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Résuḿe

Les techniques modernes d’analyse biologique fournissentaux scientifiques diverses formes de
données. Une catégorie parmi d’autres est appelée “ données d’expression ”. Ces données
indiquent les quantités des composés biochimiques présents dans les tissus, échantillon par
échantillon.

Depuis peu, les “ données d’expression ” peuvent être générées très rapidement. Ce qui aboutit
à des masses de données qui ne sont plus analysables par lestechniques statistiques classiques. Le
“ Systems biology ” est un nouveau domaine dédié à la modélisation de ces informations.

Actuellement, il y a diverses approches qui sont appliquées à cet effet. L’une d’elles est
l’apprentissage automatique. Les méthodes de ce type ont,jusque récemment, été surtout em-
ployées pour des tâches de classification et de prédiction, négligeant un avantage secondaire im-
portant : la capacité d’induire des modèles interprétables.

L’obtention de tels modèles est devenu un sujet crucial en “Systems biology ”. De nombreuses
approches ont été proposées et ont suscité d’intenses débats. Cette thèse s’attache à examiner ainsi
qu’à exploiter une approche de base : les arbres de décisions.

La notion de comparaison d’ensembles d’arbres de décisionest introduite afin de permettre
l’identification de seuils pour certains attributs (à domaine continu ou discret). Déterminer des
seuils significatifs constitue un moyen d’identifier des états pour des organismes vivants. Cette
connaissance relative aux états fournit des indices extrˆemement précieux pour la compréhension
des processus dynamiques en jeu. Appliquée aux “ metabolite concentration data ”, la méthode
proposée ici a permis d’identifier des états qui n’avaientpu être mis en évidence par les techniques
conventionnelles d’extraction de seuils.

Une seconde approche exploite la structure des ensembles d’arbres de décision dans une per-
spective de découverte de dépendances combinatoires entre attributs. Les travaux antérieurs sur la
question se sont limités soit à des méthodes coûteuses en calcul soit à l’interprétation d’arbres de
décision simples – correspondant à une sous-exploitation drastique des données. Ceci a débouché
sur des résultats incomplets voire instables. C’est pourquoi est introduite ici une nouvelle méthode
qui a recours aux ensembles d’arbres de décision pour surmonter ces limitations.

Chacune des deux méthodes introduites a donné lieu à des logiciels, d’ores et déjà disponibles,
qui peuvent être appliqués indépendamment ou l’un après l’autre. Le tout forme un package
d’outils analytiques qui se présente comme un complémentprofitable aux méthodes existantes.

Par le biais de ces outils, ces nouvelles méthodes ont permis de confirmer certains points
connus et surtout de suggérer de nouvelles relations trèsintéressantes entre “ metabolites ”.
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Zusammenfassung

Neuere biologische Analysetechniken liefern Forschern verschiedenste Arten von Daten. Eine
Art dieser Daten sind die sogenannten “Expressionsdaten”.Sie geben die Konzentrationen bio-
chemischer Inhaltsstoffe in Gewebeproben an.

Neuerdings können Expressionsdaten sehr schnell erzeugtwerden. Das führt wiederum zu
so großen Datenmengen, dass sie nicht mehr mit klassischen statistischen Verfahren analysiert
werden können. “System biology” ist eine neue Disziplin, die sich mit der Modellierung solcher
Information befasst.

Zur Zeit werden dazu verschiedenste Methoden benutzt. EineSuperklasse dieser Methoden
ist das maschinelle Lernen. Dieses wurde bis vor kurzem ausschließlich zum Klassifizieren und
zum Vorhersagen genutzt. Dabei wurde eine wichtige zweite Eigenschaft vernachlässigt, nämlich
die Möglichkeit zum Erlernen von interpretierbaren Modellen.

Die Erstellung solcher Modelle hat mittlerweile eine Schl¨usselrolle in der “Systems biology”
erlangt. Es sind bereits zahlreiche Methoden dazu vorgeschlagen und diskutiert worden. Die
vorliegende Arbeit befasst sich mit der Untersuchung und Nutzung einer ganz grundlegenden
Technik: den Entscheidungsbäumen.

Zunächst wird ein Konzept zum Vergleich von Baummengen entwickelt, welches das Erken-
nen bedeutsamer Schwellwerte in reellwertigen Daten anhand ihrer zugehörigen Entschei-
dungswälder ermöglicht. Das Erkennen solcher Schwellwerte dient dem Verständnis von dy-
namischen Abläufen in lebenden Organismen. Bei der Anwendung dieser Technik auf metabolis-
che Konzentrationsdaten wurden bereits Zustände erkannt, die nicht mit herkömmlichen Tech-
niken entdeckt werden konnten.

Ein zweiter Ansatz befasst sich mit der Auswertung der Struktur von Entscheidungswäldern
zur Entdeckung von kombinatorischen Abhängigkeiten zwischen Attributen. Bisherige Arbeiten
hierzu befassten sich vornehmlich mit rechenintensiven Verfahren oder mit einzelnen Entschei-
dungsbäumen, eine sehr eingeschränkte Ausbeutung der Daten. Das führte dann entweder zu un-
vollständigen oder instabilen Ergebnissen. Darum wird hier eine Methode entwickelt, die Mengen
von Entscheidungsbäumen nutzt, um diese Beschränkungenzu überwinden.

Beide vorgestellten Verfahren gibt es als Werkzeuge für den Computer, die entweder hin-
tereinander oder einzeln verwendet werden können. Auf diese Weise stellen sie eine sinnvolle
Ergänzung zu vorhandenen Analyswerkzeugen dar.

Mit Hilfe der bereitgestellten Software war es möglich, bekanntes Wissen zu bestätigen und
interessante neue Zusammenhänge im Stoffwechsel von Pflanzen aufzuzeigen.
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Abstract

Modern biological analysis techniques supply scientists with various forms of data. One category
of such data are the so called “expression data”. These data indicate the quantities of biochemical
compounds present in tissue samples.

Recently, expression data can be generated at a high speed. This leads in turn to amounts of
data no longer analysable by classical statistical techniques. Systems biology is the new field that
focuses on the modelling of this information.

At present, various methods are used for this purpose. One superordinate class of these meth-
ods is machine learning. Methods of this kind had, until recently, predominantly been used for
classification and prediction tasks. This neglected a powerful secondary benefit: the ability to
induce interpretable models.

Obtaining such models from data has become a key issue withinSystems biology. Numerous
approaches have been proposed and intensively discussed. This thesis focuses on the examination
and exploitation of one basic technique: decision trees.

The concept of comparing sets of decision trees is developed. This method offers the pos-
sibility of identifying significant thresholds in continuous or discrete valued attributes through
their corresponding set of decision trees. Finding significant thresholds in attributes is a means
of identifying states in living organisms. Knowing about states is an invaluable clue to the un-
derstanding of dynamic processes in organisms. Applied to metabolite concentration data, the
proposed method was able to identify states which were not found with conventional techniques
for threshold extraction.

A second approach exploits the structure of sets of decisiontrees for the discovery of com-
binatorial dependencies between attributes. Previous work on this issue has focused either on
expensive computational methods or the interpretation of single decision trees - a very limited
exploitation of the data. This has led to incomplete or unstable results. That is why a new method
is developed that uses sets of decision trees to overcome these limitations.

Both the introduced methods are available as software tools. They can be applied consecu-
tively or separately. That way they make up a package of analytical tools that usefully supplement
existing methods.

By means of these tools, the newly introduced methods were able to confirm existing knowl-
edge and to suggest interesting and new relationships between metabolites.
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Introduction

Contributions

The thesis at hand is a contribution to the communities of Machine learning, Knowledge discovery
and Systems biology. It presents the following novelties:

• The genuine new concept of establishing distance measures between decision forests:
This can be regarded as a loose extension to the works of several authors con-
cerned with finding and evaluating thresholds in continuousdata (abstracted by
[48] and [96]). The new concept has been presented and published in [60] and
[61].

• The concept of using conditional mutual information for thedetection of combinatorial
dependencies in continuous biological data:

This idea is an extension to the works of several authors who use partial correla-
tion for the reconstruction of biological networks [101, 179, 142].

• The estimation of high conditional mutual information through decision forests and the
reconstruction of dependency networks with it:

This idea was inspired by the work of Breiman [24] and has alsobeen picked up
in a more limited way by Soinov [170]. The new approach has been presented
and published in [59] and [62].

• The application of the introduced new techniques on metabolite concentration data and the
derivation of new insight into metabolism:

So far, very few authors have tackled with this problem. These results will par-
tially be published in Leggewie et al. [99] and in an article resulting from a poster
of Möhlig et al. [123].

Additionally, two documented and ready-to-use computer programs with a graphical user interface
for applying the introduced techniques are supplied to the biological community.

Overview of the thesis

The thesis has been partitioned into four chapters:

1. Observing life at the molecular level: Systems biology

In Chapter 1, an introduction is given to the background of the data used in Chapter 4. Sys-
tems biology is introduced as the discipline which is concerned with the construction of models
for molecular biological systems. The major kinds of data used in this discipline are described.

8



Further, some problems and inconveniences occurring with the realisation of the physiological ex-
periments are outlined. In the second half of this chapter, conventional methods for the processing
and analysis of the generated data are outlined. Also, a brief introduction to graphs, a prime choice
for visualising and reasoning on network models, is given.

2. A tool for the identification of structure in data: Decision trees

In Chapter 2, the basics of decision tree learning are introduced. These are the underlying tech-
niques for all of the newly introduced methods of this thesis. A large number of issues concerning
the construction of trees is addressed and it is indicated ifand how these could affect the methods
introduced in Chapter 3.

3. From raw data to biological networks: a contribution to the analysis of dependen-
cies among sparse and noisy continuous data

In Chapter 3, the new and original methods of this thesis are presented. An algorithm is given for
the growing of heterogeneous decision forests. This algorithm is then integrated in an approach to
compare forests for the evaluation of discretisation thresholds. The same algorithm is further used
for the estimation of high conditional mutual information,a concept whose usage is motivated in
another section of this chapter.

4. An experiment in the analysis of metabolite concentration data for potatoes

In Chapter 4, the previously introduced techniques are tested on metabolite concentration data.
In a first step, the implementations of the new techniques aredescribed. Then, the actual usage
of the supplied tools is introduced in a user scenario. Subsequently, the tools are applied to the
data in a meaningful order. Finally, the results on the real data are presented and discussed from a
biochemical perspective.

Preliminaries

Most of the notation used in this thesis is introduced on demand. The following conventions are
valid for all the text unless explicitly invalidated for a specific section.

• Structural units (chapters, sections, figures, tables etc.) are written with an upper case if
they are given with a number and thereby refer to a specific unit. They are written with a
lower case in all other cases. Example: All subsequent chapters are based on Chapter 1.

• Double quotes are used for words that do not have a clear definition in the given context.
These words are to be understood in a more intuitive manner. Usually, the meaning of those
words should become understandable from the related context. Example: Many suggestions
have been made for the determination of which test is “best” for the problem.

• Single quotes are used for newly introduced terms that are not explicitly introduced in a
formal definition. The particular meaning should become clear after the first occurrence of
the term. Example: The test with the highest information gain is the ’best test’.

• Italics are used for emphasising statements that either pose a contrast to a previously made
statement or indicate an important conclusion not to be overlooked. Example: The test is
invalid on attribute A. However, itis valid on all other attributes.

9



Chapter 1

Observing life at the molecular level:
Systems biology

Research in molecular biology has undergone several major changes in the last decade. A trig-
ger for this development was the ability to produce large amounts of molecular biological data
with new, so called high throughput techniques1. This led in turn to the need for computational
assistance in the analysis of the data. The field of research addressing this subject is called ’Bioin-
formatics’ or ’Computational Biology’.

Recently, Anglo-Saxon literature tends to distinguish between the two terms in the way that

• Bioinformatics is predominantly addressing data management, e.g. the development, allo-
cation, and maintenance of data bases holding molecular biological data, and

• Computational Biology is addressing the development and application of elaborate algo-
rithms for the analysis of molecular biological data.

Such a distinction is not always clear which sometimes leadsto a synonymous or inconsistent
usage of the terms.

Computational Biology, as in the stricter Anglo-Saxon definition, has mainly focused on the
analysis of data produced without considering potential analysis methods [158]. However, most
methods work only effectively if the input data meets specific requirements. Furthermore, the
retrieval of complex structures from data (e.g. networks) strongly relies on customised experi-
ments. That is why recently, the requirements of computational analyses have been considered in
the setup of new physiological experiments (illustrated inFigure 1.1). This new way of designing
experiments according to algorithmic needs and thereby facilitating the retrieval of complex struc-
tures has been included in a newly labelled field of research called ’Systems biology’. Systems
biology is the integration of multiple data sources and systematic use of computational aid in order
to be able to predict, control and design living systems [5].

The thesis at hand is a contribution to the computational part of the field of Systems biology.
This chapter will give an overview of the molecular biological data sources used and some of
the classical analytical methods referred to in the subsequent chapters. Most techniques will be
introduced in a simplified manner in order to allow for a quicker and more intuitive understanding
of the needed basics.

1Experimental techniques that can produce at a high rate comprehensive measurements from biological samples.
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Computational Biology
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Figure 1.1: The step from classical computational biology to Systems biology.

1.1 Available data sources of Systems biology

A major aspect of Systems biology is the integration of multiple data sources and their exploitation
through computational methods. In this section, two sources of molecular biological data will be
introduced in more detail. New computational methods to analyse these data will be presented in
the subsequent chapters.

In addition, other forms of data sources available in Systems biology will be mentioned in
order to give a more comprehensive overview.

1.1.1 Metabolomics

Metabolites are the small molecules of a living system. Metabolism is the chemistry taking place
in any living organism. This includes, in particular, the turning of an organism’s food into more
organism. The chemical steps of a metabolite being transfered into another metabolite including
all involved intermediate products, catalysts and kinetics is called a ’metabolic pathway’ [73].

The Metabolome is the totality of all metabolites and all active metabolism in a cell at a given
point in time. It is a pattern of molecules and metabolic pathways that reflects the cell’s status [8].

The Metabolome gives a direct picture of the cells activity in its environment. It presents a
powerful portrait, reflecting health, disease, ageing and the effects of drugs and the environment.
Metabolomics2 is the field of research that deals with analysing, modellingand predicting the
metabolome.

In this subsection, an introduction is given on the key technology that is used in Metabolomics
and that will be used later in this thesis.

Metabolic Profiling

A metabolic profile is the entirety of all metabolite concentrations in (parts of) a living organism
at a given point in time. It is thereby not the metabolome because it does not include direct
information on active metabolism. Strictly, it is usually not evenpart of the metabolome because,
for technical reasons, most profiles are taken from a mixtureof tissue and not from a single cell.

2Metabolomics focuses on the analysis of plants. There is another term “Metabonomics” that refers to the same
analytical processes but for data of animals and humans.
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Figure 1.2: A schematic diagram of a gas chromatograph.

But the tissue used for establishing a profile can be confined to a set of very similar cells (e.g.
certain leaf cells). That has been done in the experiments used in this thesis, and that is why
metabolic profiles will subsequently be regarded as part of the metabolome.

Metabolic profiles are thus a valuable source of informationfor the understanding of an organ-
ism’s current activity or status, a property that will be exploited in Section 3.1. Such profiles can
be gained from a procedure called Gas Chromatography and Mass Spectrometry (GC/MS).

Gas chromatography

Chromatography is a process used to separate chemical compounds based on their differing ad-
sorption to a fixed matrix. It is particularly useful for the separation of proteins, amino acids and
nucleotides, hence of metabolites [25]. There are several different procedures of chromatography
[8], one of which is gas chromatography.

Gas chromatography -specifically gas-liquid chromatography- involves a sample being
vapourised and injected onto the head of the chromatographic column [88]. The sample is trans-
ported through the column by the flow of inert, gaseous mobilephase (see diagram in Figure 1.2).
The column itself contains a liquid stationary phase which is absorbed onto the surface of an inert
solid. The individual compounds of the sample move at different speeds through the column. At
the end of the column, a detector will measure the discharge of the individual compounds and
record the speed they have needed to traverse the column. This record is called a chromatogram.
It records the amount of each chemical compound present in the sample. To a certain extent, it
also allows for the identification of the compounds according to their traversal time.

However, there are numerous parameters that can influence the quality of the chromatogram
(e.g. oven temperature, properties of the column, size of the sample etc.). Thus, the interpretation
of the chromatograms is not entirely reliable. At best, someof the chemical compounds of the
sample can be identified at the end of this process. Yet, the compounds are now well separated
and can be analysed in the subsequently explained process.

Mass Spectrometry

For a reliable identification of the detected compounds, a second process called Mass Spectrom-
etry is needed [88, 149]. It uses a mass spectrometer to measure the exact molecular mass of a
molecule. This is done by tracking its flight path through a set of magnetic and electric fields.

To be more precise, the mass/charge ratio is measured. However, the operating chamber of the
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spectrometer contains a vacuum. In vacuum, nearly all biological molecules have no charge, but
the method relies of them being charged to make them susceptible to magnetic and electric fields.
Thus, mass spectrometers use a method to bombard the target molecules with radiation to charge
them up.

The bombardment can in turn fragment the molecules. This is abenefit because then you can
measure the mass/charge ratio of bits of the molecules as well as the whole thing in one measure-
ment [8]. Piecing together these data allows for the reconstruction of the original molecule.

GC/MS

GC/MS is the abbreviation for the combination of gas chromatography and mass spectrome-
try. With modern machines, this combination facilitates a fast way of measuring and identifying
metabolites. Because of this, it is labelled as a high throughput technique.

The output of the GC/MS procedure are values (real numbers) indicating the quantities of
the identified metabolites in the sample. Usually, the values are given as relative changes of the
metabolite’s concentrations as compared to those of a reference sample [149]. To some degree, this
normalisation ensures comparability between several experiments. The final output is generally
delivered as a data vector containing the values of concentrations (see Section 4.2.1 for more
details).

It has to be mentioned that GC/MS encounters some technical limitations (for more details
see [49]). Most of them can be suppressed to a certain extent by a meticulous use of the equip-
ment.Yet, the possibility of erroneously generated piecesof data always remains [19, 93]. One
such possibility lies in the insecure attribution of metabolites to peaks of the chromatogram [154].
Typically, this leads to a few unidentified fragments. This effect can be seen later in this thesis.
But for all of the difficulties, GC/MS is presently one of the best analyses to gain information on
the metabolome.

1.1.2 Transcriptomics

Genes are the factors that control heredity. They are piecesof information that determine proper-
ties of living organisms. The entirety of all genes of an organism is called the organism’s genome.

Genes are coded onto chromosomes. A chromosome is composed of proteins and desoxyri-
bonucleic acids (DNA). The DNA can be regarded as a code that uses an alphabet of four symbols:
G (guanine), C (cytosine), T (thymine), and A (adenine). These acids are the basic components of
all DNA.

In any organism, genes are coded statically3 into the four acids G, C, T, A. However, similar to
a computer program, this static information still allows for dynamic reactions to environmental or
internal stimuli onto the organism. That is, particular genes will only cause an effect if a specific
stimulus exists. This effect is a process leading to the production of ribonucleic acid (RNA) and
subsequently, in many cases, of a protein. Simplified, proteins are the one key for almost all
dynamical processes in a living organism [25]. Thus, knowledge about the types and amount of
produced proteins is very valuable information on the understanding of an organism’s dynamics.

Transcription is the first step in the production of a protein[73]. It refers to the production of
RNA4 from DNA. The thereby produced RNA is called RNA-transcriptbecause its composition
is established according to the transcribed code of a DNA (see Figure 1.3). In a second step, the
code of the RNA is utilised for the production of a specific protein. In life sciences, this process

3For abstraction, I disregard spontaneous mutations and single nucleotide polymorphisms here. In fact, they usually
have little effect on a fully-grown organism [25].

4In literature, this RNA is more specifically called messenger-RNA (mRNA). For simplicity and because this dis-
tinction is not important for this thesis, those acids will just be called RNA here.
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Figure 1.3: The two main steps of gene expression, referred to as the “Central Dogma”, are called
“Transcription” and “Translation”. The additional step of“reverse transcription” is indicated by
the dotted line.

is defined as ’translation’ [141]. Hence, the amount and typeof transcript present in a cell gives
information5 on the proteins produced in it.

The totality of all RNA-transcript in a cell at a given point in time is called the cell’s transcrip-
tome. The field of research dealing with analysing, modelling and interpreting the transcriptome
is called Transcriptomics.

In this subsection, the key technology for gaining data in Transcriptomics is introduced. In
later chapters, new techniques will be introduced which also allow for an analysis of the data used
in Transcriptomics.

Analytically exploitable properties of DNA and RNA

DNA and RNA both carry the code of genes. This code is a sequence of four acids. In DNA, those
acids are guanine, cytosine, thymine, and adenine. In RNA, thymine is replaced by uracile, but the
code remains equivalent.

This sequence of acids is pieced together as a strand. In DNA,such a strand has the shape of a
helix. DNA is generally made up of two strands in the shape of adouble helix. That is, each acid
on one strand has a neighbour on the second strand.

In stable double helices, neighbours are always6 ’complementary’. That means, one strand of
the double helix determines the second strand by the following rules:

• Adenine must have cytosine as neighbour, and

• guanine must have thymine (uracile in RNA respectively) as neighbour.

These rules derive from numerous physio-chemical constraints (for more details see [25]).
The two strands of DNA can be separated by applying high temperature. That process is

called melting. After cooling down, single strands can7 again recombine with a complementary

5Protein synthesis is a very complex process. The sole knowledge about the amount of present RNA-transcript is
just a rough indicator for the amount of proteins produced. Nonetheless, it is a key factor in the process and gives
valuable indications for protein production.

6Most stable double helices contain small regions of non-complementary neighbours. For simplicity, this is ignored
here.

7under specific environmental conditions
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strand to a double helix. This process is called reassociation or hybridisation. Note that the two
complementary strands need not be the same as they have been before the melting, they only have
to be complementary. This last property is essential for thesuccess of the technique introduced in
the following subsubsection.

Obtaining information on the transcriptome: Microarray te chnology

Microarray technology is a means to determine the activity of genes (usually referred to as gene
expression) in a target sample. It is based upon the ability of DNA to hybridise.

The basic principle of the technology can be described in thefollowing simplified manner: A
set of known single strand DNA is attached to specific spots onto a support medium (e.g. glass).
Then, radioactively8 marked DNA is produced9 from the RNA of the sample. This DNA is given
onto the support medium. The medium is heated and all DNA melts. After this, the medium
is cooled down and the single DNA strands hybridise. At this point, some of the radioactive
marked DNA strands will hybridise with complementary DNA attached to the support medium.
Subsequently, the non-attached DNA is washed from the medium. Now, it is possible to measure
the amount of radioactivity at each spot of the medium. The radioactivity indicates the amount of
specific RNA that has been in the original sample.

This process allows for the quantification and identification of RNA in a sample. Because the
produced amount of each RNA indicates the activity of a particular gene it is thereby possible to
roughly quantify a degree of expression of that gene. Due to the many spots that can be located on
a medium (up to 1 million) it is possible to measure the activity of complete genomes.

Using microarray technology includes numerous technical parameters and difficulties which
will not be discussed in this thesis (for more details see [73]). The above description is very brief
and serves only for getting a feel for the complex way of generating the data. At the end of the
process, a vector is obtained that holds real values indicating the degree of expression of each
particular gene in a sample. At present, these data are stillquite error-prone due to the many
process-related difficulties in producing it.

1.1.3 Other types of data

There are other kinds of data used in the field of Systems biology. For the matter of a more
complete overview, two important areas of research are mentioned in this subsection. Genomics is
a superordinate concept of the previously introduced data sources. Proteomics is another important
part of Systems biology, but its data is not used for the approach of this thesis.

Genomics

Genomics is a generic term for all studies involving the genome of living organisms [78]. Typ-
ically, it addresses the branch of genetics that deals with identifying all DNA sequences of an
organism, also referred to as sequencing. Thus, the classical data produced in genomics is four-
lettered code (see also Subsection 1.1.2).

Knowledge about complete DNA sequences is a prerequisite for the understanding and map-
ping of genes to proteins. Transcriptomics, Metabolomics,and Proteomics make use of this infor-
mation. That is why they are also referred to as techniques ofthepost-genomicera.

Today, genomics is often subdivided into functional genomics and structural genomics [21].
Functional genomics focuses on the determination of the biological functions of the genes and

8or fluorescently or colourescently
9in a process called reverse transcription

15



4

7

3

8

25

6 g

b

g

le
av

es

fr
ui

t

he
ig

ht

co
lo

ur

plant 1

plant 2

plant 3
... ... ... ... ...

2.2

5.8

0.7

Figure 1.4: A data matrix containing plants as samples with the attributes: leaves, height, fruit,
and colour.

their products. By definition, Transcriptomics, Metabolomics, and Proteomics overlap with it [83].
Structural genomics deals with the determination of three-dimensional structures of proteins. This
field is not discussed in this thesis.

Proteomics

Proteomics is the study of the full set of proteins encoded bya genome [106]. It deals with gaining
knowledge on protein biochemistry using the same philosophy of high throughput analysis that has
been applied in Transcriptomics and Metabolomics [25].

The proteome is the protein complement to a given genome (seealso Subsection 1.1.2). How-
ever, it is much more complex than the corresponding genome.In humans, for example, about half
a million proteins are generated from some 25.000 genes. Moreover, many proteins are modified
after their synthesis, and their expression levels are differentially regulated in space and time or in
healthy and diseased states.

Proteomics seeks to identify and characterise the many functional dependencies existing be-
tween proteins and their necessary requisites.

1.2 Cleaning biological data: data preprocessing

A major problem in the evaluation of physiological experiments in the domain of Systems biology
is the technical heterogeneity of the data. Many different experimental setups deliver numerous
types of data. Apart from the plain problem of handling proprietary file formats there are also
contentual problems. Two major ones of them are the comparison of data from several and/or
different experiments and the trimming of data in order to beable to apply a specific method of
analysis to it. In this section, a few of the standard methodsfor coping with these problems are
introduced. These methods are partially used in the experiment presented in Chapter 4.

For simplicity (and for the rest of this thesis10), it is assumed that the concerning data is
available in form of a data matrix that always contains attributes11 in its columns and experiments
(samples respectively) in its rows (see Figure 1.4). In statistical literature, this is usually referred
to as the ’spreadsheet data representation’ [189]. It is also the representation commonly used for
expression data in the biological literature.

10A formal introduction will be given in Chapter 2
11A formal definition of the term attribute is given in Definition 3 in Chapter 2. So far, it can be regarded as just a

variable.
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1.2.1 Describing empirical data: Statistical standard measures

For an objective description and characterisation of data sets, statistics has produced numerous
measures and methods [53, 6] that are also used in Systems biology [58, 149, 158]. This thesis
does not focus on the classical statistical analysis of data. The focus is on the adaptation, enhance-
ment and application of decision tree techniques to Systemsbiology data (see Chapters 2, 3, and
4). Nonetheless, a few statistical measures and terms are needed in the subsequent sections and
chapters.
The following standard terms are used for a given data vector~a = (a1, a2, ..., an):

the ’mean’ is ā =
1

n

n
∑

i=1

ai

the ’standard deviation’isσa =

√

√

√

√

1

n − 1

n
∑

i=1

(ai − ā)2

The square of the standard deviation is called the ’variance’.
Given a second vector~b = (b1, b2, ..., bn),

the ’covariance’ isσ̃ab =
1

n

n
∑

i=1

(xi − x̄)(yi − ȳ).

Given a data set withm attributesX1...Xm, the ’covariance matrix’ is anm × m matrix. The
elements of that matrix are given asσ̃XiXj

, wherei denotes theith element in thejth row.

1.2.2 Normalisation

Normalisation refers to the process of scaling the attributes of a data matrix into the same range.
Typically, this characteristic is required to suppress thepredominance of attributes with dispropor-
tionately large scales (see Subsection 1.3.2 for more detail). Often, the target range of normalisa-
tions is limited and small, like -1 to 1, or 0 to 1 [70]. There are several commonly used methods
to achieve this property:

Min-max normalisation

Min-max normalisation [70] performs a linear transformation on the original data. Given that
Amin andAmax are the minimum and the maximum value of an attribute A andx is a value of A,

minmax(x) =
x − Amin

Amax − Amin

. This will map any value into the range 0 to 1.
This is the basic normalisation available in most statistictoolboxes (e.g. S-Plus [38]). It

produces problems if the data contains outliers because that would vigorously shrink the significant
share of the range. For that reason, the following more elaborate normalisation techniques have
been developed.
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Z-score normalisation

In z-score normalisation [70] (also known as zero-mean normalisation or z-transformation), the
values for an attributeA are normalised based on the meanĀ and standard deviationσA of A.
Given a valuex of A,

zscore(x) =
x − Ā

σA

This normalisation is useful when the range of attributeA is unknown and/or outliers are expected.
However, it does not preserve the metric properties of the data.

Softmax scaling

Another way to compensate for outliers is softmax scaling [131]. The name refers to the charac-
teristic of this normalisation to ’soften’ the effect of outliers, values close to the minimum or max-
imum of the range. There are two versions of softmax scaling,a continuous and a non-continuous
one. The non-continuous one divides the range into three intervals, each of them using a different
mapping function. Here, only the more common continuous version will be explained.

Given a parameterr and the standard deviationσA and meanĀ of an attributeA and a value
x of A,

softmax(x) =
1

1 + e−y
, where y =

x − Ā

r · σA

The parameterr controls the portion ofA’s range that will be mapped nearly linearly (in Figure
1.5 approximately between the dashed lines).

Softmax scaling is useful when the values of an attribute areto retain most of their linear
behaviour but outliers are expected. To a certain extent, itpreserves the original metric of the data.

Rank Ordering

Rank ordering is a form of normalisation that maps values from a metric scale into an ordinal non-
metric scale [6]. Non-metric means that the real distances between values have no significance;
only the order of the values is important.
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Figure 1.7: The property of biological data matrices containing a lot more attributes than samples
is referred to as the ’curse of dimensionality’.

Rank ordering is achieved by sorting [89] all values of an attribute and replacing the values of
the original vector by their position in the sorted domain (this position is often referred to as the
’rank’). See Figure 1.6 for an example of rank-ordering a numerical vector.

This normalisation introduces a strong bias to the data. It is usually only applied if the signifi-
cance of the original scale is unclear and/or the data contains a lot of noise.

1.2.3 Dimension reduction

Modern high throughput techniques can measure many attributes of a given biological tissue sam-
ple. However, in Transcriptomics and in Metabolomics the application of such an analysis is
still rather costly. That is why most laboratories can only afford to perform a limited set of high
throughput analyses on their samples. Thus, the obtained data matrices are typically very asym-
metric, containing a lot more attributes than samples. Thischaracteristic is sometimes referred to
as the “curse of dimensionality” (see Figure 1.7).

Furthermore, values of some of these attributes depend on values of other attributes. That is,
the values of one attribute allow for the prediction of the values of another attribute. In Metabolite
concentration data, for instance, this is the case when two metabolites are the product of only the
same metabolic pathways, or, in transcript data, when two genes are coregulated.

When searching for complex dependencies between attributes, such dependant attributes do
not carry any additional information but they sometimes hamper with analytical algorithms. Thus,
it would be helpful to remove such redundant attributes. Moreover, many statistical analysis tech-
niques (e.g. cluster analysis [172]) generally exhibit problems when dealing with more attributes
than samples in a data matrix. For these reasons, methods areapplied for reducing the number of
attributes.

The most commonly used technique for doing this with Systemsbiology data [194] and an
improvement thereof are introduced in this subsection. Another technique, dimension reduction
through decision trees, is mentioned in Section 2.2.
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Principal Component Analysis

The concept of detecting dependant attributes and merging them into new and preferably inde-
pendent attributes is known as feature extraction [146]. A widely available method to perform
this is Principal Component Analysis (PCA) [81]. There exist several ways to calculate principal
components. The most commonly used method is roughly outlined in the following paragraph.
For brevity, the calculation of Eigenvectors and Eigenvalues is not explained here but taken from
“Linear Algebra” by Klaus Jänich [82]. For a more detailed introduction on PCA as a whole, see
Smith [169] or Burges [146]. The following steps are necessary:

1. From all attribute values of the given data set, the mean ofthe respective attribute is sub-
tracted.

2. The covariance matrix is built on the new attribute values.

3. The Eigenvectors of the covariance matrix are calculatedand normed to length 1.

4. The original attribute values are expressed through linear combinations of the Eigenvectors.

Up to this point, no information has been lost. The data has only been expressed in an orthogonal
basis. The directions of the Eigenvectors are called the components. They serve as attributes in the
new space. Now, the Eigenvalues of the Eigenvectors can be calculated. The Eigenvalues indicate
the contribution of the component toward the explanation ofvariance in the data. The components
with the highest associated Eigenvalues are called the principal components.

Intuitively, PCA generates a new data matrix with uncorrelated new attributes containing the
same information as the old data. These attributes can then be ranked according to their signifi-
cance in explaining the variance of the original data. It is now possible to drop the least significant
components and thereby decrease the dimension of the feature space. This way, it is hoped to ob-
tain a smaller new data matrix retaining most of the information of the old matrix while deleting
the noise in the data.

Independent Component Analysis

Another method for dimension reduction becoming more popular in Systems biology is Indepen-
dent Component Analysis (ICA) [37]. ICA tries to generate new and, as far as possible, statisti-
cally independent attributes. Statistical independence of attributes means that the attributes do not
carry any Mutual information (see Subsection 1.3.2 and Subsection 3.2.2 for details on Mutual
information). Note that statistical independence is a stronger criterion than the non-correlatedness
of PCA.

Another key characteristic of ICA as compared to PCA is that the attributes generated by
ICA do not have to be orthogonal. This gives ICA a more flexiblemanner of generating the new
attributes.

ICA has several particularities requiring some expertise in its application. It is therefore not
possible to simply replace PCA with ICA. For more details on ICA and its application in Systems
biology see Scholz et al. [156]. ICA has not been applied comprehensively to the data of this
thesis.

1.2.4 Discretisation

The data of Metabolomics and Transcriptomics is usually given with a precision of several deci-
mal digits. This lets the numbers appear quite precise. However, biological experiments mostly
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Figure 1.8: An original data set and a discretized version ofit.

contain a large amount of noise. That is why recently, some scientists argue that the continu-
ous representation is often misleading. They say, a discrete representation can display the same
information in a clearer manner [64, 65, 102].

For instance, in Figure 1.8 we have measured three times an attribute of two samples. Theoret-
ically, they should exhibit the same value for all three measurements of the same sample. But the
values contain a noticeable variance. This may mislead the experimenter to believe that there is a
biological process to be observed within the measurements of one sample. In reality, the variance
is a mere artifact of the delicate processes within the measuring device. If the data is discretized,
as in the righthand part of Figure 1.8, the variance is filtered and the data displays its veritable
information.

Finding such a ’revealing’ discretisation is not a trivial task. Therefore, some methods of
discretisation fit for specific needs have been proposed in the past. An older but comprehensive
synopsis of existing discretisation techniques has been given by Dougherty et al. [48]. To my
knowledge, they were the first to introduce a systematic categorisation of techniques. The three
proposed axes wereglobal vs. local, supervisedvs. unsupervised, andstatic vs. dynamic. The
choice of names for the latter axis seems a little ambiguous and inapt as those terms are usually
used in a different manner. That is why Kwedlo & Kretowski [96] introduced it again by the name
of: univariatevs. multivariate. A recent overview of discretisation techniques with the goal of
constructing better Bayes classifiers can be found in Yang etal. [192]. Strengths and weaknesses
of new techniques belonging to particular categories have been discussed for many discretisation
problems [74, 66, 188, 96, 13].

Supervised techniques make use of a class label attributed to every sample in the data set.
Generally, supervised methods are said to deliver more useful results than unsupervised techniques
[48]. However, they strictly require the presence of such a preclassified variable, which is usually
not given with metabolite concentration data.

Global discretisation performs the discretisation of all continuous values in one step, while
local discretisation processes only subsets of the data at atime. Ho and Scott [74] argue about
advantages and disadvantages ofglobalvs. local discretisation. They state that local discretisation
can lead to more accurate results at the cost of higher computation time. But they also note that
local discretisation might deliver ambiguous results which are harder to interpret.

Discretisation is often considered just as a data preprocessing aimed at eliminating noise. In
practice, only the most basic discretisation methods are applied, if any. The above mentioned
categorisation of discretisation techniques is a mere theoretical problem. For most categories, no
implemented technique is generally available. However, asillustrated in Figure 1.8 and argued
by some scientists, feasible discretisation can be regarded as a valuable stand-alone analysis [96].
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That is why it makes sense to actually develop techniques with certain properties. In Section
3.1, I will introduce a new discretisation technique to analyse biological expression data. It tries
to keep the advantages of supervised discretisation in an unsupervised context by conducting an
exhaustive search through possible class labellings.

1.3 Finding interdependencies between attributes: correlation anal-
ysis

Correlation is a concept quantifying the interrelation of metric attributes [53]. If, for instance, the
values of one attribute tend to rise whenever the values of another attribute rise these attributes
are noted to correlate. An example for two correlating attributes can be seen in Figure 1.9. In
molecular biology, correlation is used to find elements thathave a similar biological function
[52, 149]. There are several ways to detect and/or quantify the correlation between attributes.

1.3.1 Pearson’s correlation coefficients

A similarity measure to identify vectors (objects) whose scalars exhibit a correlated progression of
values is Pearson’s correlation coefficient [155]. The strength of correlation between two vectors
can be calculated in the following way:

Definition 1 (Pearson’s Correlation Coefficient) Given two vectors~a and ~b (both with n

scalars) with their means̄a and b̄, the Pearson’s correlation coefficient is given as

r =

∑n
i=1(ai − ā) · (bi − b̄)

√

∑n
i=1(ai − ā)2 ·

∑n
i=1(bi − b̄)2

whereai (bi respectively) denotes the value of thei-th scalar of~a (~b respectively).

In the denominator, the coefficient uses the standard deviations of ~a and~b to scale its value.
Thereby, the coefficient is always between -1 and 1. A value ofthe coefficient close to 0 means
that there is little or no linear correlation between the twovectors. A value close to 1 indicates a
positive correlation and a value close to -1 indicates a negative correlation between the vectors.

In Systems biology, the coefficient is often used in cluster analysis to group attributes that
exhibit a similar behaviour over the sample data [149, 179].Certainly, the coefficient can also be
applied without the use of cluster algorithms. In this thesis, however, it is only used as a distance
measure in cluster analysis.
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Spearman’s correlation coefficient

There are other correlation coefficients available. One of them is Spearman’s correlation coef-
ficient. It is calculated by rank ordering the data vectors before applying Pearson’s correlation
coefficient. It does not measure the linear correlation between the vectors but theirmonotonic
correlation. Theoretically, this means that it can also detect certain non-linear correlations. In
practise, it is more often used for simply suppressing the effects of noise in the data.

Mutual information

A distance measure having recently become more popular in Systems biology is the Mutual infor-
mation (MI) [166]. It is an entropy measure taken from information theory [40] (for more details
on entropy see Subsection 2.2.4). Here, it can be regarded asan extension to Pearson’s correlation
coefficient. Unlike the coefficients, MI can generally also detect non-linear correlation. This is the
reason why some scientists favour it over Pearson’s correlation coefficient [41].

Given two random variablesA and B that can take values{a1..aMA
} and {b1..bMB

}, the
mutual information is

MI(A,B) =

MA
∑

i=1

MB
∑

j=1

p(ai, bj)log
p(ai, bj)

p(ai)p(bj)

wherep denotes the probability (joint or marginal, respectively)of the occurence of certain values.
A detailed description of how Mutual information is calculated is given in Subsection 3.2.2.

1.3.2 Cluster analysis

Correlation measures are commonly used in a framework called ’cluster analysis’. It refers to
numerous techniques aimed at automatically detecting similar objects within a given set [68]. In
Systems biology, this analysis is often used as a first step for disclosing structure in new data
[52, 58, 149].

In statistics, cluster analysis is also known as ’numericaltaxonomy’, ’automatic classification’
or ’typology’. In machine learning, the techniques belong to the category of unsupervised learning
techniques. That is, they can be applied without any furtherknowledge about a given and complete
data set; they try to deliver results fully automatically.

These techniques are not focus of this thesis. For more information see [114].

1.4 Network induction

The goal of all methods used in Systems biology is the modelling of interactions between molecu-
lar biological elements. Modelled interactions between several components constitutes a network
[11]. One such network commonly known to biologists is displayed in the Böhringer-Mannheim
Chart of Metabolic Pathways (see Figure 1.10) [109]. It tries to integrate knowledge about all
known metabolic pathways.

Systems biology seeks to integrate even more data. Thus, theresulting network is potentially
very complex. In the thesis at hand, I will only introduce techniques for the reproduction of a very
limited and abstract part of that network. In this section, an introduction is given on general issues
concerning network composition as referred to later in thisthesis.
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Figure 1.10: A small section of the Böhringer-Mannheim Chart of Metabolic Pathways.

1.4.1 Graphs

Graphs are a basic concept of discrete mathematics [16]. A ’vertex’ is the basic element of a graph.
It is often denoted as an identifier (e.g.A or B). An ’edge’ is a pair of vertices (e.g.AB). A
’directed edge’ is a pair of vertices with a given direction (e.g. ~AB, the notation is that of a vector).

Definition 2 (Graph and Directed Graph) A GraphG is a set of vertices and a set of edges
between vertices (e.g.G={A,B},{AB}). A directed graph is a graph with directed edges (e.g.
G={A,B},{ ~AB}).

Figure 1.11 illustrates a simple directed graph made up of the set of vertices{A,B,C} and the set
of directed edges{ ~AB, ~AC, ~CB}. The direction of edges is indicated by arrows.

1.4.2 Putting information in Graphical models

Graphical modelling is a form of multivariate analysis thatuses graphs to represent models [50].
Directed graphs are suited for the depiction of networks in general [50] and microbiological

networks in particular [187]. The Böhringer-Mannheim Chart, as illustrated in Figure 1.10, is
such a graph. Typically, the vertices depict elements (in the Chart: metabolites) and the directed
edges indicate an influence of one element on the regulation or production of another element. In
addition, the edges can hold extra information (coded, for example, as colourings [103], width of
the arrows [as in Figure 1.10], or as textual annotations).

Graphs have several favourable properties for analyses [50]. One of them is their fitness for
computational processing [162]. Yet, there are numerous well-evolved algorithms for working
with graphs (e.g. learning [27], finding paths [162], determining properties [50] etc.). Another
favourable property of graphs is their interpretability bythe human eye. In subsequent chapters, I
will make use of both of these properties for the analysis of Systems biology data.

1.4.3 Causal networks

Causal networks are directed graphs with additional information and additional semantics to it
[167]. The additional semantics are:

• Each vertex represents a quantifiable physical entity.
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Figure 1.11: A graph consisting of 3 vertices and 3 directed edges.

• Each edge represents a direct causal relationship between two entities. That is, the quantity
of the entity represented by the starting point influences the quantity of the entity represented
by the end point.

The additional information states how the quantities of theentities of an edge influence each
other. This information can be given in several ways (e.g. joint probability distributions or other
functions).

Causal networks model the true causal relationships between its components (vertices) com-
prehensively. However, it is virtually not possible to derive true causal relationships from present
Systems biology data [95, 174]. To distinguish between causal models and models that can only
be a rough approximation of real world processes (due to incomplete or erroneous data), another
term ’observational model’ is used.

In the subsequent subsection and in Chapter 3, techniques for inducing observational models
are introduced.

1.4.4 Bayesean approach

A far-reaching approach for obtaining observational models from Systems biology data has been
founded in the work of Pe’er et al. [65, 129]. This work has later been continued and expanded by
Ong et al. [128].

The approach deals with inferring Bayesean networks from transcription data. Simplified,
a Bayesean network is a graphical model that provides probability distributions for each impact
(directed edge) that is modelled in it. Through this characteristic, the negative effects of “hard”
choices are softened. That is in the learning process, a hypothesis based only on weak evidence
(few samples) cannot mask out an almost similarly likely hypothesis. Instead, all possible hy-
potheses remain in the Bayesean model with assigned probabilities of their correctness. With this
additional information, Bayesean models can carry more information than simple graphical mod-
els (e.g. decision trees), but they are also much more complex and thereby harder to learn and
interpret.

Pe’er et al. seek to learn a simple Bayesean net from perturbed transcription data. Numerous
samples with well-defined genetic perturbations are necessary for this approach because only that
way the effects of distinct genes can be traced. This principle is also discussed in another context
and in more detail by Steuer et al. [174].

Pe’er further introduces the constituents “mediator”, “activator” and “inhibitor” in order to be
able to model causal relationships. These constituents aredetermined through the evaluation of
a statistical significance measure. By this, the learned Bayesean nets can be interpreted as small
causal networks.

Chu et al. [36] and others [95, 45, 79, 193] argue that with present Systems biology data there
are not enough objects to support statistical significance of the models. Thus, it would not be pos-
sible to obtain realistic causal structures. Based on a similar argumentation, Ong et al. introduce
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the concept of utilising known components12 which are onlyfitted into a larger model. That way,
Peer’s statistical approach is a mere helping factor for placing the known structural components.
Small-sized causal structure is then only inferred statistically at the transitions between operons,
if any. This reduces the likelihood of wrongly inferred causal relations that would be derived from
the poor statistics.

Despite a fundamental discussion about the validity of inferred Bayesean (or other) models
in Systems biology, this approach is to date the most noted regarding automatic construction of
biological (sub-)networks13. In a continuing work of the group of Friedman et al. [164], the
approach adopts some of the criticism and is further narrowed down to only identifying conditions
for regulatory dependencies. In the thesis at hand, a simpler approach is developed that also yields
conditional dependencies but in a less complex representation. This makes it less susceptible to
noisy data and thereby more robust. Additionally, it remains simpler to interpret and easier to
calculate.

1.5 Public databases related to Systems biology

Apart from single handedly performing experiments there isyet another way to gather data for
specific questions: public data bases. Due to the high costs of physiological experiments many
research institutions have decided to pool their data in publicly accessible data bases. Two of the
most used data bases for the investigation of metabolic networks are introduced in this subsection.
Additionally, one of the best access points for further information on Systems biology data is
described.

1.5.1 KEGG

The ’Kyoto Encyclopedia of Genes and Genomes’ (KEGG) is an initiative of the Kanehisa Lab-
oratory of the Kyoto University Bioinformatics Center [84]. It is aimed at providing a complete
computer representation of the cell and the organism, whichwill enable computational prediction
of higher-level complexity of cellular processes and organism behaviours from genomic informa-
tion. KEGG is a suite of databases and associated software, integrating the current knowledge
on molecular interaction networks in biological processes(PATHWAY database), the informa-
tion about the universe of genes and proteins (GENES/SSDB/KO databases), and the information
about the universe of chemical compounds and reactions (COMPOUND/GLYCAN/REACTION
databases). In scientific practise, KEGG is the prime sourcefor obtaining existing information on
biochemical processes in the cell and the related genetic backgrounds.

1.5.2 BRENDA

BRENDA is the main collection of enzyme functional data available to the scientific community
[157]. It is a data base maintained by the Institute of Biochemistry at the University of Cologne.
Its focus is on the providing of access to functional data forgene products; those are the pro-
teins and in particular enzymes. This data collection is being developed into a metabolic network
information system with links to Enzyme expression and regulation information. An additional
objective of this initiative is the identification of synonymous notations in an attempt to unify the

12Ong uses operons as known components (see [128] for further details.
13Other approaches for inferring biological networks are published (e.g. [3, 77, 180, 187]) but implementations are

not publicly available.
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nomenclature. Inconsistent nomenclature is one of the major problems in the evaluation of avail-
able experimental data. For the time being, BRENDA providesan extensive thesaurus of existing
terms for this purpose.

1.5.3 ExPASy

The ’Expert Protein Analysis System Proteomics Server’ (ExPASy) is dedicated to the analysis of
protein sequences and structures as well as 2-D PAGE [9]. It comprises several different data bases
(e.g. Swiss-Prot, PROSITE, ENZYME) and many analytical software tools for the identification
of proteins, the analysis of their sequence and the prediction of their tertiary structure. It also offers
many documents relevant to these fields of research. Links tomost relevant sources of information
across the Web are indicated. Through this vast cross-linking, ExPASy features one of the best
access points for analytical purposes in the field of Systemsbiology.

1.6 Summary and conclusions

In this chapter, the most common sources of Systems biology data have been introduced. The
sources referred to later in this thesis were described in more detail. Further, standard statistical
techniques for analysing these data were presented. For themajority of publications in the domain
of molecular biology, these techniques have been sufficientfor an effective data analysis.

The last two subsections have dealt with more elaborate analysis techniques. These techniques
help for the construction of networks that display causes and effects in the interaction of molecular
biological components. Note that the construction of a comprehensive network displayingall
causes and effects in molecular biology is the long-term goal of Systems biology.

It has been pointed out that this long-term goal is more of a vision at the moment. This is
mostly due to the current ways of generating Systems biologydata. The fundamental problem is
that, even when disregarding noise and combining all available data types, this data does not at all
constitute a comprehensive snapshot of the underlying system. Thus, a model derived from this
data has to be incomplete.

On account of this, available techniques focus on the construction of small sub-networks,
modelling only a very delimited part of the microbiologicaluniverse. After all, some interrelations
can be derived also from incomplete data. But even for this purpose, the available analysis methods
encounter technical problems because statistics are bad orthe computational demand is too high.
That is why it is feasible to develop new techniques that focus on small problems and circumvent a
few of the existing difficulties. In the following chapters,novel techniques will be introduced that
cope with existing difficulties and still deliver valuable knowledge about the biological system.
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Chapter 2

A tool for the identification of structure
in data: Decision trees

An important field of research for the processing and analysis of given data is called ’machine
learning’ [115, 10, 90, 110]. It addresses the question of how to construct computer programs
that can learn from data and thereby improve their effectiveness. The topic is usually divided
into the categories ’supervised’ and ’usupervised’ learning. The latter category is largely refer-
ring to cluster analysis[172], techniques which are not used in this thesis. Supervised learning is
called supervised because an expert has first to evaluate a set of training data before the learning
algorithms can start their learning process.

Machine learning techniques are used in a wide range of applications where ordinary programs
fail to work effectively. We find such systems, for instance,for the recognition of handwritten zip
codes in postal relay stations [145] or for the classification of customers in banks [115]. But a key
application area of machine learning remains the discoveryof structure in data sets. According to
Wrobel and others[190, 55, 70], this is sometimes also referred to as ’Data Mining’1.

Machine learning encompasses various techniques and approaches. ’Classification’ is one
superordinate category of such techniques. It deals with the automatic assignment of class labels
to data objects. That is, given an object with a set of known attribute values, a classifier assigns
one of several previously defined classes to that object.

An intuitive real-world example of a classification system can be found on chicken farms: In
Figure 2.1, an egg is assigned to a quality class by a classification machine. The classification
machine uses the egg’s attributes for its decision. In this case, the attributes are weight, colour and
size of the egg. Based on the attribute values of the sample egg, it obtains the label ’quality class I’
here. There are many other practical examples for classification [24]. For a more comprehensive
introduction into machine learning and more examples see [115].

1Note that some authors refer to the complete process of Knowledge Discovery as Data Mining[124]. This is not
the definition used in this thesis.

quality class II

quality class III
machine

classification
Farmer’s

brown
6cm

50g
Egg quality class I

Figure 2.1: An egg with certain attributes is classified as belonging to quality class I.
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~a ~b ~c

obs1 4.6 6.4 yes
obs2 3.1 7.3 no
obs3 2.8 8.2 yes

Figure 2.2: A training matrix composed of three column vectors~a,~b and~c where~a and~b contain
values for attributes a and b and~c contains classifications labels “yes” or “no” for each of thethree
data objects “obs 1”, “obs 2”, and “obs 3”.

In many2 machine learning techniques, the learned systems are givenas a formal description
fixed before the first predictive task is performed. Systems of this kind are therefore referred to as
’predictive models’. Decision trees are one form of a predictive model. They can be “learned” au-
tomatically from given data [71]. Furthermore, they are simple to understand and can be processed
effectively on computers. So, the trees can be used for both describing and predicting data3.

In the subsequent chapters, decision tree learning is used and adapted for the analysis of
molecular biological data. In this chapter, a motivation isgiven for the choice of the decision
tree techniques as well as an introduction to the related basic algorithms, their characteristics and
problems.

2.1 Machine learning on attributes

Most machine learning techniques follow the same rough principle:

• A set of data objects with known attribute values and target values, also referred to as ’train-
ing data’, is used as input for a learning algorithm.

• The algorithm then delivers a function that can be used to predict target values for new
objects with unknown target values.

To give a formal definition of a machine learning algorithm and a classification function, the
following objects are needed:

Definition 3 (Attribute) An attribute is a variable whose value describes a characteristic.

Definition 4 (Data Object) A data object is a vector~x with scalars holding attribute values.

Definition 5 (Training Matrix) A training matrix is a data matrixD composed of data objects
as rows plus an additional column vector~c holding values, the classification labels, for each data
object.

Training data, as used in this thesis, is always given as a training matrix. In Figure 2.2, there is a
simple example of a training matrix.
A machine learning algorithm is then defined as a function:

Definition 6 (Machine Learning Algorithm) LetC be the set of all possible predictive functions
andD∗ be the set of all possible training data matrices. Then, a machine learning algorithm is a
function

Λ : D∗ → C
2Case-based learning is an exception to this.
3Two well-founded theoretical justifications for the use of decision trees are given by Fiatet al. [57] and Karakoset

al. [85].
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The output of such an algorithm is a classifier:

Definition 7 (Classifier) LetX be the set of all possible data objects andS be the set of all possi-
ble values of the target attribute. Then, any classifierΓ ∈ C is a function

Γ : X → S

The basic differences of machine learning techniques lie within the nature of the demanded
training data and the learning principle and representation of the classifiers. Not all classifiers can
handle all types of input data. Hence, the formal differences between machine learning algorithms
are the possible types of the elements ofD∗ andS (and thus the functionality ofΛ andΓ), the
algorithm to actually calculateΛ, and the representation ofΓ.

2.1.1 Data types

As for the type of training data, two major categories are distinguished: discrete (nominal) and
continuous (real) data [67].

Discrete data contains only variables of discrete domains.A discrete domain spans over a
finite or infinite set of nominal values (which are sometimes also referred to as symbols) [53, 17].
If the set is finite this data is more specifically called qualitative or categorical. Discrete domains
can have at maximum an ordinal order. In particular, this means that no metrical distances can be
determined between the objects.

Continuous data contains variables of real valued domains.Real valued domains are charac-
terised by either an interval or an indefinite range. Variables of that domain can take any value
within that range. Continuous domains always have a quantitative order.

Note that discrete variables can be mapped into continuous domains. However, in doing so,
one artificially introduces a quantitative order for the previously discrete variable, and this order
might not have existed in the original domain. This modification is nonetheless applied to data by
many researchers in the biological domain. As indicated later, it does not necessarily invalidate a
thereby obtained result.

2.1.2 Types of predictive models

Three main categories of predictive models are distinguished.
Classifiers are representations of discrete-valued functions. They map a (discrete or con-

tinuous) input vector into a discrete value of a finite set of possible values. Or in terms of
machine learning: they assign a class label to any observed data object. Rule learning, deci-
sion trees and inductive logic programming are probably thebest known among these techniques
[135, 117, 136, 71].

Regression models are representations of real-valued functions. They map input vectors into
a real value. Neural networks and support vector machines are actually the most commonly used
techniques for regression [34, 115, 145, 1].

Probabilistic models are representations of probabilistic functions. They map input vectors
into a vector of probabilities assigning one probability value to each of the predefined target
classes. These models are sometimes regarded as an extension to classifiers. Bayesean Nets are
the most utilised technique of this kind [69].

Various methods exist to learn and represent models of thesecategories. They have been tested
and applied in numerous ways [87, 115]. To improve classification quality, it is also possible to
combine techniques of different categories into hybrid methods in order to exploit advantages of
both [67]. This approach will be briefly discussed in Subsection 2.3.9.
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2.1.3 Graphical and rule-based representations of classifiers

The focus of this thesis is not on optimising classification accuracy. It is on the utilisation of the
representations of classifiers and their interpretabilityin a molecular biological domain. For this
purpose, simple and small representations must be favouredover complex and sized ones [12].

Graphs are a rich, flexible and easy to understand way of representing classifiers [50, 18].
To my knowledge, some form of graphical representation exists for all types of classifiers
[27, 20, 145, 115, 1]. Some of those representations are neither easy to interpret nor simple to
process for algorithms [26]. For obtaining biological hypothesis, however, it is essential to gener-
ate interpretable output [176]. Furthermore, for developing subsequent algorithms, it is beneficial
to work on simple classifier structures. Classifiers which can be mapped into rule-based represen-
tations tend to be both, easy to interpret and simple enough for an easy processing by algorithms
[17].

Decision trees can be learned efficiently with established methods (see Subsection 2.2.3). They
have a simple graphical representation and can easily be mapped into rulesets [115] (see Sub-
section 2.2.2). If necessary, they can also be pruned into even less complex representations by
numerous approved pruning strategies [136] (see Subsection 2.3.2). Thus, decision trees are a
tradeoff between interpretability, efficiency and flexibility. No other type of classifier offers this
mix of favourable features. Those are the best regarding thegoal of interpretingandutilising the
classifiers in extended algorithms.

2.2 Basics of Decision Trees

The primary purpose of decision trees is to provide a means for classifying data objects into
discrete target classes [115]. The straightforward illustration of dependencies between attributes
and the possibility of interpreting them is an additional feature of the trees [24]. Furthermore,
decision trees can also be used for filtering attributes in view of dimension reduction [189].

Classification through decision trees is based upon a set of selected attributes. Each node
in a tree represents a test on the value of an attribute, an edge corresponds to a possible value
of the attribute, and a leaf specifies a possible target class. Finally, a decision tree represents
a hierarchically organised set of tests which allows for classifying new observations. A simple
tree can be seen in Figure 2.3. It is explained in more detail in the subsequent subsection. The
following definitions4 will introduce binary5 decision trees formally as classification functions
with a set of constraints regarding the way they can compute their value.

Definition 8 (Ordained scalar) Let ~V be a set of vectors, and let each vector~x ∈ ~V haven

scalars. Further, leti ∈ [1, 2, ..., n], then the ordained scalar~xi is thei-th position of scalars in
~V.

Note that a data matrix is a set of vectors. An ordained scalarcan thereby be regarded as an
attribute of a data matrix. It does not refer to the value of a specific scalar in a vector but to all
values of scalars at specific positions in a set of vectors.

Definition 9 (Domain of an ordained scalar) Given an ordained scalar~xi, the domain〈~xi〉 of
that scalar is the set of values~xi can take.

4For the more precise referencing needed later in this thesis, more notions will be defined than in other introductions
to decision trees.

5Since the biological questions addressed in this thesis areaccomodated to a binary nature binary trees are the model
of choice.
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Definition 10 (Decision test)Let n be the number of scalars of any vector~x of a given data
matrix, let ~X∗ = {~xi, ..., ~xn} be the set of ordained scalars of~x, and for anyi ∈ {1, ..., n} let ai

be an element of〈~xi〉, then a decision test is a boolean expression either of the form

~xi > ai or ~xi ≥ ai or ~xi = ai

Definition 11 (Leaf) LetS be a set (the discrete classification labels). A leaf is an element ofS.

The following two definitions are indirectly recursive:

Definition 12 (Decision tree edge)LetD be a set of decision nodes, and letS be a set of leaves.
A decision edge is an element ofD × {D ∪ S}.

Definition 13 (Decision node)Let t be a decision test, and let∆1 and ∆2 be decision edges.
Then, a node is a function

∆(t) :=

{

∆1 if t = true
∆2 if t = false

Intuitively, a∆ represents a test on one attribute that leads either to a target class or to another test.
If ∆x ∈ D maps into a∆y ∈ D then∆x is called a ’predecessor’ of∆y, and∆y a ’successor’ of
∆x. A decision node without a predecessor is called ’root node’. Eventually, the evaluation of a
∆ has to lead to a value ofS in order to be a decision tree.

Definition 14 (Decision tree) A decision treeΘ is a decision node whose recursion always ter-
minates.

Note thatΘ is classifierX → S (as defined in Definition 7).Θ needs only a subset of ordained
scalars from the vectors inX to calculate its values ∈ S. This subset is given through the subset
of T that is used in all the nodes ofΘ.

There are several well established algorithms for learningdecision trees from data [24, 136,
184]. This section introduces the properties and basic techniques related to decision trees. In
the subsequent chapter, these techniques will be extended and adapted to molecular biological
problems.

2.2.1 Graphical representation of trees

The common way of representing a decision tree is by a directed acyclic graph [89]. In decision
trees, every node, which is not a leaf, represents a test on anattribute. In Figure 2.3 there are
two such nodes, the root node (A) and another node (C). In order to come to a decision about an
object’s target class, the decision tree tests for the values of the indicated attributes. Suppose we
had the following vector representing an object:

(A = a1, B = b2, C = c2)

For deciding the object’s target class, the tree starts withthe root and first tests for attribute A.
As its value isa1 it follows the edge “a1” to the next node (C). Now, it tests forattribute C and
follows the appropriate edge “c2” to the leaf with the label “I”. The object is thereby classified as
belonging to target class “I”.

Note that the tree came to its decision regardless of the value of attribute B. Obviously, only
attribute A and C are relevant for the decision of an object belonging to either target class “I” or
“II”. Further, as one leaf can be reached just by knowing the value of attribute A (the rightmost
leaf), we can note that higher nodes have a stronger significance for the decision problem. Given
any (huge) amount of attributes, a good classifier can come toits decision with a hierarchically
ordered set of tests on only a few attributes. Thus, it is often possible to understand the importance
of attributes for the decision problem just by looking at thetree’s graphical representation.
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Minimum Description Length Principle

The quality of decision trees using onlynecessarytests is considered to be advantageous according
to the ’Minimum Description Length Principle’ (MDL). This principle has its origin in a discussion
started by William of Occam in the year 1320 who stated: “Prefer the simplest hypothesis that
fits the data.” [115]. This statement is still valid because it is believed that shorter hypotheses
constitute better generalisations for models of real worldproblems [112]. However, apart from
empirical evidence there is no hard proof for this statement.
Occam’s statement has meanwhile been developed into the MDL[44]. The MDL can be described
formally through the following definitions:

Definition 15 (Code) [178] A code is a set of unambiguous rules specifying the manner in which
data may be represented in a discrete form.

Definition 16 (Minimum Description Length Principle) LetD be a training matrix (as defined
in Definition 5) and~c be the column vector ofD holding the classification labels. Then, the
Minimum Description Length principle is a criterion seeking a model which permits the shortest
encoding of the vector~c given the matrixD \ ~c.

Applied to decision trees, MDL can be described in a more specific manner. The encoding of
a decision treeΘ are the nodes6 attributed toΘ (see Definition 14). For any given training matrix,
the set of all possible nodesD is finite7. In information theoretic terms, this set can be regarded as
the ’symbols’ of an ’alphabet’ [76].

Definition 17 (Description length of a tree) The description length of a treeΘ is the cardinal
number of tests inΘ. It is denoted as|Θ|.

The MDL criterion for decision trees is to minimise|Θ|. Or in other word, MDL is to minimize
the number of nodes in a decision tree while retaining the reproducibility of all class labels of the
training data.

More recent works on MDL handle the problem in a more “flexible” manner, allowing the
vector~c to be only approximated by the model. The thereby inherited errors in~c are encoded
separately [143, 139, 107]. To obtain the shortest description, all subsets ofD receive a score
according to their probability of being significant for the reproduction of preferably many scalars
of ~c (classification labels). The ones with the lowest scores aredropped for the benefit of fewer
models (subsets ofD) to be considered. For each remaining model, the misclassified scalars8 of
~c are encoded into a vector~c∗. The criterion is then to find the model that minimises|D| + ||~c∗||
where||~c∗|| denotes the number of components of~c∗.

The application of MDL is particularly feasible if the training data contains noise. That topic
will be tackled in subsections 2.3.1 and 2.3.2.

2.2.2 Propositional rules

Another way to represent decision trees is by propositionalrules [161, 115]. Intuitively, these
rules can be read as if-then-statements. That is, if a rule’s“preconditions” are met then the rule’s
“consequence” applies. In case of decision rules, such a consequence is always the attribution of
a target class to an object. For instance, the rule

(A = a1 ∧ C = c2) → I

6Thus, the basic components of that code are functions.
7For continuous data, we attribute equivalence classes of functions to nodes. Functions that process the same training

samples and lead to the same result are equivalent.
8often referred to as ’exceptions’
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II

III

A=a1?

C=c1?

true false

true false

Figure 2.3: A simple decision tree consisting of the two tests A and B and three leaves for the
target classes ’I’ and ’II’.

means that given an object with attributeA holding valuea1 and attributeC holding valuec2 then
the object’s target class isI.

Decision trees can easily be mapped into propositional rules [115]. One just has to extract
every path from the root to a leaf and transfer it into a rule. For the tree in Figure 2.3, this leads to
the following three rules:

(A = a1 ∧ C = c1) → II

(A = a1 ∧ C = c2) → I

(A = a2) → II

Rules referring to the same target class can be combined intodisjunctions in order to obtain a more
compact representation. In our example, this applies to thetwo rules leading to target classII.
We thus obtain the following ruleset for the example tree:

(A = a1 ∧ C = c2) → I

((A = a1 ∧ C = c1) ∨ A = a2) → II

There are several advantages of the representation throughrulesets. First, the rules can be
read by humans as plain sentences, thereby making it somehowintuitive to understand them [71].
Second, there are efficient methods to delete redundant information from rules which are not appli-
cable to trees [136]. And last but not least, some pruning strategies work on the rule representation
only [115].

A drawback of rules is that learning them straightforwardlyis less efficient than learning trees.
That is why, in this thesis, the rules have only been used indirectly9. The subsequently introduced
methods are all based on the tree representation.

2.2.3 Learning decision trees

There are several well known techniques for learning (inducing) decision trees [24, 132, 136, 122,
4]. These techniques mostly come from statistics [72], graph theory [50], and information theory
[40].

The presumed founder of the current decision tree communityis said to be Leo Breiman. He
joined knowledge of the three mentioned disciplines (in particular statistics) and combined it with
a greedy algorithmic framework which he calledCART(Classification and Regression Trees) [24].
CART is a family of algorithms specifying four key characteristics that have been followed and/or
enhanced by all subsequent tree learning programs:

9Rules have been used by the C5.0 programs for pruning trees.
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1. a split-criterion

2. criteria for class assignment to leaves

3. stop-critera for the induction process

4. pruning strategies

All programs of this family fall back onto greedy principlesto cut computational complexity
because an exhaustive search through the hypothesis space would be an NP-complete problem [2].

The original CART was furnished with numerous alternativesfor the above demanded criteria.
It also suggested strategies for tree evaluation and pruning (see also Subsection 2.3.2). Many of
those ideas have been picked up and expanded in subsequent publications and programs. One such
technically mature and widely available collection of programs is introduced with the programs
ID3 and C4.5 in the following subsection. Pruning strategies and alternative stop-criteria are
discussed in Section 2.3.

2.2.4 ID3/C4.5

Probably the most commonly used and studied programs for decision tree induction are ID3 and
particularly its successor C4.5 (C5.0 respectively) [136]. Formally, they are a specialisation of
CART. The basic principle of them is described in Table 2.1. As shown below, the difference
between ID3 and C4.5 is hidden in the ’best test’ on an attribute (line 4 in Table 2.1). This is the
formerly mentioned split criterion.

Finding this “best test” is a complex problem itself. It is a key characteristic of decision tree
induction algorithms. As seen later in this section, the method for finding the test also purports the
type of data which can be handled by the algorithm.

Determining the best test

As “best test”, Quinlan [132] proposes to choose the test on an attribute that yields most informa-
tion gain regarding the classification problem. This is the test which solely allows for the most
accurate classification possible. Intuitively, this test splits the training data into subsets with “least
disorder” regarding the target classes. ’Least disorder’ means that in the subsets, objects of one
target class have to outbalance objects of the other target class(es) in the clearest manner possible.

In Figure 2.4, we see a set of eight circles in a feature space of the continuous attributesA and
B. Each circle represents an object which can be characterised through its value of attributeA and
B. The solid circles belong to target class I and the others to target class II. The objective is now to
find the single attribute that can classify the objects into their target classes most accurately, thus
leaving the subsets with least possible disorder regardingto the target classes.

In this example, this would be a test on attributeA with thresholda1. This test can split the
data into one “tidy” subset with only solid circles and a second subset with only little disorder
containing predominantly transparent circles. The best test on attributeB (the one with threshold
b1) would only have led to more disordered subsets (see Figure 2.4). The emerging question is
how to compute disorder.

Quantifying the worth of a split

For the quantification of order or disorder10 within a subset, Quinlan suggests to use an entropy
measure [166]. For the quantification of disorder ofseveralsubsets, he uses the concept of mutual

10Quinlan and Breiman call it ’impurity’, but here, the information theoretic term ’disorder’ will be used.
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The following description outlines the basic greedy and recursive algorithm
for decision tree learning. It is given in a pseudo-computer-program-code. All
terms in italics (e.g.root node) denote instances of data structures (e.g. values
of variables). The selection criterion forbest testand its typisation is a key
difference of all common decision tree learning programs. In the subsequent
generic description,best testis given as an abstract structure that can take
values which specify subsets of the training data.

Input:

• training datain the form of a training matrix

• target attribute, a discrete-valued attribute whose value is known for all
data objects of the training data

• attribute set, the set of attributes oftraining datawithout the target at-
tribute

Output: adecision tree.

Methodgrow ::(training data, target attribute, attribute set) → decision tree

1. Create aroot node.

2. If the target attributehas the same value for all vectors intraining data
then return adecision treewith just theroot nodeand label it as leaf with
the value of thetarget attribute.

3. If attribute setis empty then return adecision treewith just theroot node
and label it as leaf with thetarget attribute valuethat is most common
in training data.

4. Select thebest teston theset of attributes.

5. Label theroot nodewith thebest test.

6. For each possible valuec of best test

• let tc be the subset oftraining datathat is specified byc.

• if tc is not empty

– grow a branchbc from root nodeand label it with valuec.

– attach the treegrow (tc, target attribute, attribute setwithout
attribute used inc) to bc.

• if tc is empty

– then attach a node tobc and label it as leaf with the value of
target attributethat is most common intraining data.

Table 2.1: Top down induction of decision trees.
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information [40]. In ID3, he then proposes to calculate the gain of (mutual) information obtained
in subsets when applying the split, as compared to the original unsplit set. This measure is called
’information gain’ [132] (see Definition 19).

Definition 18 (Entropy of a training matrix) Let D be a training matrix containingc different
classification labels, and letpi be the frequency of occurrence of thei-th label inD. Then

Entropy(D) :=

c
∑

i=1

−pi · log2 pi

Definition 19 (Information Gain) LetD be a training matrix with discrete attributes, and let|D|
denote the number of data objects inD. LetA be one attribute ofD, let dom(A) be the domain of
A and let|dom(A)| be the cardinality ofdom(A). Further, for anyi ∈ {1, ..., |dom(A)|} let αi

denote the i-th element ofdom(A). LetDv denote the subset of data objects ofD that carry value
v for attributeA. Then

Gain(D,A) := Entropy(D)−

|dom(A)|
∑

i=1

|Dαi
|

|D|
· Entropy(Dαi

)

Since information gain has a strong bias toward attributes with many possible values it has been
replaced in C4.5 by the so-called ’gain ratio’ [115, 136] (see Definition 21).

Definition 20 (Split Information) Let D be a training matrix, and letA be one attribute ofD
with c different labels. Then

SplitInformation(D,A) := −

c
∑

i=1

|Di|

|D|
· log2

|Di|

|D|
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Definition 21 (Gain Ratio) LetD be a training matrix and letA be one attribute ofD, then

GainRatio(D,A) :=
Gain(D,A)

SplitInformation(D,A)

The gain ratio measure favours balanced equilibrated trees. Those are trees that primarily
contain splits that cause a uniform number of data objects infew branches. Splits with asymmetric
allocations and many branches are penalised by the criterion (see Figure 2.5). But this measure
runs into numerical problems when attributes have the same value for nearly all objects [46].

All measures for finding a (nearly) optimal split in decisiontrees have some drawback for
specific properties of the data. That is why there have been numerous proposals for alternative
measures [24, 136, 115]. However, empirical studies suggest that the choice of the measure is
really not that crucial [113]. In this thesis, the choice of the measure is even less critical as all data
is handled in a binary manner (see Subsection 2.3.5 and Chapter 3).

2.2.5 Alternative developments of decision tree learners

Apart from the CART familiy there has been another strand of decision tree learners: the AID
(Automatic Interaction Detection) family [116]. It was designed to detect complex relationships
between attributes. The AID family originally comprised techniques aimed at only a certain objec-
tive. That was, the detection of complex statistical relationships (e.g. combinatorial relationships).
However, research of the AID family has meanwhile integrated into the rest of the decision tree
community. It is thus of little practical value to distinguish between them. Concepts and ideas
originating from the AID family will be used in this thesis asthey are needed.

2.3 Advanced issues

The basic decision tree induction algorithm of the CART family is fit for many problems which
supply discrete valued data sets. For the application in themolecular biological domain, they
still need to be adapted to continuous data and other specificproperties. Many of the problems
appearing in this context have already been addressed in themachine learning domain. Those will
be described in this section. Genuine new techniques for theadaptation to molecular biological
data will be described in the next chapter.

2.3.1 Overfitting

One of the major problems of all machine learning techniquesis overfitting. Overfitting means
that learned classifiers tend to classify (nearly) perfectly the objects of the given training data but
perform poorly on other data objects. The classifiers are thereby overfit to the training data.

The common way to detect overfitting is by reserving parts of the training data as validation
data. The decision tree is induced only on the non-reserved parts of the training data. Then, the
tree’s classification accuracy on the validation data is measured. This is in turn compared against
the accuracy of a simpler11 version of the tree. If the simplified version performs better on the
validation data but the original tree performs better on thetraining data then the original tree is
overfit to the training data.

A formal specification of the term ’overfitting’ can be given with the following definitions:

11See subsection 2.3.2 for simplification strategies.
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Definition 22 (Correctness) LetΘ be a decision tree and letD be a training matrix with column
vector~c holding the classification labels for each data object ofD. Then,correct(Θ,D) is the
number of correctly reproduced labels of~c byΘ.

Or, in other words,correct(Θ,D) gives the number of training samples that can be classified
correctly throughΘ.

Definition 23 (Classification Accuracy) LetΘ be a decision tree and letD be a training matrix
with column vector~c holding the classification labels for each data object ofD. Then,

accuracy(Θ,D) :=
correct(Θ,D)

||~c||

where||~c|| denotes the number of scalars of~c.

Definition 24 (Reduced Decision Tree)Let Θ be a decision tree withk nodes∆, and let1 ≤
n ≤ k. Then,Θ(n) is the treeΘ with onlyn of thek functions∆ where

• the number of∆ is reduced by successively deleting those∆ that map solely into leaves12,

• the predecessor∆pre of such a deleted∆ is replaced with a∆∗ that is similar to∆pre, but
instead of mapping into the deleted∆ it maps into a leaf that is assigned with the value
s ∈ S that was most significant13 for the deleted∆.

Definition 25 (Overfitting) Let D be a training matrix. LetV S (validation set) be a random
selection of data objects ofD with ~vs holding the classification labels forV S, and letTS (training
set) beD without the data objects ofV S and with~ts holding the classification labels forTS. Then,
a decision treeΘ(k) with k ∈ {N \ 1} is overfit to the training dataD if

accuracy(Θ(k), TS, ~ts) > accuracy(Θ(k − 1), TS, ~ts) AND
accuracy(Θ(k), V S, ~vs) < accuracy(Θ(k − 1), V S, ~vs).

An illustration of overfitting is given in Figure 2.6. After awhile, trees with higher accuracy on
the training data perform worse on validation data. Asgeneralrules are tried to be derived from
decision trees in the molecular biological domain, it is important to avoid overfitting. Strategies to
avoid overfitting of decision trees can be categorised into

• approaches that hold before perfect matching of the training data

• approaches that apply a pruning step after the end of tree construction

The latter approach will be discussed in subsection 2.3.2. Methods of both categories will be
applied in the subsequent chapters.

2.3.2 Pruning

When trying to further process or interpret decision trees it is important to obtain simple and
accurate classifiers in the first place. Besides choosing a favourable strategy to induce simple
trees there are several methods available for simplifying existing trees. These methods are called
’pruning’ techniques. Generally, they cut inefficient parts out of trees and prune the remaining
parts into a new and less complex structure.

There are many pruning strategies available which are fit to specific types of data [24]. Here,
two techniques are described which will be used later in thisthesis.

12There are several strategies on how to choose the two∆. A simple one is to first select those which are furthest
away from the root function∆root. The distance of any target∆ to ∆root is measured as the number of∆s which have
to be called byΓ until the target∆ is called.

13Most significant is that values that has occurred most frequently in the subset of the training data on which the
deleted∆ have originally been built.
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Figure 2.6: A typical progression of classification accuracy when decision trees become overfit
(example taken from [115]). The accuracy on the training data rises with the number of nodes
allowed in the tree while the accuracy on the validation datadrops for larger sized trees.

Reduced error pruning

’Reduced error pruning’ is a simple technique used for pruning decision trees [133]. Starting from
the root node, it systematically replaces the subtrees by a leaf that is labelled with the most com-
mon classification of training samples associated with thatbranch. If the simplified tree performs
more accurately on the validation data the leaf is accepted.Otherwise, the old subtree will be kept
and the procedure carried out again on the branches of that subtree.

Rule post-pruning

A generally more effective method is ’rule post-pruning’ [136]. It uses the rule representation
of decision trees. Successively, for any rule, one prerequisite is deleted. If the abbreviated rule
performs more accurately on the validation data than the initial rule, then the abbreviated version
will replace the original rule. The procedure is applied to the rules until no more improvement can
be achieved on the validation data.

2.3.3 Cross-validation, Jackknife, Bootstrapping

One of the frequent problems with current metabolite concentration and gene expression data is
its sparsity in data samples. That is, many datasets provideonly few samples with a dispropor-
tionate high number of attributes. With too few training samples, machine learning techniques
perform poorly and lead to overfitted classifiers [20, 1, 115]. Taking out samples from the data
set as validation data would further reduce the training setand thereby the classifier’s quality. But
knowledge about the accuracy of a classifier is required if the goal is to extract valid rules from
it. Three closely related techniques for evaluating a givenstatistic in such a stringent environ-
ment are introduced below. Two related techniques aiming atthe same problem, “Boosting” and
“Bagging”, are introduced in Subsection 2.3.7.

Bootstrapping

Bootstrapping is a simple way of detecting the generalisation error of a chosen statistic on a given
data set [43, 51]. Given a data set and a statistic that has to be evaluated on it, bootstrapping
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procedes as follows:

• Multiple resampling of the given data set.

• Calculation of the given statistic on the resampled sets.

• Evaluation the standard-deviations of the distributions of the calculated values of the statis-
tic.

A resample is usually14 established by randomly pickingn objects out of thek (k ≥ n) objects of
the original sample. The mean of the standard-deviations ofthe distributions indicates the strength
of the generalisation error.

Cross-validation

Cross-validation is a specific way of resampling that is commonly used to detect overfitting [24].
Most often, it is used for measuring the generalisation error of classifiers especially on smaller
data sets.

Cross-validation needs an integer parameterf , the fold. Anf -fold cross-validation divides the
set of samples intof approximately equal sized subsets15. In turn, a decision tree is constructed
from the samples off − 1 subsets. The classification accuracy of this tree is then tested on the
remaining subset. This procedure is repeated until each subset has been used once for testing the
classification accuracy. The average accuracy of allf folds is used as an estimate for the accuracy
of a tree grown on the complete set.

Jackknifing

Jackknifing is closely related to cross-validation, sometimes even referred to as ’leave-one-out-
cross-validation’ [191]. However, it is not only used to calculate the generalisation error of classi-
fiers but to estimate the bias of any statistic. Applying the Jackknife, each training case is omitted
in turn and the chosen statistic is calculated on the remaining subset. This is similar tof -fold-
cross-validation whenf is the number of samples in the complete training set and the statistic is
the generalisation error of the classifier. The average of the statistics calculated on the subsets is
then compared to the statistic on the entire training set. The difference can be used as an estimate
for the overall bias.

Empirical studies emphasise the superiority of generalf -fold-cross-validation over Jackknif-
ing, especially on small data sets.

2.3.4 Missing values

Practically, all biological data sets contain missing values. This is due to the complex experimental
setups which potentise the impact of technical imprecisionthrough many levels. However, most
algorithmic analyses require complete sets. Thus, in most cases missing values have to be erased
from the data.

Some of the missing values can still be estimated through expert knowledge. But some values
remain unknown for the computational analysis.

There are two basic strategies for coping with missing values [124]:

• deletion and
14More elaborate ways of resampling assign probabilities of being picked up to each object.
15If the number of samples cannot evenly be divided byf some subsets may contain an extra sample.
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• imputation.

Statistically, deletion is the safe way. That is, no additional bias can be introduced into the data. All
attributes and/or samples that contain a missing value are deleted from the data set. Unfortunately,
this can erase desired structure and quickly leads to no remaining data at all. This is particularly
disadvantageous in domains with more than 10% missing values in the set (e.g. biological data).
Thus, imputation has to be applied in most cases [134].

Imputation of averages

The substitution of missing values with default values is called imputation. Using averages for the
substitution is one of the most common approaches to do that.Some basic averages work on:

1. the concerned attribute,

2. the concerned object, or

3. the complete data set

While all of these can lead to feasible results on rather homogeneous types of data, they will
often lead to poor results on heterogeneous data such as biological sets. A good aid is to identify
an “environment” in which the missing value occurs. Such an environment defines a subset of
samples with a certain common characteristic. It is then possible to calculate averages only from
samples of the same environment.

These environments can be identified with pure statistical measures. They could be, for in-
stance, a subset of samples

• with similar variances,

• with similar scales, or

• with similar distributions of their attributes.

When inducing decision trees, such a subset can also be defined at a certain node by the samples
remaining under that node. The subset can be further specified by samples in the split with only a
certain classification [113].

Another way of defining an environment is by means of characteristics of the biological do-
main. For instance:

• samples of the same genotype,

• samples taken from the same series of experiments, or

• samples measured by the same experimenter.

Ultimately, any of the above environments can be combined inorder to obtain the most specific
characterisation of a subset. Yet, too specific characterisation can decrease the number of samples
in the subset to a number that is no longer statistically justifiable for further induction. The better
the characterisation of the subset is, the more it is assumedthat the substitution value is close to
the unknown real value. However, no general rule can be givento accomplish this task. It remains
mostly subject to the experience of the analyst.
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Figure 2.7: Mapping of intervals into the discrete values a,b and c.

Other strategies for handling missing values

There are numerous more complicated strategies for coping with missing values published in the
literature (e.g. [140, 182, 126]). Most of them were designed to work under specific conditions
with specific problems. Thus, they cannot be applied straightforwardly to other data. Furthermore,
only very few publicly available implementations of those techniques are available at the moment.
A good synopsis of more general techniques can be found in Little & Rubin [104]. In tests on
synthetic and real data, differing strategies have shown tohave only a low effect on the output of
the subsequently introduced data and algorithms (see also Subsection 4.2.2). That is why more
elaborate missing value strategies have not been examined in detail in this thesis.

2.3.5 Continuous data

Plain decision tree induction algorithms can handle discrete data only [24, 132]. The biological
data used in this thesis, on the other hand, is exclusively continuous. Hence, the data has to be
discretized à priori or the algorithms have to be adapted. Since all results of this thesis depend
strongly on an appropriate handling of continuous attributes the used methods will be described in
detail. The adaptation of algorithms will be discussed in this subsection and general discretisation
in Section 3.1.4.

Basic handling of continuous attributes

When discussing the use of continuous attributes in decision tree induction two types of attributes
have to be considered: the target attribute and the other attributes.

The range of the target attribute has to be divided into target classes by an expert. Once the
target classes are assigned to intervals of the attribute’sdomain, the induction algorithm treats it
as discrete valued. This process is critical because it strongly biases the information held by the
target attribute. Thus, it should be performed very considerately. Note that the expert’s attribution
of target classes to the samples is the reason why this process is calledsupervisedlearning.

The rest of the continuous attributes can be handled automatically. The idea is to dynamically
map intervals of the attribute’s domains into discrete symbols16. In Figure 2.7 three intervals of
the domain,[0, 0.3), [0.3, 0.5), and[0.5, 1], are mapped into the discrete valuesa,b, andc. The
remaining question is how to find appropriate thresholds which mark the discretisation intervals.

C4.5 uses a boolean approach. Every continuous attribute considered for a split is divided
into two intervals. Since there is a finite number of samples in the training data there can only
be a finite number of possible binarisation17 thresholds for each continuous attribute. Note that
this approach can easily be expanded to derive non-binary discretisation by subsequently applying
several different binary discretisations on the same attribute.

16This is also calledlocal discretisation and will be discussed in more detail in subsection 3.1.4.
17Binarising means discretising into the domain{0,1}.
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Sample 1 2 3 4 5 6
Attribute X 0.5 0.7 0.8 1.4 1.8 2.1
Target attribute A A B A A B

Table 2.2: Training data with 6 samples: a continuous attribute, and a binary target attribute.

In Table 2.2, there is an example with a small training set. For demonstration purposes, the
samples are sorted according to the value of attribute X. With six different values of attribute X
there are five feasible thresholds to binarise attribute X’sdomain (for instance 0.6, 0.75, 1.2, 1.6,
1.95). By mapping the values of attribute X into two classes (0 for values below a threshold and 1
for values above it) we obtain 5 possible binarisations for attribute X.

When the induction algorithm evaluates the worth of a split according to attribute X, it now
calculates the worth for each of the possible binarisations: attribute X with threshold 1, attribute X
with threshold 2 and so on. Hence, many more evaluations haveto be performed than if attribute
X were binary from the start.

However, Fayyad proved that not all binarisations have to beconsidered for the determination
of the best split [54]. Only those thresholds that lie between samples of different target classifi-
cations are feasible. In Table 2.2, those are the ones between sample 2 and 3, between sample 3
and 4, and between sample 5 and 6. That way, the number of evaluations can usually be cut down
considerably.

Advanced methods for handling continuous attributes

Some problems with the above method have been reported when adata set contains continuous
and discrete attributes at the same time [4, 48]. Then, some splitting criteria (e.g. gain ratio) have
a strong bias toward the use of continuous attributes as opposed to discrete ones [137]. Several
authors have proposed alternative splitting criteria thattry to prevent this bias [4, 137]. Since all
of the biological data used in this thesis is purely continuous those problems do not apply to the
studies below. That is why the basic discretisation procedure of C4.5 will be used in all cases.

2.3.6 Oblique hyperplanes

One limitation of conventional decision tree algorithms isthat all splits are performed parallelly
to an attribute axis. For decision trees, this means that at each node there can be a test on only one
attribute.

In Figure 2.8 there is an example where this limitation wouldlead to a non-perfect split: It
is not possible to split the circles correctly by any test considering only one attribute (an axis-
parallel hyperplane respectively). The best axis-parallel split would be the one depicted in the
lefthand figure of Figure 2.8 by the thresholdb1 on theB-axis.

However, there would be a better hyperplane to split the dataas indicated in the righthand
figure of Figure 2.8. This is anoblique(non axis-parallel) hyperplane. It splits the circles perfectly
into the subsets of filled and empty circles. To achieve a split like that at a node in a decision tree,
the test at that node has to be a linear combination of the attributesA andB. Here, this is indicated
by the suma1 ∗ x + b1 ∗ y. The remaining issue is thus to determine the attributes (hereA andB)
and the factors (herex andy) for each split.

OC1 is an algorithm that can induce tests on linear combinations for each node [122]. In prac-
tical applications, OC1 delivered significantly shorter trees on problems of continuous domains
[121]. The crucial drawback of OC1 is its computational complexity [76, 122].
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Figure 2.8: An axis-parallel and an oblique split.

Because of the otherwise favourable characteristics of OC1there have been recent studies to
cut down on the computational demand [31]. The idea is to use evolutionary algorithms [75, 115]
for the approximation of good linear combinations. This idea is still under examination. Up to
now there is no implementation of it publicly available. So,in subsequent chapters I will still use
axis-parallel decision tree inducers, although this meansclearly an interesting perspective.

2.3.7 Ensemble techniques

The main objective of all machine learning techniques is to construct classifiers that classify new
observations correctly [115]. To achieve that goal, many different classification techniques have
been developed. A basic paradigm of them is to construct single classifiers with high classification
accuracy. Yet, single classifiers are bound to several constraints.

A recent trend to improve classification accuracy of existing techniques is the use of sets of
classifiers rather than single ones. Boosting (or Arcing) [63] and Bagging [23] are the two basic
approaches known to date. Both offer a strategy to induce sets of classifiers, also referred to
as ’ensembles’ or ’decision forests’. When a continuous value is to be predicted, the average
prediction of all classifiers in the ensemble is used as outcome. For the prediction of discrete
classes, a majority vote of the ensemble is used.

Theoretically, Boosting and Bagging can be used to improve any classification technique deliv-
ering single classifiers. But they perform with varying success on each of the individual methods.
On decision trees, for instance, improvements are reportedto be considerable [105]. On support
vector machines, on the other hand, they are very weak, because the boosting and the induction
principle are conflicting.

Bagging

The word “Bagging” is derived from “bootstrap aggregating”[23]. Bootstrapping has been in-
troduced in subsection 2.3.3. The basic principle of Bagging is as follows: Several bootstrap
replicates of the original data set are used as training sets. Subsequently, a classifier is constructed
for each of the training sets. These classifiers are in turn aggregated to an ensemble. As described
above, a classification is achieved by taking a majority voteof all classifiers in the ensemble (or,
for continuous predictions, by computing the average, respectively).

For decision trees and neural networks, this technique generally improves classification accu-
racy [12]. Tests on several data sets drawn from the UCI data repository [120] have shown for
decision trees that Bagging ensembles nearly always outperform single classifiers. Such ensem-
bles are also relatively robust against noisy data [105].
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Boosting

Boosting describes a technique to “boost” (improve) classification accuracy of weak learning al-
gorithms [150]. This approach is based upon the so called “PAC learning theory” (Probability
Approximately Correct) [185] which is not discussed in thisthesis. There are several known
boosting algorithms available [147]. Here, I describe briefly a version of AdaBoost [151].

The word “AdaBoost” is derived from “adaptive boosting”, meaning that the algorithm is
constantly adapting the training set during progression [152]. The principle is as follows: Initially,
a classifier is learned on the original training set with any chosen learning algorithm (e.g. C4.5).
Then, a new training set is produced by attributing weights to the samples of the original data
set. That is, samples which are classified correctly by the learned classifier get a lower weight,
and incorrectly classified samples get a higher weight. One illustrative way to achieve this is by
simply duplicating misclassified samples in the new training set (see Figure 2.9). Based on the
new training set, a new classifier is learned. Finally, alln learned classifiers (n can be arbitrary
or determined by some criterion [153]) are combined in an ensemble. Classifications are again
obtained by majority voting as described in subsubsection “bagging”.

Tests on UCI data (see above) have shown that boosted decision tree ensembles often classify
better than Bagging ensembles [105]. However, boosted ensembles are prone to overfit training
data and they are somewhat susceptible to noise. Consequently, on more data sets than with
Bagging, the boosted forests performed worse than single trees [12].

Characteristics of ensemble techniques

For improving classification accuracy, one could draw the conclusion that carefully applied boost-
ing yields better results than Bagging. On the other hand, Bagging is less prone to noise and often
generalises the data better. Bagging could thus be the method of choice for less experienced users
[105].

However, we note that all ensemble techniques have in commonthat they improve classifica-
tion accuracy at the sacrifice of simplicity. To be more specific, rules (or criteria) for a classifica-
tion are multiplied by the number of classifiers in the ensemble. That is why ensemble techniques
are generally unfavourable for interpretation and furtherprocessing of the classifiers [125]. In the
thesis at hand, the focusis on interpretation and further processing. Thus, the known ensembles
techniques cannot be used directly here. In section 3.2, a new ensemble technique is introduced
with the desired behaviour.

2.3.8 Decision lists

Decision lists are a concept closely related to decision trees [144]. They are rule learning classi-
fiers. A few scientists consider them as an independent machine learning technique [119]. Though,
they really are a superclass of other techniques (e.g. decision trees [29]).

The lists serve for finding decisions18. They consist of a linearly ordered set of boolean func-
tions, each consisting ofk clauses. Such a function can either lead to a decision or refer to a
subsequent function. Ifk is set to 1 the lists are a specialisation of decision trees.

The lists obtained their name from their listlike appearance (see Figure 2.10). Due to their
linearity the lists have a very clear structure. Hence, theycan easily be understood and interpreted.

For higherk, there is no generally approved learning strategy for the lists. Often they are
learned with a greedy hill climbing algorithm [144] or by methods based on PAC learning [185,
33]. But more “exotic” learning strategies, e.g. through genetic logic programing [177], are also
in discussion.

18In this context, decisions are the same as predictions or classifications.

46



sample 1
sample 2
sample 3
sample 4

sample 1
sample 2
sample 4

sample 3

sample 1
sample 2
sample 3
sample 3
sample 4

sample 2
sample 3
sample 4

sample 1

...

training set 1 classifier 1 classifies

training set 2
classifier 2

classifies

correctly

incorrectly

correctly

incorrectly

Figure 2.9: Boosting a weak learning algorithm.
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Figure 2.10: A decision list testing binary attributes a,b,or c to predict class 1 or 2.
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Figure 2.11: A hybrid decision tree with neural networks as sub-classifiers.

Since decision tree learning is more straightforward and the trees are still well interpretable it
was opted for using the trees instead of lists in subsequent chapters.

2.3.9 Hybrid decision tree approaches

An alternative way to develop improved classifiers is to combine existing methods into ahybrid
technique. The challenge is to exploit the advantages of different methods while avoiding their
drawbacks.

In machine learning, I distinguish two different classes ofhybridisations:

1. techniques utilising one method to induce a better classifier of another method

2. techniques combining two different principles into a hybrid classifier.

The first class has already been mentioned in Subsection 2.3.6 where genetic algorithms have
been proposed for inducing oblique decision trees [31]. Genetic algorithms have also been used to
approximate other types of rule learners such as decision trees or first order logic [183]. In these
cases, one learning method is used to circumvent a specific problem which is hard to solve within
the framework of the other method. In the end, a pure “one-method” classifier is obtained that can
be handled by conventional computational tools. This approach will not change the characteristics
of the used type of the target classifier. It is therefore not necessary to consider techniques of this
kind when studying interpretability and handability of classifiers (as will be shown in subsequent
chapters).

The second class of hybridisations leads to newly structured classifiers. The idea is to replace
inefficient parts of a classifier with more efficient structures of another type of classifier [163]
(see Figure 2.11). For instance, decision trees have known weaknesses due to their greedy split
criterion at each node [32]. If such a split leads to a remarkable loss in classification accuracy
the corresponding node (or leaf) can be replaced by a better suited (sub-)classifier [196]. The
advantage of this approach is that it can preserve desired features of decision trees, in particular
interpretability within the top nodes, while facilitatinga higher classification accuracy through
another technique. This approach is strictly aimed at improving classification accuracy. It does
not improve interpretability and handability which is needed in the subsequent chapters of this
thesis. That is why I have not considered it any further.
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Figure 2.12: The production of a decision tree on the discretized geneg2 .

2.4 Previous applications in biological data analysis

2.4.1 Classification of biological tissue samples

In most investigations where decision trees have been applied to molecular biological data, they
have been used for classification tasks [165, 195, 47, 15, 181]. In this field, decision trees compete
directly against all other classification techniques. Particularly Support Vector Machines [186, 35,
160], Neural Networks [145] and Bayesean Networks [34, 80] have been used for classifications
in the life sciences in numerous publications [159, 130, 28,108, 14, 97]. As the classification
accuracy of basic decision trees tends to be lower than that of the above mentioned techniques
[67] this method is rarely used as a prime choice for straightforward classification tasks. Instead,
it often appears as a statistically different approach to reinforce classification results obtained from
other techniques (e.g. in Beerenwinkel et. al. [15]). But the classification accuracy of decision
trees can be enhanced by the means of boosting and bagging (see subsection 2.3.7). With these
improvements, the trees match the accuracy of other methodson particular data sets.

The subsequently introduced methods do not rely on ultimateclassification accuracy but on
interpretability. That is why issues on accuracy are not discussed in more detail here.

2.4.2 Reconstruction of gene networks

For this thesis, the more important area where decision trees have been applied to molecular bio-
logical data is the reconstruction of gene networks [170].

Gene networks are a representation of interactions betweengenes. Empirically, behaviour of
genes is determined through the behaviour of the corresponding gene expression levels [86]. In the
last years, it has become possible to measure gene expressions on a large scale by high-throughput
methods [197]. One consequence is that a lot of effort is now invested in the induction of gene
networks from gene expression data [3, 47, 77, 129, 180, 128,164].

The approach of Soinov et al. [170] discusses the interpretation of decision trees for the
reconstruction of gene networks. In that work, decision trees are induced for the prediction of
gene expression levels through knowledge about the levels of other genes. More precisely, it is
assumed that expression levels can generally be mapped intoanactive and aninactive state.
For these two target classes (active [or 1] and inactive [or 0]), a decision tree is constructed
that predicts the states through the expression levels of other genes. The complete process is
illustrated in Figure 2.12.

The resulting decision tree is then transformed into a ruleset (similar to the description in
Subsection 2.2.2). These rules are established on a subset of the original set of genes. The genes
in this subset are calledexplaining genesbecause they are sufficient to explain the target classes
(of thepredicted gene).

Soinov et. al. argue that the characteristics of the explaining genes justify the construction
of a (sub-)network [170]. They leave it unclear, though, howthis network is to be constructed
from the ruleset. Furthermore, such networks can be expected to be highly irreproducible from
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the given data. This is due to the fact that the used decision tree induction algorithms produce
unstable results when applied to noisy data [24]. However, gene expression data usually contains
a lot of noise which is too high in this context. It is thus likely that decision trees constructed on
similar experiments produce highly different rules and thereby highly different networks.

A solution to these difficulties is offered in Subsection 3.2. There, the idea of Soinov et. al. is
enhanced by the introduction of decision forests. Forests are a good means to counterbalance the
effects of instability in decision tree learning (as previously mentioned in Subsections 2.3.3 and
2.3.7).

2.5 Summary and conclusions

In this chapter, a brief introduction to machine learning has been given. Within this field, decision
tree learning is one method among others. Compared to the other methods, the most favourable
characteristic of decision trees is their simple representation that makes them easy to interpret and
process. Another favourable property is the existence of well established heuristics to quickly
learn the trees. These properties are advantageous, yet needed for the goal of extracting general
knowledge from large amounts of data.

Further, an extensive introduction to issues linked to decision tree learning has been given.
Some of these issues are often discussed in the literature but do not affect the techniques introduced
in the next chapter. It has been described which techniques are of this kind and why. Other issues
do affect the subsequently introduced techniques. For them, it has been motivated why certain
choices were taken.

Finally, some examples have been given that demonstrate previous applications of the trees
in the domain of molecular biology. It has been indicated that the trees are not a prime choice
for pure classification tasks. But these examples show that the graph structure can be exploited to
draw conclusions about an underlying network of the given data. The interpretation of trees can
thus be a valuable source of knowledge in Systems biology.

In view of the given goal of extracting genuine new knowledgefrom Systems biology data,
the trees offer best premises. That is why they were chosen for the following development of new
techniques.
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Chapter 3

From raw data to biological networks: a
contribution to the analysis of
dependencies among sparse and noisy
continuous data

As described in chapter 1, the objective of systems biology is to model dynamic processes be-
tween biological elements such as cells, metabolites or genes. These models are best described
in the form of networks [50, 22]. Depending on the diversity of the used biological elements
such networks can become very complex. Up to now, there is no universal technique for deriv-
ing complex networks from the available sources of biological data (see chapter 1). Thus, most
research projects focus on the reconstruction of small networks from very specific data types
[3, 77, 129, 128, 45, 142].

In this chapter, two methods will be introduced that focus onthe analysis of metabolite concen-
tration data [58, 149]. The first method allows for automatically modelling stable states through
interdependencies in the concentrations. The second method can derive dependency networks
around pivotal metabolites. Although the focus is on metabolite concentration data, these methods
are generally capable of handling different types of data. Thereby, they are a contribution towards
a more universal way of network reconstruction.

3.1 Revealing stable states of an organism

The main goal of the examination of metabolite concentrations is to be able to reconstruct the
dynamics of interaction between the metabolites. The following method proposes a contribution
towards this goal, trying to detect significant thresholds for some concentration variables based on
the global analysis of the complete data set. The basic assumption is that, as for any dynamical
system, one can observe a finite set of “stable” states between which the system evolves. A state
is considered to be a reasonably stable condition of any measurable variable1, observed directly at
the level of concentrations, in a (sub-)set of samples.

It is assumed that a change of such state indicates a reactionto external (environmental) or
internal stimulus on the examined organism. A simple example for the impact of an external stim-
ulus is reflected in the distribution of Figure 3.1. In this textbook example [30], the concentration
of the metabolite NADPH2 has been measured in the leaves of a plant2 at daytime and at night-

1or a subset of variables respectively
2Actually, they were several phenotypes of the same plant grown under identical conditions.
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Figure 3.1: The bimodal distribution of NADPH2.
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Figure 3.2: A shift of the second mode to the left makes it visually disappear.

time. NADPH2 is known to be involved in photosynthesis. In the distribution of the corresponding
concentrations, one observes a subset of samples with an increased level of NADPH2 and a sec-
ond subset with a decreased level of it. In fact, the samples with the decreased level were the
ones measured at nighttime and the others the ones measured at daytime. Thus, the plant can be
considered as having two distinct states; we could label them as ’night state’ and ’day state’.

There are two modes3 in the distribution of Figure 3.1 indicating each of the two states. Here,
it is known that NADPH2 increases with the amount of light the leaf is exposed to. It is usually
not that easy to relate the states of an organism to a variable.

Often the distributions of variables appear to be uniform, Gaussian or indeterminable as in
Figure 3.3. Hence, several distinct states (or modes) cannot be read off or found with conventional
statistical methods (such as [168]). Nonetheless, there can still be several states which are just
hidden in the sum of several modes (see Figure 3.2) or in the noise of the data. After all, despite
substantial advances in analytical techniques, biological data has considerable variances.

We address this problem by developing a tool for identifyingsome of these hidden states in
variables. Since functional dependencies (including states) cannot be derived reliably from single
variables with few data points we use a global approach to increase robustness. It considers for any
given target variable a set of thresholds and compares them in effectivenessandstability through
sets of decision trees. With this approach, it is possible tofind robust and explainable states in
variables. Once the states are identified, a direct examination can lead to further understanding of

3modes = peaks in the distribution; for more details see [53]

in bins
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occurences

Figure 3.3: There are no clear modes in the distribution of fumaric acid.
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the organism’s dynamics.

3.1.1 Established Methods considered in this approach

The subsequent work on finding significant thresholds is based upon several well established meth-
ods which will be outlined below.

Discretisation

The problem of finding significant thresholds in continuous data is largely equivalent to the prob-
lem of discretisation. This field has been intensely investigated in the past (see Subsection 1.2.4).
And though, discretisation is often considered just a pre-processing for further examination, it is
also accepted as a stand-alone analysis [91].

There is no hard evidence of whether the one or the other category of discretisation techniques
is better fitted to discretize metabolite concentration data. That is why the characteristics of data
and methods can only be surveyed in a fairly general (and later empirical) manner.

The main difficulty in discretising metabolic data stems from the conjunction of a high amount
of noise with a relatively low number of available samples. It is thus of utmost importance to make
the most out of the available information and dependency structure in the data. Kohavi et al. [91]
and Bay [13] indicate thatmultivariatediscretisation is best fitted to satisfy this need. Multivariate
techniques consider interdependencies of all variables inthe feature space simultaneously. Further,
a global approach is preferred because interpretability might still be of interest in the analysis.
Note that local methods can produce ambiguous results (as described in Subsection 1.2.4) and are
thus hard to interpret. To my knowledge, no such discretisation technique is currently available
that could be applied to current forms of metabolic data.

Decision Forests

For the modelling and evaluation of discretisation thresholds, inductive learners taken from ma-
chine learning are the prime choice because they can automatically construct models for a given
threshold (see Chapter 2). The alternative would be the construction of models through experts
which is out of question due to its cost (time and money). There are several types of models which
can be learned by inductive learners (see Chapter 2).

Decision tree methods comprise effective induction algorithms and interpretability of the mod-
els (see Subsections 2.2.3 and 2.1.3). The data structure ofa tree can also easily be handled by
subsequent algorithms. However, trees develop an unfavourable property in the biological domain.
That is, the induced models are unstable in noisy environments (e.g. metabolite concentration
data). This means, a little variation of the data can lead to asubstantial difference of the induced
tree.

This effect can be counterbalanced by the use of sets of decision trees [181] or by pruning
strategies (see also Subsection 2.3.2). Methods of both categories can be applied either separately
or together.

Sets of trees are called ensembles (see Subsection 2.3.7) ordecision forests. In the following
subsections, a strategy is developed that constructs and uses decision forests while preserving the
preferable characteristics of trees.

Starting from this background, a new discretisation technique is now introduced which is, in
terms of prior work,global, unsupervised, andmultivariate, but tries also to make biologically
plausible discretisation choices.
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3.1.2 Modelling states of an organism

In order to identify possible states of an organism, significantly stable conditions of concentration
variables are tried to be detected. These can be identified bythe help of decision trees.

First, let us assume we already knew about two states and we could attribute one to each sam-
ple. Then, these states could be modelled straightforward by decision trees by means of supervised
learning: The possible states are considered as target classes and the metabolite concentrations are
used as explaining attributes. Therewith, any decision tree induction algorithm can grow a model
for explaining the two states (e.g. C4.5 [136]).

Further, if such a state was expressed in a given variable this variable can be dichotomised
into the classes “state 1” and “state 2”. Largely, this dichotomisation can be performed by finding
the concentration threshold dividing the two states. Literature refers to such a threshold as acut
point [56]. With the obtained two classes, again, a decision tree can be induced as a model for
explaining these states.

The remaining issue is to find an appropriate threshold for the discretisation of the target
variable. In the example of Figure 3.1, the samples can easily be classified into “night state”
and “day state” according to their NADPH2 level. The discretisation threshold can visually or
statistically [168] be determined between the two modes. However, as mentioned in the first
paragraph of Section 3.1, most distributions do not allow for a clear distinction between two modes
(respectively states). Thus, we have to find another way to pick an appropriate threshold out of the
many possibilities.

3.1.3 Growing decision forests

We propose to grow sets of decision trees for each considereddiscretisation threshold and compare
them. They provide a more stable means of classification thanindividual trees and thereby grant
more reliable results(see Subsections 2.3.7 and 3.2).

To get candidate thresholds the domain of the target variable is divided into intervals. The in-
tervals can be determined by any binning strategy (e.g. uniform binning, equal frequency binning,
or exhaustive binning [131]). For example, in Figure 3.4 thesimplest form of binning is applied
to a variable’s domain: uniform binning. As long as a reasonable small size of the data set permits
effective computation, exhaustive binning should be preferred over the other strategies because it
yields a comprehensive search of the hypothesis space.

For each possible threshold, a decision forest is grown withan embedded decision tree induc-
tion algorithm. We used C4.5, one of the most established algorithm for this task [136]. Initially,
the set of available variables contains all measured variables minus the target variable. Then, the
following procedure is used:

• While variables are present in the data set do

1. Grow a decision tree with C4.5 on the discretized target variable and add it to the
forest.

2. Remove the variable occurring at the top of the tree from the set of available variables.

• Sort the trees of the forest according to their predictive accuracy and keep thek best trees in
the forest (k = 3 in our experiments).

That way, we obtain a forest of varying trees with highest predictive accuracy for each target
discretisation threshold. This algorithm is loosely inspired by the idea of ’variable deletion’ by
Breiman [24]. He recommends it for finding variables of equalentropy.
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Figure 3.4: Determining candidate thresholds 1...n by uniform binning.

Through the complete procedure, we gain the possibility of using a supervised learning ap-
proach in an unsupervised process by systematically usingall candidate thresholds and construct-
ing models for them.

3.1.4 Threshold extraction

At this point, a particular decision forest has been produced for each of the considered discretisa-
tion thresholds.

Definition 26 (Neighbouring forest) Two decision forests are neighbours if they have been
grown on two subsequent candidate thresholds.

Each forest is evaluated in turn through comparison with thetwo neighbouring forests as outlined
below.

Definition 27 (Similarity of decision trees) Given an arbitrary precision parametern ∈ NI and
two decision treesΘ1 andΘ2,

sim(Θ1,Θ2) =















1 if the two sets of ordained scalars used in
decision tests of the uppern levels of both
trees are identical.

0 else

Or more intuitively, we use a syntactical similarity criterion: Two trees are similar if the attributes
used in the firstn levels of both trees are the same (n was set to 1 in our experiments).

Definition 28 (Stability of forests) LetΥa,Υb, andΥc be decision forests (whereΥa andΥc are
the neighbours ofΥb), and letΘk,Υ denote thekth tree of the forestΥ, then

stability(Υb) =

max
∑

i=1

max
∑

j=i

sim(Θi,Υa,Θj,Υb
) +

max
∑

i=1

max
∑

j=i

sim(Θi,Υb
,Θj,Υc)

wheremax is the maximum number of trees in the forest.

In other words, the stability function compares all trees ofthe neighbouring forests and grants a
score of 1 for each pair of trees that is similar. That way,stability(Υ) gives high scores to forests
with similar neighbours.

With this “smoothening” process thresholds are found that promote environments of “stable”
models of the data. That is, these models are robust against aslight shift of the discretisation
threshold to either direction. If the scores are plotted into a curve we can identify regions of stable
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Figure 3.5: Peaks or elevated plains in the score functions indicate regions of stable models.

forests (see Figure 3.5). Stable forests indicate robust models for the explanation of the target
variable. We can assume that robust models indicate a biologically feasible choice for the target
classes and thus the discretisation threshold.

Another way to compare the forests is by their ’effectiveness’. To measure this quality, we
propose the following function which has been inspired by the weighting criterion of Breiman’s
cost-complexity pruning[24] (see also Subsection 2.3.2):

Definition 29 (Effectiveness)Let T be a binary decision tree of depth n and letD be a set of
classified objects. For1 ≤ i ≤ n, let Ci be the set of objects fromD, being correctly classified by
T at depthi. Then, define the quality ofT by means of the following function:

effectiveness(T ) :=
n

∑

i=1

|Ci| ·
1

2i

This function delivers high values for trees classifying the training samples with little error and
few decisions. For comparingforestswe use the arithmetic mean of effectivenesses of the trees in
the forests and compare them.

As a matter of principle, this function produces peaks for discretisation thresholds close to
the boundaries of the target variable’s domain. This is due to the very asymmetric distribution of
samples in the target classes when discretising is done witha marginal threshold. These peaks are
called ’sparse data peaks’, because one of the two target classes contains very few samples. These
peaks are not considered for the determination of highly effective forests.

With the two quality measures ’stability’ and ’effectiveness’ it is possible to find discretisation
thresholds for any given variable based on peak analysis. Ifthe measures lack remarkable peaks
in their values it is assumed that there are no inherent stable states in the examined variable.

3.1.5 Parameters of the threshold extraction technique

The impact of parameters of the threshold extraction technique has been studied empirically4.
Effects that have occured with the change of parameters are discussed in this subsection in theory.
It will be explained which data preprocessing techniques make sense and which do not.

4Those studies were performed with the programs given in Appendix A.
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Possible binning methods

The method for extracting thresholds depends strongly on the choice of candidate thresholds.
These are generated through a binning strategy. The effectsof binning strategies on the effective-
ness curve and the stability curve will be discussed here.

Uniform binning (or equal range binning) divides the range of given data points into intervals
of the same size. The boundary of these intervals are used as the candidate thresholds. The number
of bins is the only parameter of this method. This method gives candidates independently of the
distribution of the data points. In this way, it can be regarded as producing unbiased candidate
thresholds.

If uniform binning is used with a very high number of bins it leads to peculiar curves of the
stability measure: Due to the similarity of subsets produced with very close cut points, neigh-
bouring thresholds produce similar decision forests. Thereby, the stability score tends to be often
maximal. Only when there is a change in the composition of theforests the score drops. However,
rarely the composition changes drastically between two close neighbours. By comparing only
close neighbours it is thus no longer possible to see the progression of stability between larger
regions. But this is what makes up for the desired information in the stability curve. That is why
too many candidate thresholds are unfavourable for the introduced method.

Equal frequency binning divides the range so that each bin contains the same number of data
points. The boundary of the intervals (usually the arithmetic mean between the highest value in
the lower bin and the lowest value in the higher bin) are used as the candidate thresholds. The
number of data points per bin is the only parameter of this method. This method is dependant
of the distribution of the data points. Parts of the range with few data points will be shrunk into
one bin (or very few). This is unfavourable for the thresholdextraction method because, that way,
there might be too few candidate thresholds to detect rangesof the data that promote high scoring
forests. This is particularly a problem for bimodal distributions with unequally sized modes. In
Figure 3.6, equal frequency binning with 7 data points per bin (leading to four bins) is compared
against uniform binning with 4 bins. Equal frequency binning also delivers strange results if
missing values are replaced with single values (e.g. 0) because this can lead to identical intervals.
Because of the above reasons, equal frequency binning with alarge number of data points per bin
is unfavourable for the threshold extraction method. With asmall number, it exhibits the same
problem as uniform binning with too many bins.

Exhaustive binning is a special case of equal frequency binning: It is equal frequency binning
with one data point per bin. This method exhibits the problems of uniform binning with too many
bins. For the given threshold extraction method, it could only be used to produce a very smooth
progression of the effectiveness curve. Thus, exhaustive binning is not advisable for the use with
our technique.

If sufficient computational power is available, we propose to use uniform binning with an
average number of 5 data points per bin as a default.

Binning and normalisation

Common binning strategies each interact differently with normalisation procedures. For the
threshold extraction method, is is only important to examine whether data points will fall into
a different bin after the normalisation. For instance, if equal frequency binning is used bin mem-
berships will not be influenced by any normalisation method.Uniform binning, on the other hand,
is influenced by all normalisation methods. As uniform binning is the method of choice for the
threshold extraction technique, data normalisation has aninfluence on the result. In pratice, we
advise to use the threshold extraction technique on a normalised and a non-normalised data set.
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Figure 3.6: An problematic example case: In this multimodaldistributions, equal frequency bin-
ning delivers candidate thresholds only in the middle of themodes.

Then, approximately the same number of detected thresholdsin both runs is an indicator of a reli-
able result. In any case, the significance and meaning of thresholds has always to be subsequently
examined by physiological experimentation.

Impact of missing value strategies

Normally, missing attribute values are not a problem with decision tree methods because they can
simply be ignored by the induction criterion. Entropy measures can be calculated on the remaining
valid values. However, the threshold extraction techniqueuses (a dichotomised version of) each
attribute also as target attribute. And the target value hasto be defined in order to be usable for
induction. Samples with a missing value at the target attribute are not usable for an induction
algorithm. Hence, there can be a loss of information. But this loss only poses a problem if the
missing values mask out all samples that carry certain information which is not reflected in the rest
of the data. That is why data preprocessing with missing value strategies is generally not needed
for the threshold extraction method.

Strategies that map missing values to a single value over thecomplete data matrix are largely
neutral towards decision tree techniques. There cannot be asplit according to an attribute within
samples that have the same value for that attribute. Even if the replacement value lies within the
regular range of the attribute there will, at worst, appear afew extra splits (to cut out that value) in
the decision tree. Replacing missing values with a single value (e.g. 0) poses thus no problem for
the threshold extraction technique.

Strategies that replace missing values with various valuesdo bias the introduced method. The
impact of those strategies on results depends on the individual data matrix. It cannot be specified
generally.

Classification accuracy and comparison of decision forests

There are numerous proposals for improving classification accuracy of decision trees. However,
absolute classification accuracy is not an issue for the introduced threshold extraction method. The
decision forests are not used for classification. They are only compared relatively in classification
accuracy. The effectiveness measure does make use of classification accuracy. But the introduced
method only aims at identifying forest that have a higher effectiveness than their neighbours, no
matter what the absolute effectiveness is. That is why a simple decision tree learner (C4.5 in this
thesis) can be used for this purpose.
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Number of trees to be compared

The algorithm for evaluating decision forests offers a choice on the number of trees that are com-
pared from each forest. The range of that number is from 1 to the number of attributes of the data
matrix. The comparison is performed through comparing the top nodes of the trees. If there is a
similar top node in the neighbouring forest a score is granted.

The more trees there are compared from the forests the more likely there will be similar trees in
the neighbouring forest. Thus, the stability measure will rise with the number of compared trees.
For the maximum value, the curve will become a line. The effectiveness measure will drop at the
same time because only less effective trees are added with a rising number of comparisons. So,
the two curves become smoother with a higher number of comparisons but they loose identifiable
peaks. A low default value of 3 has proven to deliver feasibleresults.

3.2 Revealing combinatorial dependencies

Metabolite concentration data is a powerful source of information about metabolic activity in
organisms. The interpretation of such data is often done by means of correlation coefficients (see
Section 1.3). Such analysis has already led to some understanding of the connection between
metabolite concentration levels and metabolic pathways [149]. However, this approach is strictly
limited to pairwise and undirected relations. For the generation of more specific hypothesis, the
knowledge about dependencies between more than two variables at a time is of great importance.
To this end, we extend the correlation approach in this section.

3.2.1 Partial correlation

The basic idea of this approach is as follows: A correlation measure between two variables is
systematically calculated under different conditions of athird variable. That way, correlation
appearing only under certain conditions of other variablescan be observed. This procedure is
known from the literature as ’partial correlation’ [171]. It calculates the average of Pearson’s
correlation coefficients [81] for subsamples restricted tocertain assigned values.

An illustrative example for the gain of additional knowledge through partial correlation is
given in Table 3.1. Here, three variables (number of defective life jackets, number of survivors,
and boat size) are given for boat disasters. Then, the correlation coefficients are calculated between
all variables. We obtain a strong positive correlation between the number of defective life jackets
and the number of survivors. A straight interpretation would lead to the conclusion that fully
functional life jackets are bad for surviving in water. Of course, exactly the opposite is correct.

Let the data now be split into three subsets: one with the three samples from large boats, one
with the samples from medium sized boats, and one from small boats. If correlation is calcu-
lated again for each of the three subsets there is a strong negative correlation between defective
life jackets and the number of survivors. This illustrates how straight application of correlation
coefficients can lead to awkward interpretations.

The fixing of the third variable facilitates the recognitionof the true correlation. This procedure
is the above mentioned partial correlation.

3.2.2 Mutual information and conditional mutual informati on

An alternative measure to Pearsons’s correlation coefficient is the ’mutual information’ (MI) [166]
used in this section. Mutual information considers both linear and non-linear dependencies. Gen-
erally, results obtained through Pearson’s correlation are also detected with mutual information
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defective survivors boat size
life jackets

9 7 large
8 8 large
7 9 large
6 4 medium
5 5 medium
4 6 medium
3 1 small
2 2 small
1 3 small

Table 3.1: Example data on boat disasters.

[173]. If used only on selected subsets (as described above)literature refers to it as the ’con-
ditional mutual information’ (CMI) [40]. CMI can be considered as the information theoretic
analogon to partial correlation.

Conditional mutual information has some drawbacks concerning its numerical estimation as
will be elaborated later on. To date, scientists searching for combinatorial dependencies rely thus
on linear partial correlation [179, 101]. Because of the drawbacks it is not clear if MI really is
superior to linear correlation coefficients in the metabolic domain with its persistent lack of data
samples. However, the existence of non-linear correlations in metabolic data has been indicated
by recent data sets [99]. Given that there will be sufficient data samples in the near future, it is
opted for the use and examination of the potentially more expressive mutual information in this
thesis.

Numerical estimation of mutual information

As mentioned above, mutual information produces problems when it actually has to be calculated.
The MI between two variablesA andB is defined as follows [166]:

Definition 30 (Mutual Information)

MI(A,B) =

|A|
∑

i=1

|B|
∑

j=1

p(ai, bj) · log

(

p(ai, bj)

p(ai) · p(bj)

)

Here, p(ai, bj) specifies the joint probability of variableA and B taking the valuesai ∈ A =
{a1, ..., a|A|} and bj ∈ B = {b1, ..., b|B|}, respectively. The marginal probabilities arep(ai) =
∑|B|

j=1 p(ai, bj) and p(bj) =
∑|A|

i=1 p(ai, bj). |A| and |B| denote the number of assigned values
(size of the sample) of the respective variable.

The issue is now the numerical determination of the probability distributionsp. There are several
strategies for estimatingp from finite data [173]. All strategies exhibit problems whenthe given
data set is too small5. Although these strategies follow fundamentally different approaches the
results on empirical data seem to be rather similar [42]. Forthis reason and for simplicity, it is
opted for the most straightforward scheme in this thesis.

That is, the needed probabilities are simply estimated by their relative frequencies of occur-
rence (in statistics usually called the ’Laplace probability’ [53]). To be specific, the Laplace prob-
ability is calculated for intervalsai andbj as follows

5There are several opinions about what “too small” is [173].
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Definition 31 (Laplace Probability)

p(ai, bj) =

N
∑

k=1

Ωi,j(xk, yk, ai, bj)

N

whereN is the number of samples in the given data set and

Ωi,j(xk, yk, ai, bj) :=

{

1 if xk ∈ ai andyk ∈ bj

0 otherwise.

Ω is a function indicating if two given samples (xk andyk) lie in the range of specified intervals
(ai andbj) or not. The intervals (also often referred to as ’bins’) canbe obtained through various
binning strategies [131]. In analogy to the effects discussed in Subsection 3.1.5, any strategy other
than uniform binning will strongly bias the numerical valueof the probability distributionsp. In
order to avoid undesired bias, all the binning will thus be performed according to the uniform
binning strategy in this chapter.

Estimation of conditional mutual information

Conditional mutual information (CMI) introduces a third variable. This variable is called the
“conditional” variable, because it establishes a condition under which the MI of the other variables
is evaluated. The CMI is defined as [40]

Definition 32 (Conditional Mutual Information)

CMI(A,B|C) :=
∑

i,j,k

p(ai, bj , ck) · log
p(ai, bj |ck)

p(ai|ck) · p(bj|ck)

Note, thatCMI(A,B|C) is theaverageMI betweenA andB under all possible conditions of
C. For a numerical estimation analogously to that of Subsection 3.2.2 significantly more data is
needed to ensure a reasonable number of samples per interval. Further, the consideration of all
possible conditions ofC requires an exponentially high computational demand. To counterbalance
this effect, we introduce a new and more restricted form of CMI: the local CMI.

Definition 33 (Local Conditional Mutual Information)

lCMI(A,B|ck) :=

|A|
∑

i=1

|B|
∑

j=1

p(ai, bj |ck) · log
p(ai, bj |ck)

p(ai|ck) · p(bj |ck)

Here, the MI betweenA andB is calculated for just one specific conditionck. ck can be chosen
so that a sufficient number of samples satisfies this condition.

There are several strategies for the determination of such ack. Again, the binning strategies
can be consulted to obtain proposals [131]. In an analogous approach with ’selective linear cor-
relation’6, A. Tiessen [179] proposed to use a derivate of equal frequency binning. In this,ck is
always chosen so that half the samples satisfy the boolean condition ck. That way, there are only
two conditions (ck andnot ck) to be considered for each MI between two variablesA andB.

In order to evaluate more possible conditions (and thereby possibilities of hidden correlations),
another approach is used in this thesis: a derivate of uniform binning that excludes all conditions
ck which result in a subsample size of fewer thanw instances. The number of consideredck is
chosen as high as possible. It must be adapted to the available computational power. The more
power, the moreck can be considered.w is chosen arbitrarily. As a reasonable minimum to detect
real correlations, we propose an average of at least 5 instances per bin. A higherw should be
chosen if sufficient data samples were available.

6That is lCMI but with mutual information replaced by Pearson’s correlation coefficient.
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Figure 3.7: Local conditional mutual information on uncorrelated variables in synthetic data. The
thin dashed line indicates the MI between the target variables 4 and 5. The thick lines indicate the
MI in subsamples of objects with values of variable 1 being higher (lower) than the cut point.

3.2.3 Conditional mutual information on artificial data

To illustrate the effectiveness of lCMI, several syntheticdata sets have been created7. Each set
contains 200 data objects (observations) and between 5 and 10 variables8. This number of objects
is a size to be expected for metabolite concentration data inthe near future. For a demonstration,
a typical set is described and analysed in detail. Results onthe rest of the data sets are outlined
later.

A demonstration on a sample set

In the demonstartion set with 6 variables, the first three variables exhibit a partial correlation. That
is, variable 2 and 3 correlate positively if the (sub)sampleis restricted to objects where variable
1 takes values of only a certain range. In this case, the two ranges of variable 1 which reveal the
positive correlation between variable 2 and 3 are [0..5) and[5..10]. Variable 4 and 5 are linearly
correlated but independent of the other variables. Variable 6 is an independent random variable.
Variables 1-5 are uniformly distributed in the range of [0..10]. Variable 6 is uniformly distributed
in the range of [10..20].

Then, the lCMI is calculated for all possible combinations of variables in the data. For this
calculation, the number of evaluated cut points (calledck in subsection 3.2.2) has been set to
18. This high number is chosen here for demonstration purpose only9. The number of bins (as
described in subsection 3.2.2) is set to 6, a default value. The binning strategy is again uniform
binning.

In Figure 3.7, we see the lCMI between two uncorrelated variables under irrelevant conditions.
The overall lCMIs are low. We note that the value of lCMI riseswhen the size of the subsample
shrinks. This is again the same statistical phenomenon referred to in subsection 3.1.4 as the ’sparse
data peaks’. They cannot be interpreted as existent correlations.

7Such sets can be quickly created with the program given in Appendix A.
8The actual number of variables does not affect the progression of the curves because they only use three variables

at a time.
9The number of cut points adds linearly to the computing time.This is a considerable factor on data sets with many

variables where computation can take hours or even days.
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Figure 3.8: Local conditional mutual information on linearly correlated variables 4 and 5 in syn-
thetic data. Typically, the condition of any third variable(here variable 6) does not affect the
mutual information.
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Figure 3.9: Local conditional mutual information on partially correlated variables 2 and 3 in syn-
thetic data. The requirement of variable 1 being higher or lower than a threshold (here 5) causes a
abrupt rise or fall of mutual information. On partially correlated variables, the MI curves exhibit
this typical sigmoidal progression.

In Figure 3.9, we see the result on the nearly perfect10 partial correlation. The distinctive
feature here is the sigmoidal progression of the two curves.They suggest that there is a very
delimited range where the choice of a cut point leads to an abrupt rise or fall in lCMI. This indicates
in turn the existence of a higher mutual information (stronger correlation, respectively) in subsets
with a well defined condition of a third variable. To detect such a kind of correlation is exactly the
intent of partial correlation and conditional mutual information.

In Figure 3.8, we see the curves for two linearly correlated variables. Since the variables
are correlated over all observations there is no change in MIif the subsample is restricted to
observations with specific conditions.

10There is a small bias introduced through the actual random number generation and the limitation of the sample
size.
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Figure 3.10: lCMI on partially correlated variables with 50% noise.

Results on more data sets

The same analysis has been performed on numerous replications of data sets with partial corre-
lations in differing 3-way-combinations of the variables and with different parameters. The used
parameters for the generation of data were:

• the level of noise,

• the distribution of random variables (uniform, Gaussian),

• use of non-random variables (time dependent quadratic or linear functions),

• regular or partial correlations between variables,

• linear or non-linear correlations between variables.

The typical results on these data are outlined below. The tests were performed on more than
20 data sets yielding more than 1000 curves. For brevity, only the most notable curves can be
discussed here.

The level of noise showed a low impact on the curves. With increasing noise, the sigmoidal
curves tend to flatten at their saddle point. Up to approximately 50% noise, the sigmoidal progres-
sion is still visible11 (see Figure 3.10).

Artificial sets with uniformly distributed variables exhibited clearer results than Gaussian dis-
tributed sets if cut points are determined with uniform binning. Gaussian distributed variables have
a high density of samples around their peak value. If the cut points are chosen through uniform
binning each new cut around the peak value adds many samples to the subset while only few sam-
ples are added at the margin of the range (see also Subsection3.1.5). This leads to more drastic
changes in the composition of the evaluated subsets in the center of the range, which leads12 in
turn to more drastic changes in the mutual information. Thus, the curves tend to exhibit sooner a
sigmoidal progression than with uniformly distributed variables13. This may lead to the identifi-
cation of “false positives” (detected partial correlations that really are none). The determination
of cut points through equal frequency binning resolves thiseffect.

11Note that these results are achieved on an underlying “perfect” partial correlation; they cannot be expected in this
clearness on real data.

12unless the mutual information is the same in all sample subsets as with regular correlations
13On real data, we expect conditioning variables (those that indicate distinct states) not to be Gaussian distributed

(see also the discussion at the beginning of Section 3.1). That is why this problem is more of a theoretical nature.
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Figure 3.11: lCMI on non-linearly partially correlated variables with 15% noise.

The introduction of time-dependent linear variables had nodetectable effect on the curves.
Variables generated by a quadratic function led to a similareffect as with Gaussian distributed
variables.

In all test data sets, regular correlations could be identified through their curves which were
similar to Figure 3.8 (all MIs on the same level). Partial correlations always exhibited sigmoidal
curves unless the noise level was beyond 50%.

Most notable was the ability to clearly detect non-linear correlations. Pearson’s correlation
coefficient is, as a matter of principle, not sensitive to non-linear correlations (see Subsection
1.3.1). However, on non-linear correlations in noiseless test data, the coefficient still indicated
a moderate correlation (curves look similar to the “noisy” curve in Figure 3.10). On noisy data,
the correlation coefficient fails to indicate any partial correlation. Here, local conditional Mutual
information still provides a clear indication of non-linear partial correlations (see Figure 3.11).

We can thus note that the concept of lCMI is able to find high mutual information (correlation,
respectively) which is not detectable with simple MI and/orPearson’s correlation coefficient. Such
extra findings point to a dependence of the high MI on a specificcondition of a third variable. In
biological data, this would be an interesting observation as it can indicate interrelations between
biological components which come into effect only under certain preconditions. Such results can,
for instance, be used to verify hypotheses ofcombinatorialdependencies between components (as
indicated by metabolic pathways, for instance).

3.2.4 Dependency network inference

In the past, correlation measures have been used to reconstruct interrelations between variables of
metabolic data sets [58, 149]. These interrelations can be displayed in a graph (see Figure 3.13).
A feasible way to do this is to chart those relations whose correlation coefficients are larger than
an arbitrarily chosen threshold [94]. That way, the attention of an analyst is quickly drawn to the
more significant correlations.

In complex biological data, it is likely that some correlations are only exhibited under certain
conditions [179]. It is thus reasonable to test for them withan appropriate measure. For biological
data, this task has to date been tackled with the measure of partial correlation [171, 101, 179]. A
graphical visualisation method for such dependencies is given below.
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Figure 3.12: A conditional dependency triplet: Attribute Acorrelates with Attribute B under a
condition on Attribute C.

Assembling a network

The information available for visualisation are several triplets of the following kind: One at-
tribute’s value depends on another attribute’s value if a third attribute has a certain value. This
can be graphically represented as shown in Figure 3.12. Eachtriplet is then represented by a
mini-graph. The last step remaining is now to meaningfully integrate the mini-graphs into a single
graph.

The method proposed for this is straightforward: All attributes are put as vertices into the
graph. Then, triplets are selected that exceed a chosen significance threshold14. Finally, the edges
of all selected mini-graphs are copied to the graph. The result is a graph that depicts all the
significant conditional dependencies in the given data. Such graph can be regarded as a network
as introduced in Subsection 1.4.3.

Meaning of the network

A graph depicting simple correlation, as given in Figure 3.13, is a means to get a simple overview
of attribute interrelations [94]. All relations are undirected. No information can be given on the
cause and the effect of an indicated correlation [167]. Figure 3.14 shows a graph constructed
for the same data set but assembled from triplets. It now contains some additional and directed
edges. Those are the influences of some variables (which constitute a condition) on the correlation
between two other variables. Note that it is still not possible to recognise the cause or the effect
of the correlated variables, but itis possible to notice the effect of a conditional variable on the
correlation between two others. In real data, this direction is usually unambiguous15. The new
graph is a means to get a quick overview of combinatorial attribute interrelations.

The emerging question is: What do these interrelations meanin biological terms? The an-
swer depends much on the used data. For all biological expression data, the interrelations model
some form of regulation. But the method cannot determine whether this regulation is direct or
indirect or which physiological process is responsible forit. For metabolite concentration data,
we assume that interrelated metabolites are closely connected through a metabolic pathway. In
mixed gene expression and metabolite data, we suspect a gene-metabolite interrelation to indicate
the production of a specific proteine that in turn stimulatesthe production of a metabolite [92].

In either case, interrelations between concentration levels point to putative physio-chemical
connections. These can be examined more target-oriented ifthe options are reduced to a small and
auspicious set of possibilities.

14In the simplest case, this is an arbitrarily chosen correlation value. Alternatively, in Subsection 3.3.1, a method is
introduced that automatically yields significant triplets.

15When evaluating three attributes, the strength of the impact of a condition onto the correlation between two at-
tributes is quantifiable. In real data, there usually existsa strongest impact among all possibilities.
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Figure 3.13: Correlations of metabolites m1-m8 visualisedin a graph.
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Figure 3.14: Visualisation of simple and partial correlations between metabolites in a graph.
Metabolites m4 and m7 form a condition for two partial correlations.

This method is also advertised by Rice et al. In their recent publication “Reconstructing bi-
ological networks using conditional correlation analysis” [142], they use partial correlation to
assemble complete networks. The key difference of their approach to ours is the subsequently
introduced use and estimation ofconditional mutual informationinstead of partial correlation.

Features of using conditional mutual information

Partial correlation can find linear correlations between variables. In this section, conditional mu-
tual information has been introduced as a measure to detect also non-linear correlations. Except
for the fact that it might indicate a few more correlations (presumably the non-linear ones) it will
be applied in the same context as partial correlation. Hence, the graphs can be produced the same
way as for partial correlation.

When using CMI, there are several ways to enhance the graphical output of the described
process. One of them is the attribution of weights indicating the strengths of correlations to all
edges. Additionally, a comparison of partial correlation and conditional mutual information allows
for a discrimination between linear and non-linear correlations. These indices have been included
in the graph of Figure 3.15. This last graph is an enhanced means to get a quick overview of
combinatorial attribute interrelations and their properties.
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Figure 3.15: Visualisation of conditional mutual informations in a graph. Solid lines indicate
linear correlations, dashed lines non-linear correlations. The strengths of the lines indicates the
strength of the correlation.

3.3 A heuristic approach: Estimating conditional mutual informa-
tion through decision forests

However, the use of conditional mutual information entailsa few drawbacks. Straightforward
calculation of conditional mutual information has a cubical16 complexity in time [76]. A major
problem arises when it has to be calculated for large data sets (e.g. unprocessed microarray data
[see Chapter 1]). Thus, a faster way for its estimation wouldmake it better applicable to biological
data. A second problem of mutual information is its numerical estimation on small data sets. In
the following subsection, a heuristic approach borrowed from decision tree learning is developed
to circumvent both problems.

3.3.1 Exploiting decision tree heuristics

The primary purpose of decision trees is to provide a means for classifying data objects into
discrete target classes (see Chapter 2). This classification is based upon a set of selected attributes.
Each node in a tree represents a test on the value of an attribute, an edge corresponds to a possible
value for such an attribute, and a leaf specifies a possible target class.

Decision tree induction algorithms split their training data at each node into subsets of samples
with a specific range of values for one attribute. This range of values can also be regarded as a
condition satisfied by the corresponding data. Thereby, forsubsequent nodes, mutual information
is calculated only for samples verifying the specified condition (see also Subsection 2.2.4). That
is, again, local conditional mutual information (see Subsubsection 3.2.2).

A key characteristic of decision tree induction is that it computes mutual information for a
greedily selected third variable (see Subsection 2.3.5). This heuristics thus saves a lot of com-
puting time. Further, the C4.5 algorithm considers combinations of conditions of more than one
conditional variable if classification is not possible witha single condition. In this case, again,
computation is cut down due to the greedy heuristics. In the following sections, the heuristics of
C4.5 is used to quickly estimate promising relationships ofhigh conditional mutual information.

3.3.2 Making classifiers robust with decision forests

As already seen in Subsection 3.1.1, a known drawback of decision trees is their structural in-
stability against noisy data [24]. In view of enhancing classification accuracy, this can be coun-
terbalanced through the use of decision forests. Present techniques for generating forests tend

16See Appendix for details on the complexity.
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to converge the trees into some “average” of an optimal classifier (see Subsection 2.3.7). Here,
the focus is not on classification accuracy but on interpretability and diversity of the trees [7].
Preferably, each tree should present a new hypothesis of a conditional mutual information. This
makes sense in the biological domain because often more thanone biological cause (e.g. several
pathways) has an effect on an examined unit (e.g. a metabolite) [175]. We thus need a new tech-
nique adapted for generating forests of this kind. The algorithm for growing forests described in
Subsection 3.1.3 meets these requirements.

3.3.3 An illustrative example: Interpreting a decision forest

The algorithm for growing decision forests of Subsection 3.1.3 has been applied to the data used
in Subsection 3.2.3. The subsequent illustration is based on the demonstartion set. In this process,
all attributes have been used as starting attribute once. Toavoid any unintentional bias, each of
them was discretized with 5 candidate thresholds (obtainedthrough uniform binning). Thereby,
the forest growth algorithm has been applied 5 times for eachof the 6 attributes leading to 30 runs.

The trees with best error rates could be generated on the target attributes ’Variable 2’ and ’Vari-
able 3’ (both discretized with threshold 4.5). The first treeof the forest for the target ’Variable 3’
can be seen in Figure 3.16. This example best illustrates thestraightforwardness of interpretation
for the grown forests.

In Figure 3.16, the tree is only able to classify all objects correctly with the attribute ’Variable
2’ if attribute ’Variable 1’ takes certain values. That is the conditional dependency which has been
inserted into the synthetic data. After the algorithm has taken out the attribute ’Variable 1’ the tree
inducer (C5.017) does not find any good classifier (see tree in Figure 3.17). This points to the fact
that the dependency of tree 1 is truly conditional and that there is not any other dependency in the
data. Note that these are exactly the properties inserted into the synthetic data.

To examine the robustness of this approach, the same evaluation has been made on data with
noise: With a noise level of 10%, the trees remain the same18 but exhibit a classification error
of ∼5% (measured as mean of cross validation [see Subsection 2.3.3]). With 20% noise, the
trees obtain additional nodes and exhibit a classification error of∼10% (see an example in Figure
3.18). We observe that the additional node in Tree 3 is a first evidence of overfitting (see Subsec-
tion 2.3.1). With 30% noise, the trees become more complicated but still use (predominantly) the
attributes of the inserted dependency (an example tree is given in Figure 3.19). The misclassifi-
cation level here is about 15%. On data with 40% noise, eventually, C5.0 decides to back out on
simple one-node-trees with the only attribute ’Variable 1’. This means that any more complicated
decision tree would not improve classification accuracy, thus indicating that the conditional depen-
dency can no longer be detected within the noise. Yet, we observe that the misclassification level
of these one-node trees still remains below 20% and that the used attribute is one of the inserted
dependency.

To this point, it has been demonstrated that the decision tree heuristic is able to find the same
dependencies as conditional mutual information. The computational demand, however, is much
lower than that of calculating CMI. Additionally, the rigorous discretisation performed by C5.0
led to simple and expected results up to a level of 30% noise inthe data. It is therefore a feasible
approach for cutting down computational demands when trying to identify conditional dependen-
cies.

17C5.0 is the successor of C4.5. It offers several new features, e.g. boosting and misclassification costs, that have not
been implemented in C4.5 and a higher computational efficiency [138]. In the presented studies, C5.0 has only been
used with the same parameters that have been available in C4.5 already.

18except for insignificant deviations in the thresholds
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Figure 3.16: First tree of the forest grown on all attributes. Note that Variable 3 specifies the target
class.
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Figure 3.17: No good classifier can be induced on the same set without Variable 1. This one-node
tree has an error rate of 43.5%.
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Figure 3.18: The trees still indicates the partial correlation on the complete data but with 20%
noise.
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Figure 3.19: Even with 30% noise, the trees predominantly use the variables involved in the partial
correlation.
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Figure 3.20: Correlations between metabolites involved inthe reduction of Pyrimidine-nucleotide.
The network appears heaviliy interconnected due to a low visualisation threshold.
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Figure 3.21: The network gets closer to the underlying biological network [109] if only those
correlations are indicated whose value exceed a higher threshold.

3.3.4 Characteristics and discussion of the output structure

It has been mentioned in Section 1.4 and Subsections 2.4.2 and 3.2.4 that conditional and uncon-
ditional dependencies (e.g. correlation) are often visualised in graphs for further analysis. Graphs
obtained by such a combination of individual correlations sometimes become complex and little
interpretable (see Figure 3.20). The major factor for this is the number of correlations in the graph.
This leads to the question ofwhichcorrelations to include. The most straightforward approach to
handle this question is to assign a threshold of a correlation value which selects the correlations
to be depicted in the graph [94]. This way, insignificant correlations will be excluded. Such a
simplified graph can be seen in Figure 3.21

When calculating partial correlations (or conditional mutual information respectively) the net-
works can be further reduced to only those correlations which are conditional. Again, the decision
on which correlations are considered to be conditional is performed through a threshold.

Choosing significant triplets is similar: The trees in the forest can be ordered according to
their accuracy or efficiency (see Definition 29). Each tree can then be transformed into up to two
triplets. The most accurate or effective trees of a forest yield the most significant triplets. These
are in turn included in the graph. The level of significance that is accepted for the graph is again
established through a chosen threshold.

The transformation of trees into triplets is straightforward. As outlined in Subsection 3.3.1,
the test of the top node of a tree is the condition under which the tests of the second level lead
to a target class19. Thus, the top node gives the conditional variable and a subsequent branch the

19Trees with more than two levels have to be pruned to two levels. Trees with a leaf on the second level yield only
one triplet. One-node-trees do not yield a triplet.
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Figure 3.22: A two-level decision tree can be transformed into two triplets.

dependent correlation. Figure 3.22 illustrates this point. Note that the triplets are just an indication
for a high conditional mutual information.

In the above approaches, a graph is constructed to visualisethe correlations between examined
concentration variables (e.g. metabolites in Subsection 3.2.4). This sometimes misleads to the as-
sumption that they can be interpreted in a similar way to pathway charts [109]. However, these
graphs depict something fundamentally different. If the data is not gathered as a time series the
visualisations cannot represent a cause-and-effect relationship of the concerning variables [167].
And even if it were a time series it would still be hypothetical that visualised directions of inter-
dependencies represent a physiological cause-and-effect(see Subsection 1.6). But despite these
limitations it is still valuable for a researcher to know about dependencies between variables. That
is because there are too many possible interrelations to be examined in costly physiological exper-
iments. Correlations, and in particular partial correlations, point to a rather manageable number
of interrelations to be examined. These will include more potentially interesting relations than a
pure random selection of possible relationships [72, 149, 167].

3.4 Summary

In this chapter, the two main contributions of the thesis have been introduced in detail. Both are
discussed thoroughly and tested on validation data.

The method for detecting stable states is based on classicaldecision tree induction. It adopts
ideas from cluster analysis (for the comparison of sets) andgeneral learning theory (the adaptation
of Occam’s razor[115] for the calculation of effectiveness). It serves for the finding of values in
individual variables that indicate stable conditions in subsets of the rest of the variables.

The estimation of local conditional mutual information is an extension to a method taken from
classical information theory. It serves for finding combinatorial dependencies between variables.

Both methods have proven to work effectively on validation data. They are applied to molec-
ular biological data in the next chapter.
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Chapter 4

An experiment in the analysis of
metabolite concentration data for
potatoes

The methods described in Chapter 3 have been implemented andapplied to metabolite concen-
tration data. The first section of this chapter will illustrate the handling of the original software.
Meanwhile, more user-friendly implementations of the methods are available. Those are briefly
introduced in the appendix. The second section describes the application on yet unpublished
metabolite concentration data. The results are discussed in detail, and conclusions about the ex-
pressiveness of the method and the data are drawn.

4.1 A new tool: the provided software package

The software tools at hand need a JavaTM interpreter of version 1.1 or higher. Higher versions
are recommended because the new JIT (’just in time’ = compiling at run time) technology in-
creases the performance of the given tools up to 800%. Additionally, a basic PERLc©interpreter,
a LATEX compiler and a tool for displaying PostscriptTM (e.g. GhostView) are needed. Depend-
ing on the original format of the data, a spreadsheet tool (e.g. StarOfficeTM or EXCEL c©) or a
good text editor (e.g. EMACS) are helpful. All interactionsbetween the user and the supplied
applications are carried out in command line mode.

4.1.1 Implementation details on the state identifier

In this subsection, the state identifier will be briefly described from a technical point of view. The
state identifier consists of 4 JAVA classes:

• ’schwellsucher.class’ is the main class of the application. It interprets the command line pa-
rameters and reads the input data stream (STDIN) and an additional name file ’namen.buf’.
It then uses the other three classes to process the input. Output is written to the output data
stream (STDOUT), messages and errors are reported to the error data stream (STDERR).

• ’Entscheidungsbaum.class’ implements the decision tree induction algorithm C4.5. The
class supplies the object ’Entscheidungsbaum’ on which themethod ’c45’ can be called.
The class ’Knoten.class’ is used by it.

• ’Knoten.class’ supplies the object ’knoten’ of which decision trees are made of. The class
also implements the method ’bewerte’ for calculating the effectiveness (see Subsection
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3.1.4) of the (sub-)tree affixed to an object ’knoten’. Several trivial methods for setting
and reading the attributes of a ’knoten’ object are also supplied.

• ’Datenmatrix.class’ implements all stream input used by the application. It supplies the
object ’datenmatrix’ and the methods ’getNames’ and ’getFromStream’ for importing data
from a name file and the input stream (STDIN) and storing it into a ’datamatrix’ object.

For automatically evaluating all attributes of a data matrix an additional main class is supplied
that differs from ’schwellsucher.class’ only in the type ofoutput. This class is called ’ziehdur-
challe.class’. It generates LATEX output which can be used to graphically display the progression
of effectiveness and stability of thresholds in attributes. The PERL-Script ’ziehdurchalle.pl’ is
provided to correctly access this class.

4.1.2 Implementation details on tools for the calculation of MI

The tools for calculating mutual information and/or local conditional mutual information are tech-
nically described in this subsection. These tools both makeuse of the JAVA class ’Datenma-
trix.class’ that has been introduced in the previous subsection. These are the additional classes:

• ’mutual.class’ is a main class. It interprets command line parameters, reads the input data
stream (STDIN) and an additional name file ’namen.buf’. It then computes the mutual
information between two attributes of the input data matrixand writes the result to the
output data stream (STDOUT).

• ’coregulation.class’ is a main class. It interprets command line parameters, reads the input
data stream (STDIN) and an additional name file ’namen.buf’.It then computes the local
conditional mutual information between a given target attribute and all combinations of two
other attributes. If demanded, a sorting algorithm will sort the results according to gain of
local conditional mutual information against mutual information. The final result will be
written to the output data stream (STDOUT).

A further class ’filtered.class’ is supplied that behaves similar to ’coregulation.class’ but addition-
ally filters out insignificant cut points for attributes. Insignificant cut points are those that split
the data into two shares of which one contains less than 5% of samples from the number of all
samples.

For the graphical indication of conditional mutual information, another tool is supplied. The
tool is implemented in the class ’production.class’. It again uses ’Datenmatrix.class’ for reading
input from the input data stream (STDIN). It reads command line parameters and the name file
’namen.buf’. LATEX output is written to the output data stream (STDOUT).

4.1.3 Implementation details on the dependency inducer

In this subsection, the dependency inducer will be briefly described from a technical point of view.
The dependency inducer consists of 4 JAVA classes:

• ’baumsucher.class’ is the main class of this application. It interprets command line param-
eters, reads the input data stream (STDIN) and an additionalname file ’namen.buf’. It then
induces a decision forest based on the variable deletion method. The forest is in turn sorted
according to its classification accuracy. Output of the forest is written to the data output
stream (STDOUT).

• ’Entscheidungsbaum.class’ (see Subsection 4.1.1)
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• ’Datenmatrix.class’ (see Subsection 4.1.1)

• ’Knoten.class’ (see Subsection 4.1.1)

4.1.4 User scenario

The supplied software tools can be used together or separately on a given data matrix. A combined
use would start with the application of the state identifier.It will search for thresholds than can be
used as cut points for determining the target classes of the dependency inducer.

Preparing the data matrix

The most time-consuming step in the application of the giventools is usually the preparation of
the data matrix. In this description, it is assumed that the data matrix is available in the spreadsheet
data representation (see Section 1.2). Then an editor or a spreadsheet tool is used to cut out the
names of the attributes (that is usually the first line of the data matrix). These names have to be
put into a text file with the name ’namen.buf’. The contents must look similar to this:

’name1’
"name2"
name3

All symbols of the supplied character set on the available computer can be used. Each name is
separated from the next name by a carriage return. This format is a standard output format of
most spreadsheet tools. If the names are in a consecutive format (separated by white spaces or
TAB-stops) they will be interpreted as a single name. Thus, they have to be ’rotated’ in the editor
or spreadsheet tool first. Empty lines will be interpreted asempty names. If the file ’namen.buf’
is corrupt, too short or completely missing the supplied tools will substitute the unknown names
with generic numbers.

In a second step, the values of the matrix have to be saved intoa separate text file. This file
must look similar to this:

0.4 0.346 3.12
5.789 4,32 -0.12
3.5e+02 0 6

All display formats (including scientific numbers) can be parsed. Commas and points will be
equally interpreted as decimal separators. The numbers have to be separated by TAB-stops. The
lines (representing the samples) have to be separated by carriage returns. This is the default text
output format of most spreadsheet tools. Note that no textual annotations (including names of
samples) must remain in this file. If the data matrix is not completely consistent the tools will give
a warning and replace improper entries with 0s.

Applying the state identifier

For the application of the state identifier, the user best changes in command line mode to the
directory where the name file and the data matrix file are. For the following explanations, it is
assumed that the data matrix is in a file with the name ’datamatrix.dat’ and the names are in a file
’namen.buf’. Then, the following line will start the examination of an attribute:

java schwellsucher v w x y z <datamatrix.dat

The five letters are the parameters for the tool.
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• v is the number of the attribute to be examined. The first attribute is attribute 0.

• w is the number of generated threshold candidates.

• x is the number of trees that will be consulted to calculate the quality measures.

• y is the maximum number of trees that will be generated for each decision forest.

• z is the maximum depth of decision trees.

All parameters will be replaced by feasible default values if not specified on the command line.
In most cases, the target attribute is the only parameter to be given by the user. The last two
parameters (y and z) should not be changed unless the user possesses in-depth knowledge of the
implementation.

After starting the tool, the output will be written to the screen (unless redirected to a different
output medium). For each candidate threshold, the numerical values of the quality measures are
now given.

For a graphical and more intuitive output, a PERL script is supplied. In it, the number of
attributes of the data matrix and the file for the data matrix have to be specified by the user (see
code of that script). The script can then be used to generate aLATEX file that can in turn be compiled
into a graphical output. An analysis run could be conducted like this:

ziehdurchalle.pl >output.tex
latex output
xdvi output

Depending on the size of the data matrix and the used computer, a complete run will, in most
cases, last from seconds to several minutes. The resulting graphical output shows the curves of the
quality measures for all attributes. They can then be interpreted by the user.

Directly calculating MI and lCMI

A direct calculation of mutual information and local conditional mutual information is possible
with the supplied tool ’coregulation’. For the following example, the file of the data matrix ’data-
matrix.dat’ and the corresponding name file ’namen.buf’ areassumed to be in the current directory.
The following line will start the calculation of MI and lCMI:

java coregulation x y <datamatrix.dat

The two letters are the parameters of the tool.

• x toggles a sorting of the result [0=no sorting, 1=sorting].

• y specifies the target attribute. If none is specified all possible MI and lCMI are calculated.

The output is given as plain ASCII text. An output line is structured like this:

condition - no. of objects with condition - attribute 1 - attr ibute 2 - CMI -

An output line could look similar to the following example:

LDL<=78.8 27 R_STAT_N ADI_NEU 0.2612 0.01172 0.2494
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This line has to be interpreted in the following manner: For objects where the attribute value of
’LDL’ is lower or equal than 78.8 the mutual information between the attribute ’RSTAT N’ and
’ADI NEU’ is 0.2612. The mutual information between the same ’RSTAT N’ and ’ADI NEU’
onall objects is 0.01172, so the gain of lCMI against regular MI is 0.2494. The number of objects
that satisfy the given condition is 27.

If a sorting is desired the output lines will be sorted according to the gain of lCMI against MI.
Thus, the first output line would indicate the dependency with the highest mutual information that
can only be found for objects that satisfy a given condition.

At the time, the number of investigated conditions for the conditional attribute is fixed to 5.
Higher numbers have resulted in premature termination of the tool on the available computers.
The computational demand for the calculation of MI is so big that, even when considering only 5
conditions, available biological data sets could not be processed exhaustively.

Graphically displaying MI and CMI

A graphical display of the calculated mutual information and local conditional mutual information
can be obtained with the tool ’production’. For the following example, it is assumed that the file
of the data matrix ’datamatrix.dat’ and the corresponding name file ’namen.buf’ are in the current
directory. A graphical output will be obtained with the following commands:

java production x y <datamatrix.dat >plots.tex
latex plots
xdvi plots

The two letters x and y are the parameters of the tool.

• x is the number of cut points used for the determination of conditions.

• y is the target attribute.

The graphical output is mostly self-explaining. The dottedcurves (one made of little circles and
one made of little squares) indicate the progression of lCMIfor objects that have a conditional
attribute value greater (or lower) than the cut point. The solid line indicates the regular MI.

As opposed to the previous tool ’coregulation’, the number of evaluated conditions can now
be specified with the parameter x. But again, depending on theavailable machines and biological
data, numbers above 5 often result in crashes due to lack of memory.

Applying the dependency inducer

For the heuristic determination of high conditional mutualinformation, the tool ’baumsucher’
is supplied. The following example requires the file of the data matrix ’datamatrix.dat’ and the
respective name file ’namen.buf’ to be in the current directory. The subsequent command starts
the calculation:

java baumsucher w x y z <zwischen.dat

The letters are the parameters of the tool.

• w specifies the target attribute.

• x indicates the cut point for the binarisation of the target attribute.

• y gives the maximum tree depth.
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Figure 4.1: The graphical representation of the induced decision tree.

• z gives the maximum error accepted for the establishment of aleaf in a decision tree.

The cut point for the binarisation has to be chosen arbitrarily by the experimenter. A good choice
for such a point is a significant threshold, either to be foundvisually or with the previously intro-
duced tool for finding thresholds. The last two parameters y and z can be disregarded. They have
only a minor impact on the result; the default values were sufficient in all test cases.

The output of the tool are decision trees in a plain text description. A simple example tree is
given here:

Tree with depth 2 and 0 errors and a value of 1.0

*** LEVEL 1 ***
100 Objects at node with attribute "204_1894 " and threshold 20.00195
--> Branch SMALLER 20.00195 from level 1

*** LEVEL 2 ***
50 Objects in leaf with class 1

*** back to level 1 ***
--> Branch GREATEROREQUAL 20.00195 from level 1

*** LEVEL 2 ***
50 Objects in leaf with class 0

*** back to level 1 ***

The graphical representation of this tree can be seen in Figure 4.1. The trees are sorted according
to their accuracy. If the accuracy is the same for two trees then the efficiency is a secondary sorting
criterion. Through this sorting, the trees with most promising conditional mutual information are
placed on top of the output list.

4.2 Application of the introduced techniques on metaboliteconcen-
tration data

The software introduced in Section 4.1 has been used for the analysis of metabolite concentration
data. The data has been produced from potato leaves with the GC/MS procedure introduced in
Subsection 1.1.1 and explained in more detail in the following subsection. The tools facilitated
the retrieval of hidden states and a partial reconstructionof a dependency network.

The recovered states were mostly consistent with the assumed structure of the data. But beyond
that, a few very clear states revealed an until then unknown behaviour of some metabolites.

The dependency structure was again in major parts compliantwith the expected results. How-
ever, a larger portion of the output could also be identified as artifacts of noise.

The obtained results will be discussed in detail in the subsequent subsections.

4.2.1 Metabolite concentration data of transgenic potato

In this subsection, a detailed description is given of how the used data has been generated. This
description contains several specifications which are needed to reproduce the complete chain of
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the experiment. It is not necessarily essential for the understanding of the introduced data analysis
techniques. For that purpose, it would be sufficient to read Subsection 1.1.1 and ’the summary of
the experimental background’ in this subsection.

Biological source material

The seed of the potatoes (Solanum tuberosum L cv. Desirée) was obtained at the “Saatzucht Lange
AG” (Bad Schwartau, Germany). Plants were maintained in tissue culture with a 16 hour light and
8 hour dark regime on a specified medium (MS-medium1 defined by Murashige and Skoog [118])
with 2% sucrose. All plants were grown in the greenhouse under the same regime with a minimum
of 250µmol photons m−2 s−1 at 22◦C. All samples were taken under these conditions. The plants
were divided into two groups and transfered from tissue culture to hydroponics or quartz sand
cultures, respectively, 6 weeks after cutting.

Quartz sand cultures were used for optical evaluation of root development. Here, growth con-
ditions and fertiliser treatment were done as described in Leggewie et al. [100]. Essentially, plants
were grown in sealed pots filled with quartz sand and suppliedwith 0.5x Hoagland’s medium
(as defined in Röhm and Werner [148]). Conditions with a deprivation of Phosphate (-P condi-
tions) were generated by flushing the pots with demineralised water. Subsequently, in this water,
phosphate was replaced by KCI at the same molarity. The solution was then returned to the pots.

Plants in hydroponic cultures were grown in 1x Hoagland’s medium per 2l. The medium was
in light and tight plastic pots that were aerated. The solution was exchanged weekly. The plant
shoot was fixed in small openings in the lid of the pots using foam. Growth was allowed for 3
weeks in 1x Hoagland’s medium. Afterwards, the medium was changed according to the needs of
various experiments. Root samples were harvested, blotteddry, frozen in liquid nitrogen and kept
in a -70◦C freezer for no longer than a month.

Tissue homogenisation

Only samples from hydroponic cultures were used for metabolite concentration measurements.
Between 25g and 50g of tissue were ground in a mortar under liquid nitrogen into a fine powder
and collected in 2 ml Eppendorf tubes. Extraction of metabolites was done according to Rößner
et al. [149] with the following modifications:

• 420 l uptake buffer was mixed with the base material.

• The buffer was composed of

– 330µl methanol solution (100%) pre-cooled to -20◦C,

– 30µl Ribotol (Sigma 0.2mg/ml stock in methanol [100%]), and

– 30µl d4 Alanin (Sigma: 1mg/ml stock in water).

• After incubation for 15 mins at 70◦C under constant shaking, the samples were extracted
with 200l chloroform followed by an incubation at 37◦C for 5 mins.

• The extracted samples were mixed with 400l H2O and recovered from the soluble phase by
centrifugation.

• Finally, the tissue was dried in a centrivac without heatingthe sample.

1Basal salt mixture containing micro and macro elements withvitamins
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Derivation was achieved by modifying the protocol of Rößner et al. [149] in the following man-
ner: The dried sample was incubated for 90 mins at 30◦C in 40ml of methoxyaminhydrochloride
(20mg/ml in pyridine). Then, the solution was replaced by 70ml of MSTFA and 10ml of the fol-
lowing alkanemix: 3.7% (w) heptanoic acid, 3.7% (w) non-noic acid, 3.7% (w) undecanoic acid,
3.7% (w) tridecanoic acid, 3.7% (w) pentadecanoic acid, 7.4% (w) non-adecanoic acid, 7.4% (w)
tricosanoic acid, 22.2% (w) heptacosanoic acid, and 44.5% (w) hentriacontanoic acid. All ingre-
dients were redissolved in TFA at 10mg/ml total concentration. The subsequent GC/MS analysis
was performed according to the procedure given by Rößner etal. [149].

Chromatogram evaluation

The evaluation of the chromatogram was done using the following three methods:

• Manual evaluation as described in Rößner et al. [149]

• The Automated Mass Spectral Deconvolution and Identification System [127] with the fol-
lowing settings:

– resolution = medium

– shape requirement = low

– sensitivity = medium

– adjacent peak = 2

• The MassLab software [39]

Summary of the experimental background

The experiment described above led to the production of 73 tissue samples in which 117 metabolite
fragments could be detected. 37 of those samples came from plants that were treated to develop
only low concentrations of phosphate. This is often referred to as ’imposing stress’ by biologists.
The other 36 were left unaffected, leading to regular phosphate levels. Thereby, two distinct states
(“presence” and “absence” of phosphate) can be expected to exist in the data. Since phosphate
is an important factor in cell metabolism it is clear that concentrations of other metabolites are
affected by it. Additionally, it can be assumed that some of those concentration levels reflect
the above two states in some manner. Further, it could be presumed that some other metabolite
concentrations show an indirect response to the imposed stress. These assumptions are the initial
point for the following analyses.

Compiling data matrices from the source data

In this section, three data matrices are used for demonstrating the introduced techniques of this
thesis. Here, it will be described how they were compiled.

For each fragment that could be separated by the chromatography, the GCMS procedure gen-
erated numbers2. These numbers were combined into vectors, each vector containing the numbers
of all measured metabolite concentrations of one sample. Indoing so, it was made sure that the
scalars of all the vectors had the same order regarding the fragments. Thereby, the vectors could
be combined into a data matrix afterwards. The obtained datamatrix contained 73 samples with
concentration values (attributes) of 117 identified fragments. Subsequently, this matrix will be
referred to as the ’raw data matrix’.

2These also include missing values.
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The raw data matrix has later been replenished with 61 more samples, augmenting it to 134
samples. This bigger matrix has been treated with various methods. First, multiple fragments
belonging to the same metabolite were identified by a biochemist. Through this, 58 metabolites
could be determined that were represented by two fragments.These fragments were examined for
their difference in information.

Hierarchical cluster analysis with Pearsons’s correlation coefficient revealed that the fragments
belonging to the same metabolite were always strongly correlated. Dependency analysis (as in-
troduced in Subsection 3.2.4) showed that, for all fragmentpairs, one fragment could be replaced
by the other fragment without decreasing classification accuracy. That is why it is assumed that
the two fragments of any pair carry the same information. Thedata matrix was thus reduced to 59
concentrations by deleting the concentration of one fragment from each pair. This data matrix will
subsequently be referred to as the ’reduced data matrix’.

The third used data matrix was produced from the reduced datamatrix. In it, 18 samples were
deleted that exhibited minor experimental irregularitiesin the GCMS process. By this, it was tried
to obtain data with the least possible portion of experimental artifacts. This data matrix will be
referred to as the ’revised data matrix’.

Preparing the data matrices for numerical processing

Due to the complex experimental process, the generated datamatrices contained some missing
values (11.9% of all values). Where needed, these missing values have been replaced according to
inputation strategies introduced in Subsection 2.3.4.

First, the deletion strategy has been tested. Statistically, it is the best strategy because it does
not introduce any additional bias. Unfortunately, it resulted in too much loss of data leading to
very unstable results with the applied analysis techniques. It will therefore not be discussed in the
following.

The second strategy was inputation with averages of attributes. This strategy is a standard
strategy for coping with missing values if no more specific information is given.

The third strategy was inputation with 0. Statistically, this strategy is rather crude because it
maps all missing values independently of their context intoone value. When applying decision
trees, the mapping to a single value is not necessarily a bad choice. A single value for all missing
values means that the induction algorithm cannot place a split point within the missing values.
In this way, the values are predominantly neutral for the process. Even if the replacement value
is within the regular range of values it can at worst lead to one extra split (for cutting out the
replacement value) in a binary tree.

On the other hand, if the replacement value itself turns out to be the criterion for an important
split (possibly in the root node) it can be assumed that the cause leading to missing valuesis itself
important for the decision problem.

Other strategies (like several inputation strategies withaverages of predefined subsets of the
samples) have also been tried, but the results have not differed much from the above approaches.

4.2.2 Interpreting the discovered stable states

The method for finding stable states introduced in Section 3.1 has been applied to the given data
matrices. If not specified otherwise, the following parameters were used:

• The number of evaluated candidate thresholds per attributewas set to 15.

• The strategy used for generating candidate thresholds was uniform binning.

• The used algorithm for inducing decision trees was C4.5.
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Figure 4.2: A typical unspecific distribution of an attribute in the raw data matrix.
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Figure 4.3: One of the many attributes with notable outliersin the raw data matrix.

• For comparing decision forests, the first three trees were taken into account.

These parameters are the default parameters of the implemented method. Variations of them did
not lead to significantly different results. Some of those variations will be described later in this
subsection. The results on the particular matrices will be explained in detail in the following.

Application on the raw data matrix

The raw data matrix is characterised by attributes whose values do not exhibit common distribu-
tions. For example, one such unclear distribution is shown in Figure 4.2. Here, it is virtually not
possible to recognise one of the standard distributions (e.g. Gaussian or multi-modal). This is
neither possible for most other attributes.

Further, some attributes contain remarkable outliers. An example is given in Figure 4.3. These
outliers impede a straightforward and feasible binning of the scale. Thus, it is not possible to
quickly recognise a familiar distribution visually. As will be explained below, outliers also impair
the finding of thresholds. About 50% of the attributes contain such strong outliers.

Typically, the above characteristics lead to the application of normalisation strategies. This
has been performed and described in the next subsubsection.Here, the raw data matrix has not
been normalised in order to show empirically the effects on non-normalised data. The impact of
normalisation on the technique for finding thresholds has been described in theory in Subsection
3.1.5.

The application of the method for finding thresholds has led to 117 plots, one for each attribute.
Each plot contained two curves, one indicating the effectiveness and another one indicating the
stability of the thresholds. A typical example plot is displayed for succinic acid in Figure 4.4.
There, the two curves indicate bad thresholds in the first third of the range and good thresholds
in the other two thirds. The reason for this can be read off succinic acid’s distribution in Figure
4.5: Two outliers distort the range of that attribute. This has led to the evaluation of only four
thresholds in that part of the range where 97% of the samples are. Four points (thresholds) are not
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Figure 4.5: The distribution of succinic acid of the raw datamatrix.

enough to undertake peak analysis feasibly. Hence, the candidate thresholds have to be chosen
differently. As mentioned above, about half of the attributes exhibit this problem.

For obtaining candidate thresholds within that part of the range where the bulk of the samples
is, two measures can be used:

• Utilising a different binning strategy (in particular equal frequency binning or exhaustive
binning), or

• normalising the attribute to fit better into the range.

Both measures bias the quality and stability measure in a similar way (as explained in Subsection
3.1.5. So, a choice based on technical circumstances was made for normalising the data.

But despite the problems with outliers, it is still possibleto notice some very interesting at-
tributes. For instance, diaminovaleolactam develops clear peaks within the regular part of the
range (see Figure 4.6). This indication of a good discretisation threshold was not expected. It
cannot be found with univariate discretisation techniques.

Application on the reduced data matrix

The reduced data matrix contains only one vector of concentrations for each metabolite, 59 in total.
This makes it clearer to determine the behaviour of a specificmetabolite. Because of the problems
with outliers in the raw data matrix, the reduced data matrixhas additionally been normalised
according to the z-transformation.

The resulting matrix is characterised by about3 45% fairly normally distributed attributes (see
example in Figure 4.7). Further, about 10% of the attributesdevelop clear bimodal distributions.
Aminobutyric acid is one example for this (see Figure 4.8). However, roughly 45% of the attributes

3The determination of the distributions has been estimated visually.
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Figure 4.7: Glutamic acid exhibits a nearly normal distribution in the z-transformed reduced data
matrix.

do not develop a recognizable distribution. For those, it would be most interesting to see if they
yield a significant threshold with the new technique.

For the following calculations, missing values have been replaced with averages of attribute
values. The introduced technique for finding thresholds hasthen been applied to all attributes. The
results can be broken down into three categories:

• All attributes that exhibit a bimodal distribution developpeaks in the quality and stability
function for thresholds of concentration levels between the modes. This result is intuitive
because each mode can be assumed to represent a particular state of the plant. As example,
the distribution and scores of phosphoric acid are given in Figure 4.9. The list of the 7
metabolites of this category are:

1. Phosphoric acid

2. myo-Inositolphosphate

3. Aminobutyric acid

4. Aspartic acid

5. unidentified fragment 2043141

6. Diaminovaleolactam
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Figure 4.9: Phosphoric acid shows a bimodal distribution and clear peaks in the score functions.

7. unidentified fragment 1442430

• 23 attributes exhibit a nearly normal distribution. None ofthem develops significant peaks
in the score functions. As example, the distribution and scores of L-Homoserine are given
in Figure 4.10.

• The remaining 29 attributes have non-specific distributions. Of those, most do not develop
clear peaks in the score functions. These include some whereonly one of the scores has a
peak while the other remains low. But the following metabolites exhibit explicit peaks in
both scores at unexpected points:

1. Citric acid

2. Tyramine

3. Glucose-6-phosphate

4. unidentified fragment 1411385

As an example, citric acid is shown in Figure 4.11.

Out of the 59 attributes, 4 could be discovered that exhibit unexpected thresholds. For all
clearly distributed attributes, a threshold was clearly found (not found respectively) as it could be
expected from the distribution. Thus, we can note that the method is selective.
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Figure 4.10: Homoserine has an unimodal distribution and nopeaks in the score functions.
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Figure 4.11: Citric acid has an unclear distribution but develops an identifiable peak in both score
functions for thresholds at approximately -0.45.
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Figure 4.12: Diaminovaleolactam exhibits clearer peaks inthe reduced data matrix where missing
values have been replaced with 0 instead of attribute averages.

Application on differently preprocessed matrices

For testing the impact of another missing value strategy, the method has been applied to the re-
duced data matrix but with missing values replaced by 0. Statistically, replacing missing values
with the single value 0 is a rigorous difference to replacingwith averages. Still, the result was
generally very similar to that of the matrix with missing values replaced by attribute averages.
Only very few attributes showed noticeable differences. That is why more complicated strategies
have not been consulted.

In another run, the revised data matrix has been used. The revised data matrix has the same
number of attributes as the reduced data matrix but 18 samples fewer. The attribute values in the
remaining samples are the same as in the reduced data matrix.

Application of the method on this data matrix revealed very little differences in the result.
Obviously, the deleted samples have not carried any significant bias or the method is robust against
that bias.

Tests with variations of the parameters

The introduced method for detecting thresholds has a range of parameters which can be set by the
user. Their theoretical impact on results has been discussed in Subsection 3.1.5. In order to get
a more complete picture of how the parameters affect resultson empirical data, these parameters
have been varied.

First, the number of evaluated candidate thresholds was lowered to 5, the absolute minimum
for detecting a local peak. Because few data points can only describe simple curves, this resulted in
a loss of numerous peaks in the score functions. Thus, we notethat too few candidate thresholds
worsen the expressiveness of the curves. Though, strong peaks of the preceding applications
remained noticeable. For example, diaminovaleolactam (see Figure 4.13) still indicated a clear
peak.

Then, exhaustive binning (leading to 133 candidate thresholds on the reduced data matrix)
was tested. As a matter of principle, this resulted in very high stability scores. The quality curves
became smooth but kept the same trend as in the preceding applications. A result on diaminovale-
olactam can be seen in Figure 4.14.

Obviously, the stability curve can no longer be interpretedin the usual manner. It is arguable
that, for such a curve, the negative peaks have a significance. Those occur whenever there is a
change in the composition of the decision forests. This may indicate the change of a state. At
this point, it was not possible to track this feature back to the experimental origin. It is thus not
possible to give a satisfactory interpretation. Hence, binning strategies leading to very few or very
many samples per bin will not be considered any further.
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Figure 4.13: Diaminovaleolactam (in the raw data matrix) exhibits a clear peak even with very few
candidate thresholds.
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Figure 4.14: Diaminovaleolactam (in the raw data matrix) exhibits very fuzzy curves when exhaus-
tively evaluating all possible candidate thresholds. However, the effectiveness curve still indicates
regions of increased values.

Next, the number of trees to be compared against neighbouring forests was examined.
Roughly, when rising this number up to half of the given attributes (here about 30 of the 59),
the curves seemed to get more and more compressed into a smaller range while maintaining their
general progression. Values of more than half the number of attributes have led to a compression
so strong that the curves appeared linear. No peaks could be identified any longer. It could be
observed that a value between 3 and 10 delivered the most discriminable peaks.

Summarised, the parameters have only a moderate effect on the peaks. If they are left in the
default setting of the implementation the curves show usable results.

Evaluation of the results

The introduced method was able to find thresholds in metabolite concentrations where biologists
had expected them. In particular, those where thresholds inconcentrations of the metabolites re-
lated to the phosphate cell metabolism. Those thresholds are predominantly able to split the sam-
ples into the treated and untreated share. Further, the method indicated thresholds at points where
they can be identified visually in the distributions of concentrations. That is, the distributions ex-
hibit two modes and the thresholds are between them. Some of these thresholds have not been
expected by biochemists and could not easily be related to biochemical knowledge. But they can
also be detected with established discretisation techniques (e.g. Silverman’s test for multimodality
[168]). Additionally, the introduced method found thresholds in metabolite concentrations where
neither a biochemist expected them nor available discretisation techniques can find a cut point.
These findings point to putative new states. All such unexpected states may lead to interesting
new insight into a plant’s behaviour under the inflicted stress situation.
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4.2.3 Interpreting the dependency structure

In this subsection, the method for finding combinatorial dependencies introduced in Section 3.2
has been applied to the data of Subsection 4.2. The output will be described in the following.

Calculating partial mutual information in metabolite conc entration data

To understand the dependency structure between the attributes of a given data set, it would be
desirable to survey all conditional dependencies. Even when restricting conditional dependencies
to 1 condition for each possible pair of attributes there would still be, for n attributes, n!

(n−3)!
combinations. For the 59 attributes of the reduced data matrix, this would be 195054 possible
conditional dependencies. It is not possible for a regular scientist to visually review and compare
this number of curves. Furthermore, to obtain curves in the first place, a sufficient number of values
for the conditions has to be considered (at minimum 5 to see a possible sigmoidal progression).
For the reduced data matrix, this leads to a minimum of about 1million calculations of mutual
information. Since mutual information is complex to calculate the demanded computational power
is extremely high. Because of these two reasons, it has not been possible to survey conditional
dependencies on the available hardware with this approach.

Estimating high partial mutual information in the reduced d ata matrix

Instead of calculating all possible combinations of partial mutual information, the method of Sub-
section 3.3.1 has been applied. This heuristics reduces thecomputational demand to a fraction
of that of an exhaustive calculation. In the following descriptions, the names of metabolites will
be put into double quotes whenever they refer to the concentration level of that metabolite. The
names are left without quotes whenever the metabolites as such are meant.

For the estimation of high mutual information between combinations of attributes, it is nec-
essary to identify attributes that obviously express two states. These have to be dichotomised in
order to work as target attributes for a tree induction. For the following demonstration, three of the
attributes are used that have been detected in Subseection 4.2.2 to express two states. The choice
of attributes was motivated by the desire to examine the impact of the treatment to metabolites
known to be involved in the phosphate cell metabolism. The chosen attributes are:

• Phosphoric acid

• myo-Inositolphosphate

• Aminobutyric acid

These attributes show the clearest bimodal distributions (see again Figure 4.9 for the distribution of
Phosphoric acid). Thereby, it is possible to dichotomise these attributes with the help of thresholds
between the modes. We observe that these thresholds also happen to be the best thresholds detected
by the state identifier. For the calculations, the maximum depth of decision trees has been set to
3. The induced decision trees indicate the predictability of the chosen target attributes with the
remaining attributes.

For Phosphoric acid, the dichotomisation threshold has been set to -0.4, splitting the data ma-
trix into its 67 treated and 67 untreated samples. The three best4 trees of the forest for Phosphoric
acid are shown in Figure 4.15. There, it can be seen that the attributes having most predictive
power for Phosphoric acid are “unidentified fragment 1331769”, “myo-Inositolphosphate” and
“Glucose-6-Phosphate”. These carry the highest mutual information with Phosphoric acid. All

4regarding classification accuracy
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Figure 4.15: Three simple trees that can predict “Phosphoric acid” fairly accurately. The boldfaced
numbers indicate the number of evaluated training objects at the respective node.

of them have clear bimodal distributions. Based on these trees, it can be assumed that the modes
reflect the same states of the original plant in all mentionedattributes. From a biochemical point
of view, this makes sense as all of these phosphates are involved in the same (and artificially per-
turbed) cell metabolism [175]. The “unidentified fragment 133 1769” is something unexpected.
Obviously, it is closely related to the phosphate cell metabolism. This evidence can help to identify
the corresponding metabolite.

Further, the trees indicate attributes that help to predictthe target attribute but only under a
given condition. In the first tree, these are “L-Asparagine”and “Aconitic acid”. These carrycon-
ditional mutual information with Phosphoric acid. The condition is acertain level of “unidentified
fragment 1331769”. This result suggest a link between Phosphoric acid and two metabolites that
are not directly involved in the phosphate cell metabolism.A physiological examination of this
coherence is yet planned to be undertaken by biochemists [98].

In the second and third tree, there are again attributes indicated to carry conditional mutual
information with Phosphoric acid. Here, it has to be pointedto the low significance of those
attributes. Three of them are responsible for only 5 or fewersamples to be predicted correctly.
It is highly probable that these interrelations are mere artifacts of noise in the data. However, it
is a delicate process to determine a clear significance threshold. At this point, it was decided to
accept only attributes responsible for the correct classification of at least 10% of the samples. This
leaves “unidentified fragment 2281433” under a condition of “Glucose-6-phosphate” to be the
only valid conditional mutual information of the last two trees.

More combinations carrying conditional mutual information with Phosphoric acid can be
found in the rest of the decision forest. Valid ones are:

• “Mannose” under a condition of “unidentified fragment 3921777”,

• “Mannose” under a condition of “L-Isoleucine”,

• “Mannose” under a condition of “L-Leucine”,

• “Glycerol-1-phosphate” under a condition of “unidentifiedfragment 2921810”,
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Figure 4.16: “Myo-Inositolphosphate” is clearly predictable with the same attributes as Phosphoric
acid.

• “Glycerol-1-phosphate” under a condition of “unidentifiedfragment 1442430”,

• “Glycerol-1-phosphate” under a condition of “unidentifiedfragment 2842691”,

• “Glycerol-1-phosphate” under a condition of “unidentifiedfragment 1411385”,

• “unidentified fragment 2451660” under a condition of “Glycerol-1-phosphate”,

• “unidentified fragment 1442430” under a condition of “L-Asparagnie”,

• “Allantoin” under a condition of “unidentified fragment 2042844”,

• “Aconitic acid” under a condition of “4-Aminobutyric acid”,

• “Glucose” under a condition of “Aconitic acid”,

• “L-Leucine” under a condition of “unidentified fragment 2431506”,

• “L-Tyrosine” under a condition of “L-Threonine”, and

• “Aminobutyric acid” under a condition of “L-Tyrosine”.

Two metabolites stand out in the above table. Most notable isthe predictiveness of “Glycerol-1-
phosphate” only under the conditions of several unidentified metabolites. It suggests a detachable
link between “Phosphoric acid” and “Glycerol-1-phosphate”, possibly a metabolic pathway that is
only activated by metabolism involving the unidentified metabolites. Furthermore, the predictive-
ness of “Mannose” under conditions of “Isoleucine”, “Leucine”, or an unidentified fragment hints
to the relatedness of the “unidentified fragment 3921777” to the leucines. These suggestions have
yet to be examined by biochemists.

For myo-Inositolphosphate, the dichotomisation threshold has been set to -0.36, splitting
the data into its treated and its untreated share. The three best trees for myo-Inositolphosphate
are shown in Figure 4.16. As expected from the high mutual information between “myo-
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Figure 4.17: “Aminobutyric acid” shows to be less closely related to Phosphoric acid than ex-
pected.

Inositolphosphate” and “Phosphoric acid”, the attributesfacilitating a prediction of “myo-
Inositolphosphate” are very similar to those of “Phosphoric acid”. The reoccurring attribute
“unidentified fragment 3451819” will be exempt from interpretation according to the previously
introduced 10% rule. It seems to predict only a small share ofsamples that contains a certain form
of noise.

For Aminobutyric acid, the dichotomisation threshold has been set to -0.55, again splitting
the samples into two equal shares. The three best trees for Aminobutyric acid are shown in Fig-
ure 4.17. The used dichotomisation threshold was indicatedby the method for finding thresh-
olds. It divides the samples into two equal sized shares. Yet, the induced decision forest uses
completely different attributes for the prediction than the forests of “Phosphoric acid” and “myo-
Inositolphosphate”. On account of the method, this indicates a shift (however slight) of the pre-
dicted states. Obviously, “Aminobutyric acid” does not directly reflect the ’absence’ and ’pres-
ence’ of Phosphoric acid. Instead, it points to an indirect connection to the stress inflicted on
the plants. That connection seems to be associated to “L-Proline”, “Galactonic acid” and “L-
Tyrosine”. This constitutes a new factor to be examined moreclosely in biochemical terms.

Assembling a dependency network

Besides directly interpreting the decision forests this information can also be displayed and anal-
ysed in a graph. This is particularly helpful if a quick overview of the conditional dependencies is
desired. This has been done for “Phosphoric acid” as displayed in Figure 4.18. The used threshold
for the significance was an absolute error number of 10 (that is an accuracy of 0.925). The infor-
mation included in the graph is the same as it can be directly read off the trees. Only the accuracy
is not included in the graph for the matter of a simpler visualisation. The graph is thereby a means
for a scientist to quickly see the conditional dependency structure around one (or more) selected
attribute(s). If including the dependency structure of several attributes the graph can be regarded as
a dependency network. Note that this network is only reflecting high conditional mutual informa-
tion. It does not directly propose any biochemical reaction5. It only proposes putative interesting
dependencies to be examined in more detail.

Here, it can be observed that Phosphoric acid interrelates with myo-Inositolphosphate and

5Rice et al. also stress this limitation in their recent publication [142].
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Figure 4.18: The conditional dependencies involving phosphoric acid. Edges with two arrows
indicate high conditional mutual information, edges that end in a bar indicate a condition of the
originating attribute for the high mutual information.

Glucose-6-phosphate. These interrelations correspond directly with known biochemical processes
[175]. More conclusions have yet to be drawn by a life scientist.

4.2.4 Summary of the analysis

The previously introduced methods have been tested on data stemming from a GC/MS exper-
iment. This data has been preprocessed in various ways, including some expert adjustments.
Through this, several different data matrices have been obtained. The two methods have then been
consecutively applied to these matrices.

The state identifier showed only moderate sensitivity to theused preprocessing. Indicated
results remained fairly stable with the different matrices. The results itself disclosed expected
and unexpected coherences. Among the unexpected results were the exhibition of unknown states
in four metabolite concentrations. These findings point to putative new states to be examined in
further experiments.

After the detection of states, some of the output thresholdshave been used as input for the de-
pendency inducer. Several interconnections between the examined metabolites and other metabo-
lites were discovered. Most of them had been known from biochemical knowledge and can also
be found through simple correlation analysis. But some metabolites clearly exhibit only a condi-
tional impact to the experimental treatment. These resultsare new and cannot be detected with
conventional analysis tools.

Summarised, the two introduced methods revealed properties that have not been known be-
fore. Thus, the given tools proof to be an interesting new approach in the analysis of biological
expression data.
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Concluding remarks

Summary

In this thesis, we have developed new methods for efficient data analysis based on decision tree
induction. The methods have been validated on synthetic data and have then been applied to
Systems biology data. Results on metabolite concentrationdata have led to the discovery of known
structure and to the gaining of new biological insight.

At first a method has been introduced for detecting significant thresholds. This method is based
upon a comparison of decision forests, a new concept in the scientific community. Applied to
metabolite concentration data of potatoes, the resulting thresholds disclosed states in the examined
organism. Some of these states reflect known properties bound to the physiological experiment,
others point to putative new knowledge.

In a second step, conditional mutual information has been introduced for the search of combi-
natorial dependencies in biological data. The method was discussed and compared against com-
parative methods. While conditional mutual information has long been known, it has never before
been applied to Systems biology data before. This is mostly due to the numerical problems that
arise when calculating mutual information on large data sets.

That is why, in a third step, conditional mutual informationhas been estimated with the help of
decision tree heuristics. In doing this, the method for extracting thresholds can be used to supply
a required parameter: the cut point. Estimating conditional mutual information has been validated
on synthetic data and then been applied to metabolite concentration data. The application resulted
in new insight into the interrelations of metabolites in potatoes. Ultimately, a limited dependency
network could be reconstructed which allowed for a quick overview of interdependencies around
phosphoric acid in the examined organism.

Both the extracting thresholds method and the estimating conditional mutual information
method have been implemented in software tools. With them, it is possible to perform the analysis
on ordinary desktop computers.

The two approaches are based on new ideas. However, their goal of understanding interrela-
tions between biological components in an organism is not new. It has been pursued by many other
scientists with numerous different techniques. A direct and fair comparison of these techniques
is not yet possible because of their highly diverse outputs.In the end, it is always up to a human
scientist to interpret and evaluate the output of a given tool.

In this context, the methods proposed here can be regarded asyet another way to extract valu-
able information from given data. It is certainly not a comprehensive approach for reconstructing
biological networks. But the methods have provided some favourable results for this purpose that
could not have been found with other methods in this field. This makes them a valid choice for the
analysis of Systems biology data.
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Future work

The threshold extraction method introduces a completely new concept: the establishment of a dis-
tance measure between decision forests. To a certain extentthis has been examined in this thesis.
However, it was not possible to solve all the problems and survey all the parameters involved in-
depth. One remaining problem, the sparse data peaks, has been mentioned. This must be solved
before the technique can be completely automated.

Other aspects which could lead to clearer results also have to be examined in more detail.
Above all, the question of which type of classifier is best forestablishing a distance measure has
to be sufficiently treated. The main reason decision trees were chosen for this purpose in this thesis
is that the results are interpretable and can therefore be easily be followed by a human. It could be
that regression models provide a better framework for developing a significant distance measure.
In this respect, the thesis has to be seen as just a starting work.

Finally, it has to be noted that the practical value of the introduced techniques depends heavily
on the availability of a convenient computer tool. That is why the original tools have recently
been furnished with better user interfaces. This work is very important, as a wide circulation of
the methods offers the only chance for a discussion amongst life scientists. This discussion is
essential for the further development of the techniques. These tools are now publically available
on the author’s website.
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Chapter 5

Appendix

5.1 Novel tools for the application of the introduced techniques

This section briefly introduces two user-friendly tools that have been implemented after the com-
pletion of the previously presented studies. Both tools arewritten in JAVATM and are thus
platform-independent. The screen shots are taken from a Windows based system.

Combinatorix

This computer tool allows for the calculation of Conditional Mutual Information as explained
by T.M. Cover and J.A. Thomas [40]. That is the systematic calculation of mutual information
under different conditions of a third variable. The tool needs a data file on which the different
combinations of conditions and correlating variables are evaluated. It produces a result file that
can either be viewed graphically within the tool or textually with a text editor. A once produced
result file can be viewed independently of the data file.
In Figure 5.1, we see the initial screen ofCombinatorixwhich allows for the setting of five param-
eters. The parameters are:

• Number of cut points: The number of cut points determines thenumber of conditions under
which the Mutual Information between the correlating variables is calculated. For any con-
ditioning variable and any cut point, the data set is split into a subset in which the value of
the conditioning variable is below the cut point, and a subset in which the value is above the
cut point. The Mutual Information is then calculated for both subsets.

• Target variable 1: This fixes the first correlating variable of any Mutual Information. If it is
set to -1 all variables will be used. On larger data sets, a comprehensive calculation quickly
exhausts the memory.

• Target variable 2: This fixes the second correlating variable of any Mutual Information. If
it is set to -1 (or “all”) all variables will be used. For very large data sets, a comprehensive
calculation may not be possible due to lack of computer memory. So, Target 2 can be limited
to one variable. For exploratory analyses, Target 2 should tried to be set to “all”.

• Fix condition: This fixes the conditioning variable. If the checkbox is activated the condi-
tioning variable is specified through the adjacent item. This allows for a further reduction
of memory demand or a more target-oriented analysis.

• Sorted Output: This toggle initiates a sorting of all calculated Mutual Informations accord-
ing to the gain of Mutual Information under a certain condition as compared to the Mutual
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Figure 5.1: The initial screen ofCombinatorix.

Figure 5.2: A sigmoidal progression of mutual information along several conditions.

Information on the complete data set. This feature is only feasible if the result buffer is
viewed with a text editor. It has no effect on the graphical display. For exploratory analyses,
the sorting allows for a quick finding of significant Conditional Mutual Informations.

Figure 5.2 depicts the graphical output window. It is possible to browse through all results with
the ”Prev” and ”Next” buttons. Here, we can see that the mutual information between “Threonic
acid” and “Ribose methoxyamine” drops (rises respectively) drastically when the data set is split
at a threshold of approximately 0.134 for “Mannose-6-phosphate methoxyamine”. This is a very
good example for a trulyconditionalmutual information.

With a click into the graphical display another window pops up that displays the scatter plots
of the current variables. The first plot contains those objects where the conditioning variable is
above the threshold closest to the click, the other plot contains the remaining objects. In Figure
5.3, we see the plots for the above mentioned constellation.

Identifix

This computer tool allows for the identification of significant thresholds as introduced by A.Flöter,
J.Nicolas, T.Schaub and J.Selbig [61]. The tool needs a datafile on which several thresholds are
evaluated through two quality measures. It produces a result file that can be viewed graphically.
A once produced result file can be viewed independently of thedata file.
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Figure 5.3: The scatter plots of the correlating variables for the particular threshold where MIs
rise and drop.

Figure 5.4: The initial screen ofIdentifix.
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Figure 5.5: Progression of the quality measures along several thresholds. Thresholds 1.1 and 1.34
are identified as significant.

Figure 5.6: An example forest for a specific threshold containing 1-leaf-trees only.

Figure 5.4 displays the initial screen ofIdentifix. Both needed parameters are set here. These
are the number of desired cut points and the number of trees accounted for when calculating the
quality measures.

The number of cut points determines the number of thresholdsthat will be evaluated for each
variable. Note that the computing time will linearly increase with the number of desired cut points.
A minimum of 5 cut points is needed for feasible results. A number of 15 and higher is proposed
for more convenient analyses.

The desired number of trees determines the number of trees that will be used in comparisons
for the quality measures. It also determines the number of induced trees for each threshold (it has
been fixed to the double of the number of used trees). That way,this parameter adds linearly to
the computing time.

Figure 5.5 shows the graphical output window. In this display, it is possible to browse through
all results with the ”Prev” and ”Next” buttons. The pink curve indicates the progression of the
stability criterion, the blue curve indicates the progression of the effectiveness (quality) criterion.

A click at a specific threshold will pop up a new window that displays the actual decision
forest that has led to the quality scores. In Figure 5.6, sucha forest is displayed.
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5.2 Complexity of the calculations

Fora attributes,s objects in the sample andc conditions (= thresholds or cut points), the follwing
table gives the time complexities of the three used methods (as implemented in this thesis):

Method Time complexity

calculating lCMI a3 ∗ c2 ∗ s2

estimating high lCMI a ∗ c ∗ s ∗ log(s)

evaluating thresholds a2 ∗ c ∗ s ∗ log(s)

5.3 Code for generating artificial data

This section contains the generic code for the production ofpartially correlated data. The depen-
dencies can be altered by changing the assignments of valuesto variables.

// Generates data with specific dependencies between attri butes
// File: generate.java
// Invokation: java generate
// Output to StdOut
// Andr é Fl öter 020205 (130203)

import java.io. * ;
import java.math. * ;
import java.util. * ;

public class generate{

static int samples = 200;
static float noise = 60; // percentage of noise

public static void main(String[] args) {

float b,c,d,e,f,g;
Random r = new Random();
float noise1=0f,noise2=0f;

for (int a=0; a<samples; a++) {
b = ((float)a * 10/(float)samples-4.5f) * ((float)a * 10/(float)samples-4.5f);
c = 20f-a * 10f/(float)samples; // linearly decreasing number
d = 20f * r.nextFloat(); // number between 0-20
e = 20+20f * r.nextFloat(); // number between 20-40
f = 20f * r.nextFloat(); // number between 0-20
g = 20f * (float)r.nextGaussian(); // Gaussian distributed number
noise1 = noise * 20f * r.nextFloat()/100f; // noise variable
noise2 = noise * 20f * r.nextFloat()/100f; // noise variable
if (e>30f) { System.out.print(20f-d+noise1+"\t"); } // pa rtial dependence
else { System.out.print(40f-d+noise1+"\t"); }
System.out.print(e+noise2+"\t"); // condition (uniform random)
System.out.print(d+"\t"); // independent (uniform rando m)
System.out.print(b+"\t"); // time-dependent (parabola)
System.out.print(f+"\t"); // independent (uniform rando m)
System.out.print(c+"\t"); // time-dependent (linear)
System.out.println(g); // independent (gaussian random)

}
}

}
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