
 

 

 

Tina Trautmann 

 

 

Understanding global Water Storage Variations 

using Model-Data Integration 
 

 

 

 

Cumulative dissertation  

for the degree ‘doctor rerum naturalium’ (Dr. rer. nat.) 

in Hydrology 

 

 

 

submitted to the 

Faculty of Mathematics and Natural Sciences 

Institute of Environmental Sciences and Geography 

at the University of Potsdam, Germany 

 

prepared at the 

Max-Planck-Institute for Biogeochemistry, Jena 

Department of Biogeochemical Integration 

 

 

 

 

 

Date of Disputation: 15th September 2022  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AUTHOR  
Tina Trautmann  
Max-Planck-Institute for Biogeochemistry, Jena, Department of Biogeochemical Integration  
tina.trautmann0691@gmail.com  
 
REVIEWERS  
Prof. Dr. Andreas Güntner (1st Supervisor)  
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany and  
Institute of Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany  
Dr. Martin Jung (2nd Supervisor)  
Department of Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, 
Germany  
Prof. Dr. Marc F. P. Bierkens  
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands 
 
Published online on the 
Publication Server of the University of Potsdam: 
https://doi.org/10.25932/publishup-56595 
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-565954 



I 

 

Acknowledgements 

Acknowledgements  
 

The last 5 years have been an exciting, challenging, fun and sometimes rough journey that has literally 
taken me around the globe. There are many people who have accompanied me on my path, be it just for 
a while or for the entire time, and for whom I am more than grateful. 

First and foremost, there are my parents, grandparents and family, who have supported me constantly, 
even though they didn't quite understand what exactly I was doing. 

Martin, who sometimes understood even better than I did what I was doing, and who taught me how to 
‘condense and concise’ and be pro-active.  

Andreas, who provided the often-needed objective view from a distance.  

Sujan, who helped me navigate the rough seas with SINDBAD.  

Hyungjun, who welcomed me kindly to experience the other side of the world.  

BGI and the people at the institute, who contributed to a great working atmosphere, scientific discussions, 
lively meetings, relaxing coffee breaks and memorable summer parties.  

All the colleagues, who have become amazing friends along the way, and who would always be up for 
awkward lunch conversations, ice cream dates and hikes, BBQs and brunches, morning swims and coffees, 
Ingwer-shots and dancing through nights.  

Especially the book club, for thinking of creative ideas to escape pandemic boredom and for making me 
feel at home. S, for the artistic contribution to this thesis. JT, for always opening their home and garden, 
spontaneous Fenster-Schnapps, game nights and dinners, and making these years a real fun experience. 
And last but not least, the best office mate, for the constant supply of coffee, sliced fruit, getting me 
addicted to Sudokus and standing this end-of-thesis madness with me. 

 

Danke euch. 

 

 

 

  



II 

 

 

  



III 

 

Summary 

Summary  
 

Climate change is one of the greatest challenges to humanity in this century, and most noticeable 
consequences are expected to be impacts on the water cycle – in particular the distribution and 
availability of water, which is fundamental for all life on Earth. In this context, it is essential to better 
understand where and when water is available and what processes influence variations in water storages.  
While estimates of the overall terrestrial water storage (TWS) variations are available from the GRACE 
satellites, these represent the vertically integrated signal over all water stored in ice, snow, soil moisture, 
groundwater and surface water bodies. Therefore, complementary observational data and hydrological 
models are still required to determine the partitioning of the measured signal among different water 
storages and to understand the underlying processes. However, the application of large-scale 
observational data is limited by their specific uncertainties and the incapacity to measure certain water 
fluxes and storages. Hydrological models, on the other hand, vary widely in their structure and process-
representation, and rarely incorporate additional observational data to minimize uncertainties that arise 
from their simplified representation of the complex hydrologic cycle. 

In this context, this thesis contributes to improving the understanding of global water storage variability 
by combining simple hydrological models with a variety of complementary Earth observation-based data. 
To this end, a model-data integration approach is developed, in which the parameters of a parsimonious 
hydrological model are calibrated against several observational constraints, inducing GRACE TWS, 
simultaneously, while taking into account each data’s specific strengths and uncertainties. This approach 
is used to investigate 3 specific aspects that are relevant for modeling and understanding the composition 
of large-scale TWS variations. 

In the first study, the focus is on Northern latitudes, where snow and cold-region processes define the 
hydrological cycle. While this study confirms previous findings that seasonal dynamics of TWS are 
dominated by the cyclic accumulation and melt of snow, it reveals that inter-annual TWS variations on 
the contrary, are determined by variations in liquid water storages. Additionally, it is found to be 
important to consider the impact of compensatory effects of spatially heterogeneous hydrological 
variables when aggregating the contribution of different storage components over large areas. Hence, the 
determinants of TWS variations are scale-dependent and underlying driving mechanism cannot be simply 
transferred between spatial and temporal scales. These findings are supported by the second study for 
the global land areas beyond the Northern latitudes as well.  

This second study further identifies the considerable impact of how vegetation is represented in 
hydrological models on the partitioning of TWS variations. Using spatio-temporal varying fields of Earth 
observation-based data to parameterize vegetation activity not only significantly improves model 
performance, but also reduces parameter equifinality and process uncertainties. Moreover, the 
representation of vegetation drastically changes the contribution of different water storages to overall 
TWS variability, emphasizing the key role of vegetation for water allocation among different storages, 
especially between sub-surface and delayed water storages. However, the study also identifies parameter 
equifinality regarding the decay of sub-surface and delayed water storages by either evapotranspiration 
or runoff, and thus emphasizes the need for further constraints hereof. 

The third study focuses on the role of river water storage, in particular whether it is necessary to include 
computationally expensive river routing for model calibration and validation against the integrated GRACE 
TWS. The results suggest that river routing is not required for model calibration in such a global model-
data integration approach, due to the larger influence other observational constraints, and the 
determinability of certain model parameters and associated processes are identified as issues of greater 
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relevance. In contrast to model calibration, considering river water storage derived from a routing scheme 
can already significantly improve modelled TWS compared to GRACE observations, especially in tropical 
regions and Northern lowlands and wetlands, and thus should be considered for model evaluation against 
GRACE data. 

Beyond these specific findings that contribute to improved understanding and modeling of large-scale 
TWS variations, this thesis demonstrates the potential of combining simple modeling approaches with 
diverse Earth observational data to improve model simulations, overcome inconsistencies of different 
observational data sets, and identify areas that require further research. These findings are of interest for 
other large-scale hydrological studies as well, and encourage future efforts to take advantage of the 
increasing number of diverse global observational data. 
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Zusammenfassung 

Zusammenfassung  
 

Der Klimawandel stellt eine der größten Herausforderungen für die Menschheit in diesem Jahrhundert 
dar, und es wird erwartet, dass die am ersichtlichsten Auswirkungen Veränderungen des Wasserkreislaufs 
sein werden - insbesondere hinsichtlich der Verteilung und Verfügbarkeit von Wasser, was von 
grundlegender Bedeutung für alles Leben auf der Erde ist. In diesem Zusammenhang ist es von 
entscheidender Bedeutung, besser zu verstehen, wo und wann Wasser verfügbar ist und welche Prozesse 
die Schwankungen in den Wasserspeichern beeinflussen.  Diesbezüglich liefern die GRACE-Satelliten zwar 
Schätzungen der Gesamtschwankungen der terrestrischen Wasserspeicher (TWS), doch stellen diese das 
vertikal integrierte Signal über alles Wasser in Eis, Schnee, Bodenfeuchte, Grundwasser und 
Oberflächengewässern dar. Daher werden zusätzliche Beobachtungsdaten und hydrologische Modelle 
benötigt, um die Aufteilung des gemessenen Signals auf die verschiedenen Wasserspeicher zu bestimmen 
und die zugrunde liegenden Prozesse, die die beobachteten Schwankungen verursachen, zu verstehen. 
Die Anwendung von großmaßstäblichen Beobachtungsdaten ist jedoch durch ihre spezifischen 
Unsicherheiten und die Unfähigkeit, bestimmte hydrologische Flüsse und Speicher zu messen, begrenzt. 
Hydrologische Modelle hingegen variieren stark in ihrer Struktur und Prozessdarstellung und beziehen 
nur selten zusätzliche Beobachtungsdaten ein, um die sich aus ihrer vereinfachten Darstellung des 
komplexen Wasserkreislaufs ergebenden Unsicherheiten zu minimieren. 

In diesem Zusammenhang trägt diese Arbeit dazu bei, die Variabilität der globalen Wasserspeicher besser 
zu verstehen, indem einfache hydrologische Modelle mit einer Vielzahl von sich ergänzenden 
Erdbeobachtungsdaten kombiniert werden. Zu diesem Zweck wird ein Ansatz zur Integration von 
Modellen und Daten entwickelt, bei dem die Parameter einfacher hydrologischer Modelle gleichzeitig 
gegen verschiedenen Beobachtungsdaten, einschließlich GRACE TWS, kalibriert werden, wobei die 
spezifischen Stärken und Unsicherheiten der einzelnen Daten berücksichtigt werden. Dieser Ansatz wird 
verwendet, um drei spezifische Aspekte zu untersuchen, die für die Modellierung und das Verständnis der 
Zusammensetzung von großräumigen TWS-Variationen relevant sind. 

In der ersten Studie liegt der Schwerpunkt auf den nördlichen Breiten, wo der hydrologische Kreislauf 
durch Schnee und andere Prozesse, die spezifisch für kalte Regionen sind, bestimmt wird. Während diese 
Studie frühere Erkenntnisse darin bestätigt, dass die jahreszeitliche Dynamik des TWS von der zyklischen 
Akkumulation und Schmelze von Schnee dominiert wird, zeigt sie hingegen, dass die zwischenjährlichen 
TWS-Schwankungen durch Variationen der flüssiger Wasserspeicher bestimmt werden. Darüber hinaus 
wird festgestellt, dass es wichtig ist, die Auswirkungen kompensatorischer Effekte räumlich heterogener 
hydrologischer Variablen zu berücksichtigen, wenn der Anteil verschiedener Speicherkomponenten über 
große Gebiete aggregiert wird. Die Einflussfaktoren der TWS-Schwankungen sind daher skalenabhängig, 
und zugrunde liegenden Antriebsmechanismen lassen sich nicht einfach zwischen räumlichen und 
zeitlichen Skalen übertragen. Diese Ergebnisse werden durch die zweite Studie über nördlichen Breiten 
hinaus auch für die andere globalen Landflächen bestätigt.  

Diese zweite Studie zeigt außerdem, dass die Art und Weise, wie Vegetation in hydrologischen Modellen 
dargestellt wird, einen erheblichen Einfluss auf die Aufteilung der TWS-Variationen hat. Die Verwendung 
von räumlich-zeitlich variierenden Erdbeobachtungsdaten zur Parametrisierung der Vegetationsaktivität 
verbessert nicht nur erheblich die Modellgüte, sondern verringert auch die Parameteräquifinalität und 
Prozessunsicherheiten. Darüber hinaus verändert die Berücksichtigung der Vegetation den Beitrag der 
verschiedenen Wasserspeicherkomponenten zum TWS drastisch und unterstreicht damit die 
Schlüsselrolle der Vegetation für die Wasserverteilung, insbesondere zwischen unterirdischen und 
verzögerten Wasserspeichern. Die Studie zeigt jedoch auch, dass die Parameter für die Verringerung von 
unterirdischen und verzögerten Wasserspeichern entweder durch Evapotranspiration oder Abfluss 
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schwer zu unterscheiden sind, und unterstreicht damit die Notwendigkeit einer weiteren und 
verbesserten Eingrenzung dieser Parameter. 

Die dritte Studie befasst sich mit der Rolle des in Flüssen gespeicherten Wassers, insbesondere mit der 
Frage, ob es notwendig ist, rechenintensives Fluss-Routing für die Kalibrierung und Validierung des 
Modells gegen GRACE TWS zu berücksichtigen. Die Ergebnisse deuten darauf hin, dass das Flussrouting 
für die Modellkalibrierung in einem solchen globalen Modell-Daten-Integrationsansatz nicht erforderlich 
ist, da Einschränkungen durch andere Beobachtungsdaten einen größeren Einfluss haben und die 
Definierbarkeit bestimmter Modellparameter und damit verbundener Prozesse als von relevanterer 
Bedeutung identifiziert werden. Im Gegensatz zur Modellkalibrierung kann die Berücksichtigung der 
Wasserspeicherung in Flüssen den modellierten TWS im Vergleich zu den GRACE-Beobachtungen bereits 
erheblich verbessern, insbesondere in tropischen Regionen und nördlichen Tiefland- und Feuchtgebieten, 
und sollte daher bei der Modellevaluierung gegen GRACE Daten berücksichtigt werden. 

Über diese spezifischen Ergebnisse, die zum besseren Verständnis und Modellierung großräumiger TWS-
Variationen beitragen, hinaus, zeigt diese Arbeit das Potenzial der Kombination einfacher 
Modellierungsansätze mit verschiedenen Erdbeobachtungsdaten zur Verbesserung von 
Modellsimulationen, zur Überwindung von Unstimmigkeiten zwischen verschiedenen Beobachtungs-
datensätzen und zur Identifizierung von Bereichen, die weitere Forschung erfordern. Damit sind diese 
Ergebnisse auch für andere großmaßstäbliche hydrologische Studien von Interesse und ermutigen 
künftige Bemühungen, die zunehmende Anzahl unterschiedlicher globaler Beobachtungsdaten zu nutzen. 
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Chapter 1: Introduction 

Introduction 
 

1.1 Background and Motivation 

Water is the essence of all life and its availability shapes not only human existence, but also the 
functioning of ecosystems and the Earth’s climate. Especially in the context of climate changes it is crucial 
to understand when and where water is available, and – equally importantly – what are the underlying 
processes and mechanism of these variations, in order to be able to estimate future changes in water 
availability and take actions accordingly. 

To address this challenge, hydrological research has two tools at its disposal: (I) measurements and 
observations of water fluxes and storages, and (II) hydrological models that depict our process-
understanding and combine the components of the water balance. 

While scientist for years relied on point-measurements to derive, validate and extrapolate their hydrologic 
process-understanding in time and space, the increasing quantity, quality and temporal coverage of 
spatially continuous data from remote sensing-based observations along with increasing computational 
resources enabled a new era of possibilities in hydrological research.  

Among all Earth-observation based data, the Gravity Recovery And Climate Experiment (GRACE) and its 
follow-on (GRACE-FO) take a unique role: for the first time they provide observations of one component 
of the water balance, that has been inaccessible before – the overall terrestrial water storage change. 
Although this enables various opportunities, GRACE observations are not a panacea, as they only provide 
overall water storage variability and, therefore, it’s still necessary to understand the underlying processes, 
and which storages are the main contributors to the observed changes. 

This thesis aims to improve our understanding of global water storage changes by combining GRACE 
observations with Earth-observation based data from multiple sources, and simple conceptual 
hydrological modeling approaches. 

The following provides the background for this thesis. First, a brief overview on the global water cycle and 
its components is given. The subsequent sections provide a review on available large-scale Earth-
observation based data and data products, evaluate state-of-the-art global hydrological modeling 
concepts and their challenges, and finally present common methods to combine both, data and models. 
Eventually, recent attempts to assess global water resources using the before introduced methods are 
summarized. Based on this, research gaps will be identified and the objectives of this thesis defined in 
detail. 

1.1.1 The global Water Cycle 

The global water cycle describes the occurrence and the flow of water within the Earth system, between 
atmosphere, lithosphere, hydrosphere, and back, driven by solar energy and gravitation (Dorigo et al. 
2021) (Fig. 1.1). Following the principle of mass conservation, the terrestrial water cycle is characterized 
by the balance of incoming and outgoing fluxes, and its components can be estimated for a distinct area 
by the water balance equation (Sposób 2011): 

 

∆𝑇𝑊𝑆 = 𝑃𝑟𝑒𝑐𝑖𝑝 − 𝐸𝑇 − 𝑄     (1.1) 
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where the change in water storages (∆TWS) during a given time interval is determined by the inflow given 
by precipitation (Precip) minus the outflow by the fluxes of evapotranspiration (ET) and runoff (Q) 
(Schmidt et al. 2008a).  

These water fluxes and storages are strongly interconnected and depend on various climatic and physio-
geographic factors. For instance, precipitation, depending on temperature either in the form of snow or 
rain, falls on the land surface, where it is (temporarily) retained as snow or ice, on vegetation or on the 
land surface itself. Depending on various factors, such as characteristics of the surface (topography, land 
cover, vegetation) and subsurface (soil properties, soil saturation, geology), liquid water infiltrates into 
the soil and potentially percolates further into the groundwater, or accumulates in surface water bodies 
such as lakes. Eventually, water either returns to the atmosphere by the process of evapotranspiration or, 
following the gravitational gradient, leaves the terrestrial system as runoff in streams and rivers that 
finally discharge into the ocean (Trenberth & Asrar 2014). 

 

 

Figure 1.1. Schematic overview on the natural water cycle (Perlman & Evans 2000). 

 

Evapotranspiration is the phase change of water into vapor and its transfer to the atmosphere (Novák 
2011). As it is driven by energy, i.e., net radiation, it represents a key process within the Earth system that 
connects the global water and energy cycle. Evapotranspiration entails the solely physically driven 
evaporation from surfaces (such as soil and water bodies), and sublimation from snow surfaces, as well 
as transpiration, which is actively regulated through vegetation by opening and closing of their stomata 
for photosynthesis. 

Runoff describes the lateral flow of water following the gravitational gradient out of the area of 
consideration. It encompasses any lateral movement of water on the land surface (overland flow), in the 
soil (inter-flow), and in the groundwater (groundwater flow). Commonly it’s referred to as the lateral flow 
within river channels, that is composed of a fast, direct (surface) runoff component and a slow, delayed 
component (baseflow). While irrelevant for the global water balance, runoff represents a considerable 
water input at local and regional scale as it transports water from upstream to downstream areas.  

The terrestrial water storage term in Eq. 1.1 includes all water stored in ice, snow, soil, groundwater, 
vegetation and surface water bodies such as lakes, rivers and reservoirs. Although its long-term net 
change can be assumed to be negligible in theory (Rodell et al. 2015), its daily, seasonal and inter-annual 
fluctuations as well as its varying distribution across space have a considerable impact on agriculture, 
vegetation, humanity and life itself. But not only the presence of water, also its actual form (ice, snow, 
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liquid) and where it is retained (soil, groundwater, surface) is relevant, as this defines its accessibility by 
vegetation and human kind. For instance, surface and river water are the main source of freshwater in 
many regions, and vegetation relies on the soil and groundwater their roots can access. Next to its 
accessibility, the kind of water storage further affects the hydrological and the ecosystem response to 
long-term climate change and extreme events, such as heat waves and heavy rainfalls. For instance, in 
cold regions, a large portion of annual rainfall is immobilized and plant-inaccessible in the snowpack, 
which is only released with increasing temperatures in spring, enabling vegetation growth but also 
(potentially) causing spring floods. Depending on the vegetation type specific rooting depth, plants access 
water from soil and (partly) groundwater, possibly maintaining photosynthesis during periods with no or 
little precipitation and even during heat waves. 

Altogether, the global terrestrial water cycle is a complex and dynamic system with many interactions, 
feedbacks and dependencies (Hagemann 2011). For example, soil properties, that define the infiltration 
capacity and maximum soil water storage, change over time due to the presence or absence of water. On 
much shorter time-scales, and arguably more dynamically, vegetation takes a central role at the interface 
between atmosphere and land surface, as its presence is not only defined by the availability of water, but 
it moreover itself shapes hydrological processes. Interception on the vegetation surface, for instance, 
reduces the quantity of water that reaches the land surface, while at the same time the interception 
storage is strongly exposed for evaporation, which compared to evaporation from soil is not limited by 
soil resistance (Fisher et al.  2014). Due to the canopy barrier, vegetation reduces the intensity of through 
fall and stemflow, what potentially increases infiltration and reduces surface runoff. Besides, vegetation 
cover changes the surface albedo and thus the radiation budget, which in turn affects evapotranspiration. 
Over time, root growth, nutrient uptake and decomposition of organic plant material also alters soil 
properties and thus e.g., soil water holding capacity and infiltration capacity. As mentioned above, plants 
take up water from soil (and groundwater) through their roots, and thus alter those storages. Part of this 
water is directly used for photosynthesis, while the remaining portion transpires through the plant’s open 
stomata – a process plants can actively regulate. By the process of photosynthesis, vegetation additionally 
connects the terrestrial water and carbon cycles, introducing further feedbacks in the complex Earth’s 
system. 

1.1.2 Measuring the World – Large-scale observational Data  

Characterizing the stocks and fluxes of the Earth’s water budget at large scales poses considerable 
challenges to hydrological research (Rodell et al. 2015). While precipitation (e.g., with rain gauges and 
ground-based radar), evapotranspiration (e.g., with eddy co-variance measurements), runoff (in the form 
of river discharge) and the state of some water storages (e.g., soil moisture with lysimeters) can be - with 
more or less effort and accuracy - measured locally, these in-situ measurements only provide a local 
snapshot of the complex hydrological system, where non-linear processes, memory effects and processes 
happening far away from the point of measurement are influential. Over the last decades, spatially and 
temporal continuous information became available from satellite measurements and observation-
integrating products that incorporate them (Dorigo et al. 2021). These data enable an observational-based 
assessment of hydrological processes and water storages not only in regions with no or sparse ground-
based observations, but also at large regional and global scales. While being of undeniable value, such 
data products come with specific strengths and uncertainties that evolve from the characteristics of the 
underlying measurements, methods and assumptions, and that need to be considered when applying 
them for hydrological research (Dorigo et al. 2021). By that, for example, the possibilities to observe major 
fluxes of runoff and evapotranspiration are still limited, and also several key hydrologic states, such as 
groundwater, remain poorly measured in many regions (Famiglietti & Rodell 2013). Besides, the spatial 
resolution and temporal coverage of some satellite measurements might be insufficient. Additionally, the 
accuracy of large-scale data products is limited to the availability of in-situ observations for calibration 
and validation, which in most cases are not representative for the satellite’s footprint, and suffer from a 
sparse observational network that is biased to temperate humid regions (Rodell et al. 2015). In particular 
the land surface hydrology in cold regions poses distinct challenges, due to the lack and low quality of 
observational data on the one hand, and deficiencies in the retrieval of remote-sensing based estimates 



Chapter 1: Introduction 

12 

(e.g., limited applicability of optical sensors due to long polar nights, effects of permafrost and 
freeze/thaw dynamics that cannot be measured) on the other hand (Rodell et al. 2015). 

The following provides an overview on available large-scale to global observational-based data of water 
balance components.  

Precipitation is one of the most important hydrological variables, that is challenging to estimate due to 
its high spatio-temporal heterogeneity (Herold et al. 2016). Various efforts to estimate precipitation at 
global scale exist, ranging from upscaling of gauge-measurements (e.g., NOAA’s Climate Prediction Center 
Unified precipitation product CPCU (Chen et al. 2008)), to radar remote sensing (e.g., Tropical Rainfall 
Measuring Mission TRMM (Huffman et al. 2010), Global Precipitation Measurement GPM (Huffman et al. 
2012), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 
PERSIANN (Nguyen et al. 2018)), products that combine both (e.g., Global Precipitation Climatology 
Project GPCP (Huffman et al. 2000)), and such that merge in-situ and satellite observations with re-analysis 
data (e.g., Multi-Source Weighted-Ensemble Precipitation MSWEP (Beck et al. 2017)). Gauge-based 
estimates suffer from the irregular density of the gauge network, as well as systematic biases in 
mountainous (due to elevation bias in gauge placement) and snow-dominated (due to wind-induced 
undercatch) regions (Rasmussen et al. 2012). Satellite estimates on the contrary observe large areas 
instantaneously, but are prone to systematic biases resulting from satellite operation, are insensitive to 
light rainfall, and have limited accuracy over snow and ice cover (Beck et al. 2017). 

Estimating terrestrial evapotranspiration at large scales is particularly demanding, due to its high 
variability in space and time, and since it cannot be measured directly by remote sensing (Rodell et al. 
2015, Dorigo et al. 2021). Existing estimates based on satellite retrievals, e.g., from the Global Land 
Evaporation Amsterdam Model (GLEAM, Miralles et al. 2011, Martens et al. 2017), and the 
evapotranspiration data sets from MODIS (Mu et al. 2011) and NOAA (Zhang et al. 2010), apply 
evapotranspiration models such as the Penman-Monteith or Priestley-Taylor formula that derive 
estimates of evapotranspiration based on vegetation indices, like Leaf Area Index (LAI), Normalized 
Vegetation Index (NDVI), and Vegetation Optical Depth (VOD), along with further satellite measurements, 
including land surface temperature, albedo, soil moisture and land cover (Cui et al. 2018). Other global 
estimates of evapotranspiration are based on re-analysis, that incorporate in-situ and satellite 
measurements with land surface models (e.g., MERRA (Rienecker et al. 2011), GLDAS (Rodell et al. 2004)), 
and thus rely largely on the underlying model. On the contrary, a purely data-driven estimate of 
evapotranspiration that is derived by merging remote sensing and meteorological data with eddy co-
variance measurements from FLUXNET sites using machine learning algorithms is provided by the 
FLUXCOM initiative (Jung et al. 2019). However, these indirect estimates of evapotranspiration include 
systematic errors in semi-arid regimes and tropical rain forests and are known to imperfectly represent 
water stress and canopy interception (Dorigo et al. 2021). 

Runoff is usually assessed as discharge that passes the cross-sectional area of a river per time unit. By 
that, discharge gives an integrated hydrological signal of the catchment area upstream of the gauge. A 
global database with discharge time series from thousands of gauging stations is provided by the Global 
Runoff Data Centre (GRDC). While this database is limited to station records of varying lengths and quality, 
a recent global database of river width from Landsat data (Allen & Pavelsky 2018), in combination with 
measurements of surface water elevation from the forthcoming Surface Water Ocean Topography 
(SWOT) mission, will allow to estimate river discharge independent from gauging stations in future 
(Tuozzolo et al. 2019). However, such estimates that rely on the surface water area resp. river width 
include uncertainties from riparian forest cover as well as ice cover and ice jams in winter (Hicks and 
Beltaos 2008). Accordingly, so far, spatially distributed information of discharge at global scale is lacking, 
whereas monthly gridded reconstructions of near-natural streamflow based on machine learning are 
available for Europe (E-RUN, Gudmundsson & Seneviratne 2016), and the global land area (GRUN, Ghiggi 
et al. 2019). 

Since 2002, terrestrial water storage changes at global scale are available from the Gravity Recovery And 
Climate Experiment (GRACE) (Tapley et al. 2004, Wahr et al. 2004). The GRACE satellites measure the 
Earth’s time-varying gravitational field, and because such variations are mainly caused by changes in the 
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hydrosphere, allow to infer overall monthly water storage variations. However, GRACE data cannot be 
feasibly replicated by ground-based observations (Rodell et al. 2015), as it comprises all water in and on 
land, including snow and ice, surface water, soil moisture, groundwater and biological water. Additionally, 
the native spatial resolution is rather broad (~250-300 km), and because only anomalies relative to a time-
mean baseline are measured, GRACE data does not yield absolute water volumes. Therefore, further 
observations of its water storage components are required. 

Among them, the presence of surface water can be determined relatively accurately from remote sensing 
due to the strong absorption of water in the visible, infrared and microwave wavelengths. However, it’s 
difficult to distinguish between different types of surface water bodies, such as rivers, man-made 
reservoirs and paddy fields, which are affected by different hydrological processes. While global datasets 
of the location, seasonality and long-term trends of surface water bodies exist from statistical 
extrapolation of regional data (Downing et al. 2006), and from satellite imagery (Verpoorter et al. 2014, 
Yamazaki et al. 2015, Pekel et al. 2016), it’s challenging to monitor the evolution of their depth and 
volume, and by that to give estimates of absolute water changes (Lu et al. 2013). In this context, the 
NASA’s Surface Water Ocean Topography (SWOT) mission plans to provide an inventory and changes in 
freshwater bodies by using radar interferometry to measure the elevation of surface water. 

Similar to surface water, snow cover can be effectively detected by optical remote sensing due to the high 
reflectance of snow in visible wavelengths, yet only under cloud free conditions. Besides, microwave 
remote sensors are able to monitor snow cover and snow water equivalent also in the presence of clouds, 
but the penetration depth of the radar signal is limited so that the signal saturates under deep snow 
conditions (Takala et al. 2011). Additionally, the spatial resolution of satellite imagery prohibits accurate 
estimates in mountainous regions, and alpine and high latitude regions usually have insufficient coverage 
by observational networks (Dorigo et al. 2021). 

The same issue signal saturation affects the determination of soil moisture by remote sensing. Although 
various estimates of soil moisture from radar remote sensing, e.g., from ESA’s Soil Moisture and Ocean 
Salinity (SMOS) mission (Kerr et al. 2012) and NASA’s Soil Moisture Active Passive (SMAP) mission 
(Entekhabi et al. 2010), as well as from the combination of multiple sensors (e.g., ESA CCI Soil Moisture, 
Dorigo et al. 2017) exist, monitoring soil moisture from space is limited by the penetration depths of the 
radar signal to the top few centimeters, and becomes more difficult under dense vegetation cover (Dorigo 
et al. 2010). Next to satellite observations, globally continuous estimates of soil moisture up to the root 
zone are available based on machine learning (e.g., SoMo, O & Orth 2021), and modeling approaches (e.g., 
GLEAM root zone soil moisture, Martens et al. 2017). However, no purely observation-based estimate of 
root zone and deep soil moisture, that are relevant for many hydrological and biological processes, exist. 

Likewise, groundwater storages cannot directly be monitored at large spatial scale (Dorigo et al. 2021), 
and thus total water storage variations from GRACE remain the only observational information on water 
storages below the top soil layer, while they do not allow to differentiate between the kind and potential 
accessibility of sub-surface storages by vegetation and human kind (Dorigo et al. 2021). 

Similar to groundwater, the distribution, ice content and volume of permafrost cannot be directly mapped 
(Dorigo et al. 2021). 

Next to components of the hydrological cycle per se, remote sensing first and foremost observes the Earth 
surface, and based on the characteristic reflectance of different surfaces allows to map land cover classes 
(e.g., ESA CCI Land Cover time-series (ESA 2017)), and infer vegetation activity and health from different 
indices (e.g., Leaf Area Index LAI, Normalized Difference Vegetation Index NDVI, Enhanced Vegetation 
Index EVI). 

Although the recent variety and quality of large-scale observational data is unprecedented, Rodell et al. 
2015 showed that the global water balance cannot be closed by observations alone. Therefore, models 
are still needed to bridge the gap within and between different data streams, to reconstruct fluxes and 
storages that cannot be observed directly, and to extrapolate hydrological processes into the future. 
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1.1.3 Simulating the World – Global Hydrological Models 

A myriad of models, that simulate the flow of water and estimate water resources, were designed for 
multiple purposes and application on various spatial scales. While they each are a simplified 
representation of reality, they are valuable tools to estimate future changes in water availability and to 
assess hydrological processes and storages that cannot directly be observed. At global scale, one can 
distinguish between 3 different kinds of models that simulate the global water cycle, that were developed 
for different purposes by different communities and thus focus on different processes and use different 
modeling approaches: (I) Macro-Scale Hydrological Models (MHMs) and Global Hydrology and Water 
Resources Models (GH-WRMs) that represent the vertical and lateral movement of water while focusing 
on streamflow, the water availability in surface and groundwater storages, and in the case of GH-WRMs, 
the human alteration of the water cycle; (II) Land Surface Models (LSMs) that evolved as components of 
Earth System Models and Global Circulation Models, and focus on the vertical flow of water by simulating 
the water and energy exchange between the land surface and atmosphere in a more physical manner; 
and (III) Dynamic Global Vegetation Models (DGVMs) that have their main focus on the global carbon 
cycle while modeling vegetation growth and distribution including the active response of vegetation to 
environmental conditions (Bierkens 2015, Telteu et al. 2021).  

However, the distinction between these types is fluid, and this thesis, therefore, will refer to all kinds of 
models that simulate the large-scale and global water cycle as Global Hydrological Models (GHMs). 
Besides, differences not only exist between different types of global models, but also within each type, as 
different modeling groups consider different underlying hydrological processes that lead to varying model 
structures, apply different equations for the same hydrological process, and, even for the same equation, 
use different parametrizations. These differences lead to diverging simulations, that on the one hand, 
allow to assess the uncertainties that evolve from model structure and parametrization, by analyzing 
simulations of an ensemble of different models in Model Intercomparison Projects (MIPs). On the other 
hand, the variety of model structures and parametrizations hinders in-depth understanding of inter-
model differences and identification of areas for future model development (Bierkens 2015, Telteu et al. 
2015).  

Initially, GHMs adopted rather conceptual process-representation from catchment-scale models, that 
became more process-based over time due to continuous adding of functionality (e.g., in terms of process 
representation) and the availability of global data (Döll et al. 2015). However, the grown-complexity does 
not necessarily improve model performance (Orth et al. 2015), but often impedes understanding of model 
behavior, and the majority of added and refined hydrological processes can rarely be validated by 
observational data. In general, existing GHMs differentiate between 3 to 11 water storages, usually 
including canopy, snow, soil water (with varying layers and depths), and groundwater storages. Some 
additionally simulate lakes, wetlands, river water and man-made reservoirs (Schellekens et al. 2017, 
Telteu et al. 2021). While all GHMs to some degree include vegetation and land cover to define processes 
such as transpiration and infiltration, they vary considerably in the detail and the way vegetation is 
represented. Hydrologic models usually include a rather simplified representation of vegetation (Quevedo 
et al. 2008, Weiss et al. 2012, Telteu et al. 2021), whereas other communities represent vegetation and 
its interaction with processes of the water and carbon cycle more detailed. Thus, the number of 
vegetation classes in GHMs can vary between 3 to 24, some prescribing vegetation characteristics with 
static parameter values, while others apply climatologies of, for example, remote sensing-based LAI 
(Telteu et al. 2021). Although simulating the lateral flow of water in streams using river routing schemes 
is an inherited feature of hydrological models, not all GHMs consider this process (Telteu et al. 2021). 
Besides, river routing is rather computational expensive, as it adds an iterative process in space, in which 
runoff produced in one modeling unit needs to be transferred to the adjacent downstream unit. 
Therefore, routing schemes are often an additional module independent from the model that simulates 
vertical hydrological fluxes (Sood and Smakhtin 2015).   

Uncertainty of model simulations result from the simplified representation of hydrological processes but 
also from model parameterization, initial conditions and the used hydro-meteorologic forcing (Sood and 
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Smakhtin 2015). Therefore, it is essential, to validate model simulations against observational data and 
adjust them if necessary. 

1.1.4 Combining the best of 2 Worlds – Model-Data Integration 

The previous sections gave an overview on available large-scale observational data sets of hydrological 
variables, and models that simulate the global water cycle. While large-scale observational data possess 
a rather broad spatial and temporal resolution due to features of the underlying satellite measurements 
and do not provide (direct) estimates of all hydrological fluxes and storages, GHMs only present a 
simplified representation of reality and their accuracy depends on various factors, such as the process-
representation, their parametrization and the quality of input data. Therefore, it is essential to combine 
both, models and data to: (I) bridge the spatio-temporal gaps in observations, overcome their 
inaccuracies, and estimate processes and storages that cannot be observed directly, and (II) to reduce 
model uncertainty and validate the simplified representation of reality in models (Lahoz & Schneider 
2014). To do so, different methods, such as model calibration, data integration, data assimilation (Rodell 
et al. 2015), and recent efforts of hybrid-modeling (Reichstein et al. 2019) exist. 

Especially in conceptual hydrological models, parameters often cannot be determined directly, as they 
not necessarily correspond to physically measurable properties. Therefore, they need to be estimated 
indirectly, by model calibration. This procedure aims to derive the best possible match between simulated 
and observed variables by iteratively tuning model parameters and evaluating the resulting simulations 
against observations in terms of some efficiency metric, in order to infer the optimal parameter-set. The 
iterative permutation of parameter values can be either done manually by ‘trial and error’ and taking into 
account expert knowledge on plausible parameter values, or by applying automatic optimization 
techniques (Fischer 2013). The latter include a mathematical search algorithm, that searches the 
parameter space for the optimal solution (i.e., global minimum) regarding a cost function, that is usually 
based on one or more the efficiency metrics (Moriasi et al. 2007). The choice of efficiency metric depends 
on which aspect of the observed variable should be represented, as such the correlation coefficient 
emphasizes observed variations, whereas Nash-Sutcliff Efficiency (Nash & Sutcliffe 1970), or Kling-Gupta 
Efficiency (Gupta et al. 2009) consider correlation, bias and variance in the data. While model calibration 
holds the advantage to improve hydrologic process representation and increases confidence in model 
simulation, two potential issues exist: (I) overfitting of the model to the calibration data, and (II) 
parameter equifinality. To overcome (I), hydrological models are usually calibrated against a spatial or 
temporal sub-sample of the available data, so that the remaining data can serve as independent 
evaluation of the calibrated model (Xu 2002). (II) is caused by parameter interactions, that lead to similar 
good model performance regarding the used efficiency metric by different parameter sets. Parameter 
equifinality becomes especially relevant with increasing number of modelled processes that are 
insufficiently constrained by data (Beven 2006). Traditionally, hydrological models are calibrated against 
time-series of discharge measurements, that for the majority of time represented the only available and 
suitable observational constraint (Döll et al. 2015). Discharge measurements integrate over processes in 
the whole upstream catchment, and are a suitable constraint if, for example, the focus is on flood 
forecasting. However, discharge alone does not allow to infer to the processes that cause and contribute 
to the observed streamflow variations, and conformity with observed discharge does not guarantee 
proper representation of hydrological processes within the catchment (Güntner 2008). Therefore, and to 
mitigate issues of parameter equifinality, it’s advantageous to not only calibrate model parameters 
against one single observed variable, but against multiple observations of hydrological variables 
simultaneously in a multi-criteria calibration approach (Syed et al. 2009, Sood & Smakthin 2015). Indeed, 
the benefits of using multiple constraints in model calibration has been shown by several large-scale 
hydrological studies (e.g., Livneh & Lettenmaier 2012, Lo et al. 2010, Rakovec et al. 2016, Bai et al. 2018, 
Mostafaie et al. 2018). Nevertheless, only few GHMs tune or calibrate model parameters, and even fewer 
studies consider multiple observational data sets (Long et al. 2015, Döll et al. 2015). 

Next to the calibration of model parameters, observational data can directly be integrated into hydrologic 
models, as input to force, initialize and/or parameterize them. This includes for instance the use of static 
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or seasonally varying land surface characteristics, such as LAI to define certain vegetation parameters 
(e.g., Weiss et al. 2012). However, direct integration of observational data either limits the model run to 
the time period in which observations are available, or, if using static values or seasonal climatology, does 
not support delineation of (future) trends and feedbacks due to changing environmental conditions. 
Besides, this rather static approach does not necessarily consider model and data uncertainties. 

Therefore, more sophisticated data assimilation techniques are used to combine observational data and 
models to an optimal estimate of hydrologic variables, while considering their respective uncertainties 
(Reichle 2008). Data assimilation methods, mostly applied with LSMs and forecast-models, include a 
process that sequential steps recursively through time, by continually comparing previous model forecasts 
with newly received data to update the model states for a new forecast (Kumar et al. 2008). Data 
assimilation techniques such as Kalman filters (e.g., Shamir et al. 2010, Eicker et al. 2014), particle filters 
(e.g., DeChant & Moradkhani, 2012) and 1-4 dimensional variational algorithms (e.g., Seo et al. 2009, 
Kumar et al. 2016) are useful tools to interpolate and extrapolate observations to the required scale, yet 
difficulties potentially arise from managing the complexities of necessary data processing, computational 
expenses and the trade-off between different assimilation algorithms (Kumar et al. 2008). 

Recently, efforts in hybrid-modeling, that combine the theoretical foundations and interpretability of 
process-based modeling approaches with deep-learning methods that represent poorly understood 
processes by data-driven machine learning (Kraft et al. 2020). 

1.1.5 Assessing the World’s Water Variations – Application of GRACE TWS 

Over the last 2 decades, terrestrial water storage (TWS) variability observed by the GRACE satellites have 
become probably the most valuable and extensively used data set to assess the world’s water variations 
and to challenge the assumption of negligible long-term net changes in TWS. GRACE data has been widely 
used to diagnose trends in water resources (Reager et al. 2015, Rodell et al. 2018, Scanlon et al. 2018, 
Tapley et al. 2019), to validate and improve GHMs (Güntner 2008, Werth and Güntner 2010, Döll et al. 
2014, Eicker et al.  2014, Girotto et al. 2016, Kumar et al. 2016, Chen et al. 2017, Schellekens et al. 2017, 
Soltani et al. 2021), to enhance the understanding of the water cycle on regional to global scales and 
diagnose pattern of hydrologic variability (Rodell et al. 2009, Syed et al. 2009, Feng et al. 2013, Felfelani 
et al. 2017). While TWS variations can be analyzed using statistical methods or complementary 
observation-based data sets, in the end GHMs are needed to partition the TWS signal into different water 
storage components (Felfelani et al. 2017). 

In this context, several studies suggest difficulties of GHMs to reproduce key pattern of TWS variations on 
the one hand, and identify partly diverging TWS partitioning between different models on the other hand 
(Schellekens et al. 2017, Zhang et al. 2017, Scanlon et al. 2018, Kraft et al. 2021). This uncertainty is a 
major obstacle for diagnosing and understanding global changes of the water cycle thoroughly. While 
most studies agree that snow dynamics are the primary component of TWS variations in Northern regions 
(Niu et al. 2007, Rangelova et al. 2007), results differ widely regarding the relevance of other storage 
components. For example, some models attribute seasonal TWS variations in the tropics to groundwater, 
while other models suggest they are mainly caused by soil moisture (Schellekens et al. 2017), whereas 
other studies highlight the importance of surface water to TWS variations in tropical regions (Güntner et 
al. 2007, Getirana et al. 2017). Since these results largely depend on model structure and parametrization, 
it is challenging to use models to decompose the integrated GRACE TWS signal and to draw implications 
of different processes and interactions (Schellekens et al. 2017). Therefore, the inclusion of additional 
information is required to reduce the uncertainty in partitioning of TWS (Güntner 2008). While 
observational data of surface water storages exists, especially the differentiation between soil moisture 
and groundwater is challenging due to the lack of appropriate observational data to constrain models. 
Hence, GRACE TWS remains the only large-scale observational estimate for sub-surface water storages 
below the top centimeters that are accessible with radar remote sensing. This imposes main challenges, 
as the differentiation between plant-accessible soil moisture and deep soil water resp. groundwater 
quantifies the available water for plant uptake and photosynthesis, and by that links the global water-
carbon-and energy cycles. For example, Humphrey et al. (2018) showed co-variations between inter-
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annual variations in GRACE TWS and CO2 growth rate, based on the assumption that GRACE TWS 
represents fluctuations in plant-accessible water that influences the carbon uptake of land ecosystems. 
The validity of this assumption and its transferability between spatial scales however is relevant in the 
ongoing debates of whether temperature or water availability have a larger effect on global atmospheric 
CO2 growth rates, and thus amplifying or decreasing of the observed greenhouse effect. Therefore, proper 
partitioning of TWS is not only relevant for hydrological purposes only, but also for improved 
understanding of the coupled carbon-water-energy cycle. 

1.2 Research Gaps and Objectives 

So far, the previous sections highlighted, that 

I) it is important to understand TWS variability and its partitioning among different water storages, 
and how this varies in space and time, not only for hydrological research alone, but also for 
improved understanding of interactions and feedbacks of the coupled water-carbon cycles. 

II) GRACE TWS and other Earth-observation based data provide information on various components 
of the water balance at global scale, yet their accuracy is limited and key hydrological processes 
and storages remain inaccessible. 

III) existing GHMs are rather complex and differ significantly in their representation of hydrological 
processes, what hampers the interpretation of their behavior and increases the number of 
processes that are not supported by observational data. 

IV) model-data integration methods are valuable tools to combine observations and process-
understanding. 

Within this context, this thesis focuses on three aspects that are relevant for understanding and modeling 
the composition of global TWS variability, while contributing to an overarching objective, as presented in 
the following: 

(I) the potential to assess large-scale TWS variations by combining multiple data streams and 
simple hydrological modeling approaches 

Large-scale observational data have a substantial potential to improve model simulations by using them 
as constraints in model calibration, yet so far only few modeling studies have used multiple data streams 
simultaneously to calibrate several parameters of GHMs (Long et al. 2015, Döll et al. 2015). This is 
surprisingly, because the accuracy and informative value of one observational data set alone is limited, 
but the combination of several data sets improves the information content and confidence in findings 
considerably. Especially when assessing large-scale water storage changes it is essential to incorporate 
several data sets and models, because GRACE data of the integrated TWS remain the only available data 
on major water storages so far, and rely on further information to distinguish between different water 
storage components. Therefore, the overarching objective of this thesis is to evaluate the potential of 
combining multiple Earth-observation based data sets with simple conceptual hydrological modeling 
approaches to improve our understanding of TWS variability and its composition among different water 
storages.  

(II) the partitioning of TWS variations in cold regions on different spatio-temporal scales 

Northern latitudes are among the areas most prone to climate change (Tallaksen et al. 2015), yet modeling 
the land surface hydrology in cold regions poses distinct challenges. While previous studies identified 
seasonal snow accumulation and melt as primary determinant for TWS variability and their high influence 
on hydrological dynamics in such regions (Niu et al. 2007, Rangelova et al. 2007), Jung et al. 2017 showed 
that the transferability of processes to other scales might be hampered by compensating and increasing 
effects due to the heterogeneity or coherence of spatial pattern in climatic signals. Hence, it is unclear 
whether snow is only relevant at local scale, or if the domination of snow holds across spatial scales and 
for inter-annual TWS variations as well. Therefore, the first objective is to investigate the partitioning of 
TWS variability among snow and other water storages across spatio-temporal scales by applying the 
developed model-data integration approach in the cold regions of the Northern Hemisphere. 
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(III) the impact of how vegetation is represented in GHMs on spatio-temporal TWS composition 

While vegetation takes a central role in the hydrological and carbon cycle, its representation in GHMs 
differs significantly. Many GHMs prescribe vegetation with (static) parameters for distinct classes of land 
cover or plant functional type, and rarely take advantage of new large-scale remote sensing-based 
observations on vegetation activity and characteristics. Likewise, the dependency of vegetation presence 
and activity on water availability is subject of many studies (Wang et al. 2001, Porporato et al. 2004, Reyer 
et al. 2013, Yang et al. 2014), yet few hydrological studies investigated the opposing impact of vegetation 
on global TWS variability and composition. Thus, the second objective of this thesis is on the one hand to 
investigate the potential improvement in model performance by including spatially distributed and time 
varying vegetation parameters in a large-scale hydrological model, and, on the other hand, to assess the 
impact of how vegetation is represented on the composition of TWS variability. To do so, different 
spatially continuous data on vegetation characteristics are considered within the model-data integration 
approach. 

(IV) the effect of river water on model calibration and validation against GRACE TWS 

Since GRACE TWS represents the vertically integrated signal of all water storages, it potentially includes 
river water storage. Previous studies highlighted the relevance of river water for accurately representing 
observed TWS variability regionally (Güntner et al. 2007, Kim et al. 2009, Getirana et al. 2017), but 
simulating river routing is a computational demanding process, and it’s unclear whether it is required for 
model calibration and validation against the integrated GRACE TWS at global scale. The third objective 
tackles this question by investigating the effect of river water storage on model calibration and validation 
against GRACE TWS. 
 

According to these objectives, this thesis aims to answer the 4 main research questions shown in Fig. 1.2. 
To address these research questions, a model-data integration approach is developed, in which the 
parameters of a hydrological model are calibrated in a multi-criteria technique against several 
observational estimates of different water balance components simultaneously. In order to improve 
interpretability, the implementation of the hydrological model(s) follows the premise ‘the-simpler-the-
better’, by applying rather simple modeling concepts and only add complexity when needed and 
supported by data. In this context, and since a profound understanding of the natural system is essential 
before adding an extra layer of complexity, this thesis doesn’t consider human alterations of the water 
cycle, but concentrates on natural processes and is limited to regions under near-natural conditions. 
 

 

Figure 1.2. Overview on the main research questions addressed in this thesis, highlighting the aspect of the 
hydrological cycle that they focus on. 
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1.3 Thesis Outline and Author’s Contributions 

This cumulative thesis consists of three publications, which are published (Chapters 2, 3) or submitted 
(Chapter 4) in peer-reviewed journals. Each of the publications addresses one of the aspects that have 
been identified as relevant for understanding and modeling the composition and the variability of TWS. 
While focusing on specific research questions, each study contributes to the overarching objective to 
assess the advantage of using multiple Earth-observation based data simultaneously to improve large-
scale model simulations.  

A conceptual overview on the chapters of this thesis, their main focus and addressed research questions, 
as well as the underlying methodical concept is shown in Fig. 1.3, while the following gives a more detailed 
outline on the subsequent chapters, including the author’s own contributions. 

 

 

Figure 1.3. Conceptual outline of this thesis, showing the publications, their main focus and the concept of the 
underlying model-data integration framework*. Colors indicate the research questions that are addressed by the 
respective publication. 

 

Chapter 2 introduces the model-data integration approach, that calibrates the parameters of a 
parsimonious conceptual hydrological model against multiple Earth-observation data, including GRACE 
TWS, simultaneously. While serving as a proof of concept for this approach, the focus is on simulating and 
evaluating hydrological dynamics in the humid Northern latitudes. Particular interest lies on the 
contribution of snow versus liquid water storages to overall TWS variability on different spatial (local grid-
cell vs. spatially aggregated over the entire region) and temporal (mean seasonal vs. inter-annual) scales. 

Author’s contribution: design of the research in collaboration with the other co-authors; programming of 
the model and model calibration in the SINDBAD framework*, performing of the data analysis and 
preparation of the first draft of the manuscript, supported by recommendations and joint discussions with 
the other co-authors; corresponding author for manuscript submission and revision. 
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In Chapter 3, the above introduced approach is extended from the Northern latitudes to the global land 
area. While still considering different spatio-temporal scales, the aim is to investigate the impact of how 
vegetation is represented on model performance and on simulated TWS composition. To this end, 2 model 
experiments are compared: a baseline experiment with globally uniform parameter values (as in 
Chapter 2), and an experiment in which vegetation-related parameters that define infiltration, root water 
uptake and transpiration processes are based on observational data (vegetation indices and estimates of 
rooting depth) and thus vary continuously in space and (partly) in time.  

Author’s contribution: design of the research in collaboration with the other co-authors; programming 
and calibration of the model experiments in the SINDBAD framework*, performing of the data analysis 
and preparation of the first draft of the manuscript, supported by recommendations and joint discussions 
about the results by all co-authors; corresponding author for manuscript submission and revision. 

 

Chapter 4 builds on the previous findings, and investigates whether a computationally expensive river 
routing scheme is required when the integrated GRACE TWS is used for model calibration and validation 
in such a global model-data integration approach. For this purpose, we use either GRACE TWS or TWS 
estimates from which river storage is removed for model calibration and investigate differences in 
resulting simulations. Next to that, river routing is applied after model calibration, and estimated river 
storage added to simulated TWS. Doing so, the impact of explicitly accounting for river storage when 
validating modelled TWS against GRACE TWS is assessed on different spatial scales (local grid-scale, 
regionally and globally aggregated). 

Author’s contribution: design of the research in collaboration with co-authors; programming of model 
experiments and transferring one of the routing schemes from Python to the SINDBAD framework*; 
performing the data analysis and preparation of the first draft of the manuscript, supported by 
recommendations and joint discussions about the results by co-authors; corresponding author for 
manuscript submission and revision. 

 

Chapter 5 provides the synthesis of the previous chapters, in which the main findings are summarized and 
discussed with respect to the research questions. Finally, it suggests future research possibilities and 
draws overall conclusions. 

 

*The multi-criteria calibration approach, as well as the conceptual hydrological modeling concepts that 
are used in this thesis, have all been implemented in the SINDBAD model-data integration framework for 
the coupled water and carbon cycle, that was co-developed by the author as part of her work at the Max-
Planck Institute for Biogeochemistry. 
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Understanding Terrestrial Water Storage Variations in 

Northern latitudes across Scales 
 

 

Abstract 

The GRACE satellites provide signals of total terrestrial water storage (TWS) variations over large spatial 
domains at seasonal to inter-annual timescales. While the GRACE data have been extensively and 
successfully used to assess spatio-temporal changes in TWS, little effort has been made to quantify the 
relative contributions of snowpacks, soil moisture, and other components to the integrated TWS signal 
across Northern latitudes, which is essential to gain a better insight into the underlying hydrological 
processes. Therefore, this study aims to assess which storage component dominates the spatio-temporal 
patterns of TWS variations in the humid regions of Northern mid- to high latitudes. 

To do so, we constrained a rather parsimonious hydrological model with multiple state-of-the-art Earth 
observation products including GRACE TWS anomalies, estimates of snow water equivalent, 
evapotranspiration fluxes, and gridded runoff estimates. The optimized model demonstrates good 
agreement with observed hydrological spatiotemporal patterns and was used to assess the relative 
contributions of solid (snowpack) versus liquid (soil moisture, retained water) storage components to total 
TWS variations. In particular, we analyzed whether the same storage component dominates TWS 
variations at seasonal and inter-annual temporal scales, and whether the dominating component is 
consistent across small to large spatial scales. 

Consistent with previous studies, we show that snow dynamics control seasonal TWS variations across all 
spatial scales in the Northern mid- to high latitudes. In contrast, we find that inter-annual variations of 
TWS are dominated by liquid water storages at all spatial scales. The relative contribution of snow to inter-
annual TWS variations, though, increases when the spatial domain over which the storages are averaged 
becomes larger. This is due to a stronger spatial coherence of snow dynamics that are mainly driven by 
temperature, as opposed to spatially more heterogeneous liquid water anomalies, that cancel out when 
averaged over a larger spatial domain. The findings first highlight the effectiveness of our model–data 
fusion approach that jointly interprets multiple Earth observation data streams with a simple model. 
Secondly, they reveal that the determinants of TWS variations in snow affected Northern latitudes are 
scale-dependent. In particular, they seem to be not merely driven by snow variability, but rather are 
determined by liquid water storages on inter-annual timescales. We conclude that inferred driving 
mechanisms of TWS cannot simply be transferred from one scale to another, which is of particular 
relevance for understanding the short- and long-term variability of water resources. 

 

 

This chapter is based on: 

Trautmann, T., Koirala, S., Carvalhais, N., Eicker, A., Fink, M., Niemann, C., Jung, M. (2018): Understanding 
terrestrial water storage variations in northern latitudes across scales, Hydrology and Earth System 
Sciences, 22(7): 4061-4082, doi: 10.5194/hess-22-4061-2018 
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2.1 Introduction 

Since the start of the mission in 2002, measurements from the Gravity Recovery and Climate Experiment 
(GRACE) provide unprecedented estimates of changes in the terrestrial water storage (TWS) across large 
spatial domains (Tapley et al.  2004; Wahr et al. 2004). Due to their global coverage and independence 
from surface conditions, the data represent a unique opportunity to quantify spatio-temporal variations 
of the Earth’s water resources (Alkama et al. 2010; Werth et al. 2009). Therefore, GRACE data have been 
widely used to diagnose patterns of hydrological variability (Seo et al.  2010; Rodell et al.  2009; Ramillien 
et al.  2006; Feng et al.  2013), to validate and improve model simulations (Döll et al. 2014; Güntner, 2008; 
Werth and Güntner, 2010; Chen et al.  2017; Eicker et al.  2014; Girotto et al. 2016; Schellekens et al.  
2017), and to enhance our understanding of the water cycle on regional to global scales (Syed et al. 2009; 
Felfelani et al.  2017). 

Despite the high potential of GRACE data for hydrological applications (Döll et al. 2015; Werth et al.  2009), 
the measured signal vertically integrates over all water storages on and within the land surface, which 
challenges the interpretation of the driving mechanism behind TWS variations. To facilitate insight into 
the underlying processes, hydrological models are frequently used to separate the measured TWS into its 
different components such as groundwater, soil moisture, and snowpacks (Felfelani et al. 2017). However, 
as a consequence of uncertain model structure, forcing, and parametrization, model-based partitioning is 
ambiguous (Güntner, 2008) and may lead to diverging conclusions, especially on regional scale (Long et 
al. 2015; Schellekens et al. 2017). 

While the uncertainties of catchment-scale hydrological models are commonly reduced by calibrating the 
model parameters against discharge measurements, the majority of macroscale models rely on a priori 
parametrization. So far, only a few models used to assess hydrological processes on continental to global 
scales are constrained by observations, and if so, they are mainly calibrated against the observed 
discharge of large river basins (Long et al. 2015; Döll et al. 2015). Recently, several studies showed the 
benefits of additionally including GRACE TWS data in model calibration (Werth and Güntner, 2010; Xie et 
al. 2012; Chen et al. 2017) or by means of data assimilation (Eicker et al. 2014; Forman et al. 2012; Kumar 
et al. 2016). However, although these approaches improve model simulations, they do not reduce the 
uncertainty in the partitioning of TWS due to the parameter equifinality problem (Güntner, 2008). 
Therefore, it is desirable to include multiple observations, ideally of several hydrological storages and 
fluxes, to constrain model results (Syed et al. 2009). 

Nowadays, the increasing number and quality of Earth-observation-based products provides valuable 
information on a variety of hydrological variables over large scales, and thus facilitates the constraint of 
model simulations with multiple data streams simultaneously. While this can provide a more robust 
understanding of how variations in water storages translate into the observed TWS (Werth and Güntner, 
2010), it is very challenging in practice and has rarely been implemented. 

On the one hand, this is due to the limitations and inherent uncertainties of each Earth-observation-based 
product that need to be considered when comparing simulations and observations. For example, satellite-
based soil moisture retrievals only capture the upper 5 cm of soil under snow-free conditions and 
therefore are difficult to compare to modelled soil water (Lettenmaier et al. 2015), while large-scale 
observations of snow mass based on passive microwave sensors are known to suffer from uncertainties 
in deep and wet snow conditions (Niu et al. 2007), and multispectral sensors solely provide estimates of 
snow cover in the absence of clouds (Lettenmaier et al. 2015). 

On the other hand, the application of multi-criteria calibration approaches is limited by the increasing 
complexity of most macro-scale hydrological models over time (Döll et al. 2015). This high model 
complexity is not only associated with conceptual issues related to over-parametrization (Jakeman and 
Hornberger, 1993) and large computational demand, but has also been shown to not necessarily improve 
model performance (Orth et al. 2015). Therefore, it is desirable to implement a rather parsimonious 
model structure (Sorooshian et al. 1993), especially in multi-criteria model-data fusion approaches. 

Applying multiple observational constraints is particularly beneficial in regions where hydrological 
dynamics are poorly understood and thus their representation in models varies widely. This is the case 
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for snow-dominated regions as the Northern high latitudes (Schellekens et al. 2017), which are among the 
areas most prone to the impacts of climate change (Tallaksen et al. 2015). These regions have been 
experiencing the strongest surface warming over the last century globally (IPCC, 2014), a trend which is 
expected to be exacerbated in the future and to significantly change hydrological patterns (AMAP, 2017). 
Therefore, solid understanding of present hydrological processes and variations is crucial, yet the effect 
of complex snow dynamics on other storages and water resources is relatively unknown (van den Hurk et 
al. 2016, Kug et al. 2015). While it has been shown that snow mass is the primary component of seasonal 
variations of TWS in large Northern basins (Niu et al. 2007, Rangelova et al. 2007), it is not known what 
drives the TWS variations on inter-annual or longer timescales in these regions. Moreover, most analysis 
has so far focused on individual river basins and do not provide a comprehensive picture over large spatial 
scales. 

In this study, we therefore aim to investigate the contributions of snow compared to other (liquid) water 
reservoirs to spatio-temporal variations of TWS in the Northern mid- to high latitudes. To do so, we 
establish a model–data fusion approach that integrates multiple Earth-observation-based data streams 
including GRACE TWS along with estimates of snow water equivalent (SWE), evapotranspiration, and 
runoff into a rather simple hydrological model. This model is designed as a combination of standard model 
formulations yet aims to maintain low complexity in order to facilitate multi-criteria calibration and to 
focus on variables that can be constrained by observations. 

First, we explain the applied methods, including the implemented model, the data used, and the multi-
criteria calibration approach. The following section presents and discusses the results obtained with the 
optimized model. In the results, we describe the calibrated model parameters and evaluate the model 
performance with respect to observed patterns of TWS and SWE. Subsequently, the relative contributions 
of snow and liquid water storages to TWS variations are assessed on seasonal and inter-annual scales. 
Thereby we first focus on spatially integrated values across the study domain, and secondly on the 
composition on local grid scale. Finally, we summarize our findings and draw the conclusions. 

2.2 Data and Methods 

The following section provides an overview on the experimental set-up, followed by a more detailed 
description of the model, the input data, and the methods for model calibration and analysis. 

2.2.1 Experiment Design 

To assess the composition of TWS variations in Northern mid- to high latitudes, we optimized a simple 
hydrological model on daily time steps at a 1°x1° latitude–longitude resolution. We defined the area of 
interest as humid land surface north of 40°N, excluding Greenland as well as grids with > 90 % permanent 
snow cover and > 50 % water fraction. Humid areas are derived based on an aridity index AI = 0.65, which 
was calculated as the ratio of precipitation and potential evapotranspiration (United Nations 
Environment, 1992). Therefore, we used the same precipitation and potential evapotranspiration data as 
for model forcing (see Sect. 2.3). To mask out grids with > 90 % permanent snow cover and > 50 % water 
fraction, we applied the SYNMAP land cover classification (Jung et al. 2006). This dataset has an original 
resolution of 1 km and was used to determine the fraction of land cover classes within each 1°x1° grid 
cell. 

Forced with global observation-based climate data, the model parameters were constrained for a subset 
of the study domain by multiple Earth observation data products using a multi-criteria calibration 
approach. These products include terrestrial water storage anomalies as seen by the GRACE satellites 
(Watkins et al. 2015, Wiese, 2015), measurements of snow water equivalent obtained in the GlobSnow 
project (Luojus et al. 2014), evapotranspiration fluxes based on FLUXCOM (Tramontana et al. 2016), and 
runoff estimates for Europe from E-RUN based on E-OBS (Gudmundsson and Seneviratne, 2016). Once 
the model parameters were calibrated, we evaluated the model against the same data, taking into 
account the entire study domain. Finally, we applied the calibrated model to quantify the contributions 
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of snow and liquid water storages to the integrated TWS. Thereby we considered different spatial domains 
(local grid cell and spatially aggregated) and temporal scales (mean seasonal and inter-annual variations). 

Due to the differences in the temporal coverage of the observational data streams, model calibration and 
evaluation were conducted for the period 2002–2012, while analysis of TWS components covers the 
whole period of 2000–2014. 

An overview on the experiment design and the selected time periods is provided by Fig. 2.1, while the 
following sections give a detailed description of the individual steps. 

 

 

Figure 2.1. Experiment design and considered time periods for forcing and analysis (grey) as well as model calibration 
and evaluation (orange). 

 

2.2.2 Model Description 

We designed a conceptual hydrological model with low complexity and a total number of 10 adjustable 
parameters. The model considers major hydrological fluxes such as snowmelt, sublimation, infiltration, 
evapotranspiration, and (delayed) runoff and includes water storages in the snowpack, in the soil, and 
due to delay in runoff (Fig. 2.2). It is forced by precipitation (P), air temperature (T), and net radiation (Rn) 

and calculates all hydrological processes on daily time steps for individual grid cells. A simple schematic 
diagram of the model is shown in Fig. 2.2, while a detailed description of modelled processes is provided 
in Sect. A.1 in the Supplement. 

In the first step, precipitation P is partitioned into liquid precipitation (rainfall) and snowfall based on a 
temperature threshold of 0 C. Accumulating snowfall increases the snowpack represented by the snow 
water equivalent (mm), which depletes by sublimation and melt if T exceeds 0 C. We calculate sublimation 
based on the GLEAM model (Miralles et al. 2011) and apply an extended degree-day approach to estimate 
snowmelt (Kustas et al. 1994). Since the presence of snow can be highly variable in one grid cell, we model 
the fractional snow cover (–) following Balsamo et al. (2009), which is used to scale snowmelt and 
sublimation. 

Similar to the WaterGAP model (Döll et al. 2002), incoming water from rain and snowmelt is allocated to 
soil moisture (SM) and land runoff (Qs) depending on soil moisture conditions (Bergström, 1991). SM is 
represented by a one-layer bucket storage that depletes by evapotranspiration (ET). We calculate ET as 
the minimum of demand-limited potential ET following the Priestley–Taylor formula (Priestley and Taylor, 
1972) and supply-limited ET following Teuling et al. (2006). 

As land runoff results from an effective soil water recharge formulation, the calculated runoff is essentially 
all the water that cannot be stored in the soil. Thus, it implicitly contains both surface and subsurface 
runoff as well as the percolation to deeper water storages such as groundwater, as well as contributions 
from surface water bodies. To account for runoff contributions from slow-varying storages, we calculate 
runoff from each grid cell (Q) by applying an exponential delay function on Qs (Orth et al. 2013). Based on 

mass balance, we derive the amount of retained land runoff (RW), which implicitly accounts for the effects 



2.2 Data and Methods 

25 

of several water pools that are not explicitly represented in the model (groundwater, lakes, wetlands, and 
the river storage). The sum of RW and SM is then taken as the total liquid water storage (W). Frozen soil 
water is not explicitly included in the model. Further, the model does not account for lateral flow of water 
among grid cells and does not consider river routing explicitly. While the effect of the routing can be 
significant in large river basins of humid regions (Kim et al. 2009), it is negligible on the spatial scale of a 
grid cell (as also shown by small influence of the delayed storage component), and at the temporal scale 
of monthly aggregated values. To ensure that the model calibration is not affected by river routing, we do 
not compare simulated runoff to measured river discharge of large basins in our model–data fusion 
approach. 

Finally, the sum of liquid water storage and snow is taken as the modelled terrestrial water storage 
(TWSmod) of a grid cell for the given time step. Since the delayed runoff contribution is minor at the 

monthly timescale, we, for simplicity, only focus on the contributions of SWE and total W to TWS in this 
study. 

 

Figure 2.2. Schematic structure of the model with calculation of TWS. Boxes denote the water storages (mm): snow 
water equivalent SWE, soil moisture SM, retained water RW, liquid water W and total terrestrial water storage TWS. 

Fluxes are represented by arrows. Red color identifies forcing data: precipitation P (mm day-1), air temperature 

T (°C), and net radiation Rn (MJ m-2 day-1); green color indicates variables constrained by observations: 

evapotranspiration ET (mm day-1), runoff Q (mm day-1), SWE (mm), and TWS (mm). 

2.2.3 Input Data 

As meteorological forcing we used globally available, daily cumulated gridded precipitation sums (mm 

day-1), average air temperature (C), and net radiation (MJ m-2) from March 2000 to December 2014. 

Precipitation values originate from the 1° daily precipitation product version 1.2 of the Global 
Precipitation Climatology Project (GPCP-1DD) (Huffman et al. 2000; Huffman and Bolvin, 2013), which 
combines remotely sensed precipitation and observations from gauges. Temperature was obtained from 
the CRUNCEP version 6.1 dataset (Viovy, 2015), which is a merged product of Climate Research Unit (CRU) 
TS.3.23 observation-based monthly climatology (1901–2013) (New et al. 2000) and the National Center 
for Environmental Prediction (NCEP) 6-hourly reanalysis data (1948–2014) (Kalnay et al. 1996). Net 
radiation is based on radiation fluxes of the SYN1deg Ed3A data product of the Clouds and the Earth’s 
Radiant Energy Systems (CERES) program of the US National Aeronautics and Space Administration (NASA) 
(Wielicki et al. 1996). 

Rather than using a single data stream, e.g., discharge measurements at the outlet of large continental 
catchments as used in traditional large-scale hydrological studies, we calibrated the model against 
multiple observation-based data streams on the grid scale. The integrated datasets include terrestrial 
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water storage anomalies (TWSobs) (mm), snow water equivalent (SWEobs) (mm), evapotranspiration 

(ETobs) (mm day-1), and gridded runoff estimates for Europe (Qobs) (mm day-1). 

 

Table 2.1. Overview on data applied for meteorological forcing and multi-criteria calibration and model evaluation 
(NH: Northern Hemisphere). 

 Variable Dataset Coverage and resolution Reference 
      

   Spatial Temporal  

Meteorological forcing     

P precipitation GPCP 1dd v1.2 1°x1° daily Huffman et al. (2000), 
   global 1996–present Huffman et al. (2016) 

T air CRUNCEP v6.1 0.5°x0.5° daily Viovy (2015) 
 temperature  global 1901–2014  

Rn net radiation CERES SYN1deg Ed3A 1°x1° 3-hourly Wielicki et al. (1996) 
   global Mar 2000–May 2015  

Calibration and evaluation     

TWS terrestrial GRACE Tellus JPL- 0.5°x0.5° monthly Watkins et al. (2015), 
 water storage RL05M v2 global 2002–2016 Wiese et al. (2016b) 
 anomalies  

0.25°x0.25° 
  

SWE snow water GlobSnow v2.0 daily Luojus et al. (2014) 
 equivalent  non-alpine NH 1979–2012  

ET evapotranspiration FLUXCOM 0.5°x0.5° daily Tramontana et al. (2016) 
   global 1982–2013  

Q runoff EU-RUN v1.1 0.5°x0.5° monthly Gudmundsson and Seneviratne 
(2016)    Europe 1950–2015 

 

TWSobs is derived from the GRACE Tellus Mascon product version 2 based on the GRACE gravity fields 

Release 05, processed at NASA’s Jet Propulsion Laboratory (JPL) (Watkins et al. 2015, Wiese, 2015). The 
GRACE solutions were corrected for geocentric motion coefficients, according to Swenson et al. (2008), 
and for variations in Earth’s oblateness (C20 coefficient) obtained from satellite laser ranging (Cheng et 
al. 2013). The glacial isostatic adjustment has been accounted for using the model by A et al. (2013). The 
dataset provides monthly anomalies of equivalent water thickness relative to the January 2004–
December 2009 time-mean baseline for the period 2002-2016. Unlike previous GRACE products based on 
spherical harmonic coefficients, the JPL RL05M dataset uses equal area 3°x3° spherical cap mass 
concentration blocks (mascons) to solve for monthly gravity field variation. To ensure a clean separation 
along coastlines within land-ocean mascons, a Coastline Resolution Improvement (CRI) filter has been 
applied (Watkins et al. 2015). For each mascon, uncertainties were estimated by scaling the formal 
covariance matrix. To enable hydrological analysis at sub-mascon resolution, we used the provided gain 
factors to scale the original TWSobs values. 

To gain confidence in the partitioning of the integrated TWS, we additionally used SWE estimates from 
the European Space Agency’s (ESA) GlobSnow SWE v2.0 product (Luojus et al. 2014). The dataset provides 
daily SWE values (mm) for the non-alpine Northern Hemisphere based on assimilating passive microwave 
satellite data and observed snow depth from weather stations by applying a semi-empirical snow emission 
model. Compared to data from stand-alone remote sensing approaches, GlobSnow SWE shows superior 
performance, even though validation against ground-based measurements still reveals a systematic 
underestimation of SWE under deep snow conditions due to a change in the microwave behavior of the 
snowpack (Derksen et al. 2014, Takala et al. 2011, Luojus et al. 2014). 

The ET product is based on FLUXCOM (http://www. fluxcom.org, last access: 8 April 2016), i.e., upscaled 
estimates of latent energy that were derived by integrating local eddy covariance measurements of 
FLUXNET sites, remote sensing, and meteorological data using the Random Forest (Breiman, 2001) 
machine learning algorithm (Tramontana et al. 2016). In this study, we apply the Random Forest (Breiman, 
2001) realization of FLUXCOM-RS + METEO (see Tramontana et al. 2016 for details). While the product 
captures seasonality and spatial patterns of mean annual fluxes well, predictions of inter-annual variations 
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remain highly uncertain (Tramontana et al. 2016). In addition, the performance of FLUXCOM ET was found 
to be lower in extreme environments that are not well represented by FLUXNET sites such as those in the 
Arctic. An underestimation of the order of 10 %–20 % of ET can be expected owing to missing energy 
balance correction prior to upscaling for this respective FLUXCOM ET realization. To calculate ETobs (mm 

day1), we assume a constant latent heat of vaporization of 2.45 MJ kg1. 

Similar to TWS that represents the vertically integrated water storage, observations of river discharge 
spatially integrate hydrological processes within a basin. Thus, they provide an invaluable tool for model 
validation at large scales. However, it is desirable to apply gridded products to evaluate model 
performance at local (grid) scale. Therefore, we used the observation-based gridded runoff product E-
RUN version 1.1 (Gudmundsson and Seneviratne, 2016) as a constraint for runoff processes. This dataset 
is based on observed river flow from 2771 small European catchments that was spatially disaggregated to 
upstream grid cells using a machine learning approach. The data provide mean monthly runoff rates per 
unit area for each grid, so that river routing is not necessary to directly compare runoff estimates with 
modelled runoff. Similar to the ET data, gridded runoff estimates show high accuracy for the mean 
seasonal cycle across Europe, and poorer agreement regarding monthly time series and inter-annual 
variations (Gudmundsson and Seneviratne, 2016). 

Table 1 summarizes the main features of the data used in this study. If required, the data streams were 
resampled from their original resolution to a consistent 1°x1° latitude-longitude grid and common daily 
(meteorological forcing) and monthly (calibration data) time steps. Data preparation further included 
extraction of the relevant, overlapping time period and area under consideration. 

 

Table 2.2. Adjustable model parameters, their meaning, calibration range (theoretical range in brackets), optimized 
value including estimated uncertainty, and the corresponding equation in S1. 

Parameter Description Unit Range Optimized Eq. 

   (theoretical) value ± uncertainty (%)  

Snow        

psf scaling factor for snowfall – 0–3 (∞) 0.67 ±1 x 10-3 (<1%) (S2) 

snc minimum SWE that ensures complete 
snow cover of the grid 

mm 0–500 (∞) 80 ±19 (24 %) (S3) 

mt snowmelt factor for T mm K-1 day-1 0–10 2.63 ±0.26 (10 %) (S4) 

mr snowmelt factor for Rn mm MJ-1 day-1 0–3 0.90 ±0.05 (6 %) (S4) 

sna sublimation resistance – 0–3 0.44 ±0.01 (3 %) (S5) 

Soil        

sexp shape parameter of runoff–
infiltration curve 

– 0.1–5 1.46 ±0.02 (2 %) (S12) 

smax maximum soil water holding capacity mm 10–1000 (0–∞) 515 ±9 (2 %) (S12) 

eta alpha coefficient in Priestley–Taylor 
formula 

– 0–3 1.20 ±0.01 (1 %) (S14) 

etsup ET sensitivity and/or SM fraction 
available for ET 

day-1 0–1 0.02 ±6 x 10-5 (<1%) (S18) 

Runoff        

qt recession timescale for land runoff d 0.5 (0)–100 13 ±4 (31 %) (S20) 

 

2.2.4 Multi-Criteria Calibration 

In this study, calibration is intended to identify the set of 10 model parameters (Table 2) that achieves the 
best fit between simulations and observations for all grid cells while regarding all observational data 
simultaneously. Thereby, we aimed to exploit the strength of each data stream, while considering known 
uncertainties and biases. For this purpose, we defined a cost function that takes into account the 
weakness of each observed variable and evaluates the overall model fit with one value of total cost (see 
subsequent section). To minimize total costs and thus find the optimal parameter values, we applied the 
covariance matrix evolution strategy (CMAES) (Hansen and Kern, 2004) search algorithm. The CMAES, as 
an evolutionary algorithm, is a stochastic, derivative-free method for non-linear, non-convex optimization 
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problems. Compared to gradient-based approaches, it performs better on rough response surfaces with 
discontinuities, noise, local optima, and/or outliers and is a reliable tool even for global optimization 
(Hansen and Kern, 2004). Additionally, the CMAES guided search in the parameter space makes the 
algorithm less computationally demanding than other global optimization approaches, which enumerate 
a large number of possible solutions (e.g., Monte Carlo– Markov chain methods) (Bayer and Finkel, 2007). 

In order to keep computational demands low and to avoid overfitting by a very small sample size, we 
perform calibration for a subset of 1000 randomly chosen grid cells. Within this iterative process, the 
model simulations are carried out on daily time steps, while costs are calculated based on monthly values. 
Further, each model run includes an initialization based on 10 random years that were selected a priori. 

Cost Function 

To objectively describe the goodness of fit, we defined a cost function based on model efficiency (Nash 
and Sutcliffe, 1970), but with explicit consideration of the uncertainty σi of the observed data stream as 
follows: 

𝑐𝑜𝑠𝑡 =
∑

(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)
2

𝜎𝑖

𝑛
𝑖=1

∑
(𝑥𝑜𝑏𝑠,𝑖−�̅�𝑜𝑏𝑠,𝑖)

2

𝜎𝑖

𝑛
𝑖=1

     (2.1) 

 

where xobs;i is the observed data, �̅�obs is the average of xobs, and xmod;i is the modelled data of each space-
time point i. Similar to model efficiency, the criterion reflects the overall fit in terms of variances and 
biases, yet with an optimal value of 0 and a range from 0 to ∞. Costs are calculated for each variable 
separately, considering only grid cells and time steps with available observations, which vary for the 
different data streams. Additionally, to overcome the sensitivity to outliers arising from data uncertainties 
or inconsistencies, we adopted a 5th-percentile outlier removal criterion (Trischenko, 2002), i.e., the data 
points with the highest 5 % residuals xobs–xmod were excluded in the cost function. 

The costs of each observed variable and its modelled counterpart are then added equally to derive a single 
value of total cost (Eq. 2.2). Since a perfect simulation would yield a total cost of 0, calibration aims to find 
the global minimum of costtotal. 

𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑐𝑜𝑠𝑡𝑇𝑊𝑆 + 𝑐𝑜𝑠𝑡𝑆𝑊𝐸 + 𝑐𝑜𝑠𝑡𝐸𝑇 + 𝑐𝑜𝑠𝑡𝑄    (2.2) 

 

As the uncertainty σ of observational data in Eq. (2.1) is adapted to best reflect the strength of the 
individual data stream, we preselected the strongest aspect of the data to be included in the cost function. 
Owing to the larger uncertainties of ETobs and Qobs on inter-annual scales, we only employed the grid’s 

mean seasonal cycles, while the full monthly time series of gridded TWSobs and SWEobs were taken into 
account. 

As ETobs and Qobs do not explicitly provide uncertainty estimates, we assume an uncertainty of 10 % and 

minimum of 0.1 mm, respectively. In order to define of TWSobs we utilized the spatially and temporally 
varying uncertainty information provided with the GRACE data. Additionally, the monthly values of 
observed and modelled TWS datasets were translated as anomalies to a common time-mean baseline of 
their overlapping period 1 January 2002–31 December 2012 before calculating the cost for TWS. 

For SWE, we applied an absolute uncertainty of 35 mm based on reported differences to ground 
measurements (Liu et al. 2014, Luojus et al. 2014). Since GlobSnow SWE saturates above approx. 100 mm 
(Luojus et al. 2014), we do not penalize model simulations when both SWEobs and SWEmod are larger than 
100 mm in order to prevent the propagation of data biases to calibrated model parameters. 

For maps of the temporal average uncertainties see Sect. S2. 
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2.2.5 Evaluation of Model Performance 

Once the parameters were optimized, we applied the model for the entire study domain and evaluated 
its performance regarding all grid cells (6050) in terms of Pearson correlation coefficient r and root mean 
square error RMSE for each variable with observational data. On the one hand, the overall performance 
at local scale was assessed by calculating r and RMSE for the monthly time series of each grid individually. 
On the other hand, the model performance over the entire study domain was evaluated by comparing 
the seasonal and inter-annual dynamics of the regional average. Therefore, we defined inter-annual 
variation (IAV) as the deviation of the monthly values from the mean seasonal cycle (MSC). As with the 
calibration, we focused on the common time period 2002–2012 and considered only the grid cells and 
time steps with available observations. 

In order to benchmark our model against current state-of-the-art hydrological models, we compared its 
simulations with the multi-model ensemble of the global hydrological and land surface models of the 
eartH2Observe dataset (Schellekens et al. 2017). This ensemble includes HTESSEL-CaMa (Balsamo et al. 
2009), JULES (Best et al. 2011, Clark et al. 2011), LISFLOOD (van der Knijff et al. 2010), ORCHIDEE (Krinner 
et al. 2005, Ngo-Duc et al. 2007, d’Orgeval et al. 2008), SURFEX-TRIP (Alkama et al. 2010, Decharme et al. 
2013), W3RA (van Dijk and Warren, 2010, van Dijk et al. 2014), WaterGAP3 (Flörke et al. 2013, Döll et al. 
2009), PCR-GLOBWB (van Beek et al. 2011, Wada et al. 2014), and SWBM (Orth et al. 2013). For 
consistency, we processed the model estimates in the same manner as our model simulations to directly 
compare modelled SWE and TWS to observations from GlobSnow and GRACE, respectively. While each 
model provides simulated SWE, they vary in the representation of other storage components. We 
calculated modelled TWS for each model by summing up the available water storage components. Thus, 
the variables contributing to modelled TWS vary between the models, which impedes detailed 
comparison. Additionally, we calculated the multi-model mean of SWE and TWS simulations. 

2.2.6 Analysis of TWS Variations and Composition 

Finally, the contribution of snow and liquid water to seasonal and inter-annual TWS variability was 
quantified across spatial scales. For this, we ran the model with optimized parameters for the entire study 
domain from 2000 to 2014 and translated simulated storages as anomalies to the time-mean baseline. As 
in the model evaluation, the MSC and IAV of SWEmod, W, and TWSmod anomalies were calculated at local 
scale for each grid individually and as spatial average over all grid cells. To assess storage variability, the 
variance in the MSC and the IAV of each storage component was computed. Assuming negligible 
covariance of snow and liquid water (see Sect. S8), their relative contribution to TWS variance was 
calculated as the contribution ratio CR: 

𝐶𝑅 =  
𝑣𝑎𝑟(𝑊)

𝑣𝑎𝑟(𝑇𝑊𝑆𝑚𝑜𝑑)
−

𝑣𝑎𝑟(𝑆𝑊𝐸𝑚𝑜𝑑)

𝑣𝑎𝑟(𝑇𝑊𝑆𝑚𝑜𝑑)
     (2.3) 

 

While CR = 0 indicates equal contribution of snow and liquid water to TWS variability, positive (negative) 
values of CR imply that variations of TWSmod mainly result from variations in liquid water (snowpack), 
with CR = +1 meaning that all variation is explained by liquid water and CR = -1 suggests determination 
solely by snow. From var(SWE) = var(TWS), the percentage contribution of liquid water storages to the 
variability of TWS can be inferred as CW: 

𝐶𝑊 =
𝑣𝑎𝑟(𝑊)

𝑣𝑎𝑟(𝑇𝑊𝑆𝑚𝑜𝑑)
=

𝐶𝑅+1

2
    (2.4) 

 

As this study intends to analyze the effects of storage components on TWS at different spatial scales (local 
grid scale and large (regional) spatial averages), the difference in spatial heterogeneities of these 
components is considered. Some storage components, e.g., soil moisture anomalies, have much larger 
spatial variability than others. Due to this high small-scale heterogeneity, the effect on larger regional 
scale might be smaller than expected, as different local scale heterogeneities compensate for each other 
when the regional averages are calculated (Jung et al. 2017). Thus, we assessed the spatial coherence of 
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simulated patterns of SWE and W by calculating the proportion of total positive and total negative 
covariances among grid cells (Eqs. 4 and 5 in Jung et al. 2017). If the sum of positive covariances outweighs 
the sum of negative covariances, it implies some degree of spatial coherence of the anomalies. Spatial 
coherence of anomalies then causes a larger variance in the averaged anomalies compared to the sum of 
the variances of individual grid cells. This assessment of spatial coherence of SWE and W anomalies allows 
for understanding different contributions of SWE and W to TWS variability at local scale compared to the 
regional scale. 

2.3 Results and Discussion 

The following sections present and discuss the results obtained with the calibrated model. First, we review 
the calibration approach and the optimized parameter values. Then the model is validated with respect 
to its overall performance at grid scale, as well as the reproduction of average seasonal (MSC) and inter-
annual (IAV) dynamics. Subsequently, we assess the driving component of spatially integrated TWS 
variations and the relative contributions of snow and liquid water to TWS variability on local scale. Finally, 
we summarize the results across spatio-temporal scales. 

2.3.1 Model Optimization 

Optimization of the model identifies the parameter values listed in Table 2 as being most suitable 
regarding all data constraints simultaneously. The CMAES search algorithm converged after 3272 function 
evaluations as no further improvement of coststotal could be achieved, which suggests a reliable estimate 
of the global optimal parameter set. The individual cost terms obtained with default and optimized 
parameter values are contrasted in Table A.1 in the Supplement. 

Overall, this parameter set obtained for a subset of 1000 random grids is reasonable with respect to 
reported “plausible” parameter ranges, with none of them reaching their physically and/or technically 
defined upper and lower calibration bounds. 

In detail, snowfall is reduced by psf to 67 % of precipitation occurring at T < 0°C. This reduction agrees 

with Behrangi et al. (2016), who found that GPCP overestimated snowfall over Eurasian high latitudes by 
about 20 % compared to other precipitation products. Similar, overestimation of precipitation undercatch 
correction in GPCP has been reported by Swenson (2010). Taking into account the mismatch in temporal 
and spatial domains, as well as the experimental definitions, reducing GPCP snowfall in our study by 33 % 
is roughly consistent with both studies. Therefore, psf allows the reduction of inconsistencies between 

the precipitation forcing and the water storages as given by GlobSnow SWE and GRACE TWS. Further, 
each grid is assumed to be completely covered by snow if SWE ≥ 80 mm (snc). On the one hand, the 

snowpack can be reduced by sublimation, with sna = 0.44 indicating relatively high sublimation resistance, 

compared to a default of sna = 0.95 proposed by Miralles et al. (2011). The divergence probably results 

from interaction with snowmelt, as net radiation also contributes to melt with 0.9 mm MJ-1 (mr) if T 
exceeds 0°C. On the other hand, melt is mainly induced by temperature, as the estimated degree-day 

factor (mt) is 2.63 mm K-1, which is close to typical values of 3 mm K-1 (Müller-Schmied et al. 2014, Stacke, 
2011). These parameter interactions underline an equifinality issue between modelled snowmelt and 
sublimation due to missing data constraints, resulting in larger parameter uncertainties for sna, mr, and 

mt. However, for the objective of this study it is not primarily relevant whether sublimation- or radiation-
induced melt decreases the snowpack, as the total snow loss amount remains relatively unchanged for 
different parameter combinations. The maximum soil water holding capacity is set to 515 mm after 
calibration, a comparatively high value that is likely to include storages in surface water bodies such as 
lakes and wetlands within our study domain. The optimized value of sexp is 1.46, which suggests a non-
linear relationship between soil moisture storage and runoff generation. For the same amount of 
incoming water (rainfall and snowmelt), the non-linear relationship produces a smaller runoff and larger 
infiltration than a linear relationship (sexp = 1). 

Regarding evapotranspiration, the alpha coefficient (eta) in the Priestley–Taylor formula is generally taken 
as 1.26 for well-watered crops based on experimental observations (Priestley and Taylor, 1972, Eichinger 
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et al. 1996). Thus, the optimized value of 1.20 for eta reflects a plausible value. Further, etsup indicates 
that 2 % of the available soil moisture can evaporate per day (including transpiration), which lies within 

the range of site-specific ET sensitivities from 0.001 to 0.5 day-1 and is close to the median value (5 %) 
(Teuling et al. 2006). 

Finally, the calibrated recession timescale that delays land runoff is 13 days (qt). Compared to much 

smaller alpine catchments for which Orth et al. (2013) reported qt of 2 days, the longer delay coefficients 
are reasonable at a spatial resolution of 1°x1° grids, because the elevation gradients are much smaller 
within a large spatial area. At first glance, 13 days appear to be quite a short effective time period, as the 
delay is supposed to comprise contributions from much slower depleting reservoirs, such as lakes and 
deep groundwater. However, implementing and calibrating a simple groundwater storage, which is 
recharged with some proportion of land runoff and linearly depletes over time, led to similar retardation 
times. 

The uncertainty in the optimized parameter vector was estimated by quantifying each parameter’s 
standard error as the square root of the product between the diagonal elements of the parameters’ 
covariance matrix (calculated from the Jacobian matrix) and the sum of residual squares according to 
Omlin and Reichert (1999) and Draper and Smith (1981). The resulting relative parameter uncertainty is 
particularly instructive for comparing how well individual parameters could be constrained. 

Most parameters were well constrained (Table 2), suggesting that our model–data fusion method, fed by 
multiple observation streams, succeeded in reducing the initial theoretical parameter ranges (up to 
500 %) to much narrower ranges. Nonetheless, some parameters have a larger uncertainty range than 
others (e.g., qt, snc, mt), which may highlight a limitation in suitable observations to constrain them, as 

well as a lower sensitivity of the model results and the cost function used. Further, given that the model 
only considers the spatial variability of climate, the uncertainty in global parameters obtained from 
inversion may reflect the natural variations in these parameters that arise from differences in local land 
surface characteristics such as topography or land cover. 

We adopted the calibrated parameter values as global constants for model simulations over the entire 
study domain. Even though the globally uniform parameters may not provide perfect simulation for all 
grids over a large study domain, this approach represents a compromise between a priori parametrization 
of the model and its calibration at local or regional (e.g., basin) scale. While local and regional model 
calibration enables good adaption to geographic characteristics, it easily leads to overfitting of the model 
and thus propagates the constraints’ inherent errors and uncertainties in the modeling result. As these 
uncertainties often vary in space, globally uniform parameter values diminish overfitting uncertainties. In 
addition, calibration for several independent grids is computationally demanding and subsequently 
requires a parameter regionalization approach (He et al. 2011). Since such approaches are not commonly 
accepted (Sood and Smakhtin, 2015, Bierkens et al. 2015), macro-scale models mostly apply a priori 
parameters based on empirical values or on expert knowledge, which may yet lead to suboptimal 
simulations (Beck et al. 2016, Sood and Smakhtin, 2015). 

2.3.2 Model Performance 

For model validation, we used the optimized parameter values to simulate hydrological fluxes and states 
of the 2002–2012 period over the entire study domain and evaluated the model results against the 
observation-based data of TWS, SWE, ET, and Q. 

In general, all observed patterns are reproduced very well, taking into account the specific data 
weaknesses. We achieve a “near-perfect” correlation of 0.99 and 0.94 for mean seasonal variations of ET 

and Q, respectively. The median RMSE of mean seasonal ET is 11 and 9.5 mm month-1 for Q, which 
represent 15 % resp. 17 % of the average observed annual amplitude. At the inter-annual scale, though, 
larger discrepancies exist, which at least partly arise from larger uncertainties in ETobs and Qobs (Sect. S4). 
Thus, we assume high confidence in modelled ET and Q fluxes and subsequently focus on evaluation of 
the water storages TWS and SWE. 
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2.3.2.1 Performance on local Grid-Scale 

Overall, the model performs well compared to the observations of monthly time series of SWE and TWS 
(Fig. 2.3). More than half of the grid cells obtain correlation values higher than 0.74 between SWEobs and 

SWEmod. In general, the median RMSE is 20 mm, which is smaller than the average uncertainty of 35 mm 

in SWEobs. The correlation reduces in lower latitudes where seasonal snow accumulation and thus 
variability is small. Further, the correlation is also relatively weaker in arctic North America and the Rocky 
Mountains, while larger deviations between observed and modelled snow quantities center around 
mountainous and coastal regions (e.g., Rocky Mountains, Kamchatka), and regions with the largest 
seasonal snow accumulation (Labrador Peninsula, North Siberian Lowland and northern West Siberian 
Plain). There are several reasons for this relatively poorer performance. First, the GlobSnow 
measurements do not cover mountainous areas due to the sub-grid variability of snow depth and high 
uncertainties in the microwave measurements in complex alpine terrains (Takala et al. 2011). As the 
resampling and the coarse resolution of each grid in this study compound a distinct alpine or non-alpine 
classification, these uncertainties leak to the surrounding areas. Second, neither the input forcing data 
nor our model include the sub-grid scale heterogeneity of climate (e.g., precipitation and temperature) 
and hydrological processes, which may be significant in near-mountain or coastal regions. Additionally, 
the accuracy of observed large snow accumulation is limited as the radar-retrieval methods tend to 
saturate at large SWEobs values, which then leads to large RMSE of the model simulation. 

Similar to SWE, more than half of the grid cells show a strong correlation of 0.71 between TWSobs and 

TWSmod, which reflects a realistic temporal variation in the model simulation. Compared to SWE, the 
RMSE of TWS is somewhat higher, yet the median of 43 mm still reflects the range of ± 22 mm average 
uncertainty in GRACE TWSobs of the study domain (Wiese, 2015). However, when comparing GRACE TWS 

with model simulations, several aspects have to be considered. First, TWSobs as an integrated signal 
comprises all water storages, not all of which are (sufficiently) represented in the model structure. Second, 
although GRACE TWS passed through various preprocessing steps, the models that account for postglacial 
rebound or leakage between neighboring grid cells, for example, introduce their own uncertainties and 
do not remove the effects completely. Further, with a native resolution of 3°, uncertainties remain for 
grids that comprise large variability at sub-grid scale and depend on the model used to estimate GRACE 
scaling factors (Wiese et al. 2016a). Altogether this is reflected in higher RMSE in arctic regions (e.g., 
surrounding the Hudson Bay), as well as in heterogeneous coastal and mountainous regions. Additionally, 
our model shows a weaker performance in subarctic and arctic wetlands, and in central North America 
and eastern Eurasia. The latter are both relatively dry regions that are rather dominated by inter-annual 
TWS variations (Humphrey et al. 2016). Discrepancies between TWSobs and TWSmod thus relate to a low 

signal-to-noise ratio in TWSobs due to small seasonal TWS variations. However, the anthropogenic 
influence for irrigational withdrawal is very large in these regions, yet such processes are not considered 
in our model. We also lack explicit surface water storages (including wetland dynamics), which may be 
the reason for poorer performance, especially in North American wetland regions. 

2.3.2.2 Performance of the spatially integrated Simulations 

Since the aim of this study is to analyze the composition of TWS across temporal scales, we additionally 
evaluated average (spatially integrated) MSC and IAV of SWE and TWS (Fig. 2.4). While the mean seasonal 
variations of both observational data streams are relatively robust and have been used for model 
evaluation before (Alkama et al. 2010, Döll et al. 2014, Schellekens et al. 2017, Zhang et al. 2017), their 
inter-annual variations are more uncertain and contain considerable noise. This clearly reduces the 
information content in the observational data, so that we evaluate the IAV in more qualitative terms. 

As with the comparison at grid scale, the spatially averaged SWEmod compares well to SWEobs, with a 
correlation of 0.95 suggesting a good reproduction of seasonal snow accumulation and ablation processes 
(Fig. 2.4a). Owing to the high uncertainty of SWEobs peaks due to signal saturation, the higher amplitude 

of SWEmod seems reasonable. Although inter-annual variations are not as well represented as the MSC, 
general tendencies, e.g., increasing/decreasing positive/negative anomalies, coincide. 
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Figure 2.3. Pearson correlation coefficient r (a, c) and root mean square error RMSE (b, d) between monthly values 
of modelled SWE and GlobSnow SWE (a, b), as well as modelled TWS and GRACE TWS (c, d) for the period 2002–
2012 and for each 1 1 grid cell of the study domain. Values of r are truncated to the range 0–1 (a, c), and values of 
RMSE to the range 0–100 mm (b, d). 

 

Similar to SWE, the spatial average of TWS shows high correlation of 0.91 for seasonal variations, with 
positive anomalies from December to May–June and negative anomalies during summer and autumn 
months (Fig. 2.4b). Even though the modelled amplitude is slightly larger than the observed one, it stays 
within the uncertainty range of TWSobs for most months, suggesting reliable simulations. However, 

TWSmod precedes TWSobs on average by 1 month, reaching the maximum in March instead of April, and 
the minimum in August instead of September. A similar phase shift of 1 month between GRACE TWS and 
modelled TWS has been reported by several state-of-the-art global models (Döll et al. 2014, Schellekens 
et al. 2017). It should be noted that some areas such as eastern North America, Kamchatka, Scandinavia, 
and western Europe do not show phase differences, while the lag in south-eastern Eurasia is even larger, 
as already suggested by lower overall correlation (Fig B.5). In general, the disagreement in timing is 
attributed to the lack of sufficient water storages and the delay mechanism within the model, so that the 
modelled system reacts too fast (Schellekens et al. 2017, Döll et al. 2014, Schmidt et al. 2008b). Thus, we 
implemented model variants with an explicit groundwater storage to delay depletion of TWS, with 
spatially varying soil properties to better represent heterogeneous infiltration and runoff rates, as well as 
a variant that applied a more sophisticated approach to calculate snow dynamics based on energy 
balance. Despite the efforts, we achieved no improvement in terms of reducing the phase shift. Therefore, 
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the question arose as to whether it is not primarily the model formulation that prevents correction of the 
temporal delay, but rather the combination of forcing data and observational constraints. To further 
preclude possible errors due to such data inconsistencies, e.g., between GRACE TWS and GlobSnow SWE, 
we excluded GlobSnow SWE data from calibration. Although this could slightly improve the agreement of 
TWS MSC, it led to unrealistic behavior of snow dynamics, and thus did not offer any advantages. Besides, 
we found no major differences in the magnitude or spatial distribution of the phase shift resulting from 
the precipitation forcing (GPCP vs. WFDEI) or compared to other GRACE solutions (Sect. S6). Further, the 
lag in TWS simulation can occur due to several mechanisms and processes that are not yet considered in 
the current model structure, such as lateral flow and surface storages (wetland and lakes), vegetation 
processes, glacier melt, and human influence with dams and reservoirs. However, we do not observe a 
general or systematic relationship with either elevation, land cover type, soil properties, or the occurrence 
of lakes and wetlands. There is a tendency that larger negative lags occur more frequently in regions with 
sporadic permafrost, but the ranges of permafrost fractions are large for both short and long lags in TWS, 
suggesting a complex interaction between permafrost extent and its effect on lag in seasonal TWS 
dynamics. Finally, potential biases in the timing of ET due to snow cover and/or vegetation processes may 
also affect the timing of the depletion of SM and TWS. Additionally, high uncertainties of the precipitation 
forcing and GlobSnow SWE product in (near-)mountain regions, as well as leakage errors in the GRACE 
signal influence the accuracy of both TWSobs and TWSmod. Although these shortcomings should be kept 

in mind, we assumed that they do not significantly affect our results regarding to the relative contributions 
of snow and liquid water to TWS. 

 

Figure 2.4. Spatially averaged mean seasonal cycle (MSC) of the period 2002–2012 as well as inter-annual variability 
(IAV, difference between monthly values and the MSC) for (a) SWE and (b) TWS. In (a), SWEmod consistent refers to 

modelled SWE considering only data points with available SWEobs, while SWE mod all incorporates all time steps for 

all grids of the study domain. Correlation r is calculated only for consistent data points. In (b) IAV, TWSobs monthly 

value shows the original IAV of individual TWSobs months, while TWSobs and TWSmod are smoothed using a 3-month 

average moving window filter. Correlation r refers to the smoothed values. For the MSC in (b) no smoothing is 
applied. 



2.3 Results and Discussion 

35 

In terms of inter-annual variations, the variance in monthly TWSobs values is highly underestimated by 
modelled TWS, which on the one hand relates to noise within the GRACE signal, but on the other hand 
may again reflect missing process representation in the model. To reduce the noise, we applied a 3-month 
moving-average filter on the monthly time series. The smoothed time series then shows fairly good 
agreement of inter-annual dynamics, with correlation r = 0.68 (Fig. 2.4b, solid lines). Only the amplitude 
of the large negative anomaly in 2003 is not captured by the model. While the spatial pattern of this 
negative TWS anomaly can be simulated, the forcing data do not show large anomalies in 2003, so that 
the model fails to reproduce the magnitude of observed TWS, especially in North America. Issues with the 
precipitation forcing are further suggested by a negative SWE anomaly of on average 5 mm (see Fig. 2.4a), 
indicated in the GlobSnow data, that is not captured by the model, either. The reason why this snow 
anomaly is not captured by the forcing remains unclear at this point – it persists when using the WFDEI 
forcing dataset. Besides, the agreement between GRACE and modelled TWS IAV gets substantially better 
when isolating inter-annual variations by removing the trends in both TWS time series (increase in 
correlation r from to 0.77). This suggests that the trend in GRACE TWS is to some extent either subject to 
observational issues or represents a process that is not captured by the model. 

2.3.2.3 Comparison with the eartH2Observe Model Ensemble 

Compared to the model ensemble of the eartH2Observe dataset, we achieve an equally good or better 
performance for the spatially integrated SWE and TWS on both MSC and IAV scales (Figs. 2.5 and S6). 
Besides, the majority of the model ensemble obtains similar spatial patterns of performance criteria for 
SWE as well as for TWS (not shown). 

The average observed MSC of SWE is captured with a correlation in the range of 0.79 (PCR-GLOBWB) to 
0.99 (ORCHIDEE), whereby only ORCHIDEE shows a better correlation than our model (r = 0:95). However, 
modelled snow accumulation exceeds that of SWEobs for the majority of the models, which is also 

reflected in higher RMSE (Figs. S6-S8). On IAV scales, the correlation is lower in general, yet again we 
obtain a better fit (r = 0.39) than the model ensemble (r = 0.12 – ORCHIDEE – to 0.28 – LISFLOOD). 
However, it remains uncertain whether the discrepancies between SWEobs and SWEmod represent model 
deficiencies or evolve from issues related to the GlobSnow SWE retrieval (Schellekens et al. 2017). 

 

 

Figure 2.5. Pearson correlation for the spatially integrated SWE (a) and TWS (b) achieved by this study compared to 
the model ensemble of the eartH2Observe dataset across temporal scales. In each box, the edges represent the 
25 % and 75 % percentiles of the model ensemble, while the solid black line marks the performance of the ensemble 
mean. 
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Regarding average seasonal TWS variations, our model performs as well as the model ensemble (r D 0:91), 
with the range of the eartH2Observe ensemble spanning from r = 0:83 (ORCHIDEE) to r = 1:00 (PCR-
GLOBWB). The amplitudes in the MSC of TWSmod (95 to 156 mm) are comparable to the observed 

amplitude of 118 mm, except for SWBM, whose amplitude is twice as large as that of TWSobs. This 
discrepancy is reflected in relatively high RMSE values for SWBM (Fig B.8). The model ensemble precedes 
observed seasonal TWS variations by 1 to 1.4 months, similar to our estimates of TWSmod (-1.1 month). 
Only PCR-GLOBWB, with a higher correlation than other models, shows a smaller average lag of less than 
1 month (-0.3 months). This minor difference results from balancing out the preceding and succeeding of 
TWSmod in different regions over the study domain. Additionally, Schellekens et al. (2017) found that PCR-
GLOBWB shows unrealistic snow accumulation over time in Europe and boreal North America. Except for 
PCR-GLOBWB, the majority of the models obtain comparable spatial pattern of preceding TWS, with small 
differences at regional scales. Even though the difference in the MSC is commonly attributed to the lack 
or inadequate size and number of water storages (Kim et al. 2009), a relationship between model 
performance and model complexity is not obvious. Relatively complex models, such as HTESSEL, SURFEX, 
and JULES, show similar phase differences to simpler models, such as SWBM and our model (-1.0 and -1.1 
months, respectively). Since Schellekens et al. (2017) found the largest phase differences in cold regions, 
they postulate the implementation of processes associated with snow as an important factor for this 
phase lag. In this context, constraining the model with snow observations as done in our study should 
increase confidence in the representation of snow processes. Nevertheless, we obtain a similar phase 
difference, which points to the importance of other hydrological processes and storages even in snow-
affected regions. 

Although our modeling framework assimilates information from more data streams compared to the 
model simulations in the eartH2Observe ensemble, e.g., GRACE and GlobSnow data, we only used a 
subset of 1000 random grid cells to constrain the model parameters. Despite this, our model performs 
better than the eartH2Observe ensemble over the whole domain (6050 grids). This improvement in model 
performance is also consistent among several modelled variables and not limited to storage components 
only. This suggests that remote sensing data, with larger spatial coverage than site measurements, have 
large potential to improve hydrological simulations over a large domain. In addition, remote sensing data 
also hold potential beyond their use as an observational constraint and can provide information on 
identifying and formulating functional relationships across several spatial and temporal scales, which 
should be addressed in future efforts. 

All in all, we conclude that our simple model with a global uniform parameter set achieves considerably 
good performance regarding observed patterns, especially compared to well-established, more complex 
models, and with respect to its simplicity and given uncertainties of forcing and calibration data. Thus, we 
found the model results to be suitable to analyze the composition of TWS across spatial and temporal 
scales. 

2.3.3 TWS Variation and Composition 

2.3.3.1 Spatially integrated 

To assess the average composition of seasonal and inter-annual TWS variations, we spatially integrated 
modelled TWS anomalies as well as modelled anomalies of snow (SWE) and liquid water storages (W) 
across all grids of the study domain (Fig. 2.6). 

Regarding the MSC, all water storages show a clear seasonal pattern. The maximum TWSmod in March 

coincides with the maximum in SWEmod. On the contrary, W remains nearly constant throughout the 
winter, related to the lack of evapotranspiration losses and missing infiltration due to prevailing solid 
precipitation. Starting from March, snowmelt decreases SWEmod, and thus TWSmod, progressively. 

Thereby TWSmod declines with some delay, as positive W anomalies in April and May suggest buffering of 

melt water in the soil and on the surface before being transferred to runoff or evapotranspirated. During 
the summer months, snow is absent, while W decreases due to higher summer-time evapotranspiration, 
and preceding runoff of temporarily stored water. With W and SWEmod being at their minimum in August–
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September, TWSmod reaches its minimum, too, before starting to increase again in September–October. 
This rise relates to dropping evapotranspiration rates in combination with more precipitation input 
(increasing W) and beginning snow accumulation (increasing SWEmod). Despite the interplay of SWEmod 

and W on seasonal variations of the integrated TWSmod, the amplitude of W (62 mm) is considerably 

lower than the one of SWEmod (92 mm) and TWSmod (144 mm). Thus, the seasonal accumulation of snow 

largely determines the magnitude of TWSmod. Additionally, anomalies at least partly result from 
snowmelt, whereas liquid water does not influence the snowpack. Thus, we conclude that average 
seasonal TWS variations in northern mid-to high latitudes are mainly driven by annual snow accumulation 
and ablation processes. The CR (Eq. 2.3) based on the spatially averaged MSC underlines this, as CR D 0:26 
indicates that variations in SWEmod explain 63 % of seasonal TWSmod variability (CW D 37 %). This agrees 
with previous findings of Güntner et al. (2007), who found that SWE contributes to 68 % of seasonal TWS 
variations in cold regions using the WaterGAP model. 

 

 

Figure 2.6. Spatially averaged mean seasonal cycle (MSC) of the period 2000–2014 as well as inter-annual variability 
(IAV, difference between monthly values and the MSC) for modelled TWS, SWE, and W anomalies to the time-mean 
of 2000–2014. 

 

On IAV scales, the pattern seems less homogeneous (Fig. 2.6). In contrast to the MSC, CR D 0:25 suggests 
a larger influence from liquid water anomalies (CW = 62.5 %) than snow anomalies on inter-annual TWS 
variations. Thereby, we found the main contributor to TWSmod anomalies being dependent on the phase 

of previous precipitation anomalies, in that they define whether snowfall anomalies lead to anomalies in 
the SWEmod, or whether rain anomalies directly influence W. Additionally, precipitation input shows 
larger inter-annual variability than evapotranspiration or runoff losses, and thus dominates the change in 
water storages on IAV scales (not shown). Large TWSmod anomalies, such as in 2005, 2010, and 2012, 

follow anomalies in wintertime precipitation and go along with anomalies in SWEmod (Fig. 2.6). On the 

contrary, summertime anomalies related to W are usually less pronounced in their magnitude (e.g., 2003, 
2006). We attribute this to the accumulating effects of snow storage anomalies over the cold period, as 
they integrate all anomalies of previous cold months while the impact of evapotranspiration and runoff is 
reduced. Accordingly, the largest TWSmod anomalies are obtained in early spring before snowmelt starts 

and when snow accumulation is highest. Nevertheless, since W is influenced by the quantity of snowmelt, 
anomalies in SWEmod implicate subsequent changes in W. Additionally, snowpack anomalies are 

eliminated each summer, while W anomalies dominate the summer. As a result, W anomalies in any case 
affect TWSmod variability on IAV scales when analyzing the spatial average composition. 

Besides, Güntner et al. (2007) demonstrated a shift from short-term storages with high seasonality such 
as SWE on MSC scales towards storages with longer delay times on IAV scales. Although modelled W 
mainly represents soil moisture, it implicitly includes surface water and groundwater storages. Thus, its 
contribution of CW = 62.5 % to inter-annual TWS variations is roughly comparable to 55 % contribution 
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from soil moisture (27 %) and surface water (28 %) in cold regions, found by Güntner et al. (2007). Despite 
this, the relatively large influence of surface water bodies shown by Güntner et al. (2007) suggests that 
the lack of explicit surface water storages in this study may contribute to the remaining discrepancies with 
GRACE and the lower magnitude of modelled inter-annual TWS variability compared to GRACE estimates. 

2.3.3.2 Local Grid-Scale 

Based on CR (Eq. 2.3), Fig. 2.7 shows the relative contribution of SWEmod and W variances to total TWSmod 

variability on MSC and IAV timescales for each grid. Thereby, blue colors represent prevailing SWEmod 

variations as indicated by CR < 0, while red colors show the dominance of variations in W (CR > 0). 

 

 

Figure 2.7. Relative contribution based on CR (Eq. 2.3) of modelled snow (SWE) and liquid water (W) storage 
anomalies to (a) mean seasonal variations from 2000 to 2014 of modelled TWS anomalies, and (b) inter-annual 
variations of modelled TWS anomalies for each grid cell of the study domain. 

 

Accordingly, variations in the MSC of TWSmod are mainly influenced by snow in northern regions, with the 

mean CR = -0.30 indicating that on average 65 % of seasonal TWSmod variability can be explained by 

SWEmod (CW = 35 %) (Fig. 2.7a). The contribution of the variation in liquid water in general increases 

southwards and prevails seasonal TWSmod variability south of approximately 50 latitudes. An exception is 

Europe, where the influence of W reaches up to 60 latitudes, and where the transition to snow-dominated 
regions is more gradual. Since the calculated variations in RW are low, the majority of modelled W 
represents variability in SM. 

This obtained pattern confirms earlier studies that showed the dominance of snow in northern latitudes 
in North America (Rangelova et al. 2007), and prevailing soil moisture dynamics further south, e.g., in the 
Mississippi basin (Ngo-Duc et al. 2007, Güntner et al. 2007). Besides, the north extent of dominating W 
reflects the temperature gradient in North America and Eurasia. Comparison with average annual 
temperature suggests that for T > 10°C variability of W dominates, while for T < 0°C SWEmod dynamics 
prevail. This is plausible, as temperature determines annual snow accumulation, and the relative 
contribution of liquid water increases in the absence of snow. Yet, it further highlights the dependency 
on the temperature dataset used, especially in a model that calculates snowfall and snowmelt based on 
temperature thresholds as ours does. 

Opposed to the MSC, the variability of W dominates TWSmod variations on IAV scales in the entire study 

domain, as is clearly indicated by average CR D 0:63 (Fig. 2.7b). Inter-annual variations of SWEmod seem 
to be relevant only in regions that receive the highest annual snow amounts, such as the Canadian Arctic 
Archipelago, the northern west coast of North America, north-eastern Siberia, and the northern West 
Siberian Plain. Due to a prolonged cold period there, the time span with rainfall and evapotranspiration is 
short, decreasing the occurrence of potential variability in W. However, even in these regions the 
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influence of SWEmod is low compared to the MSC. This reduced importance of snow on inter-annual scales 
again agrees with the findings of Güntner et al. (2007). 

Apart from that, and since we already showed a link between average TWSmod IAV and previous 
precipitation anomalies, and as precipitation represents the main model forcing data, we investigated the 
relative contribution of rainfall and snowfall to inter-annual variability of total precipitation (Fig. 2.8). 
Similar to the composition of TWSmod on local scale, rain anomalies prevail for most of the grid cells (mean 

CR D 0:68). This is consistent when snowfall is not scaled by psf and thus suggests that the greater 

contribution of W to inter-annual variations of TWSmod on local scale relates to highly variable (liquid) 
summertime precipitation events. On the contrary, monthly snowfall seems less variable between years, 
resulting in less pronounced variations in SWEmod compared to W. Exceptions are regions of high 

maximum SWEmod, which accordingly show a considerable relative contribution of snow to the inter-
annual TWSmod variability. 

 

Figure 2.8. Relative contribution based on CR (Eq. 2.3) of modelled snowfall and rainfall to total precipitation (P) 
anomalies on inter-annual (IAV) scales for each grid cell of the study domain. 

 

2.3.3.3 Comparison of different Scales 

Figure 2.9 summarizes the above-presented contributions to TWSmod variability across spatial and 

temporal scales. As explained in the previous sections, we obtained two scale-dependent differences in 
the relative contribution to TWSmod variability: (1) in general between temporal scales, and for inter-

annual variability between spatial scales. Regarding (1), Fig. 2.9 emphasizes again that seasonal variations 
of TWSmod are mostly determined by seasonal snow dynamics, while on inter-annual scales TWSmod 
variability mainly originates from variations in liquid water. As previously stated, determination by 
SWEmod dynamics on MSC scales relates to the pronounced magnitude of seasonal snow variations in 
northern mid- to high latitudes. In comparison, average monthly changes in W were found to be minor 
and additionally influenced by snow ablation. Thereby, the spatially integrated CR (black star) roughly 
agrees with the average of local contributions (dashed line). 

Concerning IAV scales, we found that the determination of TWSmod variability by W relates to larger inter-

annual variations in liquid precipitation compared to snowfall. However, considerable differences 
between spatial scales exist (Fig. 2.9). Opposed to the MSC, the spatially integrated CR (black star) for IAV 
is not within the interquartile range of local CR. This indicates a relatively larger effect of SWEmod 
variations when looking on the spatially integrated values compared to local values. Liquid water storages 
are highly heterogeneous in space, mainly due to heterogeneous rainfall anomalies. On the contrary, 
snow variability is affected by fewer factors, and mainly regulated by a range of temperature values that 
control freezing and melting. Temperature anomalies in turn show sizeable spatial coherence across large 
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areas. To assess the spatial coherence of W compared to SWEmod, we calculated the proportion of total 
positive and total negative covariances among grid cells (Fig. 2.10). 

For inter-annual variations of SWEmod, the sum of positive covariances prevails (Fig. 2.10a), whereas 

positive and negative values are more in balance for W (Fig. 2.10b). This suggests that SWEmod anomalies 
are more spatially coherent than anomalies of W. Thus, when spatially averaging, the more homogeneous 
snow anomaly patterns gain importance. On the contrary, opposed anomalies of W compensate for each 
other more strongly. This leads to a relatively larger influence of SWEmod to the spatially integrated inter-

annual TWSmod variability compared to when analyzing the local grid scale. Since positive covariation 

clearly dominates for temperature anomalies, the spatial coherence of SWEmod relates to their 
homogeneous patterns (Fig. 2.10c). Similar to W, positive covariances only slightly outweigh year-to-year 
variations in rainfall (Fig. 2.10d). The same is true for snowfall (not shown). Therefore, the spatial 
coherence of SWEmod anomalies is less pronounced than for temperature, as snow is additionally 
influenced by snowfall anomalies. Regarding anomalies, this indicates that the spatial heterogeneity in 
our model, which misses explicit information on soils, topography, etc., mainly results from 
inhomogeneous patterns in rainfall anomalies. Thereby, the slightly more balanced positive and negative 
covariations for W compared to rainfall can be ascribed to the additional impact of primarily radiation-
driven evapotranspiration to SM. In order to ensure that these results are not artificially caused by the 
forcing data, we did the same analysis running the model with rain and snowfall estimates of the WFDEI 
product (Weedon et al. 2014). Since we observed the same patterns, we assume our findings to be robust 
(Sect. S7.1). 

 

Figure 2.9. Relative contribution of snow (SWE) and liquid water (W) to TWS variability on different spatial (local grid 
scale, spatially integrated) and temporal (mean seasonal MSC, inter-annual IAV) scales based on CR (Eq. 2.3). The 
box plots represent the distribution of grid cell CR, with the dashed line marking the corresponding average. The star 
represents the CR calculated for the spatially integrated values. 

 

2.3.4 Limitations of the Approach 

Although the model of this study reproduces observed hydrological patterns well and achieves 
comparable results to state-of-the-art models, its low complexity and the applied calibration approach 
are associated with limitations in terms of process understanding and predictive power. 

First of all, the simple structure only allows inferences on represented processes, which likely include 
effects of fluxes and storages not considered explicitly. For example, the model does not resolve individual 
liquid water storages such as deep groundwater and surface water explicitly. As discussed previously, our 
delayed land runoff comprises various (intermediate) storages and delay times, and thus cannot be 
associated with one distinct storage component. Even though soil moisture is distinguished from these 
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slowly varying reservoirs, its quantity and pattern have not been directly validated. Future research is 
required to increase confidence by including remote-sensing-based data of soil moisture in calibration 
and/or validation. However, these satellite data still have limited value as the microwave signals can only 
capture moisture in the upper 5 cm of soil and do not provide estimates under snow cover and dense 
vegetation (Döll et al. 2015, Lettenmaier et al. 2015). Therefore, a multi-layer soil scheme is needed to 
compare model outputs to satellite-derived soil moisture estimates, as was successfully demonstrated by 
Albergel et al. (2017) for example. 

 

 

 

Figure 2.10. Proportion of total positive (grey) and negative (orange) covariances among grid cells for inter-annual 
variations of (a) snow (SWE), (b) liquid water storages (W), (c) temperature, and (d) rainfall. 

 

Further, the model does not include any human-induced changes in water storages, which yet contribute 
to observed TWS variability in many regions (Döll et al. 2015, Rodell et al. 2015). Other simplified or 
ignored hydrological processes include the coincident occurrence of rain and snowfall, liquid water 
capacity of snow, interception, freeze–thaw dynamics within the soil, capillary rise, and other surface-
groundwater interactions, the effect of vegetation or other surface properties, and lateral flow from one 
grid cell to another. In the downstream areas of large basins especially, the latter represents a potential 
input that may significantly affect total TWS (Kim et al. 2009) and thus may contribute to the discrepancy 
between TWSobs and TWSmod in some regions. Besides, the model does not account for spatial variability 
of topography and land surface characteristics. 

With regards to model parameters, we apply a global uniform parameter set and do not regionalize the 
parameters according to spatially distributed physio-geographical characteristics. In contrast, most 
macro-scale hydrological models include spatially distributed soil properties to define parameters related 
to infiltration, soil water holding capacity, and percolation, as well as vegetation types to assess the effects 
of different plant functional types on evapotranspiration and canopy storage (Sood and Smakhtin, 2015). 
Our model only implicitly considers the effects of vegetation, for example on ET, but not its spatial 
variability, as the associated impacts are included in the observational constraint. Spatial variability of 
model parameters might affect the relative contributions of different storage components to TWS 
variability at different spatial scales. However, the comparison with eartH2Observe models, which 
generally involve spatial heterogeneity in model parameters, suggests that the main conclusions remain 
unchanged. Additionally, we want to highlight that the spatial distribution of model parameters depends 
on assumptions and some degree of simplification as well and thus does not necessarily improve model 
performance compared to a global uniform parameter set obtained from multiple observational data. 
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Further, as we encountered issues with parameter equifinality, especially between modelled snowmelt 
and sublimation, future efforts should include a stronger utilization of runoff data in the calibration and 
validation process. This would help to better constrain water fluxes to the atmosphere and liquid water 
fluxes, which can contribute to the runoff. 

Finally, though the implemented cost function explicitly accounts for the uncertainty of the calibration 
data and additional uncertainties of other input data, their processing and characteristics remain partly 
unaddressed. 

2.4 Conclusion 

In this study, we assessed the relative contributions of snowpack versus soil and retained water variations 
to the variability of total terrestrial water storage (TWS) for northern mid- to high latitudes. To do so, we 
constrained a parsimonious hydrological model with multi-criteria calibration against multiple Earth 
observation data streams, including TWS from GRACE satellites and snowpack estimates from GlobSnow. 
The optimized model showed considerably good agreement with observed patterns of hydrological fluxes 
and states, and was found to perform comparably to or better than simulations from state-of-the-art 
macro-scale hydrological models. This underlines the potential of simple hydrological models tied to 
observational data streams as powerful tools to diagnose and understand large-scale water cycle 
patterns. Further, it highlights the benefits of considering multiple complementary data constraints to 
overcome their individual shortcomings. 

Consistent with previous studies, we found that seasonal TWS variations are dominated by the 
development of snowpacks during winter months in most places of the mid- to high northern latitudes. 
In contrast to this seasonal pattern, our study reveals that not snow but anomalies in liquid water 
storages, mainly comprising soil moisture, drive inter-annual TWS variations in almost the entire spatial 
domain. This counterintuitive pattern was found to relate to larger rainfall anomalies compared to 
snowfall anomalies. 

Apart from the timescale-dependent dominant controls on TWS variations, we additionally observed 
different behavior across spatial scales. In terms of seasonal variations, the spatially integrated 
contribution reflects the average of the spatial domain. However, and more interestingly, the relative 
contribution of snowpack variations to total TWS inter-annual anomalies appears to be larger when 
spatially integrated than at local scale. We found this pattern results from stronger spatial coherence of 
snowpack anomalies compared to anomalies in other storages, such that the latter cancel out more 
strongly than the former when calculating an average across large spatial domains. The stronger spatial 
coherence of snowpack anomalies seems to be driven by the nature of spatially coherent temperature 
anomalies that determine snow accumulation and melt. These findings imply that patterns from large-
scale integrated signals should not be associated with locally operating processes, since spatial 
covariations of climatic variables can confound the picture. 

Overall, our study underlines the benefits of GRACE TWS as a model constraint, and moreover, stresses 
the importance of temporal and spatial scale when assessing the determinants of TWS variability. Clearly, 
insights obtained at one scale cannot be transferred to another, as is often (unintentionally) done. Hence, 
TWS variations in northern latitudes seem to be not merely subject to snow variability, but rather are 
driven by soil moisture on inter-annual scales – which may be of considerable importance when assessing 
long-term water availability in the context of climate changes. 
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Abstract 

So far, various studies have aimed at decomposing the integrated terrestrial water storage variations 
observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. 
While the results of the storage decomposition depend on model structure, little attention has been given 
to the impact of the way that vegetation is represented in these models. Although vegetation structure 
and activity represent the crucial link between water, carbon, and energy cycles, their representation in 
large-scale hydro-logical models remains a major source of uncertainty. At the same time, the increasing 
availability and quality of Earth-observation-based vegetation data provide valuable information with 
good prospects for improving model simulations and gaining better insights into the role of vegetation 
within the global water cycle. 

In this study, we use observation-based vegetation information such as vegetation indices and rooting 
depths for spatializing the parameters of a simple global hydrological model to define infiltration, root 
water uptake, and transpiration processes. The parameters are further constrained by considering 
observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and 
gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of 
including varying vegetation characteristics on the simulation results, with a particular focus on the 
partitioning between water storage components. To isolate the effect of vegetation, we compare a model 
experiment in which vegetation parameters vary in space and time to a baseline experiment in which all 
parameters are calibrated as static, globally uniform values. 

Both experiments show good overall performance, but explicitly including varying vegetation data leads 
to even better performance and more physically plausible parameter values. The largest improvements 
regarding TWS and ET are seen in supply-limited (semi-arid) regions and in the tropics, whereas Q 
simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, ac-
counting for vegetation substantially changes the contributions of different soil water storage 
components to the TWS variations. This suggests an important role of the representation of vegetation in 
hydrological models for interpreting TWS variations. Our simulations further indicate a major effect of 
deeper moisture storages and groundwater–soil moisture-vegetation interactions as a key to 
understanding TWS variations. We highlight the need for further observations to identify the adequate 
model structure rather than only model parameters for a reasonable representation and interpretation 
of vegetation-water interactions. 

 

 

This chapter is based on: 

Trautmann, T., Koirala, S., Carvalhais, N., Güntner, A., Jung, M. (2022): The importance of vegetation in 
understanding terrestrial water storage variations, Hydrology and Earth System Sciences, 26 (4): 1089-
1109, doi:10.5194/hess-26-1089-2022  
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3.1 Introduction 

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has facilitated global 
monitoring of terrestrial water storage (TWS) variations from space – a milestone of global hydrology 
(Rodell, 2004, Famiglietti and Rodell, 2013). Observed TWS variations from GRACE have since become a 
cornerstone for diagnosing trends in water resources due to climate change or anthropogenic activities 
(Rodell et al. 2018, Reager et al. 2015, Scanlon et al. 2018, Syed et al. 2009, Tapley et al. 2019), as well as 
for benchmarking and improving global hydrological models (GHMs) (Scanlon et al. 2016, Döll et al. 2014, 
Werth et al. 2009, Zhang et al. 2017, Kumar et al. 2016, Eicker et al. 2014). Significant covariations 
between GRACE TWS and the global land carbon sink (Humphrey et al. 2018) and surface temperatures 
(Humphrey et al. 2021) highlight the importance of the water cycle as the nexus in the Earth system. 

However, GRACE TWS estimates represent a vertically integrated signal of all water stored in snow, ice, 
soil, surface water, and groundwater. Thus, understanding processes and mechanisms of TWS variations 
requires attribution of TWS variations to individual storage components. Despite advancements in remote 
sensing, largescale quantification of these components based on observations remains challenging. For 
example, remote sensing-based estimates of soil moisture only capture depths up to 5 cm and do not 
necessarily reflect the moisture availability in the deeper soil column (Dorigo et al. 2015). While these 
observations can be extrapolated to derive estimates of root zone moisture, either by using statistical 
relationships (Zhuang et al. 2020) or by data assimilation into land surface models (Reichle et al. 2017, 
Martens et al. 2017), such products rely on many assumptions. Therefore, GHMs have been necessary to 
interpret TWS variations in terms of contributions by snow, soil moisture, groundwater, or surface water. 
However, several studies suggested that current state-of-the-art GHMs cannot reproduce key patterns of 
observed TWS variations and show partly diverging TWS partitioning (Scanlon et al. 2018, Schellekens et 
al. 2017, Zhang et al. 2017, Kraft et al. 2021). This uncertainty of the available tools to interpret TWS 
variations is clearly a major obstacle for diagnosing and understanding global changes of the water cycle. 

To improve model performance and reliability, GHMs are traditionally calibrated against measured 
discharge time series at the outlet of catchments (Müller-Schmied et al. 2021, Telteu et al. 2021). 
However, discharge provides an integrated response of an entire catchment with very limited information 
on the interplay of different processes and spatial heterogeneities. In fact, the use of spatio-temporal 
data, for example, from remote sensing, has been suggested for model calibration (Su et al. 2020). While 
using spatio-temporal vegetation data, for example, the normalized difference vegetation index (NDVI) 
seemed promising for this at the catchment scale (Ruiz-Perez et al. 2017), many GHMs still have a limited 
usage of such data in their modeling approach. Some large-scale studies have shown clear improvements 
in model performance when a larger number of observational constraints are used to constrain the model 
parameters, especially when using TWS variations from GRACE (e.g., Lo et al. 2010, Rakovec et al. 2016, 
Bai et al. 2018, Mostafaie et al. 2018, Trautmann, 2018). Among them, Trautmann et al. (2018) 
contributed insights into the drivers of TWS variations across spatial and temporal scales in northern high 
latitudes, in particular with respect to contributions by snow vs. liquid water storages. In this study, we 
follow a similar framework of using multiple observational data streams to constrain a simple hydrological 
model to understand the role of varying vegetation characteristics for the partitioning of TWS components 
at the global scale. 

Among liquid water storages, especially the differentiation between soil moisture and groundwater poses 
a challenge. Reflecting on the determinants of rather shallow soil moisture vs. deeper groundwater 
storage variations, it is apparent that under most conditions, the soil moisture state itself is the first order 
control valve. In particular, it determines the amount of water that is available for soil water uptake for 
evapotranspiration but also for percolation into deeper soil layers and consequently recharge into the 
groundwater storage. The two key processes that shape soil moisture dynamics, infiltration and 
evapotranspiration (ET), are strongly mediated by the presence and properties of vegetation (Wang et al. 
2018). For example, vegetation promotes infiltration over surface runoff due to larger surface roughness, 
dampened precipitation intensities, and more soil macropores due to rooting and biological activity. In 
fact, such roles of vegetation in a global climate model were already envisioned and evaluated almost 4 
decades ago (Rind, 1984). In addition, vegetation alters soil properties like soil texture and organic matter 
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content. Such soil properties together with rooting depth control the size of the soil moisture reservoir 
that is available for ET and how plants respond to drought stress conditions (Baldocchi et al. 2021, Yang 
et al. 2020). Furthermore, deep roots may connect to the groundwater and provide access to the deeper 
moisture storages and thus have wider implications on the hydrological cycle. Rooting depth is species-
specific and, in addition, determined by the infiltration depth and groundwater table depth and thus has 
a high spatial heterogeneity both across the globe and at the local scale (Fan et al. 2017). The significance 
of interactions between vegetation and soil moisture is at the heart of ecohydrology (Rodriguez-Iturbe et 
al. 2001) and has become evident in many theoretical and experimental studies. Many studies analysed 
the effects of water availability on vegetation functioning (Porporato et al. 2004, Reyer et al. 2013, Wang 
et al. 2001, Yang et al. 2014) and the effect of changing vegetation cover on ecosystem water consumption 
(Du et al. 2021). While large-scale hydrologic models usually apply simplified and static vegetation 
characteristics (Quevedo et al. 2008, Weiss et al. 2012, Telteu et al. 2021), spatio-temporal variations of 
vegetation pattern are vital for good predictions of available water resources (Andersen et al. 2010). On 
the ecosystem scale, Xu et al. (2016) showed the advantage of accounting for different plant hydraulic 
traits in an ecosystem model. And on a global scale, Weiss et al. (2012), for instance, showed the positive 
influence on modelled evaporation when static vegetation characteristics are replaced by monthly LAI 
(leaf area index) estimates in a climate model. However, how the representation of vegetation affects 
global water storages and in particular the partitioning of TWS in large-scale hydrological models has 
received surprisingly little attention so far. 

Therefore, the objective of this study is to investigate the effect of vegetation-dependent 
parameterizations of key hydrological processes on TWS partitioning at the global scale using a multi-
criteria model data fusion approach. The model, an expanded version of Trautmann et al. (2018), is a 
simple conceptual four-pool water balance model. Model parameters are calibrated against TWS 
variations from GRACE (Wiese et al. 2018), ET from FLUXCOM (Jung et al. 2019), runoff from GRUN (Ghiggi 
et al. 2019), and ESA CCI soil moisture (Dorigo et al. 2017).  

We contrast two experiments which differ only with respect to how vegetation-related parameters are 
defined: (1) a baseline experiment with global uniform parameters and (2) a vegetation experiment where 
vegetation parameters vary in space and partly in time. In contrast to the traditional approach of 
spatializing vegetation parameters by plant functional type or land cover class, and keeping this a priori 
parameterization fixed during model application, we take advantage of continuous information on few 
key properties that link vegetation and hydrological processes: (1) spatially distributed and time-varying 
active vegetation cover that influences transpiration demand and interception storage, (2) the spatial 
pattern of soil water supply for transpiration via roots, and (3) the spatially distributed and time-varying 
influence of vegetation cover on infiltration and runoff generation. Specifically, we are addressing the 
following questions: 

1) Where, when, and by how much are global hydrological simulations improved by spatially 
distributed and time-varying vegetation parameters? 

2) To what extent do the attribution and interpretation of TWS variations for individual storage 
components change when introducing spatial and temporal variation of vegetation parameters? 

3.2 Methods 

In the first section, we give a general overview on the design of this study. Subsequently, the model and 
data streams used as well as the calibration and evaluation approach are explained in more detail. 

3.2.1 Overview 

To assess the potential effect of including continuous information on vegetation, we compare two model 
variants that are based on the same conceptual structure: (1) a base model with static, globally uniform 
parameter values (B) and (2) a model variant that includes spatially (and temporally) varying vegetation 
characteristics by defining vegetation parameters as a function of global data products (VEG). We 
additionally performed an experiment that discretizes vegetation parameters for distinct classes of plant 
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functional types, similarly to some other GHMs. This PFT experiment is explained and shown in Sect. B.9 
in the Supplement. 

Forced with global climate data, the parameters of each variant are calibrated for a spatial subset against 
multiple Earth observation-based data. In the B experiment, the parameters themselves are calibrated, 
and globally constant parameter values are obtained. While the optimized parameters implicitly account 
for the effect of the nearly ubiquitous presence of vegetation, they cannot represent effects of spatially 
and/or temporally varying vegetation properties. In the VEG experiment, we describe vegetation-related 
parameters as a linear function of spatio-temporal varying vegetation variables; i.e., we calibrate scalars 
representing the slopes of these functions. By calibrating the slope, we include the continuous pattern 
from the data but scale it to best fit the observational constraints. Hence, vegetation-related parameters 
vary explicitly spatially and partly temporally. 

Once the parameters are calibrated, the simulations for the whole domain (global) are used to evaluate 
the model performance at different spatial and temporal scales. To finally delineate the effect of including 
varying vegetation characteristics on the composition of simulated TWS across temporal (mean seasonal, 
inter-annual) and spatial (local grid scale, spatially aggregated) scales, we use the impact index as defined 
by Getirana et al. (2017). 

The model is run on daily time steps at a 1°x1° latitude/longitude resolution, focusing on vegetated 
regions under primarily natural conditions. To avoid biases of the calibrated model parameters due to 
processes that are not represented in the model structure, we exclude grid cells with10 % permanent 
snow and ice cover, > 50 % water fraction, > 20 % bare land surface, and > 10 % artificial land cover 
fraction. These grid cells are masked out using the GlobeLand30 fractional land-cover map v2 (Chen et al. 
2014). Additionally, we exclude regions with a large human influence, mainly related to groundwater 
extraction, on the trend in GRACE TWS variations (Rodell et al. 2018) (see Fig. 3.2). The final study area 
comprises 74 % of the global land area. All other datasets used in this study were resampled to the 1°x1° 
grid and subset to the same grid cells. 

Due to the temporal coverage of forcing data and observational constraints, we calibrate the model for 
the period January 2002–December 2014, while the global-scale model runs and analyses are performed 
for the period March 2000–December 2014. Prior to each model run, all states are initialized by a 8-year 
spin-up period. The forcing for the spin-up period is assembled by randomly rearranging complete years 
of the forcing data. 

3.2.2 Model Description 

The conceptual hydrological model is forced by daily precipitation, air temperature, and net radiation 
(Table 3.1). It includes a snow component (see Trautmann et al. 2018), a two-layer soil water storage 
(wSoil), a deep soil water storage (wDeep), and a delayed, slow water storage (wSlow). The schematic 
structure of the model is shown in Fig. 3.1, and calibration parameters are explained in Table 3.2. 

Depending on air temperature (Tair), precipitation (Precip) is partitioned into snowfall (Snow), that 
accumulates in the snow storage (wSnow), and rainfall (Rain), that is partly retained in an interception 
storage. Interception throughfall together with snowmelt is partitioned into infiltration and infiltration 
excess depending on the ratio of actual soil moisture and maximum soil water capacity following 
Bergström (1991): 

𝐼𝑒𝑥𝑐 =  𝐼𝑖𝑛 ∙ [
∑ 𝑤𝑆𝑜𝑖𝑙(𝑙)2

𝑙=1

∑ 𝑤𝑆𝑜𝑖𝑙max(𝑙)
2
𝑙=1

]
𝑝𝑏𝑒𝑟𝑔

    (3.1) 

 

where Iexc is the infiltration excess, IIn is the incoming water from throughfall and snowmelt, wSoil(l) is 
the soil moisture and wSoilmax(l) the maximum soil water capacity of each soil layer l, and pberg is a 

calibration parameter. While pberg < 1 allocates a small fraction of the incoming water to the soil water 

pool even if it is nearly empty, pberg > 1 allows a large fraction of incoming water to infiltrate into the soil 
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when soil saturation is already high, and pberg = 1 describes a linear relationship between soil water 
saturation and the amount of incoming water that infiltrates. 

A fraction of the infiltration excess (defined by the global calibration parameter rfSlow) then replenishes a 

delayed water storage (wSlow) that acts as a linear reservoir and generates slow runoff (Qslow). The 
remaining infiltration excess represents fast direct runoff (Qfast). Qfast and Qslow together represent total 
runoff Q that flows out of the system, i.e., grid cell. 

Infiltrated water is distributed among two soil layers following a top-to-bottom approach, where the 
maximum capacity of the first soil layer is prescribed as 4 mm, in order to match the tentative depth of 
satellite soil moisture observations, while the storage capacity of the second soil layer is a calibration 
parameter (wSoilmax(2)). The second soil layer is connected with a deeper water storage (wDeep). The size 

of wDeep is defined as a multiple of wSoilmax(2) by the calibrated scaling parameter sdeep. Depending on 
the moisture gradient between the two storages, water either percolates from the second soil layer to 
the deeper soil, or it rises from the deeper storage into the second soil layer, by scaling to a maximum flux 
rate (defined by the global calibration parameter, fmax). The deeper storage therefore acts as a storage 
buffer that linearly discharges further to the delayed water storage (wSlow), which also receives part of 
the infiltration excess. 

Evapotranspiration (ET) is represented by a demand– supply approach that is driven by a potential ET 
demand following Priestley–Taylor and is limited by the available soil moisture supply. ET is partitioned 
into interception evaporation (EInt), bare soil evaporation from the first soil layer (ESoil), and plant 

transpiration from the two soil layers (ETransp). Interception and plant transpiration are only calculated 
for the vegetated fraction of each grid cell, while bare soil evaporation is limited to the non-vegetated 
fraction of each grid cell. 

While water in wSoil is directly available for ET, wDeep is only indirectly accessible by capillary rise, and 
the water stored in wSlow is not plant-accessible. Total water storage is the sum of all water storages, 
including wSnow, wSoil, wDeep, and wSlow. Although groundwater and surface water storages are not 
implemented explicitly, they are effectively included in wDeep and wSlow, especially after calibration of 
associated storage parameters against GRACE TWS. 

3.2.3 Vegetation Characteristics 

We include three aspects of vegetation influence on hydrological processes: (1) the specific transpiration 
demand by vegetation, (2) the soil water supply for transpiration via roots, and (3) the influence of 
vegetation on infiltration and runoff generation. These three aspects are controlled by three 
corresponding model parameters, namely the grid cell’s vegetation fraction (pveg), the maximum plant-

available soil water (wSoilmax(2)), and the runoff generation-infiltration coefficient (pberg). In the VEG 
experiment, scalar parameters are used as linear multipliers of observation-based spatio-temporal 
patterns to harvest the information of spatial and temporal patterns from the continuous data products. 

3.2.3.1 Vegetation Fraction 

The parameter pveg reflects the vegetation cover of each grid cell that influences the grid’s interception 
storage, transpiration demand, and partitioning of evapotranspiration components. To describe its spatial 
and seasonal variations, we include the mean seasonal cycle (MSC) of the Enhanced Vegetation Index 
(EVI). Therefore, pveg at each time step is defined as a linear function of EVI, where sEVI is the calibrated 

scaling parameter: 

𝑝𝑣𝑒𝑔 =  𝑠𝐸𝑉𝐼 ∙ 𝐸𝑉𝐼      (3.2) 

with 0 ≤ pveg ≤ 1. 
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EVI data are calculated via the MODIS standard formula (Didan and Barreto-Munoz, 2019) using the daily 
BRDF, nadir BRDF-adjusted reflectance values MCD43C1 v6 (Schaaf and Wang, 2015) for the period 
January 2001–December 2014: 

 

𝐸𝑉𝐼 = 2.5
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+6∙𝑟𝑒𝑑−7.5∙𝑏𝑙𝑢𝑒+1
      (3.3) 

 

Since the daily EVI time series are not continuous due to noise and missing values during cloudy 
conditions, snow, and darkness, the data were preprocessed to be used in the model. For each grid cell, 
we calculate the median seasonal cycle, fill long gaps during wintertime with a low value, interpolate 
missing values, and smooth the time series. Therefore, winter is defined as days with negative net 
radiation, and gaps are considered long when 10 consecutive days of EVI data are missing. The wintertime 
gaps are filled with the 5th percentile of available wintertime data. The remaining missing values are 
linearly interpolated, and finally the resulting seasonal cycle is smoothed by a local regression with 
weighted linear least squares and a first-order polynomial model. 

 

Table 3.1. Data used for model forcing, for description of vegetation characteristics, and for model calibration. 

 Product Space Time Data Reference 
    uncertainty  

Forcing      

Precip GPCP 1dd v1.2 global daily  Huffmann et al. (2000) 
Tair CRUNCEP v6 global daily  Viovy et al. (2018) 
Rn CERES Ed4 A global daily  Loeb et al. (2018); 
     NASA/LARC/SD/ASDC (2017) 

Vegetation characteristics     

EVI based on MCD43C1 v6 (MODIS daily BRDF),  daily  Schaaf and Wang (2015) 
 calculated via MODIS standard EVI formula  climatology   
RD1 maximum rooting depth  static  Fan et al. (2017) 
RD2 effective rooting depth  static  Yang et al. (2016) 
RD3 maximum soil water storage capacity  static  Wang-Erlandsson et al. (2016) 
RD4 maximum plant-available water capacity  static  Tian et al. (2019) 

Calibration     

TWS GRACE mascon RL06 global monthly with product Wiese et al. (2018) 
wSoil ESA CCI SM v4.04 (combined product) global daily with product Dorigo et al. (2017) 
ET FLUXCOM RS ensemble global daily with product Jung et al. (2019) 
Q GRUN v1 global monthly 50 % Ghiggi et al. (2019) 

 

3.2.3.2 Plant-available Soil Water 

In order to determine the soil water supply for transpiration as a function of vegetation, we define the 
maximum soil water capacity of the second soil layer wSoilmax(2) based on rooting depth and soil water 
storage capacity data. We include the maximum rooting depth by Fan et al. (2017) (RD1), effective rooting 
depth by Yang et al. (2016) (RD2), maximum soil water capacity by Wang-Erlandsson et al. (2016) (RD3), 
and maximum plant-accessible water capacity by Tian et al. (2019) (RD4). Due to our definition of 
wSoilmax(2) as maximum plant-accessible water, all four data are, theoretically, suitable when focusing on 

spatial patterns. Practically, though, they vary in their definition, underlying approaches, spatial coverage 
and derived spatial pattern. The RD1 and RD2 are based on principles of vegetation optimality and plant 
adaptation, and RD3 and RD4 are based on a water balance perspective but using Earth observations 
and/or data assimilation techniques. Therefore, we employ an approach in which we obtain a linear 
combination of the four products where the weights of each product are calibrated during the multi-
criteria parameter optimization: 

 

𝑤𝑆𝑜𝑖𝑙max (2) = ∑ 𝑠𝑅𝐷(𝑑)  ∙ 𝑅𝐷(𝑑)4
𝑑=1      (3.4) 
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where RD(d) is the data from each data stream d, and sRD(d) denotes the corresponding scaling factors 
that are calibrated. As RD4 from Tian et al. (2019) is only available for arid to moderately humid vegetated 
land area and excludes tropical forests (Tian et al. 2019), resulting gaps in the study area are filled by the 
calibration parameter wSoilmax(RD4) prior to scaling RD4. 

3.2.3.3 Runoff/Infiltration Coefficient 

Finally, vegetation structure also affects the infiltration and runoff generation process as it alters the 
surface and sub-surface characteristics. To reflect this influence, we describe the infiltration–runoff 
parameter pberg (Eq. 3.1) as a linear function of the vegetation fraction pveg: 

𝑝𝑏𝑒𝑟𝑔 = 𝑠𝑏𝑒𝑟𝑔 ∙ 𝑝𝑣𝑒𝑔      (3.5) 

 

where sberg is the calibrated scaling parameter. 

 

 

 

Figure 3.1. Schematic of the underlying model structure, with blue font denoting forcing data: Precip is precipitation, 
and Tair is air temperature. Boxes represent states as follows: Eint is interception storage, wSnow snow water 

storage, wSoil(1) upper soil layer, wSoil(2) second soil layer, wDeep deep water storage, and wSlow slowly varying 
water storage. Arrows denote fluxes as follows: Rain is rainfall, Snow snowfall, ESub sublimation, Qmelt snowmelt, 

Iin incoming water from throughfall and snowmelt, Iexc infiltration excess, Qfast fast direct runoff, Qslow slow runoff, 

Q total runoff, EInt evaporation from interception storage, ESoil soil evaporation, ETransp plant transpiration, ET total 

evapotranspiration, fDeepSoil the flux between wSoil and wDeep (percolation resp. capillary rise), and fDeepSlow the 

flux from wDeep to wSlow. Bold print highlights model variables that are constrained in the calibration. Green 
highlights show where vegetation influence is included explicitly: [1] the parameter pveg to define each grid cell’s 

vegetation fraction, [2] the parameter wSoilmax(2) that defines the maximum plant-available soil water, and [3] the 

parameter pberg to define the infiltration and runoff generation partitioning. 
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Table 3.2. Calibrated model parameters and their description, range, and calibrated values for experiments B and 
VEG. Text in italics highlights calibrated values at the predefined parameter bounds. 

Parameter Description Units Default 
value 

Range Calibrated values ± uncertainty 
(%) 

     B VEG 

Vegetation fraction 

𝑝𝑣𝑒𝑔 active vegetation fraction of the grid cell  0.5 0.3 - 1  0.37 ± 0.05   

𝑠𝐸𝑉𝐼 
scaling parameter to derive active 
vegetation fraction from EVI data 

 1 0 - 5   3.89 ± 0.05 

Evapotranspiration 

𝑝𝐼𝑛𝑡 interception storage mm 1 0 - 10 1.0 ± 0.08 0.6 ± 0.02 

𝑘𝑆𝑜𝑖𝑙 
fraction of 1st soil layer available for 
evaporation 

 0.5 0.1 - 
0.95 

0.1 ± 0.01 0.4 ± 0.08 

𝛼𝑣𝑒𝑔 
α parameter of the Priestley-Taylor 
equation 

 1 0.2 - 3 2.25 ± 0.15 0.92 ± 0.00 

𝑘𝑇𝑟𝑎𝑛𝑠𝑝 
fraction of soil water available for 
transpiration 

 0.02 0 - 1 0.12 ± 0.32 0.48 ± 1.76 

Infiltration-runoff 

𝑝𝑏𝑒𝑟𝑔 runoff-infiltration coefficient  1.1 0.1 - 5 1.32 ± 0.02   

𝑠𝑏𝑒𝑟𝑔 
scaling parameter to derive the runoff-
infiltration coefficient from 𝑝𝑣𝑒𝑔 

 3 0.1 - 10   3.08 ± 0.02 

Soil moisture 

𝑤𝑆𝑜𝑖𝑙𝑚𝑎𝑥 (2) 
maximum (available) water capacity of 
the 2nd soil layer 

mm 300 10 - 
1000 

752 ± 0.02   

𝑠𝑅𝐷(1) 
weight to include maximum rooting 
depth by Fan et al. (2017) 

 0.05 0 - 5   0.01 ± 0.00 

𝑠𝑅𝐷(2) 
weight to include effective rooting depth 
by Yang et al. (2016) 

 0.05 0 - 5   0.00 ± 0.00 

𝑠𝑅𝐷(3) 
weight to include maximum soil water 
storage capacity by Wang-Erlandson et 
al. (2016) 

 0.05 0 - 5   0.15 ± 0.06 

𝑠𝑅𝐷(4) 
weight to include plant available water 
capacity by Tian et al. (2019) 

 0.05 0 - 5   0.15 ± 0.07 

𝑤𝑆𝑜𝑖𝑙𝑚𝑎𝑥 (𝑅𝐷4) 
maximum (available) water capacity of 
the 2nd soil layer for grids with missing 
estimates in Tian et al. (2019) 

mm 50 0 - 
1000 

  145 ± 0.08 

Deep soil 

𝑠𝑑𝑒𝑒𝑝 
scaling parameter to derive the 
maximum deep soil storage from 
𝑤𝑆𝑜𝑖𝑙𝑚𝑎𝑥 (2) 

 0.5 0 - 50 9.1 ± 
461317 

5.6 ± 0.21 

𝑓𝑚𝑎𝑥  
maximum flux rate between deep soil 
and the 2nd soil layer 

mm 
d-1 

10 0 - 20 1.5 ± 0.00 5.1 ± 0.01 

𝑑𝐷𝑒𝑒𝑝  
depletion coefficient from deep soil to 
delayed water storage 

 0.5 0 - 1 1.0 ± 5.61 0.01 ± 0.00 

Delayed water storage 

𝑟𝑓𝑆𝑙𝑜𝑤 
recharge fraction of infiltration excess 
into delayed water storage 

 0.5 0 - 1 0.78 ± 1.72 0.68 ± 0.01 

𝑑𝑆𝑙𝑜𝑤 
depletion coefficient from delayed 
water storage to slow runoff 

 0.01 0 - 1 1.0 ± 2329 0.02 ± 0.03 

 

3.2.4 Model Calibration 

In order to keep computational costs low and to avoid overfitting of model parameters, we perform model 
calibration for a subset of 904 (8 %) grid cells. Since model parameters are expected to vary much more 
in space than in time (between years), and due to the rather short time period of available constraints, 
we build two subsets of data for calibration and validation data in the spatial domain rather than in time 
(spatial split-sample approach). Calibration grid cells are chosen by a stratified random sampling method 
that maintains the overall proportion of different climate and hydrological regimes defined by Köppen-
Geiger climate regions (Kottek et al. 2006). 
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Since this study focuses on the impact of vegetation, and in order to keep the number of calibration 
parameters low, we do not optimize snow-related parameters and use the optimized snow parameters 
from Trautmann et al. (2018). This results in a total of 11 calibration parameters for the B model and a 
total of 16 parameters for the VEG model (Table 3.2). 

In order to constrain different aspects of the water cycle, we use a multi-criteria calibration approach 
similar to Trautmann et al. (2018). The parameters of each model variant are simultaneously optimized 
against multiple observational constraints, including monthly TWS anomalies from GRACE (Wiese et al. 
2018, Watkins et al. 2015), ESA CCI soil moisture (Dorigo et al. 2017), evapotranspiration estimates from 
the FLUXCOM-RS ensemble (Jung et al. 2019), and gridded runoff from GRUN (Ghiggi et al. 2019) 
(Table 3.1). 

When using observational datasets from several sources, it is essential to consider possible 
inconsistencies between them that arise from their respective characteristics and uncertainties (Zeng et 
al. 2015, 2019). Therefore, we derived the monthly water (im)balance of the observations following a 
similar approach to Rodell et al. (2015) (see Sect. B.10 in the Supplement). Although we did not find major 
systematic inconsistencies at the global scale, we take into account each dataset’s characteristics and 
uncertainties in model calibration via the cost term at the grid cell level. To this end, we only use grid cells 
and time steps with available observations, which vary for the different data streams. To retrieve one cost 
term per observational constraint, we concatenate the time series of all grid cells into a single vector for 
which costs are calculated. The individual cost terms are considered to have the full weight of 1, resulting 
in a total cost value costtotal as the sum of individual costs. The total cost is then minimized during the 
optimization process using a global search algorithm, the covariance matrix evolutionary strategy 
(CMAES) algorithm (Hansen and Kern, 2004). 

𝑐𝑜𝑠𝑡total = ∑ 𝑐𝑜𝑠𝑡(𝑑𝑠)𝑛
𝑑𝑠=1      (3.6) 

 

where cost(ds) is the cost for each data stream ds. For TWS, ET, and Q, the cost terms are based on the 
weighted Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), which explicitly considers the observational 

uncertainty σ: 

𝑐𝑜𝑠𝑡 =
∑

(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)
2

𝜎𝑖

𝑛
𝑖=1

∑
(𝑥𝑜𝑏𝑠,𝑖−�̅�𝑜𝑏𝑠,𝑖)

2

𝜎𝑖

𝑛
𝑖=1

     (3.7) 

 

where xmod;i is the modelled variable, xobs;i is the observed variable, x̅obs is the average of xobs, and σi is 

the uncertainty of xobs of each data point i. The cost criterion reflects the overall fit in terms of variances 
and biases, with an optimal value of 0 and a range from 0–1. 

Owing to the larger uncertainties of Qobs on inter-annual scales (Ghiggi et al. 2019), we only use the 

monthly mean seasonal cycle, while for the other variables, full monthly time series were used. 

To define of ETobs, we utilize the median absolute deviation of the FLUXCOM-RS ensemble. For Qobs, we 

assume an average uncertainty of 50 % based on values reported in Ghiggi et al. (2019). For TWSobs, the 
spatially and temporally varying uncertainty information provided with the GRACE data is used. In 
addition, the largest monthly values of TWSobs (< 500 and > 500 mm) were masked out to avoid the effect 

of outliers on optimization results. Note that these outliers represent less than 0.5 % of the data and are 
mainly located in coastal arctic regions and are, thus, potentially related to land and sea ice and/or leakage 
from neighboring grid cells over ocean. Before calculating costTWS, the monthly means of observed and 
modelled TWS are respectively removed to calculate anomalies over a common time period 1 January 
2002–31 December 2012. 

Since remote sensing-based soil moisture only captures the top few centimeters of soil depth, usually 
about 5 cm, costwSoil is calculated based on the modelled soil moisture in the first soil layer. As the 
combined ESA CCI soil moisture imposes absolute values and ranges from GLDAS Noah (Dorigo et al. 
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2015), we use Pearson’s correlation coefficient as costwSoil and focus on soil moisture dynamics that is 
most reflective of the original remote sensing observation. Only estimates from 1 January 2007 onwards 
are considered, as data before that period are sparse. Further, costwSoil is calculated from the monthly 
averaged values to circumvent the large noise in the daily data. Thereby, only months with observations 
available for at least 10 d are considered. Due to snow cover, the temporal coverage of the product 
decreases with increasing latitude. Therefore, to prevent a bias towards northern summer months, we 
also exclude grid cells that lack more than 40 % of monthly estimates. After filtering for missing data, 
monthly surface soil moisture time series for 56 % of the total study area and 51 % of the calibration grid 
cells are available. 

 

 

Figure 3.2. Hydroclimatic cluster regions of the study area (R1 – cold, R2 – temperate, R3 – humid, R4 – sub-humid, 
R5 – semi-arid) and grid cells that have been excluded from this study (w is the water fraction > 50 %, s the permanent 
snow and ice cover > 10 %, a the artificial land cover fraction > 10 %, b the bare land surface > 20 %, and hTWS the 
direct human impact on the trend in GRACE TWS). 

 

3.2.5 Model Evaluation and Analysis 

For model evaluation, we contrast the optimized parameter values and their uncertainties. The relative 
uncertainty in the optimized parameter vector is estimated by quantifying each parameter’s standard 
error according to Omlin and Reichert (1999) and Draper and Smith (1981), similar to Trautmann et al. 
(2018). 

For each experiment, the optimized parameter sets are used to produce model simulations for the global 
study area. Their performances are then evaluated using Pearson’s correlation coefficient and the 
uncertainty-weighted Nash-Sutcliffe efficiency (wNSE) for TWS, ET, and Q observations (Eq. 3.8). The 
performances are evaluated on local (for each grid cell individually), regional, and global scales 

𝑤𝑁𝑆𝐸 = 1 −
∑

(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)
2

𝜎𝑖

𝑛
𝑖=1

∑
(𝑥𝑜𝑏𝑠,𝑖−�̅�𝑜𝑏𝑠,𝑖)

2

𝜎𝑖

𝑛
𝑖=1

      (3.8) 

 

For the regional analysis, we derive five hydroclimatic regions by performing a cluster analysis using the 
spatio-temporal characteristics of TWS, ET, and Q observations, as well as each grid cell’s latitude. By that, 
each zone is characterized by similar seasonal dynamics and amplitudes of the water cycle variables, 
allowing for a better comparison of regional averages than, for example, the commonly used Köppen–
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Geiger regions which lump regions with very different amplitudes and phasing of the water cycle variables. 
The resulting regions are shown in Fig. 3.2. Region 1 comprises the snow-dominated northern latitudes 
(cold), while region 2 includes the moderate mid-latitudes (temperate). Very humid and mostly tropical 
regions are combined in region 3 (humid). Region 4 is characterized by a distinct rain season (sub-humid), 
while region 5 includes semi-arid areas in low latitudes (semi-arid). Although we hereafter use these 
hydro-climatic cluster regions for model evaluation, the same analysis for Köppen-Geiger climate zones is 
presented in Fig B.11 in the Supplement to facilitate comparison with other studies. 

Finally, we assess the contributions of the four water storage components, wSnow, wSoil, wDeep and 
wSlow, to seasonal and inter-annual variations of the total water storage across spatial scales, i.e., the 
local grid cell, the regional and the global average. To do so, we apply the impact index I following Getirana 
et al. (2017). The metric describes the contribution C of each water storage s as the sum of its absolute 
monthly anomaly: 

𝐶𝑠 =  ∑ |𝑠𝑡 − �̅�|𝑛𝑡
𝑡=1     (3.9) 

 

where s̅ is the average storage of the time steps t–nt, with nt = 12 for mean seasonal and nt = 178 for 
inter-annual dynamics. 

The impact index Is is then defined as the ratio of each water storage component contribution Cs to the 

total contributions from all storage components: 

 

𝐼𝑠 =
𝐶𝑠

∑ 𝐶𝑠
𝑛
𝑠

      (3.10) 

 

The value of Is range from 0–1, with 0 indicating no impact and 1 indicating full control of all variations. 

3.3 Results 

In the following section we first evaluate both calibrated model variants by comparing their calibrated 
model parameters and by comparing modelled TWS, ET and Q against observations at global, regional and 
local scale. Subsequently, we show the contribution of individual storage components to TWS variability 
for B and VEG on different spatial and temporal scales. 

3.3.1 Model Evaluation 

3.3.1.1 Calibrated Parameters 

Table 3.2 summarizes the calibrated parameters and their uncertainties for the B and VEG model 
experiments. Overall, including varying vegetation characteristics leads to more plausible parameter 
values after calibration, while in B several parameters hit their prescribed bounds. Furthermore, very high 
parameter uncertainties present in B, that indicate poorly constrained values, could be strongly reduced 
in VEG (Fig B.3 in the Supplement). 

For B, pveg suggests that on average only 37 % of each grid cell is covered with vegetation globally. This 

low vegetation fraction is counteracted by a high veg value (2.25), which is much higher than commonly 

used coefficients of the 

Priestley–Taylor equation of around 1.2 (Lu et al. 2005), to yield good performance of modelled ET (Fig. 
3.3). At the same time, a very low fraction of the first soil layer is available for soil evaporation, as kSoil 
hits its lower bound of 10 %. In addition, the parameters controlling the drainage from deep and slow 
water storage (dDeep, dSlow) are high, resulting in a fast drainage and effectively discarding any influence 
of these water pools. 
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For VEG, the median vegetation fraction is 73 %, leading to a more realistic fraction of soil moisture being 
available for evaporation (kSoil D 0:4), which is similar to the modal value of 0.33 reported by McColl et al. 

(2017), and a more realistic veg value of 0.92, that effectively leads to the median Priestley–Taylor 

coefficient of 0.81 (Fig B.2 in the Supplement). In comparison to B, the resulting wSoilmax(2) of VEG with a 
median value of 52 mm is considerably lower. Its spatial pattern mainly originates from RD3 (Wang-
Erlandsson et al. 2016) and RD4 (Tian et al. 2019) data, while RD1 (Fan et al. 2017) contributes only little, 
and RD2 (Yang et al. 2016) data are negligible. The resulting spatial patterns of the maximum soil water 
capacity from the combination of all datasets (Sect.  B.2) are still consistent with those from other 
estimates and patterns of rooting depth (e.g., Schenk and Jackson, 2005). We note here that the soil water 
capacity data are favoured over the rooting depth data. This agrees with Küçük et al. (2022), who suggest 
that estimating plant storage capacity based on Earth observation data may be more suitable than those 
using optimality principles. Related to the limited size of wSoil, calibration enforces a deeper and a slow 
water storage with reasonable depletion parameters (dDeep, dSlow) in order to match observed TWS 

variations. By that, the considerable low wSoilmax(2) parameter is counteracted by refilling wDeep, which 
indirectly provides plant-accessible water via capillary rise. Likewise, kTransp, which describes the fraction 
of the second soil layer that is available for transpiration, is relatively high, as a larger fraction of the small 
soil water storage needs to transpire to match observed ET. Hence, calibrated kTransp is higher than 
empirical values of ET decay between 0.02–0.08 that are based on assuming one soil water pool (Teuling 
et al. 2006). 

3.3.1.2 Model Performance 

Table 3.3 contrasts the overall model performance metrics for TWS, ET, and Q for the two experiments 
for the calibration subset of 8 % grid cells (opti) and the entire study domain (global). The metrics are 
calculated in the same way as during optimization, i.e., by concatenation of the time series of all grid cells 
into a single vector for which statistics are calculated. In general, the differences between opti and global, 
as well as between B and VEG, are marginal. For VEG, results mainly improve for TWS and slightly for ET. 
Although the models were only calibrated for the spatial subset in opti, equally good or even better 
performances are obtained when the calibrated parameters are applied over the entire study domain. 
This suggests that the calibration subset was representative of the entire study domain, and the 
calibration did not overfit model parameters. 

 

Table 3.3. Overall model performance metrics in terms of weighted Nash–Sutcliffe efficiency (wNSE) and Pearson’s 
correlation coefficient (corr) of total water storage (TWS), evapotranspiration (ET), and runoff (Q) in B and VEG 
experiments for the calibration subset (opti) and the entire study domain (global). 

 TWS ET Q 

 wNSE corr wNSE corr wNSE (MSC) corr (MSC) 

 opti global opti global opti global opti global opti global opti global 

B 0.33 0.33 0.69 0.69 0.97 0.97 0.90 0.90 0.63 0.63 0.86 0.86 

VEG 0.38 0.41 0.71 0.72 0.98 0.98 0.90 0.91 0.60 0.57 0.85 0.85 

 

 

Among the variables, the best model performance in terms of wNSE and corr is obtained for ET. While the 
correlation between observed and simulated TWS is high, the overall wNSE is relatively low, which mainly 
results from higher uncertainties in TWSobs and a larger variance error, likely originating from grid cells 

with low observed TWS variance. 

Similar to the global metrics, the average mean seasonal cycle of different regions shows an equally good 
or slightly better performance of VEG compared to B regarding all variables (Fig. 3.3). At regional scale 
(Fig. 3.4), the general pattern of grid-wise Pearson correlation is similar for both experiments. However, 
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the difference between the correlation coefficients highlights an improvement using VEG for a large 
proportion of grid cells and regarding all TWS, ET, and Q (indicated by brown color). 

For TWS, the amplitude at the global scale is well captured yet with a phase difference of 1 month in both 
model variants, where both model variants show an earlier timing of peak storage (Fig. 3.3). The phase 
shift is also apparent in the temperate and cold regions, while the seasonal dynamics in sub-humid and 
humid regions is captured well, yet with an underestimation of the amplitude. Though differences are 
small, VEG obtains higher correlation, except for the semi-arid region. At local scale, correlation with 
GRACE TWS is lowest in rather semi-arid grid cells (Fig. 3.4), where TWS variation is low. However, 
including spatial patterns of vegetation improves TWS mainly in these (semi-)arid regions. 

Regarding ET, both experiments reproduce seasonal dynamics in all regions quite well yet tend to 
underestimate ET in the semi-arid, sub-humid, and humid regions, especially in months with low ET (Fig. 
3.3). At grid scale (Fig. 3.4), correlation of ET is very high, except for tropical regions due to low seasonality. 
Compared to B, VEG improves correlation here, as well as in some (semi-)arid regions such as the Sahel 
zone and the Western United States. 

In contrast to ET, performance for Q is generally the best in regions with poorer model performance in 
terms of ET (semi-arid, sub-humid and humid regions) (Fig. 3.3), suggesting a trade-off between the two 
different observation data streams, i.e., the inability of matching both observed fluxes simultaneously. 
Nonetheless, including varying vegetation characteristics improves peak runoff in all regions and reduces 
the underestimation of Q especially in the cold region. While the improvement of Q simulations in 
northern latitudes gets even more obvious at grid scale, B shows higher correlation with observations in 
Africa and the Mediterranean (Fig. 3.4). 

 

 

Figure 3.3. Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET), and 
runoff (Q) for the B and VEG experiments compared to the observational constraints by GRACE (TWS), FLUXCOM 
(ET), and GRUN (Q). 

 

3.3.2 Importance of varying Vegetation Properties to TWS Variability 

In this section, we present the influences of vegetation on TWS partitioning into snow (wSnow), plant-
accessible soil moisture (wSoil), not directly plant-accessible deep soil water (wDeep), and non-plant-
accessible slow water storages (wSlow) at different spatial and temporal scales. We first focus on mean 
seasonal dynamics and continue with the contribution of each component to inter-annual TWS variability 
at local grid-cell and regional scales, respectively, before presenting the analysis at the global scale. 
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Figure 3.4. Grid-wise Pearson’s correlation coefficient for total water storage (TWS), evapotranspiration (ET), and 
runoff (Q) between (1) observations and B and (2) observations and VEG, as well as differences between (1) and (2) 
(brown color, i.e., negative values, indicates higher correlations for VEG, while purple color, i.e., positive values, 
indicates better correlation values for B). 

 

3.3.2.1 Local and regional Scale 

Figure 3.5 shows the contribution of individual water storages to mean seasonal TWS variations at local 
grid scale. For both B and VEG, wSnow has the highest impact in northern latitudes and high altitudes 
where snowfall occurs regularly. Locally, the contribution of liquid water increases gradually with 
decreasing latitude and, finally, causes all TWS variations south of 45 N. Within the liquid water storages, 
B attributes nearly all variations to directly plant-accessible soil moisture wSoil, with an average of 76 % 
over all grid cells. While showing a similar pattern of increasing contribution towards lower latitudes, the 
VEG experiment only has an average of 17 % contribution from wSoil. Instead, most variations (40 %) are 
due to variability in the deeper soil storage, wDeep. In addition, the average impact of slow water storages 
wSlow (20 %) is comparable to that of wSnow (22 %) in VEG, though it is spatially much more limited to 
tropical regions, such as the Amazon basin. 

Mean seasonal dynamics averaged globally and for different regions are shown in Fig. 3.6. As indicated by 
the grid-scale results, wSnow dominates TWS variations in the northern cold region (73 % in B, resp. 69 % 
in VEG) and plays a considerable role in the temperate region (28 % resp. 26 %). For the other regions, B 
attributes nearly all remaining variability to wSoil, while in VEG wDeep has the highest impact index (59 
% in semi-arid, 50 % in sub-humid, and 43 % in humid). 

At the inter-annual scales, the impact of wSnow decreases to 10 % (B) and 12 % (VEG) locally (Fig. 3.7). 
For most of the grid cells, all inter-annual TWS variations are caused by wSoil in B. In VEG, however, the 
deeper soil layer wDeep is again the most important storage, with an average impact index of 53 % for all 
grid cells. The contribution of wSoil and wSlow remains more or less the same as that for seasonal TWS 
variations. 

Average contributions for different regions and globally (Sect.  B.4 in the Supplement) show again that, in 
B, nearly all inter-annual TWS variability is caused by wSoil (87 %– 99 %). Only in the cold region does the 
impact of wSoil decrease to 69 % in favor of wSnow (31 %). Similar to the local scale, in VEG, wDeep 
explains > 50 % of TWS variability in most regions. Only in the cold region is the contribution of wDeep 
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similar to wSnow (39 % vs. 38 %). The contribution of wSoil ranges from 9 % (cold) to 19 % (semi-arid), 
while the impact of wSlow is between 16 %–18 % in most regions and increases in sub-humid (24 %) and 
humid (34 %) regions. 

3.3.2.2 Global Scale 

Finally, Fig. 3.8 contrasts the impact of water storage components to the total storage, in B and VEG, at 
the global scale. As with the local and regional scales, including varying vegetation characteristics 
differentiates the composition of global TWS variations drastically. In both experiments, wSnow clearly 
dominates the spatially aggregated mean seasonal cycle with an impact index of 71 % (B) and 61 % (VEG). 
These contributions are considerably higher than the average local impact index over all grid cells (B 24 %, 
VEG 22 %; Fig. 3.5). As already seen at local scale, liquid water storages dominate the inter-annual TWS 
variability, whereby B and VEG differ in the attribution to different components of the liquid water 
storage. In B, all variations other than wSnow originate from wSoil, but wDeep dominates in VEG. 
Especially at inter-annual scales, wDeep accounts for half of all TWS variations. In contrast to B, in VEG, 
wSoil only has a minor impact of 7 % at seasonal and 13 % at inter-annual scale. Instead, wSlow has a 
moderate contribution of 11 % (mean seasonal) and 17 % (inter-annual). In contrast to the mean seasonal 
dynamics in which the dominating storages are different at local and global scales, the inter-annual 
dynamics are consistent across scales, with the same storage component dominating at both local and 
global scale (Figs. 3.5, 3.7, and 3.8). 

 

 

 

Figure 3.5. Global distribution of the impact index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep), and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, 
for B and VEG. 

 

 

Figure 3.6. Global and regional average mean seasonal cycles of simulated total water storage and its components 
for B and VEG, including the regional impact index I for each storage. 
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Figure 3.7. Global distribution of the impact index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep), and delayed water storage (wSlow) to the inter-annual variability of total water 
storage, for B and VEG. 

 

 

Figure 3.8. Impact index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep), 
and delayed water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total 
water storage, for B and VEG. 

3.4 Discussion 

In order to address the two main research questions of this study, the following section discusses the 
above-shown differences between B and VEG, first regarding model performance and finally regarding 
the modelled partitioning of TWS. 

3.4.1 Model Performance 

Both experiments show good performance against the observational constraints, and the differences 
between B and VEG are relatively small at the global scale. However, there are systematic improvements 
for VEG at the regional and local scale, and calibrated parameter values for VEG are more realistic and 
better constrained. This suggests a more realistic representation of fluxes and states in VEG overall. 
Remaining discrepancies compared to observations can be associated with shortcomings and 
uncertainties in the observational data as well as to the processes that are not represented in the rather 
simple model structure. 

The differences in the seasonal phase of global TWS in both model experiments mainly originate from the 
temperate and cold regions, and such model simulation differences have been reported previously (Döll 
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et al. 2014, Schellekens et al. 2017, Trautmann et al. 2018). One of the potential reasons is the temporary 
storage of meltwater during spring in rivers and other surface water bodies, which occurs contiguously 
over large areas in mid-latitudes to high latitudes (Döll et al. 2014, Schellekens et al. 2017, Schmidt et al. 
2008, Kim et al. 2009) and which delays the storage decay. In this context, lateral water transport may 
also additionally affect the TWS variations in downstream grid cells. Yet, such processes and conditions 
are neither represented in B nor VEG. 

Weaker performance of TWS in (semi-) arid regions is likely mainly due to low observed TWS variations 
and a low signal-to-noise ratio (Scanlon et al. 2016). Hence, less weight is also given to those grid cells in 
the cost component during calibration due to their small variations. In addition, alteration by human 
activities like groundwater withdrawal, dams, and irrigation to overcome the natural water shortage in 
such regions as Northeast China and the American (Mid)West can be regionally large in relative terms. 
While we aimed to exclude grid cells with large human impact a priori, we cannot completely exclude the 
influence of the aforementioned anthropogenic processes that are not explicitly represented in our model 
experiments. It should, however, be noted that the observational EVI data used in the VEG experiment do 
have an imprint of, for example, irrigated agriculture, as the measured surface reflectance includes the 
higher vegetation activity due to irrigation. The better representation of ET in semi-arid regions due to 
the EVI constraint contributes to the improved simulation of TWS variations in the VEG experiment. 

While overall ET performance is good, tropical regions show low correlation. These areas are associated 
with higher uncertainties in the FLUXCOM ET estimates (Jung et al. 2019) due to underlying data 
uncertainties of the eddy covariance observations. Those uncertainties are related to poor station 
coverage and energy balance closure gap but also to issues of the satellite data inputs caused by cloud 
coverage. Nonetheless, including varying vegetation characteristics data improves simulated ET here, 
suggesting a better representation of the characteristic highly active vegetation compared to other 
regions and to global averages. In addition, VEG improves ET mainly in water supply-limited regions for 
the reasons already presented above for improved TWS performance in (semi-) arid regions. 

The trade-off between the performances, in particular in terms of the bias of Q and ET, suggests larger 
uncertainties in one of the data streams for these regions, inconsistencies between the ET and Q 
constraints from independent sources, and/or model structure deficits. A small tendency to a negative 
water balance in the consistency checks of the observational data for these regions (Sect.  B.10) implies 
either underestimation of the precipitation forcing or overestimation of FLUXCOM ET or GRUN Q. Global 
precipitation datasets tend to underestimate precipitation (Trenberth et al. 2007, Contractor et al. 2020) 
due to limitations of the satellite retrieval, gauge measurements, and, if combined, the combination 
method (Fekete et al. 2004). Validation of the GPCD 1DD data used in this study showed an 
underestimation of precipitation in complex terrain and regionally during spring and autumn, while 
precipitation in wintertime tends to be overestimated (Huffman et al. 2000). While we accounted for the 
latter by reducing snowfall (via a scaling parameter that was calibrated in Trautmann et al. 2018), we do 
not consider potential underestimation in the rainfall forcing. Therefore, precipitation forcing may not 
provide sufficient water input for ET and Q in the model to achieve the magnitudes given by the 
observation-based products. Lastly, some deterioration of performance of Q in VEG may originate from 
deficiencies in the GRUN product itself, which was generated with climatic drivers only, disregarding 
information on spatio-temporal variations in vegetation (Ghiggi et al. 2019). 

The improvement of Q in northern latitudes is associated with the activation of the slow and delayed 
storage in the VEG experiment, with spatial varying parameterization of soil water storage capacity. The 
relatively low storage capacity in these regions facilitates faster saturation excess runoff. In addition, the 
slow storage better represents the runoff delay in surface water and rivers in these regions that results in 
improvements of low flow during winter as well as the increase of runoff during spring (Fig. 3.3). Such 
delayed runoff also improves the simulation of peak runoff in the sub-humid and humid regions. 

The remaining deficiencies in model performance, especially in the cold region, indicate missing processes 
in the simple model structure. Such processes include freeze–thaw dynamics and permafrost (Yu et al. 
2020) as well as ice jam in river channels that would increase surface water storage and allow for high 
spring flood (Kim et al. 2009). In addition, snow parameters have been calibrated against remote sensing-
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based GlobSnow snow water equivalent, that is known to saturate for deep snow conditions (Takala et al. 
2011) (see Trautmann et al. 2018). Although the calibration process considered this shortcoming, an 
underestimation of modelled snow accumulation is possible – leading to an underestimation of peak 
snowpack in winter that would result in an underestimation of runoff due to lower snowmelt in spring. 

While the VEG experiment presented here considers all three aspects of vegetation influences on 
hydrological processes explicitly (see Sect. 2.2.1), we also run experiments that include these aspects 
separately in the model calibration (not shown). These analyses found that the largest improvement was 
obtained when including soil water storage capacity as a function of rooting depth and storage capacity 
data and a rather low impact when considering the runoff/infiltration partitioning as a function of the 
vegetation fraction. This highlights the central role of soil water storages and the importance of 
adequately describing soil moisture pattern and dynamics in hydrological models. 

3.4.2 Contribution to TWS Variability 

Albeit their global coverage, the above-presented results agree with the previous regional study that 
focused on northern mid-latitudes to high latitudes (Trautmann et al. 2018). Similarly, both model 
experiments show a dominating role of snow accumulation and depletion on global seasonal TWS 
variability, whereas liquid water storages determine inter-annual TWS variations. At the same time, the 
contribution of individual storages to TWS variations differs at the local grid scale compared to when they 
are averaged over a region or globally. The stronger contribution of snow on spatially aggregated signals 
can be explained by the spatial coherence of snow accumulation over larger areas. Liquid water storages, 
on the other hand, are more spatially heterogeneous, with increasing and decreasing dynamics across 
regions that cancel out and compensate for each other when spatially aggregated (Trautmann et al. 2018, 
Jung et al. 2017). In contrast to the mean seasonal dynamics, the inter-annual impact indices of the 
storage components at the global scale are similar to the average local impact indices (Figs. 3.7 and 3.8). 
This suggests that at inter-annual timescales, there is no spatially coherent pattern of one single storage 
component that leads to higher accumulated impact indices than the local averages. However, while both 
experiments agree in the general pattern of the impact of snow versus liquid water storages, they 
systematically differ in the allocation of water among liquid storage compartments. In B, all variations 
other than wSnow originate from directly plant-accessible soil moisture, whereas, in VEG, the deeper soil 
storage wDeep becomes the most important. Therefore, including observation-based information on 
vegetation changes the attribution of TWS variations drastically, while the variations of total TWS 
themselves do not change significantly. 

Differences in the composition of TWS variability between B and VEG are effectively reflected in the 
differences of calibrated parameters. In B, the directly plant-accessible soil water storage is larger, due to 
a higher effective wSoilmax(2), while delayed water storages are “turned off” because of increased 

drainage (dDeep, dSlow), reducing the variations in wDeep and wSlow. Although VEG has been calibrated 
in the same way as the same observational constraints, calibrated model parameters differ as the data on 
vegetation characteristics included provide complementary information on spatial and temporal patterns. 
Therefore, the resulting calibrated parameters can be assumed to be more realistic. For example, they 
enable (delayed) longer term water storage as well as capillary rise from the deeper soil water storage 
when the directly plant-accessible storage dries out. Due to this process, TWS variations are mainly 
controlled by wDeep in VEG. 

In detail, the increased importance of the indirect plant-accessible storage wDeep in VEG can be related 
to the limited maximum soil water capacity wSoilmax(2) that is constrained by rooting depth–soil water 

capacity data and to a higher kTransp parameter. The smaller wSoil storage increases percolation to 
wDeep, but the water is still available when needed due to the capillary rise from wDeep to wSoil. 

Removing capillary flux from wDeep to wSoil in fact increases the contribution of wSoil to seasonal 
variability, while the impact of wDeep remains high on inter-annual scales (Sect. B.7 in the Supplement). 
While the contribution of capillary rise to total ET is < 20 % for most grid cells, it becomes more important 
in arid-to-wet transition regions, for example, sub-Saharan Sahel, Savannas, northern Australia, and the 
Indian subcontinent (Fig. 3.9). These are regions with high precipitation seasonality, where vegetation 
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often grows deep roots to access deep unsaturated zone storage and groundwater during the dry season. 
The spatial patterns of ET supported by capillary rise agree with the findings of Koirala et al. (2014), who 
applied the physically based model MATSIRO to investigate the effect of capillary flux on hydrological 
variables. The spatial patterns are also in line with the predicted probability of deep rooting by Schenk 
and Jackson (2005) and are supported by Tian et al. (2019), who found that vegetation remains active long 
into the dry season in Africa, suggesting that soil–deep soil–groundwater interaction plays a considerable 
role. Therefore, the spatial pattern of the interactions of wDeep with wSoil in VEG seems reasonable, and 
our results indicate that capillary rise appears to be a process of large-scale relevance. 

 

 

Figure 3.9. Total evapotranspiration (ET) of VEG with capillary flux from the deep soil water storage (left) and 
difference compared to a model version without capillary flux in millimetres (right map) and as a percentage 
difference (right). 

 

While defined as the “fraction of soil water available for transpiration”, kTransp is an effective decay 

parameter for the depletion of wSoil via transpiration processes under water-limited conditions. Plausible 
values derived from eddy covariance observations of ET are in the order of 10 3–10 1 (Teuling et al. 2006), 
similar in magnitude to delay coefficients for baseflow. By calibrating a model against GRACE TWS, it is 
difficult to decide whether water leaves the system slowly via ET or by Q, especially during dry-down 
periods. In B, kTransp is much smaller than in VEG and more consistent with expected magnitudes, yet 
other slow depleting storages are effectively “turned off”. In contrast, VEG with additional vegetation data 
simulates an important slow storage that contributes to Q and also to soil moisture via capillary rise and 
has a rather high calibrated kTransp. To better understand the implications of parameterizing supply-

limited ET decay in the model, we conducted another experiment where we fixed kTransp in VEG to 0.05 
(about the median value of empirically derived kTransp from Teuling et al. 2006) and optimized all other 

parameters again. This caused most TWS variations to originate from wSoil but with less improvement in 
model performance compared to B (Sect.  B.8 in the Supplement). Therefore, TWS decomposition is very 
sensitive to parameters controlling ET under water-limited conditions. However, VEG and VEG with fixed 
kTransp qualitatively agree in the importance of the slow water storage in humid regions, which was also 
shown by Getirana et al. (2017). Overall, our results imply that the representation of ET under water-
limited conditions in the models plays a decisive role in the simulated partitioning of TWS in soil moisture 
and slow water pools. 

The large impact of the role of vegetation and of transpiration water supply within the model is also 
supported by a complementary experiment in which vegetation parameters were discretized for plant 
functional type classes and calibrated with the same multi-criteria approach (Sect.  B.9). 

As with the presented model variants, TWS composition simulated with existing large-scale hydrological 
models differs widely (Scanlon et al. 2018, Schellekens et al. 2017, Zhang et al. 2017). For example, PCR-
GLOBWB and W3RA attribute seasonal TWS variations in the tropics to groundwater, while other models 
suggest they are mainly caused by soil moisture. These results are largely dependent on model structure 
and parametrization, which is potentially a challenge when models are used to decompose the integrated 
GRACE TWS signal and when implications of different processes and interactions are drawn. For example, 
Humphrey et al. (2018) analyzed how the CO2 growth rate, a proxy for the land carbon balance 
fluctuations, is affected by inter-annual variations in GRACE TWS, assuming that these represent 
fluctuations in plant-accessible water that influence the carbon uptake of land ecosystems. In contrast, 
our study, along with previous reports, shows that a significant proportion of the GRACE TWS signal in the 
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tropics is not directly plant-accessible soil moisture but deeper soil water and slow storage components. 
The latter comprises surface water storage, whose importance for TWS variations in tropical regions has 
been shown by several studies (e.g., Güntner et al. 2007, Getirana et al. 2017). 

Although VEG can be considered more reliable because of more realistic parameter values and better 
model performance, the current study still has some shortcomings. Despite using a multi-criteria 
calibration, individual component fluxes and states may not necessarily be well constrained. To further 
improve and solidify conclusions, especially on TWS partitioning, more constraints, such as deep soil 
moisture estimates or high-quality observations of surface water, are needed. Furthermore, spatial 
constraints for defining the depletion of water storages via ET and Q – either with spatial information on 
the delay parameters (kTransp for ET, dSlow for Q) or on their sub-fluxes (transpiration or evaporation, 
baseflow or direct runoff) – would be beneficial. In this context, runoff characteristics as the baseflow 
index or the baseflow recession coefficient provided by Beck et al. (2015) are potentially useful to define 
the spatial pattern of the slow runoff component. In addition, a GRACE product with daily resolution 
(Eicker et al. 2020) could enable better decomposition and differentiation of fast and slow storages whose 
short-term imprints are lumped in the monthly TWS signal. 

3.5 Conclusions 

In this study, we investigated the effect of varying vegetation characteristics on global hydrological 
simulations and in particular on the partitioning of TWS variations among snow, plant-accessible soil 
moisture, a deep soil water storage, and a slowly varying water pool that represents groundwater, surface 
and near-surface water storage. To do so, we included observation-based continuous vegetation 
information to parameterize the hydrological processes of evapotranspiration, soil water storage, and 
runoff generation in a large-scale hydrological model. With the parsimonious model that was constrained 
against multiple observations, we highlight the value of observation-based datasets in constraining model 
parameters of global hydrological models while maintaining simple model formulations to evaluate the 
influences of vegetation in the global hydrological cycle. First, we find that using a multi-criteria calibration 
approach allows for different model variants to perform relatively well despite major differences in model 
parameterization among them. In fact, even without accounting for dynamics and patterns of vegetation 
explicitly, the model performance can be interpreted as reasonable and more so at the global scale. 
However, including the spatial pattern of vegetation further improved the model performance. For 
example, large improvements were found in supply-limited regions, i.e. (semi-) arid regions (TWS and ET) 
and in tropical regions (ET), and Q simulations both globally and regionally in the Northern Hemisphere. 
Undoubtedly, spatio-temporal variations of vegetation characteristics are relevant for regional and global 
hydrological simulations. Interestingly, we find that the calibrated parameter values are also more 
reasonable when the model is fed with the vegetation information. In particular, parameter interactions 
and equifinality were reduced even though the same observational constraints were used for calibration. 
Lastly, we show how the representation of vegetation can modulate surface and subsurface hydrological 
process representation in the model, changing the spatial–temporal dynamics of individual storage 
components while maintaining the same overall response of total hydrological fluxes and storage 
variations. With or without accounting for varying vegetation characteristics explicitly, seasonal storage 
variations are dominated by snow at the global scale. However, including varying vegetation 
characteristics drastically changes the attribution of TWS variations among soil moisture, deep soil water, 
and slow water storages. Without varying vegetation parameters, the soil moisture effectively controls 
most of the TWS variation, but with varying vegetation characteristics, the role of deeper and delayed 
water storage becomes prominent. In particular, the representation of water-limited ET by the interplay 
of its sensitivity to soil moisture, maximum plant-accessible water storage capacity, and interactions with 
deep soil moisture or groundwater seem to play a decisive role in TWS partitioning in the simulations.In 
summary, this study highlights the value of including varying vegetation characteristics to further 
constrain model parameters with a parsimonious model structure. The findings further suggest an 
important role of groundwater–soil moisture–vegetation interactions in TWS variations. Since the 
representation of vegetation-related processes in global hydrological models seems to be a key factor for 
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controlling TWS partitioning, we emphasize the need for further studies and improvements of global 
water cycle models with respect to the role of vegetation by utilizing observational constraints on 
ecohydrological functioning in multi-criteria model calibration exercises. 
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Chapter 4: Implications of River Storage 

Implications of River Storage for Integrating GRACE 

Terrestrial Water Storage observations into a Global 

Hydrological Model 
 

 

Abstract 

Although river water storage contributes to Total Terrestrial Water Storage (TWS) variations obtained 
from GRACE satellite gravimetry, it is unclear if computationally expensive river routing schemes are 
required when GRACE data is used to calibrate and validate global hydrological models (GHMs). Here, we 
investigate the role of river water storage on calibration and validation of a parsimonious GHM. In a multi-
criteria calibration approach, the model is constrained against either GRACE TWS or TWS from which river 
water storage is removed. While we find that removing river water storage changes the TWS constraint 
regionally and globally, there are no significant implications for model calibration and the resulting 
simulations. However, adding modeled river water storage a-posteriori to calibrated TWS simulations 
improves model validation against GRACE TWS globally and regionally, especially in tropics and Northern 
low- and wetlands. While our findings justify the exclusion of explicit river routing for global model 
calibration, we find that the inclusion of river water storage is relevant for model evaluation. 

 

 

This chapter is based on: 

Trautmann, T., Koirala, S., Güntner, A., Kim, H., Jung, M. (2022): Implications of river storage for 
integrating GRACE TWS observations into a global hydrological model, submitted to Environmental 
Research Communications. 
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4.1 Introduction 

Over the last decade, terrestrial water storage variations from GRACE and GRACE-FO satellite gravimetry 
provided valuable information for calibration and validation of global hydrological models (GHMs) (Werth 
et al., 2009, Döll et al., 2014, Scanlon et al., 2016, Kumar et al., 2016, Mostafaie et al. 2018, Trautmann, 
2018). However, satellite gravimetry measures the vertically integrated total water storage (TWS), that 
includes water stored in ice, snow, canopy, soil moisture, groundwater, but also in wetlands, surface 
water bodies and river channels (Watkins et al. 2015). GHMs, on the contrary, do not necessarily simulate 
all these storages, and also vary significantly in their complexity and the represented hydrologic processes 
(Schellekens et al. 2017, Telteu et al. 2021). Among others, their inability to correctly simulate GRACE TWS 
variations is often attributed to neglected processes, such as river and floodplain storage dynamics (Kim 
et al. 2009). Although regionally, the relevance of river storage variability for GRACE TWS variations has 
been shown (Kim et al., 2009; Getirana et al. 2017), many GHMs don’t include a river routing scheme to 
explicitly estimate river water storage (Telteu et al. 2021), even if they are calibrated against GRACE TWS. 
This is, on the one hand, due to historical reasons as GHMs rather focused on the vertical water balance 
(Shaad 2018), and, on the other hand, due to the high computational demand that river routing schemes 
require, especially if they need to be applied globally and in thousands of iterations during the model 
calibration process. While many efforts to reduce the computational costs of global routing schemes exist 
(Yamazaki et al. 2013, Mizukami et al. 2021), they remain a considerable factor for time and 
computational performance when compared to a model run without river routing. At the same time, the 
actual relevance of river routing for model calibration and validation against GRACE TWS at a global scale 
is rather unclear, also given the broad spatial and temporal resolution of GRACE TWS. 

In the context of the development of new land surface models and data assimilation schemes, it’s 
essential to know whether computational resources need to be invested in river routing during model 
calibration, and what are the consequences if routing is only applied as a post-processing, i.e., after 
defining model parameters, to validate model simulations.  

Therefore, we specifically investigate the need for consideration of river storage and its potential effect 
on model calibration and validation in global hydrological studies that apply GRACE TWS. 

To do so, we use a parsimonious hydrological model that does not explicitly account for river dynamics. 
We constrain the model in a multi-criteria calibration approach either against original GRACE TWS 
estimates, or against TWS estimates from which river storage was removed, and compare the resulting 
simulations. In the second step, we apply a routing scheme on the calibrated model and validate the 
performance with and without additional consideration of river storage compared to the original GRACE 
TWS. Specifically, we focus on: 

I) the sensitivity of model calibration and resulting hydrological simulations to the removal of 
river storage from GRACE TWS. 

II) the need of river routing for validation of hydrological simulations with GRACE TWS 
observations at regional and global scales. 

In the following, we provide an overview on the methodology of this study. In section 4.3, we present and 
discuss the results regarding the effect of river storage on model calibration, followed by its influence on 
validation against GRACE TWS. Finally, section 4.4 summarizes the implications for future global 
hydrological studies. 

4.2 Data and Methods 

This study consists of 2 parts:  

I) the effect of river storage on model calibration, and  
II) the effect of river storage on model validation.  

An overview on the methodologies and data for both parts is given in Fig.4.1, and described in detail in 
section 4.2.2 and 4.2.3. For all analysis, we apply the same hydrologic model, which is introduced in the 
following section. 
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Figure 4.1. Schematic structure of the applied data and methodologies to assess the effect of river storage on model 
I) calibration, and II) validation. In I) the TRIPy and the CaMa-Flood routing schemes are forced by GRUN QR to 

estimate wRiver, which is then removed from GRACE TWS. Either GRACE TWS or TWS-noRiver data is then used 
along with other observational data to calibrate a global hydrologic model. In the first step 1A) we compare GRACE 
TWS against TWS-noRiver to identify the wRiver signal in GRACE TWS data (section 4.3.1.1), and in the second step 
1B) simulations from different calibrations are compared against each other to assess the effect of wRiver on model 
calibration (section 4.3.1.2). In II) we force the TRIPy and the CaMa-Flood routing scheme with modeled QR from I) 

and add it to modeled TWS to assess the effect of accounting for wRiver on model validation against the original 
GRACE TWS wRiver. 

 

4.2.1 Hydrological Model 
Exemplary for the variety of global hydrological models, we apply the conceptual hydrologic model 
introduced in Trautmann et al. 2022. While being more parsimonious than its established counterparts, 
its structure reflects classical process representation of GHMs and the calibrated model achieves equally 
good and partially better performance as, e.g., models from the EartH2Observe model ensemble 
(Schellekens et al. 2017), regarding different observational data (Fig. C.5). 

Forced by precipitation, air temperature and net radiation, the model simulates evapotranspiration (ET) 
and runoff (QR), and considers 4 water storages: a snow component, a 2-layer soil water storage, a delayed 

water storage component, and a deep soil water storage that interacts with the soil and delayed storage 
components. Simulated total water storage (TWS) is the sum of these 4 storages. While groundwater, 
surface water and river water are not implemented explicitly, they are assumed to be effectively included 
in the deep and slow storage components after calibration of associated model parameters against GRACE 
TWS.  

We run the model on a 1°x1° latitude/longitude spatial resolution on daily time steps for the period 
03/2000 to 12/2014, focusing on vegetated land area under near-natural conditions.  
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For regional analysis, we consider hydro-climatic regions obtained from cluster analysis of latitude, mean 
seasonal dynamics and amplitudes of TWS, ET and QR observational data (Fig. 4.2).  

Further details are available in Trautmann et al. 2022.  

 

 

Figure 4.2. Hydro-climatic clusters of the study area with red dots indicating grid cells used in model calibration.  

 

4.2.2 Effect of River Storage on Model Calibration 

To assess the effect of river water storage (wRiver) included in GRACE TWS estimates on model 
calibration, we constrain the model against monthly GRACE TWS variations of the JPL mascon solution 
(RLM06v2; Wiese et al. 2018), from which estimates of wRiver were removed or not. To do so, we first 
estimate river storage variations, and then calibrate the hydrological model against GRACE data with or 
without river storage. 

To estimate wRiver variations, we force river routing schemes with observation-based runoff QR 

reconstructions from GRUN v1 (Ghiggi et al. 2019). To do so, the monthly average gridded QR estimates 
are resampled to daily modeling time steps by replicating the monthly value. 

Since the choice of the river routing scheme essentially affects simulated wRiver and discharge (QDis) 

(Zhao et al., 2017) we consider 2 different river routing schemes: 1) the simple routing scheme TRIPy (Oki 
et al., 1999), and 2) the more sophisticated, widely used Catchment-based Macro-scale Floodplain (CaMa-
Flood) river routing scheme (Yamazaki et al., 2011).  

TRIPy calculates QDis from each grid cell along the river network based on QR and maps of flow direction 
and river sequence, using a linear reservoir algorithm. Thereby, the parameter effective flow velocity 
(eff_vel) [ms-1] defines how fast QR is discharged from one grid cell to the next, i.e., how long water is 
stored in the grid cell’s wRiver. While in reality, flow velocity varies spatially as it depends on land surface 
characteristics such as slope, TRIPy uses a globally uniform value for simplicity. To yet assess the sensitivity 
to eff_vel in TRIPy, we consider a range of global eff_vel values in different experiments, from low (0.1 ms-

1) to medium (0.5 ms-1) to high (2.5 ms-1) values, to derive corresponding estimates of wRiver that produce 
a range of river storage dynamics with large and fast variability for high eff_vel, and small and slow 
variability for low eff_vel.  

Similar to TRIPy, CaMa-Flood v4.01 derives the time evolution of water storage from the water balance 
equation, considering the inflow from upstream grid cells, the input from runoff forcing generated at the 
respective grid cell, and the outflow to downstream grid cells. However, in contrast to TRIPy, it, next to 
QDis, explicitly calculates flow velocity along a prescribed river network that is automatically generated 

with the Flexible Location of Waterways (FLOW) (Yamazaki et al. 2009) method. Utilizing a 
parametrization based on the sub-grid topography obtained from HydroSHEDS, CaMa-Flood simulates 
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water storage within the river channel, but also water storage in flood plains. Thus, CaMa-Flood allows a 
more dynamic simulation of QDis and wRiver while considering the spatial variability of discharge-
generating characteristics. 

In the following, the experiments with river routing from CaMa-Flood and the 3 experiments from TRIPy 
are summarized with ▲, or denoted with CaMa, 01, 05, or 25 if referred to explicitly.  

Estimates of wRiver▲ are removed from GRACE TWS to obtain new estimates of TWS-noRiver▲. Before 
using either GRACE TWS or TWS-noRiver▲ for model calibration, we compare them to assess the 
contribution of wRiver to the TWS constraint regionally and globally (Fig. 4.1 1A; section 4.3.1.1). For this 
purpose, we calculate the Nash-Sutcliffe Efficiency (MEF, Eq. 4.1) between GRACE TWS and each TWS-
noRiver▲ to quantify their similarity for different spatial scales. 

 

𝑀𝐸𝐹 = 1 −
∑ (𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)2𝑛

𝑖=1

∑ (𝑥𝑜𝑏𝑠,𝑖−�̅�𝑜𝑏𝑠,𝑖)2𝑛
𝑖=1

       (4.1) 

 

where xmod,i corresponds to TWS-noRiver▲, xobs,i corresponds to GRACE TWS, and x̅obs is the average of 
GRACE TWS at each data point i.  

Either GRACE TWS or TWS-noRiver▲ estimates are then used along with other observational data 
including GRUN QR, FLUXCOM ET (Jung et al. 2019), and ESA CCI soil moisture (Dorigo et al. 2017) to 

constrain model parameters in a multi-criteria calibration approach. The approach, described in 
Trautmann et al. 2022, aims to derive the globally best performing parameter set regarding all constraints 
simultaneously, while considering each data stream’s strengths and uncertainties. For each observational 
constraint we calculate a cost metric that is summed up to a total cost value which is optimized 
(minimized) using the CMAES algorithm (Hansen & Kern 2004) to derive the globally best performing 
parameter set. We perform calibration for a spatial subset of grid cells that is obtained by stratified 
random sampling among Koeppen-Geiger zones. The calibration subset mirrors the global and regional 
distribution of observed TWS, ET, QR, and wRiver, and therefore allows for efficient calibration of 
parameter values that are globally applicable. To appraise parameter equifinality and uncertainties of the 
optimization procedure, 10 calibration runs are performed for each experiment. 

Finally, we analyze and compare the simulations that were calibrated against GRACE TWS (MOD) and 
those calibrated against the 4 different TWS-noRiver▲ estimates regarding TWS, ET and QR (Fig. 4.1 1B) 

for global and regional mean seasonal dynamics. While taking into account the spread between 10 
different calibration runs of each experiment, we focus on the best performing calibration run when 
calculating MEF between MOD (xobs in Eq.4.1) and each MOD-R▲ (xmod in Eq.4.1). 

4.2.3 Effect on Model Validation 
To assess the relevance of wRiver for validation of TWS simulations against GRACE TWS, we add wRiver 
to model simulations after model calibration. For this purpose, we apply the CaMa-Flood and the TRIPy 
routing scheme for each calibrated MOD-R▲, i.e., using the calibrated QR as forcing for the routing 
schemes. Thereby, we use the same routing scheme and parametrization as for the TWS-noRiver▲ 
constraint that was used for the respective calibration (e.g., TRIPy with eff_vel of 0.1 ms-1 for MOD-R01 
that was calibrated against TWS-noRiver-01; and CaMa-Flood for MOD-CaMa that was calibtated against 
TWS-noRiver-CaMa). 

We then add simulated wRiver to TWS of each MOD-R▲ and compare it against the TWS simulations from 
MOD without additional wRiver, as well as against the original GRACE TWS. For model validation, we 
calculate MEF between GRACE TWS and MOD resp. MOD-R▲ at the local grid-cell scale, as well as for 
global and regionally aggregated mean seasonal dynamics. 
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4.3 Results and Discussion 

4.3.1 Effect of River Storage on Model Calibration 

4.3.1.1 Effect of River Storage on TWS Patterns 

Figure 4.3 compares the decrease in similarity between the original GRACE TWS and estimates of TWS 
from which wRiver is removed.  

As expected, low eff_vel increases wRiver, and therefore, the lowest correspondence with the original 
GRACE TWS can be seen for TWS-noRiver-01, while the similarity increases with increasing eff_vel, so that 
TWS-noRiver-25 is nearly identical with the original GRACE TWS. Spatially, differences between GRACE 
TWS and TWS-noRiver-CaMa are similar to those from TRIPy with a medium eff_flow (TWS_noRiver-05).  

Overall, spatial correspondence with GRACE TWS mainly decreases along larger river networks with a 
large water accumulation (Fig. 4.3a). The largest grid-wise changes are obtained in the Cold and Humid 
regions, where river networks are dense and streamflow and, thus, wRiver is large in absolute terms. On 
the contrary, removing wRiver from GRACE TWS has little effect in the Semi-arid region, where water 
accumulation is smaller than in humid regions. 

Regarding seasonal dynamics (Fig. 4.3b), removing wRiver mainly changes the amplitude of TWS 
variations, which increases in snow affected regions and tends to decrease otherwise. In the Cold region, 
gradual snow melt, retarded infiltration due to shallow and frozen soils, slow discharge to downstream 
areas, as well as additional water input from upstream areas in large river networks dampen TWS 
variations. Removing wRiver attenuates these delaying effects, causing increased TWS variations and 
shifts the TWS peak to one month earlier. While in the Cold region seasonal TWS variations are mainly 
affected by snow accumulation and melt, TWS in other regions is dominated by liquid water storages 
(Trautmann et al. 2018). In non-snow affected regions, QR increases with wetness, i.e., with TWS, which 

in turn reduces TWS. Due to this negative feedback, removing wRiver from TWS reduces the TWS 
amplitude. Due to the spatial variability of parametrization and flow velocity in CaMa-Flood, TWS-noRiver-
CaMa agrees with different TRIPy TWS-noRiver estimates in different regions, e.g., rather with high eff_vel 
parametrization in Temperate, Humid and Sub-humid regions, but with low eff_vel parametrization in the 
Semi-arid region. 

4.3.1.2 Effect of River Storage on Model Calibration 

Figure 4.4 shows the mean seasonal dynamics of TWS, ET and QR simulated by MOD and MOD-R▲ after 
model calibration. Respective observations are plotted for better evaluation of the calibration results, yet 
the following focuses on differences between MOD and MOD-R▲. A detailed evaluation of performance 
of MOD against TWS, ET and QR observations can be found in Trautmann et al. 2022. 

Despite being calibrated against either GRACE TWS or TWS-noRiver▲, overall little variance between 
calibrated MOD and MOD-R▲ is evident. While we expected the model parameters to adapt to differences 
in the TWS constraint, the mean seasonal TWS simulations are nearly identical among experiments, 
globally and regionally. The same holds for ET. Some differences between calibration runs are obtained 
regarding QR, especially for Cold, Temperate and Semi-arid regions. However, while the spread is larger 
than for the other simulated variables, the differences of the best performing calibration runs are still 
negligible. 

 



4.3 Results and Discussion 

71 

 

Figure 4.3. Comparison of GRACE TWS and TWS-noRiver▲. a) similarity between the original GRACE TWS and TWS-
noRiver▲ in terms of gridwise Nash-Sutcliff efficiency (MEF); b) global and regional mean seasonal dynamics of 
GRACE TWS and TWS-noRiver▲. For a) and b) MEF of TWS-noRiver▲ with the original GRACE TWS is calculated and 
subtracted from the optimal MEF of 1. Note the different ranges on the y-axis for TWS variations in panel b). 
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Figure 4.4. Mean seasonal dynamics of simulated and observational TWS, ET, and QR summarized globally and for 

different regions. Uncertainty bands denote the spread between 10 different calibration runs of each experiment, 
while dashed/solid lines indicate the best performing calibration run of each experiment. Black dotted lines denote 
observational GRACE TWS, FLUXCOM ET, and GRUN QR. Listed MEF compares the best performing calibration run 

MOD▲ against the best performing calibration run of MOD (dashed line). 
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High agreement in simulated fluxes and TWS variations goes along with no systematic differences 
between calibrated parameter values of MOD and different MOD-R▲. Hence, we do not find any evidence 
for biases between experiments that result from either considering wRiver or not in model calibration. 
While the calibrated parameter values don’t vary significantly between different experiments, different 
calibration runs point to two parameter sets that achieve (nearly) equal good performance (Fig. C.1). 
Affected are parameters that regulate the size of soil water storage and it’s depletion by ET. The interplay 
of these parameters with the other outgoing flux QR also explains the spread of simulated QR. This 

parameter equifinality is not related to wRiver, but to the equifinality of baseflow and ET decay, especially 
under water limitation as discussed in Trautmann et al. 2022.  

The absence of a qualitative effect of using GRACE TWS or TWS-noRiver▲ for model calibration is also 
evident when inspecting the total costs and cost components among the experiments (Fig. C.1). They are 
fairly similar on average, while the spread of costs between different calibration runs of one experiment 
tends to be larger than the differences between experiments. This underlines that uncertainties arise 
mainly from other aspects of hydrological modeling than from the effect of wRiver included in the TWS 
constraint. However, we do see a tendency for elevated TWS costs for MOD-R01 and MOD-R05. Higher 
TWS costs and thus total costs suggest difficulties of the model to adapt to the TWS constraint, when the 
removed wRiver is large. This suggests that the comparatively large removal of wRiver is harder to 
reconcile with the other constraints of ET and QR, and thus may indicate that such large wRiver based on 

low eff_vel is not plausible. While it is notable that the spread in total, TWS, and QR costs of MOD-CaMa 

is comparatively smaller and it achieves the overall lowest total costs due to low soil moisture and ET 
costs, the general difference to the other calibrated models remains small, indicating no significant impact 
of the chosen routing scheme on the global multi-criteria calibration. 

4.3.2 Effect of River Storage on global Model Validation 

While we did not find systematic differences between TWS simulations of MOD and MOD-R▲ after 
calibration, explicitly accounting for wRiver and adding it to TWS of MOD-R▲ causes systematic differences 
of model performance against the original GRACE TWS, locally as well as for regional and global mean 
seasonal dynamics (Fig. 4.5). The largest differences are notable for considering wRiver based on low 
eff_vel, while the largest improvement of model performance relative to the original GRACE TWS is 
achieved when adding wRiver based on medium eff_vel - globally and in most regions (Fig. 5b). While the 
choice of the routing scheme does not significantly affect model performance regarding seasonal 
dynamics of TWS for large spatial regions (Fig. 4.5b), it is relevant for simulating hydrological dynamics at 
smaller, e.g., catchment, scale. As such, QDis from MOD-CaMa provides consistently good estimates of 

QDis at various GRDC stations, while different MOD-R▲ from TRIPy perform better for different stations, 
highlighting the benefit of spatially distributed river flow parameters as opposed to global average 
parameter values of eff_vel in TRIPy (Fig. C.6). However, locally, the differences in model performance 
with GRACE TWS are less pronounced when wRiver from CaMa-Flood is added (MOD-CaMa). Overall, 
including wRiver improves TWS simulations at local scale especially in the tropics and Northern low- and 
wetlands where rivers accumulate water over large catchments (Fig. 4.5a). The importance of wRiver in 
the tropics has already been shown by previous studies (Getirana et al. 2017). Similarly, the inability to 
reproduce observed TWS variations by models in the Cold region is among others attributed to missing 
representations of floodplain and river flow processes (Kim et al. 2009). Indeed, in the Cold region, 
accounting for wRiver improves MEF for the majority of grid cells (Fig. 4.5a), highlighting the importance 
of additional inflow from upstream grid cells and the delay of water outflow in these regions. While MOD-
R01 matches the timing of TWS variations slightly better, it underestimates the seasonal TWS amplitude 
(Fig. 4.5b). On the contrary, MOD-R05 and MOD-CaMa reproduce TWS amplitude, yet still precede TWS 
variations, although not as much as MOD or MOD-R25. Hence, the phase-shift issue of simulated TWS in 
Cold regions, which is prevalent in many GHMs (Schellekens et al. 2017), is unlikely to arise from 
unaccounted river storage variations only. The underestimation of TWS amplitude (and peak spring 
discharge, Fig. C.6)) can also be affected by deficiencies in the precipitation forcing (Huffman et al. 2001, 
Contractor et al. 2020), but remaining difficulties in reproducing the timing of TWS dynamics indicate the 
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potential importance of other missing processes such as freeze/thaw dynamics and permafrost (Yu et al. 
2020), and ice jam in river channels (Kim et al. 2009). 

The preceding of simulated TWS compared to GRACE TWS can also slightly be reduced at global scale, 
when wRiver is considered (Fig. 4.5b). However, a preceding of simulated TWS variations is still apparent 
for large areas, especially the Temperate region (Fig. 4.5b), indicating again the relevance of other 
processes than water delay in wRiver, such as irrigation, land cover changes and interactions between 
groundwater and surface water dynamics. 

While including wRiver improves agreement with GRACE TWS over large areas, MEF decreases notably in 
the Semi-arid region when the TRIPy routing scheme is used (Fig. 4.5). The slightly better performance of 
MOD-CaMa in semi-arid regions locally (Fig. 4.5a) as well as for the average seasonal dynamics in the 
Semi-arid region (Fig. 4.5b) indicates the benefits of the variable flow velocity and the accounting of 
flooding in CaMa-Flood, which is relevant in such regions that are characterized by rain- and dry-seasons. 
However, especially the regional average dynamics are not notably different from the other simulations 
by TRIPy and the local improvement remains low. Already MOD does not agree well with GRACE TWS in 
the Semi-arid regions (Fig. 4.5a), where TWS variability is sensitive to parameters controlling ET under 
water limited conditions, which are poorly constrained (Trautmann et al. 2022). In addition to the 
parameter equifinality issues, poor (initial) performance points to model structure uncertainties and 
deficiencies, such as missing processes of evaporation and percolation to groundwater from open water 
surfaces. Besides, the GRUN QR constraint is known for larger uncertainties in arid regions (Ghiggi et al. 
2019) and tends to inconsistencies with the other observation-based data in the Semi-arid region 
(Trautmann et al. 2022). Therefore, comparatively good MEF of modeled and observed QR (Fig. 4.4) does 

not necessarily reflect good representation of QR, which is also underlined by poor representation of 

observed discharge at semi-arid GRDC stations (Fig. C.6). As modeled QR is used to derive modeled wRiver, 
this causes poorer model performance in semi-arid regions when wRiver is added to TWS.  

Overall, a general improvement of TWS when wRiver is added to modeled TWS, except for in semi-arid 
regions, highlights potential room for improvements in our approach of modeling the hydrology in semi-
arid regions. Among others, the improved model performance by using CaMa-Flood in such regions 
indicates the importance of seasonal flooding. 
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Figure 4.5. Comparison of the original GRACE TWS, TWS simulated by MOD and TWS+wRiver simulated by MOD▲. 
a) gridwise Nash Sutcliff efficiency (MEF) between GRACE TWS and MOD (upper left map), and differences of MEF 
obtained by MOD and MEF obtained by MOD-CaMa, MOD-R01, MOD-R05, MOD-R25, respectively; including their 
global and regional distributions (outlier are not plotted). b) mean seasonal dynamics averaged globally and for 
different regions. Listed MEF compares MOD resp. MOD▲ with the original GRACE TWS. 
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4.4 Implications 

We showed that river storage has a relevant impact on seasonal TWS dynamics, in particular in cold and 
humid regions, and accounting for it when simulating TWS improves performance against GRACE TWS 
observations. However, we did not find a systematic impact of either including or excluding river storage 
in TWS for global-scale model calibration. Compared to river storage, restrictions from other 
observational constraints seem more relevant to define model parameters in our model-data integration 
approach. For example, the main discrepancies may be related to missing processes (especially in cold 
and semi-arid regions), and issues of parameter identifiability due to insufficient and partly conflicting 
data constraints. Our findings hold across sensitivity experiments with different routing schemes and 
effective flow velocity parameters that produce a wide range of river storage dynamics. While we do not 
argue that river routing is of relevance at local and smaller regional scales, the impact at larger regional 
to global scales vanishes. Especially when using GRACE TWS for model calibration, the effect of small rivers 
and less dense river networks is likely smoothed out by its 250 km native resolution (Wiese et al. 2018).  

While we cannot exclude that these findings are conditional on the specific model structure, calibration 
approach and data used in this study, we argue that our findings are of general relevance for global 
hydrological modeling studies across a spectrum of GHMs that ignore or include river routing schemes. 

The model used in this study is based on classic hydrologic process representation and despite its simple 
structure achieves good performance that is comparable to more complex state-of-the-art GHMs (Fig. 
C.5). The identified key issues of model-data mismatches in cold and semi-arid regions are also shared 
among GHMs in general (Schellekens et al. 2017) and appear unrelated to river storage variations. The 
identified problem of parameter and thus process identifiability is due to insufficient observational 
constraints, and this problem is expected to be even larger for more complex models with more 
parameters. Given limited computational resources, it seems advisable to save the comparatively large 
costs of river routing schemes when calibrating against GRACE TWS observations in order to address the 
bigger issues more efficiently. Computational costs can be saved significantly, not only by omitting the 
routing itself but also because we can subsample grid cells for calibration instead of demanding a full 
global simulation in each calibration iteration, which would be required when simulating river routing. 

Our findings may be of particular relevance for future global hydrological modeling in the era of Earth 
observations, that support modeling approaches which complement calibration against a single river 
discharge constraint, that is often regulated by complex anthropogenic influences, by multiple large-scale 
constraints from GRACE TWS and other observational data streams on complementary water fluxes and 
storages. 
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Chapter 5: Synthesis 

Synthesis 
 

5.1 Summary of the Main Findings 

This thesis aims to contribute to our understanding of global water storage variations and their 
composition by combining simple modeling approaches with observations of terrestrial water storage 
(TWS) variations by GRACE and complementary Earth-observation based data sets. To this end, a model-
data integration approach, that calibrates simple hydrological models against multiple observational data 
constraints simultaneously, is developed. This approach is used to address three aspects that are relevant 
for understanding and modeling the composition of global TWS variations. In Chapter 2, the focus is on 
the contribution of snow versus liquid water storages to TWS variations in cold regions across spatio-
temporal scales. Chapter 3 analyses the impact of how vegetation is represented within a global 
hydrological model on model performance and simulated TWS composition. Finally, Chapter 4 
investigates the effect of river water storage that is included in GRACE TWS observations on model 
calibration and validation in such a global model-data integration approach.  

In the following, the main findings of this thesis are summarized with respect to the research questions 
framed in the Introduction. First, the specific research questions are answered, and thereafter put in 
context regarding the overarching objective of this thesis. Subsequent sections discuss these findings, 
including the limitations and potentials of the underlying approach, give prospects for future research, 
and finally provide a general conclusion of this thesis. 

5.1.1 What Storage dominates spatio-temporal Patterns of TWS Variations in 

Northern Latitudes? 

Consistent with previous studies, Chapter 2 and Chapter 3 identify the seasonal accumulation and melt 
of snow during winter months as the dominant control on seasonal TWS variations in most places of the 
Northern mid-to-high latitudes. However, while snow dynamics control seasonal TWS variations from 
local (grid-cell) to regionally and globally aggregated scales, liquid water storage variations are found to 
determine the inter-annual TWS variability across all spatial scales. This is caused by larger inter-annual 
anomalies of rain fall than of snow fall. Despite these general findings, Chapter 2 shows that the relative 
contribution of snow to inter-annual TWS variability increases as the spatial domain over which storages 
are aggregated increases. This can be attributed to the stronger spatial coherence of snow dynamics that 
are mainly driven by temperature, that itself features strong spatial coherent patterns. In comparison, 
highly heterogeneous rain fall patterns determine liquid water anomalies, so that positive and negative 
anomalies of these storages are cancelled out by aggregating over larger spatial domains. 

Chapter 3 additionally allows to distinguish liquid water storages of plant-accessible soil moisture, deep 
soil water, and slowly varying, delayed water storages. These analyses reveal that, among liquid water 
storages, the deep soil water and the slowly varying water pools are most influential. Although the relative 
contribution of river water storage to TWS variations is quantified, Chapter 4 further highlights the 
importance of water delay in river channels and the additional water input provided from upstream areas 
in the large catchments for reproducing (seasonal) TWS variations in cold Northern regions. 

Overall, different chapters of this thesis highlight that the determinants of TWS variations are scale-
dependent, in Northern latitudes as well as globally. Accordingly, the driving mechanisms of TWS 
variability cannot simply be transferred from one scale to another, and especially pattern from large-scale 
integrated signals should not be associated with locally operating processes due to the confounding 
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impact by spatial covariations of climate variables. This fact is of particular relevance for assessing the 
short- and long-term variability of water resources. 

5.1.2 What’s the Impact of spatio-temporal Vegetation Parameters on Model 

Performance and global TWS Variations? 

To analyze the effect of varying vegetation characteristics on model performance and TWS partitioning, 
different methods to parametrize the maximum plant available soil water storage, and the processes of 
evapotranspiration and runoff generation are implemented within the developed model-data integration 
approach. Exemplary, Chapter 3 compares two model variants with the same underlying structure: a 
model variant B, in which globally uniform parameter values are calibrated, and a model variant VEG, in 
which scalars that amplify or attenuate the pattern of continuous vegetation information are constrained 
in the model-data integration approach. Besides, an additional variant follows the ‘traditional’ approach 
of representing vegetation by distinguishing between different classes of plant functional types (PFT) and 
calibrating different parameter values for each class (Appendix B).  

Despite their alternative ways to represent vegetation, all model variants perform reasonably well 
regarding major hydrological variables after model calibration. However, including varying vegetation 
data improves model performance at regional and local scale. Largest improvements were found in tropics 
(evapotranspiration), where dense vegetation cover and high activity throughout the year certainly 
require different parametrization than in other regions, and in supply-limited regions (TWS, 
evapotranspiration), that as well differ from humid regions due to the adaption of vegetation to regular 
dry conditions. Besides, spatial and temporal pattern of the Enhanced Vegetation Index, that are included 
in the VEG model variant, implicitly represent effects of varying vegetation activity due to irrigation, and 
thus allow to indirectly account for processes not directly incorporated in the simplified model structure, 
leading to improved simulation of evapotranspiration and water storage changes. Additionally, including 
spatio-temporal varying vegetation data leads to more reasonable parameter values, while 
simultaneously reducing parameter equifinality. This suggests a more realistic representation of water 
fluxes and storages when continuous fields of vegetation data are used for model parametrization. 
Therefore, defining spatio-temporal varying vegetation parameters based on continuous vegetation 
characteristics is preferable – not only compared to globally uniform parameter values, but moreover also 
compared to the traditional PFT approach, because the larger number of parameters that results from 
defining parameter values for each PFT classes is not in relation to the improvement in model 
performance, but rather increases parameter uncertainty due to over-parametrization. 

While all model variants maintain the same overall response of total hydrological fluxes and storage 
variations, the way how vegetation is represented in the model changes the spatio-temporal dynamic of 
individual hydrological processes and storage components considerably, and substantial differences 
between PFT, B and VEG in terms of TWS composition underline that the representation of vegetation is 
critical for interpreting and partitioning TWS. Along with Chapter 2, all model variants identify snow as 
dominant factor for seasonal TWS variations – locally in Northern latitudes, as well as globally and in most 
regions. However, including spatio-temporal varying vegetation parameters changes the contribution of 
different liquid water storage components to TWS drastically: while with globally uniform parameter 
values one storage component appears to be sufficient and all TWS variations other than by snow are 
caused by soil moisture, the deep, not directly plant-accessible water storages, and delayed water 
storages become prominent, when including varying vegetation characteristics. Thus, in particular the 
representation of water-limited evapotranspiration by the interplay of its sensitivity to soil moisture, 
maximum plant-accessible water storage capacity and interactions with deep soil moisture and 
groundwater appears to play a critical role in TWS partitioning. 

Beside the improved understanding of TWS composition, Chapter 3 further highlights the relevance of 
slowly varying storages for reproducing runoff dynamics in cold regions, by including spatially varying soil 
water capacities as defined by observation-based data and replacing the runoff estimate for Europe with 
a global runoff estimate in model calibration.  
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By that means, spatio-temporal varying vegetation parameters are undoubtedly relevant for global and 
regional hydrological simulations. Moreover, the representation of vegetation-related processes is found 
to be a key factor that controls the partitioning of TWS among different water storage components. 
Hence, Chapter 3 emphasizes the need for further studies and improvements of GHMs with respect to 
the role of vegetation. 

5.1.3  What’s the Effect of River Water Storage included in the GRACE TWS Estimates 

on Calibration and Validation of a simple Global Hydrological Model? 

To assess the effect of river water storage on model calibration in Chapter 4, a widely used and a simple 
routing scheme are forced with observation-based runoff estimates and the derived river water storages 
then removed from GRACE TWS variations. Either GRACE TWS or TWS estimates without river storage are 
then used to constrain the VEG model (introduced in Chapter 3) in the developed multi-criteria calibration 
approach. While removing river water storage considerably changes the TWS constraint regionally and 
globally, there are no significant implications of either including or excluding river storage on calibrated 
model parameters, and thus neither on resulting model simulations. Moreover, the constraints on other 
water balance components by complementary observational data (i.e., evapotranspiration and runoff) 
are found to be more influential on defining model parameters. Therefore, the effect of river water 
storage included in GRACE TWS is found to be negligible when using multiple observational data sets for 
global model calibration, and it seems not necessary to invest in computational expensive river routing 
during a model calibration that requires thousands of model runs. This additionally holds the benefit that 
it’s valid to use a subset of spatially independent grid cells (i.e., not necessarily connected by a river 
network) for model calibration. Instead of investing computational resources in river routing, Chapter 4 
identifies the determinability of certain model parameters and associated processes of greater relevance 
for similar hydrological studies. 

However, in contrast to model calibration, Chapter 4 shows a clear effect of including river storage when 
hydrological simulations are evaluated against GRACE TWS. Adding river storage to simulated TWS after 
model calibration improves model performance regarding GRACE TWS regionally and globally, especially 
when river storage is derived by either a more sophisticated routing scheme or a simple routing scheme 
with a medium effective flow velocity of rivers. Main regions of improvement are the tropics and Northern 
low- and wetlands, where rivers accumulate much water over large catchments. These findings highlight 
once more the role of river and surface water storages in tropical regions (see Chapter 3, Getirana et al. 
2017), as well as the importance of water delay in river channels and of the additional water input from 
upstream areas in the large catchments in cold regions (see Chapter 2). Accordingly, Chapter 4 stresses 
the relevance of explicitly simulating river water storage when evaluating the performance of large-scale 
hydrological models against GRACE TWS. 

5.1.4  How can Earth-observation based Data and simple conceptual hydrological   

Modeling Approaches improve our Understanding of TWS Variability? 

As underlying framework for all chapters of this thesis I developed a model-data integration procedure, 
which includes low-complexity models that are based on a combination of standard hydrologic model 
formulations, and a sophisticated multi-criteria calibration approach that constrains model parameters 
against several observed variables simultaneously, while considering each data streams strengths and 
uncertainties. The effectiveness of this model-data integration approach is first proven in Chapter 2. 
Despite the model’s low complexity, and the calibration of a uniform parameter set for a random spatial 
subset of grid-cells, this approach improved model performance over the entire mid-to-high Northern 
latitudes regarding several observed variables. Likewise, it achieved equally good or better performance 
and similar spatial pattern regarding TWS and SWE compared with the eartH2Observe ensemble of more 
complex state-of-the-art hydrological models (Schellekens et al. 2017). 

In Chapter 3, the approach is extended from the Northern latitudes to the global land area under near-
natural conditions, and the additional value of using Earth-observation based data to represent vegetation 
characteristics is shown. On the one hand, the multi-criteria calibration approach enables different model 
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variants to reach relatively good performance despite major differences in model parametrization. At the 
same time, including continuous fields of observation-based data to define spatio-temporal pattern of 
model parameters reduces parameter equifinality and uncertainty while keeping the number of 
calibration parameters low, and making a categorical classification of the land surface redundant. Hence, 
it is found to be preferable to the parametrization with globally uniform static values or with values for 
distinct landcover classifications. On the other hand, additionally including the spatially continuous data 
on vegetation characteristics allows to depict the interaction of vegetation with deep soil and 
groundwater during dry down periods – a process that wasn’t accessible without applying the 
observational data and which changes the contribution of different water storages to overall TWS 
variability. By that means, integrating this observation-based data revealed that the representation of 
vegetation-related processes is a key factor for controlling simulated TWS partitioning, and allows to 
differentiate between (sub-surface) water storages that are unidentifiable by observational data alone.  

Already by using a simple approach for river routing in Chapter 4 TWS simulations could further be 
improved regionally, and thus suggests a considerable contribution of river water storage to TWS 
variability at local and regional scale. However, at the same time, Chapter 4 shows that restrictions from 
other constraints make the implementation of a computational expensive routing scheme in – at least – 
model calibration redundant, as the relative effect of river water storage is found to be weaker than the 
confinement by the other observations. 

Overall, throughout this thesis, the value of large-scale observation-based data to improve simulations of 
TWS variations and their partitioning in hydrological models using a multi-criteria calibration approach 
has been proven. Considering multiple complementary data sets on the one hand allows to infer to 
processes that are not explicitly represented in the model and reduce parameter uncertainty and 
equifinality. On the other hand, the multi-criteria calibration approach helps to overcome the data’s 
individual shortcomings, and prevent overfitting of the model to a single, uncertain data set. By that, this 
concept helps to overcome data inconsistencies, which are a considerable issue when combining multiple 
data sets from various sources. All this underlines the potential of simple hydrological models that are 
tied to observational data streams as powerful tools to diagnose and understand large-scale water cycle 
patterns. In particular, the used model-data integration approach improves confidence in simulated TWS 
variability and partitioning, emphasizes the scale-dependencies of TWS determinants, highlights the 
representation of vegetation as a key factor that controls TWS partitioning, and shows the important role 
of the interaction of sub-surfaces water storages, as well as river and surface water storages for TWS 
dynamics. 

5.2 Discussion and Prospects 

As any research that applies models and data, the presented results and drawn implications are subject 
to certain limitations regarding their validity and transferability to other research frameworks. The 
following discusses such limitations that arise from the used model-data integration approach. The 
potential and restrictions of the presented work are elaborated in more detail by means of two challenges 
that emerged in several chapters of this thesis. Finally, the last section summarizes potential solutions to 
counteract the discussed limitations and shows opportunities for future research. 

5.2.1 Limitations and Potentials of the Model-Data-Integration Approach 

Limitations of the model-data integration approach emerge from several factors, such as the used data 
sets, the underlying model structures and their parametrization, as well as the implemented calibration 
approach. However, some of these limitations offer specific opportunities of such a model-data 
integration concept as opposed to traditional global hydrologic modeling. 

Data 

Since the implemented approach is by definition tied to observational data, its merits rise and fall with 
the used data sets. While the strengths and uncertainties of forcing and calibration data depend on the 
specific variable and product used, the common limitation is the limited data availability. Large-scale 
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observational data are only available for recent decades, so that the applicability of such a model-data 
integration approach is restricted to this period. Additionally, the short temporal coverage restrains the 
delineation of trends, and observations cannot monitor processes that occur over long time periods, such 
as the long-term changes in surface and groundwater storages and the melting of glaciers and permafrost. 
Therefore, the approach is unsuitable to resolve such long-term processes, and its advantages lie in 
diagnosing and understanding processes that are relevant on shorter time scales for which observational 
data are available. When combining data sets from various sources that are based on different methods 
and assumptions, impacts of possible data inconsistencies need to be considered. An in-depth analysis of 
data inconsistencies, as provided in Appendix B, allows to emphasize certain data sets and re-evaluate 
desirable and less desirable model behavior. In this context, considering multiple data sets on 
complementary variables simultaneously helps to identify inconsistent behavior of one and to mitigate its 
effect on model calibration and resulting simulations, and thus represents one major advantage of the 
used model-data integration approach. 

Model Structure 

Since one of the main objectives of this thesis is to investigate the potential of combining Earth-
observation based data with simple conceptual modeling approaches, the implemented models have a 
low complexity and parsimonious process representation. The focus is on major hydrological processes 
and storages that can (in-) directly be constrained by data, in order to increase interpretability and 
confidence in model simulations. Hence, the used models cannot directly be compared to state-of-the-
art large-scale hydrological models, that include a profound process-representation, in terms of their 
applicability and level of detail. Among potentially relevant, yet not represented processes, are such 
related to permafrost, permanent ice and snow cover, and human alterations of the water cycle, such as 
irrigation, groundwater withdraw and the creation of water reservoirs. To minimize effects of such 
processes on the results, certain grid-cells are excluded from all analyses. Nevertheless, despite these 
precautions, not all effects resulting from associated processes can be excluded completely, and, thus, 
potentially influence model simulations, either in terms of decreased performance or by being implicitly 
included in simulated fluxes and storages after model calibration.  

Model Parametrization 

Next to deficiencies in model structure, certain limitations are imposed by model parametrization. 
Parameters in conceptual models, such as the models used in this thesis, are usually not physically 
measurable (and such measurements in most cases would neither be available at global scale), and thus 
require adjustment by model calibration. Since in the introduced multi-criteria calibration approach only 
globally uniform parameter sets are calibrated, these parameters have to balance the spatial and 
temporal heterogeneity across multiple physio-geographic and climatic conditions on the one hand, and 
compensate for missing processes on the other hand in order to achieve the best possible fit with 
observational data. In Chapter 2 no spatial or temporal variation of calibrated parameter values is 
included, yet the focus is on Northern mid-to-high latitudes, i.e., regions with similar main driving 
hydrological mechanisms. When extending to the global scale in Chapter 3 and Chapter 4, spatial and 
temporal patterns from data are used for model parametrization, and a global constant scalar for this 
pattern is calibrated, what keeps the computational demand of the calibration process relatively low. By 
that, the parametrization is still tied to the pattern of the integrated data, but a clear improvement in 
model performance and decrease in parameter uncertainty is achieved. While this suggests that including 
continuous observational pattern improves model parametrization, remaining deficits due to parameter 
equifinality are identified in Chapter 3 and Chapter 4. Such effects of deficient observational constraints 
on parameter and process identifiability are presumably even larger for more complex models, that 
include more processes, wherein this very complexity impedes the attribution of such deficiencies. 

Multi-criteria Calibration Approach 

Compensatory effects are not only introduced in model parametrization by applying and calibrating 
globally uniform parameter sets, but also emerge from optimizing one total cost value in the multi-criteria 
calibration approach. Doing so, for instance, less weight is put on fluxes and grid-cells with low variability, 
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and relatively high costs regarding one constrained can be balanced out by improving the costs regarding 
another constraint. This is partly counteracted by the choice of efficiency metric that defines the cost 
component, but a more sophisticated analysis of the Pareto front to evaluate the trade-offs between costs 
for different constraints, and, based on such analyses, a more sophisticated weighting of individual cost 
components has the potential to decrease this issue. Next to that, the presented approach calibrates 
parameter values for a spatial subset of grid-cells, that by their hydro-climatic and physio-geographic 
characteristics, substantially influences the calibrated parameter values and their applicability for other 
regions (Chapter 4, Appendix C). In order to ensure that the subsets represent the global distribution of 
major hydrological fluxes and storage variations, the calibration grid-cells are selected based on a 
stratified random sampling among Koeppen-Geiger climate zones. While this is an appropriate method 
for a global analysis such as in this thesis, a different sampling of calibration grid-cells might be appropriate 
if the focus is on other purposes. 

Despite these points that must be taken into account, a general advantage of such a multi-criteria 
calibration approach is, that it allows to mitigate the impact of uncertainty and inconsistency of and 
between data sets, to overcome limited model structures, and solidify the confidence (at least) in the 
calibrated variables. In this regard, the calibrated models presented in this thesis achieve equally good or 
better performance compared to more complex hydrological models, despite their simple process 
representation and the calibration of a globally uniform parameter set. 

5.2.2 Challenge 1: Preceding of observed seasonal TWS Variations in cold Regions 

In all chapters of this thesis, model simulations precede the peak in seasonal TWS variations as compared 
to GRACE by appr. 1 month, especially in cold and temperate regions. A comparable (spatial) pattern exists 
in many other models and modeling studies (Döll et al. 2014, Schellekens et al. 2017). In general, this 
mismatch is attributed to an inadequate size and number of water storages (Kim et al. 2009), and as 
largest differences exist in cold regions, Schellekens et al. 2017 proposed the implementation of snow 
associated processes. In this context, also the temporary storage of meltwater during spring in rivers and 
surface water bodies, which occurs contiguously over large areas in mid-to-high latitudes and delays the 
overall storage decay, is mentioned (Döll et al. 2014, Schellekens et al. 2017, Kim et al. 2009, Schmidt et 
al. 2008b). To increases the confidence in modelled snow processes, the model is constrained against 
observations of snow water equivalent in Chapter 2. However, in the resulting simulations the TWS phase 
lag is still apparent, and, similarly, no relationship between model performance and model complexity is 
found. Based on this, other dynamics appear to be more important, even in snow-affected regions. As 
such, Chapter 4 applies river routing and considers water delay in river storages. In fact, this reduces the 
discrepancy between observed and simulated TWS in cold regions, highlighting the importance of the 
delay of snow melt in rivers, and of additional meltwater input from upstream grid-cells for TWS dynamics. 
However, the mismatch is not completely resolved, and still evident in temperate regions. Therefore, even 
other processes and, in particular, their interaction are relevant. In cold regions, such processes may 
include the effects of permafrost and freeze/thaw dynamics (Yu et al. 2020), as well as ice jam in river 
channels that increases surface water storages temporarily (Kim et al. 2009). Besides, land cover changes, 
interactions between groundwater and surface water storages, as well as human alterations, such as 
irrigation, potentially effect seasonal TWS variations. While a first comparison with irrigation area did not 
find any relationship, further data is needed to attribute the preceding of seasonal TWS. As such, a 
representation of the effects from permafrost would be desirable. Besides, data of surface water storages, 
such as from the forthcoming SWOT mission, or by daily GRACE TWS estimates (Eicker et al. 2020), might 
help to detangle the short-term imprints of slow and fast water storages that are lumped in the monthly 
GRACE resolution, and by that identify possible lacks of process representation. 

5.2.3 Challenge 2: TWS Variability in semi-arid Regions 

Semi-arid regions are especially prone to droughts and are among the regions that are expected to 
experience large changes due to climate change. Therefore, it is essential to properly assess water 
resources and their variations in these regions. However, several chapters of this thesis show difficulties 
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to reproduce hydrological processes especially in semi-arid regions. While including river routing in 
Chapter 4 improved or didn’t affect model performance in most regions, the representation of TWS in 
semi-arid regions decreased when the simple routing scheme was used, and a trade-off between 
evapotranspiration and runoff in model performance is evident at several occasions throughout this 
thesis. These difficulties to model hydrology in semi-arid regions can partly be related to the 
aforementioned limitations of the here presented model-data integration approach. However, at the 
same time, the used approach helps to identify the origins of such deficits. On the one hand, the overall 
TWS variability and the signal-to-noise ratio is low in semi-arid regions (Scanlon et al. 2016), so that such 
grid-cells receive little weight in the calibration approach, not only regarding the TWS cost, but also 
regarding the total cost value, for which the TWS cost is the largest contributor. In this context, the 
compensatory effects that result from optimizing one global cost value, come into play and prevent 
appropriate adaption to the unique characteristics of semi-arid regions. Improved parametrization and a 
more sophisticated calibration approach would be beneficial at this point. Issues of parameter equifinality 
are identified regarding the definition of soil water, root zone and slowly varying water storages (Chapter 
3) as well as regarding parameters that define their depletion by either evapotranspiration or runoff, 
especially under water limited conditions (Chapter 3, Chapter 4). The need for better parametrization of 
the deeper sub-surface on large to continental scales has been postulated before (Bierkens 2015, Clark et 
al. 2017), yet so far observational data is missing. To better constrain the outflow by either 
evapotranspiration or baseflow, and by that the partitioning among sub-surface and slowly varying water 
storages, it is essential to increase parameter identifiability by adding constraints. In this context, spatial 
pattern of decay parameter to better distinguish between baseflow and transpiration are potentially 
valuable, such as a baseflow index to define slow runoff (e.g., Beck et al. 2015) or metrics to define the 
decay by evapotranspiration (e.g., Küçük et al. 2022). Next to parameter equifinality per se, Chapter 3 
resp. Appendix B identifies data inconsistencies in semi-arid regions, that reveal themselves in form of 
tentatively negative water balance, indicating either an underestimation by the precipitation data set, or 
an overestimation of either evapotranspiration and runoff. While precipitation underestimation is a 
common issue of remote sensing-based data products (Huffman et al. 2000), the used runoff product has 
larger uncertainties in semi-arid regions and is generated with climatic drivers only while disregarding 
spatio-temporal variations in vegetation (Ghiggi et al. 2019). Since this very variability is shown to be 
essential for reproducing hydrological dynamics in semi-arid regions, less weight should be given to the 
model performance regarding the runoff data, and further complementary data that refines 
evapotranspiration and runoff processes need to be included. In this context, already using EVI data for 
defining vegetation activity in Chapter 3, has a positive impact on model performance regarding TWS and 
evapotranspiration in semi-arid regions, because it reflects the access of vegetation to water from sub-
surface storages and implicitly includes irrigation by (remaining) high vegetation activity also during dry 
down events. By that, the used model-data integration approach not only helps to identify potential issues 
of data and model structure, but moreover allows to implicitly include processes not covered by the model 
structure, and to mitigate the effect of inconsistent behavior of one data stream.  

5.2.4 Prospects for Future Research 

Based on the presented findings and their limitations, several ideas and suggestions for future research 
emerge – some concerning specific questions and methods, others of a more general nature: 

 Assessing the contribution of river storage to TWS variability across scales 

Chapter 4 investigates the effect of river water storage on model calibration and validation, and shows its 
importance for model validation against GRACE TWS in several regions. However, only the relevance for 
improving model performance regarding mean seasonal dynamics is analyzed. Therefore, the logical 
implication is to directly assess the relative contribution of river water storage to TWS variability 
compared to other storage components, also considering different time-scales. In this context, the 
application of more sophisticated routing schemes, that take into account spatial (and temporal) 
variations of effective river flow velocity, are preferable. Such estimates can either be calculated as part 
of the routing scheme itself, e.g., following the Manning-Strickler equation or based on a slope-dependent 
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approach (e.g., Sausen et al. 1994), or, more preferably in order to keep computational costs low, by 
including (pre-calculated) spatio-(temporal) variable flow velocity estimates as input data.  

 Assessing trends and future changes of TWS composition 

While this thesis focused on the seasonal and inter-annual variations of TWS variability and their 
composition from 2000–2015, it’s particular interesting to analyze how these variations and the 
contributions of different water storages will evolve in future. This is even more pressing in the context 
of current climate and environmental changes, that will largely alter hydrological processes and water 
resources. A relatively easy outset to start such investigations would be to force calibrated models of this 
thesis with forcing data from the CMIP-6 project (Eyring et al. 2016). However, as discussed in previous 
sections, the interpretability of such future projections of TWS variability based on the here presented 
approach should be taken with caution, because it is strongly tied to the observational data and thus does 
not include long-term processes and trends that become relevant on longer time scales. 

 Tackling data inconsistencies and including further constraints 

Throughout this thesis the need for alternative, and, moreover, additional constraints in order to improve 
process and parameter identifiability, and to mitigate the effect of possible data inconsistencies, has been 
stressed several times. Especially data to discriminate between sub-surface water storages (plant-
accessible soil moisture in the root zone versus deep soil water and groundwater) and improve the 
differentiation between short- and long-term water storages that are lumped in the monthly GRACE TWS 
estimates, are needed. Thus, particular interest lies on surface water and river water observations from 
the forthcoming SWOT mission, that will help to constrain this important water storage. Estimates of daily 
GRACE TWS variations might as well be beneficial to improve the decomposition between fast and slow 
water storages (Eicker et al. 2020). Besides, incorporating spatial pattern of physio-geographic features 
and indices (such as the Topographic Wetness Index, and soil properties), as well as information on decay 
parameters – either by transpiration (e.g., soil moisture decay rate by vegetation, Küçük et al. 2022), or 
baseflow (e.g., baseflow index and other streamflow related indices, Beck et al. 2015) are promising 
opportunities to improve model performance from a data-driven point of view. In this context, remote 
sensing data also holds potential beyond their use as an observational constraint per-se and can provide 
information on identifying and formulating indices and functional relationships across several spatial and 
temporal scales, which should be addressed in future efforts. 

 Coupling the water and carbon cycle 

Chapter 3 emphasizes the importance of vegetation and the potential of including related data to improve 
model performance and hydrologic process identifiability. In this context, a promising opportunity is the 
synergetic simulation and calibration of the coupled water-carbon cycle, as additional data and 
constraints of vegetation activity and ecosystem responses are available from the carbon-cycle side, which 
represent potential complementary constraints for hydrological processes as well.  

5.3 Conclusion  

This thesis introduced a model-data integration approach that combines GRACE TWS observations and 
data sets of complementary large-scale observations with simple hydrologic modeling concepts. The 
approach is used to contribute to the understanding of TWS variability and underlying processes. In 
particular, this thesis highlights the scale-dependencies of TWS determinants, the key role of vegetation 
for TWS partitioning among liquid water storages, and the relevance of river and surface water storages 
for simulating TWS dynamics. While the presented approach can be understood as complementary to 
global hydrological models, that include a profound process-representation, this thesis proofed its value 
for diagnostic purposes to understand hydrological processes and to identify exigence and insignificance 
of hydrological processes for (future) large-scale modeling studies. Besides, the potential of combining 
multiple data sets to overcome data inconsistencies, infer to un-mapped processes and improve model 
simulations has been demonstrated. These findings are of general relevance for model development and 
calibration in future global hydrological studies and encourage to take advantage of the increasing 
availability of complementary observational data sets.
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A.1 Detailed Model Description and Formulas 

The model consists of three components: (1) a snow component that simulates accumulation and ablation 
of snow, (2) a soil water component to calculate soil moisture, evapotranspiration and land runoff, and 
(3) a runoff component that derives total runoff. All modelled fluxes and states correspond to the spatio-
temporal resolution of the forcing data, which in this study is a 1°x1° latitude/longitude grid and daily time 
steps. 

The following describes all implemented processes and equations in detail. 

A1.1 Snow Component 

Snow storage is implemented as a simple accumulation and melt approach, which further is extended by 
consideration of sublimation and fractional snow cover. The snow storage as described by the snow water 
equivalent SWE [mm] at time t [d] is calculated as mass balance: 

 

SWEt = SWEt−1 + SFt − ETSubt − Mt (A.1) 

 

where SWEt-1 [mm] is the snow water equivalent of the preceding time step which is increased by snowfall 

SFt [mm d-1] and reduced by the amount of sublimation ETSubt [mm d-1] and snow melt Mt [mm d-1].  

All precipitation P [mm d-1] is assumed to fall as snow at temperatures below 0 °C. Since precipitation 
estimates, especially during the cold season, are known for biases due to substantial under-catch (Rudolf 
and Rubel 2005, Seo et al. 2010), P is scaled using the parameter psf to derive SF at time t: 

 

SFt = psf · Pt    | T < 0°C (A.2) 

 

In order to incorporate sub-grid variability, the fraction of the grid cell covered by snow is computed 
following the H-TESSEL approach (Balsamo et al. 2009, ECMWF 2014): 

 

FSCt = min (
SWEt−1

snc
, 1) 

(A.3) 

 

with fractional snow cover FSC [-] at time t being linearly dependent on SWEt-1 of the preceding time step 

and the parameter snc [mm] being the minimum SWE that ensures complete snow coverage of the grid 

cell. 

Further, snow melt M and sublimation ETSub are assumed to only emerge from snow covered area by 
using FSC as scaling factor in the calculation of these fluxes. 

 

Snow melt M occurs when snow storage is present and temperature exceeds melting temperature. Based 
on the restricted degree-day radiation balance approach described by Kustas et al. (1994), melt M [mm 

d-1] at time t depends on temperature Tt [°C] and net radiation Rnt [MJ m-2 d-1]: 

 

Mt = (mt · Tt + mr  · Rnt)  · FSCt     | T > 0°C (A.4) 

 

where the degree-day factor mt [mm °C-1] and the radiation factor mr [mm MJ-1] control the melt rate.  
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The derivation of snow sublimation ETSub is adapted from the approach implemented in the GLEAM 
model. This technique is based on the Priestley and Taylor (1972) formula, which calculates evaporation 

rate as latent heat flux LE [MJ m-2 d-1] based on the available energy Rn [MJ m-2 d-1], ground heat flux G 

[MJ m-2 d-1]) and a dimensionless coefficient sna that parameterizes evaporation-resistance. LE at time t 
is derived by  

 

LEt = (sna ·  
Δsnt

Δsnt + γsnt
 · (Rnt − G)) · FSCt 

(A.5) 

 

with Δsnt being the slope of the temperature/saturated vapor pressure curve [kPa K-1] and γsnt 

representing the psychrometric constant [kPa K-1]. Both, Δsn and γsn, are modified for snow covered 
areas according to Murphy and Koop (2005). 

They calculate Δsnt as a function of Tt [K] (Eq. A.6), and γsnt as a function of atmospheric pressure Pair 

[kPa], specific heat of air at constant pressure cp [MJ kg-1 K-1], the ratio molecular weight of water 

vapor/dry air MW and latent heat of sublimation of ice λsn [MJ kg-1] (Eq. A.6). 

 

Δsnt =  (
5723.265

Tt
2 +

3.53069

Tt − 0,00728332
 ) · e

9.550426 − 
5723.265

Tt
 + 3.53068·ln(Tt) − 0,00728332 ·Tt  

(A.6) 

 

γsnt =  
Pair · cp

MA ·  λsnt
 

(A.7) 

 

In Eq. A.7, Pair is assumed to be time- and space-invariant with a uniform value of 101.3 kPa and cp = 0.001 

MJ kg-1 K-1. MA is a constant of 0.622 and λsn is defined by Murphy and Koop (2005) as a function of Tt 

[K]. With a molecular mass of water of 18.01528 g mol-1, λsn can be calculated as: 

 

λsnt = (46782.5 + 35.8925 · Tt −  0.07414 ·  Tt
2 +  541.5 ·  e

−(
Tt

123.75
)

2

) ·  
0.001

18.01528
 

 (A.8) 

 

Since snow-covered ecosystems can be assumed to be unstressed due to the sufficient availability of 

water, LE corresponds to actual sublimation ETSub (Miralles et al. 2011). And ETSub [mm d-1] can be 
converted from LE through division by λsn: 

 

ETSubt =
LEt

λsnt
 

(A.9) 

 

Altogether, the model calculates ETSub as a function of Tt, Rnt, Pair, G, sna and FSCt. While Tt, Rnt and 

FSCt are variable in time and space and depend on input data, the approach postulates constant Pair = 

101.3 kPa and G = 0 MJ m-2 d-1. 

A1.2 Soil Component 

The central part of the model is the soil water component, which distributes input from rain fall and snow 

melt to soil water storage SM [mm], actual evapotranspiration ET [mm d-1] and land runoff Qs [mm d-1].  
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Like snow, the calculation of soil water storage as represented by soil moisture SM [mm] at time t follows 
the mass balance 

 

SMt = SMt−1 + Int − ETt (A.10) 

 

with SMt-1 [mm] being the soil moisture of the preceding time step which is increased by infiltration Int 

[mm d-1] and reduced by actual evapotranspiration ETt [mm d-1]. 

 

On the one hand, the amount of infiltration In [mm d-1] depends on the possible inflow IW [mm d-1], 
which is the sum of rain fall RF (precipitation P if T ≥ 0°C) and snow melt M at time t: 

 

IWt = RFt + Mt (A.11) 

 

On the other hand, a part of IW may not infiltrate due to current soil moisture conditions but contribute 

to (direct) land runoff Qs [mm d-1]. To estimate the partitioning of IW into SM and Qs, Qs at time t is 
calculated after Bergström (1995) as: 

 

Qst = IWt  ·  (
SMt−1

s_max
)

sexp 

 
(A.12) 

 

In Eq. A.12 Qst depends on the inflow IWt, the runoff coefficient sexp and the actual soil moisture SMt-1 

compared to its maximum water holding capacity smax. Thus, no land runoff occurs if the soil water 
storage is empty and all IW is allocated to land runoff if the soil is completely saturated. Between these 
points, sexp determines the amount of inflow that converts to Qs. While low values of sexp lead to a high 

amount of Qs even if the soil moisture deficit is low (e.g. low SM/smax ratio), higher values of sexp increase 
the proportion of IW that infiltrates.  

Infiltration In at time t is derived in accordance to the law of conservation of mass as: 

 

Int = IWt −  Qst (A.13) 

 

Potential evapotranspiration potET [mm d-1] at time t is derived from net radiation Rn [MJ m-2 d-1] and 
air temperature T [°C] according to the Priestley-Taylor formula (Priestley and Taylor 1972), where eta is 
the alpha coefficient: 

 

potETt = eta  · (
Δt

Δt + γt
 ·  

 Rnt

λt
) 

(A.14) 

 

where Δt is the slope of the temperature/saturated vapor pressure curve [kPa K-1], λt the latent heat of 

vaporization [MJ kg-1] and γt the psychrometric constant [kPa K-1].  

The slope of the saturated vapor pressure curve Δt, as well as the latent heat of vaporization λt are 
functions of T at time t:  
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Δt =  
4098 · 0.611 ·  e

17.27 · Tt
Tt+237.3

(Tt  ·  237.3)2
 

(A.15) 

 

λt =  2.501 − (2.361 · 10−3) · Tt (A.16) 

 

Analogue to Eq. A.7, γt depends on a constant atmospheric pressure Pair of 101.3 kPa, the specific heat 

of air at constant pressure cp [MJ kg-1 K-1], the constant MA and the latent heat of vaporization λt: 

 

γt =  
Pair · cp

MA ·  λt
 

(A.17 

 

In order to avoid complete depletion of the soil water storage and to account for cohesion of water in the 
soil matrix, only a fraction of soil moisture after infiltration is assumed to be available for 
evapotranspiration. We express the sensitivity of evapotranspiration to available water similar to Teuling 
et al. (2006) by the parameter etsup. Thus, etsup determines the portion of the sum of infiltration Int [mm 

d-1] and soil moisture SMt-1 [mm], that represents evapotranspiration supply supET [mm d-1] at time t: 

 

supETt = etsup   · (SMt−1 + Int) (A.18) 

 

Finally, actual evapotranspiration ET [mm d-1] at time t is derived by comparing potETt [mm d-1] and 

supETt [mm d-1]: 

 

actETt = min (potETt, supETt) (A.19) 

S1.3 Runoff Component 

As total runoff comprises fast direct runoff as well as delayed interflow and base flow, it’s appropriate to 

consider retardation (Orth et al. 2013). Accordingly, total runoff Q [mm d-1] at time t results from the 

accumulated effects of all land runoff Qs [mm d-1] generated during the preceding 60 time steps: 

 

Qt = ∑ Qst−i  · [e
−

i
q_t − e

−
i+1
qt ]

60

i=0

 
(A.20) 

 

 

where the recession time scale qt [d] determines how quickly land runoff is transformed into streamflow. 

In theory, an infinite number of time steps would be necessary to ensure that all generated Qs is 
transformed into Q. However, the arbitrary number of 60 days allows accounting for > 99 % of Qs (Orth 
et al. 2013), as long as qt is below 13 days. To allow longer recession times when calibrating the model 
and still account for > 99 % of Qs within the 60 days-window, the delay component of Eq. A.20 is scaled 
with its sum. 

Introducing temporal delay leads to retention of a portion of Qs, and thus to an additional, temporal 

storage of retained water RW [mm]. The change of retained water storage ΔRW [mm d-1] at time t can be 
inferred using the water balance:  

delay component 
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0 =  Pt − actETt − Qt +  ΔTWSt (A.21) 

 

with the change of total water storage ΔTWS [mm d-1] resulting from 

 

ΔTWS =  (SWEt −  SWEt−1) + (SMt − SMt−1) + Wt (A.22) 

 

so that solving Eq. A.21 and Eq. A.22  

 

ΔRWt = actETt +  Qt − Pt − (SWEt −  SWEt−1) −  (SMt − SMt−1) (A.23) 

 

The amount of retained water RW [mm] at time t then results from 

 

RWt = RWt−1 + ΔRWt (A.24) 

 

Finally, the integrated terrestrial water storage TWS [mm] at time t represents the sum of all storage 
components: 

 

TWSt =  SWEt + SMt + RWt (A.25) 

 

A.2 Uncertainty of the observational Constraints 

Maps of the temporal average uncertainties of observed TWS, ET and Q that are used for model 

calibration are shown in Fig. A.1. For observed SWE a constant average uncertainty of 35 mm is applied. 

 

Figure A.1. Mean uncertainty of monthly TWSobs [mm], and of the mean seasonal cycle of ETobs [mm d-1] and Qobs 

[mm d-1] used for model calibration. Values are truncated to 50 mm resp. 10 mm. 
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A.3 Cost Terms 

Table A.1 shows the cost terms achieved with the default and the optimized parameter set. Compared to 
the default parameter values, total costs clearly improve after calibration. The shown optimized values 
represent a weighted Nash-Sutcliff efficiency of 0.37 (TWS), 0.44 (SWE), 0.57 (Q) and 0.80 (ET) (weighted 
Nash-Sutcliff = 1 – cost value). 

 

Table A.1. Cost values obtained with the default and the optimized model parameters using Eq. 2.1. 

parameter values TWS SWE ET Q total 

default 0.84 0.54 0.15 1.00 2.55 

optimized 0.63 0.56 0.20 0.43 1.82 

 

A.4 Model Performance regarding Evapotranspiration and Runoff 

 

 

Figure A.2. Spatially averaged mean seasonal cycle (MSC) of the period 2002–2012 and inter-annual variability (IAV, 
difference between monthly values and the MSC) for ETmod and FLUXCOM based ETobs. 

 

 

Figure A.3. Spatially averaged mean seasonal cycle (MSC) of the period 2002–2012 and inter-annual variability (IAV, 
difference between monthly values and the MSC) for Qmod and EU-grid runoff Qobs. Qmodconsistent solely 

considers grid cells that coincide with Qobs, while Qmodall is based on modelled runoff for all grids of the study 

domain. 
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Figure A.4. RMSE of the mean seasonal cycle of simulated and observed a) ET [mm month-1] and b) Q [mm month-
1]. RMSE values have been truncated to the range 0–30 (a) resp. 0-50 (b). 

 

 

Figure A.5. Grid wise phase lag [months] between mean seasonal TWSobs and TWSmod. Negative values indicate 
preceding of the model compared to GRACE TWS. 
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A.6 Comparison with eartH2Observe Models 

 

 

Figure A.6. Comparison of spatially averaged observed (obs) a) SWE (GlobSnow) and b) TWS (GRACE) to simulations 
of this study (mod) and eartH2Observe models (incl. ensemble mean) in terms of average mean seasonal cycle (MSC) 
and inter-annual variability (IAV). MSC is calculated for the period 2002–2012, and IAV represents the difference of 
monthly values from the MSC. Only data points consistent between all models and the respective observational data 
are considered. 

 

Figure SA.7. RMSE for the spatially averaged SWE (left) and TWS (right) achieved by our model compared to the 
model ensemble of eartH2Observe models and the ensemble mean across temporal scales. 
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Figure A.8. Comparison of a) RMSE and b) Pearson correlation r for monthly SWE and TWS time series simulated 
with the eartH2Observe models, the model ensemble mean (model mean) and by our model (mod). 

 

A.7 Uncertainty due to Forcing and Calibration Data 

A.7.1 Comparison to WFDEI Precipitation Forcing 

To assess the uncertainty in TWSmod and SWEmod that emerges from the choice of precipitation forcing, 
we calibrated our model in the same manner as before, yet used rain fall and snow fall estimates from 
the reanalysis based WFDEI product (Weedon et al. 2014) instead of GPCP-1DD precipitation data. Since 
precipitation is likely the most uncertain input data (Herold et al. 2015, Schellekens et al. 2017), we did 
not change the temperature and net radiation data sets. The global meteorological WFDEI data for land 
area is generated by applying the Water and Global Change (WATCH) forcing data methodology to ERA-
Interim reanalysis data (Dee et al. 2011). The advantage of the WFDEI product is that it already provides 
separate values for snow and rain fall, as diagnosed by the reanalysis (Weedon et al. 2014). Therefore, it 
is not necessary to partition precipitation based on a temperature threshold within the model. We rather 
applied the provided rain and snow fall estimates directly, and also desisted from scaling snow fall. 

Regarding the MSC, we obtained similar model performance in terms of SWE and TWS for both, the 
spatially averaged dynamics (Fig. A.9, Fig. A.10) and the spatial pattern (not shown). Although the 
dynamics and thus the correlation coincidence, we obtain a higher amplitude in TWSmod when using 
WFDEI as forcing compared to the original TWSmod (and TWSobs). This higher amplitude relates to larger 
seasonal snow accumulation in SWEmodWFDEI, because the scaling parameter for snow fall is not 

calibrated. In terms of IAV, the correlation between observation and WFDEI forced model is comparable 
for both, TWS and SWE. However, the key findings (Fig. A.11) remain the same as with GPCP precipitation 
forcing. 
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Figure A.9. Comparison of the spatially averaged mean seasonal cycle (MSC) and inter-annual variability (IAV, 
difference between monthly values and the MSC) of observed SWE (SWEobs), modelled SWE (SWEmod), and 
modelled SWE based on WFDEI precipitation forcing (SWEmodWFDEI). SWEmod consistent and SWEmodWFDEI 

consistent refers to modelled SWE considering only data points with available SWEobs, while SWEmod all and 
SWEmodWFDEI all incorporates all time steps for all grids of the study domain. 

 

 

Figure A.10. Comparison of the spatially averaged mean seasonal cycle (MSC) and inter-annual variability (IAV, 
difference between monthly values and the MSC) of observed TWS (TWSobs), modelled TWS (TWSmod), and 
modelled TWS based on WFDEI precipitation forcing (TWSmodWFDEI). For IAV, TWSobsmonthly value shows the 

original IAV of individual TWSobs months, while TWSobs, TWSmod and TWSmodWFDEI are smoothed using a 3-

month average moving window filter. Pearson correlation r refers to the smoothed values. For the MSC no 
smoothing is applied. 
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Figure A.11. Relative contribution (based on CR (Eq.2.3)) of snow (SWE) and liquid water (W) to TWS variability on 
different spatial (local grid scale, spatially integrated) and temporal (mean seasonal MSC, inter-annual IAV) scales 
when forced with WFDEI rain and snow fall. The boxplots represent the distribution of grid cell CR, with the dashed 
line marking the corresponding average. The star represents the CR calculated for the spatially integrated values. 

 

A.7.2 Comparison to other GRACE Solutions 

In this study we used TWS estimates from the JPL mascon RL05 product for model calibration and 
evaluation (Watkins et al. 2015;Wiese, 2015). However, various GRACE solutions for TWS from different 
institutions and using different processing approaches exist. To assess the potential uncertainty resulting 
from the choice of TWS solution, we compared modelled TWS (mod) and the JPL mascon solution (JPLmasc) 

with other solutions based on different processing approaches. They include the mascon product from 
the Center of Space Research (CSR at the University of Texas) (CSRmasc) (Save et al. 2016), as well as three 
RL05 solutions based on spherical harmonics provided by JPL, CSR and Geoforschungs Zentrum (GFZ) 
(Swenson and Wahr 2006, Landerer and Swenson 2012, Swenson 2012). As recommended, we also 
considered the average of the latter three (AvgJPL/CSR/GFZ). All TWS estimates were taken as anomalies to 

the respective time-mean of 2002–2012, and scaled with the provided gain factors (except for CSRmasc 
that does not require scaling (Save et al. 2016). For comparison, we calculated the spatial average mean 
seasonal cycle (MSC) and inter-annual variability (IAV) across all grid cells of the study domain (Fig. A.12). 

Thereby, we find that the spatial average MSC of all GRACE TWS estimates agrees in its dynamics, albeit 
minor differences in the solutions’ amplitudes exist (by ±15 mm). This results in comparable correlation 
and RMSE with modelled TWS. As the signal itself is noisier on IAV scales, the GRACE solutions show 
broader variability for IAV than at MSC scales as well. However, the qualitative pattern between the 
solutions remains, and modelled TWS is not closer to one specific solution or another during the entire 
time period. Therefore, the uncertainty evolving from the choice of GRACE solution used for model 
calibration can be assumed to be minor.  
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Figure A.12. Comparison of the spatially averaged mean seasonal cycle (MSC) and inter-annual variability (IAV, 
difference between monthly values and the MSC) of modelled TWS (mod) and observed TWS of different GRACE 
solutions. 

A.8 Covariances between SWE and W 

Figure A.13 and Fig. A.14 compare the contribution of the combined SWE and W variances and the 
covariance of both storages to the total variance of the spatially aggregated TWSmod. On the inter-annual 
and spatially aggregated scale, 81 % of TWS variability is explained by the variances in SWE and W, 
suggesting that the covariance between SWE and W only has minor effect. This is underlined by high 
percentage of SWE and W variance on total TWSmod variance for all grids of the study domain (Fig. A.14). 
On mean seasonal scales, the majority of spatially aggregated TWS variability is still explained by variances 
in SWE and W, but the contribution of the covariance increases. This can be expected, as the seasonal 
variation of snow storage affects the subsequent availability of liquid water storages through the 
snowmelt process. At the local scale, though, the percentage of SWE and W variance on total TWSmod 
variance remains high in regions where the dominance of either snow or liquid water components are 
clear (Fig. 2.7). In regions where covariances of two storage components is larger, the contribution of two 
storage components to TWS variability are similar resulting in a CR value of around 0. Therefore, we 
conclude that while the covariances of snow and liquid water can be remarkable on the seasonal scale 
over a large spatial domain, it does not affect or change the dominant components on the TWS. 

 

 

Figure A.13. Percentage of SWE and W variance on total TWSmod variance on mean seasonal (MSC) and inter-
annual (IAV) scales. 
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Figure A.14. Percentage composition of spatially aggregated TWSmod variance from the combined variances of SWE 

and W, and two times the covariance of SWE and W on mean seasonal (MSC) and inter-annual (IAV) scales. 
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B.1 Spatial Pattern of scaled Parameters in VEG 

 

 

Figure B.1. Global distribution of the median vegetation fraction pVeg after calibration of the VEG experiment. 

 

 

Figure B.2. Global distribution of the maximum water capacity of the 2nd soil layer wSoilmax(2) after calibration of 

the VEG experiment. 
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Figure B.3. Global distribution of the maximum water capacity of the 2nd soil layer contributed by each data stream 
after calibration of their scaling parameters in the VEG experiment. RD1 = maximum rooting depth by Fan et al. 
2017; RD2 = effective rooting depth by Yang et al. 2016; RD3 = maximum soil water capacity by Wang-Erlandsson et 
al. 2016; RD4 = plant available water capacity by Tian et al. 2019.  

 

B.2 Effective alpha Coefficient 

 

Figure B.4. Global distribution of the median effective alpha coefficient (αVeg * pVeg) in the Priestley-Taylor formula 

after calibration of the VEG experiment. 
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Figure B.5. Daily time series and mean seasonal dynamics of the area weighted average, median and standard 
deviation of the grid-wise effective alpha coefficient in the Priestley-Taylor formula of the calibrated VEG 
experiment. 

 

B.3 Parameter Correlation  

 

Figure B.6. Correlation (≥ |0.5|) between model parameters for the B and VEG experiment. 
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B.4 Regional inter-annual TWS Composition 

 

Figure B.7. Global and regional average inter-annual variability of simulated total water storage (wTotal) and its 
components (wSoil, wDeep, wSlow, wSnow) for B, including the regional Impact Index I for each storage. 
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Figure B.8. Global and regional average inter-annual variability of simulated total water storage (wTotal) and its 
components (wSoil, wDeep, wSlow, wSnow) for VEG, including the regional Impact Index I for each storage. 
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B.5 Transpiration over Evapotranspiration  

 

Figure B.9. Global and regional average mean seasonal cycles of modelled transpiration (T) over evapotranspiration 
(ET) for B and VEG experiments. 

 

 

Figure B.10. Global distribution of modelled transpiration (T) over evapotranspiration (ET) for B and VEG 
experiments, as well as the difference between both (lower right). 

B.6 Runoff Components 

 

Figure B.11. Global and regional average mean seasonal cycle of observed grid-wise runoff from GRUN (Q) and 
simulated total runoff (Qtotal), as well as its components Qslow and Qfast, for the B and VEG experiments. corr is the 

Pearson correlation coefficient of the respective simulation with observed Q. 
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B.7 Comparison of VEG & VEG without Capillary Rise 

 

Figure B.12. Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, 
for VEG and VEG-noGW2Soil, which is a variant of the VEG experiment, in with the capillary rise from wDeep to wSoil 
is turned off prior to model calibration. 

 

 

Figure B.13. Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep) and delayed water storage (wSlow) to the inter-annual anomalies of total water 
storage, for VEG and VEG-noGW2Soil, which is a variant of the VEG experiment, in with the capillary rise from wDeep 
to wSoil is turned off prior to model calibration. 

 

 

Figure B.14. Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) 
and delayed water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total 
water storage, for VEG and VEG-noGW2Soil, which is a variant of the VEG experiment, in with the capillary rise from 
wDeep to wSoil is turned off prior to model calibration. 
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B.8 Comparison of VEG & VEG with fixed kTransp at 0.05 

 

Figure B.15. Grid-wise Pearson’s correlation coefficient for total water storage (TWS), evapotranspiration (ET) and 
runoff (Q) between 1) observations and VEG, and 2) observations and VEG-nok2, as well as differences between 1) 
and 2) (brown color, i.e., negative values indicate higher correlations for VEG-nok2, while purple color, i.e., positive 
values indicate better correlation values for VEG). VEG-nok2 is a variant of the VEG experiment, in which the kTransp 

parameter is not calibrated but fixed at a low value of 0.05. 

 

 

Figure B.16. Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET) and 
runoff (Q) for VEG and VEG-nok2, which is a variant of the VEG experiment, in which the kTransp parameter is not 

calibrated but fixed at a low value of 0.05, compared to the observational constraints by GRACE (TWS), FLUXCOM 
(ET) and GRUN (Q). 
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Figure B.17. Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, 
for VEG and VEG-nok2, which is a variant of the VEG experiment, in which the kTransp parameter is not calibrated 

but fixed at a low value of 0.05. 

 

 

Figure B.18. Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep) and delayed water storage (wSlow) to the inter-annual anomalies of total water 
storage, for VEG and VEG- VEG-nok2, which is a variant of the VEG experiment, in which the kTransp parameter is 

not calibrated but fixed at a low value of 0.05. 

 

 

Figure B.19. Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) 
and delayed water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total 
water storage, for VEG and VEG-nok2, which is a variant of the VEG experiment, in which the kTransp parameter is 

not calibrated but fixed at a low value of 0.05. 
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B.9 PFT Experiment 

The following shows an experiment similar to the traditional approach of global hydrological models, in 
which vegetation-dependent parameters are defined and calibrated for different plant-functional type 
(PFT) classes separately and then model performance and TWS composition is analyzed in comparison to 
the B and VEG experiments. The results show that the larger number of parameters (due to different sets 
for different PFT) does not lead to marked improvements of model performance, but instead increases 
parameter uncertainty possibly due to overparameterization. In terms of TWS composition, we see 
substantial differences in the PFT experiment compared to B and VEG, which underlines our conclusions 
that the representation of vegetation in GHMs is critical for interpreting TWS variations. 

Based on the GSWP2 land cover classification (Dirmeyer et al. 2006), we consider 12 PFT classes (Fig. B.20), 
for which we define individual values of wSoilmax(2) (maximum available water capacity of the 2nd soil 

layer) and sberg (scaling parameter to derive the runoff/infiltration coefficient). Since state-of-the-art 
global hydrological models (GHMs) usually include seasonal dynamics of leaf area index (LAI) to calculate, 
e.g., transpiration, we decided to keep the definition of the active vegetation fraction as a function of 
seasonal EVI data as in the VEG experiment. For the PFT experiment, we focus (i) on wSoilmax(2) because 
GHMs usually apply a PFT specific rooting depth, and (ii) on sberg because this is similar to the runoff 

coefficient γ which is tuned in some GHMs (e.g., the WaterGAP model (Müller-Schmied et al. 2021)).  

When considering these 12 PFT classes, the number of calibration parameters increases from 12 (in B) 
and 16 (in VEG) to 34 (in PFT). Analysis of parameter uncertainty shows high uncertainties for a set of 
parameters common with B, while optimized parameter values are between those of B and VEG (Table 
B.1). Additionally, and unlike B and VEG, PFT has high uncertainty of wSoilmax(2) for all PFT classes, and 

high correlation between each PFT’s wSoilmax(2) and sberg (Fig. B.21). High uncertainty of wSoilmax(2) is an 

indication that having one wSoilmax(2) per PFT may not explain the within-PFT variability. On the other 

hand, high correlation between each PFT’s wSoilmax(2) and sberg is systematic, as both parameters are 
based on the same spatial distribution of PFT classes - and highlights an advantage of the VEG experiment, 
in which both are based on independent data sets.  

In terms of model performance, Fig. B.22 shows a partial improvement for TWS and ET in the PFT 
experiment. Especially in the Humid and Sub-humid regions, TWS simulation in PFT matches GRACE 
observations better. These regions include tropical regions, where data for maximum plant available 
water capacity by Tian et al. 2019 (RD4) are not available. While we filled the missing values for tropical 
regions with the same wSoilmax(RD4) value as in the Northern latitudes, the improved performance in the 

PFT experiment suggests that at least 2 different wSoilmax(RD4) fill values seem necessary for different 

climate regions. In contrast to TWS and ET, PFT performance of Q is poorer than in B and VEG, with a clear 
underestimation of the seasonal variability. To consider model performance in relation to the number of 
calibration parameters, we calculated the Akaike information criterion (AIC). Since low values of AIC 
indicate better performance compared to the other experiments, PFT only performs superior regarding 
ET, while the increased number of model parameters isn’t advantageous regarding TWS and Q 
simulations. Also, note that the increased number of model parameters comes at an additional 
computational cost. 

Furthermore, the results of the PFT experiment confirm that changing the representation of vegetation 
has a marked impact on the simulated TWS composition (Figs. B.23-B.25). In PFT, among the liquid water 
storages wSoil contributes most to mean seasonal TWS variability, with Impact Index values between 
those of B and VEG (Fig. B.23, Fig. B.25). Compared to VEG, wSlow is in general less important in PFT, while 
wDeep has a less impact on mean seasonal TWS, but its contribution to inter-annual TWS variability 
increases.  

Overall, this analysis underlines that including continuous fields of vegetation parameters is preferable 
than the ‘traditional’ PFT-based approaches of defining parameters for distinct PFT classes (and their 
calibration) - in terms of model calibration and the uncertainty of calibrated model parameters, but also 
regarding model performance in relation to the number of model parameters. Furthermore, we could 
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highlight that the representation of vegetation in hydrological models is crucial for the partitioning of 
simulated TWS.  

 

Figure B.20. Classes of plant functional type used in the PFT experiment. (Sea (PFT0); Ice=Continental Ice (PFT1); 
BEF=Broadleaf Evergreen Forest (PFT2); BDF=Broadleaf Deciduous Forest & Woodland (PFT3); MixedF=Mixed 
Coniferous & Broadleaf Deciduous Forest & Woodland (PFT4); CF= Coniferous Forest & Woodland (PFT5); DF=High 
Latitude Deciduous Forest & Woodland (PFT6); WGrass= Wooded C4 Grassland (PFT7); Shrubs=Shrubs & Bare 
Ground (PFT8); Tundra (PFT9); Cult=Cultivation (PFT10); Desert (PFT11)).  

 

 

Figure B.21. Correlation of calibrated parameters for the PFT experiment. Shown are only correlation coefficients 
|r|≥0.5.  
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Table B.1. Calibrated parameter values and their uncertainty for B, VEG and PFT. Italic font indicates a calibrated 
parameter that hits the parameter bounds, and underlined numbers indicate parameter uncertainty ≥ 20%. 

parameter calibrated values ± uncertainty 
 B VEG PFT 

vegetation fraction 

pveg 0.37 ± 0.05     

sEVI  3.89 ± 0.05 3.75 ± 0.03 

evapotranspiration 

pint 1 ± 0.08 0.6 ± 0.02 0.71 ± 0.02 

kSoil 0.1 ± 0.01 0.4 ± 0.08 0.27 ± 0.04 

αveg 2.25 ± 0.15 0.92 ± 0.00 0.87 ± 0 

kTransp 0.12 ± 0.32 0.48 ± 1.76 0.5 ± 4.32 

deep soil 

sDeep 9.1 ± 461317 5.6 ± 0.21 8.48 ± 0.24 

fmax 1.5 ± 0.00 5.1 ± 0.01 11.77 ± 0.02 

dDeep 1 ± 5.61 0.01 ± 0.00 0.03 ± 0 

delayed water storage 

rfSlow 0.78 ± 1.72 0.68 ± 0.01 0.62 ± 0.05 

dSlow 1 ± 2329 0.02 ± 0.03 0.03 ± 0.19 

infiltration/runoff 

pberg 1.32 ± 0.02     

sberg   3.08 ± 0.02   

sberg_PFT0     3.7 ± 0.45 

sberg_PFT1     3.11 ± 0.32 

sberg_PFT2     1.87 ± 0.01 

sberg_PFT3     2.57 ± 0.09 

sberg_PFT4     2.04 ± 0.03 

sberg_PFT5     4.31 ± 0.05 

sberg_PFT6     0.5 ± 0.01 

sberg_PFT7     2.9 ± 0.03 

sberg_PFT8     0.48 ± 0.01 

sberg_PFT9     0.69 ± 0.01 

sberg_PFT10     1.36 ±0.01 

sberg_PFT11     2.5 ± 0.11 

soil moisture 

wSoilmax(2) 752 ± 0.02     

sRD(1)   0.01 ± 0.00   

sRD(2)   0 ± 0.00   

sRD(3)   0.15 ± 0.06   

sRD(4)   0.15 ± 0.07   

wSoilmax(RD4)   145 ± 0.08   

wSoilmax_PFT0     1.57 ± 8.94 

wSoilmax_PFT1     0.78 ± 10.23 

wSoilmax_PFT2     1.01 ± 0.41 

wSoilmax_PFT3     1.27 ± 1.42 

wSoilmax_PFT4     0.5 ± 0.5 

wSoilmax_PFT5     0.54 ± 0.32 

wSoilmax_PFT6     0.85 ± 2.53 

wSoilmax_PFT7     01.01 ± 0.57 

wSoilmax_PFT8     1.45 ± 2.72 

wSoilmax_PFT9     0.56 ± 1.07 

wSoilmax_PFT10     0.39 ± 0.2 

wSoilmax_PFT11     0.7 ± 3.23 
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Figure B.22. Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET) and 
runoff (Q) for the B, VEG and PFT experiments compared to the observational constraints by GRACE (TWS), FLUXCOM 
(ET) and GRUN (Q). For each, the Pearson correlation (r²) and Akaike information criterion (AIC) are calculated to 
compare model performance in terms of seasonal dynamics and of mean standard error in relation to the number 
of calibration parameters.   

 

 

Figure B.23. Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, 
for B, VEG and PFT.  
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Figure B.24. Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), 
deep water storage (wDeep) and delayed water storage (wSlow) to the inter-annual variability of total water storage, 
for B, VEG and PFT.  

 

 

Figure B.25. Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) 
and delayed water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total 
water storage, for B, VEG and PFT.  
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B.10 Consistency Check of observational Data 

In the following, we check for possible inconsistencies between the different observational data products. 
Similar to Rodell et al. 2015, we calculate the monthly water (im)balance, WB, from the observations for 
the period 01/2004-11/2010 (the time period in which none of the observation data has missing monthly 
values):  

 

WB = PGPCP1DD - ETFLUXCOM - QGRUN - dSGRACE     (B.1) 

 

with ideally WB = 0.  

Fig. B.26 shows the average monthly water imbalance scaled by each grid’s average monthly precipitation 
PGPCP1DD. While regionally large differences exist, the global mean and median are around 0. The global 
mean value of - 0.05 corresponds to a water balance residual of ~ 5% of precipitation - which is similar to 
the global residual of 4.3 % of precipitation reported in Rodell et al. 2014. Also temporally, the global 
average (Fig. B.27) varies around 0, suggesting no major systematic inconsistency at the global scale, yet 
with a small imbalance with a tendency to negative values. This suggests that more water leaves the 
system than comes in when looking at the observational data. In comparison, there is obviously no 
imbalance for the simulations from B and VEG as they close the water balance by definition of the model 
- which represents the major advantage of using models instead of observational based data from 
different sources. 

We also calculated each variable in Eq. B.1 by solving the water balance with the other observed 
components and we compared the resulting water-balance-derived variable with the actual observed 
one. Differences between both indicate inconsistencies between a particular observed variable and the 
remaining observational variables. For ET, Q and TWS, we additionally plot the modelled fluxes and 
storage changes from B and VEG to evaluate the effect of observational inconsistencies on model 
simulations (Fig. B.27). The modelled fluxes are smoother and closer to the observations than the same 
estimate of the variable from the water balance. Therefore, we find that the model allows to potentially 
bridge the inconsistencies between the different data products. However, for dS, B and VEG show a time 
shift compared to the observed storage change, that is not reflected in dS calculated from P, ET and Q 
observations. Accordingly, this underlines that the phase lag between observed and modelled TWS 
variations is not caused by data inconsistencies, but rather related to the potential deficiencies in the 
model structure, as already discussed in the main text of the manuscript. 

Fig. B.28 compares the residuals of the simulated and observed ET, Q and dS (mod-obs), and the ones of 
the water-balance derived and the observed variables (WB-obs). Large residuals of WB-obs point again to 
data inconsistencies among the observed variables. When the residuals WB-obs and mod-obs in a region 
agree, it implies that the multi-criteria calibration approach prevents overfitting of the model(s) to an 
observed variable that is inconsistent with the remaining observed variables. Therefore, the model 
performance in these regions might be relatively poor in view of the inconsistent data streams, which is 
in fact a desirable behavior in the model calibration (e.g., ET in the Semi-arid region and dS in Temperate 
and Humid region).  

When the residuals of mod-obs are considerably smaller than WB-obs, the model fits an observed variable 
well although it is inconsistent with the remaining observed variables (e.g., Q and dS in the Semi-arid 
region). Further, when the residuals of mod-obs are large but WB-obs does not indicate data 
inconsistencies, it points to issues related to model structure and parameter identifiability (e.g., Q in the 
Cold region, where the model(s) lacks the representation of permafrost, freeze/thaw dynamics and ice 
jam in rivers). 
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Figure B.26. Mean water imbalance scaled by mean precipitation.  
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Figure B.27. Global average time series of the water imbalance calculated from the observations (top row), and of 
water balance variables calculated from the other observations by resolving the water balance equations (from obs) 
vs the observed variable (obs) vs the simulated variable of the B and VEG simulations.  
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Figure B.28. Global and regional mean seasonal cycles of the difference between the simulations of ET, Q and dS 
with B and VEG and the respective observations (B-obs, VEG-obs), as well as difference between observed variables 
and the same variables calculated via the water balance from the other observations (WB-obs). 

B.11 Analysis for Koeppen-Geiger Zones 

Additionally, to the hydroclimatic cluster analysis shown in the main text, we performed a regional 
analysis for Koeppen-Geiger climate zones. To do so, we aggregated Koeppen-Geiger subgroups 
considering the main climate group and distinguishing between humid and semi-arid conditions. The 
resulting zones are shown in Fig. B.29. Fig. B.30 evaluates model performance for the Koeppen-Geiger 
regions and Fig. B.31 shows the composition of seasonal TWS variations therein. Note that most parts of 
the Polar and Boreal Koeppen-Geiger (KG) zone are included in the Cold region (R1) of the hydroclimatic 
cluster classification. We find that the regional averages are very similar for both classification schemes 
in terms of model performance and composition of seasonal TWS variations.  

The Northern Hemisphere Temp and Boreal-sa KG zones are both included in the Temperate 
hydroclimatic region (R2). Temp KG and the Temperate region (R2) agree well regarding model 
performance and seasonal cycles, although we see a slightly better performance for the Temp KG 
regarding TWS and Q. In the Boreal-sa KG, B and VEG do not reproduce the spring peak of Q and precede 
the observed TWS significantly, decreasing model performance slightly when combining the Temp and 
Boreal-sa KG zones in one hydroclimatic region. Therefore, it would make sense to further split up the 
Temperate hydroclimatic cluster region. However, Boreal-sa KG spans Northern China, where poorer 
model performance is also evident from the performance maps in Fig. 4 of the main manuscript. 

However, as mentioned in the main text, the advantage of the hydroclimatic cluster regionalization 
becomes obvious when interpreting results of the Arid and Temp-sa KG zones. This is because these 
climate zones are distributed across the Southern and Northern Hemisphere, causing 2 peaks in the 
regional seasonal cycles for TWS, ET and Q, due to opposing seasonal dynamics. The Arid KG zone includes 
the Semi-arid cluster regions (R5) in the Southern Hemisphere, as well as parts of the Temperate region 
(R2) (mainly in North America). The Temp-sa KG zone covers a rather small fraction of the study area, that 
is spread over the Temperate region (R2) in the Northern Hemisphere and the Semi-arid region (R5) of 
the Southern Hemisphere.  

The effect of opposing seasonal cycles also exists in the Tropic KG zone, although less pronounced due to 
the proximity to the equator where the climate is more homogeneous and seasonality is low. The Tropic 
KG corresponds to the Humid cluster region (R3) on the Southern Hemisphere, and parts of the Sub-humid 
region (R4) on the Northern Hemisphere. Compared to the hydroclimatic cluster regions, the Tropic KG 
has less seasonal variation (a smaller amplitude) of TWS, ET and Q, due to its larger area North and South 
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of the equator. Both, B and VEG underestimate the ongoing depletion of TWS from September to 
December in Tropic KG, which is likely related to the opposing seasonal cycles of TWS in the Humid (R3) 
and the Sub-humid (R4) cluster regions. In the Tropic KG, Q peaks in March (as in Humid (R3)) and has a 
second, smaller peak in September (when Q peaks in the Sub-humid region (R4)). However, model 
performance is very similar for Tropic KG and the Humid and Sub-humid cluster regions. 

 

Figure B.29. Regions based on Koeppen-Geiger climate zones (Trop = Af, Am, As, Aw; Arid = BSh, BSk, BWh, BWk; 
Temp = Cfa, Cfb, Cfc, Dfa, Dfb; Temp-sa = Csa, Csb, Csc, Cwa, Cwb, Cwc; Boreal = Dfc, Dfd; Boreal-sa = Dsa, Dsb, Dsc, 
Dwa, Dwb, Dwc, Dwd; Polar = EF, ET). 

 

Figure B.30. Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET) and 
runoff (Q) for the B and VEG experiments compared to the observational constraints by GRACE (TWS), FLUXCOM 
(ET) and GRUN (Q). 

 

Figure B.31. Global and regional mean seasonal cycles of simulated total water storage and its components for B 
and VEG, including the regional Impact Index I for each storage. 

 



 

133 

  

Appendix C: Supplement of Chapter 4 

Supplement of Chapter 4 
 

 

 

Supplement material of: 

Trautmann, T., Koirala, S., Güntner, A., Kim, H., Jung, M. (2022): Implications of river storage for 
integrating GRACE TWS observations into a global hydrological model, submitted to Environmental 
Research Communications. 

 

  



Appendix C: Supplement of Chapter 4 

134 

C.1 Comparison of Calibration Runs in terms of calibrated Parameters and final 

Costs 

 

 

Figure C1. Calibrated parameters (a) and distribution of obtained total cost and cost components (b) for the 10 
calibration runs of MOD and MOD-R▲. In a) calibrated parameter values are normalized by the maximum value of 
each parameter and those parameters with a low variance (<0.025) are set to 0.5 to emphasizes the 2 different 
parameter sets with either higher (green color) or lower (purple color) parameters that define maximum soil water 
storage and evapotranspiration (ET) processes. Along with the soil water and ET parameters, also the runoff-
infiltration coefficient (pberg) and the maximum flux rate to the deeper soil water storage (fmax) have either higher 

or lower values. Calibration runs with higher soil moisture and lower ET parameters have relatively higher costs than 
the other calibration runs of the respective experiment. In b), the distribution of model costs of 10 calibration runs 
is shown for each experiment. Please note the different range of the y-axis for each cost component. 
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C.2 Influence of the Selection of calibration Grid Cells on Model Calibration 

In the calibration approach presented in the main manuscript, we used the same grid cells for model 
calibration as in Trautmann et al. 2022, that are selected by a stratified random sampling among Koeppen-
Geiger climate zones. This calibration subset is representative for the global study area, as both have the 
same distribution regarding all observational constraints, and also regarding the fraction of grid cells with 
large river water storage (Fig C.2). Therefore, calibration does not specifically focus on grid cells in which 
river storage is relevant. Instead, the same distribution as the global study area allows calibration of 
parameter values that are globally applicable and is thus preferable for a global study. 

To assess the impact of the selection of calibration grid cells, we excluded grid cells with an average river 
storage below the median average of all grid cells (based on routed GRUN QR with an effective flow 

velocity of 0.5 ms-1) from the stratified random sampling and select a new calibration subset opti_relRiv. 
By that, model calibration focuses on grid cells with relevant river water storage, i.e., we impose larger 
changes to the TWS constraint when removing river storage. This should lead to pronounced differences 
in calibrated parameter values among the experiments. The experiment calibrated against the original 
GRACE TWS adjusts its parameters at least partly to represent the river storage that is included in GRACE 
TWS and in opti_relRiv. Therefore, poorer model performance can be expected when these parameters 
are applied globally, where river storage is less relevant. On the contrary, the experiments calibrated 
against TWS without river storage do not need to implicitly account for river storage and thus their 
parameters should lead to good model performance globally. 

Compared to the global study area and the calibration subset of the main manuscript, the new calibration 
subset opti_relRiv has significantly different distributions (Fig. C.2). Grid cells of opti_relRiv have higher ET 
and QR, and the original GRACE TWS has larger anomalies, i.e., more variations, than globally.  

These differences lead to partly different calibrated parameter values for opti_relRiv calibrations than 
obtained by the calibration runs presented in the main manuscript. In detail, vegetation fraction and soil 
water storage are larger, counteracted by smaller transpiration parameters, which approximately keeps 
simulated ET comparable. Besides, less water infiltrates into soil and the delayed water storage depletes 
faster, which increases (fast) runoff. Additionally, the deep water pool that interacts with soil water and 
slow storage doesn’t play a role. 

These differences are due to the different hydrological characteristics of opti_relRiv and the previous 
calibration subset, not only in terms of TWS, but also regarding ET and QR. 

Unlike in the main manuscript we do see some tendencies when contrasting the opti_relRiv experiments 
that are calibrated against GRACE TWS (MOD-relRiv) and those calibrated against TWS without river 
storage (MOD-R01-relRiv, MOD-R05-relRiv, MOD-R25-relRiv).  

However, differences in parameter values among calibration experiments for opti_relRiv are by far smaller 
than the differences between calibrations done for different calibration subsets. This underlines the 
rather low impact of river storage on model calibration and suggests that the impact from changes in the 
other constraints is more influential.  

Similar as shown in the main text (section 3.1.2), resulting mean seasonal dynamics do not differ between 
different experiments calibrated for opti_relRiv (Fig. C.3). In contrast, differences between opti_relRiv and 
the MODbest experiment from the main manuscript are evident for QR in various regions, but also for TWS 

in the Semi-arid region, indicating again a larger effect of differences in the ET and QR constraint than 

from river water storages. 

When adding simulated river storage to modeled TWS for model validation against GRACE TWS, 
calibrations of opti_relRiv outperform MODbest on global average and in most regions, except the Semi-
arid region. MOD-R01-relRiv and MOD-R05-relRiv achieve nearly perfect agreement of seasonal TWS 
variations in the Humid and Sub-humid region. Locally, differences in MEF are significant, showing 
improved performance in Northern low and wetland, tropics and some semi-arid regions, whereas MEF 
of other grid cells is worse than with MODbest. 
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Altogether, calibrating for a spatial subset of grid cells where river water storage is relevant shows 
qualitatively the same pattern regarding the effect on model calibration (just a little systematic impact) 
and model validation (regional improvement) as with the previous calibration subset. Instead, we found 
that the choice of calibration grid cells has a larger impact than removing river water storage from GRACE 
TWS, due to changes in other constraints. 

This underlines and supports the findings presented in the main text. 

 

 

Figure C.2. Distributions of river storage based on CaMa-Flood and TRIPy with different effective flow velocities for 
different spatial subsets. 75th, 90th, 95th, and 98th percentiles of river storage of the global study area (global), the 
calibration subset of the main study (cal), and a calibration subset with relevant river storage (cal-relRiv) for different 
flow velocities (0.1; 0.5; and 2.5 ms-1). 
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Figure C.3. Mean seasonal dynamics of simulated and observational TWS, ET, and QR summarized globally and for 

different regions. Solid lines show simulations by different experiments calibrated for the opti_relRiv subset. Red 
dashed lines denote MODbest that was calibrated for the calibration subset of the main study (and against the original 

GRACE TWS). Black dotted lines denote observational GRACE TWS, FLUXCOM ET, and GRUN QR, respectively. Listed 

MEF compares the respective calibrated experiment against MODbest. 
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Figure C.4. Comparison of the original GRACE TWS, TWS simulated by MODbest (from the main manuscript), and TWS 

(MOD-relRiv) resp. TWS+wRiver (MOD-R▲-relRiv) from experiments calibrated for the opti_relRiv subset. a) grid-
wise Nash-Sutcliff efficiency (MEF) between GRACE TWS and MODbest with distribution of grid-wise MEF per regions; 

b) grid-wise differences in MEF between MODbest and MOD-relRiv resp. MOD-R▲-relRiv with distribution of grid-

wise MEF differences per regions; and c) mean seasonal dynamics averaged globally and for different regions. 
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C.3 Comparison with eartH2Observe Models 

 

Figure C.5. Comparison of regional Nash-Sutcliff efficiency (MEF) obtained with the eartH2Observe model ensemble 
(box plots, Schellekens et al. 2017) resp. MODbest of this study (asterisk) and GRACE TWS. Regions R1-R5 refer to 

hydro-climatic cluster regions shown in Fig. 4.2 of the main manuscript. 

C.4 Evaluation of Discharge at GRDC Stations 

Table C.1. GRDC stations used for evaluation of simulated discharge (QDis) in Fig. C.6. 

River GRDC station name Location 
(lat/lon in 1° grid) 

Catchment size 
[km2] 

Overlapping time period Region 

Lena Stolb 72.5/126.5 2 460 000 03/2000-01/2003 R1-Cold 

Yenisey Igakra 67.5/86.5 2 440 000 03/2000-12/2011 R1-Cold 

Ob Salekhard 66.5/66.5 2 949 998 03/2000-12/2010 R1-Cold 

Danube Ceatal Izmail 45.5/28.5 807 000 03/2000-12/2010 R2-Temperate 

Mississippi Vicksburg, MS 32.5/-91.5 2 964 255 03/2000-12/2014 R2-Temperate 

Amazonas Obidos-Linigrafo -2.5/-55.5 4 680 000 03/2000-01/2008 R3-Humid 

Congo Kinshasa -4.5/15.5 3 475 000 03/2000-12/2010 R3-Humid 

Zambezi Katima Mulilo -17.5/24.5 334 000 03/2000-12/2014 R5-Semi-arid 

 

 

Figure C.6. Mean seasonal observed and simulated discharge QDis from MOD-R01, MOD-R05, MOD-R25 and MOD-

CaMa at 8 GRDC stations (see Table C.1 for station specifics).  
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