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Abstract 

Infectious diseases are an increasing threat to biodiversity and human health. Therefore, developing a 
general understanding of  the drivers shaping host-pathogen dynamics is of key importance in both 
ecological and epidemiological research. Disease dynamics are driven by a variety of interacting 
processes such as individual host behaviour, spatiotemporal resource availability or pathogen traits like 
virulence and transmission. External drivers such as global change may modify the system conditions 
and, thus, the disease dynamics. Despite their importance, many of these drivers are often simplified 
and aggregated in epidemiological models and the interactions among multiple drivers are neglected.  

In my thesis, I investigate disease dynamics using a mechanistic approach that includes both bottom-up 
effects - from landscape dynamics to individual movement behaviour - as well as top-down effects - from 
pathogen virulence on host density and contact rates. To this end, I extended an established spatially 
explicit individual-based model that simulates epidemiological and ecological processes stochastically, 
to incorporate a dynamic resource landscape that can be shifted away from the timing of host 
population-dynamics (chapter 2). I also added the evolution of pathogen virulence along a theoretical 
virulence-transmission trade-off (chapter 3). In chapter 2, I focus on bottom-up effects, specifically how 
a temporal shift of resource availability away from the timing of biological events of host-species - as 
expected under global change - scales up to host-pathogen interactions and disease dynamics. My results 
show that the formation of temporary disease hotspots in combination with directed individual 
movement acted as key drivers for pathogen persistence even under highly unfavourable conditions for 
the host. Even with drivers like global change further increasing the likelihood of unfavourable 
interactions between host species and their environment, pathogens can continue to persist with heir 
hosts. In chapter 3, I demonstrate that the top-down effect caused by pathogen-associated mortality on 
its host population can be mitigated by selection for lower virulent pathogen strains when host densities 
are reduced through mismatches between seasonal resource availability and host life-history events. I 
chapter 4, I combined parts of both theoretical models into a new model that includes individual host 
movement decisions and the evolution of pathogenic virulence to simulate pathogen outbreaks in 
realistic landscapes. I was able to match simulated patterns of pathogen spread to observed patterns from 
long-term outbreak data of classical swine fever in wild boar in Northern Germany. The observed disease 
course was best explained by a simulated high virulent strain, whereas sampling schemes and 
vaccination campaigns could explain differences in the age-distribution of infected hosts. My model 
helps to understand and disentangle how the combination of individual decision making and evolution 
of virulence can act as important drivers of pathogen spread and persistence.  

As I show across the chapters of this thesis, the interplay of both bottom-up and top-down processes is a 
key driver of disease dynamics in spatially structured host populations, as they ultimately shape host 
densities and contact rates among moving individuals. My findings are an important step towards a 
paradigm shift in disease ecology away from simplified assumptions towards the inclusion of 
mechanisms, such as complex multi-trophic interactions, and their feedbacks on pathogen spread and 
disease persistence. The mechanisms presented here should be at the core of realistic predictive and 
preventive epidemiological models. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Zusammenfassung 

Infektionskrankheiten stellen eine zunehmende Bedrohung für die biologische Vielfalt und die 
menschliche Gesundheit dar. Daher ist es sowohl für die epidemiologische als auch für die ökologische 
Forschung von zentraler Bedeutung, ein allgemeines Verständnis der Mechanismen, die die Wirts-
Pathogen-Dynamik beeinflussen, zu entwickeln. Die Krankheitsausbrüche werden durch eine Vielzahl 
von interagierenden Prozessen angetrieben, wie unter anderem individuellem Wirtsverhalten, 
Ressourcenverfügbarkeit oder Erregermerkmale wie Virulenz. Externe Faktoren wie der globale Wandel 
können grundlegende Veränderungen dieser Prozesse verursachen und sich damit auch auf 
Krankheitsdynamiken auswirken. Trotz ihrer Bedeutung für Krankheitsausbrüche werden viele dieser 
Faktoren in epidemiologischen Modellen oft vereinfacht und die Wechselwirkungen zwischen den 
Faktoren vernachlässigt. In Anbetracht dessen, ist es sowohl für die ökologische als auch für die 
epidemiologische Forschung von zentraler Bedeutung, ein allgemeines Verständnis dafür zu entwickeln, 
wie mehrere interagierende Prozesse Wirts-Pathogen-Interaktionen beeinflussen können. 

In meiner Dissertation untersuche ich die Krankheitsdynamik mittels eines mechanistischen Ansatzes, 
der sowohl Bottom-up-Effekte - von der Landschaftsdynamik bis zum individuellen 
Bewegungsverhalten - als auch Top-down-Effekte - von der Virulenz des Erregers auf die Wirtsdichte 
und die Kontaktraten - berücksichtigt. Zu diesem Zweck habe ich ein etabliertes, räumlich explizites, 
Individuen basiertes Modell, das epidemiologische und ökologische Prozesse stochastisch simuliert, um 
eine dynamische Ressourcenlandschaft erweitert, die zeitlich mit der Populationsdynamik der Wirte 
verschoben werden kann (Kapitel 2). Zusätzlich habe ich die Evolution der Virulenz von 
Krankheitserregern entlang eines theoretischen Verhältnisses zwischen Virulenz und Übertragung 
hinzugefügt (Kapitel 3). In Kapitel 2 konzentriere ich mich auf Bottom-up-Effekte, insbesondere auf die 
Frage, wie sich eine zeitliche Verschiebung der Ressourcenverfügbarkeit weg vom Zeitpunkt 
biologischer Ereignisse der Wirtsarten - wie sie im Rahmen des globalen Wandels erwartet wird - auf die 
Wirt-Pathogen-Interaktionen und Krankheitsdynamiken auswirkt. Meine Ergebnisse zeigen, dass die 
Bildung vorübergehender Krankheitsherde in Kombination mit gezielter individueller Wirtsbewegung 
als Schlüsselfaktoren für die Persistenz von Krankheitserregern selbst unter äußerst ungünstigen 
Bedingungen für den Wirt fungieren. Selbst wenn Faktoren wie der globale Wandel die 
Wahrscheinlichkeit ungünstiger Wechselwirkungen zwischen Wirtsarten und ihrer Umwelt weiter 
erhöhen, können Krankheitserreger weiterhin in ihren Wirten persistieren. In Kapitel 3 zeige ich, dass 
der Top-Down-Effekt, der durch die pathogen-assoziierte Mortalität verursacht wird, durch eine 
evolutionäre Selektion auf weniger virulente Erregerstämme abgeschwächt werden kann, wenn die 
Wirtsdichte durch eine zeitliche Verschiebung von saisonaler Ressourcenverfügbarkeit und dem 
Zeitpunkt von biologischen Ereignissen der Wirtsarten reduziert wird. In Kapitel 4 habe ich Teile der 
beiden theoretischen Modelle zu einem neuen Modell kombiniert, das individuelle Wirtsbewegungen 
und die Entwicklung der Virulenz von Krankheitserregern einbezieht, um Ausbrüche von 
Krankheitserregern in realistischen Landschaften zu simulieren. Es gelang mir, die simulierten Muster 
der Krankheitsausbreitung mit beobachteten Mustern von Langzeitausbrüchen der klassischen 
Schweinepest in Wildschweinen in Norddeutschland abzugleichen. Der beobachtete Krankheitsverlauf 
ließ sich am besten durch einen simulierten hochvirulenten Stamm erklären, während das Design der 
Probenentnahmen und Impfkampagnen Unterschiede in der Altersverteilung der infizierten Wirte 
erklären könnten. Mein Modell trägt dazu bei, zu verstehen, wie die Kombination aus individueller 



 

 
 

Bewegung und der Evolution von Virulenz als wichtige Treiber für die Ausbreitung und Persistenz des 
Erregers wirken können.  

Wie ich in den Kapiteln dieser Arbeit zeige, ist das Zusammenspiel von Bottom-up- und Top-down-
Prozessen ein entscheidender Faktor für die Krankheitsdynamik in Wirtspopulationen, da sie letztlich 
die Wirtsdichte und den Kontakt zwischen sich bewegenden Individuen bestimmen. Meine Ergebnisse 
sind ein wichtiger Schritt auf dem Weg zu einem Paradigmenwechsel in der Krankheitsökologie, weg 
von vereinfachten Annahmen hin zur Einbeziehung von komplexen Interaktionen und deren 
Rückkopplungen auf die Ausbreitung und Persistenz von Krankheitserregern. Die hier vorgestellten 
Mechanismen sollten den Kern realistischer Vorhersage- und Präventivmodelle für die Epidemiologie 
bilden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
 

Contents 

1  General Introduction .............................................................................................................. 1 

1.1  Moving forward: the relevance of individual-scale mechanisms for understanding 
infectious disease dynamics ..................................................................................................  4 

1.2  Movement, seasonality, and the dynamics of host-pathogen systems ............................  5 

1.3  Where do we go from here? -or- the evolution of pathogenic virulence  
in a social host .........................................................................................................................  7 

1.4  How past outbreaks can help to progress our predictions about future epidemics ......  8 

1.5  Classical swine fever in wild boar – a dynamic model system with multiple interactive 
processes ...................................................................................................................................  9 

1.6  Understanding how spatial and temporal variability of resources drive transmission, 
persistence, and evolution of pathogens ........................................................................... 11 

 

2  Movement can mediate temporal mismatches between resource availability and   
biological events in host-pathogen interactions ................................................................. 19 

2.1  Introduction ............................................................................................................................. 21 

2.2  Methods .................................................................................................................................... 25 

2.2.1  Model overview ......................................................................................................  25 

2.2.2  Landscape structure ..............................................................................................  26 

2.2.3  Process overview and scheduling ..........................................................................  27 

2.2.4  Main processes.......................................................................................................  27 

2.2.5  Model analysis .......................................................................................................  29 

2.3  Results ....................................................................................................................................... 30 

2.3.1  Host-pathogen coexistence and disease persistence ............................................  30 

2.3.2  Pathogen extinction time ......................................................................................  31 

2.3.3  Spatial patterns in coexistence..............................................................................  32 

2.4  Discussion ................................................................................................................................ 36 

2.4.1  Disease hotspots resulting from spatiotemporal asynchrony ..............................  37 

2.4.2  Movement and decision-making in animals as key mechanism of coexistence .  39 

2.4.3  The effect of landscape structure on coexistence .................................................  39 

2.4.4  A reality check of our model assumptions ............................................................  40 



 

 
 

2.5  Additional information .........................................................................................................  43 

 

3  Resource asynchrony and landscape homogenization as drivers of virulence evolution . 51 

3.1  Introduction ............................................................................................................................  52 

3.2  Methods ...................................................................................................................................  56 

3.2.1  Model overview .....................................................................................................  56 

3.2.2  Pathogen dynamics ...............................................................................................  57 

3.2.3  Landscape structure and dynamics ......................................................................  58 

3.2.4  Process overview and scheduling ..........................................................................  59 

3.2.5  Model analysis .......................................................................................................  60 

3.3  Results ......................................................................................................................................  60 

3.3.1  Host-pathogen coexistence ...................................................................................  60 

3.3.2  Categorized infection trends .................................................................................  60 

3.3.3  Strain specific occurrence and dominance over time ..........................................  61 

3.4  Discussion ...............................................................................................................................  64 

3.5  Additional information .........................................................................................................  67 

 

4  The effect of spatial decision-making processes of moving hosts on pathogen 
transmission and patterns of spread in a social host .......................................................... 73 

4.1  Introduction ............................................................................................................................  75 

4.2  Methods ...................................................................................................................................  78 

4.2.1  Model overview .....................................................................................................  78 

4.2.2  Pathogen dynamics ...............................................................................................  79 

4.2.3  Host movement .....................................................................................................  79 

4.2.4  Process overview and scheduling ..........................................................................  80 

4.2.5  Pathogen transmission ..........................................................................................  80 

4.2.6  Landscape structure ..............................................................................................  80 

4.2.7  Model analysis .......................................................................................................  80 

4.3  Results ......................................................................................................................................  81 

4.3.1  Speed of pathogen spread (pattern 2) ...................................................................  82 

4.3.2  Relative comparison of host individuals per age class (pattern 1) .......................  85 



 

 
 

4.3.3  Epidemiological status of all individuals at landscape scale (pattern 3) ..............  87 

4.3.4  Landscape-wide distribution of infected individuals separated by  
pathogen strains ....................................................................................................  88 

4.4  Discussion ................................................................................................................................ 89 

4.4.1  Disease course of infected and immune over time (pattern 1) .............................  90 

4.4.2  Match and mismatch of simulated spatiotemporal patterns with real  
outbreak data (pattern 2) .......................................................................................  90 

4.4.3  Sampling scheme and the importance of standardized wildlife health  
monitoring .............................................................................................................  91 

4.4.4  Strain differentiation and pathogenic virulence over time .................................  91 

4.5  Additional information .......................................................................................................... 94 

 

5  General Discussion ............................................................................................................... 99 

5.1  Movement, seasonality, spatial structure and dynamic host density .......................... 102 

5.2  Pathogens in space and time – The evolution of virulence in spatially structured host 
populations .......................................................................................................................... 105 

5.3  Implications of global change for pathogen persistence and spread ........................... 107 

5.4  Patterns, processes and the effect of spatial decision-making ...................................... 109 

5.5  Conclusion and outlook ....................................................................................................... 112 

 

Acknowledgements ...................................................................................................................  119 

 

Appendix A - Supplementary Material for Chapter 2 ..................................................................  I 

A1  Model description (ODD protocol) .......................................................................................  II 

A2  Additional figures ................................................................................................................  XXI 

Appendix B - Supplementary Material for Chapter 3 .............................................................. XXV 

B1  Model description (ODD protocol) ................................................................................. XXVI 

B2  Additional figures ..............................................................................................................  XLVIII 

Appendix C - Supplementary Material for Chapter 4 ................................................................. LI 

C1  Model description (ODD protocol) ...................................................................................... LII 

C2  Additional figures ................................................................................................................ LXXI 

Declaration .............................................................................................................................  LXXIII 



 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



 

1 
 

  

  

 

 

 

 

 

 

CHAPTER 1 

GENERAL INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1  

2 
 

1  General Introduction 

Infectious diseases are a major threat to biodiversity and human health (Andersen et al., 2020; 

Patz et al., 2004; Reaser et al., 2021; Williams et al., 2021). Biodiversity loss is exemplified, among 

others, by the declining bird populations in north America caused by West Nile virus (LaDeau 

et al., 2007) or the global population decline of many amphibian species through 

chytridiomycosis infections (Fisher et al., 2009). Furthermore, more than half of the infectious 

diseases currently affecting humans are believed to be zoonotic in origin (Smith and Guégan, 

2010), with the recent SARS-CoV-2 pandemic (Andersen et al., 2020) as a testament to how 

devastating emerging zoonotic diseases can be to human health.  

Host-pathogen interactions at different spatial and temporal scales are the core drivers of 

disease dynamics. Here, global change (e.g. land-use change, climate change or habitat 

encroachment) has the potential to alter density, distribution and susceptibility of host 

individuals with strong implication for the severity and frequency of disease outbreaks (Patz et 

al., 2004; Wilcox and Gubler, 2005) and spillover events from wildlife to human populations 

(Allen et al., 2017; Morse et al., 2012; Rulli et al., 2017). Global change can increase spatial and 

temporal variation in environmental factors, such as the distribution of resources, and induce 

spatiotemporal mismatches between host life-history events and resource availability (Plard et 

al., 2014; Visser and Gienapp, 2019). Under the current context of global change, we need not 

only to understand disease dynamics but also how they might change in the future. 

Movement is the prime adaptive trait of animals to track environmental changes (Nathan et al., 

2008). At the same time, the decisions individuals make during movement lead to shifts in 

patterns of population density and distributions on a large scale (Hastings et al., 2011) as well as 

affecting contact rates at the local scale (Dougherty et al., 2018). For example, asymmetric 

contacts between infected individuals across age classes or space can lead to cycling of 

pathogens (Franz et al., 2018; Marescot et al., 2021). This in turn alters disease dynamics (Scherer 

et al., 2020). 

The aim of this thesis is to investigate how movement decisions linked with spatial and temporal 

variability of resources that affect host population dynamics (e.g. a mismatch between 

environmental conditions and host life-history) translate into different patterns of spread, 
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persistence, and evolution of pathogens (Figure 1.1). Movement, as the central host process and 

adaptive response mechanism to biotic and abiotic changes can be bottom-up influenced from 

resource distribution as an individual reaction towards tracking environmental cues (Jeltsch et 

al., 2013; Nathan et al., 2008). In this context, variations in resource availability and abundance 

influence individual movement and therefore, higher levels such as disease dynamics (Jeltsch 

et al., 2013; McLeod and Leroux, 2021; Radchuk et al., 2019). On the other hand, the importance 

of cascading top-down effects on ecological communities is well known (Ripple et al., 2014). Host 

movement and densities can be top-down regulated by pathogen caused mortality or altering 

behaviours (Anderson and May, 1979; Lafferty et al., 2008). Therefore, it is not only important to 

understand the bottom-up regulation (e.g. through landscape configuration and associated 

movement decisions) of host-pathogen systems but also to understand the direct effect (top-

down) that pathogens can exert on their host populations to gain a broader understanding of 

pathogen persistence and patterns of spread. However, the simultaneous inclusion of bottom-

up and top-down processes is a host-pathogen system is a novelty in eco-epidemiological studies. 

Many epidemiological models simplified important forces that are exerted on populations into 

a single transmission rate (Anderson and May, 1991) and neglected key processes such as spatial 

and temporal landscape variability or individual decision making. However, including complex 

processes and interactions is key to identify and disentangle important drivers of disease 

dynamics. 

In the following, I am going to introduce the importance of individual host decision-making 

processes (e.g. movement behaviour) and environmental fluctuations (e.g. seasonality) for 

disease spread and persistence. Furthermore, I will analyse how the evolution of pathogenic 

traits, such as virulence and transmission, can exert a strong pressure on host-pathogen systems, 

and I will emphasize the need for incorporating empirical data into epidemiological models. 

Lastly, I will introduce the host-pathogen system used in the following chapters of my thesis.  
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1.1  Moving forward: the relevance of individual-scale mechanisms for understanding 
infectious disease dynamics 

Mathematical mean-field models that assume homogeneous mixing of susceptible and 

infectious hosts without including spatial factors in the disease transmission process have 

contributed substantially to our understanding of infectious disease dynamics (Anderson and 

May, 1982; Hethcote, 2000; Kermack and McKendrick, 1927). One of the best known examples 

is the classical ‘SIR-model’ that simulates the overall number of susceptible (S), infected (I), and 

recovered (R) individuals in the population (Kermack and McKendrick, 1927). Those models 

assumed that all individuals behave identical and have the same probability for infection. 

However, the probability of infection is the result of the complex interplay of pathogen and host 

dynamics (Lloyd-Smith et al., 2005) in heterogeneous landscapes that often feature 

heterogeneous contact rates (Craft, 2015). Particularly, the inclusion of individual movement 

Figure 1.1: Conceptual framework of how bottom-up processes, such as seasonality and resource dynamics, feed back into 
individual movement decisions, and top-down processes, such as host mortality induced through varying levels of 
pathogenic virulence, also feed back into host movement decisions. Taken together, bottom-up and top-down processes 
affect the host-pathogen system and are mediated via movement in a complex interplay of contact rates, local disease 
dynamics and host density and distribution. Numbers indicate the chapter of this thesis focusing on these processes. 
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decisions into individual based eco-epidemiological models has shown to affect the predictions 

for pathogen spread and persistence in heterogenous landscapes (Scherer et al., 2020). The 

inclusion of individual movement in epidemiological models can decrease the possibility that 

pathogen transmission risk and epidemiological dynamics are mischaracterized and can 

therefore help to increase the predictability of future outbreaks (Wilber et al., 2022). 

Simulation models that aim at predicting realistic host-pathogen dynamics need to include the 

individual behaviour and life-history of host individuals (Evans et al., 2013). Especially in 

heterogeneous landscapes the host’s movement is decisive, because in the case of directly 

transmitted diseases, these infected host individuals can act as mobile links that connect 

separated sub-populations and transport the pathogen to and from those populations (Jeltsch 

et al., 2013).  

1.2  Movement, seasonality, and the dynamics of host-pathogen systems 

For the host individuals, the decision of when and where to move emerges from a complex 

combination of factors such as predator avoidance, resource availability or density of 

conspecifics (Nathan et al., 2008). The decision making process is, however, not uniform across 

a species but often shows remarkable individual plasticity due to differences in physiological 

condition, behaviour type or social status (Jeltsch et al., 2013; Morales et al., 2010; Nathan et al., 

2008). Differences in individual’s movement lead to variations in connectivity and contact 

networks of the host population (Taylor et al., 1993). Spatial and temporal heterogeneity of the 

landscape can restrict or facilitate movement between areas and result in a temporary increase 

in host density and subsequently contact rates under high resource conditions, or vice versa, 

when a lack of resources decreases host density (Altizer et al., 2006; Hossack et al., 2013; 

Meentemeyer et al., 2012). Hosts in heterogeneous landscapes move longer distances towards 

areas with higher resource availability and, after resources are no longer available due to 

seasonality, they move again to new areas (van Moorter et al. 2013). 

Seasonality, meaning predictable and cyclic changes of environmental factors, have long been 

known to exert strong pressure on populations (Fretwell, 2020). In this context, resource 

variability is a key driver of the density and distribution of host individuals over space and time 

(Altizer et al., 2006). For many species, the need for seasonal dynamics is likely to be the result 
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of evolutionary processes that stemmed from regular changes in resource availability (e.g. 

migratory birds, Rappole and Jones, 2003). The timing of seasonal dynamics is linked to seasonal 

environmental fluctuations (e.g. temperature) that affect, for example, prey abundance 

(Christian et al., 2007; Sigler et al., 2009) or the mating season (Conaway, 1971). These seasonal 

dynamics affect pathogen transmission in wild populations (Tonkin et al., 2017). For example, 

seasonal aggregation of migratory birds can increase the risk of the individuals to contract 

infectious diseases at their overwintering sites (Krauss et al., 2010; Waldenstrom et al., 2002), as 

highlighted by an outbreak of avian influenza (H5N1) among the wintering common crane 

(Grus grus) population in Israel that killed around 6000 individuals during winter 2021 

(Brainard, 2022). 

Mismatches in the seasonal dynamics can occur when an environmental cue (e.g. temperature) 

no longer predicts the timing of the biological event and can lead to a temporal shift of the 

optimal environmental conditions away from the biological event (Altizer et al., 2006). There is 

mounting evidence for mismatches increasing fitness costs e.g. in seasonally breeding birds, 

particularly when life-history lags behind peak food availability (Durant et al., 2007). 

Mismatches are also observed between Caribou (Rangifer tarandus) migration and the onset of 

the plant growing season at their target location (Post and Forchhammer, 2008) and can cause 

changes in reproductive patterns (longer or shorter breeding seasons) in wild boar (sus scrofa L; 

Brogi et al., 2021). Consequently, mismatches are likely to feed back onto host-pathogen 

interactions.  

Furthermore, environmental seasonal fluctuations have been shown to trigger outbreaks and 

range shifts in pathogens such as tick-borne pathogens, Zika virus or West-Nile virus 

(Marcantonio et al., 2015; Ostfeld and Brunner, 2015; Semenza and Suk, 2018). Global change 

drivers, like climate change or land use change, are likely to further increase the mismatches 

between resource availability and timing of the biological events (Durant et al., 2007) and can 

directly alter pathogen spread and persistence (Harvell, 2002).  

Despite the importance of pathogens for the population dynamics of wild animals in terms of 

population viability and the possibility of extinctions, knowledge about how environmental 

variation in space and time affect host-pathogen interactions is sparse (Bauer et al., 2009; 
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Meentemeyer et al., 2012; Webb et al., 2007). More recent studies have shown that seasonally 

occurring stress and increased contact rates in the eastern deer mouse (Peromyscus 

maniculatus) decrease immune response and facilitate pathogen transmission (Eleftheriou et 

al., 2021). Identifying the mechanisms that link environmental fluctuations and seasonal 

mismatches to disease dynamics can help to create predictive models and management 

strategies for controlling disease outbreaks in wildlife and humans.  

1.3  Where do we go from here? -or- the evolution of pathogenic virulence in a social 
host 

Host-pathogen systems are not only bottom-up driven by resources of the host, but also through 

the top-down effects the pathogen itself exerts on the host population. While the spread of a 

pathogen within a landscape depends largely on biotic and abiotic landscape features and host 

contact rates with patterns arising from local transmission processes, density and distribution 

of susceptible hosts, or environmental variation (Lambin et al., 2010), theory also predicts a 

direct link from host spatial structure to the effectiveness of a pathogen and the evolutionary 

trajectory of pathogen traits, such as virulence and transmission (Parratt et al., 2016). The 

effectiveness of a pathogen can be described as the ability to persist and spread within its host 

population (Cressler et al., 2016). Pathogenic virulence is often defined as the ability of a 

pathogen to harm its hosts (Hudson, 2002). A natural conclusion would be that a most effective 

pathogen would not harm its host, i.e., become avirulent. However, virulence is subject to a 

variety of evolutionary trade-offs.  

The transmission-virulence trade-off hypothesis states that an increase in strain transmission 

causes shorter infections due to higher lethality (Alizon and Michalakis, 2015; Anderson and 

May, 1982). Particularly the evolution of virulence along such trade-offs has received a 

tremendous amount of attention in the scientific literature (Cressler et al., 2016; Day, 2003; Day 

and Proulx, 2004). One important aspect when looking at the epidemiological dynamics of a 

pathogen is the dynamics of its resource, i.e., the host population itself. Epidemiological 

dynamics of a pathogen are closely related to those of its host (Cressler et al., 2016; Lion and 

Gandon, 2015). This is evident when looking at the early stages of an epidemic where the 

abundance of susceptible hosts is at its peak. Due to these high numbers, pathogenic virulence 

has shown to be at its peak because enough susceptible hosts are available, and tends to decrease 
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towards the end of the epidemic; or when reaching endemic equilibrium, i.e. a state where influx 

of new susceptible individuals is in balance with the mortality caused by a pathogen, which 

prevents the pathogen from becoming extinct (Alizon et al., 2009). 

This linkage between susceptible host availability and mortality makes clear that spatial 

structuring of the underlying habitat also becomes an important factor in the evolution of 

virulence (Lion and Boots, 2010; Messinger and Ostling, 2009). Highly virulent pathogens can 

rapidly deplete the pool of susceptible host, decreasing their chance of further transmission and 

resulting in the local extinction of host clusters. Less virulent pathogens could increase in 

transmission capability when susceptible host clusters are depleted more slowly (Cressler et al. 

2016; Lion and Boots 2010; Messinger and Ostling 2009). 

Many theoretical models of virulence evolution in a classical adaptive dynamics framework rely 

on the assumption that mutation happens over evolutionary timescales and that new strains 

can only occur after a dominant strain has reached equilibrium (Dieckmann et al., 2005). 

However, those assumptions are rarely applicable to host-pathogen systems in nature due to 

their simplicity. Natural host-pathogen systems often undergo transient dynamics, for example 

through temporal and spatial changes in landscape structure that alter host contact rates. To 

understand how outbreaks progress through space and time, we need to account for the 

evolution of pathogen traits in combination with the dynamic processes in spatially structured 

host populations. 

1.4  How past outbreaks can help to progress our predictions about future epidemics 

While a lot of insight can be gained from studying past epidemics and pathogen outbreaks, it is 

often difficult to obtain long-term field data from such events. Tracking diseases in wildlife 

populations is an inherently difficult task. Wild animals are not constrained by borders and can 

move long distances, hence most infectious disease outbreaks are detected passively (e.g. 

through found carcasses or hunted individuals), usually after a large number of individuals has 

become infected (Morner et al., 2002). Even when such data can be obtained, it is very difficult 

to disentangle the complex interactions of animal movement decisions, density dependence, 

landscape heterogeneity, changing pathogenic virulence and human interference, like 
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vaccination. To address this issue, simulation models have been long since recognised as an 

important tool in epidemiology (Keeling and Rohani, 2008).  

Data gathered from real outbreaks can provide patterns on which such simulation models can 

be tested and verified. Pattern oriented modelling is an approach that uses simulation models 

to explain an observed pattern at the population level that is based on underlying processes at a 

lower level of organisation, e.g. the individual (Grimm et al., 1996; Wiegand et al., 2003). The 

patterns and processes in observed outbreaks are often poorly understood due to fast pace, 

chaotic nature of the data and monitoring challenges during such disease outbreaks (Artois et 

al., 2009; Guberti et al., 2014). Pattern oriented modelling can help to retroactively fill knowledge 

gaps from past outbreaks by explaining how real systems respond to internal and external 

changes (Grimm et al., 2005). In consequence, insights gained from these models can help to 

create predictive models that could help preventing future epidemics through targeted 

management solutions.  

1.5  Classical swine fever in wild boar – a dynamic model system with multiple 
interactive processes 

The European wild boar is an ideal model species for disentangling the complex processes 

behind host-pathogen interactions. It is a group-living social species with sex- and age-

differentiation in movement patterns and space use (Boitani et al., 1994; Morelle et al., 2015). 

Wild boars have a large distribution area across Eurasia with introduced populations in many 

other regions (Apollonio et al., 2010), and are currently increasing in numbers across Europe 

(Acevedo et al., 2006; Bieber and Ruf, 2005; Ruiz-Fons et al., 2008). They are considered a key 

reservoir species for a variety of infectious disease such as Classical SwineFfever (CSF), African 

Swine Fever (ASF), and diseases with zoonotic potential such as hepatitis E or brucellosis (Li et 

al., 2005; Melzer et al., 2007; Rossi et al., 2005; Ruiz-Fons et al., 2008). Due to the increasing 

density of wild boar, future outbreaks are likely to increase in frequency and severity. Although 

some pathogens, like CSF or ASF, are harmless to humans, transmission to domestic pigs can 

have profound socio-economic and ethical consequences (Halasa et al., 2016), and zoonotic 

transmission of other pathogens infecting humans has a direct effect on human health (Meng 

et al., 2009).  
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CSF is a highly-contagious directly-transmitted viral disease infecting animals of the Suidae 

family and is prevalent in many areas of the world that host wild boar (Paton and Greiser-Wilke, 

2003). The risk of susceptible individuals to be infected with CSF is regulated through both host 

population-dynamics and viral properties. On the host population side, resources such as food 

or shelter shape wild boar density and distribution in space and time (Kramer-Schadt et al., 

2007; Rossi et al., 2005). On the pathogen side, changes in virulence and transmission capacity 

of individual strains can alter host survival and pathogen persistence times (Blome et al., 2017; 

M. Lange et al., 2012). Additionally, demographic differences in susceptibility of host individuals 

(Artois et al., 2002) and individual movement behaviour (Scherer et al., 2020) shape and scale of 

outbreak dynamics. While the importance of these regulatory factors by themselves has been 

widely recognized, their combined effect and interactions, that ultimately explain pathogen 

persistence within a population, are not yet fully understood.  

Many of the individual aspects of CFS persistence and spread in wild boars have been studied 

in the past. Scherer et al. (2020) have, for example, shown how feedback from the spatial 

configuration of landscapes through individual movement can drive pathogen persistence and 

spread. They were able to show how mechanistic movement rules, based on external factors 

such as resource heterogeneity, increased disease persistence. Furthermore, the existence of 

long-term data from a CSF outbreak in Mecklenburg-Vorpommern in norther Germany in the 

1990’s offers the rare opportunity to combine real epidemiological data with simulation studies. 

During this outbreak, seasonal reproductive peaks and demographic characteristics were shown 

to play an important role in CSF infection risk, with piglets suffering from higher incidence 

compared to older individuals (Scherer et al., 2019). However, due to wild boar social structure, 

piglets are not likely to spread CSF over large areas (Kramer-Schadt et al., 2007; Rossi et al., 2011), 

hence other factors drive the transmission and persistence of the disease. The combination of 

previous studies, both theoretical and empirical, on different aspects and drivers of CSF 

infection in wild boar populations, form an ideal starting point to expand upon and study the 

complex interactions in dynamic host-pathogen systems in depth.  
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1.6  Understanding how spatial and temporal variability of resources drive 
transmission, persistence, and evolution of pathogens 

My thesis aims to investigate the drivers of disease dynamics in both theoretical and real 

settings using CSF in wild boar as a model system. Specifically, my research questions are how 

spatiotemporal variation on host population through synchronous and asynchronous resource 

seasonality and individual movement feed back onto host-pathogen interactions, and how the 

evolution of pathogen traits affect host-pathogen coexistence and pathogen patterns of spread. 

In the following chapters I will use a complex spatially explicit individual- based eco-

epidemiological model in combination with long-term CSF outbreak data to answer the 

questions raised above. 

In chapter 2, I analyse the bottom-up effects of spatiotemporal variation and temporal 

mismatches between biological events and resource availability in a social host on pathogen 

persistence and patterns of spread. To that end, I extended a single strain eco-epidemiological 

model that accounted for spatially-explicit host movement simulating the spread of CSF in a 

wild boar population (Kramer-Schadt et al., 2009; Lange et al., 2012a, b; Scherer et al., 2020) , to 

simulate seasonal landscape dynamics. Seasonality was included in the model through changing 

resource availability and associated processes, such as increased mortality of individuals under 

low resource conditions and movement away from low resource availability in certain 

movement types. I tested a range of temporal mismatch scenarios in complex landscapes from 

complete overlap of peak resource availability and the timing of biological events to complete 

mismatch between them, when peak resource availability was completely shifted away from the 

timing of biological events. Additionally, I imposed both mechanistic (e.g. movement dependent 

on the underlying resource landscape) and phenomenological (e.g. correlated random walk) 

host movement types (as in Scherer et al. 2020) on the study system. 

In chapter 3, I address how the top-down process of pathogen trait evolution in spatially 

structured social host populations in dynamic resource landscapes affects host-pathogen 

coexistence in global change scenarios. I further extended the eco-epidemiological model used 

in chapter 2 by adding a multi-strain outbreak system and the evolution of virulence along a 

theoretical virulence-transmission trade-off where high virulence (i.e., short host survival time) 

increases with transmission capability. I discuss how temporal mismatches between resource 
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availability and biological events affect host-pathogen coexistence and pathogen spread 

considering an evolving pathogen. 

In chapter 4, I synthesize the knowledge gained from the previous chapters by comparing the 

outcomes of the eco-epidemiological model scenarios to patterns gathered from a CSF outbreak 

data analysis in the region of Mecklenburg-Vorpommern, North-East Germany (Scherer et al., 

2019). Here, I evaluate the model scenarios against real data and analyse the development of the 

CSF outbreak. I further modified the model used in chapter 3 by adding realistic landscape maps 

and accounting for individual movement in the evolution of virulence. I asses the effect of 

decision-making processes in host movement on disease outbreak patterns, persistence, and 

transmission on an individual and regional level based on a realistic scenario.  

In chapter 5, I conclude with a general discussion where I synthesize the results of the chapters 

2, 3 and 4 by integrating them into existing concepts and frameworks. I compare my findings to 

previous models in disease ecology and highlight my contribution the current knowledge in 

disease dynamics. I discuss the implications of my results regarding population-level 

consequences of host movement decisions and pathogen virulence for disease outbreaks, as well 

as how insights gained from disentangling the mechanisms behind host-pathogen interactions 

can help in predicting and preventing future zoonotic pandemics. 
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2  Movement can mediate temporal mismatches between resource 
availability and biological events in host-pathogen interactions 

 

Abstract: Global change is shifting the timing of biological events, leading to temporal 

mismatches between biological events and resource availability. These temporal mismatches 

can threaten species’ populations. Importantly, temporal mismatches not only exert strong 

pressures on the population dynamics of the focal species, but can also lead to substantial 

changes in pairwise species interactions such as host-pathogen systems. We adapted an 

established individual-based model of host-pathogen dynamics. The model describes a viral 

agent in a social host, while accounting for the host's explicit movement decisions. We aimed 

to investigate how temporal mismatches between seasonal resource availability and host life-

history events affect host-pathogen coexistence, that is, disease persistence. Seasonal resource 

fluctuations only increased coexistence probability when in synchrony with the hosts’ biological 

events. However, a temporal mismatch reduced host-pathogen coexistence, but only 

marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the 

spatial distribution of infected hosts. It shifted from an even distribution under synchronous 

conditions toward the formation of disease hotspots, when host life history and resource 

availability mismatched completely. The spatial restriction of infected hosts to small hotspots 

in the landscape initially suggested a lower coexistence probability due to the critical loss of 

susceptible host individuals within those hotspots. However, the surrounding landscape 

facilitated demographic rescue through habitat-dependent movement. Our work demonstrates 

that the negative effects of temporal mismatches between host resource availability and host 

life history on host-pathogen coexistence can be reduced through the formation of temporary 

disease hotspots and host movement decisions, with implications for disease management 

under disturbances and global change. 
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2.1  Introduction 

Environmental fluctuations over time, like diurnal differences in temperature, seasonal 

changes of climate, or land-cover modifications due to agricultural practices, can affect species 

communities in many ways. Many species have adapted to these conditions, so that their 

biological events match the environmental fluctuations. For example, the onset of mating or 

breeding (Conaway, 1971), the timing of migration (La Sorte et al., 2015; Mayor et al., 2017), or the 

timing of prey occurrence (Christian et al., 2007; Sigler et al., 2009) is fundamentally linked to 

regularly occurring seasonal fluctuations in resource availability such as food or shelter. In 

many cases, such biological events of species match the regularly occurring changes in the 

environment, like the onset of spring, because they are triggered by a reliable environmental 

cue, for example, day length. Mismatches occur when the cue used no longer predicts the timing 

of the biological event. This mismatch leads to a steady temporal shift of the optimal 

environmental conditions away from the biological event and can exert strong pressures on 

population dynamics (Altizer et al., 2006). In marine ecology, mismatches have been found to 

affect stock recruitment (e.g., for Antarctic krill, Groeneveld et al., 2015). In terrestrial systems, 

mismatches were demonstrated to increase fitness costs as a result of hatching times (Thomas 

et al., 2001) and laying dates (Winkler et al., 2002), lagging behind the peak of food availability 

in seasonally breeding birds (Durant et al., 2007; Schweiger et al., 2008, 2012). 

These mismatches affect not only individual species’ performance but also pairwise or 

multispecies interactions such as the coexistence of a predator and its prey, or a host and its 

pathogen (Hossack et al., 2013; Kharouba et al., 2018; Mayor et al., 2017; Tonkin et al., 2017). With 

many species being unable to adapt quickly enough –if at all– to a shift of environmental 

conditions (Bellard et al., 2012; Radchuk et al., 2019; Visser, 2008), it becomes increasingly 

important to understand the long-term community consequences for interacting species under 

global change.  

Within-year seasonality is one of the strongest and most-studied forms of periodically occurring 

environmental fluctuation affecting communities. Seasonality can be defined as an annually 

reoccurring change of one or more abiotic variables, such as temperature or precipitation 

(Kharin et al., 2013). These naturally occurring fluctuations are characterized by a positive 
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autocorrelation, meaning that the closer measurements are in time, the more similar will they 

be on average compared to temporally distant measurements (Dornelas et al., 2013; Koenig, 1999; 

Legendre, 1993). Temporal within-year seasonality is similar in its effects to spatial heterogeneity 

within landscapes as it creates temporary niches of varying levels of resource availability 

(Tonkin et al., 2017; Williams et al., 2017). While both temporal and spatial fluctuations can have 

stronger or weaker effects by themselves, they generally work in concert (Durant, 1998), leading 

to spatiotemporal autocorrelation in resources availability within years. 

This spatiotemporal autocorrelation in the environment leads resource levels to vary across the 

year, and may increase population density when resource availability is highly coincident with 

a biological event, for example, the timing of birth peaks (Altizer et al., 2006; van Moorter et al., 

2013). In this case, environmental and biological events are synchronized. Drivers like global 

change (e.g., climate or land-use change) can increase the mismatch between resource 

availability and timing of the biological event (Durant et al., 2007). A subsequent decline in 

population size could lead to a decreased coexistence of directly affected and any dependent 

species. In contrast, such an asynchronous temporal resource availability, if occurring on 

landscapes with heterogeneous resource availability, could offset the negative effect of the 

temporal mismatch on coexistence by creating local patches with suitable conditions. This 

could further lead to a metacommunity-like structure with increased metacommunity 

persistence (Duncan et al., 2013). 

We here use host-pathogen interactions as a model system to explore the consequences of 

temporal mismatch on disease dynamics under global change. Global change increasingly 

affects the phenology of resources, with ensuing consequences for the host's life history and its 

large-scale movements and effects of pathogens on host survival and reproduction on the other 

hand (Semenza & Menne, 2009; Semenza & Suk, 2018). 

Climactic fluctuations have triggered outbreaks and facilitated range shifts in pathogens such 

as West Nile virus, Zika virus, Borrelia bacteria, or other tick-borne pathogens (Marcantonio et 

al., 2015; Ostfeld & Brunner, 2015; Semenza & Suk, 2018, see also review in Altizeret al., 2013). 

This highlights the importance of environmental conditions in understanding disease 

dynamics. In this context, resource variation is an essential driver of the distribution of 
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individuals within a host population over space and time. The transmission of many infectious 

agents depends on direct contact between infected and susceptible hosts, mediated by their 

movement decisions (Tracey et al., 2014). Hence, understanding how host-pathogen interactions 

are affected by mismatches on a local spatial and temporal scale is important to implement 

preventive strategies and develop predictive models. 

While there have been studies tackling the effect of landscape heterogeneity on pathogen 

transmission where limited high-resource areas can lead to transmission hotspots (Benavides et 

al., 2012; Nunn et al., 2014) as well as studies considering individual movement (Lane-deGraaf et 

al., 2013; Scherer et al., 2020; Tracey et al., 2014), very few studies take asynchronous effects 

between resource levels and host life-history events into consideration. Additionally, these few 

exceptions mainly focus on the effects on vector lifecycles, for example, for ticks and mosquitoes 

(Estrada-Peña et al., 2014; Wang et al., 2016). Hence, there is a lack of theoretical studies linking 

the direct and indirect effects of global change-induced temporal mismatches on host-pathogen 

coexistence and dynamics through multiple scales, for example, spatial and temporal 

heterogeneity in resource availability and individual host movement (Meentemeyer et al., 2012; 

Rees et al., 2013; White et al., 2018a). 

Mechanisms underlying such a mismatch could lead to an increase, but also to a decrease in 

host-pathogen coexistence: On the one hand, when applying autocorrelated temporal resource 

dynamics to a spatially heterogeneous landscape, transmission hotspots could form in areas that 

have higher resource availability than the surrounding landscape. This would facilitate 

pathogen persistence in those hotspots and subsequently enable the pathogen to be transferred 

back to other host subpopulations after they have recuperated from low resource conditions 

(Duncan et al., 2013). On the other hand, if the resource availability changes randomly, meaning 

there is neither spatial nor temporal correlation in resource availability, the reduction of 

resources can lead to an immediate and severe drop in host density. Subsequently, such a drop 

in host density could lead to pathogen extinction. (Altizer et al., 2006; Tonkin et al., 2017). 

We investigated the effect of a temporal lag in resource availability leading to a temporal 

mismatch between resource availability and the host reproduction probability on pathogen 

persistence. Asynchrony between the resource availability and the host reproduction 
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probability effectively creates a cascading effect from the resource landscape through host 

survival, host movement decisions, and resulting host density to pathogen transmission and 

survival (Figure 2.1). We study this propagating effect of a temporal mismatch in a bottom-up 

driven, interdependent system where the pathogen is dependent on the host, which in turn is 

dependent on the resource. In detail, we investigate how a constantly shifting temporal lag in 

peak resource availability away from the timing of host birth events affects host-pathogen 

coexistence. To this end, we used a modified version of an existing spatially explicit individual-

based host-pathogen model of a group-living social herbivore, that is, classical swine fever (CSF) 

virus in wild boar (Sus scrofa) (Kramer-Schadt et al., 2009; Scherer et al., 2020).   

 

 

Figure 2.1: Cascading effect from the resource landscape (a) through the dynamic resource level of each single habitat cell (b) 
and the host population dynamics (c) that can be synchronous, asynchronous (shifted by tlag) (d), or random (e) in time, 
respectively, to each other. The resource level at specific points in time may influence host survival (f) and movement decisions 
(g) that may alter host population density distribution (h) and subsequently host-pathogen interactions through contact rates 
and transmission (i) before ultimately accentuating scenarios that allow for coexistence (j). 

 

We hypothesized that a temporal mismatch alters disease dynamics depending on the intensity 

of the mismatch between environmental resource availability and host life-history events and 

that movement can mediate or reverse the effects of asynchrony. In accordance with theory, we 

expect that unpredictable random changes in host resource availability over time, for example, 

induced by agricultural land-use practices like harvesting (Ullmann et al., 2018, 2020) or 

hunting, result in low coexistence probability due to increasing chance events, leading to higher 
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disease extinction (Melbourne & Hastings, 2008). In contrast, seasonality increases coexistence 

probability (Altizer et al., 2006). However, increasing asynchrony between seasonal resource 

availability and host life-history events will lead to a decrease in host-pathogen coexistence. 

Movement can reverse these processes by bridging spatiotemporal troughs in local host density, 

thereby increasing disease persistence. We discuss our results in terms of consequences for 

disease persistence under climate and land-use change conditions that may be provoked by 

increasing asynchrony of relevant time scales. 

 

2.2  Methods  

2.2.1  Model overview  

We used a spatially explicit individual-based eco-epidemiological model developed by Scherer 

et al., (2020). It is based on earlier models only considering neighborhood infections developed 

by Kramer-Schadt et al., (2009) and Lange et al., (2012a,b). The model by Scherer et al., (2020) 

relies on individual movement decisions of host individuals, that is, long-distance roaming 

movement of males (hereafter termed “movement”), a process important for disease 

transmission. We further modified the model by adding spatiotemporal landscape dynamics 

representing changing resource availability, a response of movement decisions to that 

landscape and a resource-based mortality. A complete and detailed model description following 

the modified ODD (Overview, Design concepts, Detail) protocol (Grimm et al., 2006, 2020) is 

provided in the supplementary material (Appendix A1), and the model implementation is 

available in the Zenodo Database (Kürschner et al., 2021). 

Overall, the model comprises two main components, a host life-history model and an 

epidemiological pathogen model. Host individuals are characterized by sex, age, location, 

demographic status (residential, group split of subadults and resource-based displacement to 

the neighbouring cells, and male long-distance roaming movement), and an epidemiological 

status. The latter is defined by an SIR epidemiological classification (susceptible, infected, and 

recovered; Kermack & McKendrick, 1927). Recovered individuals gain lifelong immunity and 

can pass on temporary immunity via maternal antibodies to their offspring. The pathogen 

model alters host survival rates, reproductive success, and infection length given its virulence. 
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2.2.2  Landscape structure 

The landscape structure is comprised of a spatial grid of 1,250 2 km × 2 km cells each representing 

the average home range of a wild boar group (Kramer-Schadt et al., 2009), totalling a 100 km × 

50 km landscape. The landscape is a self-contained system without any outside interaction or 

movement beyond the landscape border. Each cell is characterized by a variable resource 

availability (habitat quality) that is expressed as female host breeding capacity and that 

translates directly into possible group size, with the minimum being one breeding female per 

group to a maximum of nine. The initial resource availability was calibrated to achieve the 

reported average wild boar density of five breeding females per km2 (Howells & Edwards-Jones, 

1997; Melis et al., 2006; Sodeikat & Pohlmeyer, 2003). We investigated several landscape 

scenarios of varying spatial complexity, ranging from a fully random landscape structure to 

different degrees of random landscape clusters generated in R (R Core team, 2019) using the 

NLMR package (Sciaini et al., 2018) while keeping the mean female breeding capacity constant 

at 4.5 females across the different landscapes, where all landscape cells, including the ones that 

are not suitable as habitat, are considered (Supplementary material Appendix A: Figure A4). 

The spatiotemporal landscape dynamics are superimposed on the different types of landscapes, 

and the dynamics are designed to mimic seasonal changes by gradually increasing and 

decreasing resource availability. Resource availability in each cell increases in 5-week intervals 

for approximately 25 weeks from the beginning of the year and then declines in 5-week intervals 

for the following 25 weeks. Resource availability translates directly into the breeding capacity 

for each cell and cannot, during the increase, exceed the maximum breeding capacity of nine 

females and cannot decrease below one female during the decrease period. A breeding capacity 

< 1 could lead to inflated extinction scenarios, depending on the clustering of the landscape, 

through the creation of artificial barriers that would isolate host groups and prevent the 

pathogen from being spread. In case of wild boar, the increase or decrease of resource 

availability that occurs periodically throughout the year results in a variation of breeding 

females with an average over time being 4.5 females supported by one cell. Throughout each 

simulated year, resource availability changes in parallel to the host reproduction probability 

(Figure 2.1d). The resource availability is then temporally shifted (tlag) away from the host 

reproduction probability by 25% increments up to a full mismatch at 100%. A higher level of 
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mismatch reflects an increase of severity in global change. Additionally, we implemented a 

nonseasonal, unpredictable landscape dynamic, where the resource availability changes 

randomly (a random integer between one and nine) every five weeks while maintaining a mean 

of 4.5 throughout the landscape (so-called “white noise,” Figure 2.1e). 

2.2.3  Process overview and scheduling 

The temporal resolution equals the approximate CSF incubation time of one week (Artois et al., 

2002). The following procedures were scheduled each step in the following order: pathogen 

transmission, male host roaming movement, natal host group split of subadult males and 

females and subsequent resource-based displacement to the neighbourhood, host reproduction, 

host mortality (disease-based and resource-based), host aging, and landscape dynamics. Group 

split of subadult males and females under no mismatch conditions was limited to week 17 and 

week 29 of the year, respectively, representing the typical dispersal time for each sex. The order 

of these procedures was established in previous versions of the models, and changes of the order 

were not shown to have significant implications to the model outcome.  

2.2.4  Main processes 

Pathogen transmission – All transmission processes remain unchanged from the model 

implementation by Scherer et al., (2020). The course of the disease is determined by an age-

specific case fatality rate and an exponentially distributed infectious period for lethally infected 

individuals. Transient infected hosts have an infectious period of one week and gain lifelong 

immunity (Dahle & Liess, 1992). Infection dynamics emerge from multiple processes: within 

group transmission, movement-based transmission, and individual age-dependent courses of 

infection. Within groups, the density-dependent infection pressure is determined by 

transmission chance and the number of infectious group members. For roaming males, under 

movement-based scenarios, individual per-step transmission probability is calculated as the 

transmission rate divided by the movement distance the individual has travelled to account for 

the time an individual spends in each cell (Scherer et al., 2020). 

Male host roaming movement – Our model uses two of the explicit intercell movement rules 

for males implemented in Scherer et al., (2020) (habitat-dependent movement: HDM; 

correlated random walk: CRW) as well as a setup without explicit movement (neighborhood 
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infection). Individuals performing a CRW display a general tendency to continue in the same 

direction as the previous movement without taking landscape structure or resource availability 

into consideration (Codling, Plank & Benhamou, 2008; Kareiva & Shigesada, 1983). The decision 

process of individuals following the HDM rule is related to the underlying landscape directly 

by tending to move toward landscape cells with higher resource availability. In general, 

individuals were moving up to an individual weekly maximum movement distance or 

supplementary rules led to the decision to stay in the current cell. Furthermore, individuals 

move from cell to cell without within-cell movement. 

Group split of subadults – We implemented two distinct responses to changing resource 

availability. First, if the theoretical maximum number of individuals in a group is higher than 

the number of individuals currently present in the group, then the group does not split. 

However, if low resource availability reduces the theoretical maximum group size below the 

number of individuals currently in the group, individuals above the current capacity will try to 

leave the group and establish in an empty neighbouring cell based on resource availability. The 

selection of individuals to leave the group is dependent on the age of the individual, where 

young individuals will leave the group first. 

Host reproduction – Female hosts reproduce once a year, depending on their age class. The 

number of breeding females is determined by each habitat cell's resource-dependent breeding 

capacity. Individual female hosts are checked for their breeding status on a weekly basis to then 

reproduce depending on the season with a peak in March and no reproduction in winter from 

October to December. 

Host mortality – Another functional response to resource availability is increasing age-

dependent mortality over time. Groups that exceed the theoretical maximum group size have 

increased mortality depending on the difference between actual group size (number of 

individuals) and theoretical maximum group size. Furthermore, the maximum survival time for 

adults in groups above their respective maximum group size was capped at assumed levels 

between 5 and 20 weeks (for details, see ODD Appendix A1). 

Landscape dynamics with temporal lag – We modelled several levels of temporal lags (tlag; 

Figure 2.1d). We gradually increased the level from 0% (no change) to 100% (full mismatch 
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between host population dynamics and resource availability) in 25% increments. Each 25% 

increment represents 5 weeks in the simulation. Therefore, the peak in resource availability is 

shifted 5 weeks away from the host species reproductive peak in each consecutive increment up 

to the maximum of approximately 25 weeks. The 25-week (or 100%) scenario represents the full 

mismatch of host population dynamics and resource availability. The scenario with 0% tlag was 

used as control for temporal shift scenarios.  

2.2.5  Model analysis 

Each simulation was run for 50 years (2,600 weeks) in total, with the virus being randomly 

released in the second year (weeks 53-104). The virus was introduced to one out of a set of 

predefined cells in the centre of the upper row with a resource availability above the mean of 4.5 

during time of release. We ran 25 repetitions per combination of movement rule (3 levels: CRW, 

HDM, and no roaming movement as a control scenario for movement rules), landscape scenario 

(4 levels: small clusters, medium clusters, large clusters, and random as a control scenario for 

the landscape structure), and degree of mismatch (5 levels: tlag 25%, tlag 50%, tlag 75%, tlag 100%, 

and tlag 0% as a control for mismatch). We analysed proportional coexistence probability (Pcoex) 

estimated over each block of 25 repetitions by counting the times both host and pathogen 

survived during the simulations. Furthermore, for simulations where coexistence was not 

achieved, we measured the time to pathogen extinction (text). Due to the spatial variability of 

clusters throughout the landscape, the overall densities of hosts and pathogens varied too little 

across the different landscapes and scenarios to provide more detailed insight, while measuring 

local per-cell densities was beyond the scope of the study. Therefore, we also analysed the 

spatiotemporal distribution of infected hosts in the landscape by recording the number of 

timesteps an infected host was present in each landscape cell. Next, we applied the 

autocorrelation function (acf) at lag 2 to the frequency distribution of the cumulative time the 

pathogen was present in each landscape cell, so as to characterize the amount of time and 

proportion of the landscape with pathogen presence in the different scenarios. The higher the 

value of acf, the more similar is the cumulative time with pathogen presence across all the cells 

in the landscape. On the contrary, a low acf at the following timestep (lag 2) indicates that the 

cumulative time of pathogen presence differs among the cells across the landscape, more 
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precisely, that very few cells have the pathogen present, whereas the majority of cells never has 

an infected host present.  

 

2.3  Results 

2.3.1  Host-pathogen coexistence and disease persistence 

The coexistence probability (Pcoex) was lower in the two scenarios with roaming movement 

compared to the movement control (scenarios without roaming movement, Figure 2.2). 

Importantly, in both scenarios with movement the coexistence also decreased with increasing 

temporal mismatch (tlag) and increasing landscape homogeneity (large clusters). That means, in 

contrast to our predictions, movement decreased coexistence or pathogen persistence. The 

decrease in Pcoex was however, more severe in scenarios with random movement (CRW) where 

Pcoex at tlag 100% decreased to 24% from 96% in the control (tlag 0%; i.e. no mismatch) in large-

cluster landscapes compared to a Pcoex decrease to 48% from 92% in the control in similar 

scenarios with habitat dependent movement (HDM). On average, over all landscape 

configurations, Pcoex at tlag 100% decreased to 45% with CRW, 73% with HDM and 91% in the 

movement control. In general, the control for temporal mismatch showed a Pcoex between 100 

and 92% for CRW, between 100 and 96% for HDM and 100% in movement control scenarios 

(no roaming movement). Random landscape dynamics yielded a Pcoex of 0% in all landscape- 

and movement scenarios.  
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Figure 2.2: Coexistence probability (Pcoex) estimated as the proportion of simulation runs in which both host and pathogen 
survived (color gradient). Pcoex is grouped by three types of applied movement rules (correlated random walk–CRW, habitat-
dependent movement–HDM, and no roaming movement (control)) and four different landscape configurations (large, 
medium, and small clusters and random configuration) along an increasing temporal mismatch (0%–100%) including a random 
dynamic (control) 

 

2.3.2  Pathogen extinction time  

We assessed the mean pathogen extinction time for simulations with Pcoex below 100% (Figure 

2.3). For most scenarios, the pathogen went extinct around the time of pathogen release. As an 

exception to that, the tlag 75% scenarios with CRW movement had a higher text then the other 

scenarios. Notably, for both types of movement (CRW and HDM) text was shorter at tlag 100% 

when compared with the other tlag scenarios. That means, very restricted or directed movement 

as in the HDM does considerably delay pathogen extinction to high tlag scenarios. Early onset of 

many disease clusters, as with CRW, again synchronized the outbreak temporally across the 
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landscape, leaving no high-density host cluster behind for bridging infections especially when 

the host peak density is completely mismatching peaks in resource availability (i.e. tlag = 100%). 

 

 

Figure 2.3: Mean log pathogen extinction times for all simulation scenarios where the pathogen went extinct separated for 
movement scenarios (CRW– correlated random walk, HDM– habitat-dependent movement, and no roaming movement 
(control)), landscape configuration, and temporal shift (tlag). The number of extinct runs (gradient and size) is relative to the 
25 total runs that were conducted per combination of movement, landscape, and tlag. The number above the points is the 
standard deviation of the log mean pathogen extinction time, where applicable. 

 

2.3.3  Spatial patterns in coexistence  

To assess the effects of resource availability on host survival, host movement and pathogen 

survival, we explored the spatial distribution of infected hosts over the course of the simulations 

where coexistence was achieved. We found highly similar spatial patterns across all landscape 

scenarios, thus we here use the medium-cluster landscape as an example case in the following. 

For scenarios using the CRW movement rule we saw a decrease in acf (autocorrelation function) 

at lag 2 with increasing tlag from 0.55 at tlag 0% to 0.45 at tlag 50% (Table 2.1). This decrease in acf 

means that with an increasing tlag there were fewer cells with similar cumulative time of 

pathogen presence, i.e. the cumulative time with pathogen presence differed increasingly 
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among the cells. Such a difference among the cells in the cumulative time with pathogen 

presence increased further for the scenarios with tlag 100% as indicated by acf 0.02, meaning that 

only a small fraction of the landscape carried the infected hosts, but a large number of the grid 

cells were either never infected or only for short periods of time. Figure 2.4 shows an example 

for the spatial clustering for the CRW movement scenario; more detailed figures for all 

movement and landscape scenarios can be found in the supplementary material (Appendix A2: 

Figure A5-A7). The frequency distribution of the cumulative time the pathogen was present in 

each landscape cell (Figure 2.5a) indicates that, in scenarios with tlag 75 and 100% compared to 

the scenarios with low tlag, the infected hosts were present in only a small fraction of the 

landscape for an extended period. In most of the other parts of the landscape, infected hosts 

were only present for a short duration, or were not present at all. 

 

 

 

 

 

 

 

 

 

 

Movement tlag ci +/- acf lag 2 
CRW 0 0.51 0.55 

 25 0.46 0.49 

 50 0.54 0.45 

 75 0.51 0.32  
100 0.60 0.02 

HDM 0 0.60 0.19 

 25 0.49 0.25 

 50 0.60 0.09 

 75 0.60 0.13 

 100 0.52 0.01 

No roaming   0 0.60 0.12 

 25 0.50 0.24 

 50 0.54 0.34 

 75 0.54 0.24 
 100 0.52 -0.02 

Table 2.1: Acf (autocorrelation function) values at lag 2 for all movement scenarios (CRW– correlated random walk, 
HDM–habitat dependent movement, and no roaming movement (control)), and temporal shift (tlag) combinations 
including the 95% confidence interval (ci). 
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Figure 2.4: Spatial distribution of infected hosts in the correlated random walk movement scenario (CRW) applied to 
a landscape with medium clusters. The colour gradient shows the cumulative pathogen presence time in weeks, that is, 
how long the pathogen was present in a landscape cell including the acf (autocorrelation function) values at lag 2 for 
those scenarios. Each frame represents a single representative example run with increasing temporal shift (t lag) from 
left to right 
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Figure 2.5: Frequency of cells with infected hosts throughout simulation runs with CRW movement (a), HDM movement (b), 
and no roaming movement (c) for all five tlag scenarios. The cumulative pathogen presence time per landscape cell represents 
the total amount of time that a landscape cell had infected hosts occupying it, while frequency is the overall number of cells 
with the same pathogen presence time values at the end of the simulation 
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Within HDM scenarios (Table 2.1), while there was a lower acf at tlag 100% (0.01) compared to 

tlag 0% (0.19), there was no steady decrease in acf with increasing tlag as found for CRW scenarios. 

Interestingly, however, the acf for HDM scenarios was on average lower than for CRW 

scenarios, indicating that under the HDM scenario the number of cells with a similar 

cumulative time of pathogen presence was lower than under the CRW. The frequency 

distributions of the cumulative time the pathogen was present in each landscape cell for HDM 

scenarios (Figure 2.5b) showed similar patterns to those found for CRW: in scenarios with high 

tlag the pathogen was either absent from the majority of the cells, or present in a small fraction 

of the landscape.  

Scenarios without roaming movement (control, Figure 2.5c) also showed the lowest acf at tlag 

100% with -0.02 when compared to all other tlag scenarios (Table 1.1). The acf at tlag 50% (0.34) 

was, however, higher than the acf at tlag 75% (0.24), indicating that at this intermediate time lag 

we find the highest number of cells (i.e. larger proportion of the landscape) with similar 

cumulative time of pathogen presence. The tlag 100% scenario showed 940 out of 1250 cells 

without infected hosts throughout the entire simulation and thus had no infected hosts in a 

large portion of the landscape while still having an 88% Pcoex. 

 

2.4  Discussion  

While previous modelling approaches have theoretically demonstrated the importance of 

interactions between landscape structure, individual movement behaviour, and pathogen 

transmission for predicting and understanding disease dynamics (Scherer et al., 2020; White et 

al., 2018b), few studies have addressed how an increasing asynchrony between resource 

availability and dependent host biological processes influences host-pathogen coexistence. 

Given the current climate warming crisis with increased mismatch between resource 

availability and host phenological events (Plard et al., 2014; Post & Forchhammer, 2008; Visser 

& Gienapp, 2019), the knowledge on how disease dynamics might toss and turn in the future is 

of utmost importance for managing emerging and zoonotic diseases (White et al., 2018b). Also, 

tree mast years (Doublet et al., 2019) or land-use practices like harvesting, crop rotation, or 

asynchronous anthropogenic pressures such as hunting might lead to mismatches. While 



CHAPTER 2  

 

37 
 

climate warming might induce mismatch effects negatively affecting host life history, climate 

warming might have direct effects on the pathogen, too, amplifying either positive or negative 

consequences on the host. Indeed, it is reasonable to expect that some diseases will adapt to 

changing environmental conditions and potentially increase in prevalence (Rohr & Cohen, 

2020; Thomas, 2020). However, here we focus on mismatch effects on host life history. 

In accordance with theory, we found that random fluctuations of resources decreased 

coexistence, whereas occurrence of biological events in synchrony with resource seasonality 

increased coexistence (Altizer et al., 2006; Heino et al., 2000; Roy et al., 2005; Wichmann et al., 

2003). This is underpinned by studies demonstrating that seasonality, for example, in 

transmission rates, can alter the dynamics of host-pathogen interaction and feed back to effects 

on the hosts density as demonstrated by Bolzoni et al., (2008) for rabies in several species. Other 

studies found similarly complex dynamics arising by applying seasonal dynamics to the host 

birth rate as done by Ireland et al., (2007) for rabies in foxes. However, for full mismatch 

conditions, our model yielded still rather high host-pathogen coexistence probabilities, 

contrary to our initial expectations. 

2.4.1  Disease hotspots resulting from spatiotemporal asynchrony  

One apparent factor for coexistence despite completely decoupled environmental and 

biological events, throughout all simulations, was the spatiotemporal clustering of infection 

hotspots with increasing mismatch, forming disease islands in the landscape. The emergence of 

disease islands due to asynchronous resource dynamics has also been shown experimentally by 

Duncan et al., (2013) and theoretically by Becker and Hall (2016). The spatial restrictions to 

relatively small infection hotspots suggest a lower coexistence probability, with small host 

populations not being able to sustain a prolonged disease outbreak. Usually, a disease outbreak 

within an island can lead to critical loss of host individuals up to the point where the population 

cannot recuperate on its own (Clifford et al., 2006; Walker et al., 2008). However, in our case 

those hotspots were not constantly isolated from each other or the surrounding landscape. In 

this case, theory predicts that asynchrony in resource availability throughout the landscape 

facilitates demographic rescue by movement or migration (Roy et al., 2005). Our model 

demonstrated this effect that subsidizes pathogen persistence and thus coexistence even when 



CHAPTER 2  

 

38 
 

the timing of resource scarcity coincided with the seasonal reproduction peak at a tlag of 100%. 

Simulations of this “worst-case scenario” of resource mismatch showed that high-resource cells 

within the landscape that can support a higher population density were constantly recolonized 

if the pathogen depleted the host population in some of those cells during low resource 

conditions. On the other hand, during “high-resource periods,” the entire remaining population 

could spread more evenly throughout the landscape. High-resource habitat clusters where the 

pathogen went temporarily extinct and thus harboured largely undisturbed host populations 

can function as partial refuges for many host individuals. Once the resource availability in the 

surrounding habitat becomes more favourable, these individuals can spread out and recolonize 

potentially depleted habitat cells and could subsequently come into contact with infected hosts. 

Respectively, high-resource habitat clusters where the pathogen was constantly present 

function as partial sources for the pathogen allowing it to be reintroduced into now susceptible 

or naïve subpopulations (Elkin & Possingham, 2008). 

While metapopulation dynamics and source-sink dynamics have been well studied and 

documented (Bansaye & Lambert, 2013; Foppen et al., 2000; Nagatani et al., 2018), including the 

effect of temporal autocorrelation (Gonzalez & Holt, 2002; Roy et al., 2005), our model showed 

a metacommunity structure only under temporal mismatch scenarios. This reduces any 

negative effect a mismatch could have on coexistence, such as pathogen extinction through 

critically low host density. Only when the mismatch increased above 50%, did the distribution 

of infected hosts start to aggregate in certain parts of the landscape, forming a metacommunity 

structure with the pathogen. 

Host density and connectivity are the two most important factors that determine contact rates 

and subsequent disease transmission in directly transmitted diseases (Parratt et al., 2016). The 

timing of the initial outbreak was variable between a burn-in phase of one year and the third 

year. This temporal variability of starting the initial outbreak might have led to the fact that in 

some simulations, the pathogen could never establish and invade the host population, leading 

to many extinction times shortly after pathogen introduction. This was especially prominent in 

mismatch scenarios. However, when the pathogen was able to establish in the host population 

beyond the initial outbreak and subsequently spread through the landscape, extinction became 

increasingly unlikely. The increase in early extinctions with increasing mismatch further 
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emphasizes an increasing importance of the timing of biological events. Pathogens are less likely 

to cause a widespread disease outbreak when being introduced into a susceptible population 

during a period of unfavourable environmental conditions. 

2.4.2  Movement and decision-making in animals as key mechanism of coexistence  

Spatially explicit host movement effectively mitigates some of the spatiotemporal restrictions a 

dynamic resource landscape can put on host and/or pathogen. As Scherer et al., (2020) have 

shown for static landscapes, explicit host movement can increase coexistence, and this also 

holds true for many instances within a spatiotemporally dynamic landscape. However, 

movement is also subject to a larger variability, for example, in distance moved or in timing of 

movement and can, in fact, become detrimental to coexistence under certain circumstances. 

There is, for example, the possibility that an infected host individual transports the pathogen to 

susceptible populations that have not fully recuperated from unfavourable habitat conditions 

and lack the population density to sustain the pathogen. This is especially prominent for 

nondirected movement such as correlated random walks, neglecting important species-

landscape interactions (White et al., 2018b). 

Particularly under random movement, there is a lower chance, compared to directed habitat-

dependent movement, for infected host individuals to transmit the disease to susceptible hosts 

in high resource, high host density habitat clusters fast enough to allow for pathogen 

persistence. This is not apparent under habitat-dependent movement, due to directed 

movement toward high-resource areas. In consequence, under the directed habitat-dependent 

movement, the chance of coming into contact and infecting other hosts increases, while moving 

toward or through high-resource habitats. Hence, movement-induced species interactions 

could be a key mechanism promoting disease persistence, which is underpinned by studies on 

waterfowl (Figuerola & Green, 2000) or white-fronted geese (Kleijn et al., 2010). Also, White et 

al., (2018b) have demonstrated theoretically that decision-making of animals, here the decision 

to move toward high-quality habitat, might increase disease persistence. 

2.4.3  The effect of landscape structure on coexistence 

 An increasing homogenization of the landscape particularly through anthropogenic land-use 

change, for example, deforestation or the increase in agricultural areas (Patz et al., 2004), can, 
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however, offset the pronounced effect of habitat-dependent movement on coexistence. 

Individuals within large clusters, comprised of the same level of resources, might not be able to 

find higher resource areas in time. In addition, a large proportion of the host population is 

situated in similar habitats and subjected to the same level of resource decrease simultaneously. 

Consequently, the loss of susceptible hosts due to death or immunization cannot be 

compensated with the influx of new susceptible hosts, for example, though birth or 

immigration, to sustain the pathogen (McCallum, 2012), causing it to go extinct in large parts of 

the landscape. Accordingly, our results demonstrate lower coexistence in landscapes with larger 

homogeneous habitat clusters. 

Interestingly, while increasing spatial homogeneity of the landscape had a negative effect on 

pathogen persistence, we still found the formation of infection hotspots in scenarios with full 

temporal mismatch between host reproduction and resource peaks. Infection hotspots were, 

with varying degree, present across all tested landscape configurations in scenarios with full 

mismatch and across all tested movement scenarios. While the initial spatial resource structure 

might not be important when it comes to the emergence of infection hotspots, larger low-

resource areas in more homogeneous landscape configurations can form temporary barriers, 

similar to seasonal landscape barriers (Mui et al., 2017). These temporary landscape barriers can 

restrict the pathogen to certain areas in scenarios where host individuals have no explicit long-

distance movement (Appendix A2: Figure A7). While there was no strong effect of these 

temporary barriers on coexistence, this further highlights the role of explicit long-distance host 

movement in terms of disease transmission (see review in Altizer et al., 2011). 

2.4.4  A reality check of our model assumptions  

Our individual-based model here best described a group-living social animal conducting long-

range movements acting autonomously, that is, deciding on movement directions, while 

demographic processes are also resource-dependent. On the other hand, it also considers viral 

traits like acute to chronic infections in a directly transmitted disease. Thus, our model is quite 

complex in terms of realistic processes and hence a template for many disease dynamics under 

temporal mismatch, induced, for example, by climate and land-use change. The spillover of 

Hendra virus from flying foxes to other animals (Martin et al., 2015; Plowright et al., 2015) or the 



CHAPTER 2  

 

41 
 

impact of the canine distemper virus on spotted hyenas (Benhaiem et al., 2018) or lions (Craft et 

al., 2011) could be amplified by climate and land-use change-induced temporal mismatches. 

Climate change is altering environmental fluctuations that lead to increasing mismatches 

between resources and biological events (Durant et al., 2007). And, although some animal 

species may adapt to such temporal shifts in resource availability, they might respond too slowly 

to be able to persist (Radchuk et al., 2019). Yet, our results demonstrate that we could expect the 

emergence of disease hotspots under a full temporal mismatch of resource availability and the 

timing of host birth peaks, counteracting possible adverse effects of reduced host densities. 

Temporal shifts of the magnitude that were used in this work, that is, large shifts of multiple 

weeks up to a full mismatch, might not be as important for climate change in the near future, 

where temporal mismatches are expected to be smaller (Thackeray et al., 2016). However, 

climate change does not occur separately from other anthropogenically caused threats. Indeed, 

large-scale land-use changes can alter the resource distribution throughout a landscape in more 

drastic ways resulting in the possibility for stronger mismatches between available resources 

and host life history (Ullmann et al., ,2018, 2020). For example, changing natural habitats into 

agricultural areas could still provide resources, that is, food, but the peak availability might 

occur at drastically different times when compared to the natural environment. 

The wild boar as our model host species is a long-lived mammal with seasonal breeding that has 

an annual peak and is currently profiting from climate warming-induced changes of the 

environment (Vetter et al., 2020). Pathogens will most probably profit most in species with 

multiple annual peaks of reproduction. Multiple reproductive events per year, like in hyenas 

(Kruuk, 1972), might mitigate effects of a mismatch on host-pathogen coexistence. While during 

one peak the resources might be scarce and the population size would be temporally reduced, 

the time between several birth peaks could be short enough to compensate the drop in host 

density and benefit host-pathogen coexistence. Subsequently, the more birth peaks a species 

has, the less it should be affected by temporal mismatches. In case of wild boar, if the species 

continues to benefit from the effects of climate and land-use change, the single birth peak 

dynamic might continue to change toward multiple reproductive peaks per year, further 

offsetting adverse effects on host-pathogen coexistence. This could lead to an upsurge in 

persistent viral outbreaks throughout wild boar populations, which might exacerbate currently 
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discussed processes like individual infection risk in piglets and movement (Scherer et al., ,2019, 

2020). A prominent example is the persistence of African Swine Fever (ASF) in wild boar in 

Europe, which affects animal health more severely and can cause profound economic damages 

(Halasa et al., 2016) when coming into contact with domestic pigs. 

Additionally, due to high mutation rates and short generation times, pathogens are likely to 

evolve, which can influence host as well as pathogen survival (Galvani, 2003) and might 

compensate for the response of the host species to changes in resource availability. Seasonal 

resource dynamics might strongly affect pathogen evolution if, during periods of high host 

densities, a particular strain of the pathogen has adapted to capitalize on the increased 

possibility for transmission or during periods of low host density if the pathogen has adapted to 

persist through those conditions (Altizer et al., 2006; Hite & Cressler, 2018; Koelle et al., 2005). 

A strong temporal mismatch that creates disease hotspots in combination with an even stronger 

system of alternating high and low host population densities than basic seasonality could 

further facilitate pathogen evolution. Furthermore, our model does not account for the host 

immune system, which can be impacted by a dynamic resource landscape. Long periods of 

resource scarcity and an expected poorer nutrition, as well as increased investment in 

movement to move toward higher resource areas, have been shown to negatively affect a host 

individual's ability to defend against infectious diseases (Altizer et al., 2006; Sheldon & Verhulst, 

1996; White et al., 2018b). Subsequently, this could lead to further alterations of host-pathogen 

dynamics and coexistence. 

In conclusion, our work has shown that temporary spatial hotspots of infectious hosts can 

emerge from a limited number of high-resource sites that are formed due to temporal 

mismatches between resource availability and host reproduction. Considering the increasing 

effect of climate and land-use change on resource availability and distribution, this will promote 

the understanding of how temporal resource variability and host movement affect host-

pathogen systems. 
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3  Resource asynchrony and landscape homogenization as drivers 

of virulence evolution 

 

Abstract: In the last years, the emergence of zoonotic diseases and the frequency of disease 

outbreaks have increased substantially, fuelled by habitat encroachment and asynchrony of 

biological cycles due to global change. Disease outbreaks are driven by virulence evolution. In 

order to understand the complex processes of pathogen virulence evolution in the global change 

context, we adapted an established individual-based model of host-pathogen dynamics. Our 

model simulates a population of social hosts affected by an evolving pathogen in a dynamic 

landscape. Pathogen virulence evolution is explored by the inclusion of multiple strains in the 

model that differ in their transmission capability and lethality. Simultaneously, the host’s 

resource landscape is subjected to spatial and temporal dynamics, emulating effects of global 

change. 

We found an increase in pathogenic virulence and a shift in strain dominance with increasing 

landscape homogenisation. Our model further shows a trend to lower virulence pathogens 

being dominant in fragmented landscapes, although pulses of highly virulent strains are 

expected under resource asynchrony. While all landscape scenarios favour coexistence of low 

and high virulent strains, when host density increases, the high virulence strains capitalize on 

the high possibility for transmission and are likely to become dominant. 

 

3.1  Introduction 

Novel pathogens like emerging zoonotic diseases such as Ebola or SARS-CoV-2, are often 

associated with high virulence (Visher et al., 2021), i.e. the ability of the pathogen to quickly kill 

its host and spread quickly. The frequency and severity of infectious diseases have increased 

substantially over the past two decades. This trend is expected to continue in the near future 

facilitated by global change aspects, like land-use change, habitat encroachment, or climate 

change (CDC, 2020; Patz et al., 2004; Wilcox and Gubler, 2005), which will severely influence 

disease outbreaks by changes in the density and availability of hosts. 
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This will change disease dynamics in unprecedented ways, which will cascade down to pathogen 

traits such as virulence and transmission ability. Neglecting the complex interactions of 

resource availability in space and time and host life history could hinder the success of 

preventive measures aimed at reducing infection probability. Therefore, it is imperative to 

understand the pathways via which pathogens spread across a host population and the 

interaction between environmental conditions, host movement and pathogen traits. This is of 

paramount importance for example when it comes to understanding the triggers that lead to 

spillover effects or emerging zoonotic outbreaks (Allen et al., 2017; Andersen et al., 2020; Kumar 

et al., 2020; Morse et al., 2012; Rulli et al., 2017). 

In this context, it is particularly important to understand factors that govern the spread and the 

persistence of pathogens in changing landscapes to put counteractive measures in place (Griette 

et al., 2015). While theoretical studies focus on long-term predictions of strains with 

evolutionarily stable virulence at equilibrium (Osnas et al., 2015), there is a poor understanding 

of how virulence evolves through space and time during an epidemic, especially under complex 

dynamics arising under global change (Lebarbenchon et al., 2008).  

Virulence evolution is often highly accelerated during the emergence stage of an epidemic 

(Geoghegan and Holmes, 2018; Griette et al., 2015). The emergence stage is characterized by a 

high number of susceptible –and later infected– host individuals and subsequently high 

mutation rates in the high number of infected hosts (Galvani, 2003). Since the distributions of 

host individuals in a landscape determines the number of susceptible individuals, local and 

regional host densities are important factors in the evolution of virulence (Boots, 2004). With 

global change further altering the resource distribution in space and time, subsequent changes 

in the spatiotemporal density and distribution of host individuals (Boots, 2004; Galvani, 2003; 

Geoghegan and Holmes, 2018) could influence the evolution of virulence. Density changes could 

for example be induced via mismatches between the host’s life history such as reproduction and 

host resource availability at that time. Understanding how pathogen virulence responds to 

global change will increase our ability to deal with it in the future. This is especially relevant, as 

ultimately, host-pathogen coexistence will increase the chance events for pathogens to spill over 

from wildlife to human populations either directly or via intermediary species (Plowright et al., 

2021). 
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Theory predicts an evolution towards low virulence or even avirulence (Alizon et al., 2009), as 

observed in rabbit hemorrhagic disease virus in Australia (Cressler et al., 2016; Kamo et al., 2007). 

Virulence has been shown to be adaptive if there is a correlation with other pathogenic traits, 

which is known as virulence-transmission trade-off hypothesis. The transmission-virulence 

trade-off hypothesis states that an increase in strain transmission causes shorter infections 

through higher lethality (Alizon and Michalakis, 2015; Anderson and May, 1982). In other words, 

pathogen virulence is subject to a variety of evolutionary trade-offs (Cressler et al., 2016; Kamo 

et al., 2007; Messinger and Ostling, 2009). Pathogens, in particular viruses, possess an 

extraordinary plasticity that facilitates adaptations to novel conditions (Messinger and Ostling, 

2009). This plasticity is a key component of emergence of new viral strains or re-emergence and 

the persistence of various viral strains. The constant emergence, re-emergence, and extinctions 

of viral strains will result in an overlap and possible coexistence between different viral strains, 

all competing for the same resource (Choua and Bonachela, 2019). 

Understanding the transmission and persistence of pathogens in group living or social host 

species is of high importance for human health and wildlife conservation. Social hosts often 

form closely connected subgroups in a network of connected hosts (Nunn et al., 2015; Sah et al., 

2017). Pathogen spread in such networks strongly depends on between-group and within-group 

interactions on pathogen spread, which are modulated by the underlying landscape. Prominent 

examples are outbreaks of classical swine fever in wild boars (Sus scrofa) (Artois et al., 2002) and 

canine distemper virus in spotted hyenas (Crocuta crocuta) (Benhaiem et al., 2018) and can be 

extended to humans that are living together in households (Buckee et al., 2021).  

The theoretical models of virulence evolution, particularly the classical adaptive dynamics 

framework, rely on the assumption that mutation of pathogens happens very slowly and that 

mutations towards new strains can only occur after the dominant strain has reached 

equilibrium (Dieckmann et al., 2002). However, such simplified assumptions are rarely 

applicable to pathogens in nature, which often undergo transient dynamics, for example due to 

temporal and spatial changes in the landscape structure. Due to temporal variation in the 

landscape, the formation of spatial (Figure 3.1A) and or temporal (Figure 3.1B) host niches can 

cascade through the density distribution of potential hosts onto host-pathogen interactions 

(Figure 3.1C, D). The formation of niches with varying beneficial or detrimental properties for 
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host and pathogen could facilitate different viral strains at specific times or locations. The result 

can be a complex system of different competing and coexisting pathogen strains (Figure 3.1E) 

with their own spatial and temporal dynamics.  

Here, we investigated the evolution of pathogen virulence in spatially structured social host 

populations in different dynamic resource landscapes. We were particularly interested in how 

temporal mismatches between optimal resource availability and biological events affect host-

pathogen coexistence and pathogen spread. Our mismatch scenarios consider global change 

induced temporal shifts in optimal environmental conditions away from biological events 

relying on these conditions, like reproduction. 

To this end, we modified an existing spatially-explicit individual-based host-pathogen model of 

a group-living social herbivore (Kramer-Schadt et al., 2009; Kürschner et al., 2021; Lange et al., 

2012a, b; Scherer et al., 2020) and added evolution in pathogen traits leading to multi-strain 

outbreak scenarios. We hypothesized that dynamic landscapes induce evolution in pathogenic 

virulence to facilitate host-pathogen coexistence. In more detail, we expect pathogenic 

virulence to evolve into a system of different viral strains that will coexist and persist within the 

host population. Furthermore, we expect increasing landscape homogenization and related 

contact homogenization to facilitate evolution towards higher pathogenic virulence. By 

condensing a large number of susceptible host individuals into patches of high habitat 

suitability, thereby increasing the availability of hosts for highly virulent strains. Additionally, 

we expect a temporal asynchrony of resources and host population dynamics to shift evolution 

of virulence towards lower virulence during unfavourable environmental conditions. 
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Figure 3.1: Landscape homogenization (A) and synchrony/asynchrony (tlag) of host life-history and host-resource availability (B) 
influence host-pathogen dynamics (C) and subsequently the evolution of pathogenic traits (D) that will affect strain occurrence 
over time where gaps in the background line are times when the strain did not occur in the landscape (E). 

 

3.2  Methods  

3.2.1  Model overview  

We modified a spatially explicit individual-based, eco-epidemiological model developed by 

Kürschner et al. (2021). It is based on earlier models considering neighbourhood infections only 

that was developed by Kramer-Schadt et al. (2009), Lange et al. (2012a,b) and Scherer et al. (2020) 
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and includes spatiotemporal landscape dynamics representing changing resource availability, 

coupled with resource-based mortality. We incorporated evolution of viral traits such as 

virulence and corresponding trade-offs with viral transmission (see below). A complete and 

detailed model description following the modified ODD (Overview, Design concepts, Detail) 

protocol (Grimm et al., 2020, 2006)is provided in the supplementary material (Appendix B1) and 

the model (implementation) in the Zenodo Database and on GitHub (links provided on 

acceptance). 

The model comprises three main components, a host model depending on underlying landscape 

features, an epidemiological pathogen model and a pathogen evolutionary model. Host 

individuals are characterised by sex, age, location, demographic status (residential, dispersing) 

and epidemiological status (susceptible, infected, immune). The epidemiological status of the 

individuals is defined by an SIR epidemiological classification (susceptible, infected, and 

recovered; Kermack and McKendrick, 1927). The pathogen is characterized by strain type, 

virulence and transmission. The pathogen model alters host survival rates and infection length 

depending on the pathogen’s virulence, while the dynamic landscape features determine host 

reproductive success. We record strain occurrences as the number of infected individuals 

carrying a specific strain and pathogen persistence, measured at the level of simulation runs 

(see below). 

3.2.2  Pathogen dynamics  

We determined the course of the disease by an age-specific case fatality rate and a strain-specific 

infectious period. Transiently infected hosts shed the pathogen for one week and gain lifelong 

immunity (Dahle and Liess, 1992). Infection dynamics emerge from multiple processes: within-

group transmission and individual age-dependent courses of infection. Within groups, the 

density-dependent infection pressure (i.e. the chance of a host individual to become infected) is 

determined by a transmission chance and the number of infectious group members carrying 

the same strain. In this model we included the dependence of the transmission chance on the 

strain’s virulence Ts, so that the strains with higher virulence have higher transmission chance. 

The original model based on a single pathogen strain used the density of infected individuals in 

a cell to infer the likelihood for a susceptible host in that cell to become infected based on a 
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binomial model. Our model allows the evolution into 12 (arbitrarily categorized) different viral 

strains. The infection pressure λ, i.e. the probability of pathogen transmission to a susceptible 

host individual, is therefore determined for each strain individually . The probability λis of an 

individual i of being infected by a specific strain s is calculated as  

𝜆𝑖𝑠 = 1 − (1 − (𝛽𝑤 + 𝑇𝑠))𝐼𝑗𝑠 ∗ (1 −
(𝛽𝑤+𝑇𝑠)

10
)𝛴𝑖𝐼𝑗𝑠    (eq. 1) 

with  𝛽𝑤 being the individual probability of transmission to the power of all infected individuals 

Ijs in a group j per strain s as well as a reduced transmission probability between groups (i.e. 

cells) 𝛽𝑤

10
 to the power of all infected individuals in neighboring groups 𝛴𝑖𝐼𝑗𝑠. 

The strain virulence translates directly into infection length, i.e., host survival time, where a 

high virulence results in shorter survival times for the host compared to low-virulence. 

Consequently, the shorter lifetime of a highly virulent pathogen results in a shorter 

reproductive time span, while making the pathogen highly infective. 

Evolution of pathogenic traits – Virulence and transmission are emergent properties and are 

evolving in the model. This means, there are no fixed positions for each strain on the 

transmission/virulence trade-off curve. Instead, such positions of each strain can change via 

evolution. Our trade-off curve is modelled to follow theoretical transmission-virulence trade-

off curves (Alizon et al., 2009) and is applied for each infected host individually. During a 

transmission event, a strain can, with a mutation rate of 0.01, mutate into a new strain with a 

different virulence. The virulence of the new strain is selected from a normal distribution with 

a standard deviation σ = 1 around the virulence value of the originally transmitted strain, 

meaning that the new strain will be closely related to the parental strain.  

3.2.3  Landscape structure and dynamics 

The tested landscapes consist of a spatial grid of 1.250 2 km x 2 km cells, each representing the 

average home range of a social host, e.g. a wild boar group (Kramer-Schadt et al., 2009), totalling 

a 100 km x 50 km landscape. The landscapes are self-contained systems without any outside 

interaction. Each cell is characterized by a variable resource availability that represents host 

breeding capacity and translates directly into host group size, with the minimum being one 
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breeding female per group to a maximum of nine. Resource availability was adapted to achieve 

the average wild boar density of five breeding females per km2 (Howells and Edwards-Jones, 

1997; Melis et al., 2006; Sodeikat and Pohlmeyer, 2003). We investigated several landscape 

scenarios of varying spatial complexity, ranging from a fully random landscape structure to 

different degrees of random landscape clusters generated in R (R Core team, 2020) using the 

NLMR package (Sciaini et al., 2018) up to a fully homogeneous landscape. To exclude any biases 

that could stem from different host densities, the mean female breeding capacity was kept 

constant at five females per km2 across the different landscape types (Appendix B2: Figure B4). 

The spatiotemporal landscape dynamics that were designed to mimic seasonal changes in 

resource availability by gradually increasing and decreasing resource availability were kept 

unchanged from the previous model implementation by Kürschner et al. (2021). 

3.2.4  Process overview and scheduling 

The temporal resolution of the model equals the approximate pathogen incubation time of one 

week (Artois et al., 2002). The model procedures were scheduled each step in the following 

order: pathogen transmission, pathogen evolution, natal host group split of subadult males and 

females, resource-based host dispersal, host reproduction, baseline host mortality, strain-based 

host mortality, resource-based host mortality, host ageing and landscape dynamics. Natal group 

split of males and females was limited to week 17 and week 29 of each year, respectively, 

representing the observed dispersal time for each sex. 

Host mortality – Mortality in response to resource availability remained unchanged to the 

previous model implementation (for details see ODD; Appendix B1). Additionally, we added a 

fixed, strain-specific mortality for each strain that affects the host population. 

Landscape dynamics with temporal lag – We modelled two levels of temporal lag (tlag) 

implemented in Kürschner et al. (2021). We focus on the level 0% (synchrony between host 

population dynamics and resource availability) to 100% (asynchrony between host population 

dynamics and resource availability), with the latter simulating phenological mismatch between 

the resources and hosts reproduction potentially due to climate change. The extreme values 

were chosen because previous studies investigating temporal lag did not show strong effects in 

the intermediary steps (Kürschner et al., 2021).   
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3.2.5  Model analysis 

Each simulation was run for 100 years in total, with the virus released in a randomly taken week 

of the second year (week 53-104), to allow the population to stabilize after initialization. The 

virus was introduced to a set of multiple predefined cells in the centre of the landscape to ensure 

an outbreak. The virus was released in a low virulence variant. We ran 25 repetitions per 

combination of landscape scenarios (5 levels: small clusters, medium clusters, large clusters, 

homogenous landscape and random) and asynchrony (2 levels: tlag 0%, tlag 100%). We also 

analysed the strain occurrence (i.e., if a strain was present in any landscape cell, recorded at 

every timestep) and number of infected hosts per strain at every timestep to measure strain 

extinction as well as reappearance through mutation. We further recorded the proportion that 

each strain contributed to the pool of infected hosts by calculating the ratio of the hosts infected 

with each strain to the total number of hosts infected with all strains, at each time step. To 

highlight differences in strain composition in those scenarios, we subtracted the strain 

proportion in asynchronous scenarios from the proportion in synchronous scenarios. We 

categorized all viral strains into three categories: low virulence strains; medium virulence 

strains; high virulence strains, each compartment summing the outcomes of 4 of the 12 strains 

modelled.  

 

3.3  Results 

3.3.1  Host-pathogen coexistence 

Overall, host pathogen coexistence Pcoex was very high in almost all tested scenarios. Due to a 

collapse of the host population in asynchronous scenarios in homogeneous landscapes, host-

pathogen coexistence was not achievable in the current model-framework and therefore 

excluded. We did not find notable differences in the scenarios (Appendix B2: Figure B5). 

3.3.2  Categorized infection trends 

Our model showed that in synchronous scenarios, highly virulent strains were the least 

abundant ones among the three strain categories during the early stages of the epidemic. 

However, these strains became dominant in the later stages of the epidemic in homogeneous 
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and large clustered landscapes (Figure 3.2, left). With increasing landscape homogenization, 

medium virulence strains in the later stages of the epidemic were usually dominating along with 

high virulence strains. Across all landscapes, low virulent strains only occurred in high 

prevalence in the early stages of the epidemic but reached higher prevalence in less 

heterogeneous landscapes. 

In scenarios with asynchrony, low virulent strains occurred over a longer time period and were 

more prevalent in the host population, while medium and highly virulent strains occurred later 

at high prevalence (Figure 3.2, right). Furthermore, prevalence of all strain categories was lower 

throughout the simulations when directly compared to the ‘synchronous’ scenarios. A clear 

shift towards a dominance of highly virulent strains only occurred in the less heterogeneous, 

large clustered landscapes. 

 

Figure 3.2: Temporal trends of the number of hosts infected with the strains of three virulence categories, low (blue) medium 
(black) and high (red) virulence over time. The left half shows the trends for synchronous host reproduction (tlag = 0) and the 
right half for asynchronous host reproduction (tlag = 100) scenarios. The landscape configuration is A- Homogenous, B- Large 
clusters, C- Medium clusters, D- Small clusters and E- Random landscape. 

 

3.3.3  Strain specific occurrence and dominance over time 

Strain occurrence and dominance of high virulent strains increased with increasing landscape 

heterogenization in dynamic landscapes in combination with synchronous scenarios (Figure 3.3 

top). In the highly heterogeneous random landscape, low virulent strains persisted longer while 

higher virulent strains occurred much later in time (around year 40), compared to the same 
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landscape in synchronous scenarios. After its appearance through mutations around year 45, 

the medium virulent strain 7 became dominant for the course of the epidemic. As landscape 

homogeneity increased (from random landscapes to small clustered landscapes), lower virulent 

strains occurred on much shorter time spans. The high virulent strains appeared much earlier 

around year 10 of the epidemic and remained present in the landscape for the duration of the 

simulation. A further increase in homogenization towards medium-sized patches showed 

overall similar patterns as the small clustered landscape with the exception of the strain 7 peak 

prevalence, which shifted towards the end of the epidemic. In the highly homogenous large 

clustered landscapes, the lower virulent strains persisted for a longer period, while medium 

virulent strains were represented during the full period of the epidemic. Contrary to the more 

heterogeneous landscapes, strain 7 did not become the dominant strain despite high prevalence 

in the host population. As indicated by the larger proportion of hosts infected with higher 

virulent strains, overall, in synchronous scenarios (Figure 3.3), virulence of occurring strains 

increased over time and with increasing landscape homogenization. In asynchronous scenarios 

we observed a similar increase in strain occurrence with landscape homogenization, even 

though the temporal rate of increase was smaller compared to synchronous scenarios. 

Furthermore, there was a temporal variation of strain occurrence within the more homogenous 

landscape between synchronous and asynchronous scenarios, as can be seen in a direct 

comparison of the per strain infection counts and wavelets of synchronous and asynchronous 

scenarios over time (Figure 3.4). A general comparison of the proportional strain contribution 

in asynchronous vs synchronous scenarios further showed that the occurring strains were of 

lower virulence in asynchronous scenarios in case of the more heterogeneous landscapes 

(Appendix B2: Figure B6).  
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Figure 3.3: Occurrence and dominance of the different virulence strains in synchronous (tlag = 0, top row) and asynchronous 
(tlag = 100, bottom row) scenarios. Colour gradient represents the proportion of infected individuals with each strain in the 
landscape. Grey areas represent zero occurrence of the strains. 

 

 

Figure 3.4: A– Muller plot for a single example run in a large clustered landscape in synchronous (left) and asynchronous (right) 
scenarios, showing the number of infected individuals for each strain (colour) over time aggregated as annual mean. B– Wavelet 
analysis of high virulent strains in synchronous (left) and asynchronous (right) scenarios of a single example run in a large 
clustered landscape using the R package “wsyn” (Reuman et al., 2021). 
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3.4  Discussion 

To extend the understanding of pathogen evolution and spread during epidemics, we 

implemented virulence evolution in an individual-based model simulating an interdependent, 

tri-trophic system (landscape resources-host-pathogen) under the effects of global change. In 

accordance with our hypothesis, we found an increase in pathogenic virulence and a shift in 

strain dominance with increasing landscape homogenisation.  

Landscape homogenisation alters the density distribution of susceptible host individuals by 

increasing host connectivity, which subsequently can lead to more infection events and viral 

mutations. The detrimental effect that density, connectivity and contact rates can have on viral 

mutations and infection events can also be observed in “superspreader”-events of the current 

SARS-CoV-2 pandemic (Tasakis et al., 2021). Our results support that host density and 

connectivity are the most important factors that affect evolution of high virulence in directly 

transmitted diseases under transmission/virulence trade-offs (Castillo-Chavez and Velasco-

Hernández, 1998). While we found lower mean virulence in scenarios with asynchronous host 

resources, the landscape heterogeneity was the main driver of virulence evolution. Interestingly, 

under asynchrony, we found higher proportions of low and high strains coexisting in 

homogeneous landscapes, indicating that isolated disease hotspots (Kürschner et al., 2021) could 

facilitate different viral strains. 

As long as host populations in our model are distributed heterogeneously, mean pathogenic 

virulence remains similar, with little change from completely heterogeneous, i.e., random 

landscapes, to the less heterogeneous medium habitat clusters. However, in large clusters, a 

clear increase in mean virulence was apparent, showing that there is a threshold in landscape 

homogeneity not only enhancing disease spread, but also evolution towards higher virulence. 

These modelling findings are consistent with previous research on thresholds in disease 

transmission and functional connectivity. For example, homogenous landscapes have been 

shown to facilitate the spread of rabies in raccoons (Procyon lotor) (Brunker et al., 2012) or 

tuberculosis in badgers (Meles meles) (Acevedo et al., 2019), while more heterogeneous 

landscapes have been shown to limit the spread of highly virulent pathogens (Lane-deGraaf et 

al., 2013). Host-pathogen interactions –in directly transmitted diseases– occur at specific 
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locations and points in time, with the availability of susceptible hosts being the governing factor 

of a successful transmission (Hudson, 2002; Ostfeld et al., 2005; Real and Biek, 2007). 

Consequently, homogenous landscapes and their lack of barriers allow more virulent pathogen 

strains to infect a sufficient number of hosts to persist in those landscapes. On the contrary, in 

heterogeneous landscapes, small clusters of high host density in a matrix of low density cause 

the extinction of highly virulent strains. This pattern can be explained by the short survival time 

of individuals in the matrix that form an immunity belt around the clusters and prevent spread 

between clusters (Marescot et al., 2021). 

Increasing landscape homogenisation also resulted in higher mean virulence in scenarios with 

asynchrony between host life-history and resource availability. Even though overall susceptible 

host density was lower in asynchronous scenarios, the homogenous landscape’s increased 

connectivity allowed for higher virulent strains to persist at high prevalence. In the homogenous 

landscape, composed of large habitat clusters, the virulence of occurring strains was similar 

between the scenarios with and without synchrony. This indicates a strong effect of landscape 

configuration. 

Interestingly, in our previous study (Kürschner et al., 2021), we showed that increasing spatial 

homogeneity of the landscape affected pathogen persistence negatively without pathogen 

virulence evolution. One reason behind this difference lies in the temporal differentiation of 

the strains within the landscapes. During the beginning of an outbreak, the pathogen strains 

with low virulence are able to spread across the landscape into larger habitat clusters due to the 

long survival times they impose on their hosts. Once the susceptible host density in one of the 

neighbouring areas is high enough, highly virulent strains that previously only occurred in low 

prevalence outcompete the low virulent strains and increase in prevalence. In other words, 

when host density increases, the high virulence strains capitalize on the high possibility for 

transmission and are likely to become dominant (Altizer et al., 2006; Hite and Cressler, 2018). 

However, although highly virulent strains became more dominant, lower virulent strains 

continued to persist within the host population. In line with our findings, the coexistence of 

high and low virulent strains was also shown for rabbit haemorrhagic disease in the United 

Kingdom (Forrester et al., 2009) as well as influenza A in wild birds (Olsen et al., 2006). 
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Furthermore, our results show that, independent of landscape heterogeneity, a single, low 

virulent strain of a pathogen is able to evolve into a complex system of multiple coexisting 

strains with varying virulence. However, while multiple strains coexisted at any given time 

throughout all tested scenarios, we demonstrated that some strains likely become dominant. 

Similarly, a system of coexisting low and highly virulent strains was reported by empirical 

studies of the African swine fever virus in wild boar (Portugal et al., 2015), a pathogen causing 

severe diseases with huge economic impact (Artois et al., 2002). In this system the carriers of 

low virulent strains could remain infectious over long periods of time (de Carvalho Ferreira et 

al., 2012) increasing the chance of the pathogen transmission and its mutation into higher 

virulent strains, which could become dominant over time. In our study, the virulence of the 

dominant strain was intrinsically linked to the degree of landscape homogenisation, but was 

also variable in time. Our findings are consistent with theoretical models that showed an 

increase of pathogenic virulence over time (Osnas et al., 2015). However, while Osnas et al. (2015) 

assumed a direct trade-off between virulence and host movement in homogenous landscapes, 

here we show that different landscape configurations may lead to the same patterns of 

increasing virulence without the necessity of such a trade-off. 

On the one hand, our results show that with natural landscapes becoming more fragmented and 

resources becoming more asynchronous due to global change, a shift towards lower virulent 

pathogens could be expected. As a consequence, some diseases may become endemic in their 

respective host populations. The longer a pathogen is able to persist within its host population 

the higher the risk for spontaneous mutations and the possibility of spillovers to other species. 

On the other hand, global change will lead to increasing homogenisation within those 

fragments (Patz et al., 2004) and has the potential to increase the average pathogenic virulence 

with possibly catastrophic effects on wildlife communities. A large variance in virulence has 

been shown among infected host individuals, where the infection can range from severe to 

asymptomatic. This variation can be the result of a variety of factors, including genetic variation 

or intraspecific host interactions but also environmental conditions (Ebert and Bull, 2003). 

Furthermore, an increase in virulence will go hand in hand with higher transmission rates in 

many diseases (Alizon and Michalakis, 2015; Messinger and Ostling, 2009) that will further 

increase the probability of pathogen spillovers. While pathogen spillovers to other wild or 
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domestic animal populations can have profound social or economic effects (Kamo et al., 2007), 

the possibly detrimental effects on human health can not be underestimated. The current 

SARS-CoV-2 pandemic clearly highlights the importance of understanding which factors 

govern the spread of diseases in wildlife populations and how anthropogenic changes may alter 

those in the future. 
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4  The effect of spatial decision-making processes of moving hosts 

on pathogen transmission and patterns of spread in a social host 

 

Abstract: Understanding the drivers of disease dynamics, like spread and persistence, is a major 

challenge in disease ecology, due to the complex interactions of the major players, host and 

pathogen, and their intertwined reaction towards landscape structure. Therefore, individual 

host decision-making processes depending on both landscape structure and host population 

density in combination with pathogen properties such as virulence, are important factors that 

need to be taken into account when disentangling complex disease dynamics. In this study, we 

used a spatially explicit eco-epidemiological individual-based model to investigate the effect of 

decision-making processes in host movement on disease outbreak patterns, persistence, and 

transmission. We matched our simulated patterns to observed patterns from a long term 

outbreak of classical swine fever in wild boar in Northern Germany where despite a large-scale 

vaccination campaign, classical swine fever persisted for seven years. 

We found that explicit host movement increased the speed of pathogen spread. Additionally, 

the simulation results showed a strong shift in the age-class distribution towards a higher 

proportion of infected adult hosts compared to the real outbreak data that could be explained 

through sampling or detection biases as well as the effectiveness of the vaccination, which 

targeted adult individuals. The trajectory of the simulated highly virulent strain, however, 

corresponded well with observed patterns and support from the field where three different 

strain types were found. We could further demonstrate how the evolution of virulence in 

combination with density-driven movement acted as an important driver of disease persistence.  
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4.1  Introduction 

Social host species often form a network of interconnected groups in the landscape that come 

in contact via roaming individuals or random group encounters (Nunn et al., 2015; Sah et al., 

2017), which can also become a source of disease transmission. In this context, density-

dependent effects in the host population primarily drive the spread of directly transmitted 

pathogens as they affect contact rates between groups. Higher host densities can force single 

individuals to avoid high-density areas through movement to escape competition, carrying the 

pathogen from group to group, and increasing contact chances between susceptible and 

infected host individuals (Hu et al., 2013). In addition to conspecific’s density, landscape 

composition also affects the decision making process of moving individuals due to resource 

allocation or habitat quality cues (van Moorter et al., 2013). Therefore, to fully understand 

pathogen spread in social host populations, we need to account for the roaming individuals' 

spatial decision-making process associated with both habitat quality and population density 

(Gupte et al., 2022).  

The spatial structure of the host population also influences pathogen spread (Kokko and López-

Sepulcre, 2007), together with host-specific demographics (e.g., seasonal breeding peak) or 

pathogen properties such as virulence, particularly if virulence causes a reduction in host 

movement through for example lethargy (Franz et al., 2018). Another reason could be the 

evolution of virulence over time and associated evolutionary trade-offs such as the trade-off 

between virulence and transmission (Alizon et al., 2009; Cressler et al., 2016; Messinger and 

Ostling, 2009). Therefore, the initial outbreak strain could vary through time, hence space 

might not represent the entire outbreak pattern (Osnas et al., 2015). In this context, the range of 

host dispersal or roaming movements, particularly if the decision-making process is associated 

with the landscape structure, is an important aspect of host-pathogen dynamics (Hu et al., 2013; 

Messinger and Ostling, 2009; Scherer et al., 2020) and virulence management of infectious 

diseases. If host movement aggregates individuals in areas with high resource availability, this 

may put a halt to long distance transmission, because individuals do not need to disperse or 

migrate anymore. Such an aggregation could effectively quarantine large landscape areas, 

preventing the pathogens from being transported across distant groups. On the contrary, when 

density or resource availability changes in the landscape and forces individuals to aggregate in 
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new areas, it acts as a source for transmission of pathogens in previously naïve sub-populations 

(Paull et al., 2012).  

Classical swine fever (CSF) infection in European wild boar (Sus scrofa L.) forms an ideal model 

system to study pathogen dynamics and patterns of spread on social hosts, as wild boar 

individuals exhibit both social behaviour and capacity for long-distance movement (Morelle et 

al., 2015), combined with the current increasing wild boar population density in Europe (Ruiz-

Fons et al., 2008). Spillover from CSF (Edwards et al., 2000) to domestic pigs or the current 

outbreak of African swine fever (ASF) in Europe with their profound social, ethical and 

economic impact, highlight the importance of understanding the drivers of disease persistence 

and spread (Edwards et al., 2000; Woźniakowski et al., 2021). Despite the vast knowledge on wild 

boar host characteristics as well as previous studies both from theoretical approaches (Kramer-

Schadt et al., 2009; Lange et al., 2012a; Lange et al., 2012b) and from real outbreak analyses across 

several years (Scherer et al., 2019), many dynamics of CSF virus cycling are still not fully 

understood. The outbreak showed a fast pathogen spread in the population during the 

beginning of the epidemic and strong density-dependent effects, i.e., the number of susceptible 

conspecifics in the surrounding area. The study of this outbreak suggested that contact rates 

may be positively associated with increased movement of host individuals (Scherer et al., 2019). 

Despite a heavy vaccination campaign, CSF persisted in the German wild boar population for 

seven years (Scherer et al., 2019). The outbreak affected mainly the piglet age class with 

approximately 8% of sampled piglets being infected, followed by the subadult and adult age 

class with 2 and 1%, respectively, and was characterised by an initial outbreak and a constant 

increase in immune individuals up to around 30% that decreased after 4 years, with wave-like 

patterns (Scherer et al. 2019). After a steep increase in area covered by infected, the speed of 

spread levelled off, having infected nearly half the area. Adult animals mostly seroconverted 

(60%), followed by subadults (30%) and piglets (20%).  

Next to changes in virulence over time (Lange et al., 2012a), invasions of different strains (Blome 

et al., 2017), particularly host movement behaviour and associated spatial decision-making have 

been linked to outbreaks of a similar pathogen (African Swine Fever, ASF) in wild boar 

populations in the recent past (Halasa et al., 2016; Podgórski et al., 2013). While previous studies 

focus mainly on transmission through host density (homogenous mixing), it is expected that 
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changes in behaviour, for example during mating season, can alter the contact patterns in the 

host population. However, disentangling the single factors –landscape heterogeneity, density 

dependence, and movement decisions of hosts along with possible changes in pathogen 

virulence–, and ranking their effects on explaining disease persistence is nearly impossible from 

sparse and messy field data of outbreaks in the wild. 

In this context, stochastic individual-based simulation models help to understand dynamics and 

patterns that arise from real outbreak data by making single processes associated with infectious 

disease outbreaks tractable and. First mathematical mean-field models assumed homogeneous 

mixing of susceptible and infectious hosts without explicitly including spatial factors in the 

disease transmission process (Anderson and May, 1982; Hethcote, 2000; Kermack and 

McKendrick, 1927). While those models have contributed significantly to understanding 

infectious disease dynamics, they assume that all individuals behave identically; in contrast, real 

individuals in heterogeneous landscapes often feature heterogeneous contact rates (Craft, 2015). 

However, individuals can have various reasons to move to a different location, such as resource 

abundance, predator avoidance, or density of conspecifics (Nathan et al., 2008). Local 

spatiotemporal conditions exert a strong influence on the movement decisions of individuals. 

Pattern oriented approaches uses multiple observed patterns simultaneously to characterize a 

system and its dynamics. In order to understand and predict disease outbreaks in realistic 

landscapes, data gathered from past outbreaks provide patterns against which we can test the 

simulation models and increase their accuracy to reproduce realistic results and infer the 

potential mechanism behind the observed patterns (Grimm et al., 2005).  

In this study, we investigate and assess the effect of decision-making processes in host 

movement on disease outbreak patterns, persistence, and transmission. Through individual 

based models, we simulate a disease outbreak based on a realistic scenario and we compare our 

simulated spatiotemporal outbreak patterns to the observed patterns during the CSF outbreak 

in northern Germany. Specifically, we use an established spatially explicit individual based 

host-pathogen model Kramer-Schadt et al., 2009; Kürschner et al., 2021, 2022 (under review); 

Lange et al., 2012a, b; Scherer et al., 2020) to impose different mechanisms behind individual 

movement behaviours (habitat driven, density/competition driven and habitat-biased 

correlated random walk), on the host-pathogen system in Mecklenburg-Vorpommern. Our 
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model investigates how these different movement behaviours affect (1) the different proportion 

of affected individuals within each age class, (2) the speed and patterns of pathogen spread over 

time in the landscape through the host population, and (3) the temporal change in the 

epidemiological status of affected individuals in the host population (susceptible, infected, 

recovered) at the landscape-scale. Finally, by comparing model results with real data we further 

develop our understanding of host-pathogen dynamics in real landscapes. 

 

4.2  Methods 

4.2.1  Model overview  

We modified a spatially explicit individual-based, eco-epidemiological model developed by 

Kürschner et al. (2021, 2022). It is based on earlier models considering neighbourhood infections 

only that were developed by Kramer-Schadt et al. (2009) and Lange et al. (2012a, b), and the 

addition of spatially explicit host movement implemented in Scherer et al. (2020). The current 

model includes spatiotemporal landscape dynamics representing changing resource 

availability, coupled with resource-based mortality as well as the evolution of pathogenic traits. 

We ran all previously developed model components on the wild boar (Sus scrofa) habitat 

suitability map of the German federal state of Mecklenburg-Vorpommern (Fernández et al., 

2006; Scherer et al., 2019) representing resource availability. A complete and detailed model 

description of the dynamic processes following the modified ODD (Overview, Design concepts, 

Detail) protocol (Grimm et al., 2020, 2006) is provided in the supplementary material (Appendix 

C) and the model (implementation) in the Zenodo Database and on GitHub (links provided on 

acceptance). 

The dynamic model comprises three main components, an epidemiological pathogen model, a 

pathogen evolutionary model, and a host model depending on underlying landscape features. 

Host individuals are characterised by sex, age, location, demographic (residential, dispersing), 

and epidemiological (susceptible, infected, immune) status. The epidemiological status of the 

individuals is defined by an SIR epidemiological classification (susceptible, infected, and 

recovered; Kermack & McKendrick, 1927). 
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4.2.2  Pathogen dynamics  

The course of the disease is determined through an age-specific case fatality rate, a strain-

specific transmission rate, and a strain-specific infectious period. Transiently infected hosts 

shed the pathogen for one week and gain lasting immunity. We adapted the in Kürschner et al. 

(2022, under review) developed evolution of pathogenic traits and strain-specific 

transmission/virulence trade-offs to fit transmission via moving host individuals. We further 

implemented a vaccination regime akin to the one used at the beginning of the MVP outbreak 

(Scherer et al., 2019); for details, see ODD protocol. 

4.2.3  Host movement  

We adapted four inter-cell explicit movement rules implemented in Scherer et al. (2020). In 

habitat driven-movement (HDM) moving host individuals directly reference the underlying 

landscape as a basis for their decision-making process by tending to move towards landscape 

cells with higher resource availability or habitat suitability, respectively. With competition-

driven movement (CDM) moving host individuals reference the underlying landscape 

indirectly through the number of conspecifics and avoid areas of high densities. We also 

adapted a biased correlated random walk (HDCRW) defined by movement decision of host 

individuals is based on resource availability (local behaviour) while following performing a 

correlated random walk. The difference to HDM is that HDCRW has directional persistence in 

the decision making, i.e., moving to the best possible habitat within a certain direction. The 

difference in all adapted movement rules is in the decision-making process of moving 

individuals, i.e., into which cell to move, while other movement-related parameters (e.g., 

movement distance) remain the same. Regardless of the applied movement rule, all movement 

decisions include 30% stochasticity, meaning that 30% of all movement decisions are made 

randomly. As a control, we included a scenario without spatially explicit host movement. 

We adapted all movement rules to include the strain-specific transmission trade-off 

implemented in Kürschner et al. (2022; under review) by adding the respective transmission 

increase per strain to the individual probability of transmission. Furthermore, we added a 

strain-specific trade-off between the strain virulence and maximum movement distance per 

timestep (week). While the average movement distance for roaming male wild boar is around 
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22 km per week, they can cover up to 84 km per week in search of resources (Morelle et al., 2015; 

Podgórski et al., 2013). The implemented trade-off (for details see ODD protocol) strongly 

reduces the capability of long-distance movement in case an individual is carrying a highly 

virulent strain. The maximum movement distance of an individual is reduced by 5% increments 

depending on the virulence of the affecting strain.  

4.2.4  Process overview and scheduling 

The temporal resolution of the model equals the approximate pathogen incubation time of one 

week (Artois et al., 2002). The model procedures were scheduled for each step in the following 

order: pathogen transmission, pathogen evolution, natal host group split of subadult males and 

females, resource-based host dispersal, host reproduction, host mortality and host ageing. The 

general group split of subadult females and males was limited to week 17 and week 29 of the year, 

respectively, representing the typical dispersal time for each sex. 

4.2.5  Pathogen transmission  

In all scenarios with spatially-explicit host movement, pathogen transmission between 

landscape cells occurs exclusively through moving individuals. In scenarios without host 

movement (control), inter-cell transmission occurs through neighbourhood infection (see 

ODD protocol for details).  

4.2.6  Landscape structure  

The tested landscape includes the federal state of Mecklenburg-Vorpommern (MVP) and 

surrounding area in a 2 km by 2 km grid, represented by 11,520 individual landscape cells with 

5363 cells (21,452 km2) that are habitable for wild boar. The implemented wild boar habitat 

suitability map is translated into the number of breeding females per cell, representing host 

breeding capacity and translating directly into host group size, and is a proxy of resource 

availability (Fernández et al., 2006; Scherer et al., 2019).  

4.2.7  Model analysis 

Each simulation lasted approximately 11 years, around two years of population “burn-in”, 9 years 

from the time of the disease outbreak. The simulation time was chosen to represent the same 

timeframe as the recorded outbreak in MVP with an added buffer of two years both at the 
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beginning and end. We ran 10 repetitions per scenario due to computational limitations. For 

each of the 4 movement-related parameters (HDM, CDM, HDCRW, and no movement), 

different sampling designs (5 individuals per landscape cell with infected or immune 

individuals, 5 individuals per municipality with infected or immune individuals (N_sampled) 

and recording all individuals), amounting to 120 individual simulations. We recorded and 

analysed both on a landscape-wide level and on an individual cell level and municipality level. 

On the landscape-wide level, we recorded every alive individual that was either currently 

infected, immune or susceptible, the respective age class (adult, subadult, piglet), as well as how 

many individuals carry each strain of the pathogen. On the individual landscape cell level, we 

employed a sampling design to mimic the data from the real outbreak. In each cell, we selected 

a number (N_sampled) of recently (at the end of each time step, i.e., week) deceased individual 

and recorded its status at the time (infected, immune, other) and age class.  

The simulations were done using the package “nlrx” (Salecker et al., 2019) to access the NetLogo 

(Wilensky, 1999) implementation through R (R Core team, 2020). We subsequently analysed the 

data on a municipality level regarding pathogen prevalence in the host population, the age class 

of the sampled individuals, and speed of spreading through the landscape, recorded as area in 

km2 with infected host individuals over time. For pattern 1 (SIR per age class), we recorded 

(depending on the sampling design) the number of either infected or immune individuals and 

their respective age class in cells or municipalities. For pattern 2 (speed of pathogen spread) we 

recorded municipalities with active cases over time and for pattern 3 (epidemiological status at 

landscape scale) we recorded all either infected or immune individuals. Finally, the data was 

compared to their respective counterparts in the outbreak data used in Scherer et al. (2019). 

 

4.3  Results 

The simulated outbreak data has shown that of all tested movement scenarios, HDCRW spread 

through the landscape the fastest by affecting almost the entire study area after one year. A 

noticeable difference in the effect of sampling design was only apparent in HDM where with a 

sampling design of five individuals per municipality the affected area was smaller when 

compared to five individuals per landscape cell or all individuals. The overall proportion of 
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individuals classified into SIR (pattern 1) did not vary noticeably between sampling or 

movement scenarios, with the most sampled individuals being infected (between 75 and 95%). 

In comparison the MVP outbreak data showed the opposite distribution, where infected made 

up the lowest proportion of tested individuals (Figure 4.1). 

 

 

Figure 4.1: Overview of the comparison of simulated data and real outbreak data with the total area with infected individuals 
(colour gradient), separated for sampling design and movement scenario. Additionally, the MVP outbreak data (Scherer et al., 
2019) was added for reference. Each tile contains the S / I / R classification of the sampled individuals (proportion). Each tile 
represents the average of five separate repetitions.   

 

4.3.1  Speed of pathogen spread (pattern 2) 

In the sampling design based on five individuals per municipality, the speed of pathogen spread 

varied strongly across the different simulated movement rules (Figure 4.2A). Habitat driven 

correlated random walk (HDCRW) scenarios showed the fastest spatial spread of all tested 

scenarios by reaching almost landscape wide-spread around quarter 15 (i.e., three and a half 

years, Figure 4.2A, Figure 4.3A). The pathogen spread in habitat driven movement (HDM) 

scenarios was slower, covering noticeably less area at quarter 15, and only reached high 
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landscape-wide spread around quarter 20 (i.e., five years, Figure 4.2A, Figure 4.3B). In this 

scenario, a strong increase in rate of spread happened around quarter 20 (Figure 4.2A), 

compared to the other scenarios with explicit host movement where the initial strong increase 

in speed of spread occurred shortly after the pathogen was introduced. Competition driven 

movement (CDM) showed the slowest rate of spread of all the scenarios with explicit host 

movement and the pathogen did not reach landscape-wide spread until quarter 25 (i.e., six years 

and 4 months, Figure 4.2A), with noticeably low area of spread around quarter 15 (Figure 4.3C). 

The scenarios without explicit host movement showed an overall different pattern in the speed 

of spread (Figure 4.2A). Instead of a strong increase in the affected area over a short period of 

time that was present in all the scenarios with explicit host movement, the increase in area was 

more gradual over time. The landscape-wide spread around quarter 15 was however, slightly 

larger compared to CDM (Figure 4.3D). In comparison with the MVP outbreak data from 

Scherer et al. (2019) (Figure 4.2, red line) the simulated data showed a similar pattern of speed 

of spread relative to the maximum affected area across all tested scenarios. However, the 

absolute values for the total affected area were noticeably higher in the simulated data. At the 

end of the simulated time, the movement scenarios reached an affected area of approximately 

20000 km2, which is almost the entirety of MVP region (approximately 24000 km2), while the 

real outbreak data peaked at around 8000 km2. 

When all individuals were sampled or five individuals per landscape cell were sampled, (Figure 

4.2B, Figure 4.2C), the observed patterns remained similar to the ones in the five individuals per 

municipality sampling except habitat driven movement which showed a faster increase in 

affected area compared to the municipality based sampling. 
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Figure 4.2: Speed of pathogen spread, recorded as number of municipalities with infected host individuals over time for the 
applied movement rules: habitat-driven correlated random walk (HDCRW), Habitat-driven movement (HDM), competition 
driven movement (CDM) and scenarios without movement (colour) and their respective standard deviation (coloured ribbon) 
within a sampling design of all individuals recorded (A) 5 sampled individuals per municipality (B) and 5 individuals sampled 
per landscape cell (C). All sampling scenarios have the original MVP outbreak data (Scherer et al., 2019) added as a red line. 

 

  

Figure 4.3: Municipality map of MVP at quarter 15 showing the number of infected host individuals (colour gradient) in A– 
HDCRW, B– HDM, C– CDM and D– no movement scenarios with all individuals sampled.  
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4.3.2   Relative comparison of host individuals per age class (pattern 1) 

We recorded the age class of all sampled individuals, namely adults (age > 2 years), subadults 

(age > .5 years) ang piglets (age < .5 years). All the scenarios with explicit movement presented 

very similar results, thus here we use the HDM scenario with all tested individuals to represent 

movement scenarios and compare it to the no movement scenario (see supplementary material 

Appendix C2: Figures C5 – C8 for a full list of figures and table 4.1 for the SIR classification per 

age class). The proportion of sampled individuals in each age class in both HDM (Figure 4.4A) 

and no movement (Figure 4.4D) was similar, with piglets as the most sampled individuals. 

Sampled immune individuals also showed a similar age class distribution between both 

movement rules, although the proportion of piglets was higher in the no movement scenario at 

the beginning of the outbreak (Figure 4.4C, Figure 4.4F). However, there was a clear difference 

in the proportion of infected individuals of each age class between both scenarios. In HDM 

scenarios adults made up the largest proportion of sampled infected individuals (Figure 4.4B) 

while noticeably more sampled infected subadults and piglets were found in the scenarios 

without explicit host movement (Figure 4.4E). These results were consistent when all 

individuals were included and when only five individuals per landscape cell or per municipality 

were included. 
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Figure 4.4: Relative number of sampled individuals per age class (adult, subadult, piglet, colour) in the HDM scenarios with all 
individuals (left) and no explicit host movement scenarios (right) for all sampled individuals (A and D), Infected individuals (B 
and E) and immune (i.e., recovered) individuals (C and F). Only individuals of municipalities with either active (i.e., infected) 
or immune (i.e., recovered) samples were included.  

 

Table 4.1: Proportional SIR (susceptible, infected, recovered) classification for the movement scenarios (HDM, HDCRW, CDM 
and no movement) and sampling designs (All individuals sampled, 5 individuals per landscape cell sampled and 5 individuals 
per municipality sampled). Separated for the age class of the individuals (Adult, Subadult, Piglet) in form of S / I / R.  

  S / I / R Habitat driven 
movement 

Habitat driven  
CRW 

Competition driven 
movement 

No  
movement  

Adult 0.019 / 0.961 / 0.02 0.012 / 0.973 / 0.015 0.042 / 0.907 / 0.051 0.038 / 0.944 / 0.018 

All individuals  Subadult 0.098 / 0.874 / 0.028 0.066 / 0.928 / 0.006 0.189 / 0.764 / 0.048 0.03 / 0.954 / 0.016 

  Piglet 0.108 / 0.829 / 0.063 0.083 / 0.866 / 0.052 0.263 / 0.615 / 0.122 0.033 / 0.937 / 0.03 

      
 

Adult 0.015 / 0.982 / 0.004 0.012 / 0.985 / 0.003 0.049 / 0.943 / 0.007 0.042 / 0.947 / 0.011 

5 individuals per cell Subadult 0.07 / 0.922 / 0.007 0.065 / 0.915 / 0.02 0.222 / 0.769 / 0.009 0.033 / 0.959 / 0.008 
 

Piglet 0.091 / 0.892 / 0.017 0.09 / 0.896 / 0.015 0.317 / 0.655 / 0.028 0.035 / 0.952 / 0.013 
 

     
 

Adult 0.078 / 0.909 / 0.013 0.023 / 0.972 / 0.005 0.055 / 0.937 / 0.009 0.115 / 0.855 / 0.029 

5 individuals per  
municipality 

Subadult 0.405 / 0.572 / 0.023 0.158 / 0.829 / 0.013 0.294 / 0.692 / 0.014 0.082 / 0.898 / 0.02 

  Piglet 0.508 / 0.456 / 0.036 0.266 / 0.706 / 0.028 0.494 / 0.473 / 0.033 0.11 / 0.861 / 0.029 
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Compared to the simulated data, the MVP outbreak data (Figure 4.5) showed changing 

proportions of sampled individuals for each age class over time. The proportion of sampled 

adults decreased with time and, although the piglet numbers increased slightly, they were 

always lower than those in the simulated data (Figure 4.5A). Within the group of infected 

individuals, piglets dominated the proportions in most quarters followed by subadults, while 

only very few adult individuals were sampled that were currently infected (Figure 4.5B). The 

distribution of immune individuals by age class in the MVP outbreak data was almost identical 

to the age class distribution of all sampled individuals (Figure 4.5C). 

 

Figure 4.5: Relative number of sampled individuals per age class (adult, subadult, piglet, colour) for all sampled individuals (A), 
Infected individuals (B) and immune (i.e., recovered) individuals (C) in the MVP outbreak (Scherer et al., 2019). 

 

4.3.3  Epidemiological status of all individuals at landscape scale (pattern 3) 

The global infection status showed (Figure 4.6A) only slight differences between the tested 

movement scenarios especially after quarter 15, however, habitat driven correlated random walk 

HDCRW showed high peaks already at the beginning of the outbreak (Figure 4.6A). Habitat 

driven HDM and competition driven CDM movement showed slightly lower infected peaks 

while the control scenario of only neighbourhood infection showed the lowest number of 

infected over time. The number of immune individuals (Figure 4.6B) showed a similar difference 

in peak numbers in movement scenarios, however, in habitat driven HDCRW the number of 
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immune individuals increased more slowly compared to the habitat driven movement. A 

noticeable difference was seen in the control with a faster increase in number of immunes as 

well as higher peak numbers. 

 

Figure 4.6: Epidemiological status of all individuals that were either infected (A) or immune (B) (for visibility at different scales) 
over time for Habitat-driven movement, Habitat-driven correlated random walk, competition-driven movement and no 
movement (colour). 

 

4.3.4  Landscape-wide distribution of infected individuals separated by pathogen strains 

We recorded how many individuals were infected by each pathogen strain classified from 1 to 

12 different strains (Figure 4.7). The classification included differences in host survival time for 

each strain as well as transmission probability. For example, the strain with a virulence of one 

was characterized by a long host survival time and a low probability of transmission and the 

strain with a virulence of 12 was characterized by a very short host survival time and a high 

probability of transmission. All tested movement scenarios showed a shift in strain composition 

over time. The released high virulent strain dominated the infection process for the first years, 

followed by a shift towards medium and lower virulent strains. After this shift, the number of 

infected individuals increased substantially, particularly initially in both habitat-driven 

movement scenarios (HDCRW, HDM) (Figure 4.7A,B). Competition driven movement (CDM, 

Figure 4.7C) showed a similar shift in strain composition but with lower overall numbers of 
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infected compared to habitat driven CRW. In the scenario without host movement, there was 

no shift in the composition of strains or number of infected over time. The initial highly virulent 

strain as well as strains of similar high virulence remained dominant over the course of the 

epidemic, while medium and lower virulent strains only occurred in very low proportions 

(Figure 4.7D). 

 

 

Figure 4.7: Mueller plots of the landscape-wide number of infected individuals separated for each strain, classified as strain 
virulence (colour) with 1– low virulence strain (long host survival time, low probability of transmission) to 12– highly virulent 
strain (short host survival time, high probability of transmission) in A– Habitat-driven CRW, B– Habitat-driven movement, 
C– Competition-driven movement and D– no movement (control). 

 

4.4  Discussion  

By applying an individual-based spatially-explicit model to real landscapes and comparing it to 

long-term outbreak data, we were able to gain insight into the complex dynamics of host 

pathogen systems. We were specifically interested in how adding movement behaviour and 

adaptive pathogen virulence can mimic real outbreaks, and we investigated this by adopting 

different sampling schemes or virtual observers (Zurell et al., 2010) on the simulations that 

could have biased the pattern match. Pattern oriented modelling can help to fill knowledge gaps 
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from past epidemics by explaining how real systems respond to external and internal changes. 

It is a robust method to reduce uncertainties when analysing multiple patterns simultaneously 

and helps to reveal cascading effects of processes (Grimm et al., 2005). 

In our simulations, including explicit host movement always increased the speed of pathogen 

spread with variations between the processes behind the decision-making of host individuals. 

However, a sampling design that focused only on a small number of individuals per 

municipality underestimated the speed of spread. 

4.4.1  Disease course of infected and immune over time (pattern 1) 

Higher percentages of infected in all three age classes of infected individuals in both simulated 

and MVP data may be explained through the applied sampling design and sampling as well as 

detection biases. At the same time the immune age class was underrepresented, this might be 

an indication that the difference in infectiousness between young and old in the model could 

be much larger. While the MVP outbreak showed for example only 1% of adults infected, the 

model showed 70% infected (Figure 4.4, 4.5 for reference). During the MVP outbreak only 

individuals that were found dead or had been hunted were sampled; of these, hunted individuals 

were the most prevalent ones and only a small sample size of tested individuals was found 

actually infected (Scherer et al., 2019), which, however, is understandable from the fact that the 

proof of virus presence via PCR is not easy in wildlife, as samples are not always fresh and the 

detection of the virus in infected tissue is only possible during a short time window (David et 

al., 2002; Gal et al., 2008).  

4.4.2  Match and mismatch of simulated spatiotemporal patterns with real outbreak  

data (pattern 2) 

The speed of the pathogen spread in our simulations was similar a short period after emergence 

but kept increasing at high speed while there was a noticeable reduction in speed of spread in 

the MVP outbreak data. All our tested movement scenarios overestimated the area affected by 

the pathogen by a factor of around 2.5. However, during the MVP outbreak, a complex 

vaccination regime was established on a municipality level to prevent further spread of the 

pathogen (Artois et al., 2002; Moennig, 2015). Such vaccination regimes have been shown to 

reduce the number of susceptible individuals enough to slow down pathogen spread (Lange et 
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al., 2012b; Rossi et al., 2010). This could be responsible for the mismatch of the spatiotemporal 

speed of spread pattern in the epidemic phase and could be an indirect proof of how even an 

incomplete vaccination regime that might have reached only a fraction of mostly adult 

individuals (Rossi et al., 2010) might still work well in containing the disease.  

4.4.3  Sampling scheme and the importance of standardized wildlife health monitoring 

Without pre-emptive monitoring and testing, the likelihood of detecting emerging diseases is 

often too low to implement management strategies early enough to halt a larger outbreak, 

especially if the dynamics of the disease are not fully understood. This is further facilitated by 

the fact that wild animals are not constrained by borders and have the ability to move long 

distances or for migratory movements (Morner et al., 2002). Additionally, hunting-based 

approaches have been shown to be not fully random, for example in sampling for chronic 

wasting disease in mule deer (Conner et al., 2000) and feline immunodeficiency virus in 

domestic cats (Courchamp et al., 2000). On the one hand, host movement and space use can, as 

well as hunting associated behaviours such as avoidance, influence the pool of tested 

individuals. On the other hand, disease-related changes in behaviour such as reduced or severely 

altered movement behaviour (Franz et al., 2018), could select against the detection of infected 

individuals through hunting. Furthermore, sampling and testing during the MVP outbreak 

varied significantly between municipalities and over time, even at the height of the epidemic. 

To avoid further biases and to be able to implement proactive management strategies, a large 

scale and continuous wildlife monitoring is needed. Such a monitoring scheme will not only 

benefit wildlife populations, but it is likely to also benefit human health. A recent study found 

that more than half (58%) of the reporting 107 countries and territories did not have functional 

wildlife health surveillance programmes for health security planning, including pandemic 

prevention (Machalaba et al., 2021). Emerging or re-emerging zoonotic diseases such as severe 

acute respiratory syndrome, influenza or Ebola with pandemic potential can have a profound 

social, economic or health effect on human populations (Binder et al., 1999). 

4.4.4  Strain differentiation and pathogenic virulence over time 

Interestingly, our results showed a distinct change in prevalent viral strains over time with 

explicit host movement (Figure 4.6 for reference). Initially, the release strain of high virulence 
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(as well as closely related strains) dominated the outbreak but were replaced by strains of low 

and medium virulence between two and three years after the initial outbreak with habitat 

driven movement behaviours and between one and two years with a density (of conspecifics)-

driven movement behaviour. Contrary, high virulence was largely maintained without explicit 

host movement.  

To turn this around and compare back to the MVP outbreak, during the emergence of the 

simulated pathogen, the initial outbreak was characterised by a highly virulent strain and a low 

number of infected individuals. It is unclear at what point in time the MVP outbreak was first 

detected and when the intensive monitoring started. Very little is known about how the 

pathogen entered the wider area and how it spread pre monitoring. Some theories suggest a 

clustering of multiple separate and overlapping outbreaks were responsible, which might be 

supported by the occurrence of different CSF strains in the landscape, since all isolates of CSF-

Viruses in Europe belonged to the subgroups 2.1, 2.2 or 2.3 (Blome et al., 2017). Our results could 

partially substantiate the assumption of multiple strains occurring simultaneously. However, 

in our simulation these were not necessarily caused by different outbreaks but were caused by 

the evolution of the initial strain. Furthermore, initial passive detection of a pathogen can 

require a high pathogen prevalence in the host population (Guberti et al., 2014). Our results 

showed a noticeably higher number of infected individuals once lower virulent strains became 

dominant. The real pattern of infected over time corresponds well with the pattern of the highly 

virulent strains in the simulations with movement. When infected with the low virulent strains 

(this could have been the introduction of subtype 2.2 or 2.3 in the real outbreak data) the 

infection could have been undetected and might explain the high ratio of immune individuals. 

In our model, the evolution of virulence had a similar effect as the vaccination applied in the 

field. 

A variety of theoretical and empirical studies have shown that reducing host density will select 

for lower pathogen transmission, and a trade-off between transmission and virulence will 

subsequently select for lower virulence (as reviewed in Cressler et al., 2016). Our study further 

supports those findings by showing that explicit host movement is a key driver for virulence 

evolution in a realistic landscape. Disregarding animal movements in real landscapes can 

misrepresent infection risk and epidemiological dynamics (Wilber et al., 2022). While habitat 
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or resource-based movement decisions initially suggest an aggregation or clustering of 

susceptible hosts, those spatial clusters may be temporarily isolated from each other. Such 

clusters could however, due to a highly virulent strain, run the risk of local extinction before 

transmitting the pathogen to a large enough number of susceptible hosts (Messinger and 

Ostling, 2009). However, the occurrence of a pathogen could also induce adaptations in the 

movement behaviour of the host-species, such as avoidance of infected conspecifics that would 

impact the transmission risk of the pathogen (Gupte et al., 2022). 

We found further evidence for a selection towards lower virulence in our simulations resulting 

from competition-driven movement behaviour of host individuals. Under those conditions, 

host individuals tended to avoid large clusters of conspecifics and used the density of close by 

conspecifics as a basis for their movement decision. This would subsequently alter the density 

and distribution of moving host individuals, the sole transmission factor in our simulations. 

This avoidance behaviour may have exerted a stronger selection pressure on lower virulent / 

less transmissible strains and resulted in a faster shift from high to medium and low virulent 

strains. Our simulations of different movement scenarios were mutually exclusive, while the 

decision making process behind animal movement is based on a complex interaction of 

extrinsic and intrinsic factors (Morales et al., 2010). Furthermore, considering the capacity for 

spatial memory in Suidae (Mendl et al., 1997) it is likely that the process behind the decision 

making of host individuals to be more dynamic and therefore less restrictive than our model 

assumptions. 

In conclusion, we were able to recreate spatial patterns of disease transmission observed during 

an outbreak of classical swine fever in wild boar in Mecklenburg-Vorpommern with a spatially 

explicit eco-epidemiological model. In particular, the pattern of infected over time with the 

simulated highly virulent strain corresponded well with observed patterns. However, some 

restrictions such as a strong sampling bias or a complex vaccination regime may have led our 

model to overestimate parameters such as the overall affected area. We could, however, 

demonstrate that host movement and movement-induced species interactions are a key 

mechanism for prolonged disease persistence, especially under the assumption of an evolving 

pathogen. 
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4.5  Additional information 

Supplementary material 

• Appendix C1: ODD protocol 

• Appendix C2: Additional figures 
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5  General Discussion  
 

Wildlife disease dynamics are created by a complex web of interlinked processes, both on the 

side of the host-species as well as on the side of the pathogen. While the importance of single 

processes, such as host-population dynamics (Anderson and May, 1978; Hudson, 2002), host 

movement behaviour (Scherer et al., 2020) or pathogen virulence (Cressler et al., 2016), has been 

profusely studied, their combined effects and the interactions of those processes are often 

neglected (Turner et al., 2021). Furthermore, interactions such as host movement decisions 

based on dynamic landscape resource availability are likely susceptible to global change drivers, 

such as land-use changes or climate warming, that will ultimately modify and feed back into 

disease dynamics (Semenza and Menne, 2009; Semenza and Suk, 2018). 

Epidemiological models have evolved from more simple mathematical mean-field approaches 

(Anderson and May, 1982) to complex tools, capable of capturing interactions on multiple 

trophic levels. Particularly, the integration of individual decision making processes such as 

movement (Manlove et al., 2021; Wilber et al., 2022) as a bottom-up regulation of host density 

and distribution through heterogenous and dynamic resource landscapes has seen more and 

more recognition. On the other hand, host-pathogen systems are also top-down regulated 

through the pathogen that, through transmission and mortality, will feed back onto the density 

and distribution of host individuals (Alizon et al., 2009; Cressler et al., 2016). The interplay of 

these complex and interlinked processes on multiple trophic levels and their importance for 

wildlife and human health is the current frontier of disease ecology. 

Across the chapters of my thesis, I used theoretical and pattern oriented modelling approaches 

to investigate these interactions. I used theoretical models (chapters 2 and 3) to explore the 

effects of changing environmental conditions on disease dynamics. In the first theoretical part 

of my thesis (chapter 2), I investigated how temporal mismatches between seasonal resource 

availability and host life-history events affect host-pathogen dynamics and disease persistence 

in the landscape, in conjunction with host movement decision making, by modifying an 

established eco-epidemiological, individual-based model. I showed that the formation of 

temporary disease hotspots in combination with host movement decisions increases pathogen 
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persistence and therefore host-pathogen coexistence. Even under extreme conditions, such as a 

full temporal mismatch between host resource availability and host life-history, I showed a 

remarkable resilience of the host-pathogen system that prevented the pathogen from going 

extinct. In the second theoretical part of my thesis (chapter 3), I further modified the eco-

epidemiological, individual-based model to illuminate the top-down effects of pathogens on 

host density and distribution and analysed pathogen virulence evolution in spatially structured 

host-populations and under global change scenarios. I demonstrated that mismatches between 

seasonal resource availability and host life-history facilitated pathogen persistence by favouring 

lower virulent strains,  while landscape homogenization favoured higher virulent strains, 

capitalizing on higher host densities for transmission. In the pattern oriented approach of my 

thesis (chapter 4), I applied the newly developed theoretical model including host movement 

decision making and adaptive pathogen virulence to assess patterns of disease outbreak, 

persistence and transmission in a real population. Then I matched those patterns to 

observations from long-term outbreak data of a classical swine fever outbreak in wild boar in 

Northern Germany. I showed that the patterns associated with the simulated highly virulent 

strain corresponded well with the observed pattern, and I demonstrated how the evolution of 

virulence in combination with movement-induced individual interactions act as key drivers of 

prolonged disease persistence. 

In the following I will synthesize my findings within the current framework of existing concepts 

and theories in disease dynamics. First, I will discuss key bottom-up drivers of disease dynamics 

and the importance of their interactions. Afterwards, I will emphasize the importance of 

including top-down processes in epidemiological models, followed by an assessment of disease 

drivers in the broader context of global change. Furthermore, I will discuss how the combination 

of empirical data and eco-epidemiological models can help to identify key drivers of disease 

dynamics under realistic conditions. Finally, I will conclude with an outlook of possible future 

developments to create accurate predictive frameworks for pathogen persistence and spread. 

5.1  Movement, seasonality, spatial structure and dynamic host density 

Chapter 2 highlighted how considering explicit host movement decisions and temporal 

mismatches of resources in the landscape resulted on different outcomes for pathogen 

persistence in hot-pathogen systems. Under host life history and resource availability mismatch 
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conditions,  undirected random movement strategies, such as a correlated random walk, 

decreased the probability for pathogen persistence  compared to directed host movements, such 

as habitat-driven movement strategies. One key aspect of the spread and persistence of directly 

transmitted infectious diseases is the contact rate of infected and susceptible host individuals 

(Craft, 2015; Eames et al., 2015; Heesterbeek et al., 2015). When host individuals move directly 

towards a resource such as food, shelter or mates, they aggregate in dense groups which are 

known to increase pathogen spread and persistence through increased contact rates (Altizer et 

al., 2006; Roy et al., 2005; Wichmann et al., 2003). My results illustrate this effect and support 

previous findings, e.g. seasonal dynamics in house finches (Carpodacus mexicanus) that 

promote species aggregation have been shown to greatly increase pathogen persistence 

(Hosseini et al., 2004).  While contact rates and spatial heterogeneity have been studied 

extensively in compartmental metapopulation models (Kermack and McKendrick, 1927; Lloyd 

and May, 1996), temporal variability such as seasonal effects or explicit host movement are often 

neglected.  

The study of temporal mismatches becomes especially relevant due to the current global change 

crisis that will potentially increase mismatch between resource availability and host 

phenological events (Plard et al., 2014; Visser and Gienapp, 2019) and the inability of many 

species to adapt to the new conditions in time (Radchuk et al., 2019). In chapter 2 I found that 

mismatches (or asynchrony) between resource availability and host life-history events slightly 

decreased pathogen persistence. A higher asynchrony forced spatiotemporal clustering of the 

host population into high resource habitats, forming disease islands within the landscape. 

While host population clustering under asynchrony is expected (Becker and Hall, 2016; Duncan 

et al., 2013), the presumed host population decline and subsequent pathogen extinction 

(Clifford et al., 2006) did not occur. During times of high resource availability, different clusters 

can be temporarily connected, allowing for demographic rescue of the host populations through 

individual movement (Roy et al., 2005), as opposed to spatially isolated and small host 

populations that are generally not able to sustain a prolonged disease outbreak (Clifford et al., 

2006; Walker et al., 2008). As shown in my model, in the spatially structured populations, 

accounting for individual effects is key to understand the disease dynamics and movement 

behaviour played an important role that allowed for disease persistence. 
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Individual movement decisions played an important role in both connecting subpopulations 

and transporting the pathogen among them. For a pathogen to spread and persist within a 

population, a high host density (Parratt et al., 2016) and in case of an SIR-system where 

recovered individuals gain life-long immunity (Kermack and McKendrick, 1927), a high contact 

rate with susceptible hosts (Craft, 2015; Eames et al., 2015; Lloyd-Smith et al., 2005) is critical. 

There is clear evidence, both theoretical and empirical (Figuerola and Green, 2000; Kleijn et al., 

2010; White et al., 2018; Wilber et al., 2022), that host movement might increase disease 

persistence. The results from my simulations suggest that movement decisions of the hosts in 

relation to resource availability in the landscape increase the chance of either coming into 

contact with infected conspecifics or transmitting the pathogen to susceptible hosts while 

moving through high resource areas that also attract other conspecifics. For example, the 

aggregation of otherwise unconnected cattle-herds around water resources in Kenya has shown 

to greatly increase that chance of disease transmission between herds (VanderWaal et al., 2017). 

Due to metapopulation-like structures, disease management and control become more complex 

and need to be adjusted to also account for areas with low infection density (Rowthorn et al., 

2009). Understanding where and under what conditions those structures arise is an important 

step in moving towards predictive and preventive frameworks for disease control and 

management. Simultaneously, when a pathogen invades a group of low host density, members 

can be more vulnerable to mortality and ultimately, group extinction occurred.  

Another important result is the effect of landscape homogenization on pathogen persistence 

under asynchronous conditions. Homogenous landscapes can increase hosts contact rates and 

pathogen transmission. Simultaneously, seasonal mismatches between food sources and life 

history events are increasingly common due to climate change (e.g. birds, Visser et al., 2012) and 

a general lower resource availability can additionally impair a host species immune response 

(Strandin et al., 2018). A subsequently higher susceptibility and increased pathogen spread can 

not only directly affect host populations but also could lead to zoonotic spillovers to other 

species, including humans in case of pathogen with high host-plasticity (Kreuder Johnson et al., 

2015) such as the West-Nile virus (Marm Kilpatrick et al., 2006).  

Even without the inclusion of explicit host movement, disease hotspots formed in high resource 

areas based of the initial landscape configuration. In return, there will be a high contact rate 
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and high number of pathogen transmission events within those hotspots (Paull et al., 2012) once 

a pathogen initially invades or emerges. Once emerged, there is evidence, that host-pathogen 

interactions can evolve rapidly (Hawley et al., 2013), with strong implications for disease 

persistence and spread. This highlights the importance of the pathogen effects as top-down 

forces shaping disease outbreaks that also need to be taken into account for understanding 

disease dynamics. 

5.2  Pathogens in space and time – The evolution of virulence in spatially structured 
host populations 

Pathogens have the potential to rapidly adapt due to high population sizes, high mutation rates 

and short generation times (Geoghegan and Holmes, 2018). Particularly, when landscape 

structure and dynamics facilitate the formation of spatiotemporally isolated pathogen hotspots 

with high host densities, a large number of transmission events (Paull et al., 2012) within those 

might drive pathogen evolution. A key aspect of pathogen evolution is virulence (i.e., a 

pathogens ability to cause harm to its host through for example mortality), which is subject to 

a variety of evolutionary trade-offs. One well known trade-off is the transmission-virulence 

trade-off hypothesis, which states that an increase in a strains transmission rate can cause 

shorter infections due to higher lethality (Alizon et al., 2009; Alizon and Michalakis, 2015; 

Cressler et al., 2016; Kamo et al., 2007). 

Exploring how spatial structure impacts the evolution of pathogen virulence has been subject 

of both theoretical (Lion and Boots, 2010; Lion and Gandon, 2015; Webb et al., 2007) and 

empirical studies (Boots and Mealor, 2007). In chapter 3, I was able to show a threshold in the 

degree of landscape homogenization where higher levels of homogenization not only enhanced 

pathogen spread, but also evolution towards higher virulence. My results show that the spatial 

structure, configuration and dynamic of the landscape will impact the evolution of pathogen 

virulence in specific ways; while low virulence will be the norm in heterogeneous landscapes, 

we expect an increase of average pathogen virulence as landscapes become more homogeneous. 

This pattern is consistent with field observations, for example in the spread of tuberculosis in 

badgers (Meles meles) (Acevedo et al., 2019). By incorporating pathogen virulence evolution in 

the model, I built up upon the results in chapter 2, where pathogen virulence was fixed and 

landscape homogenization resulted in lower pathogen persistence, and I could show a clear 
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temporal differentiation in the virulence (and subsequent transmissibility) of the occurring 

pathogen strains that further facilitated pathogen persistence. As shown in my model, during 

the emergence of the pathogen, low virulent strains spread throughout the landscape over time. 

When host density increases at times of high resource availability, so do contact and 

transmission rates, and sporadically occurring higher virulent strains were able to capitalize on 

the high number of susceptible hosts (Altizer et al., 2006; Hite and Cressler, 2018). High host 

density and even distribution in homogenous landscapes can cause a rapid spread of a pathogen 

that could lead to host extinction through the pathogen or pathogen extinction through “self-

shading”, i.e. depleting the pool of susceptible individuals (Boots and Mealor, 2007). However, 

my model showed that pathogen-host coexistence can be achieved through virulence evolution. 

Both effects, host and pathogen extinction, can be mitigated through the evolution of lower 

virulence which allows the pathogen either to persist long enough until new susceptible 

individuals are available or spread slowly enough to not deplete the existing pool of susceptible 

individuals.  

An additional key finding from chapter 3 was that although only one low virulent strain was 

released into the population it quickly evolved into a complex system of coexisting strains with 

varying virulence, resembling observed patterns, such as the ASF-virus in wild boar (Portugal et 

al., 2015). While the coexistence of multiple strains was apparent through all levels of landscape 

homogenization the likelihood of a strain to dominate the outbreak with high prevalence varied 

strongly with the level of landscape homogenization and time. Whereas theory predicts an 

evolution of virulence towards an optimal point along the virulence-transmission trade-off 

(Bonneaud and Longdon, 2020; Cressler et al., 2016), the presence and persistence of non-

dominant strains could indicate a spatial differentiation of strains within the landscape. Lower 

virulent strains could persist within low density host clusters over time. Even if management 

efforts such as large-scale vaccination campaigns are undertaken, they would most likely target 

on high density host aggregations (Joseph et al., 2013). This would drastically reduce the 

prevalence of the highly virulent strains found in those areas, but lower virulent strains may 

escape management efforts and become endemic. As a result, a re-emergence of a pathogen and 

subsequent re-appearance of higher virulent strains through evolution from surviving low 

virulent strains could keep an outbreak active within a population over a long period of time, 
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especially if host movement can quickly and efficiently transport the pathogen over large 

distances. For example, one of the hypothesized causes of chytridiomycosis and the global 

population decline of many amphibian species, is a shift from an endemic low virulent strain 

towards a highly virulent variant (Rachowicz et al., 2005). 

The results of the two previous models showed that long term pathogen persistence in the host 

population can be achieved in multiple ways. Directed host movement towards concentrated 

resources facilitates pathogen spread and persistence in the landscape (chapter 2), as well as the 

evolution of low virulent strains ensure pathogen persistence when host populations are 

isolated (chapter 3). Taken together, these results further highlight the critical importance of 

the interplay between resource landscape, seasonal dynamics, pathogen evolution and temporal 

asynchrony between host life history events and resource availability for pathogen persistence 

and host-pathogen coexistence and provide new insides on the mechanisms that allow for 

pathogen persistence, which ultimately opens up new avenues for emerging infectious diseases 

and spillover events to other species. There is evidence that habitat loss and increasing human-

wildlife contacts are related to the emergence of viruses such as Hendra or Nipah (Patz et al., 

2004; Plowright et al., 2021). Furthermore, increases in human-livestock-wildlife contacts, 

facilitated through seasonal changes in wildlife aggregation, can not only directly affect 

pathogen persistence and spread (Altizer et al., 2006; Roy et al., 2005; Wichmann et al., 2003), 

but can also lead to multi-directional spillover events (Fagre et al., 2022). 

5.3  Implications of global change for pathogen persistence and spread 

That global change, through mechanism like climate change or land-use change, can lead to 

environmental fluctuations and to an increase of mismatches between resources and biological 

events and feedback onto disease dynamics is one of the key results of both chapter 2 and 3. For 

example, large scale land use changes such as converting natural habitats into agricultural areas 

affected the density and distribution of many species, including wild boar, by aggregating them 

in agricultural areas (Acevedo et al., 2011) which can lead to novel contact points within and 

between species. The density, distribution and timing of those novel resources is likely to be 

vastly different from natural systems, resulting in the possibility for stronger temporal 

mismatches (Ullmann et al., 2020, 2018). Additionally, while landscapes are becoming more and 

more fragmented on a large scale, the structure within the suitable habitat fragments might 
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become more homogenous and subsequently, contact rates and pathogen transmission might 

increases locally (Patz et al., 2004). 

The wild boar, as my model host species, is currently benefiting from landscape changes 

induced by global change (Vetter et al., 2020). Agricultural intensification and land-use change 

provide ample resources for wild boar populations to continue to increase in numbers across 

Europe (Acevedo et al., 2006; Ruiz-Fons et al., 2008). I demonstrated that, even under extreme 

global change scenarios such as a complete mismatch of host life-history and resource 

availability, host and pathogen had a high probability of coexisting, therefore ensuring disease 

persistence. If landscape fragments become more isolated from each other but internally 

become more homogenous, a potential increase in average pathogenic virulence within those 

fragments could have catastrophic effects on wildlife communities. On the other hand, if global 

change would result in a reduction of host density in certain areas, some diseases may become 

endemic in their respective host populations. I have shown that low virulent strains could 

continue to persist in these populations, and they could act as pathogen sources for re-occurring 

larger outbreaks through spontaneous mutation into more virulent strains and transport into 

areas of higher host density through host movement. Additionally, for many diseases an 

increase in virulence can coincide with an increase in transmissibility (Alizon and Michalakis, 

2015; Messinger and Ostling, 2009), even though host survival times are generally shorter when 

infected with a highly virulent strain. As a result, the chance of spillover events to other wild or 

domesticated animals increases (Plowright et al., 2021). Furthermore, habitat encroachment and 

destruction will not only bring different wildlife species closer together but could facilitate 

selection of viruses with high host plasticity that could include human populations (Rulli et al., 

2021). There is evidence that pathogens in domestic animals had a significantly wider host 

variety than pathogens that are not shared with domestic animals (Kreuder Johnson et al., 2015). 

Not only can zoonotic spillovers to humans have a detrimental effect on human health, but if 

host density becomes high enough a pathogen can be transmitted back to wildlife populations, 

potentially becoming endemic and creating long-term reservoirs. Subsequently, if contact rates 

between human and animal population continue to increase, integrating humans as part of a 

metapopulation of hosts, it may be inevitable to account for bidirectional pathogen 

transmission from humans to animals and vice versa (Fagre et al., 2022). This is evident in a 
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recent study that showed SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) resulted 

from a spillover from humans and continued to spread directly within the white-tailed deer 

population (Kuchipudi et al., 2022). In the case of wild boar, that already hosts a variety of 

pathogens with implications for human health (e.g., hepatitis E or brucellosis; Li et al., (2005), 

Melzer et al. (2007)), the species might continue to benefit from the effects of climate and land 

use change, and contacts with human populations could increase in frequency. How my 

theoretical findings of bottom-up and top-down processes behave in a real system and translate 

into host-pathogen dynamics and large-scale patterns at the landscape and host population 

scale is the subject of chapter 4.  

5.4  Patterns, processes and the effect of spatial decision-making 

Disentangling the complex interactions of host-pathogen systems and resource landscapes in 

real outbreak data is often challenging. To that end, identifying the processes that drive real 

host-pathogen systems such as feedbacks from a heterogenous resource landscape to pathogen 

persistence through movement decisions is a natural first step. Incorporating patterns that 

arose from the interplay of individual movement and landscape into individual-based models 

can help to gain a mechanistic understanding of how pathogen spread and persistence are 

influenced by the external and internal components behind the decision making process of 

individual hosts (Dougherty et al., 2018; Grimm et al., 2005). Individual-based approaches can 

be used to include variation into the movement process of individuals such as distance or 

environmental and behavioral cues (Coulon et al., 2015; Grimm and Railsback, 2005). Even 

though complex transmission networks could be the result of moving individuals along internal 

or external drivers and could prove beneficial in understanding disease dynamics most 

epidemiological models used phenomenological approaches up until recently when 

mechanistic movement models became more common (e.g., Manlove et al., 2021; Scherer et al., 

2020; Tardy et al., 2021; Wilber et al., 2022). For example, a broader understanding of why, when 

and where individuals exhibit specific movement patterns (Nathan et al., 2008) and 

technologies such as high-resolution animal tracking (Kays et al., 2015) have contributed 

substantially to the inclusion of mechanistic decision making processes into epidemiological 

models. The complex patterns that emerge from the interplay of animal movement and disease 
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dynamics, can be utilised for identifying implications for wildlife and human health (Dougherty 

et al., 2018).  

Here, pattern-oriented modelling can help explaining how real systems respond to external and 

internal drivers by matching simulations to observed patterns from real outbreak data (Grimm 

et al., 2005). In chapter 4, I used my spatially explicit simulation model to match observed 

patterns in data gathered from a Classical Swine Fever (CSF) outbreak in Mecklenburg-

Vorpommern (MVP). The outbreak was characterized by an initial peak of infected hosts and 

strong increase in infections although at low absolute numbers that decreased after a few years 

and sporadically reappeared in wave-like patterns. Despite a large-scale vaccination regime, CSF 

persisted in the wild boar population for seven years (Scherer et al., 2019). In the simulated 

outbreak I found that the trajectory of a simulated strain with high virulence matched well with 

observed patterns and was supported from the field data, where three different strain types were 

found. Interestingly, the highly virulent strain dominated the outbreak initially but was 

replaced by strains of low and medium virulence between two- and three-years post outbreak. 

In the context of the results from chapter 3, in which I showed that not only can multiple strains 

evolve from a single strain, but also that lower host density could likely favor less virulent strain, 

two interesting implications arise from that: firstly, the pathogen could over this period of time 

persist mostly through low density within subpopulations infected with low virulence strains, 

with sporadic surges of higher virulent strains when individual movement re-introduced the 

pathogen to higher density areas. During the MVP outbreak, CSF infection was detected in very 

few sampled individuals (0.5 to 1% post initial outbreak) while after the initial outbreak, around 

30 to 40% of the sampled individuals were classified as immune (Scherer et al., 2019). However, 

a strict vaccination scheme was put into effect shortly after the outbreak (Artois et al., 2002; 

Moennig, 2015) and a differentiation between immune individuals that were vaccinated and 

those that gained natural immunity was not possible (Moennig, 2015; Scherer et al., 2019). 

Despite that, the pathogen continued to persist and new actively infected individuals were 

found throughout the seven year course of the outbreak (Scherer et al., 2019), indicating that 

undetected low virulent strains could have contributed to long duration of the MVP outbreak. 

Secondly, the detectability of pathogens in wildlife populations is inherently difficult and proof 

of virus presence through PCR (polymerase chain reaction) is only viable for limited amount of 
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time (David et al., 2002; Gal et al., 2008). Furthermore, most of the samples taken during the 

MVP outbreak were collected from hunted wild boar (Scherer et al., 2019). Hunting-based 

samplings have been shown to be not fully random and biased towards a subset of individuals, 

usually from high density areas (Conner et al., 2000; Courchamp et al., 2000). However, the 

pathogen could persist either at low virulence in low density areas (as shown in chapter 3), or 

the pathogen could be distributed more evenly through a landscape without asynchronous 

spatiotemporal variation forcing high density pathogen clusters (as shown in chapter 2). In both 

cases, a host-density biased sampling might underestimate the pathogen prevalence in the 

landscape and could misrepresent infection risk and epidemiological dynamics. Simulation 

studies, generally, are not subject to such strong biases and give us the opportunity to virtually 

observe the outbreak dynamics as a whole (Zurell et al., 2010). However, to better match the 

observed patterns in the MVP outbreak I included a municipality-based sampling design in 

chapter 4, where five deceased individuals (in affected municipalities) were chosen at random 

and sampled to mimic the limited often lower sample sizes of real data. I could demonstrate that 

under certain conditions, such as habitat-driven individual movement decisions, the sampling 

design underestimated the actual course of the disease. 

Recalling from chapter 2, mechanistic host individual movement towards higher resource 

habitats, allowed for a pathogen to coexist with the host population at high probabilities. This 

is especially true when compared to a less targeted type of host movement such as the correlated 

random walk, where the probability of coexistence for host and pathogen was lower not only 

during periods of overall unfavourable habitat conditions, but also during periods of less 

extreme conditions. In addition, it was shown in chapter 4 that movement decisions in realistic 

landscapes based on conspecific density (avoidance) lead to earlier evolution of the pathogen 

toward less virulent strains than under directed movement into more resource-rich habitats. 

Excluding explicit host movement in the simulations in chapter 4 did not lead to a strong 

differentiation in pathogen strains, and lower virulent strains remained absent from the 

landscape. This is particularly interesting due to that fact that the CSF outbreak in MVP has in 

part been related to a change from a highly virulent strain to a strain of lower virulence (Lange 

et al., 2012; Mittelholzer et al., 2000). Taken together, the complementary use of mechanistic 

decision making processes and evolving pathogens is likely to increase in importance for disease 
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ecology, especially when external factors such as global change increase and alter the dynamic 

processes that drive individual movement. 

5.5  Conclusion and outlook 

Bottom-up and top-down processes and their interactions play an important role in shaping 

host densities and contact rates among moving individuals, two factors at the core of disease 

ecology. While bottom-up effects such as individual movement in response to a heterogeneous 

resource landscape as well as top-down processes, like varying levels of mortality caused by 

different virulent strains, have been well studied individually, their interaction is often missing 

in most epidemiological studies. Therefore, a general understanding of the interplay between 

spatiotemporal heterogeneity and the evolution of virulence is a key goal in disease ecology. 

In my thesis, I focused on how explicit individual movement (chapter 2) and the evolution of 

pathogenic virulence (chapter 3) shape density, distribution and contact rates and subsequently 

feed back into pathogen transmission and persistence within a social host. I applied key insights 

from both processes with data from an outbreak of CSF in wild boar to identify drivers behind 

large-scale long-term disease outbreaks (chapter 4). By modifying an agent-based eco-

epidemiological model I have shown that directed, decision-based individual movement led to 

higher probabilities of disease persistence in dynamic landscapes while in return, dynamic 

landscapes and mismatches between resources and host life-history selected for lower virulent 

viral strains. I was able to highlight important bottom-up mechanisms, such as the formation 

of disease hotspots under asynchronous resource conditions that facilitated pathogen 

persistence, even in scenarios with extremely unfavourable conditions for the host population. 

Secondly, I showed that the selection for low virulent strains under these unfavourable 

conditions can counteract some of the top-down effects that pathogens exert on their hosts 

through mortality and facilitated continuous pathogen persistence. Furthermore, I was able to 

recreate observed patterns in a long-term CSF outbreak and demonstrated how directed host 

movement and the evolution of virulence act as important drivers of pathogen persistence and 

spread. 

Taken together, the complementary use of theoretical and pattern-oriented modelling in my 

thesis highlights the importance of spatiotemporal autocorrelations within the landscape 
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structure, plasticity in viral traits such a virulence and their interactions for long-term disease 

persistence and patterns of spread. My findings are an important step towards the inclusion of 

complex multi-trophic interactions both on a pathogen and on a host level in eco-

epidemiological approaches to understand feedbacks on pathogen spread and disease 

persistence. The increasing rate of zoonotic spillovers with pandemic potential as well as the 

ongoing SARS-CoV-2 pandemic not only highlight the importance of understanding these 

complex interactions but are a warning for researchers to further investigate the causes and 

consequences behind disease dynamics to create predictive and preventive frameworks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5  

 

113 
 

References 

Acevedo, P., Escudero, M.A., Muńoz, R., Gortázar, C., 2006. Factors affecting wild boar abundance across an 
 environmental gradient in Spain. Acta Theriol 51, 327–336. https://doi.org/10.1007/BF03192685 

Acevedo, P., Farfán, M.Á., Márquez, A.L., Delibes-Mateos, M., Real, R., Vargas, J.M., 2011. Past, present and future 
 of wild ungulates in relation to changes in land use. Landscape Ecology 26, 19–31. 
 https://doi.org/10.1007/s10980-010-9538-2 

Acevedo, P., Prieto, M., Quirós, P., Merediz, I., de Juan, L., Infantes-Lorenzo, J.A., Triguero-Ocaña, R., Balseiro, A., 
 2019. Tuberculosis Epidemiology and Badger (Meles meles) Spatial Ecology in a Hot-Spot Area in 
 Atlantic Spain. Pathogens 8, 292. https://doi.org/10.3390/pathogens8040292 

Alizon, S., Hurford, A., Mideo, N., van Baalen, M., 2009. Virulence evolution and the trade-off hypothesis: history, 
 current state of affairs and the future. Journal of evolutionary biology 22, 245–259. 
 https://doi.org/10.1111/j.1420-9101.2008.01658.x 

Alizon, S., Michalakis, Y., 2015. Adaptive virulence evolution: the good old fitness-based approach. Trends in 
 Ecology & Evolution 30, 248–254. https://doi.org/10.1016/j.tree.2015.02.009 

Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P., 2006. Seasonality and the dynamics of 
 infectious diseases. Ecology letters 9, 467–484. https://doi.org/10.1111/j.1461-0248.2005.00879.x 

Anderson, R.M., May, R.M., 1982. Coevolution of hosts and parasites. Parasitology 85, 411–426. 
 https://doi.org/10.1017/S0031182000055360 

Anderson, R.M., May, R.M., 1978. Regulation and Stability of Host-Parasite Population Interactions: I. Regulatory 
 Processes. Journal of Animal Ecology 47, 219–247. 

Artois, M., Depner, K.R., Guberti, V., Hars, J., Rossi, S., Rutili, D., 2002. Classical swine fever (hog cholera) in wild 
 boar in Europe. Rev. Sci. Tech. OIE 21, 287–303. https://doi.org/10.20506/rst.21.2.1332 

Becker, D.J., Hall, R.J., 2016. Heterogeneity in patch quality buffers metapopulations from pathogen impacts. 
 Theor Ecol 9, 197–205. https://doi.org/10.1007/s12080-015-0284-6 

Bonneaud, C., Longdon, B., 2020. Emerging pathogen evolution: Using evolutionary theory to understand the fate 
 of novel infectious pathogens. EMBO Rep 21. https://doi.org/10.15252/embr.202051374 

Boots, M., Mealor, M., 2007. Local Interactions Select for Lower Pathogen Infectivity. Science 315, 1284–1286. 
 https://doi.org/10.1126/science.1137126 

Clifford, D.L., Mazet, J.A.K., Dubovi, E.J., Garcelon, D.K., Coonan, T.J., Conrad, P.A., Munson, L., 2006. Pathogen 
 exposure in endangered island fox (Urocyon littoralis) populations: Implications for conservation 
 management. Biological Conservation 131, 230–243. https://doi.org/10.1016/j.biocon.2006.04.029 

Conner, M.M., McCarty, C.W., Miller, M.W., 2000. Detection of bias in harvest-based estimates of chronic 
 wasting disease prevalence in mule deer. Journal of Wildlife Diseases 36, 691–699. 
 https://doi.org/10.7589/0090-3558-36.4.691 

Coulon, A., Aben, J., Palmer, S.C.F., Stevens, V.M., Callens, T., Strubbe, D., Lens, L., Matthysen, E., Baguette, M., 
 Travis, J.M.J., 2015. A stochastic movement simulator improves estimates of landscape connectivity. 
 Ecology 96, 2203–2213. https://doi.org/10.1890/14-1690.1 

Courchamp, F., Say, L., Pontier, D., 2000. detection, identification, and correction of a bias in an epidemiological 
 study. Journal of Wildlife Diseases 36, 71–78. https://doi.org/10.7589/0090-3558-36.1.71 

Craft, M.E., 2015. Infectious disease transmission and contact networks in wildlife and livestock. Phil. Trans. R. 
 Soc. B 370, 20140107. https://doi.org/10.1098/rstb.2014.0107 



CHAPTER 5  

 

114 
 

Cressler, C.E., McLEOD, D.V., Rozins, C., van den Hoogen, J., Day, T., 2016. The adaptive evolution of virulence: a 
 review of theoretical predictions and empirical tests. Parasitology 143, 915–930. 
 https://doi.org/10.1017/S003118201500092X 

David, D., Yakobson, B., Rotenberg, D., Dveres, N., Davidson, I., Stram, Y., 2002. Rabies virus detection by RT-
 PCR in decomposed naturally infected brains. Veterinary Microbiology 87, 111–118. 
 https://doi.org/10.1016/S0378-1135(02)00041-X 

Dougherty, E.R., Seidel, D.P., Carlson, C.J., Spiegel, O., Getz, W.M., 2018. Going through the motions: 
 incorporating movement analyses into disease research. Ecol Lett 21, 588–604. 
 https://doi.org/10.1111/ele.12917 

Duncan, A.B., Gonzalez, A., Kaltz, O., 2013. Stochastic environmental fluctuations drive epidemiology in 
 experimental host-parasite metapopulations. Proceedings. Biological sciences 280, 20131747. 
 https://doi.org/10.1098/rspb.2013.1747 

Eames, K., Bansal, S., Frost, S., Riley, S., 2015. Six challenges in measuring contact networks for use in 
modelling. Epidemics 10, 72–77. https://doi.org/10.1016/j.epidem.2014.08.006 

Fagre, A.C., Cohen, L.E., Eskew, E.A., Farrell, M., Glennon, E., Joseph, M.B., Frank, H.K., Ryan, S.J., Carlson, C.J., 
 Albery, G.F., 2022. Assessing the risk of human-to-wildlife pathogen transmission for conservation and 
 public health. Ecology Letters n/a, 1–16. https://doi.org/10.1111/ele.14003 

Figuerola, J., Green, A.J., 2000. Haematozoan Parasites and Migratory Behaviour in Waterfowl. Evolutionary 
 Ecology 14, 143–153. https://doi.org/10.1023/A:1011009419264 

Gal, A., Loeb, E., Yisaschar-Mekuzas, Y., Baneth, G., 2008. Detection of Ehrlichia canis by PCR in different tissues 
 obtained during necropsy from dogs surveyed for naturally occurring canine monocytic ehrlichiosis. The 
 Veterinary Journal 175, 212–217. https://doi.org/10.1016/j.tvjl.2007.01.013 

Geoghegan, J.L., Holmes, E.C., 2018. The phylogenomics of evolving virus virulence. Nat Rev Genet 19, 756–769. 
 https://doi.org/10.1038/s41576-018-0055-5 

Grimm, V., Railsback, S.F., 2005. Individual-based Modeling and Ecology: Princeton University Press. 
 https://doi.org/10.1515/9781400850624 

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., 
 DeAngelis, D.L., 2005. Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from 
 Ecology. Science 310, 987–991. https://doi.org/10.1126/science.1116681 

Hagenaars, T.J., Donnelly, C.A., Ferguson, N.M., 2004. Spatial heterogeneity and the persistence of infectious 
 diseases. Journal of Theoretical Biology 229, 349–359. https://doi.org/10.1016/j.jtbi.2004.04.002 

Hawley, D.M., Osnas, E.E., Dobson, A.P., Hochachka, W.M., Ley, D.H., Dhondt, A.A., 2013. Parallel Patterns of 
 Increased Virulence in a Recently Emerged Wildlife Pathogen. PLoS Biol 11, e1001570. 
 https://doi.org/10.1371/journal.pbio.1001570 

Heesterbeek, H., Anderson, R.M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C., Eames, K.T.D., Edmunds, 
 W.J., Frost, S.D.W., Funk, S., Hollingsworth, T.D., House, T., Isham, V., Klepac, P., Lessler, J., Lloyd-
 Smith, J.O., Metcalf, C.J.E., Mollison, D., Pellis, L., Pulliam, J.R.C., Roberts, M.G., Viboud, C., Isaac 
 Newton Institute IDD Collaboration, 2015. Modeling infectious disease dynamics in the complex 
 landscape of global health. Science 347, aaa4339. https://doi.org/10.1126/science.aaa4339 

Hite, J.L., Cressler, C.E., 2018. Resource-driven changes to host population stability alter the evolution of 
 virulence and transmission. Phil. Trans. R. Soc. B 373, 20170087. https://doi.org/10.1098/rstb.2017.0087 

Hosseini, P.R., Dhondt, A.A., Dobson, A., 2004. Seasonality and wildlife disease: how seasonal birth, aggregation 
 and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. 
 Proceedings. Biological sciences 271, 2569–2577. https://doi.org/10.1098/rspb.2004.2938 

Hudson, P.J. (Ed.), 2002. The ecology of wildlife diseases. Oxford University Press, New York. 



CHAPTER 5  

 

115 
 

Joseph, M.B., Mihaljevic, J.R., Arellano, A.L., Kueneman, J.G., Preston, D.L., Cross, P.C., Johnson, P.T.J., 2013. 
 Taming wildlife disease: bridging the gap between science and management. J Appl Ecol 50, 702–712. 
 https://doi.org/10.1111/1365-2664.12084 

Kamo, M., Sasaki, A., Boots, M., 2007. The role of trade-off shapes in the evolution of parasites in spatial host 
 populations: An approximate analytical approach. Journal of Theoretical Biology 244, 588–596. 
 https://doi.org/10.1016/j.jtbi.2006.08.013 

Kays, R., Crofoot, M.C., Jetz, W., Wikelski, M., 2015. Terrestrial animal tracking as an eye on life and planet. 
 Science 348, aaa2478. https://doi.org/10.1126/science.aaa2478 

Kermack, W.O., McKendrick, A.G., 1927. A Contribution to the Mathematical Theory of Epidemics. Proceedings 
 of the Royal Society A: Mathematical, Physical and Engineering Sciences 115, 700–721. 
 https://doi.org/10.1098/rspa.1927.0118 

Kleijn, D., Munster, V.J., Ebbinge, B.S., Jonkers, D.A., Müskens, G.J.D.M., Van Randen, Y., Fouchier, R.A.M., 2010. 
 Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese 
 in their winter staging areas. Proc. R. Soc. B. 277, 2041–2048. https://doi.org/10.1098/rspb.2010.0026 

Kreuder Johnson, C., Hitchens, P.L., Smiley Evans, T., Goldstein, T., Thomas, K., Clements, A., Joly, D.O., Wolfe, 
 N.D., Daszak, P., Karesh, W.B., Mazet, J.K., 2015. Spillover and pandemic properties of zoonotic viruses 
 with high host plasticity. Sci Rep 5, 14830. https://doi.org/10.1038/srep14830 

Kuchipudi, S.V., Surendran-Nair, M., Ruden, R.M., Yon, M., Nissly, R.H., Vandegrift, K.J., Nelli, R.K., Li, L., 
 Jayarao, B.M., Maranas, C.D., Levine, N., Willgert, K., Conlan, A.J.K., Olsen, R.J., Davis, J.J., Musser, J.M., 
 Hudson, P.J., Kapur, V., 2022. Multiple spillovers from humans and onward transmission of SARS-CoV-2 
 in white-tailed deer. Proc. Natl. Acad. Sci. U.S.A. 119, e2121644119. https://doi.org/10.1073/pnas.2121644119 

Lange, M., Kramer-Schadt, S., Blome, S., Beer, M., Thulke, H.-H., 2012. Disease severity declines over time after a 
 wild boar population has been affected by classical swine fever–legend or actual epidemiological 
 process? Preventive veterinary medicine 106, 185–195. https://doi.org/10.1016/j.prevetmed.2012.01.024. 

Li, T.-C., Chijiwa, K., Sera, N., Ishibashi, T., Etoh, Y., Shinohara, Y., Kurata, Y., Ishida, M., Sakamoto, S., Takeda, 
 N., Miyamura, T., 2005. Hepatitis E Virus Transmission from Wild Boar Meat. Emerg. Infect. Dis. 11, 
 1958–1960. https://doi.org/10.3201/eid1112.051041 

Lion, S., Boots, M., 2010. Are parasites ”prudent” in space? Ecology letters 13, 1245–1255. 
 https://doi.org/10.1111/j.1461-0248.2010.01516.x 

Lion, S., Gandon, S., 2015. Evolution of spatially structured host-parasite interactions. Journal of evolutionary 
 biology 28, 10–28. https://doi.org/10.1111/jeb.12551 

Lloyd, A.L., May, R.M., 1996. Spatial Heterogeneity in Epidemic Models. Journal of Theoretical Biology 179, 1–11. 
 https://doi.org/10.1006/jtbi.1996.0042 

Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M., 2005. Superspreading and the effect of individual 
 variation on disease emergence. Nature 438, 355–359. https://doi.org/10.1038/nature04153 

Manlove, K., Wilber, M., White, L., Bastille-Rousseau, G., Yang, A., Gilbertson, M., Craft, M., Cross, P., 
 Wittemyer, G., Pepin, K., 2021. Defining an epidemiological landscape by connecting host movement to 
 pathogen transmission (preprint). Preprints. https://doi.org/10.22541/au.163458112.22651398/v1 

Marm Kilpatrick, A., Daszak, P., Jones, M.J., Marra, P.P., Kramer, L.D., 2006. Host heterogeneity dominates West 
 Nile virus transmission. Proceedings of the Royal Society B: Biological Sciences 273, 2327–2333. 
 https://doi.org/10.1098/rspb.2006.3575 

Melzer, F., Lohse, R., Nieper, H., Liebert, M., Sachse, K., 2007. A serological study on brucellosis in wild boars in 
 Germany. Eur J Wildl Res 53, 153–157. https://doi.org/10.1007/s10344-006-0072-0 

Messinger, S.M., Ostling, A., 2009. The consequences of spatial structure for the evolution of pathogen 
 transmission rate and virulence. The American naturalist 174, 441–454. https://doi.org/10.1086/605375 



CHAPTER 5  

 

116 
 

Mittelholzer, C., Moser, C., Tratschin, J.-D., Hofmann, M.A., 2000. Analysis of classical swine fever virus 
 replication kinetics allows differentiation of highly virulent from avirulent strains. Veterinary 
 Microbiology 74, 293–308. https://doi.org/10.1016/S0378-1135(00)00195-4 

Moennig, V., 2015. The control of classical swine fever in wild boar. Front. Microbiol. 6. 
 https://doi.org/10.3389/fmicb.2015.01211 

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P.E., 2008. A movement ecology 
 paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences 
 105, 19052–19059. https://doi.org/10.1073/pnas.0800375105 

Parratt, S.R., Numminen, E., Laine, A.-L., 2016. Infectious Disease Dynamics in Heterogeneous Landscapes. Annu. 
 Rev. Ecol. Evol. Syst. 47, 283–306. https://doi.org/10.1146/annurev-ecolsys-121415-032321 

Patz, J.A., Daszak, P., Tabor, G.M., Aguirre, A.A., Pearl, M., Epstein, J., Wolfe, N.D., Kilpatrick, A.M., Foufopoulos, 
 J., Molyneux, D., Bradley, D.J., Members of the Working Group on Land Use Change Disease 
 Emergence, 2004. Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious 
 Disease Emergence. Environmental Health Perspectives 112, 1092–1098. https://doi.org/10.1289/ehp.6877 

Paull, S.H., Song, S., McClure, K.M., Sackett, L.C., Kilpatrick, A.M., Johnson, P.T., 2012. From superspreaders to 
 disease hotspots: linking transmission across hosts and space. Frontiers in Ecology and the Environment 
 10, 75–82. https://doi.org/10.1890/110111 

Plard, F., Gaillard, J.-M., Coulson, T., Hewison, A.J.M., Delorme, D., Warnant, C., Bonenfant, C., 2014. Mismatch 
 Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer. PLoS Biol 12, 
 e1001828. https://doi.org/10.1371/journal.pbio.1001828 

Plowright, R.K., Reaser, J.K., Locke, H., Woodley, S.J., Patz, J.A., Becker, D.J., Oppler, G., Hudson, P.J., Tabor, G.M., 
 2021. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. 
 The Lancet Planetary Health 5, e237–e245. https://doi.org/10.1016/S2542-5196(21)00031-0 

Portugal, R., Coelho, J., Höper, D., Little, N.S., Smithson, C., Upton, C., Martins, C., Leitão, A., Keil, G.M., 2015. 
 Related strains of African swine fever virus with different virulence: genome comparison and analysis. 
 Journal of General Virology 96, 408–419. https://doi.org/10.1099/vir.0.070508-0 

Rachowicz, L.J., Hero, J.-M., Alford, R.A., Taylor, J.W., Morgan, J.A.T., Vredenburg, V.T., Collins, J.P., Briggs, C.J., 
 2005. The Novel and Endemic Pathogen Hypotheses: Competing Explanations for the Origin of 
 Emerging Infectious Diseases of Wildlife. Conservation Biology 19, 1441–1448. 
 https://doi.org/10.1111/j.1523-1739.2005.00255.x 

Radchuk, V., Reed, T., Teplitsky, C., van de Pol, M., Charmantier, A., Hassall, C., Adamík, P., Adriaensen, F., 
 Ahola, M.P., Arcese, P., Miguel Avilés, J., Balbontin, J., Berg, K.S., Borras, A., Burthe, S., Clobert, J., 
 Dehnhard, N., de Lope, F., Dhondt, A.A., Dingemanse, N.J., Doi, H., Eeva, T., Fickel, J., Filella, I., Fossøy, 
 F., Goodenough, A.E., Hall, S.J.G., Hansson, B., Harris, M., Hasselquist, D., Hickler, T., Joshi, J., 
 Kharouba, H., Martínez, J.G., Mihoub, J.-B., Mills, J.A., Molina-Morales, M., Moksnes, A., Ozgul, A., 
 Parejo, D., Pilard, P., Poisbleau, M., Rousset, F., Rödel, M.-O., Scott, D., Senar, J.C., Stefanescu, C., 
 Stokke, B.G., Kusano, T., Tarka, M., Tarwater, C.E., Thonicke, K., Thorley, J., Wilting, A., Tryjanowski, P., 
 Merilä, J., Sheldon, B.C., Pape Møller, A., Matthysen, E., Janzen, F., Dobson, F.S., Visser, M.E., Beissinger, 
 S.R., Courtiol, A., Kramer-Schadt, S., 2019. Adaptive responses of animals to climate change are most 
 likely insufficient. Nature Communications 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 

Rowthorn, R.E., Laxminarayan, R., Gilligan, C.A., 2009. Optimal control of epidemics in metapopulations. Journal 
 of The Royal Society Interface 6, 1135–1144. https://doi.org/10.1098/rsif.2008.0402 

Roy, M., Holt, R.D., Barfield, M., 2005. Temporal Autocorrelation Can Enhance the Persistence and Abundance 
 of Metapopulations Comprised of Coupled Sinks. The American Naturalist 166, 246–261. 
 https://doi.org/10.1086/431286 



CHAPTER 5  

 

117 
 

Ruiz-Fons, F., Segalés, J., Gortázar, C., 2008. A review of viral diseases of the European wild boar: Effects of 
 population dynamics and reservoir rôle. The Veterinary Journal 176, 158–169. 
 https://doi.org/10.1016/j.tvjl.2007.02.017 

Rulli, M.C., D’Odorico, P., Galli, N., Hayman, D.T.S., 2021. Land-use change and the livestock revolution increase 
 the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat Food 2, 409–416. 
 https://doi.org/10.1038/s43016-021-00285-x 

Scherer, C., Radchuk, V., Franz, M., Thulke, H., Lange, M., Grimm, V., Kramer–Schadt, S., 2020. Moving 
 infections: individual movement decisions drive disease persistence in spatially structured landscapes. 
 Oikos oik.07002. https://doi.org/10.1111/oik.07002 

Scherer, C., Radchuk, V., Staubach, C., Müller, S., Blaum, N., Thulke, H., Kramer‐Schadt, S., 2019. Seasonal host 
 life‐history processes fuel disease dynamics at different spatial scales. J Anim Ecol 88, 1812–1824. 
 https://doi.org/10.1111/1365-2656.13070 

Semenza, J.C., Menne, B., 2009. Climate change and infectious diseases in Europe. The Lancet Infectious Diseases 
 9, 365–375. https://doi.org/10.1016/S1473-3099(09)70104-5 

Semenza, J.C., Suk, J.E., 2018. Vector-borne diseases and climate change: a European perspective. FEMS 
 Microbiology Letters 365. https://doi.org/10.1093/femsle/fnx244 

Strandin, T., Babayan, S.A., Forbes, K.M., 2018. Reviewing the effects of food provisioning on wildlife immunity. 
 Philos Trans R Soc Lond B Biol Sci 373. https://doi.org/10.1098/rstb.2017.0088 

Tardy, O., Bouchard, C., Chamberland, E., Fortin, A., Lamirande, P., Ogden, N.H., Leighton, P.A., 2021. 
 Mechanistic movement models reveal ecological drivers of tick-borne pathogen spread. J. R. Soc. 
 Interface. 18, 20210134. https://doi.org/10.1098/rsif.2021.0134 

Turner, W.C., Kamath, P.L., Van Heerden, H., Huang, Y.H., Barandongo, Z.R., Bruce, S.A., Kausrud, K., 2021. The 
 roles of environmental variation and parasite survival in virulence-transmission relationships. Royal 
 Society Open Science 8. https://doi.org/10.1098/rsos.210088 

Ullmann, W., Fischer, C., Kramer-Schadt, S., Pirhofer-Walzl, K., Glemnitz, M., Blaum, N., 2020. How do 
 agricultural practices affect the movement behaviour of European brown hares (Lepus europaeus)? 
 Agriculture, Ecosystems & Environment 292, 106819. https://doi.org/10.1016/j.agee.2020.106819 

Ullmann, W., Fischer, C., Pirhofer-Walzl, K., Kramer-Schadt, S., Blaum, N., 2018. Spatiotemporal variability in 
 resources affects herbivore home range formation in structurally contrasting and unpredictable 
 agricultural landscapes. Landscape Ecol 33, 1505–1517. https://doi.org/10.1007/s10980-018-0676-2 

VanderWaal, K., Gilbertson, M., Okanga, S., Allan, B.F., Craft, M.E., 2017. Seasonality and pathogen transmission 
 in pastoral cattle contact networks. R. Soc. open sci. 4, 170808. https://doi.org/10.1098/rsos.170808 

Vetter, S.G., Puskas, Z., Bieber, C., Ruf, T., 2020. How climate change and wildlife management affect population 
 structure in wild boars. Sci Rep 10, 7298. https://doi.org/10.1038/s41598-020-64216-9 

Visser, M.E., Gienapp, P., 2019. Evolutionary and demographic consequences of phenological mismatches. Nat 
 Ecol Evol 3, 879–885. https://doi.org/10.1038/s41559-019-0880-8 

Visser, M.E., te Marvelde, L., Lof, M.E., 2012. Adaptive phenological mismatches of birds and their food in a 
 warming world. J Ornithol 153, 75–84. https://doi.org/10.1007/s10336-011-0770-6 

Walker, S.F., Bosch, J., James, T.Y., Litvintseva, A.P., Oliver Valls, J.A., Piña, S., García, G., Rosa, G.A., 
 Cunningham, A.A., Hole, S., Griffiths, R., Fisher, M.C., 2008. Invasive pathogens threaten species 
 recovery programs. Current Biology 18, R853–R854. https://doi.org/10.1016/j.cub.2008.07.033 

Webb, S.D., Keeling, M.J., Boots, M., 2007. Host-parasite interactions between the local and the mean-field: how 
 and when does spatial population structure matter? Journal of theoretical biology 249, 140–152. 
 https://doi.org/10.1016/j.jtbi.2007.06.013 



CHAPTER 5  

 

118 
 

White, L.A., Forester, J.D., Craft, M.E., 2018. Disease outbreak thresholds emerge from interactions between 
 movement behavior, landscape structure, and epidemiology. Proc Natl Acad Sci USA 115, 7374–7379. 
 https://doi.org/10.1073/pnas.1801383115 

Wichmann, M.C., Johst, K., Moloney, K.A., Wissel, C., Jeltsch, F., 2003. Extinction risk in periodically fluctuating 
 environments. Ecological Modelling 167, 221–231. https://doi.org/10.1016/S0304-3800(03)00136-4 

Wilber, M.Q., Yang, A., Boughton, R., Manlove, K.R., Miller, R.S., Pepin, K.M., Wittemyer, G., 2022. A model for 
 leveraging animal movement to understand spatio‐temporal disease dynamics. Ecology Letters ele.13986. 
 https://doi.org/10.1111/ele.13986 

Zurell, D., Berger, U., Cabral, J.S., Jeltsch, F., Meynard, C.N., Münkemüller, T., Nehrbass, N., Pagel, J., Reineking, 
 B., Schröder, B., Grimm, V., 2010. The virtual ecologist approach: simulating data and observers. Oikos 
 119, 622–635. https://doi.org/10.1111/j.1600-0706.2009.182



 

119 
 

Acknowledgements 
 

First, I want to thank my supervisor Stephanie Kramer-Schadt for her amazing support, all the 

helpful discussions, giving inspiring feedback and always having an open door or “zoom-link” 

to listen to problems. I also want to thank my co-supervisors, Niels Blaum and Volker Grimm, 

for their support on the concepts and designs of my project and the invaluable feedback and 

great scientific advice during the writing of the manuscripts. I am thankful to all my co-authors 

for helping to realize all my projects and all the extra help during my PhD. 

 

Special thanks to Florian Jeltsch for establishing the research training group, introducing me to 

BioMove and giving us the opportunity to work with a diverse group of scientists with various 

specializations. Further, I am grateful for the DFG for funding the BioMove research training 

group (DFG-GRK 2118/1) which allowed me not only to fulfill my research but also to participate 

in conferences and summer schools. I also would like to thank all my fellow BioMovers, I really 

enjoyed vivid discussions with every one of you during BioMove seminars, workshops, or 

retreats. I am grateful to all my lab colleagues who have supported me throughout my PhD and 

all the relaxing strolls through the Tierpark to get lunch. Very special thanks go to Aimara 

Planillo for always being there, no matter if I needed help with R, writing manuscripts or just a 

hug. I also like to thank all my other colleagues from the Leibniz Institute for Zoo and Wildlife 

Research for all the lively discussion about work or life. 

 

Heartfelt thanks also go to all my family and friends apart from work for supporting and 

distracting me continuously throughout my PhD, I couldn’t have done it without you. 



 

120 
 



 

I 
 

 

 

 

 

 

 

APPENDIX A 
SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX A 

 

II 
 

A1  Model description (ODD protocol) 
The classical swine fever (CSF) wild boar model is a combination of a spatially explicit, stochastic, agent-

based model for wild boars (Sus scrofa L.) and an epidemiological model for the CSF virus. The model 

was implemented in NetLogo (Wilensky, 1999) and is documented following the ODD protocol (Grimm 

et al., 2006, 2010, 2020). 

The ODD protocol below includes changes in model description across two wild boar / CSF eco-

epidemiological models. The first model SwiFCoIBMove (M1 and black text throughout, Scherer et al. 

2020) was developed to assess the effects of host movement and landscape structure on disease dynamics 

and the one described here, SwiFCoIBM_dynamic (M2 and blue text throughout) was developed to 

assess the role of a dynamic resource landscape and temporal mismatches on disease dynamics. As a 

note, while in some instance (as seen for example in 1. Purpose) parts of the original model are replaced, 

in other instances and submodels (as seen in 4 – Emergence) M2 is a mixture of old and new versions. 

1  Purpose 
1M1: The model aims to assess the role of host movement based on individual movement decisions 

(imposed, i.e. a correlated random walk, or based on external factors such as habitat and conspecifics) 

and landscape structure in driving on-going disease dynamics as pathogen persistence and patterns of 

spread. Specifically, the question will be addressed to what degree a high-resolution representation of 

the interaction between moving vectors and landscape features is required to capture spatio-temporal 

disease dynamics in a predictive way. 

M2: The model aims to assess the role of a dynamic resource landscape and temporal shifts in resources 

on disease dynamics as pathogen persistence and patterns of spread through individual movement. 

Specifically, how seasonal resource availability and the decoupling of resource availability and 

reproduction alter disease dynamics. 

2  Entities, state variables and scales 
The model entities are spatial units, or grid cells, and wild boars. Grid cells are characterized by habitat 

quality in terms of breeding capacity, i.e. the number of female boars that are allowed to have offspring 

(Jedrzejewska et al., 1997). Thereby, local host density is in the model, i.e. increasing numbers of fertile 

 
1This ODD describes M2, so that ‘Purpose’ for M1 is obsolete. It is kept in the ODD to better understand how the design of the model 

developed 
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females can breed only until breeding capacity is reached. A grid cell represents about 2 km × 2 km, 

encompassing an average home range area of a boar group (Leaperet al., 1999). 

Wild boars are characterized by sex, age in weeks, location, demographic status (e.g. breeding, dispersing 

and ranging) and health status. Three age classes are distinguished: piglet (< 34 weeks), subadult 

(between 34 weeks and < 1 year for females and < 2 years for males) and adult. Location is defined by the 

grid cell the wild boar inhabits. The health status of the individuals is described by an SIR 

epidemiological classification (susceptible; transiently infected; lethally infected with individual 

infectious period; immune by surviving the infection or by maternal antibodies). Females, which are at 

least subadult, may be assigned as breeders according to the breeding capacity of their family group’s 

cell. Subadult wild boars may disperse during the dispersal period dependent on their sex and 

demographic status (disperser or non-disperser). In the model versions simulating explicit movement, 

males become ranging individuals (i.e. move solely) once they are adult and thereby change their 

locations every time step. 

M1 & M2: One time step corresponds to the approximate CSF incubation time of one week (Artois et al., 

2002; Moennig et al., 2003) while simulations usually run for 12 years (624 weeks) or 50 years (2600 weeks) 

with the virus being released in the second year (week 53–104) to a defined boar group to ensure the same 

distance to the model borders and an established spatial population structure. The model landscape 

consists of 100 km × 50 km (50 × 25 grid cells). 

3  Process overview and scheduling 
1M1: Each time step, the following procedures are executed by the wild boars in the given order: pathogen 

transmission, ranging movement, natal dispersal of males and females, respectively, reproduction, 

mortality, ageing, and disease course (Figure A1)  

In the first week of each year, females are assigned to breed. Natal dispersal of males and females was 

limited to week 17 and week 29 of the year, respectively. 

M2: Each time step, the following procedures are executed by the wild boars in the given order: pathogen 

transmission, ranging movement, natal dispersal of males and females, resource-based host movement, 

host reproduction, general host mortality, resource-based host mortality, ageing, and disease course 

(Figure A1.1).  

 
1 This ODD describes M2, so that ‘Process overview and scheduling’ for M1 is obsolete. It is kept in the ODD to better understand how the 
design of the model developed 
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M2: Females are assigned to breed on a week to week basis, with the prerequisite that they have not bred 

previously in the current year.  

4  Design concepts 

Basic principles 

M1 & M2: Both processes of the host and the pathogen are simulated with a given stochasticity which 

resembles natural conditions. Disease transmission for groups is modelled density-dependent (see Eq. 

A1 and A2). Heterogeneous landscape scenarios were simulated using neutral landscape model 

algorithms. 

Emergence 

M1 & M2: Wild boar population dynamics emerge from individual behaviour, resulting from age- and 

sex-dependent movement behaviours (natal dispersal and ranging) as well as age-dependent seasonal 

reproduction, survival probabilities and is shaped by the underlying dynamic resource landscape. The 

epidemic course emerges from different virus transmission probabilities, wild boar movement 

behaviours as well as individual stochastic disease courses and infectious periods. 

Adaptation 

M1 & M2: Movement rules either reproduce observed movement behaviours (phenomenological 

approach, e.g. correlated random walk with a given directional persistence) or are based on decisions in 

response to spatial structure or conspecifics (mechanistic approach, e.g. the competition-driven 

movement rule implicitly seeks to increase habitat quality in relation to conspecifics). The number of 

breeding females per cell is determined by (a) the habitat quality of the cell and (b) the number and age 

of the reproductive females within the cell. 

Objectives 

M1 & M2: The exact way individuals decide where to move depend on the applied movement rule (see 

section “Ranging movement”). In general, ranging individuals (i.e. adult males) using decision-based 

movement rules move into the neighbouring cell with the highest weight (which is defined by the 

applied movement rule). Individuals’ decisions are not perfect but may be a random direction depending 

on the directional persistence ρ (probability to move randomly = 1 - ρ, set to 0.7). 

Dispersing individuals search for empty (unoccupied) cells (in case of female dispersers) or join other 

groups that are below their cells’ carrying capacity (in case of male dispersers). 
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Learning  

M1 & M2: There is no learning implemented in our model. 

Prediction 

M1 & M2: There is no need to predict future environmental conditions. 

Sensing 

M1 & M2: Individuals moving through the landscape may base their decisions on the underlying 

landscape structure in terms of habitat quality (or, synonymously, breeding capacity B) or number of 

conspecifics. Moving individuals can sense all that information from their own cell and surrounding 

cells but the decision might be random (implicitly due to insufficient information) depending on the 

assumed directional persistence 𝜌. 

Interaction 

M1 & M2: Based on the transmission rates, interactions between individuals might lead to virus 

transmission from an infected to a susceptible individual. Reproduction is density-and age-dependent 

with the oldest females giving birth first. Thus, if the number of reproducible females exceeds a cell’s 

breeding capacity, interaction leads to repressed reproduction. 

Stochasticity 

M1 & M2: Demographic and behavioural parameters are imposed via probability distributions to account 

for variation in the biological processes. Stochastic individual disease courses and infectious periods are 

modelled explicitly because variation in the disease outcome between individuals was identified to be 

essential for virus endemicity without reservoirs (Kramer-Schadt et al., 2009). Movement decisions are 

based on a random component (with 30% of the decisions being random).  

Collectives 

M1 & M2: Individuals that are not ranging between home ranges (i.e. all individuals but adult males) 

form groups within their cell that experience density-dependent transmission probabilities. These 

groups are formed by reproducible females and their offspring. During natal dispersal, male subadults 

may join those groups while female subadults may form new groups. 
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Observation 

M1 & M2: To evaluate model outcomes, we measure several properties of the host-virus system at each 

time step of the simulation. These outputs include number of individuals for each class of age (piglet, 

subadult, adult), demographic (resident, ranging) and health status (susceptible, infected, recovered) 

and their combinations. Furthermore, sex ratio, number of new infections (transient and lethal), number 

of cells with infectious individuals, the last week of infection and the cumulative time (i.e. how many 

weeks in total) of infected hosts per habitat cell are recorded. From this output, duration of an outbreak, 

probability of disease persistence (i.e. the virus being present in the system until the end of simulations), 

outbreak size for different classes, as well as density distribution of infected hosts can be estimated.  

5  Initialization 

M1 & M2: We simulate landscapes with four different levels of spatial heterogeneity in habitat quality: 

homogeneous (only M1), random, and two or four clustered landscape scenarios using an random cluster 

algorithm (very small, small, medium and large clusters, respectively; Saura & Martínez-Millán, 2000; 

Table A1) generated using the R package NLMR (Sciaini et al., 2018). In homogeneous landscapes, one 

boar family group was allocated to each cell with an average breeding capacity B of 4.5 females, resulting 

in the reported density of approximately 20 boars per cell or 5 boars per km2 (European Food Safety 

Authority, 2009; Howells & Edwards-Jones, 1997; Melis et al., 2006; Sodeikat & Pohlmeyer, 2003). In 

heterogeneous landscapes a breeding capacity B between 0 and 9 was assigned to each of the 2500 grid 

cells (B ∈ {0;9}). In case B is a floating point number, the number of individuals is determined 

stochastically based on the remainder. Initial age distribution was obtained from the results of a 100-year 

model run conducted by (Kramer-Schadt et al., 2009); Table A2), the sex ratio was balanced (i.e. 

probability of 0.5 to be either male or female). Wild boar density reflects long-term average values of 

densely populated Central European habitats (European Food Safety Authority, 2009; Howells & Edwards-

Jones, 1997; Melis et al., 2006; Sodeikat & Pohlmeyer, 2003). Group size was initialised according to the 

cells carrying capacity Ki that is 4.5 times its breeding capacity Bi. 

6  Input 

M1 & M2: The model does not include external input. 
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7  Submodels 

Initial infection (pathogen release) 

M1 & M2: The virus is released to the population by infection of one wild boar group (i.e. cell) in middle 

of the upper row of home ranges (i.e. cell with the coordinates x = 1 and y = 13) to allow for comparison 

between runs. The release is scheduled in a random week of the second year of the model run. 

Pathogen transmission 

M1 & M2: Virus transmission is modelled stochastically. The transmission parameter determines the 

weekly probability of being infected by an infectious group mate βw. 

In the model without movement (afterwards referred to as the “classical model”), weekly infection 

pressure λi for each susceptible individual in cell i is determined by the probability of being infected by 

an infectious group mate βw (within-group transmission probability) and the probability of being 

infected by an infectious individual in one of the eight neighbouring cells βe (between-group 

transmission probability): 

                                        𝜆𝑖 = 1 − (1 − 𝛽𝑤)𝐼𝑖 ⋅ (1 − 𝛽𝑒)𝛴𝑖𝐼𝑗                                                                  [A1] 

where Ii is the number of infectious group mates and Ij is the numbers of infectious hosts in the jth 

adjacent cell. The resulting probability value λi provides the parameter of a binomial chance process to 

decide whether a susceptible animal will be infected. 

The transmission parameters βw (and thereby βe since it was fixed as one tenth of βw) was calibrated in 

order to reproduce the spreading velocity observed in France (Rossi et al., 2010) with the constant 

parameter value βw = 0.0208 within and, hence, βe = 0.00208 between groups (Kramer-Schadt et al., 2009). 

In the model version involving explicit movements presented here, infection might be translocated 

within the host population. Because ranging movements are performed by adult males only, the 

homogeneous transmission probability λi was transformed to account for these sex-and age-dependent 

transmission probabilities. Therefore, for all individuals but adult males the weekly probability of being 

infected by infectious group mates (but not by infectious ranging males) is simply βw since females and 

their group follow a staying rule with the almost all contacts within the group (Pepin et al., 2016; Spitz & 

Janeau, 1990). The accumulated probability λi for susceptible non-ranging individuals is thus reduced to: 

      𝜆𝑖 = 1 − (1 − 𝛽𝑤)𝐼𝑖                                                                           [A2] 
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where is the number of infectious group mates (but not infectious ranging males which do not belong to 

any group). For adult, ranging males, the individual probability of virus transmission during movements 

βm (i.e. being infected by an infectious animal in a cell moving through as well as the probability of 

infecting a susceptible individual while passing the cell) was fitted to account for the resuming 

transmission probabilities (i.e. the remaining within- and between-group transmission probabilities of 

the classical model, see Eq. A2). We calibrated one constant transmission probability (i.e. βw = βm, 

afterwards just referred to as simply β) to result in the comparable distributions of the basic reproduction 

number (R0, number of secondary infections) as in the classical model. Using a Kolmogorov-Smirnov 

test, the constant parameter value β = 0.022 gave the best results for different scenarios of infection and 

movement rules (Scherer et. al., 2020). Individual per step transmission probability βm,i is related to the 

number of steps the animal makes. Therefore, the infection probability for cells passed by infected 

individuals is scaled to the individual movement distance dm,i (see section “Ranging movement”): 

       𝛽𝑚,𝑖 =
β

𝑑𝑚,𝑖
.                                                                             [A3] 

By doing so, infection probability decreases with increasing movement distance which relates to the time 

an animal is able to spend within each cell and thus to transmit the virus on its way. 

CSF shows a variety of disease courses on the individual level (Depner et al., 1997; Liess, 1987). Therefore, 

in our model the disease course is stochastically specified for each individual. The disease course 

submodel is described by two parameters: individual case mortality M and the mean infectious period 

of lethally infected hosts μ. Upon infection the host is stochastically assigned either as lethally infected 

(with probability M) or as transiently infected (1 - M). M is age-specific (Dahle & Liess 1992): for adults 

the probability is decreased to 𝑀𝑎 = 𝑀2 and for piglets increased to 𝑀𝑝 = √𝑀 while it is unchanged for 

subadults 𝑀𝑠 = 𝑀. Transiently infected wild boars first pass through an infectious period of one week 

and subsequently becomes non-infectious and gain life-long immunity (Artois et al. 2002; Moennig et 

al. 2003; European Food Safety Authority, 2009). The individual infectious period (mi in weeks) of 

lethally infected hosts is drawn from an exponential distribution with the mean specified by parameter 

μ: 

                                                   𝑚𝑖  = 1 + 𝑓𝑙𝑜𝑜𝑟(−(𝜇 − 0.5) ⋅ 𝑙𝑛(𝑈(0,1)))                                                        [A4] 

where U(0,1) is a uniformly distributed random number between 0 and 1. To avoid unrealistically long 

infections, mi was stochastically assigned until mi ≤  10 × μ. Lethally infected hosts remain infectious 

until death. Offspring from immune female breeders gets maternal antibodies and is thus immune for 
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the first eight to twelve weeks after birth (tanti). The number of weeks of immunisation due to maternal 

antibodies is randomly assigned for those piglets. 

Ranging movement 

M1 & M2: While adult females move mainly within their family group (staying strategy), adult males 

follow a ranging strategy and move solitary (Spitz & Janeau 1990, Figure A2). Ranging distances vary 

between males with a mean distance of 24 km per week and rare long-distance behaviour with up to 84 

km per week (Morelle et al. 2015). For each adult male i, an individual movement distance dm,i was drawn 

from the median of the Weibull distribution given by b*(1 - ln(1 - U[0,1]))^k with a scale of b = 26 and a 

shape of k = 1.3, resulting in a mean of 12 cells and truncated to the maximum movement distance Dmax 

of 42 cells (with a cell being 2 km in diameter). To study effects of inter-cell movement on disease 

dynamics, Scherer et al., (2020) implemented three different movement strategies. In general, ranging 

individuals move until the individual weekly movement distance is reached or there is no better decision 

to make and only into cells with a positive habitat quality (B > 0). Individuals stop moving if there is no 

cell available. If there is a tie (i.e. two or more cells with equal attractiveness), one of those cells is chosen 

randomly. 

M1 & M2: (a) Correlated Random Walk (CRW): In a CRW, subsequent movement directions are 

correlated such that highly correlated movement paths are nearly straight (Turchin 1998; Figure A3a). 

This movement model improves the RW approach by incorporating directional persistence that moving 

animals very frequently exhibit (Figure A3; Kareiva & Shigesada 1983). The direction of a step is drawn 

from a wrapped Cauchy distribution with a mean direction equal to the previous direction (Fletcher 

2006): 

                                       𝜃𝑡,𝑖 = 𝜃𝑡−1,𝑖 + 2 ⋅ 𝑎𝑟𝑐𝑡𝑎𝑛 (
1−𝜌

1+𝜌
⋅ 𝜋 ⋅ 𝑈(−0.5,0.5))                                        [A5] 

Where θt,i and θt-1,i are the headings of individual i of the next or previous step, respectively, ρ is a 

parameter related to the concentration around the mean direction (i.e. ρ = 1 results in a straight line and 

ρ = 0 equals a RW), and U(-0.5,0.5) is a uniformly distributed random number between -0.5 and 0.5. In 

case individuals reach the border of the simulated landscape, the Individual is reflected in a 90° angle 

followed by reset and recalculation of θt,I to avoid aggregation around the landscape borders. 

M1 & M2: (b) Habitat-Dependent Movement (HDM): A reasonable hypothesis is that a selective animal 

should choose high quality cells for its home range. The distribution and abundance of resources greatly 

affect movement patterns of several animal species and has also been reported for wild boars (Morelle 
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et al. 2015). Assuming higher food resources and better shelter in high quality habitat, individuals decide 

among their neighbouring cells based on the habitat quality (Figure A3b). The parameter ρ here relates 

to the accuracy of an individual estimating the quality of the focal and neighbouring cells, with the 

movement decision in ρ-1 cases being purely random. 

1M1: (c) Competition-Driven Movement (CDM): Effective habitat quality might be lower due to 

competition with conspecifics. Thus, competition-driven movement is biased to cells with higher net 

habitat quality and was implemented as negative density dependence. Movement weights were 

calculated as the ratio of number of conspecifics in the focal cell and the carrying capacity (K), i.e. the 

potential maximum group size of the cell (Figure A3c). 

For all movement strategies, ρ was fixed as 0.7, i.e. 30% of the decisions were made randomly. 

Natal dispersal 

M1 & M2: Herd splitting, where subadult individuals may move together to search for or form new 

groups, is performed in specified weeks of the. The timing of these events is sex-dependent: Subadult 

females without offspring perform their natal dispersal in the 29th week of the year, while subadult males 

disperse during the 17th week. In the given week of the year, all herds to split are extracted, matching the 

conditions of containing at least a specified number of subadults Ndisp to move (either male or female). 

For female dispersal, only cells exceeding the breeding capacity B are evaluated. For each of them, a 

habitat cell not exceeding carrying capacity K (for males) or without any family group (for females) 

within a Euclidean distance ddisp is selected randomly as new cell for the group, excluding the source cell 

(Figure A2). If there is no cell fulfilling these conditions, subadults stay within their group’s cell. 

Reproduction 

M1 & M2: Females reproduce once a year, depending on their age class. Individual females, which are at 

least subadult, reproduce depending on the season with a peak in March and no reproduction in winter 

from October to December (Boitani et al. 1995) (Table A2).  

M1 & M2: In the first week of the year, female individuals are checked for their breeding status; female 

individuals are checked for their breeding status on a weekly basis. All females not exceeding their 

habitat cells breeding capacity, starting with the oldest individuals, are allowed to breed.  

 
1 This ODD describes M2, so that ‘Competition-Driven Movement (CDM)’ for M1 is obsolete. It is kept in the ODD to better understand how 
the design of the model developed 
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M1: The week of the year to breed is assigned in the first week of each year according to weekly 

reproduction probabilities, derived from monthly probabilities and the number of weeks in the month 

(Table A2).  

M2: If an individual was assigned to breed the chance of reproduction at that time is drawn from monthly 

probabilities and the number of weeks in the month (Table A2). 

M1 & M2: Litter size is drawn from a pre-calculated truncated normal distribution (Table A1,3) and 

reduced to a constant fraction for infected individuals. Litter size of transient shedders and lethally 

infected hosts is multiplied with the reduction factor αf. 

M1 & M2: Depending on the disease state of the breeding individual, its piglet’s disease states are 

adjusted. Susceptible individuals produce susceptible offspring, immune individuals produce immune 

offspring with maternal antibodies (see section “Pathogen state transition”). Transient shedders and 

lethally infected individuals yield offspring, each one lethally infected with a given probability of 

prenatal infection ppi. 

Mortality 

M1 & M2: Stochastic baseline mortality is age-dependent and adjusted to annual survival estimates found 

in the literature (Table A1). Per time step we apply the adjusted age-dependent mortality (mweek) to the 

individual: 

      𝑚𝑤𝑒𝑒𝑘 = 1 − (𝑠𝑦𝑒𝑎𝑟)1/52.                                                                                 [A6] 

In addition to the stochastic baseline mortality, each individual may die due to reaching a certain 

maximum age, or due to a lethal infection after a certain infection time span m (see section ”Pathogen 

transmission”). 

M2: A selected number of individuals Kover (see 7.10 Resource response for the selection) are subject to a 

variable, resource-based mortality with an increasing chance of mortality dependent on how long the 

individual is subject to low resource conditions up to a variable time limit Smax as well as the number of 

individuals (gact) in relation to maximum group (gsus) size and age a. 

         𝑚𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 =
(𝑔𝑎𝑐𝑡−𝑔𝑠𝑢𝑠)

100
∗ 𝑎 ∗ 𝑡𝑜𝑣𝑒𝑟           [A7] 

With a being an age factor corresponding to the individuals being a piglet or adult/subadult and tover the 

time the individual is part of the Kover individual pool. As well as a 100% mortality when tover equals Smax. 
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Ageing 

M1 & M2: The ageing process iterates over all individuals. For each individual k, age Tk is incremented 

one week, and disease state transitions are performed. Females become subadult and adult at an age of 

34 and 52 weeks, respectively, while males enter the subadult and adult age groups at an age of 21 and 104 

week, respectively. 

Disease course (pathogen state transition)  

M1 & M2: Transient shedders convert to immune after a certain latency period tlatent. An individual i 

protected by maternal antibodies turns susceptible if reaching an age Ti  of the protection time of tanti 

(see section “Pathogen transmission”). After disease state transition the age of the infection is 

incremented by one week if the individual is not susceptible. 

Landscape dynamic 

M2: The autocorrelated landscape dynamic is superimposed over the different types of heterogeneous 

starting landscapes. Throughout each simulated year, resource availability in each cell increases in 5-

weeks intervals for approximately 25 weeks and then declines in 5-weeks intervals for the next 25 weeks. 

The resource availability translates directly into the breeding capacity for each cell and for each increase 

or decrease the value of the breeding capacity is changed by one. During the increase, the breeding 

capacity cannot exceed the maximum breeding capacity of 9 and cannot fall below 1 during the decrease 

i.e. the breeding capacity in a cell designated as habitat cannot become 0 during the course of a year. 

Additionally, barriers and matrix which have an assigned breeding capacity of 0 cannot become habitat 

i.e. matrix/barrier cells will always have a breeding capacity of 0. The default landscape dynamic is 

implemented to follow the host individual’s monthly reproduction probabilities (see table A2), where 

the peak reproduction probability matches in time with the peak resource availability. Furthermore, the 

landscape dynamic can be temporally shifted away from the peak host reproduction probability in 25% 

increments (0% – match, 25% mismatch, 50% mismatch, 75% mismatch, 100% – full mismatch). In this 

case, a full mismatch would mean that the resource availability is at its lowest when the host 

reproduction probability is at its highest. 

The random landscape dynamic functions similar to the autocorrelated variant without a temporal shift. 

Throughout each simulated year, resource availability in each cell changes randomly in 5-weeks intervals 

for approximately 50 weeks whereby each cell is allocated a random integer between 1 and 9. At the end 

of each year, the landscape resets to the original starting landscape. 
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Resource responses 

M2: If the group size exceeds the carrying capacity K in a cell, a dispersal event will be triggered. The 

likelihood of dispersal follows an age gradient where older females will try to disperse last. For male 

individuals, a random habitat cell not exceeding the carrying capacity K will be randomly selected within 

a Euclidean distance ddisp as new cell. For female individuals, the randomly selected habitat cell must 

fulfil the prerequisite of not hosting another family group. However, if an individual currently has 

offspring it and the offspring will stay at in their current cell. If there is no suitable habitat cell fulfilling 

these prerequisites within the distance ddisp the individuals will stay. Individuals are continuously 

selected for dispersal until the group size no longer exceeds the carrying capacity K or no more suitable 

habitat within the distance ddisp can be found. For a secondary response after the dispersal event (if 

applicable), a cell specific number of individuals Kover that is the difference between carrying capacity K 

and group size will be selected. The selection of these individuals is age dependant where the oldest 

females are selected last. All selected individuals are subjected to an increasing age-dependant mortality 

(see mortality). 
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Figures 

Flow chart of the SwiFCoIBMove model and its submodels 

 

Figure A1: Flow chart of the agent-based, spatially explicit host-pathogen model “SwiFCoIBMove” and its submodels.                  
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Flow chart of the SwiFCoIBM_dynamic model  

Figure A1.1: Flow chart of the agent-based, spatially explicit host-pathogen model “SwiFCoIB_dynamic”  
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Figure A2: Schematic representation of different natal dispersal events of subadult wild boars and movement strategies of adult 
wild boars. The group of adult and subadult females and their offspring is called a sounder. If the breeding capacity of the 
sounders cell is exceeded, subadult females search in groups of 3 or more individuals for an unoccupied cell in a radius of three 
cells. Female wild boars reach their adulthood earlier (model assumption: if older than 1 year) and follow a staying strategy, thus 
not moving outside of the sounders cell (grey squares). Male wild boars always separate from the sounder when reaching the 
subadult age and move in groups of 2 or more to one of the cells below capacity in a radius of 3 cells. When becoming adult, 
male wild boars move solitary between home ranges. 

Figure A3: Movement assumptions used to model ranging behaviour of adult males. Probability of movement depends on the 
(a) direction of previous steps (Correlated Random Walk), (b) habitat quality B or (c) carrying capacity K in relation to the 
number of conspecifics. The lighter the colour, the higher the probability the individual chooses this cell. Movement 
decisions are furthermore driven by a random component determined by ρ. 

 

 

 



APPENDIX A 

 

XVII 
 

Table A1: Parameter setup used in the spatially-explicit classical swine fever-wild boar model. M1: Each of the 60 combinations 
(3 movement strategies × 4 landscape scenarios × 5 case fatality ratios) was repeated 200 times while generating new underlying 
landscapes depending on the scenario input, resulting in 12.000 runs in total. M2: Each of the 300 combinations (3 movement 
strategies 3 × landscape dynamic × 4 landscape scenarios × 5 max survival time under low resources × 5 level of resource 
mismatch) was repeated 25 times, resulting in 22.500 runs in total.   

Parameter Values  Reference(s) 

Longevity 11 years (572 weeks) (Jezierski, 1977) 

Sex ratio 1:1 
(e.g. Durio et al., 2014; Fernández-
Llario et al., 1999; Moretti, 2014) 

Survival probability of adults 
and subadults 

smean= 0.6; smin = 0.4 
(Focardi et al., 1996; Gaillard et al., 
1987) 

Survival probability of piglets smean= 0.5; smin = 0.1 (Focardi et al., 1996) 

Reproduction probability see Table A2 (Boitani et al., 1995) 

Breed count distribution see Table A3 (Bieber & Ruf, 2005) 

Movement rule 
CRW M1,M2; HDM M1,M2; 
CDM M1 (Fletcher, 2006) 

Tendency to move randomly ρ 0.3  

Mean movement distance Dmean 24 km (12 cells) per week (Morelle et al., 2015) 

Maximum movement distance Dmax 84 km (42 cells) per week (Morelle et al., 2015) 

Individual weekly ranging distance  Dm,i Di {1, Dmax} ~ Wei(26, 1.3)  

Maximal natal dispersal distance ddisp 3 cells (6 km) (Sodeikat & Pohlmeyer, 2003) 

Minimum number of dispersers Ndisp 2 for females; 3 for males  

Case fatality ratio M 
{0, 0.25, 0.5, 0.75, 1} 
0.5 

 

Mean infectious period μ 4 weeks 
6 weeks 

 

Transmission probability β 0.022  

Fertility reduction due to infection 0.625 (Kramer-Schadt et al., 2009) 

Probability of prenatal infection 0.5 (Kramer-Schadt et al., 2009) 

Transient period ttrans 1 week 
(Artois et al., 2002; Moennig et al., 
2003) 

Period of maternal antibodies tanti 12 weeks (Depner et al., 2000) 

Simulated years 
12 (624 weeks) 
50 (260 weeks) 

 

*Continued on the next page 
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Table A1: Parameter setup – continuation 

Parameter Values  Reference(s) 

Pathogen release random week of the 2nd year  

Mean number of reproductive females 4.5 
(European Food Safety Authority, 
2009; Howells & Edwards-Jones, 1997; 
Sodeikat & Pohlmeyer, 2003) 

Habitat quality range [0, 9]  

Initial mean density 5 individuals/km2 (Kramer-Schadt et al., 2009) 

Initial age distribution see Table A4 (Kramer-Schadt et al., 2009) 

Age blur in initial individuals ± 3 weeks  

Landscape dynamic 
Autocorrelated, 
Random 
No dynamic 

 

Max survival time under low resources Smax {5,10,15,20,25} weeks  

Level of resource mismatch {0,25,50,75,100} %  

 

Table A2: Monthly reproduction probabilities (Boitani et al., 1995) used to stochastically determine the number of breeding 
females. 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Number of weeks 4 4 5 4 4 5 4 4 5 5 4 4 
Reproduction probability 0.0 0.1 0.23 0.34 0.07 0.08 0.06 0.03 0.03 0.0 0.0 0.0 

 

Table A3: Breed count distribution (Bieber & Ruf, 2005) used to estimate litter sizes. 

Litter size 0 1 2 3 4 5 6 7 8 9 10 0 

Probability .01306 .06915 .01629 .24994 .24994 .01629 .06915 .01910 .00343 .0004 .00002 .01306 

 

Table A4: Initial age distribution (Kramer-Schadt et al., 2009) used to initialize each model run. 
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A2  Additional figures 

 

  
Figure A4: Example landscape configurations and habitat clustering used in the model, with (a) small clusters, (b) medium 
clusters, (c) large clusters of similar habitat quality and (d) randomly distributed habitat cells. The colour gradient shows the 
habitat quality (i.e. the maximum number of breeding females supported by the individual landscape cells).  

Habitat quality 
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Figure A5: Spatial distribution of infected host individuals in the correlated random walk (CRW) movement scenarios 
throughout all landscape configurations (top to bottom: large clusters, medium clusters, small clusters, and a random 
configuration). The distribution is recorded as the cumulative time in weeks of infected hosts being present in the individual 
habitat cells at the end of a simulation run (colour gradient). Areas without any infected hosts at the end of a simulation run 
are further highlighted as barriers (dark grey). The distributions are further shown for three temporal shift scenarios (left to 
right tlag 0%, tlag 50% and tlag 100%). 
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Figure A6: Spatial distribution of infected host individuals in habitat dependent movement (HDM) scenarios throughout all 
landscape configurations (top to bottom: large clusters, medium clusters, small clusters, and a random configuration). The 
distribution is recorded as the cumulative time in weeks of infected hosts being present in the individual habitat cells at the end 
of a simulation run (colour gradient). Areas without any infected hosts at the end of a simulation run are further highlighted as 
barriers (dark grey). The distributions are further shown for three temporal shift scenarios (left to right tlag 0%, tlag 50% and tlag 
100%). 
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Figure A7: Spatial distribution of infected host individuals in scenarios without explicit host movement (neighbourhood 
infection) throughout all landscape configurations (top to bottom: large clusters, medium clusters, small clusters, and a random 
configuration). The distribution is recorded as the cumulative time in weeks of infected hosts being present in the individual 
habitat cells at the end of a simulation run (colour gradient). Areas without any infected hosts at the end of a simulation run 
are further highlighted as barriers (dark grey). The distributions are further shown for three temporal shift scenarios (left to 
right tlag 0%, tlag 50% and tlag 100%). 
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B1  Model description (ODD protocol) 
The classical swine fever (CSF) wild boar model is a combination of a spatially explicit, stochastic, agent-

based model for wild boars (Sus scrofa L.) and an epidemiological model for the CSF virus. The model 

was implemented in NetLogo (Wilensky, 1999) and is documented following the ODD protocol (Grimm 

et al., 2006, 2010, 2020). 

The ODD protocol below includes changes in model description across three wild boar / CSF eco-

epidemiological models. The first model SwiFCoIBMove (M1 and black text throughout, Scherer et al. 

2020) was developed to assess the effects of host movement and landscape structure on disease dynamics, 

SwiFCoIBM_dynamic (M2 and blue text throughout, Kürschner et al. 2021) was developed to assess the 

role of a dynamic resource landscape and temporal mismatches on disease dynamics and 

SwiFCoIBM_Evo (M3 and green text throughout) was developed to investigate the effect of evolving  

pathogenic virulence. As a note, while in some instance (as seen for example in 1. Purpose) parts of the 

previous models are replaced, in other instances and submodels (as seen in 4– Emergence) M3 is a 

mixture of old and new versions. As a second note, specific changes to M1 that are in both M2 and M3 

are marked with an orange colour in the text. 

1  Purpose 
1M1: The model aims to assess the role of host movement based on individual movement decisions 

(imposed, i.e. a correlated random walk, or based on external factors such as habitat and conspecifics) 

and landscape structure in driving on-going disease dynamics as pathogen persistence and patterns of 

spread. Specifically, the question will be addressed to what degree a high-resolution representation of 

the interaction between moving vectors and landscape features is required to capture spatiotemporal 

disease dynamics in a predictive way. 

1M2: The model aims to assess the role of a dynamic resource landscape and temporal shifts in resources 

on disease dynamics as pathogen persistence and patterns of spread through individual movement. 

Specifically, how seasonal resource availability and the decoupling of resource availability and 

reproduction alter disease dynamics. 

M3: The model investigates the effect dynamic resource landscape and temporal shifts on a multi-strain 

pathogen system, pathogen evolution and pathogen trade-offs. Particularly, how temporal mismatches 

 
1This ODD describes M3, so that ‘Purpose’ for M1 and M2 is obsolete. It is kept in the ODD to better understand how the design of the model 

developed 
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between optimal resource availability and biological events affect host-pathogen coexistence and 

pathogen spread. 

2  Entities, state variables and scales 

The model entities are spatial units, or grid cells, and wild boars. Grid cells are characterized by habitat 

quality in terms of breeding capacity, i.e. the number of female boars that are allowed to have offspring 

(Jedrzejewska et al., 1997). Thereby, local host density is in the model, i.e. increasing numbers of fertile 

females can breed only until breeding capacity is reached. A grid cell represents about 2 km × 2 km, 

encompassing an average home range area of a boar group (Leaper et al., 1999). 

Wild boars are characterized by sex, age in weeks, location, demographic status (e.g. breeding, dispersing 

and ranging) and health status. Three age classes are distinguished: piglet (< 34 weeks), subadult 

(between 34 weeks and < 1 year for females and < 2 years for males) and adult. Location is defined by the 

grid cell the wild boar inhabits. The health status of the individuals is described by an SIR 

epidemiological classification (susceptible; transiently infected; lethally infected with individual 

infectious period; immune by surviving the infection or by maternal antibodies). Females, which are at 

least subadult, may be assigned as breeders according to the breeding capacity of their family group’s 

cell. Subadult wild boars may disperse during the dispersal period dependent on their sex and 

demographic status (disperser or non-disperser). In the model versions simulating explicit movement, 

males become ranging individuals (i.e. move solely) once they are adult and thereby change their 

locations every time step. 

M1, M2, M3: One time step corresponds to the approximate CSF incubation time of one week (Artois et 

al., 2002; Moennig et al., 2003) while simulations usually run for 12 years (624 weeks), 50 years (2600 

weeks) or 100 years (5200 weeks) with the virus being released in the second year (week 53-104) to a 

defined boar group to ensure the same distance to the model borders or the centre of the landscape and 

an established spatial population structure. The model landscape consists of 100 km × 50 km (50 × 25 grid 

cells). 

 

 

 

 



APPENDIX B 

 

XXVIII 
 

3 Process overview and scheduling 

1M1: Each time step, the following procedures are executed by the wild boars in the given order: pathogen 

transmission, ranging movement, natal dispersal of males and females, respectively, reproduction, 

mortality, ageing, and disease course (Figure B1)  

In the first week of each year, females are assigned to breed. Natal dispersal of males and females was 

limited to week 17 and week 29 of the year, respectively. 

M2 & M3: Each time step, the following procedures are executed by the wild boars in the given order: 

pathogen transmission, ranging movement, natal dispersal of males and females, resource-based host 

movement, host reproduction, general host mortality, resource-based host mortality, ageing, and disease 

course (Figure B1.1 (M2) B1.2 (M3)).  

M2 & M3: Females are assigned to breed on a week to week basis, with the prerequisite that they have 

not bread previously in the current year.  

4  Design concepts 

Basic principles 

M1, M2 & M3: Both processes of the host and the pathogen are simulated with a given stochasticity which 

resembles natural conditions. Disease transmission for groups is modelled density-dependent (see Eq. 

B1 and B2). Heterogeneous landscape scenarios were simulated using neutral landscape model 

algorithms. 

Emergence 

M1, M2 & M3: Wild boar population dynamics emerge from individual behaviour, resulting from age- 

and sex-dependent movement behaviours (natal dispersal and ranging) as well as age-dependent 

seasonal reproduction, survival probabilities and is mitigated by the underlying dynamic resource 

landscape. The epidemic course emerges from different virus transmission probabilities, wild boar 

movement behaviours (only M1 & M2) as well as individual stochastic disease courses and infectious 

periods. 

 

 
1 This ODD describes M3, so that ‘Process overview and scheduling’ for M1 is obsolete. It is kept in the ODD to better understand how the design 
of the model developed 
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Adaptation 

M1 & M2: Movement rules either reproduce observed movement behaviours (phenomenological 

approach, e.g. correlated random walk with a given directional persistence) or are based on decisions in 

response to spatial structure or conspecifics (mechanistic approach, e.g. the competition-driven 

movement rule implicitly seeks to increase habitat quality in relation to conspecifics).  

M1, M2 & M3: The number of breeding females per cell is determined by (a) the habitat quality of the 

cell and M1: (b) the number and age of the reproductive females within the cell. 

Objectives 

M1 & M2: The exact way individuals decide where to move depend on the applied movement rule (see 

section “Ranging movement”). In general, ranging individuals (i.e. adult males) using decision-based 

movement rules move into the neighbouring cell with the highest weight (which is defined by the 

applied movement rule). Individuals’ decisions are not perfect but may be a random direction depending 

on the directional persistence ρ (probability to move randomly = 1 - ρ, set to 0.7). 

M1, M2 & M3: Dispersing individuals search for empty (unoccupied) cells (in case of female dispersers) 

or join other groups that are below their cells’ carrying capacity (in case of male dispersers). 

Learning 

M1, M2 & M3: There is no learning implemented in our model. 

Prediction 

M1, M2 & M3: There is no need to predict future environmental conditions. 

Sensing 

M1, M2 & M3: Individuals moving through the landscape may base their decisions on the underlying 

landscape structure in terms of habitat quality (or, synonymously, breeding capacity B) or number of 

conspecifics. Moving individuals can sense all that information from their own cell and surrounding 

cells but the decision might be random (implicitly due to insufficient information) depending on the 

assumed directional persistence 𝜌. 

Interaction 

M1, M2 & M3: Based on the transmission rates, interactions between individuals might lead to virus 

transmission from an infected to a susceptible individual. Reproduction is density-and age-dependent 
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with the oldest females giving birth first. Thus, if the number of reproducible females exceeds a cell’s 

breeding capacity, interaction leads to repressed reproduction. 

Stochasticity 

M1, M2 & M3: Demographic and behavioural parameters are imposed via probability distributions to 

account for variation in the biological processes. Stochastic individual disease courses and infectious 

periods are modelled explicitly because variation in the disease outcome between individuals was 

identified to be essential for virus endemicity without reservoirs (Kramer-Schadt et al., 2009). Movement 

decisions are based on a random component (with 30% of the decisions being random).  

Collectives 

M1, M2 & M3: Individuals that are not ranging between home ranges (i.e. all individuals but adult males) 

form groups within their cell that experience density-dependent transmission probabilities. These 

groups are formed by reproducible females and their offspring. During natal dispersal, male subadults 

may join those groups while female subadults may form new groups. 

Observation 

M1, M2 & M3: To evaluate model outcomes, we measure several properties of the host-virus system at 

each time step of the simulation. These outputs include number of individuals for each class of age 

(piglet, subadult, adult), demographic (resident, ranging) and health status (susceptible, infected, 

recovered) and their combinations. Furthermore, sex ratio, number of new infections (transient and 

lethal), number of cells with infectious individuals, the last week of infection and the cumulative time 

(i.e. how many weeks in total) of infected hosts per habitat cell are recorded. From this output, duration 

of an outbreak, probability of disease persistence (i.e. the virus being present in the system until the end 

of simulations), outbreak size for different classes, as well as density distribution of infected hosts can 

be estimated. Furthermore, we recorded the number of infected individuals separately for each strain of 

the pathogen and the mean landscape-wide virulence of all infected individuals. 

5  Initialization 

M1, M2 & M3: We simulate landscapes with four different levels of spatial heterogeneity in habitat 

quality: homogeneous (only M1 & M3), random, and two or four clustered landscape scenarios using a 

random cluster algorithm (very small, small, medium and large clusters, respectively; Saura & Martínez-

Millán, 2000; Table B1) generated using the R package NLMR (Sciaini et al., 2018). In homogeneous 

landscapes, one boar family group was allocated to each cell with an average breeding capacity B of 4.5 
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females, resulting in the reported density of approximately 20 boars per cell or 5 boars per km2 (European 

Food Safety Authority, 2009; Howells & Edwards-Jones, 1997; Melis et al., 2006; Sodeikat & Pohlmeyer, 

2003). In heterogeneous landscapes a breeding capacity B between 0 and 9 was assigned to each of the 

2500 grid cells (B ∈ {0;9}). In case B is a floating point number, the number of individuals is determined 

stochastically based on the remainder. Initial age distribution was obtained from the results of a 100-year 

model run conducted by (Kramer-Schadt et al., 2009); Table B2), the sex ratio was balanced (i.e. 

probability of 0.5 to be either male or female). Wild boar density reflects long-term average values of 

densely populated Central European habitats (European Food Safety Authority, 2009; Howells & 

Edwards-Jones, 1997; Melis et al., 2006; Sodeikat & Pohlmeyer, 2003). Group size was initialised according 

to the cells carrying capacity Ki that is 4.5 times its breeding capacity Bi. 

6  Input 

M1, M2 & M3: The model does not include external input representing environmental conditions 

changing over time. 

7  Submodels 

Initial infection (pathogen release) 

M1 & M2: The virus is released to the population by infection of one wild boar group (i.e. cell) in middle 

of the upper row of home ranges (i.e. cell with the coordinates x = 1 and y = 13) to allow for comparison 

between runs. The release is scheduled in a random week of the second year of the model run. 

M3: The virus is released to the population by infection of several wild boar groups (i.e., cells), starting 

with the centre of the landscape (i.e., cell with the coordinates x = 24 and y = 13) as well as three randomly 

selected cells in the vicinity. The release is scheduled in a random week of the second year of the model 

run. 

Pathogen transmission 

1M1 & M2: Virus transmission is modelled stochastically. The transmission parameter determines the 

weekly probability of being infected by an infectious group mate βw. 

 
1This ODD describes M3, so that ‘7.2.Pathogen transmission’ for M1 and M2 is obsolete. It is kept in the ODD to better understand how the 

design of the model developed 
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In the model without movement (afterwards referred to as the “classical model”), weekly infection 

pressure λi for each susceptible individual in cell i is determined by the probability of being infected by 

an infectious group mate βw (within-group transmission probability) and the probability of being 

infected by an infectious individual in one of the eight neighbouring cells βe (between-group 

transmission probability): 

                                         𝜆𝑖 = 1 − (1 − 𝛽𝑤)𝐼𝑖 ⋅ (1 − 𝛽𝑒)𝛴𝑖𝐼𝑗                                                           [B1] 

where Ii is the number of infectious group mates and Ij is the numbers of infectious hosts in the jth 

adjacent cell. The resulting probability value λi provides the parameter of a binomial chance process to 

decide whether a susceptible animal will be infected. 

The transmission parameters βw (and thereby βe since it was fixed as one tenth of βw) was calibrated in 

order to reproduce the spreading velocity observed in France (Rossi et al., 2010) with the constant 

parameter value βw = 0.0208 within and, hence, βe = 0.00208 between groups (Kramer-Schadt et al., 2009). 

In the model version involving explicit movements presented here, infection might be translocated 

within the host population. Because ranging movements are performed by adult males only, the 

homogeneous transmission probability λi was transformed to account for these sex-and age-dependent 

transmission probabilities. Therefore, for all individuals but adult males the weekly probability of being 

infected by infectious group mates (but not by infectious ranging males) is simply βw since females and 

their group follow a staying rule with the almost all contacts within the group (Pepin et al., 2016; Spitz & 

Janeau, 1990). The accumulated probability λi for susceptible non-ranging individuals is thus reduced to: 

      𝜆𝑖 = 1 − (1 − 𝛽𝑤)𝐼𝑖                                                                           [B2] 

where is the number of infectious group mates (but not infectious ranging males which do not belong to 

any group). For adult, ranging males, the individual probability of virus transmission during movements 

βm (i.e. being infected by an infectious animal in a cell moving through as well as the probability of 

infecting a susceptible individual while passing the cell) was fitted to account for the resuming 

transmission probabilities (i.e. the remaining within- and between-group transmission probabilities of 

the classical model, see Eq. B2). We calibrated one constant transmission probability (i.e. βw = βm, 

afterwards just referred to as simply β) to result in the comparable distributions of the basic reproduction 

number (R0, number of secondary infections) as in the classical model. Using a Kolmogorov-Smirnov 

test, the constant parameter value β = 0.022 gave the best results for different scenarios of infection and 

movement rules (Scherer et al., 2020). Individual per step transmission probability βm,i is related to the 
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number of steps the animal makes. Therefore, the infection probability for cells passed by infected 

individuals is scaled to the individual movement distance dm,i (see section “Ranging movement”): 

       𝛽𝑚,𝑖 =
β

𝑑𝑚,𝑖
.                                                                            [B3] 

By doing so, infection probability decreases with increasing movement distance which relates to the time 

an animal is able to spend within each cell and thus to transmit the virus on its way. 

CSF shows a variety of disease courses on the individual level (Depner et al., 1997; Liess, 1987). Therefore, 

in our model the disease course is stochastically specified for each individual. The disease course 

submodel is described by two parameters: individual case mortality M and the mean infectious period 

of lethally infected hosts μ. Upon infection the host is stochastically assigned either as lethally infected 

(with probability M) or as transiently infected (1 - M). M is age-specific (Dahle & Liess 1992): for adults 

the probability is decreased to 𝑀𝑎 = 𝑀2 and for piglets increased to 𝑀𝑝 = √𝑀 while it is unchanged for 

subadults 𝑀𝑠 = 𝑀. Transiently infected wild boars first pass through an infectious period of one week 

and subsequently becomes non-infectious and gain life-long immunity (Artois et al. 2002; Moennig et 

al. 2003; European Food Safety Authority, 2009). The individual infectious period (mi in weeks) of 

lethally infected hosts is drawn from an exponential distribution with the mean specified by parameter 

μ: 

                                                   𝑚𝑖  = 1 + 𝑓𝑙𝑜𝑜𝑟(−(𝜇 − 0.5) ⋅ 𝑙𝑛(𝑈(0,1)))                                                     [B4] 

where U(0,1) is a uniformly distributed random number between 0 and 1. To avoid unrealistically long 

infections, mi was stochastically assigned until mi ≤  10 × μ. Lethally infected hosts remain infectious 

until death. Offspring from immune female breeders gets maternal antibodies and is thus immune for 

the first eight to twelve weeks after birth (tanti). The number of weeks of immunisation due to maternal 

antibodies is randomly assigned for those piglets. 

M3: In the model, instead of one single viral strain like in M1 and M2, we added 12 arbitrarily categorized 

viral strains that differ in their transmission potential and the survival time of the host they infect (Table 

B5). Similar to the previous model version, weekly infection pressure λis for each susceptible individual 

in cell i is determined by the probability of being infected by an infectious group mate βw (within-group 

transmission probability) and the probability of being infected by an infectious individual in one of the 

eight neighbouring cells 𝛽𝑤

10
 (between-group transmission probability): 

     𝜆𝑖𝑠 = 1 − (1 − (𝛽𝑤 + 𝑇𝑠))𝐼𝑠 ⋅ (1 −
(𝛽𝑤+𝑇𝑠)

10
)𝛴𝑖𝐼𝑗𝑠                        [B6] 
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where Ii is the number of infectious group mates and Ij is the numbers of infectious hosts in the jth 

adjacent cell. The resulting probability value λis provides the parameter of a binomial chance process to 

decide whether a susceptible animal will be infected. Due to the model now having multiple strains with 

different infection probabilities, there is now the subscript s added to all relevant terms, indicating that 

those values are now strain specific. Therefore, we calculate infection pressures for all strains separately 

and only take individuals with the respective strains into consideration when determining Is for within 

group or IJs for between group transmission. We added a strain specific factor Ts (Table B5) to infection 

pressure calculation so ensure transmissibility differences of the individual strains along a trade-off 

(Table B5), while the base transmission probability βw (0.0208) remained unchanged from model M1 and 

M2.  

CSF shows a variety of disease courses on the individual level (Depner et al., 1997; Liess, 1987). Therefore, 

in our model the disease course is specified for each individual. The disease course sub model is described 

by two parameters: individual case mortality M and the infectious period of lethally infected hosts. One 

week after infection the host is stochastically assigned either as lethally infected (with probability M) or 

as transiently infected (1 - M) in which case it becomes non-infectious and gains life-long immunity. M 

is age specific (Dahle & Liess 1992): for adults the probability is decreased to Ma=M2 and for piglets 

increased to Mp=√𝑀 while it is unchanged for subadults Ms=M. The individual infectious period is strain 

specific and selected from table B5. 

Lethally infected hosts remain infectious until death. Offspring from immune female breeders get 

maternal antibodies and is thus immune for the first eight to twelve weeks after birth (tanti). The number 

of weeks of immunisation due to maternal antibodies is randomly assigned for those piglets. 

Pathogen evolution 

During every transmission event, the pathogen can evolve into a different strain with different strain 

specific variables compared to the parental strain. Once a host individual is becoming infected by a 

specific strain, an evolution check is applied, whereby with a mutation rate of 0.01 (table B1) the strain 

can evolve. If the strain evolves, the new strain is selected from a normal distribution with a standard 

deviation of 1 around the parental strain. The resulting strain will be closely related to the parental strain. 

If the transmitted strain does not evolve, it is transmitted directly without any changes to a new host. 
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Ranging movement 

1M1 & M2: While adult females move mainly within their family group (staying strategy), adult males 

follow a ranging strategy and move solitary (Spitz & Janeau 1990, Figure B2). Ranging distances vary 

between males with a mean distance of 24 km per week and rare long-distance behaviour with up to 84 

km per week (Morelle et al. 2015). For each adult male i, an individual movement distance dm,i was drawn 

from the median of the Weibull distribution given by b*(1 - ln(1 - U[0,1]))^k with a scale of b = 26 and a 

shape of k = 1.3, resulting in a mean of 12 cells and truncated to the maximum movement distance Dmax 

of 42 cells (with a cell being 2 km in diameter). To study effects of inter-cell movement on disease 

dynamics, we implemented three different movement strategies. In general, ranging individuals move 

until the individual weekly movement distance is reached or there is no better decision to make and only 

into cells with a positive habitat quality (B > 0). Individuals stop moving if there is no cell available. If 

there is a tie (i.e. two or more cells with equal attractiveness), one of those cells is chosen randomly. 

M1 & M2: (a) Correlated Random Walk (CRW): In a CRW, subsequent movement directions are 

correlated such that highly correlated movement paths are nearly straight (Turchin 1998; Figure B3a). 

This movement model improves the RW approach by incorporating directional persistence that moving 

animals very frequently exhibit (Figure B3; Kareiva & Shigesada 1983). The direction of a step is drawn 

from a wrapped Cauchy distribution with a mean direction equal to the previous direction (Fletcher 

2006): 

                                      𝜃𝑡,𝑖 = 𝜃𝑡−1,𝑖 + 2 ⋅ 𝑎𝑟𝑐𝑡𝑎𝑛 (
1−𝜌

1+𝜌
⋅ 𝜋 ⋅ 𝑈(−0.5,0.5))                                                      [B5] 

Where θt,i and θt-1,i are the headings of individual i of the next or previous step, respectively, ρ is a 

parameter related to the concentration around the mean direction (i.e. ρ = 1 results in a straight line and 

ρ = 0 equals a RW), and U(-0.5,0.5) is a uniformly distributed random number between -0.5 and 0.5. In 

case individuals reach the border of the simulated landscape, the Individual is reflected in a 90° angle 

followed by reset and recalculation of θt,I to avoid aggregation around the landscape borders. 

M1 & M2: (b) Habitat-Dependent Movement (HDM): A reasonable hypothesis is that a selective animal 

should choose high quality cells for its home range. The distribution and abundance of resources greatly 

affect movement patterns of several animal species and has also been reported for wild boars (Morelle 

 
1This ODD describes M3, so that ‘7.3.Ranging movement’ for M1 and M2 is obsolete. It is kept in the ODD to better understand how the design 

of the model developed 
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et al. 2015). Assuming higher food resources and better shelter in high quality habitat, individuals decide 

among their neighbouring cells based on the habitat quality (Figure B3b). The parameter ρ here relates 

to the accuracy of an individual estimating the quality of the focal and neighbouring cells, with the 

movement decision in ρ-1 cases being purely random. 

M1: (c) Competition-Driven Movement (CDM): Effective habitat quality might be lower due to 

competition with conspecifics. Thus, competition-driven movement is biased to cells with higher net 

habitat quality and was implemented as negative density dependence. Movement weights were 

calculated as the ratio of number of conspecifics in the focal cell and the carrying capacity (K), i.e. the 

potential maximum group size of the cell (Figure B3c). 

For all movement strategies, ρ was fixed as 0.7, i.e. 30% of the decisions were made randomly. 

M3: No ranging movement was applied. 

Natal dispersal 

M1, M2 & M3: Herd splitting, where subadult individuals may move together to search for or form new 

groups, is performed in specified weeks of the. The timing of these events is sex-dependent: Subadult 

females without offspring perform their natal dispersal in the 29th week of the year, while subadult males 

disperse during the 17th week. In the given week of the year, all herds to split are extracted, matching the 

conditions of containing at least a specified number of subadults Ndisp to move (either male or female). 

For female dispersal, only cells exceeding the breeding capacity B are evaluated. For each of them, a 

habitat cell not exceeding carrying capacity K (for males) or without any family group (for females) 

within a Euclidean distance ddisp is selected randomly as new cell for the group, excluding the source cell 

(Figure B2). If there is no cell fulfilling these conditions, subadults stay within their group’s cell. 

Reproduction 

M1, M2 & M3: Females reproduce once a year, depending on their age class. Individual females, which 

are at least subadult, reproduce depending on the season with a peak in March and no reproduction in 

winter from October to December (Boitani et al. 1995) (Table B2).  

M1, M2 & M3: In the first week of the year, female individuals are checked for their breeding status; 

female individuals are checked for their breeding status on a weekly basis. All females not exceeding 

their habitat cells breeding capacity, starting with the oldest individuals, are allowed to breed.  
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M1: The week of the year to breed is assigned in the first week of each year according to weekly 

reproduction probabilities, derived from monthly probabilities and the number of weeks in the month 

(Table B2).  

M2 & M3: If an individual was assigned to breed the chance of reproduction at that time is drawn from 

monthly probabilities and the number of weeks in the month (Table B2). 

M1, M2 & M3: Litter size is drawn from a pre-calculated truncated normal distribution (Table B1,3) and 

reduced to a constant fraction for infected individuals. Litter size of transient shedders and lethally 

infected hosts is multiplied with the reduction factor αf. 

M1, M2 & M3: Depending on the disease state of the breeding individual, its piglets disease states are 

adjusted. Susceptible individuals produce susceptible offspring, immune individuals produce immune 

offspring with maternal antibodies (see section “Pathogen state transition”). Transient shedders and 

lethally infected individuals yield offspring, each one lethally infected with a given probability of 

prenatal infection ppi. 

Mortality 

M1, M2 & M3: Stochastic baseline mortality is age-dependent and adjusted to annual survival estimates 

found in the literature (Table B1). Per time step we apply the adjusted age-dependent mortality (mweek) 

to the individual: 

       𝑚𝑤𝑒𝑒𝑘 = 1 − (𝑠𝑦𝑒𝑎𝑟)1/52.                                                                       [B6] 

In addition to the stochastic baseline mortality, each individual may die due to reaching a certain 

maximum age, or due to a lethal infection after a certain infection time span m (see section ”Pathogen 

transmission”). 

M2 & M3: A selected number of individuals Kover (see Resource response for the selection) are subject to 

a variable, resource-based mortality with an increasing chance of mortality dependent on how long the 

individual is subject to low resource conditions up to a variable time limit Smax as well as the number of 

individuals (gact) in relation to maximum group (gsus) size and age. 

     𝑚𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 =
(𝑔𝑎𝑐𝑡−𝑔𝑠𝑢𝑠)

100
∗ 𝑎 ∗ 𝑡𝑜𝑣𝑒𝑟            [B7] 

With a being an age factor corresponding to the individuals being a piglet or adult/subadult and tover the 

time the individual is part of the Kover individual pool. As well as a 100% mortality when tover equals Smax. 
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Ageing 

M1, M2 & M3: The ageing process iterates over all individuals. For each individual k, age Tk is 

incremented one week and disease state transitions are performed. Females become subadult and adult 

at an age of 34 and 52 weeks, respectively, while males enter the subadult and adult age groups at an age 

of 21 and 104 week, respectively. 

Disease course (pathogen state transition) 

M1 & M2: Transient shedders convert to immune after a certain latency period tlatent. An individual i 

protected by maternal antibodies turns susceptible if reaching an age Ti of the protection time of tanti (see 

section “Pathogen transmission”). After disease state transition the age of the infection is incremented 

by one week if the individual is not susceptible.  

M3: An individual i protected by maternal antibodies turns susceptible if reaching an age Ti of the 

protection time of tanti (see section “Pathogen transmission”). After disease state transition the age of the 

infection is incremented by one week if the individual is not susceptible. 

Landscape dynamic 

M2 & M3: The autocorrelated landscape dynamic is superimposed over the different types of 

heterogeneous starting landscapes. Throughout each simulated year, resource availability in each cell 

increases in 5-weeks intervals for approximately 25 weeks and then declines in 5-weeks intervals for the 

next 25 weeks. The resource availability translates directly into the breeding capacity for each cell and 

for each increase or decrease the value of the breeding capacity is changed by one. During the increase, 

the breeding capacity cannot exceed the maximum breeding capacity of 9 and cannot fall below 1 during 

the decrease i.e. the breeding capacity in a cell designated as habitat cannot become 0 during the course 

of a year. Additionally, barriers and matrix which have an assigned breeding capacity of 0 cannot become 

habitat i.e. matrix/barrier cells will always have a breeding capacity of 0. The default landscape dynamic 

is implemented to follow the host individual’s monthly reproduction probabilities (see table B2), where 

the peak reproduction probability matches in time with the peak resource availability. Furthermore, the 

landscape dynamic can be temporally shifted away from the peak host reproduction probability in 25% 

increments (0% – match, 25% mismatch, 50% mismatch, 75% mismatch, 100% – full mismatch). In this 

case, a full mismatch would mean that the resource availability is at its lowest when the host 

reproduction probability is at its highest. 

The random landscape dynamic functions similar to the autocorrelated variant without a temporal shift. 

Throughout each simulated year, resource availability in each cell changes randomly in 5-weeks intervals 
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for approximately 50 weeks whereby each cell is allocated a random integer between 1 and 9. At the end 

of each year, the landscape resets to the original starting landscape. 

Resource responses 

M2 & M3: If the group size exceeds the carrying capacity K in a cell, a dispersal event will be triggered. 

The likelihood of dispersal follows an age gradient where older females will try to disperse last. For male 

individuals, a random habitat cell not exceeding the carrying capacity K will be randomly selected within 

a Euclidean distance ddisp as new cell. For female individuals, the randomly selected habitat cell must 

fulfil the prerequisite of not hosting another family group. However, if an individual currently has 

offspring it and the offspring will stay at in their current cell. If there is no suitable habitat cell fulfilling 

these prerequisites within the distance ddisp the individuals will stay. Individuals are continuously 

selected for dispersal until the group size no longer exceeds the carrying capacity K. For a secondary 

response after the dispersal event (if applicable), a cell specific number of individuals Kover that is the 

difference between carrying capacity K and group size will be selected. The selection of these individuals 

is age dependant where the oldest females are selected last. All selected individuals are subjected to an 

increasing age-dependant mortality (see mortality). 
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Figures 
Flow chart of the SwiFCoIBMove model and its submodels 

Figure B1: Flow chart of the agent-based, spatially explicit host-pathogen model “SwiFCoIBMove” and its submodels.                  
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Flow chart of the SwiFCoIBM_dynamic model  

 

Figure B1.1: Flow chart of the agent-based, spatially explicit host-pathogen model “SwiFCoIB_dynamic”  
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Flow chart of the SwiFCoIBM_evo model  

Figure B1.2: Flow chart of the agent-based, spatially explicit host-pathogen model “SwiFCoIB_evo”  
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Figure B2: Schematic representation of different natal dispersal events of subadult wild boars and movement strategies of adult 
wild boars. The group of adult and subadult females and their offspring is called a sounder. If the breeding capacity of the 
sounders cell is exceeded, subadult females search in groups of 3 or more individuals for an unoccupied cell in a radius of three 
cells. Female wild boars reach their adulthood earlier (model assumption: if older than 1 year) and follow a staying strategy, thus 
not moving outside of the sounders cell (grey squares). Male wild boars always separate from the sounder when reaching the 
subadult age and move in groups of 2 or more to one of the cells below capacity in a radius of 3 cells. When becoming adult, 
male wild boars move solitary between home ranges. 

Figure B3: Movement assumptions used to model ranging behaviour of adult males. Probability of movement depends on the 
(a) direction of previous steps (Correlated Random Walk), (b) habitat quality B or (c) carrying capacity K in relation to the 
number of conspecifics. The lighter the colour, the higher the probability the individual chooses this cell. Movement decisions 
are furthermore driven by a random component determined by ρ. 
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Table B1: Parameter setup used in the spatially-explicit classical swine fever-wild boar model. M1: Each of the 60 combinations 
(3 movement strategies × 4 landscape scenarios × 5 case fatality ratios) was repeated 200 times while generating new underlying 
landscapes depending on the scenario input, resulting in 12.000 runs in total. M2: Each of the 300 combinations (3 movement 
strategies 3 × landscape dynamic × 4 landscape scenarios × 5 max survival time under low resources × 5 level of resource 
mismatch) was repeated 25 times, resulting in 22.500 runs in total. M3: Each of the 10 combinations (5 landscape scenarios × 2 
landscape dynamic) was repeated 25 times, resulting in 250 runs in total 

Parameter Values  Reference(s) 

Longevity 11 years (572 weeks) (Jezierski, 1977) 

Sex ratio 1:1 
(e.g. Durio et al., 2014; Fernández-
Llario et al., 1999; Moretti, 2014) 

Survival probability of adults 
and subadults 

smean= 0.6; smin = 0.4 
(Focardi et al., 1996; Gaillard et al., 
1987) 

Survival probability of piglets smean= 0.5; smin = 0.1 (Focardi et al., 1996) 

Reproduction probability see Table B2 (Boitani et al., 1995) 

Breed count distribution see Table B3 (Bieber & Ruf, 2005) 

Movement rule (M1, M2) 
CRW (M1,M2) 
HDM (M1,M2)  
CDM (M1) 

(Fletcher, 2006) 

Tendency to move randomly ρ (M1, M2) 0.3  

Mean movement distance Dmean (M1, M2) 24 km (12 cells) per week (Morelle et al., 2015) 

Maximum movement distance Dmax (M1, M2) 84 km (42 cells) per week (Morelle et al., 2015) 

Indiv. weekly ranging distance  Dm,I (M1, M2) Di {1, Dmax} ~ Wei(26, 1.3)  

Maximal natal dispersal distance ddisp 3 cells (6 km) (Sodeikat & Pohlmeyer, 2003) 

Minimum number of dispersers Ndisp 2 for females; 3 for males  

Case fatality ratio M {0, 0.25, 0.5, 0.75, 1} 
0.5, 0.5 

 

Mean infectious period μ (M1, M2) 4 weeks, 6 weeks  

Transmission probability β (M1, M2) 0.022  

Fertility reduction due to infection 0.625 (Kramer-Schadt et al., 2009) 

Probability of prenatal infection 0.5 (Kramer-Schadt et al., 2009) 

Transient period ttrans 1 week (Artois et al., 2002; Moennig et al., 
2003) 

Period of maternal antibodies tanti 12 weeks (Depner et al., 2000) 

Simulated years 
12 (624 weeks), 50 (260 
weeks), 100 (5200 weeks) 

 

*Continued on the next page 
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Table B1: Parameter setup – continuation 

Parameter Values  Reference(s) 

Pathogen release random week of the 2nd year  

Mean number of reproductive females 4.5 
(European Food Safety Authority, 
2009; Howells & Edwards-Jones, 1997; 
Sodeikat & Pohlmeyer, 2003) 

Habitat quality range [0, 9]  

Initial mean density 5 individuals/km2 (Kramer-Schadt et al., 2009) 

Initial age distribution see Table B4 (Kramer-Schadt et al., 2009) 

Age blur in initial individuals ± 3 weeks  

Landscape dynamic (M2, M3) Autocorrelated, Random 
No dynamic 

 

Max survival time under low resources Smax 
{5,10,15,20,25} weeks 
10 weeks 

 

Level of resource mismatch 
{0,25,50,75,100} % 
{0,100} % 

 

Mutation rate 0.01  

Transmission factor See table B5  

Survival times See table B5  

 

Table B2: Monthly reproduction probabilities (Boitani et al., 1995) used to stochastically determine the number of breeding 
females. 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Number of weeks 4 4 5 4 4 5 4 4 5 5 4 4 
Reproduction probability 0.0 0.1 0.23 0.34 0.07 0.08 0.06 0.03 0.03 0.0 0.0 0.0 

 

Table B3: Breed count distribution (Bieber & Ruf, 2005) used to estimate litter sizes. 

Litter size 0 1 2 3 4 5 6 7 8 9 10 0 

Probability .01306 .06915 .01629 .24994 .24994 .01629 .06915 .01910 .00343 .0004 .00002 .01306 

 

Table B4: Initial age distribution (Kramer-Schadt et al., 2009) used to initialize each model run. 

 

 

 

Age (years) 1 2 3 4 5 6 7 8 9 10 

 Proportion 0.38 0.24 0.15 0.09 0.06 0.03 0.02 0.01 0.01 0.01 
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Table B5: Pathogen strains with their respective transmission factor and the survival time (weeks) they impose on infected hosts. 
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B2  Additional figures 

 

 
Figure B4: Example landscape configurations and habitat clustering used in the model, with (a) randomly distributed habitat 
cells, (b) small clusters, (c) medium clusters, (d) large clusters, and (e) a homogenous landscape. The colour gradient shows the 
habitat quality (i.e. the number of breeding females supported by the individuals landscape cells).  
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Figure B5: Coexistence probability for host and pathogen (colour gradient) for all landscape scenarios and separated for 
synchronous and asynchronous host resources. In homogenous landscapes, due to a collapse of the host population, host-
pathogen coexistence was not achievable in the current model-framework and therefore excluded. 

 

Figure B6: Differences in the proportion of infected individuals with each strain in the landscape to highlight the effect of 
asynchronous scenarios. The blue colour gradient means that a strain was more dominant in synchronous (T lag = 0) scenarios 
while the red colour gradient shows that a strain was more dominan in asynchronous scenarios (Tlag = 100). Gray means there 
was no difference in strain proportions between both scenarios. 
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C1  Model description (ODD protocol) 
The classical swine fever (CSF) wild boar model is a combination of a spatially explicit, stochastic, agent-

based model for wild boars (Sus scrofa L.) and an epidemiological model for the CSF virus. The model 

was implemented in NetLogo (Wilensky, 1999) and is documented following the ODD protocol (Grimm 

et al., 2006, 2010, 2020). 

The ODD protocol below includes changes in model description across three wild boar / CSF eco-

epidemiological models. The main basis is the model ”SwiFCoIBM_Evo” (M1 and black text throughout, 

Kürschner et al. 2022 under review) was developed to assess the effects of host movement and landscape 

structure, dynamic and evolution of traits on disease dynamic. It is based on previous model iterations 

and ODD protocols by Scherer et al., (2020) and Kürschner et al., (2021).  

 The model described in this protocol (“SwiFCoIBM_Emp”; M2 and blue text throughout) was developed 

to apply previous model implementations to realistic landscapes and empirical outbreak data, for 

example a CSF outbreak in the Nort-East German state Mecklenburg-Vorpommern (Scherer et al., 2019). 

Many processes, submodels and their descriptions such as movement behaviour and basic pathogen 

transmission used in M2 remain mostly unaltered from previous implementations and ODD protocols 

in Scherer et al., (2020). 

As a note, while in some instance (as seen for example in 1. Purpose) parts of the previous models are 

replaced, in other instances and submodels (as seen in 2. Entities, state variables and scales) M2 is a 

mixture of old and new versions.  

1  Purpose 
1M1: The model investigates the effect dynamic resource landscape and temporal shifts on a multi-strain 

pathogen system, pathogen evolution and pathogen trade-offs. Particularly, how temporal mismatches 

between optimal resource availability and biological events affect host-pathogen coexistence and 

pathogen spread. 

M2: The model aims to match patterns observed in CSF outbreak in Mecklenburg-Vorpommern 

(Scherer et al., 2019) with simulated data using habitat suitability map of Mecklenburg-Vorpommern as 

a basis for initial wild boar distribution and density. Specifically, we wanted to analyse the effect of 

 
1This ODD describes M2, so that ‘Purpose’ for M1 is obsolete. It is kept in the ODD to better understand how the design of the model 

developed 
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different decision-making processes in host movement on disease outbreak patterns, pathogen 

persistence, and transmission. 

2  Entities, state variables and scales 

The model entities are spatial units, or grid cells, and wild boars. Grid cells are characterized by habitat 

quality in terms of breeding capacity, i.e., the number of female boars that are allowed to have offspring 

(Jedrzejewska et al., 1997). Thereby, local host density is in the model, i.e., increasing numbers of fertile 

females can breed only until breeding capacity is reached. A grid cell represents about 2 km × 2 km, 

encompassing an average home range area of a boar group (Leaper et al., 1999). 

Wild boars are characterized by sex, age in weeks, location, demographic status (e.g., breeding, dispersing 

and ranging) and health status. Three age classes are distinguished: piglet (< 34 weeks), subadult 

(between 34 weeks and < 1 year for females and < 2 years for males) and adult. Location is defined by the 

grid cell the wild boar inhabits. The health status of the individuals is described by an SIR 

epidemiological classification (susceptible; transiently infected; lethally infected with individual 

infectious period; immune by surviving the infection or by maternal antibodies). Females, which are at 

least subadult, may be assigned as breeders according to the breeding capacity of their family group’s 

cell. Subadult wild boars may disperse during the dispersal period dependent on their sex and 

demographic status (disperser or non-disperser). In the model versions simulating explicit movement, 

males become ranging individuals (i.e., move solely) once they are adult and thereby change their 

locations every time step. 

M1, M2: One time step corresponds to the approximate CSF incubation time of one week (Artois et al., 

2002; Moennig et al., 2003) while simulations usually run for 100 years (5200 weeks) or 11 years (572 

weeks) with the virus being released in the second year (week 53-104) to a defined boar group to ensure 

the same distance to the centre of the landscape and an established spatial population structure. The 

model landscape consists of 100 km × 50 km (50 × 25 grid cells) or a 128 x 90 grid cell approximation of 

Mecklenburg-Vorpommern and the surrounding area (Fernández et al., 2006; Scherer et al., 2019).  

3  Process overview and scheduling 

Each time step, the following procedures are executed by the wild boars in the given order: pathogen 

transmission, ranging movement, natal dispersal of males and females, resource-based host movement, 

host reproduction, general host mortality, resource-based host mortality, ageing, and disease course 
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(Figure C1). Females are assigned to breed on a week to week basis, with the prerequisite that they have 

not bread previously in the current year.  

4  Design concepts 

Basic principles 

Both processes of the host and the pathogen are simulated with a given stochasticity which resembles 

natural conditions. Disease transmission for groups is modelled density-dependent (see Eq. C1 and C2). 

Heterogeneous landscape scenarios were simulated using neutral landscape model algorithms. 

Emergence 

Wild boar population dynamics emerge from individual behaviour, resulting from age- and sex-

dependent movement behaviours (natal dispersal and ranging) as well as age-dependent seasonal 

reproduction, survival probabilities and is mitigated by the underlying dynamic resource landscape. The 

epidemic course emerges from different virus transmission probabilities, infectious periods wild boar 

movement behaviours (only M2) as well as individual stochastic disease courses. 

Adaptation 

Movement rules either reproduce observed movement behaviours (phenomenological approach, e.g., 

correlated random walk with a given directional persistence) or are based on decisions in response to 

spatial structure or conspecifics (mechanistic approach, e.g., the competition-driven movement rule 

implicitly seeks to increase habitat quality in relation to conspecifics).  

The number of breeding females per cell is determined by the habitat quality of the cell and the number 

and age of the reproductive females within the cell. 

Objectives 

The exact way individuals decide where to move depend on the applied movement rule (see section 

“Ranging movement”). In general, ranging individuals (i.e., adult males) using decision-based movement 

rules move into the neighbouring cell with the highest weight (which is defined by the applied 

movement rule). Individuals’ decisions are not perfect but may be a random direction depending on the 

directional persistence ρ (probability to move randomly = 1 - ρ, set to 0.7). 

Dispersing individuals search for empty (unoccupied) cells (in case of female dispersers) or join other 

groups that are below their cells’ carrying capacity (in case of male dispersers). 
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Learning 

There is no learning implemented in our model. 

Prediction 

There is no need to predict future environmental conditions. 

Sensing 

Individuals moving through the landscape may base their decisions on the underlying landscape 

structure in terms of habitat quality (or, synonymously, breeding capacity B) or number of conspecifics. 

Moving individuals can sense all that information from their own cell and surrounding cells but the 

decision might be random (implicitly due to insufficient information) depending on the assumed 

directional persistence 𝜌. 

Interaction 

Based on the transmission rates, interactions between individuals might lead to virus transmission from 

an infected to a susceptible individual. Reproduction is density-and age-dependent with the oldest 

females giving birth first. Thus, if the number of reproducible females exceeds a cell’s breeding capacity, 

interaction leads to repressed reproduction. 

Stochasticity 

Demographic and behavioural parameters are imposed via probability distributions to account for 

variation in the biological processes. Stochastic individual disease courses and infectious periods are 

modelled explicitly because variation in the disease outcome between individuals was identified to be 

essential for virus endemicity without reservoirs (Kramer-Schadt et al., 2009). Movement decisions are 

based on a random component (with 30% of the decisions being random).  

Collectives 

Individuals that are not ranging between home ranges (i.e., all individuals but adult males) form groups 

within their cell that experience density-dependent transmission probabilities. These groups are formed 

by reproducible females and their offspring. During natal dispersal, male subadults may join those 

groups while female subadults may form new groups. 

 

 



APPENDIX C 

 

LVI 
 

Observation 

M1 & M2: To evaluate model outcomes, we measure several properties of the host-virus system at each 

time step of the simulation. These outputs include number of individuals for each class of age (piglet, 

subadult, adult), demographic (resident, ranging) and health status (susceptible, infected, recovered) 

and their combinations. Furthermore, sex ratio, number of new infections, number of cells with 

infectious individuals, the last week of infection and the cumulative time (i.e., how many weeks in total) 

of infected hosts per habitat cell are recorded. From this output, duration of an outbreak, probability of 

disease persistence (i.e., the virus being present in the system until the end of simulations), outbreak size 

for different classes, as well as density distribution of infected hosts can be estimated. Further recorded 

outputs were the strain carried by individuals hosts in total and per cell, number of infected, immune 

and susceptible per cell and time, cumulative per cell, dead individuals per cell and time, health status 

of dead individuals per cell and cause of host death per cell. 

5  Initialization 

M1 & M2: We simulate landscapes with four different levels of spatial heterogeneity in habitat quality: 

homogeneous, random, four clustered landscape scenarios using a random cluster algorithm (very small, 

small, medium and large clusters, respectively; Saura & Martínez-Millán, 2000; Table C1) generated 

using the R package NLMR (Sciaini et al., 2018). In homogeneous landscapes, one boar family group was 

allocated to each cell with an average breeding capacity B of 4.5 females, resulting in the reported density 

of approximately 20 boars per cell or 5 boars per km2 (European Food Safety Authority, 2009; Howells & 

Edwards-Jones, 1997; Melis et al., 2006; Sodeikat & Pohlmeyer, 2003). In heterogeneous landscapes a 

breeding capacity B between 0 and 9 was assigned to each of the 2500 grid cells (B ∈ {0;9}). In case B is 

a floating point number, the number of individuals is determined stochastically based on the remainder. 

In M2, the habitat suitability map of MVP is loaded as a basis for the breeding capacity B ranging from 

0 to 9. Initial age distribution was obtained from the results of a 100-year model run conducted by 

(Kramer-Schadt et al., 2009); Table C2), the sex ratio was balanced (i.e. probability of 0.5 to be either male 

or female). Wild boar density reflects long-term average values of densely populated Central European 

habitats (European Food Safety Authority, 2009; Howells & Edwards-Jones, 1997; Melis et al., 2006; 

Sodeikat & Pohlmeyer, 2003). Group size was initialised according to the cells carrying capacity Ki that 

is 4.5 times its breeding capacity Bi. 
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6  Input 

1M1: The model does not include external input representing environmental conditions changing over 

time. 

M2: The model uses a wild boar habitat suitability map of Mecklenburg-Vorpommern (Scherer et al. 

2019, Fernandez et al. 2006). 

7  Submodels 

Initial infection (pathogen release) 

M1: The virus is released to the population by infection of several wild boar groups (i.e., cells), starting 

with the centre of the landscape (i.e., cell with the coordinates x = 24 and y = 13) as well as three randomly 

selected cells in the vicinity. The release is scheduled in a random week of the second year of the model 

run. 

M2: The virus is released to the population by infection of several wild boar groups (i.e., cells), in the 

central northern area of Mecklenburg-Vorpommern as well as three randomly selected cells in the 

vicinity. The release is scheduled in a random week of the second year of the model run. 

Pathogen transmission 

M1: This model uses 12 arbitrarily categorized viral strains that differ in their transmission potential and 

the survival time of the host they infect (Table C5). Weekly infection pressure λis for each susceptible 

individual in cell i is determined by the probability of being infected by an infectious group mate βw 

(within-group transmission probability) and the probability of being infected by an infectious individual 

in one of the eight neighbouring cells 𝛽𝑤

10
 (between-group transmission probability): 

     𝜆𝑖𝑠 = 1 − (1 − (𝛽𝑤 + 𝑇𝑠))𝐼𝑠 ⋅ (1 −
(𝛽𝑤+𝑇𝑠)

10
)𝛴𝑖𝐼𝑗𝑠                  [C1] 

where Ii is the number of infectious group mates and Ij is the numbers of infectious hosts in the jth 

adjacent cell. The resulting probability value λis provides the parameter of a binomial chance process to 

decide whether a susceptible animal will be infected. Due to the model now having multiple strains with 

different infection probabilities, there is now the subscript s added to all relevant terms, indicating that 

those values are now strain specific. Therefore, we calculate infection pressures for all strains separately 

and only take individuals with the respective strains into consideration when determining Is for within 

 
1 This ODD describes M2, so that ‘6 Input’ for M1 is obsolete. It is kept in the ODD to better understand how the design of the model developed 
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group or IJs for between group transmission. Since the number of infected hosts per strain can be 

significantly smaller than the sum of all infected host individuals, we added a strain specific factor Ts 

(Table C5) to infection pressure calculation so ensure transmissibility of the individual strains, while the 

base transmission probability βw (0.0208) remained unchanged from model M1 and M2.  

CSF shows a variety of disease courses on the individual level (Depner et al., 1997; Liess, 1987). Therefore, 

in our model the disease course is specified for each individual. The disease course sub model is described 

by two parameters: individual case mortality M and the infectious period of lethally infected hosts. One 

week after infection the host is stochastically assigned as lethally infected, with a probability M an 

individual can become non-infectious and gains life-long immunity. M is age specific (Dahle & Liess 

1992): for adults the probability is decreased to Ma=M2 and for piglets increased to Mp=√𝑀 while it is 

unchanged for subadults Ms=M. The individual infectious period is strain specific and selected from 

table C5. 

Lethally infected hosts remain infectious until death. Offspring from immune female breeders gets 

maternal antibodies and is thus immune for the first eight to twelve weeks after birth (tanti). The number 

of weeks of immunisation due to maternal antibodies is randomly assigned for those piglets. 

M2: In this model version, presented here, infection might be translocated within the host population. 

Because ranging movements are performed by adult males only, the strain specific transmission 

probability λis was transformed to account for these sex-and age-dependent transmission probabilities. 

Therefore, for all individuals but adult males the weekly probability of being infected by infectious group 

mates (but not by infectious ranging males) is simply βws adjusted for a strain specific transmission 

probability 𝑇𝑠 since females and their group follow a staying rule with the almost all contacts within the 

group (Pepin et al., 2016; Spitz & Janeau, 1990). The accumulated probability λis for susceptible non-

ranging individuals is thus reduced to: 

      𝜆𝑖 = 1 − (1 − 𝛽𝑤 + 𝑇𝑠)𝐼𝑖                                                                            [C2] 

Where I is the number of infectious group mates (but not infectious ranging males which do not belong 

to any group).  

For adult, ranging males, the individual probability of virus transmission during movements βm (i.e. 

being infected by an infectious animal in a cell moving through as well as the probability of infecting a 

susceptible individual while passing the cell) was fitted to account for the resuming transmission 

probabilities (i.e. the remaining within- and between-group transmission probabilities of the classical 
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model, see Eq. C2). We calibrated one constant transmission probability (i.e. βw = βm, afterwards just 

referred to as simply β) to result in the comparable distributions of the basic reproduction number (R0, 

number of secondary infections) as in the classical model. The previous model implementation by 

Scherer et al. (2020), that included explicit host movement and transmission estimated β = 0.022 as the 

best results for different scenarios of infection and movement rules. Individual per step transmission 

probability βm,i is related to the number of steps the animal makes. Therefore, the infection probability 

for cells passed by infected individuals is scaled to the individual movement distance dm,i (see section 

“Ranging movement”) and was adjusted for strain specific transmission through 𝑇𝑠: 

       𝛽𝑚,𝑖 =
β+𝑇𝑠

𝑑𝑚,𝑖
.                                                                             [C3] 

By doing so, infection probability decreases with increasing movement distance which relates to the time 

an animal is able to spend within each cell and thus to transmit the virus on its way. 

CSF shows a variety of disease courses on the individual level (Depner et al., 1997; Liess, 1987). Therefore, 

in our model the disease course is specified for each individual. The disease course sub model is described 

by two parameters: individual case mortality M and the infectious period of lethally infected hosts. One 

week after infection the host is stochastically assigned as lethally infected, with a probability M an 

individual can become non-infectious and gains life-long immunity. M is age specific (Dahle & Liess 

1992): for adults the probability is decreased to Ma=M2 and for piglets increased to Mp=√𝑀 while it is 

unchanged for subadults Ms=M. The individual infectious period is strain specific and selected from 

table C5. 

Pathogen evolution 

During every transmission event, the pathogen can evolve into a different strain with different strain 

specific variables compared to the parental strain. Once a host individual is becoming infected by a 

specific strain, an evolution check is applied, whereby with a mutation rate of 0.01 (table C1) the strain 

can evolve. If the strain evolves, the new strain is selected from a normal distribution with a standard 

deviation of 1 around the parental strain. The resulting strain will be closely related to the parental strain. 

If the transmitted strain does not evolve, it is transmitted directly without any changes to a new host. 

Vaccination 

All cells that are overlapping with the “vaccination area” (Figure C4) are designated vaccination cells. 

Starting 52 timesteps after pathogen release a percentage of susceptible adults (vc_adult) and susceptible 

subadults (vc_subadult) are set to immune (Table C1). This process is repeated every 13 timesteps. 
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Ranging movement 

only M2; adapted from Scherer et al., (2020): While adult females move mainly within their family group 

(staying strategy), adult males follow a ranging strategy and move solitary (Spitz & Janeau 1990, Figure 

C2). Ranging distances vary between males with a mean distance of 24 km per week and capability for 

long-distance behaviour with up to 84 km per week (Morelle et al. 2015). For each adult male i, an 

individual movement distance dm,i was drawn from the median of the Weibull distribution given by b*(1 

- ln(1 - U[0,1]))^k with a scale of b = 26 and a shape of k = 1.3, resulting in a mean of 12 cells and truncated 

to the maximum movement distance Dmax of 42 cells (with a cell being 2 km in diameter). To study effects 

of inter-cell movement on disease dynamics, we implemented three different movement strategies. In 

general, ranging individuals move until the individual weekly movement distance is reached or there is 

no better decision to make and only into cells with a positive habitat quality (B > 0). Individuals stop 

moving if there is no cell available. If there is a tie (i.e., two or more cells with equal attractiveness), one 

of those cells is chosen randomly. 

(a) Habitat-Driven Correlated Random Walk (HDCRW): In a basic CRW, subsequent movement 

directions are correlated such that highly correlated movement paths are nearly straight (Turchin 1998; 

Figure C3a). This movement model improves the RW approach by incorporating directional persistence 

that moving animals very frequently exhibit (Figure C3; Kareiva & Shigesada 1983). The direction of a 

step is drawn from a wrapped Cauchy distribution with a mean direction equal to the previous direction 

(Fletcher, 2006): 

                                      𝜃𝑡,𝑖 = 𝜃𝑡−1,𝑖 + 2 ⋅ 𝑎𝑟𝑐𝑡𝑎𝑛 (
1−𝜌

1+𝜌
⋅ 𝜋 ⋅ 𝑈(−0.5,0.5))                                        [C5] 

Where θt,i and θt-1,i are the headings of individual i of the next or previous step, respectively, ρ is a 

parameter related to the concentration around the mean direction (i.e., ρ = 1 results in a straight line and 

ρ = 0 equals a RW), and U(-0.5,0.5) is a uniformly distributed random number between -0.5 and 0.5. In 

the habitat-driven CRW, individuals decide among their target cells based on the habitat quality by 

selecting the best possible habitat cell and perform a CRW for long-distance movement.In case 

individuals reach the border of the simulated landscape, the Individual is reflected in a 90° angle 

followed by reset and recalculation of θt,I to avoid aggregation around the landscape borders. 

 (b) Habitat-Driven Movement (HDM): A reasonable hypothesis is that a selective animal should choose 

high quality cells for its home range. The distribution and abundance of resources greatly affect 

movement patterns of several animal species and has also been reported for wild boars (Morelle et al. 

2015). Assuming higher food resources and better shelter in high quality habitat, individuals decide 
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among their neighbouring cells based on the habitat quality (Figure C3b). The parameter ρ here relates 

to the accuracy of an individual estimating the quality of the focal and neighbouring cells, with the 

movement decision in ρ-1 cases being purely random. 

 (c) Competition-Driven Movement (CDM): Effective habitat quality might be lower due to competition 

with conspecifics. Thus, competition-driven movement is biased to cells with higher net habitat quality 

and was implemented as negative density dependence. Movement weights were calculated as the ratio 

of number of conspecifics in the focal cell and the carrying capacity (K), i.e., the potential maximum 

group size of the cell (Figure C3c). 

For all movement strategies, ρ was fixed as 0.7, i.e., 30% of the decisions were made randomly. 

Natal dispersal 

Herd splitting, where subadult individuals may move together to search for or form new groups, is 

performed in specified weeks of the. The timing of these events is sex-dependent: Subadult females 

without offspring perform their natal dispersal in the 29th week of the year, while subadult males disperse 

during the 17th week. In the given week of the year, all herds to split are extracted, matching the 

conditions of containing at least a specified number of subadults Ndisp to move (either male or female). 

For female dispersal, only cells exceeding the breeding capacity B are evaluated. For each of them, a 

habitat cell not exceeding carrying capacity K (for males) or without any family group (for females) 

within a Euclidean distance ddisp is selected randomly as new cell for the group, excluding the source cell 

(Figure C2). If there is no cell fulfilling these conditions, subadults stay within their group’s cell. 

Reproduction 

Females reproduce once a year, depending on their age class. Individual females, which are at least 

subadult, reproduce depending on the season with a peak in March and no reproduction in winter from 

October to December (Boitani et al. 1995) (Table C2). Female individuals are checked for their breeding 

status on a weekly basis. All females not exceeding their habitat cells breeding capacity, starting with the 

oldest individuals, are allowed to breed. If an individual was assigned to breed the chance of reproduction 

at that time is drawn from monthly probabilities and the number of weeks in the month (Table C2).  

Litter size is drawn from a pre-calculated truncated normal distribution (Table C1,3) and reduced to a 

constant fraction for infected individuals. Litter size of transient shedders and lethally infected hosts is 

multiplied with the reduction factor αf. 
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Depending on the disease state of the breeding individual, its piglets disease states are adjusted. 

Susceptible individuals produce susceptible offspring, immune individuals produce immune offspring 

with maternal antibodies (see section “Pathogen state transition”). Transient shedders and lethally 

infected individuals yield offspring, each one lethally infected with a given probability of prenatal 

infection ppi. 

Mortality 

Stochastic baseline mortality is age-dependent and adjusted to annual survival estimates found in the 

literature (Table C1). Per time step we apply the adjusted age-dependent mortality (mweek) to the 

individual: 

       𝑚𝑤𝑒𝑒𝑘 = 1 − (𝑠𝑦𝑒𝑎𝑟)1/52                                                                      [C6] 

In addition to the stochastic baseline mortality, each individual may die due to reaching a certain 

maximum age, or due to a lethal infection after a certain infection time span m (see section ”Pathogen 

transmission”). 

A selected number of individuals Kover (see 7.10 Resource response for the selection) are subject to a 

variable, resource-based mortality with an increasing chance of mortality dependent on how long the 

individual is subject to low resource conditions up to a variable time limit Smax as well as the number of 

individuals (gact) in relation to maximum group (gsus) size and age. 

     𝑚𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 =
(𝑔𝑎𝑐𝑡−𝑔𝑠𝑢𝑠)

100
∗ 𝑎 ∗ 𝑡𝑜𝑣𝑒𝑟               [C7] 

With a being an age factor corresponding to the individuals being a piglet or adult/subadult and tover the 

time the individual is part of the Kover individual pool. As well as a 100% mortality when tover equals Smax. 

Ageing 

The ageing process iterates over all individuals. For each individual k, age Tk is incremented one week, 

and disease state transitions are performed. Females become subadult and adult at an age of 34 and 52 

weeks, respectively, while males enter the subadult and adult age groups at an age of 21 and 104 week, 

respectively. 
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Disease course (pathogen state transition) 

An individual i protected by maternal antibodies turns susceptible if reaching an age Ti of the protection 

time of tanti (see section “Pathogen transmission”). After disease state transition the age of the infection 

is incremented by one week if the individual is not susceptible. 

Landscape dynamic 

M1: The autocorrelated landscape dynamic is superimposed over the different types of starting 

landscapes. Throughout each simulated year, resource availability in each cell increases in 5-weeks 

intervals for approximately 25 weeks and then declines in 5-weeks intervals for the next 25 weeks. The 

resource availability translates directly into the breeding capacity for each cell and can during the 

increase not exceed the maximum breeding capacity of 9 and cannot fall below 1 i.e., the habitat cannot 

become 0 during the course of a year. Additionally, barriers and matrix which have an assigned breeding 

capacity of 0 cannot become habitat. 

The first week of the dynamic can be set fixed or can be set to also increment for each subsequent 

simulation run. The random landscape dynamic functions similar to the autocorrelated variant. 

Throughout each simulated year, resource availability in each cell changes randomly in 5-weeks intervals 

for approximately 50 weeks whereby each cell is allocated a random integer between 1 and 9. At the end 

of each year, the landscape resets to the original starting landscape. 

M2: No landscape dynamic was applied. 

Resource responses 

If the group size exceeds the carrying capacity K in a cell, a dispersal event will be triggered. The 

likelihood of dispersal follows an age gradient where older females will try to disperse last. For male 

individuals, a random habitat cell not exceeding the carrying capacity K will be randomly selected within 

a Euclidean distance ddisp as new cell. For female individuals, the randomly selected habitat cell must 

fulfil the prerequisite of not hosting another family group. However, if an individual currently has 

offspring it and the offspring will stay at in their current cell. If there is no suitable habitat cell fulfilling 

these prerequisites within the distance ddisp the individuals will stay. Individuals are continuously 

selected for dispersal until the group size no longer exceeds the carrying capacity K. For a secondary 

response after the dispersal event (if applicable), a cell specific number of individuals Kover that is the 

difference between carrying capacity K and group size will be selected. The selection of these individuals 
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is age dependant where the oldest females are selected last. All selected individuals are subjected to an 

increasing age-dependant mortality (see mortality). 

Figures 
Flow chart of the SwiFCoIBM* models and its submodels (M1 & M2) 

 
Figure C1: Flow chart of the agent-based, spatially explicit host-pathogen model “SwiFCoIBM*” and its submodels. This flow 
chart includes all previous model iterations and is visually compartmentalized (colours) into 4 branch-processes: Yellow – 
Processes for explicit host movement; Green – Pathogen transmission and evolution processes; Orange – Processes related to 
landscape and landscape dynamic; Blue – Dispersal processes.   
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Figure C2 (Scherer et al., 2020): Schematic representation of different natal dispersal events of subadult wild boars and 
movement strategies of adult wild boars. The group of adult and subadult females and their offspring is called a sounder. If the 
breeding capacity of the sounders cell is exceeded, subadult females search in groups of 3 or more individuals for an unoccupied 
cell in a radius of three cells. Female wild boars reach their adulthood earlier (model assumption: if older than 1 year) and follow 
a staying strategy, thus not moving outside of the sounders cell (grey squares). Male wild boars always separate from the sounder 
when reaching the subadult age and move in groups of 2 or more to one of the cells below capacity in a radius of 3 cells. When 
becoming adult, male wild boars move solitary between home ranges. 

Figure C3 (Scherer et al., 2020): Movement assumptions used to model ranging behaviour of adult males. Probability of 
movement depends on the (a) direction of previous steps (Correlated Random Walk), (b) habitat quality B or (c) carrying 
capacity K in relation to the number of conspecifics. The lighter the colour, the higher the probability the individual chooses 
this cell. Movement decisions are furthermore driven by a random component determined by ρ. 
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Figure C4: Municipality map of Mecklenburg-Vorpommern, highlighting the area of vaccination (blue). All landscape cells 
within the blue band were used for vaccination where 30% of susceptible hosts and 15% of susceptible subadults are set to 
immune every 13 timesteps starting 52 timesteps after the initial outbreak. 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX C 

 

LXVII 
 

 

Table C1: Parameter setup used in the spatially-explicit classical swine fever-wild boar model. M1: Each of the 10 combinations 
(5 landscape scenarios × 2 landscape dynamic) was repeated 25 times, resulting in 250 runs in total. M2: Each of the 12 
combinations (4 movement strategies × 3 sampling scheme) was repeated 5 times, resulting in 120 runs in total.   

Parameter Values  Reference(s) 

Longevity 11 years (572 weeks) (Jezierski, 1977) 

Sex ratio 1:1 
(e.g. Durio et al., 2014; Fernández-
Llario et al., 1999; Moretti, 2014) 

Survival probability of adults 
and subadults 

smean= 0.6; smin = 0.4 
(Focardi et al., 1996; Gaillard et al., 
1987) 

Survival probability of piglets smean= 0.5; smin = 0.1 (Focardi et al., 1996) 

Reproduction probability see Table C2 (Boitani et al., 1995) 

Breed count distribution see Table C3 (Bieber & Ruf, 2005) 

Movement rule  HDCRW, HDM, CDM (Fletcher, 2006) 

Tendency to move randomly ρ  0.3  

Mean movement distance Dmean  24 km (12 cells) per week (Morelle et al., 2015) 

Maximum movement distance Dmax  84 km (42 cells) per week (Morelle et al., 2015) 

Individual weekly ranging distance  Dm,I  Di {1, Dmax} ~ Wei(26, 1.3)  

Maximal natal dispersal distance ddisp 3 cells (6 km) (Sodeikat & Pohlmeyer, 2003) 

Minimum number of dispersers Ndisp 2 for females; 3 for males  

Case fatality ratio M 0.5  

Mean infectious period μ  4 weeks, 6 weeks  

Transmission probability β  0.022 (base)  

Fertility reduction due to infection 0.625 (Kramer-Schadt et al., 2009) 

Probability of prenatal infection 0.5 (Kramer-Schadt et al., 2009) 

Transient period ttrans 1 week 
(Artois et al., 2002; Moennig et al., 
2003) 

Period of maternal antibodies tanti 12 weeks (Depner et al., 2000) 

Simulated years 100 (5200 weeks),  
11 (572 weeks) 

 

Vaccinated adults (vc_adult) 30 (%)  

Vaccinated subadults (vc_subadult) 15 (%)  

*Continued on the next page 
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Table C1: Parameter setup - continuation 

 

Table A2: Monthly reproduction probabilities (Boitani et al., 1995) used to stochastically determine the number of breeding 
females. 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Number of weeks 4 4 5 4 4 5 4 4 5 5 4 4 
Reproduction probability 0.0 0.1 0.23 0.34 0.07 0.08 0.06 0.03 0.03 0.0 0.0 0.0 

 

Table A3: Breed count distribution (Bieber & Ruf, 2005) used to estimate litter sizes. 

Litter size 0 1 2 3 4 5 6 7 8 9 10 0 

Probability .01306 .06915 .01629 .24994 .24994 .01629 .06915 .01910 .00343 .0004 .00002 .01306 

 

Table A4: Initial age distribution (Kramer-Schadt et al., 2009) used to initialize each model run. 

 

 

 

Parameter Values  Reference(s) 

Pathogen release random week of the 2nd year  

Mean number of reproductive females 4.5 
(European Food Safety Authority, 
2009; Howells & Edwards-Jones, 1997; 
Sodeikat & Pohlmeyer, 2003) 

Habitat quality range [0, 9]  

Initial mean density 5 individuals/km2 (Kramer-Schadt et al., 2009) 

Initial age distribution see Table C4 (Kramer-Schadt et al., 2009) 

Age blur in initial individuals ± 3 weeks  

Landscape dynamic  Autocorrelated  
No dynamic 

 

Max survival time under low resources Smax 10 weeks  

Level of resource mismatch (only M1) {0,100} %  

Mutation rate 0.01  

Transmission factor See table C5  

Survival times See table C5  

Sampling 
All individuals, 5 per cell, 5 
per municipality  

Age (years) 1 2 3 4 5 6 7 8 9 10 

 Proportion 0.38 0.24 0.15 0.09 0.06 0.03 0.02 0.01 0.01 0.01 
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Table B5: Pathogen strains with their respective transmission factor and the survival time they impose on infected hosts. 
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C2  Additional figures 

Figure C5: Relative number of sampled individuals per age class (adult, subadult, piglet, colour) in the HDCRW scenario with 
the sampling schemes (left to right) for all susceptible individuals (top), infected individuals (middle) and immune individuals 
(bottom). 

 

Figure C6: Relative number of sampled individuals per age class (adult, subadult, piglet, colour) in the HDM scenario with the 
sampling schemes (left to right) for all susceptible individuals (top), infected individuals (middle) and immune individuals 
(bottom). 
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Figure C7: Relative number of sampled individuals per age class (adult, subadult, piglet, colour) in the CDM scenario with the 
sampling schemes (left to right) for all susceptible individuals (top), infected individuals (middle) and immune individuals 
(bottom). 

 

Figure C8: Relative number of sampled individuals per age class (adult, subadult, piglet, colour) in the no movement scenario 
with the sampling schemes (left to right) for all susceptible individuals (top), infected individuals (middle) and immune 
individuals (bottom). 

 



 

LXXIII 
 

 

 

 

 

 

 

Declaration of Authorship 
 

I hereby declare to have prepared this dissertation independently under the 

commonly accepted help of my supervisors. All direct or indirect sources used 

are given as references. All contributions of co-authors are acknowledged. This 

thesis has not been submitted to any other university or institution before. 

 

 

Potsdam,  

 

_____________________________ 

Tobias Kürschner 

 

 

 

 

 

 

 

 


	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1  General Introduction
	1.1  Moving forward: the relevance of individual-scale mechanisms for understanding infectious disease dynamics
	1.2  Movement, seasonality, and the dynamics of host-pathogen systems
	1.3  Where do we go from here? -or- the evolution of pathogenic virulence in a social host
	1.4  How past outbreaks can help to progress our predictions about future epidemics
	1.5  Classical swine fever in wild boar – a dynamic model system with multiple interactive processes
	1.6  Understanding how spatial and temporal variability of resources drive transmission, persistence, and evolution of pathogens

	2  Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions
	2.1  Introduction
	2.2  Methods
	2.2.1  Model overview
	2.2.2  Landscape structure
	2.2.3  Process overview and scheduling
	2.2.4  Main processes
	2.2.5  Model analysis

	2.3  Results
	2.3.1  Host-pathogen coexistence and disease persistence
	2.3.2  Pathogen extinction time
	2.3.3  Spatial patterns in coexistence

	2.4  Discussion
	2.4.1  Disease hotspots resulting from spatiotemporal asynchrony
	2.4.2  Movement and decision-making in animals as key mechanism of coexistence
	2.4.3  The effect of landscape structure on coexistence
	2.4.4  A reality check of our model assumptions

	2.5  Additional information

	3  Resource asynchrony and landscape homogenization as drivers of virulence evolution
	3.1  Introduction
	3.2  Methods
	3.2.1  Model overview
	3.2.2  Pathogen dynamics
	3.2.3  Landscape structure and dynamics
	3.2.4  Process overview and scheduling
	3.2.5  Model analysis

	3.3  Results
	3.3.1  Host-pathogen coexistence
	3.3.2  Categorized infection trends
	3.3.3  Strain specific occurrence and dominance over time

	3.4  Discussion
	3.5  Additional information

	4  The effect of spatial decision-making processes of moving hosts on pathogen transmission and patterns of spread in a social host
	4.1  Introduction
	4.2  Methods
	4.2.1  Model overview
	4.2.2  Pathogen dynamics
	4.2.3  Host movement
	4.2.4  Process overview and scheduling
	4.2.5  Pathogen transmission
	4.2.6  Landscape structure
	4.2.7  Model analysis

	4.3  Results
	4.3.1  Speed of pathogen spread (pattern 2)
	4.3.2   Relative comparison of host individuals per age class (pattern 1)
	4.3.3  Epidemiological status of all individuals at landscape scale (pattern 3)
	4.3.4  Landscape-wide distribution of infected individuals separated by pathogen strains

	4.4  Discussion
	4.4.1  Disease course of infected and immune over time (pattern 1)
	4.4.2  Match and mismatch of simulated spatiotemporal patterns with real outbreak  data (pattern 2)
	4.4.3  Sampling scheme and the importance of standardized wildlife health monitoring
	4.4.4  Strain differentiation and pathogenic virulence over time

	4.5  Additional information

	5  General Discussion
	5.1  Movement, seasonality, spatial structure and dynamic host density
	5.2  Pathogens in space and time – The evolution of virulence in spatially structured host populations
	5.3  Implications of global change for pathogen persistence and spread
	5.4  Patterns, processes and the effect of spatial decision-making
	5.5  Conclusion and outlook

	Acknowledgements
	Appendix A
	A1  Model description (ODD protocol)
	A2  Additional figures

	Appendix B
	B1  Model description (ODD protocol)
	B2  Additional figures

	Appendix C
	C1  Model description (ODD protocol)
	C2  Additional figures

	Declaration of Authorship



