Institut fur Informatik Institut de Recherche en Infornogie
Wissensverarbeitung und Informationssysteme et Systéi@atoires

Analyzing biological expression data based on
decision tree induction

Dissertation
zur Erlangung des akademischen Grades
“Doctor rerum naturalium”
(Dr.rer.nat.)
in der Wissenschaftsdisziplin Bioinformatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakult
der Universiat Potsdam

von
André Floter

Potsdam, den 27.05.2005



Acknowledgements

Beside my compassionate fiancée Sophie | would like to thhakfollowing people for their
support,

Torsten Schaub and Jacques Nicolas, as the tutors of this t@r their invaluable advice
and vast help in coping with all kinds of technical, formalddinancial problems,

Joachim Selbig for the financial aid and his kind assistaneeriting publications,

Joachim Kopka and Georg Leggewie for the biological datatleil inexhaustible patience
with my repetitive enquiries,

Philippe Besnard for his advice and the revision of all Fhetext | had to produce,

Wolfgang Severin for his substantiated help whenever mylAterpreter was of a different
opinion than myself,

Matthias Mohlig for his cooperation and scientific entlagsn which motivated me to the
end of my thesis,

and all the rest of the staff who has helped me during the kmtsy

Additionally, |1 would like to thank Peter-Uwe Zettiér, Matas Scholz, Gert Zoller and Carsten
Haustein for comforting me in times of fatigue and doubt.



Contents

1 Observing life at the molecular level: Systems biology 10
1.1 Available data sources of Systems biology . . . ... ... . ... ...... 11
1.1.1 Metabolomics. . . . . . . . ... e 11
1.1.2 TranscriptomiCs . . . . . . . . o v 13
1.1.3 Othertypesofdata . . . ... ... ... .. ... ... ... .. ..., 51
1.2 Cleaning biological data: data preprocessing . .. e ... 16
1.2.1 Describing empirical data: Statistical standardsnmas ......... 17
1.2.2 Normalisation . . . . . . . . . . . ... . 71
1.2.3 Dimensionreduction . . . .. ... ... ... 19
1.2.4 Discretisation . . . . . . ... 20
1.3 Finding interdependencies between attributes: aiioel analysis . . . . . . .. 22
1.3.1 Pearson’s correlation coefficients . .. ... ... ... ......... 22
1.3.2 Clusteranalysis . . . . . . . . . .. 23
1.4 Networkinduction . . . . . . . . .. . ... 23
141 Graphs . .. . . . e 24
1.4.2 Putting information in Graphical models. . . . ... ... ...... 24
1.4.3 Causalnetworks . . . . . . . . . . .. ... 24
1.44 Bayeseanapproach . . . . .. .. .. ... ... 5 2
1.5 Public databases related to Systems biology . . . .. ... ... ... ... 26
151 KEGG . ... . . e 26
152 BRENDA . . . . . . e 26
153 EXPASY . . . . . . e 27
1.6 Summary and conclusions . . . . . . . . ... 27
2 Atool for the identification of structure in data: Decision trees 28
2.1 Machine learning on attributes . . . . . . ... ... e 29
211 Datatypes. . . . . . . e e 30
2.1.2 Typesofpredictvemodels . . ... ... .. ... ... ...... .. 30
2.1.3 Graphical and rule-based representations of clssifi. . . . . . . . .. 31
2.2 Basicsof DecCision Trees . . . . . . . . o o v i e 31
2.2.1 Graphical representation oftrees . . . . . . .. .. ... ... ... 32
2.2.2 Propositionalrules . . .. .. ... .. .. .. ... . 33
2.2.3 Learningdecisiontrees . . . . . . .. ... e 34
224 ID3ICAS5 . . . 35
2.2.5 Alternative developments of decision tree learners . .. . . . ... .. 38
2.3 Advanced issUES . . . . . . . . ... 38
231 Owverfitting . . . . . .. ... e 38
232 Pruning . . ... 39



2.3.3 Cross-validation, Jackknife, Bootstrapping e
234 Missingvalues . . . . . . . ... e
235 Continuousdata . ... ... ... . ... ...
2.3.6 Oblique hyperplanes . . . . .. ... .. .. .. .. .. ... . . ...
2.3.7 Ensembletechniques . . . ... ... ... . ... . ... ... ...
2.3.8 Decisionlists . . . . .. ...
2.3.9 Hybrid decision tree approaches . . . . . ... .. ... ... ...
2.4 Previous applications in biological data analysis . ...... . . . .. ... ...
2.4.1 Classification of biological tissue samples . . . . . ...... . .. ...
2.4.2 Reconstruction ofgenenetworks . . . .. .. ... ... L
25 Summaryandconclusions . . .. .. .. ... ... e

44

From raw data to biological networks: a contribution to the analysis of dependencies

among sparse and noisy continuous data

3.1 Revealing stable states ofanorganism . . . ... ... ... ........
3.1.1 Established Methods considered in this approach . . . .. ... ..
3.1.2 Modelling states ofanorganism . . .. ... ... ...... ...
3.1.3 Growingdecisionforests . . . . ... .. .. ... ... ... .. ..
3.1.4 Threshold extraction . . . . ... ... .. ... .. ... ...
3.1.5 Parameters of the threshold extraction technique . . ... ... ..

3.2 Revealing combinatorial dependencies . . . . . . . . . .. ... ... ...
3.2.1 Partial correlation . . . . . ... L
3.2.2 Mutual information and conditional mutual infornoeti . . . . . . ...
3.2.3 Conditional mutual information on artificialdata . . . . . ... ...
3.2.4 Dependency network inference . . . . .. ... ... .. oL

3.3 Anheuristic approach: Estimating conditional mutu&bimation through decision
forests . . . . .
3.3.1 Exploiting decision tree heuristics . . . . . C e
3.3.2 Making classifiers robust with decision forests e
3.3.3 Anillustrative example: Interpreting a decisionefstr. . . . . . ... ..
3.3.4 Characteristics and discussion of the output streictu. . . . . . . . ..

34 SumMmMary . ... e e e e e e

An experiment in the analysis of metabolite concentratiordata for potatoes

4.1 A new tool: the provided software package
4.1.1 Implementation details on the state identifier e
4.1.2 Implementation details on tools for the calculatibivd . . . . . . . ..
4.1.3 Implementation details on the dependency inducer . . ... .. ..
414 USerscenario . . . . . . . o v v v e e

4.2 Application of the introduced techniques on metabaiitecentration data . . . .
4.2.1 Metabolite concentration data of transgenic potato . .. . . . . .. ..
4.2.2 Interpreting the discovered stable states . . . . .. ... ......
4.2.3 Interpreting the dependency structure e e
4.2.4 Summaryoftheanalysis . .. .. ... ... ... ..., .......

Appendix

5.1 Novel tools for the application of the introduced tecjugis . . . . . . ... ...
5.2 Complexity of the calculations . . . . ... ... ... ... .........
5.3 Code for generating artificialdata . . . . ... ... ... ... .......

51



Resune

Les techniques modernes d’'analyse biologique fournissextscientifiques diverses formes de
données. Une catégorie parmi d'autres est appelée ‘&dmnd’expression”. Ces données
indiquent les quantités des composés biochimiqueseptésdans les tissus, échantillon par
échantillon.

Depuis peu, les “données d’'expression ” peuvent étrémges trés rapidement. Ce qui aboutit
a des masses de données qui ne sont plus analysablesteahl@gues statistiques classiques. Le
“ Systems biology ” est un nouveau domaine dédié a la igat®on de ces informations.

Actuellement, il y a diverses approches qui sont appligugeet effet. L'une d’elles est
I'apprentissage automatique. Les méthodes de ce typgumale réecemment, été surtout em-
ployées pour des taches de classification et de prédjatiggligeant un avantage secondaire im-
portant : la capacité d'induire des modeles interpiesb

L'obtention de tels modeéles est devenu un sujet crucial®ystems biology ”. De nombreuses
approches ont été proposées et ont suscité d'interetegsd Cette these s’attache a examiner ainsi
gu’'a exploiter une approche de base : les arbres de disisio

La notion de comparaison d’ensembles d’arbres de décesointroduite afin de permettre
l'identification de seuils pour certains attributs (a dameacontinu ou discret). Déterminer des
seuils significatifs constitue un moyen d’identifier deat&tpour des organismes vivants. Cette
connaissance relative aux états fournit des indiceemdment précieux pour la compréhension
des processus dynamiques en jeu. Appliquée aux “metalmitcentration data”, la méthode
proposée ici a permis d’identifier des états qui n'avapgenétre mis en évidence par les techniques
conventionnelles d’extraction de seuils.

Une seconde approche exploite la structure des ensembldsal de décision dans une per-
spective de découverte de dépendances combinatoiresagtnibuts. Les travaux antérieurs sur la
guestion se sont limités soit a des méthodes colteusesleul soit a I'interprétation d’arbres de
décision simples — correspondant a une sous-explaitatiastique des données. Ceci a débouché
sur des résultats incomplets voire instables. C’est pairgst introduite ici une nouvelle méthode
gui a recours aux ensembles d'arbres de décision pour stemees limitations.

Chacune des deux méthodes introduites a donné lieu agiegels, d'ores et déja disponibles,
gui peuvent étre appliqués indépendamment ou l'unsapatitre. Le tout forme un package
d’outils analytiques qui se présente comme un complémerfitable aux méthodes existantes.

Par le biais de ces outils, ces nouvelles méthodes ont pateniconfirmer certains points
connus et surtout de suggérer de nouvelles relationgti@&essantes entre “ metabolites ”.



Zusammenfassung

Neuere biologische Analysetechniken liefern Forschemscleéedenste Arten von Daten. Eine
Art dieser Daten sind die sogenannten “Expressionsdat8i€’.geben die Konzentrationen bio-
chemischer Inhaltsstoffe in Gewebeproben an.

Neuerdings kdnnen Expressionsdaten sehr schnell erpeargen. Das fuhrt wiederum zu
so grofRen Datenmengen, dass sie nicht mehr mit klassistastischen Verfahren analysiert
werden kdonnen. “System biology” ist eine neue Diszipliig sich mit der Modellierung solcher
Information befasst.

Zur Zeit werden dazu verschiedenste Methoden benutzt. Siperklasse dieser Methoden
ist das maschinelle Lernen. Dieses wurde bis vor kurzenchlis8lich zum Klassifizieren und
zum Vorhersagen genutzt. Dabei wurde eine wichtige zwegerischaft vernachlassigt, namlich
die Moglichkeit zum Erlernen von interpretierbaren Mdekel

Die Erstellung solcher Modelle hat mittlerweile eine Stsélrolle in der “Systems biology”
erlangt. Es sind bereits zahlreiche Methoden dazu vorgggeh und diskutiert worden. Die
vorliegende Arbeit befasst sich mit der Untersuchung undzbhg einer ganz grundlegenden
Technik: den Entscheidungsbaumen.

Zunachst wird ein Konzept zum Vergleich von Baummengewiekelt, welches das Erken-
nen bedeutsamer Schwellwerte in reellwertigen Daten ahhlrer zugehorigen Entschei-
dungswalder ermdoglicht. Das Erkennen solcher Schwetéwvdient dem Verstandnis von dy-
namischen Ablaufen in lebenden Organismen. Bei der Anwegdlieser Technik auf metabolis-
che Konzentrationsdaten wurden bereits Zustande erkdimnicht mit herkdmmlichen Tech-
niken entdeckt werden konnten.

Ein zweiter Ansatz befasst sich mit der Auswertung der Stimukon Entscheidungswaldern
zur Entdeckung von kombinatorischen Abhangigkeiten ehes Attributen. Bisherige Arbeiten
hierzu befassten sich vornehmlich mit rechenintensiverfalleen oder mit einzelnen Entschei-
dungsbaumen, eine sehr eingeschrankte Ausbeutung tiem.[2as fuhrte dann entweder zu un-
vollstandigen oder instabilen Ergebnissen. Darum wied Bine Methode entwickelt, die Mengen
von Entscheidungsbaumen nutzt, um diese Beschrankungéberwinden.

Beide vorgestellten Verfahren gibt es als Werkzeuge fir @emputer, die entweder hin-
tereinander oder einzeln verwendet werden konnen. Awdedifeise stellen sie eine sinnvolle
Erganzung zu vorhandenen Analyswerkzeugen dar.

Mit Hilfe der bereitgestellten Software war es moglichkaentes Wissen zu bestatigen und
interessante neue Zusammenhange im Stoffwechsel vorzBfiaufzuzeigen.



Abstract

Modern biological analysis techniques supply scientisth warious forms of data. One category
of such data are the so called “expression data”. Thesenlditate the quantities of biochemical
compounds present in tissue samples.

Recently, expression data can be generated at a high spbidedds in turn to amounts of
data no longer analysable by classical statistical tectasigSystems biology is the new field that
focuses on the modelling of this information.

At present, various methods are used for this purpose. Qper@ulinate class of these meth-
ods is machine learning. Methods of this kind had, until nge predominantly been used for
classification and prediction tasks. This neglected a pveecondary benefit: the ability to
induce interpretable models.

Obtaining such models from data has become a key issue v@ifsitems biology. Numerous
approaches have been proposed and intensively discudsisdh@sis focuses on the examination
and exploitation of one basic technique: decision trees.

The concept of comparing sets of decision trees is developéis method offers the pos-
sibility of identifying significant thresholds in continus or discrete valued attributes through
their corresponding set of decision trees. Finding sigaifichresholds in attributes is a means
of identifying states in living organisms. Knowing abouatsts is an invaluable clue to the un-
derstanding of dynamic processes in organisms. Applieddtabolite concentration data, the
proposed method was able to identify states which were notdavith conventional techniques
for threshold extraction.

A second approach exploits the structure of sets of decitsems for the discovery of com-
binatorial dependencies between attributes. Previouk worthis issue has focused either on
expensive computational methods or the interpretationingfles decision trees - a very limited
exploitation of the data. This has led to incomplete or usisteesults. That is why a new method
is developed that uses sets of decision trees to overcorse lingtations.

Both the introduced methods are available as software.tddiey can be applied consecu-
tively or separately. That way they make up a package of Hoalyools that usefully supplement
existing methods.

By means of these tools, the newly introduced methods weeetaltonfirm existing knowl-
edge and to suggest interesting and new relationships betmetabolites.



Introduction

Contributions

The thesis at hand is a contribution to the communities oftifelearning, Knowledge discovery
and Systems biology. It presents the following novelties:

e The genuine new concept of establishing distance measat@gdn decision forests:
This can be regarded as a loose extension to the works ofadewghors con-
cerned with finding and evaluating thresholds in continudais (abstracted by
[48] and [96]). The new concept has been presented and patilis [60] and
[61].

e The concept of using conditional mutual information for thetection of combinatorial
dependencies in continuous biological data:
This idea is an extension to the works of several authors vgbgartial correla-
tion for the reconstruction of biological networks [10191742].

e The estimation of high conditional mutual information thgh decision forests and the
reconstruction of dependency networks with it:
This idea was inspired by the work of Breiman [24] and has aé&sn picked up
in a more limited way by Soinov [170]. The new approach hash@esented
and published in [59] and [62].

e The application of the introduced new techniques on meitgbobncentration data and the
derivation of new insight into metabolism:
So far, very few authors have tackled with this problem. €hesults will par-
tially be published in Leggewie et al. [99] and in an artidsulting from a poster
of Mohlig et al. [123].

Additionally, two documented and ready-to-use computeg@ms with a graphical user interface
for applying the introduced techniques are supplied to thiegical community.
Overview of the thesis

The thesis has been partitioned into four chapters:

1. Observing life at the molecular level: Systems biology

In Chapter 1, an introduction is given to the background ef data used in Chapter 4. Sys-
tems biology is introduced as the discipline which is conedrwith the construction of models
for molecular biological systems. The major kinds of datadum this discipline are described.



Further, some problems and inconveniences occurring ttigalisation of the physiological ex-
periments are outlined. In the second half of this chaptsyentional methods for the processing
and analysis of the generated data are outlined. Also, gibtieduction to graphs, a prime choice
for visualising and reasoning on network models, is given.

2. A tool for the identification of structure in data; Decision trees

In Chapter 2, the basics of decision tree learning are intted. These are the underlying tech-
niques for all of the newly introduced methods of this the8isarge number of issues concerning
the construction of trees is addressed and it is indicataddfhow these could affect the methods
introduced in Chapter 3.

3. From raw data to biological networks: a contribution to the analysis of dependen-
cies among sparse and noisy continuous data

In Chapter 3, the new and original methods of this thesis ersgmted. An algorithm is given for
the growing of heterogeneous decision forests. This dlgaris then integrated in an approach to
compare forests for the evaluation of discretisation tholts. The same algorithm is further used
for the estimation of high conditional mutual informati@gconcept whose usage is motivated in
another section of this chapter.

4. An experiment in the analysis of metabolite concentratio data for potatoes

In Chapter 4, the previously introduced techniques aredesh metabolite concentration data.
In a first step, the implementations of the new techniquesiaseribed. Then, the actual usage
of the supplied tools is introduced in a user scenario. Sukesdly, the tools are applied to the
data in a meaningful order. Finally, the results on the ragh dre presented and discussed from a
biochemical perspective.

Preliminaries

Most of the notation used in this thesis is introduced on demd he following conventions are
valid for all the text unless explicitly invalidated for aespfic section.

e Structural units (chapters, sections, figures, table3 ete written with an upper case if
they are given with a number and thereby refer to a specific (iiey are written with a
lower case in all other cases. Example: All subsequent ermpte based on Chapter 1.

e Double quotes are used for words that do not have a clear tit@fifin the given context.
These words are to be understood in a more intuitive manrgrally, the meaning of those
words should become understandable from the related domieample: Many suggestions
have been made for the determination of which test is “besttHe problem.

e Single quotes are used for newly introduced terms that arexuicitly introduced in a
formal definition. The particular meaning should becomaurchdter the first occurrence of
the term. Example: The test with the highest informatiomdgthe 'best test'.

e ltalics are used for emphasising statements that either @asntrast to a previously made
statement or indicate an important conclusion not to belovked. Example: The test is
invalid on attribute A. However, is valid on all other attributes.



Chapter 1

Observing life at the molecular level:
Systems biology

Research in molecular biology has undergone several mhgnges in the last decade. A trig-
ger for this development was the ability to produce large @ms of molecular biological data
with new, so called high throughput technigtiedhis led in turn to the need for computational
assistance in the analysis of the data. The field of reseddriessing this subject is called 'Bioin-
formatics’ or 'Computational Biology'.

Recently, Anglo-Saxon literature tends to distinguishwieein the two terms in the way that

¢ Bioinformatics is predominantly addressing data managengeg. the development, allo-
cation, and maintenance of data bases holding molecullgisal data, and

e Computational Biology is addressing the development argliggtion of elaborate algo-
rithms for the analysis of molecular biological data.

Such a distinction is not always clear which sometimes lgads synonymous or inconsistent
usage of the terms.

Computational Biology, as in the stricter Anglo-Saxon défin, has mainly focused on the
analysis of data produced without considering potentialyais methods [158]. However, most
methods work only effectively if the input data meets spedifiquirements. Furthermore, the
retrieval of complex structures from data (e.g. networke)rgly relies on customised experi-
ments. That is why recently, the requirements of compuiatianalyses have been considered in
the setup of new physiological experiments (illustrate&igure 1.1). This new way of designing
experiments according to algorithmic needs and therebljtéting the retrieval of complex struc-
tures has been included in a newly labelled field of reseaatibdc’Systems biology’. Systems
biology is the integration of multiple data sources andesysttic use of computational aid in order
to be able to predict, control and design living systems [5].

The thesis at hand is a contribution to the computational gfahe field of Systems biology.
This chapter will give an overview of the molecular biolagicata sources used and some of
the classical analytical methods referred to in the submsgchapters. Most techniques will be
introduced in a simplified manner in order to allow for a qeicknd more intuitive understanding
of the needed basics.

!Experimental techniques that can produce at a high rate rapsive measurements from biological samples.
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Classical computational approach: Systems biology approach:

Dat a of Dat a of
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| N

I nterpretaion
Interpretation and proposition
of new hypot heses

Figure 1.1: The step from classical computational biolag$ystems biology.

1.1 Available data sources of Systems biology

A major aspect of Systems biology is the integration of mplétdata sources and their exploitation
through computational methods. In this section, two saiafanolecular biological data will be
introduced in more detail. New computational methods tdyaeahese data will be presented in
the subsequent chapters.

In addition, other forms of data sources available in Systéinlogy will be mentioned in
order to give a more comprehensive overview.

1.1.1 Metabolomics

Metabolites are the small molecules of a living system. Meliam is the chemistry taking place
in any living organism. This includes, in particular, thenimg of an organism’s food into more
organism. The chemical steps of a metabolite being tragdfierto another metabolite including
all involved intermediate products, catalysts and kirgeisccalled a 'metabolic pathway’ [73].

The Metabolome is the totality of all metabolites and alhacimetabolism in a cell at a given
point in time. It is a pattern of molecules and metabolic patys that reflects the cell’s status [8].

The Metabolome gives a direct picture of the cells activityits environment. It presents a
powerful portrait, reflecting health, disease, ageing &edeffects of drugs and the environment.
Metabolomic$ is the field of research that deals with analysing, modeliing predicting the
metabolome.

In this subsection, an introduction is given on the key tetbgy that is used in Metabolomics
and that will be used later in this thesis.

Metabolic Profiling

A metabolic profile is the entirety of all metabolite congatibns in (parts of) a living organism
at a given point in time. It is thereby not the metabolome bheeat does not include direct
information on active metabolism. Strictly, it is usuallgtrevenpart of the metabolome because,
for technical reasons, most profiles are taken from a mixtéitessue and not from a single cell.

2Metabolomics focuses on the analysis of plants. There ithanderm “Metabonomics” that refers to the same
analytical processes but for data of animals and humans.

11
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Figure 1.2: A schematic diagram of a gas chromatograph.

But the tissue used for establishing a profile can be confioeidet of very similar cells (e.g.
certain leaf cells). That has been done in the experimergd usthis thesis, and that is why
metabolic profiles will subsequently be regarded as patehtetabolome.

Metabolic profiles are thus a valuable source of informatiwrihe understanding of an organ-
ism’s current activity or status, a property that will be ised in Section 3.1. Such profiles can
be gained from a procedure called Gas Chromatography ang $tsesctrometry (GC/MS).

Gas chromatography

Chromatography is a process used to separate chemical codgpbased on their differing ad-
sorption to a fixed matrix. It is particularly useful for theparation of proteins, amino acids and
nucleotides, hence of metabolites [25]. There are sevédfateht procedures of chromatography
[8], one of which is gas chromatography.

Gas chromatography -specifically gas-liquid chromatdgyapinvolves a sample being
vapourised and injected onto the head of the chromatogragathiimn [88]. The sample is trans-
ported through the column by the flow of inert, gaseous mqifikese (see diagram in Figure 1.2).
The column itself contains a liquid stationary phase whéchlisorbed onto the surface of an inert
solid. The individual compounds of the sample move at diffieispeeds through the column. At
the end of the column, a detector will measure the dischafdgkeoindividual compounds and
record the speed they have needed to traverse the colummreturd is called a chromatogram.
It records the amount of each chemical compound presengigample. To a certain extent, it
also allows for the identification of the compounds accaydimtheir traversal time.

However, there are numerous parameters that can influeaagudiity of the chromatogram
(e.g. oven temperature, properties of the column, sizeeo$#imple etc.). Thus, the interpretation
of the chromatograms is not entirely reliable. At best, sahthe chemical compounds of the
sample can be identified at the end of this process. Yet, thgogonds are now well separated
and can be analysed in the subsequently explained process.

Mass Spectrometry

For a reliable identification of the detected compounds,carse process called Mass Spectrom-
etry is needed [88, 149]. It uses a mass spectrometer to nectimiexact molecular mass of a
molecule. This is done by tracking its flight path through tacsenagnetic and electric fields.

To be more precise, the mass/charge ratio is measured. ldgwilee operating chamber of the

12



spectrometer contains a vacuum. In vacuum, nearly all icéd molecules have no charge, but
the method relies of them being charged to make them subteptimagnetic and electric fields.
Thus, mass spectrometers use a method to bombard the tasigetutes with radiation to charge
them up.

The bombardment can in turn fragment the molecules. Thivenefit because then you can
measure the mass/charge ratio of bits of the molecules aasvitle whole thing in one measure-
ment [8]. Piecing together these data allows for the recocison of the original molecule.

GC/MS

GC/MS is the abbreviation for the combination of gas chrametphy and mass spectrome-
try. With modern machines, this combination facilitatesast fvay of measuring and identifying
metabolites. Because of this, it is labelled as a high thmpugtechnique.

The output of the GC/MS procedure are values (real numbedigdting the quantities of
the identified metabolites in the sample. Usually, the &l given as relative changes of the
metabolite’s concentrations as compared to those of eerafersample [149]. To some degree, this
normalisation ensures comparability between severalrerpats. The final output is generally
delivered as a data vector containing the values of coretémts (see Section 4.2.1 for more
details).

It has to be mentioned that GC/MS encounters some techimc#htions (for more details
see [49]). Most of them can be suppressed to a certain exyemtheticulous use of the equip-
ment.Yet, the possibility of erroneously generated piarfedata always remains [19, 93]. One
such possibility lies in the insecure attribution of met#be to peaks of the chromatogram [154].
Typically, this leads to a few unidentified fragments. THie@ can be seen later in this thesis.
But for all of the difficulties, GC/MS is presently one of thedb analyses to gain information on
the metabolome.

1.1.2 Transcriptomics

Genes are the factors that control heredity. They are pigiciesormation that determine proper-
ties of living organisms. The entirety of all genes of an oigm is called the organism’s genome.

Genes are coded onto chromosomes. A chromosome is compiogsuteins and desoxyri-
bonucleic acids (DNA). The DNA can be regarded as a code #est an alphabet of four symbols:
G (guanine), C (cytosine), T (thymine), and A (adenine). Sehacids are the basic components of
all DNA.

In any organism, genes are coded statiégtyo the four acids G, C, T, A. However, similar to
a computer program, this static information still allows @lynamic reactions to environmental or
internal stimuli onto the organism. That is, particular gewill only cause an effect if a specific
stimulus exists. This effect is a process leading to theymtion of ribonucleic acid (RNA) and
subsequently, in many cases, of a protein. Simplified, pretare the one key for almost all
dynamical processes in a living organism [25]. Thus, kndgéeabout the types and amount of
produced proteins is very valuable information on the usta&ding of an organism’s dynamics.

Transcription is the first step in the production of a pro{@®]. It refers to the production of
RNA* from DNA. The thereby produced RNA is called RNA-transchigtcause its composition
is established according to the transcribed code of a DNA sgure 1.3). In a second step, the
code of the RNA is utilised for the production of a specifictpio. In life sciences, this process

3For abstraction, | disregard spontaneous mutations agtesiicleotide polymorphisms here. In fact, they usually
have little effect on a fully-grown organism [25].

“In literature, this RNA is more specifically called messargblA (MRNA). For simplicity and because this dis-
tinction is not important for this thesis, those acids wikj be called RNA here.

13
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Figure 1.3: The two main steps of gene expression, refeorad the “Central Dogma”, are called
“Transcription” and “Translation”. The additional step ‘oéverse transcription” is indicated by
the dotted line.

is defined as 'translation’ [141]. Hence, the amount and tyfpeanscript present in a cell gives
informatior? on the proteins produced in it.

The totality of all RNA-transcript in a cell at a given poimttime is called the cell’s transcrip-
tome. The field of research dealing with analysing, modglind interpreting the transcriptome
is called Transcriptomics.

In this subsection, the key technology for gaining data iangcriptomics is introduced. In
later chapters, new techniques will be introduced which allw for an analysis of the data used
in Transcriptomics.

Analytically exploitable properties of DNA and RNA

DNA and RNA both carry the code of genes. This code is a seguefifour acids. In DNA, those
acids are guanine, cytosine, thymine, and adenine. In RiNAine is replaced by uracile, but the
code remains equivalent.

This sequence of acids is pieced together as a strand. In BiMA,a strand has the shape of a
helix. DNA is generally made up of two strands in the shape dd@ble helix. That is, each acid
on one strand has a neighbour on the second strand.

In stable double helices, neighbours are alWagsmplementary’. That means, one strand of
the double helix determines the second strand by the fatigwiles:

e Adenine must have cytosine as neighbour, and
e guanine must have thymine (uracile in RNA respectively) gghrbour.

These rules derive from numerous physio-chemical comsgréfior more details see [25]).
The two strands of DNA can be separated by applying high teatye. That process is
called melting. After cooling down, single strands tagain recombine with a complementary

SProtein synthesis is a very complex process. The sole kuigelabout the amount of present RNA-transcript is
just a rough indicator for the amount of proteins produceanétheless, it is a key factor in the process and gives
valuable indications for protein production.

5Most stable double helices contain small regions of nongtementary neighbours. For simplicity, this is ignored
here.

7 - . "

under specific environmental conditions
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strand to a double helix. This process is called reassoniati hybridisation. Note that the two
complementary strands need not be the same as they havedieemthe melting, they only have
to be complementary. This last property is essential fostleess of the technique introduced in
the following subsubsection.

Obtaining information on the transcriptome: Microarray te chnology

Microarray technology is a means to determine the activitgyemes (usually referred to as gene
expression) in a target sample. It is based upon the abfliBNA to hybridise.

The basic principle of the technology can be described iridlh@wving simplified manner: A
set of known single strand DNA is attached to specific spots arsupport medium (e.g. glass).
Then, radioactivef§y marked DNA is producetfrom the RNA of the sample. This DNA is given
onto the support medium. The medium is heated and all DNAanéitfter this, the medium
is cooled down and the single DNA strands hybridise. At thoinfp some of the radioactive
marked DNA strands will hybridise with complementary DNAaghed to the support medium.
Subsequently, the non-attached DNA is washed from the medNow, it is possible to measure
the amount of radioactivity at each spot of the medium. Thiéeectivity indicates the amount of
specific RNA that has been in the original sample.

This process allows for the quantification and identificatad RNA in a sample. Because the
produced amount of each RNA indicates the activity of a paldr gene it is thereby possible to
roughly quantify a degree of expression of that gene. Duledartany spots that can be located on
a medium (up to 1 million) it is possible to measure the atstiof complete genomes.

Using microarray technology includes numerous technieahmeters and difficulties which
will not be discussed in this thesis (for more details sed)[7lhe above description is very brief
and serves only for getting a feel for the complex way of gatireg the data. At the end of the
process, a vector is obtained that holds real values indgcdhe degree of expression of each
particular gene in a sample. At present, these data aregstit error-prone due to the many
process-related difficulties in producing it.

1.1.3 Other types of data

There are other kinds of data used in the field of Systems dpjold-or the matter of a more
complete overview, two important areas of research areiored in this subsection. Genomics is
a superordinate concept of the previously introduced dateces. Proteomics is another important
part of Systems biology, but its data is not used for the agugr@f this thesis.

Genomics

Genomics is a generic term for all studies involving the gee®f living organisms [78]. Typ-
ically, it addresses the branch of genetics that deals wihtifying all DNA sequences of an
organism, also referred to as sequencing. Thus, the déskita produced in genomics is four-
lettered code (see also Subsection 1.1.2).

Knowledge about complete DNA sequences is a prerequisitdhvéounderstanding and map-
ping of genes to proteins. Transcriptomics, Metabolondosl Proteomics make use of this infor-
mation. That is why they are also referred to as techniquésegfost-genomi@ra.

Today, genomics is often subdivided into functional geresnand structural genomics [21].
Functional genomics focuses on the determination of thidical functions of the genes and

8or fluorescently or colourescently
%in a process called reverse transcription
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Figure 1.4: A data matrix containing plants as samples wi¢hdttributes: leaves, height, fruit,
and colour.

their products. By definition, Transcriptomics, Metaboiosy and Proteomics overlap with it [83].
Structural genomics deals with the determination of thifiseensional structures of proteins. This
field is not discussed in this thesis.

Proteomics

Proteomics is the study of the full set of proteins encoded ggnome [106]. It deals with gaining
knowledge on protein biochemistry using the same philog@bhigh throughput analysis that has
been applied in Transcriptomics and Metabolomics [25].

The proteome is the protein complement to a given genomea({se&ubsection 1.1.2). How-
ever, itis much more complex than the corresponding gentmteimans, for example, about half
a million proteins are generated from some 25.000 genesed¥er, many proteins are modified
after their synthesis, and their expression levels aremdifftially regulated in space and time or in
healthy and diseased states.

Proteomics seeks to identify and characterise the manyifurat dependencies existing be-
tween proteins and their necessary requisites.

1.2 Cleaning biological data: data preprocessing

A major problem in the evaluation of physiological expenrigein the domain of Systems biology
is the technical heterogeneity of the data. Many differeqpieeimental setups deliver numerous
types of data. Apart from the plain problem of handling prejary file formats there are also
contentual problems. Two major ones of them are the compa$ data from several and/or
different experiments and the trimming of data in order taabke to apply a specific method of
analysis to it. In this section, a few of the standard metHodsoping with these problems are
introduced. These methods are partially used in the expetipresented in Chapter 4.

For simplicity (and for the rest of this the&, it is assumed that the concerning data is
available in form of a data matrix that always contains latties? in its columns and experiments
(samples respectively) in its rows (see Figure 1.4). Inisiteal literature, this is usually referred
to as the 'spreadsheet data representation’ [189]. It tsthls representation commonly used for
expression data in the biological literature.

10 formal introduction will be given in Chapter 2
1A formal definition of the term attribute is given in Definiti® in Chapter 2. So far, it can be regarded as just a

variable.
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1.2.1 Describing empirical data: Statistical standard meaures

For an objective description and characterisation of dats, statistics has produced numerous
measures and methods [53, 6] that are also used in Systetogyb[68, 149, 158]. This thesis
does not focus on the classical statistical analysis of ddta focus is on the adaptation, enhance-
ment and application of decision tree techniques to Systgalegy data (see Chapters 2, 3, and
4). Nonetheless, a few statistical measures and terms atedeén the subsequent sections and
chapters.

The following standard terms are used for a given data veécter(a, ag, ..., ay):

SN R
the 'mean’ isa = EZ;‘“
1=

n

, o 1 )
the ‘standard deviation'isr, = , | —— Z;(ai —a)?
1=

The square of the standard deviation is called the 'variance
Given a second vectdr= (b, bo, ..., by),

, L 1< _ _
the 'covariance ISOqp = E Zl(xz - x)(yz - y)
iz

Given a data set withn attributesX;...X,,,, the 'covariance matrix’ is am x m matrix. The
elements of that matrix are given &g, x,, wherei denotes théth element in thegith row.

1.2.2 Normalisation

Normalisation refers to the process of scaling the atteibuatf a data matrix into the same range.
Typically, this characteristic is required to suppresspteominance of attributes with dispropor-
tionately large scales (see Subsection 1.3.2 for moreldetdien, the target range of normalisa-
tions is limited and small, like -1 to 1, or 0 to 1 [70]. There &everal commonly used methods
to achieve this property:

Min-max normalisation

Min-max normalisation [70] performs a linear transforration the original data. Given that
Ain and A,,.. are the minimum and the maximum value of an attribute A amla value of A,

minmax(zr) = _ 2= Amin_
Amax - Amm
. This will map any value into the range 0 to 1.

This is the basic normalisation available in most statitiziboxes (e.g. S-Plus [38]). It
produces problems if the data contains outliers becausesthdd vigorously shrink the significant
share of the range. For that reason, the following more eddbmormalisation techniques have
been developed.
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transformed value

original value

Figure 1.5: Softmax scaling maps values of an attributeamearly linear part of the range in the
middle and two 'softened’ parts at the edges.

Z-score normalisation

In z-score normalisation [70] (also known as zero-mean atisation or z-transformation), the
values for an attributed are normalised based on the me&rand standard deviatiom, of A.
Given a valuer of A,
r— A
A

zscore(x) =

This normalisation is useful when the range of attribditis unknown and/or outliers are expected.
However, it does not preserve the metric properties of the da

Softmax scaling

Another way to compensate for outliers is softmax scalir®l]1 The name refers to the charac-
teristic of this normalisation to 'soften’ the effect of tiats, values close to the minimum or max-
imum of the range. There are two versions of softmax scafirapntinuous and a non-continuous
one. The non-continuous one divides the range into threevials, each of them using a different
mapping function. Here, only the more common continuousigarwill be explained.
Given a parameter and the standard deviatiery and meard of an attribute4 and a value
zof A,
1 x—A

=—— ,where y =
1+eY y oA

softmax(x)

The parameter controls the portion ofd’s range that will be mapped nearly linearly (in Figure
1.5 approximately between the dashed lines).

Softmax scaling is useful when the values of an attributetanestain most of their linear
behaviour but outliers are expected. To a certain exteptegerves the original metric of the data.

Rank Ordering

Rank ordering is a form of normalisation that maps valuesfeometric scale into an ordinal non-
metric scale [6]. Non-metric means that the real distanetwden values have no significance;
only the order of the values is important.
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Figure 1.7: The property of biological data matrices caomtaj a lot more attributes than samples
is referred to as the 'curse of dimensionality’.

Rank ordering is achieved by sorting [89] all values of arikatte and replacing the values of
the original vector by their position in the sorted domahigtposition is often referred to as the
rank’). See Figure 1.6 for an example of rank-ordering a arioal vector.

This normalisation introduces a strong bias to the data.usually only applied if the signifi-
cance of the original scale is unclear and/or the data amtalot of noise.

1.2.3 Dimension reduction

Modern high throughput techniques can measure many ad#slaof a given biological tissue sam-
ple. However, in Transcriptomics and in Metabolomics theliaption of such an analysis is
still rather costly. That is why most laboratories can orffpral to perform a limited set of high
throughput analyses on their samples. Thus, the obtaindnaitrices are typically very asym-
metric, containing a lot more attributes than samples. Théacteristic is sometimes referred to
as the “curse of dimensionality” (see Figure 1.7).

Furthermore, values of some of these attributes dependloasvaf other attributes. That is,
the values of one attribute allow for the prediction of thkiea of another attribute. In Metabolite
concentration data, for instance, this is the case when tetalmlites are the product of only the
same metabolic pathways, or, in transcript data, when twegare coregulated.

When searching for complex dependencies between attsibseh dependant attributes do
not carry any additional information but they sometimes panwith analytical algorithms. Thus,
it would be helpful to remove such redundant attributes. édger, many statistical analysis tech-
niques (e.g. cluster analysis [172]) generally exhibitopems when dealing with more attributes
than samples in a data matrix. For these reasons, methodpglied for reducing the number of
attributes.

The most commonly used technique for doing this with Systbiogy data [194] and an
improvement thereof are introduced in this subsection. tAgrotechnique, dimension reduction
through decision trees, is mentioned in Section 2.2.
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Principal Component Analysis

The concept of detecting dependant attributes and mergem into new and preferably inde-
pendent attributes is known as feature extraction [146]. idely available method to perform
this is Principal Component Analysis (PCA) [81]. There esisveral ways to calculate principal
components. The most commonly used method is roughly editlin the following paragraph.
For brevity, the calculation of Eigenvectors and Eigengalis not explained here but taken from
“Linear Algebra” by Klaus Janich [82]. For a more detailed introduction orARG a whole, see
Smith [169] or Burges [146]. The following steps are necassa

1. From all attribute values of the given data set, the meahefespective attribute is sub-
tracted.

2. The covariance matrix is built on the new attribute values
3. The Eigenvectors of the covariance matrix are calculatetnormed to length 1.
4. The original attribute values are expressed througlatinembinations of the Eigenvectors.

Up to this point, no information has been lost. The data h&slmeen expressed in an orthogonal
basis. The directions of the Eigenvectors are called thepooents. They serve as attributes in the
new space. Now, the Eigenvalues of the Eigenvectors canlbdat@d. The Eigenvalues indicate
the contribution of the component toward the explanatiovaoiance in the data. The components
with the highest associated Eigenvalues are called theipahcomponents.

Intuitively, PCA generates a new data matrix with uncoteslanew attributes containing the
same information as the old data. These attributes can theartxed according to their signifi-
cance in explaining the variance of the original data. liawpossible to drop the least significant
components and thereby decrease the dimension of thedesiace. This way, it is hoped to ob-
tain a smaller new data matrix retaining most of the inforarabf the old matrix while deleting
the noise in the data.

Independent Component Analysis

Another method for dimension reduction becoming more papial Systems biology is Indepen-
dent Component Analysis (ICA) [37]. ICA tries to generatevrand, as far as possible, statisti-
cally independent attributes. Statistical independeregtobutes means that the attributes do not
carry any Mutual information (see Subsection 1.3.2 and &atlum 3.2.2 for details on Mutual
information). Note that statistical independence is agfen criterion than the non-correlatedness
of PCA.

Another key characteristic of ICA as compared to PCA is that dttributes generated by
ICA do not have to be orthogonal. This gives ICA a more flexibkenner of generating the new
attributes.

ICA has several particularities requiring some expertisis application. It is therefore not
possible to simply replace PCA with ICA. For more details GAland its application in Systems
biology see Scholz et al. [156]. ICA has not been applied ceimgnsively to the data of this
thesis.

1.2.4 Discretisation

The data of Metabolomics and Transcriptomics is usuallgmiwith a precision of several deci-
mal digits. This lets the numbers appear quite precise. Mervdiological experiments mostly
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Figure 1.8: An original data set and a discretized versioih of

contain a large amount of noise. That is why recently, sonengsts argue that the continu-
ous representation is often misleading. They say, a descegiresentation can display the same
information in a clearer manner [64, 65, 102].

For instance, in Figure 1.8 we have measured three timesrdoute of two samples. Theoret-
ically, they should exhibit the same value for all three nueasients of the same sample. But the
values contain a noticeable variance. This may misleadxperignenter to believe that there is a
biological process to be observed within the measuremdmseosample. In reality, the variance
is a mere artifact of the delicate processes within the maagdevice. If the data is discretized,
as in the righthand part of Figure 1.8, the variance is fitteard the data displays its veritable
information.

Finding such a 'revealing’ discretisation is not a triviask. Therefore, some methods of
discretisation fit for specific needs have been proposedeipdst. An older but comprehensive
synopsis of existing discretisation techniques has beenddy Dougherty et al. [48]. To my
knowledge, they were the first to introduce a systematicgcaigation of techniques. The three
proposed axes weiglobal vs. local, supervisedss. unsupervisedandstatic vs. dynamic The
choice of names for the latter axis seems a little ambiguodsirzapt as those terms are usually
used in a different manner. That is why Kwedlo & Kretowski[@@roduced it again by the name
of: univariatevs. multivariate A recent overview of discretisation techniques with thelgaf
constructing better Bayes classifiers can be found in Yamad ¢192]. Strengths and weaknesses
of new techniques belonging to particular categories haem liscussed for many discretisation
problems [74, 66, 188, 96, 13].

Supervised techniques make use of a class label attribatedery sample in the data set.
Generally, supervised methods are said to deliver morelussdults than unsupervised techniques
[48]. However, they strictly require the presence of suchezlpssified variable, which is usually
not given with metabolite concentration data.

Global discretisation performs the discretisation of alhtinuous values in one step, while
local discretisation processes only subsets of the dataiatea Ho and Scott [74] argue about
advantages and disadvantageglobal vs. local discretisation. They state that local discretisation
can lead to more accurate results at the cost of higher catiguittime. But they also note that
local discretisation might deliver ambiguous results Wwkace harder to interpret.

Discretisation is often considered just as a data prepsotgsimed at eliminating noise. In
practice, only the most basic discretisation methods apdieatf if any. The above mentioned
categorisation of discretisation techniques is a merergétieal problem. For most categories, no
implemented technique is generally available. Howeveillastrated in Figure 1.8 and argued
by some scientists, feasible discretisation can be redasi@ valuable stand-alone analysis [96].
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Figure 1.9: A scatter plot displaying two attributes withireehr correlation.

That is why it makes sense to actually develop techniquels @dttain properties. In Section
3.1, I will introduce a new discretisation technique to gmalbiological expression data. It tries
to keep the advantages of supervised discretisation in smpanvised context by conducting an
exhaustive search through possible class labellings.

1.3 Finding interdependencies between attributes: corraltion anal-
ysis

Correlation is a concept quantifying the interrelation adtric attributes [53]. If, for instance, the
values of one attribute tend to rise whenever the values athan attribute rise these attributes
are noted to correlate. An example for two correlating laateés can be seen in Figure 1.9. In
molecular biology, correlation is used to find elements teate a similar biological function
[52, 149]. There are several ways to detect and/or quartéycorrelation between attributes.

1.3.1 Pearson’s correlation coefficients

A similarity measure to identify vectors (objects) whosalars exhibit a correlated progression of
values is Pearson’s correlation coefficient [155]. Thergjtle of correlation between two vectors
can be calculated in the following way:

Definition 1 (Pearson’s Correlation Coefficient) Given two vectorsa and b (both with n
scalars) with their meansg and b, the Pearson’s correlation coefficient is given as

Yioy(ai —a) - (b —b)

(A S (b - b2

whereq; (b; respectively) denotes the value of thid scalar ofd (5 respectively).

In the denominator, the coefficient uses the standard dewtabfa andb to scale its value.
Thereby, the coefficient is always between -1 and 1. A valud®fcoefficient close to 0 means
that there is little or no linear correlation between the tgotors. A value close to 1 indicates a
positive correlation and a value close to -1 indicates atiegeorrelation between the vectors.

In Systems biology, the coefficient is often used in clustalysis to group attributes that
exhibit a similar behaviour over the sample data [149, 1Z@¥tainly, the coefficient can also be
applied without the use of cluster algorithms. In this teghbwever, it is only used as a distance
measure in cluster analysis.
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Spearman’s correlation coefficient

There are other correlation coefficients available. Onéhefrt is Spearman’s correlation coef-
ficient. It is calculated by rank ordering the data vectorteeapplying Pearson’s correlation
coefficient. It does not measure the linear correlation betwthe vectors but themonotonic
correlation. Theoretically, this means that it can alsedetertain non-linear correlations. In
practise, it is more often used for simply suppressing tfectf of noise in the data.

Mutual information

A distance measure having recently become more popularste®g biology is the Mutual infor-
mation (M) [166]. It is an entropy measure taken from infation theory [40] (for more details
on entropy see Subsection 2.2.4). Here, it can be regardmt@dension to Pearson’s correlation
coefficient. Unlike the coefficients, MI can generally alstett non-linear correlation. This is the
reason why some scientists favour it over Pearson’s ctioelaoefficient [41].

Given two random variablegl and B that can take value$a;..ans, } and {b;..bys, }, the
mutual information is

Ma Mp

(aivbj)
=2 > planbilog o sn

=1 j=1

wherep denotes the probability (joint or marginal, respectivadfjhe occurence of certain values.
A detailed description of how Mutual information is caldeld is given in Subsection 3.2.2.

1.3.2 Cluster analysis

Correlation measures are commonly used in a frameworkdcatlaster analysis’. It refers to
numerous techniques aimed at automatically detectingasimibjects within a given set [68]. In
Systems biology, this analysis is often used as a first steglifzlosing structure in new data
[52, 58, 149].

In statistics, cluster analysis is also known as 'numetganomy’, 'automatic classification’
or 'typology’. In machine learning, the techniques belomthe category of unsupervised learning
techniques. That s, they can be applied without any futkthewledge about a given and complete
data set; they try to deliver results fully automatically.

These techniques are not focus of this thesis. For morenaftion see [114].

1.4 Network induction

The goal of all methods used in Systems biology is the madgtf interactions between molecu-
lar biological elements. Modelled interactions betweeress components constitutes a network
[11]. One such network commonly known to biologists is dagield in the Bohringer-Mannheim
Chart of Metabolic Pathways (see Figure 1.10) [109]. Itstiie integrate knowledge about all
known metabolic pathways.

Systems biology seeks to integrate even more data. Thusgghlting network is potentially
very complex. In the thesis at hand, | will only introducehigjues for the reproduction of a very
limited and abstract part of that network. In this sectianirdroduction is given on general issues
concerning network composition as referred to later in tinésis.
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1.4.1 Graphs

Graphs are a basic concept of discrete mathematics [16rfelX is the basic element of a graph.
It is often denoted as an identifier (e.d. or B). An ’edge’ is a pair of vertices (e.gAB). A
'directed edge’ is a pair of vertices with a given directieny( AB, the notation is that of a vector).

Definition 2 (Graph and Directed Graph) A Graph G is a set of vertices and a set of edges
between vertjces (e.g@7={A,B},{AB}). A directed graph is a graph with directed edges (e.qg.
G={A,B} {AB}).

Figure 1.11 illustrates a simple directed graph made upeo$ét of verticeg A, B, C'} and the set
of directed edge$AB, AC,C'B}. The direction of edges is indicated by arrows.

1.4.2 Putting information in Graphical models

Graphical modelling is a form of multivariate analysis thaes graphs to represent models [50].

Directed graphs are suited for the depiction of networksenegal [50] and microbiological
networks in particular [187]. The Bohringer-Mannheim @has illustrated in Figure 1.10, is
such a graph. Typically, the vertices depict elements @QChart: metabolites) and the directed
edges indicate an influence of one element on the regulatiproduction of another element. In
addition, the edges can hold extra information (coded, fanmgle, as colourings [103], width of
the arrows [as in Figure 1.10], or as textual annotations).

Graphs have several favourable properties for analysds (Bife of them is their fithess for
computational processing [162]. Yet, there are numerousenelved algorithms for working
with graphs (e.g. learning [27], finding paths [162], detieing properties [50] etc.). Another
favourable property of graphs is their interpretabilitythg human eye. In subsequent chapters, |
will make use of both of these properties for the analysisyst&ns biology data.

1.4.3 Causal networks

Causal networks are directed graphs with additional infdiom and additional semantics to it
[167]. The additional semantics are:

e Each vertex represents a quantifiable physical entity.
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Figure 1.11: A graph consisting of 3 vertices and 3 directigks.

e Each edge represents a direct causal relationship betweesntities. That is, the quantity
of the entity represented by the starting point influencegtiantity of the entity represented
by the end point.

The additional information states how the quantities of ¢hgities of an edge influence each
other. This information can be given in several ways (e.mt jorobability distributions or other
functions).

Causal networks model the true causal relationships betwgeeomponents (vertices) com-
prehensively. However, it is virtually not possible to dertrue causal relationships from present
Systems biology data [95, 174]. To distinguish betweenalau®dels and models that can only
be a rough approximation of real world processes (due tampdete or erroneous data), another
term 'observational model’ is used.

In the subsequent subsection and in Chapter 3, techniquawdfaing observational models
are introduced.

1.4.4 Bayesean approach

A far-reaching approach for obtaining observational medielm Systems biology data has been
founded in the work of Pe’er et al. [65, 129]. This work hagidieen continued and expanded by
Ong et al. [128].

The approach deals with inferring Bayesean networks fr@ansgription data. Simplified,
a Bayesean network is a graphical model that provides pilitladtistributions for each impact
(directed edge) that is modelled in it. Through this chamastic, the negative effects of “hard”
choices are softened. That is in the learning process, atlggis based only on weak evidence
(few samples) cannot mask out an almost similarly likely dthpsis. Instead, all possible hy-
potheses remain in the Bayesean model with assigned plitieatnf their correctness. With this
additional information, Bayesean models can carry mom@rmétion than simple graphical mod-
els (e.g. decision trees), but they are also much more congplé thereby harder to learn and
interpret.

Pe’er et al. seek to learn a simple Bayesean net from pedurbaascription data. Numerous
samples with well-defined genetic perturbations are nacgd$sr this approach because only that
way the effects of distinct genes can be traced. This prliedgoalso discussed in another context
and in more detail by Steuer et al. [174].

Pe’er further introduces the constituents “mediator” tRator” and “inhibitor” in order to be
able to model causal relationships. These constituentdetezmined through the evaluation of
a statistical significance measure. By this, the learnede8sgn nets can be interpreted as small
causal networks.

Chu et al. [36] and others [95, 45, 79, 193] argue that witlsgmé Systems biology data there
are not enough objects to support statistical significafiteeomodels. Thus, it would not be pos-
sible to obtain realistic causal structures. Based on daimigumentation, Ong et al. introduce
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the concept of utilising known componettsvhich are onlyfittedinto a larger model. That way,
Peer’s statistical approach is a mere helping factor fariptathe known structural components.
Small-sized causal structure is then only inferred ste#ilty at the transitions between operons,
if any. This reduces the likelihood of wrongly inferred calu®lations that would be derived from
the poor statistics.

Despite a fundamental discussion about the validity ofriefé Bayesean (or other) models
in Systems biology, this approach is to date the most notgardeng automatic construction of
biological (sub-)networks. In a continuing work of the group of Friedman et al. [164]e th
approach adopts some of the criticism and is further namlayesvn to only identifying conditions
for regulatory dependencies. In the thesis at hand, a sirapf@oach is developed that also yields
conditional dependencies but in a less complex represemtathis makes it less susceptible to
noisy data and thereby more robust. Additionally, it reraaimpler to interpret and easier to
calculate.

1.5 Public databases related to Systems biology

Apart from single handedly performing experiments thergetsanother way to gather data for
specific questions: public data bases. Due to the high cégiBysiological experiments many
research institutions have decided to pool their data iriglylaccessible data bases. Two of the
most used data bases for the investigation of metabolicarksaare introduced in this subsection.
Additionally, one of the best access points for further infation on Systems biology data is
described.

1.5.1 KEGG

The 'Kyoto Encyclopedia of Genes and Genomes’ (KEGG) is #iative of the Kanehisa Lab-
oratory of the Kyoto University Bioinformatics Center [84} is aimed at providing a complete
computer representation of the cell and the organism, whittlenable computational prediction
of higher-level complexity of cellular processes and orgarbehaviours from genomic informa-
tion. KEGG is a suite of databases and associated softwaegrating the current knowledge
on molecular interaction networks in biological proces@@&THWAY database), the informa-
tion about the universe of genes and proteins (GENES/SSOBld#tabases), and the information
about the universe of chemical compounds and reactions (BOMND/GLYCAN/REACTION
databases). In scientific practise, KEGG is the prime sdiarcabtaining existing information on
biochemical processes in the cell and the related genetkgbaunds.

1.5.2 BRENDA

BRENDA is the main collection of enzyme functional data klale to the scientific community
[157]. Itis a data base maintained by the Institute of Biocistry at the University of Cologne.
Its focus is on the providing of access to functional datagene products; those are the pro-
teins and in particular enzymes. This data collection isdpeieveloped into a metabolic network
information system with links to Enzyme expression and legn information. An additional
objective of this initiative is the identification of synampus notations in an attempt to unify the

120ng uses operons as known components (see [128] for furéhails
130ther approaches for inferring biological networks arelishied (e.g. [3, 77, 180, 187]) but implementations are
not publicly available.
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nomenclature. Inconsistent nomenclature is one of thempagdblems in the evaluation of avail-
able experimental data. For the time being, BRENDA provalegxtensive thesaurus of existing
terms for this purpose.

1.5.3 EXPASy

The 'Expert Protein Analysis System Proteomics ServerRERy) is dedicated to the analysis of
protein sequences and structures as well as 2-D PAGE [9)rpdses several different data bases
(e.g. Swiss-Prot, PROSITE, ENZYME) and many analyticatvgafe tools for the identification
of proteins, the analysis of their sequence and the predidtitheir tertiary structure. It also offers
many documents relevant to these fields of research. Linkett relevant sources of information
across the Web are indicated. Through this vast crossalinkexPASy features one of the best
access points for analytical purposes in the field of Systainiegy.

1.6 Summary and conclusions

In this chapter, the most common sources of Systems biolaedg ldave been introduced. The
sources referred to later in this thesis were described irerdetail. Further, standard statistical
techniques for analysing these data were presented. Fordjueity of publications in the domain
of molecular biology, these techniques have been suffitteratn effective data analysis.

The last two subsections have dealt with more elaboratgsinabchniques. These techniques
help for the construction of networks that display causekediects in the interaction of molecular
biological components. Note that the construction of a aemgnsive network displayingll
causes and effects in molecular biology is the long-ternt gio8ystems biology.

It has been pointed out that this long-term goal is more ofséowiat the moment. This is
mostly due to the current ways of generating Systems biottaggt. The fundamental problem is
that, even when disregarding noise and combining all dvaildata types, this data does not at all
constitute a comprehensive snapshot of the underlyingsysthus, a model derived from this
data has to be incomplete.

On account of this, available techniques focus on the coctsdn of small sub-networks,
modelling only a very delimited part of the microbiologicaliverse. After all, some interrelations
can be derived also from incomplete data. But even for thiggme, the available analysis methods
encounter technical problems because statistics are theé aomputational demand is too high.
That is why it is feasible to develop new techniques that$amusmall problems and circumvent a
few of the existing difficulties. In the following chapterspvel techniques will be introduced that
cope with existing difficulties and still deliver valuableadwledge about the biological system.

27



Chapter 2

A tool for the identification of structure
In data: Decision trees

An important field of research for the processing and aralgéigiven data is called 'machine
learning’ [115, 10, 90, 110]. It addresses the question @f tm construct computer programs
that can learn from data and thereby improve their effentigs. The topic is usually divided
into the categories 'supervised’ and 'usupervised’ leagniThe latter category is largely refer-
ring to cluster analysis[172], techniques which are notllisehis thesis. Supervised learning is
called supervised because an expert has first to evaluateoftsgining data before the learning
algorithms can start their learning process.

Machine learning techniques are used in a wide range ofcgtjains where ordinary programs
fail to work effectively. We find such systems, for instanime,the recognition of handwritten zip
codes in postal relay stations [145] or for the classificatibcustomers in banks [115]. But a key
application area of machine learning remains the discovksgructure in data sets. According to
Wrobel and others[190, 55, 70], this is sometimes alsomedieto as 'Data Miningl’.

Machine learning encompasses various techniques andagh@® 'Classification’ is one
superordinate category of such techniques. It deals witlatliomatic assignment of class labels
to data objects. That is, given an object with a set of knovnibate values, a classifier assigns
one of several previously defined classes to that object.

An intuitive real-world example of a classification systeamde found on chicken farms: In
Figure 2.1, an egg is assigned to a quality class by a cles#ific machine. The classification
machine uses the egg’s attributes for its decision. In théecthe attributes are weight, colour and
size of the egg. Based on the attribute values of the samglétexptains the label 'quality class I’
here. There are many other practical examples for clagsifici24]. For a more comprehensive
introduction into machine learning and more examples s&g][1

!Note that some authors refer to the complete process of Katlyel Discovery as Data Mining[124]. This is not
the definition used in this thesis.

quality class |

quality class |

Farmer’s
—= | classification
machine

guality class Il

2R

Figure 2.1: An egg with certain attributes is classified dernmging to quality class I.
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L alo]e |
obsl| 4.6 | 6.4 | yes
obs2| 3.1| 7.3 | no
obs3| 2.8 | 8.2 | yes

Figure 2.2: A training matrix composed of three column vesiob andéwhered andb contain
values for attributes a and b addontains classifications labels “yes” or “no” for each of theee
data objects “obs 1”, “obs 2", and “obs 3".

In many’ machine learning techniques, the learned systems are gsvarformal description
fixed before the first predictive task is performed. Systefikis kind are therefore referred to as
'predictive models’. Decision trees are one form of a prisdicmodel. They can be “learned” au-
tomatically from given data [71]. Furthermore, they aregrto understand and can be processed
effectively on computers. So, the trees can be used for lestbribing and predicting data

In the subsequent chapters, decision tree learning is usechdapted for the analysis of
molecular biological data. In this chapter, a motivatiorgiigen for the choice of the decision
tree techniques as well as an introduction to the relateid bigorithms, their characteristics and
problems.

2.1 Machine learning on attributes

Most machine learning techniques follow the same rougicjpie:

¢ A set of data objects with known attribute values and targhtes, also referred to as 'train-
ing data’, is used as input for a learning algorithm.

e The algorithm then delivers a function that can be used tdigréarget values for new
objects with unknown target values.

To give a formal definition of a machine learning algorithmdam classification function, the
following objects are needed:

Definition 3 (Attribute) An attribute is a variable whose value describes a charastier
Definition 4 (Data Object) A data object is a vectar with scalars holding attribute values.

Definition 5 (Training Matrix) A training matrix is a data matrixD composed of data objects
as rows plus an additional column veci®holding values, the classification labels, for each data
object.

Training data, as used in this thesis, is always given adrdrtgamatrix. In Figure 2.2, there is a
simple example of a training matrix.
A machine learning algorithm is then defined as a function:

Definition 6 (Machine Learning Algorithm) LetC be the set of all possible predictive functions
and D* be the set of all possible training data matrices. Then, ahiteclearning algorithm is a
function
A:D*—=C
2Case-based learning is an exception to this.

3Two well-founded theoretical justifications for the use eti$ion trees are given by Fietal. [57] and Karakost
al. [85].
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The output of such an algorithm is a classifier:

Definition 7 (Classifier) LetX be the set of all possible data objects @hbe the set of all possi-
ble values of the target attribute. Then, any classifiez C is a function

' ' X—S

The basic differences of machine learning techniques lthiwwithe nature of the demanded
training data and the learning principle and represemaifdhe classifiers. Not all classifiers can
handle all types of input data. Hence, the formal differeroetween machine learning algorithms
are the possible types of the elementsiof andS (and thus the functionality ok andI’), the
algorithm to actually calculat&, and the representation Bf

2.1.1 Data types

As for the type of training data, two major categories ardimtjsiished: discrete (nominal) and
continuous (real) data [67].

Discrete data contains only variables of discrete domaikgliscrete domain spans over a
finite or infinite set of nominal values (which are sometimise aeferred to as symbols) [53, 17].
If the set is finite this data is more specifically called quadive or categorical. Discrete domains
can have at maximum an ordinal order. In particular, thismadhat no metrical distances can be
determined between the objects.

Continuous data contains variables of real valued dom&esl valued domains are charac-
terised by either an interval or an indefinite range. Vasdalif that domain can take any value
within that range. Continuous domains always have a qadirdtorder.

Note that discrete variables can be mapped into continuomsaihs. However, in doing so,
one artificially introduces a quantitative order for theyioesly discrete variable, and this order
might not have existed in the original domain. This modifarais nonetheless applied to data by
many researchers in the biological domain. As indicategt l@tdoes not necessarily invalidate a
thereby obtained result.

2.1.2 Types of predictive models

Three main categories of predictive models are distinguish

Classifiers are representations of discrete-valued fum&ti They map a (discrete or con-
tinuous) input vector into a discrete value of a finite set ofgible values. Or in terms of
machine learning: they assign a class label to any obseratd abject. Rule learning, deci-
sion trees and inductive logic programming are probablibtst known among these techniques
[135, 117, 136, 71].

Regression models are representations of real-valuedidasc They map input vectors into
a real value. Neural networks and support vector machireacually the most commonly used
techniques for regression [34, 115, 145, 1].

Probabilistic models are representations of probatiliithctions. They map input vectors
into a vector of probabilities assigning one probabilitjueato each of the predefined target
classes. These models are sometimes regarded as an extiensiassifiers. Bayesean Nets are
the most utilised technique of this kind [69].

Various methods exist to learn and represent models of taegories. They have been tested
and applied in numerous ways [87, 115]. To improve classifinaquality, it is also possible to
combine techniques of different categories into hybridhmds in order to exploit advantages of
both [67]. This approach will be briefly discussed in Sulisec®.3.9.
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2.1.3 Graphical and rule-based representations of classsis

The focus of this thesis is not on optimising classificationusacy. It is on the utilisation of the
representations of classifiers and their interpretabifitg molecular biological domain. For this
purpose, simple and small representations must be favawerccomplex and sized ones [12].

Graphs are a rich, flexible and easy to understand way of septiag classifiers [50, 18].
To my knowledge, some form of graphical representationtexXigr all types of classifiers
[27, 20, 145, 115, 1]. Some of those representations arbanedasy to interpret nor simple to
process for algorithms [26]. For obtaining biological hilpesis, however, it is essential to gener-
ate interpretable output [176]. Furthermore, for deveigmubsequent algorithms, it is beneficial
to work on simple classifier structures. Classifiers whiahloa mapped into rule-based represen-
tations tend to be both, easy to interpret and simple enomgarf easy processing by algorithms
[17].

Decision trees can be learned efficiently with establishethods (see Subsection 2.2.3). They
have a simple graphical representation and can easily b@eadapto rulesets [115] (see Sub-
section 2.2.2). If necessary, they can also be pruned ireo |ss complex representations by
numerous approved pruning strategies [136] (see Subre2i®2). Thus, decision trees are a
tradeoff between interpretability, efficiency and flexiyil No other type of classifier offers this
mix of favourable features. Those are the best regardingdhéof interpretingand utilising the
classifiers in extended algorithms.

2.2 Basics of Decision Trees

The primary purpose of decision trees is to provide a meangl&ssifying data objects into
discrete target classes [115]. The straightforward Haigin of dependencies between attributes
and the possibility of interpreting them is an additionattee of the trees [24]. Furthermore,
decision trees can also be used for filtering attributesamnaf dimension reduction [189].

Classification through decision trees is based upon a setlefted attributes. Each node
in a tree represents a test on the value of an attribute, a@ eslgesponds to a possible value
of the attribute, and a leaf specifies a possible target .cl&gsally, a decision tree represents
a hierarchically organised set of tests which allows fossifging new observations. A simple
tree can be seen in Figure 2.3. It is explained in more detathé subsequent subsection. The
following definitiong will introduce binary decision trees formally as classification functions
with a set of constraints regarding the way they can comngtie value.

Definition 8 (Ordained scalar) Let V be a set of vectors, and let each vectore V haven
scalars. Further, let € [1,2,...,n], then the ordained scalaf’ is thei-th position of scalars in
V.

Note that a data matrix is a set of vectors. An ordained saaarthereby be regarded as an
attribute of a data matrix. It does not refer to the value of a specifitasda a vector but to all
values of scalars at specific positions in a set of vectors.

Definition 9 (Domain of an ordained scalar) Given an ordained scala#?, the domain(i*) of
that scalar is the set of valueg can take.

4For the more precise referencing needed later in this thasige notions will be defined than in other introductions
to decision trees.

5Since the biological questions addressed in this thesisa@modated to a binary nature binary trees are the model
of choice.
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Definition 10 (Decision test) Let n be the number of scalars of any vectérof a given data
matrix, let X* = {#, ..., 2"} be the set of ordained scalars @f and for anyi € {1, ...,n} leta;
be an element oft?), then a decision test is a boolean expression either of time fo

' >a; or & >a; or T =q
Definition 11 (Leaf) LetS be a set (the discrete classification labels). A leaf is amelat ofS.

The following two definitions are indirectly recursive:

Definition 12 (Decision tree edge)LetD be a set of decision nodes, and $ebe a set of leaves.
A decision edge is an elementfx {D US}.

Definition 13 (Decision node)Let ¢ be a decision test, and lek; and A, be decision edges.
Then, a node is a function
A7 ift=true

All) = { A, if t =false

Intuitively, a A represents a test on one attribute that leads either toet tdegs or to another test.
If A, € Dmapsinto @, € D thenA, is called a 'predecessor’ af,, andA, a 'successor’ of
A,. A decision node without a predecessor is called 'root noBl&entually, the evaluation of a
A has to lead to a value &fin order to be a decision tree.

Definition 14 (Decision tree) A decision tre& is a decision node whose recursion always ter-
minates.

Note thato is classifierX — S (as defined in Definition 7)© needs only a subset of ordained
scalars from the vectors ¥ to calculate its value € S. This subset is given through the subset
of T that is used in all the nodes 6.

There are several well established algorithms for leardiecjsion trees from data [24, 136,
184]. This section introduces the properties and basimnigabks related to decision trees. In
the subsequent chapter, these techniques will be externdbddapted to molecular biological
problems.

2.2.1 Graphical representation of trees

The common way of representing a decision tree is by a duleatgclic graph [89]. In decision
trees, every node, which is not a leaf, represents a test attiéioute. In Figure 2.3 there are
two such nodes, the root node (A) and another node (C). Irr ¢od=ome to a decision about an
object’s target class, the decision tree tests for the gabfi¢he indicated attributes. Suppose we
had the following vector representing an object:

(A=al,B=102,C = c2)

For deciding the object’s target class, the tree starts thighroot and first tests for attribute A.
As its value isal it follows the edge “al” to the next node (C). Now, it tests &btribute C and
follows the appropriate edge “c2” to the leaf with the labél The object is thereby classified as
belonging to target class “I".

Note that the tree came to its decision regardless of theeaflattribute B. Obviously, only
attribute A and C are relevant for the decision of an objetdrigng to either target class “I” or
“Il". Further, as one leaf can be reached just by knowing theie of attribute A (the rightmost
leaf), we can note that higher nodes have a stronger sigmifctor the decision problem. Given
any (huge) amount of attributes, a good classifier can conits ttecision with a hierarchically
ordered set of tests on only a few attributes. Thus, it isgbessible to understand the importance
of attributes for the decision problem just by looking at tie’s graphical representation.
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Minimum Description Length Principle

The quality of decision trees using onmigcessaryests is considered to be advantageous according
to the "Minimum Description Length Principle’ (MDL). Thigmciple has its origin in a discussion
started by William of Occam in the year 1320 who stated: “@ré¢fie simplest hypothesis that
fits the data.” [115]. This statement is still valid becausis believed that shorter hypotheses
constitute better generalisations for models of real wprlablems [112]. However, apart from
empirical evidence there is no hard proof for this statement

Occam'’s statement has meanwhile been developed into the[M)LThe MDL can be described
formally through the following definitions:

Definition 15 (Code) [178] A code is a set of unambiguous rules specifying the maimwhich
data may be represented in a discrete form.

Definition 16 (Minimum Description Length Principle) LetD be a training matrix (as defined
in Definition 5) and¢ be the column vector ab holding the classification labels. Then, the
Minimum Description Length principle is a criterion seelia model which permits the shortest
encoding of the vectar given the matrixD \ ¢.

Applied to decision trees, MDL can be described in a moreifipgnanner. The encoding of
a decision tre® are the nodésattributed to© (see Definition 14). For any given training matrix,
the set of all possible nodé3is finite’. In information theoretic terms, this set can be regarded as
the 'symbols’ of an 'alphabet’ [76].

Definition 17 (Description length of a tree) The description length of a tre® is the cardinal
number of tests i®. It is denoted a$o|.

The MDL criterion for decision trees is to minimi$®|. Or in other word, MDL is to minimize
the number of nodes in a decision tree while retaining theodibility of all class labels of the
training data.

More recent works on MDL handle the problem in a more “fleXibleanner, allowing the
vector ¢ to be only approximated by the model. The thereby inheritedre in ¢ are encoded
separately [143, 139, 107]. To obtain the shortest desmniptall subsets o> receive a score
according to their probability of being significant for theproduction of preferably many scalars
of ¢ (classification labels). The ones with the lowest scoresieopped for the benefit of fewer
models (subsets @) to be considered. For each remaining model, the miscledssialar® of
¢ are encoded into a vectof. The criterion is then to find the model that minimig@% + ||c*||
where||¢*|| denotes the number of components-af

The application of MDL is particularly feasible if the trémg data contains noise. That topic
will be tackled in subsections 2.3.1 and 2.3.2.

2.2.2 Propositional rules

Another way to represent decision trees is by propositionigs [161, 115]. Intuitively, these

rules can be read as if-then-statements. That is, if a ripeéconditions” are met then the rule’s
“consequence” applies. In case of decision rules, such secprence is always the attribution of
a target class to an object. For instance, the rule

(A=alNC=¢c2)—1

5Thus, the basic components of that code are functions.

For continuous data, we attribute equivalence classesofifins to nodes. Functions that process the same training
samples and lead to the same result are equivalent.

8often referred to as 'exceptions’
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A=al?
true \false

c=c1? ()

truey false

(o) )

Figure 2.3: A simple decision tree consisting of the twosestand B and three leaves for the
target classes 'I' and 'II".

means that given an object with attributeholding valueaz1 and attribute”' holding valuec2 then
the object’s target class is
Decision trees can easily be mapped into propositionakridl&5]. One just has to extract
every path from the root to a leaf and transfer it into a ruler. tRe tree in Figure 2.3, this leads to
the following three rules:
(A=alANC=cl)—1II

(A=alNC=¢2)—1
(A=a2) =11

Rules referring to the same target class can be combinedisjtmctions in order to obtain a more
compact representation. In our example, this applies tdviberules leading to target cladd.
We thus obtain the following ruleset for the example tree:

(A=alNC=¢c2)—1

(A=alNC=cl)VA=a2)—1II

There are several advantages of the representation throlegets. First, the rules can be
read by humans as plain sentences, thereby making it somehative to understand them [71].
Second, there are efficient methods to delete redundamimatmn from rules which are not appli-
cable to trees [136]. And last but not least, some prunirageggies work on the rule representation
only [115].

A drawback of rules is that learning them straightforwaridliess efficient than learning trees.
That is why, in this thesis, the rules have only been usedently®. The subsequently introduced
methods are all based on the tree representation.

2.2.3 Learning decision trees

There are several well known techniques for learning (imdy)adecision trees [24, 132, 136, 122,
4]. These techniques mostly come from statistics [72], lgthpory [50], and information theory
[40].

The presumed founder of the current decision tree commim#gid to be Leo Breiman. He
joined knowledge of the three mentioned disciplines (iipalar statistics) and combined it with
a greedy algorithmic framework which he calleART(Classification and Regression Trees) [24].
CART is a family of algorithms specifying four key charadséics that have been followed and/or
enhanced by all subsequent tree learning programs:

®Rules have been used by the C5.0 programs for pruning trees.

34



1. a split-criterion

2. criteria for class assignment to leaves
3. stop-critera for the induction process
4. pruning strategies

All programs of this family fall back onto greedy principlés cut computational complexity
because an exhaustive search through the hypothesis spaltebe an NP-complete problem [2].

The original CART was furnished with numerous alternatfeeshe above demanded criteria.
It also suggested strategies for tree evaluation and pyusiee also Subsection 2.3.2). Many of
those ideas have been picked up and expanded in subseqbéoations and programs. One such
technically mature and widely available collection of mags is introduced with the programs
ID3 and C4.5 in the following subsection. Pruning strategidd alternative stop-criteria are
discussed in Section 2.3.

2.2.4 1D3/C4.5

Probably the most commonly used and studied programs fasidedree induction are ID3 and
particularly its successor C4.5 (C5.0 respectively) [13Bdrmally, they are a specialisation of
CART. The basic principle of them is described in Table 2.1s shown below, the difference
between ID3 and C4.5 is hidden in the 'best test’ on an atgilfline 4 in Table 2.1). This is the
formerly mentioned split criterion.

Finding this “best test” is a complex problem itself. It is @ykcharacteristic of decision tree
induction algorithms. As seen later in this section, thehoétfor finding the test also purports the
type of data which can be handled by the algorithm.

Determining the best test

As “best test”, Quinlan [132] proposes to choose the testoattaibute that yields most informa-
tion gain regarding the classification problem. This is #& twhich solely allows for the most
accurate classification possible. Intuitively, this tgsits the training data into subsets with “least
disorder” regarding the target classes. 'Least disorderams that in the subsets, objects of one
target class have to outbalance objects of the other ta@agst(es) in the clearest manner possible.

In Figure 2.4, we see a set of eight circles in a feature spfite @ontinuous attributed and
B. Each circle represents an object which can be charaaetiseugh its value of attributd and
B. The solid circles belong to target class | and the otherarget class 1. The objective is now to
find the single attribute that can classify the objects ih&irttarget classes most accurately, thus
leaving the subsets with least possible disorder regatditige target classes.

In this example, this would be a test on attributevith thresholda1. This test can split the
data into one “tidy” subset with only solid circles and a setsubset with only little disorder
containing predominantly transparent circles. The bestde attributeB (the one with threshold
b1) would only have led to more disordered subsets (see Figd)e Zhe emerging question is
how to compute disorder.

Quantifying the worth of a split

For the quantification of order or disord®mwithin a subset, Quinlan suggests to use an entropy
measure [166]. For the quantification of disordeseVeralsubsets, he uses the concept of mutual

1%Quinlan and Breiman call it 'impurity’, but here, the infoation theoretic term 'disorder’ will be used.
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The following description outlines the basic greedy andirsige algorithm
for decision tree learning. It is given in a pseudo-compptegram-code. All
terms in italics (e.groot nodg denote instances of data structures (e.g. values
of variables). The selection criterion foest tesand its typisation is a ke
difference of all common decision tree learning progranmsthe subsequen
generic descriptionbest testis given as an abstract structure that can take
values which specify subsets of the training data.

—

Input:
e training datain the form of a training matrix

o target attribute a discrete-valued attribute whose value is known for all
data objects of the training data

e attribute set the set of attributes dfaining datawithout the target at;
tribute

Output; adecision tree

Methodgrow ::(training datg target attribute attribute set — decision tree
1. Create aoot node

2. If thetarget attributehas the same value for all vectorstiaining data
then return aecision treavith just theroot nodeand label it as leaf with
the value of thaarget attribute

3. If attribute seis empty then return decision treavith just theroot node
and label it as leaf with thearget attribute valughat is most commor
in training data

4. Select thdest tesbn theset of attributes
5. Label theroot nodewith thebest test
6. For each possible valueof best test

e lett, be the subset dfaining datathat is specified by.
e if £, is not empty
— grow a branclb. from root nodeand label it with value:.

— attach the tregrow (t., target attribute attribute setwithout
attribute used i) to b...

o if ¢, is empty

— then attach a node t). and label it as leaf with the value of
target attributethat is most common itraining data

Table 2.1: Top down induction of decision trees.
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Figure 2.4: A set of objects divided by tests on either aitebA or B.
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Figure 2.5: The weighed evaluation gdin ratio.

information [40]. In ID3, he then proposes to calculate thagf (mutual) information obtained
in subsets when applying the split, as compared to the @liginsplit set. This measure is called
'information gain’ [132] (see Definition 19).

Definition 18 (Entropy of a training matrix) Let D be a training matrix containing: different
classification labels, and let; be the frequency of occurrence of thth label in D. Then

c

Entropy(D) := _ —p; - loga p;
=1

Definition 19 (Information Gain) LetD be a training matrix with discrete attributes, and |&|
denote the number of data objects/in Let A be one attribute oD, let dom(A) be the domain of
A and let|dom(A)| be the cardinality oflom(A). Further, for anyi € {1,...,|dom(A)|} let o
denote the i-th element dbm (A). Let D, denote the subset of data objectdbthat carry value
v for attribute A. Then

|dom(A)]
Gain(D, A) := Entropy(D) — Z
i=1

[ Doy |
- Entropy(D.,)
|D|

Since information gain has a strong bias toward attributiéls meany possible values it has been

replaced in C4.5 by the so-called 'gain ratio’ [115, 136(&=finition 21).

Definition 20 (Split Information) Let D be a training matrix, and led be one attribute ofD
with ¢ different labels. Then

SplitInformation(D, A) Z |]D\ ’|
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Definition 21 (Gain Ratio) Let D be a training matrix and led be one attribute oD, then

Gain(D, A)
SplitInformation(D, A)

GainRatio(D, A) =

The gain ratio measure favours balanced equilibrated.tré@®se are trees that primarily
contain splits that cause a uniform number of data objedsarbranches. Splits with asymmetric
allocations and many branches are penalised by the critésime Figure 2.5). But this measure
runs into numerical problems when attributes have the satoe for nearly all objects [46].

All measures for finding a (nearly) optimal split in decisittees have some drawback for
specific properties of the data. That is why there have beememus proposals for alternative
measures [24, 136, 115]. However, empirical studies siighgasthe choice of the measure is
really not that crucial [113]. In this thesis, the choiceltd theasure is even less critical as all data
is handled in a binary manner (see Subsection 2.3.5 and €Hajpt

2.2.5 Alternative developments of decision tree learners

Apart from the CART familiy there has been another strandegfiglon tree learners: the AID
(Automatic Interaction Detection) family [116]. It was digised to detect complex relationships
between attributes. The AID family originally comprisedheigues aimed at only a certain objec-
tive. That was, the detection of complex statistical relahips (e.g. combinatorial relationships).
However, research of the AID family has meanwhile integtateo the rest of the decision tree
community. It is thus of little practical value to distinghi between them. Concepts and ideas
originating from the AID family will be used in this thesis ey are needed.

2.3 Advanced issues

The basic decision tree induction algorithm of the CART figns fit for many problems which

supply discrete valued data sets. For the application imthkecular biological domain, they
still need to be adapted to continuous data and other specijterties. Many of the problems
appearing in this context have already been addressed imabkine learning domain. Those will
be described in this section. Genuine new techniques foadagtation to molecular biological
data will be described in the next chapter.

2.3.1 Overfitting

One of the major problems of all machine learning technigaasverfitting. Overfitting means
that learned classifiers tend to classify (nearly) peneitit objects of the given training data but
perform poorly on other data objects. The classifiers anebyeoverfit to the training data.

The common way to detect overfitting is by reserving partdefttaining data as validation
data. The decision tree is induced only on the non-reseraetd pf the training data. Then, the
tree’s classification accuracy on the validation data issmesl. This is in turn compared against
the accuracy of a simpl€r version of the tree. If the simplified version performs betia the
validation data but the original tree performs better ontth@ing data then the original tree is
overfitto the training data.

A formal specification of the term "overfitting’ can be giverithvthe following definitions:

see subsection 2.3.2 for simplification strategies.
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Definition 22 (Correctness) Let© be a decision tree and | be a training matrix with column
vector ¢ holding the classification labels for each data objectZaf Then,correct(©, D) is the
number of correctly reproduced labels ®by ©.

Or, in other wordscorrect(0, D) gives the number of training samples that can be classified
correctly through®.

Definition 23 (Classification Accuracy) Let© be a decision tree and lg? be a training matrix
with column vectof holding the classification labels for each data objecfofThen,

correct(©, D)
]l

accuracy(©, D) =

where||¢]| denotes the number of scalarsaf

Definition 24 (Reduced Decision Tree)Let © be a decision tree witlk nodesA, and letl <
n < k. Then,®(n) is the tree® with onlyn of thek functionsA where

e the number of\ is reduced by successively deleting thdsthat map solely into leavés

e the predecessoh\,,.. of such a deletea\ is replaced with aA* that is similar toA,,.., but
instead of mapping into the deleteX it maps into a leaf that is assigned with the value
s € S that was most significaht for the deleted\.

Definition 25 (Overfitting) Let D be a training matrix. Let/S (validation set) be a random
selection of data objects @ with v5 holding the classification labels féf.S, and letT'S (training
set) beD without the data objects 6f S and withts holding the classification labels fatS. Then,
a decision tre@® (k) with £ € {N\ 1} is overfit to the training dataD if

accuracy(©(k), TS, ts) > accuracy(©(k —1),TS,ts)  AND
accuracy(©(k), VS, v8) < accuracy(©(k — 1),V S, vs).

An illustration of overfitting is given in Figure 2.6. Afterwhile, trees with higher accuracy on
the training data perform worse on validation data.g&seralrules are tried to be derived from
decision trees in the molecular biological domain, it is artpnt to avoid overfitting. Strategies to
avoid overfitting of decision trees can be categorised into

e approaches that hold before perfect matching of the trgidata

e approaches that apply a pruning step after the end of trestragtion

The latter approach will be discussed in subsection 2.3.2thtwls of both categories will be
applied in the subsequent chapters.

2.3.2 Pruning

When trying to further process or interpret decision treeis important to obtain simple and
accurate classifiers in the first place. Besides choosingauffable strategy to induce simple
trees there are several methods available for simplifyiigtiag trees. These methods are called
‘pruning’ techniques. Generally, they cut inefficient gaout of trees and prune the remaining
parts into a new and less complex structure.

There are many pruning strategies available which are fipégific types of data [24]. Here,
two techniques are described which will be used later inttigsis.

12There are several strategies on how to choose thetwd simple one is to first select those which are furthest
away from the root functior\ ... The distance of any targét to A+ is measured as the numbers$ which have
to be called byl" until the targetA is called.

3Most significant is that value that has occurred most frequently in the subset of the trgidata on which the
deletedA have originally been built.
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Figure 2.6: A typical progression of classification accyratien decision trees become overfit
(example taken from [115]). The accuracy on the trainin@dates with the number of nodes
allowed in the tree while the accuracy on the validation datgps for larger sized trees.

Reduced error pruning

'Reduced error pruning’ is a simple technique used for prgmiecision trees [133]. Starting from
the root node, it systematically replaces the subtrees bgfatat is labelled with the most com-
mon classification of training samples associated withtinatch. If the simplified tree performs
more accurately on the validation data the leaf is accefiduerwise, the old subtree will be kept
and the procedure carried out again on the branches of thaesu

Rule post-pruning

A generally more effective method is 'rule post-pruning3@l. It uses the rule representation
of decision trees. Successively, for any rule, one presitguis deleted. If the abbreviated rule
performs more accurately on the validation data than thaimule, then the abbreviated version
will replace the original rule. The procedure is appliedi® tules until no more improvement can
be achieved on the validation data.

2.3.3 Cross-validation, Jackknife, Bootstrapping

One of the frequent problems with current metabolite cottaion and gene expression data is
its sparsity in data samples. That is, many datasets provitjefew samples with a dispropor-
tionate high number of attributes. With too few training gées, machine learning techniques
perform poorly and lead to overfitted classifiers [20, 1, 1TEking out samples from the data
set as validation data would further reduce the trainingaedtthereby the classifier’s quality. But
knowledge about the accuracy of a classifier is requiredeifgbal is to extract valid rules from
it. Three closely related techniques for evaluating a gisetistic in such a stringent environ-
ment are introduced below. Two related techniques aiminljeasame problem, “Boosting” and
“Bagging”, are introduced in Subsection 2.3.7.

Bootstrapping

Bootstrapping is a simple way of detecting the generatisatirror of a chosen statistic on a given
data set [43, 51]. Given a data set and a statistic that hae evdluated on it, bootstrapping
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procedes as follows:
e Multiple resampling of the given data set.
e Calculation of the given statistic on the resampled sets.

e Evaluation the standard-deviations of the distributiohthe calculated values of the statis-
tic.

A resample is usually established by randomly pickingobjects out of thé: (k > n) objects of
the original sample. The mean of the standard-deviatiotiseddiistributions indicates the strength
of the generalisation error.

Cross-validation

Cross-validation is a specific way of resampling that is camiy used to detect overfitting [24].
Most often, it is used for measuring the generalisationresfalassifiers especially on smaller
data sets.

Cross-validation needs an integer paramgtéhe fold. Anf-fold cross-validation divides the
set of samples intg approximately equal sized subsétsin turn, a decision tree is constructed
from the samples of — 1 subsets. The classification accuracy of this tree is thaadem the
remaining subset. This procedure is repeated until eactestilas been used once for testing the
classification accuracy. The average accuracy of &lds is used as an estimate for the accuracy
of a tree grown on the complete set.

Jackknifing

Jackknifing is closely related to cross-validation, somes even referred to as 'leave-one-out-
cross-validation’ [191]. However, it is not only used toadhte the generalisation error of classi-
fiers but to estimate the bias of any statistic. Applying thek&nife, each training case is omitted
in turn and the chosen statistic is calculated on the remgisubset. This is similar tg-fold-
cross-validation wherf is the number of samples in the complete training set andtétists is
the generalisation error of the classifier. The averagee#tatistics calculated on the subsets is
then compared to the statistic on the entire training set. ditierence can be used as an estimate
for the overall bias.

Empirical studies emphasise the superiority of gengrfdld-cross-validation over Jackknif-
ing, especially on small data sets.

2.3.4 Missing values

Practically, all biological data sets contain missing esluThis is due to the complex experimental
setups which potentise the impact of technical imprecigiwaugh many levels. However, most
algorithmic analyses require complete sets. Thus, in nasgmissing values have to be erased
from the data.

Some of the missing values can still be estimated througkrekpowledge. But some values
remain unknown for the computational analysis.

There are two basic strategies for coping with missing \aJui24]:

e deletion and

More elaborate ways of resampling assign probabilitieseiridp picked up to each object.
5If the number of samples cannot evenly be dividedftsome subsets may contain an extra sample.
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e imputation.

Statistically, deletion is the safe way. Thatis, no addgidias can be introduced into the data. All
attributes and/or samples that contain a missing valueadeded! from the data set. Unfortunately,
this can erase desired structure and quickly leads to noinérgadata at all. This is particularly
disadvantageous in domains with more than 10% missing safuthe set (e.g. biological data).
Thus, imputation has to be applied in most cases [134].

Imputation of averages

The substitution of missing values with default values ifedamputation. Using averages for the
substitution is one of the most common approaches to do$wate basic averages work on:

1. the concerned attribute,
2. the concerned object, or
3. the complete data set

While all of these can lead to feasible results on rather lggmeous types of data, they will
often lead to poor results on heterogeneous data such agjiciall sets. A good aid is to identify
an “environment” in which the missing value occurs. Such avirenment defines a subset of
samples with a certain common characteristic. It is thesiptesto calculate averages only from
samples of the same environment.

These environments can be identified with pure statisticedsures. They could be, for in-
stance, a subset of samples

e with similar variances,
e with similar scales, or
e with similar distributions of their attributes.

When inducing decision trees, such a subset can also be diefimecertain node by the samples
remaining under that node. The subset can be further spkbifisamples in the split with only a
certain classification [113].

Another way of defining an environment is by means of chareties of the biological do-
main. For instance:

e samples of the same genotype,
e samples taken from the same series of experiments, or
e samples measured by the same experimenter.

Ultimately, any of the above environments can be combineatder to obtain the most specific
characterisation of a subset. Yet, too specific charaeat@iscan decrease the number of samples
in the subset to a number that is no longer statisticallyifiabte for further induction. The better
the characterisation of the subset is, the more it is assuha¢dhe substitution value is close to
the unknown real value. However, no general rule can be dgivancomplish this task. It remains
mostly subject to the experience of the analyst.
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Figure 2.7: Mapping of intervals into the discrete valudsamd c.

Other strategies for handling missing values

There are numerous more complicated strategies for copitigmissing values published in the
literature (e.g. [140, 182, 126]). Most of them were desigteework under specific conditions
with specific problems. Thus, they cannot be applied sttiigliardly to other data. Furthermore,
only very few publicly available implementations of thosetiniques are available at the moment.
A good synopsis of more general techniques can be found ile I8t Rubin [104]. In tests on
synthetic and real data, differing strategies have showrat@ only a low effect on the output of
the subsequently introduced data and algorithms (see alsseStion 4.2.2). That is why more
elaborate missing value strategies have not been exanirdetdil in this thesis.

2.3.5 Continuous data

Plain decision tree induction algorithms can handle discdata only [24, 132]. The biological
data used in this thesis, on the other hand, is exclusivatyiraoous. Hence, the data has to be
discretized a priori or the algorithms have to be adaptddceSall results of this thesis depend
strongly on an appropriate handling of continuous attdabuhe used methods will be described in
detail. The adaptation of algorithms will be discussed ia slubsection and general discretisation
in Section 3.1.4.

Basic handling of continuous attributes

When discussing the use of continuous attributes in detisée induction two types of attributes
have to be considered: the target attribute and the othédrnaés.

The range of the target attribute has to be divided into tarlgsses by an expert. Once the
target classes are assigned to intervals of the attribdtaisain, the induction algorithm treats it
as discrete valued. This process is critical because mglydiases the information held by the
target attribute. Thus, it should be performed very consigdy. Note that the expert’s attribution
of target classes to the samples is the reason why this priacealledsupervisedearning.

The rest of the continuous attributes can be handled auicaiipt The idea is to dynamically
map intervals of the attribute’s domains into discrete sgisif. In Figure 2.7 three intervals of
the domain,[0,0.3),[0.3,0.5), and|[0.5, 1], are mapped into the discrete valugh, andc. The
remaining question is how to find appropriate thresholdsctvinark the discretisation intervals.

C4.5 uses a boolean approach. Every continuous attributsideyed for a split is divided
into two intervals. Since there is a finite number of samptethe training data there can only
be a finite number of possible binarisaftérihresholds for each continuous attribute. Note that
this approach can easily be expanded to derive non-binacyadisation by subsequently applying
several different binary discretisations on the samebaitiei

This is also calledocal discretisation and will be discussed in more detail in sotise 3.1.4.
Binarising means discretising into the dom&m1}.
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Sample 1 2 3 4 | 5 6
Attribute X 05/07/08|14|18|21
Target attributel A | A | B | A | A | B

Table 2.2: Training data with 6 samples: a continuous aftigiband a binary target attribute.

In Table 2.2, there is an example with a small training set. demonstration purposes, the
samples are sorted according to the value of attribute Xh&iit different values of attribute X
there are five feasible thresholds to binarise attributeddimain (for instance 0.6, 0.75, 1.2, 1.6,
1.95). By mapping the values of attribute X into two clas€efo( values below a threshold and 1
for values above it) we obtain 5 possible binarisations foitate X.

When the induction algorithm evaluates the worth of a sgltoading to attribute X, it now
calculates the worth for each of the possible binarisatiattsbute X with threshold 1, attribute X
with threshold 2 and so on. Hence, many more evaluations teadve performed than if attribute
X were binary from the start.

However, Fayyad proved that not all binarisations have todmsidered for the determination
of the best split [54]. Only those thresholds that lie betwsamples of different target classifi-
cations are feasible. In Table 2.2, those are the ones betsaeple 2 and 3, between sample 3
and 4, and between sample 5 and 6. That way, the number oféiealsi can usually be cut down
considerably.

Advanced methods for handling continuous attributes

Some problems with the above method have been reported whataaet contains continuous
and discrete attributes at the same time [4, 48]. Then, sqiittrg criteria (e.g. gain ratio) have

a strong bias toward the use of continuous attributes assegpt discrete ones [137]. Several
authors have proposed alternative splitting criteria thato prevent this bias [4, 137]. Since all

of the biological data used in this thesis is purely contiithose problems do not apply to the
studies below. That is why the basic discretisation promd@iC4.5 will be used in all cases.

2.3.6 Oblique hyperplanes

One limitation of conventional decision tree algorithmghat all splits are performed parallelly
to an attribute axis. For decision trees, this means thatct rode there can be a test on only one
attribute.

In Figure 2.8 there is an example where this limitation wdelald to a non-perfect split: It
is not possible to split the circles correctly by any testsidering only one attribute (an axis-
parallel hyperplane respectively). The best axis-pdrafiit would be the one depicted in the
lefthand figure of Figure 2.8 by the threshéldon the B-axis.

However, there would be a better hyperplane to split the datandicated in the righthand
figure of Figure 2.8. This is anblique(non axis-parallel) hyperplane. It splits the circles pettly
into the subsets of filled and empty circles. To achieve a lgdi that at a node in a decision tree,
the test at that node has to be a linear combination of thbwt#s A andB. Here, this is indicated
by the sumul x = + b1 * y. The remaining issue is thus to determine the attribute® (hend B)
and the factors (here andy) for each spilit.

OCl1 is an algorithm that can induce tests on linear comlainatior each node [122]. In prac-
tical applications, OC1 delivered significantly shortexets on problems of continuous domains
[121]. The crucial drawback of OCL1 is its computational ctewjy [76, 122].
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Figure 2.8: An axis-parallel and an oblique split.

Because of the otherwise favourable characteristics of th€rk have been recent studies to
cut down on the computational demand [31]. The idea is to uskigonary algorithms [75, 115]
for the approximation of good linear combinations. Thisaide still under examination. Up to
now there is no implementation of it publicly available. $osubsequent chapters | will still use
axis-parallel decision tree inducers, although this metewrly an interesting perspective.

2.3.7 Ensemble techniques

The main objective of all machine learning techniques isatastruct classifiers that classify new
observations correctly [115]. To achieve that goal, mafffedint classification techniques have
been developed. A basic paradigm of them is to constructesaigssifiers with high classification
accuracy. Yet, single classifiers are bound to several n&.

A recent trend to improve classification accuracy of exgstechniques is the use of sets of
classifiers rather than single ones. Boosting (or Arcin@) fihd Bagging [23] are the two basic
approaches known to date. Both offer a strategy to induce cfetlassifiers, also referred to
as 'ensembles’ or 'decision forests’. When a continuousieva$ to be predicted, the average
prediction of all classifiers in the ensemble is used as omécoFor the prediction of discrete
classes, a majority vote of the ensemble is used.

Theoretically, Boosting and Bagging can be used to imprayeckssification technique deliv-
ering single classifiers. But they perform with varying ssgexon each of the individual methods.
On decision trees, for instance, improvements are reptotbé considerable [105]. On support
vector machines, on the other hand, they are very weak, bedhe boosting and the induction
principle are conflicting.

Bagging

The word “Bagging” is derived from “bootstrap aggregatirig3]. Bootstrapping has been in-
troduced in subsection 2.3.3. The basic principle of Baggdias follows: Several bootstrap
replicates of the original data set are used as training Setssequently, a classifier is constructed
for each of the training sets. These classifiers are in tugnegigited to an ensemble. As described
above, a classification is achieved by taking a majority wétall classifiers in the ensemble (or,
for continuous predictions, by computing the average,aetsgely).

For decision trees and neural networks, this techniquergkynémproves classification accu-
racy [12]. Tests on several data sets drawn from the UCI datasitory [120] have shown for
decision trees that Bagging ensembles nearly always datpesingle classifiers. Such ensem-
bles are also relatively robust against noisy data [105].
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Boosting

Boosting describes a technique to “boost” (improve) cfasgion accuracy of weak learning al-
gorithms [150]. This approach is based upon the so calledC*RAarning theory” (Probability
Approximately Correct) [185] which is not discussed in thigsis. There are several known
boosting algorithms available [147]. Here, | describe fbria version of AdaBoost [151].

The word “AdaBoost” is derived from “adaptive boosting”, améng that the algorithm is
constantly adapting the training set during progressi®2].1The principle is as follows: Initially,
a classifier is learned on the original training set with angsen learning algorithm (e.g. C4.5).
Then, a new training set is produced by attributing weigbtthe samples of the original data
set. That is, samples which are classified correctly by taméd classifier get a lower weight,
and incorrectly classified samples get a higher weight. Queriative way to achieve this is by
simply duplicating misclassified samples in the new transet (see Figure 2.9). Based on the
new training set, a new classifier is learned. Finallysalearned classifiersy(can be arbitrary
or determined by some criterion [153]) are combined in areere. Classifications are again
obtained by majority voting as described in subsubsecti@yging”.

Tests on UCI data (see above) have shown that boosted detisgensembles often classify
better than Bagging ensembles [105]. However, boostedhesies are prone to overfit training
data and they are somewhat susceptible to noise. Consggummtmore data sets than with
Bagging, the boosted forests performed worse than singgs {t.2].

Characteristics of ensemble techniques

For improving classification accuracy, one could draw thectiesion that carefully applied boost-
ing yields better results than Bagging. On the other handgBwa is less prone to noise and often
generalises the data better. Bagging could thus be the oheftahoice for less experienced users
[105].

However, we note that all ensemble techniques have in conthatrthey improve classifica-
tion accuracy at the sacrifice of simplicity. To be more sfeaiules (or criteria) for a classifica-
tion are multiplied by the number of classifiers in the endembhat is why ensemble techniques
are generally unfavourable for interpretation and furfireccessing of the classifiers [125]. In the
thesis at hand, the focus on interpretation and further processing. Thus, the knomgeenbles
techniques cannot be used directly here. In section 3.2weenseemble technique is introduced
with the desired behaviour.

2.3.8 Decision lists

Decision lists are a concept closely related to decisioestf&44]. They are rule learning classi-
fiers. A few scientists consider them as an independent maderning technique [119]. Though,
they really are a superclass of other techniques (e.g.idediges [29]).

The lists serve for finding decisiolfs They consist of a linearly ordered set of boolean func-
tions, each consisting df clauses. Such a function can either lead to a decision or tefa
subsequent function. K is set to 1 the lists are a specialisation of decision trees.

The lists obtained their name from their listlike appeaeafsee Figure 2.10). Due to their
linearity the lists have a very clear structure. Hence, ttayeasily be understood and interpreted.

For higherk, there is no generally approved learning strategy for this.li Often they are
learned with a greedy hill climbing algorithm [144] or by rhetls based on PAC learning [185,
33]. But more “exotic” learning strategies, e.g. througnefé logic programing [177], are also
in discussion.

8| this context, decisions are the same as predictions ssifizations.
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Figure 2.11: A hybrid decision tree with neural networks @s-slassifiers.

Since decision tree learning is more straightforward aedries are still well interpretable it
was opted for using the trees instead of lists in subsequremtters.

2.3.9 Hybrid decision tree approaches

An alternative way to develop improved classifiers is to cimakexisting methods into laybrid
technique. The challenge is to exploit the advantages @drdiit methods while avoiding their
drawbacks.

In machine learning, | distinguish two different classesigbridisations:
1. techniques utilising one method to induce a better dlassif another method
2. techniques combining two different principles into a figlzlassifier.

The first class has already been mentioned in Subsectidh\&ifere genetic algorithms have
been proposed for inducing oblique decision trees [31].eBemlgorithms have also been used to
approximate other types of rule learners such as decisé@s wr first order logic [183]. In these
cases, one learning method is used to circumvent a spedaitidgon which is hard to solve within
the framework of the other method. In the end, a pure “ondraBtclassifier is obtained that can
be handled by conventional computational tools. This agghravill not change the characteristics
of the used type of the target classifier. It is therefore moessary to consider techniques of this
kind when studying interpretability and handability ofsd#fiers (as will be shown in subsequent
chapters).

The second class of hybridisations leads to newly strudtal&ssifiers. The idea is to replace
inefficient parts of a classifier with more efficient struetsirof another type of classifier [163]
(see Figure 2.11). For instance, decision trees have knosakmesses due to their greedy split
criterion at each node [32]. If such a split leads to a remaek#oss in classification accuracy
the corresponding node (or leaf) can be replaced by a betierds(sub-)classifier [196]. The
advantage of this approach is that it can preserve desistdrés of decision trees, in particular
interpretability within the top nodes, while facilitatirey higher classification accuracy through
another technigue. This approach is strictly aimed at iwipgpclassification accuracy. It does
not improve interpretability and handability which is neddn the subsequent chapters of this
thesis. That is why | have not considered it any further.
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Figure 2.12: The production of a decision tree on the dizmdtgeneg2.

2.4 Previous applications in biological data analysis

2.4.1 Classification of biological tissue samples

In most investigations where decision trees have beeneaapiii molecular biological data, they
have been used for classification tasks [165, 195, 47, 13, I8this field, decision trees compete
directly against all other classification techniques. iPaldrly Support Vector Machines [186, 35,
160], Neural Networks [145] and Bayesean Networks [34, &hbeen used for classifications
in the life sciences in numerous publications [159, 130,18, 14, 97]. As the classification
accuracy of basic decision trees tends to be lower than fhliecabove mentioned techniques
[67] this method is rarely used as a prime choice for stréogivird classification tasks. Instead,
it often appears as a statistically different approachitdaece classification results obtained from
other techniques (e.g. in Beerenwinkel et. al. [15]). Bt thassification accuracy of decision
trees can be enhanced by the means of boosting and baggingulssection 2.3.7). With these
improvements, the trees match the accuracy of other methogarticular data sets.

The subsequently introduced methods do not rely on ultirolaigsification accuracy but on
interpretability. That is why issues on accuracy are natudised in more detail here.

2.4.2 Reconstruction of gene networks

For this thesis, the more important area where decisios tiaee been applied to molecular bio-
logical data is the reconstruction of gene networks [170].

Gene networks are a representation of interactions betgeeas. Empirically, behaviour of
genes is determined through the behaviour of the correspgene expression levels [86]. In the
last years, it has become possible to measure gene exmressi@ large scale by high-throughput
methods [197]. One consequence is that a lot of effort is mw&sted in the induction of gene
networks from gene expression data [3, 47, 77, 129, 180,162,

The approach of Soinov et al. [170] discusses the interwataf decision trees for the
reconstruction of gene networks. In that work, decisioegrare induced for the prediction of
gene expression levels through knowledge about the leValther genes. More precisely, it is
assumed that expression levels can generally be mappeghiatbive and aninactive  state.
For these two target classexfive [or 1] andinactive  [or Q]), a decision tree is constructed
that predicts the states through the expression levelshafr jenes. The complete process is
illustrated in Figure 2.12.

The resulting decision tree is then transformed into a atl¢similar to the description in
Subsection 2.2.2). These rules are established on a sulibetariginal set of genes. The genes
in this subset are calleekplaining genedecause they are sufficient to explain the target classes
(of the predicted gene

Soinov et. al. argue that the characteristics of the exjpigigenes justify the construction
of a (sub-)network [170]. They leave it unclear, though, hHbig network is to be constructed
from the ruleset. Furthermore, such networks can be exgp@otbe highly irreproducible from
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the given data. This is due to the fact that the used decisamnihduction algorithms produce
unstable results when applied to noisy data [24]. Howevaregxpression data usually contains
a lot of noise which is too high in this context. It is thus likéhat decision trees constructed on
similar experiments produce highly different rules ande¢hg highly different networks.

A solution to these difficulties is offered in Subsection.3[Rere, the idea of Soinov et. al. is
enhanced by the introduction of decision forests. Forastegood means to counterbalance the
effects of instability in decision tree learning (as presty mentioned in Subsections 2.3.3 and
2.3.7).

2.5 Summary and conclusions

In this chapter, a brief introduction to machine learning haen given. Within this field, decision
tree learning is one method among others. Compared to tlee wtbthods, the most favourable
characteristic of decision trees is their simple repreg@nt that makes them easy to interpret and
process. Another favourable property is the existence dif @stablished heuristics to quickly
learn the trees. These properties are advantageous, oché® the goal of extracting general
knowledge from large amounts of data.

Further, an extensive introduction to issues linked to slenitree learning has been given.
Some of these issues are often discussed in the literattide Imot affect the techniques introduced
in the next chapter. It has been described which technigeesfahis kind and why. Other issues
do affect the subsequently introduced techniques. For tlitehas been motivated why certain
choices were taken.

Finally, some examples have been given that demonstrat@pseapplications of the trees
in the domain of molecular biology. It has been indicated tha trees are not a prime choice
for pure classification tasks. But these examples show hieagitaph structure can be exploited to
draw conclusions about an underlying network of the giveta.d@he interpretation of trees can
thus be a valuable source of knowledge in Systems biology.

In view of the given goal of extracting genuine new knowledigen Systems biology data,
the trees offer best premises. That is why they were chosahddollowing development of new
techniques.
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Chapter 3

From raw data to biological networks: a
contribution to the analysis of
dependencies among sparse and noisy
continuous data

As described in chapter 1, the objective of systems biolegy imodel dynamic processes be-
tween biological elements such as cells, metabolites oegyemhese models are best described
in the form of networks [50, 22]. Depending on the diversifytlte used biological elements
such networks can become very complex. Up to now, there imiersal technique for deriv-
ing complex networks from the available sources of biolabatata (see chapter 1). Thus, most
research projects focus on the reconstruction of small orsvfrom very specific data types
[3, 77,129, 128, 45, 142].

In this chapter, two methods will be introduced that focush@nanalysis of metabolite concen-
tration data [58, 149]. The first method allows for autonsdtljcmodelling stable states through
interdependencies in the concentrations. The second thetno derive dependency networks
around pivotal metabolites. Although the focus is on mditbooncentration data, these methods
are generally capable of handling different types of dater&by, they are a contribution towards
a more universal way of network reconstruction.

3.1 Revealing stable states of an organism

The main goal of the examination of metabolite concentnatits to be able to reconstruct the
dynamics of interaction between the metabolites. Thevioilg method proposes a contribution
towards this goal, trying to detect significant thresholitssbme concentration variables based on
the global analysis of the complete data set. The basic gggnris that, as for any dynamical
system, one can observe a finite set of “stable” states batwh&h the system evolves. A state
is considered to be a reasonably stable condition of anyunalale variablé, observed directly at
the level of concentrations, in a (sub-)set of samples.

It is assumed that a change of such state indicates a redotexternal (environmental) or
internal stimulus on the examined organism. A simple exarfgrithe impact of an external stim-
ulus is reflected in the distribution of Figure 3.1. In thigt®mok example [30], the concentration
of the metabolite NADPK has been measured in the leaves of a flahtlaytime and at night-

Yor a subset of variables respectively
2Actually, they were several phenotypes of the same plantmoder identical conditions.
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Figure 3.1: The bimodal distribution of NADRH
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Figure 3.2: A shift of the second mode to the left makes italisudisappear.

time. NADPH, is known to be involved in photosynthesis. In the distribntof the corresponding
concentrations, one observes a subset of samples with sased level of NADPKand a sec-
ond subset with a decreased level of it. In fact, the sampl#s tive decreased level were the
ones measured at nighttime and the others the ones measul@gtimme. Thus, the plant can be
considered as having two distinct states; we could labehtag 'night state’ and 'day state’.

There are two modésn the distribution of Figure 3.1 indicating each of the twates. Here,
it is known that NADPH increases with the amount of light the leaf is exposed tos itsually
not that easy to relate the states of an organism to a variable

Often the distributions of variables appear to be uniforraussian or indeterminable as in
Figure 3.3. Hence, several distinct states (or modes) ¢dmnieead off or found with conventional
statistical methods (such as [168]). Nonetheless, tharestithbe several states which are just
hidden in the sum of several modes (see Figure 3.2) or in thse b the data. After all, despite
substantial advances in analytical techniques, bioldgiata has considerable variances.

We address this problem by developing a tool for identifysmgne of these hidden states in
variables. Since functional dependencies (includingsjatannot be derived reliably from single
variables with few data points we use a global approach tease robustness. It considers for any
given target variable a set of thresholds and compares thefffieictivenesand stability through
sets of decision trees. With this approach, it is possiblént robust and explainable states in
variables. Once the states are identified, a direct examimean lead to further understanding of

3modes = peaks in the distribution; for more details see [53]

Qcaurences
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Figure 3.3: There are no clear modes in the distribution wifdtic acid.
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the organism’s dynamics.

3.1.1 Established Methods considered in this approach

The subsequent work on finding significant thresholds isdapen several well established meth-
ods which will be outlined below.

Discretisation

The problem of finding significant thresholds in continuoagads largely equivalent to the prob-
lem of discretisation. This field has been intensely ingastid in the past (see Subsection 1.2.4).
And though, discretisation is often considered just a poegssing for further examination, it is
also accepted as a stand-alone analysis [91].

There is no hard evidence of whether the one or the otheragtefdiscretisation techniques
is better fitted to discretize metabolite concentratioraddhat is why the characteristics of data
and methods can only be surveyed in a fairly general (anddatgirical) manner.

The main difficulty in discretising metabolic data stemgrirtthe conjunction of a high amount
of noise with a relatively low number of available sampléss thus of utmost importance to make
the most out of the available information and dependenaictitre in the data. Kohavi et al. [91]
and Bay [13] indicate thahultivariatediscretisation is best fitted to satisfy this need. Mulfiste
techniques consider interdependencies of all variabldsifeature space simultaneously. Further,
a global approach is preferred because interpretabilightvstill be of interest in the analysis.
Note that local methods can produce ambiguous results &zsibled in Subsection 1.2.4) and are
thus hard to interpret. To my knowledge, no such discrétisatechnique is currently available
that could be applied to current forms of metabolic data.

Decision Forests

For the modelling and evaluation of discretisation thréd$ioinductive learners taken from ma-
chine learning are the prime choice because they can autathatonstruct models for a given
threshold (see Chapter 2). The alternative would be theteani®n of models through experts
which is out of question due to its cost (time and money). &laee several types of models which
can be learned by inductive learners (see Chapter 2).

Decision tree methods comprise effective induction athors and interpretability of the mod-
els (see Subsections 2.2.3 and 2.1.3). The data structirdreé can also easily be handled by
subsequent algorithms. However, trees develop an unfablmiproperty in the biological domain.
That is, the induced models are unstable in noisy enviroten@ng. metabolite concentration
data). This means, a little variation of the data can leaddolstantial difference of the induced
tree.

This effect can be counterbalanced by the use of sets ofidedi®es [181] or by pruning
strategies (see also Subsection 2.3.2). Methods of bath@ats can be applied either separately
or together.

Sets of trees are called ensembles (see Subsection 2.2l&gision forests. In the following
subsections, a strategy is developed that constructs asddesision forests while preserving the
preferable characteristics of trees.

Starting from this background, a new discretisation tegh@iis now introduced which is, in
terms of prior work,global, unsupervisedand multivariate but tries also to make biologically
plausible discretisation choices.
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3.1.2 Modelling states of an organism

In order to identify possible states of an organism, sigaifity stable conditions of concentration
variables are tried to be detected. These can be identifi¢laeyelp of decision trees.

First, let us assume we already knew about two states and wie attribute one to each sam-
ple. Then, these states could be modelled straightforwadibision trees by means of supervised
learning: The possible states are considered as targseslasd the metabolite concentrations are
used as explaining attributes. Therewith, any decisiamitrduction algorithm can grow a model
for explaining the two states (e.g. C4.5 [136]).

Further, if such a state was expressed in a given variatdevthiable can be dichotomised
into the classes “state 1” and “state 2". Largely, this diohdisation can be performed by finding
the concentration threshold dividing the two states. hii@re refers to such a threshold asua
point [56]. With the obtained two classes, again, a decision tegebe induced as a model for
explaining these states.

The remaining issue is to find an appropriate threshold ferdiscretisation of the target
variable. In the example of Figure 3.1, the samples canyehsilclassified into “night state”
and “day state” according to their NADBHevel. The discretisation threshold can visually or
statistically [168] be determined between the two modeswéier, as mentioned in the first
paragraph of Section 3.1, most distributions do not allavafolear distinction between two modes
(respectively states). Thus, we have to find another wayctogni appropriate threshold out of the
many possibilities.

3.1.3 Growing decision forests

We propose to grow sets of decision trees for each considksecktisation threshold and compare
them. They provide a more stable means of classificationitidividual trees and thereby grant
more reliable results(see Subsections 2.3.7 and 3.2).

To get candidate thresholds the domain of the target varighlivided into intervals. The in-
tervals can be determined by any binning strategy (e.gotmibinning, equal frequency binning,
or exhaustive binning [131]). For example, in Figure 3.4deplest form of binning is applied
to a variable’s domain: uniform binning. As long as a reabtsmamall size of the data set permits
effective computation, exhaustive binning should be preteover the other strategies because it
yields a comprehensive search of the hypothesis space.

For each possible threshold, a decision forest is grown &itembedded decision tree induc-
tion algorithm. We used C4.5, one of the most establisheakigign for this task [136]. Initially,
the set of available variables contains all measured Vasahinus the target variable. Then, the
following procedure is used:

e While variables are present in the data set do

1. Grow a decision tree with C4.5 on the discretized targeabbe and add it to the
forest.
2. Remove the variable occurring at the top of the tree fragrs# of available variables.

e Sort the trees of the forest according to their predictivaieacy and keep thiebest trees in
the forest £ = 3 in our experiments).

That way, we obtain a forest of varying trees with highestdfmtéve accuracy for each target
discretisation threshold. This algorithm is loosely imegdiby the idea of 'variable deletion’ by
Breiman [24]. He recommends it for finding variables of eceratopy.
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Figure 3.4: Determining candidate thresholds 1...n byaunmifbinning.

Through the complete procedure, we gain the possibilitysiigia supervised learning ap-
proach in an unsupervised process by systematically adirngndidate thresholds and construct-
ing models for them.

3.1.4 Threshold extraction

At this point, a particular decision forest has been produoe each of the considered discretisa-
tion thresholds.

Definition 26 (Neighbouring forest) Two decision forests are neighbours if they have been
grown on two subsequent candidate thresholds.

Each forest is evaluated in turn through comparison withtwiteneighbouring forests as outlined
below.

Definition 27 (Similarity of decision trees) Given an arbitrary precision parameter € NI and
two decision tree®; and©,,

1 if the two sets of ordained scalars used in
decision tests of the upperlevels of both
trees are identical.

0 else

sim(01,03) =

Or more intuitively, we use a syntactical similarity criter. Two trees are similar if the attributes
used in the first: levels of both trees are the samewas set to 1 in our experiments).

Definition 28 (Stability of forests) LetY,, T;, and Y. be decision forests (whefg, andY . are
the neighbours of;), and let©;,  denote theth tree of the forest’, then

max max max max

stability(Yy) = Z Z sim(0; r,,0;r,) + Z Z sim(©;r,, 07, T.)

i=1 j=i i=1 j=i
wheremazx is the maximum number of trees in the forest.

In other words, the stability function compares all treeshef neighbouring forests and grants a
score of 1 for each pair of trees that is similar. That waybility(Y) gives high scores to forests
with similar neighbours.

With this “smoothening” process thresholds are found thamwte environments of “stable”
models of the data. That is, these models are robust agasigtha shift of the discretisation
threshold to either direction. If the scores are plotted aturve we can identify regions of stable
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Figure 3.5: Peaks or elevated plains in the score functingisate regions of stable models.

forests (see Figure 3.5). Stable forests indicate robustetador the explanation of the target
variable. We can assume that robust models indicate a lidalbgfeasible choice for the target
classes and thus the discretisation threshold.

Another way to compare the forests is by their 'effectivahe§o measure this quality, we
propose the following function which has been inspired @/ eighting criterion of Breiman’s
cost-complexity pruninf24] (see also Subsection 2.3.2):

Definition 29 (Effectiveness)Let T' be a binary decision tree of depth n and Btbe a set of
classified objects. For < i < n, let C; be the set of objects frof, being correctly classified by
T at depthi. Then, define the quality @ by means of the following function:

ef fectiveness(T') := Z |C - %

i=1

This function delivers high values for trees classifying thaining samples with little error and
few decisions. For comparirfgrestswe use the arithmetic mean of effectivenesses of the trees in
the forests and compare them.

As a matter of principle, this function produces peaks facditisation thresholds close to
the boundaries of the target variable’s domain. This is dube very asymmetric distribution of
samples in the target classes when discretising is doneamithrginal threshold. These peaks are
called 'sparse data peaks’, because one of the two targstedl@ontains very few samples. These
peaks are not considered for the determination of highlgosiffe forests.

With the two quality measures 'stability’ and 'effectivessit is possible to find discretisation
thresholds for any given variable based on peak analystbhelmeasures lack remarkable peaks
in their values it is assumed that there are no inherentestthtes in the examined variable.

3.1.5 Parameters of the threshold extraction technique

The impact of parameters of the threshold extraction tegtenihas been studied empiricélly
Effects that have occured with the change of parameterssressed in this subsection in theory.
It will be explained which data preprocessing techniquekars@nse and which do not.

“Those studies were performed with the programs given in AgieA.
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Possible binning methods

The method for extracting thresholds depends strongly enctioice of candidate thresholds.
These are generated through a binning strategy. The efiEbtaning strategies on the effective-
ness curve and the stability curve will be discussed here.

Uniform binning (or equal range binning) divides the ranfigiven data points into intervals
of the same size. The boundary of these intervals are usad aandidate thresholds. The number
of bins is the only parameter of this method. This methodgendidates independently of the
distribution of the data points. In this way, it can be regar@s producing unbiased candidate
thresholds.

If uniform binning is used with a very high number of bins iatks to peculiar curves of the
stability measure: Due to the similarity of subsets produagth very close cut points, neigh-
bouring thresholds produce similar decision forests. @hgrthe stability score tends to be often
maximal. Only when there is a change in the composition ofdhests the score drops. However,
rarely the composition changes drastically between twsecimeighbours. By comparing only
close neighbours it is thus no longer possible to see therggemn of stability between larger
regions. But this is what makes up for the desired infornmaiothe stability curve. That is why
too many candidate thresholds are unfavourable for thedaotted method.

Equal frequency binning divides the range so that each bitegws the same number of data
points. The boundary of the intervals (usually the aritimeatean between the highest value in
the lower bin and the lowest value in the higher bin) are usetha candidate thresholds. The
number of data points per bin is the only parameter of thishowt This method is dependant
of the distribution of the data points. Parts of the rangdfigtv data points will be shrunk into
one bin (or very few). This is unfavourable for the threshettlraction method because, that way,
there might be too few candidate thresholds to detect ramigbe data that promote high scoring
forests. This is particularly a problem for bimodal disttions with unequally sized modes. In
Figure 3.6, equal frequency binning with 7 data points paer(ld@ading to four bins) is compared
against uniform binning with 4 bins. Equal frequency bimnimso delivers strange results if
missing values are replaced with single values (e.g. O)usecthis can lead to identical intervals.
Because of the above reasons, equal frequency binning watigenumber of data points per bin
is unfavourable for the threshold extraction method. Witnall number, it exhibits the same
problem as uniform binning with too many bins.

Exhaustive binning is a special case of equal frequencyifmgnit is equal frequency binning
with one data point per bin. This method exhibits the prols@iuniform binning with too many
bins. For the given threshold extraction method, it coully &re used to produce a very smooth
progression of the effectiveness curve. Thus, exhausii@ry is not advisable for the use with
our technique.

If sufficient computational power is available, we proposeuse uniform binning with an
average number of 5 data points per bin as a default.

Binning and normalisation

Common binning strategies each interact differently witrmmalisation procedures. For the
threshold extraction method, is is only important to examivhether data points will fall into
a different bin after the normalisation. For instance, fi@drequency binning is used bin mem-
berships will not be influenced by any normalisation methdaiform binning, on the other hand,
is influenced by all normalisation methods. As uniform bintnis the method of choice for the
threshold extraction technique, data normalisation hasftuence on the result. In pratice, we
advise to use the threshold extraction technique on a n@®eahnd a non-normalised data set.
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Figure 3.6: An problematic example case: In this multimatiatributions, equal frequency bin-
ning delivers candidate thresholds only in the middle ofrtiuales.

Then, approximately the same number of detected thresholatsth runs is an indicator of a reli-
able result. In any case, the significance and meaning afiiblés has always to be subsequently
examined by physiological experimentation.

Impact of missing value strategies

Normally, missing attribute values are not a problem witbisien tree methods because they can
simply be ignored by the induction criterion. Entropy meaasican be calculated on the remaining
valid values. However, the threshold extraction technigses (a dichotomised version of) each
attribute also as target attribute. And the target valuetbidi®e defined in order to be usable for
induction. Samples with a missing value at the target aieitare not usable for an induction
algorithm. Hence, there can be a loss of information. Big kb$s only poses a problem if the
missing values mask out all samples that carry certaintimédion which is not reflected in the rest
of the data. That is why data preprocessing with missingevattategies is generally not needed
for the threshold extraction method.

Strategies that map missing values to a single value overdimplete data matrix are largely
neutral towards decision tree technigues. There cannotspétaccording to an attribute within
samples that have the same value for that attribute. Evée ifdplacement value lies within the
regular range of the attribute there will, at worst, appef@mnaextra splits (to cut out that value) in
the decision tree. Replacing missing values with a singleevée.g. 0) poses thus no problem for
the threshold extraction technique.

Strategies that replace missing values with various valodsias the introduced method. The
impact of those strategies on results depends on the ingdivathta matrix. It cannot be specified
generally.

Classification accuracy and comparison of decision forests

There are numerous proposals for improving classificatmmuiacy of decision trees. However,
absolute classification accuracy is not an issue for thedntred threshold extraction method. The
decision forests are not used for classification. They aleampared relatively in classification
accuracy. The effectiveness measure does make use oficktimn accuracy. But the introduced
method only aims at identifying forest that have a higheeaiffeness than their neighbours, no
matter what the absolute effectiveness is. That is why alsiagcision tree learner (C4.5 in this
thesis) can be used for this purpose.
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Number of trees to be compared

The algorithm for evaluating decision forests offers a chain the number of trees that are com-
pared from each forest. The range of that number is from lemtimber of attributes of the data
matrix. The comparison is performed through comparing dpeniodes of the trees. If there is a
similar top node in the neighbouring forest a score is gdnte

The more trees there are compared from the forests the rkehgtinere will be similar trees in
the neighbouring forest. Thus, the stability measure \ig# with the number of compared trees.
For the maximum value, the curve will become a line. The éffeness measure will drop at the
same time because only less effective trees are added wiglng number of comparisons. So,
the two curves become smoother with a higher number of cdeguer but they loose identifiable
peaks. A low default value of 3 has proven to deliver feasibsllts.

3.2 Revealing combinatorial dependencies

Metabolite concentration data is a powerful source of imfation about metabolic activity in

organisms. The interpretation of such data is often done égn of correlation coefficients (see
Section 1.3). Such analysis has already led to some unddisgaof the connection between
metabolite concentration levels and metabolic pathwaf8][1However, this approach is strictly
limited to pairwise and undirected relations. For the gatien of more specific hypothesis, the
knowledge about dependencies between more than two \@siabh time is of great importance.
To this end, we extend the correlation approach in this @ecti

3.2.1 Partial correlation

The basic idea of this approach is as follows: A correlaticgasure between two variables is
systematically calculated under different conditions dhiad variable. That way, correlation
appearing only under certain conditions of other varialoks be observed. This procedure is
known from the literature as ’partial correlation’ [171]t dalculates the average of Pearson’s
correlation coefficients [81] for subsamples restrictedeidain assigned values.

An illustrative example for the gain of additional knowledthrough partial correlation is
given in Table 3.1. Here, three variables (number of defedife jackets, number of survivors,
and boat size) are given for boat disasters. Then, the atioelcoefficients are calculated between
all variables. We obtain a strong positive correlation kestwvthe number of defective life jackets
and the number of survivors. A straight interpretation wioldad to the conclusion that fully
functional life jackets are bad for surviving in water. Olicse, exactly the opposite is correct.

Let the data now be split into three subsets: one with theetbaenples from large boats, one
with the samples from medium sized boats, and one from sroalisb If correlation is calcu-
lated again for each of the three subsets there is a strorajiveegorrelation between defective
life jackets and the number of survivors. This illustratesvtstraight application of correlation
coefficients can lead to awkward interpretations.

The fixing of the third variable facilitates the recognitiofthe true correlation. This procedure
is the above mentioned partial correlation.

3.2.2 Mutual information and conditional mutual informati on

An alternative measure to Pearsons’s correlation coeftitsehe 'mutual information’ (MI) [166]
used in this section. Mutual information considers botkdinand non-linear dependencies. Gen-
erally, results obtained through Pearson’s correlati@nadso detected with mutual information
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defective | survivors| boat size
life jackets
9 7 large
8 8 large
7 9 large
6 4 medium
5 5 medium
4 6 medium
3 1 small
2 2 small
1 3 small

Table 3.1: Example data on boat disasters.

[173]. If used only on selected subsets (as described alibeegture refers to it as the 'con-
ditional mutual information’ (CMI) [40]. CMI can be considd as the information theoretic
analogon to partial correlation.

Conditional mutual information has some drawbacks conegrits numerical estimation as
will be elaborated later on. To date, scientists searctongdmbinatorial dependencies rely thus
on linear partial correlation [179, 101]. Because of thendiracks it is not clear if Ml really is
superior to linear correlation coefficients in the metabdidmain with its persistent lack of data
samples. However, the existence of non-linear correlatiormetabolic data has been indicated
by recent data sets [99]. Given that there will be sufficiaatadsamples in the near future, it is
opted for the use and examination of the potentially moregesgive mutual information in this
thesis.

Numerical estimation of mutual information

As mentioned above, mutual information produces probleimsnit actually has to be calculated.
The MI between two variableg and B is defined as follows [166]:

Definition 30 (Mutual Information)
Al 18]

MI(A,B) =) plaib;) - log (% )

i=1 j=1

Here, p(a;, b;) specifies the joint probability of variabld and B taking the values;; € A
{a1,...,a;4} andb; € B = {b1, ..., b}, respectively. The marginal probabilities apga;)
Z'ﬂlp(ai,bj) andp(b;) = Zli‘lp(ai,bj). |A| and |B| denote the number of assigned values
(size of the sample) of the respective variable.

The issue is now the numerical determination of the proltgllistributionsp. There are several
strategies for estimating from finite data [173]. All strategies exhibit problems whée given
data set is too small Although these strategies follow fundamentally différapproaches the
results on empirical data seem to be rather similar [42]. thisrreason and for simplicity, it is
opted for the most straightforward scheme in this thesis.

That is, the needed probabilities are simply estimated by tkelative frequencies of occur-
rence (in statistics usually called the 'Laplace probgbi[b3]). To be specific, the Laplace prob-
ability is calculated for intervals; andb; as follows

5There are several opinions about what “too small” is [173].
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Definition 31 (Laplace Probability)

N
Qi,'(xkaykaaiab')
bl by) = 3 Dedlho ot
k=1

whereN is the number of samples in the given data set and

Qi (@, Yk, ai, by) = {

Q is a function indicating if two given samples,(andy,) lie in the range of specified intervals
(a; andb;) or not. The intervals (also often referred to as 'bins’) tanobtained through various
binning strategies [131]. In analogy to the effects disedsa Subsection 3.1.5, any strategy other
than uniform binning will strongly bias the numerical valoethe probability distribution. In
order to avoid undesired bias, all the binning will thus be&fgrened according to the uniform
binning strategy in this chapter.

1 ifzy € a; andyy, € b;
0 otherwise.

Estimation of conditional mutual information

Conditional mutual information (CMI) introduces a thirdriable. This variable is called the
“conditional” variable, because it establishes a conditiader which the Ml of the other variables
is evaluated. The CMI is defined as [40]

Definition 32 (Conditional Mutual Information)

p(a;, bjlck)
p(ailer) - p(bjlek)

Note, thatC M I(A, B|C) is theaverageMI betweenA and B under all possible conditions of
C. For a numerical estimation analogously to that of Subse@i2.2 significantly more data is
needed to ensure a reasonable number of samples per intEwdher, the consideration of all
possible conditions af’ requires an exponentially high computational demand. Totwybalance
this effect, we introduce a new and more restricted form ofl G local CMI.

CMI(A,B|C) : Zp a;,bj, c) - log
i,5,k

Definition 33 (Local Conditional Mutual Information)

Al 1B

p(ai, bjlcy)
ICMI(A,B (@i, bjlex) -1
C lex) ;;p a |ci) - log p(ailck) - p(bjlek)

Here, the MI betweerl and B is calculated for just one specific conditiop. ¢, can be chosen
so that a sufficient number of samples satisfies this comditio

There are several strategies for the determination of sugh Again, the binning strategies
can be consulted to obtain proposals [131]. In an analogppsoach with 'selective linear cor-
relation®, A. Tiessen [179] proposed to use a derivate of equal frejubimning. In this,c;, is
always chosen so that half the samples satisfy the boolaaditom c,. That way, there are only
two conditions ¢, andnot ¢;) to be considered for each MI between two variabdeand B.

In order to evaluate more possible conditions (and therebgipilities of hidden correlations),
another approach is used in this thesis: a derivate of umifiinning that excludes all conditions
¢, Which result in a subsample size of fewer tharnstances. The number of considergdis
chosen as high as possible. It must be adapted to the aeadabiputational power. The more
power, the more;, can be consideredw is chosen arbitrarily. As a reasonable minimum to detect
real correlations, we propose an average of at least 5 mesaper bin. A highetv should be
chosen if sufficient data samples were available.

5That is ICMI but with mutual information replaced by Pearsarorrelation coefficient.
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Conditional variable: Variable 1; Variable 4 with Variable 5

icmi

------------ ICMI in upper interval

ICMI in lower interval

Figure 3.7: Local conditional mutual information on un@sated variables in synthetic data. The
thin dashed line indicates the MI between the target vaegaland 5. The thick lines indicate the
MI in subsamples of objects with values of variable 1 beirghkr (lower) than the cut point.

3.2.3 Conditional mutual information on artificial data

To illustrate the effectiveness of ICMI, several synthetata sets have been credtedach set
contains 200 data objects (observations) and between Stavatihble8. This number of objects
is a size to be expected for metabolite concentration datseimear future. For a demonstration,
a typical set is described and analysed in detail. Resulth®@mest of the data sets are outlined
later.

A demonstration on a sample set

In the demonstartion set with 6 variables, the first thre@abéas exhibit a partial correlation. That
is, variable 2 and 3 correlate positively if the (sub)samgleestricted to objects where variable
1 takes values of only a certain range. In this case, the tngesaof variable 1 which reveal the
positive correlation between variable 2 and 3 are [0..5)[&nd0]. Variable 4 and 5 are linearly
correlated but independent of the other variables. Veagi&liks an independent random variable.
Variables 1-5 are uniformly distributed in the range 0f10]. Variable 6 is uniformly distributed
in the range of [10..20].

Then, the ICMI is calculated for all possible combinatioris/ariables in the data. For this
calculation, the number of evaluated cut points (caltgdn subsection 3.2.2) has been set to
18. This high number is chosen here for demonstration parpos?. The number of bins (as
described in subsection 3.2.2) is set to 6, a default valle Binning strategy is again uniform
binning.

In Figure 3.7, we see the ICMI between two uncorrelated béggaunder irrelevant conditions.
The overall ICMIs are low. We note that the value of ICMI riselsen the size of the subsample
shrinks. This is again the same statistical phenomenorreeféo in subsection 3.1.4 as the 'sparse
data peaks’. They cannot be interpreted as existent cbomreta

"Such sets can be quickly created with the program given ireAgix A.

8The actual number of variables does not affect the prognessfithe curves because they only use three variables
at a time.

®The number of cut points adds linearly to the computing tifités is a considerable factor on data sets with many
variables where computation can take hours or even days.
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Conditional variable: Variable 6; Variable 4 with Variable 5

icmi

------------ ICMI in upper interval

ICMI in lower interval

Boundary of interval
1072 1134 1196 1258 1319 1381 1443 1505 1567 1629 1691 1753 1814 1876

Figure 3.8: Local conditional mutual information on linacorrelated variables 4 and 5 in syn-
thetic data. Typically, the condition of any third varialfleere variable 6) does not affect the
mutual information.

Conditional variable: Variable 1; Variable 2 with Variable 3

M1

------------ ICMI in upper interval

ICMI in lower interval

Boundary of interval
064 126 189 251 313 376 438 B 562 625 687 749 811 874 936

Figure 3.9: Local conditional mutual information on pdlyiaorrelated variables 2 and 3 in syn-
thetic data. The requirement of variable 1 being higherwelathan a threshold (here 5) causes a
abrupt rise or fall of mutual information. On partially celated variables, the MI curves exhibit
this typical sigmoidal progression.

In Figure 3.9, we see the result on the nearly petfepartial correlation. The distinctive
feature here is the sigmoidal progression of the two curvidsey suggest that there is a very
delimited range where the choice of a cut point leads to ammlpise or fall in ICMI. This indicates
in turn the existence of a higher mutual information (stemgprrelation, respectively) in subsets
with a well defined condition of a third variable. To detectisa kind of correlation is exactly the
intent of partial correlation and conditional mutual infaation.

In Figure 3.8, we see the curves for two linearly correlatadables. Since the variables
are correlated over all observations there is no change irnf ke subsample is restricted to
observations with specific conditions.

There is a small bias introduced through the actual randombeu generation and the limitation of the sample
size.
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Conditional variable: "Random1"; "Part. Linear" with "Parabola"

icmi

------------ ICMI in upper interval

ICMI in lower interval

Boundary of interval
2061 2447 2633 282 3006 3192 3379 3565 3751 3938 4124 431 4496 4683

Figure 3.10: ICMI on partially correlated variables with¥sMoise.

Results on more data sets

The same analysis has been performed on numerous repigatfalata sets with partial corre-
lations in differing 3-way-combinations of the variablesdawith different parameters. The used
parameters for the generation of data were:

e the level of noise,

e the distribution of random variables (uniform, Gaussian),

¢ use of non-random variables (time dependent quadratineadifunctions),
e regular or partial correlations between variables,

e linear or non-linear correlations between variables.

The typical results on these data are outlined below. Ths tesre performed on more than
20 data sets yielding more than 1000 curves. For brevity trd most notable curves can be
discussed here.

The level of noise showed a low impact on the curves. Witheasing noise, the sigmoidal
curves tend to flatten at their saddle point. Up to approxagdi0% noise, the sigmoidal progres-
sion is still visiblé! (see Figure 3.10).

Artificial sets with uniformly distributed variables exlitdd clearer results than Gaussian dis-
tributed sets if cut points are determined with uniform fliixgn Gaussian distributed variables have
a high density of samples around their peak value. If the oirtp are chosen through uniform
binning each new cut around the peak value adds many saroptes $ubset while only few sam-
ples are added at the margin of the range (see also Subs8cti&). This leads to more drastic
changes in the composition of the evaluated subsets in titercef the range, which leatfsin
turn to more drastic changes in the mutual information. Tthes curves tend to exhibit sooner a
sigmoidal progression than with uniformly distributed ishtes. This may lead to the identifi-
cation of “false positives” (detected partial correlasdhat really are none). The determination
of cut points through equal frequency binning resolves éffisct.

Note that these results are achieved on an underlying ‘gtériartial correlation; they cannot be expected in this
clearness on real data.

2unless the mutual information is the same in all sample sstasewith regular correlations

130n real data, we expect conditioning variables (those tigitate distinct states) not to be Gaussian distributed
(see also the discussion at the beginning of Section 3.8t iShwhy this problem is more of a theoretical nature.
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Conditional variable: "Random1"; "Part. Linear" with "Parabola"

icmi

ICMI in upper interval

ICMI in lower interval

Boundary of interval
2125 225 2375 25 2625 275 2875 30 3125 325 3375 35 3625 375

Figure 3.11: ICMI on non-linearly partially correlated iables with 15% noise.

The introduction of time-dependent linear variables hadletectable effect on the curves.
Variables generated by a quadratic function led to a singffect as with Gaussian distributed
variables.

In all test data sets, regular correlations could be idegtifhrough their curves which were
similar to Figure 3.8 (all Mls on the same level). Partialretations always exhibited sigmoidal
curves unless the noise level was beyond 50%.

Most notable was the ability to clearly detect non-linearrelations. Pearson’s correlation
coefficient is, as a matter of principle, not sensitive to-tinear correlations (see Subsection
1.3.1). However, on non-linear correlations in noiselessd tlata, the coefficient still indicated
a moderate correlation (curves look similar to the “noisyfve in Figure 3.10). On noisy data,
the correlation coefficient fails to indicate any partiafretation. Here, local conditional Mutual
information still provides a clear indication of non-lingzartial correlations (see Figure 3.11).

We can thus note that the concept of ICMI is able to find highualihformation (correlation,
respectively) which is not detectable with simple Ml and?eiarson’s correlation coefficient. Such
extra findings point to a dependence of the high MI on a speaiindition of a third variable. In
biological data, this would be an interesting observatisiit @an indicate interrelations between
biological components which come into effect only undetaiarpreconditions. Such results can,
for instance, be used to verify hypothesesambinatorialdependencies between components (as
indicated by metabolic pathways, for instance).

3.2.4 Dependency network inference

In the past, correlation measures have been used to rasciisterrelations between variables of
metabolic data sets [58, 149]. These interrelations caridpdaged in a graph (see Figure 3.13).
A feasible way to do this is to chart those relations whoseetation coefficients are larger than
an arbitrarily chosen threshold [94]. That way, the atm®tf an analyst is quickly drawn to the
more significant correlations.

In complex biological data, it is likely that some correteits are only exhibited under certain
conditions [179]. It is thus reasonable to test for them aithappropriate measure. For biological
data, this task has to date been tackled with the measuret@l marrelation [171, 101, 179]. A
graphical visualisation method for such dependencies/engbelow.
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Figure 3.12: A conditional dependency triplet: AttributecArrelates with Attribute B under a
condition on Attribute C.

Assembling a network

The information available for visualisation are severgléts of the following kind: One at-
tribute’s value depends on another attribute’s value ifiadthattribute has a certain value. This
can be graphically represented as shown in Figure 3.12. &gbét is then represented by a
mini-graph. The last step remaining is now to meaningfuilggrate the mini-graphs into a single
graph.

The method proposed for this is straightforward: All atitds are put as vertices into the
graph. Then, triplets are selected that exceed a choseificigae thresholtf. Finally, the edges
of all selected mini-graphs are copied to the graph. Theltrés@a graph that depicts all the
significant conditional dependencies in the given datah@maph can be regarded as a network
as introduced in Subsection 1.4.3.

Meaning of the network

A graph depicting simple correlation, as given in Figure33i% a means to get a simple overview
of attribute interrelations [94]. All relations are undited. No information can be given on the
cause and the effect of an indicated correlation [167]. fidki14 shows a graph constructed
for the same data set but assembled from triplets. It nowagmitsome additional and directed
edges. Those are the influences of some variables (whictitcb@s condition) on the correlation
between two other variables. Note that it is still not pogstb recognise the cause or the effect
of the correlated variables, butig possible to notice the effect of a conditional variable om th
correlation between two others. In real data, this direct®ousually unambiguod3. The new
graph is a means to get a quick overview of combinatorialbatie interrelations.

The emerging question is: What do these interrelations nred&iological terms? The an-
swer depends much on the used data. For all biological esipredata, the interrelations model
some form of regulation. But the method cannot determinethdnethis regulation is direct or
indirect or which physiological process is responsibleifor-or metabolite concentration data,
we assume that interrelated metabolites are closely ctethélerough a metabolic pathway. In
mixed gene expression and metabolite data, we suspect anggabolite interrelation to indicate
the production of a specific proteine that in turn stimuldbesproduction of a metabolite [92].

In either case, interrelations between concentrationldgeeint to putative physio-chemical
connections. These can be examined more target-orierttes dptions are reduced to a small and
auspicious set of possibilities.

n the simplest case, this is an arbitrarily chosen coiiaratalue. Alternatively, in Subsection 3.3.1, a method is
introduced that automatically yields significant triplets

When evaluating three attributes, the strength of the impha condition onto the correlation between two at-
tributes is quantifiable. In real data, there usually exasgtrongest impact among all possibilities.
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Figure 3.13: Correlations of metabolites m1-m8 visualisea graph.

m3

ma \/.mS \.m

m8

m

Figure 3.14: Visualisation of simple and partial correlad between metabolites in a graph.
Metabolites m4 and m7 form a condition for two partial caatiEns.

This method is also advertised by Rice et al. In their recaibligation “Reconstructing bi-
ological networks using conditional correlation analy§is42], they use partial correlation to
assemble complete networks. The key difference of theiragmh to ours is the subsequently
introduced use and estimationadnditional mutual informatiornstead of partial correlation.

Features of using conditional mutual information

Partial correlation can find linear correlations betweermades. In this section, conditional mu-
tual information has been introduced as a measure to ddsechan-linear correlations. Except
for the fact that it might indicate a few more correlationsegumably the non-linear ones) it will
be applied in the same context as partial correlation. Heheegraphs can be produced the same
way as for partial correlation.

When using CMI, there are several ways to enhance the geadphitput of the described
process. One of them is the attribution of weights indicatime strengths of correlations to all
edges. Additionally, a comparison of partial correlation aonditional mutual information allows
for a discrimination between linear and non-linear cotiefes. These indices have been included
in the graph of Figure 3.15. This last graph is an enhancechsneaget a quick overview of
combinatorial attribute interrelations and their prosrt
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Figure 3.15: Visualisation of conditional mutual inforngais in a graph. Solid lines indicate
linear correlations, dashed lines non-linear correlatiomhe strengths of the lines indicates the
strength of the correlation.

3.3 A heuristic approach: Estimating conditional mutual informa-
tion through decision forests

However, the use of conditional mutual information entailfew drawbacks. Straightforward
calculation of conditional mutual information has a cubifaomplexity in time [76]. A major
problem arises when it has to be calculated for large dasa(eag. unprocessed microarray data
[see Chapter 1]). Thus, a faster way for its estimation wouddke it better applicable to biological
data. A second problem of mutual information is its numérstimation on small data sets. In
the following subsection, a heuristic approach borrowedhfdecision tree learning is developed
to circumvent both problems.

3.3.1 Exploiting decision tree heuristics

The primary purpose of decision trees is to provide a meangl&ssifying data objects into
discrete target classes (see Chapter 2). This classifidatltased upon a set of selected attributes.
Each node in a tree represents a test on the value of an tdtrdouedge corresponds to a possible
value for such an attribute, and a leaf specifies a possitgettalass.

Decision tree induction algorithms split their trainingaat each node into subsets of samples
with a specific range of values for one attribute. This ranigeatues can also be regarded as a
condition satisfied by the corresponding data. Therebystibsequent nodes, mutual information
is calculated only for samples verifying the specified ctiadi(see also Subsection 2.2.4). That
is, again, local conditional mutual information (see Suis&ction 3.2.2).

A key characteristic of decision tree induction is that ibputes mutual information for a
greedily selected third variable (see Subsection 2.3.5iis Meuristics thus saves a lot of com-
puting time. Further, the C4.5 algorithm considers comtna of conditions of more than one
conditional variable if classification is not possible wiéltsingle condition. In this case, again,
computation is cut down due to the greedy heuristics. IndHewing sections, the heuristics of
C4.5 is used to quickly estimate promising relationshipkigh conditional mutual information.

3.3.2 Making classifiers robust with decision forests

As already seen in Subsection 3.1.1, a known drawback o§idectrees is their structural in-
stability against noisy data [24]. In view of enhancing slfisation accuracy, this can be coun-
terbalanced through the use of decision forests. Presemitpies for generating forests tend

8see Appendix for details on the complexity.
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to converge the trees into some “average” of an optimal iflas¢see Subsection 2.3.7). Here,
the focus is not on classification accuracy but on interpiktya and diversity of the trees [7].
Preferably, each tree should present a new hypothesis aiditiomal mutual information. This
makes sense in the biological domain because often moreoti@biological cause (e.g. several
pathways) has an effect on an examined unit (e.g. a metapflit5]. We thus need a new tech-
nique adapted for generating forests of this kind. The #&lyorfor growing forests described in
Subsection 3.1.3 meets these requirements.

3.3.3 Anillustrative example: Interpreting a decision forest

The algorithm for growing decision forests of Subsectidh3has been applied to the data used
in Subsection 3.2.3. The subsequent illustration is bargtl@@demonstartion set. In this process,
all attributes have been used as starting attribute onceavadiol any unintentional bias, each of
them was discretized with 5 candidate thresholds (obtainemligh uniform binning). Thereby,
the forest growth algorithm has been applied 5 times for eatte 6 attributes leading to 30 runs.

The trees with best error rates could be generated on thet &ttgbutes 'Variable 2’ and 'Vari-
able 3’ (both discretized with threshold 4.5). The first toé¢he forest for the target 'Variable 3’
can be seen in Figure 3.16. This example best illustratestthightforwardness of interpretation
for the grown forests.

In Figure 3.16, the tree is only able to classify all objecsectly with the attribute "Variable
2' if attribute "Variable 1’ takes certain values. That igtbonditional dependency which has been
inserted into the synthetic data. After the algorithm h&sneout the attribute "Variable 1’ the tree
inducer (C5.8") does not find any good classifier (see tree in Figure 3.17% ddints to the fact
that the dependency of tree 1 is truly conditional and thextetlis not any other dependency in the
data. Note that these are exactly the properties insertedha synthetic data.

To examine the robustness of this approach, the same deallits been made on data with
noise: With a noise level of 10%, the trees remain the $&ret exhibit a classification error
of ~5% (measured as mean of cross validation [see Subsectidd])2.3Vith 20% noise, the
trees obtain additional nodes and exhibit a classificatioor f ~10% (see an example in Figure
3.18). We observe that the additional node in Tree 3 is a fiideace of overfitting (see Subsec-
tion 2.3.1). With 30% noise, the trees become more complichtt still use (predominantly) the
attributes of the inserted dependency (an example treeésn gn Figure 3.19). The misclassifi-
cation level here is about 15%. On data with 40% noise, eadigtC5.0 decides to back out on
simple one-node-trees with the only attribute 'VariableThis means that any more complicated
decision tree would not improve classification accuraays fihdicating that the conditional depen-
dency can no longer be detected within the noise. Yet, werebdbat the misclassification level
of these one-node trees still remains below 20% and thatdée attribute is one of the inserted
dependency.

To this point, it has been demonstrated that the decisienhtegristic is able to find the same
dependencies as conditional mutual information. The cdatimmal demand, however, is much
lower than that of calculating CMI. Additionally, the rigmrs discretisation performed by C5.0
led to simple and expected results up to a level of 30% noitiecimata. It is therefore a feasible
approach for cutting down computational demands whengdriaridentify conditional dependen-
cies.

17C5.0is the successor of C4.5. It offers several new featargsboosting and misclassification costs, that have not
been implemented in C4.5 and a higher computational efigi¢h38]. In the presented studies, C5.0 has only been
used with the same parameters that have been available5ratdady.

Bexcept for insignificant deviations in the thresholds
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Figure 3.16: First tree of the forest grown on all attributeste that Variable 3 specifies the target
class.

Variable 3
>4.5

Figure 3.17: No good classifier can be induced on the sameithetut/Variable 1. This one-node
tree has an error rate of 43.5%.
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Figure 3.18: The trees still indicates the partial corfefaion the complete data but with 20%
noise.
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Figure 3.19: Even with 30% noise, the trees predominanttius variables involved in the partial
correlation.
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Figure 3.20: Correlations between metabolites involvetiéreduction of Pyrimidine-nucleotide.
The network appears heaviliy interconnected due to a loualisation threshold.
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Figure 3.21: The network gets closer to the underlying lgjigial network [109] if only those
correlations are indicated whose value exceed a highesttoie

3.3.4 Characteristics and discussion of the output structie

It has been mentioned in Section 1.4 and Subsections 2.4.3.2r4 that conditional and uncon-
ditional dependencies (e.g. correlation) are often visedlin graphs for further analysis. Graphs
obtained by such a combination of individual correlatioomstimes become complex and little
interpretable (see Figure 3.20). The major factor for thihé number of correlations in the graph.
This leads to the question wfichcorrelations to include. The most straightforward appno@ac
handle this question is to assign a threshold of a correlatidue which selects the correlations
to be depicted in the graph [94]. This way, insignificant etations will be excluded. Such a
simplified graph can be seen in Figure 3.21

When calculating partial correlations (or conditional maltinformation respectively) the net-
works can be further reduced to only those correlations kwvhie conditional. Again, the decision
on which correlations are considered to be conditional ifop@ed through a threshold.

Choosing significant triplets is similar: The trees in theeki can be ordered according to
their accuracy or efficiency (see Definition 29). Each traetban be transformed into up to two
triplets. The most accurate or effective trees of a foresidythe most significant triplets. These
are in turn included in the graph. The level of significancat {h accepted for the graph is again
established through a chosen threshold.

The transformation of trees into triplets is straightforkaAs outlined in Subsection 3.3.1,
the test of the top node of a tree is the condition under whiehtésts of the second level lead
to a target clas$. Thus, the top node gives the conditional variable and aespnt branch the

19Trees with more than two levels have to be pruned to two levizises with a leaf on the second level yield only
one triplet. One-node-trees do not yield a triplet.
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Figure 3.22: A two-level decision tree can be transformea two triplets.

dependent correlation. Figure 3.22 illustrates this pdilate that the triplets are just an indication
for a high conditional mutual information.

In the above approaches, a graph is constructed to vistlaésmrrelations between examined
concentration variables (e.g. metabolites in Subsecti®d@B This sometimes misleads to the as-
sumption that they can be interpreted in a similar way toywayhcharts [109]. However, these
graphs depict something fundamentally different. If theada not gathered as a time series the
visualisations cannot represent a cause-and-effectamdsiip of the concerning variables [167].
And even if it were a time series it would still be hypothetittat visualised directions of inter-
dependencies represent a physiological cause-and-&feetSubsection 1.6). But despite these
limitations it is still valuable for a researcher to know abdependencies between variables. That
is because there are too many possible interrelations teamired in costly physiological exper-
iments. Correlations, and in particular partial correlasi, point to a rather manageable number
of interrelations to be examined. These will include moreeptally interesting relations than a
pure random selection of possible relationships [72, 189].1

3.4 Summary

In this chapter, the two main contributions of the thesisehlagen introduced in detail. Both are
discussed thoroughly and tested on validation data.

The method for detecting stable states is based on clasicidion tree induction. It adopts
ideas from cluster analysis (for the comparison of sets)geméral learning theory (the adaptation
of Occam’s razor[115] for the calculation of effectiveneds$ serves for the finding of values in
individual variables that indicate stable conditions ibsets of the rest of the variables.

The estimation of local conditional mutual information isextension to a method taken from
classical information theory. It serves for finding combanal dependencies between variables.

Both methods have proven to work effectively on validatiatiad They are applied to molec-
ular biological data in the next chapter.
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Chapter 4

An experiment in the analysis of
metabolite concentration data for
potatoes

The methods described in Chapter 3 have been implementedpgied to metabolite concen-
tration data. The first section of this chapter will illusgdahe handling of the original software.
Meanwhile, more user-friendly implementations of the mdthare available. Those are briefly
introduced in the appendix. The second section descritegpplication on yet unpublished
metabolite concentration data. The results are discussddtail, and conclusions about the ex-
pressiveness of the method and the data are drawn.

4.1 A new tool: the provided software package

The software tools at hand need a Jdainterpreter of version 1.1 or higher. Higher versions
are recommended because the new JIT (‘just in time’ = conpidit run time) technology in-
creases the performance of the given tools up to 800%. Axditly, a basic PER®interpreter,

a BTEX compiler and a tool for displaying Postscript (e.g. GhostView) are needed. Depend-
ing on the original format of the data, a spreadsheet togl (8tarOfficé”™ or EXCEL(®) or a
good text editor (e.g. EMACS) are helpful. All interactiobstween the user and the supplied
applications are carried out in command line mode.

4.1.1 Implementation details on the state identifier

In this subsection, the state identifier will be briefly désed from a technical point of view. The
state identifier consists of 4 JAVA classes:

¢ 'schwellsucher.class’ is the main class of the applicatlbmterprets the command line pa-
rameters and reads the input data stream (STDIN) and aricaddibame file 'namen.buf’.
It then uses the other three classes to process the inpytuQsitwritten to the output data
stream (STDOUT), messages and errors are reported to thredata stream (STDERR).

e 'Entscheidungsbaum.class’ implements the decision trdaction algorithm C4.5. The
class supplies the object 'Entscheidungsbaum’ on whichnbthod 'c45’ can be called.
The class 'Knoten.class’ is used by it.

e 'Knoten.class’ supplies the object 'knoten’ of which démistrees are made of. The class
also implements the method 'bewerte’ for calculating thieaiveness (see Subsection
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3.1.4) of the (sub-)tree affixed to an object 'knoten’. Salérvial methods for setting
and reading the attributes of a 'knoten’ object are also lseghp

e 'Datenmatrix.class’ implements all stream input used kg dipplication. It supplies the
object 'datenmatrix’ and the methods 'getNames’ and 'gati8tream’ for importing data
from a name file and the input stream (STDIN) and storing @ mtdatamatrix’ object.

For automatically evaluating all attributes of a data nxatm additional main class is supplied
that differs from 'schwellsucher.class’ only in the typeaftput. This class is called 'ziehdur-
challe.class’. It generate&TEX output which can be used to graphically display the progjoes
of effectiveness and stability of thresholds in attributd$e PERL-Script "ziehdurchalle.pl’ is
provided to correctly access this class.

4.1.2 Implementation details on tools for the calculation bMlI

The tools for calculating mutual information and/or locahditional mutual information are tech-
nically described in this subsection. These tools both made of the JAVA class 'Datenma-
trix.class’ that has been introduced in the previous sulmsecThese are the additional classes:

e 'mutual.class’ is a main class. It interprets command lineameters, reads the input data
stream (STDIN) and an additional name file 'namen.buf’. Brttcomputes the mutual
information between two attributes of the input data magid writes the result to the
output data stream (STDOUT).

e 'coregulation.class’ is a main class. It interprets comdhiame parameters, reads the input
data stream (STDIN) and an additional name file 'namen.biaifthen computes the local
conditional mutual information between a given targeilaite and all combinations of two
other attributes. If demanded, a sorting algorithm willtgbe results according to gain of
local conditional mutual information against mutual infation. The final result will be
written to the output data stream (STDOUT).

A further class 'filtered.class’ is supplied that behavesilsir to 'coregulation.class’ but addition-
ally filters out insignificant cut points for attributes. igsificant cut points are those that split
the data into two shares of which one contains less than 5% rmpkes from the number of all
samples.

For the graphical indication of conditional mutual infortioa, another tool is supplied. The
tool is implemented in the class 'production.class’. Itiagsses 'Datenmatrix.class’ for reading
input from the input data stream (STDIN). It reads command [parameters and the name file
'namen.buf’. ETEX output is written to the output data stream (STDOUT).

4.1.3 Implementation details on the dependency inducer

In this subsection, the dependency inducer will be brieficdbed from a technical point of view.
The dependency inducer consists of 4 JAVA classes:

e 'baumsucher.class’ is the main class of this applicatibimtérprets command line param-
eters, reads the input data stream (STDIN) and an additi@rak file 'namen.buf’. It then
induces a decision forest based on the variable deletiohadeflhe forest is in turn sorted
according to its classification accuracy. Output of the $bis written to the data output
stream (STDOUT).

¢ 'Entscheidungsbaum.class’ (see Subsection 4.1.1)
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¢ 'Datenmatrix.class’ (see Subsection 4.1.1)

e 'Knoten.class’ (see Subsection 4.1.1)

4.1.4 User scenario

The supplied software tools can be used together or sefyapata given data matrix. A combined
use would start with the application of the state identifiewill search for thresholds than can be
used as cut points for determining the target classes ofapertiency inducer.

Preparing the data matrix

The most time-consuming step in the application of the gieais is usually the preparation of
the data matrix. In this description, it is assumed that tita thatrix is available in the spreadsheet
data representation (see Section 1.2). Then an editor aradgheet tool is used to cut out the
names of the attributes (that is usually the first line of tht&adnatrix). These names have to be
put into a text file with the name 'namen.buf’. The contentstiook similar to this:

'namel’
"name?2"
name3

All symbols of the supplied character set on the availablamater can be used. Each name is
separated from the next name by a carriage return. This fogre standard output format of
most spreadsheet tools. If the names are in a consecutivafdseparated by white spaces or
TAB-stops) they will be interpreted as a single name. Thusy have to be rotated’ in the editor
or spreadsheet tool first. Empty lines will be interpretee@mpty names. If the file 'namen.buf’
is corrupt, too short or completely missing the supplieds®all substitute the unknown names
with generic numbers.

In a second step, the values of the matrix have to be saved isgparate text file. This file
must look similar to this:

0.4 0.346  3.12
5.789 4,32 -0.12
3.5e+02 0 6

All display formats (including scientific numbers) can begeal. Commas and points will be
equally interpreted as decimal separators. The numbeesthave separated by TAB-stops. The
lines (representing the samples) have to be separated tiggeareturns. This is the default text
output format of most spreadsheet tools. Note that no tesimiaotations (including names of
samples) must remain in this file. If the data matrix is not ptately consistent the tools will give

a warning and replace improper entries with 0s.

Applying the state identifier

For the application of the state identifier, the user beshgéa in command line mode to the
directory where the name file and the data matrix file are. Rerfollowing explanations, it is
assumed that the data matrix is in a file with the name 'datax@ddt’ and the names are in a file
'namen.buf’. Then, the following line will start the exaration of an attribute:

java schwellsucher v w x y z <datamatrix.dat

The five letters are the parameters for the tool.

75



v is the number of the attribute to be examined. The firstatte is attribute O.

w is the number of generated threshold candidates.

X is the number of trees that will be consulted to calculagegality measures.

y is the maximum number of trees that will be generated foh ecision forest.

e zis the maximum depth of decision trees.

All parameters will be replaced by feasible default valdawoi specified on the command line.
In most cases, the target attribute is the only parameteetgilen by the user. The last two
parameters (y and z) should not be changed unless the usaspes in-depth knowledge of the
implementation.

After starting the tool, the output will be written to the sen (unless redirected to a different
output medium). For each candidate threshold, the numesidtaes of the quality measures are
now given.

For a graphical and more intuitive output, a PERL script igpdied. In it, the number of
attributes of the data matrix and the file for the data mataxento be specified by the user (see
code of that script). The script can then be used to geneté&igXéfile that can in turn be compiled
into a graphical output. An analysis run could be condudteithis:

Ziehdurchalle.pl >output.tex
latex output
xdvi output

Depending on the size of the data matrix and the used compmutmmplete run will, in most
cases, last from seconds to several minutes. The resut@migal output shows the curves of the
guality measures for all attributes. They can then be inéteg by the user.

Directly calculating Ml and ICMI

A direct calculation of mutual information and local conolital mutual information is possible

with the supplied tool 'coregulation’. For the following @xple, the file of the data matrix 'data-
matrix.dat’ and the corresponding name file 'namen.bufamsimed to be in the current directory.
The following line will start the calculation of Ml and ICMI:

java coregulation x y <datamatrix.dat
The two letters are the parameters of the tool.
e X toggles a sorting of the result [0=no sorting, 1=sorting].
e y specifies the target attribute. If none is specified all ipdsdMI and ICMI are calculated.
The output is given as plain ASCII text. An output line is stured like this:
condition - no. of objects with condition - attribute 1 - attr ibute 2 - CMI -
An output line could look similar to the following example:

LDL<=78.8 27 R_STAT_N ADI_NEU 0.2612 0.01172 0.2494

76



This line has to be interpreted in the following manner: Hojeots where the attribute value of
'LDL is lower or equal than 78.8 the mutual information beten the attribute 'EBSTAT_N’ and
'ADI _NEU' is 0.2612. The mutual information between the sameSTRAT_N’ and 'ADI_NEU’
onall objects is 0.01172, so the gain of ICMI against regular M1.&194. The number of objects
that satisfy the given condition is 27.

If a sorting is desired the output lines will be sorted acougydo the gain of ICMI against M.
Thus, the first output line would indicate the dependenc thie highest mutual information that
can only be found for objects that satisfy a given condition.

At the time, the number of investigated conditions for thaditional attribute is fixed to 5.
Higher numbers have resulted in premature termination eftdlol on the available computers.
The computational demand for the calculation of Ml is so bigtteven when considering only 5
conditions, available biological data sets could not begssed exhaustively.

Graphically displaying Ml and CMI

A graphical display of the calculated mutual informatiomnl dmcal conditional mutual information
can be obtained with the tool 'production’. For the follogiexample, it is assumed that the file
of the data matrix 'datamatrix.dat’ and the correspondiamae file 'namen.buf’ are in the current
directory. A graphical output will be obtained with the falling commands:

java production x y <datamatrix.dat >plots.tex
latex plots
xdvi plots

The two letters x and y are the parameters of the tool.
e X is the number of cut points used for the determination ofi¢t@ns.
e yis the target attribute.

The graphical output is mostly self-explaining. The dottedves (one made of little circles and
one made of little squares) indicate the progression of I@MIobjects that have a conditional
attribute value greater (or lower) than the cut point. THaldme indicates the regular MI.

As opposed to the previous tool 'coregulation’, the numidesvaluated conditions can now
be specified with the parameter x. But again, depending oavaiable machines and biological
data, numbers above 5 often result in crashes due to lack robinye
Applying the dependency inducer

For the heuristic determination of high conditional mutirdbrmation, the tool 'baumsucher’
is supplied. The following example requires the file of théadmatrix 'datamatrix.dat’ and the
respective name file 'namen.buf’ to be in the current dingctd he subsequent command starts
the calculation:

java baumsucher w x y z <zwischen.dat
The letters are the parameters of the tool.
e W specifies the target attribute.
¢ X indicates the cut point for the binarisation of the targ#ilaute.

e y gives the maximum tree depth.
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"204_1894"

<20.00195” N\ >= 20.0019¢

Figure 4.1: The graphical representation of the inducedsibectree.

e z gives the maximum error accepted for the establishmentezfan a decision tree.

The cut point for the binarisation has to be chosen arbigrasi the experimenter. A good choice
for such a point is a significant threshold, either to be fouisdally or with the previously intro-
duced tool for finding thresholds. The last two parametemsdyzacan be disregarded. They have
only a minor impact on the result; the default values weréant in all test cases.

The output of the tool are decision trees in a plain text detion. A simple example tree is
given here:

Tree with depth 2 and O errors and a value of 1.0
*kk LEVEL 1 #**x
100 Objects at node with attribute "204_1894 " and threshold 20.00195
--> Branch SMALLER 20.00195 from level 1
ek LEVEL 2 *%x
50 Objects in leaf with class 1
*x+ pack to level 1 hkk
--> Branch GREATEROREQUAL 20.00195 from level 1
*kk LEVEL 2 ***
50 Objects in leaf with class 0
*+ pack to level 1 *kk

The graphical representation of this tree can be seen inrd-gd. The trees are sorted according
to their accuracy. If the accuracy is the same for two trees the efficiency is a secondary sorting
criterion. Through this sorting, the trees with most prangsconditional mutual information are
placed on top of the output list.

4.2 Application of the introduced techniques on metaboliteconcen-
tration data

The software introduced in Section 4.1 has been used fomillgsis of metabolite concentration
data. The data has been produced from potato leaves with @I procedure introduced in
Subsection 1.1.1 and explained in more detail in the folhgngubsection. The tools facilitated
the retrieval of hidden states and a partial reconstruaifandependency network.

The recovered states were mostly consistent with the asbstmeture of the data. But beyond
that, a few very clear states revealed an until then unknatadiour of some metabolites.

The dependency structure was again in major parts compligimthe expected results. How-
ever, a larger portion of the output could also be identifiedrtifacts of noise.

The obtained results will be discussed in detail in the sylsiet subsections.

4.2.1 Metabolite concentration data of transgenic potato

In this subsection, a detailed description is given of hogvubed data has been generated. This
description contains several specifications which are egt¢ol reproduce the complete chain of
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the experiment. It is not necessarily essential for the tstdieding of the introduced data analysis
techniques. For that purpose, it would be sufficient to reatos8ction 1.1.1 and 'the summary of
the experimental background’ in this subsection.

Biological source material

The seed of the potatoeSlanum tuberosum L cv. Des@ was obtained at the “Saatzucht Lange
AG” (Bad Schwartau, Germany). Plants were maintained suésculture with a 16 hour light and

8 hour dark regime on a specified medium (MS-mediaefined by Murashige and Skoog [118])
with 2% sucrose. All plants were grown in the greenhouse uthdesame regime with a minimum

of 25Q:mol photons m? s~! at 22C. All samples were taken under these conditions. The plants
were divided into two groups and transfered from tissueucellto hydroponics or quartz sand
cultures, respectively, 6 weeks after cutting.

Quartz sand cultures were used for optical evaluation dfdeeelopment. Here, growth con-
ditions and fertiliser treatment were done as describedggewie et al. [100]. Essentially, plants
were grown in sealed pots filled with quartz sand and suppligd 0.5x Hoagland’s medium
(as defined in Rohm and Werner [148]). Conditions with a dation of Phosphate (-P condi-
tions) were generated by flushing the pots with demineiigater. Subsequently, in this water,
phosphate was replaced by KCI at the same molarity. Theigolutas then returned to the pots.

Plants in hydroponic cultures were grown in 1x Hoagland'slioma per 2I. The medium was
in light and tight plastic pots that were aerated. The sofutvas exchanged weekly. The plant
shoot was fixed in small openings in the lid of the pots usiragrfo Growth was allowed for 3
weeks in 1x Hoagland’s medium. Afterwards, the medium wasghd according to the needs of
various experiments. Root samples were harvested, bldtjedrozen in liquid nitrogen and kept
in a -70°C freezer for no longer than a month.

Tissue homogenisation

Only samples from hydroponic cultures were used for met@bobncentration measurements.
Between 25¢g and 50g of tissue were ground in a mortar und@dligitrogen into a fine powder
and collected in 2 ml Eppendorf tubes. Extraction of metdmwas done according to RoRner
et al. [149] with the following modifications:

e 420 | uptake buffer was mixed with the base material.
e The buffer was composed of

— 330ul methanol solution (100%) pre-cooled to <20
— 30 ul Ribotol (Sigma 0.2mg/ml stock in methanol [100%]), and
— 30 ul d4 Alanin (Sigma: 1mg/ml stock in water).

e After incubation for 15 mins at 7@ under constant shaking, the samples were extracted
with 200l chloroform followed by an incubation at3Z for 5 mins.

e The extracted samples were mixed with 40Q[Hand recovered from the soluble phase by
centrifugation.

e Finally, the tissue was dried in a centrivac without heathmgysample.

!Basal salt mixture containing micro and macro elements vitdmins
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Derivation was achieved by modifying the protocol of Rof3eteal. [149] in the following man-
ner: The dried sample was incubated for 90 mins 4C3id 40ml of methoxyaminhydrochloride
(20mg/ml in pyridine). Then, the solution was replaced bynV6f MSTFA and 10ml of the fol-
lowing alkanemix: 3.7% (w) heptanoic acid, 3.7% (w) nonenacid, 3.7% (w) undecanoic acid,
3.7% (w) tridecanoic acid, 3.7% (w) pentadecanoic acid/(#) non-adecanoic acid, 7.4% (w)
tricosanoic acid, 22.2% (w) heptacosanoic acid, and 44Wyhéntriacontanoic acid. All ingre-
dients were redissolved in TFA at 10mg/ml total concerdratiThe subsequent GC/MS analysis
was performed according to the procedure given by RoGredr Et49].

Chromatogram evaluation

The evaluation of the chromatogram was done using the foilpthree methods:
e Manual evaluation as described in Rol3ner et al. [149]

e The Automated Mass Spectral Deconvolution and Identifica8ystem [127] with the fol-
lowing settings:

resolution = medium

shape requirement = low

sensitivity = medium

adjacent peak = 2

e The MassLab software [39]

Summary of the experimental background

The experiment described above led to the production ok88¢i samples in which 117 metabolite
fragments could be detected. 37 of those samples came flamtsphat were treated to develop
only low concentrations of phosphate. This is often refitreas 'imposing stress’ by biologists.
The other 36 were left unaffected, leading to regular phasplevels. Thereby, two distinct states
(“presence” and “absence” of phosphate) can be expectexidbie the data. Since phosphate
is an important factor in cell metabolism it is clear that cemtrations of other metabolites are
affected by it. Additionally, it can be assumed that somehaofsé concentration levels reflect
the above two states in some manner. Further, it could beimed that some other metabolite
concentrations show an indirect response to the imposesisstihese assumptions are the initial
point for the following analyses.

Compiling data matrices from the source data

In this section, three data matrices are used for demoimgfrite introduced techniques of this
thesis. Here, it will be described how they were compiled.

For each fragment that could be separated by the chromatogrine GCMS procedure gen-
erated numbefs These numbers were combined into vectors, each vectaaioorg the numbers
of all measured metabolite concentrations of one sampleloimg so, it was made sure that the
scalars of all the vectors had the same order regarding digenients. Thereby, the vectors could
be combined into a data matrix afterwards. The obtained matsix contained 73 samples with
concentration values (attributes) of 117 identified fragtee Subsequently, this matrix will be
referred to as the 'raw data matrix'.

2These also include missing values.
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The raw data matrix has later been replenished with 61 monples, augmenting it to 134
samples. This bigger matrix has been treated with variouhads. First, multiple fragments
belonging to the same metabolite were identified by a biotsterithrough this, 58 metabolites
could be determined that were represented by two fragmé&htse fragments were examined for
their difference in information.

Hierarchical cluster analysis with Pearsons’s corretetioefficient revealed that the fragments
belonging to the same metabolite were always strongly zae® Dependency analysis (as in-
troduced in Subsection 3.2.4) showed that, for all fragnpeims, one fragment could be replaced
by the other fragment without decreasing classificatioruaary. That is why it is assumed that
the two fragments of any pair carry the same information. ddta matrix was thus reduced to 59
concentrations by deleting the concentration of one fragritem each pair. This data matrix will
subsequently be referred to as the 'reduced data matrix’.

The third used data matrix was produced from the reducedndatax. In it, 18 samples were
deleted that exhibited minor experimental irregularitrethe GCMS process. By this, it was tried
to obtain data with the least possible portion of experiraleattifacts. This data matrix will be
referred to as the 'revised data matrix’.

Preparing the data matrices for numerical processing

Due to the complex experimental process, the generatednukgtéces contained some missing
values (11.9% of all values). Where needed, these missingyvaave been replaced according to
inputation strategies introduced in Subsection 2.3.4.

First, the deletion strategy has been tested. Statistidais the best strategy because it does
not introduce any additional bias. Unfortunately, it résdlin too much loss of data leading to
very unstable results with the applied analysis technigliesill therefore not be discussed in the
following.

The second strategy was inputation with averages of attigbuThis strategy is a standard
strategy for coping with missing values if no more speciffoimation is given.

The third strategy was inputation with 0. Statisticallyistetrategy is rather crude because it
maps all missing values independently of their context orie value. When applying decision
trees, the mapping to a single value is not necessarily ati@idec A single value for all missing
values means that the induction algorithm cannot place iagpht within the missing values.
In this way, the values are predominantly neutral for thecess. Even if the replacement value
is within the regular range of values it can at worst lead te ertra split (for cutting out the
replacement value) in a binary tree.

On the other hand, if the replacement value itself turns@betthe criterion for an important
split (possibly in the root node) it can be assumed that theeteading to missing valuésitself
important for the decision problem.

Other strategies (like several inputation strategies aitirages of predefined subsets of the
samples) have also been tried, but the results have notatiffauch from the above approaches.

4.2.2 Interpreting the discovered stable states

The method for finding stable states introduced in Sectiarhds been applied to the given data
matrices. If not specified otherwise, the following paragneivere used:

e The number of evaluated candidate thresholds per attrilbaseset to 15.
e The strategy used for generating candidate thresholds mfgm binning.

e The used algorithm for inducing decision trees was C4.5.
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Figure 4.3: One of the many attributes with notable outlisrthe raw data matrix.

e For comparing decision forests, the first three trees wéentato account.

These parameters are the default parameters of the impledherethod. Variations of them did
not lead to significantly different results. Some of thosgateons will be described later in this
subsection. The results on the particular matrices wilbtmagned in detail in the following.

Application on the raw data matrix

The raw data matrix is characterised by attributes whosgegadlo not exhibit common distribu-
tions. For example, one such unclear distribution is showRigure 4.2. Here, it is virtually not
possible to recognise one of the standard distributions (&aussian or multi-modal). This is
neither possible for most other attributes.

Further, some attributes contain remarkable outliers. amle is given in Figure 4.3. These
outliers impede a straightforward and feasible binninghef $cale. Thus, it is not possible to
quickly recognise a familiar distribution visually. As Wile explained below, outliers also impair
the finding of thresholds. About 50% of the attributes cantich strong outliers.

Typically, the above characteristics lead to the applicatf normalisation strategies. This
has been performed and described in the next subsubsett&ne, the raw data matrix has not
been normalised in order to show empirically the effects am-normalised data. The impact of
normalisation on the technique for finding thresholds hanlmkescribed in theory in Subsection
3.15.

The application of the method for finding thresholds hasdelbll7 plots, one for each attribute.
Each plot contained two curves, one indicating the effecidss and another one indicating the
stability of the thresholds. A typical example plot is desgd for succinic acid in Figure 4.4.
There, the two curves indicate bad thresholds in the firatl thi the range and good thresholds
in the other two thirds. The reason for this can be read offisi acid’s distribution in Figure
4.5: Two outliers distort the range of that attribute. This ted to the evaluation of only four
thresholds in that part of the range where 97% of the sampéeg-aur points (thresholds) are not
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Figure 4.4: The plot for succinic acid on the raw data matrix.
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Figure 4.5: The distribution of succinic acid of the raw datatrix.

enough to undertake peak analysis feasibly. Hence, thedatadhresholds have to be chosen
differently. As mentioned above, about half of the attrésuéxhibit this problem.

For obtaining candidate thresholds within that part of #rege where the bulk of the samples
is, two measures can be used:

e Ultilising a different binning strategy (in particular eddeequency binning or exhaustive
binning), or

e normalising the attribute to fit better into the range.

Both measures bias the quality and stability measure in gesimay (as explained in Subsection
3.1.5. So, a choice based on technical circumstances was foragormalising the data.

But despite the problems with outliers, it is still possibdenotice some very interesting at-
tributes. For instance, diaminovaleolactam developsr gdeaks within the regular part of the
range (see Figure 4.6). This indication of a good discrétisethreshold was not expected. It
cannot be found with univariate discretisation techniques

Application on the reduced data matrix

The reduced data matrix contains only one vector of conatomis for each metabolite, 59 in total.
This makes it clearer to determine the behaviour of a speuniizabolite. Because of the problems
with outliers in the raw data matrix, the reduced data mdtes additionally been normalised
according to the z-transformation.

The resulting matrix is characterised by alSo#6% fairly normally distributed attributes (see
example in Figure 4.7). Further, about 10% of the attribdieselop clear bimodal distributions.
Aminobutyric acid is one example for this (see Figure 4.8&wedver, roughly 45% of the attributes

3The determination of the distributions has been estimatadhily.
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Figure 4.6: Diaminovaleolactam (here in the raw data mattévelops clear peaks for thresholds
between concentration levels 30 and 35.
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Figure 4.7: Glutamic acid exhibits a nearly normal disttid in the z-transformed reduced data
matrix.

do not develop a recognizable distribution. For those, tikkdbe most interesting to see if they
yield a significant threshold with the new technique.

For the following calculations, missing values have begiaeed with averages of attribute
values. The introduced technique for finding thresholdgies been applied to all attributes. The
results can be broken down into three categories:

o All attributes that exhibit a bimodal distribution develppaks in the quality and stability
function for thresholds of concentration levels betweenrntodes. This result is intuitive
because each mode can be assumed to represent a partaidasfshe plant. As example,
the distribution and scores of phosphoric acid are givenigureé 4.9. The list of the 7
metabolites of this category are:

1. Phosphoric acid

myo-Inositolphosphate

Aminobutyric acid

Aspartic acid

unidentified fragment 203141

Diaminovaleolactam

I S o
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Figure 4.8: Aminobutyric acid shows a bimodal distributionthe z-transformed reduced data
matrix.
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Figure 4.9: Phosphoric acid shows a bimodal distributioth @ear peaks in the score functions.

7. unidentified fragment 142430

e 23 attributes exhibit a nearly normal distribution. Nondtem develops significant peaks
in the score functions. As example, the distribution andesof L-Homoserine are given
in Figure 4.10.

e The remaining 29 attributes have non-specific distribtiodf those, most do not develop
clear peaks in the score functions. These include some vamiyeone of the scores has a
peak while the other remains low. But the following metatesliexhibit explicit peaks in
both scores at unexpected points:

1. Citric acid

2. Tyramine

3. Glucose-6-phosphate

4. unidentified fragment 141385

As an example, citric acid is shown in Figure 4.11.

Out of the 59 attributes, 4 could be discovered that exhibéxpected thresholds. For all
clearly distributed attributes, a threshold was clearlyni (not found respectively) as it could be
expected from the distribution. Thus, we can note that thénoakis selective.
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Figure 4.10: Homoserine has an unimodal distribution andeaks in the score functions.
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Figure 4.11: Citric acid has an unclear distribution butedeps an identifiable peak in both score
functions for thresholds at approximately -0.45.

86



243 1506_Diaminovaleolactam

effectiveness
stability

w
L

S threshold

Figure 4.12: Diaminovaleolactam exhibits clearer peakhérreduced data matrix where missing
values have been replaced with 0 instead of attribute agsrag

Application on differently preprocessed matrices

For testing the impact of another missing value strategy,ntlethod has been applied to the re-
duced data matrix but with missing values replaced by 0.ishtally, replacing missing values
with the single value 0 is a rigorous difference to replaocivith averages. Still, the result was
generally very similar to that of the matrix with missing wa$ replaced by attribute averages.
Only very few attributes showed noticeable differencesati®iwhy more complicated strategies
have not been consulted.

In another run, the revised data matrix has been used. Thsedetlata matrix has the same
number of attributes as the reduced data matrix but 18 sanfigheer. The attribute values in the
remaining samples are the same as in the reduced data matrix.

Application of the method on this data matrix revealed véttiel differences in the result.
Obviously, the deleted samples have not carried any signifizias or the method is robust against
that bias.

Tests with variations of the parameters

The introduced method for detecting thresholds has a raihgarameters which can be set by the
user. Their theoretical impact on results has been disdussBubsection 3.1.5. In order to get
a more complete picture of how the parameters affect resnlesmpirical data, these parameters
have been varied.

First, the number of evaluated candidate thresholds wasrkxto 5, the absolute minimum
for detecting a local peak. Because few data points can @dgribe simple curves, this resulted in
a loss of numerous peaks in the score functions. Thus, wetnatéoo few candidate thresholds
worsen the expressiveness of the curves. Though, strorg méathe preceding applications
remained noticeable. For example, diaminovaleolactama Esgure 4.13) still indicated a clear
peak.

Then, exhaustive binning (leading to 133 candidate thidshon the reduced data matrix)
was tested. As a matter of principle, this resulted in veghtstability scores. The quality curves
became smooth but kept the same trend as in the precedingadjgpis. A result on diaminovale-
olactam can be seen in Figure 4.14.

Obviously, the stability curve can no longer be interpratethe usual manner. It is arguable
that, for such a curve, the negative peaks have a significafileese occur whenever there is a
change in the composition of the decision forests. This mdicate the change of a state. At
this point, it was not possible to track this feature backhi éxperimental origin. It is thus not
possible to give a satisfactory interpretation. Hencenibig strategies leading to very few or very
many samples per bin will not be considered any further.
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Figure 4.13: Diaminovaleolactam (in the raw data matriXjilbits a clear peak even with very few
candidate thresholds.
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Figure 4.14: Diaminovaleolactam (in the raw data matriX)ibits very fuzzy curves when exhaus-
tively evaluating all possible candidate thresholds. Hmuethe effectiveness curve still indicates
regions of increased values.

Next, the number of trees to be compared against neighlpddrests was examined.
Roughly, when rising this number up to half of the given httteés (here about 30 of the 59),
the curves seemed to get more and more compressed into &israatje while maintaining their
general progression. Values of more than half the numbettribites have led to a compression
so strong that the curves appeared linear. No peaks couldelgified any longer. It could be
observed that a value between 3 and 10 delivered the mosindiisable peaks.

Summarised, the parameters have only a moderate effecequetiks. If they are left in the
default setting of the implementation the curves show @sedgults.

Evaluation of the results

The introduced method was able to find thresholds in metabodincentrations where biologists
had expected them. In particular, those where thresholderinentrations of the metabolites re-
lated to the phosphate cell metabolism. Those threshotdpradominantly able to split the sam-
ples into the treated and untreated share. Further, theoghetticated thresholds at points where
they can be identified visually in the distributions of comications. That is, the distributions ex-
hibit two modes and the thresholds are between them. Sonfeesé thresholds have not been
expected by biochemists and could not easily be relatedbtthbimical knowledge. But they can
also be detected with established discretisation tecksifeLg. Silverman'’s test for multimodality
[168]). Additionally, the introduced method found threktsoin metabolite concentrations where
neither a biochemist expected them nor available diset&iis techniques can find a cut point.
These findings point to putative new states. All such unebgoestates may lead to interesting
new insight into a plant’'s behaviour under the inflicted sdrsituation.
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4.2.3 Interpreting the dependency structure

In this subsection, the method for finding combinatorialetefencies introduced in Section 3.2
has been applied to the data of Subsection 4.2. The outputevilescribed in the following.

Calculating partial mutual information in metabolite conc entration data

To understand the dependency structure between the tagilofi a given data set, it would be
desirable to survey all conditional dependencies. Evemwestricting conditional dependencies
to 1 condition for each possible pair of attributes there lastill be, for n attributes,nﬁ—!g,
combinations. For the 59 attributes of the reduced dataixnaliis would be 195054 possible
conditional dependencies. It is not possible for a regudaardist to visually review and compare
this number of curves. Furthermore, to obtain curves in theglace, a sufficient number of values
for the conditions has to be considered (at minimum 5 to seesailple sigmoidal progression).
For the reduced data matrix, this leads to a minimum of abauillion calculations of mutual
information. Since mutual information is complex to caltelthe demanded computational power
is extremely high. Because of these two reasons, it has mut pessible to survey conditional
dependencies on the available hardware with this approach.

Estimating high partial mutual information in the reduced d ata matrix

Instead of calculating all possible combinations of partiatual information, the method of Sub-
section 3.3.1 has been applied. This heuristics reducesaimputational demand to a fraction
of that of an exhaustive calculation. In the following déstions, the names of metabolites will
be put into double quotes whenever they refer to the coretimtrlevel of that metabolite. The
names are left without quotes whenever the metabolitescisase meant.

For the estimation of high mutual information between cambons of attributes, it is nec-
essary to identify attributes that obviously express tvebest These have to be dichotomised in
order to work as target attributes for a tree induction. Rerfollowing demonstration, three of the
attributes are used that have been detected in Subsee@i@nalexpress two states. The choice
of attributes was motivated by the desire to examine the @tnpfathe treatment to metabolites
known to be involved in the phosphate cell metabolism. Tteseh attributes are:

e Phosphoric acid
e myo-Inositolphosphate
e Aminobutyric acid

These attributes show the clearest bimodal distributises égain Figure 4.9 for the distribution of
Phosphoric acid). Thereby, itis possible to dichotomigséhattributes with the help of thresholds
between the modes. We observe that these thresholds alserniabe the best thresholds detected
by the state identifier. For the calculations, the maximuiptidef decision trees has been set to
3. The induced decision trees indicate the predictabilitthe chosen target attributes with the
remaining attributes.

For Phosphoric acid, the dichotomisation threshold has betto -0.4, splitting the data ma-
trix into its 67 treated and 67 untreated samples. The thest toees of the forest for Phosphoric
acid are shown in Figure 4.15. There, it can be seen that thbusé¢s having most predictive
power for Phosphoric acid are “unidentified fragment 13%9”, “myo-Inositolphosphate” and
“Glucose-6-Phosphate”. These carry the highest mutuatimdtion with Phosphoric acid. All

“regarding classification accuracy
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phosphate phosphate phosphate phosphate phosphate phosphate phosphate phosphate
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387 2357 Glucose-6- phospha*e

<0.23 / \ >=0.23
77 | unidentified fragment 228 _: 143 unidentified fragment 245 1%657
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11(2 Err) 66(7 Err) 52(1 Err)

Figure 4.15: Three simple trees that can predict “Phosplamid” fairly accurately. The boldfaced
numbers indicate the number of evaluated training objedtsearespective node.

of them have clear bimodal distributions. Based on thesstie can be assumed that the modes
reflect the same states of the original plant in all menticattibutes. From a biochemical point
of view, this makes sense as all of these phosphates areaavoil the same (and artificially per-
turbed) cell metabolism [175]. The “unidentified fragmeB81L769” is something unexpected.
Obviously, itis closely related to the phosphate cell meliam. This evidence can help to identify
the corresponding metabolite.

Further, the trees indicate attributes that help to pretiiettarget attribute but only under a
given condition. In the first tree, these are “L-Asparagiaatl “Aconitic acid”. These carrgon-
ditional mutual information with Phosphoric acid. The condition tseatain level of “unidentified
fragment 1331769". This result suggest a link between Phosphoric adithan metabolites that
are not directly involved in the phosphate cell metabolighphysiological examination of this
coherence is yet planned to be undertaken by biochemisks [98

In the second and third tree, there are again attributesadteti to carry conditional mutual
information with Phosphoric acid. Here, it has to be pointedhe low significance of those
attributes. Three of them are responsible for only 5 or fesanples to be predicted correctly.
It is highly probable that these interrelations are merdaats of noise in the data. However, it
is a delicate process to determine a clear significancehbiaks At this point, it was decided to
accept only attributes responsible for the correct clasditin of at least 10% of the samples. This
leaves “unidentified fragment 22B433” under a condition of “Glucose-6-phosphate” to be the
only valid conditional mutual information of the last tweés.

More combinations carrying conditional mutual informatiith Phosphoric acid can be
found in the rest of the decision forest. Valid ones are:

e “Mannose” under a condition of “unidentified fragment 39277”,
e “Mannose” under a condition of “L-Isoleucine”,
e “Mannose” under a condition of “L-Leucine”,

e “Glycerol-1-phosphate” under a condition of “unidentifisdgment 2921810”,
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Figure 4.16: “Myo-Inositolphosphate” is clearly predigi@with the same attributes as Phosphoric
acid.

e “Glycerol-1-phosphate” under a condition of “unidentifisdgment 1442430",
e “Glycerol-1-phosphate” under a condition of “unidentifizdgment 2842691",
e “Glycerol-1-phosphate” under a condition of “unidentifizdgment 1411385",
¢ “unidentified fragment 248.660” under a condition of “Glycerol-1-phosphate”,
¢ “unidentified fragment 1442430” under a condition of “L-Asparagnie”,

e “Allantoin” under a condition of “unidentified fragment 2B44",

e “Aconitic acid” under a condition of “4-Aminobutyric acig”

e “Glucose” under a condition of “Aconitic acid”,

e “L-Leucine” under a condition of “unidentified fragment 24506”,

e “L-Tyrosine” under a condition of “L-Threonine”, and

e “Aminobutyric acid” under a condition of “L-Tyrosine”.

Two metabolites stand out in the above table. Most notakileeipredictiveness of “Glycerol-1-
phosphate” only under the conditions of several unideqtifietabolites. It suggests a detachable
link between “Phosphoric acid” and “Glycerol-1-phosphapmssibly a metabolic pathway that is
only activated by metabolism involving the unidentified atmilites. Furthermore, the predictive-
ness of “Mannose” under conditions of “Isoleucine”, “Lenel, or an unidentified fragment hints
to the relatedness of the “unidentified fragment 392 7" to the leucines. These suggestions have
yet to be examined by biochemists.

For myo-Inositolphosphate, the dichotomisation thredhwhs been set to -0.36, splitting
the data into its treated and its untreated share. The thasettees for myo-Inositolphosphate
are shown in Figure 4.16. As expected from the high mutuarinition between “myo-
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Figure 4.17: “Aminobutyric acid” shows to be less closellated to Phosphoric acid than ex-
pected.

Inositolphosphate” and “Phosphoric acid”, the attribufasilitating a prediction of “myo-
Inositolphosphate” are very similar to those of “Phosph@cid”. The reoccurring attribute
“unidentified fragment 348.819” will be exempt from interpretation according to theyously
introduced 10% rule. It seems to predict only a small shasaofples that contains a certain form
of noise.

For Aminobutyric acid, the dichotomisation threshold haerb set to -0.55, again splitting
the samples into two equal shares. The three best trees forohotyric acid are shown in Fig-
ure 4.17. The used dichotomisation threshold was indicbjethe method for finding thresh-
olds. It divides the samples into two equal sized shares, tWetinduced decision forest uses
completely different attributes for the prediction thar fbhrests of “Phosphoric acid” and “myo-
Inositolphosphate”. On account of the method, this indisat shift (however slight) of the pre-
dicted states. Obviously, “Aminobutyric acid” does noteditly reflect the 'absence’ and 'pres-
ence’ of Phosphoric acid. Instead, it points to an indireminection to the stress inflicted on
the plants. That connection seems to be associated to “linPto“Galactonic acid” and “L-
Tyrosine”. This constitutes a new factor to be examined notwsely in biochemical terms.

Assembling a dependency network

Besides directly interpreting the decision forests thisrimation can also be displayed and anal-
ysed in a graph. This is particularly helpful if a quick oviemwv of the conditional dependencies is
desired. This has been done for “Phosphoric acid” as disgdlayFigure 4.18. The used threshold
for the significance was an absolute error number of 10 (¢hahiaccuracy of 0.925). The infor-
mation included in the graph is the same as it can be direetlgl off the trees. Only the accuracy
is not included in the graph for the matter of a simpler vimaion. The graph is thereby a means
for a scientist to quickly see the conditional dependennyctire around one (or more) selected
attribute(s). Ifincluding the dependency structure oksalattributes the graph can be regarded as
a dependency network. Note that this network is only refigatigh conditional mutual informa-
tion. It does not directly propose any biochemical reaétidhonly proposes putative interesting
dependencies to be examined in more detail.

Here, it can be observed that Phosphoric acid interrelatés myo-Inositolphosphate and

SRice et al. also stress this limitation in their recent pedion [142].
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Figure 4.18: The conditional dependencies involving phosie acid. Edges with two arrows
indicate high conditional mutual information, edges thad @ a bar indicate a condition of the
originating attribute for the high mutual information.

Glucose-6-phosphate. These interrelations correspoadtiyi with known biochemical processes
[175]. More conclusions have yet to be drawn by a life scgnti

4.2.4 Summary of the analysis

The previously introduced methods have been tested on tatarsng from a GC/MS exper-
iment. This data has been preprocessed in various waysidingl some expert adjustments.
Through this, several different data matrices have beeairsdd. The two methods have then been
consecutively applied to these matrices.

The state identifier showed only moderate sensitivity touked preprocessing. Indicated
results remained fairly stable with the different matric8he results itself disclosed expected
and unexpected coherences. Among the unexpected resuitsheeexhibition of unknown states
in four metabolite concentrations. These findings pointutafive new states to be examined in
further experiments.

After the detection of states, some of the output threshHudde been used as input for the de-
pendency inducer. Several interconnections between #raiaed metabolites and other metabo-
lites were discovered. Most of them had been known from l@otbal knowledge and can also
be found through simple correlation analysis. But some batites clearly exhibit only a condi-
tional impact to the experimental treatment. These resuisnew and cannot be detected with
conventional analysis tools.

Summarised, the two introduced methods revealed propeta have not been known be-
fore. Thus, the given tools proof to be an interesting new@gogh in the analysis of biological
expression data.
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Concluding remarks

Summary

In this thesis, we have developed new methods for efficietat daalysis based on decision tree
induction. The methods have been validated on synthetig alatl have then been applied to
Systems biology data. Results on metabolite concentrdtehave led to the discovery of known
structure and to the gaining of new biological insight.

At first a method has been introduced for detecting signifitaresholds. This method is based
upon a comparison of decision forests, a new concept in tieatfec community. Applied to
metabolite concentration data of potatoes, the resultiresholds disclosed states in the examined
organism. Some of these states reflect known propertiesdbimutine physiological experiment,
others point to putative new knowledge.

In a second step, conditional mutual information has betadnced for the search of combi-
natorial dependencies in biological data. The method wesudsed and compared against com-
parative methods. While conditional mutual informatiors kang been known, it has never before
been applied to Systems biology data before. This is mosttytd the numerical problems that
arise when calculating mutual information on large data.set

That is why, in a third step, conditional mutual informatiwes been estimated with the help of
decision tree heuristics. In doing this, the method foramting thresholds can be used to supply
arequired parameter: the cut point. Estimating conditionatual information has been validated
on synthetic data and then been applied to metabolite ctnatiem data. The application resulted
in new insight into the interrelations of metabolites ingtoes. Ultimately, a limited dependency
network could be reconstructed which allowed for a quickraiesv of interdependencies around
phosphoric acid in the examined organism.

Both the extracting thresholds method and the estimatinglibonal mutual information
method have been implemented in software tools. With theisipossible to perform the analysis
on ordinary desktop computers.

The two approaches are based on new ideas. However, théiofgmaderstanding interrela-
tions between biological components in an organism is net ftdas been pursued by many other
scientists with numerous different techniques. A direat &ir comparison of these techniques
is not yet possible because of their highly diverse outpuntshe end, it is always up to a human
scientist to interpret and evaluate the output of a giveh too

In this context, the methods proposed here can be regarded asother way to extract valu-
able information from given data. It is certainly not a coetmnsive approach for reconstructing
biological networks. But the methods have provided someueable results for this purpose that
could not have been found with other methods in this fields Timikes them a valid choice for the
analysis of Systems biology data.
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Future work

The threshold extraction method introduces a completalyamncept: the establishment of a dis-
tance measure between decision forests. To a certain ekietias been examined in this thesis.
However, it was not possible to solve all the problems andesuall the parameters involved in-
depth. One remaining problem, the sparse data peaks, hasrimagioned. This must be solved
before the technique can be completely automated.

Other aspects which could lead to clearer results also lbe ttxamined in more detail.
Above all, the question of which type of classifier is bestdstablishing a distance measure has
to be sufficiently treated. The main reason decision trees alesen for this purpose in this thesis
is that the results are interpretable and can thereforedily éa followed by a human. It could be
that regression models provide a better framework for @@ a significant distance measure.
In this respect, the thesis has to be seen as just a startirkg wo

Finally, it has to be noted that the practical value of theoaiticed techniques depends heavily
on the availability of a convenient computer tool. That isywhe original tools have recently
been furnished with better user interfaces. This work iy waportant, as a wide circulation of
the methods offers the only chance for a discussion amoifigstdientists. This discussion is
essential for the further development of the techniquess&hools are now publically available
on the author’s website.
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Chapter 5

Appendix

5.1 Novel tools for the application of the introduced techmjues

This section briefly introduces two user-friendly toolstthave been implemented after the com-
pletion of the previously presented studies. Both tools varigten in JAVATM and are thus
platform-independent. The screen shots are taken from ddis based system.

Combinatorix

This computer tool allows for the calculation of Conditibddutual Information as explained
by T.M. Cover and J.A. Thomas [40]. That is the systematicudation of mutual information
under different conditions of a third variable. The tool dea data file on which the different
combinations of conditions and correlating variables amduated. It produces a result file that
can either be viewed graphically within the tool or textyaliith a text editor. A once produced
result file can be viewed independently of the data file.

In Figure 5.1, we see the initial screen@dmbinatorixwhich allows for the setting of five param-
eters. The parameters are:

e Number of cut points: The number of cut points determinesitimber of conditions under
which the Mutual Information between the correlating Vialés is calculated. For any con-
ditioning variable and any cut point, the data set is sptid @ subset in which the value of
the conditioning variable is below the cut point, and a stilveehich the value is above the
cut point. The Mutual Information is then calculated fortbetibsets.

e Target variable 1: This fixes the first correlating variabi@my Mutual Information. If it is
set to -1 all variables will be used. On larger data sets, goecehensive calculation quickly
exhausts the memory.

e Target variable 2: This fixes the second correlating vagiaiblany Mutual Information. If
it is set to -1 (or “all) all variables will be used. For vergrhe data sets, a comprehensive
calculation may not be possible due to lack of computer mgn®w, Target 2 can be limited
to one variable. For exploratory analyses, Target 2 shaigld to be set to “all”.

e Fix condition: This fixes the conditioning variable. If theerkbox is activated the condi-
tioning variable is specified through the adjacent item.sTiows for a further reduction
of memory demand or a more target-oriented analysis.

e Sorted Output: This toggle initiates a sorting of all caitatl Mutual Informations accord-
ing to the gain of Mutual Information under a certain coratitas compared to the Mutual
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Combinatorix

pmgas forcalowzting conditional mutez! infamation

Lomded d=t= file: | Kopka_riesenaross.dat Load |

Result buffer file: | Kopka_riesengross.out Chousel
Cut points:lQ_ Target 1: I?—

Target 2: |<all} 388
I™ fix condition  Conditioner: ID— Eaiciiate |

Calculation initiated.
Meeded array space is for 982080 calculated Mis.
Calculation started.

v sorted output Help Display buffer | End |
W 110 (25-May-05)

Figure 5.1: The initial screen @ombinatorix

& Kopka_riesengross.out

MIOFT1AEQ5T

Figure 5.2: A sigmoidal progression of mutual informatidong several conditions.

Information on the complete data set. This feature is onagifde if the result buffer is
viewed with a text editor. It has no effect on the graphicaptily. For exploratory analyses,
the sorting allows for a quick finding of significant Conditad Mutual Informations.

Figure 5.2 depicts the graphical output window. It is pdssib browse through all results with
the "Prev” and "Next” buttons. Here, we can see that the nutfiarmation between “Threonic
acid” and “Ribose methoxyamine” drops (rises respectjvdtastically when the data set is split
at a threshold of approximately 0.134 for “Mannose-6-phas@ methoxyamine”. This is a very
good example for a trulgonditionalmutual information.

With a click into the graphical display another window pojpsthiat displays the scatter plots
of the current variables. The first plot contains those dbjetere the conditioning variable is
above the threshold closest to the click, the other plotainatthe remaining objects. In Figure
5.3, we see the plots for the above mentioned constellation.

Identifix

This computer tool allows for the identification of signifitahresholds as introduced by A.Floter,
J.Nicolas, T.Schaub and J.Selbig [61]. The tool needs aftiatan which several thresholds are
evaluated through two quality measures. It produces atrésuthat can be viewed graphically.
A once produced result file can be viewed independently ofi¢ta file.
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Figure 5.3: The scatter plots of the correlating variabtesttie particular threshold where Mis
rise and drop.

£ Identifix

Identifix

Kopka_riesengross.dat

Kopka_riesengross.out

File 'Kopka_riesengross.dat'with 497 attributes and 106 expetiments
has been successfully read.

Figure 5.4: The initial screen ddentifix
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Figure 5.5: Progression of the quality measures along aktleesholds. Thresholds 1.1 and 1.34
are identified as significant.

£ pecision forest at 0.1 7967102

Figure 5.6: An example forest for a specific threshold conmgi 1-leaf-trees only.

Figure 5.4 displays the initial screen lofentifix Both needed parameters are set here. These
are the number of desired cut points and the number of tregsiated for when calculating the
guality measures.

The number of cut points determines the number of threstib&tswill be evaluated for each
variable. Note that the computing time will linearly incseawith the number of desired cut points.
A minimum of 5 cut points is needed for feasible results. A bemof 15 and higher is proposed
for more convenient analyses.

The desired number of trees determines the number of tragsvithbe used in comparisons
for the quality measures. It also determines the numberdefded trees for each threshold (it has
been fixed to the double of the number of used trees). That thisyparameter adds linearly to
the computing time.

Figure 5.5 shows the graphical output window. In this digplas possible to browse through
all results with the "Prev” and "Next” buttons. The pink cerindicates the progression of the
stability criterion, the blue curve indicates the progi@s®f the effectiveness (quality) criterion.

A click at a specific threshold will pop up a new window thatplés/s the actual decision
forest that has led to the quality scores. In Figure 5.6, sufchest is displayed.
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5.2 Complexity of the calculations

For a attributes,s objects in the sample andconditions (= thresholds or cut points), the follwing
table gives the time complexities of the three used methasi;fplemented in this thesis):

Method | Time complexity
calculating ICMI a’ * % x 52
estimating high ICMI| a x ¢ * s % log(s)
evaluating thresholds a? ¢ * s * log(s)

5.3 Code for generating artificial data

This section contains the generic code for the productigmadially correlated data. The depen-

dencies can be altered by changing the assignments of waluagables.

/I Generates data with specific dependencies between attri butes

/I File: generate.java

/I Invokation: java generate

/I Output to StdOut

/I Andr & FI dter 020205 (130203)

import java.io.

* "
’

import java.math. *;

import java.util.

*
’

public class generate{

static int samples = 200;
static float noise = 60; // percentage of noise

public static void main(String[] args) {

float

b,c,d.efg;

Random r = new Random();

float

noise1=0f,noise2=0f;

for (int a=0; a<samples; a++) {

b = ((float)a * 10/(float)samples-4.5f) * ((float)a * 10/(float)samples-4.5f);

c = 20f-a * 10f/(float)samples; /I linearly decreasing number

d = 20f *r.nextFloat(); /I number between 0-20

e = 20+20f *r.nextFloat(); /I number between 20-40

f = 20f *r.nextFloat(); /I number between 0-20

g = 20f *(float)r.nextGaussian(); /I Gaussian distributed number

noisel = noise *20f *r.nextFloat()/100f; /I noise variable

noise2 = noise *20f *r.nextFloat()/100f;, /I noise variable

if (e>30f) { System.out.print(20f-d+noisel+"\t"); } // pa rtial dependence
else { System.out.print(40f-d+noisel+"\t"); }

System.out.print(e+noise2+"\t"); /I condition (uniform random)
System.out.print(d+"\t"); /I independent (uniform rando m)
System.out.print(b+"\t"); /I time-dependent (parabola)
System.out.print(f+"\t"); /I independent (uniform rando m)
System.out.print(c+"\t"); /I time-dependent (linear)

System.out.printin(g); /I independent (gaussian random)
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