2

0.15

0.11
9.12 · 10−2

4.43 · 10−2

3.12 · 10−2

6.25 · 10−2

4.89 · 10−2

0.11

0.54
8.7 · 10−2

0.23
4.3 · 10−2

9.14 · 10−2

9.32 · 10−2

5.51 · 10−2

8.16 · 10−2

0.15

0.23

0.2

0.12
3.15 · 10−2

4.57 · 10−2

0.14
9.04 · 10−2

0.15

0.11
9.12 · 10−2

0.12
3.15 · 10−2

4.57 · 10−2

0.14
9.04 · 10−2

0.15

0.11
9.12 · 10−2

4.43 · 10−2

3.12 · 10−2

6.25 · 10−2

4.89 · 10−2

0.11

0.54
8.7 · 10−2

0.23
4.3 · 10−2

9.14 · 10−2

9.32 · 10−2

5.51 · 10−2

8.16 · 10−2

0.15

0.23

0.2

Relative Standard Deviation

Figure 4.24: Relative standard deviations for system-query-SDK combinations

Figure 4.24 visualizes the relative standard deviations for the measurements.

There is one value that is notably higher than others, which belongs to the

identity query executed on Apache Flink. That is not a surprising result as the

85

chapter 4: Experimental Evaluation

absolute standard deviation was identified as one of the highest, while the exe-

cution times are relatively low. Figure 4.19, which is visualizing the execution

times of the identity query, makes visible that there is a noticeable difference

between the numbers for the two parallelism factors for Apache Flink. Partic-

ularly, the execution time for Apache Flink with a parallelism of one is almost

75 % higher than the one for Apache Flink with a parallelism of two. Although

it seems to be plausible at a first glance that higher parallelisms lead to better

performance, this correlation is absent for other results.

Number of Run Parallelism = 1 Parallelism = 2

1 6.25 s 4.15 s
2 21.56 s 3.77 s
3 3.42 s 2.71 s
4 3.31 s 5.29 s
5 3.73 s 3.00 s
6 12.69 s 3.93 s
7 3.90 s 2.90 s
8 3.96 s 3.66 s
9 3.42 s 3.57 s

10 3.01 s 4.45 s

Table 4.6: Execution times for the identity query implemented using the native
system APIs and executed on Apache Flink

The analysis of the corresponding execution times provides a more detailed

picture of this setting. Table 4.6 shows the execution times for the benchmark

runs of the identity query on Apache Flink, i.e., numbers for the corresponding

ten runs with a parallelism of one as well as for the ten runs with a parallelism of

two. When looking at these measurements, it becomes clear that there are two

to three outliers that cause the observed relatively high coefficient of variation.

While the results for the higher parallelism are relatively homogeneous, there

are outliers in the list of execution times for runs with a parallelism of one.

Particularly, seven out of ten execution times range from three to four seconds.

The times for the remaining benchmark runs differ significantly. To be more

concrete, these runs lasted about 6 s, 12.5 s, and 21.5 s. So the greatest execution

time is more than seven times higher than the lowest one. These outliers are

the reason for the comparatively high relative standard deviation. Apart from

the identity query executed on Apache Flink, there are no further values that

stand out in Figure 4.24. These findings overall indicate a higher variance of

response times for the discussed experimental setting.

86

chapter 4: Experimental Evaluation

Performance Impact of Apache Beam

The performance impact factors are calculated based on the arithmetic means

of the measured execution times.

The averages are determined as follows:

t̄(dsps, query, k, p) =
1

Nrun

Nrun∑
r=1

t(dsps, query, k, p, r),

where t̄(dsps, query, k, p) denotes the average over the execution times for a

certain DSPS, query, kind of implementation, i.e., using Apache Beam or native

system APIs, and certain parallelism. Variable k represents the mentioned kind

of implementation and p denotes the used degree of parallelism. The number of

benchmark runs is expressed as Nrun, which is equal to ten for the context of

this paper. The execution time for a single query run of a certain benchmark

scenario is shown as t(dsps, query, k, p, r).

The slowdown factor calculation makes use of these arithmetic means.

Specifically, it is computed as follows:

sf(dsps, query) =
1

Np

Np∑
p=1

t̄(dsps, query,Beam, p)

t̄(dsps, query, native, p)
,

where sf(dsps, query) denotes the slowdown factor for a given DSPS and a

given query. Np depicts the number of parallelisms tested, which equals two in

the previously discussed benchmark scenario. Particularly, we applied a paral-

lelism factor of one as well as a parallelism of two. So in simplified terms, the

ratio of average execution times for Apache Beam implementations and these

using native system APIs is calculated and again averaged over parallelisms, all

for a given query and DSPS combination.

The average execution times for a certain system, query, and parallelism are

determined, separately for the Apache Beam version as well as the implementa-

tion using the DSPS SDK. The average execution time belonging to the Apache

Beam variant is then divided by the corresponding average for the native query.

That is done for every parallelism. The resulting factors for each parallelism

are finally averaged by dividing their sum by the number of parallelisms.

The result tells how much slower or faster the Apache Beam version for a

query and DSPS performed in the conducted measurements. A result greater

than one marks a slowdown, whereas a result smaller than one means that the

Apache Beam implementation was faster than the one using native system APIs.

87

chapter 4: Experimental Evaluation

0 10 20 30 40 50 60

Apex Identity

Apex Sample

Apex Projection

Apex Grep

Flink Identity

Flink Sample

Flink Projection

Flink Grep

Spark Identity

Spark Sample

Spark Projection

Spark Grep

56.58

32.17

58.46

0.91

6.73

10.87

5.79

13.51

3.13

5.13

3.7

7.37

56.58

32.17

58.46

0.91

6.73

10.87

5.79

13.51

3.13

5.13

3.7

7.37

Slowdown Factor sfdsps,query

Figure 4.25: Slowdown factors for the analyzed stream processing systems and
queries

The results for the computed slowdown factors are visualized in Figure 4.25.

It can be seen that the Apache Beam implementations are slower for almost

all DSPSs and queries in comparison to these developed using native system

APIs. Generally, one can recognize differences between the studied systems

and queries. When looking at Apache Flink and Apache Spark, the slowdown

factors are similar. This especially holds true with respect to relative distinc-

tions amongst queries. Particularly, the performance penalty for the fastest

query, namely the grep query, is highest. Accordingly, it is the lowest for the

longest-running queries projection and identity for both systems. Overall, the

performance impact on Apache Flink is slightly higher.

In contrast, the Apache Apex results show a different pattern. The highest

performance impact can be seen, contrary to Apache Flink and Apache Spark,

for the longest-running queries projection and identity. The query with the

shortest execution time, the grep query, is overall the only query where the

Apache Beam implementation is even faster than the one using native system

APIs according to the calculated slowdown factor. However, this speedup is

very low, i.e., the Apache Beam query implementation is about as fast as the

one using the SDK of Apache Apex. So with a higher number of executions,

this difference might vanish.

When looking at the slowdown factors, there are also noticeable differences

between Apache Apex and the other two analyzed systems. Except for the

88

chapter 4: Experimental Evaluation

grep query slowdown, all slowdown factors are significantly higher compared

to Apache Flink or Apache Spark Streaming. The slowdown factor for the

projection query, e.g., is about 58 and so more than four times higher than the

highest slowdown factor for either Apache Flink or Apache Spark Streaming.

In summary, the conducted benchmark shows that Apache Beam has a neg-

ative performance impact for almost all scenarios. Averaged over systems, the

performance penalty is lowest on Apache Spark, closely followed by Apache

Flink. Patterns between these two systems and executed queries are similar.

The performance impact on Apache Apex is different, meaning the impact is

significantly higher in most of the cases. Furthermore, the previously mentioned

pattern is vice-versa, i.e., the performance penalty on Apache Apex is highest

when it is lowest for the other two DSPSs. The more output a query produces or

the higher the execution time on Apache Apex, the higher the performance im-

pact of Apache Beam. The grep query running on Apache Apex is an exception

to that as explained before. Apart from this exceptional case, slowdown factors

range from about three to almost 60. Thus, in most of the studied cases, Apache

Beam has a significant influence on performance when looking at the calculated

slowdown factors. Accordingly, with respect to the experimental evaluation of

ESPBench shown before, this finding indicates that the execution of queries

implemented with the DSPS SDKs would have let to different latencies.

To analyze the differences between the execution of queries developed with

the Apache Beam SDK and with a DSPS SDK, we studied how they are exe-

cuted. Figure 4.26 and Figure 4.27 visualize the execution plans for the grep

query executed with a parallelism of one on Apache Flink, implemented with-

out and with Apache Beam, respectively. These two plans serve as an example,

which highlights the differences between the execution of an application devel-

oped using a DSPS SDK and one using the Apache Beam SDK. Information

on execution plans are retrieved from the Apache Flink system and visualized

using the Apache Flink Plan Visualizer8.

The first execution plan depicted in Figure 4.26 contains three elements, a

data source, an operator, and a data sink. Particularly, the source is shown as a

custom source, the sink as an unnamed sink, and the operator is a filter. These

details fit the definition of the grep query, as it basically filters data. Data is

forwarded along these three elements.

The second execution plan is presented in Figure 4.27. It comprises seven

elements in total. In particular, these elements are a data source, followed by

six operators. The data source at the beginning is named PTransformTransla-

8https://flink.apache.org/visualizer/, accessed: 2020-12-30

89

https://flink.apache.org/visualizer/

chapter 4: Experimental Evaluation

Data Source
Source:

Custom Source
—————

Parallelism: 1

Operator
Filter

—————
Parallelism: 1

Data Sink
Sink:

Unnamed
—————

Parallelism: 1

Figure 4.26: Execution plan of Apache Flink for the grep query implemented
using the Apache Flink SDK

Data Source
Source:

PTransformTranslation.
UnknownRawPTransform

—————

Parallelism: 1

Operator
Flat Map

—————
Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Figure 4.27: Execution plan of Apache Flink for the grep query implemented
using Apache Beam

tion.UnknownRawPTransform. PTransformTranslation is a registry of familiar

transforms and uniform resource names (URNs)9. A PTransform is used, e.g.,

for reading or writing to an external storage system.

The data source forwards data to the first operator, a flat map. This operator

performs an action on each input value and produces zero or more output values.

Its Apache Beam counterpart is the read() method of the KafkaIO class, which

creates a Read PTransform. The remaining five ParDoTranslation.RawParDo

operators follow the flat map. A ParDoTranslation comprises tools for work-

ing with instances of ParDo. A ParDo is one of the core transforms provided

by Apache Beam. The first ParDo represents calling withoutMetadata() on

the Read PTransform, which drops the Kafka metadata as it is not needed.

Moreover, the method again returns a PTransform containing a PCollection of

key-value pairs. The downstream operator represents the call of the create()

method belonging to the class Values. This operator takes the previously cre-

ated PCollection of key-value pairs and returns a PCollection containing only

9https://beam.apache.org/contribute/runner-guide/, accessed: 2020-12-30

90

https://beam.apache.org/contribute/runner-guide/

chapter 4: Experimental Evaluation

the values. Further downstream, the grep query logic is applied and resulting

values are sent to Apache Kafka9 [ABC+15, HMG+19].

When comparing both execution plans, it becomes visible that the plan

for the query implemented using Apache Beam is significantly larger, i.e., it

contains more elements in comparison to its counterpart. That is due to the

more complex management of communication with Apache Kafka and could

cause lower performance. Both plans have in common that they start with a

data source and that all elements are executed with a parallelism of one, due to

the defined degree of parallelism. A dedicated data sink cannot be identified for

the program developed using Apache Beam. Thus, the sink must be represented

as an operator.

Overall, the performance of Apache Beam applications highly depends on

the runner implementations. The effort put into this development is likely to

vary between systems. The closeness of the DSPSs’ programming model to

the underlying concepts of Apache Beam also impacts the application execu-

tion. Further details, e.g., with respect to the concrete impact of the additional

operators, could be uncovered through profiling applications. However, all mea-

surements are a snapshot in time and results may differ with different versions

of Apache Beam, other DSPS versions, or alternative system configurations.

Moreover, changed workload characteristics might also influence performance

results. More detailed analyses were out of scope for this thesis.

4.2.3 Lessons Learned

The benchmark results show that Apache Beam has a noticeable impact on the

performance of DSPSs in almost all cases. Programs developed using Apache

Beam suffered from a slowdown of up to a factor of 58 in the worst case. At the

same time, there is one scenario where the query developed using Apache Beam

is slightly faster as its counterparts using the APIs of the corresponding DSPS.

However, for most scenarios, we observed a slowdown of at least a factor three.

The results lead to two major conclusions. Firstly, using Apache Beam as

an abstraction layer for application development comes at a significant cost in

terms of runtime performance. Secondly, the results of benchmarking different

DSPSs using a program developed with Apache Beam are not likely to repre-

sent the performance differences, which are to be expected from a benchmark

with programs developed using native system SDKs. So depending on what is

supposed to be studied, benchmark users need to decide on how to implement

the benchmark queries. While using Apache Beam certainly provides greater

flexibility to switch underlying DSPSs with relatively low effort, users need to

91

chapter 4: Experimental Evaluation

be aware of the fact that this advantage comes with a negative impact on perfor-

mance. This performance penalty varies among systems and applications and

is currently hard to predict.

4.3 Performance Capabilities of Apache Kafka

Apache Kafka is a central component of ESPBench that does not belong to

the SUT. Hence, it is important to understand the performance capabilities of

Apache Kafka to ensure that the message broker does not become a bottle-

neck that distorts benchmark results. This Apache Kafka analysis section is

divided into two parts. The first part studies the ingestion rates, which can be

achieved with Apache Kafka and how configuration parameters impact these

rates. The second part analyzes the impact of the batching mechanisms em-

ployed by Apache Kafka on the timestamps taken by the broker when a record

is appended to the log.

4.3.1 Ingestion Rate Capabilities

These days, where data masses keep growing and applications move to the cloud,

horizontal scalability becomes increasingly important. Message brokers play a

central role in modern IT landscapes, as they allow us to adapt to data sources

that face rises in volume or velocity. Moreover, they can be used to decouple dis-

parate data sources from applications. Usage scenarios where message brokers

are employed are manifold and reach from, e.g., machine learning [ZL19] and

stream processing architectures [HL15, HMRU17, HRM+17] to general-purpose

data processing [ZWL+17].

When using a system within an IT landscape, it is crucial to know if the

functional and non-functional requirements for the scenarios it is supposed to

be used for are met. If non-functional requirements related to performance

are not satisfied, the system might become a bottleneck. This situation does

not necessarily mean that the system is unfit for a given use case, but can also

indicate a suboptimal system configuration. It is, therefore, a challenge for users

to know about or be able to evaluate the capabilities of a system in certain

environments and with distinct configurations. However, this knowledge is a

prerequisite for making informed decisions about whether a system is suitable

for the existing use cases. Additionally, having this information is also crucial

for finding well-fitting system configurations.

At the beginning of this section, we introduce the benchmark architecture

used for the Apache Kafka capability analysis. Afterward, we present the bench-

92

chapter 4: Experimental Evaluation

Apache Kafka
Message Broker / System Under Test

jmxtrans
JVM Metrics Collection

Graphite
Monitoring Tool w/ Storage Functionality

Grafana
Data Visualization (Dashboard)

collectd
System Metrics Collection

Figure 4.28: Monitoring architecture for the Apache Kafka analysis in FMC

mark process, followed by the data sender configurations. The ESPBench data

sender tool is used for this study. Section 4.3.1 describes the benchmark results

of the ingestion rate analyses. A brief summary follows at the end.

Benchmark Architecture

The architecture of the monitoring system is shown in Figure 4.28. We use

Grafana10, an open-source tool for creating and managing dashboards and ex-

porting data, as the graphical interface to the user. The presented benchmarks

employ version 5.4.5 of its docker image11. Operating system-level (OS-level)

virtualization through docker is used for the ease of installation and replicability

of results. The OS base image used in this image enables a simple time zone

configuration via an environment variable, which is important for time synchro-

nization among all systems. Later versions of the image contain a different OS,

specifically Alpine Linux 12, which no longer supports this feature.

Grafana fetches the data to display from Graphite13, an open-source mon-

itoring tool. It consists of three components: Carbon, Whisper, and Graphite-

web. Carbon is a service that retrieves time-series data, which is stored in

Whisper, a persistence library. Graphite-web includes an interface for designing

dashboards. However, these dashboards are not as appealing and function-

ally comprehensive as the corresponding components of Grafana, which is why

Grafana was included. For the installation of Graphite, the official docker image

in version 1.1.414 is used, again for time zone configuration reasons.

10https://grafana.com, accessed: 2020-12-30
11https://grafana.com/grafana/download/5.4.5?platform=docker, accessed: 20200-12-30
12https://alpinelinux.org, accessed: 2020-12-30
13https://graphiteapp.org, accessed: 2020-12-30
14https://hub.docker.com/r/graphiteapp/graphite-statsd/tags?page=1&ordering=

last updated&name=1.1.4, accessed: 2020-12-30

93

https://grafana.com
https://grafana.com/grafana/download/5.4.5?platform=docker
https://alpinelinux.org
https://graphiteapp.org
https://hub.docker.com/r/graphiteapp/graphite-statsd/tags?page=1&ordering=last_updated&name=1.1.4
https://hub.docker.com/r/graphiteapp/graphite-statsd/tags?page=1&ordering=last_updated&name=1.1.4

chapter 4: Experimental Evaluation

Figure 4.29: Excerpt of the developed Grafana dashboard for the Apache Kafka
analysis

Graphite receives its input from two sources: collectd and jmxtrans15. The

former runs on the broker’s machines in the described setup. The tool offers

plugins for gathering OS-level measurements, such as memory usage, system

load, and received packages over the network. Jmxtrans is a tool for collecting

Java Virtual Machine (JVM) runtime metrics. These metrics are provided via

Java Management Extensions (JMX)16. Using jmxtrans, we tracked internal

metrics, such as JVM memory usage, the number of incoming bytes, and the

number of messages entering Apache Kafka per time unit.

Apache Kafka is the system under test (SUT) in the conducted evaluation.

However, it can be exchanged for any other system running in a JVM, i.e.,

the proposed architecture is not limited to Apache Kafka or message brokers

in general. The information gathered in Graphite is summarized in a Grafana

dashboard. Exports of the collected Grafana data enable further analyses. An

excerpt of the developed Grafana dashboard is visualized in Figure 4.29. It

shows a graph presenting the one-minute rate of the number of incoming mes-

sages per second.

Apache Kafka is installed on three virtual machines with identical hardware

and configurations, which are shown in Table 4.7. We use a commodity network

setup, whose bandwidth we determined using ipfer3 17. The write performance

is measured using the Unix command-line tool dd18, specifically with the com-

mand: dd if=/dev/zero of=/opt/kafka/test1.img bs=1G count=1 oflag=dsync .

15ttps://www.jmxtrans.org, accessed: 2020-12-30
16https://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html,

accessed: 2020-12-30
17https://github.com/esnet/iperf, accessed: 2020-12-30
18https://www.gnu.org/software/coreutils/manual/html node/dd-invocation.html, ac-

cessed: 2020-12-30

94

ttps://www.jmxtrans.org
https://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://github.com/esnet/iperf
https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html

chapter 4: Experimental Evaluation

Characteristic Value

Operating system Ubuntu 18.04.2 LTS
CPU Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz, 8 cores
RAM 32GB
Network bandwidth 1Gbit:

- measured bandwidth between nodes: 117.5 MB/s
- measured bandwidth intra-node transfer: 908 MB/s

Disk min. 13 Seagate ST320004CLAR2000 in RAID 6, access
via Fibre Channel with 8Gbit/s:
measured write performance about 70 MB/s

Hypervisor VMware ESXi 6.7.0
Kafka version 2.3.0
Scala version 2.12.8
Java version OpenJDK 1.8.0 222

Table 4.7: Server characteristics of the Apache Kafka broker nodes used for the
Apache Kafka Analysis

The data sender, taken from the ESPBench toolkit, is a Scala application

compiled to a fat jar file. It is executed using OpenJDK 1.8 with the default

parallel garbage collector (ParallelGC). The data sender is assigned an initial

memory allocation pool of 1 GB, while the maximum size of this pool amounts

to about 14 GB. Apache Kafka uses an initial and maximum memory allocation

pool of 1 GB and the Garbage-First garbage collector (G1 GC).

Benchmark Execution Process

Each analysis run lasts ten minutes. The main characteristic studied is the

number of incoming or ingested messages. Particularly, the one-minute rate

of this KPI is analyzed, i.e., the number of incoming messages during the last

minute. If not stated otherwise, the data sender is executed on the broker server

where the topic is stored.

To reduce the number of manual steps needed, ansible is used for automa-

tion. Starting the ansible script triggers a build of the data sender project, the

creation of a topic, and the assignment of this topic to the first of our three

Apache Kafka brokers. For all measurements, we use topics with a single par-

tition and a replication factor of one. Having one partition is a setting used for

scenarios in which the order of data is crucial. That is the case as Apache Kafka

only makes guarantees for the correct message order within a single partition.

After the Apache Kafka topics are prepared, the data sender is started.

Subsequently, a rise in the number of incoming messages of Apache Kafka can be

95

chapter 4: Experimental Evaluation

observed using the Grafana dashboard. Once the configured sending period has

passed, the ansible script stops and the dashboard charts adapt correspondingly.

The dashboard data is then exported as CSV. The timeframe of these exports

is configurable in Grafana.

We incorporate the same data set as used in ESPBench as input, i.e., the

data of the Grand Challenge published 2012 at the conference Distributed and

Event-Based Systems (DEBS) [JHF+12]. When the end of the input file is

reached, the data sender starts again from the beginning.

Data Sender Configuration

Table 4.8 shows the default configuration parameters, which the data sender ap-

plies to the Apache Kafka producer. Unless otherwise stated, these are the pa-

rameters employed in the presented measurements in Section 4.3.1. An Apache

Kafka producer batches messages to lower the number of requests, thereby in-

creasing throughput. The batch-size property limits the size of these message

packages. The initially used value is the default of 16,384 bytes, as defined in

the Apache Kafka documentation19. The acks producer property determines the

level of acknowledgments for sent messages. There are three different options

for the acks configuration:

• 0 : The producer does not wait for any acknowledgment and counts the

message as sent as soon as it is added to the socket buffer.

• 1 : The leader will send an acknowledgment to the producer as soon as

the message is written to its local log. The leader will not wait until its

followers, i.e., other brokers, have written it to their log.

• all : The leader waits until all in-sync replicas acknowledge the message

before sending an acknowledgment to the producer. By default, the min-

imum number of in-sync replicas is set to one.

In addition to the configuration of the Apache Kafka producer, the de-

veloped data sender tool also provides configuration options. One example

is the read-in-ram Boolean setting, which determines how the input data is

read. If read-in-ram is not set, the data source object returns an iterator

object of the records. If it is set, the source object first loads the entire

data set into memory by converting it into a list, and then returns an iter-

ator object for the created data structure. Unless otherwise stated, read-in-

ram is enabled in the presented results. Furthermore, the number of mes-

19https://kafka.apache.org/documentation/, accessed: 2020-12-30

96

https://kafka.apache.org/documentation/

chapter 4: Experimental Evaluation

Property Value

key-serializer-class org.apache.kafka.common.serialization.StringSerializer
value-serializer-class org.apache.kafka.common.serialization.StringSerializer
batch-size 16,384 bytes
buffer-memory-size 33,554,432 bytes
acks 0

Table 4.8: Default properties applied to the Apache Kafka producer for the
Apache Kafka analysis

sages the data sender should send per time unit can be adapted using the

java.util.concurrent.ScheduledThreadPoolExecutor class. It can execute

a thread periodically by applying a configurable delay. By using this parameter,

we can determine how many messages are to be sent per time unit. Each execu-

tion sends a single message to the Apache Kafka broker. So a configured delay

of, e.g., 10,000 ns, leads to an input rate of 100,000 messages/second (MPS).

Ingestion Rate Analysis

This section presents the ingestion rate (ir) analysis performed for Apache

Kafka. It comprises analyzing three selected input rates with varying configura-

tions regarding acks levels, batch size, data sender locality, read-in-ram option,

and data sender processes.

Result Overview

Figure 4.30 shows the maximum achieved ingestion rates of Apache Kafka

for the analyzed configurations. The ingestion rates illustrated in all figures

are the one-minute rates of incoming messages/second, a KPI provided by

Apache Kafka. For all benchmark scenarios with the configured input rate

of 1,000,000 messages/second, we selected the runs with the most stable rate.

The highest input rate with about 421,000 messages/second was achieved

with two distinct data sender processes, each sending 250,000 messages/second.

However, this is less than the configured input rate. With a single data sender

configured to send 1,000,000 messages/second, the input rates are lower. The

results for the acks levels of 1 and all are similar with input rates around

340K MPS. Surprisingly, sending messages without waiting for acknowledgment,

i.e., acks set to 0, decreased the achieved input rate. The maximum is at about

294,000 messages/second with an increased default batch size. In contrast to

the other benchmark scenarios, the achievable input rate with acknowledgments

disabled could be positively influenced by a higher batch size without harming

the stability of the input rate.

97

chapter 4: Experimental Evaluation

0 1 2 3 4 5 ·105

acks=0,
ir=1,000KMPS,
batch=65.54kB

acks=1,
ir=1,000KMPS

acks=all,
ir=1,000KMPS

2 data senders -
both remote,

acks=1,
ir=500KMPS

2.94 · 105

3.41 · 105

3.39 · 105

4.21 · 105

Number of Incoming Messages/Second

Figure 4.30: Result overview of the achieved numbers of ingested mes-
sages/second into Apache Kafka - one-minute rate

Input Rate of 100,000 Messages/Second

Figure 4.31 shows the one-minute rates of incoming messages/second for a con-

figured data input rate of 100,000 messages/second. The parameters under in-

vestigation for this benchmark series are the data sender locality, the acks level,

and the read-in-ram option. Similar to all other observations, an increase in

the number of incoming messages/second can be seen at the beginning. This is

when the data sender is started and the one-minute rate begins to adapt accord-

ingly. Likewise, a sudden decrease in ingested messages per second is present at

the end of all charts. This is due to the termination of the data sender after the

configured period of time has been reached. Consequently, the most interesting

part of the evaluations is the data presented in the center of the plots.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
·105

Passed Time in Seconds

In
co
m
in
g
M
es
sa
ge
s/
S
ec
on

d

100,000messages/second
remote; acks=0; read-in-ram=false
local; acks=0; read-in-ram=false
local; acks=0; read-in-ram=true
local; acks=1; read-in-ram=true
local; acks=all; read-in-ram=true

Figure 4.31: Ingested messages/second - one-minute rate, configured ingestion
rate of 100,000 messages/second

98

chapter 4: Experimental Evaluation

0 100 200 300 400 500 600
0

1

2

·105

Passed Time in Seconds

In
co
m
in
g
M
es
sa
g
es
/
S
ec
o
n
d

250,000messages/second
acks=0; read-in-ram=false
acks=0; read-in-ram=true
acks=1; read-in-ram=true
acks=all; read-in-ram=true

Figure 4.32: Ingested messages/second - one-minute rate, configured ingestion
rate of 250,000 messages/second

Figure 4.31 further visualizes that almost all chosen settings reach the config-

ured input rate of 100K messages/second. Particularly, all tested acks level and

read-in-ram combinations reach the configured rate of 100K messages/second.

The only exception is the remote; acks=0; read-in-ram=false configuration,

which is represented by the blue line. In this setting, the data sender was exe-

cuted remotely, specifically on a 2015 Apple MacBook Pro, which was connected

to the network using Ethernet. For all other benchmark runs in the following,

the data sender was executed on the broker where the topic is stored.

Input Rate of 250,000 Messages/Second

Figure 4.32 shows the results for an input rate of 250,000 messages/second. As

we already identified the limits of the commodity hardware in Figure 4.31, we

do not pursue further tests with the laptop configuration. Figure 4.32 high-

lights the significance of the read-in-ram configuration. Particularly, the three

configurations where read-in-ram is set to true reach the configured input of

250,000 messages/second, whereas the run where read-in-ram is set to false,

represented in blue, does not. This configuration, where read-in-ram is not ac-

tive, is not able to handle more than about 220,000 messages/second. Thus,

enabling read-in-ram has a positive influence on the achievable number of in-

gested messages per second as the latency for accessing the main memory is

lower than for accessing the disk. It is evident that with read-in-ram disabled,

there is a bottleneck at the data sender side at this configured input rate. The

data cannot be read as fast as it is required to achieve an ingestion rate of

250,000 messages/second.

99

chapter 4: Experimental Evaluation

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
·106

Passed Time in Seconds

In
co
m
in
g
M
es
sa
g
es
/
S
ec
o
n
d

1,000,000messages/second acks=0; batch=16.38kB

acks=0; batch=65.54kB acks=1; batch=16.38kB
acks=1; batch=65.54kB acks=all; batch=16.38kB
acks=all; batch=65.54kB

Figure 4.33: Ingested messages/second - one-minute rate, configured ingestion
rate of 1,000,000 messages/second

Input Rate of 1,000,000 Messages/Second

Figure 4.33 visualizes the ingestion rate results for an input rate of

1,000,000 messages/second. As we discovered the limits of configurations with

read-in-ram set to false previously, the parameter is enabled for all following

measurements. Additionally to testing different acks levels, we analyze the ef-

fects of changes to the batch size. Particularly, we study the default size and

a batch size increased by a factor of four, which amounts to a batch size of

65.54 kB.

None of the configurations reaches the configured ingestion rate. While

the highest ingestion rates peak at about 420,000 messages/second for a short

period, the lowest one is at about 250,000 messages/second. The two configura-

tions that achieve this maximum peak are the ones with a batch size of 65.5 4kB

and acks set to 1 and all. However, these are also the only two scenarios where

no steady ingestion rate could be established. The acks level of 0 combined

with the default batch size reached the lowest ingestion rate. Changing acks to

either 1 or all resulted in a rise to a rate of about 320,000 messages/second.

Concerning the batch size, the increase resulted in a higher ingestion rate

for the scenarios without acknowledgments. Specifically, a rise of more than

20K messages/second can be observed. For the other acknowledgment settings,

the raised batch size led to an unstable ingestion rate.

Figure 4.34 shows the incoming data rates in megabyte (MB)/second. The

data volumes ingested are provided by Apache Kafka as the metric BytesInPer-

Sec. The chart fits the corresponding ingestion rates shown in Figure 4.33. The

highest peaks are at about 90 MB/second. The measured maximum network

100

chapter 4: Experimental Evaluation

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

Passed Time in Seconds

In
co
m
in
g
M
B
/
S
ec
o
n
d

acks=0; batch=16.38kB acks=0; batch=65.54kB
acks=1; batch=16.38kB acks=1; batch=65.54kB
acks=all; batch=16.38kB acks=all; batch=65.54kB

Figure 4.34: Incoming MB/second - one-minute rate, configured ingestion rate
of 1,000,000 messages/second

bandwidth between the Apache Kafka brokers is about 117.5 MB/second, see

Table 4.7. Therefore, if further network traffic is created, which is not captured

by the BytesInPerSec metric, the bandwidth of the employed commodity net-

work could be a limiting factor in peak situations if data is sent from a remote

host. As we executed the data sender on the node storing the corresponding

topic partition, there was intra-node transfer and we used the loopback interface

with its higher bandwidth of about 908 MB/second, which is not a bottleneck.

The determined write performance of about 70 MB/second described in Ta-

ble 4.7 is even closer to the observed limits in Figure 4.34. Depending on how

optimized Apache Kafka writes to disk, e.g., using compression techniques, the

achievable performance might be higher than the measured disk performance

limit. Nevertheless, the observations lead to the conclusion that the ingestion

rate is likely to be disk-bound in the viewed benchmark setting.

Figure 4.35 shows the short-term system loads of the Apache Kafka broker

containing the topic partition, which is also the server where the data sender

is executed. The figure reveals that in all settings, which led to a steady input

rate, the broker node has a system load lower than eight. Thus, the broker

has not been over-utilized from a system load perspective, since we employed

servers equipped with an eight-core CPU each as described in Table 4.7.

The two remaining scenarios show system loads with a maximum value close

to 15, which indicates an over-utilization that could limit the achievable inges-

tion rate. Interestingly, the system load is not proportional to the corresponding

ingestion rates. At the time of the peak ingestion rate, e.g., the highest system

load has not reached its maximum. This observation is an indicator of a growing

number of waiting write operations.

101

chapter 4: Experimental Evaluation

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Passed Time in Seconds

S
h
o
rt
-t
er
m

S
y
st
em

L
o
a
d

acks=0; batch=16.38kB acks=0; batch=65.54kB
acks=1; batch=16.38kB acks=1; batch=65.54kB
acks=all; batch=16.38kB acks=all; batch=65.54kB

Figure 4.35: Short-term system load of the Apache Kafka broker con-
taining the topic partition - one-minute rate, configured ingestion rate of
1,000,000 messages/second

0 100 200 300 400 500 600
0

2

4

·105

Passed Time in Seconds

In
co

m
in

g
M

es
sa

ge
s/

S
ec

o
n

d

500,000 messages/second
acks=0; both local
acks=1; both local

acks=1; 1 local - 1 remote

acks=1; both remote (different hosts)

Figure 4.36: Ingested messages/second - one-minute rate, configured ingestion
rate of 500,000 messages/second in total with two data senders

Input Rate of Overall 500,000 messages/second with Two Senders

To see if server resources regarding CPU are a limiting factor, we distributed the

data sender. We included the default batch size and left out the measurements

where acks are set to all as they are, similarly to the previously presented

results, practically identical to the runs with acks set to 1. Figure 4.36 shows

the achieved ingestion rates. The blue and green lines illustrate the runs where

both senders run locally, i.e., on the broker node containing the topic partition.

102

chapter 4: Experimental Evaluation

The blue line visualizes the results for disabled acks and the green line those for

an acks level of 1. The purple line in Figure 4.36 represents the run where one

data sender is invoked on the broker that stores the topic, and one data sender

at another broker. The brown line shows the results for the run where the data

senders are executed on the two brokers that do not store the topic.

Our measurements show that the two settings where at least one data sender

is executed remotely lead to the same result: a steady input rate of about

420,000 messages/second. The benchmark runs having both data senders run

locally have a different outcome. Similar to the previous results, the acks set

to 1 overall outperforms acks set to 0. However, neither configuration reaches

a steady input rate. Both have the highest spike at the beginning, which is a

behavior observed before.

Next to almost identical trends regarding the ingestion rates compared to

the two benchmark settings presented before, the system loads are also equal

with a value consistently approaching 15 as visualized in Figure 4.35. This again

indicates an over-utilization of the server. For the two configurations where at

least one data sender is executed remotely, the system load never exceeds a

value of three on any server. Nevertheless, the input rates for the setting with

two data senders are the highest on average compared to the previous figures,

with a maximum input rate of about 460,000 messages/second. Figure 4.37

shows what these message input rates mean regarding data size. The amount

of incoming data in MB/second is visualized for the setting where both data

senders were executed locally and remotely with acks set to 1. It can be seen

that the maximally achieved input rate of Figure 4.36 corresponds to a data

volume-wise input rate of about 100 MB/s. For the constant input rate, where

both data senders were executed remotely, a size-wise input of close to 92MB/s

is reached. The amount of incoming bytes per second exceeds the measured

maximum write performance mentioned in Table 4.7, which could be due to

increased parallelization or an optimized way of storing messages implemented

in Apache Kafka. As the fully distributed setting uses the eth0 interface to the

broker, the network bandwidth of about 117.5 MB/second applies. Since the

reported number of incoming bytes is close to this limit and metadata or further

traffic might not be captured, the network represents a potential bottleneck.

Figure 4.38 visualizes the number of packages received on interface eth0 ex-

emplary for three benchmark runs with a logarithmic scale on the y-axis. This

interface is the only physical one, next to the loopback interface, on the used

servers. The figure highlights the differences caused by changes in data sender

locality. While the number of received packages is not impacted if data is only

103

chapter 4: Experimental Evaluation

0 100 200 300 400 500 600
0

50

100

Passed Time in Seconds

In
co

m
in

g
M

B
/S

ec
on

d

acks=1; both local

acks=1; both remote (different hosts)

Figure 4.37: Incoming MB/second - one-minute rate, configured ingestion rate
of 500K messages/second in total with two data senders

sent from the node where the corresponding target topic is stored, transmit-

ting data from a remote host significantly increases this KPI. Specifically, not

having remote data senders results in between 25 and 60 received packages on

eth0. Having one remote data sender amounts to about 30,000 received pack-

ages/second.

0 50 100 150 200 250 300 350 400 450 500

102

103

104

Passed Time in Seconds

N
u
m
b
er

of
R
ec
ei
ve
d
P
ac
ka
ge
s

1 data sender
input rate=250,000messages/second

1 local and 1 remote data sender
input rate(total)=500,000messages/second

1 data sender
input rate=1,000,000messages/second

Figure 4.38: Packages received/second on interface eth0 - one-minute rate,
acks=1

Summary of Ingestion Rate Analysis

Our benchmark results reveal two main insights: firstly, although a single data

sender can create an input rate of 250,000 messages/second as shown in Fig-

ure 4.32, two independently executed data senders do not lead to an input rate

of 500,000 messages/second. Secondly, we see that the influence with respect to

where data senders are invoked is noticeable. If two data senders are executed

104

chapter 4: Experimental Evaluation

in parallel on the same host, they are able to overwhelm the server or impede

each other, as the observed system load of about 15 indicates, see Figure 4.35.

Another limiting factor can be found in the write-to-disk performance of the

used server and the network bandwidth when sending data from a remote host.

The observed memory usage was never close to its limits for any of the presented

benchmark scenarios.

The most promising configuration in the employed setup, which led to stable

input rates, has the default batch size and acks set to 1 or all. A stable rate

is desirable as it leads to predictable system behavior. Moreover, multiple data

senders distributed across nodes are able to increase the achievable ingestion

rates. An input rate of about 250,000 messages/second to Apache Kafka can be

achieved using a single data sender.

4.3.2 Delay Evaluation of Apache Kafka Log Timestamps

Apache Kafka can be configured to store a timestamp once a record is ap-

pended to its log. This timestamp can then be used by consuming applications.

For instance, it can be interpreted as the record creation time or used for cal-

culating latencies as the difference between an input record and output record

timestamp. The second example describes how the result calculator of the ESP-

Bench toolkit determines latencies. However, batching effects used by Apache

Kafka could distort such measurements. In order to get a better understanding

of these batching effects, we analyze their impact on the captured log append

timestamps. That includes studying the impact of different data input rates

and Apache Kafka Producer batch sizes. This section introduces the evaluation

setup as well as the results.

Evaluation Setup

We use the data sender that is part of the ESPBench benchmark proposed in

this thesis. Moreover, we employ the previously described Apache Kafka cluster

with three brokers that are installed on nodes with the system characteristics

listed in Table 4.7.

For evaluation, we use the default data sender properties shown in Table 4.8,

unless otherwise stated. First, we send the DEBS Grand Challenge 2012 data

set to an Apache Kafka topic. Afterward, we consume these records from the

corresponding topic and extract the timestamps.

105

chapter 4: Experimental Evaluation

Timestamp Evaluation Results

All presented figures in this section show timestamp differences of a certain

number of consecutive records for a certain data sender configuration. Regarding

the timestamps, only the difference to the first timestamp is displayed on the

y-axis for readability reasons.

Figure 4.39 shows 100 timestamps of consecutive messages sent at a rate of

1,000 messages/second. It can be seen that the trend is clearly linear, i.e., no

significant batching effects can be observed for this setting.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Result Record Index

T
im

es
ta
m
p
D
el
ta

in
m
s

Figure 4.39: 100 consecutive Apache Kafka timestamps, ingestion rate of
1,000 messages/second

Figure 4.40 shows 100 consecutive timestamps for a higher data ingestion

rate of 10,000 messages/second. This higher pressure on Apache Kafka reveals

a stepwise trend, i.e., the batching applied in Apache Kafka becomes visible by

looking at the timestamps plotted in Figure 4.40. However, the time differences

between steps are very small. Specifically, there is only a difference of 1 ms

between each step and every step or batch contains about 11 data records.

These observations show that the batching influence is marginal. This fact

becomes especially clear when looking at the result excerpt that is visualized in

Figure 4.40. This figure only contains 100 records, while 10,000 messages/second

were ingested.

Figure 4.41 visualizes the timestamps of 500 consecutive records, which is

still a small amount given the fact that 10,000 records are ingested every second.

While a stepwise trend is still visible, the steps are already much smaller com-

pared to Figure 4.40. The more records are shown, the more the graph seems

to represent a linear trend.

To see how a larger batch size impacts the observations, we doubled the

default batch size to a value of about 32 kilobytes. The corresponding mea-

106

chapter 4: Experimental Evaluation

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Result Record Index

T
im

es
ta
m
p
D
el
ta

in
m
s

Figure 4.40: 100 consecutive Apache Kafka timestamps, ingestion rate of
10,000 messages/second

50 100 150 200 250 300 350 400 450 500
0

20

40

Result Record Index

T
im

es
ta
m
p
D
el
ta

in
m
s

Figure 4.41: 500 consecutive Apache Kafka timestamps, ingestion rate of
10,000 messages/second

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Result Record Index

T
im

es
ta
m
p
D
el
ta

in
m
s

Figure 4.42: 100 consecutive Apache Kafka timestamps, ingestion rate of
1,000 messages/second, batch size of 32 kB

surements for input rates of 1,000 and 10,000 messages/second are visualized

in Figure 4.42 and Figure 4.43, respectively. The figures show that the dou-

bled batch size did not lead to a difference with respect to timestamp delays

compared to the previous setting with the default batch size. While there is

107

chapter 4: Experimental Evaluation

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

Result Record Index

T
im

es
ta
m
p
D
el
ta

in
m
s

Figure 4.43: 100 consecutive Apache Kafka timestamps, ingestion rate of
10,000 messages/second, batch size of 32 kB

still a linear trend observable for the 1,000 messages/second input rate, the

10,000 messages/second run again reveals batches with about 11 records and a

1 ms difference between steps.

Summary of Timestamp Delay Analysis

Overall, the analyses show that the batching of Apache Kafka becomes visible

when looking at the timestamps that Apache Kafka stores along with messages

in its LogAppendTime settings. However, the results further show that the

batching impact is marginal. The results reveal a negligible time difference

of 1 ms between batches. Furthermore, the batches are very small with about

eleven records on average. Having small batches reduces their overall impact

on the timestamps. The smaller the batch size, the closer the behavior is with

respect to making no use of batching at all. Doubling the default batch sizes

does not change the observed behavior. With respect to ESPBench and its

toolkit, the marginal impact on the timestamps, caused by the batching used in

Apache Kafka, implies that the batching does not require special consideration

when calculating latencies.

4.4 Threats to Validity

There are certain threats to validity related to the presented measurements.

They are grouped into threats to internal validity, i.e., ”the degree to which a

study establishes the cause-and-effect relationship between the treatment and

the observed outcome” [SDJ01], external validity, i.e., ”the generalizability of

findings from a study” [DGKL11], and construct validity, i.e., ”the degree to

which our scales, metrics and instruments actually measure the properties they

are supposed to measure” [RT18].

108

chapter 4: Experimental Evaluation

4.4.1 Internal Validity

In the following, we elaborate on the internal threats to validity for the three

major experimental evaluations presented in this dissertation.

Validation of ESPBench

One threat to internal validity is the existence of bottlenecks within the bench-

mark setup that prevents measuring the actual performance of the SUT. We

analyzed the capabilities of the ESPBench data sender and Apache Kafka in se-

lected settings, which indicates how far the data rate can be increased without

creating an unintended bottleneck. However, different aspects, such as other

operating systems, JVMs, or hardware, can influence the determined limits.

Additionally, a high load not related to the benchmark on a server can impact

the performance in an unintended way. In particular, either the SUT’s perfor-

mance can be negatively influenced or another system, such as a message broker,

can become a bottleneck and thus, prevent a correct performance evaluation of

the SUT. Monitoring the loads and processes on the investigated systems helps

to identify such scenarios. ESPBench provides such monitoring capabilities by

default. We did not encounter any anomalies in our measurements.

Another threat to internal validity is related to the meaningfulness of the

benchmark results calculated by ESPBench. Particularly, DSPS developers

could optimize their system according to the benchmark workload. Conse-

quently, the system might show a great performance compared to other DSPSs.

However, these results would have limited meaningfulness due to the optimiza-

tions, which some people might see as cheating. Installing certain barriers for

preventing such benchmark optimizations is out of scope for the presented work.

The number of benchmark runs is another factor that influences the validity

of benchmark results. ESPBench does not mandate a minimum number of runs.

So having a high variance in latencies and only a few benchmark runs can result

in benchmark results that are not representative of the actual cause-and-effect

relationships. However, in order to keep benchmarking simple and economical,

it is desirable to prevent unnecessary benchmark runs. In all of the presented

experimental evaluations, we chose a number of runs appropriate to experienced

result variances. Nevertheless, a threat to validity still exists, e.g., due to wrong

assessments of variances.

Performance Impact Analysis of Apache Beam

For analyzing the performance impact of Apache Beam, we used two different

ways to implement the used queries. Particularly, we developed each query

109

chapter 4: Experimental Evaluation

using the Apache Beam SDK and the corresponding DSPS SDK. Potential im-

plementation flaws in one of the query implementations could lead to unfair

comparisons and misleading performance results. However, the employed query

set is rather simple with respect to the number of required computational steps

per query, which makes them easy to implement and the implementations less

prone to errors.

Apache Kafka Analysis

With our Apache Kafka analysis, we studied the ingestion rates that are achiev-

able by Apache Kafka in certain settings. A threat to validity is that the changed

configuration settings, e.g., an altered Apache Kafka producer buffer size, did

not cause the variations observed in the results. To decrease this threat to valid-

ity, we performed all measurements multiple times and analyzed the variances.

No anomalies were found in our studies.

4.4.2 External Validity

The threats to external validity for the three experimental evaluations of this

dissertation are presented in the following.

Validation of ESPBench

One threat to external validity is related to the applicability or transferability

of results produced by ESPBench to other domains, i.e., domains different from

industrial manufacturing. The workload of ESPBench belongs to the manu-

facturing domain and is validated with companies from this industry sector.

Thus, depending on the target domain, the employed combination of data and

queries might have a varying value. Even within the manufacturing domain,

there might be companies with significantly different workloads. However, as

the queries cover all core functionalities of DSPSs, results of ESPBench give at

least a general hint on a system’s performance. Nevertheless, the existence of an

unintended bias in the developed queries represents a related threat to validity.

Closely related to the queries, the data used in ESPBench is another threat

to external validity. If users require to process data with different characteristics,

e.g., streaming data that only consists of strings, performance results produced

by ESPBench may have limited meaningfulness. However, ESPBench can be

easily adapted to use other kinds of data.

ESPBench’s overall scenario is based on the data and idea of the Grand

Challenge from the DEBS conference of 2012. As this challenge was defined

110

chapter 4: Experimental Evaluation

about eight years ago, the relevance of this scenario in today’s and the future’s

world embodies another threat to validity. However, we do not see any aspect

within the data or benchmark situation that is outdated by today’s standards.

Our expert interviews with companies from the industrial manufacturing do-

main further confirmed this assessment.

Performance Impact Analysis of Apache Beam

External threats to validity of the Apache Beam study are related to the validity

of results for different settings. Such variations can exist with respect to, e.g.,

software versions, software configurations, or hardware. Moreover, we employed

rather simple queries from the StreamBench [LWXH14] micro benchmark. The

applicability of results to more complex stream processing applications or dif-

ferent input data characteristics represents another threat to external validity.

Apache Kafka Analysis

The threats to external validity of the Apache Kafka analysis comprise the va-

lidity of results to different Apache Kafka versions, configurations, or hardware.

Furthermore, the observed results might vary when using other input data char-

acteristics. Different message brokers might also distinguish from Apache Kafka

regarding the achievable data ingestion rates.

4.4.3 Construct Validity

In the following, we elaborate on the threats to construct validity of the con-

ducted experimental evaluations.

Validation of ESPBench

Central threats to the construct validity are the ESPBench data sender and the

message broker. Both are components that are employed in benchmark runs. If

they become a bottleneck, these two components are benchmarked instead of the

SUT and so the benchmark results would not represent the desired outcome.

However, we ensured that this scenario did not take place through advanced

analyses.

A second threat to construct validity is related to the determination of la-

tencies. ESPBench leverages the timestamps stored by Apache Kafka for calcu-

lating the latencies. As a result, the time for transferring the data from Apache

Kafka to the SUT and from the SUT to Apache Kafka is incorporated into these

times. This overhead time is not wanted and represents a threat to the validity

111

chapter 4: Experimental Evaluation

of results, which are supposed to express the SUT’s performance. However, our

studies of these overhead times reveal that they are very low and neglectable

compared to the overall query latencies.

Performance Impact Analysis of Apache Beam

The performance impact analysis of Apache Beam also relies on Apache Kafka

timestamps. Due to this study construction, transfer times between the DSPS

and Apache Kafka are reflected in the performance results. However, our anal-

ysis of these overhead times shows that they are insignificantly low compared

to the overall performance measurements.

Apache Kafka Analysis

In our Apache Kafka study, we analyze the incoming message rate of the mes-

saging system. This is a metric determined and provided by Apache Kafka.

The trust in Apache Kafka to correctly measure this metric represents a threat

to construct validity. However, Apache Kafka is a widely employed and mature

system, whose performance metrics are applied in many applications. Moreover,

all derived values for the incoming message rate were plausible in the studied

scenarios.

112

5

RELATED WORK

This chapter presents related work. It covers three main topics: data stream

processing benchmarks, the Apache Beam performance impact analysis, and the

Apache Kafka capability evaluation.

5.1 Data Stream Processing Benchmarks

Only a few benchmarks for data stream processing architectures are available

compared to the number of benchmarks for database management systems

(DBMSs) [HMRU17]. In the following, we introduce the most prominent bench-

marks for data stream processing scenarios.

Linear Road

Linear Road is an application benchmark proposed by Arasu et al. [ACG+04].

It is one of the most popular benchmarks focusing on data stream processing

systems (DSPSs). Linear Road includes a benchmarking toolkit, which com-

prises a data generator, a data sender, and a result validator. However, the

data sender is provided in an incomplete state, i.e., C/C++ coding is needed to

use the tool1. With the execution of a benchmark implementation, a variable

tolling system of a metropolitan area is simulated. This area covers a config-

urable number of expressways. The amount of accumulated tolls depends on

multiple aspects of the traffic situation on these expressways.

1https://www.cs.brandeis.edu/~linearroad/datadriverinstall.html, accessed: 2020-12-
31

113

https://www.cs.brandeis.edu/~linearroad/datadriverinstall.html

chapter 5: Related Work

The data sender emits the streaming data into the system under test (SUT).

This input data comprises four different record types, from which position re-

ports are by far the most abundant type. Depending on the overall situation

on highways, car position reports may require the SUT to create an output or

not. The remaining data consists of three record types, which express explicit

user requests. These requests always demand an answer from the SUT.

With regard to the benchmark workload, Linear Road defines four different

queries with corresponding output types. For complexity reasons, the implemen-

tation of the lastly presented query was even skipped in the two implementations

described by Arasu et al. [ACG+04]. That indicates a lack of simplicity, at least

for this query. Besides streaming data, historical data covering ten weeks of

tolling history is generated and stored in files. It has to be incorporated for

selected queries in order to produce correct answers.

As a benchmark result, Linear Road defines one overall metric called L-

Rating. It indicates how many expressways a system can handle without vi-

olating the defined maximum response times for each query. The number of

highways is a configurable parameter for the data generation step, which is in-

fluencing the amount of input data. However, it is not clear how much the data

input rate can be increased before the data sender tool becomes a bottleneck.

StreamBench

Another popular benchmark is StreamBench [LWXH14]. It aims at bench-

marking distributed DSPSs and can be categorized as a micro benchmark, i.e.,

it measures atomic operations, such as the execution of a projection rather than

those of more complex applications, such as in Linear Road. Thus, when a

system’s performance for real-world scenarios or applications is to be evaluated,

micro benchmark results only have limited validity. However, if, e.g., two dis-

tinct filter operators are to be compared, micro benchmarks have advantages

over application benchmarks due to their simplicity. Measurements contain only

the relevant parts without much overhead, which eases interpreting results.

StreamBench defines seven queries in total. They cover queries with sin-

gle and multiple computational steps. Moreover, some queries require to keep

a state in order to produce correct results, while others do not impose this re-

quirement. Only one query uses numerical data, while all others work on textual

data. Overall, the seven queries cover a variety of functionalities, although some

typical streaming operations like window functions are not taken into account.

Additionally, StreamBench defines four workload suites, which influence the

way the benchmark is executed. The suite has an impact on, e.g., data scales,

114

chapter 5: Related Work

the executed query set, the existence of an intentional node failure, or employed

benchmark result metrics. With respect to the input data, StreamBench makes

use of two different real-world data sets. One of these contains textual data,

while the other one comprises numerical information. The two data sets used

in StreamBench serve as seeds for data generation.

Contrary to Linear Road, StreamBench employs a message broker, which is

used for decoupling data generation and consumption. In particular, Apache

Kafka is used as the message broker in StreamBench. This approach is similar

to the benchmark architecture proposed with ESPBench in this dissertation. A

benchmark tool for data ingestion, such as a data sender, which comes with

Linear Road or ESPBench, is not described by the authors of StreamBench.

StreamBench defines different result metrics dependent on the workload

suite. These include latency and throughput. The latter describes the aver-

age number of processed records per second and the amount of processed data

in bytes per second. Both variants are calculated in total as well as per node.

Moreover, three additional metrics are introduced: a durability index (uptime),

a throughput penalty factor (assessing throughput change for node failure), and

a latency penalty factor (assessing latency change after node failure). To the

best of our knowledge, result validation with respect to the query outcome is

not supported in this benchmark.

RIoTBench

RIoTBench [SCS17] is a benchmark that focuses on benchmarking distributed

DSPSs. It defines 27 micro benchmark scenarios as well as four application

benchmark use cases, which represent combined micro benchmarks. These cover

Extract, Transform and Load (ETL) processes, statistics generation, model

training, and predictive analytics scenarios.

As input data, RIoTBench uses scaled real-world data sets from different

Internet of Things (IoT) domains, namely, smart city, smart energy, and health.

A tool for ingesting data into the SUT or an application for query result vali-

dation is not provided by the benchmark. Next to latency, throughput as well

as CPU and memory utilization, RIoTBench measures jitter as a metric. It

is defined as the difference between the expected and the actual output rate

during a certain time interval.

Yahoo! Streaming Benchmark

Another stream processing benchmark that emphasizes its real-world character

is presented by Yahoo! [CDE+16] and often referred to as Yahoo! Streaming

Benchmark (YSB). According to Chintapalli et al. [CDE+16], the benchmark

115

chapter 5: Related Work

achieves an increased representativeness of real-world scenarios by incorporating

Apache Kafka and Redis2, an open-source in-memory key-value store. This

design decision concerning the benchmark architecture is supposed to represent

real-world data processing pipelines more realistically. The benchmark domain

is advertisement analytics.

The benchmark workload consists of a single query, which reads events from

Apache Kafka in JavaScript Object Notation (JSON) format. These records

need to be parsed and irrelevant events have to be filtered out. The input

represents advertisement events associated with advertisement campaigns. A

windowed count of certain event data per campaign has to be persisted in the

Redis key-value store.

While there are example implementations of the query provided3, only rudi-

mentary tool support exists. The repository describes the tools as not polished3.

Moreover, a single query only reveals limited insights. Although the single appli-

cation comprises multiple DSPS functionalities, performance analysis becomes

difficult due to this architecture. Particularly, the more operators a streaming

application contains, the more possible bottlenecks exist, while only one might

be responsible for the overall latency limit. While historical data is briefly in-

corporated, it is stored in Redis, which does not represent a DBMS suitable or

representative for persisting structured business data. The repository mentions

intentions to expand the benchmark in the future, however, it seems that did

not happen as there are no regular and recent development activities visible3.

Open Stream Processing Benchmark

Van Dongen and Van den Poel [vDdP20] developed a benchmark named Open

Stream Processing Benchmark (OSPBench), which also incorporates Apache

Kafka for storing streaming data. In particular, the benchmark uses traffic

sensor measurements captured in the Netherlands, which contain information

of the quantity as well as the speed of vehicles at different locations within the

country. The benchmark does not incorporate any historical data.

OSPBench defines a single query, but executes only certain parts of this

query in different benchmark runs. So in the first run, the executed query only

reads the input data. There is no data transformation performed at all. The

following runs increase the complexity by adding further operators, e.g., for

joining streams.

The benchmark determines latency, throughput, memory utilization, and

CPU utilization as result KPIs. Next to the query, the benchmark defines differ-

2https://redis.io, accessed: 2020-12-31
3https://github.com/yahoo/streaming-benchmarks, accessed: 2020-12-31

116

https://redis.io
https://github.com/yahoo/streaming-benchmarks

chapter 5: Related Work

ent workloads, which differ with respect to the data rate characteristics. While

OSPBench provides some tool support, it includes no result validator. The ex-

perimental evaluation presented by Van Dongen and Van den Poel [vDdP20]

includes the analyses of the relatively new client library Kafka Streams4.

Theodolite

Theodolite [HH21] as the most recently developed performance benchmark pur-

sues the objective to analyze the scalability of distributed DSPSs. It defines

four queries from the Industrial Internet of Things (IIoT) domain, which get

sensor data as input. None of the queries integrates historical business data.

Theodolite further defines seven workload dimensions, i.e., dimensions that can

be used for scaling the load. Examples for these dimensions are the input mes-

sage frequency and the window size. Theodolite introduces three result KPIs,

one of them being a scalability metric. It is defined as the required number of

instances per workload.

Theodolite uses Apache Kafka as the messaging system, which decouples the

data ingestion component from the SUT. Moreover, it is designed to work with

stream processing provided as a microservice. In their experimental evaluation,

the authors of the Theodolite paper [HH21] study Apache Flink as well as Kafka

Streams. The query implementations for both DSPSs are published. However,

there is no query result validator provided.

Summary

Table 5.1 compares the most prominent benchmarks for DSPSs and ESPBench

in a brief overview. This summary reveals several weaknesses and obstacles in

related work, which is why we see the need for a new stream processing bench-

mark. First, historical data was not or only barely taken into account in all

major DSPS benchmarks. It was never incorporated with an ERP data-like

character. We argue that this is a crucial aspect in most of the enterprise sce-

narios, since, to achieve the greatest added value, streaming data needs to be

combined with business data. Second, the majority of current stream process-

ing benchmarks lack satisfying tool support, e.g., for result validation or data

ingestion. The experimental results of this dissertation highlight the impor-

tance of verifying the correctness of query results. Moreover, only two of the

benchmarks support at least partial automation, which is a basic requirement

in this context. This absence of proper tooling complicates the application of

these benchmarks as well as retrieving objective and credible results. The tool

support is particularly crucial for DSPS benchmarks as one or multiple data

4https://kafka.apache.org/documentation/streams/, accessed: 2021-03-08

117

https://kafka.apache.org/documentation/streams/

chapter 5: Related Work

L
in

ea
r

R
oa

d
[A

C
G

+
0
4
]

S
trea

m
B

en
ch

[L
W

X
H

14]
R

Io
T

B
en

ch
[S

C
S

1
7
]

Y
S

B
[C

D
E
+

1
6
]

O
S

P
B

en
ch

[v
D

d
P

20]
T

h
eo

d
olite

[H
H

21]
E

S
P

B
e
n

ch

B
en

ch
m

ark
ty

p
e

ap
p

lica
tion

m
icro

m
ix

ed
a
p

p
lica

tio
n

ap
p

lication
ap

p
lication

ap
p

lication

H
isto

rica
l

d
a
ta

b
riefl

y
;

on
e

fi
le

w
ith

h
istorical

to
lls

-
-

b
riefl

y
;

key
-

va
lu

e
sto

re
w

ith
a
d

-
vertisem

en
t

d
a
ta

-
-

ex
ten

sive;
b

u
sin

ess
d

ata,
b

ased
on

T
P

C
-C

sch
em

a
D

S
P

S
p

a
rtially

p
a
rtially

p
a
rtia

lly
p

a
rtia

lly
p

artially
p

artially
fu

lly
fu

n
ction

alities
covered

covered
covered

covered
covered

cov
ered

covered

D
ata

sen
d

er
stu

b
p

rov
id

ed
-

-
yes

yes
yes

yes

R
esu

lt
valid

a
tor

yes
-

-
yes

-
-

yes

A
u

to
m

atio
n

-
-

-
yes

p
artially

p
artially

yes

Q
u

ery
im

p
lem

en
-

-
-

yes
yes

yes
yes

y
es

ta
tion

s
p

u
b

lish
ed

T
ab

le
5
.1

:
C

om
p
a
riso

n
o
f

d
a
ta

strea
m

p
ro

cessin
g

b
en

ch
m

ark
s

118

chapter 5: Related Work

streams need to be created reliably. This requirement adds complexity to data

ingestion, query result validation, and response time calculations. Finally, the

query workloads of existing performance benchmarks fail to cover the core DSPS

functionalities, which leads to limited meaningfulness of their results.

Besides the selected performance benchmarks, there is further related work.

DSPBench [BGM+20] presents a set of 13 applications that can be used

for benchmarking DSPSs. Next to describing the applications, Bordin et

al. [BGM+20] uses three of them to evaluate the performance characteristics

of two DSPSs. Li et al. present SparkBench [LTW+17], a benchmark specifi-

cally designed for the DSPS Apache Spark. Karimov et al. [KRK+18] propose a

benchmark framework with workloads inspired by the online gaming industry.

They use this framework for benchmarking Apache Spark, Apache Storm, and

Apache Flink. The work of Karakaya et al. [KYA17] also presents a performance

analysis of these three DSPSs. Another work benchmarking these system has

been published by Shahverdi et al. [SAS19]. However, they extend the list of

analyzed stream processing solutions by Hazelcast Jet and Kafka Streams. The

analysis itself is based on the Yahoo! Streaming Benchmark.

5.2 Performance Impact of Apache Beam

In the following, we present work related to Apache Beam and our conducted

performance impact analysis. For supporting Apache Beam, a system has to

implement a runner. The development of the runner for the DSPS IBM Streams

is described by Li et al. [LGM+18]. Next to highlighting three implemented

optimizations with regard to the IBM Streams runner, performance evaluations

between IBM Streams, Apache Flink, and Apache Spark are presented.

Besides abstraction layers, such as Apache Beam, that allow for developing

data stream processing applications using a programming language like Java,

there is the idea of leveraging or extending SQL to be able to define stream

processing programs. Continuous Query Language (CQL) [ABW06] is a com-

prehensive approach for such an SQL extension. CQL is a SQL-based language

for defining continuous queries over data streams as well as updatable relations.

It is not only a concept, but also integrated into the STREAM [ABB+03a]

system, a DSPS developed at the Stanford University. Next to describing the

CQL implementation in STREAM, the semantics of CQL is outlined and a

comparison to other languages is included in the linked CQL paper.

Apache Calcite [BCH+18] is another approach towards CQL’s direction,

which was developed more recently. It is a framework that comprises different

119

chapter 5: Related Work

functionalities, e.g., with respect to query processing, query optimization, and

query language support. The latter feature represents the relevant aspect in this

context. The Apache Calcite publication by Begoli et al. [BCH+18] describes

its architecture as well as its developed SQL extensions for areas such as semi-

structured data or geospatial queries. Furthermore, the work depicts the devel-

oped extensions for data stream processing queries, which are called STREAM

extensions. They are inspired by the mentioned CQL and also explained on their

website5. However, the website also mentions that not all the presented con-

cepts have been implemented yet. A few DSPSs integrate with Apache Calcite,

with Apache Apex and Apache Flink being two of them [BCH+18].

Jain et al. [JMS+08] discuss the differences between two SQL-based lan-

guages for defining stream processing queries, particularly Oracle Continuous

Query Language (Oracle CQL)6 and StreamBase StreamSQL7. Moreover, an

approach for unifying both languages is proposed. However, they highlight that

for achieving a complete standard, further challenges need to be tackled, e.g.,

the extension of the proposed model to additional core functionality such as

pattern matching.

Next to such generic approaches, there are stream processing extensions to

SQL for dedicated systems. Examples are the Continuous Computation Lan-

guage (CCL) as the extended SQL version for SAP HANA Streaming Analytics8,

and SamzaSQL [PHPP16] as extended SQL of Apache Samza [NPP+17]. While

these SQL extensions can be optimized for the corresponding DSPS, which

might lead to better performance and less verbose query definitions, users do

not have the flexibility a common standard or abstraction layer would provide.

So executing a developed query on a different DSPS requires substantial porting

efforts as SQL dialects between DSPSs differ significantly.

Apache Hop9 or the Hop Orchestration Platform is an incubating Apache

project that allows to define stream processing applications visually, i.e., by

leveraging a graphical user interface. According to their website, designed pro-

grams are executable on any of the supported engines. For all systems except

for the Hop native engine, this support is enabled by using Apache Beam.

Besides these approaches for unifying the definition of stream processing

applications, there is also work in the area of benchmarking related to the

5https://calcite.apache.org/docs/stream.html, accessed: 2020-12-31
6https://docs.oracle.com/cd/E16764 01/doc.1111/e12048/intro.htm, accessed: 2020-12-

31
7https://docs.tibco.com/pub/sb-lv/2.1.8/doc/html/streamsql/ssql-intro.html, ac-

cessed: 2020-12-31
8https://help.sap.com/viewer/f1da0b944b1c4eae8137c9f913b66d44/2.0.04/en-US, ac-

cessed: 2021-03-15
9https://hop.apache.org, accessed: 2021-03-09

120

https://calcite.apache.org/docs/stream.html
https://docs.oracle.com/cd/E16764_01/doc.1111/e12048/intro.htm
https://docs.tibco.com/pub/sb-lv/2.1.8/doc/html/streamsql/ssql-intro.html
https://help.sap.com/viewer/f1da0b944b1c4eae8137c9f913b66d44/2.0.04/en-US
https://hop.apache.org

chapter 5: Related Work

Apache Beam performance impact analysis. NEXMark10 is a benchmark using

queries over data streams in the context of an online auction system. However,

the benchmark was never finished, as the website still states that it is work in

progress10 and there is only a draft version of a paper, which was published a

couple of years ago [TTPM02]. Nevertheless, in the context of Apache Beam,

this benchmark was used as inspiration and foundation for a NEXMark-based

benchmark suite11. This suite extends the eight existing NEXMark queries by

five additional ones. A complete implementation of all queries for all runners is

a work in progress according to the Apache Beam website11.

The work presented by Marcu et al. [MCAP16] compares Apache Flink and

Apache Spark. Their measurements include different queries, a grep query as

used in the Apache Beam study of this thesis being one of them. One analyzed

focus area is the scaling behavior of the DSPSs regarding the number of cluster

nodes. However, both systems are studies regarding their batch processing

performance in the performed measurements.

Lopez et al. [LLD16] compare Apache Storm, Apache Flink, and Apache

Spark Streaming in their publication. Besides describing the architecture of

these three systems, the performance is studied in a network traffic analysis

scenario. Additionally, the behavior in case of a node failure is investigated.

Overall, there are several approaches creating a way to define stream pro-

cessing applications that can be executed on multiple DSPSs, without the need

for substantial porting efforts. One way could be the development of a com-

monly supported SQL standard, similar to the domain of database management

systems.

5.3 Apache Kafka Capability Analysis

Francis and Merli [FM16] present Apache Pulsar, a message broker originally de-

veloped at Yahoo!. It makes use of the distributed storage service Apache Book-

Keeper12. Similar to Apache Kafka, Apache Pulsar employs the concept of top-

ics to which producers can send messages and to which consumers can subscribe.

Francis and Merli [FM16] also show a brief performance analysis. The through-

put that was achieved in their study using an SSD is 1,800,000 messages/second.

However, they do not give details about the test setup, making it hard to assess

or reproduce the results.

10http://datalab.cs.pdx.edu/niagara/NEXMark/, accessed: 2021-03-09
11https://beam.apache.org/documentation/sdks/java/nexmark/, accessed: 2020-12-31
12https://bookkeeper.apache.org, accessed: 2020-12-31

121

http://datalab.cs.pdx.edu/niagara/NEXMark/
https://beam.apache.org/documentation/sdks/java/nexmark/
https://bookkeeper.apache.org

chapter 5: Related Work

Dobbelaere and Esmaili [DE17] compare Apache Kafka with RabbitMQ13,

which is another open-source message broker. In their work, they compare both

solutions qualitatively and quantitatively. The impact of different acknowledg-

ment levels is, similar to the studies conducted in Section 4.3, one factor amongst

others that are evaluated in their study. However, contrary to our results, their

findings do not show a clear difference in the achieved throughput between an

acks level of one and zero in the analyzed setting. The usage of a different

version of Apache Kafka is a potential reason for that.

Noac’h, Costan, and Bougé [NCB17] evaluate the performance of Apache

Kafka in combination with DSPSs. They also study the influence of Apache

Kafka configuration aspects, the producer batch size being one of them. In line

with the results presented in Section 4.3, their findings reveal that a higher

batch size does not necessarily lead to a higher throughput.

Kreps et al. [KNR11] present a performance analysis of the systems Apache

Kafka, RabbitMQ, and Apache ActiveMQ14. Comparable to the related work

presented before, they analyze the influence of the batch size of the Apache

Kafka producer. Next to the producer, they study the Apache Kafka consumer

behavior and compare it to RabbitMQ and Apache ActiveMQ. The achieved

throughput for Apache Kafka presented by Kreps et al. [KNR11] is in a similar

range as the results of this dissertation.

13https://www.rabbitmq.com, accessed: 2020-12-31
14https://activemq.apache.org, accessed: 2020-12-31

122

https://www.rabbitmq.com
https://activemq.apache.org

6

CONCLUSION

This last chapter presents a summary of the work outlined in this dissertation.

Moreover, we highlight interesting topics for future work.

6.1 Summary

This dissertation introduced ESPBench, a benchmark for stream processing ar-

chitectures in an enterprise context, where streaming data is combined with

structured business data. In addition to this enterprise context, ESPBench

covers all core functionalities of data stream processing systems, making its

results relevant for all domains. As part of ESPBench, an example implemen-

tation using Apache Beam as well as a functionally comprehensive toolkit are

published, which simplifies the use of the benchmark. In addition, the tools

provide full automation of the entire benchmark process. The toolkit also al-

lows for an objective result calculation, i.e., ESPBench does not rely on the

differently measured performance metrics several systems may provide. We val-

idated ESPBench using our example query implementation in an experimental

evaluation. Particularly, we benchmarked three state-of-the-art DSPSs that ex-

ecute the queries developed with the Apache Beam software development kit

(SDK) along with a modern database management system (DBMS). We an-

alyzed different data ingestion rates and their impact on latencies as well as

system utilization. The benchmark results reveal that no system outperforms

the others for all queries and input rates regarding latencies. The evaluation also

shows that, when changing the DSPS which is executing an Apache Beam appli-

123

chapter 6: Conclusion

cation, one cannot rely on an identical application outcome. Even the error-free

executability on another DSPS cannot be taken for granted as another finding

discloses.

We further analyzed the performance impact which exists when developing

stream processing applications with the Apache Beam SDK, compared to having

the same programs developed using the native system SDKs. All benchmark

implementations are provided in order to ensure reproducibility. The results of

the impact analysis show that Apache Beam has a noticeable influence on the

performance of DSPSs in almost all cases. Programs developed using Apache

Beam suffered from a slowdown of up to a factor of 58 in the worst case. At

the same time, there is one scenario where the query developed using Apache

Beam is as fast as its counterparts using the APIs of the corresponding DSPS.

However, for most scenarios, we observed a slowdown of at least a factor three.

The results lead to two major conclusions. Firstly, using Apache Beam

as an abstraction layer for application development comes at a cost in terms of

runtime performance compared to the applications developed using DSPS SDKs.

Secondly, the performance penalty varies among DSPSs and stream processing

applications. While using Apache Beam certainly provides greater flexibility to

switch underlying DSPSs with relatively low effort, one needs to be aware of

the fact that this advantage comes with a negative impact on performance.

As part of the Apache Kafka performance study of this dissertation, we

proposed a monitoring architecture for applications running on a Java Virtual

Machine (JVM) in general. Its design goals include the ease of setup and the

usage of state-of-the-art technologies, such as Grafana, Carbon, jmxtrans, and

collectd. We performed a comprehensive performance study on Apache Kafka

using this suggested performance benchmarking landscape. Moreover, we eval-

uated and discussed the outcomes for selected Apache Kafka producer configu-

rations in this work. The development and benchmarking artifacts, such as the

data sender and the Grafana dashboard, are published to achieve transparency

and reproducibility. In the defined setting with a single topic with one partition

and a replication factor of one, we observed a maximum steady throughput of

about 420,000 messages/second, which corresponds to about 92 MB/second. We

identified and quantified the impact of the data producer batch size, acknowledg-

ment level, data sender locality, as well as additional aspects on the input rate

performance. A surprising finding is related to the influence of the acknowledg-

ment level. Having acknowledgments enabled resulted in better performance,

i.e., a higher message input rate, which was unexpected as it introduces an

overhead.

124

chapter 6: Conclusion

Additionally, we analyzed the timestamps taken by Apache Kafka when a

record is appended to its log. We studied how the batching mechanism of Apache

Kafka impacts the timestamps regarding possible delays. Knowing that is cru-

cial as a large delay can distort latency results calculated by ESPBench. The

study reveals that a batching impact on timestamps is barely noticeable. While

there is no influence identifiable for an input rate of 1,000 messages/second, the

observed delays for 10,000 messages/second are marginal. Particularly, batches

of about eleven records got assigned the same timestamp, while consecutive

batches only had a timestamp difference of one millisecond. A doubled default

batch size does not have an effect on these results.

To sum up, we presented a benchmark for data stream processing archi-

tectures in an enterprise context, i.e., where streaming data also needs to be

combined with stored business data. We applied the benchmark on different

architectures to prove its functioning and highlight the importance of function-

alities, such as the query result validation and latency calculation. Additionally,

we studied the performance impact of using the popular Apache Beam SDK for

developing stream processing applications compared to making use of DSPS

SDKs. To get a better understanding of the capabilities of Apache Kafka, the

message broker employed in the proposed benchmark, we analyzed how many

incoming records per second Apache Kafka can handle in selected configura-

tions. These contributions presented in this dissertation add value to the area

of performance benchmarking in the context of data stream processing.

6.2 Future Work

The studied area of performance benchmarking for data stream processing sys-

tems comprises several directions for future work. To broaden the use cases

for ESPBench in the future, the validator can be extended to support ignoring

the query result order, focusing only on the presence of results. This additional

feature will allow extended scaling regarding the Apache Kafka topic partitions.

In the current setting, we use topics with a single partition as Apache Kafka

only guarantees the correct order of records within one partition. However,

there might be use cases where a strict result order is not required which justify

having this validator option. By scaling via Apache Kafka topic partitions, the

maximum data input rate manageable by the message broker can be increased.

Another area of future work is the extension of the benchmark to calculate

additional result KPIs that cover aspects such as the behavior in case of node

failures. Besides that, the experimental evaluation can be broadened to further

125

chapter 6: Conclusion

topics. Possible areas of interest comprise analyses of, e.g., the scalability char-

acteristics of the DSPSs and the impact of altered DBMSs or their configurations

on the observed latencies. In this dissertation, the focus of our evaluation is on

selected open-source systems. Results of comparisons with commercial systems,

further open-source DSPSs, and more DSPS settings using ESPBench will lead

to a more complete overview of the DSPS landscape.

Furthermore, ESPBench can be used to study other benchmark domains.

For instance, geospatial data might be used or generated to test the performance

behavior of relevant queries for this kind of data, e.g., for distance calculations.

Future work in the area of Apache Beam and related performance impact

evaluations involves studying the reasons for performance differences in greater

detail. Particularly, the stream processing applications and systems can be

profiled to see how much time is spent in which part of the execution plans

and, thus, to identify possible performance bottlenecks. Finding potential rea-

sons for the comparatively large performance penalties when employing Apache

Apex represents another interesting direction of future work. It might be possi-

ble to identify factors that influence the performance penalty to create a model

which makes the performance predictable. Additionally, measurements can be

extended regarding aspects such as the number of studied systems or query

complexity as well as scaling, parallelism, or fault-tolerance behaviors. Further

upcoming Apache Beam versions and other abstraction layers should be com-

pared against the presented results to supplement the initial overview shown in

this work.

The Apache Kafka analysis also revealed potential aspects of future research.

Next to the study of selected configuration settings in Apache Kafka, a compar-

ison to similar systems, such as Apache Pulsar, Amazon SQS, or RabbitMQ,

are objectives that are valuable to the research community as there is currently

a lack of such comparisons. Further work can integrate the analysis of data pro-

ducers employed in data stream processing frameworks, such as Apache Flink

or Apache Beam. These systems often provide their own Apache Kafka pro-

ducer implementations or interfaces. It is currently unclear if these embedded

producers perform differently in comparable settings regarding the achievable

input rate. Besides, it is of interest how the achievable input rate behaves when

scaling via, e.g., the number of topic partitions. With a growing number of

partitions, scaling the number of broker nodes becomes an additional dimen-

sion. Its influence on the ingestion performance can be measured. The impact

of higher replication factors is another factor that is to be analyzed.

126

LIST OF FIGURES

1.1. Conceptual overview of a data integration scenario in the context

of Industry 4.0 . 3

1.2. A common data stream processing architecture visualized in Fun-

damental Modeling Concepts (FMC) 4

2.1. Exemplary visualization of the skew between event time and pro-

cessing time in data stream processing systems 12

2.2. Example of a dataflow representing a stream processing applica-

tion that counts elements of a window 13

2.3. Excerpt of the release dates of new data stream processing sys-

tems between 2010 and 2020 . 14

2.4. Architecture of an Apache Flink cluster with one Job Manager,

multiple Task Manager instances, and one connecting client . . . 16

2.5. Architecture of an Apache Spark deployment in cluster mode

with multiple Worker Nodes . 18

2.6. Architecture of an Apache Spark Worker Process 18

2.7. Stream processing concept in Apache Spark Streaming 19

2.8. Architecture of Apache Hadoop 2 19

2.9. Architecture of an Apache Hadoop YARN cluster with one client 20

2.10. Architecture of a Hazelcast Jet deployment in the embedded

mode with three nodes . 21

2.11. Architecture of a Hazelcast Jet deployment in the client-server

mode with three nodes and two applications 22

2.12. Example architecture of an Apache Kafka cluster with three bro-

kers, two topics, two producers, and three consumers 28

2.13. Storage concept of an Apache Kafka topic with two partitions . . 29

127

LIST OF FIGURES

3.1. Sensor architecture at the manufacturing equipment in ESPBench 39

3.2. Histograms visualizing the value distributions of columns mf01 –

mf03 – electrical power on main phases 1-3 42

3.3. Business data in ESPBench in Crow’s Foot Notation - adapted

TPC-C schema . 44

3.4. General architecture of a data stream processing benchmark in

Fundamental Modeling Concepts (FMC) 45

3.5. Architecture of ESPBench in FMC 46

3.6. Detailed view on the role of Apache Kafka within the ESPBench

architecture as data source and result data storage for the SUT . 48

3.7. ESPBench process visualized as an Activity Diagram 50

4.1. Latencies for query 1 - check sensor status on Apache Flink and

Hazelcast Jet for a data input rate of 1,000 messages/second -

Apache Spark results not shown due to wrong query results . . . 64

4.2. Latencies for query 1 - check sensor status on Apache Flink and

Hazelcast Jet for a data input rate of 10,000 messages/second -

Apache Spark results not shown due to wrong query results . . . 65

4.3. Latencies for query 2 - determine outliers on Apache Flink and

Hazelcast Jet for a data input rate of 1,000 messages/second -

Apache Spark results not shown due runtime exception 66

4.4. Latencies for query 3 - identify errors for a data input rate of

1,000 messages/second . 66

4.5. Latencies for query 3 - identify errors for a data input rate of

10,000 messages/second . 67

4.6. Latencies for query 4 - check machine power for a data input rate

of 1,000 messages/second . 68

4.7. Latencies for query 5 - persist processing times for a data input

rate of 1,000 messages/second . 68

4.8. Short-term system load for query 1 70

4.9. Short-term system load for query 2 70

4.10. Short-term system load for query 3 71

4.11. Short-term system load for query 4 71

4.12. Short-term system load for query 5 72

4.13. Used main memory - query 1 . 73

4.14. Used main memory - query 2 . 73

4.15. Used main memory - query 3 . 74

4.16. Used main memory - query 4 . 74

4.17. Used main memory - query 5 . 75

128

LIST OF FIGURES

4.18. Overview about the benchmark architecture and process for ana-

lyzing the performance impact of Apache Beam visualized using

Fundamental Modeling Concepts (FMC) 76

4.19. Average execution times - identity query 80

4.20. Average execution times - sample query 81

4.21. Average execution times - projection query 82

4.22. Average execution times - grep query 83

4.23. Standard deviations for system-query-SDK combinations 84

4.24. Relative standard deviations for system-query-SDK combinations 85

4.25. Slowdown factors for the analyzed stream processing systems and

queries . 88

4.26. Execution plan of Apache Flink for the grep query implemented

using the Apache Flink SDK . 90

4.27. Execution plan of Apache Flink for the grep query implemented

using Apache Beam . 90

4.28. Monitoring architecture for the Apache Kafka analysis in FMC . 93

4.29. Excerpt of the developed Grafana dashboard for the Apache

Kafka analysis . 94

4.30. Result overview of the achieved numbers of ingested mes-

sages/second into Apache Kafka - one-minute rate 98

4.31. Ingested messages/second - one-minute rate, configured ingestion

rate of 100,000 messages/second 98

4.32. Ingested messages/second - one-minute rate, configured ingestion

rate of 250,000 messages/second 99

4.33. Ingested messages/second - one-minute rate, configured ingestion

rate of 1,000,000 messages/second 100

4.34. Incoming MB/second - one-minute rate, configured ingestion rate

of 1,000,000 messages/second . 101

4.35. Short-term system load of the Apache Kafka broker containing

the topic partition - one-minute rate, configured ingestion rate of

1,000,000 messages/second . 102

4.36. Ingested messages/second - one-minute rate, configured ingestion

rate of 500,000 messages/second in total with two data senders . 102

4.37. Incoming MB/second - one-minute rate, configured ingestion rate

of 500K messages/second in total with two data senders 104

4.38. Packages received/second on interface eth0 - one-minute rate,

acks=1 . 104

129

LIST OF FIGURES

4.39. 100 consecutive Apache Kafka timestamps, ingestion rate of

1,000 messages/second . 106

4.40. 100 consecutive Apache Kafka timestamps, ingestion rate of

10,000 messages/second . 107

4.41. 500 consecutive Apache Kafka timestamps, ingestion rate of

10,000 messages/second . 107

4.42. 100 consecutive Apache Kafka timestamps, ingestion rate of

1,000 messages/second, batch size of 32 kB 107

4.43. 100 consecutive Apache Kafka timestamps, ingestion rate of

10,000 messages/second, batch size of 32 kB 108

130

LIST OF TABLES

3.1. Conceptual comparison of sensor and business data 40

3.2. Data structure of the sensor measurements stream 41

3.3. Structure of the sensor data used for production time determination 43

3.4. Query set of ESPBench . 53

4.1. System characteristics of the Apache Kafka brokers for the ESP-

Bench validation . 60

4.2. Apache Kafka producer properties used by the data sender for

the ESPBench validation . 61

4.3. System characteristics of the SUT nodes for the ESPBench vali-

dation . 62

4.4. Latency overview of the experimental analysis using ESPBench

and query implementations based on Apache Beam 63

4.5. Overview of the stateless StreamBench queries used for evaluating

the Apache Beam performance impact 79

4.6. Execution times for the identity query implemented using the

native system APIs and executed on Apache Flink 86

4.7. Server characteristics of the Apache Kafka broker nodes used for

the Apache Kafka Analysis . 95

4.8. Default properties applied to the Apache Kafka producer for the

Apache Kafka analysis . 97

5.1. Comparison of data stream processing benchmarks 118

131

BIBLIOGRAPHY

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur

Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lind-

ner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul,

Ying Xing, and Stanley B. Zdonik. The Design of the Borealis

Stream Processing Engine. In Conference on Innovative Data Sys-

tems Research (CIDR), pages 277–289, 2005.

[ABB+03a] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith

Ito, Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys

Thomas, Rohit Varma, and Jennifer Widom. STREAM: The Stan-

ford Stream Data Manager. IEEE Data Engineering Bulletin,

26(1):19–26, 2003.

[ABB+03b] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith

Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom.

STREAM: The Stanford Stream Data Manager (Demonstration

Description). In ACM International Conference on Management

of Data (SIGMOD), pages 665–665. ACM, 2003.

[ABC+15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel

Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The Dataflow

Model: A Practical Approach to Balancing Correctness, Latency,

and Cost in Massive-Scale, Unbounded, Out-of-Order Data Pro-

cessing. In Proceedings of the VLDB Endowment, volume 8, pages

1792–1803, 2015.

132

BIBLIOGRAPHY

[Abd15] Mohamed Amine Abdessemed. Real-time Data Integra-

tion with Apache Flink & Kafka @Bouygues Telecom.

http://www.slideshare.net/FlinkForward/mohamed-amine-

abdessemed-realtime-data-integration-with-apache-

flink-kafka, 2015. Accessed: 2020-12-31.

[ABE+14] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-

Christoph Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus

Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters,

Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter, Mareike

Höger, Kostas Tzoumas, and Daniel Warneke. The Stratosphere

platform for big data analytics. VLDB J., 23(6):939–964, 2014.

[ABW04] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A Lan-

guage for Continuous Queries over Streams and Relations. In Inter-

national Workshop on Database Programming Languages (DBPL)

2003, pages 1–19. Springer Berlin Heidelberg, 2004.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL

continuous query language: semantic foundations and query exe-

cution. VLDB J., 15(2):121–142, 2006.

[ACÇ+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherni-

ack, Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime

Tatbul, and Stanley B. Zdonik. Aurora: a new model and archi-

tecture for data stream management. VLDB J., 12(2):120–139,

2003.

[ACG+04] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David

Maier, Anurag Maskey, Esther Ryvkina, Michael Stonebraker, and

Richard Tibbetts. Linear Road: A Stream Data Management

Benchmark. In International Conference on Very Large Data Bases

(VDLB), pages 480–491, 2004.

[ACL18] Tyler Akidau, Slava Chernyak, and Reuven Lax. Streaming Sys-

tems: THE WHAT, WHERE, WHEN, AND HOW OF LARGE-

SCALE DATA PROCESSING. O’Reilly Media, Inc., 2018.

[ADKM21] Mayank Agrawal, Sumit Dutta, Richard Kelly, and Ingrid

Millán. COVID-19: An inflection point for Industry 4.0. https:

//www.mckinsey.com/business-functions/operations/our-

133

http://www.slideshare.net/FlinkForward/mohamed-amine-abdessemed-realtime-data-integration-with-apache-flink-kafka
http://www.slideshare.net/FlinkForward/mohamed-amine-abdessemed-realtime-data-integration-with-apache-flink-kafka
http://www.slideshare.net/FlinkForward/mohamed-amine-abdessemed-realtime-data-integration-with-apache-flink-kafka
https://www.mckinsey.com/business-functions/operations/our-insights/covid-19-an-inflection-point-for-industry-40
https://www.mckinsey.com/business-functions/operations/our-insights/covid-19-an-inflection-point-for-industry-40
https://www.mckinsey.com/business-functions/operations/our-insights/covid-19-an-inflection-point-for-industry-40

BIBLIOGRAPHY

insights/covid-19-an-inflection-point-for-industry-40,

2021. Accessed: 2021-03-18.

[AXL+15] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies

Liu, Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J

Franklin, Ali Ghodsi, and Matei Zaharia. Spark SQL: Relational

Data Processing in Spark. In ACM International Conference on

Management of Data (SIGMOD), pages 1383–1394. ACM, 2015.

[BCH+18] Edmon Begoli, Jesús Camacho-Rodŕıguez, Julian Hyde, Michael J.

Mior, and Daniel Lemire. Apache Calcite: A Foundational Frame-

work for Optimized Query Processing Over Heterogeneous Data

Sources. In ACM International Conference on Management of Data

(SIGMOD), pages 221–230, 2018.

[BDD+10] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura M. Haas,

Renée J. Miller, and Nesime Tatbul. SECRET: A Model for Anal-

ysis of the Execution Semantics of Stream Processing Systems. In

Proceedings of the VLDB Endowment, volume 3, pages 232–243,

2010.

[BGM+20] Maycon Viana Bordin, Dalvan Griebler, Gabriele Mencagli,

Cláudio F. R. Geyer, and Luiz Gustavo Leão Fernandes. DSP-

Bench: A Suite of Benchmark Applications for Distributed Data

Stream Processing Systems. IEEE Access, 8:222900–222917, 2020.

[Bha16] Milind Bhandarkar. AdBench: A Complete Benchmark for Modern

Data Pipelines. In TPC Technology Conference (TPCTC), pages

107–120, 2016.

[BKD+14] David Bermbach, Jörn Kuhlenkamp, Akon Dey, Sherif Sakr,

and Raghunath Nambiar. Towards an Extensible Middleware

for Database Benchmarking. In TPC Technology Conference

(TPCTC), volume 8904, pages 82–96. Springer, 2014.

[Bre15] Eric A. Brewer. Kubernetes and the Path to Cloud Native. In

ACM Symposium on Cloud Computing (SoCC), page 167, 2015.

[BW01] Shivnath Babu and Jennifer Widom. Continuous Queries over Data

Streams. SIGMOD Rec., 30(3):109–120, 2001.

[CDE+16] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar,

Thomas Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum,

134

https://www.mckinsey.com/business-functions/operations/our-insights/covid-19-an-inflection-point-for-industry-40
https://www.mckinsey.com/business-functions/operations/our-insights/covid-19-an-inflection-point-for-industry-40

BIBLIOGRAPHY

Kishorkumar Patil, Boyang Peng, and Paul Poulosky. Bench-

marking Streaming Computation Engines: Storm, Flink and Spark

Streaming. In IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS) Workshops, pages 1789–1792, 2016.

[CGH+17] Paris Carbone, Gábor E. Gévay, Gábor Hermann, Asterios Kat-

sifodimos, Juan Soto, Volker Markl, and Seif Haridi. Large-Scale

Data Stream Processing Systems. In Handbook of Big Data Tech-

nologies, pages 219–260. 2017.

[CKE+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker

Markl, Seif Haridi, and Kostas Tzoumas. Apache FlinkTM: Stream

and Batch Processing in a Single Engine. IEEE Data Eng. Bull.,

38(4):28–38, 2015.

[CMN18] Michael Chui, Brett May, and Subu Narayanan. What it takes to

get an edge in the Internet of Things. https://www.mckinsey.com/

business-functions/mckinsey-digital/our-insights/what-

it-takes-to-get-an-edge-in-the-internet-of-things,

September 2018. Accessed: 2020-05-08.

[Cou90] Transaction Processing Performance Council. TPC benchmark C

standard specification, 1990.

[DBE15] Minh Dao-Tran, Harald Beck, and Thomas Eiter. Towards Com-

paring RDF Stream Processing Semantics. In Workshop on High-

Level Declarative Stream Processing, volume 1447 of CEUR Work-

shop Proceedings, pages 15–27, 2015.

[DD13] Thomas H. Davenport and Jill Dyché. Big Data in Big

Companies. http://docs.media.bitpipe.com/io 10x/io 102267/

item 725049/Big-Data-in-Big-Companies.pdf, May 2013. Ac-

cessed: 2020-12-31.

[DE17] Philippe Dobbelaere and Kyumars Sheykh Esmaili. Industry Pa-

per: Kafka versus RabbitMQ: A comparative study of two indus-

try reference publish/subscribe implementations. In ACM Interna-

tional Conference on Distributed and Event-based Systems (DEBS),

pages 227–238, 2017.

[DF16] T. Dunning and E. Friedman. Streaming Architecture: New Designs

Using Apache Kafka and MapR Streams. O’Reilly Media, 2016.

135

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/what-it-takes-to-get-an-edge-in-the-internet-of-things
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/what-it-takes-to-get-an-edge-in-the-internet-of-things
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/what-it-takes-to-get-an-edge-in-the-internet-of-things
http://docs.media.bitpipe.com/io_10x/io_102267/item_725049/Big-Data-in-Big-Companies.pdf
http://docs.media.bitpipe.com/io_10x/io_102267/item_725049/Big-Data-in-Big-Companies.pdf

BIBLIOGRAPHY

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In Symposium on Operating System

Design and Implementation (OSDI), pages 137–150, 2004.

[DGKL11] J.N. Druckman, D.P. Greene, J.H. Kuklinski, and A. Lupia. Cam-

bridge Handbook of Experimental Political Science. Cambridge Uni-

versity Press, 2011.

[DTC+19] Manh Nguyen Duc, Anh Lê Tuán, Jean-Paul Calbimonte, Manfred

Hauswirth, and Danh Le Phuoc. Autonomous RDF Stream Pro-

cessing for IoT Edge Devices. In Xin Wang, Francesca Alessandra

Lisi, Guohui Xiao, and Elena Botoeva, editors, Semantic Technol-

ogy - Joint International Conference, JIST, volume 12032, pages

304–319. Springer, 2019.

[DtH01] Marlon Dumas and Arthur H. M. ter Hofstede. UML Activity Dia-

grams as a Workflow Specification Language. In <<UML>> 2001

- The Unified Modeling Language, Modeling Languages, Concepts,

and Tools, pages 76–90, 2001.

[ES93] Lisa M. Ellram and Sue Perrott Siferd. Purchasing: The Corner-

stone of the Total Cost of Ownership Concept. Journal of Business

Logistics, 14(1):163–184, 1993.

[FAS+12] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup,

Volker Markl, and Cafer Tosun. Benchmarking in the Cloud: What

It Should, Can, and Cannot Be. In TPC Technology Conference

(TPCTC), pages 173–188, 2012.

[FCP+11] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof

Bornhövd, Stefan Sigg, and Wolfgang Lehner. SAP HANA

database: data management for modern business applications.

In ACM International Conference on Management of Data (SIG-

MOD), volume 40, pages 45–51, 2011.

[FM16] Joe Francis and Matteo Merli. Open-sourcing Pulsar, Pub-

sub Messaging at Scale. https://yahooeng.tumblr.com/post/

150078336821/open-sourcing-pulsar-pub-sub-messaging-

at-scale, 2016. Accessed: 2020-12-31.

[GKP+10] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier,

Philippe Cudré-Mauroux, and Samuel Madden. HYRISE - A Main

136

https://yahooeng.tumblr.com/post/150078336821/open-sourcing-pulsar-pub-sub-messaging-at-scale
https://yahooeng.tumblr.com/post/150078336821/open-sourcing-pulsar-pub-sub-messaging-at-scale
https://yahooeng.tumblr.com/post/150078336821/open-sourcing-pulsar-pub-sub-messaging-at-scale

BIBLIOGRAPHY

Memory Hybrid Storage Engine. In Proceedings of the VLDB En-

dowment, volume 4, pages 105–116, 2010.

[Gra93] Jim Gray. The Benchmark Handbook - For Database and Trans-

action Processing Systems. The Morgan Kaufmann Series in Data

Management Systems. Morgan Kaufmann, 1993.

[Gre17] Brendan Gregg. Linux Load Averages: Solving the Mys-

tery. http://www.brendangregg.com/blog/2017-08-08/linux-

load-averages.html, 2017. Accessed: 2020-12-31.

[HH21] Sören Henning and Wilhelm Hasselbring. Theodolite: Scalability

Benchmarking of Distributed Stream Processing Engines in Mi-

croservice Architectures. Big Data Research, 25:2214–5796, 2021.

[HHD+10] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and

Bo Huang. The HiBench Benchmark Suite: Characterization of

the MapReduce-Based Data Analysis. In Workshop Proceedings of

the International Conference on Data Engineering (ICDE), pages

41–51, 2010.

[Hit02] Steve Hitchman. The Details of Conceptual Modelling Notations

are Important - A Comparison of Relationship Normative Lan-

guage. Communications of the Association for Information Sys-

tems, 9:10, 2002.

[HKZ+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,

Anthony D. Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica.

Mesos: A Platform for Fine-Grained Resource Sharing in the Data

Center. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2011.

[HL15] Guenter Hesse and Martin Lorenz. Conceptual Survey on Data

Stream Processing Systems. In IEEE International Conference on

Parallel and Distributed Systems (ICPADS), pages 797–802, 2015.

[HM20] Guenter Hesse and Christoph Matthies. guenter-hesse/ESPBench:

Initial ESPBench Release. https://doi.org/10.5281/

zenodo.4322553, December 2020.

[HMG+19] Guenter Hesse, Christoph Matthies, Kelvin Glass, Johannes Hue-

gle, and Matthias Uflacker. Quantitative Impact Evaluation of

an Abstraction Layer for Data Stream Processing Systems. In

137

http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
https://doi.org/10.5281/zenodo.4322553
https://doi.org/10.5281/zenodo.4322553

BIBLIOGRAPHY

IEEE International Conference on Distributed Computing Systems

(ICDCS), pages 1381–1392, 2019.

[HMP+21] Guenter Hesse, Christoph Matthies, Michael Perscheid, Matthias

Uflacker, and Hasso Plattner. ESPBench: The Enterprise Stream

Processing Benchmark. In ACM/SPEC International Conference

on Performance Engineering (ICPE), pages 201–212, 2021.

[HMRU17] Guenter Hesse, Christoph Matthies, Benjamin Reissaus, and

Matthias Uflacker. A New Application Benchmark for Data Stream

Processing Architectures in an Enterprise Context: Doctoral Sym-

posium. In ACM International Conference on Distributed and

Event-based Systems (DEBS), pages 359–362, 2017.

[HMSU19] Guenter Hesse, Christoph Matthies, Werner Sinzig, and Matthias

Uflacker. Adding Value by Combining Business and Sensor Data:

An Industry 4.0 Use Case. In International Conference on Database

Systems for Advanced Applications (DASFAA), pages 528–532,

2019.

[HMU20] Guenter Hesse, Christoph Matthies, and Matthias Uflacker. How

Fast Can We Insert? An Empirical Performance Evaluation of

Apache Kafka. In IEEE International Conference on Parallel and

Distributed Systems (ICPADS), pages 641–648, 2020.

[HRM+17] Guenter Hesse, Benjamin Reissaus, Christoph Matthies, Martin

Lorenz, Milena Kraus, and Matthias Uflacker. Senska – Towards an

Enterprise Streaming Benchmark. In TPC Technology Conference

(TPCTC), pages 25–40, 2017.

[HSK+19] Razin Farhan Hussain, Mohsen Amini Salehi, Anna Kovalenko, Yin

Feng, and Omid Semiari. Federated Edge Computing for Disaster

Management in Remote Smart Oil Fields. In IEEE International

Conference on High Performance Computing and Communications

(HPCC); IEEE International Conference on Smart City; IEEE In-

ternational Conference on Data Science and Systems (DSS), pages

929–936, 2019.

[HSMU19] Guenter Hesse, Werner Sinzig, Christoph Matthies, and Matthias

Uflacker. Application of Data Stream Processing Technologies in

Industry 4.0: What is Missing? In International Conference on

138

BIBLIOGRAPHY

Data Science, Technology and Applications (DATA), pages 304–

310, 2019.

[Hup09] Karl Huppler. The Art of Building a Good Benchmark. In TPC

Technology Conference (TPCTC), pages 18–30, 2009.

[HVN16] Marco F. Huber, Martin Voigt, and Axel-Cyrille Ngonga Ngomo.

Big data architecture for the semantic analysis of complex events

in manufacturing. In 46. Jahrestagung der Gesellschaft für Infor-

matik, pages 353–360, 2016.

[IAM+19] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla,

Farhana H. Zulkernine, and Shahzad Khan. A Survey of Dis-

tributed Data Stream Processing Frameworks. IEEE Access,

7:154300–154316, 2019.

[Int14] Intel. A GUIDE TO THE INTERNET OF THINGS.

https://www.intel.de/content/www/de/de/internet-of-

things/infographics/guide-to-iot-new.html, 2014. Accessed:

2020-11-28.

[Jan13] J.H.M. Janssens. Outlier Selection and One-Class Classification.

PhD thesis, 2013. Series: TiCC Ph.D. Series Volume: 27.

[JHF+12] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber,

Raik Hartung, and Nenad Stojanovic. The DEBS 2012 Grand

Challenge. In ACM International Conference on Distributed Event-

Based Systems (DEBS), pages 393–398, 2012.

[JMS+08] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes

Gehrke, Jennifer Widom, Hari Balakrishnan, Ugur Çetintemel,

Mitch Cherniack, Richard Tibbetts, and Stanley B. Zdonik. To-

wards a Streaming SQL Standard. In Proceedings of the VLDB

Endowment, volume 1, pages 1379–1390, 2008.

[Joh15] M. Johns. Getting Started with Hazelcast - Second Edition. Packt

Publishing, 2015.

[Jos65] E. O. Joslin. Application Benchmarks: The Key to Meaningful

Computer Evaluations. In Proceedings of the National Conference,

pages 27–37, 1965.

[JS19] Bartosz Janota and Robert Stephenson. Spotify’s Event Delivery –

Life in the Cloud. https://engineering.atspotify.com/2019/

139

https://www.intel.de/content/www/de/de/internet-of-things/infographics/guide-to-iot-new.html
https://www.intel.de/content/www/de/de/internet-of-things/infographics/guide-to-iot-new.html
https://engineering.atspotify.com/2019/11/12/spotifys-event-delivery-life-in-the-cloud/
https://engineering.atspotify.com/2019/11/12/spotifys-event-delivery-life-in-the-cloud/

BIBLIOGRAPHY

11/12/spotifys-event-delivery-life-in-the-cloud/, 2019.

Accessed: 2020-11-28.

[KGT05] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamen-

tal Modeling Concepts. Effective Communication of IT Systems,

page 51, 2005.

[KKG+11] Jens Krüger, Changkyu Kim, Martin Grund, Nadathur Satish,

David Schwalb, Jatin Chhugani, Hasso Plattner, Pradeep Dubey,

and Alexander Zeier. Fast Updates on Read-Optimized Databases

Using Multi-Core CPUs. In Proceedings of the VLDB Endowment,

volume 5, pages 61–72, 2011.

[KKLLC15] Roland Kotto-Kombi, Nicolas Lumineau, Philippe Lamarre, and

Yves Caniou. Parallel and Distributed Stream Processing: Systems

Classification and Specific Issues. 2015.

[KNR11] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a Distributed

Messaging System for Log Processing. In International Workshop

on Networking Meets Databases (NetDB), pages 1–7, 2011.

[Kos16] Joel Koshy. Kafka Ecosystem at LinkedIn. https://

engineering.linkedin.com/blog/2016/04/kafka-ecosystem-

at-linkedin, 2016. Accessed: 2020-12-31.

[KRK+18] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman

Samarev, Henri Heiskanen, and Volker Markl. Benchmarking Dis-

tributed Stream Data Processing Systems. In IEEE International

Conference on Data Engineering (ICDE), pages 1507–1518, 2018.

[KW19] Rakesh Kumar and Thomas Weise. The magic behind your Lyft

ride prices - A case study on machine learning and streaming.

https://conferences.oreilly.com/strata/strata-ca-2019/

cdn.oreillystatic.com/en/assets/1/event/290/The%20magic%

20behind%20your%20Lyft%20ride%20prices %20A%20case%

20study%20on%20machine%20learning%20and%20streaming%

20Presentation.pdf, 2019. Accessed: 2020-12-28.

[KYA17] Ziya Karakaya, Ali Yazici, and Mohammed Alayyoub. A Compari-

son of Stream Processing Frameworks. In International Conference

on Computer and Applications (ICCA), pages 1–12, 2017.

140

https://engineering.atspotify.com/2019/11/12/spotifys-event-delivery-life-in-the-cloud/
https://engineering.atspotify.com/2019/11/12/spotifys-event-delivery-life-in-the-cloud/
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://conferences.oreilly.com/strata/strata-ca-2019/cdn.oreillystatic.com/en/assets/1/event/290/The%20magic%20behind%20your%20Lyft%20ride%20prices_%20A%20case%20study%20on%20machine%20learning%20and%20streaming%20Presentation.pdf
https://conferences.oreilly.com/strata/strata-ca-2019/cdn.oreillystatic.com/en/assets/1/event/290/The%20magic%20behind%20your%20Lyft%20ride%20prices_%20A%20case%20study%20on%20machine%20learning%20and%20streaming%20Presentation.pdf
https://conferences.oreilly.com/strata/strata-ca-2019/cdn.oreillystatic.com/en/assets/1/event/290/The%20magic%20behind%20your%20Lyft%20ride%20prices_%20A%20case%20study%20on%20machine%20learning%20and%20streaming%20Presentation.pdf
https://conferences.oreilly.com/strata/strata-ca-2019/cdn.oreillystatic.com/en/assets/1/event/290/The%20magic%20behind%20your%20Lyft%20ride%20prices_%20A%20case%20study%20on%20machine%20learning%20and%20streaming%20Presentation.pdf
https://conferences.oreilly.com/strata/strata-ca-2019/cdn.oreillystatic.com/en/assets/1/event/290/The%20magic%20behind%20your%20Lyft%20ride%20prices_%20A%20case%20study%20on%20machine%20learning%20and%20streaming%20Presentation.pdf

BIBLIOGRAPHY

[LC85] Byron C. Lewis and Albert E. Crews. The Evolution of Benchmark-

ing as a Computer Performance Evaluation Technique. volume 9,

pages 7–16. Management Information Systems Research Center,

University of Minnesota, 1985.

[LD93] Scott T. Leutenegger and Daniel M. Dias. A Modeling Study of the

TPC-C Benchmark. In ACM International Conference on Manage-

ment of Data (SIGMOD), pages 22–31, 1993.

[LGM+18] Shen Li, Paul Gerver, John Macmillan, Daniel Debrunner, William

Marshall, and Kun-Lung Wu. Challenges and Experiences in Build-

ing an Efficient Apache Beam Runner For IBM Streams. In Pro-

ceedings of the VLDB Endowment, volume 11, pages 1742–1754,

2018.

[Li17] Neville Li. Big Data Processing at Spotify: The Road to Scio

(Part 1). https://labs.spotify.com/2017/10/16/big-data-

processing-at-spotify-the-road-to-scio-part-1/, 2017.

Accessed: 2020-12-28.

[LKT18] Thomas Lindemann, Jonas Kauke, and Jens Teubner. Efficient

Stream Processing of Scientific Data. In IEEE International Con-

ference on Data Engineering (ICDE) Workshops, pages 140–145,

2018.

[LLD16] Martin Andreoni Lopez, Antonio Gonzalez Pastana Lobato, and

Otto Carlos M. B. Duarte. A Performance Comparison of Open-

Source Stream Processing Platforms. In IEEE Global Communica-

tions Conference (GLOBECOM), pages 1–6, 2016.

[Ltd19] Autonomous Manufacturing Ltd. Industry 4.0: 7 Real-

World Examples of Digital Manufacturing in Action.

https://amfg.ai/2019/03/28/industry-4-0-7-real-world-

examples-of-digital-manufacturing-in-action/, 2019.

Accessed: 2020-05-12.

[LTW+17] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina

Salapura. SparkBench: a spark benchmarking suite character-

izing large-scale in-memory data analytics. Cluster Computing,

20(3):2575–2589, 2017.

141

https://labs.spotify.com/2017/10/16/big-data-processing-at-spotify-the-road-to-scio-part-1/
https://labs.spotify.com/2017/10/16/big-data-processing-at-spotify-the-road-to-scio-part-1/
https://amfg.ai/2019/03/28/industry-4-0-7-real-world-examples-of-digital-manufacturing-in-action/
https://amfg.ai/2019/03/28/industry-4-0-7-real-world-examples-of-digital-manufacturing-in-action/

BIBLIOGRAPHY

[Luc15] Greg Luck. Hazelcast’s Business Model, Open Source, Open Stan-

dards & Community. https://hazelcast.com/blog/business-

model-open-source-community/, 2015. Accessed: 2020-02-25.

[LWI+14] Xiaoyi Lu, Md. Wasi-ur-Rahman, Nusrat S. Islam, Dipti Shankar,

and Dhabaleswar K. Panda. Accelerating Spark with RDMA for

Big Data Processing: Early Experiences. In IEEE Annual Sym-

posium on High-Performance Interconnects (HOTI), pages 9–16,

2014.

[LWXH14] Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu. StreamBench:

Towards Benchmarking Modern Distributed Stream Computing

Frameworks. In IEEE/ACM International Conference on Utility

and Cloud Computing (UCC), pages 69–78, 2014.

[LZZ+18] Yu Liu, Hantian Zhang, Luyuan Zeng, Wentao Wu, and Ce Zhang.

MLBench: Benchmarking Machine Learning Services Against Hu-

man Experts. In Proceedings of the VLDB Endowment, volume 11,

pages 1220–1232, 2018.

[MBM09] Marcelo R. N. Mendes, Pedro Bizarro, and Paulo Marques. A Per-

formance Study of Event Processing Systems. In TPC Technology

Conference (TPCTC), pages 221–236, 2009.

[MCAP16] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, and

Maŕıa S. Pérez-Hernández. Spark versus Flink: Understanding

Performance in Big Data Analytics Frameworks. In IEEE Interna-

tional Conference on Cluster Computing (CLUSTER), pages 433–

442, 2016.

[MCB+15] James Manyika, Michael Chui, Peter Bisson, Jonathan Woet-

zel, Richard Dobbs, Jacques Bughin, and Dan Aharon. THE

INTERNET OF THINGS: MAPPING THE VALUE BEYOND

THE HYPE. http://www.mckinsey.com/~/media/McKinsey/

Business%20Functions/McKinsey%20Digital/Our%20Insights/

The%20Internet%20of%20Things%20The%20value%20of%

20digitizing%20the%20physical%20world/The-Internet-

of-things-Mapping-the-value-beyond-the-hype.ashx, June

2015. Accessed: 2020-12-31.

[McK15] McKinsey & Company. Industry 4.0 - How to

navigate digitization of the manufacturing sector.

142

https://hazelcast.com/blog/business-model-open-source-community/
https://hazelcast.com/blog/business-model-open-source-community/
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/The-Internet-of-things-Mapping-the-value-beyond-the-hype.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/The-Internet-of-things-Mapping-the-value-beyond-the-hype.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/The-Internet-of-things-Mapping-the-value-beyond-the-hype.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/The-Internet-of-things-Mapping-the-value-beyond-the-hype.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/The-Internet-of-things-Mapping-the-value-beyond-the-hype.ashx

BIBLIOGRAPHY

http://www.forschungsnetzwerk.at/downloadpub/

mck industry 40 report.pdf, 2015. Accessed: 2020-12-31.

[McK16] McKinsey & Company. Industry 4.0 after the initial hype -

Where manufacturers are finding value and how they can best

capture it. https://www.mckinsey.com/~/media/mckinsey/

business%20functions/mckinsey%20digital/our%20insights/

getting%20the%20most%20out%20of%20industry%204%200/

mckinsey industry 40 2016.ashx, 2016. Accessed: 2020-12-31.

[Men14] Marcelo Rodrigues Nunes Mendes. Performance Evaluation and

Benchmarking of Event Processing Systems. PhD thesis, 2014.

[MWBA10] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A

Ang. Introducing the Graph 500. Cray Users Group (CUG), 19:45–

74, 2010.

[NCB17] Paul Le Noac’h, Alexandru Costan, and Luc Bougé. A Performance

Evaluation of Apache Kafka in Support of Big Data Streaming

Applications. In IEEE International Conference on Big Data, pages

4803–4806, 2017.

[NLW+09] Raghunath Othayoth Nambiar, Matthew Lanken, Nicholas Wakou,

Forrest Carman, and Michael Majdalany. Transaction Processing

Performance Council (TPC): Twenty Years Later - A Look Back,

a Look Ahead. In TPC Technology Conference (TPCTC), pages

1–10, 2009.

[NOE+18] Judit Nagy, Judit Oláh, Edina Erdei, Domicián Máté, and József

Popp. The Role and Impact of Industry 4.0 and the Internet of

Things on the Business Strategy of the Value Chain—The Case of

Hungary. Sustainability, 10(10):3491, 2018.

[NPP+17] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh,

Jon Bringhurst, Indranil Gupta, and Roy H. Campbell. Samza:

Stateful Scalable Stream Processing at LinkedIn. In Proceedings of

the VLDB Endowment, volume 10, pages 1634–1645, 2017.

[NWZ+19] Thanh Tam Nguyen, Matthias Weidlich, Bolong Zheng, Hongzhi

Yin, Quoc Viet Hung Nguyen, and Bela Stantic. From Anomaly

Detection to Rumour Detection using Data Streams of Social Plat-

forms. In Proceedings of the VLDB Endowment, volume 12, pages

1016–1029, 2019.

143

http://www.forschungsnetzwerk.at/downloadpub/mck_industry_40_report.pdf
http://www.forschungsnetzwerk.at/downloadpub/mck_industry_40_report.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/getting%20the%20most%20out%20of%20industry%204%200/mckinsey_industry_40_2016.ashx
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/getting%20the%20most%20out%20of%20industry%204%200/mckinsey_industry_40_2016.ashx
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/getting%20the%20most%20out%20of%20industry%204%200/mckinsey_industry_40_2016.ashx
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/getting%20the%20most%20out%20of%20industry%204%200/mckinsey_industry_40_2016.ashx

BIBLIOGRAPHY

[PHPP16] Milinda Pathirage, Julian Hyde, Yi Pan, and Beth Plale. Samza-

SQL: Scalable Fast Data Management with Streaming SQL. In

IEEE International Parallel and Distributed Processing Symposium

(IPDPS) Workshops, pages 1627–1636, 2016.

[Pla09] Hasso Plattner. A Common Database Approach for OLTP and

OLAP Using an In-Memory Column Database. In ACM Interna-

tional Conference on Management of Data (SIGMOD), pages 1–2,

2009.

[Rab17] Tilmann Rabl. Big Data Stream Processing. http:

//www.bbdc.berlin/fileadmin/news/photos/BD SummerSchool-

17-18/StreamProcessing-TilmannRabl.pdf, 2017. Accessed:

2020-12-31.

[RFD+15] Tilmann Rabl, Michael Frank, Manuel Danisch, Hans-Arno Jacob-

sen, and Bhaskar Gowda. The Vision of BigBench 2.0. In Workshop

on Data analytics in the Cloud, pages 1–4, 2015.

[RS94] Arnon Rosenthal and Leonard J. Seligman. Data Integration in

the Large: The Challenge of Reuse. In Proceedings of the VLDB

Endowment, pages 669–675, 1994.

[RT18] Paul Ralph and Ewan D. Tempero. Construct Validity in Software

Engineering Research and Software Metrics. In Austen Rainer,

Stephen G. MacDonell, and Jacky W. Keung, editors, International

Conference on Evaluation and Assessment in Software Engineering

(EASE), pages 13–23. ACM, 2018.

[Rus19] John Russell. Alibaba acquires German big data startup Data Arti-

sans for $103M. https://techcrunch.com/2019/01/08/alibaba-

data-artisans/, 2019. Accessed: 2020-02-21.

[SAS19] Elkhan Shahverdi, Ahmed Awad, and Sherif Sakr. Big Stream

Processing Systems: An Experimental Evaluation. In IEEE In-

ternational Conference on Data Engineering (ICDE) Workshops,

pages 53–60, 2019.

[SCS17] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. RIoT-

Bench: An IoT benchmark for distributed stream processing sys-

tems. Concurrency and Computation: Practice and Experience,

29(21):1–22, 2017.

144

http://www.bbdc.berlin/fileadmin/news/photos/BD_SummerSchool-17-18/StreamProcessing-TilmannRabl.pdf
http://www.bbdc.berlin/fileadmin/news/photos/BD_SummerSchool-17-18/StreamProcessing-TilmannRabl.pdf
http://www.bbdc.berlin/fileadmin/news/photos/BD_SummerSchool-17-18/StreamProcessing-TilmannRabl.pdf
https://techcrunch.com/2019/01/08/alibaba-data-artisans/
https://techcrunch.com/2019/01/08/alibaba-data-artisans/

BIBLIOGRAPHY

[SÇZ05] Michael Stonebraker, Ugur Çetintemel, and Stanley B. Zdonik. The

8 Requirements of Real-Time Stream Processing. SIGMOD Record,

34(4):42–47, 2005.

[SDJ01] Marion K Slack and Jolaine R Draugalis Jr. Establishing the inter-

nal and external validity of experimental studies. American Journal

of Health-System Pharmacy, 58(22):2173–2181, 2001.

[Ser19] Sergei Sokolenko. Spotify: 500 billion events per day

as of nov 2019. https://twitter.com/datancoffee/status/

1197505299168604162, 2019. Accessed: 2020-11-07.

[Smi10] Ryan Smith. Intel Settles With the FTC. https://

www.anandtech.com/show/3839/intel-settles-with-the-ftc,

2010. Accessed: 2020-02-27.

[Sou17] Prashanth Harish Southekal. Data for Business Performance: The

Goal-Question-Metric (GQM) Model to Transform Business Data

into an Enterprise Asset. Technics Publications, 2017.

[SR86] Michael Stonebraker and Lawrence A. Rowe. THE DESIGN OF

POSTGRES. In ACM International Conference on Management

of Data (SIGMOD), pages 340–355, 1986.

[SS15] Abdul Ghaffar Shoro and Tariq Rahim Soomro. Big data analysis:

Apache spark perspective. Global Journal of Computer Science and

Technology, 15(1), 2015.

[SSS+15] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan,

Arun C. Murthy, and Carlo Curino. Apache Tez: A Unifying

Framework for Modeling and Building Data Processing Applica-

tions. In ACM International Conference on Management of Data

(SIGMOD), pages 1357–1369, 2015.

[TTPM02] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier.

NEXMark – A Benchmark for Queries over Data Streams DRAFT.

http://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf,

2002. Accessed: 2020-12-31.

[TTS+14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan Ra-

masamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Kr-

ishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh

145

https://twitter.com/datancoffee/status/1197505299168604162
https://twitter.com/datancoffee/status/1197505299168604162
https://www.anandtech.com/show/3839/intel-settles-with-the-ftc
https://www.anandtech.com/show/3839/intel-settles-with-the-ftc
http://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf

BIBLIOGRAPHY

Mittal, and Dmitriy V. Ryaboy. Storm @Twitter. In ACM In-

ternational Conference on Management of Data (SIGMOD), pages

147–156, 2014.

[Tzo19] Kostas Tzoumas. ververica - Introducing our new name! https://

www.ververica.com/blog/introducing-our-new-name, 2019. Ac-

cessed: 2020-02-21.

[Ung16] Gordon Mah Ung. AMD accuses BAPCo and Intel of cheating

with Sysmark benchmarks. https://www.pcworld.com/article/

3023373/amd-accuses-bapco-and-intel-of-cheating-with-

sysmark-benchmarks.html, 2016. Accessed: 2020-02-27.

[vDdP20] Giselle van Dongen and Dirk Van den Poel. Evaluation of Stream

Processing Frameworks. IEEE Transactions on Parallel and Dis-

tributed Systems, 31(8):1845–1858, 2020.

[vKAH+15] Jóakim von Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-

Dieter Lange, John L. Henning, and Paul Cao. How to Build a

Benchmark. In ACM/SPEC International Conference on Perfor-

mance Engineering (ICPE), pages 333–336, 2015.

[VL16] Mihail Vieru and Javier López. Flink in Zalando’s World of Mi-

croservices. http://www.slideshare.net/ZalandoTech/flink-

in-zalandos-world-of-microservices-62376341, 2016. Ac-

cessed: 2020-12-31.

[VMD+13] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad

Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason

Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino,

Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Balde-

schwieler. Apache Hadoop YARN: Yet Another Resource Nego-

tiator. In ACM Symposium on Cloud Computing (SOCC), pages

5:1–5:16, 2013.

[VMSK12] Marco Vieira, Henrique Madeira, Kai Sachs, and Samuel Kounev.

Resilience benchmarking. In Katinka Wolter, Alberto Avritzer,

Marco Vieira, and Aad P. A. van Moorsel, editors, Resilience As-

sessment and Evaluation of Computing Systems, pages 283–301.

Springer, 2012.

[VW14] Pamela Vagata and Kevin Wilfong. Scaling the Facebook data

warehouse to 300 PB. https://code.facebook.com/posts/

146

https://www.ververica.com/blog/introducing-our-new-name
https://www.ververica.com/blog/introducing-our-new-name
https://www.pcworld.com/article/3023373/amd-accuses-bapco-and-intel-of-cheating-with-sysmark-benchmarks.html
https://www.pcworld.com/article/3023373/amd-accuses-bapco-and-intel-of-cheating-with-sysmark-benchmarks.html
https://www.pcworld.com/article/3023373/amd-accuses-bapco-and-intel-of-cheating-with-sysmark-benchmarks.html
http://www.slideshare.net/ZalandoTech/flink-in-zalandos-world-of-microservices-62376341
http://www.slideshare.net/ZalandoTech/flink-in-zalandos-world-of-microservices-62376341
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/

BIBLIOGRAPHY

229861827208629/scaling-the-facebook-data-warehouse-

to-300-pb/, April 2014. Accessed: 2020-12-31.

[WL14] Steven Weiner and David Line. Manufacturing and the data co-

nundrum – Too much? Too little? Or just right? The Economist

Intelligence Unit, 2014.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing. In USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI),

pages 15–28, 2012.

[ZDL+13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott

Shenker, and Ion Stoica. Discretized Streams: Fault-Tolerant

Streaming Computation at Scale. In ACM SIGOPS Symposium

on Operating Systems Principles (SOSP), pages 423–438, 2013.

[ZL19] Jinfeng Zhuang and Yu Liu. PinText: A Multitask Text Embedding

System in Pinterest. In ACM International Conference on Knowl-

edge Discovery & Data Mining (SIGKDD), pages 2653–2661, 2019.

[ZWL+17] Mingming Zhang, Tianyu Wo, Xuelian Lin, Tao Xie, and Yaxiao

Liu. CarStream: An Industrial System of Big Data Processing

for Internet-of-Vehicles. In Proceedings of the VLDB Endowment,

volume 10, pages 1766–1777, 2017.

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-

aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gon-

zalez, Scott Shenker, and Ion Stoica. Apache Spark: A Unified

Engine for Big Data Processing. Communications of the ACM,

59(11):56–65, 2016.

147

https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/

EIGENSTÄNDIGKEITSERKLÄRUNG
(DECLARATION OF AUTHORSHIP)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine

anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit,

die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, sind

durch Angaben und Quellen kenntlich gemacht. Dies gilt auch für Zeichnungen,

Skizzen, bildliche Darstellungen und dergleichen. Ich erkläre weiterhin, dass die

vorliegende Arbeit bisher an keiner anderen Hochschule oder Prüfungsbehörde

eingereicht worden ist, weder in dieser noch in ähnlicher Form.

Potsdam, November 2021

Guenter Hesse

148

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Data Stream Processing and the Need for a New Performance Benchmark
	Research Questions
	Contributions
	Outline

	Background
	Data Stream Processing and Related Technologies
	Data Stream Processing Systems
	Apache Beam
	Messaging System Apache Kafka

	Performance Benchmarking
	Definition of Benchmarking
	Benchmark Classifications
	Design Principles for Performance Benchmarks

	ESPBench - The Enterprise Stream Processing Benchmark
	Scenario
	Data
	Sensor Data
	Business Data

	Architecture
	Input Data
	Data Generator
	Data Sender
	Message Broker
	System Under Test
	Validator and Result Calculator

	Benchmark Process
	Queries
	Review of Design Principles

	Experimental Evaluation
	Validation of ESPBench
	Benchmark Setup
	Benchmark Results
	Lessons Learned

	Performance Impact of Apache Beam
	Benchmark Setup
	Performance Results
	Lessons Learned

	Performance Capabilities of Apache Kafka
	Ingestion Rate Capabilities
	Delay Evaluation of Apache Kafka Log Timestamps

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Data Stream Processing Benchmarks
	Performance Impact of Apache Beam
	Apache Kafka Capability Analysis

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography

