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ABSTRACT

Quantified Boolean formulas (QBFs) play an important role in theoretical computer

science. QBF extends propositional logic in such a way that many advanced forms of

reasoning can be easily formulated and evaluated. In this dissertation we present our

ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT

is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant

of BDD, and an adopted version of the DPLL algorithm. It has been implemented

in C using the CUDD: Colorado University Decision Diagram package.

The capability of ZBDDs in storing sets of subsets efficiently enabled us

to store the clauses of a QBF very compactly and let us to embed the notion

of memoization to the DPLL algorithm. These points led us to implement the

search algorithm in such a way that we could store and reuse the results of all

previously solved subformulas with a little overheads. ZQSAT can solve some sets of

standard QBF benchmark problems (known to be hard for DPLL based algorithms)

faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts

prenex-NNF formulas. We show and prove how this capability can be exponentially

beneficial.

Keywords: DPLL, Zero-Suppressed Binary Decision Diagram (ZDD), Quantified

Boolean Formula (QBF), Satisfiability, QSAT.
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Ein neuer Algorithmus für die quantifizierte Aussagenlogik,

basierend auf Zero-suppressed BDDs und Memoization.

In der Dissertation stellen wir einen neuen Algorithmus vor, welcher

Formeln der quantifizierten Aussagenlogik (engl. Quantified Boolean formula, kurz

QBF) löst. QBFs sind eine Erweiterung der klassischen Aussagenlogik um die

Quantifizierung über aussagenlogische Variablen. Die quantifizierte Aussagenlogik

ist dabei eine konservative Erweiterung der Aussagenlogik, d.h. es können nicht

mehr Theoreme nachgewiesen werden als in der gewöhnlichen Aussagenlogik. Der

Vorteil der Verwendung von QBFs ergibt sich durch die Möglichkeit, Sachverhalte

kompakter zu repräsentieren.

SAT (die Frage nach der Erfüllbarkeit einer Formel der Aussagenlogik) und

QSAT (die Frage nach der Erfüllbarkeit einer QBF) sind zentrale Probleme in der

Informatik mit einer Fülle von Anwendungen, wie zum Beispiel in der Graphen-

theorie, bei Planungsproblemen, nichtmonotonen Logiken oder bei der Verifikation.

Insbesondere die Verifikation von Hard- und Software ist ein sehr aktuelles und

wichtiges Forschungsgebiet in der Informatik.

Unser Algorithmus zur Lösung von QBFs basiert auf sogenannten ZBDDs

(engl. Zero-suppressed Binary decision Diagrams), welche eine Variante der BDDs

(engl. Binary decision Diagrams) sind. BDDs sind eine kompakte Repräs- enta-

tion von Formeln der Aussagenlogik. Der Algorithmus kombiniert nun bekannte

Techniken zum Lösen von QBFs mit der ZBDD-Darstellung unter Verwendung

geeigneter Heuristiken und Memoization. Memoization ermöglicht dabei das ein-

fache Wiederverwenden bereits gelöster Teilprobleme.

Der Algorithmus wurde unter Verwendung des CUDD-Paketes (Colorado

Uni. Decision Diagram) implementiert und unter dem Namen ZQSAT veröffentlicht.

In Tests konnten wir nachweisen, dass ZQSAT konkurrenzfähig zu existierenden

QBF-Beweisern ist, in einigen Fällen sogar bessere Resultate liefern kann.
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CHAPTER 1

Introduction

1.1 Overview

Propositional satisfiability (SAT) is a central problem in computer science with

numerous applications. SAT is the first and prototypical problem for the class of NP-

complete problems. Many computational problems such as constraint satisfaction

problems, many problems in graph theory and forms of planning can be formulated

easily as instances of SAT.

Theoretical analysis has shown that some forms of reasoning such as: non-

monotonic reasoning, reasoning about knowledge and STRIPS-like planning have

computational complexity higher than the complexity of the SAT problem. These

forms can be formulated by quantified Boolean formulas then can be can solved as

instances of the QSAT: Quantified Boolean formula satisfiability problem. QSAT

is a generalization of the SAT problem, it is also the prototypical problem for the

class of PSPACE-complete problems.

QBFs can represent many classes of formulas more concisely than conven-

tional Boolean formulas. For each QBF there is an equivalent un-quantified formula.

One can reduce a QBF to its equivalent propositional formula and test its truth

by a conventional SAT-solver. In this approach, the size of the resulting formula

can grow exponentially. This usually makes the method impractical for all but the

simplest QBFs. However, the connection between the two problems is close, this is

why most of the recent QBF solvers (48; 36; 26; 22) are extensions of the DPLL:

Davis-Putnam-Logemann-Loveland procedure (17) presented for the SAT problem.
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ZDDs are variants of BDDs. While BDDs are better suited for representing

Boolean functions, ZDDs are better for representing sets of subsets. Considering

all the variables appearing in a QBF as a set, the propositional part of the formula

can be viewed as a set of subsets. This idea has already been used in some previous

research works (15; 1) where the SAT problem was considered. They use ZDDs to

store the CNF formula and the original DP (18) algorithm to search its satisfiability.

We also found ZDDs suitable for representing and solving the QSAT prob-

lem. We represent the clauses in the same way in a ZDD, but we employ an adopted

version of the DPLL (17) algorithm to search the solution. In fact, our adopted

version simulates the ”Semantic tree method in evaluating QBFs”. It benefits from

an adopted unit-mono-resolution operation which is very fast thanks to the data

structure holding the formula. In addition, it stores all already solved subformu-

las along their solutions to avoid resolving same subproblems. Sometimes the split

operation generates two subproblems which are equal. It is very easy to compare

and discover their kind of equality with ZDDs; therefore, our algorithm can easily

prevent solving both cases when it is not needed.

There are some benchmark problems which are known to be hard for DPLL

(semantic tree) based algorithms. ZQSAT is also a DPLL based algorithm, but it

manages to solve those instances very fast. This shows how the idea of embedding

memoization to the DPLL algorithm can be beneficial.

We improved ZQSAT to let it accept prenex-NNF (QBFs in the form of

Q1x1 . . . QnxnΦ, where Φ is a propositional formula in NNF: Negation Normal

Form). We showed and proved that this possibility may be exponentially bene-

ficial.
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1.2 Thesis Plan

In chapter 2, we first give several definitions about Boolean formulas and their

normal forms (which are important in this thesis). Then, we introduce the SAT

and QSAT problems. Since the thesis is also concerned with the complexity of

algorithms, we give some definitions and classification of complexity classes as well.

Chapter 3 introduces Binary Decision Diagrams (BDDs). Their properties,

algorithms, variants and applications are discussed in this chapter. In chapter 4,

Zero-Suppressed Binary Decision Diagrams (in short ZBDDs or ZDDs) and their

properties are considered in detail. First, we give the definitions, then we compare

BDDs with ZDDs. The main ZDD based operations on functions and sets are

discussed next. Finally, we present a short introduction to the CUDD package (we

used in implementing ZQSAT).

Chapter 5 is dedicated to introducing the QSAT problem in detail, intro-

ducing QDIMACS which is a standard input/output format for the QSAT problem,

and a short review to the best existing QSAT solvers. Chapter 6 contains the

main contributions of the thesis. The basic algorithms for evaluating QBFs and

our ideas are given. Embedding memoization and its benefits are followed by the

experimental results. The capability of ZQSAT in accepting prenex-NNF is dis-

cussed, experimental results and a formal proof is also given to show that it can be

exponentially beneficial.

1.3 Acknowledgment

This thesis is mainly involved with the following subjects:

• Boolean formulas and complexity of algorithms.

• Binary Decision Diagrams (BDD) and its variant ZDD.

• The QSAT problem and related solutions.

In preparing the chapters describing backgrounds we have taken some parts from

related materials, where we have referenced them immediately.
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CHAPTER 2

Boolean Formulas and Complexity

2.1 Introduction

In this chapter first we present a number of definitions to which we will refer in the

rest of this thesis. We also take a look at the idea of algorithm complexity. Some

parts of this background chapter are taken from(34).

2.2 Boolean Formulas

A Boolean formula like (x ∨ (¬y → z)) is a formula built up from Boolean variables

and Boolean operators like conjunction, disjunction, and negation. A literal is a

variable or the negation of a variable, so for example ¬x1 is a literal and so is x3. A

clause is formed by taking one or more literals and connecting them with operator

∨ (disjunction also called OR operation), so for example (x2 ∨¬x4 ∨x5) is a clause,

and so is (x3).

Definition 1 A Boolean formula is in conjunctive normal form (CNF) if it is a

conjunction of disjunctions of literals, that is, φ = c1 ∧ c2 ∧ . . . ∧ cn, where

ci = (li1 ∨ . . . ∨ limi
) and lij is a negative or positive literal.

For example (x3 ∨¬x4)∧ (x1)∧ (¬x3 ∨ x2) is a formula in conjunctive normal form

(Henceforth, we will just say ”CNF formula” or ”formula”). Each Boolean formula

can be transformed into a logically equivalent Boolean formula in CNF.
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The Problem SAT: SAT that stands for CNF-satisfiability, is one of the most im-

portant problems in computer science with numerous applications . In this problem

we are given Boolean variables x1, x2, . . . , xn and a Boolean formula φ involving

such variables; the formula is given in CNF. The question is whether there is a

way to assign Boolean values to the variables so that the formula is satisfied. For

example, the expression ¬x∧ (x∨ y) can be satisfied by setting x to false and y to

true, while the expression x∧ (¬x∨y)∧¬y is impossible to satisfy. SAT is the first

and the prototypical problem for NP-Complete problems which is a vary impor-

tant complexity class. (See the next section for explanations about the complexity

classes).

Quantified Boolean Formulas: In quantified Boolean formulas (QBF for short),

quantifiers may also appear in the formula, like in ∃x(x∧ ∀y(y ∨¬z)). The ∃ symbol

is called existential quantifier and the ∀ symbol is called universal quantifier.

A number of normal forms are known for each of the above families. In this

thesis, the prenex normal form, conjunctive normal form (CNF ) and the negation

normal form (NNF ) are important.

Definition 2 A QBF Φ is in prenex normal form, if it is in the form:

Φ = Q1V1Q2V2 . . . QnVnφ,

where Qi ∈ {∀,∃}, Vi (1 ≤ i ≤ n) are disjoint sets of propositional variables

and φ is a propositional formula over the variables x1, . . . , xn. The expression

Q1V1Q2V2 . . . QnVn is called the prefix and φ the matrix of Φ. A QBF is in prenex-

CNF if it is in prenex form and its matrix is in CNF.

Definition 3 A QBF is called closed if all occurrences of variables are in the scope

of a quantifier (there are no free variables). For closed QBF formulas the notions

of truth, validity and satisfiability coincide.
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The Problem QSAT: QSAT that stands for ”satisfiability of quantified Boolean

formulas”, is a general form of the SAT problem. In this problem we are given a

closed prenex-CNF φ and similar to the SAT problem the question is whether there

is a way to assign Boolean values to the variables so that the formula is satisfied.

QSAT is known to be harder than SAT. The problem is the prototypical problem

for the PSPACE complexity class. (See next section for explanations about the

complexity classes).

As an example:

∀x1∃x2((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2))

means: ”for each truth assignment to x1 there exists a truth assignment to x2 such

that (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) is true”. The above QBF is indeed true: if x1=true

then x2 can be assigned to false; if x1=false then x2 can be assigned to true; in

both cases (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) is true.

Although each Boolean formula can be transformed into a logically equiv-

alent Boolean formula which is in conjunctive normal form (CNF), generally this

transformation cannot be done efficiently. Another normal form which can be ob-

tained efficiently is NNF which stands for ”negation normal form”. Since we have

considered this format in our research as well, here below we give some definitions.

Definition 4 A Boolean formula is in negation normal form (NNF) if it is con-

structed over literals and the Boolean operators conjunction and disjunction. The

negation operator can only appear before a variable. A QBF is in prenex-NNF if it

is in prenex form and its matrix is in NNF.

For example f = (x ∧ ¬y) ∨ (¬z ∧ (x ∨ y)) is in NNF, but g = ¬(x ∧ ¬y) ∨ (¬z ∧
(x ∨ y)) is not in NNF. Each Boolean formula can be transformed efficiently into

a logically equivalent Boolean formula which is in negation normal form (NNF).
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Definition 5 The size of a Boolean formula φ in NNF, denoted by size(φ), is

defined recursively as:

size(v) = size(¬v) = 1 for a propositional variable v and

size(φ1 ⊗ φ2) = size(φ1) + size(φ2) for Boolean formulas φ1, φ2 and ⊗ ∈ {∧ , ∨}.

Definition 6 If φ =
∧

i=1,...,n(
∨

j=1,...,mi
lij) is a Boolean formula in CNF, then [φ]

denotes the set of subsets of literals [φ] = {{l11, l12, . . . , l1m1}, . . . , {ln1, . . . , lnmn}}.

2.3 Complexity of Algorithms

Which of the following problems is easier to solve: the addition or the multiplica-

tion of two n-bit numbers? In general, people feel that adding is easier to perform

and indeed people as well as our computers perform additions faster than multipli-

cations. Comparing two algorithms by examining the time consumed by the two

procedures is obviously not the right way to compare two algorithms. We need fair

criteria for the comparison of algorithms and problems.

Algorithms can typically be judged according to their running time and

the memory space requirements. In complexity theory, these resource demands

are measured in term of input size. In this way, different problems or different

algorithms for the same problem can be compared to each other.

Complexity: The time complexity tA(n) of an algorithm A denotes the maximal

number of steps A needs for solving a problem instance with input size n. Anal-

ogously, the space complexity sA(n) denotes the maximal number of memory cells

used to solve a problem with input size n. In this regard we consider the main

operation in an algorithm and try to give an expression for tA(n) (saying, according

to the input size, the main operation must be executed how many times until the

algorithm terminates) and sA(n) (saying, according to the input size, the algorithm

would need at most how many memory cells during its execution).
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Asymptotic complexity analysis: Often, it is impossible to determine the exact

complexity of an algorithm A. However, one is at least interested in the rate of

growth of the functions tA(n) and sA(n). Good estimations of this growth serve

as criteria to judge the quality of the algorithm. When describing the growth,

it is useful to neglect constant factors. This approach is justified as the constant

factors depend quite strongly on such technical implementation details as the chosen

programming language.

In the analysis, the influence of those technical details should not prevent

one from recognizing the essentials. Moreover, it seems reasonable not to neglect

only constant factors, but to concentrate in the complexity analysis solely on the

dominant terms of the complexity functions. Here, one speaks of asymptotic analy-

sis, a widespread analysis technique used in computer science. Indeed, without this

technique many basic insights in computer science would not have been gained.

Big-O notation: This notation is used to express the asymptotic complexity of

an algorithm. Informally, saying f(n) = O(g(n)) ”Read, f of n is big oh of g of

n”, means the equation f(n) is less than some constant multiple of g(n). Formally,

f(n) = O(g(n)) means there are positive constants c and k, such that 0 ≤ f(n) ≤
c.g(n) for all n ≥ k. The values of c and k must be fixed for the function f and

must not depend on n.

As an example, n2 +3n+4 is O(n2), since n2 +3n+4 < 2n2 for all n > 10.

Obviously f(n) = O(1) means f(n) ≤ c for a constant c and f(n) = nO(1) expresses

that f is bounded by a polynomial in n. The importance of this measure can be seen

in trying to decide whether an algorithm is adequate, but may just need a better

implementation, or the algorithm will always be too slow on a big enough input.

For instance, quicksort, which is O(nlogn) on average, running on a computer can

beat bubble sort, which is O(n2), specially when number of items n is not too small.
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The complexity of an algorithm usually falls in one of the following orders:

• O(1) constant

• O(logan) logarithmic

• O(n) linear

• O(nlogan)

• O(n2) quadratic

• O(nr) polynomial

• O(an) exponential

• O(n!) factorial

It is not so hard to see that for a > 1 and r > 2 :

O(1) < O(logan) < O(n) < O(nlogan) < O(n2) < O(nr) < O(an) < O(n!)

In many applications, only those algorithms are practical whose running

time is bounded from above by a polynomial. An important maybe the most im-

portant task in theoretical computer science is to answer the question of when and

for which problems such algorithms exist.

There is another notation Ω which is used when lower bounds are consid-

ered. We say f(n) = Ω(g(n)) read ”f is of order at least g”, if there exist two

constants c, n0 ∈ N , such that for all n > n0 f(n) ≥ c.g(n). If f(n) = O(g(n)) and

f(n) = Ω(g(n)) then we say f(n) = θ(g(n)) and read ”f is of order g”

The complexity class P: The class P (polynomial time) denotes the set of all

decision problems that can be solved by means of polynomial time algorithms.

Obviously the space complexity of a polynomial time algorithm is also polynomially

bounded.

The complexity class NP: The subsequently formally defined class NP (nonde-

terministic polynomial) denotes the complexity class of decision problems for which

the answers can be checked by an algorithm whose run time is polynomial in the

size of the input. Note that this doesn’t require or imply that an answer can be

found quickly. Only can the claimed solution be verified quickly.
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For instance, a ”yes” answer to the question, ”is there a Hamiltonian cycle,

or tour, in a certain graph?” cannot be found efficiently (by polynomial algorithm),

but if someone gives a tour as a solution, we can efficiently verify whether the

claimed answer is valid or not. Therefore, a decision problem belongs to NP If

there exists a polynomial algorithm which determines whether the certificate is

valid for each input and each possible certificate.

Reduction: Let A and B be two decision problems. A is called polynomial time

reducible to B, denoted by A≤P B, if there is a polynomial time computable function

f such that x ∈ A if and only if f(x) ∈ B.

Immediate observations: if A≤P B and B ∈ P , then also A ∈ P (conversely, if

A≤P B and A /∈ P then also B /∈ P ); if A≤P B and B≤P C, then also A≤P C.

NP-Hard: A decision problem A is NP-hard if, for every problem B in NP, B≤P A.

An NP-Hard problem is not necessarily in NP.

NP-Complete: A decision problem A is NP-Complete if, A is in NP, and A is in

NP-Hard.

There are thousands of problems which are NP-Complete (no polynomial

time algorithm has been found for them yet and no one has ever proved that no such

algorithm would exist). As mentioned before, only those algorithms are practical

whose run time is bounded by a polynomial.

P = NP?: Obviously, the class P is contained in the class NP , that is, P ⊂
NP . The most important open problem in complexity theory is the question ”P

= NP?”. The importance of this question originates from the fact that there are

numerous practically relevant tasks for which polynomial algorithms are not known,

but membership in the class NP can be proven. Without a clarification for ”P =

NP? it is not possible to decide whether these tasks can be solved in polynomial

time at all, or whether such algorithms have not been found so far.
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Nearly all experts in the area of complexity theory conjecture that the

classes P and NP are different. This conjecture is supported by a series of results

in the investigation of the subsequently defined concepts of polynomial time reduc-

tion, and NP-complete problems. NP-Complete problems represent the ”hardest”

problems within the class NP. It is proven that if any NP-complete problem can he

solved in polynomial time, then so can all other problems in NP, and it follows that

P = NP.

Space Complexity: Some times algorithms are compared according to the mem-

ory space needed by the algorithm. In this regard the following classes are defined.

Figure 2.1: Complexity hierarchy.

• LOGSPACE (Logarithmic Space)

• PSPACE (Polynomial Space)

• EXPSPACE (Exponential Space)
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Obviously an algorithm is PSPACE if its memory complexity is expressed be a

polynomial function of the input size. LOGSPACE and EXPSPACE are deffind

similarly.

Figure 2.1-left classifies the problems in three categories:

1. Undecidable problems (no algorithm is known for them).

2. Intractable problems (there are algorithms but worse than polynomial.

3. Tractable problems (polynomial algorithms or even faster are known for

them).

Since the answer for ”N = NP ?” is not known yet, the ”NP-Complete

problems” have been considered in the second category, but next to the border with

tractable problems. Figure 2.1-right shows that taking time complexity classes into

account then:

? ?
LOGTIME ⊂ LOGSPACE ⊂ P ⊆ NP ⊆ PSPACE ⊂ EXPTIME ⊂ EXPSPACE.
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CHAPTER 3

Binary Decision Diagrams

Binary Decision diagrams (BDDs) are the state-of-the-art data structure in Boolean

formulas representation and manipulation. They have been successfully used in

VLSI CAD and widely integrated in commercial tools. In this chapter we review

the basic definitions of binary decision diagrams (BDDs) and study their theoretical

and practical aspects. Extensions of BDDs are also investigated briefly. We give a

detailed discussion about ZDDs in next chapter because they are specially important

in this thesis. We will also outline several applications of BDDs and their extensions.

Finally we suggest a number of articles and books for those who wish to pursue the

topic in more depth. Content of this chapter is based on several articles, but mostly

taken from (21).

3.1 Introduction

Binary decision diagrams (BDDs) as a data structure for representation of Boolean

functions were first introduced by Lee (35) and further popularized by Akers and

Moret (46). Bryant (8) introduced its restricted form OBDD (Reduced Ordered

BDD), which is a canonical representation. He also proved that OBDDs allow

efficient manipulations of Boolean formulas.

OBDDs have also been used successfully in other areas such as SAT-solving.

This data structure and its variants can be implemented efficiently in modern
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computers using a programming language such as C. CUDD (Colorado Univer-

sity Decision Diagram) Package, provided at the university of Colorado by Fabio

Somenzi (51), is an open source package written in C. This package is known to

be the most useful package for construction and manipulation of BDDs and their

variants.

3.2 Ordered binary decision diagrams

3.2.1 Definition and examples of OBDDs

An OBDD is a graphic description of an algorithm for the computation of a Boolean

function. The following definition describes the syntax of OBDDs, i.e., the prop-

erties of the underlying graph. The semantics of OBDDs, i.e., the functions repre-

sented by OBDDs, is specified in definition 8.

Definition 7 An OBDD G representing the Boolean functions f 1, . . . , fm over the

variables x1, . . . , xn is a directed acyclic graph with the following properties:

1. For each function f i there is a pointer to a node in G.

2. The nodes without outgoing edges, which are called sinks or terminal nodes,

are labeled by 0 or 1.

3. All non-sink nodes of G, which are also called internal nodes, are labeled by

a variable and have two outgoing edges, a 0-edge and a 1-edge.

4. On each directed path in the OBDD each variable occurs at most once as the

label of a node.

5. There is a variable ordering π, i.e., a permutation of x1, . . . , xn, and on each

directed path the variables occur according to this ordering. This means, if xi
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is arranged before xj in the variable ordering, then it must not happen that

on some path there is a node labeled by xj before a node labeled by xi.

In the figures we draw sink nodes as squares and internal nodes as circles.

We always assume that edges are directed downwards. 0-edges are drawn as dashed

lines while 1-edges are drawn as solid lines. Figure 3.1 shows an OBDD Gf with the

variable ordering x1, x3, x2 and an OBDD Gg with the variable ordering x1, y1, x0, y0.

Definition 8 Let G be an OBDD for the functions f 1, . . . , fm over the variables

x1, . . . , xn, and let a = (a1, . . . , an) be an input. The computation path for the node

v of G and the input a is the path starting at v which is obtained by choosing at

each internal node labeled by xi the outgoing ai-edge.

Each node v represents a function fv, where fv(a) is defined as the value of

the sink at the end of the computation path starting at v for the input a. Finally, f j

is defined as the function represented at the head of the pointer for f j. Definition 8

can be seen as the description of an algorithm to obtain for each function f j and

each input a the computation path and therefore the value of f j(a).

In the OBDD Gf in Figure 3.1, the computation path for the input

(x1, x2, x3) = (1, 1, 0) passes from x1 in the root, then from the right x3, then

from the right x2 and finally goes to the 0-Sink. Furthermore, for each node v of Gf

the function fv represented at v is given. By definition 8, it is easy to verify that the

OBDD Gf in Figure 3.1, represents the function f(x1, x2, x3) = x1⊕x2⊕x3 and the

OBDD Gg represents the function g(x1, y1, x0, y0) = (s2, s1, s0), where (s2, s1, s0) is

the sum of the two 2-bit numbers (y1, y0) and (x1, x0).

The function represented at the sink labeled by c ∈ {0, 1} is the constant

function c. Now let v be an internal node which is labeled by xi. Let v0 be the

0-successor of v, i.e., the node reached via the 0-edge leaving v, and let v1 be the

1-successor of v. We consider the computation of fv for some input. If in the input
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Figure 3.1: Examples of OBDDs.

the value of xi is 0, then by definition 8 we may obtain fv by evaluating fv0 and, if

the value of xi is 1, by evaluating fv1 . This can be expressed by the equation:

fv = x̄i.fv0 ∨ xi.fv1 (3.1)

Using equation 3.1 we may compute the functions represented at the nodes of an

OBDD in a bottom-up fashion. However, the opposite is also true. If a node v

labeled by xi represents the function fv, then the 0-successor of v represents the

subfunction (sometimes called cofactor) fv|xi=0 and the 1-successor the subfunc-

tion fv|xi=1. In other words, at v the function fv is decomposed using Shannons

decomposition rule:

fv = x̄i.fv|xi=0 ∨ xi.fv|xi=1 (3.2)

We point out that in section 3.3 we shall consider variants of OBDDs where

Shannons decomposition rule is replaced by a different decomposition rule. Equa-

tion 3.2 shows that we can decompose the function fv in different ways by choosing
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different variables xi for decomposition. Hence, we may get different OBDDs for

the same function if we use different variable orderings. Later on, we shall see that

the size of an OBDDs usually depends strongly on the chosen variable ordering.

3.2.2 The canonicity of reduced OBDDs

A representation method is canonical if gives a unique representation for a Boolean

function. We can compute the reduced OBDD G representing f 1, . . . , fm and the

variable ordering π from some OBDD for f 1, . . . , fm by applying two reduction rules

called S-deletion rule and the merging rule. The result G is called reduced OBDD

or OBDD It can be shown that OBDD representation is unique and of minimum

size. An obvious advantage of canonical representations is that two functions are

identical if and only if their reduced OBDDs are identical.

The main idea of the reduction rules is to remove redundancies from the

OBDD, namely, unnecessary tests of variables and tests that are represented more

than once. Both reduction rules are sketched in Figure 3.2. The S-deletion rule can

be applied to nodes v for which both outgoing edges lead to the same node w. It is

obvious that we can redirect all edges leading to v to the node w and that we can

delete v afterwards without changing the function represented by the OBDD. We

use the term S-deletion rule (for Shannon deletion rule) instead of simply deletion

rule in order to distinguish this rule from a different deletion rule for the variants

of OBDDs which are not based on Shannons decomposition rule. The merging rule

is applicable if there are nodes v and w with the same label, the same 0-successor,

and the same 1-successor. Again, it is obvious that we can redirect all OBDD edges

leading to v to the node w and that we can delete v afterwards without changing

the represented function. Furthermore, the same operation can be performed on

sinks with the same label. Bryant (8) proved that these reduction rules suffice to

obtain the canonical representation for each function and each variable ordering.
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Figure 3.2: The (i) S-deletion rule, (ii) merging rule.

Theorem 1 For all functions f 1, . . . , fm and for each variable ordering π there

is a unique OBDD G which can be obtained from each OBDD for f 1, . . . , fm and

π by applying the S-deletion rule and the merging rule until neither of the rules is

applicable.

In particular, the reduction of an OBDD yields the same result even if the

reduction rules are applied in a different order. Theorem 1 also implies that the

functions f i and f j represented in the same reduced OBDD are identical if and only

if the pointers for f i and f j lead to the same node. An example about application

of mentioned reduction rules is shown in Figure 3.3. Bryant (8) constructed an

efficient algorithm for the reduction of OBDDs.

In order to make an efficient reduction algorithm it is essential to apply

the reduction rules level-wise bottom-up. In fact, a reduction rule is applicable to a

node v if we have done possible reductions to its successors. If during the bottom-up

traversal on some node neither of the reduction rule is applicable, it cannot happen
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Figure 3.3: An example about reduction of an OBDD.

that later on some reduction rule is applicable. The algorithm of Bryant has on

input G, a run time of O(|G|.log|G|) where |G| denotes the number of nodes of

G. As can be seen in Figure 3.3, by S-deletion rule only nodes v labeled by xi are

removed where represent functions not essentially depending on xi. Furthermore, it

is easy to see that v and its successor w represent the same function. In addition,

for the merging rule it is obvious that only nodes representing the same function

are merged. Thus, the reduction rules make sure that for each function there is

only one node representing that function.

3.2.3 Algorithms on OBDDs

Many operations can be performed efficiently on Boolean functions presented by

OBDD. The most important of them are:

Evaluation: For an OBDD representing f and input a compute the value f(a).

Reduction: For an OBDD compute the equivalent reduced OBDD.
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Equivalence test: Test whether two functions represented by OBDDs are equal.

Satisfiability: Including:

• SAT-Test: For an OBDD G representing f find an input a for which

f(a) = 1 or output that no such input exists.

• SAT-Count: For an OBDD G representing f compute the number of

inputs a for which f(a) = 1.

Synthesis: For functions f and g represented by an OBDD G, include into G a

representation for f ⊗ g where ⊗ is a binary Boolean operation (e.g., ∧).

Replacements: There are two replacement operations:

• Replacement by constants: For a function f represented by an OBDD,

for a variable xi and a constant c ∈ {0, 1} compute the OBDD for f |xi=c.

• Replacement by functions: For functions f and g represented by an

OBDD and for a variable xi compute the OBDD for f |xi=g.

Quantification: For a function f represented by an OBDD and for a variable xi

compute an OBDD for (∀xi f) = f |xi=0 ∧ f |xi=1 or (∃xi f) = f |xi=0 ∨ f |xi=1.

We have already described the evaluation and reduction operations. In

OBDD packages reduction is usually integrated into other operations such as syn-

thesis. In this way only reduced OBDDs would be constructed.

Many applications consider functions that are given as circuits. Hence, an

important operation is computation of an OBDD for such functions. In these cases,

first we construct OBDDs for each variable appearing in the function. This is easy

to do, because the OBDD for a variable xi consists of a node labeled by xi with

the 0-sink as its 0-successor and the 1-sink as its 1-successor. Afterwards we run



32

through the circuit in some topological order (each gate is considered after all its

predecessors have been considered) and compute for each gate a representation of

the function at its output by combining the OBDDs representing the functions at

its input by the synthesis operation. Another possibility is to construct OBDDs for

some large blocks of the given circuit, then build the final OBDD from the OBDDs

obtained for the blocks.

Equivalence

BDD-packages usually represent many functions in a single OBDD. Therefore the

equivalence of Boolean functions f and g can be checked easily. In fact in order to

check whether f = g, it suffices to check whether the pointers for f and g lead to

the same node.

Satisfiability

If we just want to know whether f is satisfiable, it suffices to check whether f is

pointing to the 0-sink or not. This can be done by just one pointer comparison. In

order to find an input a for which f(a) = 1, we start at the pointer for f and search

for a path to the 1-sink. For this, a simple depth-first search approach is sufficient.

If there is no such path, we conclude that f = 0. If the OBDD is reduced, the run

time of this algorithm is O(n).

Synthesis

Synthesis is probably the most important operation since it is needed in almost all

applications. The usual way of generating new BDDs is to combine existing BDDs

with connectives like AND, OR, EX-OR. If we want to make an OBDD for a given

Boolean function, first we make OBDDs for each variable of the Boolean function,
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and then we parse the Boolean function and combine the existing OBDDs to make

OBDDs for the needed sub functions and finally the OBDD representing the whole

given Boolean function.

As suggested by Brace, Rudell, and Bryant (6), in OBDD packages usually

the synthesis algorithm is called ITE (”if-then-else”) where:

ite(f, g, h) = f.g ∨ f̄ .h

The ITE() procedure receives OBDDs for two Boolean functions f and g, builds the

OBDD for f < op > g. In fact it receives three arguments: I,T,E which are OBDDs

and returns the OBDD representing: (I∧T )∨(I∧E). All binary Boolean operations

can be simulated by the ite-operator, e.g.: f ∨ g = ite(f, 1, g) , f ∧ g = ite(f, g, 0)

or f ⊕ g = ite(f, g, g).

ITE() is a combination of depth-first traversal and dynamic programming.

(A recursive, Bottom-up procedure with tabulation). The basic idea of ITE( ) comes

from the expansion theorem:

F < op > G = v(Fv < op > Gv) + v′(Fv′ < op > Gv′)

ITE() maintains a table called Computed Table to avoid computing the same combi-

nation repeatedly. It also maintains another table called Unique Table to avoid pro-

ducing subgraphs representing the same sub-function. The benefit of this technique

is the important result that ITE() becomes polynomial rather than exponential.

Figure 3.4 displays the pseudocode for the ITE operator.

If f and g are given by OBDDs with different variable orderings, the ITE()

procedure would not work since for the simultaneous traversal, the variables have to

be encountered in the same ordering in both OBDDs. In this situation the synthesis

problem is much harder.

In order to construct an OBDD for f |xi
= c from the OBDD for f , we redi-

rect all edges leading to node labeled by xi to the c-successor of xi. The obtained
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ITE(f, g, h)

{

if(f == 1) return g;

if(f == 0) return h;

if(g == h) return g;

if((p = HASH_LOOKUP_COMPUTED_TABLE(f,g,h)) return p;

v = TOP_VARIABLE(f, g, h ); // top variable from f,g,h

fn = ITE(fv0,gv0,hv0); // recursive calls

gn = ITE(fv1,gv1,hv1);

if(fn == gn) return gn; // reduction

if(!(p = HASH_LOOKUP_UNIQUE_TABLE(v,fn,gn))

p = CREATE_NODE(v,fn,gn); // and insert into UNIQUE_TABLE

INSERT_COMPUTED_TABLE(p,HASH_KEY{f,g,h});

return p;

}

Figure 3.4: The ITE algorithm for ROBDDs.

OBDD would not be necessarily reduced. Therefore we may apply a reduction al-

gorithm to obtain the final result. If we consider an OBDD representing several

functions this algorithm destroys the representation of other functions. Thus, we

may need to create a copy of the representation for f before performing above oper-

ations. Replacement by a function can be solved by combining the above idea with

the synthesis algorithm to find: f |xi=g = ite(g, f |xi=1, f |xi=0). Similarly it follows

from the definition of the quantification operations that they can be implemented

by combining replacement by constants and synthesis.

3.2.4 The variable ordering problem for OBDDs

OBDDs share a fatal property with all kinds of representations of switching func-

tions: the representation of almost all functions needs exponential space. Bryant (8)

discovered that OBDD size strongly depends on the chosen variable ordering. Fig-

ure 3.5, shows the effect of variable ordering for a switching function. Notice that
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both OBDDs represent the same Boolean function: F = (a1∧b1)∨(a2∧b2)∨(a3∧b3).

Figure 3.5: Effect of variable ordering on OBDD size (Bryant 1986).

Different functions have different ordering sensitivities. Some functions

have a high and others have a low variable order sensitivity. The practicability

of OBDDs strongly depends on the existence of suitable algorithms and tools for

minimizing the graphs in the relevant applications. There are many improvements,

optimization algorithms, and additions to the basic OBDD model. It is known by

experience that:

• Many tasks have reasonable OBDD representations.

• Algorithms remain practical for up to 100,000 OBDDs nodes.

• most proposed heuristic ordering methods are generally satisfactory.

However, because of the practical applicability of this data structure, investigation

and development of new optimization techniques for OBDDs is still a rewarding

research topic.
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3.3 Generalizations of OBDDs

There are many functions which their OBDD representation are too large to be

stored in a computer memory. For example, Bryant (8; 9) proved that OBDDs

for multiplication of two n-bit numbers have at least 2n/8 nodes. In other words

OBDDs for multipliers are exponential size for all variable orderings. This is why

quite a large number of extensions of the basic OBDD have been suggested. Each of

these extensions allow a more compact representation than OBDD representation.

On the other hand, the extensions have the disadvantage that for some of the basic

operations listed in section 3.2 only less efficient algorithms are known. In the

following list we give a rough classification of the extensions:

1. Extensions obtained by replacing Shannon’s decomposition rule by a different

rule. Examples for such extensions are ordered functional decision diagrams

(OFDDs), ordered Kronecker functional decision diagrams (OKFDDs) and

parity OBDDs (39).

2. Extensions obtained by relaxing the variable ordering; (condition 5 of defini-

tion 7). Free BDDs are examples for such extension.

3. Extensions obtained by relaxing the read-once; (condition 4 in definition 7).

Examples are kOBDDs and IBDDs (see Meinel’s book ”Algorithms and data

structures in VLSI design: OBDD - foundations and applications” (43).)

4. Extensions obtained by introducing a transformation τ and representing a

function g such that f = g ◦ τ . This variant is called transformed BDD

(TBDD). Transformed BDDs have been suggested by Bern, Meinel, and Slo-

bodova (38; 41). The results of Bern, Meinel, and Slobodova (38) imply that

the synthesis algorithm for OBDDs can be applied for OBDDs with linear

tests as well, and that OBDDs with linear transformations are canonical rep-

resentations.
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5. Extensions that represent functions f : {0, 1}n → Z instead of Boolean func-

tions. In order to represent such functions, we may extend OBDDs by allowing

sinks labeled by numbers from Z. Examples of this variant are multi-terminal

BDDs (MTBDDs), which are also called algebraic decision diagrams (ADDs).

We remark that another extension of OBDDs, namely Zero-suppressed

BDDs (ZBDDs or ZDDs), are considered in detail in next chapter because they

play special role in this thesis.

3.4 Applications

In this section, we outline some applications of BDDs and briefly mention fields

where the extensions introduced above have been used. The list is not complete

in the sense that ”all” applications are covered and not all applications have equal

importance. Here only the main ideas of the applications are proposed, while the

given references present more details.

Verification: Nowadays modern circuit design can contain several million gates.

Verification of such a large designs is becoming more and more difficult. Pure

simulation cannot guarantee correct behavior and exhaustive simulation is too time

consuming. Verification (in its ”simplest” form) consists of checking equivalence of

two functions representing two circuits. If an OBDD can be constructed for the

specified circuit and for the designed circuit then verification would be very easy.

After OBDDs were introduced in the mid 1980s they were used in such tools by

Bryant et al. (10). OBDDs are nowadays the state-of-the-art data structure in

verification and have been integrated in many commercial tools.

In the field of sequential circuits OBDDs have also shown to work very

well. Using OBDDs, reachability analysis and image computation for finite state

machines with more than several million states could be verified. These techniques
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have been applied in the field of symbolic model checking.

Logic synthesis: The classic 2-level minimizers, such as ESPRESSO (7), use

enumeration of the terms in an array structure for representing the prime implicants.

The construction of circuits resulting from a direct mapping of OBDDs has gained

great interest, since the graph directly corresponds to a multiplexor network. One

argument is that the mapping process can be simplified due to the simple structure.

Additionally, the resulting circuits have good testability properties. In this area,

more general types than OBDDs, such as OKFDDs, have several advantages, since

in the area of circuit design a small reduction in the graph size may also have a

large influence on the size of the resulting circuit.

Testing: One possibility of using DDs in the area of testing has just been men-

tioned, i.e., in the form of design for testability. Alternatively, the symbolic repre-

sentation of a circuit by OBDDs can be used for many problems in testing, such as

test pattern generation and fault simulation By using OBDDs, it was possible for

the first time to compute exact signal probabilities and fault detection probabilities

These probabilities are used in different areas in testing, such as weight optimization

in built-in self-testing.

Combinatorial optimization: DDs have been used in many other combinatorial

optimization problems. For example, in many tasks during logic synthesis, sets of

elements have to be represented. ZBDDs have been introduced by Minato (29)

especially for this problem. Even though from the theoretical point of view they

only differ by a linear factor from OBDDs with respect to size, they are frequently

used in applications such as 2-level minimization.

Binary decision diagrams in complexity theory: In complexity theory, BDDs

are called branching programs and are used as a model for describing the space

complexity of computations. First BDDs without the read-once property and with-

out variable orderings were considered. It can be proved that polynomial size BDDs
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represent exactly those functions that can be computed by any reasonable model of

sequential computation with a logarithmic amount of memory. Thus the problem

to prove super-logarithmic space bounds for explicitly defined functions reduces to

proving super-polynomial size bounds for BDDs. However, obtaining such a proof

is considered to be as difficult as obtaining a solution of the P = NP? question.

After recognizing the importance of BDD-like representations as a data structure

for Boolean functions, researchers in complexity theory also investigated the com-

plexity of operations on BDDs. The most important classification of problems in

complexity theory is the distinction between problems solvable in polynomial time

and NP-complete problems The advantage of this classification is that it is inde-

pendent of the model of computation. However, in some applications exponential

time algorithms may be useful for small instances, while in other applications even

polynomial time algorithms may be too slow. Nevertheless, the classification helps

to determine whether it makes sense to search for an efficient algorithm for solv-

ing the considered problem or whether we have to be satisfied with approximate

solutions or heuristic solutions.

We conclude conclude this chapter with a list of the books that have been

published on OBDDs and related topics.The interested reader can find some more

information about OBDDs and their generalizations in these books. The books in

alphabetic order of the first authors name are: Drechsler and Becker (20), Hachtel

and Somenzi (28), Meinel and Theobald (43), Minato (31), and Wegener (52).
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CHAPTER 4

Zero-Suppressed Binary Decision Diagrams

4.1 Introduction

Zero-suppressed Binary Decision Diagrams (ZDDs) (29) provide an efficient way

of solving problems expressed in terms of set theory. Content of this background

chapter is mostly taken from a tutorial paper presented by Alan Mishchenko (44).

Several years ago, BDD (8) and its variations entered the scene of computer

science. Since that time they have been used in research software and industrial

CAD tools. They are used as a memory-efficient storage and convenient processing

media for Boolean functions and as a representation facilitating the analysis of data

leading to new implicit algorithms, which tend to be more efficient.

One of the reasons why decision diagrams, and in particular BDDs, became

useful for the CAD tool developers, is that they provide canonical representation

of discrete objects. Canonical means that under certain condition for every object

there is only one representation of this kind. This property is extremely important

for verification because in order to prove the identity of two objects it is sufficient

to build their canonical representations and show that these representations are

identical. The experience of using BDDs in numerous applications shows that they

are not a panacea for all types of problems. In some cases, due to the specific

properties of the discrete data arising in particular settings, the BDDs grow large

making processing inefficient or impossible. In particular, this situation occurs when

the applications work with sparse sets represented by characteristic functions.
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A set is sparse if number of elements in it is much smaller than the total

number of elements that may appear in the set. Cube covers are an example of

sparse sets. A typical cube contains only a few literals out of all possible literals

that may appear in the cube. The maximum number of literals is reached when a

cube is a minterm containing each variable as either the negative or the positive

literal. In the case, the sparseness of the set is 1
2
, because each minterm contains

exactly one half of all possible literals that may appear in the cubes. The problem

of prohibitively large BDD size of the sparse set representation can be remedied by

introducing a different brand of decision diagrams, called Zero-suppressed binary

Decision Diagrams (ZDDs) (29). These diagrams are similar to BDDs with one of

the underlying reduction principles modified.

While BDDs are better for the representation of functions, ZDDs are bet-

ter for the representation of covers. Additionally, there are efficient procedures to

perform conversions between them. Taken together, BDDs and ZDDs provide a

powerful framework to solve problems in logic synthesis, such as two-level sum-of-

product (SOP) minimization, three-level minimization, factorization, and decom-

position. The use of ZDDs is not limited to logic synthesis. They have been used,

independently of BDDs, in a number of applications, ranging from the graph-theory

problems to handling polynomials and regular expressions.

This section is designed to be an introduction to ZDDs for a reader with

background in Boolean algebra and an understanding of basic principles of BDDs.

The goal is to present the applications of ZDDs for sets and cube covers. We first

discuss the basic principles and uses of ZDDs. In particular, Section 4.2 focuses

on the main differences between BDDs and ZDDs when it comes to representing

Boolean functions, sets, and cube covers. In Section 4.3, we classify and discuss the

elementary ZDD operators provided by the DD (Decision Diagram) packages.
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The following terminology is accepted in the BDD research (8). The BDD

represents the function as a rooted directed acyclic graph. Each non-terminal node

N is labeled by a variable v and has edges directed towards two successor (children)

nodes, else(N) and then(N), representing the cofactors of N w.r.t. v. Each terminal

node is labeled with 0 or 1. For a given assignment of the variables, the value of

the function is found by tracing a path from the root to a terminal vertex following

the branches indicated by the values assigned to the variables. The function value

is given by the terminal vertex label. For example, Figure 4.1(left) shows the BDD

of the Boolean function F = ab + cd. The edges are directed downwards. The

dashed edges (solid) edges correspond to v = 0(v = 1). In the following, we use

the terms ”procedure”, ”functions”, ”routine” and ”operator” interchangeably to

denote a fragment of functionality implemented with DDs.

Figure 4.1: BDD and ZDD for F = ab + cd.

4.2 Comparing BDDs and ZDDs

Both BDDs and ZDDs can be seen as decision trees, simplified using two reduction

rules that guarantee the canonicity of the resulting representation. The second

reduction rule (merging of isomorphic subgraphs) holds for both BDDs and ZDDs;

however, they differ in the first reduction rule (node elimination).
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For BDDs, the node is removed from the decision tree if both its edges

point to the same node. For ZDDs, the node is removed if its positive edge (then-

edge) points to the terminal node 0. This variation in the rule, as mentioned before,

explains the improved efficiency of ZDDs when handling sparse sets and the semantic

differences between the two types of diagrams. One way of understanding the

principles of ZDDs is to compare them with BDDs for simple illustrative functions

while keeping in mind their main difference.

4.2.1 Boolean functions

It can be shown that, in a BDD, all paths from the root to terminal node 1 can be

seen as cubes constituting a disjoint cover of the function. A variable is present in

the positive (negative) polarity in the corresponding cube if the path contains the

1-edge (0-edge) of a node labeled by this variable; the variable is absent in the cube

if the path does not go through a node labeled by this variable.

In a ZDD for the same function, all paths from the root to terminal 1 also

represent a disjoint cover of the function. (This cover is the same if the variable

ordering is the same in both diagrams.) A variable is present in the positive polarity

in the corresponding cube if the path goes through the 1-edge of a node labeled

with this variable. A variable is present in the negative polarity in the cube if the

path goes through the 0-edge or if the path does not go through a node labeled

by this variable. A variable is absent in a cube, if the path goes through a node

labeled by this variable and both edges of the node point to the same node.

Consider a BDD and a ZDD of the function F = ab+cd shown in Figure 4.1.

Both diagrams can be used to trace the disjoint cover of the function: {ab, ācd, ab̄cd}.
As can be seen from Figure 4.1, the size of the ZDD (the number of nodes in the

diagram) is almost two times larger than that of the BDD. This is because ZDDs

are not as efficient as BDDs when they represent typical Boolean functions.
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4.2.2 Sets of subsets

The classical BDDs represent completely specified Boolean functions. In order to

represent sets (and sets of subsets), the characteristic functions have been intro-

duced (13) in such a way that each set is put in one-to-one correspondence with its

characteristic function.

Informally, the characteristic function of a set of subsets is a CSF that

depends on as many input variables as there are elements that can potentially

appear in a subset. For each subset in the set, one minterm is added to the on-set of

the characteristic function. In this minterm, variables appear in positive (negative)

polarities if they are present (absent) in the set. For example, given three elements

(a, b, c), consider the set of subsets {{a, b}, {a, c}, {c}}. If we associate each element

with a binary variable having the same name, the characteristic function of the set

of subsets would be F = abc̄ + ab̄c + āb̄c. The first minterm corresponds to the

subset {a, b}, and so on.

Figure 4.2: The BDD and the ZDD for the set of subsets {{a, b}, {a, c}, {c}}.

Important for our discussion are the following observations: The empty

subset is represented by the minterm F = āb̄c̄ , while the subset containing all

elements is represented by F = abc. The empty set is represented by the character-

istic function F = 0, while the set composed of all possible subsets is represented

by the characteristic function F = 1. The latter is obvious if we observe that the
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constant-0 function has no on-set minterms, while the constant-1 function has 2n

on-set minterms, corresponding to the complete Boolean space.

Notice that there is a difference between the empty set and the set of subsets

composed of the empty set only. The former has the characteristic function equal

to constant 0, while the latter has the characteristic function F = āb̄c̄ . Once

the characteristic function is constructed, it can be represented using a BDD or a

ZDD. The two representations of the set of subsets {{a, b}, {a, c}, {c}} are given in

Figure 4.2. In both diagrams, there are three paths from the root node (on top) to

the terminal node 1, which correspond to the subsets {a, b}, {a, c}, and {c}. The

encoding of the variables in the paths is discussed in section 4.2.1.

Notice that the size of the ZDD in Figure 4.2 is smaller than that of the

BDD. It can be proved that the upper bound on the size of the ZDD is the total

number of elements appearing in all subsets of a set. Meanwhile, the upper bound

on the size of the BDD is given by the number of subsets multiplied by the number

of all elements that can appear in them. This observation shows that ZDDs should

be much more compact when representing sets of subsets. The above theoretical

upper bound on the ZDD size is rarely reached; in practice ZDDs tend to be even

more compact.

4.2.3 Cube covers

Let us now consider the ZDD representation of cube covers. First, it is necessary to

introduce additional variables, because BDDs and ZDDs depending on the primary

input variables represent only one type of disjoint covers. To represent arbitrary

covers, two variables are used for each primary input: one of them stands for the

positive literal and another for the negative literal. These variables are always

kept adjacent in the variable order. Similarly to the set of subsets, a cube cover is

represented by its characteristic function introduced as follows:
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• The characteristic function depends on the 2n variables, where n is the number

of primary inputs.

• For each cube of the cover, one minterms is added to the on-set of the char-

acteristic function.

• The minterm has those variables in the positive polarity that correspond to

literals present in the cube and those variables in the negative polarity that

correspond to literals missing in the cube.

For example, to represent arbitrary covers of the four variable function

F = ab + cd, eight variables are used: (a1, a0, b1, b0, c1, c0, d1, d0). These variables

correspond to the positive and negative literals of each input variable. The charac-

teristic functions of the cover {ab, cd} is: X = a1ā0b1b̄0c̄1c̄0d̄1d̄0 + ā1ā0b̄1b̄0c1c̄0d1d̄0

Figure 4.3: ZDD for the cover {ab, cd}.

Figure 4.3 displays the ZDD for the characteristic function. Unlike the

BDD for function X, which depends on all eight variables, the ZDD depends on

four variables only. These are the variables that appear in the characteristic function

in the positive polarity and correspond to literals actually present in the cover. All

other variables are missing in the ZDD, because according to the ZDD reduction

rules a variable missing on the path is interpreted as a variable taking the value 0



47

in the minterm of the characteristic function. This property makes ZDD ideal for

representing and manipulating large cube covers.

The terminal node 0 in a ZDD representing covers stands for the empty

cover. In this case, there are no assignments for which the characteristic function

evaluates to 1 and therefore there are no cubes in the cover. The terminal node 1

stands for the cover containing only the tautology cube, that is the cube in which all

the literals are missing. Indeed, there is only one path for which the characteristic

function evaluates to 1, and this path does not go through any nodes. According

to the ZDD reduction rules, it means that all the variables on the path are equal

to zero, which in turn means that all the literals are missing in the cube.

The decomposition of a cover w.r.t. the primary input variable is a triple

of covers that contain cubes: (1) with the variable as the positive literal, (2) with

the variable as the negative literal, (3) without the variable. The inverse operation

is the composition of the three covers into one cover. The composition is performed

using a primary input variable that is not currently used in the covers.

For example, consider the cover C = abc̄ + ab̄d + ac + d. Decomposing C

w.r.t. the primary input variable b yields: C0 = ad, C1 = ac̄ , C2 = ac + d. The

reverse operation, the composition of the covers C0, C1, and C2 w.r.t. b, which does

not appear in them, produces the initial cover C. If the cover is represented by its

ZDD, the decomposition and composition operations are performed by functions

DecomposeCover() and ComposeCover() of the ZDD package. DecomposeCover()

takes the cover and the primary input variable and returns three subcovers. Com-

poseCover() takes three subcovers and the primary input variable and returns the

composed cover. For a detailed analysis of ZDD in the representation of cube cov-

ers, it is recommended for the reader to review references (30; 32) where some basic

ZDD-based recursive operators are introduced and explained.
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4.3 Basic ZDD procedures

The basic functions dealing with ZDDs can be classified as follows:

4.3.1 Procedures working with functions

These procedures are similar to those developed to manipulate Boolean functions

using BDDs.

1. Procedures returning elementary functions:

• Constant-0 ZDD (constant zero function, F = 0)

• Universal ZDD (constant one function, F = 1)

• Single-variable ZDD (the function for the elementary variable, F = v)

2. Procedures performing boolean operations:

• If-Then-Else (ITE) operator. This function returns the result of apply-

ing ITE to A,B, and C: ITE(A,B, C) = AB + ĀC .

Notice that the complement of a ZDD cannot be computed by complement-

ing a pointer, as it is done using BDDs with complement edges. Instead, we should

apply the ITE operator to the function and constants and compute the complement

as follows: F = ITE(F, 0, 1).

4.3.2 Procedures working with sets

1. Procedures returning elementary sets:

• Constant-0 ZDD (the empty set, {})
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• Constant-1 ZDD (the set of subsets consisting of the empty set, {{}})

• Single-variable ZDD (the set of subsets with a subset containing element

v, {{v}})

2. Procedures performing operations on the set of subsets w.r.t. to a single

element (variable):

• Subset0(S, v) returns the set of subsets of S not containing element v.

• Subset1(S, v) returns the set of subsets of S containing element v.

• Change(S, v) returns the set of subsets derived from S by adding ele-

ment v to those subsets that did not contain it and removing element v

from those subsets that contain it.

3. Procedures performing standard set operations for two sets of subsets:

• Union(X,Y ) returns the set of subsets belonging to X or Y .

• Intersection(X, Y ) returns the set of subsets belonging to X and Y .

• Difference(X,Y ) returns the set of subsets of X not belonging to Y .

Figure 4.4: ZDDs for variable ’b’, (right) as a function, (left) in set manipulation.



50

It is important to distinguish single-variable ZDDs as used in the manip-

ulation of functions and from those used in the manipulation of sets. Figure 4.4

shows the ZDDs for F = b, assuming that there are three variables (a, b, c). In the

case of functions, this ZDD represents the function F = b. In the case of sets, the

ZDD represents the characteristic function of the set containing a single element b.

In this case, the characteristic function is F = ābc̄ .

In addition to above elementary operators defined for sets, the two pairs of

set product and weak division operators have been implemented using ZDDs. These

two pairs of operators correspond to unate and binate algebras (30; 32). Speaking

informally, in unate algebra, every literal of a cube is either positive polarity or

missing, while in binate algebra every literal may be non-complemented, comple-

mented, or missing. Correspondingly, to manipulate sets in unate algebra every

literal is encoded with one ZDD variable, while to manipulate sets in binate alge-

bra, two literals are used, one represents the variable in positive polarity, the other

presents it in negative polarity. In terms of the definitions introduced above, ZDDs

used to manipulate sets of subsets implement the unate algebra, while ZDD used to

manipulate the cube covers implement the binate algebra. In terms of procedures

implemented in the main distribution of the CUDD package, unate product and

division are Cudd zddUnateProduct() and Cudd zddDivide(), while binate product

and division are Cudd zddProduct() and CUDD zddWeakDiv().

4.4 The CUDD Package

In this section we introduce the CUDD package, which is known to be the best

open source package for manipulating BDDs and their variants. Content of this

subsection is prepared very briefly and mostly taken from its help manual (51).

The CUDD package provides functions to manipulate Binary Decision Di-

agrams (BDDs) (43), Algebraic Decision Diagrams (ADDs), and Zero-suppressed
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Binary Decision Diagrams (ZDDs) (29). BDDs are used to represent switching

functions; ADDs are used to represent function from {0, 1}n to an arbitrary set.

ZDDs represent switching functions like BDDs; however, they are much more effi-

cient than BDDs when the functions to be represented are characteristic functions

of cube sets, or in general, when the ON-Set of the function to be represented is

very sparse. They are inferior to BDDs in other cases.

The CUDD package can be used in three ways:

• As a black box. In this case, the application program that needs to manipulate

decision diagrams only uses the exported functions of the package. The rich

set of functions included in the CUDD package allows many applications to be

written in this way. An application written in terms of the exported functions

of the package needs not concern itself with the details of variable reordering,

which may take place behind the scenes.

• As a clear box. When writing a sophisticated application based on decision

diagrams, efficiency often dictates that some functions be implemented as

direct recursive manipulation of the diagrams, instead of being written in

terms of existing primitive functions.

• Through an interface. Object oriented languages like C++ can free the pro-

grammer from the burden of memory management. A C++ interface is in-

cluded in the distribution of CUDD. It automatically frees decision diagrams

that are no longer used by the application. Almost all the functionality pro-

vided by the CUDD exported functions is available through the C++ interface,

which is especially recommended for fast prototyping.

How to Get CUDD: The package is available via vlsi.Colorado.EDU. A com-

pressed file named cudd2.3.1.tar.gz can be found there. Once you have this file,

gzip dc cudd2.3.1.tar.gz | tar xvf -
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will create directory cudd2.3.1 and its subdirectories. These directories contain the

decision diagram package, a few support libraries, and a toy application based on

the decision diagram package.

Compiling and Linking: To build an application that uses the CUDD package,

you should add the following files:

#include "util.h"

#include "cudd.h"

to your source, and should link: libcudd.a, libmtr.a, libst.a, and libutil.a

to your executable. (All these libraries are part of the distribution.) :

Nodes: BDDs and ZDDs are made of DdNode’s. A DdNode (node for short) is a

structure with several fields. Those that are of interest to the application that uses

the CUDD package as a black box are the variable index, the reference count, and

the value. The remaining fields are pointers that connect nodes among themselves

and that are used to implement the unique table.

The index field holds the name of the variable that labels the node. The

index of a variable is a permanent attribute that reflects the order of creation. Index

0 corresponds to the variable created first. On a machine with 32bit pointers, the

maximum number of variables is the largest value that can be stored in an unsigned

short integer minus 1. The largest indices are reserved for the constant nodes. When

64bit pointers are used, the maximum number of variables is the largest value that

can be stored in an unsigned integer minus 1. When variables are reordered to

reduce the size of the diagrams, the variables may shift in the order, but they retain

their indices. The package keeps track of the variable permutation (and its inverse).

The CUDD package relies on garbage collection to reclaim the memory used

by diagrams that are no longer in use. The scheme employed for garbage collec-

tion is based on keeping a reference count for each node. The references that are
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counted are both the internal references (references from other nodes) and external

references (typically references from the calling environment). When an application

creates a new BDD, ADD, or ZDD, it must increase its reference count explicitly,

through a call to Cudd Ref . Similarly, when a diagram is no longer needed, the ap-

plication must call Cudd RecursiveDeref for BDDs or Cudd RecursiveDerefZdd

(for ZDDs) to “recycle” the nodes of the diagram. Terminal nodes carry a value.

By default, the value is a double.

The Manager: All nodes used in BDDs and ZDDs are kept in special hash tables

called the unique tables. As the name implies, the main purpose of the unique table

is to guarantee that each node is unique; that is, there is no other node labeled by the

same variable and with the same children. This uniqueness property makes decision

diagrams canonical. The unique tables and some auxiliary data structures make up

the DdManager (manager for short). Though the application that uses only the

exported functions needs not be concerned with most details of the manager, it has

to deal with the manager in the following sense. The application must initialize the

manager by calling an appropriate function. Subsequently, it must pass a pointer

to the manager to all the functions that operate on decision diagrams. With the

exception of a few statistical counters, there are no global variables in CUDD.

Cache: Efficient recursive manipulation of decision diagrams requires the use of

a table to store computed results. This table is called here the cache because it

is effectively handled like a cache of variable but limited capacity. The CUDD

package starts by default with a small cache, and increases its size until either no

further benefit is achieved, or a limit size is reached. The user can influence this

policy by choosing initial and limit values for the cache size. The default parameters

work reasonably well for a large spectrum of applications. The cache of the CUDD

package is used by most recursive functions of the package, and can be used by user

supplied functions as well.
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Initializing and Shutting Down a DdManager: To use the functions in the

CUDD package, one has first to initialize the package itself by calling Cudd Init.

This function takes four parameters:

• numVars: It is the initial number of variables for BDDs (and ADDs). If the

number is unknown, it can be set to 0, or to any other lower bound on the

number of variables.

• numVarsZ: It is the initial number of variables for ZDDs.

• numSlots: Determines the initial size of each subtable of the unique table.

There is a subtable for each variable. The size of each subtable is dynamically

adjusted to reflect the number of nodes. It is normally O.K. to use the default

value for this parameter, which is CUDD UNIQUE SLOTS.

• cacheSize: It is the initial size (number of entries) of the cache. Its default

value is CUDD CACHE SLOTS.

• maxMemory: It is the target value for the maximum memory occupation

(in bytes). The package uses this value to decide two parameters: 1. The

maximum size to which the cache will grow, regardless of the hit rate or the

size of the unique table, 2. The maximum size to which growth of the unique

table will be preferred to garbage collection. If maxMemory is set to 0, CUDD

tries to guess a good value based on the available memory.

A typical call to Cudd Init may look like below.To reclaim all the memory associ-

ated with a manager, an application must call Cudd Quit (normally before exiting).

manager = Cudd Init(0,0,CUDD UNIQUE SLOTS,CUDD CACHE SLOTS,0);

Constant Functions: The CUDD Package defines several constant functions.

These functions are created when the manager is initialized, and are accessible

through the manager itself.
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The constant 1 (returned by Cudd ReadOne) is common to BDDs and

ZDDs. However, its meaning is different for BDDs, on one hand, and ZDDs, on

the other hand. The diagram consisting of the constant 1 node only represents the

constant 1 function for BDDs. For ZDDs, its meaning depends on the number of

variables: It is the conjunction of the complements of all variables. Conversely, the

representation of the constant 1 function depends on the number of variables. The

constant 1 function of n variables is returned by Cudd ReadZddOne. The constant

0 apply to ZDDs, but not to BDDs. The BDD logic 0 is not associated with the

constant 0 function: It is obtained by complementation (Cudd Not) of the constant

1. (It is also returned by Cudd ReadLogicZero.)

Creating Variables: Decision diagrams are typically created by combining simpler

decision diagrams. The simplest decision diagrams, of course, cannot be created in

that way. The ZDD of the i-th projection function is returned by Cudd zddIthV ar.

Simple variable functions are also known as projection functions. The projection

functions of ZDDs have diagrams with n + 1 nodes, where n is the number of

variables.

Basic ZDD Manipulation

It is possible to build ZDDs by applying Boolean operators to other ZDDs, starting

from constants and projection functions. The following fragment of code illustrates

how to build the ZDD for the function f = x
′
0 + x

′
1 + x

′
2 + x

′
3. We assume that the

four variables already exist in the manager when the ZDD for f is built. Note the

use of DeMorgan’s law.

CUDD provides functions for the manipulation of covers represented by

ZDDs. For instance, Cudd zddWeakDiv performs the weak division of two covers

given as ZDDs. These functions expect the two ZDD variables corresponding to the

two literals of the function variable to be adjacent.
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DdManager *manager; /* pointer to DD manager */

DdNode *f , *var, *tmp; /* pointers to nodes */

int i;

......

manager = Cudd_Init(0,4,CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS,0);

tmp = Cudd_ReadZddOne(manager, 0); CuddRef(tmp);

for (i=3 ; i>=0 ; i-- )

{

var = Cudd_zddIthVar( manager, i ); CuddRef(var);

f = Cudd_zddIntersect(manager,var,tmp); Cudd_Ref(f);

Cudd_RecursiveDerefZdd(manager,tmp);

Cudd_RecursiveDerefZdd(manager,var);

tmp = f;

}

f = Cudd_zddDiff(manager,Cudd_ReadZddOne(manager,0),tmp);

Cudd_Ref(f);

Cudd_RecursiveDerefZdd(manager,tmp);

The above introduction to the CUDD package is succinct, provided for fast

overview. We refer the interested researchers (specially who want to use it) to its

manuals available on the web (51).
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CHAPTER 5

The QSAT Problem and Existing Solutions

5.1 Introduction

QSAT that stands for ”satisfiability of quantified Boolean formulas”, is a general

form of the SAT ( SATisfiability of propositional formula) problem. In this problem

we are given a closed prenex-CNF φ and the question is whether there is a way to

assign Boolean values to the variables so that the formula evaluates to true .

As an example: ∀x1∃x2((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)) means: ”for each truth

assignment to x1 there exists an assignment to x2 such that (x1 ∨ x2)∧ (¬x1 ∨ ¬x2)

is true”. The above QBF is satisfiable: if x1=true then x2 can be assigned to false;

if x1=false then x2 can be assigned to true; in both cases (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

is true.

In this chapter, first a more formal definition of the QBF problem is given,

then a suggested input standard for representing QBF instances is described. In the

last section we take a look to the best existing QBF solvers. The main strategies

and heuristics used by each of them are also explained briefly.

5.2 The QSAT Problem

QBF in CNF-format or prenex-CNF: Consider a set P of propositional letters.

An atom is an element of P . A literal is an atom or the negation of an atom. A
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clause C is a p-ary (p ≥ 0) disjunction of literals. A propositional formula is an

m-ary (m ≥ 0) conjunction of clauses. As customary, we represent a clause as a set

of literals, and a propositional formula as a set of clauses. A QBF is an expression

of the form:

Q1x1 . . . QnxnΦ (n ≥ 0) (5.1)

where every Qi(1 ≤ i ≤ n) is a quantifier, either existential ∃ or universal ∀; The

literals x1 . . . xn are pairwise distinct atoms in P ; and Φ is a propositional formula

in the atoms x1 . . . xn. In 5.1, the expression Q1x1 . . . Qnxn is called prefix and Φ is

called matrix. The QBF problem is: Given a QBF formula is it true?

Example 1 Here below we can see a QBF in prenex-CNF, later we show how this

formula can be represented in a suggested input format.

∀x1∃x2∀x3∃x4x5

(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x4) ∧
(x1 ∨ ¬x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x5) ∧
(x1 ∨ ¬x3 ∨ x4 ∨ ¬x5) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x5) ∧ (x1 ∨ ¬x4) ∧ (x3 ∨ ¬x2 ∨ x1)

5.3 Input and output format

This section outlines a suggested format for the QSAT problem. The format is

known as Q-DIMACS (25). It is an extension of the DIMACS standard for the

SAT problem. In this format, the input file is an ASCII file consisting of the

following three sections:

Preamble : The preamble contains information about the instance. This infor-

mation is contained in a few lines. Each line begins with a single character that

determines the type of the line. These types are as follows:
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• Comments: comment lines give human-readable information about the file

and are ignored by programs. Comment lines appear at the beginning of the

preamble. Each comment line begins with a lowercase character c. Example :

c This is an example of a comment line

• Problem line: there is only one problem line per input file. The problem

line must appear before the prefix and after any comment line. The problem

line has the following format:

p cnf VARIABLES CLAUSES

The lower case string ”p cnf” shows that the instance is a ”cnf formula”. The

”VARIABLES” field contains a positive integer value specifying the total number of

variables in the instance. The ”CLAUSES” field contains an integer value specifying

the number of clauses in the instance. This line must be the last line of the preamble.

Prefix: The prefix encodes the information about the quantifiers and the way they

are applied to propositions. Each line in the prefix begins with a letter followed by

a set of positive integers. The letters are:

• a if the line represents a universal quantifier list,

• e if the line represents an existential quantifier list.

Each line ends with a 0. For example referring to Example 1, the prefix

∀x1∃x2∀x3∃x4x5 would be represented as:

a 1 0

e 2 0

a 3 0

e 4 5 0
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Matrix: The matrix represents clauses of the QBF. It appears immediately after

the prefix line. The variables are assumed to be numbered from 1 up to VARI-

ABLES. It is not necessary that every variable appear in an instance. Each clause

will be represented by a sequence of integers, which are separated by either a space, a

tab, or a new line character. The non negated version of a variable is represented by

i; the negated version is represented by −i. Each clause is terminated by a value 0.

This format allows clauses to be presented on multiple lines. Considering example 1,

∀x1∃x2∀x3∃x4x5(x1∨x3∨x4)∧(¬x1∨x3∨x4)∧(x1∨¬x4∨x5)∧(¬x1∨x2∨x5)∧(x1∨
¬x3∨x4∨¬x5)∧(¬x1∨x3∨¬x4)∧(¬x1∨¬x2∨¬x3∨¬x5)∧(x1∨¬x4)∧(x3∨¬x2∨x1),

a possible input file would be:

c Example CNF format file

p cnf 5 9

a 1 0

e 2 0

a 3 0

e 4 5 0

1 3 4 0

-1 3 4 0

1 -4 -5 0

-1 2 5 0

1 -3 4 -5 0

-1 3 -4 0

-1 -2 -3 -5 0

1 -4 0

3 -2 1 0

Every variable that does not show up in the prefix and occurs in the matrix

is intended to be existentially quantified and in the outermost position of the prefix.
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There is another format which is very similar to Q-DIMACS. It is known

as ”Rintanens format”. Instead of ’a’ for ∀ and ’e’ for ∃, it uses the character ’q’

alternatively. The first ’q’ is for ’e’, the second for ’a’ and so on. For example the

QBF: ∀x∃y∃z∃u((x ∨ y) ∧ (¬x ∨ ¬z) ∧ (¬u ∨ z)) is written as:

p cnf 4 3 # header: 4 variables, 3 clauses

q 0 # alternating quantifier prefix: must always

q 1 0 # start with a (possibly empty) sequence of

q 2 3 4 0 # existential variables; 0 is separator

1 2 0 # clauses; 0 is separator

-1 -3 0 #

-4 3 0 #

5.4 The best existing solvers

In this section we introduce the best existing QSAT solvers. We know them from

related published papers and the ”Comparative evaluation of solvers for quantified

Boolean formulas (QBF 2004)” (47) which has been held as a joint program with

the ”International Conference on Theory and Applications of Satisfiability Testing

(SAT 2004)”. They comprise sixteen solvers from eleven authors. Here below we

give short descriptions about each of them. Useful references are also given for who

are interested in details.

CLearn and CSBJ: These solvers are presented by Andrew G D Rowley from

”Department of Computer Science, university of St Andrews, Scotland”. They

are search-based solvers written in C++, using conflict learning and conflict back-

jumping as introduced in (54; 27). These solvers are based on a local QBF solving

library which implements watched literals and watched clause data structures for
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QBF. The library performs the QBF simplification, propagation and backtrack-

ing. The considered heuristic is an ordering based on prefix level (outermost to

innermost) and variable identifier (smallest first).

GRL is another solver from Andrew G.D. Rowley. It improves the solution learning

methods introduced in (54; 27) to identify all of the information that is possible to

learn. This algorithm is described in detail in (23).

OpenQBF by Gilles Audemard, Daniel Le Berre and Olivier Roussel, is a search-

based solver written in Java. It is based on the OPENSAT framework, featuring

basic unit propagation and pure literal lookahead, plus a conflict back-jumping look-

back engine. Its main heuristic is derived from Böhm and Speckenmeyer’s heuristic

for SAT. This solver is described in detail in (2).

ORSAT by Olivier Roussel, is a search-based solver written in C++, featuring an

algorithm based on relaxations to SAT, plus special purpose techniques to deal with

universal quantifiers. Its creators remark that the solver is still in its early stage

of development, therefore most of the features found in mature solvers are missing.

One can visit (49) for more information.

QBFL The QBF solver Qbfl is built by Florian Letombe from the university of

Artois in France. Qbfl is a QBF solver which is based on the SAT-solver ”Limmat”.

It is a DPLL based solver using branching method in splitting on universal quan-

tifiers. It also relays on trivial falsity and trivial truth. Qbfl has been presented

in two versions: Qbfl-BS and Qbfl-JW. The first one chooses variables following

Böhm and Speckenmeyer’s lexicographic heuristics (5) and the second one follows

Jeroslow and Wang’s order (33). Unit and pure literal propagation for QBF (12)

are also implemented. Qbfl makes Horn and reverse-Horn formulas detection and

resolution as proposed in Kleine-Büning et al.’s algorithm (11).

QSAT by Jussi Rintanen, is a search-based solver written in C, featuring a
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lookahead with failed literal rule, sampling, partial unfolding and quantifier in-

version (48).

QMRes is developed by Guoqiang Pan and Moshe Y. Vardi from Department of

Computer Science in Rice University. It is written in C, based on a symbolic im-

plementation of the original DP algorithm, achieved using ZBDDs. The algorithm

features multi-resolution, a simple form of unit propagation, and heuristics to choose

the variables to eliminate. Multi-resolution (14) takes a symbolic approach to di-

rectional resolution (19), where clause sets are represented by ZDDs (31).

Quantor: The QBF solver QUANTOR is built by Armin Biere from Computer

System Institute in Swiss Federal Institute of Technology in Zurich. It uses res-

olution to eliminate existentially quantified variables and expansion to eliminate

universally quantified variables until a propositional formula in CNF is obtained,

which then can be solved by a standard SAT solver. In has also a number of fea-

tures such as equivalence reasoning, subsumption checking, pure literal detection,

unit propagation, and also a scheduler for the elimination step. More details on

QUANTOR can be found in (4).

QuBE: The QBF solver QuBE is built by Enrico Giunchiglia, Massimo Narizzano

and Armando Tacchella from university of Genova in Italy. It is a search-based

solver written in C++ featuring lazy data structures for unit and pure literal prop-

agation; QuBE comes in two QuBE-bj, featuring conflict- and solution-directed

backjumping, and QuBE-Lrn, featuring conflict and solution learning; the heuristic

is an extension to QBF of zCHAFF heuristic for SAT.

QuBE explores an implicit AND-OR search tree alternating three phases:

simplification of the formula (lookahead), choice of a branching literal (heuristic),

and backtracking when a contradiction or a satisfying assignment is found. Look-

back is based on learning as introduced in (27), with improvements used in GRASP.

The heuristic is designed to leverage the information extracted during look-back.



64

ssolve by Rainer Feldmann and Stefan Schamberger, is a search-based algorithm

written in C, featuring trivial truth and a modified version of Rintanen’s method of

inverting quantifiers. The data structures used are extensions of the data structures

of Max Böhm’s SAT-solver.

Semprop by Reinhold Letz, is based on the method of semantic trees, which is

implemented on Davis, Putnam, Logemann, and Loveland (DPLL). The system in-

corporates the standard techniques like unit propagation and the purity rule, which

are more powerful in the quantified Boolean case. Furthermore, a dependency-

directed backtracking mechanism and learning features are integrated in it. It is

written in Bigloo (a dialect of Scheme), featuring dependency directed backtracking

and lemma/model caching for false/true subproblems. Details on Semprop can be

found in (36).

WalkQSAT: The WalkQSAT QSAT solver is built by Andrew G D Rowley and

Kevin Smyth from Department of Computer Science, at the university of St. An-

drews, Scotland. It is the first incomplete solver for QBF. This solver performs

standard conflict learning and solution directed back-jumping but also uses WaIk-

SAT to guide the search. If the solver returns true or false, the QBF is guaranteed

to be true or false respectively. WalkQSAT can also return unknown, meaning that

the QBF could not be solved. It is implemented using the same library as CLearn

and CSBJ. For a more detailed description of WalkQSAT see (24).

yQuaffle: The QBF solver Quaffle is built by Yinlei Yu and Sharad Malik at

Princeton University in Princeton,USA. It is a search-based solver written in C++,

featuring multiple conflict driven learning, solution based backtracking, and inver-

sion of quantifiers. It is designed to be fast and efficient for both real world prob-

lems and randomly generated problems. It is a DPLL based solver originated from

Quaffle by Lintao Zhang (54). It also incorporates a few new techniques aiming at

speeding up the evaluation of QBF formula.
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CHAPTER 6

ZQSAT: A New Algorithm for the QSAT problem

6.1 Introduction

Almost all QBF solvers are based on extensions of the ”DPLL algorithm for QBFs”,

which is also known as ”search based method” or ”the semantic tree approach for

deciding QBFs”. Most of them are based on some SAT solvers. There is a close

connection between SAT and QSAT. Also there are some important differences

which we mention later.

In preliminary studies we observed the capability of ZDDs in storing sets

compactly. Furthermore, we realized that many operations needed in searching the

solution can be implemented more efficiently when the QBF formula is represented

in a ZDD. These observations led us to implement a ZDD-based QBF solver. At

first it was a little slow, but after further observations, reasonings and investigations

we managed to construct an efficient algorithm which we called it ZQSAT. It is a

ZDD-based QBF solver that benefits from the idea of memoization and removing

the subsumed clauses. Although it is also an extension to the DPLL algorithm,

it can solve a set of QBF benchmark problems, which is known to be hard for

DPLL based algorithms, much faster than almost all existing QSAT solvers. In

addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We will show it

by experimental results and by giving a formal proof that accepting prenex-NNF

formulas can be exponentially beneficial.
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6.1.1 The DPLL Algorithm for the SAT and QBFs

Most former and recent SAT/QSAT solvers are in some way extensions of the

DPLL (17) algorithm. DPLL tries to find a satisfying assignment for a CNF formula

by making an exhaustive search. Each variable is assigned a truth-value (true or

false) which leads to some simplifications of the formula. Since the function is in

CNF, the assignment can be done efficiently. If an assignment forces the formula

to be reduced to false then a backtrack will take place to make another possi-

ble assignment. If non of the possible assignments satisfy the formula then it is

unsatisfiable. The DPLL algorithm is described in Figure 6.1.

Boolean DPLL( CNF_Formula F )

{

1 F = Simplify F using simplification rules; // Unit Resolution,..

2 if (F == empty clause) return TRUE; // SATISFIABLE

3 if (F includes empty clause) return FALSE; // UNSATISFIABLE

4 x = choose one of the remaining variables using Heuristic A;

5 v = choose a truth value using Heuristic B;

6 Fa = F[x=v]; Fb = F[x=not(v)];

7 if (DPLL(Fa)==TRUE) return TRUE;

8 return DPLL(Fb);

}

Figure 6.1: The DPLL Algorithm for SAT Problems.

Line 1 makes all possible simplifications. In order to prune the search space,

variables which can get only one value must be assigned and be removed from the

formula. A unit clause is a clause with exactly one literal. For example in f =

(a∨¬b∨¬c)∧ (a∨¬c∨ d)∧ (b)∧ (a∨ b∨ c), the third clause is a unit clause. Since

the algorithm tries to satisfy the formula, the variable appearing in a unit clause can

essentially get one of the truth-values. In the above example, b can only receive the

value true, which lets f be simplified to: f1 = (a ∨ ¬c) ∧ (a ∨ ¬c ∨ d). In f1 the

first clause subsumes the second clause. In other words, if an assignment satisfies
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the first clause then it will surely satisfy the second clause too. In such cases the

subsumed clause can be removed. If all literals in a clause simplify without satisfying

the clause then the condition in line 3 happens and returns the UNSATISFIABLE

result, but if all the clauses satisfy and are removed then the condition in line 2

would happen and return the SATISFIABLE result.

In line 4 the procedure chooses one variable for splitting. Line 5 selects a

truth value (true or false). In the next instruction, this value determines which

branch should be investigated first. The splitting step (line 6) removes one variable

and consequently a number of clauses are removed. Two smaller CNF formulas

would be generated, out of which at least one must be satisfiable to make the

original formula satisfiable. We see that there are two important decision points in

the algorithm. The first one is choosing the next variable to assign a value (line 4),

second one is the next split to investigate (which is determined in line 5 by choosing

the truth value for the chosen variable).

The basic DPLL algorithm, in the worst case, is in the order of 2n, where n is

the number of variables. There are improved versions, for example, the deterministic

local search method of (16), that can solve random 3-SAT instances in the expected

runtime of O(1.481)n. This is a significant improvement over O(2n); for example,

instances with 60 variables can be solved in approximately 1010 steps, instead of

1018 (which may not be tractable). The study of improved algorithms is a practical

way to work around the difficulty of solving NP-hard problems by solving small to

medium-sized instances provably quickly. The main efforts to improve the DPLL

algorithm in recent solvers are:

• Clever selection of the branching/splitting variable.

• Clever selection of the next branch to examine.

• Utilisation of efficient data structures.

• Profit-making from local search and learning.
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6.1.2 The DPLL Algorithm for QBF:

This method (also known as ”Semantic Tree Approach for deciding QBF”) is very

similar to the above mentioned DPLL algorithm. It splits the problem of deciding

a QBF of the form Qx Φ into two subproblems Φ[x = 1] and Φ[x = 0] ( assignment

of x respectively with true or false), and the following rules:

• ∃x Φ is valid iff Φ[x = 1] is valid or Φ[x = 0] is valid.

• ∀x Φ is valid iff Φ[x = 1] is valid and Φ[x = 0] is valid.

Figure 6.2 displays the pseudo code of this algorithm, which we call it QDPLL.

Boolean QDPLL( Prenex-CNF F )

{

1 F = Simplify F using simplification rules; // Unit_Res., ...

2 if (F == empty_clause) return TRUE; // SATISFIABLE

3 if (F includes empty_clause) return FALSE; // UNSATISFIABLE

4 x = choose one of the variables from

the outermost quantifier-block using Heuristic A;

// Very few freedom in choosing variables.

5 v = choose a truth value using Heuristic B;

6 Fa = F[x=v]; Fb = F[x=not(v)];

7 Solution=QDPLL(Fa);

8 if (Solution==TRUE and Existential_Literal(x) ) return TRUE;

9 if (Solution==FALSE and Universal_Literal(x) ) return FALSE;

10 return QDPLL(Fb);

}

Figure 6.2: The sematic tree approach for QBFs.

The differences between QDPLL (for QBFs) and the DPLL algorithm (for propo-

sitional satisfiability) can be enumerated as follows:

1. In Unit-Resolution step (a simplification in line 1), if a universally quantified

variable is found to be a unit clause then the procedure can immediately

conclude the UNSAT result and terminate.
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2. A literal is called monotone or mono literal if its complementary literal does

not appear in the formula. In the Mono-Reduction step (another simplification

of line 1), if any universally quantified variable is found to be a mono-literal,

then it can be removed from all the clauses (rather than removing the clauses,

as it applies to existentially quantified mono literals). The Mono-Reduction

step can result in new unit clauses. Therefore the procedure must continue

line 1 as long as new simplifications are possible.

3. In choosing the splitting variable (line 4), there is much less freedom than

that of DPLL for propositional satisfiability. In fact, the sequence of the

quantifier-blocks must be respected exactly in the same order as they ap-

pear in the prefix. The procedure is only allowed to choose any order for

the variables which appear in a quantifier-block. As an example in the QBF:

∀x1∀x2∀x3∃y1∃y2∃y3∀z1∀z2∀z3φ, all xi must be assigned before any assign-

ment for any yj takes place, similarly, all yj must be assigned before any

assignment for any zk takes place. On the other hand, we are allowed to

consider any order when we are processing the variables of for example the x

block.

4. After solving one of the branches, even if the result is true (line 7-10), it could

be necessary to solve the other branch as well. Since universal variables are

allowed to appear in QBFs, the false result (line 9) for one of the branches

can signify the UNSAT result and terminate the procedure without checking

the other branch.

From another point of view, this method searches the solution in a tree of

variable assignments. Figure 6.3 displays a semantic tree for:

Φ = ∃y1∀x∃y2∃y3(C1 ∧ C2 ∧ C3 ∧ C4),where :

C1 = (¬y1 ∨ x ∨ ¬y2), C2 = (y2 ∨ ¬y3), C3 = (y2 ∨ y3), and C4 = (y1 ∨ x ∨ ¬y2).
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Figure 6.3: A semantic tree proof for the falsity of the above example.

We can follow the tree and realize that Φ is invalid. A very interesting

point can be easily seen in the tree. It is the duplication problem in the semantic

tree method, namely, the same subproblem can appear two or more times during

the search procedure. In a big QBF this situation can happen frequently and in

different levels. The superiority of ZQSAT, is its possibility to detect and avoid

solving such duplications separately.

Some other differences between SAT and QSAT

We enumerated some important similarities and differences between SAT and QSAT

problems through displaying and comparing the DPLL and the QDPLL procedures.

Here we enumerate some other differences (53) which could not be seen in the pseudo

codes.

1. Lack of local search: The technique of ”local search” is used in some success-

ful SAT solvers. Considering QBF as a two-player game, where competitors

take turn in setting values to variables, it appears difficult or even impossible

to model a greedy local search method.
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2. Lack of autarkies: The concept of autarky has been used in a number of SAT

algorithms. An assignment to some variables V = {vi1, ..., vik} is autarky if

every clause containing a vij is satisfied by the assignment. This is nice because

if an assignment of V is autarky, then while preserving satisfiability, we may

remove all of the clauses containing one or more vij. While this property has

been beneficial for SAT, it does not seem to be applicable with QBFs.

3. Deficient Q-resolution: Q-resolution (11) which is an extension of the well-

known resolution proof method, is a sound and complete proof system for

QBFs. Several improved algorithms for SAT crucially depend on resolution.

Q-resolution is not as useful as the resolution for propositional satisfiability.

6.2 ZQSAT: A ZDD-based algorithm for deciding QBFs

ZQSAT is the name we used for our QSAT solver. There are three major points

which are specific to our algorithm:

1. Embedding memoization to overcome the mentioned duplication problem (in

order to avoid solving the same subproblem repeatedly).

2. Using ZDDs to represent the QBF matrix (the formula clauses). (We adopted

this idea form (14; 1) then established the specific rules suitable for QBF

evaluation).

3. Accepting Prenex-NNF in addition to Prenex-CNF formulas. We will show

how this possibility can be considerably useful.

6.2.1 Embedding Memoization to QDPLL

We embedded memoization to the mentioned QDPLL algorithm to overcome the du-

plication problem. Figure 6.4 displays the pseudocode for MQDPLL (which stands
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for our ’DPLL for QBF, strengthened with Memoization’) procedure.

Boolean MQDPLL( Prenex-CNF F )

{

1 if ( F is Primitive or AlreadySolved ) return Solution;

2 S = Simplify F by repeated Unit-Resolution, Removal-of-

Subsumed-Clauses and possible MonoLiteral-Reductions;

3 if ( S is Primitive or AlreadySolved )

{Add F along with the Solution to the SolvedTable;

return Solution; }

4 x = choose one of the variables from

the outermost quantifier-set using Heuristic A;

5 v = choose a truth value using Heuristic B;

6 Fa = S[x=v]; Fb = S[x=not(v)];

7 Solution=MQDPLL(Fa);

8 if (Fa==Fb) or

(Solution==TRUE and Existential-Literal(x) ) or

(Solution==FALSE and Univarsal-Literal(x) )

{Add F along with the Solution to SolvedTable;

return Solution; }

9 Solution=MQDPLL(Fb);

10 Add Fb along with the Solution to SolvedTable;

return Solution;

}

Figure 6.4: MQDPLL: Our ’DPLL with Memoization’ procedure.

MQDPLL is different from QDPLL in the following aspects: Firstly, it

benefits from a memoization strategy (dynamic programming tabulation method)

to store and reuse the results of already solved subproblems (lines 1, 3, 8, 10 in

above pseudocode). Secondly, the situation where both subfunctions fa and fb are

equal can be detected and the subproblem would be solved only once (line 7,8).

Storing all already solved subproblems and detecting the equality of two

subproblems (functions) is usually very expensive. We managed to overcome these

difficulties thanks to ZDD, holding the formula. This data structure let us to store

the QBF’s matrix very efficiently and allowed us to store every subfunction created
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in the splitting step or obtained after the simplification operations, with no or very

few overheads (see Figure 6.6). Since ZDD is a canonical representation of a func-

tion, the equality of two functions can be linearly decided, in many implementations

with only one pointer comparison.

6.2.2 Using ZDD to represent a CNF formula

A ZDD can be used to represent a set of subsets. Since each propositional CNF

formula φ can be represented as a set of subsets of literals [φ] we can represent a

CNF formula by means of a ZDD (see Figure 6.5).

• ZDDs are very good in representing
sets of subsets or a CNF Boolean for-
mula.

• Collection of subsets:
S = {{a, c}, {b, c}, {c}}

• or the CNF formula:
F = (a ∨ c) ∧ (b ∨ c) ∧ (c)

Figure 6.5: A ZDD representing a set of sets
and a boolean formula in CNF.

In order to represent a set of clauses, we assign two successive ZDD indices

to each variable, one index for positive and the next for its complemented form (14).

Figure 6.6 shows how this idea works for a small CNF formula (1). In such a ZDD,

each propositional literal l is represented by a ZDD variable vl, and a set of clauses

is represented by the following rules:

• The empty clause is represented by the terminal node 1.

• The empty set is represented by the terminal node 0.
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a

-a

b b

-b

cc c

-c -c

0

d

1

d

-d

S = { (a,b,-c), (a,b,c), (a,c,d), (-a,b,-c),
                   (-a,c,-d), (-a,c,d), (-b,-c,-d), (-b,-c,d) }

{ (-a,b,-c), (-a,c,-d), (-a,c,d),
 (-b,-c,-d), (-b,-c,d) }

{(b,c), (b,-c),(c,d) } { (-b,-c,d), (-b,-c,-d) }

{ (c), (-c) }

Figure 6.6: ZDD encoding of a CNF formula.

• Given a set C of clauses and a literal l whose ZDD variable vl is lowest in a

given variable order, we can split C into two subsets: Cl = {c : c ∈ C, l ∈ c}
and C ′ = C − Cl. Given ZDDs representing C ′′ = {c : c ∨ l ∈ Cl} and C ′, a

ZDD representing C would be rooted at vl and have ZDDs for C ′′ and C ′ as

its left and right children.

In ZDDs (like BDDs), the variable order can considerably affect the shape

and size of the resulting graph. As we pointed out earlier, in evaluating QBFs, the

variable selection is strongly restricted. In general the order of the quantifier-blocks
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of the prefix must be respected. In representing a QBF Φ = ∃x1 . . .∀xnφ using

ZDDs, we consider the extended literal order x1 ≤ ¬x1 ≤ . . . ≤ xn ≤ ¬xn. The

following theorem gives a good estimate for the size of such a ZDD.

Theorem 2 Let f be a formula in conjunctive normal form. The number of nodes

of the ZDD Γ[f ] encoding the set of clauses of f is always at most equal to the total

number of literals of f , i.e. |Γ[f ]| ≤ size(f).

Proof 1 Let f be in the form
∧

i=1,...,n(
∨

j=1,...,mi
lij), where lij is a literal. In ZDD

Γf each path from the root to the 1-terminal represents a clause of f . Therefore,

Γ[f ] contains n paths to the 1-terminal (if the clauses of f are pairwise disjunct).

The path, representing the i-th clause of f includes mi then-arcs, for each literal one

then-arc. Therefore the ZDD Γ[f ] has at most Σn
i=1mi then-arcs (some arcs could be

shared by clauses) therefore at most Σn
i=1mi = size(f) nodes.

When ZDDs are used to represent a set of clauses in the mentioned form,

we can benefit from some additional reduction rules which normally cannot be used

with ZDDs. Considering P (x, Γ1, Γ2) as the ZDD having x in the root and Γ1, Γ2

as its ”then” and ”else” children, these reduction rules are:

1. Elimination of subsumed clauses: Any node of the form P (x, Γ, Γ) can

be eliminated. In other words, if both outgoing arcs of a node v point to the

same node w, then v can be eliminated. In addition, any node of the form

P (x, Γ1, Γ2) can be replaced by P (x, Γ1, Γ2 \ Γ1), where Γ2 \ Γ1 stands for the

set of clauses in Γ2 which are not subsumed by clauses appearing in Γ1.

2. Elimination of tautologies: A ZDD of the form P (x, P (¬x, Γ1, Γ2), Γ3) can

be replaced by P (x, Γ2, Γ3).
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6.2.3 Benefits of using ZDDs along with our MQDPLL-Algorithm

In Figure 6.6, we can also see another interesting characteristic of the ZDD, that

is, their possibility of sharing nodes and subgraphs. In fact each node in a ZDD

stands for a unique function. In many situations, this property lets ZDDs to hold

new (sub)functions by producing a few or no additional nodes.

In our search procedure, after the simplification operations and after the

splitting step, new functions arises. We noticed that many of these functions are

the same, therefore we let ZQSAT to retain all already produced functions along

with their solutions, to prevent solving the same functions repeatedly(Memoization).

This idea also helped ZQSAT to generate exponentially fewer function calls. We

mentioned earlier, this idea is embedding dynamic programming (memoization with

tabulation) into the DPLL algorithm. In fact, after inserting this possibility, ZQSAT

managed to solve the instances known to be hard for DPLL-based methods very

fast (see Table 6.1).

Considering ZDDs as the data structure holding the formula affects the

search algorithm and its complexity considerably. Operations like detecting unit

clauses, detecting mono variables, performing unit/mono resolution and detecting

SAT/UNSAT conditions strongly depend on the data structure holding the formula.

Here we give some rules concerning these operations. These rules can be concluded

from the basic properties known for QBFs, form some lemmas which are presented

in (12) and from the properties of representing CNF clauses in a ZDD. Performing

these operations with other data structures is often much slower. Reminding that

Minato (29) has presented efficient algorithms for set operations on ZDDs. His algo-

rithms are mostly based on dynamic programming and efficient caching techniques.

We used them (through the CUDD package) in implementation of ZQSAT.
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In the following rules we suppose that we have read the clauses and repre-

sented them in a ZDD Γ. The rules are applicable when we are examining satisfia-

bility of Γ:

Rule 1 (Finding all unit clauses): A unit clause is a clause with exactly one

literal. If the literal is universally quantified, then that clause and subsequently the

QBF is unsatisfiable. If the literal is existentially quantified, then the truth value

of the literal can be determined uniquely. Let Γ = P (l1, Γ1, Γ2) be a ZDD where l1

is the topmost literal in the order, then the literal l2 is a unit clause in Γ iff:

l2 = l1 and Γ1 contains the empty set. In other words, the literal appearing in

the root of the ZDD is a unit clause if moving to its Then-child followed by

moving always toward the Else-child leads us to the 1-terminal.

l2 ∈ var(Γ2) and l2 is a unit clause in Γ2. Note: if l2 ∈ var(Γ1) then it can not be

a unit clause.

Finding all unit clauses can be accomplished in at most (2n−1)
2

steps, where n is

number of variables in the set of clauses represented by Γ.

Rule 2 (Trivial UNSAT): If x is a unit-clause and it is universally quantified,

then the QBF formula is unsatisfiable. This operation needs only one comparison

instruction and can be done during the step of finding the unit clauses.

Rule 3 (Trivial UNSAT): If x is an existentially quantified unit-clause and its

complementary literal is also a unit clause, then the QBF formula is unsatisfiable.

This operation can be performed during the identification of unit clauses.

Rule 4 (Variable assignment/ Splitting operation): In a ZDD Γ = (x, Γ1, Γ2),

considering x to be true, simplifies Γ to Union(Then(Γ2),Else(Γ2)). Similarly

considering x to be false, simplifies Γ to Union(Γ1,Else(Γ2)). This operation is

quadratic in the size of the ZDD.
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Rule 5 (Propagation of a unit clause): If x is a unit clause and located in

the root node then Γ it can be simplified to Γ2. If Γ2 has complement of x at its

root then the result will be: Union(Then(Γ2),Else(Γ2)). On the other hand, if x

is a unit clause but not located in the root node then, first we must remove all

the clauses including x from Γ to obtain Γ′ = Subset0 (Γ, x). Afterwards we must

remove the complementary literal of x, denoted by x from Γ′. This operation can

be done by: Γ′′ = Union(Subset1 (Γ′, x), Subset0 (Γ′, x)).

Rule 6 (Mono Variables): If l is a mono-literal and existentially quantified, then

we can replace it by true, which simplifies Γ to Γ2, but if l is universally quantified

we must replace it by false, which simplifies Γ to Union(Γ1, Γ2).

UnitMonoReduction( FormulaZDD F )

{

do{

do{

1.Find all Unit-Clauses in F, but if any Universally

Quantified Literal found to be Unit return UNSAT,

also if a literal is Unit and its complement is also

Unit return UNSAT;

2.//Reduce F for all Literals found to be Unit;

for all Indices found to be Unit

if ( Index is in the root of F ) F=Else(F);

else{ F=RemoveClauses(F,Index);

F=RemoveLiteral(F,Not(Index));}

}

while(more iterations needed);

3. while( Index of the root node is a mono Literal)

if (the Index is universally quantified) F=Else(F);

else F=Union(Else(F),Then(F));

}

while(more simplifications are possible);

}

Figure 6.7: Unit resolution and mono literal reductions.
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Rule 7 (Detecting SAT/UNSAT): If the ZDD reduces to the 1-terminal then

the QBF is SAT. Similarly, if the ZDD reduces to 0-terminal then the QBF is

UNSAT. This operation needs only one comparison instruction.

These rules are the basic stones in implementing the operations needed

in ZQSAT, specially the unit resolution and mono literal reduction in MQDPLL

procedure. Figure 6.7 displays the pseudocode of the respective procedure. Line

1 is responsible for detecting all existing unit clauses, line 2 performs the unit

resolutions, where line 3 stands for finding and performing mono literal reductions.

We believe, using ZDDs along with benefiting from the above rules is one of the

reasons for the success of ZQSAT.

6.2.4 Representing a Boolean formula in NNF by a ZDD

In representing a set of subsets of literals given by a CNF formula like:

f = (a ∨ ¬b ∨ ¬c) ∧ (a ∨ ¬c ∨ d) ∧ (b) ∧ (a ∨ b ∨ c)

First we make ZDDs representing the first two clauses. Then we use ”zddUnion”

operation to combine them. The result of this operation, as shown in Figure 6.8, is

the ZDD holding: [f3] = [f1] ∧ [f2] = {{a,¬b,¬c}, {a,¬c, d}}.

Figure 6.8: ZDD representations of two clauses and their conjunction.
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After that we make the ZDD representation of the third clause and combine it with

the result of the previous step. We do the same operations for all clauses to obtain

the ZDD representing the whole function. In this approach the ZDDs representing

individual clauses are in the same shape (also can be seen in Figure 6.8).

In representing an NNF formula in a ZDD we cannot follow the above

procedure, but since in NNF, negations appear only in front of variables and only

∧ and ∨ operations can appear, parsing and making the ZDD representing the

formulas can be performed efficiently.

Figure 6.9: Making the ZDD representing a simple NNF formula.

Initially, according to the number of variables, we make individual ZDDs

for each of the literals (positive or complemented form of a variable) which may

probably appear in the formula. After that we parse the formula, which can be

done in different ways. The result would be something like a parse tree holding

literals in leaf nodes as well as ∧ and ∨ operators in internal nodes. The parse

tree shows how the ZDDs representing literals or set of clauses of sub-formulas must
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be combined to obtain the ZDD representing the whole formula. Since a function

is interpreted as a set of clauses, the operator ∧ is emulated by ”zddUnion” and

”zddProduct” emulates ∨ . Figure 6.9 shows how this idea works for the small NNF

formula, f = (a ∨ (¬b ∧ c)) ∧ ¬a.

We can see another interesting point in Figure 6.9. It is an implicit con-

version property which comes inherently with the procedure. In other words, from

the ZDD representing f1 = (a ∨ (¬b ∧ c)) we can easily give the CNF equivalent

of f1. The ZDD representation of the set of clauses of a NNF formula f is denoted

by Γ[f ].

6.2.5 Accepting NNF formulas can be Exponentially Beneficial

Transforming a QBF into prenex-CNF can be done by application of distributivity

laws which can increase the size of the formula exponentially, but transforming any

QBF into prenex-NNF can be done efficiently. Here we show how representation of

a formula in NNF by a ZDD is beneficial compared to restricting ourselves to CNF

formulas. Since the prenex-CNF and prenex-NNF differ only in their propositional

part, we focus our attention on these parts. We define the size of an NNF-formula

g, denoted by size(g), to be the number of literals occurring in g. In our definition,

if a literal occurs more than once, then each occurrence will be counted.

Theorem 3 1) There are Boolean functions f : {0, 1}n → {0, 1} in NNF with

linear size(f) = n whose logically equivalent minimal CNF representation f ′ are of

exponential size size(f ′) = 2
n
2 · n

2
.

2) f can be represented by ZDDs of linear size n and there exists a synthesis

algorithm for these ZDDs such that each ZDD occurring during the synthesis process

of f would never be larger than n.
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Proof: Consider f = (l1 ∧ l2 ∧ . . . ∧ lk) ∨ (lk+1 ∧ . . . ∧ l2k) ∨ . . . ∨ (lm(k−1)+1 ∧ . . . ∧
lmk) be a Boolean formula in disjunction normal form (disjunction of conjunctions of

literals - therefore NNF), we will suppose f to be defined over n Boolean variables,

holding m terms and each term include k literals. Also we will suppose that any

variable appears only once (positive or negated) in the formula. Therefore, the size

size(f) of function f would be equal to n = m × k. Below, Lemma 1 gives the

function f ′ ≡ f in CNF. If each term of f consists of exactly 2 literals, namely

k = 2, then size(f ′) = 2
n
2 · n

2
. On the other hand from Lemma 2 we get a ZDD

representation of f , Γ[f ] with |Γ[f ]| = n. The proof of Lemma 2 describes a synthesis

algorithm in which all the ZDDs occurring during the synthesis of Γ[f ] would never

be larger than n.

lemma 1: Let f : {0, 1}n → {0, 1} be a Boolean function in disjunction normal form

(DNF). Suppose that f has n variables, where each variable - positive or negated

- appears exactly one time in the function f , and that f consists of m terms each

with k literals, i.e. size(f) = m · k. Then the logically equivalent minimal CNF-

representation f ′ : {0, 1}n → {0, 1} of f has km clauses where each clause includes

m literals. Therefore the size of f ′ is km ·m.

Proof: Proof by induction on the number m of clauses.

• m = 1: Then f = (l1 ∧ l2 ∧ . . . ∧ lk). In this case f ′ = (l1) ∧ (l2) ∧ . . . ∧ (lk)

would be the CNF equivalent of f . In this case the size of f ′ is k, where we

have k clauses with exactly one literal.

• m 7→ m + 1: Let f = g ∨ (l(m+1)1 ∧ . . . ∧ l(m+1)k), where g = (l11 ∧ . . . ∧
l1k) ∨ . . . ∨ (lm1 ∧ . . . ∧ lmk). By induction hypothesis there exists a function

g′ ≡ g in CNF where size(g′) = kmm and g′ has km clauses where each clause

includes m literals. Considering f1 = g′ ∨ (l(m+1)1 ∧ . . . ∧ l(m+1)k), to obtain

f ′ from f1, we must distribute (l(m+1)1 ∧ . . . ∧ l(m+1)k) over g′, through which

the number of clauses is increased by the factor k, i.e. g′ includes km+1 clauses
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(all literals l(m+1)j, 1 ≤ j ≤ k, are pairwise disjoint). The size of each clause

in f ′ is increased by one additional literal and would be m + 1. Since each

literal appears uniquely in f , none of the clause in f ′ can be removed by

subsumption, also no literal can be removed from any clause. Therefore the

size of f ′ is km+1 · (m + 1).

lemma 2: Let f be a Boolean function with conditions of Lemma 1. Let the

variable order π of the ZDD be the same as the order in which literals appear in f ,

then the size of the ZDD representing f , as well as all ZDDs occurring during the

synthesis of the ZDD representing f will never be larger than n.

Proof: Let t = (l1 ∧ l2 ∧ . . . ∧ lk) be a term, where li 6= lj for i, j ∈ {1, . . . , k}
and i 6= j. The ZDD Γ[t] representing t is of the form of the ZDD for f789 in

Figure 6.10. The size of Γ[t] is k. For each literal li there is a node in Γ[t] labeled

by li whose then-arc points to the 1-terminal and whose else-arc points to the node

labeled by lj. We suppose that li appears before lj in the variable order and they

are adjacent. The else-arc of the last node points to the 0-terminal. Now if Γ[g] is

the ZDD representation of the first m′ < m terms, and Γ[t] is the representation

of the next term, then the disjunction of Γ[g] and Γ[t] can be obtained as follows:

we point each then-arc of Γ[g] leading to the 1-terminal to the root node of Γ[t],

then consider the root node of Γ[g] to be the root node of the disjunction. The size

of the ZDD-representation of the disjunction is given by |Γ[g]| + |Γ[f ]|. Figure 6.10

illustrates this idea.

We need to mention that a QBF Φ can also be transformed into prenex-

CNF by ”structure preserving normal form transformation”, where time and space

complexity of the transformation is quadratic, but it produces a lot of new variables.

Therefore the evaluation of the obtained formula could be increased substantially.



84

Figure 6.10: The ZDD representation of the function
f123456 = (l1 ∧ l2 ∧ l3) ∨ (l4 ∧ l5 ∧ l6), the term f789 = (l7 ∧ l8 ∧ l9), and the
function f = f123456 ∨ f789.

6.2.6 ZQSAT: Our MQDPLL, ZDD based QSAT solver

ZQSAT is nothing more than putting the mentioned ideas together. Figure 6.11 dis-

plays its pseudocode. It is based on our MQDPLL algorithm (the DPLL algorithm

strengthened by memoization and ...), representing the QBF matrix in a ZDD and

applying mentioned rules to perform related operations. Q-DIMACS is a suggested

format for prenex-CNF. Almost all QBF benchmarks are presented in this format,

therefore we also considered this input format in our implementation. In order to

accept prenex-NNF QBFs, we introduced and used a similar format.

First ZQSAT reads and stores the prefix of the QBF in an array. This pre-

fix holds the quantifiers of the QBF variables, then according to the input format

(prenex-CNF or prenex-NNF), it reads the CNF formula clauses or the NNF for-

mula. After that, it makes a ZDD representing the propositional part of the QBF
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formula. The variable order of this ZDD is the same as the variable order in the

prefix. We assign two successive indices to each variable, the first for its positive

and the second for its complimented form. This is exactly the same as what we saw

in Figure 6.6.

main() /*ZQSAT*/

{

Get QBF Preamble to find input format, Nr. of Vars,...;

Get QBF Prefix into an array;

if ( Input is in prenex-CNF )

Get clauses and represent them in a ZDD;

else

Get NNf formula and represent it in a ZDD;

Result=MQDPLL(ZDD);

Output the Result;

}

Figure 6.11: Pseudocode of ZQSAT.

6.3 Experimental Results

We evaluated our algorithm in two directions. It was evaluated firstly over different

known benchmarks presented in QBFLIB (QBF satisfiability LIBrary) (25) and

secondly over instances of the ’sequential depth of circuits’ problem represented in

NNF. We ran ZQSAT along with some of the best existing (47) QBF-Solvers such as

QuBE (26), Decide (48), Semprop (36) and QSolve (22). The platform was a Linux

system on a 3000-Mhz, 2G-RAM desktop computer. We also considered 1G-RAM

limit which was never totally used by any of the above programs, and a 900 second

timeout which was enough for most solvers to solve many of benchmark problems.

The results we obtained can be summarized as follows:
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1. Over QBFLIB benchmarks (Prenex-CNF)

ZQSAT is very efficient and in many cases better than the state-of-the-art

QSAT solvers. It solves many instances which are known hard for DPLL

(semantic-tree) method, in a small fraction of a second. Like almost all other

QSAT solvers it is inefficient in solving random QBFs.

2. Over sequential depth of circuits (Prenex-NNF)

We considered the ’sequential depth of circuits’ problem and made instances in

Prenex-NNF. ZQSAT was able to solve them much faster than corresponding

prenex-CNF instances.

The following subsections give detailed information on the above findings.

6.3.1 Evaluating ZQSAT over standard prenex-CNF benchmarks

Structured formulas: Most structured formulas come form real word problems.

We used the benchmarks of Letz (25) and Rintanen (48). The benchmarks of

Letz include instances known to be hard for DPLL (tree-based) QBF solvers. In

a real problem there are always some relations between its components. These

relations remain in some form in their corresponding QBF representation. This

feature causes similar subproblems to be generated (at the beginning and during

the search step). Also assignment of values to variables causes sharp simplification

on generated subformulas. Therefore our Memoization idea helps very much in

these circumstances. Table 6.1 shows how ZQSAT is faster than other recent QBF

solvers in evaluating these benchmark problems.

Next, we considered the benchmarks of Rintanen, where some problems

from AI planning and other structured formulas are included. They include some

instances form blocks world problem, Towers of Hanoi, long chains of implications,

as well as the bw-large.a and bw-large.b blocks world problems. The experimental
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problem QuBE
tree-exa- ZQSAT BJ Rel Decide Semprop QSolve

10-10 < .01 < .01 < .01 < .01 < .01 < .01
10-15 < .01 < .01 < .01 0.06 0.01 < .01
10-20 < .01 < .01 0.01 1.89 0.27 < .01
10-25 < .01 0.01 0.07 63.95 8.51 < .01
10-30 < .01 0.11 0.75 (?) 273.28 0.03
2-10 < .01 < .01 < .01 < .01 < .01 < .01
2-15 < .01 < .01 < .01 0.01 < .01 < .01
2-20 < .01 0.01 < .01 0.1 0.01 < .01
2-25 < .01 0.12 < .01 1.16 0.1 0.04
2-30 < .01 1.29 < .01 12.9 1.06 0.53
2-35 < .01 14.42 < .01 144.16 11.98 5.85
2-40 < .01 158.41 < .01 (?) 130.19 65.73
2-45 < .01 (?) < .01 (?) (?) 729.7
2-50 < .01 (?) < .01 (?) (?) (?)
(?): Not solved in 900 seconds

Table 6.1: Runtimes of different QBF solvers over a number of QBFs. The instances
are known to be hard for tree-based QBF solvers.

results for these benchmarks are presented in Table 6.2 and Table 6.3. These tables

shows that ZQSAT works well on most instances. We are comparable and in many

cases better than other solvers. Here we mention that ’Decide’ is specially designed

to work efficiently for planning instances. In Table 6.2 we see that our implemen-

tation could not solve any instance of blocks-world. We observed that MQDPLL

benefited just a few times from the already solved subformulas. In other words,

our pruning method was not successful for this problem. In fact this is a matter of

pruning strategy, different pruning strategies behave differently facing various sets

of QBF benchmarks.

Random formulas: For random formulas we used the benchmarks of Massimo

Narizzano (25). ZQSAT is inefficient in big unstructured instances. ZDDs are very

good in representing sets of subsets, but they are less useful, if the information

is unstructured. ZDDs explore and use the relation between the set of subsets.

Therefore if there is no relation between the subsets (clauses) then it could not play

its role truly. Fortunately in real word problems there are always some connections

between the problem components. In our effort to investigate why ZQSAT is slow

on the given instances, we found that in these cases the already solved subformulas
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QuBE
problem ZQSAT BJ Rel Decide Semprop QSolve

B*3i.4.4 (?) (?) 0.02 0.02 (?) (?)
B*3i.5.3 (?) (?) 516.67 10.51 (?) (?)
B*3i.5.4 (?) (?) (?) 1.84 (?) (?)
B*3ii.4.3 (?) 0.81 0.01 0.01 2.25 (?)
B*3ii.5.2 (?) 23.25 0.41 0.02 65.76 (?)
B*3ii.5.3 (?) (?) 33.12 0.36 160.93 (?)
B*3iii.4 (?) 0.25 0.01 < .01 12 (?)
B*3iii.5 (?) (?) 0.48 0.1 0.53 (?)
B*4i.6.4 (?) (?) 264.76 1.28 (?) (?)
B*4ii.6.3 (?) (?) 27.64 1.1 (?) (?)
B*4ii.7.2 (?) (?) (?) 2.28 (?) (?)
B*4iii.6 (?) (?) 13.62 0.59 (?) (?)
B*4iii.7 (?) (?) (?) 67.28 (?) (?)
C*12v.13 2.66 0.12 1.41 0.19 0.06 1.96
C*13v.14 3.76 0.26 3.44 0.38 0.13 6.52
C*4v.15 5.27 0.55 9.17 0.77 0.27 21.98
C*15v.16 7.08 1.22 24.21 1.62 0.54 62.53
C*16v.17 9.43 3.09 60.68 3.31 1.14 205.72
C*17v.18 12.49 5.86 148.58 6.9 2.43 633.44
C*18v.19 16.2 12.87 352.21 14.4 5.12 (?)
C*19v.20 21.01 31.93 840.26 30.29 10.59 (?)
C*20v.21 26.69 91.23 (?) 61.93 22.24 (?)
C*21v.22 33.17 195.12 (?) 129.24 46.61 (?)
C*22v.23 40.8 494.26 (?) 272.24 98.53 (?)
C*23v.24 50.24 (?) (?) 571.12 202.3 (?)
i*02 < .01 < .01 < .01 < .01 < .01 < .01
(?): Not solved in 900 seconds

Table 6.2: Experimental results for some instances in benchmarks of Rintanen. Here
ZQSAT is often slower.

were never or rarely used again, also the mono and unit resolution functions could

not reduce the size of the (sub)formula noticeably.

The variable order: Size of a ZDD depends on the chosen variable order. As

mentioned in Section 6.2, we used the variable order given in the prefix of the QBF

as the variable order for the ZDD. In QBF evaluation we are not allowed to choose

any variable order, but at the same time we are allowed to change the variable

order in any quantifier-block. This fact encouraged us to test the allowed variable

re-orderings in our method. We implemented the sifting algorithm of Rudell (50;

42) to be suitable for QBFs. We had to consider some restrictions because:

1. each variable of the QBF is in accordance with two ZDD indices which are

adjacent (these couples should not be separated).
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QuBE
problem ZQSAT BJ Rel Decide Semprop QSolve

i*02 < .01 < .01 < .01 < .01 < .01 < .01
i*04 < .01 < .01 < .01 < .01 < .01 < .01
i*06 < .01 < .01 < .01 0.01 < .01 < .01
i*08 < .01 < .01 < .01 0.14 0.02 0.01
i*10 < .01 0.01 < .01 1.12 0.14 0.07
i*12 < .01 0.04 < .01 8.69 1.04 0.5
i*14 < .01 0.18 < .01 65.27 7.74 3.69
i*16 < .01 0.74 < .01 482.97 56.88 27.04
i*18 < .01 3.12 < .01 (?) 423.41 200.82
i*20 < .01 13.06 < .01 (?) (?) (?)
l*A0 0.06 < .01 < .01 < .01 (?) 0.01
l*A1 (?) 50.28 5.79 0.67 3.68 (?)
l*B0 0.2 < .01 < .01 0.01 (?) 0.01
l*B1 (?) 407.65 14.62 3.25 13.91 (?)
T*10.1.iv.20 2.65 (?) (?) 0.58 (?) (?)
T*16.1.iv.32 26.08 (?) (?) 7.38 (?) (?)
T*2.1.iv.3 < .01 < .01 < .01 < .01 < .01 < .01
T*2.1.iv.4 < .01 < .01 < .01 < .01 < .01 < .01
T*6.1.iv.11 (?) 2.1 205.75 4.78 2.25 3.66
T*6.1.iv.12 0.24 0.79 29.44 0.04 0.4 2.65
T*7.1.iv.13 (?) 37.45 (?) 63.87 39.7 134.02
T*7.1.iv.14 0.5 12.25 521.59 0.09 5.22 64.17
(?): Not solved in 900 seconds

Table 6.3: Experimental results for some instances in benchmarks of Rintanen. Here
ZQSAT is often faster.

2. the algorithm can swap two variables if and only if they are in the same

quantifier-block;

3. the sequence of quantifier-blocks should not be changed.

benchm.-sets Nodes [avg] Sifting [avg] improve [%]

2QBF-5CNF-100 5571 5513 1
3QBF-5CNF-50 2951 2920 0.7
4QBF-5CNF-50 3283 3263 0.6
Letz 272.8 272.8 0
Scholl, Becker 12004.7 11307.3 5.8
Pan 68563.5 68178.8 0.6

Table 6.4: Number of ZDD nodes before and after applying the sifting algorithm.

Table 6.4 gives a summary of our experimental results concerning variable

reordering. We considered instances from Narizzano, Letz, Scholl-Becker, and Pan

from the QBFLIB (25) site. In the table we have only included the average number
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of nodes needed to represent any instance before and after applying the sifting

algorithm. Also, we applied the sifting algorithm only to the representation of the

initial formula. So far we did not apply it over all ZDDs obtaining during the search

step.

6.3.2 Evaluating ZQSAT over instances in Prenex-NNF

In order to examine ZQSAT for prenex-NNF formulas, we needed a set of bench-

marks given in prenex-CNF as well as in prenex-NNF, concerning the same prob-

lem(s). For this purpose we considered the ”Sequential depth of circuits”, which is

an important problem in formal hardware verification.

Bounded model checking (BMC) (3) is a branch of model checking which

verifies safety and liveness properties of systems by SAT/QSAT solvers. In BMC,

in order to examine the safety or liveness property of a system, the property is

transformed into a formula, then one checks satisfiability of the obtained formula.

The formula is satisfiable if and only if there exists a path sinking in a state that

violates the considered property.

Mneimneh and Sakallah (45) have addressed ”sequential depth of a se-

quential machine” problem by QBFs. In their work, description of the sequential

machine is as usual given by a finite-state-machine(FSM). They show how the ques-

tion, ”Does a path of the length i in the machine exist” can be expressed by a QBF.

At first the obtained QBF isn’t in any normal form. Most resent QBF-solvers

accept only prenex-CNF, therefore they require the QBF to be transformed into

prenex-CNF. We designed and implemented ZQSAT in such a way that accepts

both prenex-CNF and prenex-NNF. ZQSAT represents a prenex-NNF directly into

a ZDD then starts its common way to search the solution. Transformation of an

arbitrary QBF into its equivalent in prenex-NNF can be efficiently done and gives a

much more compact result than transforming an arbitrary QBF into prenex-CNF.



91

QBFLIB (25) provides a lot of instances of the ”sequential depth problem”

for some circuits of ISAC89. The QBFs are presented in prenex-CNF. In order to

have the same instances in prenex-NNF, Klotz (40) implemented a procedure (based

on Mneimneh and Sakallah (45)) that transforms each instance of the problem into

a QBF. The procedure gets an FSM M given in kiss-format and the depth i, then

it outputs a QBF in prenex-NNF. The obtained QBF is satisfiable iff the sequential

depth of M is at least i. We produced QBFs in prenex-NNF for a number of

LGSynth93 (37) benchmarks and solved them with ZQSAT. Let’s bear in mind,

that the instances from QBFLIB and the instances we generated, encode the same

problems for the same circuits, but there are some differences. Firstly, our encoding

results in a QBF in NNF instead of prenex-CNF. Secondly, there are differences in

the bases of the encoding method. Therefore one must be careful when comparing

the experimental results.

We investigated effectiveness of ZQSAT in accepting prenex-NNF, by run-

ning it along with some of the already mentioned QSAT solvers over the above

benchmarks. Again the platform was a Linux system on a 3000-Mhz, 2G-RAM

desktop computer. We also considered 1G-RAM limit and a 300 second timeout.

The results are reported in Table 6.5 and Table 6.6.

Circuit depth ZQSAT decide QuBE-BJ semprop

s27 2 0.02 0.07 < 0.01 < 0.01
s27 3 0.71 13.93 30.95 6.37
s27 4 18.11 171.12 (?) (?)
s27 5 63.38 (?) (?) (?)
s386 2 (?) (?) (?) (?)
s510 2 (?) (?) (?) (?)
s820 2 (?) (?) (?) (?)
(?): Not solved in 300 seconds

Table 6.5: Runtime of depth formulas in prenex-CNF on various QBF solvers.

In table 6.5 we have considered only prenex-CNF benchmarks. column 1

lists the name of the circuit, where other columns present the runtimes of different

solvers. For the big circuits all of the solvers timed out after 300 seconds and were

not able to solve the instance.
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Next we run ZQSAT over prenex-NNF, while other solvers over equivalent

benchmarks in prenex-CNF. The results are reported in Table 6.6.

Circuit depth SAT/ UN-
SAT

ZQSAT QBFLIB

s27 2 SAT < 0.01 < 0.01
s27 3 UNSAT 0.02 0.71
s27 4 UNSAT 0.04 18.11
s27 5 UNSAT 0.06 63.38
s386 2 SAT 0.14 (?)
s386 6 SAT 0.99 (?)
s386 8 UNSAT 2.04 (?)
s386 10 UNSAT 6.71 (?)
s510 2 SAT 1.19 (?)
s510 6 SAT 7.14 (?)
s510 12 SAT 22.3 (?)
s820 2 SAT 3.32 (?)
s820 6 SAT 20.78 (?)
s820 10 SAT 37.32 (?)
s820 12 UNSAT 70.4 (?)
s1488 2 SAT 3.58 (?)
s1488 6 SAT 22.08 (?)
s1488 10 SAT 70.79 (?)
(?): Not solved in 300 seconds

Table 6.6: Runtime of depth formulas in prenex-NNF on ZQSAT.

Here column 1 lists the name of the circuit, while column 2 shows the

considered depth i. The next column shows, if the circuit depth is at least i or

not. Column 4 gives the runtime in seconds for ZQSAT to solve the prenex-NNF

instance while the last column displays the runtime of the best solver on the same

instance from the QBFLIB (prenec-CNF). We can observe that ZQSAT can solve

much higher depth and much faster than other solvers.
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CHAPTER 7

Summary and Future Work

7.1 Introduction

SAT (SATisfiability of propositional Boolean formulas) is the first and prototypi-

cal problem for the class of NP-complete problems. Many computational problems

such as the constraint satisfaction problem and many problems in graph theory as

well as forms of planning can be easily formulated as instances of SAT. Theoretical

analysis has shown that some forms of reasoning such as: non-monotonic reason-

ing, reasoning about knowledge and STRIPS-like planning have a computational

complexity higher than the complexity of the SAT problem. These forms can be

formulated by quantified Boolean formulas (QBF) and can be solved as instances

of the QSAT (SATisfiability of Quantified Boolean Formulas) problem. QSAT is a

generalization of the SAT problem. QSAT is the prototypical problem for the class

of PSPACE-complete problems.

Zero-suppressed Binary decision Diagrams (for short ZBDDs or ZDDs) are

variants of BDDs (Binary decision Diagrams). While BDDs are better suited for

representing Boolean functions, ZDDs are better for representing sets of subsets.

Considering all the variables appearing in a QBF as a set, the propositional part of

the formula can be viewed as a set of subsets. This observation was the motivation

to use this data structure for implementing a new QSAT solver.
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7.2 What did we do?

We learned about BDD and its variants, specially ZDD. These are efficient data

structures in representation and manipulation of Boolean formulas and sets of sub-

sets. We also learned that QSAT is one of the important problems in computer

science with numerous applications.

After learning about the basic algorithms for the problem and the tech-

niques which are already used by the best existing solutions (QSAT solvers), we

came to a point to adopt ideas from them and invent conjectures in creating a new

algorithm for the problem. Finally we invented an algorithm which is comparable

and in some cases (for some known benchmarks) much faster than the best existing

QSAT solvers.

7.3 Why does it matter?

A QBF is an expression of the form: Q1x1 . . . QnxnΦ , where every Qi(1 ≤ i ≤ n)

is a quantifier, either existential ∃ or universal ∀; The literals x1 . . . xn are pairwise

distinct atoms; and Φ is a propositional formula in CNF on atoms x1 . . . xn. The

QSAT problem is: Given a QBF formula, is it True?

It can be shown that many scientific problems with numerous applications

can be reduced or formulated in the form of the above problem. Therefore any

progress in solving the QSAT problem, is a progress in solving a lot of important

problems. In fact, this is why there is a one million dollar prize for the famous

”P=NP?” problem, which has a strong connection to the SAT problem. We need

to mention that although there are many solutions for the SAT and QSAT problems,

almost all of them in the worst case are still exponential. Researchers are trying to

find faster solutions, or perhaps a polynomial solution for subclasses of the problem.

Finding a polynomial solution for the general form seems to be impossible.
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7.4 How did we do it?

Almost all existing QSAT solvers are based on an extended version of the well

known DPLL algorithm. They just use different data structures and heuristics to

find faster solutions. The main efforts to improve the DPLL algorithm consist of:

• Clever selection of the branching/splitting variable.

• Clever selection of the next branch to examine;

• Utilization of efficient data structures.

• Profit-making from local search and learning.

We realized and learned from some materials that ZDDs can represent boolean

formulas given in CNF (Conjunctive Normal Form) efficiently. We also learned that

one important drawback of the main algorithm is its duplication. These observations

led us to use ZDD as the data structure holding the QBF formula and to embed the

idea of memoization to the named algorithm. We implemented our algorithm using

CUDD (Colorado University Decision Diagram) package. We called it ZQSAT.

First, the experimental results showed that ZQSAT was comparable with

other existing solutions. We tried a number of other heuristics to improve our

ZQSAT or at least investigate their effect. However we discovered and showed how

ZQSAT was comparable and sometimes much faster than all other existing solutions

in solving some sets of known benchmark problems.

We improved ZQSAT to let it accept prenex-NNF (QBFs in the form of

Q1x1 . . . QnxnΦ, where Φ is a propositional formula in NNF (Negation Normal

Form). We showed and proved that this possibility can be exponentially benefi-

cial. We may summarize our contribution as:

• Using ZDDs to represent the QBF matrix. We adopted this idea and then

established the specific rules suitable for QBF evaluation.
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• Embedding memoization to overcome the duplication problem of the ”DPLL

for QBF algorithm” (to avoid solving the same subproblem repeatedly).

• Accepting Prenex-NNF in addition to Prenex-CNF formulas.

7.5 What did we learn?

What we learned from ZQSAT can summarize as follows:

• The representation of Boolean formulas by ZDDs is beneficial, since this data

structure allows the compact representation of the formula and lets us store

new (sub)formulas with no or very few additional nodes.

• Embedding memoization to the ’DPLL for QBF’ algorithm lets us avoid solv-

ing the same subproblems repeatedly which was sometimes exponentially ben-

eficial.

• Removing subsumed clauses was very useful in the simplification of the for-

mula leading to an efficiency in the speed of the search procedure.

• The transformation of a general Boolean formula into its equivalent in NNF

can be made efficiently. Nevertheless, the transformation of a general Boolean

formula into its equivalent in CNF can be made in exponential time. Therefore

accepting NNF formulas can be exponentially beneficial.

7.6 Future Work

For future work in the direction of our research we suggenst:

• Carrying out an in-depth investigation of variable ordering.

• Integrating ZQSAT with the techniques used in other solvers.

• Looking for more examples where accepting NNF formulas is beneficial.

•
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