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A task-based parallel elliptic solver for numerical relativity

with discontinuous Galerkin methods

Nils L. Vu

Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, 14476 Potsdam, Germany

Scientific abstract Elliptic partial differential equations are ubiquitous
in physics. In numerical relativity—the study of computational solutions
to the Einstein field equations of general relativity—elliptic equations
govern the initial data that seed every simulation of merging black holes
and neutron stars. In the quest to produce detailed numerical simulations
of these most cataclysmic astrophysical events in our Universe, numer-
ical relativists resort to the vast computing power offered by current
and future supercomputers. To leverage these computational resources,
numerical codes for the time evolution of general-relativistic initial value
problems are being developed with a renewed focus on parallelization
and computational efficiency. Their capability to solve elliptic problems
for accurate initial data must keep pace with the increasing detail of the
simulations, but elliptic problems are traditionally hard to parallelize
effectively.

In this thesis, I develop new numerical methods to solve elliptic partial
differential equations on computing clusters, with a focus on initial data
for orbiting black holes and neutron stars. I develop a discontinuous
Galerkin scheme for a wide range of elliptic equations, and a stack of
task-based parallel algorithms for their iterative solution. The resulting
multigrid-Schwarz preconditioned Newton-Krylov elliptic solver proves
capable of parallelizing over 200 million degrees of freedom to at least
a few thousand cores, and already solves initial data for a black hole
binary about ten times faster than the numerical relativity code SpEC.
I also demonstrate the applicability of the new elliptic solver across
physical disciplines, simulating the thermal noise in thin mirror coat-
ings of interferometric gravitational-wave detectors to unprecedented
accuracy. The elliptic solver is implemented in the new open-source
SpECTRE numerical relativity code, and set up to support simulations of
astrophysical scenarios for the emerging era of gravitational-wave and
multimessenger astronomy.





Zur Lösung von elliptischen Gleichungen der numerischen Relativität

auf Supercomputern

Nils L. Vu

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),
Am Mühlenberg 1, 14476 Potsdam, Deutschland

Allgemeinverständliche Zusammenfassung Elliptische partielle Dif-
ferentialgleichungen sind in der Physik allgegenwärtig. Das elektrische
Feld einer Ladung, die Gravitation der Erde, die Statik einer Brücke,
oder die Temperaturverteilung auf einer heißen Herdplatte folgen trotz
verschiedenster zugrundeliegender Physik elliptischen Gleichungen ähn-
licher Struktur, denn es sind statische, also zeitunabhängige Effekte.
Elliptische Gleichungen beschreiben auch astrophysikalische Szenarien
von kataklysmischen Ausmaßen, die jegliche Gegebenheiten auf der Erde
weit überschreiten. So werden Schwarze Löcher und Neutronensterne
– zwei mögliche Endstadien von massereichen Sternen – ebenfalls von
elliptischen Gleichungen beschrieben. In diesem Fall sind es Einstein’s
Feldgleichungen von Raum, Zeit, Gravitation und Materie. Da Schwarze
Löcher und Neutronensterne mehr Masse als unsere Sonne auf die Größe
einer Stadt wie Potsdam komprimieren übernimmt die Gravitation, und
damit Einstein’s allgemeine Relativitätstheorie, die Kontrolle. Es ist die
Aufgabe der numerischen Relativität, Szenarien wie die Kollision solcher
gewaltigen Objekte mithilfe von Supercomputern zu simulieren und
damit die Gravitationswellensignale vorherzusagen, die von Detektoren
auf der Erde gemessen werden können. Jede dieser Simulationen beginnt
mit Anfangsdaten, die elliptische Gleichungen erfüllen müssen.

In dieser Dissertation entwickle ich neue numerische Methoden um el-
liptische partielle Differentialgleichungen auf Supercomputern zu lösen,
mit besonderem Augenmerk auf Anfangsdaten für Simulationen von
Schwarzen Löchern und Neutronensternen. Ich entwickle dafür eine
sogenannte discontinuous Galerkin Methode um elliptische Gleichungen
auf Computern zu repräsentieren, sowie eine Reihe von Algorithmen um
diese Gleichungen anschließend schrittweise numerisch zu lösen bis sie
die notwendige Präzision erfüllen. Die Besonderheit dieser Algorithmen
liegt in ihrer Eigenschaft, in viele Teilprobleme zerlegt auf einer großen
Zahl von Rechenkernen parallel arbeiten zu können. Dieses task-based par-
allelism ermöglicht die effektive Verwendung von Supercomputern. Ich
demonstriere die Fähigkeit meiner Algorithmen, Berechnungen von über
200 Millionen Unbekannten mit hoher Effizienz auf mindestens einige
Tausend Rechenkerne verteilen zu können, und Anfangsdaten zweier
sich umkreisender Schwarzer Löcher bereits etwa zehnmal schneller
zu lösen als der langjährig verwendete Computercode SpEC. Außerdem
zeige ich, dass mein neuer Code auch außerhalb der Relativitätstheorie
anwendbar ist. Dazu simuliere ich thermisches Rauschen in den Be-
schichtungen von Spiegeln, das ebenfalls von elliptischen Gleichungen
beschrieben wird. Solche Spiegel sind Objekt großen Forschungsinter-
esses, da sie ein zentrales Element von Gravitationswellendetektoren
darstellen. Mein Code zur numerischen Lösung elliptischer Gleichungen
ist Teil des kollaborativen und quelloffenen SpECTRE Forschungsprojekts
zur Simulation astrophysikalischer Szenarien für die aufstrebende Ära
der Gravitationswellen- und Multimessenger-Astronomie.





The following anecdote is told of William James. [...] After a lecture on linear and
nonlinear solvers, James was accosted by a little old lady.

“Your algorithm that constructs the matrix explicitly, and then solves the linear
problem directly, has a very convincing ring to it, Mr. James, but it’s inefficient.
I’ve got a better algorithm,” said the little old lady.

“And what is that, madam?” inquired James politely.

“That we solve the linear problem iteratively, by means of a preconditioner at
every iteration of the algorithm.”

Not wishing to point out the absurdity of this little proposition, James decided to
gently dissuade his opponent by making her see some of the inadequacies of her
position.

“In your algorithm, madam,” he asked, “how does this preconditioner find a
solution?”

“You’re a very clever man, Mr. James, and that’s a very good question,” replied
the little old lady, “but I have an answer to it. And it’s this: the preconditioner
dispatches to a second, far better, preconditioner, which solves the linear problem
in every iteration of the first.”

“But how does this second preconditioner find a solution?” persisted James
patiently.

To this, the little old lady crowed triumphantly,

“It’s no use, Mr. James—it’s preconditioners all the way down.”

— Adapted from J. R. Ross, Constraints on Variables in Syntax, 1967
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This thesis is based on my lead-author publications. Chapters 2, 3
and 5 correspond to Refs. [1–3]. This introduction, as well as the
discussions in Chapters 4 and 6, place my research in context and
present as yet unpublished results.

Numerical simulations of black holes and neutron stars help us un-
derstand space, time, gravity, and their interaction with matter. These
fundamental concepts are the subject of Einstein’s theory of general
relativity (GR), which describes the interaction of spacetime and matter
as a set of partial differential equations (PDEs). In numerical relativity
(NR) we solve these equations on supercomputers. This computational
approach allows us to study cataclysmic events in our Universe that are
inaccessible to laboratories on earth, such as merging black holes and
neutron stars, and predict their outcome.

I find particularly fascinating about the computational approach that it
requires the programmer to build up a profound understanding of the
physics at play because the computer allows no room for interpretation
or for imprecision.

In this thesis I develop new computational methods to solve a subset of
the Einstein equations, the elliptic constraint equations. As I will outline in
this introductory chapter, we require solutions to the Einstein constraint
equations to begin every simulation of merging black holes and neutron
stars with valid initial data. However, obtaining solutions to the constraint
equations is a computational challenge. First, it involves formulating a
numerical representation of the elliptic equations on a computational grid,
which is the subject of Chapter 2. The numerical representation comes
down to a series of matrix equations that computers can, in principle, solve
numerically, but that quickly become too large for any ordinary computer
to handle. Therefore, advanced computational methods are employed to
solve these large systems of equations on computing clusters. Developing
such methods for the purpose of generating initial data involving black
holes and neutron stars has been the main focus of my work, and is the
subject of Chapter 3. Consequently, I might as well have titled this thesis
“Inverting matrices on supercomputers”. The two main novelties of my
work are the development of discontinuous Galerkin (DG) methods for
the numerical representation of the Einstein constraint equations [1], [1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

and the development of task-based parallel iterative algorithms for their
solution [2].

[2]: Vu et al. (2022), A scalable elliptic solver
with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

A considerable part of my work has been the implementation of these
computational methods to solve elliptic PDEs in the new open-source
numerical relativity code SpECTRE [10]. I have constructed the initial data [10]: SpECTRE, spectre-code.org
solver of the code, which seeds our evolutions of black holes and neutron
stars with constraint-satisfying data. I survey the capabilities of the initial
data solver, discuss new approaches in the field, and point to ongoing
and future work on the subject in Chapter 4.

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://spectre-code.org


2 1 Introduction

My work also has applications beyond numerical relativity, since elliptic
PDEs are common in many areas of physics. One such application is the
simulation of thermal noise in thin mirror coatings, as they are employed
in interferometric gravitational wave detectors. I explore the applicability
of my new elliptic solver to this problem in Chapter 5 and Ref. [3]. I[3]: Vu et al. (2021), High-accuracy numeri-

cal models of Brownian thermal noise in thin
mirror coatings. Chapter 5 of this thesis.

conclude in Chapter 6.

1.1 The big picture: numerical relativity in

context

At the moment the scientific community is moving into an era of preci-
sion gravitational-wave and multi-messenger astronomy, and numerical
relativity plays an essential role in it. In this section I outline the current
state of the field and its connection to numerical relativity.

1.1.1 Essentials of gravitational wave theory

Gravitational waves are a feature of general relativity, our theory of gravity
and spacetime.1 General relativity relates the geometry of spacetime,1: For introductions to gravitational radi-

ation in general relativity see, e.g., Chap-
ter 7 in Carroll [15] or Chapter 27 in
Thorne and Blandford [16].
[15]: Carroll (2004), Spacetime and Geome-
try
[16]: Thorne and Blandford (2017), Mod-
ern Classical Physics

encoded in the metric tensor 𝑔𝜇𝜈, to the matter content 𝑇𝜇𝜈 by

the Einstein equations R𝜇𝜈 − 1
2
𝑔𝜇𝜈R = 8𝜋GN𝑇𝜇𝜈, (1.1)

with the Ricci scalar R = 𝑔𝜇𝜈R𝜇𝜈, (1.2)
the Ricci tensor R𝜇𝜈 = R𝛼

𝛼𝜇𝜈, (1.3)

the Riemann tensor R𝛼
𝛽𝜇𝜈 = 𝜕𝜇Γ𝛼𝜈𝛽 − 𝜕𝜈Γ𝛼𝜇𝛽

+ Γ𝛼𝜇𝛾Γ𝛾𝜈𝛽 − Γ𝛼𝜈𝛾Γ
𝛾
𝜇𝛽,

(1.4)

and the Christoffel symbols Γ𝛼𝜇𝜈 =
1
2
𝑔𝛼𝛽

(
𝜕𝜇𝑔𝜈𝛽 + 𝜕𝜈𝑔𝛽𝜇 − 𝜕𝛽𝑔𝜇𝜈

)
.

(1.5)

Here, I have set 𝑐 = 1 but retained the gravitational constant GN for illus-
tration. I will also set GN = 1 in the following. Greek letters represent four-
dimensional spacetime indices, latin indices represent three-dimensional
spatial indices, and repeated indices are summed over.

Gravitational waves constitute perturbations in the metric tensor,

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈,
��ℎ𝜇𝜈�� ≪ 1, (1.6)

where 𝜂𝜇𝜈 is the flat Minkowski metric and ℎ𝜇𝜈 represents a small
perturbation. By a choice of coordinates we can formulate the metric
perturbations in transverse traceless (TT) gauge,

ℎ0𝜈 = 0, 𝜂𝜇𝜈ℎ𝜇𝜈 = 0, 𝜕𝜇ℎ𝜇𝜈 = 0, (1.7)

so they are spatial, traceless, and transverse. Under these conditions the
Einstein equations (1.1) in vacuum reduce to a wave equation for the
metric perturbations,22: Eq. (7.91) in Carroll [15]

□ℎ𝜇𝜈 = 0. (1.8)

http://books.google.com/books?vid=ISBN9780691159027
http://books.google.com/books?vid=ISBN9780691159027
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where □ = 𝜂𝜇𝜈𝜕𝜇𝜕𝑛𝑢 is the flat wave operator. Solutions to these lin-
earized Einstein equations are called gravitational waves. They have the
form

ℎ𝜇𝜈 =
©­­­«
0 0 0 0
0 ℎ+ ℎ× 0
0 ℎ× −ℎ+ 0
0 0 0 0

ª®®®¬ (1.9)

in TT gauge aligned with the propagation direction, where ℎ+,× repre-
sent the two polarizations of the gravitational wave (Fig. 1.1). The two
polarizations are also often combined and expanded in spin-weighted
spherical harmonics −2𝑌𝑙𝑚 ,3

3: See, e.g., Eq. (17.36) and Appendix D
in Baumgarte and Shapiro [17].
[17]: Baumgarte and Shapiro (2010), Nu-
merical Relativity: Solving Einsteins Equa-
tions on the Computer

ℎ = ℎ+ − 𝑖 ℎ× = 1
𝑟

∞∑
𝑙=2

𝑙∑
𝑚=−𝑙

ℎ𝑙𝑚(𝑡)−2𝑌𝑙𝑚(𝜃, 𝜙), (1.10)

where ℎ𝑙𝑚(𝑡) are the complex modes of the gravitational radiation. Figure 1.1: Relative motion of a ring of
test particles under the effect of a gravi-
tational wave with polarization + (top)
and × (bottom). Shown is one oscillation
period (black to white).Gravitational waves are sourced by quadrupolar motion of massive

objects. In the presence of matter, the linearized Einstein equations (1.1)
reduce to 4

4: Eq. (7.125) in Carroll [15]

□ℎ̄𝜇𝜈 = −16𝜋𝑇𝜇𝜈, ℎ̄𝜇𝜈 = ℎ𝜇𝜈 − 1
2
ℎ𝜂𝜇𝜈, (1.11)

where ℎ̄ is the trace-reversed perturbation with ℎ̄ = 𝜂𝜇𝜈 ℎ̄𝜇𝜈 = −ℎ, and
we have chosen Lorenz gauge 𝜕𝜇 ℎ̄𝜇𝜈 = 0. When the source is distant,
isolated, and nonrelativistic, the linearized Einstein equations (1.11) have
the solution 5 5: Eq. (7.140) in Carroll [15]

ℎ̄𝑖 𝑗(𝑡 , 𝒙) = 2
𝑟
¥𝐼𝑖 𝑗(𝑡 − 𝑟), (1.12)

sourced by the accelerated quadrupole moment of the matter distribution,

𝐼𝑖 𝑗(𝑡) =
∫

𝑥 𝑖𝑥 𝑗𝑇00(𝑡 , 𝒙)d𝑉 . (1.13)

The energy radiated away by gravitational wave emission, or the gravita-
tional wave luminosity, is 6 6: Eq. (7.189) in Carroll [15]

𝐿 ≡ −d𝐸
d𝑡

=
1
5
⟨𝐽̈𝑖 𝑗 𝐽̈ 𝑖 𝑗⟩, (1.14)

where 𝐽𝑖 𝑗 = 𝐼𝑖 𝑗 − 1
3 𝛿𝑖 𝑗𝛿

𝑘𝑙 𝐼𝑘𝑙 is the trace-reduced quadrupole moment and
the angle brackets denote an average over several wavelengths.

1.1.2 Gravitational radiation from orbiting binaries

Binary systems of orbiting massive objects produce quadrupole moments,
which is the reason why binary black holes and neutron stars are of
primary interest in numerical relativity. For instance, consider two objects
with masses 𝑀1 ≥ 𝑀2 in a circular orbit with separation 𝐷. We can

https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
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define

the total mass 𝑀 = 𝑀1 +𝑀2, (1.15)

the mass ratio 𝑞 =
𝑀1
𝑀2
≥ 1 (1.16)

and the reduced mass 𝜇 =
𝑀1𝑀2
𝑀

. (1.17)

Assuming a Newtonian orbit, the binary has the Keplarian orbital angular
velocity

Ω =

√
𝑀
𝐷3 (1.18)

and the quadrupole moment is 77: Eq. (27.70d) in Thorne and Bland-
ford [16]

𝐼𝑥𝑥 = 𝜇𝐷2 cos2 Ω𝑡, 𝐼𝑦𝑦 = 𝜇𝐷2 sin2 Ω𝑡, (1.19a)

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = 𝜇𝐷2 cosΩ𝑡 sinΩ𝑡, 𝐼𝑧𝑖 = 𝐼𝑖𝑧 = 0, (1.19b)

assuming the orbit is in the 𝑥𝑦 plane. This matter distribution generates
the metric perturbation

ℎ̄𝑖 𝑗(𝑡 , 𝒙) = 4
𝑟
𝜇
𝑀
𝐷

©­«
− cos 2Ω(𝑡 − 𝑟) − sin 2Ω(𝑡 − 𝑟) 0
− sin 2Ω(𝑡 − 𝑟) cos 2Ω(𝑡 − 𝑟) 0

0 0 0

ª®¬ (1.20)

by the quadrupole formula (1.12). Evidently, binary systems emit grav-(1.12): ℎ̄𝑖 𝑗(𝑡 , 𝒙) = 2
𝑟
¥𝐼𝑖 𝑗(𝑡 − 𝑟)

itational waves at twice their orbital frequency, with an amplitude
proportional to 𝑀/𝐷. Since orbiting binaries of objects with radius 𝑅
can only reach separations 𝐷 ≳ 2𝑅 before colliding, the most promising
astrophysical source of strong gravitational radiation are binaries of
objects with high compactness 𝑀/𝑅. Such objects are black holes and
neutron stars, with compactnesses of 𝑀/𝑅 ∼ 0.1 to 1, making them
primary targets of study in numerical relativity.

Figure 1.2: Inspiral, merger, and ring-
down of a black hole binary (Fig. 2 in
Ref. [18]).

[18]: LIGO, Virgo (2016), Observation of
Gravitational Waves from a Binary Black
Hole Merger

Due to the emission of gravitational radiation the orbiting binary will
inspiral, decreasing in separation (Fig. 1.2). For the Newtonian binary,
Eq. (1.19), the gravitational wave luminosity (1.14) is 8

8: Eq. (27.73) in Thorne and Bland-
ford [16]

𝐿 =
32
5

G4
N
𝑐5

( 𝜇

𝑀

)2 (𝑀
𝐷

)5
, (1.21)

where I have restored powers of GN and 𝑐 to facilitate magnitude estimates.
Approximating the binary as bound by Newtonian gravity,𝐸 = −𝜇𝑀/2𝐷,
and assuming it loses energy adiabatically by gravitational radiation, the
separation between the two objects will decrease as

¤𝐷 = −64
5

G3
N
𝑐5

𝜇𝑀2

𝐷3 . (1.22)

For example, the separation between the Earth and the Moon decreases
by only ∼ 2.3 fm/kyr due to gravitational radiation.9 However, two9: The separation between the Earth

and the Moon actually increases by
∼ 3.8 cm/yr due to the much more dom-
inant tidal dissipation.

orbiting black holes with total mass𝑀 = 𝑀1 +𝑀2 = 60 M⊙ at separation
𝐷 = 10𝑀 (∼ 890 km) approach each other with ∼ 2 km/ms by Eq. (1.22).
During this inspiral the orbital angular frequency rises and the binary
will emit ever stronger gravitational radiation, accelerating its demise.

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
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Figure 1.3: Numerical simulation of two black holes that inspiral and merge, emitting gravitational waves. One black hole is 3.5×
more massive than the other and spins, which makes the orbit precess. The simulated gravitational wave signal is consistent with the
observation made by the LIGO and Virgo gravitational wave detectors on Apr 12, 2019 (GW190412). See Appendix A for details on this
visualization.

The quadrupole formula (1.12) used to derive Eqs. (1.21) and (1.22) is (1.12): ℎ̄𝑖 𝑗(𝑡 , 𝒙) = 2
𝑟
¥𝐼𝑖 𝑗(𝑡 − 𝑟)

only the lowest-order (“Newtonian”) term of a perturbative series in the
velocity of the binary objects. It loses validity as the separation of the
binary decreases and the objects gain velocity, entering the relativistic
regime. Higher-order terms in the perturbative series are the subject of
post-Newtonian (PN) theory [19] and allow to calculate the inspiral of [19]: Blanchet (2014), Gravitational Radi-

ation from Post-Newtonian Sources and In-
spiralling Compact Binaries

the binary at separations so close that the Newtonian approximation is
no longer valid (see also Section 1.1.4).

Inevitably, the binary will enter a strongly relativistic regime at close
separations and high velocities, and eventually merge. While the inspiral
stage of the binary evolution may be described by perturbation theory,
the strongly relativistic merger regime is only accessible by numerical
simulations that solve the full Einstein equations, often in all four dimen-
sions (Fig. 1.3). This is the arena of numerical relativity (NR). Since the
first landmark numerical simulations of binary black hole (BBH) mergers
in 2005 [20–22], numerical relativity has graduated to an indispensible [20]: Pretorius (2005), Evolution of binary

black hole spacetimes
[21]: Campanelli et al. (2006), Accurate
evolutions of orbiting black-hole binaries
without excision
[22]: Baker et al. (2006), Gravitational wave
extraction from an inspiraling configuration
of merging black holes

tool of contemporary gravitational-wave research.10 The predictive power

10: See, e.g., Baumgarte and Shapiro [17]
for an introduction to numerical relativ-
ity.
[17]: Baumgarte and Shapiro (2010), Nu-
merical Relativity: Solving Einsteins Equa-
tions on the Computer

of BBH, binary neutron star (BNS), and black hole–neutron star (BHNS)
simulations makes numerical relativity essential to gravitational-wave
astrophysics and the emerging field of multimessenger astronomy, as I
will detail in the following sections. Furthermore, numerical relativity
provides insights into strongly-relativistic scenarios that are inaccessible
by any other method, such as the dynamics of event horizons, light,
and matter in the vicinity of the most violent astrophysical events in
our Universe. As a flourishing discipline at the intersection of gravi-
tational physics and high-performance computing, many advances in
numerical relativity also have interdisciplinary applications across the
computational physics community.11 11: See Chapter 5 for an interdisciplinary

application of the work in this thesis.

https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
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In the final stage of binary evolution, the massive remnant of the merger
will ring down to equilibrium. Binary black holes will merge to a spinning
black hole remnant that emits a spectrum of exponentially decaying
quasinormal modes (QNMs). When binary neutron stars merge, they
either form a stable neutron star remnant or collapse to a black hole,
ringing down in the process as well. The gravitational radiation in this
ringdown stage can, again, be described perturbatively [23–25]. Instead[23]: Teukolsky (1973), Perturbations of a

rotating black hole. 1. Fundamental equa-
tions for gravitational electromagnetic and
neutrino field perturbations
[24]: Buonanno, Cook, and Pretorius
(2007), Inspiral, merger and ring-down of
equal-mass black-hole binaries
[25]: Berti, Cardoso, and Starinets (2009),
Quasinormal modes of black holes and black
branes

of perturbing the flat Minkowski metric, as in Eq. (1.6), we perturb the
Kerr metric 𝑔Kerr

𝜇𝜈 that represents a stationary spinning black hole,12

12: For a discussion of the Kerr metric
see, e.g., Section 6.6 in Carroll [15]. We
will encounter the Kerr metric numerous
times in this thesis, e.g., in Section 4.1.

𝑔𝜇𝜈 = 𝑔Kerr
𝜇𝜈 + ℎ𝜇𝜈,

��ℎ𝜇𝜈�� ≪ 1, (1.23)

where ℎ𝜇𝜈, again, represents the metric perturbations. Following the
decomposition (1.10) of ℎ𝜇𝜈 in spin-weighted spherical harmonics, the

(1.10): ℎ = ℎ+ − 𝑖 ℎ× =
1
𝑟
∑∞
𝑙=2

∑𝑙
𝑚=−𝑙 ℎ𝑙𝑚(𝑡)−2𝑌𝑙𝑚(𝜃, 𝜙)

ringdown signal is a superposition of damped sinusoids,

ℎ𝑙𝑚(𝑡) =
∞∑
𝑛=0

𝐴𝑙𝑚𝑛𝑒−𝑖𝜎𝑙𝑚𝑛 𝑡 , (1.24)

where the (complex) frequencies 𝜎𝑙𝑚𝑛 are known functions of the mass
and spin of the remnant black hole, but the (also complex) excitation
coefficients 𝐴𝑙𝑚𝑛 depend on the preceding merger dynamics and hence
are determined numerically. Note that QNMs are more naturally ex-
pressed in terms of spin-weighted spheroidal harmonics related to the
Kerr background, rather than the spin-weighted spherical harmonics in
Eq. (1.10), so the parameters 𝜎𝑙𝑚𝑛 and 𝐴𝑙𝑚𝑛 are related to the Kerr QNM
frequencies and excitation coefficients by a transformation between the
two functional bases [26].[26]: Berti and Klein (2014), Mixing of

spherical and spheroidal modes in perturbed
Kerr black holes

1.1.3 Gravitational-wave astronomy

Figure 1.4: Simplified diagram of Ad-
vanced LIGO (Fig. 3 in Ref. [18]).

The first detection of a gravitational wave (GW) signal by the LIGO
and Virgo collaborations on Sep 14, 2015 moved gravitational-wave
physics from theory to a precision experimental science. Decades of
research on gravitational wave detector technology [27] and data analysis[27]: LIGO (2015), Advanced LIGO
methods [28] culminated in this observation, named GW150914 [18].[28]: LIGO, Virgo (2020), A guide to

LIGO–Virgo detector noise and extraction of
transient gravitational-wave signals
[18]: LIGO, Virgo (2016), Observation of
Gravitational Waves from a Binary Black
Hole Merger

Two large laser interferometers with kilometer-long arms located in the
northwest and southeast of the USA (Fig. 1.4) picked up a signal from the
cataclysmic merger of two black holes. The gravitational radiation emitted
by the merger traveled toward Earth at the speed of light for 1.3 billion
years. At the sites of the two LIGO instruments, some 3000 km or 10 ms
light travel time apart, the gravitational radiation slightly compressed
and elongated the 𝐿 = 4 km long laser cavities of the interferometers by
a length difference 𝛿𝐿(𝑡), producing a measurable signal,

ℎ(𝑡) ∝ 𝛿𝐿(𝑡)
𝐿

, (1.25)

the gravitational wave strain. Although two merging stellar-mass black
holes such as GW150914 can emit the energy equivalent of multiple solar
masses in only a fraction of a second, which is more energy than emitted
by all stars in the observable universe combined during this short time,
the expected measurable effect is only ℎ ≲ 10−21 for typical signals. The
effect is so small because it is diminished by both the magnitude of the

https://doi.org/10.1086/152444
https://doi.org/10.1086/152444
https://doi.org/10.1086/152444
https://doi.org/10.1086/152444
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/PhysRevD.90.064012
https://doi.org/10.1103/PhysRevD.90.064012
https://doi.org/10.1103/PhysRevD.90.064012
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
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gravitational constant GN in the Einstein equations, Eq. (1.1), and by the
1/𝑟 decay in amplitude of the signal traveling through vast amount of
space (hundreds of megaparsec for GW150914), Eq. (1.12).
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Figure 1.5: Noise sources limiting the
sensitivity of the Advanced LIGO detec-
tors (Fig. 2 in Ref. [29]).

Since the measurable gravitational wave strain is so small, it is easily
concealed by a plethora of noise effects that disturb the laser interferome-
ters [27, 29] (Fig. 1.5). At low frequencies, below ∼ 20 Hz, the dominant

[29]: Barsotti et al. (2018), The A+ design
curve

source of noise is seismic, caused by vibrations in the ground. Examples
include seismic activity, but also storms, lightning strikes, or cars travers-
ing the nearby parking lot (it also does not help that LIGO Livingston
in the southeast US is located in a working forest with regularly falling
trees). Instrumentalists go to great lengths to isolate the mirrors of the
interferometer from seismic effects, employing passive technology such
as sophisticated suspension systems, and active technology such as feed-
back control loops to counteract unwanted motion. At high frequencies,
above ∼ 1 kHz, the sensitivity is limited by quantum shot noise, caused
by the statistical uncertainty in measuring photon arrival rates. Higher
laser power in the interferometers can combat this effect, but must be
balanced with noise the laser power induces in the mirrors. Specifically,
the noise in the most sensitive regime of the detector, around ∼ 100 Hz,
is dominated by Brownian thermal noise induced by the laser in the thin re-
flective coatings of the mirrors. Therefore, some detector designs involve
cryogenic cooling of the mirrors [30], and materials are being developed [30]: KAGRA (2020), The status of KAGRA

underground cryogenic gravitational wave
telescope

that minimize coating thermal noise.13

13: Although seemingly distant to nu-
merical relativity and the topic of this
thesis, I approach precisely this problem
of Brownian thermal noise in thin mirror
coatings from a computational perspec-
tive in Chapter 5, since it involves elliptic
equations not too different to those found
in numerical relativity.

Figure 1.6: Signal and waveform tem-
plates for the GW150914 detection (Fig. 1
in Ref. [18]).

To extract the gravitational wave signal from the detector noise, sophisti-
cated data analysis techniques are employed [28]. First, a search scans the

[28]: LIGO, Virgo (2020), A guide to
LIGO–Virgo detector noise and extraction of
transient gravitational-wave signals

data stream of each detector for potential signals. The data stream is

𝑑(𝑡) = ℎ(𝑡) + 𝑛(𝑡), (1.26)

where ℎ(𝑡) is the detector response to a gravitational wave signal (Fig. 1.6).
The signal is concealed by noise 𝑛(𝑡) that is typically much larger in
amplitude. However, if we can predict possible gravitational wave sig-
nals ℎ𝑖 𝑗(𝑡), or waveforms, then the matched filtering technique allows to find
similar signals in the data. The prediction of gravitational waveforms
from astrophysical sources is outlined in Section 1.1.4 below. It is an
essential contemporary discipline by itself and is supported by numerical
relativity in many aspects. From a predicted waveform we can compute
the detector response

ℎ(𝑡) = 𝐹+(𝜃, 𝜙,𝜓) ℎ+(𝑡) + 𝐹×(𝜃, 𝜙,𝜓) ℎ×(𝑡), (1.27)

where 𝐹+,× are the known antenna patterns of the detector that depend
on the source location in the sky and on the wave polarization 𝜓. Then,
the signal-to-noise ratio of the predicted waveform is

SNR =

(
𝑑(𝑡)��ℎ(𝑡))√(
ℎ(𝑡)��ℎ(𝑡)) , (1.28)

where the noise-weighted inner product is defined as(
𝑝(𝑡)��𝑞(𝑡)) B 4 Re

∫ ∞

0
d 𝑓

𝑝̃∗( 𝑓 )𝑞̃( 𝑓 )
𝑆𝑛( 𝑓 ) . (1.29)

https://doi.org/10.1088/1742-6596/1342/1/012014
https://doi.org/10.1088/1742-6596/1342/1/012014
https://doi.org/10.1088/1742-6596/1342/1/012014
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
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Figure 1.7: Visualization of the GW190412 event, the first observation of two merging black holes with significantly different masses and
an indication for precession (see Appendix A).

Here, 𝑝̃( 𝑓 ) is the Fourier transform of the time series 𝑝(𝑡), 𝑝̃∗ is its complex
conjugate, and 𝑆𝑛( 𝑓 ) is the power spectral density (PSD)

𝑆𝑛( 𝑓 ) = 2
∫ ∞

−∞
d𝜏 ⟨𝑛(𝑡)𝑛(𝑡 + 𝜏)⟩𝑡 𝑒−2𝜋 𝑓 𝜏, (1.30)

which is the Fourier transform of the autocorrelation function of the
noise. It can be estimated from a segment of data with no signal. Note
that the SNR is highest when the data stream equals the predicted
waveform, 𝑑(𝑡) = ℎ(𝑡). In Eq. (1.28) the data stream is filtered by𝑊ℎ( 𝑓 ) =
ℎ̃( 𝑓 )/𝑆𝑛( 𝑓 ), the Wiener filter or noise-weighted template, and the resulting
SNR represents a measure of how well the data matches the template.
Therefore, in searches for gravitational wave detections we continuously
match the data stream with a range of predicted waveforms, a template
bank, and flag a segment of data as potentially containing a signal
when the SNR of a template exceeds a threshold. This matched-filtering
technique is complemented by unmodeled searches based on wavelet
theory, that scan the data stream for excess power without employing
predicted waveforms. Furthermore, correlation of signals in multiple
detectors are essential to build confidence in detections.

Once a potential signal in the data stream has been identified, a parameter
estimation pipeline analyses the signal in detail and determines the
characteristics of its source [28]. This strategy, too, relies on predictions[28]: LIGO, Virgo (2020), A guide to

LIGO–Virgo detector noise and extraction of
transient gravitational-wave signals

of gravitational waveforms from possible astrophysical sources. Within
a Bayesian framework, we estimate the posterior probability density
function 𝑝(𝜽 |𝑑, ℎ) that the detector output 𝑑(𝑡) is described by a waveform
model ℎ(𝑡;𝜽) with parameters 𝜽. The parameters typically include
the masses and spins of the two coalescing objects, the inclination of
the orbital plane relative to Earth, the distance to the source, the sky
localization, and a phase shift relative to the peak of the signal. By Bayes

https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
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Figure 1.8: Visualization of the GW190814 event, where the smaller object was either a very light black hole or a very heavy neutron star
(see Appendix A).

theorem, the posterior probability for the parameters 𝜽 is

𝑝(𝜽 |𝑑) = 𝑝(𝑑 |𝜽) 𝑝(𝜽)
𝑝(𝑑) , (1.31)

where the likelihood is

𝑝(𝑑 |𝜽) = exp

(
−1

2

detectors∑
𝐼

[ (
𝑑𝐼 − ℎ𝐼(𝜽)

��𝑑𝐼 − ℎ𝐼(𝜽)) + ∫
ln 𝑆𝐼𝑛( 𝑓 )d 𝑓

] )
.

(1.32)
It uses the noise-weighted inner product defined by Eq. (1.29) and
a sum over all detectors in the network. The prior 𝑝(𝜽) encodes as-
sumptions about the parameters, and the evidence is the normalization
𝑝(𝑑) =

∫
d𝜽 𝑝(𝜽)𝑝(𝑑 |𝜽). To sample the posterior probability, Eq. (1.31),

over the high-dimensional space spanned by the parameters 𝜽, a range
of computational sampling methods are employed, such as Markov chain
Monte Carlo (MCMC) methods. They typically traverse the parameter
space stochastically, gravitating toward regions of the parameter space
with large posterior probability. Then, quoted parameters for detections
like GW150914 [31] represent marginalizations over the posterior prob- [31]: LIGO, Virgo (2016), Properties of the

Binary Black Hole Merger GW150914ability distribution to obtain a single number and associated credible
intervals for each parameter.

To date, we have observed a total of 90 gravitational wave events [32–34]. [32]: LIGO, Virgo (2019), GWTC-1: A
Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO
and Virgo during the First and Second Ob-
serving Runs
[33]: LIGO, Virgo (2021), GWTC-2: Com-
pact Binary Coalescences Observed by LIGO
and Virgo During the First Half of the Third
Observing Run
[34]: LIGO, Virgo, KAGRA (2021),
GWTC-3: Compact Binary Coalescences Ob-
served by LIGO and Virgo During the Second
Part of the Third Observing Run

Of these,

▶ two are confident binary neutron star (BNS) mergers (GW170817
and GW190425),

▶ three are likely black hole–neutron star (BHNS) mergers (GW190917_-
114630, GW191219_163120, and GW200115_042309),

▶ two more are possible BHNS mergers (GW190814 and GW200210_-

092254),

https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
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Figure 1.9: Visualization of the GW190521 event, where two extraordinarily massive black holes merged (see Appendix A).

▶ and the remaining 83 are confident BBH mergers.

I have produced numerical-relativity visualizations for three excep-
tional gravitational-wave events (GW190412 [35]

[35]: LIGO, Virgo (2020), GW190412: Ob-
servation of a Binary-Black-Hole Coalescence
with Asymmetric Masses
[36]: LIGO, Virgo (2020), GW190814:
Gravitational Waves from the Coalescence of
a 23 Solar Mass Black Hole with a 2.6 Solar
Mass Compact Object
[37]: LIGO, Virgo (2020), GW190521: A
Binary Black Hole Merger with a Total Mass
of 150𝑀⊙

, GW190814 [36], and
GW190521 [37]) to support outreach efforts of the LIGO and Virgo collabo-
rations. Figures 1.3 and 1.7 to 1.9 show snapshots from these visualizations,
and are detailed in Appendix A.

1.1.4 Waveform models

Gravitational-wave detections and parameter estimation methods rely
largely on predictions of gravitational waveforms. However, no sin-
gle technique discussed in Section 1.1.2 can predict the dynamics and
gravitational radiation of a general-relativistic binary in its entirety. Post-
Newtonian (PN) approximations are only sufficiently precise during
the early inspiral of the binary. Numerical relativity (NR) simulations
can cover the late inspiral and the merger, but are too computationally
expensive to simulate the large number of orbits that low-mass binaries
can spend in the GW detectors’ sensitivity bands. It is of course quite
unfeasible to perform a full NR simulation for each evaluation of the
template in Eq. (1.28) or the likelihood in Eq. (1.31). Therefore, the GW
data analysis pipelines employ approximate waveform models that are
fast to evaluate [28]

[28]: LIGO, Virgo (2020), A guide to
LIGO–Virgo detector noise and extraction of
transient gravitational-wave signals . These waveform models all rely on data from NR

simulations to provide the “ground truth” for their approximations.

A large class of waveform models used routinely in GW data analysis is[38]: Buonanno and Damour (1999), Effec-
tive one-body approach to general relativistic
two-body dynamics
[39]: Bohé et al. (2017), Improved effective-
one-body model of spinning, nonprecessing
binary black holes for the era of gravitational-
wave astrophysics with advanced detectors
[40]: Ossokine et al. (2020), Multipolar
Effective-One-Body Waveforms for Precess-
ing Binary Black Holes: Construction and
Validation

based on semi-analytic approaches, such as the effective-one-body (EOB)
framework [38]. These models typically solve the general-relativistic
dynamics of an orbiting binary perturbatively, employing PN, post-
Minkowskian (PM), and gravitational self-force methods. The perturba-
tive expansions involve parameters that are informed by, and calibrated
to, numerical simulations. For example, the EOBNR [39, 40] family of

https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevD.102.044055


1.1 The big picture: numerical relativity in context 11

waveform models, which are routinely used in LIGO data analysis [28],
perturbs the dynamics of a test particle in the vicinity of a spinning
black hole in the symmetric mass ratio 𝜈 = 𝜇/𝑀, where 𝜇 is the reduced
mass given by Eq. (1.17). The EOB framework employs a Hamiltonian
formulation for the motion of the particle, so the orbital dynamics
can be computed numerically using integration methods for ordinary
differential equations (ODEs). The EOB Hamiltonian is constructed
from resummations of PN, PM [41], and gravitational self-force [42]
expansions

[41]: Antonelli et al. (2019), Energet-
ics of two-body Hamiltonians in post-
Minkowskian gravity
[42]: Antonelli et al. (2020), Quasicircu-
lar inspirals and plunges from nonspinning
effective-one-body Hamiltonians with gravi-
tational self-force information

. NR-calibrated parameters in the EOB model encode effects
such as truncating the perturbative expansions at a finite order [39, 43,
44]

[43]: Barausse and Buonanno (2010), An
Improved effective-one-body Hamiltonian for
spinning black-hole binaries
[44]: Taracchini et al. (2014), Effective-
one-body model for black-hole binaries with
generic mass ratios and spins
[45]: Damour and Nagar (2014), A new
analytic representation of the ringdown wave-
form of coalescing spinning black hole bina-
ries
[46]: Cotesta et al. (2018), Enriching the
Symphony of Gravitational Waves from Bi-
nary Black Holes by Tuning Higher Harmon-
ics

. Furthermore, the merger-ringdown part of the waveform [39, 45] and
higher-order modes in the gravitational radiation [46] are constructed
from NR-calibrated parameters.

Other classes of waveform models are more directly based on numerical
simulations, such as the Phenom [47]

[47]: Khan et al. (2016), Frequency-domain
gravitational waves from nonprecessing
black-hole binaries. II. A phenomenological
model for the advanced detector era
[48]: Blackman et al. (2017), Numerical rel-
ativity waveform surrogate model for generi-
cally precessing binary black hole mergers
[49]: Varma et al. (2019), Surrogate model of
hybridized numerical relativity binary black
hole waveforms
[50]: Yoo et al. (2022), Targeted large mass
ratio numerical relativity surrogate wave-
form model for GW190814

and NRSurrogate [48–50] fami-
lies of models. The Phenom-type models construct frequency-domain
fits of phenomenological parameters to NR waveforms, whereas the
NRSurrogate-type models smoothly interpolate directly between NR
waveforms assuming no underlying phenomenology. Both types of mod-
els use semi-analytic PN or EOB approaches to extend their waveforms
toward the early inspiral.

Many authors of waveform models emphasize their reliance on accurate
NR simulations in their articles [39, 46, 47, 51]. Waveform models are cal-
ibrated, their faithfulness verified, and their domain of validity restricted
to the set of available NR simulations at the time of their development.
For this purpose, the NR community regularly publishes catalogs of
waveforms [9, 52–54]

[9]: SXS (2019), The SXS collaboration cata-
log of binary black hole simulations
[52]: Dietrich et al. (2018), CoRe database
of binary neutron star merger waveforms
[53]: Healy and Lousto (2022), The Fourth
RIT binary black hole simulations catalog:
Extension to Eccentric Orbits
[54]: Jani et al. (2016), Georgia Tech Catalog
of Gravitational Waveforms

. I have contributed a range of new aligned-spin
simulations using the SpEC code [55] to the SXS catalog [9]. Extending
the parameter space of available NR simulations contributes directly to
the capabilities of the waveform modeling community, and hence to the
detection and source-characterization pipelines of current and future
gravitational-wave observatories.

1.1.5 Multi-messenger astrophysics

Gravitational waves join the array of observable signals that we re-
ceive from the most violent events in our Universe, complementing
observations of light across the electromagnetic spectrum, neutrinos,
and high-energy massive cosmic particles [56]

[56]: Mészáros et al. (2019), Multi-
Messenger Astrophysics

. Gravitational waves are
uniquely positioned in this mix because they carry information from
the strong-gravity regime, which is often obscured by absorption and
scattering effects in optical channels. For the potential that the emerging
fields of multimessenger astronomy and astrophysics hold, they have
been identified as key research areas for the years to come [57–59]

[57]: National Academies of Sciences, En-
gineering, and Medicine (2021), Pathways
to Discovery in Astronomy and Astrophysics
for the 2020s (decadal survey)
[58]: Foley et al. (2019), Gravity and Light:
Combining Gravitational Wave and Electro-
magnetic Observations in the 2020s
[59]: Kalogera et al. (2021), The Next Gen-
eration Global Gravitational Wave Observa-
tory: The Science Book

.

For example, we expect that binary neutron star (BNS) mergers can be
the source of short gamma-ray bursts (GRBs) alongside their emission of
gravitational waves. This hypothesis was confirmed by the landmark mul-
timessenger observation of the GW signal GW170817 and the coincident
GRB 170817A on Aug 17, 2017 [60–62]

[60]: LIGO, Virgo (2017), GW170817: Ob-
servation of Gravitational Waves from a Bi-
nary Neutron Star Inspiral
[61]: LIGO Scientific, Virgo, Fermi-GBM,
INTEGRAL (2017), Gravitational Waves
and Gamma-rays from a Binary Neutron
Star Merger: GW170817 and GRB 170817A
[62]: LIGO, Virgo, et al. (2017), Multi-
messenger Observations of a Binary Neutron
Star Merger

. This single GW-multimessenger
event has already enabled a test of the propagation speed of gravitational
radiation, has ruled out swathes of modified gravity theories, enabled a

https://doi.org/10.1103/PhysRevD.99.104004
https://doi.org/10.1103/PhysRevD.99.104004
https://doi.org/10.1103/PhysRevD.99.104004
https://doi.org/10.1103/PhysRevD.101.024024
https://doi.org/10.1103/PhysRevD.101.024024
https://doi.org/10.1103/PhysRevD.101.024024
https://doi.org/10.1103/PhysRevD.101.024024
https://doi.org/10.1103/PhysRevD.81.084024
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https://doi.org/10.1103/PhysRevD.81.084024
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new way of measuring the Hubble constant, established BNS mergers as
a likely source of heavy elements in the Universe by r-process nucleosyn-
thesis, and constrained the equation of state for matter at supranuclear
densities. See Dietrich, Hinderer, and Samajdar [63] for a recent review[63]: Dietrich, Hinderer, and Samajdar

(2021), Interpreting Binary Neutron Star
Mergers

focused on the GW signal from BNS mergers, and references therein.
Other possible, but as yet unobserved, GW-multimessenger sources in-
clude tidal disruption events of stars by massive black holes, supernovae,
and accreting supermassive BBH systems. See Mészáros et al. [56] for a[56]: Mészáros et al. (2019), Multi-

Messenger Astrophysics recent review.

Numerical relativity simulations are at the forefront of studies that
extract, analyze, and interpret multimessenger signals involving gravita-
tional waves. To make detections, the matched-filtering and parameter-
estimation techniques detailed above require accurate gravitational wave-
forms of BNS and BHNS mergers informed by numerical simulations [63].
Once a detection is made, numerical simulations probe how accurately
we understand the multitude of physics at play in these complex as-
trophysical scenarios. The regimes involved are often inaccessible for
laboratories on Earth, in particular when they take place in strong gravity,
promoting numerical relativity to an essential tool in multimessenger as-
trophysics. The multiphysics nature of these astrophysical events makes
them particularly challenging to simulate numerically, as I will detail in
Section 1.1.6 below. Much of the motivation for the work in this thesis is
to gear up our computational capabilities for the multimessenger era.

1.1.6 Challenges in numerical relativity

The plan for the future of numerical relativity is rather clear, though
no less challenging. One obvious objective is to serve the next gen-
eration of gravitational wave observatories that are in development
worldwide [59], such as the ground-based Cosmic Explorer [64] and[59]: Kalogera et al. (2021), The Next Gen-

eration Global Gravitational Wave Observa-
tory: The Science Book
[64]: Evans et al. (2021), A Horizon Study
for Cosmic Explorer: Science, Observatories,
and Community

Einstein Telescope [65] projects, and the space-based LISA [66] mission.14

[65]: Maggiore et al. (2020), Science Case
for the Einstein Telescope
[66]: eLISA (2013), The Gravitational Uni-
verse
14: The Cosmic Explorer Horizon Study,
Ref. [64], uses one of my GW visualiza-
tions on the cover. Appendix A discusses
these visualizations.

To keep up with the increase in sensitivity expected from these “3G”
detectors, Pürrer and Haster [67] find that waveforms extracted from NR

[67]: Pürrer and Haster (2020), Gravita-
tional waveform accuracy requirements for
future ground-based detectors

simulations must increase in accuracy by about a factor of ten, and also
extend in both length and parameter space coverage. Ferguson et al. [68]

[68]: Ferguson et al. (2021), Assessing the
readiness of numerical relativity for LISA
and 3G detectors

find that NR codes must improve significantly to meet this challenge, and
suggest higher-order discretization schemes as a possible path forward.
Pürrer and Haster [67] also suggest new approaches to parallelization and
to waveform extraction. All three aspects are being developed as part of
the new SpECTRE numerical relativity code [10], which is the main focus

[10]: SpECTRE, spectre-code.org

of this thesis and introduced in Section 1.3.6. Most of my own efforts have
focused on the higher-order discretization and parallelization aspects,
specifically for the initial data solver of the code, which I will describe in
detail in this thesis. A novel waveform extraction procedure based on
the Cauchy-characteristic extraction (CCE) method is the subject of one
of my co-author publications, Ref. [6].

[6]: Moxon et al. (2021), The SpECTRE
Cauchy-characteristic evolution system for
rapid, precise waveform extraction

A key challenge of simulating multimessenger scenarios, such as those
outlined in Section 1.1.5 above, is their multiphysics nature. Simulations
involve the general-relativistic magnetohydrodynamic (GRMHD) effects
of charged and self-gravitating matter, the nuclear physics of matter at or
above nuclear density encoded in the equation of state of neutron stars,
and the radiation transport of high-energy neutrinos, to name just a few

https://doi.org/10.1007/s10714-020-02751-6
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https://doi.org/10.1038/s42254-019-0101-z
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areas that are at the front of contemporary research. Turbulent mecha-
nisms and instabilities, such as the magnetohydrodynamic instability
(MRI) and the Kelvin-Helmholtz instability, can have large-scale effects
and require a high dynamic range of resolutions within a simulation.
Shocks and other discontinuities, such as neutron star surfaces and
phase transitions in the equation of state, also require careful numerical
treatment. A primary objective of the SpECTRE code is to simulate such
multiphysics scenarios. For example, one of my co-author publications,
Ref. [7], studies high-resolution shock capturing (HRSC) methods (“lim- [7]: Deppe et al. (2021), Simulating mag-

netized neutron stars with discontinuous
Galerkin methods

iters”) for a high-order numerical discretization scheme. See also Most,
Papenfort, and Rezzolla [69] for recent progress on high-order numerical

[69]: Most, Papenfort, and Rezzolla
(2019), Beyond second-order convergence in
simulations of magnetized binary neutron
stars with realistic microphysics

methods for GRMHD simulations, Foucart et al. [70] for neutrino trans-

[70]: Foucart et al. (2020), Monte-Carlo
neutrino transport in neutron star merger
simulations

port, and Dietrich, Hinderer, and Samajdar [63], and references therein,

[63]: Dietrich, Hinderer, and Samajdar
(2021), Interpreting Binary Neutron Star
Mergers

for a discussion of numerical challenges in BNS mergers.

Alongside theoretical challenges to formulate numerical schemes stand
computational challenges. We have access to rapidly increasing comput-
ing resources in the form of large and readily available supercomputers.
Since the increase in speed of individual processors has largely stalled,
modern supercomputers focus on increasing the sheer number of avail-
able compute cores per node, along with fast interconnects between
nodes, hardware accelerators such as GPUs, and fast memory. Therefore,
the capability to parallelize numerical simulations effectively across the
processors of large computing clusters is a key challenge for modern nu-
merical relativity codes. Parallelization is at the core of the new SpECTRE

code and a major focus of this thesis, specifically in Chapter 3.

All numerical simulations begin with initial data that capture the physical
scenario at hand, so advances in theory and technology for time evolution
codes must be supported by sufficiently precise initial data. In fact,
numerical effects aside, the result of a simulation is determined entirely
by the initial data and boundary conditions (see also Section 1.2 below).15

15: Note that some recent developments
employ stochastic numerical methods,
such as Monte-Carlo neutrino trans-
port [70]. These methods limit the deter-
minism of the simulation to the numeri-
cal resolution of the stochastic method.

Therefore, to incorporate more detailed and more accurate microphysics
in simulations also requires correspondingly detailed and accurate initial
data.

A classic example for the importance of initial data in BBH mergers are
high-spin simulations, and the challenge to eliminate spurious gravita-
tional radiation: straightforward “puncture” initial data [71]

[71]: Brandt and Brügmann (1997), A Sim-
ple construction of initial data for multiple
black holes(Section 1.2.2)

can represent black holes up to dimensionless spins of 𝜒 ≲ 0.94 [72, 73], [72]: Dain, Lousto, and Zlochower (2008),
Extra-Large Remnant Recoil Velocities and
Spins from Near-Extremal-Bowen-York-Spin
Black-Hole Binaries
[73]: Dain, Lousto, and Takahashi (2002),
New conformally flat initial data for spinning
black holes

and extensions to the formulation were required to represent higher
spins [74–76] (Section 1.2.3). The challenge with binary initial data sets is

[74]: Pfeiffer (2005), The Initial value prob-
lem in numerical relativity
[75]: Lovelace et al. (2008), Binary-black-
hole initial data with nearly-extremal spins
[76]: Ruchlin et al. (2017), Puncture Ini-
tial Data for Black-Hole Binaries with High
Spins and High Boosts

that they must not only satisfy the Einstein equations, but also represent
a quasiequilibrium inspiral of the two bodies. Initial deviations from
quasiequilibrium will relax during the evolution and lead to spurious
gravitational radiation (“junk radiation”). Early in the simulation, this
radiation will either propagate out of the computational domain, carrying
away some energy-momentum, or fall into the black holes, increasing
their mass and hence decreasing their dimensionless spin. Junk radiation
is also inherently difficult to resolve numerically because it typically has
high frequency content, slowing down simulations early on or straining
their adaptive mesh refinement schemes [9, 77]. Therefore, an ongoing [9]: SXS (2019), The SXS collaboration cata-

log of binary black hole simulations
[77]: Lovelace (2009), Reducing spurious
gravitational radiation in binary-black-hole
simulations by using conformally curved
initial data

quest in numerical relativity is generating initial data with minimal junk
radiation. Recent approaches include numerical experiments with BBH
initial data based on superposed Kerr solutions in various coordinate
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systems [78], and attempts to eliminate the dependence on Kerr-like back-[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets

grounds [79, 80], which are related to the line of work on the “waveless”

[79]: Tsokaros, Uryū, and Shapiro (2019),
Complete initial value spacetimes containing
black holes in general relativity: Application
to black hole-disk systems
[80]: Grandclément and Nicoules (2022),
Boundary conditions for stationary black
holes: Application to Kerr, Martínez-
Troncoso-Zanelli, and hairy black holes

initial data formulation (see Uryū et al. [81]).

[81]: Uryū et al. (2016), New code for equi-
libriums and quasiequilibrium initial data
of compact objects. III. Axisymmetric and
triaxial rotating stars

Initial data generation for multiphysics scenarios, such as BNS or BHNS
systems, is complicated by equilibrium conditions on the matter con-
tent (see Section 1.2.4, and the recent review by Kyutoku, Shibata, and
Taniguchi [82]). Contemporary codes typically employ fixed-point iter-

[82]: Kyutoku, Shibata, and Taniguchi
(2021), Coalescence of black hole–neutron
star binaries

ation procedures that successively solve the gravity sector, the matter
sector, and additional constraints in each iteration. These algorithms are
strongly damped so they remain convergent, which slows them down
significantly (see Section 4.4 for a discussion). Furthermore, initial data
solvers for orbiting binaries with neutron stars are as yet limited to spin-
ning, self-gravitating fluids in quasiequilibrium inspirals, with additional
effects such as magnetic fields and neutrino radiation superimposed a
posteriori [83, 84]. To seed numerical simulations for the multimessenger[83]: Kiuchi et al. (2014), High resolu-

tion numerical-relativity simulations for the
merger of binary magnetized neutron stars
[84]: Hayashi et al. (2021), General-
relativistic neutrino-radiation magnetohy-
drodynamics simulation of black hole-
neutron star mergers for seconds

era, next-generation numerical codes such as SpECTRE need high-fidelity
initial data solvers.

Initial data problems require numerical solutions to elliptic PDEs (Sec-
tion 1.2), which pose computational challenges different to time evolution
schemes. Since elliptic problems represent constraints on fields within a
computational domain, they are inherently global: boundary conditions
on one side of the domain determine the solution on the other side.
Information must propagate across all grid points, making numerical
algorithms to solve elliptic PDEs hard to scale with increasing resolu-
tion. Multigrid algorithms have proven successful to mitigate this issue
and have been adopted by some numerical relativity codes [85–88], but[85]: Cheong, Lin, and Li (2020), Gmunu:

Toward multigrid based Einstein field equa-
tions solver for general-relativistic hydrody-
namics simulations
[86]: East, Ramazanoglu, and Pretorius
(2012), Conformal Thin-Sandwich Solver for
Generic Initial Data
[87]: Moldenhauer et al. (2014), Initial
data for binary neutron stars with adjustable
eccentricity
[88]: Ansorg, Brügmann, and Tichy
(2004), A Single-domain spectral method
for black hole puncture data

often with restrictions such as Cartesian grids. The global nature of
elliptic problems also makes algorithms hard to parallelize on computing
clusters. Recent approaches such as Papenfort et al. [89] employ a large

[89]: Papenfort et al. (2021), New public
code for initial data of unequal-mass, spin-
ning compact-object binaries

number of processors, but no acceleration techniques such as a multigrid
method. This thesis approaches the initial data problem in numerical
relativity from a primarily computational perspective, developing a scal-
able and parallel elliptic solver for the SpECTRE code intended to seed
our numerical simulations with initial data for years to come.

Historically, a core challenge in NR has been the development of numeri-
cally well-behaved formulations of the Einstein equations. This remains
an active area of research in the quest to extend NR simulations to theories
of gravity beyond GR. See the lines of work around Witek et al. [90] and

[90]: Witek et al. (2019), Black holes and
binary mergers in scalar Gauss-Bonnet grav-
ity: scalar field dynamics

Okounkova [91] for recent progress in this field. I will place no further

[91]: Okounkova (2020), Numerical rela-
tivity simulation of GW150914 in Einstein
dilaton Gauss-Bonnet gravity

focus on modified gravity theories in this thesis. However, note that the
topic of well-defined numerical formulations is strongly connected to
the classification of equations of motion in elliptic and hyperbolic PDEs,
which I will discuss next. The initial data problem in numerical relativity
beyond GR is also quite unexplored as yet.

1.2 Elliptic equations in numerical relativity

Elliptic equations are important in many areas of physics, including
numerical relativity. They often constrain admissable field configurations
at all times during an evolution. Before delving into the specifics of elliptic
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PDEs in numerical relativity, I review the essentials of PDE classification
with a focus on elliptic equations.

For example, the classic Maxwell equations for the electric field 𝑬 and
the magnetic field 𝑩 split in a set of two constraint equations and two
time-evolution equations,

∇ · 𝑬 = 4𝜋𝜌, ∇ · 𝑩 = 0, (1.33a)
𝜕𝑡𝑬 = ∇ × 𝑩 − 4𝜋𝒋, 𝜕𝑡𝑩 = −∇ × 𝑬, (1.33b)

where 𝜌 is the electric charge density and 𝒋 is the current density.
The split in constraint and evolution equations is particularly clear in
Coulomb gauge, ∇ · 𝑨 = 0, when we employ the vector potential 𝑨 for
the magnetic field 𝑩 = ∇ × 𝑨, and the scalar potential 𝜑 for the electric
field 𝑬 = −∇𝜑 − 𝜕𝑡𝑨. Then, the Maxwell equations (1.33) reduce to

− Δ𝜑 = 4𝜋𝜌, (1.34a)
− □𝑨 = 4𝜋𝒋 − 𝜕𝑡∇𝜑, (1.34b)

where Δ = 𝜕𝑖𝜕𝑖 is the Laplace operator and □ =
(
𝜕2
𝑡 − Δ

)
is the

d’Alembertian wave operator. The constraint (1.34a) is an elliptic equation
that the electric potential 𝜑 must satisfy at all times. It complements
the hyperbolic equation (1.34b) that governs the evolution of the vector
potential 𝑨 in time, for which 𝜑 is a source field [92]

[92]: Knapp, Walker, and Baumgarte
(2002), Illustrating Stability Properties of
Numerical Relativity in Electrodynamics

.
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Figure 1.10: Elliptic PDEs determine the
solution at any point P within a domain
given enveloping boundary conditions.

𝑥
𝑡

P

Figure 1.11: Hyperbolic PDEs determine
the solution at a point P given initial
data on a slice through its past charac-
teristic cone. Boundary conditions are
needed for incoming modes where the
cone intersects the domain boundary.

𝑥
𝑡

P

Figure 1.12: Parabolic PDEs determine
the solution at a pointP given initial data
and enclosing boundary conditions.

More generally, field theories in physics are typically governed by second-
order partial differential equations (PDEs), and these PDEs are usually of
elliptic, hyperbolic, or parabolic type. The prototypical elliptic equation
is the Poisson equation,

−Δ𝑢 = 𝑓 (𝒙), (1.35)

for the field 𝑢(𝒙) sourced by a function 𝑓 (𝒙), such as the Maxwell con-
straint (1.34a). Elliptic, and specifically quasilinear Poisson-type equations,
are ubiquitous in physics, appearing in Newtonian gravity, electrody-
namics [Eq. (1.34a)], fluid dynamics [Eq. (1.63)], elasticity [Eq. (5.9)],
steady-state heat diffusion, and, as we will encounter below, in general
relativity [Eqs. (1.51) and (1.56)]. Mathematically, PDEs are classified by
the properties of their principal symbol, which represents the highest-
order derivatives in the equations. Specifically, a general linear PDE of
second order has the form

𝐴𝑖 𝑗
𝜕2𝑢

𝜕𝑥 𝑖𝜕𝑥 𝑗
+ lower-order terms = 0, (1.36)

where the symmetric coefficients 𝐴𝑖 𝑗 represent the principal symbol. The
principal symbol is directly related to the geometry and causal structure
underlying the field theory, such as the metric of the spacetime manifold,
and specifically its signature.16 The PDE is elliptic when all eigenvalues of

16: Incidentally, and largely unrelated to
this thesis, the relation between causal-
ity and geometrodynamics is the subject
of my co-author publication [13] on the
gravitational closure framework.

𝐴𝑖 𝑗 have the same sign, as is the case for the Poisson equation, Eq. (1.35).
On the other hand, the principal coefficient matrix of the wave equation,
Eq. (1.34b), has one eigenvalue of opposite sign, which is the defining
property of a hyperbolic equation.

Elliptic PDEs typically represent static constraint problems, such as
the charge density inducing an electric potential by the Maxwell con-
straint (1.34a). They require boundary conditions enclosing a computa-

http://arxiv.org/abs/gr-qc/0201051
http://arxiv.org/abs/gr-qc/0201051
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tional domain to determine the field within, as illustrated in Fig. 1.10.
On the other hand, hyperbolic PDEs typically represent causal time
evolutions, where information propagates with finite characteristic speeds
(Fig. 1.11). Hyperbolic PDEs require initial data on a spatial slice through
the spacetime cones spanned by their characteristics. They also require
boundary conditions where the characteristic cones intersect the bound-
ary of the computational domain. Boundary conditions are only needed
for the incoming modes of the propagating fields, i.e., those with nega-
tive characteristic speed orthogonal to the boundary. The analysis and
numerical evolution of hyperbolic PDEs is a rich area of research. For
the purpose of this thesis, it suffices to recognize that the initial data
required for the evolution of hyperbolic PDEs in physics is often con-
strained by elliptic PDEs, as is the case for the simple example of the
Maxwell equations in Eq. (1.34). Finally, parabolic PDEs are characterized
by instantaneous propagation of information across the computational
domain. They require initial data and boundary conditions enclosing the
domain at every instant in time (Fig. 1.12).

1.2.1 Einstein constraints and evolution

In numerical relativity we study the Einstein equations, Eq. (1.1). They
represent ten coupled, nonlinear, second-order PDEs for the metric
tensor 𝑔𝜇𝜈. For computational purposes it is essential to decompose
the Einstein equations into a set of elliptic constraint equations and
hyperbolic evolution equations, just like the Maxwell equations (1.34),
so the PDEs have well-defined mathematical and numerical properties.
Since much of this thesis focuses on numerical solutions to the elliptic
Einstein constraint equations, I outline their derivation in this section.
See Baumgarte and Shapiro [17] for a more detailed introduction.[17]: Baumgarte and Shapiro (2010), Nu-

merical Relativity: Solving Einsteins Equa-
tions on the Computer

Figure 1.13: Geometry of two neighbor-
ing hypersurfaces (Fig. 2.4 in Baumgarte
and Shapiro [17]).

To formulate an initial value problem for general relativity suitable for
numerical evolution we first have to clarify notions of space and time. This
is accomplished by the 3+1 decomposition of general relativity. We foliate
the four-dimensional spacetime manifold into spacelike hypersurfacesΣ𝑡 ,
each defined as a level surface of a scalar function 𝑡. The function 𝑡 is
later chosen as the time coordinate. Hypersurfaces are characterized by
their timelike unit normal

𝑛𝜇 = −𝛼𝑔𝜇𝜈∇𝜈𝑡, 𝛼 =
(−𝑔𝜇𝜈∇𝜇𝑡∇𝜈𝑡)−1/2 , (1.37)

where the lapse 𝛼 > 0 parametrizes the amount of proper time that
elapses from one spatial hypersurface to the next, and 𝑛𝜇 is timelike by
construction, 𝑛𝜇𝑛𝜇 = −1. Correspondingly, the shift vector 𝛽𝜇 is defined
by

𝑡𝜇 = 𝛼𝑛𝜇 + 𝛽𝜇, (1.38)

where 𝑡𝜇 = (1, 0, 0, 0) connects points with the same spatial coordinates
between hypersurfaces (see Fig. 1.13). The spacetime metric 𝑔𝜇𝜈 induces
a spatial metric 𝛾𝜇𝜈 on the hypersurfaces Σ𝑡 ,

𝛾𝜇𝜈 = 𝑔𝜇𝜈 + 𝑛𝜇𝑛𝜈. (1.39)

It defines a spatial covariant derivativeD𝜇 onΣ𝑡 complete with Christoffel
symbols and Ricci curvature, and also serves to project spacetime tensors

https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
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into the spatial hypersurfaces. The gradient of the timelike unit normal
projected to Σ𝑡 is the extrinsic curvature,

𝐾𝜇𝜈 = −𝛾 𝜌
𝜇 𝛾 𝜎

𝜈 ∇𝜌𝑛𝜎 (1.40a)

= −1
2
L𝒏𝛾𝜇𝜈. (1.40b)

It is a symmetric spatial tensor with the notion of a curvature because
it quantifies the deviation of the normal vector from parallel transport
on Σ𝑡 . The extrinsic curvature can also be expressed as the Lie derivative
of the spatial metric along the timelike unit normal 𝑛𝜇, which bestows
on it the notion of the “time derivative” of 𝛾𝜇𝜈.

The tensors 𝛾𝜇𝜈, 𝐾𝜇𝜈, and 𝛽𝜇 are purely spatial, meaning their contrac-
tions with the timelike unit normal 𝑛𝜇 vanish. Therefore, the spatial
components 𝛾𝑖 𝑗 , 𝐾𝑖 𝑗 , and 𝛽𝑖 suffice to describe these tensors when the
level function 𝑡 is chosen as coordinate time. In these coordinates, the
unit normal vector is 𝑛𝜇 =

(
𝛼−1 ,−𝛼−1𝛽𝑖

)
or 𝑛𝜇 = (−𝛼, 0, 0, 0), the spatial

metric is 𝛾𝑖 𝑗 = 𝑔𝑖 𝑗 , and the spacetime metric takes the form

d𝑠2 = −𝛼2 d𝑡2 + 𝛾𝑖 𝑗
(
d𝑥 𝑖 + 𝛽𝑖 d𝑡

) (
d𝑥 𝑗 + 𝛽 𝑗 d𝑡

)
(1.41)

in terms of the 3+1 quantities.

In the 3+1 decomposition, the Einstein equations (1.1) take the standard
Arnowitt-Desner-Misner (ADM) form [93, 94],17 [93]: Arnowitt, Deser, and Misner (1962),

The dynamics of general relativity
[94]: York (1979), Kinematics and Dynamics
of General Relativity
17: Box 2.1 in Baumgarte and Shapiro [17]

𝑅 + 𝐾2 − 𝐾𝑖 𝑗𝐾 𝑖 𝑗 = 16𝜋𝜌H (1.42a)

D𝑗

(
𝐾 𝑖 𝑗 − 𝛾𝑖 𝑗𝐾

)
= 8𝜋𝑆𝑖 (1.42b)

𝜕𝑡𝛾𝑖 𝑗 = −2𝛼𝐾𝑖 𝑗 +D𝑖𝛽 𝑗 +D𝑗𝛽𝑖 (1.42c)

𝜕𝑡𝐾𝑖 𝑗 = 𝛼
(
𝑅𝑖 𝑗 − 2𝐾𝑖𝑘𝐾𝑘𝑗 + 𝐾𝐾𝑖 𝑗

)
−D𝑖D𝑗𝛼 − 8𝜋𝛼

(
𝑆𝑖 𝑗 − 1

2
𝛾𝑖 𝑗 (𝑆 − 𝜌H)

)
+ 𝛽𝑘𝜕𝑘𝐾𝑖 𝑗 + 𝐾𝑖𝑘𝜕𝑗𝛽𝑘 + 𝐾𝑘 𝑗𝜕𝑖𝛽𝑘 .

(1.42d)

Here, the Ricci scalar 𝑅 in Eq. (1.42a) and the Ricci tensor 𝑅𝑖 𝑗 in Eq. (1.42d)
are defined with respect to the spatial metric 𝛾𝑖 𝑗 , and 𝐾 = 𝛾𝑖 𝑗𝐾𝑖 𝑗 is the
trace of the extrinsic curvature. The 3+1 matter sources in the ADM
equations are the projections of the energy-momentum 𝑇𝜇𝜈,

𝜌H = 𝑛𝜇𝑛𝜈𝑇𝜇𝜈, (1.43a)

𝑆𝑖 = −𝛾𝑖 𝑗𝑛𝜇𝑇𝜇𝑗 , (1.43b)
𝑆𝑖 𝑗 = 𝛾𝑖𝜇𝛾𝑗𝜈𝑇𝜇𝜈, (1.43c)

𝑆 = 𝛾𝑖 𝑗𝑆𝑖 𝑗 . (1.43d)

Similar to the Maxwell equations (1.33), the ADM equations (1.42)
split into a set of time-independent constraints—the Hamiltonian con-
straint (1.42a) and the momentum constraint (1.42b)—and a set of evolution
equations that conserve the constraints, Eqs. (1.42c) and (1.42d). Extend-
ing the similarities with the Maxwell equations, the ADM equations
admit a gauge freedom in the choice of four degrees of freedom in the
lapse and shift. The Hamiltonian and momentum constraints determine
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another four degrees of freedom. The remaining four degrees of freedom
in the spatial metric 𝛾𝑖 𝑗 and the extrinsic curvature 𝐾𝑖 𝑗 define the physical
scenario at hand. The challenge in constructing initial data is to make
suitable choices for these remaining degrees of freedom, possibly in a
favorable gauge, and then solve the constraint equations numerically to
obtain valid data

(
𝛾𝑖 𝑗 , 𝐾𝑖 𝑗

)
on a spatial hypersurface.

A conformal decomposition has proven a successful strategy to cast the
Einstein constraints in a form suitable to make informed choices for the
dynamic degrees of freedom. The idea is to expose transverse-traceless
degrees of freedom that represent propagating gravitational waves (see
Section 1.1.1), so they can be set to zero for quasiequilibrium scenarios.
We decompose the spatial metric as [95][95]: Lichnerowicz (1944), L’intégration

des équations de la gravitation relativiste et
la problème des 𝑛 corps 𝛾𝑖 𝑗 = 𝜓4𝛾̄𝑖 𝑗 , (1.44)

where 𝜓 > 0 is the conformal factor and 𝛾̄𝑖 𝑗 is the conformal metric. We also
decompose the extrinsic curvature as

𝐾𝑖 𝑗 = 𝜓−2𝐴̄𝑖 𝑗 + 1
3
𝛾𝑖 𝑗𝐾, (1.45)

where 𝐴̄𝑖 𝑗 is the conformal traceless extrinsic curvature, and we treat the
trace of the extrinsic curvature, 𝐾, as a conformal invariant. Under the
conformal decomposition, the Hamiltonian and momentum constraints,
Eqs. (1.42a) and (1.42b), become [94, 96] 18[94]: York (1979), Kinematics and Dynam-

ics of General Relativity
[96]: O Murchadha and York (1974), Grav-
itational energy
18: Eqs. (3.37) and (3.38) in Baumgarte
and Shapiro [17]

8D̄2𝜓 − 𝜓𝑅̄ − 2
3
𝜓5𝐾2 + 𝜓−7𝐴̄𝑖 𝑗𝐴̄𝑖 𝑗 = −16𝜋𝜓5𝜌H, (1.46a)

D̄𝑗𝐴̄𝑖 𝑗 − 2
3
𝜓6𝛾̄𝑖 𝑗D̄𝑗𝐾 = 8𝜋𝜓10𝑆𝑖 , (1.46b)

where D̄𝑖 is the covariant derivative associated with the conformal
metric 𝛾̄𝑖 𝑗 , and 𝑅̄ is the corresponding conformal Ricci scalar. Before
continuing along this route, I discuss a particularly straightforward way
to furnish solutions to the constraint equations.

1.2.2 Puncture initial data

A popular approach to produce initial data for general-relativistic time
evolutions involving black holes is the puncture method [71]. Given the[71]: Brandt and Brügmann (1997), A Sim-

ple construction of initial data for multiple
black holes

complexity of the Einstein constraints, Eq. (1.46), the puncture method
furnishes a remarkably straightforward method to construct initial data
containing black holes. See Section 12.2 in Baumgarte and Shapiro [17][17]: Baumgarte and Shapiro (2010), Nu-

merical Relativity: Solving Einsteins Equa-
tions on the Computer

for a more detailed introduction to puncture initial data.

First, we simplify the constraints significantly by assuming conformal
flatness and maximal slicing,

𝛾̄𝑖 𝑗 = 𝜂𝑖 𝑗 and 𝐾 = 0, (1.47)

as well as vacuum, 𝑇𝜇𝜈 = 0. Under these assumptions, the Einstein

https://doi.org/10.1103/PhysRevD.10.2345
https://doi.org/10.1103/PhysRevD.10.2345
https://doi.org/10.1103/PhysRevLett.78.3606
https://doi.org/10.1103/PhysRevLett.78.3606
https://doi.org/10.1103/PhysRevLett.78.3606
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
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constraints (1.46) reduce to

D̄2𝜓 =
1
8
𝜓−7𝐴̄𝑖 𝑗𝐴̄𝑖 𝑗 , (1.48a)

D̄𝑗𝐴̄𝑖 𝑗 = 0, (1.48b)

where D𝑖 is the flat-space covariant derivative, i.e., simply 𝜕𝑖 in Cartesian
coordinates. The momentum constraint (1.48b) is now homogeneous. It
is solved analytically by the Bowen-York extrinsic curvature, which can
represent a black hole with linear momentum 𝑷 and angular momen-
tum 𝑺 [97]. Since the momentum constraint (1.48b) is linear, Bowen-York [97]: Bowen and York (1980), Time asym-

metric initial data for black holes and black
hole collisions

solutions can be superposed to construct a solution for 𝐴̄𝑖 𝑗 representing
multiple black holes,19

19: Eqs. (12.42) to (12.44) in Baumgarte
and Shapiro [17]

𝐴̄𝑖 𝑗 =
3
2
∑
𝐼

1
𝑟2
𝐼

(
2𝑃(𝑖𝐼 𝑛

𝑗)
𝐼 − (𝜂𝑖 𝑗 − 𝑛 𝑖𝐼𝑛

𝑗
𝐼 )𝑃𝑘𝐼 𝑛𝑘𝐼 +

4
𝑟𝐼
𝑛(𝑖𝐼 𝜖

𝑗)𝑘𝑙𝑆𝑘𝐼 𝑛
𝑙
𝐼

)
. (1.49)

The black holes are parametrized by their positions𝑪 𝐼 , linear momenta𝑷𝐼 ,
and spins 𝑺𝐼 . The quantity 𝑟𝐼 = ∥𝒙 − 𝑪 𝐼 ∥ is the Euclidean coordinate
distance to the 𝐼th black hole, and 𝒏𝐼 = (𝒙 − 𝑪 𝐼)/𝑟𝐼 is the radial unit
normal to the 𝐼th black hole.

Now, only the Hamiltonian constraint (1.48a) remains to be solved. We
decompose the conformal factor as 20 20: See Eq. (12.50) in Baumgarte and

Shapiro [17]. Note that 𝛼, and 𝛽 below,
should not be confused with the lapse
and shift in this context.𝜓 = 1 + 1

𝛼
+ 𝑢 with

1
𝛼

=
∑
𝐼

𝑀𝐼

𝑟𝐼
, (1.50)

where the parameters𝑀𝐼 are the puncture masses. The component 1 + 1/𝛼
represents a superposition of black holes with neither momentum nor
spin. It solves the homogeneous Hamiltonian constraint, D̄2𝜓 = 0, and
reduces to the Schwarzschild solution in isotropic coordinates for a
single black hole. Therefore, the terms 𝑀𝐼/𝑟𝐼 enforce the existence of
black holes at the positions 𝑪 𝐼 . The additional puncture field 𝑢 corrects
for the momentum and spin of the black holes such that 𝜓 solves
the full inhomogeneous Hamiltonian constraint, Eq. (1.48a). With the
decomposition (1.50), the Hamiltonian constraint reduces to a single
nonlinear elliptic PDE for the field 𝑢, the puncture equation

−D̄2𝑢 = 𝛽 (𝛼 (1 + 𝑢) + 1)−7 with 𝛽 =
1
8
𝛼7𝐴̄𝑖 𝑗𝐴̄𝑖 𝑗 . (1.51)

Given a choice of black hole parameters {𝑀𝐼 , 𝑪 𝐼 ,𝑷𝐼 , 𝑺𝐼}, the puncture
equation (1.51) is solved numerically for the field𝑢(𝒙). Then, an admissible
spacetime metric and extrinsic curvature can be assembled by retracing
the series of decompositions. The quantities 𝛼 and 𝛽 are background fields
that define the configuration of black holes. We supplement Eq. (1.51) with
boundary conditions to impose asymptotic flatness far away from the
black holes, 𝑢 → 0 as 𝑟 →∞. Strategies to numerically solve nonlinear
elliptic equations such as the puncture equation (1.51) are the subject of
Section 1.3 and the remainder of this thesis.

[20]: Pretorius (2005), Evolution of binary
black hole spacetimes
[21]: Campanelli et al. (2006), Accurate
evolutions of orbiting black-hole binaries
without excision
[22]: Baker et al. (2006), Gravitational wave
extraction from an inspiraling configuration
of merging black holes

The puncture approach has become the initial data method of choice for
many numerical relativity codes, including two of the three first BBH
merger simulations [21, 22].21

21: The first simulation by Pretorius [20]
employed initial data derived from scalar
field gravitational collapse following
Ref. [98].

Puncture initial data is particularly useful [98]: Pretorius (2005), Numerical relativity
using a generalized harmonic decompositionfor codes that evolve the initial data with the Baumgarte-Shapiro-Shibata-

https://doi.org/10.1103/PhysRevD.21.2047
https://doi.org/10.1103/PhysRevD.21.2047
https://doi.org/10.1103/PhysRevD.21.2047
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1088/0264-9381/22/2/014
https://doi.org/10.1088/0264-9381/22/2/014
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Nakamura (BSSN) formulation of the Einstein evolution equations and
with a moving puncture scheme. See Baumgarte and Shapiro [17] for an
introduction to the BSSN formulation and to moving puncture schemes.

However, the puncture method provides no immediate mechanism[76]: Ruchlin et al. (2017), Puncture Ini-
tial Data for Black-Hole Binaries with High
Spins and High Boosts
[99]: Khamesra, Gracia-Linares, and La-
guna (2021), Black hole–neutron star binary
mergers: the imprint of tidal deformations
and debris
[100]: Clark and Laguna (2016), Bowen-
York Type Initial Data for Binaries with Neu-
tron Stars
[101]: Kyutoku et al. (2021), Reducing
orbital eccentricity in initial data of black
hole–neutron star binaries in the puncture
framework
[102]: Etienne et al. (2007), Filling the holes:
Evolving excised binary black hole initial data
with puncture techniques
[103]: Chaurasia, Dietrich, and Rosswog
(2021), Black hole-neutron star simulations
with the BAM code: First tests and simula-
tions

to impose a notion of quasiequilibrium on binary initial data. The
puncture masses, centers, linear momenta, and spins must be chosen
appropriately, often based on energy arguments. Puncture initial data
is also difficult to combine with black-hole excision schemes, since it
provides no control over the initial deformation and motion of the black
hole horizons. Furthermore, extensions to the puncture method that relax
the assumption of conformal flatness are needed to produce initial data
with high spins, since Kerr black holes admit no conformally flat slices [76]
(see the discussion on junk radiation in Section 1.1.6). Other extensions
to the puncture method incorporate fluid sources to accomodate BHNS
initial data. For instance, Khamesra, Gracia-Linares, and Laguna [99]
employ the formulation by Clark and Laguna [100], choosing spherically
symmetric fluid sources so the momentum constraint can still be solved
analytically. Kyutoku et al. [101] mix the puncture approach with the
XCTS method detailed below to solve for BHNS initial data. Another
line of work explored by Etienne et al. [102] and recently picked up by
Chaurasia, Dietrich, and Rosswog [103] use XCTS initial data directly,
and resort to “stuffing the black hole” with fiducial data to accomodate
their moving puncture BHNS simulations.

1.2.3 XCTS initial data

This thesis is concerned primarily with the extended conformal thin
sandwich (XCTS) [104, 105] formulation of the Einstein constraint equa-[104]: York (1999), Conformal ’thin sand-

wich’ data for the initial-value problem of
general relativity
[105]: Pfeiffer and York (2003), Extrinsic
curvature and the Einstein constraints

tions. See also Sections 3.3 and 12.3 in Baumgarte and Shapiro [17] for an
introduction to XCTS initial data.

We pick up the derivation of the XCTS system at the ADM formulation
of the Einstein constraints, Eq. (1.46). First, we conformally transform the
evolution equation for the spatial metric, Eq. (1.42c), which is essentially
the definition of the extrinsic curvature. To this end, we define the time
derivative of the conformal metric,

𝑢̄𝑖 𝑗 ≡ 𝜕𝑡 𝛾̄𝑖 𝑗 and 𝛾̄𝑖 𝑗 𝑢̄𝑖 𝑗 ≡ 0. (1.52)

We also define the longitudinal operator,(
𝐿̄𝛽

) 𝑖 𝑗 = 2∇̄(𝑖𝛽 𝑗) − 2
3
𝛾̄𝑖 𝑗∇̄𝑘𝛽𝑘 , (1.53)

which conformally transforms as (𝐿𝑉)𝑖 𝑗 = 𝜓−4 (
𝐿̄𝑉

) 𝑖 𝑗 . Then, the evolution
equation for the spatial metric, Eq. (1.42c), takes the form 2222: Eq. (3.101) in Baumgarte and

Shapiro [17]

𝐴̄𝑖 𝑗 =
𝜓6

2𝛼

( (
𝐿̄𝛽

) 𝑖 𝑗 − 𝑢̄ 𝑖 𝑗) , (1.54)

where we used the conformal decomposition of the extrinsic curvature,
Eq. (1.45).

Second, we take the trace of the evolution equation for the extrinsic
curvature, Eq. (1.42d), to find 2323: Eq. (2.137) in Baumgarte and

Shapiro [17]
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D2𝛼 = −𝜕𝑡𝐾 + 𝛼
(
𝐾𝑖 𝑗𝐾 𝑖 𝑗 + 4𝜋 (𝜌H + 𝑆)

)
+ 𝛽𝑖D𝑖𝐾. (1.55)

This equation furnishes a condition on the lapse given a choice of 𝜕𝑡𝐾,
which can be conveniently set to zero to construct quasiequilibrium initial
data.

Finally, we assemble the Hamiltonian constraint (1.46a), the lapse equa-
tion (1.55), and the momentum constraint (1.46b), to obtain the XCTS
equations [74, 105],24 [74]: Pfeiffer (2005), The Initial value prob-

lem in numerical relativity
[105]: Pfeiffer and York (2003), Extrinsic
curvature and the Einstein constraints
24: Box 3.3 in Baumgarte and
Shapiro [17]

D̄2𝜓 =
1
8
𝜓𝑅̄ + 1

12
𝜓5𝐾2 − 1

8
𝜓−7𝐴̄𝑖 𝑗𝐴̄𝑖 𝑗 − 2𝜋𝜓5𝜌H, (1.56a)

D̄2 (𝛼𝜓) = 𝛼𝜓

(
7
8
𝜓−8𝐴̄𝑖 𝑗𝐴̄𝑖 𝑗 + 5

12
𝜓4𝐾2 + 1

8
𝑅̄

+ 2𝜋𝜓4 (𝜌H + 2𝑆)
)
− 𝜓5𝜕𝑡𝐾 + 𝜓5𝛽𝑖D̄𝑖𝐾,

(1.56b)

D̄𝑖(𝐿̄𝛽)𝑖 𝑗 = (𝐿̄𝛽)𝑖 𝑗D̄𝑖 ln(𝛼̄) + 𝛼̄D̄𝑖

(
𝛼̄−1𝑢̄ 𝑖 𝑗

)
+ 4

3
𝛼̄𝜓6D̄ 𝑗𝐾 + 16𝜋𝛼̄𝜓10𝑆 𝑗 ,

(1.56c)

where 𝛼̄ = 𝛼𝜓−6, and 𝐴̄𝑖 𝑗 is given by Eq. (1.54). The Hamiltonian con-
straint (1.56a) remains an equation for the conformal factor 𝜓. For the
lapse equation (1.56b) we have combined Eq. (1.55) with the Hamiltonian
constraint (1.56a).25 The momentum constraint (1.56c) is an equation for 25: Note that D2 𝑓 = 𝜓−4D̄2 𝑓 +

2𝜓−4D̄𝑖 ln𝜓D̄𝑖 𝑓 for a scalar 𝑓 , and
D̄2 (𝛼𝜓) = 𝛼D̄2𝜓 + 𝜓D̄2𝛼 + 2D̄𝑖𝛼D̄𝑖𝜓.

the shift 𝛽𝑖 , where we have used Eq. (1.54).

The XCTS equations are solved for the conformal factor 𝜓, the product
of lapse and conformal factor 𝛼𝜓, and the shift vector 𝛽𝑖 together with
the boundary conditions detailed below. The remaining quantities in
the equations, i.e., the conformal metric 𝛾̄𝑖 𝑗 , the trace of the extrinsic
curvature 𝐾, their respective time derivatives 𝑢̄𝑖 𝑗 and 𝜕𝑡𝐾, the energy
density 𝜌H, the stress-energy trace 𝑆, and the momentum density 𝑆𝑖 , are
freely-specifiable fields that define the scenario at hand. Of particular
importance is the conformal metric 𝛾̄𝑖 𝑗 , which defines the background
geometry, the covariant derivative D̄𝑖 , the Ricci scalar 𝑅̄, and the longitu-
dinal operator.

[75]: Lovelace et al. (2008), Binary-black-
hole initial data with nearly-extremal spins
[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets
[89]: Papenfort et al. (2021), New public
code for initial data of unequal-mass, spin-
ning compact-object binaries
[106]: Matzner, Huq, and Shoemaker
(1999), Initial data and coordinates for mul-
tiple black hole systems
[107]: Dietrich et al. (2015), Binary Neutron
Stars with Generic Spin, Eccentricity, Mass
ratio, and Compactness - Quasi-equilibrium
Sequences and First Evolutions
[108]: Rashti et al. (2021), Elliptica: a new
pseudo-spectral code for the construction of
initial data
[109]: Tacik et al. (2015), Binary Neutron
Stars with Arbitrary Spins in Numerical Rel-
ativity
[110]: Tsokaros, Uryū, and Rezzolla
(2015), New code for quasiequilibrium ini-
tial data of binary neutron stars: Corotating,
irrotational, and slowly spinning systems
[111]: Uryū et al. (2009), Non-conformally
flat initial data for binary compact objects
[112]: Tacik et al. (2016), Initial data for
black hole–neutron star binaries, with rotat-
ing stars

Initial data slices constructed from solutions to the XCTS equations are
widely used in numerical relativity. The formulation allows to impose a
notion of quasiequilibrium on the initial data by the choice 𝑢̄𝑖 𝑗 = 0 and
𝜕𝑡𝐾 = 0. It also provides initial choices for the lapse and shift, relieving the
numerical relativist from making choices for these variables. However, we
must still impose a conformal metric 𝛾̄𝑖 𝑗 and a mean extrinsic curvature 𝐾.
Common choices for these quantities are conformal flatness, 𝛾̄𝑖 𝑗 = 𝜂𝑖 𝑗 ,
and maximal slicing, 𝐾 = 0, though these do not allow for high-spin
black hole solutions as discussed in Section 1.1.6. Instead, the conformal
background for BBH initial data is often constructed from superpositions
of isolated Kerr solutions to achieve high spins [75, 78, 106]. The XCTS
formulation is also prevalent for BNS and BHNS initial data. Many codes
employ conformal flatness and maximal slicing for initial data with
neutron stars [89, 107–110], though some codes also experiment with
non-conformally-flat initial data [111, 112].

Note that the XCTS equations (1.56) are essentially two Poisson equations
and one “minimal distortion” elasticity equation for the shift vector with
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coupled, nonlinear sources on a curved manifold. In this analogy, the
longitudinal operator plays the role of the elastic constitutive relation
that connects the symmetric “shift strain” D̄(𝑖𝛽 𝑗) with the “stress” (𝐿̄𝛽)𝑖 𝑗
of which we take the divergence in the momentum constraint (1.56c).
This particular constitutive relation is equivalent to an isotropic and
homogeneous material [Eq. (5.10)] with bulk modulus 𝐾 = 0 (not to be
confused with the extrinsic curvature trace 𝐾 in this context) and shear
modulus 𝜇 = 1. Chapter 5 explores this relationship further.

Apparent-horizon boundary conditions

Black holes in the XCTS formalism are represented by excised regions
of the computational domain. These regions are enclosed by boundary
conditions that impose the excision surface is an apparent horizon in
quasiequilibrium [113], so it will always lie within the event horizon of[113]: Cook and Pfeiffer (2004), Excision

boundary conditions for black hole initial
data

the spacetime. See Section 12.3.2 in Baumgarte and Shapiro [17] for a more
detailed introduction to quasiequilibrium apparent-horizon boundary
conditions.

An apparent horizon (AH) is a two-dimensional spatial surface that is
characterized by the condition

Θ = 0, (1.57)

where Θ is the expansion of outgoing null geodesics on the surface,2626: Eq. (7.29) in Baumgarte and
Shapiro [17]

Θ =
1√
2
𝑚 𝑖 𝑗 (D𝑖𝑠 𝑗 − 𝐾𝑖 𝑗

)
. (1.58)

Here, 𝑠𝑖 is the spatial unit normal to the apparent horizon, and 𝑚𝑖 𝑗 =
𝛾𝑖 𝑗 − 𝑠𝑖𝑠 𝑗 is the induced metric on the surface. The condition (1.57) defines
a marginally outer-trapped surface (MOTS), and an apparent horizon is the
outermost of such surfaces. To impose the excision surface is not only
a MOTS, but also in quasiequilibrium and remaining so initially in the
chosen coordinates, we can impose the boundary conditions [113]

𝑠𝑘D𝑘𝜓 = − 𝜓3

8𝛼
𝑠𝑖𝑠 𝑗

(
(𝐿̄𝛽)𝑖 𝑗 − 𝑢̄ 𝑖 𝑗

)
− 𝜓

4
𝑚̄ 𝑖 𝑗D̄𝑖𝑠 𝑗 + 1

6
𝐾𝜓3, (1.59a)

𝛽𝑖 =
𝛼

𝜓2 𝑠
𝑖 − 𝜖𝑖 𝑗𝑘Ω

𝑗
𝑟𝑥

𝑘 (1.59b)

on the XCTS variables, where 𝑠𝑖 = 𝜓−2𝑠𝑖 is the conformal unit normal
to the surface, and 𝑚̄𝑖 𝑗 = 𝛾̄𝑖 𝑗 − 𝑠𝑖𝑠 𝑗 is the conformal surface metric. The
rotation parameters 𝛀𝑟 in Eq. (1.59b) endow the apparent horizon with
a tangential shift-component. They twist the time vector 𝑡𝜇, Eq. (1.38),
and hence induce spin. The AH boundary conditions do not constrain
the lapse, so we are free to choose another boundary condition for the
lapse [113]. I will explore AH boundary conditions further in Chapter 4.

https://doi.org/10.1103/PhysRevD.70.104016
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1.2.4 Fluid sources

When we simulate a spacetime with matter, the constraint equations are
sourced by the energy-momentum 𝑇𝜇𝜈 as given by Eq. (1.43). Matter
involved in astrophysical scenarios, such as neutron stars, is typically
modeled as a perfect fluid,27 27: See, e.g., Rezzolla and Zanotti [114]

for an introduction to relativistic hydro-
dynamics, or Baumgarte and Shapiro [17]
for a summary.
[17]: Baumgarte and Shapiro (2010), Nu-
merical Relativity: Solving Einsteins Equa-
tions on the Computer
[114]: Rezzolla and Zanotti (2013), Rela-
tivistic Hydrodynamics

𝑇𝜇𝜈 = (𝜌 + 𝑃) 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈, (1.60)

where 𝜌 = 𝜌0 (1 + 𝜖) is the total mass-energy density, 𝜌0 is the rest-mass
density, 𝜖 is the specific internal energy density,𝑃 is the pressure, and𝑢𝜇 is
the fluid four-velocity. We also define the specific enthalpy ℎ = 1+𝜖+𝑃/𝜌0.
The fluid must satisfy conservation of energy-momentum,

∇𝜇𝑇𝜇𝜈 = 0, (1.61)

and conservation of rest mass,

∇𝜇 (𝜌0𝑢𝜇) = 0. (1.62)

The fluid equations of motion are closed by an equation of state (EOS),
such as 𝑃(𝜌0). When we construct initial data involving matter we
solve the hydrodynamic equations alongside the Einstein constraints to
determine the fluid variables, as well as the spacetime metric. The matter
and gravity sectors are coupled through the metric involved in the fluid
equations, and the fluid sourcing the Einstein constraints. Therefore, we
end up with a larger system of coupled equations that encompass both
matter and gravity variables.

For example, in the important case of an irrotational neutron-star binary
the fluid equations reduce to the elliptic PDE 28 28: Eq. (15.78) in Baumgarte and

Shapiro [17], Eq. (4.27) in Moldenhauer
et al. [87], and Eq. (A74) in Uryū
et al. [111].
[17]: Baumgarte and Shapiro (2010), Nu-
merical Relativity: Solving Einsteins Equa-
tions on the Computer
[87]: Moldenhauer et al. (2014), Initial
data for binary neutron stars with adjustable
eccentricity
[111]: Uryū et al. (2009), Non-conformally
flat initial data for binary compact objects

D2Φ −D𝑖

(
Λ𝐵𝑖

)
= −

(
D𝑖Φ −Λ𝐵𝑖

)
D𝑖 ln

𝛼𝜌0

ℎ
(1.63)

for the velocity potential Φ defined by

ℎ𝑢𝜇 C ∇𝜇Φ, (1.64)

and the algebraic equation

ℎ2 = 𝛼2Λ2 −D𝑖ΦD𝑖Φ (1.65)

for the specific enthalpy ℎ. Here, Λ = 𝛼−2 (
𝐶 + 𝐵𝑖D𝑖Φ

)
, 𝐶 is a constant

of integration, 𝐵𝜇 = 𝛽𝜇 + Ω𝜑𝜇 = 𝜉
𝜇
hel − 𝛼𝑛𝜇 is the rotational shift,

𝜉
𝜇
hel = 𝑡𝜇 +Ω𝜑𝜇 is a helical Killing vector, 𝑡𝜇 is given by Eq. (1.38), and

𝜑𝜇 describes orbital rotation with angular velocity Ω around the axis 𝒛̂,
so 𝜑𝑖 = 𝜖𝑖 𝑗𝑘 𝑧̂ 𝑗𝑥𝑘 in Cartesian coordinates. The elliptic velocity potential
equation (1.63) is supplemented by the regularity condition(

D𝑖Φ −Λ𝐵𝑖
)
D𝑖𝜌0

����
surface

= 0 (1.66)

at the surface of the neutron stars where ℎ = 1. I will not solve Eq. (1.63)
numerically in this thesis, but note that it is a primary target for future
applications of the computational methods developed here.
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1.2.5 More elliptic equations in numerical relativity

Elliptic equations arise not only in initial data problems. For example,
in Eq. (1.55) we have taken the trace of the evolution equation for the(1.55): D2𝛼 = −𝜕𝑡𝐾 +

𝛼
(
𝐾𝑖 𝑗𝐾 𝑖 𝑗 + 4𝜋 (𝜌H + 𝑆)

) + 𝛽𝑖D𝑖𝐾 extrinsic curvature to find an elliptic equation for the lapse. When we
impose maximal slicing, 𝐾 = 0 = 𝜕𝑡𝐾, Eq. (1.55) reduces to 2929: Eq. 4.13 in Baumgarte and

Shapiro [17]
D2𝛼 = 𝛼

(
𝑅 − 4𝜋 (3𝜌H − 𝑆)

)
. (1.67)

To retain maximal slicing throughout a simulation, we could solve
Eq. (1.67) alongside the evolution to control the lapse. This is not typically
done because the available elliptic solver algorithms in numerical relativ-
ity have traditionally been too computationally expensive to make this
strategy worthwile. Instead, gauge drivers are sometimes used that relax
the lapse towards maximal slicing (𝐾-driver) or towards other choices
such as “1+log” slicing. Similarly, an elliptic equation similar to the XCTS
equation for the shift, Eq. (1.56c), can be solved alongside an evolution to
retain a “minimal distortion condition”, but relaxation schemes such as
a Gamma-driver are more commonly employed.3030: See Box 4.1 in Baumgarte and

Shapiro [17] and surrounding discussion.
Furthermore, the apparent-horizon condition (1.58) is an elliptic PDE

(1.58): Θ = 1√
2
𝑚 𝑖 𝑗 (D𝑖 𝑠 𝑗 − 𝐾𝑖 𝑗

)
when formulated in terms of a level function.31 However, numerical

31: See Section 7.3 in Baumgarte and
Shapiro [17].

relativity codes typically use a parabolic relaxation method to find
apparent horizons throughout an evolution in an artificial time coordinate,
such as the algorithm developed by Gundlach [115].[115]: Gundlach (1998), Pseudospectral ap-

parent horizon finders: An Efficient new al-
gorithm Recently, constrained evolution schemes for the Einstein equations have

enjoyed renewed interest [85]. Fully constrained schemes only evolve the[85]: Cheong, Lin, and Li (2020), Gmunu:
Toward multigrid based Einstein field equa-
tions solver for general-relativistic hydrody-
namics simulations

two dynamic gravitational-wave degrees of freedom using hyperbolic
wave equations, and resort to elliptic equations to constrain all other
degrees of freedom throughout the evolution [116]. This strategy can lead[116]: Bonazzola et al. (2004), A Con-

strained scheme for Einstein equations based
on Dirac gauge and spherical coordinates

to exceptionally stable evolutions since it avoids the growth of constraint
modes due to numerical error, but has seen little use in the recent
development of numerical relativity, largely due to the computational
cost associated with solving the elliptic constraint equations. Instead,
contemporary codes typically employ hyperbolic constraint damping
methods to stabilize evolutions [117, 118].[117]: Gundlach et al. (2005), Constraint

damping in the Z4 formulation and harmonic
gauge
[118]: Lindblom et al. (2006), A New gen-
eralized harmonic evolution system

The idea of constrained evolution can also be applied to perform di-
vergence cleaning. For instance, in magnetohydrodynamic simulations
care must be taken to avoid the growth of magnetic monopoles due
to accumulation of numerical error, violating the Maxwell constraint
∇ · 𝑩 = 0, Eq. (1.34a). Many codes employ variations of hyperbolic diver-
gence cleaning, propagating violations of the Maxwell constraint out of
the computational domain using an additional scalar field [119]. Recently,[119]: Dedner et al. (2002), Hyperbolic Di-

vergence Cleaning for the MHD Equations Cheong et al. [120] have reported progress on elliptic divergence cleaning,
[120]: Cheong et al. (2021), An extension of
Gmunu: General-relativistic resistive magne-
tohydrodynamics based on staggered-meshed
constrained transport with elliptic cleaning

where they solve the Maxwell constraint alongside the evolution.

A related concept where elliptic equations are prominent is implicit-
explicit (IMEX) time stepping [121]. It is a strategy to accomodate “stiff”

[121]: Pareschi and Russo (2005), Implicit-
explicit runge-kutta schemes and applica-
tions to hyperbolic systems with relaxation

terms in evolution equations, meaning their relaxation time is small
compared to the characteristic speeds of the remaining system. In such
cases the evolution must resort to excessively small (explicit) time steps.
Instead, IMEX methods treat the stiff sector of the equations implicitly,
solving algebraic equations or elliptic PDEs alongside the evolution for
the effect of the stiff sector. In numerical relativity, IMEX methods have
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been explored by Lau, Lovelace, and Pfeiffer [122] for the gravity sector, [122]: Lau, Lovelace, and Pfeiffer (2011),
Implicit-explicit (IMEX) evolution of single
black holes

and by Cheong et al. [120] and Ripperda et al. [123], and references

[120]: Cheong et al. (2021), An extension of
Gmunu: General-relativistic resistive magne-
tohydrodynamics based on staggered-meshed
constrained transport with elliptic cleaning
[123]: Ripperda et al. (2019), General rel-
ativistic resistive magnetohydrodynamics
with robust primitive variable recovery for
accretion disk simulations

therein for GRMHD simulations.

1.3 Numerical methods to solve elliptic

equations

The plethora of elliptic PDEs that we have identified thus far can be solved
only numerically in many interesting scenarios, particularly in the absence
of symmetries or other simplifying assumptions. For instance, while the
analytic Schwarzschild and Kerr solutions to the Einstein equations fur-
nish essential insights into the physics of isolated spherically-symmetric
and axisymmetric black holes, and represent impressive feats by them-
selves, numerical solutions are necessary to obtain nonperturbative
solutions to the Einstein constraints representing orbiting black holes.
The addition of astrophysical effects, such as magnetohydrodynamic
matter with realistic equations of state, move the solution to the respective
PDEs even further into the realm of computational physics.

PDEs are characterized by derivatives that couple degrees of freedom
across multiple dimensions. This distinguishes them from ordinary
differential equations (ODEs) that can be integrated along a single
variable with considerably less computational effort (though numeric
ODE integration is a rich research area as well, and I touch upon it when
solving spherically symmetric stars in Section 4.3.1). In this section, I
introduce the essential ideas and most prevalent numerical schemes for
solving elliptic PDEs on a computer. Introductions to PDEs focused on
computational physics can be found in Press et al. [124], Chapter 20, and [124]: Press et al. (2007), Numerical Recipes
Baumgarte and Shapiro [17], Chapter 6. [17]: Baumgarte and Shapiro (2010), Nu-

merical Relativity: Solving Einsteins Equa-
tions on the ComputerElliptic PDEs, in contrast to hyperbolic and parabolic PDEs, represent

static configurations with no notion of time. Instead of evolving data
forward, numerical algorithms are tasked with finding an admissable con-
figuration “everywhere at once”. For instance, the Poisson equation (1.35) (1.35): −Δ𝑢 = 𝑓 (𝒙)
represents a condition on the field 𝑢(𝒙) given a fixed source 𝑓 (𝒙) on a
computational domain, as well as boundary conditions. The numerical
methods outlined below find the solution 𝑢(𝒙) up to some numerical
error. They discretize the field values on a computational grid so the
elliptic equations take the form of a matrix equation,

A𝑢 = 𝑏, (1.68)

where 𝑢 represents the field values at all grid points, 𝑏 represents the fixed
sources at all grid points, and A is a matrix that represents the discrete
elliptic operator (such as the Laplacian Δ in the Poisson equation). The
matrix equation can then be inverted numerically to obtain the discrete
solution 𝑢 on the computational grid,

𝑢 = A−1𝑏. (1.69)

Nonlinear elliptic equations are typically linearized to obtain a matrix
equation and then solved iteratively. In the remainder of this section
I will outline some common computational methods to discretize and
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invert elliptic PDEs. Then, looking ahead to the main subject of this thesis,
Chapter 2 develops a discontinuous Galerkin scheme to construct the
matrix A for a wide range of elliptic problems in numerical relativity, and
Chapter 3 develops algorithms to invert the matrix on supercomputers.

1.3.1 Finite difference and finite volume methods

𝑥

𝑦

Δ𝑥

Δ𝑦

Figure 1.14: Regular and uniformly-
spaced finite-difference grid. The circled
grid points are coupled by the second-
order FD stencil for the central point.
The dotted line connects grid points in
column-major order.

Finite difference (FD) methods discretize fields by their value at grid
points. The computational domain Ω is typically covered by a regular
and uniformly-spaced grid (Fig. 1.14). For instance, in two dimensions
we might choose a grid spacing Δ𝑥 along the direction 𝑥, and a spacing
Δ𝑦 along the direction 𝑦, so the grid points lie at

𝒙𝑝 = 𝒙0 +
(
𝑝𝑥Δ𝑥
𝑝𝑦Δ𝑦,

)
(1.70)

where the index 𝑝 = (𝑝𝑥 , 𝑝𝑦) enumerates the grid points in both directions.
The regular grid has a total of 𝑁points = 𝑁𝑥𝑁𝑦 grid points, where 𝑁𝑥 and
𝑁𝑦 count the number of grid points in each of the two dimensions. We
denote the value of a scalar field 𝑢(𝒙) at the grid points 𝒙𝑝 as

𝑢𝑝 = 𝑢(𝒙𝑝) and 𝑢 =
(
𝑢1 , . . . , 𝑢𝑁points

)
, (1.71)

where 𝑢 denotes the set of all scalar field values on the grid. With
this discretization of the field, we can obtain a discretization of the
derivative 𝜕𝑖𝑢 in both directions of the grid by a simple Taylor expansion,

𝑢(𝑝𝑥±1,𝑝𝑦 ) = 𝑢(𝑥𝑝 ± Δ𝑥, 𝑦𝑝) = 𝑢𝑝 ± Δ𝑥 (𝜕𝑥𝑢)𝑝 +
Δ𝑥2

2
(
𝜕2
𝑥𝑢

)
𝑝 +O(Δ𝑥3),

(1.72a)

𝑢(𝑝𝑥 ,𝑝𝑦±1) = 𝑢(𝑥𝑝 , 𝑦𝑝 ± Δ𝑦) = 𝑢𝑝 ± Δ𝑦
(
𝜕𝑦𝑢

)
𝑝 +

Δ𝑦2

2

(
𝜕2
𝑦𝑢

)
𝑝
+O(Δ𝑦3).

(1.72b)

To discretize the Laplacian Δ ≡ 𝜕𝑖𝜕𝑖 in the Poisson equation (1.35) we(1.35): −Δ𝑢 = 𝑓 (𝒙)
can take the sum of all four equations (1.72) so the first-derivative terms
cancel. Then, the second-order FD approximation to the Poisson equation
is

−𝑢(𝑝𝑥+1,𝑝𝑦 ) − 2𝑢𝑝 + 𝑢(𝑝𝑥−1,𝑝𝑦 )
Δ𝑥2 − 𝑢(𝑝𝑥 ,𝑝𝑦+1) − 2𝑢𝑝 + 𝑢(𝑝𝑥 ,𝑝𝑦−1)

Δ𝑦2 = 𝑓𝑝 . (1.73)

This equation has the form A𝑢 = 𝑏, Eq. (1.68), since the left-hand side of
Eq. (1.73), the stencil, defines a matrix-vector product. We can construct
the matrix A explicitly by choosing an order in which we enumerate
the values at the grid points collected in 𝑢. Figure 1.15 illustrates the
sparsity pattern of A, i.e., its nonzero entries, where I have chosen the
“column-major” order 𝑝 = 𝑝𝑥 +𝑁𝑥𝑝𝑦 (see Fig. 1.14). Boundary conditions
can be imposed on the entries of the matrix corrsponding to the outermost
grid points.

𝑢

A𝑢

Figure 1.15: Sparsity pattern of the
second-order finite difference discretiza-
tion A of the Laplace operator for 𝑁𝑥 =
𝑁𝑦 = 6 grid points. Finite volume (FV) methods are very similar to FD methods, and even

equivalent for simple configurations. FV methods are based on flux
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formulations of the PDEs. For instance, the Poisson equation (1.35) can (1.35): −Δ𝑢 = 𝑓 (𝒙)
be formulated as a divergence of the flux 𝑣 𝑖 = 𝜕𝑖𝑢,

−𝜕𝑖𝑣 𝑖 = 𝑓 (𝒙). (1.74)

Instead of evaluating the equation at a set of regularly spaced grid
points (as we did for the FD method) we define (“cell-centered”) control
volumes Ω𝑝 around the grid points (see Fig. 1.16),

Ω𝑝 =
[
𝑥𝑝 − Δ𝑥

2
, 𝑥 + Δ𝑥

2

]
×

[
𝑦𝑝 − Δ𝑦

2
, 𝑦 + Δ𝑦

2

]
. (1.75)

Here, we used the regular grid of points defined in Eq. (1.70), but the FV
method can also accomodate irregular control volumes. Then, we can
integrate Eq. (1.74) over each control volume Ω𝑝 ,

−
∫
Ω𝑝

𝜕𝑖𝑣 𝑖 d𝑉 = −
∫
𝜕Ω𝑝

𝑛𝑖𝑣 𝑖 d𝐴 =
∫
Ω𝑝

𝑓 (𝒙)d𝑉 , (1.76)

where we have applied the divergence theorem to integrate the flux over
the boundary of the control volume with unit normal 𝑛𝑖 instead. In one
dimension, Eq. (1.76) reduces to

−𝑣𝑝+1/2 + 𝑣𝑝−1/2 ≈ Δ𝑥 𝑓𝑝 , (1.77)

where the flux 𝑣 is evaluated midway between the grid points, and we
have approximated the right-hand side integral with the midpoint rule.
Further approximating the flux as 𝑣𝑝±1/2 ≈ ±

(
𝑢𝑝±1 − 𝑢𝑝

) /Δ𝑥 reduces
Eq. (1.77) to the one-dimensional FD approximation, Eq. (1.73). The focus
on conservation laws, which are naturally formulated in terms of fluxes
and ubiquitous in physics, makes FV methods popular in many areas of
physics, such as computational fluid dynamics.

𝑥

𝑦

Figure 1.16: Cell-centered control vol-
umes.

Evidently, the FD and FV methods are exceptionally straightforward to
implement for the simple Poisson problem. They also generalize well to
higher dimensions and more involved equations, and are the method of
choice in many numerical relativity and computational fluid dynamics
codes due to their robustness and relative easy of implementation. How-
ever, the numerical error introduced by truncating the Taylor expansion,
Eq. (1.72), decreases only polynomially with the grid spacing, with a
power determined by the order of the approximation. Therefore, FD and
FV methods can quickly exhaust the available computational resources
with increasing resolution. Higher-order FD stencils are not particularly
well-suited for parallelization since they depend on an order-dependent
number of neighboring grid points that must be communicated between
processors.

1.3.2 Spectral methods

Spectral methods expand the solution fields in a functional basis and fur-
nish a discretization by truncating the expansion at a suitable order [125]. [125]: Boyd (2001), Chebyshev and Fourier

Spectral Methods
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A field 𝑢(𝒙) in 𝑑 dimensions is approximated by the finite series

𝑢(𝒙) ≈ 𝑢𝑁 (𝒙) =
𝑁∑
𝑝=1

𝑢̃𝑝𝜙𝑝(𝒙), (1.78)

where 𝜙𝑝(𝒙) are 𝑁 basis functions and 𝑢̃𝑝 are the corresponding spectral
coefficients, or modes.32 The choice of basis can be informed by the problem32: The number of basis functions is of-

ten counted as 𝑁 + 1 in the literature, so
𝑁 is the highest degree of a polynomial
basis. In this thesis, I denote the polyno-
mial degree as 𝑃 and reserve 𝑁 = 𝑃 + 1
for the number of basis functions, or the
number of grid points.

at hand. Common choices are Fourier series for periodic problems,
spherical harmonics for the angular directions of spherical problems, and
Chebyshev or Legendre polynomials for (deformed) cubes (illustrated in
Fig. 1.17).33 For an orthonormal basis with inner product

(
𝜙𝑝 , 𝜙𝑞

)
= 𝛿𝑝𝑞

33: Boyd [125] gives useful advice on the
choice of basis functions in his “Moral
Principle 1”.

the modes of a function 𝑢(𝒙) can be computed as

𝑢̃𝑝 =
(
𝑢, 𝜙𝑝

)
. (1.79)

For example, Chebyshev polynomials𝑇𝑛(𝑥) are orthonormal with respect
to the inner product(

𝑇𝑚 , 𝑇𝑛
) ≡ 2 − 𝛿𝑛0

𝜋

∫ 1

−1
𝑇𝑚(𝑥)𝑇𝑛(𝑥) d𝑥√

1 − 𝑥2
= 𝛿𝑚𝑛 , (1.80)

and Legendre polynomials 𝑃𝑛(𝑥) are orthonormal with(
𝑃𝑚 , 𝑃𝑛

) ≡ 2𝑛 + 1
2

∫ 1

−1
𝑃𝑚(𝑥)𝑃𝑛(𝑥)d𝑥 = 𝛿𝑚𝑛 . (1.81)

−1

0

1
Chebyshev polynomials
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Figure 1.17: The first five Chebyshev and
Legendre polynomials.

Derivatives of the discrete field 𝑢𝑁 (𝒙) can be obtained from the spectral
expansion (1.78) and expanded in the basis as well,

𝜕𝑖𝑢𝑁 (𝒙) =
𝑁∑
𝑞=1

𝑢̃𝑞𝜕𝑖𝜙𝑞(𝒙) ≈
𝑁∑
𝑞=1

𝑢̃𝑞
𝑁∑
𝑝=1

D𝑖 ,𝑝𝑞𝜙𝑝(𝒙). (1.82)

Here, the coefficients of the spectral differentiation matrix D𝑖 ,𝑝𝑞 are

D𝑖 ,𝑝𝑞 =
(
𝜙𝑝 , 𝜕𝑖𝜙𝑞

)
, (1.83)

so the modes of the derivative 𝜕𝑖𝑢 can be computed by matrix multipli-
cation with the modes of the field, D𝑖 𝑢̃. To discretize an elliptic equation,
such as the Poisson equation (1.35), we can now insert the truncated(1.35): −Δ𝑢 = 𝑓 (𝒙)
expansion (1.82) to find

−
𝑁∑
𝑝=1

(
D𝑖D𝑖 𝑢̃

)
𝑝 𝜙𝑝(𝒙) = 𝑓 (𝒙). (1.84)

We have to find a way to extract 𝑁 conditions from this equation to
determine the 𝑁 modes 𝑢̃ of the solution. A common strategy is the
pseudospectral method, where we evaluate the equations at 𝑁 collocation
points 𝒙𝑝 . This strategy restores the notion of a computational grid to the
spectral method. In fact, the representation of a function 𝑢(𝒙) in terms of
𝑁 modes is equivalent to its representation in terms of the values at 𝑁
collocation points, or nodes, 𝑢. From the nodal perspective, the function
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is expanded in Lagrange interpolating polynomials,

𝑢(𝒙) =
𝑁∑
𝑝=1

𝑢𝑝𝜓𝑝(𝒙), 𝜓𝑝(𝒙) =
𝑑∏
𝑖=1

ℓ𝑝𝑖 (𝑥 𝑖), ℓ𝑝𝑖 (𝑥) =
𝑁𝑖∏
𝑞𝑖=1
𝑞𝑖≠𝑝𝑖

𝑥 − 𝑥𝑞𝑖
𝑥𝑝𝑖 − 𝑥𝑞𝑖

,

(1.85)
where ℓ𝑝𝑖 (𝑥) are the one-dimensional Lagrange polynomials rooted at
the 𝑁𝑖 collocation points 𝑥𝑝𝑖 in direction 𝑖 of the grid, so 𝜓𝑝(𝒙𝑞) = 𝛿𝑝𝑞
(illustrated in Fig. 1.18). The Vandermonde matrix V transforms between
the modal and the nodal representation,

V 𝑢̃ = 𝑢, V𝑝𝑞 = 𝜙𝑞(𝒙𝑝). (1.86)

−1 0 1

0

1
Lagrange polynomials

Figure 1.18: Lagrange interpolating poly-
nomials rooted at five Legendre-Gauss-
Lobatto (LGL) collocation points (dotted
lines).

In principle, we are free to choose any set of collocation points. However,
equidistant grid points such as those constructed for finite differencing,
Eq. (1.70), behave poorly for the interpolation.34 Instead, good choices 34: See the discussion in Hesthaven and

Warburton [126], Section 3.1.
[126]: Hesthaven and Warburton (2008),
Nodal Discontinuous Galerkin Methods

for collocation points are either Gauss quadrature points (the zeros of
the highest-order Chebyshev or Legendre polynomial) or Gauss-Lobatto
quadrature points (the extrema of the next-to-highest-order polynomial
plus points at the boundary at −1 and 1).

Evaluating Eq. (1.84) at the collocation points, the pseudospectral dis-
cretization of the Poisson equation (1.35) reduces to a matrix equation of (1.35): −Δ𝑢 = 𝑓 (𝒙)
the form (1.68),

A𝑢̃ = 𝑓 , with A = −VD𝑖D𝑖 . (1.87)

In contrast to the finite-difference matrix representation of the Poisson
equation depicted in Fig. 1.15, the spectral representation is not sparse
(except for sparsity introduced by the decoupling of grid points in multi-
ple dimension). Therefore, a spectral matrix can be more computationally
intensive to store and to invert than a finite-difference matrix. However,
the spectral discretization has the supreme advantage that the numerical
error incurred by truncating the expansion Eq. (1.78) decreases expo-
nentially with the number of basis functions or grid points, as long as
the expanded function is sufficiently smooth [125]. Therefore, matrices [125]: Boyd (2001), Chebyshev and Fourier

Spectral Methodsrepresenting spectral discretizations can be much smaller than those
representing finite-difference discretizations while achieving the same
accuracy. While slightly more involved in their implementation, the
exponential convergence makes spectral discretizations highly desireable
to solve smooth problems at high accuracy, or to conserve computational
resources. A spectral discretization is a key component of the discontinu-
ous Galerkin method, outlined in Section 1.3.3 below and developed for
applications in numerical relativity in Chapter 2.

1.3.3 Discontinuous Galerkin finite-element methods

Discontinuous Galerkin (DG) methods combine the exponential conver-
gence of a spectral scheme with the mesh-refinement capability of finite
element methods. They split the computational domain into nonoverlap-
ping elements and define a spectral discretization in each. The elements
are coupled through fluxes across their boundary, borrowing concepts
from finite volume methods. Increasing the spectral discretization order
within the elements (𝑝 refinement) recovers exponential convergence

https://doi.org/10.1007/978-0-387-72067-8
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where the solution is smooth, and adjusting the size and shape of ele-
ments (ℎ refinement) can adapt the scheme to the structure of the solution
and to the geometry of the computational domain. See Hesthaven and
Warburton [126] for a detailed introduction to DG methods.[126]: Hesthaven and Warburton (2008),

Nodal Discontinuous Galerkin Methods
For the simple Poisson equation (1.35) a DG scheme is readily formulated(1.35): −Δ𝑢 = 𝑓 (𝒙)
by employing the spectral methods outlined in Section 1.3.2 above. Within
an elementΩ𝑘 , we choose a nodal representation of the field 𝑢(𝒙) in terms
of its values 𝑢(𝑘) on a regular grid of LGL collocation points following
Eq. (1.85). Then, instead of evaluating the Poisson equation directly at
the collocation points as in Eq. (1.87), we formulate it in first-order flux
form,

−𝜕𝑖𝑣 𝑖 = 𝑓 (𝒙), (1.88a)

𝜕𝑖𝑢 = 𝑣 𝑖 , (1.88b)

and project it onto the set of element-local nodal basis functions 𝜓𝑝(𝒙)
(Galerkin projection),

−
∫
Ω𝑘

𝜓𝑝(𝒙) 𝜕𝑖𝑣 𝑖 d𝑉 =
∫
Ω𝑘

𝜓𝑝(𝒙) 𝑓 (𝒙)d𝑉 , (1.89a)∫
Ω𝑘

𝜓𝑝(𝒙) 𝜕𝑖𝑢 d𝑉 =
∫
Ω𝑘

𝜓𝑝(𝒙) 𝑣 𝑖 d𝑉 . (1.89b)

With a partial integration on the left-hand side and expanding both 𝑣 𝑖(𝒙)
and 𝑓 (𝒙) in the nodal basis, Eq. (1.89a) becomes

𝑣 𝑖𝑞

∫
Ω𝑘

𝜕𝑖𝜓𝑝(𝒙)𝜓𝑞(𝒙)d𝑉︸                     ︷︷                     ︸
CMD𝑇

𝑖,𝑝𝑞

− 𝑛𝑖𝑣 𝑖𝑞
∫
𝜕Ω𝑘

𝜓𝑝(𝒙)𝜓𝑞(𝒙)d𝐴︸                    ︷︷                    ︸
CML𝑝𝑞

= 𝑓𝑞

∫
Ω𝑘

𝜓𝑝(𝒙)𝜓𝑞(𝒙)d𝑉︸                   ︷︷                   ︸
CM𝑝𝑞

, (1.90)

where we have defined the mass matrix M, the stiffness matrix MD𝑖 , and
the lifting operator ML on the element. In matrix notation, the discretized
Poisson equation on an element Ω𝑘 , and similarly the first-order auxiliary
equation (1.88b), are

MD𝑇
𝑖 · 𝑣 𝑖 −ML · (𝑛𝑖𝑣 𝑖 )∗ = M · 𝑓 , (1.91a)

−MD𝑇
𝑖 · 𝑢 +ML · (𝑛𝑖𝑢)∗ = M · 𝑣 𝑖 , (1.91b)

where the symbol · emphasises matrix multiplication. Here, the quantities
𝑛𝑖𝑣 𝑖 and 𝑛𝑖𝑢 are the fluxes normal to the element boundary. They are
evaluated only on the element boundary since ML𝑝𝑞 is zero for indices
𝑝 and 𝑞 corresponding to grid points away from the boundary (see
Fig. 1.18). To couple grid points across elements, we promote these
boundary fluxes to numerical fluxes, denoted by the superscipt ∗. Whereas
we have worked with quantities local to each element thus far (but
omitted the superscript (𝑘) on every symbol), the numerical fluxes are
functions of grid points on both sides of a shared element boundary.
The discontinuous Galerkin method is characterized by treating the
grid points on either side of the shared boundary as distinct degrees of

https://doi.org/10.1007/978-0-387-72067-8
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freedom, coupled through a numerical flux. For the scheme to be well-
posed, the numerical fluxes

(
𝑛𝑖𝑣 𝑖

)∗(𝑛𝑖 , 𝑢int , 𝑢ext) and
(
𝑛𝑖𝑢

)∗(𝑛𝑖 , 𝑢int , 𝑢ext)
must be consistent, (

𝑛𝑖𝑣 𝑖
)∗(𝑛𝑖 , 𝑢, 𝑢) = 𝑛𝑖𝑣 𝑖 , (1.92)

and conservative,(
𝑛𝑖𝑣 𝑖

)∗(𝑛𝑖 , 𝑢int , 𝑢ext) = −(𝑛𝑖𝑣 𝑖 )∗(−𝑛𝑖 , 𝑢ext , 𝑢int), (1.93)

where “int” denotes the quantities on the interior side of the element,
“ext” denotes the exterior side, and we are assuming 𝑛𝑖 ≡ 𝑛int

𝑖 = −𝑛ext
𝑖 .

A commonly employed numerical flux for the Poisson equation is the
symmetric internal penalty (SIP) flux,(

𝑛𝑖𝑢
)∗ = 1

2
𝑛𝑖

(
𝑢int + 𝑢ext)

≡ 𝑛𝑖
{{
𝑢
}}

, (1.94a)(
𝑛𝑖𝑣 𝑖

)∗ = 1
2
𝑛𝑖

(
𝜕𝑖𝑢int + 𝜕𝑖𝑢ext) − 𝜎

(
𝑢int − 𝑢ext)

≡ 𝑛𝑖
{{
𝜕𝑖𝑢

}} − 𝜎
[[
𝑢
]]

. (1.94b)

Here, 𝜎 ≥ 𝐶 (𝑃 + 1)2/ℎ is the penalty with the polynomial degree 𝑃
orthogonal to the boundary, the size ℎ of the element, and 𝐶 ≥ 1. The
penalty breaks the degeneracy of the numerical flux, which would admit a
solution with 𝑢ext = −𝑢int for 𝜎 = 0.35 I have included the double-bracket 35: See discussion in Hesthaven and

Warburton [126], Section 7.2.notation in this presentation that is often found in the DG literature, but
I will not use it any further in this thesis to avoid obscuring math with
notation.

The DG-discretized first-order formulation of the Poisson equation,
Eq. (1.91), is of the matrix form (1.68), A𝑤 = 𝑏, where both 𝑤 = {𝑢, 𝑣 𝑖}
and 𝑏 now collect the values at all grid points of all elements Ω𝑘 . It also
admits a “primal formulation” that eliminates the auxiliary degrees of
freedom 𝑣 𝑖 , so it has the form A𝑢 = 𝑏.36 Either way, it is amenable to the 36: See Hesthaven and Warburton [126],

Section 7.2.2.strategies for the solution of sparse matrix equations that we will outline
next in Section 1.3.4.

A key advantage of DG methods is their locality: the matrix-vector prod-
uct A𝑢 decomposes into an operation local to each element [Eq. (1.91)]. It
depends on neighboring elements only through the numerical fluxes. This
allows to distribute evaluation of the matrix-vector product to multiple
compute cores, communicating only the numerical fluxes between them.
In particular, elements remain coupled only to their nearest neighbors
even when the order of the spectral discretization within an element
increases. In contrast, FD and FV methods require the communication
of data in a region that grows with the order of the stencil (for flux
reconstruction in the case of FV methods). However, the locality of the
DG method comes at the cost of duplicate grid points on element bound-
aries. For low-order DG elements these duplicate points can constitute a
considerable fraction of the total number of grid points. Increasing the
order of the DG elements both reduces the fraction of duplicate points
and leverages the exponential convergence of the spectral discretization,
making the DG method more effective.

The advantages of DG methods—their exponential convergence for
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smooth problems, their ability to conform to the geometry of the problem
through a choice of elements, and their decomposition into element-local
operations—also come at the cost of considerable complexity in imple-
menting the method. Even for the simple Poisson equation presented
above we have not yet discussed boundary conditions, curved meshes,
mesh refinement, evaluating the mass, stiffness, and lifting operators
on an element, and eliminating the auxiliary degrees of freedom. For
more involved equations we also have to handle nonlinear terms and
boundary conditions, curved manifolds, and suitable choices for the
numerical fluxes. My publication [1] presented in Chapter 2 develops a[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

DG scheme with all the bells and whistles needed to construct discrete
representations for the nonlinear elliptic equations that we encounter in
numerical relativity. It discusses all the details that we have carelessly
ignored in this brief sketch of the DG-discretized Poisson equation, and
defines a DG scheme that is general enough to accommodate a large class
of elliptic equations without having to revisit their DG discretization
every time a new set of equations is implemented.

1.3.4 Numeric methods for sparse matrix equations

All discretization methods outlined above reduce linear elliptic problems
to a matrix equation A𝑢 = 𝑏, where the matrix A couples every degree
of freedom in the computational domain to every other. The matrix
is typically sparse, such as the band-diagonal FD representation of the
Poisson equation in Fig. 1.15 or a DG discretization that couples only
nearest-neighbor elements. Therefore, numeric solutions to elliptic PDEs
fall in the realm of computational methods for sparse matrix equations,
which is a rich and evolving area of research. See Saad [127] for a detailed[127]: Saad (2003), Iterative Methods for

Sparse Linear Systems introduction.

The most straightforward methods to solve sparse matrix equations
involve constructing the matrix explicitly and inverting it directly [128].[128]: Davis (2006), Direct Methods for

Sparse Linear Systems These methods take advantage of the sparsity of the matrix by storing
only its nonzero entries, and by reducing arithmetic operations to the
nonzero entries as well. In cases where the matrix is nontrivial to construct
explicitly it is always possible to construct it column-by-column from the
matrix-vector product A𝑢 as

A𝑝𝑞 =
(
A 𝑒 𝑞

)
𝑝 , (1.95)

Here, 𝑒 𝑞 = (0, . . . , 1, . . . , 0) is the 𝑞th unit vector that fills the entire com-
putational grid with zeros, except for a one at position 𝑞. The construction
from unit vectors is very parallelizable and the resulting matrix can also
be partitioned and stored on multiple cores. The inversion of the matrix
is most commonly accomplished by variations of the LU decomposition,
where the matrix A is decomposed into a lower triangular matrix 𝐿 and
an upper triangular matrix𝑈 ,

A = 𝐿𝑈 . (1.96)

Once this decomposition has been computed, linear problemsA𝑢 = 𝑏 are
solved by two sparse triangular matrix inversions, which reduce to one
forward and backward sweep over all degrees of freedom. Prominent soft-
ware packages for the direct solution of sparse matrix equations include

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1137/1.9780898718881
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SuperLU [129], MUMPS [130], and UMFPACK [131]. For example, Python’s [129]: Li (2005), An Overview of SuperLU:
Algorithms, Implementation, and User In-
terface
[130]: Amestoy et al. (2001), A Fully Asyn-
chronous Multifrontal Solver Using Dis-
tributed Dynamic Scheduling
[131]: Davis (2004), Algorithm 832: UMF-
PACK V4.3—an Unsymmetric-Pattern Mul-
tifrontal Method

scipy.linalg.sparse module (version 1.8.0) [132] uses SuperLU for

[132]: Virtanen et al. (2020), SciPy 1.0:
Fundamental Algorithms for Scientific Com-
puting in Python

sparse LU decompositions.

Direct solution methods are feasible for one- or two-dimensional elliptic
problems, for three-dimensional problems at modest resolution, or per-
haps still for higher-resolution three-dimensional problems with a single
or few variables per grid point, such as Poisson-type problems. Some
recent developments in numerical relativity resort to direct methods for
the solution of elliptic problems. Rashti et al. [108] develop a technique

[108]: Rashti et al. (2021), Elliptica: a new
pseudo-spectral code for the construction of
initial data

to split the matrix equation into smaller subproblems so it is amenable
to direct solution methods, and they solve the coupled elliptic XCTS
equations (Section 1.2.3) sequentially in a fixed-point iteration procedure
to reduce the size of the matrices. Papenfort et al. [89] employ the KADATH [89]: Papenfort et al. (2021), New public

code for initial data of unequal-mass, spin-
ning compact-object binaries

library [133], which constructs the matrix explicitly column-by-column,

[133]: Grandclément (2010), KADATH: A
spectral solver for theoretical physics

distributes it to a large number of cores, and solves it using the ScaLAPACK
library [134]. They report that the explicit matrix construction and its so-

[134]: Blackford et al. (1997), ScaLAPACK
Users’ Guide

lution take a comparative amount of time, that the code scales to as many
as 32 k cores, and that it requires a large amount of memory. They suggest
iterative methods with suitable preconditioners to reduce the excessive
amount of computational resources needed to solve elliptic problems.
Such methods are the subject of this thesis and will be discussed next.

For coupled, three-dimensional elliptic equations at high resolutions,
when the matrix A couples millions of degrees of freedom or more, direct
solution methods are not feasible anymore. Instead, iterative algorithms
are the method of choice [127]. Iterative methods find the solution 𝑢 [127]: Saad (2003), Iterative Methods for

Sparse Linear Systemsto a matrix equation A𝑢 = 𝑏 at incrementally increasing accuracy in a
series of steps, beginning at an initial guess 𝑢0 for the solution. They do
not require the matrix representation A explicitly but rely only on the
matrix-vector product A𝑢. Basic relaxation algorithms such as the Jacobi,
Gauss-Seidel, Successive Overrelaxation (SOR), and Richardson methods
fall into this category. They are all defined by the simple fixed-point
iteration procedure

𝑢𝑘+1 = 𝑢𝑘 +M−1 (𝑏 −A𝑢𝑘 ) , (1.97)

where the index 𝑘 enumerates the iterations, and the matrix M depends
on the specific method. For instance, the Jacobi method is defined simply
by M = diagA, the diagonal entries of A. Generally, a suitable choice for
the matrixM is an easily-invertible approximation ofA. It is referred to as
a preconditioner. From this perspective, relaxation methods are equivalent
to fixed-point iterations on the preconditioned system,37 37: See Saad [127], Section 4.1.2.

M−1A𝑢 = M−1𝑏. (1.98)

The relaxation methods converge too slowly to be of great use by them-
selves, but their simplicity and low computational cost per iteration
makes them useful to support more advanced methods.

The primary class of iterative algorithms for the solution of sparse
matrix equations is the family of Krylov-subspace methods, specifically
variations of the conjugate gradients (CG) and generalized minimum
residual (GMRES) algorithms [135]

[135]: Saad and Schultz (1986), GMRES:
A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems

.38 The CG algorithm is restricted to 38: See Chapter 6 in Saad [127].
symmetric positive definite matrices, whereas GMRES supports general

https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1016/j.jcp.2010.01.005
https://doi.org/10.1016/j.jcp.2010.01.005
http://books.google.com/books?vid=ISBN0-89871-397-8 (paperback)
http://books.google.com/books?vid=ISBN0-89871-397-8 (paperback)
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
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matrices at slightly higher computational cost. Both are based on the idea
to build up a basis of the Krylov subspace

K𝑘(A, 𝑏) = span
{
𝑏,A𝑏,A2𝑏, . . . ,A𝑘−1𝑏

}
(1.99)

so they can approximate the solution 𝑢 by a polynomial in A. The CG
method constructs an A-orthogonal basis, where basis vectors 𝑝

𝑘
and

𝑝
𝑘+1

are orthogonal with respect to the Euclidean inner product in the
conjugate sense,

(
𝑝
𝑘
,A𝑝

𝑘+1

)
= 0. The GMRES method constructs the

basis using an Arnoldi orthogonalization procedure so a new basis vector
is orthogonal to all existing ones, and solves a least-squares problem for
the solution vector.

Krylov-subspace methods are guaranteed to converge in at most 𝑁DOF
iterations for a matrix A of size 𝑁DOF × 𝑁DOF, since at that point the
constructed basis is complete. However, for typical applications the
number 𝑁DOF is prohibitively large to provide a reasonable upper bound
for the number of iterations, so the relevant metric for the quality of
the algorithm is its convergence rate. Krylov-subspace methods do not
generally converge fast enough by themselves, but require effective
preconditioning.39 Given a preconditioner M, such as any of the relaxation39: See Chapter 9 in Saad [127].
methods mentioned above, the Krylov-subspace method solves the left-
preconditioned problem (1.98), or the right-preconditioned problem(1.98): M−1A𝑢 = M−1𝑏

AM−1𝑥 = 𝑏, 𝑢 = M−1𝑥. (1.100)

For a good preconditioner, this modified problem has better convergence
properties than the unpreconditioned problem.

In practice, the preconditioner supports every iteration of the Krylov-
subspace method with an approximate solution to accelerate convergence.
In a turn of perspective, the preconditioner is often the centerpiece of
the iterative algorithm and the outer Krylov solver is considered an
accelerator. The challenge is to conceive preconditioners that utilize
computational resources effectively, and that complement the weaknesses
of the Krylov-subspace algorithm. Preconditioners are also often nested,
complementing each other, and can take the problem-specific structure of
the discretization into account that led to the linear operator A. I develop
a stack of nested preconditioners for the solution of DG-discretized
elliptic PDEs in my publication [2] presented in Chapter 3, involving[2]: Vu et al. (2022), A scalable elliptic solver

with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

multigrid methods, a highly-parallelizable additive Schwarz smoother on
every grid, and optimized kernels for the solution of subproblems based
on approximating the PDEs as uncoupled Poisson equations. I place
particular focus on the parallelization properties of the computational
methods.

[136]: PETSc, https://www.mcs.anl.
gov/petsc

[137]: Trilinos (2022), The Trilinos Project
[138]: Falgout, Jones, and Yang (2006),
The Design and Implementation of hypre, a
Library of Parallel High Performance Pre-
conditioners

Prominent general software packages for the iterative solution of sparse
matrix equations include PETSc [136], Trilinos [137], and hypre [138].
For example, the SpEC elliptic solver [139] dispatches to PETSc, and the[139]: Pfeiffer et al. (2003), A multidomain

spectral method for solving elliptic equations TwoPunctures code [88] to hypre. In this thesis, I base my implementation
[88]: Ansorg, Brügmann, and Tichy
(2004), A Single-domain spectral method
for black hole puncture data

on the task-based parallization and domain decomposition infrastructure
provided by the SpECTRE code, which I will discuss in the following
sections.
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1.3.5 Task-based parallelism

Parallelization is not an afterthought anymore when developing com-
putational methods in this day and age. Every contemporary consumer
laptop has at least four compute cores, and high-performance computing
(HPC) clusters with hundreds of thousands interconnected cores are
readily available, with even larger clusters in development. Leveraging
these vast computational resources for numerical simulations is essential
in the quest to simulate astrophysical scenarios in three dimensions, with
detailed microphysics, at high resolution, and on realistic timescales (see
also the discussion in Section 1.1.6).

The industry standard for the parallelization of grid-based numerical
codes is the message passing interface (MPI). Typically, the computa-
tional grid is partitioned into regions with similar numbers of points
that are distributed to the available cores. Before performing operations
that require data residing on different cores, such as an application
of the discrete operator matrix A across the entire grid, the program
communicates the data between cores. This is the data-centric approach
to parallelism adopted by the majority of simulation codes. It is com-
paratively straightforward to implement by alternating between global
communication and computation phases. However, the number of cores
that such globally-synchronous MPI-parallelized programs can effec-
tively scale to is limited. In particular, it becomes challenging to overlap
communication and computation, risking that some cores remain idle
while others are still performing computations.

Task-based parallel programs approach parallelization by distributing
units of work (“tasks”) among cores, instead of partitioning the data.
The tasks depend on each other by inputs and outputs, and a runtime
system schedules the tasks on the available cores. Data associated with
each task is migrated between cores alongside the task. Task-based
parallel programs can reduce the time that cores spend idle, assuming
the algorithmic dependencies allow it. However, implementing a runtime
system that controls the execution of tasks and migrates them between
cores is a nontrivial challenge of computer science. Therefore, a number
of software libraries are being developed to provide the foundation
for task-based parallel programs. See Thoman et al. [140] for a recent [140]: Thoman et al. (2018), A taxonomy

of task-based parallel programming technolo-
gies for high-performance computing

overview focused on HPC applications.

My new elliptic solver for numerical relativity, and the SpECTRE code as a
whole, are based on the Charm++ task-based parallelism library [141, 142]. [141]: The Charm++ Parallel Program-

ming System, https : / / charm . cs .

illinois.edu

[142]: Kidder et al. (2017), SpECTRE: A
Task-based Discontinuous Galerkin Code for
Relativistic Astrophysics

The Charm++ runtime system is driven by chares exchanging messages. A
chare is an object that can migrate between cores and defines entry methods.
Chares can invoke entry methods on proxies of each other irrespective
of the core they reside on. The runtime system resolves the proxy and
invokes the entry method by delivering a message to the target chare,
dispatching a task. Messages can include data needed by the task. Charm++
can utilize a number of communication backends for the exchange of
data between cores, including MPI and low-level machine networking
layers such as Verbs or UCX. See Kidder et al. [142] for details on our use
of Charm++.

Algorithms in computational physics are generally not yet designed with
task-based parallelism in mind. In Chapter 3 I study the parallelization
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https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://charm.cs.illinois.edu
https://charm.cs.illinois.edu
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059


36 1 Introduction

structure of iterative methods for the solution of sparse matrix equa-
tions (as introduced in Section 1.3.4) and develop algorithms that work
well in a task-based parallel environment. In particular, discontinuous
Galerkin methods are well-suited for task-based parallelism because they
decompose naturally into elements that can be mapped to chares. Com-
munication between the elements can be accomplished by messages, and
spectral operations on the elements represent units of work performed
by tasks.

1.3.6 The SpECTRE numerical relativity code

The new SpECTRE code [10] provides the foundation for my elliptic solver.[10]: SpECTRE, spectre-code.org
SpECTRE is a collaborative research project primarily targeted at multi-
messenger astrophysical sources of gravitational waves such as binary
neutron star mergers, and also serves as a platform for interdisciplinary
problems involving hyperbolic and elliptic PDEs. It is being developed
by the Simulating eXtreme Spacetimes (SXS) collaboration to succeed the
Spectral Einstein Code (SpEC) [55]. With SpECTRE we intend to overcome[55]: Spectral Einstein Code (SpEC),

black-holes.org/code/SpEC SpEC’s limited parallelizability while retaining its strength in the use of
higher-order (spectral) discretization methods.

The SpECTRE code is being developed open-source to encourage commu-
nity engagement and to facilitate reproducibility of scientific results. It is
primarily written in C++17 with a focus on template metaprogramming.
Tooling and bindings are written in Python, and input-file configurations
to run executables with user-defined parameters are written in YAML
(see Appendix B for examples). Executables can be compiled with recent
GCC and Clang compilers on Linux and macOS machines, including a
selection of supported HPC clusters and a containerized development
environment. A strong focus on unit testing intends to maintain the
correctness of the code and of scientific output. A continuous integra-
tion (CI) and continuous deployment (CD) infrastructure automates the
testing procedure and furnishes monthly releases, which are published
to GitHub and Zenodo. Contributions to the code adopt a code review
workflow to maintain the quality of the code, spread knowledge of the
code base among the community, and to strive for good documentation. I
serve as a core developer of the SpECTRE project since 2020, contributing
to core infrastructure of the code, taking on some project-management re-
sponsibilities, initiating and signing off on code reviews, and overseeing
the code as a whole. At the moment, approximately 10 to 15 developers
contribute regularly to the code.

https://spectre-code.org
https://www.black-holes.org/code/SpEC
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Publication

This chapter is based on the article Unified discontinuous Galerkin
scheme for a large class of elliptic equations [1], published in Phys. Rev. D
105, 024034 on Jan 11, 2022 (arXiv:2108.05826). It develops the dis-
continuous Galerkin discretization scheme for elliptic equations that
underpins my new elliptic solver. It also stands on its own as a
versatile numerical discretization scheme for elliptic problems in
computational physics.

Authors Nils L. Fischer and Harald P. Pfeiffer

Abstract We present a discontinuous Galerkin internal-penalty scheme
that is applicable to a large class of linear and nonlinear elliptic par-
tial differential equations. The unified scheme can accommodate all
second-order elliptic equations that can be formulated in first-order flux
form, encompassing problems in linear elasticity, general relativity, and
hydrodynamics, including problems formulated on a curved manifold.
It allows for a wide range of linear and nonlinear boundary conditions,
and accommodates curved and nonconforming meshes. Our generalized
internal-penalty numerical flux and our Schur-complement strategy of
eliminating auxiliary degrees of freedom make the scheme compact
without requiring equation-specific modifications. We demonstrate the
accuracy of the scheme for a suite of numerical test problems. The scheme
is implemented in the open-source SpECTRE numerical relativity code.

Declaration of authorship I am the lead author who wrote this article,
argued the direction it should take, developed the numerical scheme
presented in the article, implemented the scheme in the SpECTRE code,
and performed the numerical computations applying the scheme to test
problems. Harald Pfeiffer acted as advisor in this project and provided
editorial feedback on the article. Aside from this, the work is my own.

2.1 Introduction

Many problems in physics involve the numerical solution of second-order
elliptic partial differential equations (PDEs). Such elliptic problems often
represent static field configurations under the effect of external forces and
arise, for example, in electrodynamics, in linear or nonlinear elasticity,
and in general relativity. Elliptic problems also often accompany time
evolutions, where they constrain the evolved fields at every instant in
time or provide admissible initial data for the evolution.

Discontinuous Galerkin (DG) methods are gaining popularity in the
computational physics and engineering community and are currently
most prevalently used for time evolutions of hyperbolic boundary-value

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://arxiv.org/abs/2108.05826
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problems [126, 143–145]. Many properties that make DG methods ad-[126]: Hesthaven and Warburton (2008),
Nodal Discontinuous Galerkin Methods
[143]: Reed and Hill (1973), Triangular
mesh methods for the neutron transport equa-
tion
[144]: Cockburn, Karniadakis, and Shu
(2000), The Development of Discontinuous
Galerkin Methods
[145]: Cockburn (2001), Devising discon-
tinuous Galerkin methods for non-linear hy-
perbolic conservation laws

vantageous for time evolutions also apply to elliptic problems, which
lead to the development of DG schemes for elliptic PDEs [146, 147].

[146]: Wheeler (1978), An Elliptic
Collocation-Finite Element Method with In-
terior Penalties
[147]: Arnold et al. (2002), Unified Analy-
sis of Discontinuous Galerkin Methods for
Elliptic Problems

In particular, DG schemes provide a flexible mechanism for refining
the computational grid, retaining exponential convergence even in the
presence of discontinuities when adaptive mesh refinement (AMR) tech-
niques are employed [8, 148]. Furthermore, some difficulties with DG

[8]: Vincent, Pfeiffer, and Fischer (2019),
hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity
[148]: Schötzau et al. (2014), Exponential
Convergence of hp-DGFEM for Elliptic Prob-
lems in Polyhedral Domains

schemes in time evolutions, such as shock capturing, are not present in
elliptic problems and their static nature makes it often (but not always)
straightforward to place grid boundaries at discontinuities, thus relieving
the AMR scheme from the responsibility of resolving them. See, e.g.,
Ref. [126] and the seminal paper [147] for extensive discussions of DG
schemes for the Poisson equation, and Refs. [149–151] for discussions of

[149]: Hansbo and Larson (2002), Discon-
tinuous Galerkin methods for incompress-
ible and nearly incompressible elasticity by
Nitsche’s method
[150]: Cockburn, Schötzau, and Wang
(2006), Discontinuous Galerkin methods for
incompressible elastic materials
[151]: Ortner and Süli (2007), Discontinu-
ous Galerkin Finite Element Approximation
of Nonlinear Second-Order Elliptic and Hy-
perbolic Systems

linear and nonlinear elasticity.

In the context of relativistic astrophysics and numerical relativity, DG
methods have been developed for hyperbolic equations on curved man-
ifolds thus far [142, 152, 153]. In Ref. [8] we explored the feasibility of

[142]: Kidder et al. (2017), SpECTRE: A
Task-based Discontinuous Galerkin Code for
Relativistic Astrophysics
[152]: Teukolsky (2016), Formulation of dis-
continuous Galerkin methods for relativistic
astrophysics
[153]: Fambri et al. (2018), ADER dis-
continuous Galerkin schemes for general-
relativistic ideal magnetohydrodynamics

the DG method for elliptic problems in numerical relativity confined
to flat Poisson-type equations with nonlinear sources. In this article we
present a DG scheme suitable to solve a significantly larger class of elliptic
problems that arise in numerical relativity. Most notably, the scheme
encompasses the extended conformal thin sandwich (XCTS) formula-
tion of the general-relativistic Einstein constraint equations on a curved
manifold, and associated boundary conditions [74, 113]. Solutions to the
XCTS equations provide admissible initial data for general-relativistic
time evolutions, for scenarios such as two orbiting black holes or neutron
stars [75, 78, 109, 112]. To our knowledge, this article presents the first
discontinuous Galerkin solution of the full Einstein constraint equations.
Aimed at applications in numerical relativity, the scheme is implemented
in the publicly available SpECTRE code [2, 10].

[2]: Vu et al. (2022), A scalable elliptic solver
with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.
[10]: SpECTRE, spectre-code.org

Furthermore, the elliptic DG scheme presented in this article is not
limited to applications in numerical relativity. It applies to all second-
order elliptic problems that can be formulated in first-order flux form.
Besides the classic Poisson and elasticity equations it covers a large class
of elliptic problems in general relativity and hydrodynamics, including
coupled systems of equations and those formulated on a curved manifold.
With our unified DG scheme, new elliptic systems can be implemented
by supplying their first-order fluxes and sources, hence no knowledge
of the DG technology or of finite-element formulations is required. This
lowers the barrier for extending the capabilities of a simulation code. We
pay particular attention to support a wide range of linear and nonlinear
boundary conditions so our DG scheme is suited to solve many real-world
scenarios (as well as some out-of-this-world scenarios such as initial data
for evolutions of black holes and neutron stars). We are aware only of
Ref. [154]

[154]: Feistauer, Roskovec, and Sändig
(2019), Discontinuous Galerkin method for
an elliptic problem with nonlinear Newton
boundary conditions in a polygon

studying a nonlinear boundary condition for an elliptic DG
problem.

To formulate the unified DG scheme we present a generalized internal-
penalty numerical flux, which avoids problem-specific parameters that
are needed, e.g., in Refs. [155–157]

[155]: Hartmann and Houston (2008), An
optimal order interior penalty discontinuous
Galerkin discretization of the compressible
Navier–Stokes equations
[156]: Epshteyn and Rivière (2007), Esti-
mation of penalty parameters for symmetric
interior penalty Galerkin methods
[157]: De Basabe, Sen, and Wheeler
(2008), The interior penalty discontinuous
Galerkin method for elastic wave propagation:
grid dispersion

. We eliminate auxiliary degrees of
freedom that arise from the first-order form with a Schur-complement
strategy, which has proven more suitable to the unified DG scheme than
primal formulations that are commonly employed in the literature [126,
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147]. The resulting DG scheme is compact, in the sense that it involves only
nearest-neighbor couplings and no auxiliary degrees of freedom, and
symmetric, unless the symmetry is broken by the elliptic equations.

This article is structured as follows. Section 2.2 details the generic first-
order flux formulation that serves as the starting point for our DG
discretization. Section 2.3 develops the unified DG scheme. In Section 2.4
we apply the DG scheme to a set of increasingly challenging test problems.
The test problems include scenarios derived from general relativity
that feature sets of coupled, strongly nonlinear equations on a curved
manifold with nonlinear boundary conditions, solved on curved meshes.
We conclude in Section 2.5.

2.2 First-order flux formulation

We consider second-order elliptic PDEs of one or more “primal” variables
𝑢𝐴(𝒙), where the index𝐴 labels the variables. The variables can be scalars
(like in the Poisson equation) or tensorial quantities (like in an elasticity
problem). We reduce the PDEs to first order by introducing “auxiliary”
variables 𝑣𝐴(𝒙), which typically are gradients of the primal variables.
We then restrict our attention to problems that can be formulated in
first-order flux form

−𝜕𝑖 F 𝑖
𝛼 [𝑢𝐴 , 𝑣𝐴; 𝒙] + S𝛼[𝑢𝐴 , 𝑣𝐴; 𝒙] = 𝑓𝛼(𝒙), (2.1)

where the index 𝛼 enumerates both 𝑢𝐴 and 𝑣𝐴. Here, the fluxes F 𝑖
𝛼 and

the sources S𝛼 are functionals of the variables 𝑢𝐴 and 𝑣𝐴, but not their
derivatives, as well as the coordinates 𝒙. The fixed sources 𝑓𝛼(𝒙) are
independent of the variables. Lowercase Latin indices 𝑖 , 𝑗 , 𝑘, 𝑙 enumerate
spatial dimensions, and we employ the Einstein sum convention to sum
over repeated indices.

The flux form (2.1) is general enough to encompass a wide range of
elliptic problems. For example, a flat-space Poisson equation in Cartesian
coordinates,

−𝜕𝑖𝜕𝑖𝑢(𝒙) = 𝑓 (𝒙), (2.2)

has the single primal variable 𝑢(𝒙). Choosing the auxiliary variable
𝑣𝑖 = 𝜕𝑖𝑢 we can formulate the Poisson equation with the fluxes and
sources

F 𝑖
𝑣 𝑗 = 𝑢 𝛿𝑖𝑗 , S𝑣 𝑗 = 𝑣 𝑗 , 𝑓𝑣 𝑗 = 0, (2.3a)

F 𝑖
𝑢 = 𝑣𝑖 , S𝑢 = 0, 𝑓𝑢 = 𝑓 (𝒙), (2.3b)

where 𝛿𝑖𝑗 denotes the Kronecker delta. Note that Eq. (2.3a) is the definition
of the auxiliary variable, and Eq. (2.3b) is the Poisson equation (2.2).

The equation of linear elasticity in Cartesian coordinates,

−𝜕𝑖𝑌 𝑖 𝑗𝑘𝑙𝜕(𝑘 𝑢𝑙) = 𝑓 𝑗(𝒙), (2.4)

has the primal variable 𝑢 𝑖(𝒙), describing the vectorial deformation of
an elastic material. The constitutive relation 𝑌 𝑖 𝑗𝑘𝑙(𝒙) captures the elastic
properties of the material in the linear regime. Choosing the symmetric
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strain𝑆𝑖 𝑗 = 𝜕(𝑖 𝑢𝑗) = (𝜕𝑖 𝑢𝑗+𝜕𝑗 𝑢𝑖)/2 as auxiliary variable we can formulate
the elasticity equation with the fluxes and sources

F 𝑖
𝑆 𝑗𝑘 = 𝛿𝑖(𝑗 𝑢𝑘), S𝑆 𝑗𝑘 = 𝑆 𝑗𝑘 , 𝑓𝑆 𝑗𝑘 = 0, (2.5a)

F 𝑖 𝑗
𝑢 = 𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙 , S 𝑗

𝑢 = 0, 𝑓 𝑗
𝑢 = 𝑓 𝑗(𝒙). (2.5b)

Again, Eq. (2.5a) is the definition of the auxiliary variable and Eq. (2.5b)
is the elasticity equation (2.4). The fluxes and sources for the elasticity
system (2.5) have higher rank than those for the Poisson system (2.3).

The first-order flux form (2.1) also accommodates equations formulated on
a curved manifold which is equipped with a metric 𝑔𝑖 𝑗(𝒙). Such equations
typically involve covariant derivatives ∇𝑖 compatible with 𝑔𝑖 𝑗 . To formu-
late the equations in flux form (2.1) we expand covariant derivatives in par-
tial derivatives and Christoffel symbolsΓ𝑖𝑗𝑘 =

1
2 𝑔

𝑖𝑙 (𝜕𝑗 𝑔𝑘𝑙 + 𝜕𝑘 𝑔𝑗𝑘 − 𝜕𝑙 𝑔𝑗𝑘
)
.

Christoffel symbols also appear when formulating equations in curvi-
linear coordinates. In our scheme, the terms with partial derivatives
are assigned to the fluxes F 𝑖 and the terms with Christoffel symbols
are assigned to the sources S . For example, a curved-space Poisson
equation

−𝑔 𝑖 𝑗∇𝑖∇𝑗𝑢(𝒙) = 𝑓 (𝒙) (2.6)

with auxiliary variable 𝑣𝑖 = ∇𝑖𝑢 can be formulated with the fluxes and
sources

F 𝑖
𝑣 𝑗 = 𝑢 𝛿𝑖𝑗 , S𝑣 𝑗 = 𝑣 𝑗 , 𝑓𝑣 𝑗 = 0, (2.7a)

F 𝑖
𝑢 = 𝑔 𝑖 𝑗𝑣 𝑗 , S𝑢 = −Γ𝑖𝑖 𝑗 𝑔 𝑗𝑘𝑣𝑘 , 𝑓𝑢 = 𝑓 (𝒙). (2.7b)

Our strategy of expanding covariant derivatives differs from the formu-
lations employed for relativistic hyperbolic conservation laws by Teukol-
sky [152], where fluxes are always vector fields and therefore the covariant[152]: Teukolsky (2016), Formulation of dis-

continuous Galerkin methods for relativistic
astrophysics

divergence can always be written in terms of partial derivatives and the
metric determinant.1 In contrast, fluxes in the elliptic equations (2.1) can

1: See Eq. (2.3) in Ref. [152].

(2.1): −𝜕𝑖 F 𝑖
𝛼 [𝑢𝐴 , 𝑣𝐴; 𝒙] +

S𝛼[𝑢𝐴 , 𝑣𝐴; 𝒙] = 𝑓𝛼(𝒙)

be higher-rank tensor fields, as exemplified in Eq. (2.5).

The fixed sources 𝑓𝛼(𝒙) could, in principle, be absorbed in the sources S𝛼 .
However, it is useful to keep these variable-independent contributions
separate for two reasons. First, they remain constant throughout an ellip-
tic solve, so they need not be recomputed when the dynamic variables
change. Second, the constant contributions represent a nonlinearity in
the variables 𝑢𝐴 and 𝑣𝐴 when included in the sources S𝛼. Assigning
the constant contributions to the fixed sources 𝑓𝛼 eliminates this partic-
ular nonlinearity, hence allowing us to avoid an explicit linearization
procedure if the remaining sources S𝛼 are linear.

The Appendix in Ref. [1] lists fluxes and sources for selected elliptic[1]: Fischer and Pfeiffer (2022), Unified
discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

problems.2 Our focus on systems in generic first-order flux form allows

2: Appendix omitted in this thesis be-
cause the introductory Section 1.2 in-
cludes the relevant equations and ad-
ditional context.

us to solve a variety of elliptic systems by only implementing their fluxes
and sources. We now proceed to discretize this generic formulation.

https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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(a) Domain

Ω: /(x)

x(/)
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�
(1, 1)

(1, 2)
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(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(b) Element

Figure 2.1: Top: Geometry of a two-
dimensional computational domain com-
posed of four wedge-shaped blocks. Each
block is split in one or more nonoverlap-
ping elements Ω𝑘 . Bottom: The coordi-
nate transformation 𝝃(𝒙) maps an ele-
ment to a reference cube [−1, 1]2 with
logical coordinate axes 𝝃 = (𝜉, 𝜂). In
this example we chose 𝑁𝑘,𝜉 = 3 and
𝑁𝑘,𝜂 = 4 Legendre-Gauss-Lobatto collo-
cation points along 𝜉 and 𝜂, respectively.
Each grid point is labeled with its in-
dex (𝑝𝜉 , 𝑝𝜂). The dotted line connects
points in the order they are enumerated
in by the index 𝑝.

2.3 DG discretization of the flux formulation

In this section we develop the unified DG scheme for elliptic equations
in flux form, Eq. (2.1). Novel features of our scheme are the formulation (2.1): −𝜕𝑖 F 𝑖

𝛼 [𝑢𝐴 , 𝑣𝐴; 𝒙] +
S𝛼[𝑢𝐴 , 𝑣𝐴; 𝒙] = 𝑓𝛼(𝒙)of DG residuals and boundary conditions in terms of generic fluxes

and sources of arbitrary tensor rank (Sections 2.3.2 and 2.3.5), and the
generalized internal-penalty numerical flux (Section 2.3.4). The Schur-
complement strategy of eliminating auxiliary degrees of freedom has
been employed before, e.g., in Ref. [158], but we generalize it to a larger [158]: Fortunato, Rycroft, and Saye (2019),

Efficient Operator-Coarsening Multigrid
Schemes for Local Discontinuous Galerkin
Methods

class of equations, including equations with nonlinear fluxes or sources
(Section 2.3.3). We follow Teukolsky [152] whenever possible and refer to

[152]: Teukolsky (2016), Formulation of dis-
continuous Galerkin methods for relativistic
astrophysics

Hesthaven and Warburton [126] for details that have become standard in

[126]: Hesthaven and Warburton (2008),
Nodal Discontinuous Galerkin Methods

the DG literature.3

3: Reference [152] underpins the hyper-
bolic DG formulations in the SpECTRE

code. Formulating elliptic and hyperbolic
DG schemes in a similar way allows us
to share some of the DG implementation
details.

2.3.1 Domain decomposition

We adopt the same domain decomposition based on deformed cubes
detailed in Refs. [8, 142, 152] and summarize it here.

[8]: Vincent, Pfeiffer, and Fischer (2019),
hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity
[142]: Kidder et al. (2017), SpECTRE: A
Task-based Discontinuous Galerkin Code for
Relativistic Astrophysics
[152]: Teukolsky (2016), Formulation of dis-
continuous Galerkin methods for relativistic
astrophysics

A 𝑑-dimensional computational domain Ω ⊂ ℝ𝑑 is composed of el-
ements Ω𝑘 ⊂ Ω such that Ω =

⋃
𝑘 Ω𝑘 . Elements do not overlap, but

they share boundaries, as illustrated in Fig. 2.1a. Each element carries
an invertible map 𝝃(𝒙) from the coordinates 𝒙 ∈ Ω𝑘 , in which the el-
liptic equations (2.1) are formulated, to logical coordinates 𝝃 ∈ [−1, 1]𝑑
representing a 𝑑-dimensional reference cube. Inversely, 𝒙(𝝃)maps the
reference cube to the element Ω𝑘 . We define its Jacobian as

J𝑖𝑗 B
𝜕𝑥 𝑖

𝜕𝜉 𝑗
(2.8)

with determinant J and inverse (J−1)𝑗𝑖 = 𝜕𝜉 𝑗/𝜕𝑥 𝑖 .

https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
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Within each element Ω𝑘 we choose a set of 𝑁𝑘,𝑖 grid points in ev-
ery dimension 𝑖. We place them at logical coordinates 𝜉𝑝𝑖 , where the
index 𝑝𝑖 ∈ {1, . . . , 𝑁𝑘,𝑖} identifies the grid point along dimension 𝑖.
The points are laid out in a regular grid along the logical coordinate
axes, so an element has a total of 𝑁𝑘 =

∏𝑑
𝑖=1 𝑁𝑘,𝑖 𝑑-dimensional grid

points 𝝃𝑝 = (𝜉𝑝1 , . . . , 𝜉𝑝𝑑 ). The index 𝑝 ∈ {1, . . . , 𝑁𝑘} identifies the grid
point regardless of dimension. The full domain has 𝑁points =

∑
𝑘 𝑁𝑘 grid

points. The grid points within each element are not uniformly spaced in
logical coordinates. Instead, we choose Legendre-Gauss-Lobatto (LGL)
collocation points, i.e., the points 𝜉𝑝𝑖 fall at the roots of the (𝑁𝑘,𝑖 − 1)th
Legendre polynomial plus a point on each side of the element, at −1
and 1. It is equally possible to choose Legendre-Gauss (LG) collocation
points, i.e., the roots of the 𝑁𝑘,𝑖th Legendre polynomial.4 Figure 2.1b4: See, e.g., Algorithm 25 in Ko-

priva [159] for LGL collocation points and
Algorithm 23 for LG collocation points.

illustrates the geometry of an element.

Fields are represented numerically by their values at the grid points. To
facilitate this we construct the one-dimensional Lagrange polynomials

ℓ𝑝𝑖 (𝜉) B
𝑁𝑘,𝑖∏
𝑞𝑖=1
𝑞𝑖≠𝑝𝑖

𝜉 − 𝜉𝑞𝑖
𝜉𝑝𝑖 − 𝜉𝑞𝑖

with 𝜉 ∈ [−1, 1] (2.9)

and employ their product to define the 𝑑-dimensional basis functions

𝜓𝑝(𝝃) B
𝑑∏
𝑖=1

ℓ𝑝𝑖 (𝜉𝑖) with 𝝃 ∈ [−1, 1]𝑑. (2.10)

The choice of Lagrange polynomials makes Eq. (2.10) a nodal basis with
the useful property 𝜓𝑝(𝝃𝑞) = 𝛿𝑝𝑞 .5 We use the nodal basis (2.10) to5: Lagrange polynomials are illustrated

in Fig. 1.18. approximate any field 𝑢(𝒙) within an element Ω𝑘 by its discretization

𝑢(𝑘)(𝒙) B
𝑁𝑘∑
𝑝=1

𝑢𝑝𝜓𝑝(𝝃(𝒙)) with 𝒙 ∈ Ω𝑘 , (2.11)

where the coefficients 𝑢𝑝 = 𝑢(𝒙(𝝃𝑝)) are the field values at the grid points.
We denote the set of discrete field values within an element Ω𝑘 as

𝑢(𝑘) = (𝑢1 , . . . , 𝑢𝑁𝑘 ), (2.12)

and the collection of discrete field values over all elements as 𝑢. The dis-
cretization (2.11) approximates fields with polynomials of degree (𝑁𝑘,𝑖−1)
in dimension 𝑖. Although rarely needed, field values at other points within
an element can be obtained by Lagrange interpolation (2.11). The field
values at element boundaries are double valued because the Lagrange in-
terpolation from neighboring elements to their shared boundary is double
valued. Therefore, field approximations will in general be discontinuous
at element boundaries.

The test problems in Section 2.4 illustrate a few examples of domain
decompositions. We refer the reader to, e.g., Hesthaven and Warbur-
ton [126] for further details on the choice of collocation points, basis[126]: Hesthaven and Warburton (2008),

Nodal Discontinuous Galerkin Methods functions and their relation to spectral properties of DG schemes.

https://doi.org/10.1007/978-0-387-72067-8
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2.3.2 DG residuals

The DG residuals represent the set of equations to be solved for the
discrete primal field values 𝑢𝐴. The derivation in this section follows
the standard procedure, e.g., laid out in Hesthaven and Warburton [126],
applied to the generic elliptic flux formulation (2.1), and taking details (2.1): −𝜕𝑖 F 𝑖

𝛼 [𝑢𝐴 , 𝑣𝐴; 𝒙] +
S𝛼[𝑢𝐴 , 𝑣𝐴; 𝒙] = 𝑓𝛼(𝒙)such as a curved manifold into account.

In the spirit of a Galerkin scheme we project our target PDEs (2.1) onto
the same set of basis functions 𝜓𝑝(𝝃) that is used to approximate fields
within an element Ω𝑘 ,

−(𝜓𝑝 , 𝜕𝑖F 𝑖 )
Ω𝑘
+ (

𝜓𝑝 , S
)
Ω𝑘

=
(
𝜓𝑝 , 𝑓

)
Ω𝑘

. (2.13)

Here we dropped the index 𝛼 that enumerates the equations, and we
define the inner product on Ω𝑘 ,(

𝜙,𝜋
)
Ω𝑘
B

∫
Ω𝑘

𝜙(𝒙)𝜋(𝒙)√𝑔 d𝑑𝑥 (2.14a)

=
∫
[−1,1]𝑑

𝜙(𝒙(𝝃))𝜋(𝒙(𝝃))√𝑔 J d𝑑𝜉 . (2.14b)

These integrals are defined with respect to proper volume d𝑉 =
√
𝑔 d𝑑𝑥 =√

𝑔 J d𝑑𝜉, where 𝑔 denotes the metric determinant in the coordinates 𝒙 in
which Eq. (2.1) is formulated. It refers to the metric that covariant deriva-
tives in the equations are compatible with. Since the basis polynomials,
Eq. (2.10), are functions of logical coordinates, we abbreviate 𝜓𝑝(𝝃(𝒙))
with 𝜓𝑝(𝒙) here.

The terms without derivatives in Eq. (2.13) are straightforward to dis-
cretize. We approximate the field 𝑓 , or similarly S , using the expansion
in basis functions (2.11) to find(

𝜓𝑝 , 𝑓
)
Ω𝑘
≈ (

𝜓𝑝 ,𝜓𝑞
)
Ω𝑘
𝑓𝑞 = M𝑝𝑞 𝑓𝑞 , (2.15)

using the symmetric mass matrix on the element Ω𝑘 ,

M𝑝𝑞 B
(
𝜓𝑝 ,𝜓𝑞

)
Ω𝑘

(2.16a)

=
∫
[−1,1]𝑑

𝜓𝑝(𝝃)𝜓𝑞(𝝃)√𝑔 J d𝑑𝜉 . (2.16b)

We will discuss strategies to evaluate the mass matrix on the elements of
the computational domain in Section 2.3.6.

The divergence term in Eq. (2.13) encodes the principal part of the elliptic
PDEs and requires more care in its discretization. The derivatives in this
term will help us couple grid points across element boundaries. To this
end we integrate by parts to obtain a boundary term,(

𝜓𝑝 , 𝜕𝑖F 𝑖 )
Ω𝑘

= −(𝜕𝑖𝜓𝑝 ,F 𝑖 )
Ω𝑘
+ (

𝜓𝑝 , 𝑛𝑖F 𝑖 )
𝜕Ω𝑘

, (2.17)

where 𝑛𝑖 is the outward-pointing unit normal one form on the element
boundary 𝜕Ω𝑘 . The unnormalized face normal is computed from the
Jacobian as 𝑛̃𝑖 = sgn(𝜉 𝑗)(J−1)𝑗𝑖 , where 𝜉 𝑗 is the logical coordinate that is
constant on the particular face and no sum over 𝑗 is implied. The face
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normal is normalized as 𝑛𝑖 = 𝑛̃𝑖/
√
𝑛̃𝑘 𝑛̃𝑙 𝑔𝑘𝑙 using the inverse metric 𝑔 𝑖 𝑗(𝒙).

The surface integral in Eq. (2.17) is defined just like Eq. (2.14),(
𝜙,𝜋

)
𝜕Ω𝑘
B

∫
𝜕Ω𝑘

𝜙(𝒙)𝜋(𝒙)
√
𝑔Σ d𝑑−1𝑥 (2.18a)

=
∫
[−1,1]𝑑−1

𝜙(𝒙(𝝃))𝜋(𝒙(𝝃))
√
𝑔Σ JΣ d𝑑−1𝜉 , (2.18b)

using the element boundary’s (𝑑 − 1)-dimensional proper volume dΣ =√
𝑔Σ d𝑑−1𝑥 =

√
𝑔Σ JΣ d𝑑−1𝜉, where 𝑔Σ is the surface metric determinant

induced by the metric 𝑔𝑖 𝑗 and JΣ is the surface Jacobian.

The crucial step that couples grid points across element boundaries
follows from the field 𝑛𝑖F 𝑖 being double valued on any section of the
boundary that an element shares with a neighbor, with one value arising
from either side. We must make a choice how to combine the two values
from either side of a shared element boundary. This choice is often
referred to as a numerical flux. For now we will denote the function that
combines values from both sides of a boundary as (𝑛𝑖F 𝑖)∗ and refer
to Section 2.3.4 for details on our particular choice of numerical flux.
Substituting the numerical flux in Eq. (2.17) yields the weak form of the
equations, (

𝜓𝑝 , 𝜕𝑖F 𝑖 )
Ω𝑘

= −(𝜕𝑖𝜓𝑝 ,F 𝑖 )
Ω𝑘
+ (

𝜓𝑝 , (𝑛𝑖F 𝑖)∗)𝜕Ω𝑘
. (2.19)

The numerical flux in Eq. (2.19) introduces a coupling between neigh-
boring elements that allows us to obtain numerical solutions spanning
the full computational domain. Another integration by parts of Eq. (2.19)
yields the strong form of the equations,(

𝜓𝑝 , 𝜕𝑖F 𝑖 )
Ω𝑘

=
(
𝜓𝑝 , 𝜕𝑖F 𝑖 )

Ω𝑘
+ (

𝜓𝑝 , (𝑛𝑖F 𝑖)∗ − 𝑛𝑖F 𝑖 )
𝜕Ω𝑘

. (2.20)

We will make use of both the strong and the weak form to obtain
symmetric DG operators (see Section 2.3.9). Approximating F 𝑖 using its
expansion in basis functions (2.11) we find(

𝜓𝑝 , 𝜕𝑖F 𝑖 )
Ω𝑘
≈ (

𝜓𝑝 , 𝜕𝑖𝜓𝑞
)
Ω𝑘

F 𝑖
𝑞 = MD𝑖 ,𝑝𝑞F 𝑖

𝑞 , (2.21)

where the stiffness matrix on the element Ω𝑘 is

MD𝑖 ,𝑝𝑞 B
(
𝜓𝑝 , 𝜕𝑖𝜓𝑞

)
Ω𝑘

(2.22a)

=
∫
[−1,1]𝑑

𝜓𝑝(𝝃)
𝜕𝜓𝑞

𝜕𝜉 𝑗
(𝝃) (J−1)𝑗𝑖

√
𝑔 J d𝑑𝜉 . (2.22b)

The divergence term in its weak form can be expressed in terms of the
stiffness-matrix transpose MD𝑇

𝑖,𝑝𝑞 = MD𝑖 ,𝑞𝑝 ,

−(𝜕𝑖𝜓𝑝 ,F 𝑖 )
Ω𝑘
≈ −(𝜕𝑖𝜓𝑝 ,𝜓𝑞

)
Ω𝑘

F 𝑖
𝑞 = −MD𝑇

𝑖,𝑝𝑞F 𝑖
𝑞 . (2.23)

Evaluation of the stiffness matrix and its transpose is discussed in
Section 2.3.6.

We now turn towards discretizing the last remaining piece of the DG
residuals, the boundary integrals in Eqs. (2.19) and (2.20). It involves
a “lifting” operation: the integral only depends on field values on the
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element boundary but it may contribute to every component 𝑝 of the DG
residual, hence it is “lifted” to the volume. However, on an LGL grid all
components 𝑝 that correspond to grid points away from the boundary
evaluate to zero because they contain at least one Lagrange polynomial
that vanishes at the boundary collocation point. This is not the case on an
LG grid, where evaluating the Lagrange polynomials on the boundary
produces an interpolation into the volume. Expanding the boundary
fluxes in basis functions (2.11) we find(

𝜓𝑝 , 𝑛𝑖F 𝑖 )
𝜕Ω𝑘
≈ (

𝜓𝑝 ,𝜓𝑞
)
𝜕Ω𝑘
(𝑛𝑖F 𝑖)𝑞 = ML𝑝𝑞 (𝑛𝑖F 𝑖)𝑞 , (2.24)

where we have defined the lifting operator on the element Ω𝑘 ,

ML𝑝𝑞 B (𝜓𝑝 ,𝜓𝑞)𝜕Ω𝑘 (2.25a)

=
∫
[−1,1]𝑑−1

𝜓𝑝(𝝃)𝜓𝑞(𝝃)
√
𝑔Σ JΣ d𝑑−1𝜉 . (2.25b)

Section 2.3.6 provides details on evaluating the lifting operator.

Assembling the pieces of the discretization and restoring the index 𝛼
that enumerates the equations, the DG residuals on the element Ω𝑘 in
strong form are

−MD𝑖 · F 𝑖
𝛼 −ML · ((𝑛𝑖F 𝑖

𝛼 )∗ − 𝑛𝑖F 𝑖
𝛼

) +M · S𝛼 = M · 𝑓𝛼, (2.26a)

where · denotes a matrix multiplication with the field values over the
computational grid of an element. The DG residuals in weak form are

MD𝑇
𝑖 · F 𝑖

𝛼 −ML · (𝑛𝑖F 𝑖
𝛼 )∗ +M · S𝛼 = M · 𝑓𝛼. (2.26b)

We can choose either the strong or the weak form for each variable 𝛼.

Since the fluxes and sources are computed from the primal and auxiliary
variables, the DG residuals (2.26) are algebraic equations for the discrete
values 𝑢𝐴 and 𝑣𝐴 on all elements and grid points in the computational
domain. The left-hand side of Eq. (2.26) is an operator A(𝑢𝐴 , 𝑣𝐴) and
the right-hand side of Eq. (2.26) is a fixed value at every grid point, so
Eq. (2.26) has the structure

A(𝑢𝐴 , 𝑣𝐴) = 𝑏. (2.27)

If the fluxes and sources are linear, the DG operator A(𝑢𝐴 , 𝑣𝐴) can be
represented as a square matrix, and Eq. (2.27) is a matrix equation. The
size of the DG operator A(𝑢𝐴 , 𝑣𝐴) is the product of 𝑁points with the
number of both primal and auxiliary variables.

Figure 2.2 presents a visualization of the DG operator A(𝑢𝐴 , 𝑣𝐴) for
a Poisson equation on a regular grid. The axes annotate entries of the
operator that correspond to the “input” variables 𝑣𝑖 and 𝑢, and to the
corresponding “output” DG residuals. The mass matrix applied to 𝑣𝑖
appears as a diagonal line (see Section 2.3.6) and the stiffness matrices
applied to both 𝑣𝑖 and 𝑢 appear as block-diagonal and shaded regions for
derivatives in 𝑥 and 𝑦, respectively. The remaining entries represent the
coupling between neighboring elements through the numerical flux (see
Section 2.3.4). Note that the elements Ω1 and Ω4 as well as Ω2 and Ω3
decouple, because they share no boundaries as they are placed diagonally
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Figure 2.2: Matrix representation of
the noncompact DG operator in strong
form (2.26a) for a two-dimensional Pois-
son equation (2.3). The computational
domain is partitioned into 2×2 elements
with 6 × 6 LGL grid points each. The
image shows the nonzero entries of the
operator matrix, i.e., its sparsity pattern,
in the order laid out in Fig. 2.1b.

Ω1 Ω2 Ω3 Ω4

vx vy u vx vy u vx vy u vx vy u
Ω1

Ω2

Ω3

Ω4

Avx

Avy

Au

Avx

Avy

Au

Avx

Avy

Au

Avx

Avy

Au

36 entries

across the 2 × 2 grid of elements. Solving the Poisson equation amounts
to inverting the matrix pictured in Fig. 2.2. However, it is significantly
cheaper to invert the equivalent compact operator pictured in Fig. 2.3,
which we derive in the following section.

2.3.3 Eliminating auxiliary degrees of freedom

So far we have treated the primal and the auxiliary equations of the
first-order formulation on the same footing, which means the discretized
DG operator applies to the primal variables as well as to the auxiliary
variables. However, the auxiliary equations inflate the size of the operator
significantly, increasing both its memory usage and the computational
cost for solving it. In this section we eliminate the auxiliary degrees of
freedom from the DG operator, demoting them to quantities that are
only computed temporarily.

Many publications on DG formulations adopt a “primal formulation” to
eliminate auxiliary degrees of freedom from the DG operator.6 However,6: See, e.g., Section 7.2.2 in Hesthaven

and Warburton [126] or Section 3 in
Arnold et al. [147] for derivations of pri-
mal formulations for the Poisson equa-
tion.
[126]: Hesthaven and Warburton (2008),
Nodal Discontinuous Galerkin Methods
[147]: Arnold et al. (2002), Unified Analy-
sis of Discontinuous Galerkin Methods for
Elliptic Problems

in practice we have found a simpler approach taking a Schur complement
of the discretized equations in flux form, e.g., applied in Ref. [158], more

[158]: Fortunato, Rycroft, and Saye (2019),
Efficient Operator-Coarsening Multigrid
Schemes for Local Discontinuous Galerkin
Methods

suited to the generic implementation of DG schemes. The resulting DG
operator remains equivalent to the original operator; i.e., it has the same
solutions up to numerical precision. This strategy is facilitated by the
auxiliary equations defining the auxiliary variables 𝑣𝐴, such as Eqs. (2.3a)
and (2.5a). We assume here that the auxiliary fluxes depend only on the
primal variables, F 𝑖

𝑣𝐴 = F 𝑖
𝑣𝐴 [𝑢𝐴; 𝒙], and the auxiliary sources have the

form
S𝑣𝐴 = 𝑣𝐴 + S̃𝑣𝐴 [𝑢𝐴; 𝒙], (2.28)

where S̃𝑣𝐴 depends only on the primal variables. We further assume
𝑓𝑣𝐴 = 0 for convenience. All elliptic systems that we consider in this

https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
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Ω1 Ω2 Ω3 Ω4

u u u u
Ω1

Ω2

Ω3

Ω4

Au

Au

Au

Au

36 entries

Figure 2.3: Matrix representation of
the compact DG operator in strong
form (2.30a) for the two-dimensional
Poisson problem detailed in Fig. 2.2. No
auxiliary degrees of freedom inflate the
size of the operator. This matrix is the
Schur complement to the matrix pictured
in Fig. 2.2.

article fulfill these assumptions. We insert Eq. (2.28) into the strong DG
residuals (2.26a) and solve for 𝑣𝐴 by inverting the mass matrix to find

𝑣𝐴 = D𝑖 · F 𝑖
𝑣𝐴 + L · ((𝑛𝑖F 𝑖

𝑣𝐴 )∗ − 𝑛𝑖F 𝑖
𝑣𝐴

) − S̃𝑣𝐴 , (2.29)

where we define D𝑖 B M−1MD𝑖 and L B M−1ML. Note that the right-
hand side of Eq. (2.29) depends only on the primal variables 𝑢𝐴. Eval-
uating the DG residuals now amounts to first computing the auxiliary
variables 𝑣𝐴 by Eq. (2.29), and then using them to evaluate the primal
equations. This approach preserves the freedom to use either the strong
form (2.26a) for the primal equations,

−MD𝑖 · F 𝑖
𝑢𝐴 −ML · ((𝑛𝑖F 𝑖

𝑢𝐴 )∗ − 𝑛𝑖F 𝑖
𝑢𝐴

) +M · S𝑢𝐴 = M · 𝑓𝑢𝐴 , (2.30a)

or the weak form (2.26b),

MD𝑇
𝑖 · F 𝑖

𝑢𝐴 −ML · (𝑛𝑖F 𝑖
𝑢𝐴 )∗ +M · S𝑢𝐴 = M · 𝑓𝑢𝐴 . (2.30b)

The strong scheme is slightly easier to implement because the primal and
auxiliary equations involve the same set of operators. The strong-weak
scheme, i.e., selecting the strong form for the auxiliary equations (2.29)
and the weak form for the primal equations (2.30b), has the advantage
that the DG operator can be symmetric as discussed in Section 2.3.9.

For linear equations the strategy employed in Eq. (2.29) of eliminating
the auxiliary variables is equivalent to taking a Schur complement of the
DG operator with respect to the (invertible) mass matrix, but the strategy
works for nonlinear equations as well. The result is an operator A(𝑢𝐴) of
only the discrete primal variables on all elements and grid points in the
computational domain, so the DG residuals (2.30) have the form

A(𝑢𝐴) = 𝑏. (2.31)

The size of the DG operator A(𝑢𝐴) is the product of 𝑁points with the
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Figure 2.4: Matrix representation of
the compact DG operator in strong
form (2.30a) for a two-dimensional elas-
ticity problem (2.5) with an isotropic-
homogeneous constitutive relation 𝑌 𝑖 𝑗𝑘𝑙 .
The computational domain is again par-
titioned into 2 × 2 elements with 6 × 6
LGL grid points each.

Ω1 Ω2 Ω3 Ω4
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Aξy

Aξx

Aξy

36 entries

number of primal variables. No auxiliary degrees of freedom from the
first-order formulation inflate the size of the operator. We refer to such
DG operators A(𝑢𝐴) of only the primal degrees of freedom as compact if
they also only involve couplings between nearest-neighbor elements [160].[160]: Peraire and Persson (2008), The

Compact Discontinuous Galerkin (CDG)
Method for Elliptic Problems

The coupling between elements is related to the choice of numerical
flux (𝑛𝑖F 𝑖

𝛼 )∗ and the subject of Section 2.3.4. If the fluxes and sources are
linear, A(𝑢𝐴) can be represented as a square matrix.

Figures 2.3 and 2.4 present visualizations of A for a Poisson equation
and an elasticity equation, respectively. The block-diagonal structure
in Fig. 2.3 represents the DG-discretized two-dimensional Laplacian on
the four elements of the computational domain. The entries that break
the block-diagonal structure represent the coupling between nearest-
neighbor elements through the numerical flux (Section 2.3.4).

2.3.4 A generalized internal-penalty numerical flux

Up to this point we have not made a choice for the numerical flux (𝑛𝑖F 𝑖)∗
that combines double-valued field values on element boundaries. The
numerical flux is a function of the field values on both sides of the
boundary. From the perspective of one of the two adjacent elements we
refer to the field values on itself as interior and to the field values the
neighboring element as exterior. Contrary to much of the DG literature we
formulate the numerical flux entirely in terms of the primal and auxiliary
boundary flux quantities 𝑛𝑖F 𝑖

𝑢𝐴 and 𝑛𝑖F 𝑖
𝑣𝐴 on either side of the boundary

instead of the primal and auxiliary variables 𝑢𝐴 and 𝑣𝐴. This choice keeps
our scheme applicable to the wide range of elliptic problems defined
in Section 2.2. The numerical flux presented here is a generalization of
the symmetric internal penalty (SIP) scheme that is widely used in the
literature [8, 126, 147, 161]. Our generalized internal-penalty numerical flux is



2.3 DG discretization of the flux formulation 49

(𝑛𝑖F 𝑖
𝑣𝐴 )∗ =

1
2

[
𝑛int
𝑖 F 𝑖

𝑣𝐴 (𝑢int
𝐴 ) − 𝑛ext

𝑖 F 𝑖
𝑣𝐴 (𝑢ext

𝐴 )
]
, (2.32a)

(𝑛𝑖F 𝑖
𝑢𝐴 )∗ =

1
2

[
𝑛int
𝑖 F 𝑖

𝑢𝐴

(
𝜕𝑗F 𝑗

𝑣𝐴 (𝑢int
𝐴 ) − S̃𝑣𝐴 (𝑢int

𝐴 )
)

− 𝑛ext
𝑖 F 𝑖

𝑢𝐴

(
𝜕𝑗F 𝑗

𝑣𝐴 (𝑢ext
𝐴 ) − S̃𝑣𝐴 (𝑢ext

𝐴 )
) ]

−𝜎
[
𝑛int
𝑖 F 𝑖

𝑢𝐴

(
𝑛int
𝑗 F 𝑗

𝑣𝐴 (𝑢int
𝐴 )

)
− 𝑛ext

𝑖 F 𝑖
𝑢𝐴

(
𝑛ext
𝑗 F 𝑗

𝑣𝐴 (𝑢ext
𝐴 )

) ]
. (2.32b)

The numerical flux for the auxiliary equations, Eq. (2.32a), averages the
boundary fluxes of the two adjacent elements. The numerical flux for the
primal equations, Eq. (2.32b), is an average augmented with a penalty
contribution with parameter 𝜎.

Note that the numerical flux (2.32) involves only the primal fields and
their derivatives, and thus is independent of the auxiliary fields altogether,
as is typical for internal-penalty schemes. This has the practical advantage
that the contribution from either side of the boundary to both the primal
and the auxiliary numerical flux in Eqs. (2.29) and (2.30) can be computed
early in the algorithm and communicated together, coupling only nearest-
neighbor elements and thus making the DG operator compact. If the
primal numerical flux (2.32b) depended on the auxiliary fields, evaluating
the DG operator (2.30) would require a separate communication once the
boundary corrections have been added to the auxiliary equation (2.29),
effectively coupling nearest-neighbor elements as well as next-to-nearest-
neighbor elements.7 7: Couplings to next-to-nearest-

neighbor elements is a well-known
disadvantage of LDG-type (“local
discontinuous Galerkin”) numerical
fluxes and has led to the development of
compact schemes such as Ref. [160].
[160]: Peraire and Persson (2008), The
Compact Discontinuous Galerkin (CDG)
Method for Elliptic Problems

DG literature usually assumes that the face normals on either side of
the boundary are exactly opposite, 𝑛ext

𝑖 = −𝑛int
𝑖 . This assumption breaks

when the background geometry responsible for the normalization of face
normals depends on the dynamic variables, since those are discontinuous
across the boundary. All of the elliptic problems that we are expecting to
solve in the near future are formulated on a fixed background geometry,
but it is useful to distinguish between the interior and exterior face
normals nonetheless because the quantity𝑛𝑖F 𝑖 is cheaper to communicate
than F 𝑖 . Therefore, we always project an element’s boundary fluxes onto
the face normal before communicating the quantity.

For a simple flat-space Poisson system (2.3) our generalized internal-
penalty numerical flux (2.32) reduces to the canonical SIP,8 8: See Eq. (3.21) in Arnold et al. [147]

or Section 7.2 in Hesthaven and Warbur-
ton [126].(𝑛𝑖F 𝑖

𝑣 𝑗 )∗ = 𝑛int
𝑗 𝑢
∗ =

1
2
𝑛int
𝑗

(
𝑢int + 𝑢ext) (2.33a)

(𝑛𝑖F 𝑖
𝑢 )∗ = 𝑛int

𝑖 𝑣
𝑖 ∗ =

1
2
𝑛int
𝑖

(
𝜕𝑖𝑢int + 𝜕𝑖𝑢ext)

− 𝜎
(
𝑢int − 𝑢ext) . (2.33b)

As is well studied for the canonical SIP numerical flux, the penalty
factor 𝜎 is responsible for removing zero eigenmodes and impacts the
conditioning of the linear operator to be solved [126, 162]. It scales
inversely with the element size ℎ and quadratically with the polynomial
degree 𝑝, both orthogonal to the element face.9

9: See Shahbazi [162] for sharp results for
the optimal penalty factor on triangular
and tetrahedral meshes, and Table 3.1
in Hillewaert [163] for a generalization
to hexahedral meshes.
[162]: Shahbazi (2005), An explicit expres-
sion for the penalty parameter of the interior
penalty method
[163]: Hillewaert (2013), Development of
the Discontinuous Galerkin Method for
High-resolution, Large Scale CFD and
Acoustics in Industrial Geometries

Both ℎ and 𝑝 can be

https://doi.org/10.1016/j.jcp.2004.11.017
https://doi.org/10.1016/j.jcp.2004.11.017
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https://play.google.com/store/books/details?id=IBJij3jtUCQC
https://play.google.com/store/books/details?id=IBJij3jtUCQC
https://play.google.com/store/books/details?id=IBJij3jtUCQC
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different on either side of the element boundary, so we choose

𝜎 = 𝐶

(
max(𝑝int , 𝑝ext) + 1

)2

min(ℎint , ℎext) , (2.34)

where we follow Ref. [163] in choosing the scaling with the polynomial
degree 𝑝 on hexahedral meshes, and we follow Ref. [8] in our definition[8]: Vincent, Pfeiffer, and Fischer (2019),

hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity of the element size ℎ = 2/

√
𝑛̃𝑖 𝑛̃ 𝑗 𝑔 𝑖 𝑗 .10 Note that ℎ generally varies over

10: Note that Ref. [8] omits the factor of
2 in the definition of ℎ, which we include
so the definition reduces to the canonical
element size on rectilinear meshes.

the element face on curved meshes or on a curved manifold, and that
the min operation in Eq. (2.34) is taken pointwise, so 𝜎 also varies over
the element face. The remaining penalty parameter 𝐶 ≥ 1 remains freely
specifiable. Note also that we do not need to include a problem-specific
scale in the penalty factor, as is done in Refs. [155–157], because the generic[155]: Hartmann and Houston (2008), An

optimal order interior penalty discontinuous
Galerkin discretization of the compressible
Navier–Stokes equations
[156]: Epshteyn and Rivière (2007), Esti-
mation of penalty parameters for symmetric
interior penalty Galerkin methods
[157]: De Basabe, Sen, and Wheeler
(2008), The interior penalty discontinuous
Galerkin method for elastic wave propagation:
grid dispersion

numerical flux (2.32b) already includes such scales in the fluxes F 𝑖 .

2.3.5 Imposing boundary conditions

The flux formulation allows imposing a wide range of boundary con-
ditions relatively easily “through the fluxes” without the need to treat
external boundaries any differently than internal boundaries between
neighboring elements. Imposing boundary conditions amounts to speci-
fying the exterior quantities in the numerical flux, Eq. (2.32). This strategy
is often referred to as imposing boundary conditions through “ghost”
elements. As suggested in, e.g., Hesthaven and Warburton [126], we
impose boundary conditions on the average of the boundary fluxes to
obtain faster convergence. Therefore, on external boundaries, we choose
for the exterior quantities in the numerical flux (2.32)

(𝑛𝑖F 𝑖
𝛼 )ext = (𝑛𝑖F 𝑖

𝛼 )int − 2(𝑛𝑖F 𝑖
𝛼 )b, (2.35)

where we set the quantities (𝑛𝑖F 𝑖
𝛼 )b according to the boundary conditions

at hand. Here we define 𝑛b
𝑖 = 𝑛int

𝑖 , i.e., we choose to compute external
boundary fluxes with the face normal pointing out of the computational
domain. The symmetry between the primal and the auxiliary equations
in the first-order flux formulation (2.1) that we employ throughout this
article makes this approach of imposing boundary conditions particularly
straightforward: a choice of auxiliary boundary fluxes (𝑛𝑖F 𝑖

𝑣𝐴 )b imposes
Dirichlet-type boundary conditions and a choice of primal boundary
fluxes (𝑛𝑖F 𝑖

𝑢𝐴 )b imposes Neumann-type boundary conditions. The choice
between Dirichlet-type and Neumann-type boundary conditions can be
made separately for every primal variable 𝑢𝐴 and every external bound-
ary face, simply by setting either (𝑛𝑖F 𝑖

𝑢𝐴 )b or (𝑛𝑖F 𝑖
𝑣𝐴 )b and setting the

remaining boundary fluxes to their interior values (𝑛𝑖F 𝑖)b = (𝑛𝑖F 𝑖)int.
Note that we neither need to distinguish between primal and auxiliary
variables in Eq. (2.35), nor take the choice of Dirichlet-type or Neumann-
type boundary conditions into account, but we require only that (𝑛𝑖F 𝑖)b
be chosen appropriately for every variable. Then, the Neumann-type
boundary conditions enter the DG residuals directly through the nu-
merical flux in Eq. (2.30), and the Dirichlet-type boundary conditions
enter the DG residuals through the numerical flux in Eq. (2.29), which is
substituted in Eq. (2.30).

In practice, this setup means we can initialize (𝑛𝑖F 𝑖
𝛼 )b = (𝑛𝑖F 𝑖

𝛼 )int for all

https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1016/j.jcp.2008.07.015
https://doi.org/10.1016/j.jcp.2008.07.015
https://doi.org/10.1016/j.jcp.2008.07.015
https://doi.org/10.1016/j.jcp.2008.07.015
https://doi.org/10.1016/j.cam.2006.08.029
https://doi.org/10.1016/j.cam.2006.08.029
https://doi.org/10.1016/j.cam.2006.08.029
https://doi.org/10.1111/j.1365-246X.2008.03915.x
https://doi.org/10.1111/j.1365-246X.2008.03915.x
https://doi.org/10.1111/j.1365-246X.2008.03915.x
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variables on a particular external boundary face when preparing to apply
the numerical flux, decide which boundary fluxes to modify based on the
boundary conditions we wish to impose on the particular face, and then
evaluate Eq. (2.35) to compute the exterior quantities in the numerical
flux (2.32). To impose Neumann-type boundary conditions we set the
primal boundary fluxes (𝑛𝑖F 𝑖

𝑢𝐴 )b directly, but to impose Dirichlet-type
boundary conditions we typically choose the primal field values 𝑢b

𝐴 and
compute the auxiliary boundary fluxes as (𝑛𝑖F 𝑖

𝑣𝐴 )b = 𝑛int
𝑖 F 𝑖

𝑣𝐴 (𝑢b
𝐴).

The auxiliary (Dirichlet-type) external boundary fluxes may depend on
the interior primal fields 𝑢int

𝐴 , and the primal (Neumann-type) external
boundary fluxes may depend on both the interior primal fields 𝑢int

𝐴 as
well as the interior auxiliary fields 𝑣int

𝐴 . This means we can impose a wide
range of boundary conditions that may depend linearly or nonlinearly
on the dynamic fields. For example, a Robin boundary condition for the
Poisson equation (2.2) or (2.6),

𝑎 𝑢 + 𝑏 𝑛 𝑖𝜕𝑖𝑢 = 𝑔(𝒙) on 𝜕Ω, (2.36)

where 𝑎 and 𝑏 are constants and 𝑔(𝒙) is a function defined on the
boundary, can be implemented as Neumann-type for 𝑏 ≠ 0,

(𝑛𝑖F 𝑖
𝑢 )b =

1
𝑏
(
𝑔(𝒙) − 𝑎 𝑢int) , (2.37)

and as Dirichlet-type for 𝑏 = 0,

(𝑛𝑖F 𝑖
𝑣 )b = 𝑛int

𝑖 F 𝑖
𝑣 (𝑢b) with 𝑢b =

1
𝑎
𝑔(𝒙). (2.38)

An important consideration is that boundary conditions are generally
nonlinear. Even for linear PDEs, such as the Poisson equation, a sim-
ple inhomogeneous Dirichlet boundary condition 𝑢b ≠ 0 introduces a
nonlinearity in the DG operator because A(0) ≠ 0. Therefore, we always
linearize boundary conditions. For nonlinear equations the boundary
conditions linearize along with the DG operator and require no special
attention (see Section 2.3.10). However, for linear equations the inhomo-
geneity in the boundary conditions is the only nonlinearity present in
the DG operator, so we skip the full linearization procedure. Instead, we
contribute the inhomogeneous boundary conditions A(0) to the fixed
sources, leaving only the linearized boundary conditions in the DG
operator,

𝛿A
𝛿𝑢

𝑢 = 𝑏 −A(0), (2.39)

where 𝛿A
𝛿𝑢 is just A with linearized boundary conditions. Note that this

strategy is equivalent to the full linearization procedure described in
Section 2.3.10 at 𝑢 = 0. In practice, evaluatingA(0) simplifies significantly
for linear equations because only the lifted external boundary corrections
contribute to it.

2.3.6 Evaluating the mass, stiffness, and lifting matrices

The mass matrix (2.16), the stiffness matrix (2.22), and the lifting opera-
tor (2.25) are integrals that must be evaluated on every element of the
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computational domain. We evaluate these integrals on the same grid on
which we expand the dynamic fields, which amounts to a Gauss-Lobatto
quadrature of an order set by the number of collocation points in the
element. This strategy is commonly known as mass lumping.11 Employing11: This is the approach taken by Teukol-

sky [152]. See Eq. (3.7) in Ref. [152] for
details on the mass-lumped mass matrix
on 𝑑-dimensional hexahedral elements.
Note that Teukolsky [152] absorbs the
metric determinant in the dynamic vari-
ables.
[152]: Teukolsky (2016), Formulation of dis-
continuous Galerkin methods for relativistic
astrophysics

mass lumping and our choice of nodal basis (2.10), the mass matrix (2.16)
evaluates to

M𝑝𝑞 ≈ 𝛿𝑝𝑞
√
𝑔
��
𝑝 J|𝑝

𝑑∏
𝑖=1

𝑤𝑝𝑖 . (2.40)

Here the coefficients 𝑤𝑝𝑖 denote the Legendre-Gauss-Lobatto quadrature
weights associated with the collocation points 𝜉𝑝𝑖 , and the geometric
quantities √𝑔 and J are evaluated directly on the collocation points.12

12: See, e.g., Algorithm 25 in Ko-
priva [159] for details on computing LGL
quadrature weights, and Algorithm 23
for LG quadrature weights.

Recall from Section 2.3.1 that the index 𝑝 enumerates grid points in
the regular 𝑑-dimensional grid and that 𝑝𝑖 denotes the grid point’s
index along the 𝑖th dimension. The diagonal mass-lumping approxi-
mation (2.40) has the advantage that it is computationally efficient to
apply, invert and store since it amounts to a pointwise multiplication
over the computational grid. Note that Eq. (2.40) is exact on a rectilinear
LG grid with a flat background geometry, and can be made exact on
rectilinear LGL grids by including a correction term without increasing
the computational cost for applying or inverting it [164]. The quadrature[164]: Teukolsky (2015), Short note on the

mass matrix for Gauss-Lobatto grid points weights 𝑤𝑝𝑖 can be cached and reused by all elements with the same
number of collocation points in a dimension.

The strong stiffness matrix (2.22) evaluates to

MD𝑖 ,𝑝𝑞 ≈ M𝑝𝑟D𝑖 ,𝑟𝑞 , (2.41a)

with

D𝑖 ,𝑟𝑞 =
𝑑∑
𝑗=1
(J−1)𝑗𝑖

���
𝑟
ℓ ′𝑞 𝑗(𝜉𝑟𝑗 )

𝑑∏
𝑘=1
𝑘≠𝑗

𝛿𝑞𝑘 𝑟𝑘 . (2.41b)

Here ℓ ′𝑞 𝑗(𝜉𝑟𝑗 ) are the one-dimensional “logical” differentiation matrices
obtained by differentiating the Lagrange polynomials (2.9) and evaluat-
ing them at the collocation points.13 The stiffness matrix is essentially a13: See, e.g., Hesthaven and Warbur-

ton [126] and Algorithm 37 in Ko-
priva [159] for details on computing the
one-dimensional logical differentiation
matrix ℓ ′𝑞 𝑗(𝜉𝑟𝑗 ) from properties of Legen-
dre polynomials.

“massive” differentiation operator that decomposes into one-dimensional
differentiation matrices due to the product structure of the basis func-
tions (2.10) on our hexahedral meshes. The one-dimensional logical
differentiation matrices can be cached and reused by all elements with
the same number of collocation points in a dimension, keeping the
memory cost associated with the stiffness operator to a minimum. The
weak stiffness matrix can be computed analogously from the transpose
of the logical differentiation matrices.

The lifting operator (2.25) evaluates to

ML𝑝𝑞 ≈ M𝑝𝑟L𝑟𝑞 , (2.42a)

with

L𝑟𝑞 = 𝛿𝑟𝑞
𝑑∑
𝑖=1
(𝛿𝑞𝑖1 + 𝛿𝑞𝑖𝑁𝑘,𝑖 )

1
𝑤𝑞𝑖

√
𝑔 𝑗𝑘(J−1)𝑖𝑗(J−1)𝑖𝑘

����
𝑞
. (2.42b)

It is diagonal and has a contribution from every face of the element. Note

https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2014.12.012
https://doi.org/10.1016/j.jcp.2014.12.012
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that each face only contributes to the LGL grid points on the respective
face. On LG grids additional interpolation matrices from the face into the
volume appear in this expression. Also note that the root in Eq. (2.42b) is
simply the magnitude of the unnormalized face normal 𝑛̃ 𝑗 [152]. [152]: Teukolsky (2016), Formulation of dis-

continuous Galerkin methods for relativistic
astrophysicsRecall that the objective of these matrices is to evaluate the compact DG

operator (2.30) along with Eq. (2.29) on every element of the computa-
tional domain. In practice, neither matrix must be assembled explicitly
and stored on the elements: the mass matrix (2.40) reduces to a multipli-
cation over the computational grid, the stiffness matrix (2.41) involves
logical one-dimensional differentiation matrices that are shared between
elements, and the lifting operation (2.42) reduces to a multiplication over
the grid points on the element face. Since both the stiffness and the lifting
operation decompose into a mass matrix and a “massless” operation, the
same set of operations can be used to evaluate both Eqs. (2.29) and (2.30),
and the mass matrix factors out of the DG operator entirely. Nevertheless,
we will see in Section 2.3.9 that it is advantageous to keep the mass matrix
in the operator (2.30).

2.3.7 A note on dealiasing

The integral expressions discussed in Section 2.3.6 involve geometric
quantities that are typically known analytically, namely the Jacobian and
the background metric. Limiting the resolution of the integrals to the
quadrature order of the elements can make the scheme susceptible to
geometric aliasing because these quantities are resolved with limited
precision, potentially reducing the accuracy of the scheme on curved
meshes or on a curved manifold. To combat geometric aliasing we
can, in principle, precompute the matrices on every element at high
accuracy, but at a significant memory cost. Precomputing the matrices
is possible in elliptic problems because the geometric quantities remain
constant. This is different to time-evolution systems that often involve
time-dependent Jacobians (“moving meshes”). Alternatively, a number
of dealiasing techniques are available to combat geometric aliasing,
and also to combat aliasing arising from evaluating other background
quantities on the collocation points, i.e., quantities in the PDEs that are
independent of the dynamic variables and known analytically [165]. For [165]: Mengaldo et al. (2015), Dealiasing

techniques for high-order spectral element
methods on regular and irregular grids

example, Ref. [8] interpolates data from the primary LGL grid to an

[8]: Vincent, Pfeiffer, and Fischer (2019),
hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity

auxiliary LG grid, on which the Jacobian is evaluated, to take advantage
of the higher-order quadrature. However, these dealiasing techniques
can significantly increase the computational cost for applying the DG
operator. We have chosen to employ the simple mass-lumping scheme
detailed in Section 2.3.6 to minimize the complexity, computational
cost, and memory consumption of the DG operator. Detailed studies
of cost-efficient dealiasing techniques are a possible subject of future
work.

2.3.8 Mesh refinement

The domain decomposition into elements, each with their own set of
basis functions, allows for two avenues to control the resolution: we
can split the domain into more and smaller elements (ℎ refinement) or

https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1016/j.jcp.2015.06.032
https://doi.org/10.1016/j.jcp.2015.06.032
https://doi.org/10.1016/j.jcp.2015.06.032
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
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Figure 2.5: A representation of non-
conforming element boundaries with
mortars in two dimensions. The left ele-
ment Ω1 faces two elements Ω2 and Ω3
towards the right. Since both Ω1 and Ω2
have four vertical grid points their shared
mortar 𝜕Ω12 also has four grid points,
but covers only a logical half ofΩ1 (ℎ non-
conforming). The element Ω3 has five
vertical grid points, so the mortar 𝜕Ω13
has max(4, 5) = 5 grid points and also
covers only a logical half of Ω1 (ℎ𝑝 non-
conforming). Elements Ω2 and Ω3 are
ℎ conforming but differ in their num-
ber of horizontal grid points, so their
shared mortar 𝜕Ω23 has max(4, 5) = 5
grid points (𝑝 nonconforming). Note that
the empty space between the elements
in this visualization is not part of the
computational domain.

Ω1

Ω2

Ω3

%Ω12

%Ω13

%Ω23

increase the number of basis functions within an element (𝑝 refinement).
We can perform ℎ and 𝑝 refinement in each dimension independently.

Both ℎ refinement and 𝑝 refinement can lead to nonconforming bound-
aries between elements, meaning that grid points on the two sides of the
boundary do not coincide. Since we need to work with data from both
sides of an element boundary when considering numerical fluxes (see
Section 2.3.4) we place mortars between elements. A mortar is a (𝑑 − 1)-
dimensional mesh that has sufficient resolution to exactly represent
discretized fields from both adjacent element faces. Specifically, a mortar
𝜕Ω𝑘𝑘 between the elements Ω𝑘 and Ω𝑘 that share a boundary orthog-
onal to dimension 𝑗 has max(𝑁𝑘,𝑖 , 𝑁𝑘,𝑖) grid points in dimension 𝑖 ≠ 𝑗.
We limit the ℎ refinement of our computational domains such that an
element shares its boundary with at most two neighbors per dimension
in every direction (“two-to-one balance”). This means a mortar covers
either the full element face or a logical half of it in every dimension.
Figure 2.5 illustrates an ℎ𝑝-refined scenario with nonconforming element
boundaries.

To project field values from an element face to a mortar we employ the
(𝑑 − 1)-dimensional prolongation operator

P𝑝̃𝑝 =
𝑑−1∏
𝑖=1

ℓ𝑝𝑖 (𝜉̃𝑝̃𝑖 ), (2.43)

where 𝑝 enumerates grid points on the coarser (element face) mesh,
𝑝̃ enumerates grid points on the finer (mortar) mesh, and 𝜉̃𝑝̃𝑖 are the
coarse-mesh logical coordinates of the fine-mesh collocation points. For
mortars that cover the full element face in dimension 𝑖 the coarse-mesh
logical coordinates are just the fine-mesh collocation points, 𝜉̃𝑝̃𝑖 = 𝜉𝑝̃𝑖 .
For mortars that cover the lower or upper logical half of the element face
in dimension 𝑖 they are 𝜉̃𝑝̃𝑖 = (𝜉𝑝̃𝑖 − 1)/2 or 𝜉̃𝑝̃𝑖 = (𝜉𝑝̃𝑖 + 1)/2, respectively.
Note that the prolongation operator (2.43) is just a Lagrange interpolation
from the coarser (element face) mesh to the finer (mortar) mesh. The
interpolation retains the accuracy of the polynomial approximation
because the mortar has sufficient resolution. The prolongation operator
is also an 𝐿2 projection (or Galerkin projection) because it minimizes the
𝐿2 norm

∫
𝜕Ω𝑘𝑘
(𝑢(𝑘) − 𝑢(𝑘))2√𝑔 d𝑑−1𝑥, where 𝑢(𝑘) denotes the prolongated
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field values on the finer (mortar) mesh.

To project field values from a mortar back to an element face we employ
an adjoint R of the prolongation operator such that RP = 𝟙. We also refer
to this operation as a restriction because it truncates higher modes from
the mortar down to the resolution of the element face. Specifically, we
employ the mass-conservative adjoint∫

𝜕Ω𝑘𝑘

R(𝑢(𝑘)) 𝑢(𝑘)√𝑔 d𝑑−1𝑥 =
∫
𝜕Ω𝑘𝑘

𝑢(𝑘)P(𝑢(𝑘))√𝑔 d𝑑−1𝑥 ∀𝑢(𝑘) , 𝑢(𝑘).
(2.44)

In matrix notation the restriction operator reduces to

R = M−1P𝑇M̃, (2.45)

where M−1 is the inverse mass matrix on the coarser (element face) mesh,
M̃ is the mass matrix on the finer (mortar) mesh, and P𝑇 is the transpose
of the prolongation operator (2.43).

Note that the 𝑑-dimensional restriction and prolongation operators can
serve not only to project field values to and from mortars, but also to
project field values to and from elements that cover the computational
domain at different ℎ- and 𝑝-refinement levels. We make no use of
projections across refinement levels in this article but will do so in
upcoming work for the purpose of adaptive mesh-refinement strategies
and for multigrid solvers.14 14: See also Sections 3.2 and 3.3 in

Ref. [158] for details on the restriction
and prolongation operators in the con-
text of multigrid solvers.
[158]: Fortunato, Rycroft, and Saye (2019),
Efficient Operator-Coarsening Multigrid
Schemes for Local Discontinuous Galerkin
Methods

2.3.9 A note on symmetry

For practical applications it is often advantageous to work with a symmet-
ric operator. For example, some iterative linear solvers such as conjugate
gradients take advantage of the symmetry to invert the operator more
efficiently. One can also often show stronger convergence bounds for
iterative linear solvers applicable to nonsymmetric matrices, such as
GMRES, if the matrix is symmetric [135]. [135]: Saad and Schultz (1986), GMRES:

A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems

The compact strong-weak scheme presented in Eq. (2.30b) with the
generalized SIP numerical flux (2.32) is symmetric unless the elliptic
equations break the symmetry, e.g., with an asymmetric coupling between
equations. Note that a curved manifold will typically break the symmetry
because it involves first derivatives in Christoffel-symbol contributions
to the primal sources [see, e.g., Eq. (2.7)]. It is straightforward to see
how the strong-weak scheme can make the DG operator symmetric
if the elliptic equations allow it: the strong-weak operator involves
a symmetric stiffness term of the schematic form (MD)𝑇D = D𝑇MD,
whereas the strong scheme has a nonsymmetric expression of the form
MDD instead. Note that the “massless” variant of the strong-weak scheme,
schematically M−1D𝑇MD, is not generally symmetric, and neither is the
“massless” strong scheme DD.

https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
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2.3.10 Linearizing the operator

To solve nonlinear elliptic equations A(𝑢) = 𝑏 we typically employ a
correction scheme, repeatedly solving the linearized equations for a cor-
rection quantity Δ𝑢. For example, a simple Newton-Raphson correction
scheme solves the linearized problem 𝛿A

𝛿𝑢 (𝑢)Δ𝑢 = 𝑏 − A(𝑢) at fixed 𝑢
and then iteratively corrects 𝑢 → 𝑢 +Δ𝑢. Since the fluxes F 𝑖

𝛼 are already
linear for all elliptic systems we consider, the linearization 𝛿A

𝛿𝑢 (𝑢) involves
only linearizing the sources S𝛼 and the boundary conditions.

2.3.11 Variations of the scheme

We have made a number of choices to formulate the DG discretization in
the preceding sections. This section summarizes some of the choices and
presents possible variations to explore in future work.

Massive vs massless scheme We can eliminate the mass matrix in Eq. (2.30)
to obtain a “massless” DG operator. However, we have found ev-
idence that iterative linear solvers converge faster when solving
the “massive” DG operator. We attribute this behaviour to the
symmetry considerations discussed in Section 2.3.9.

Mass lumping We diagonally approximate the mass matrix to reduce
the computational cost to apply, invert and store it, and to simplify
the scheme (see Section 2.3.6). Dealiasing techniques can potentially
increase the accuracy of the scheme on curved meshes as discussed
in Section 2.3.7.

LGL vs LG mesh We chose to discretize the DG operator on LGL meshes
to take advantage of the collocation points on element boundaries,
which simplify computations of boundary corrections. Switching
to LG meshes can have the advantage that quadratures are one
degree more precise, making the mass-lumping exact on rectilinear
grids (see Section 2.3.6).

Numerical flux The generalized internal-penalty numerical flux pre-
sented in Section 2.3.4 has proven a viable choice for a wide range
of problems so far. However, the ability to switch out the numerical
flux is a notable strength of DG methods, and augmenting the
numerical flux in the elliptic DG scheme may improve its conver-
gence properties or accuracy. In particular, the choice of penalty,
Eq. (2.34), on curved meshes remains a subject of further study.

Strong vs weak formulation We have chosen the strong formulation (2.30a)
over the strong-weak formulation (2.30b) because it is slightly sim-
pler and we have, so far, found no evidence that the strong-weak
formulation converges faster than the strong formulation, despite
the symmetry considerations discussed in Section 2.3.9. However,
the strong-weak formulation can be of interest if a symmetric DG
operator is necessary, e.g., to take advantage of specialized iterative
solvers.

Flux vs primal formulation We have eliminated auxiliary degrees of
freedom in the DG operator with a Schur-complement strategy. An
alternative strategy is to derive a “primal formulation” of the DG
operator (see Section 2.3.3). We have found the flux formulation



2.4 Test problems 57

easier to implement due to its similarity to hyperbolic DG schemes.
Furthermore, Fortunato, Rycroft, and Saye [158] suggest that the flux [158]: Fortunato, Rycroft, and Saye (2019),

Efficient Operator-Coarsening Multigrid
Schemes for Local Discontinuous Galerkin
Methods

formulation can be advantageous in conjunction with a multigrid
solver.

2.4 Test problems

The following numerical tests confirm the DG scheme presented in
this article can solve a variety of elliptic problems. The test problems
involve linear and nonlinear systems of PDEs with nonlinear boundary
conditions on curved manifolds, discretized on ℎ𝑝-refined domains with
curved meshes and nonconforming element boundaries.

For test problems that have an analytic solution we quantify the accuracy
of the numerical solutions by computing an 𝐿2 error over all primal
variables,

∥𝑢 − 𝑢analytic∥ B
(∑

𝐴,𝑘

∫
Ω𝑘
(𝑢𝐴 − 𝑢𝐴,analytic)2 d𝑉∑

𝑘

∫
Ω𝑘

d𝑉

)1/2

, (2.46)

where the integrals are evaluated with Gauss-Lobatto quadrature on the
elements of the computational domain.

To assess the DG operator is functional for our test problems we study
the convergence of the discretization error (2.46) under uniform ℎ𝑝 re-
finement of the computational domain (see Section 2.3.8). We compute
the ℎ-convergence order under pure uniform ℎ refinement

𝜏ℎ B
Δℎ ln

(∥𝑢 − 𝑢analytic∥
)

Δℎ ln(ℎ) , (2.47)

where Δℎ denotes the difference between successive ℎ-refinement levels
and ℎ is the size of an element. Since we always split elements in half
along all logical axes we use Δℎ ln(ℎ) = ln(2). We also compute the
exponential convergence scale under pure uniform 𝑝 refinement

𝜏𝑝 B Δ𝑝 log10(∥𝑢 − 𝑢analytic∥), (2.48)

where Δ𝑝 denotes the difference between successive 𝑝-refinement lev-
els.

Figure 2.6: The two-dimensional recti-
linear domain used in the Poisson prob-
lem (Section 2.4.1). Black lines illustrate
element boundaries and gray lines rep-
resent the LGL grid within each element.
This domain is isotropically ℎ refined
once, i.e., split once in both dimensions,
resulting in four elements. Each element
has six grid points per dimension, so
fields are represented as polynomials
of degree five. This is the domain that
Figs. 2.2 and 2.3 are based on, and that
is circled in Fig. 2.7.

https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
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Figure 2.7: Convergence of the two-dimensional Poisson problem detailed in Section 2.4.1 with uniform ℎ𝑝 refinement. Solid lines connect
numerical solutions where the domain is split into an increasing number of elements (isotropic ℎ refinement), and dotted lines connect
numerical solutions with increasing polynomial order (isotropic 𝑝 refinement). The DG scheme recovers optimal O(ℎ𝑃+1) convergence
with odd-order superconvergence under ℎ refinement (right panel) and exponential convergence under 𝑝 refinement (bottom panels).
For reference, the circled configuration is pictured in Fig. 2.6.

2.4.1 A Poisson solution

With this first test problem we establish a simple baseline that the
following tests build upon. It is reduced to the absolute essentials to
illustrate the basic concepts of the scheme. We solve a flat-space Poisson
equation (2.2) in two dimensions for the analytic solution

𝑢analytic(𝒙) = sin (𝜋𝑥) sin (𝜋𝑦) (2.49)

on a rectilinear domainΩ = [0, 1]2. The domain is illustrated in Fig. 2.6. To
obtain the solution (2.49) numerically we choose the fixed source 𝑓 (𝒙) =
2𝜋2 sin (𝜋𝑥) sin (𝜋𝑦), select homogeneous Dirichlet boundary conditions
𝑢b = 0, and solve the strong compact DG-discretized problem (2.30a)
with 𝐶 = 1. This essentially means we invert the matrix depicted in
Fig. 2.3 and apply it to the discretization of the fixed source 𝑓 (𝒙). Instead
of inverting the matrix directly we employ the iterative elliptic solver
of the SpECTRE code [10] presented in Ref. [2]. However, note that the[10]: SpECTRE, spectre-code.org

[2]: Vu et al. (2022), A scalable elliptic solver
with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

technology we use to solve the DG-discretized problem is not relevant
for the purpose of this article, since the matrix equation has a unique
solution. Assuming the matrix equation is solved to sufficient precision,
Eq. (2.46) quantifies the discretization error of the DG scheme.

We solve the problem on a series of uniformly and isotropically refined
domains and present the convergence of the discretization error in Fig. 2.7.
Under ℎ refinement the scheme recovers optimal O(ℎ𝑃+1) convergence,
where 𝑃 denotes the polynomial degree of the elements. It also recovers

https://spectre-code.org
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
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Figure 2.8: A cut through the cylindrical
domain used in the elasticity problem
(Section 2.4.2). The domain consists of
four wedges enveloping a cuboid, and
two vertical layers. The layers are parti-
tioned vertically at 𝑧 = 𝑟0 and the cuboid
lies radially within 𝑟 = 𝑟0. In the top
layer, the wedges are ℎ refined radially
once and the cuboid is ℎ refined in the
𝑥 and 𝑦 directions once, resulting in 12 el-
ements in the top layer and 5 elements in
the bottom layer. Elements in this exam-
ple have six grid points per dimension,
and the wedge-shaped elements have
two additional grid points in their angu-
lar direction.

the odd-order superconvergence feature expected for the antisymmetric
problem (2.49).15 Under 𝑝 refinement the scheme recovers exponential 15: See also Fig. 7.9 in Hesthaven and

Warburton [126].convergence. The exponential convergence scale 𝜏𝑝 is modulated by
the superconvergence feature and its mean increases linearly with the
ℎ-refinement level.

2.4.2 Thermal noise in a cylindrical mirror

In this second test problem we solve the equations of linear elasticity (2.4)
on a curved mesh with nonconforming element boundaries. The test
problem represents a cylindrical mirror that is deformed by pressure
from a laser beam incident on one of the sides. This problem arises
in studies of Brownian thermal noise in interferometric gravitational-
wave detectors [166, 167].16 Here we consider an analytic solution to this [166]: Levin (1998), Internal thermal noise

in the LIGO test masses: A Direct approach
[167]: Lovelace, Demos, and Khan (2018),
Numerically modeling Brownian thermal
noise in amorphous and crystalline thin coat-
ings
16: See also Section 11.9.2 in Thorne and
Blandford [16] for an introduction to the
thermal noise problem, and Chapter 5 of
this thesis for a detailed study.

problem that applies in the limit of an isotropic and homogeneous mirror
material with constitutive relation

𝑌 𝑖 𝑗𝑘𝑙 = 𝜆 𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇
(
𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘

)
, (2.50)

characterized by the Lamé parameter 𝜆 and the shear modulus 𝜇, or
equivalently by the Poisson ratio 𝜈 = 𝜆/(2(𝜆+𝜇)), Young’s modulus 𝐸 =
𝜇(3𝜆 + 2𝜇)/(𝜆 + 𝜇), or the bulk modulus 𝐾 = 𝜆 + 2/3𝜇. We assume
the material fills the infinite half-space 𝑧 ≥ 0, choose a vanishing force
density 𝑓 𝑗(𝑥) = 0, and a Gaussian profile of the laser beam incident at
𝑧 = 0,

𝑛𝑖𝑇 𝑖 𝑗 = 𝑛 𝑗
1

𝜋𝑟2
0
𝑒−𝑟

2/𝑟2
0 . (2.51)

Here 𝑇 𝑖 𝑗 = −𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙 is the stress, 𝑛𝑖 is the unit normal pointing away
from the mirror, i.e., in negative 𝑧 direction, 𝑟 =

√
𝑥2 + 𝑦2 is the radial

coordinate distance from the axis of symmetry, and 𝑟0 is the beam width.
Under these assumptions the displacement field 𝜉𝑖(𝒙) has the analytic
solution [16, 168, 169] [16]: Thorne and Blandford (2017), Mod-

ern Classical Physics
[168]: Liu and Thorne (2000), Thermoelas-
tic noise and homogeneous thermal noise in
finite sized gravitational wave test masses
[169]: Lovelace (2007), The Dependence of
test-mass coating and substrate thermal noise
on beam shape in the advanced Laser Inter-
ferometer Gravitational-Wave Observatory
(advanced LIGO)

𝑢𝑟 =
1

2𝜇

∫ ∞

0
d𝑘 𝐽1(𝑘𝑟)𝑒−𝑘𝑧

(
1 − 𝜆 + 2𝜇

𝜆 + 𝜇 + 𝑘𝑧
)
𝑝̃(𝑘). (2.52a)

𝑢𝑧 =
1

2𝜇

∫ ∞

0
d𝑘 𝐽0(𝑘𝑟)𝑒−𝑘𝑧

(
1 + 𝜇

𝜆 + 𝜇 + 𝑘𝑧
)
𝑝̃(𝑘) (2.52b)

https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
http://books.google.com/books?vid=ISBN9780691159027
http://books.google.com/books?vid=ISBN9780691159027
https://doi.org/10.1103/PhysRevD.62.122002
https://doi.org/10.1103/PhysRevD.62.122002
https://doi.org/10.1103/PhysRevD.62.122002
https://doi.org/10.1088/0264-9381/24/17/014
https://doi.org/10.1088/0264-9381/24/17/014
https://doi.org/10.1088/0264-9381/24/17/014
https://doi.org/10.1088/0264-9381/24/17/014
https://doi.org/10.1088/0264-9381/24/17/014
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Figure 2.9: Convergence of the three-dimensional elasticity problem detailed in Section 2.4.2 under uniform ℎ𝑝 refinement. Plotted
is the 𝐿2 error (2.46) over the three components of the displacement field 𝜉𝑖(𝒙). The refinement is based on the domain pictured
in Fig. 2.8 (circled configuration) with curved meshes and nonconforming element boundaries. The DG scheme recovers optimal
O(ℎ𝑃+1) convergence under ℎ refinement (right panel) and exponential convergence under 𝑝 refinement (bottom panels).

and 𝑢𝜙 = 0 in cylindrical coordinates {𝑟, 𝜙, 𝑧}. Here 𝐽0 and 𝐽1 are Bessel
functions of the first kind, and 𝑝̃(𝑘) = 1

2𝜋 𝑒
−(𝑘𝑟0/2)2 is the Hankel transform

of the laser-beam profile. We evaluate these integrals numerically at
every collocation point in the computational domain to determine the
analytic solution.

To obtain numerical solutions to the thermal noise problem we DG
discretize the equations of linear elasticity (2.5) on a cylindrical domain
with height and radius 𝑅, employing the strong compact DG opera-
tor (2.30a). Since the stress 𝑇 𝑖 𝑗 = −F 𝑖 𝑗

𝑢 is the negative primal flux in
the elasticity equations (2.5) we impose Eq. (2.51) as a Neumann-type
boundary condition on the base of the cylinder at 𝑧 = 0. We impose
the analytic solution (2.52) as Dirichlet-type boundary conditions on
the remaining external boundaries of the domain, i.e., on the base at
𝑧 = 𝑅 and on the mantle at 𝑟 = 𝑅. These boundary conditions mean
that we solve for a finite cylindrical section of the infinite half-space
analytic solution (2.52). We choose a penalty parameter of 𝐶 = 100 for
this problem to eliminate variations in the discretization error arising
from curved-mesh contributions to the penalty (2.34) at high resolutions.
Table 2.1 summarizes the remaining parameters we use in the numerical
solutions.

Table 2.1: Parameters used in the
thermal-noise problem (Section 2.4.2).
The beam width and the material prop-
erties correspond to Table 1 in Lovelace,
Demos, and Khan [167]. These material
properties characterize a fused-silica mir-
ror, which is a material used in the LIGO
gravitational-wave detectors.

Beam width 𝑟0 177 µm
Outer radius 𝑅 600 µm
Poisson ratio 𝜈 0.17
Young’s modulus 𝐸 72 GPa

Figure 2.8 illustrates the cylindrical domain. It is refined more strongly
toward the origin 𝒙 = 0 where the Gaussian laser beam applies pressure.
The refinement is both anisotropic and inhomogeneous, leading to
nonconforming element boundaries with different polynomial degrees on
either side of the boundary, multiple neighbors adjacent to an element face,
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or both. Specifically, elements facing the top-layer cuboid or the interface
between top and bottom layer are matched two-to-one, and wedge-shaped
elements have two additional angular grid points. Therefore, the elements
facing the cuboid are both 𝑝 nonconforming and ℎ nonconforming in
the top layer, and 𝑝 nonconforming in the bottom layer. The elements
facing the layer interface are ℎ nonconforming.

Figure 2.9 presents the convergence of the discretization error under
uniform ℎ𝑝 refinement. Specifically, we split every element in two along
all three dimensions to construct additional ℎ-refinement levels, and
increment every polynomial degree by one to construct additional 𝑝-
refinement levels, retaining the nonconforming element boundaries. Note
that the wedge-shaped elements retain a higher polynomial degree of
𝑃 + 2 along their angular direction throughout the refinement procedure,
where 𝑃 is the polynomial degree of all other elements and dimensions.
The DG scheme recovers optimal O(ℎ𝑃+1) convergence under ℎ refine-
ment and exponential convergence under 𝑝 refinement. Note that the
exponential convergence scale 𝜏𝑝 depends on the domain geometry, the
structure of the solution, the placement of grid points and the refinement
strategy. We have chosen to refine the domain as uniformly as possible
here to reliably measure convergence properties of the DG scheme. Opti-
mizing the distribution of elements and grid points with adaptive mesh
refinement (AMR) strategies to increase the rate of convergence is the
subject of ongoing work.

2.4.3 A black hole in general relativity

Now we apply the DG scheme to solve the Einstein constraint equations
of general relativity in the XCTS formulations, which is a set of coupled,
nonlinear, elliptic PDEs on a curved manifold (see Section 1.2.3). Solutions
to the XCTS equations describe admissible configurations of general-
relativistic spacetime and provide initial data for general-relativistic time
evolutions.

In this test problem we solve the XCTS equations (1.56) for a Schwarzschild
black hole in Kerr-Schild coordinates,

𝜓 = 1, (2.53a)

𝛼 =
(
1 + 2𝑀

𝑟

)−1/2
, (2.53b)

𝛽𝑖 =
2𝑀
𝑟

𝛼2𝑙 𝑖 , (2.53c)

with the background quantities

𝛾̄𝑖 𝑗 = 𝛿𝑖 𝑗 + 2𝑀
𝑟
𝑙𝑖 𝑙 𝑗 (2.53d)

and

𝐾 =
2𝑀𝛼3

𝑟2

(
1 + 3𝑀

𝑟

)
, (2.53e)

where 𝑀 is the mass parameter, 𝑟 =
√
𝑥2 + 𝑦2 + 𝑧2 is the Euclidean

coordinate distance, and 𝑙 𝑖 = 𝑙𝑖 = 𝑥 𝑖/𝑟.17
17: See Table 2.1 in Baumgarte and
Shapiro [17].The time-derivative quantities
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Figure 2.10: A cut through the uniformly
refined spherical-shell domain used in
the black hole problem (Section 2.4.3).
The domain consists of six wedges with
a logarithmic radial coordinate map en-
veloping an excised sphere. In this exam-
ple each wedge is isotropically ℎ refined
once, i.e., split once in all three dimen-
sions, resulting in a total of 48 elements.
Note the elements are split in half along
their logical axes, so the element size
scales logarithmically in radial direction
just like the distribution of grid points
within the elements. Each element has
six grid point per dimension, so fields
are represented as polynomials of degree
five.

𝑢̄𝑖 𝑗 and 𝜕𝑡𝐾 in the XCTS equations (1.56) vanish, as do the matter sources
𝜌, 𝑆, and 𝑆𝑖 . Note that we have chosen a conformal decomposition with
𝜓 = 1 here, but other choices of 𝜓 and 𝛾̄𝑖 𝑗 that keep the spatial metric
𝛾𝑖 𝑗 = 𝜓4𝛾̄𝑖 𝑗 invariant are equally admissible.

We solve the XCTS equations numerically for the conformal factor 𝜓, the
product 𝛼𝜓, and the shift 𝛽𝑖 . The conformal metric 𝛾̄𝑖 𝑗 and the trace of
the extrinsic curvature 𝐾 are background quantities that are chosen in
advance and remain fixed throughout the solve. They are a source of
aliasing when evaluated on the computational grid (see Section 2.3.7).
Importantly for this test problem the conformal metric 𝛾̄𝑖 𝑗 is not flat,
resulting in a problem formulated on a curved manifold. For example,
unit normal one forms in the DG scheme are normalized with respect to
the conformal metric 𝛾̄𝑖 𝑗 and the metric determinant appears in the mass
matrix and in the 𝐿2 error (2.46).

To solve the black hole problem numerically we employ the strong com-
pact DG scheme (2.30a) with𝐶 = 1 to discretize the XCTS equations (1.56)
on a three-dimensional spherical shell, as illustrated in Fig. 2.10. The
domain envelops an excised sphere that represents the black hole, so it
has an outer and an inner external boundary that require boundary con-
ditions. To obtain the Schwarzschild solution in Kerr-Schild coordinates
we impose Eqs. (2.53a) to (2.53c) as Dirichlet-type boundary conditions
at the outer boundary of the spherical shell at 𝑟 = 10𝑀. We place the
inner radius of the spherical shell at 𝑟 = 2𝑀 and impose nonspinning
apparent-horizon boundary conditions at the inner boundary,

𝑛𝑘𝜕𝑘𝜓 =
𝜓3

8𝛼
𝑛𝑖𝑛 𝑗

(
(𝐿̄𝛽)𝑖 𝑗 − 𝑢̄ 𝑖 𝑗

)
− 𝜓

4
𝑚̄ 𝑖 𝑗∇̄𝑖𝑛 𝑗 − 1

6
𝐾𝜓3, (2.54a)

𝛽𝑖 = − 𝛼

𝜓2 𝑛
𝑖 , (2.54b)

where 𝑚̄ 𝑖 𝑗 = 𝛾̄𝑖 𝑗 − 𝑛 𝑖𝑛 𝑗 . These boundary conditions are not specific to
the Schwarzschild solution but ensure the excision surface is an apparent
horizon [113].18 Since the Schwarzschild solution in Kerr-Schild coordi-[113]: Cook and Pfeiffer (2004), Excision

boundary conditions for black hole initial
data
18: See Section 1.2.3 and note that 𝑛𝑖 =
−𝑠𝑖 .

nates has an apparent horizon at 𝑟 = 2𝑀 we recover the solution (2.53)
when we place the inner radius of the spherical shell at that radius.
The apparent-horizon boundary conditions (2.54) do not constrain the
lapse 𝛼, so we impose Eq. (2.53b) at the inner boundary. The apparent-

https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.70.104016
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Figure 2.11: Convergence of the three-dimensional black-hole solution with uniform ℎ𝑝 refinement. Plotted is the 𝐿2 error (2.46) over all
variables of the XCTS equations {𝜓, 𝛼𝜓, 𝛽𝑖}. The circled configuration is pictured in Fig. 2.10. The DG scheme recoversO(ℎ𝑃) convergence
under ℎ refinement (right panel) and exponential convergence under 𝑝 refinement (bottom panels).

horizon boundary conditions are of Neumann-type for the variable 𝜓, of
Dirichlet-type for 𝛼𝜓 and 𝛽𝑖 , and nonlinear.

Since the XCTS equations (1.56) and the apparent-horizon boundary
conditions (2.54) are nonlinear the initial guess for the iterative nonlinear
solver becomes relevant. We choose an initial guess close to the analytic
solution to ensure fast convergence of the iterative solver to the numerical
solution. Note that the initial guess and other details of the iterative solve
do not affect the discretization error of the numerical solution once the
solve has converged to sufficient precision.

We present the convergence of the discretization error under uniform
ℎ𝑝 refinement in Fig. 2.11. The DG scheme for the nonlinear black hole
problem recovers O(ℎ𝑃) convergence under ℎ refinement, which is an
order lower than that obtained for the two preceding linear test prob-
lems. We find higher-order convergence for pure Dirichlet boundary
conditions for this problem, suggesting the apparent-horizon boundary
conditions (2.54) are responsible for the reduction of the convergence or-
der. For a Poisson problem with nonlinear boundary conditions, Feistauer,
Roskovec, and Sändig [154] also find a loss of convergence under ℎ refine- [154]: Feistauer, Roskovec, and Sändig

(2019), Discontinuous Galerkin method for
an elliptic problem with nonlinear Newton
boundary conditions in a polygon

ment. Under 𝑝 refinement the scheme recovers exponential convergence
and the mean exponential convergence scale 𝜏𝑝 increases linearly with
the ℎ-refinement level.

https://doi.org/10.1093/imanum/drx070
https://doi.org/10.1093/imanum/drx070
https://doi.org/10.1093/imanum/drx070
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Figure 2.12: A cut through the three-
dimensional black-hole binary domain
used in Section 2.4.4. It involves two
excised spheres centered at 𝑪𝑛 along
the 𝑥 axis and extends to a spherical
outer surface at radius 𝑅. The domain
is ℎ refined such that spherical wedges
have equal angular size, so the cube-to-
sphere boundary is nonconforming. All
elements in this picture have eight an-
gular grid points, and {7, 8, 8, 9, 11, 11}
radial grid points in the layers ordered
from outermost to innermost.

2.4.4 A black hole binary

Finally, we solve the Einstein constraint equations in the XCTS formulation
as in Section 2.4.3, but now we choose background quantities and
boundary conditions that represent two black holes in orbit. This binary
black hole problem is of significant relevance in numerical relativity to
procure initial data for simulations of merging black holes [17, 74, 75,
78].[17]: Baumgarte and Shapiro (2010), Nu-

merical Relativity: Solving Einsteins Equa-
tions on the Computer
[74]: Pfeiffer (2005), The Initial value prob-
lem in numerical relativity
[75]: Lovelace et al. (2008), Binary-black-
hole initial data with nearly-extremal spins
[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets

Following the formalism for superposed Kerr-Schild initial data, e.g., laid
out in Ref. [75, 78], we set the conformal metric and the trace of the
extrinsic curvature to the superpositions

𝛾̄𝑖 𝑗 = 𝛿𝑖 𝑗 +
2∑
𝑛=1

𝑒−𝑟
2
𝑛/𝑤2

𝑛 (𝛾(𝑛)𝑖 𝑗 − 𝛿𝑖 𝑗) (2.55a)

and

𝐾 =
2∑
𝑛=1

𝑒−𝑟
2
𝑛/𝑤2

𝑛𝐾(𝑛), (2.55b)

where 𝛾(𝑛)𝑖 𝑗 and 𝐾(𝑛) are the conformal metric and extrinsic-curvature
trace of two isolated Schwarzschild black holes in Kerr-Schild coordinates
as given in Eqs. (2.53). They have mass parameters 𝑀𝑛 and are centered
at coordinates 𝑪𝑛 , with 𝑟𝑛 being the Euclidean coordinate distance
from either center. The superpositions are modulated by two Gaussians
with widths 𝑤𝑛 . The time-derivative quantities 𝑢̄𝑖 𝑗 and 𝜕𝑡𝐾 in the XCTS
equations (1.56) vanish, as do the matter sources 𝜌, 𝑆 and 𝑆𝑖 .

To handle orbital motion we split the shift in a background and an excess
contribution [170],[170]: Pfeiffer (2003), Initial Data for Black

Hole Evolutions 𝛽𝑖 = 𝛽𝑖background + 𝛽𝑖excess, (2.56)

and choose the background shift

𝛽𝑖background = (𝛀0 × 𝒙)𝑖 , (2.57)

https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1142/S0219891605000518
https://doi.org/10.1142/S0219891605000518
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
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Figure 2.13: Exponential convergence
of the three-dimensional black-hole bi-
nary problem under uniform 𝑝 refine-
ment (solid lines) for three uniform ℎ-
refinement levels. The circled configura-
tion is pictured in Fig. 2.12. Plotted here
is the 𝐿2 error (2.59) over all variables
{𝜓, 𝛼𝜓, 𝛽𝑖excess} and all three interpola-
tion points 𝒙𝑚 .

where 𝛀0 is the orbital angular velocity. We insert Eq. (2.56) in the XCTS
equations (1.56) and henceforth solve them for 𝛽𝑖excess, instead of 𝛽𝑖 .

We solve the XCTS equations on the domain depicted in Fig. 2.12. It has two
excised spheres with radius 2𝑀𝑛 that are centered at 𝑪𝑛 , and correspond
to the two black holes, and an outer spherical boundary at finite radius 𝑅.
We impose boundary conditions on these three boundaries as follows.
At the outer spherical boundary we impose asymptotic flatness,

𝜓 = 1, 𝛼𝜓 = 1, 𝛽𝑖excess = 0. (2.58)

Since the outer boundary is at a finite radius, the solution will only be
approximately asymptotically flat. On the two excision boundaries we
impose nonspinning apparent-horizon boundary conditions, Eq. (2.54).
For the lapse we choose to impose the isolated solution (2.53b) as Dirichlet
conditions at both excision surfaces. Note that this choice differs slightly
from Ref. [78], where the superposed isolated solutions are imposed on [78]: Varma, Scheel, and Pfeiffer (2018),

Comparison of binary black hole initial data
sets

the lapse at both excision surfaces.

Since the binary black hole problem has no analytic solution we assess
the precision of numerical solutions by comparing them to a high-
resolution reference configuration. Specifically, we interpolate all five
fields 𝑢𝐴 = {𝜓, 𝛼𝜓, 𝛽𝑖excess} to a set of sample points 𝒙𝑚 . Then, we
compute the discretization error as an 𝐿2 norm of the difference to the
high-resolution reference run over all fields and sample points,

∥𝑢 − 𝑢ref∥ B
(∑
𝐴,𝑚
(𝑢𝐴(𝒙𝑚) − 𝑢𝐴,ref(𝒙𝑚))2

)1/2
. (2.59)

Figure 2.13 presents the convergence of the discretization error under
uniform ℎ𝑝 refinement for our strong compact DG scheme (2.30a) with
𝐶 = 1. Specifically, we obtain ℎ-refinement levels from the domain
depicted in Fig. 2.12 by splitting all elements in two along their three

https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
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Table 2.2: Sample points 𝒙𝑚 used in
Eq. (2.59) and the value of the reference
solution at the sample points.

𝒙1 = (8.846, 0, 0) 𝒙2 = (0, 0, 0) 𝒙3 = (100, 0, 0)
𝜓 1.0919141 1.0602545 1.0033643
𝛼𝜓 0.7072066 0.9381658 0.9966282
𝛽𝑥excess 0.3870172 0 0.0008802
𝛽
𝑦
excess −0.1273493 0 −0.0003467

𝛽𝑧excess 0 0 0

logical axes. We obtain 𝑝-refinement levels by incrementing the number
of grid points by one in all elements and dimensions. The DG scheme
recovers exponential convergence under 𝑝 refinement, and suggests the
same O(ℎ𝑃) convergence under ℎ refinement that we have found for the
single black hole problem in Section 2.4.3. We have chosen 𝑀𝑛 = 0.4229,
𝑪𝑛 = (±8, 0, 0),Ω0 = 0.0144,𝑤𝑛 = 4.8, 𝑅 = 300, and sample points along
the 𝑥 axis at 𝑥1 = 8.846 (near horizon), 𝑥2 = 0 (origin) and 𝑥3 = 100 (far
field) here. For the high-resolution reference configuration in Eq. (2.59) we
use a run that is ℎ refined twice, and has one grid point more per element
and dimension than the highest-resolution configuration included in
Fig. 2.13. The reference values at the interpolation points are listed in
Table 2.2. We have verified that these values are consistent with the same
problem solved with the SpEC [55, 139] code up to an absolute error of at[55]: Spectral Einstein Code (SpEC),

black-holes.org/code/SpEC

[139]: Pfeiffer et al. (2003), A multidomain
spectral method for solving elliptic equations

most 10−7, which is the precision we report in Table 2.2.

In forthcoming work we intend to employ the DG scheme that we have
presented here to develop a scalable initial-data solver for binaries in-
volving black holes and neutron stars in the SpECTRE numerical relativity
code [2].[2]: Vu et al. (2022), A scalable elliptic solver

with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

2.5 Conclusion and future work

We have presented a unified discontinuous Galerkin (DG) internal-
penalty scheme that is applicable to a wide range of elliptic equations. Our
scheme applies to linear and nonlinear second-order elliptic PDEs of one
or more variables, where the variables can be scalars, vectors, or tensors of
higher rank. It does not require problem-specific modifications of the DG
discretization or of the numerical fluxes that couple neighboring elements.
The scheme supports a wide range of linear and nonlinear boundary
conditions, and applies to equations formulated on curved manifolds.
We demonstrate its versatility by solving a simple Poisson problem, a
linear elasticity problem on a curved mesh with nonconforming element
boundaries, and two nonlinear problems in general relativity involving
black holes. The unified DG scheme is capable of solving these problems
with no structural changes. It recovers optimal O(ℎ𝑃+1) convergence
for the linear test problems and O(ℎ𝑃) convergence for the nonlinear
test problems, where 𝑃 is the polynomial degree of the elements. The
scheme is implemented in the open-source SpECTRE code [10] and the[10]: SpECTRE, spectre-code.org
results presented in this article are reproducible with the supplemental
input-file configurations [171].[171]: Supplemental material: input-file

configurations to reproduce the re-
sults presented in this article with the
SpECTRE code, arXiv:2108.05826/anc

The DG scheme developed here can potentially be improved in multiple
ways in future work. Dealiasing techniques have the potential to increase
the accuracy of the scheme on curved meshes and for equations with
background quantities. The choice of penalty on curved meshes remains a
subject of ongoing study. Furthermore, detailed studies of the symmetry

https://www.black-holes.org/code/SpEC
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://spectre-code.org
https://arxiv.org/src/2108.05826/anc


2.5 Conclusion and future work 67

of the DG operator and related adjustments to the scheme, such as
switching to the strong-weak formulation, can potentially make the DG
operator faster to solve.

Since the convergence properties of the DG scheme are sensitive to
the specifics of the computational domain, we have chosen to refine
the domains as uniformly as possible while retaining some important
features, such as curved meshes and nonconforming element boundaries.
For practical applications it is typically more important to obtain steep
rather than uniform convergence, in order to conserve computational
resources and thus achieve faster or more precise solves. Therefore,
a focus of future work will be to develop adaptive mesh-refinement
strategies for the elliptic DG scheme that place grid points in regions and
dimensions of the domain that dominate the discretization error.

Once the DG discretization of the elliptic equations is at hand, numerical
techniques for solving the resulting matrix equation become important.
Sophisticated linear and nonlinear iterative algorithms are necessary to
solve high-resolution elliptic problems in parallel on large computing
clusters. Many of the choices we have made in the development of the
DG scheme are motivated by such large-scale applications. For this
purpose we are developing a scalable multigrid-Schwarz preconditioned
Newton-Krylov iterative solver with task-based parallelism that will be
presented in [2]. [2]: Vu et al. (2022), A scalable elliptic solver

with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.
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This chapter is based on the article A scalable elliptic solver with task-
based parallelism for the SpECTRE numerical relativity code [2], published
in Phys. Rev. D 105, 084027 on Apr 18, 2022 (arXiv:2111.06767). It
presents the new elliptic solver that I have developed to solve the
discretized elliptic equations developed in Chapter 2, in parallel
and on supercomputers. The development of this new, scalable, and
highly parallel solver for elliptic problems in numerical relativity,
implemented in the next-generation SpECTRE code, represents the
majority of my Ph.D. work.

Authors Nils L. Vu, Harald P. Pfeiffer, Gabriel S. Bonilla, Nils Deppe,
François Hébert, Lawrence E. Kidder, Geoffrey Lovelace, Jordan Moxon,
Mark A. Scheel, Saul A. Teukolsky, William Throwe, Nikolas A. Wittek,
and Tom Włodarczyk

Abstract Elliptic partial differential equations must be solved numer-
ically for many problems in numerical relativity, such as initial data
for every simulation of merging black holes and neutron stars. Existing
elliptic solvers can take multiple days to solve these problems at high
resolution and when matter is involved, because they are either hard to
parallelize or require a large amount of computational resources. Here
we present a new solver for linear and nonlinear elliptic problems that is
designed to scale with resolution and to parallelize on computing clusters.
To achieve this we employ a discontinuous Galerkin discretization, an
iterative multigrid-Schwarz preconditioned Newton-Krylov algorithm,
and a task-based parallelism paradigm. To accelerate convergence of
the elliptic solver we have developed novel subdomain-preconditioning
techniques. We find that our multigrid-Schwarz preconditioned elliptic
solves achieve iteration counts that are independent of resolution, and our
task-based parallel programs scale over 200 million degrees of freedom
to at least a few thousand cores. Our new code solves a classic initial data
problem for binary black holes faster than the spectral code SpEC when
distributed to only eight cores, and in a fraction of the time on more
cores. It is publicly accessible in the next-generation SpECTRE numerical
relativity code. Our results pave the way for highly parallel elliptic solves
in numerical relativity and beyond.

Declaration of authorship I am the lead author who wrote this article,
argued the direction it should take, developed the task-based parallel
iterative algorithms presented in the article, implemented them in the
SpECTRE code, and performed the numerical computations to apply the
new elliptic solver to test problems. Harald Pfeiffer acted as advisor in
this project and provided editorial feedback on the article. The remaining
co-authors contributed to the SpECTRE code in a manner that enabled the
present research. For example, Gabriel Bonilla contributed coordinate
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maps that are essential to construct the computational domains, Nils
Deppe contributed the parallelisation infrastructure that interfaces with
Charm++, and Jordan Moxon contributed the Morton (“z-order”) space-
filling curve used to distribute elements among cores. The contributions
by all authors were essential to conduct the present research, and highlight
the collaborative research effort with the open-source SpECTRE code. The
development of the new elliptic solver based on the foundations provided
by the SpECTRE code, and hence the subject of the present article, is entirely
my own work.

3.1 Introduction

Solving elliptic partial differential equations (PDEs) numerically is im-
portant in many areas of science, including numerical relativity [17]

[17]: Baumgarte and Shapiro (2010), Nu-
merical Relativity: Solving Einsteins Equa-
tions on the Computer

.
All numerical time evolutions begin with initial data that capture the
physical scenario to be evolved, and the initial data must typically satisfy
a set of constraint equations formulated as elliptic PDEs. Specifically, to
construct initial data for general-relativistic simulations of black holes
and neutron stars we must solve the Einstein constraint equations, which
admit formulations as elliptic PDEs [74, 176]

[74]: Pfeiffer (2005), The Initial value prob-
lem in numerical relativity
[176]: Cook (2000), Initial Data for Numer-
ical Relativity

. Binary configurations of
black holes and neutron stars enjoy particular prominence as primary
sources for gravitational-wave detectors, and numerical simulations of
these systems play an essential role in their observations [18, 32–34, 60,
177].

To construct initial data for general-relativistic simulations, the numerical
relativity (NR) community has put considerable effort towards developing
numerical codes that solve elliptic problems. Most of the existing codes
employ spectral methods to discretize the elliptic equations, such as
LORENE [178, 179]

[178]: LORENE, http://www.lorene.
obspm.fr

[179]: Grandclement (2006), Accurate and
realistic initial data for black hole-neutron
star binaries

and TwoPunctures [88, 180]

[88]: Ansorg, Brügmann, and Tichy
(2004), A Single-domain spectral method
for black hole puncture data
[180]: Ansorg (2005), A Double-domain
spectral method for black hole excision data

, Spells [109, 112, 139, 181,
182]

[109]: Tacik et al. (2015), Binary Neutron
Stars with Arbitrary Spins in Numerical Rel-
ativity
[112]: Tacik et al. (2016), Initial data for
black hole–neutron star binaries, with rotat-
ing stars
[139]: Pfeiffer et al. (2003), A multidomain
spectral method for solving elliptic equations
[181]: Ossokine et al. (2015), Improvements
to the construction of binary black hole initial
data
[182]: Foucart et al. (2008), Initial data for
black hole-neutron star binaries: A Flexible,
high-accuracy spectral method

that is part of SpEC [55]

[55]: Spectral Einstein Code (SpEC),
black-holes.org/code/SpEC

, as well as SGRID [107, 183], KADATH [89,[107]: Dietrich et al. (2015), Binary Neutron
Stars with Generic Spin, Eccentricity, Mass
ratio, and Compactness - Quasi-equilibrium
Sequences and First Evolutions
[183]: Tichy et al. (2019), Constructing bi-
nary neutron star initial data with high spins,
high compactnesses, and high mass ratios

133] and Elliptica [108]. The COCAL [110, 184] code employs finite-

[89]: Papenfort et al. (2021), New public
code for initial data of unequal-mass, spin-
ning compact-object binaries
[133]: Grandclément (2010), KADATH: A
spectral solver for theoretical physics
[108]: Rashti et al. (2021), Elliptica: a new
pseudo-spectral code for the construction of
initial data
[110]: Tsokaros, Uryū, and Rezzolla
(2015), New code for quasiequilibrium ini-
tial data of binary neutron stars: Corotating,
irrotational, and slowly spinning systems
[184]: Uryū and Tsokaros (2012), New code
for equilibriums and quasiequilibrium initial
data of compact objects

difference methods, and NRPyElliptic [185] a hyperbolic relaxation

[185]: Assumpcao, Werneck, Jacques,
et al. (2021), NRPyElliptic: A Fast Hyper-
bolic Relaxation Elliptic Solver for Numer-
ical Relativity, I: Conformally Flat, Binary
Puncture Initial Data

scheme [186]. All of these codes vary significantly in the numerical

[186]: Rüter et al. (2018), Hyperbolic Relax-
ation Method for Elliptic Equations

methods employed to solve the discretized equations. For example, SpEC
uses the PETSc library to perform an iterative matrix-free solve with a
custom preconditioner [139], whereas KADATH and Elliptica construct
explicit matrix representations and invert the matrices directly [108,
133].

While successful in constructing initial data for many general-relativistic
scenarios, these codes can still take a significant amount of time or
require excessive computational resources to solve the elliptic problems.
For example, the SpEC and SGRID codes typically require a few hours
to days to solve for initial data that involves orbiting neutron stars, at a
resolution required for state-of-the-art simulations, using O(10) cores for
the computation. KADATH, on the other hand, quote a few hours to solve
for low-resolution initial data involving orbiting neutron stars on about
128 cores, and “a larger timescale” and more cores for higher resolutions,
with high memory demands for the explicit matrix construction [89,
133], and assuming symmetry with respect to the orbital plane [89].
Elliptica also quote a few days to solve an initial data problem for a
black hole–neutron star binary (BHNS) on 20 cores [108].
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Despite the time required to solve the elliptic initial data problem,
simulations of merging black holes and neutron stars are currently
dominated by their time evolution, which can take weeks to months.
However, significant efforts are underway to develop faster and more
accurate evolution codes for next-generation numerical relativity. The
open-source SpECTRE [10, 142] code aims to evolve general-relativistic [10]: SpECTRE, spectre-code.org

[142]: Kidder et al. (2017), SpECTRE: A
Task-based Discontinuous Galerkin Code for
Relativistic Astrophysics

multiphysics scenarios on petascale and future exascale computers, and
is the main focus of this article. Other recent developments include
the CarpetX driver for the Einstein Toolkit [187] that is based on the [187]: CarpetX, 10.5281/zenodo.6131528
AMReX framework [188], and the Dendro-GR [189], Nmesh [190], bamps [191],

[189]: Fernando et al. (2019), Massively
Parallel Simulations of Binary Black Hole
Intermediate-Mass-Ratio Inspirals
[190]: Tichy, Adhikari, and Ji (2020), Nu-
merical relativity with the new Nmesh code
[191]: Bugner et al. (2016), Solving 3D
relativistic hydrodynamical problems with
weighted essentially nonoscillatory discon-
tinuous Galerkin methods

GRAthena++ [192], and ExaHyPE [193] codes.

[192]: Daszuta et al. (2021), GRAthena++:
Puncture Evolutions on Vertex-centered Oct-
tree Adaptive Mesh Refinement
[193]: Reinarz et al. (2020), ExaHyPE: An
engine for parallel dynamically adaptive sim-
ulations of wave problems

To seed these next-generation evolutions of general-relativistic scenarios
with initial data, we have developed a highly scalable elliptic solver based
on discontinuous Galerkin methods, matrix-free iterative algorithms,
and task-based parallelism. We focus strongly on parallelization to
take advantage of the increasing number of cores in high-performance
computing (HPC) systems. These systems have at least O(10), but often
closer to 50–100, physical cores per node, often with many thousand
interconnected nodes. Therefore, even routine compute jobs that request
only a few nodes on contemporary HPC clusters, and hence spend little
to no time waiting in a queue, have tens to hundreds of cores at their
disposal. Larger compute jobs with thousands of cores and more are also
readily available, and the amount of available computational resources
is expected to increase rapidly in the future.

The SpECTRE code embraces parallelism as a core design principle [10, 142].
It employs a task-based parallelism paradigm instead of the conventional
message passing interface (MPI) protocol. MPI-parallelized programs
typically alternate between computation and communication at global
synchronization points, meaning that all threads must reach a globally
agreed-upon state before the program proceeds. Global synchronization
points can limit the effective use of the available cores when some
threads reach the synchronization later than others, thus holding up
the program. The effect becomes more pronounced with increasing
core count, often limiting the number of cores that MPI-parallelized
programs can efficiently scale to. Task-based parallel programs, on the
other hand, aim to avoid global synchronization points as much as
possible. They partition the computational work into interdependent
tasks and distribute them among the available cores. Tasks can migrate
to undersubscribed cores while the program is running to balance
the computational load. SpECTRE builds upon the Charm++ [141] task- [141]: The Charm++ Parallel Program-

ming System, https : / / charm . cs .

illinois.edu
based parallelism and CPU-abstraction library. Reference [142] describes
SpECTRE’s task-based parallism paradigm in more detail.

Our new elliptic solver in the SpECTRE code is based on the prototype
presented in Ref. [8] and employs the discontinuous Galerkin discretiza- [8]: Vincent, Pfeiffer, and Fischer (2019),

hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity

tion for generic elliptic equations developed in Ref. [1], which makes it

[1]: Fischer and Pfeiffer (2022), Unified
discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

applicable to a wide range of elliptic problems in numerical relativity and
beyond. In this article we present the task-based iterative algorithms that
we have developed to parallelize the elliptic solver effectively on comput-
ing clusters, including novel subdomain-preconditioning techniques. We
demonstrate that our new elliptic solver can solve a classic initial data
problem for binary black holes faster than SpEC when running on as few
as eight cores, and in a fraction of the time on a computing cluster. In
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particular, the number of iterations that our new elliptic solver requires
to converge remains constant with increasing resolution. The additional
computational work needed to solve high-resolution problems manifests
in subproblems that become either more numerous or more expensive,
but that can be solved in parallel to offset the increase in runtime.

This article is structured as follows. Section 3.2 summarizes the discontin-
uous Galerkin scheme that was presented in Ref. [1] and that we employ
to discretize all elliptic equations in this article. Section 3.3 details the
stack of task-based algorithms that constitutes the elliptic solver, and that
we have implemented in the SpECTRE code. In Section 3.4 we assess the
performance and parallel efficiency of our new elliptic solver by applying
it to a set of test problems. We conclude in Section 3.5.

3.2 Discontinuous Galerkin discretization

We employ the discontinuous Galerkin (DG) scheme developed in Ref. [1][1]: Fischer and Pfeiffer (2022), Unified
discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

to discretize all elliptic problems in this article and summarize it in this
section.

Schematically, the discretization procedure translates a linear elliptic
problem to a matrix equation, such as

−𝜕𝑖𝜕𝑖𝜑(𝒙) = 4𝜋𝜌(𝒙) −−−−→
Ref. [1]

A𝑢 = 𝑏, (3.1)

where 𝑢 = (𝑢1 , . . . , 𝑢𝑁DOF) is a discrete representation of all variables on
the computational grid, 𝑏 = (𝑏1 , . . . , 𝑏𝑁DOF) is a discrete representation
of the fixed sources in the PDEs, and A is an 𝑁DOF × 𝑁DOF matrix that
represents the discrete Laplacian operator in this example. Equation (3.1)
represents the Maxwell constraint equation for the electric potential 𝜑(𝒙)
in Coulomb gauge, written here in Cartesian coordinates, where 𝜌(𝒙) is
the electric charge density sourcing the field. We employ the Einstein
sum convention to sum over repeated indices.

The subject of this section is to define the matrix equation (3.1) for a wide
range of elliptic problems, as detailed in Ref. [1]. Then, the remainder of
this article is concerned with solving the matrix equation numerically
for 𝑢, and doing so iteratively, in parallel on computing clusters, and
without ever explicitly constructing the full matrix A. Instead, we only
need to define the matrix-vector productA𝑢. We solve nonlinear problems
A(𝑢) = 𝑏 by repeatedly solving their linearization.

Skip ahead

The remainder of this section summarizes the preceding Chapter 2. If
you have read Chapter 2, skip ahead to Section 3.3.

The discontinuous Galerkin scheme detailed in Ref. [1] applies to a wide
range of elliptic problems. Specifically, it applies to any set of elliptic
PDEs that admits a formulation in first-order flux form

−𝜕𝑖 F 𝑖
𝛼 [𝑢𝐴 , 𝑣𝐴; 𝒙] + S𝛼[𝑢𝐴 , 𝑣𝐴; 𝒙] = 𝑓𝛼(𝒙), (3.2)
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https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034


3.2 Discontinuous Galerkin discretization 73

where the fluxes F 𝑖
𝛼 and the sources S𝛼 are functionals of a set of primal

variables 𝑢𝐴(𝒙) and auxiliary variables 𝑣𝐴(𝒙), and the fixed sources 𝑓𝛼(𝒙)
are functions of coordinates. The index 𝛼 enumerates both primal and
auxiliary equations. The primal variables can be scalars, such as the
electric potential 𝜑(𝒙) in the Maxwell constraint (3.1), higher-rank ten-
sor fields such as the displacement vector in an elasticity problem, or
combinations thereof such as in Eq. (3.4) below. The auxiliary variables
are typically gradients of the primal variables, such as 𝑣𝑖 = 𝜕𝑖𝜑(𝒙) for
the Maxwell constraint. For example, the Maxwell constraint (3.1) can be
formulated with the fluxes and sources

F 𝑖
𝑣 𝑗 = 𝜑 𝛿𝑖𝑗 , S𝑣 𝑗 = 𝑣 𝑗 , 𝑓𝑣 𝑗 = 0, (3.3a)

F 𝑖
𝜑 = 𝑣𝑖 , S𝜑 = 0, 𝑓𝜑 = 4𝜋𝜌(𝒙), (3.3b)

where 𝛿𝑖𝑗 denotes the Kronecker delta. Note that Eq. (3.3a) is the definition
of the auxiliary variable, and Eq. (3.3b) is the Maxwell constraint (3.1).

In particular, the flux form (3.2) also encompasses the extended con-
formal thin-sandwich (XCTS) formulation of the Einstein constraint
equations [74],1 [74]: Pfeiffer (2005), The Initial value prob-

lem in numerical relativity
1: See Section 1.2.3 for an introduction to
the XCTS equations, and note that I use
the symbol ∇𝑖 instead of D𝑖 for spatial
covariant derivatives in this article be-
cause no spacetime covariant derivatives
appear.

∇̄2𝜓 =
1
8
𝜓𝑅̄ + 1

12
𝜓5𝐾2 − 1

8
𝜓−7𝐴̄𝑖 𝑗𝐴̄𝑖 𝑗 − 2𝜋𝜓5𝜌 (3.4a)

∇̄2 (𝛼𝜓) = 𝛼𝜓

(
7
8
𝜓−8𝐴̄𝑖 𝑗𝐴̄𝑖 𝑗 + 5

12
𝜓4𝐾2 + 1

8
𝑅̄

+ 2𝜋𝜓4 (𝜌 + 2𝑆)
)
− 𝜓5𝜕𝑡𝐾 + 𝜓5𝛽𝑖∇̄𝑖𝐾

(3.4b)

∇̄𝑖(𝐿̄𝛽)𝑖 𝑗 = (𝐿̄𝛽)𝑖 𝑗∇̄𝑖 ln(𝛼̄) + 𝛼̄∇̄𝑖
(
𝛼̄−1𝑢̄ 𝑖 𝑗

)
+ 4

3
𝛼̄𝜓6∇̄ 𝑗𝐾 + 16𝜋𝛼̄𝜓10𝑆 𝑗

(3.4c)

with ∇̄2 = 𝛾̄𝑖 𝑗∇̄𝑖∇̄𝑗 , 𝐴̄𝑖 𝑗 = 1
2𝛼̄

((𝐿̄𝛽)𝑖 𝑗 − 𝑢̄ 𝑖 𝑗 ) and 𝛼̄ = 𝛼𝜓−6. The XCTS
equations are a set of coupled nonlinear elliptic PDEs that the spacetime
metric of general relativity must satisfy at all times. They are solved for
the conformal factor 𝜓, the product of lapse and conformal factor 𝛼𝜓,
and the shift vector 𝛽 𝑗 . The remaining quantities in the equations, i.e.,
the conformal metric 𝛾̄𝑖 𝑗 , the trace of the extrinsic curvature 𝐾, their
respective time derivatives 𝑢̄𝑖 𝑗 and 𝜕𝑡𝐾, the energy density 𝜌, the stress-
energy trace 𝑆 and the momentum density 𝑆𝑖 , are freely-specifiable
fields that define the scenario at hand. In particular, the conformal
metric 𝛾̄𝑖 𝑗 defines the background geometry of the elliptic problem,
which determines the covariant derivative ∇̄, the Ricci scalar 𝑅̄ and the
longitudinal operator(

𝐿̄𝛽
) 𝑖 𝑗 = ∇̄𝑖𝛽 𝑗 + ∇̄ 𝑗𝛽𝑖 − 2

3
𝛾̄𝑖 𝑗∇̄𝑘𝛽𝑘 . (3.5)

Reference [1] lists fluxes and sources for the XCTS equations, and for a [1]: Fischer and Pfeiffer (2022), Unified
discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

selection of other elliptic systems.

Once we have formulated the equations, we choose a computational
domain on which to discretize them. We decompose the 𝑑-dimensional
computational domain Ω ⊂ ℝ𝑑 into a set of blocks shaped like deformed
cubes, as illustrated in Fig. 3.1a. Blocks do not overlap, but they share
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Figure 3.1: Top: Geometry of a two-
dimensional computational domain com-
posed of four wedge-shaped blocks.
Middle: The coordinate transforma-
tion 𝝃block(𝒙)maps a block to a reference
cube in block-logical coordinates [−1, 1]2.
A block is split into elements Ω𝑘 along
its logical coordinates axes. Bottom: The
element Ω𝑘 in element-logical coordi-
nates 𝝃 = (𝜉, 𝜂)with its grid of Legendre-
Gauss-Lobatto collocation points. In this
example we chose𝑁𝑘,𝜉 = 3 and𝑁𝑘,𝜂 = 4.
Each grid point is labeled with its in-
dex (𝑝𝜉 , 𝑝𝜂). The dotted line connects
points in the order they are enumerated
in by the index 𝑝.

(a) Domain

𝝃block(𝒙)

𝒙(𝝃block) Ω𝑘

(b) Block

𝜉

𝜂
(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(c) Element Ω𝑘

boundaries. Each face of a block is either shared with precisely one other
block, or is external. For example, the domain depicted in Fig. 3.1a has
four wedge-shaped blocks. Each block 𝐵 ⊂ Ω carries a map from the
coordinates 𝒙 ∈ 𝐵, in which the elliptic equations (3.2) are formulated, to
block-logical coordinates 𝝃block ∈ [−1, 1]𝑑 representing the 𝑑-dimensional
reference cube, as illustrated in Fig. 3.1b.

Blocks decompose into elements Ω𝑘 ⊂ Ω, by recursively splitting in half
along any of their logical coordinate axes (ℎ refinement). We limit the
ℎ refinement of our computational domain such that an element shares
its boundary with at most two neighbors per dimension in every direction
(“two-to-one balance”), both within a block and across block boundaries.
Each element defines element-logical coordinates 𝝃 ∈ [−1, 1]𝑑 by an
affine transformation of the block-logical coordinates. The resulting
coordinate map to the reference cube of the element is characterized by
the Jacobian

J𝑖𝑗 =
𝜕𝑥 𝑖

𝜕𝜉 𝑗
(3.6)

with determinant J and inverse (J−1)𝑗𝑖 = 𝜕𝜉 𝑗/𝜕𝑥 𝑖 .
On the reference cube of the element we choose a regular grid of colloca-
tion points along the logical coordinate axes, as illustrated in Fig. 3.1c
(𝑝 refinement). Specifically, we choose 𝑁𝑘,𝑖 Legendre-Gauss-Lobatto
(LGL) collocation points, 𝜉𝑝𝑖 , in each dimension 𝑖, where the index
𝑝𝑖 ∈ {1, . . . , 𝑁𝑘,𝑖} identifies the grid point along dimension 𝑖. We also enu-
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merate all 𝑁𝑘 =
∏

𝑖 𝑁𝑘,𝑖 𝑑-dimensional grid points 𝝃𝑝 = (𝜉𝑝1 , . . . , 𝜉𝑝𝑑 )
in an element with a single index 𝑝 ∈ {1, . . . , 𝑁𝑘}, as illustrated in
Fig. 3.1c.

Then, fields are represented numerically by their values at the collocation
points. We denote the set of discrete field values within an element Ω𝑘

as 𝑢(𝑘) = (𝑢1 , . . . , 𝑢𝑁𝑘 ), and the collection of discrete field values over
all elements as 𝑢. The field values at the collocation points within an
element define a 𝑑-dimensional Lagrange interpolation,

𝑢(𝑘)(𝒙) B
𝑁𝑘∑
𝑝=1

𝑢𝑝𝜓𝑝(𝝃(𝒙)) with 𝒙 ∈ Ω𝑘 , (3.7)

where the basis functions 𝜓𝑝(𝝃) are products of Lagrange polynomials,

𝜓𝑝(𝝃) B
𝑑∏
𝑖=1

ℓ𝑝𝑖 (𝜉𝑖) with 𝝃 ∈ [−1, 1]𝑑. (3.8)

based on the collocation points in dimension 𝑖 of the element. Since
Eqs. (3.7) and (3.8) are local to each element, fields over the entire domain
are discontinuous across element boundaries.

Finally, we employ the strong discontinuous Galerkin scheme developed
in Ref. [1] to discretize the equations in first-order flux form, Eq. (3.2). [1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

To compute the matrix-vector product in Eq. (3.1) we first compute the
auxiliary variables 𝑣𝐴, given the primal variables 𝑢𝐴, as

𝑣𝐴 = D𝑖 · F 𝑖
𝑣𝐴 + L · ((𝑛𝑖F 𝑖

𝑣𝐴 )∗ − 𝑛𝑖F 𝑖
𝑣𝐴

) − S̃𝑣𝐴 , (3.9a)

where we assume the auxiliary sources can be written in the form
S𝑣𝐴 = 𝑣𝐴 + S̃𝑣𝐴 [𝑢𝐴; 𝒙] such that Eq. (3.9a) depends only on the primal
variables. We also assume 𝑓𝑣𝐴 = 0 for convenience. All elliptic equations
that we consider in this article fulfill these assumptions. In a second
step, we use the computed auxiliary variables 𝑣𝐴, as well as the primal
variables 𝑢𝐴, to compute the DG residuals

−MD𝑖 · F 𝑖
𝑢𝐴 −ML · ((𝑛𝑖F 𝑖

𝑢𝐴 )∗ − 𝑛𝑖F 𝑖
𝑢𝐴

) +M · S𝑢𝐴 = M · 𝑓𝑢𝐴 . (3.9b)

The operation · in Eq. (3.9) denotes a matrix multiplication with the field
values over the computational grid of an element. We make use of the
mass matrix

M𝑝𝑞 =
∫
[−1,1]𝑑

𝜓𝑝(𝝃)𝜓𝑞(𝝃)√𝑔 J d𝑑𝜉 , (3.10)

the stiffness matrix

MD𝑖 ,𝑝𝑞 =
∫
[−1,1]𝑑

𝜓𝑝(𝝃)
𝜕𝜓𝑞

𝜕𝜉 𝑗
(𝝃) (J−1)𝑗𝑖

√
𝑔 J d𝑑𝜉 , (3.11)

and the lifting operator

ML𝑝𝑞 =
∫
[−1,1]𝑑−1

𝜓𝑝(𝝃)𝜓𝑞(𝝃)
√
𝑔Σ JΣ d𝑑−1𝜉 (3.12)

on the element Ω𝑘 , as well as the associated "massless" operators
D𝑖 B M−1MD𝑖 and L B M−1ML. Here, √𝑔 denotes the determinant

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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of the metric on which the elliptic equations are formulated, such as
the conformal metric 𝛾̄𝑖 𝑗 in the XCTS equations (3.4). The integral in
Eq. (3.12) is over the boundary of the element, 𝜕Ω𝑘 , where 𝑛𝑖 is the
outward-pointing unit normal one-form, 𝑔Σ is the surface metric deter-
minant induced by the background metric, and JΣ is the determinant of
the surface Jacobian.

The quantities (𝑛𝑖F 𝑖
𝑣𝐴 )∗ and (𝑛𝑖F 𝑖

𝑢𝐴 )∗ in Eq. (3.9) denote a numerical flux
that couples grid points across nearest-neighbor element boundaries. We
employ the generalized internal-penalty numerical flux developed in
Ref. [1],[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis. (𝑛𝑖F 𝑖

𝑣𝐴 )∗ =
1
2

[
𝑛int
𝑖 F 𝑖

𝑣𝐴 (𝑢int
𝐴 ) − 𝑛ext

𝑖 F 𝑖
𝑣𝐴 (𝑢ext

𝐴 )
]
, (3.13a)

(𝑛𝑖F 𝑖
𝑢𝐴 )∗ =

1
2

[
𝑛int
𝑖 F 𝑖

𝑢𝐴

(
𝜕𝑗F 𝑗

𝑣𝐴 (𝑢int
𝐴 ) − S̃𝑣𝐴 (𝑢int

𝐴 )
)

− 𝑛ext
𝑖 F 𝑖

𝑢𝐴

(
𝜕𝑗F 𝑗

𝑣𝐴 (𝑢ext
𝐴 ) − S̃𝑣𝐴 (𝑢ext

𝐴 )
) ]

−𝜎
[
𝑛int
𝑖 F 𝑖

𝑢𝐴

(
𝑛int
𝑗 F 𝑗

𝑣𝐴 (𝑢int
𝐴 )

)
− 𝑛ext

𝑖 F 𝑖
𝑢𝐴

(
𝑛ext
𝑗 F 𝑗

𝑣𝐴 (𝑢ext
𝐴 )

) ]
(3.13b)

with the penalty function

𝜎 = 𝐶

(
max(𝑝int , 𝑝ext) + 1

)2

min(ℎint , ℎext) . (3.14)

Here, 𝑢int
𝐴 denotes the primal variables on the interior side of an element’s

shared boundary with a neighbor, and 𝑢ext
𝐴 denotes the primal variables

on the neighbor’s side, i.e., the exterior. Note that 𝑛ext
𝑖 = −𝑛int

𝑖 for the
purpose of this article, since we only consider equations formulated
on a fixed background metric, but the scheme does not rely on this
assumption. For Eq. (3.14) we also make use of the polynomial degree 𝑝,
and a measure of the element size, ℎ, orthogonal to the element boundary
on either side of the interface, as detailed in Ref. [1].

We impose boundary conditions through fluxes, i.e., by a choice of
exterior quantities in the numerical flux, Eq. (3.13). Specifically, on
external boundaries we set

(𝑛𝑖F 𝑖
𝛼 )ext = (𝑛𝑖F 𝑖

𝛼 )int − 2(𝑛𝑖F 𝑖
𝛼 )b, (3.15)

where we choose the boundary fluxes (𝑛𝑖F 𝑖
𝛼 )b depending on the bound-

ary conditions we intend to impose. For Neumann-type boundary con-
ditions we choose the primal boundary fluxes (𝑛𝑖F 𝑖

𝑢𝐴 )b directly, e.g.,
(𝑛𝑖F 𝑖

𝜑 )b = 𝑛𝑖𝜕𝑖𝜑 |b for the Maxwell constraint (3.1), and set the aux-
iliary boundary fluxes to their interior values, (𝑛𝑖F 𝑖

𝑣𝐴 )b = (𝑛𝑖F 𝑖
𝑣𝐴 )int.

For Dirichlet-type boundary conditions we choose the primal bound-
ary fields 𝑢b

𝐴, e.g., 𝜑 |b for the Maxwell constraint (3.1), to compute the
auxiliary boundary fluxes (𝑛𝑖F 𝑖

𝑣𝐴 )b = 𝑛b
𝑖 F 𝑖

𝑣𝐴 (𝑢b
𝐴), and set the primal

boundary fluxes to their interior values, (𝑛𝑖F 𝑖
𝑢𝐴 )b = (𝑛𝑖F 𝑖

𝑢𝐴 )int.

In summary, the DG residuals (3.9) are algebraic equations for the
discrete primal field values 𝑢𝐴 on all elements and grid points in the
computational domain. For linear PDEs, the left-hand side of Eq. (3.9b)
defines a matrix-vector product with a set of primal field values on the

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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computational domain. The right-hand side of Eq. (3.9b) is a set of fixed
values on the computational domain. Therefore, Eq. (3.9b) has the form
of Eq. (3.1).

3.3 Task-based iterative algorithms

Once the elliptic problem is discretized, it is the responsibility of the
elliptic solver to invert the matrix equation (3.1) numerically, in order
to obtain the solution vector 𝑢 over the computational grid. For large
problems on high-resolution grids it is typically unfeasible to invert
the matrix A in Eq. (3.1) directly, or even to explicitly construct and
store it.2 Instead, we employ iterative algorithms that require only the 2: The KADATH [133] code explicitly con-

structs, stores and inverts the matrix A,
which it obtains by a spectral discretiza-
tion, by distributing its columns over the
available cores. Papenfort et al. [89] and
Grandclément [133] quote the high mem-
ory demand of storing the explicit matrix
and list iterative approaches to solve the
linear system as a possible resolution.
Such iterative approaches, and their par-
allelization, are the main focus of this
article.
[89]: Papenfort et al. (2021), New public
code for initial data of unequal-mass, spin-
ning compact-object binaries
[133]: Grandclément (2010), KADATH: A
spectral solver for theoretical physics

matrix-vector product A𝑢 be defined, and that parallelize to computing
clusters.

The discontinuous Galerkin (DG) matrix-vector product A𝑢 is well suited
for parallelization. As Section 3.2 summarized, it decomposes into a set of
operations local to the elements that make up the computational domain.
Figure 3.2 illustrates a computational domain composed of elements,
as well as the dependence of the elements on each other for computing
the matrix-vector product. The matrix-vector product requires only data
local to each element and on both sides of the boundary that the element
shares with its nearest neighbors. Therefore, it can be computed in
parallel, and requires only a single communication between each pair of
nearest-neighbor elements to exchange data on their shared boundary.
The matrix-vector product acts as a “soft” global synchronization point,
meaning that it requires all elements have sent data to their neighbors
before all elements can proceed with the algorithm, but individual
elements can already proceed once they receive data from their nearest
neighbors.

The decomposition of the domain into elements also admits a strategy
to distribute computation across the processors of the computer system.
We distribute elements among the available cores in a way that, ideally,
minimizes the number of internode communications and assigns an
equal amount of work to each core. In this article we employ a Morton
(“z-order”) space-filling curve [194] to traverse the elements within a [194]: Sagan (1994), Space-Filling Curves

Ω1 Ω2

Ω3 Ω4

(a) Domain

Ω1 Ω3Ω2

A𝑢

(b) Tasks

Figure 3.2: Parallelization structure of
the matrix-vector product A𝑢. Top: De-
composition of a two-dimensional rect-
angular domain into four elements. Ar-
rows illustrate the dependence between
nearest-neighbor elements to compute
the matrix-vector product A𝑢. Bottom:
Tasks involved to compute the matrix-
vector product A𝑢. Each element per-
forms a task that prepares and sends
data to its neighbors (upper half of the
rectangle), and another that receives data
from its neighbors and performs the com-
putation (lower half of the rectangle). The
arrows between elements are the same
as in the top panel.

https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1016/j.jcp.2010.01.005
https://doi.org/10.1016/j.jcp.2010.01.005
https://doi.org/10.1007/978-1-4612-0871-6
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Figure 3.3: Overview of the technology
stack we employ to solve the discretized
elliptic problem (3.1). All algorithms
above the dotted line follow SpECTRE’s
task-based parallelism paradigm. The
algorithms below the dotted line run
within a task, and on all elements inde-
pendently.

Newton-Raphson
nonlinear solver

(Section 3.3.1)

Krylov-subspace
linear solver

(Section 3.3.2)

Multigrid
preconditioner

(Section 3.3.3)

Schwarz
smoother

(Section 3.3.4)

Krylov-subspace
subdomain solver

(Section 3.3.5)

Laplacian approx.
preconditioner

(Section 3.3.5.1)

Explicit inverse
(incomplete LU)

(Section 3.3.5.2)

Task-based
parallel

Per-element
& independent

block of the computational domain and fill up the available cores. We
weight the elements by their number of grid points to approximately
balance the amount of work assigned to each core. With this strategy,
neighboring elements tend to lie on the same node, though more effective
element-distribution and load-balancing strategies based on, for example,
Hilbert space-filling curves [195] are a subject of future work.[195]: Borrell et al. (2018), Parallel mesh

partitioning based on space filling curves
Once elements have been assigned to the available cores, each element
traverses the list of tasks in the algorithm. When it encounters a task
whose dependencies are not yet fulfilled, e.g., when neighbors have not
yet sent the data on shared boundaries needed for the DG matrix-vector
product, the element relinquishes control of the core to another whose
dependencies are fulfilled. Reference [142] describes SpECTRE’s task-based[142]: Kidder et al. (2017), SpECTRE: A

Task-based Discontinuous Galerkin Code for
Relativistic Astrophysics

parallel runtime system based on the Charm++ [141] framework in more

[141]: The Charm++ Parallel Program-
ming System, https : / / charm . cs .

illinois.edu

detail.

Figure 3.3 provides an overview of the algorithms that we employ
to iteratively solve the discretized elliptic problem (3.1), with details
given in subsequent sections: nonlinear equations are linearized with a
Newton-Raphson scheme with a line-search globalization (Section 3.3.1).
The resulting linear subproblems are solved with an iterative Krylov-
subspace method (Section 3.3.2), preconditioned with a multigrid solver

https://doi.org/10.1016/j.compfluid.2018.01.040
https://doi.org/10.1016/j.compfluid.2018.01.040
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://charm.cs.illinois.edu
https://charm.cs.illinois.edu
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NewtonRaphson
Repeat on all elements:

Linear solve for Δ𝑢

A(𝑢 + 𝜆Δ𝑢)

Local residual

Global residual

Line search

Adjust 𝜆

Figure 3.4: Parallelization structure of
the task-based Newton-Raphson nonlin-
ear solver (Section 3.3.1).

(Section 3.3.3). On every level of the multigrid hierarchy we run a few
iterations of an additive Schwarz smoother, which solves the problem ap-
proximately on independent, overlapping, element-centered subdomains
(Section 3.3.4). Each subdomain problem is solved by another Krylov-type
method, which carries a Laplacian-approximation preconditioner with
an incomplete LU explicit-inversion scheme to accelerate the solve (Sec-
tion 3.3.5). All algorithms are implemented in the open-source SpECTRE
code and take advantage of its task-based parallel infrastructure [10,
142]. [10]: SpECTRE, spectre-code.org

[142]: Kidder et al. (2017), SpECTRE: A
Task-based Discontinuous Galerkin Code for
Relativistic Astrophysics

3.3.1 Newton-Raphson nonlinear solver

The Newton-Raphson scheme iteratively refines an initial guess 𝑢0 for
a nonlinear problem A(𝑢) = 𝑏 by repeatedly solving the linearized
problem

𝛿A
𝛿𝑢
(𝑢)Δ𝑢 = 𝑏 −A(𝑢) (3.16)

for the correction Δ𝑢, and then updating the solution as 𝑢 → 𝑢+Δ𝑢 [124,
196]. [124]: Press et al. (2007), Numerical Recipes

[196]: Dennis and Schnabel (1996), Nu-
merical Methods for Unconstrained Opti-
mization and Nonlinear Equations

The Newton-Raphson method converges quadratically once it reaches a
basin of attraction, but can fail to converge when the initial guess is too
far from the solution. We employ a line-search globalization strategy to
recover convergence in such cases, following Alg. 6.1.3 in Dennis and
Schnabel [196]. It iteratively reduces the step length 𝜆 until the corrected
residual ∥𝑏 −A(𝑢 + 𝜆Δ𝑢)∥2 has sufficiently decreased, meaning it has
decreased by a fraction of the predicted decrease if the problem was
linear. This fraction is the sufficient-decrease parameter controlling the
line search. The line search typically starts at 𝜆 = 1 in every Newton-
Raphson iteration, but the initial step length can be decreased to dampen
the nonlinear solver. Although the line-search globalization has proven
effective for the cases we have encountered so far, alternative globalization
strategies such as a trust-region method or more sophisticated nonlinear
preconditioning techniques can be investigated in the future.3 3: See, e.g., Brune et al. [197] for an

overview of nonlinear precondition-
ing techniques in the context of the
PETSc [136] library.
[136]: PETSc, https://www.mcs.anl.
gov/petsc

[197]: Brune et al. (2015), Composing Scal-
able Nonlinear Algebraic Solvers

Figure 3.4 illustrates our task-based implementation of the Newton-
Raphson algorithm. The sufficient-decrease condition, and the necessity
to check the global residual magnitude against convergence criteria,

https://spectre-code.org
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://www.cambridge.org/de/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1137/1.9781611971200
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1137/130936725
https://doi.org/10.1137/130936725
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Figure 3.5: Parallelization structure of
the task-based GMRES Krylov-subspace
linear solver (Section 3.3.2).

Gmres
Repeat on all elements:

Precondition 𝑧

A𝑧

Local inner product

Global inner product

Orthogonalize

Update 𝑢

𝑘 times

introduce a synchronization point in the form of a global reduction to
assemble the residual magnitude ∥𝑏 − A(𝑢 + 𝜆Δ𝑢)∥2. The algorithm
requires one nonlinear operator application A(𝑢 + 𝜆Δ𝑢) per iteration,
plus one additional nonlinear operator application for every globaliza-
tion step that reduces the step length. Since a typical nonlinear elliptic
solve requires ≲ 10 Newton-Raphson iterations, the parallelization prop-
erties of this algorithm are not particularly important for the overall
performance.

Exactly once per iteration the Newton-Raphson algorithm dispatches a
linear solve of Eq. (3.16) for the correction Δ𝑢. This iterative linear-solver
algorithm is the subject of the following section.

3.3.2 Krylov-subspace linear solver

We solve the linearized problem (3.16) with an iterative Krylov-subspace
algorithm. We generally employ a GMRES algorithm, but have also
developed a conjugate gradients algorithm for discretized problems that
are symmetric positive definite [127, 135]. These algorithms solve a linear[127]: Saad (2003), Iterative Methods for

Sparse Linear Systems
[135]: Saad and Schultz (1986), GMRES:
A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems

problem A𝑢 = 𝑏 iteratively by building up a basis of the Krylov subspace
K𝑘 = span

{
𝑏,A𝑏,A2𝑏, . . . ,A𝑘−1𝑏

}
. Krylov-subspace algorithms are

guaranteed to find a solution in at most 𝑁DOF iterations, where 𝑁DOF is
the size of the matrix A.

Figure 3.5 illustrates our task-based GMRES algorithm, which is based
on Alg. 9.6 in Saad [127]. It requires one application of the linear opera-
tor A per iteration. Then, the algorithm is characterized by an Arnoldi
orthogonalization procedure to construct a new basis vector 𝑧 of the
Krylov subspace that is orthogonal to all previously constructed basis
vectors. The orthogonalization procedure requires a global reduction
to assemble the inner product of the new basis vector with every ex-
isting basis vector, meaning the GMRES algorithm needs to perform
𝑘 reductions in the 𝑘th iteration. Every reduction constitutes a global
synchronization point, since it requires that all elements send data to a
single core on the computer system and wait for a broadcast from that
core back to all elements. A conjugate gradients algorithm also requires a

https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
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global reduction per iteration, but avoids the additional reductions from
the orthogonalization procedure.

Due to the global synchronization points involved in every iteration of
the Krylov-subspace solver, it is essential to keep the number of iterations
to a minimum in order to achieve good parallel performance. To this
end, we invoke a preconditioner in every iteration of the Krylov-subspace
algorithm and place particular focus on its parallelization properties.
The preconditioner is responsible for solving the linear problem approxi-
mately to accelerate the convergence of the Krylov-subspace algorithm.4 4: See, e.g., Saad [127] for an introduction

to iterative linear solvers and precondi-
tioning techniques.

Effective parallel preconditioning techniques for our DG-discretized
elliptic problems are the main focus of this article. Since we employ the
flexible variant of the GMRES algorithm, the preconditioner may change
between iterations [127]. While the flexible GMRES algorithm with a
variable preconditioner is not mathematically guaranteed to converge
in at most 𝑁DOF iterations anymore, in practice, it converges in much
fewer than 𝑁DOF iterations (see test problems in Section 3.4, in particular
Figs. 3.12 and 3.15).5 5: See also Sec. 9.4.1 in Saad [127] for a

discussion of the flexible GMRES algo-
rithm.Typically, the number of iterations needed by an unpreconditioned

Krylov-subspace algorithm increases with the size of the problem. The
convergence behavior is often connected to the condition number of the
linear operator,

𝜅 =
𝜆max
𝜆min

, (3.17)

where 𝜆max and 𝜆min denote the largest and smallest eigenvalue of the
matrix, respectively. However, note that rigorous convergence bounds for
the GMRES algorithm in terms of the condition number exist only when
the matrix is normal [127]. Nevertheless, the condition number can provide
an indication for the expected rate of convergence. For the discontinuous
Galerkin discretization we employ in this article, the condition number
scales as 𝜅 ∝ 𝑝2/ℎ, where 𝑝 denotes a typical polynomial degree of the
elements and ℎ denotes a typical element size [1, 8, 126, 162]. This scaling [1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.
[8]: Vincent, Pfeiffer, and Fischer (2019),
hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity
[126]: Hesthaven and Warburton (2008),
Nodal Discontinuous Galerkin Methods
[162]: Shahbazi (2005), An explicit expres-
sion for the penalty parameter of the interior
penalty method

is related to the decrease of the minimum spacing between Legendre-
Gauss-Lobatto collocation points, which scales quadratically with 𝑝 near
element boundaries and linearly with the element size.

More specifically, Krylov-subspace methods struggle to solve large-scale
modes in the solution. The algorithm solves modes on the scale of the grid-
point spacing or the size of elements in just a few iterations, but it needs
a lot more iterations to solve modes spanning the full domain. Such large-
scale modes carry, for example, information from boundary conditions
that must traverse the entire domain. The test problem presented in
Fig. 3.11 below illustrates this effect. Therefore, we precondition the
Krylov-subspace solver with a multigrid algorithm that uses information
from coarser grids, where the large-scale modes from finer grids become
small scale.

3.3.3 Multigrid preconditioner

We employ a geometric V-cycle multigrid algorithm, as prototyped
in Ref. [8]

[8]: Vincent, Pfeiffer, and Fischer (2019),
hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity

.6 Our multigrid solver can be used standalone, or to precondi- 6: See, e.g., Briggs, Henson, and Mc-
Cormick [198] for an introduction to
multigrid methods.
[198]: Briggs, Henson, and McCormick
(2000), A Multigrid Tutorial

tion a Krylov-type linear solver as described in Section 3.3.2 (“Krylov-
accelerated multigrid”).

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1016/j.jcp.2004.11.017
https://doi.org/10.1016/j.jcp.2004.11.017
https://doi.org/10.1016/j.jcp.2004.11.017
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https://doi.org/10.1137/1.9780898719505
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Figure 3.6: Multigrid hierarchy based
on the domain depicted in Fig. 3.1a.

𝑙 = 0 𝑙 = 1 𝑙 = 2

Grid hierarchy

The geometric multigrid algorithm relies on a strategy to coarsen the
computational grid. We primarily ℎ-coarsen the domain, meaning that
we create multigrid levels 𝑙 > 0 by successively combining two elements
into one along every dimension of the grid, as illustrated in Fig. 3.6. We
only 𝑝-coarsen the grid in the sense that we choose the smaller of the
two polynomial degrees when combining elements along an axis. This
strategy follows Ref. [8] and ensures that coarse-grid field approximations[8]: Vincent, Pfeiffer, and Fischer (2019),

hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity

always have an exact polynomial representation on finer grids.

The coarsest possible grid that our domain decomposition can achieve
has a single element per block that make up the domain. For example,
the two-dimensional shell depicted in Fig. 3.6 has four wedge-shaped
blocks, each of which is a deformed cube. Our multigrid algorithm works
best when the domain is composed of as few blocks as possible.

Intermesh operators

To project data between grids we use the standard 𝐿2-projections (or
Galerkin projections) detailed in Ref. [1].7 Fields on coarser grids are[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.
7: See also Fortunato, Rycroft, and
Saye [158] for details on the intermesh
operators.
[158]: Fortunato, Rycroft, and Saye (2019),
Efficient Operator-Coarsening Multigrid
Schemes for Local Discontinuous Galerkin
Methods

projected to finer grids with the prolongation operator

P 𝑙+1→𝑙
𝑝̃𝑝 =

𝑑∏
𝑖=1

ℓ𝑝𝑖 (𝜉̃𝑝̃𝑖 ), (3.18)

where 𝑝 enumerates grid points on the coarser grid, 𝑝̃ enumerates grid
points on the finer grid, and 𝜉̃𝑝̃𝑖 are the coarse-grid logical coordinates
of the fine-grid collocation points. For fine-grid (child) elements that
cover the full coarse-grid (parent) element in dimension 𝑖 the coarse-grid
logical coordinates are just the fine-grid collocation points, 𝜉̃𝑝̃𝑖 = 𝜉𝑝̃𝑖 . For
child elements that cover the lower or upper logical half of the parent
element in dimension 𝑖 they are 𝜉̃𝑝̃𝑖 = (𝜉𝑝̃𝑖 − 1)/2 or 𝜉̃𝑝̃𝑖 = (𝜉𝑝̃𝑖 + 1)/2,
respectively. Note that the prolongation operator (3.18) is just a Lagrange
interpolation from the coarser to the finer grid. The interpolation retains
the accuracy of the polynomial approximation because the finer grid
always has sufficient resolution.

To project data from finer to coarser grids we employ the restriction
operator

R 𝑙→𝑙+1 = (P 𝑙+1→𝑙)𝑇 , (3.19)

which is the transpose of the prolongation operator (3.18). Contrary to
the restriction operator listed in Ref. [1] the multigrid restriction involves
no mass matrices because it applies to DG residuals, Eq. (3.9b), which
already include mass matrices.

https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
https://doi.org/10.1137/18M1206357
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Repeat on fine-grid elements:

Receive residual

Presmoother

Send residual

Receive correction

Postsmoother

Send correction

Repeat on coarse-grid elements:

Receive residual

Presmoother

Send residual

Receive correction

Postsmoother

Send correction

Skipped on finest grid

Skipped
on

coarsestgrid

Multigrid

Figure 3.7: Parallelization structure of the task-based multigrid algorithm (Section 3.3.3). Elements on all grids perform the same set of
tasks, with some tasks skipped on the finest grid and other tasks skipped on the coarsest grid.

Algorithm

Figure 3.7 illustrates our task-based implementation of the multigrid
V-cycle algorithm to solve linear problems A𝑢 = 𝑏. On every grid 𝑙 we
approximately solve the linear problem

A𝑙 𝑢(𝑙) = 𝑏(𝑙), (3.20)

where the operator A𝑙 is the discretization of the elliptic PDEs on the
grid 𝑙. At the beginning of a V-cycle, on the finest grid 𝑙 = 0, we select
𝑢(0) = 𝑢 and 𝑏(0) = 𝑏; hence, approximately solving the original linear
problem (“presmoothing”). Then, the remaining residual

𝑟(𝑙) = 𝑏(𝑙) −A𝑙 𝑢(𝑙) (3.21)

is restricted to source the linear problem (3.20) on the next-coarser grid,

𝑏(𝑙+1) = R 𝑙→𝑙+1 𝑟(𝑙). (3.22)

Once presmoothing is complete on the coarsest grid (the “tip” of the
V-cycle), we approximately solve Eq. (3.20) again (“postsmoothing”). The
solution of the postsmoothing step is prolongated to the next-finer grid
as a correction,

𝑢(𝑙) ← 𝑢(𝑙) + P 𝑙+1→𝑙 𝑢(𝑙+1). (3.23)

Prolongation, correction, and postsmoothing proceed until we have
returned to the finest grid, where the correction and postsmoothing
apply to the original linear problem. Our choice of presmoother and
postsmoother to approximately solve Eq. (3.20) is detailed in Section 3.3.4
below. Note that on the coarsest level we apply both presmoothing and
postsmoothing.

The restriction of residuals to the next-coarser grid and the prolongation
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of corrections to the next-finer grid incur soft synchronization points.
Specifically, only once all elements on the finer grid have restricted
their residuals to the coarser grid can all elements on the coarser grid
proceed, though individual coarse-grid (parent) elements can already
proceed once only their corresponding fine-grid (child) elements have
sent the restricted residuals. The same applies to the prolongation of
corrections from the parent elements back to their children. Therefore,
parent elements on coarser grids ideally follow their children when
distributed among the available cores, initially and at load-balancing
operations.

In contrast to Krylov-subspace algorithms, the multigrid algorithm
involves no global synchronization points. In particular, for diagnostic
output we perform a reduction to compute the global residual norm
∥𝑟(𝑙)∥ on every grid, but do so asynchronously in order to avoid a
synchronization that is not algorithmically necessary. Therefore, we
do not use the global residual norm as a convergence criterion for the
multigrid solver. Instead, we run a fixed number of multigrid V-cycles,
and typically only a single one to precondition a Krylov-subspace solver.

3.3.4 Schwarz smoother

On every level of the grid hierarchy the multigrid solver relies on a
smoother that approximately solves Eq. (3.20). In principle, the smoother
can be any linear solver, including a Krylov-subspace solver as detailed
in Section 3.3.2. However, to achieve good parallel performance we have
developed a highly asynchronous additive Schwarz smoother [8, 199,
200], that we employ for presmoothing and postsmoothing on every level[8]: Vincent, Pfeiffer, and Fischer (2019),

hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity
[199]: Lottes and Fischer (2005), Hybrid
Multigrid/Schwarz Algorithms for the Spec-
tral Element Method
[200]: Stiller (2016), Robust multigrid for
high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect
ratio Cartesian grids

of the multigrid hierarchy. Note that we also apply it on the coarsest
grid, where some authors apply a dedicated bottom smoother instead [201,
202]. Since our coarsest grids are rarely reduced to a single element

[201]: AlOnazi, Markomanolis, and
Keyes (2017), Asynchronous Task-Based
Parallelization of Algebraic Multigrid
[202]: Kang (2015), Scalable implementa-
tion of the parallel multigrid method on mas-
sively parallel computers

(see Section 3.3.3), we have, so far, preferred the asynchronous Schwarz
smoother over direct bottom smoothers. Our Schwarz smoother can be
used standalone, as a preconditioner for a Krylov-type linear solver, or
as a smoother for the multigrid solver (which may, in turn, precondition
a Krylov-type solver).

The additive Schwarz method works by solving many subproblems in
parallel and combining their solutions as a weighted sum to converge
towards the global solution. The decomposition into independent sub-
problems makes this linear solver very parallelizable. The Schwarz solver
is based on our prototype in Ref. [8], with variations to the subdomain
geometry and weighting to take better advantage of our task-based
parallelism, and with novel subdomain preconditioning techniques.

Subdomain geometry

We partition the computational domain into overlapping, element-
centered subdomains 𝑆𝑘 ⊂ Ω, which have a one-to-one association
with the DG elements Ω𝑘 . Each subdomain 𝑆𝑘 is centered on the DG
element Ω𝑘 . It extends by 𝑁overlap collocation points into neighboring
elements across every face of Ω𝑘 , up to, but excluding, the collocation

https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1145/3093172.3093230
https://doi.org/10.1145/3093172.3093230
https://doi.org/10.1016/j.camwa.2015.07.023
https://doi.org/10.1016/j.camwa.2015.07.023
https://doi.org/10.1016/j.camwa.2015.07.023
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Ω𝑘

𝑆𝑘
Figure 3.8: An element-centered sub-
domain 𝑆𝑘 with 𝑁overlap = 2 (dashed
line) associated with the element Ω𝑘 in a
two-dimensional computational domain.
The domain is composed of elements
(black rectangles) with their mesh of
grid points (black dots) and depicted
here in block-logical coordinates. The
diagonally-shaded region to the left il-
lustrates an external domain boundary.
The light gray lines between neighboring
element faces illustrate mortar meshes,
which are relevant for the subdomain
operator in a DG context but play no role
in the Schwarz algorithm [1]. Note that
the empty space between the elements
in this visualization is not part of the
computational domain.

points on the face of the neighbor pointing away from the subdomain.
Fig. 3.8 illustrates the geometry of our element-centered subdomains.

The subdomain does not extend into corner or edge neighbors, which
is a choice different to both Ref. [200] and Ref. [8]. We avoid diagonal [200]: Stiller (2016), Robust multigrid for

high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect
ratio Cartesian grids
[8]: Vincent, Pfeiffer, and Fischer (2019),
hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity

couplings because in a DG context information only propagates across
faces, as already noted in Ref. [200]. Elimination of the corner and
edge neighbors reduces the complexity of the subdomain geometry, the
number of communications necessary to exchange data between elements
in the subdomain, and hence the connectivity of the dependency graph
between tasks. This element-centered subdomain geometry based solely
on face neighbors has proven viable for the test problems presented
below, and for our task-based parallel architecture.

The one-to-one association between elements and subdomains allows
to store all quantities that define the subdomain geometry local to the
central element, i.e., on the same core. The same applies to all data on
the grid points of the subdomain. Therefore, operations local to the
subdomain require no communication, but communication between
overlapping elements is necessary to assemble data on the subdomains,
and to make data on subdomains available to overlapped elements.

Subdomain restriction

To restrict quantities defined on the full computational domain Ω to a
subdomain 𝑆 ⊂ Ω the Schwarz solver employs a restriction operator R𝑆.
Since our subdomains are subsets of the grid points in the full compu-
tational domain, our restriction operator simply discards all nodal data
on grid points outside the subdomain. Similarly, the transpose of the
restriction operator, R𝑇𝑆 , extends subdomain data with zeros on all grid
points outside the subdomain.8 8: See also Sec. 3.1 in Stiller [200] for

details on the subdomain restriction op-
eration.
[200]: Stiller (2016), Robust multigrid for
high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect
ratio Cartesian grids

The Schwarz solver also relies on a restriction of the global linear operator
A to the subdomains. The subdomain operator A𝑆 on a subdomain 𝑆
is formally defined as A𝑆 = R𝑆AR𝑇𝑆 . In practice, it evaluates the same
DG matrix-vector product as the full operator A, i.e., the left-hand side
of Eq. (3.9b), but assumes that all data outside the subdomain is zero.

https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1016/j.jcp.2016.09.041
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Figure 3.9: The one-dimensional weight
function 𝑤(𝜉) for the Schwarz solver. De-
picted is an element-centered subdomain
in one dimension with 𝑁overlap = 2. Ev-
ery element has 𝑁𝑘 = 6 LGL collocation
points, which includes grid points on
the shared element boundaries (black
vertical lines). The overlap width 𝛿 is the
logical coordinate distance to the first
point outside the subdomain, where the
weight becomes zero.

−3 −2 −1 0 1 2 3

Subdomain-logical coordinate ξ(S)

0

1

central elementleft neighbor right neighbor

subdomain

δ w(ξ)

It performs all interelement operations of the full DG operator, but
computes them entirely with data local to the subdomain. Therefore,
it requires no communication between cores, as opposed to the global
linear operatorA that must communicate data between nearest neighbors
for every operator application.

Subdomain problems

On every subdomain 𝑆 we solve the restricted problem

A𝑆 Δ𝑢(𝑆) = 𝑟(𝑆) (3.24)

for the subdomain correction Δ𝑢(𝑆). Here, A𝑆 is the subdomain operator
and 𝑟(𝑆) = R𝑆 𝑟 is the global residual 𝑟 = 𝑏 − A𝑢 restricted to the
subdomain.

The subdomain problems (3.24) are solved by means of a subdomain
solver, detailed in Section 3.3.5. The choice of subdomain solver affects
only the performance of the Schwarz algorithm, not its convergence
or parallelization properties, assuming the solutions to the subdomain
problems (3.24) are sufficiently precise.

Weighting

Once we have obtained the subdomain correction Δ𝑢(𝑆) on every subdo-
main 𝑆, we combine them as a weighted sum to correct the solution,

𝑢 ← 𝑢 +∑
𝑆

R𝑇𝑆
(
𝑤(𝑆) Δ𝑢(𝑆)

)
, (3.25)

where 𝑤(𝑆) is a weight at every grid point of the subdomain. This is
the additive approach of the algorithm, which has the advantage over
multiplicative Schwarz methods that all subdomain problems decouple
and can be solved in parallel.9 The weighted sum, Eq. (3.25), is never9: See also Sec. 3.1 in Stiller [200] for

details on multiplicative variants of
Schwarz algorithms.
[200]: Stiller (2016), Robust multigrid for
high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect
ratio Cartesian grids

assembled globally. Instead, every element adds the contribution from
its locally centered subdomain and from all overlapping subdomains to
the components of 𝑢 that resides on the element.

https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
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The weights 𝑤(𝑆) represent a scalar field on every subdomain, which
must be conserved as ∑

𝑆
R𝑇𝑆 𝑤

(𝑆) = 1. (3.26)

We follow Refs. [8, 200] in constructing the weights as quintic smoothstep [8]: Vincent, Pfeiffer, and Fischer (2019),
hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity
[200]: Stiller (2016), Robust multigrid for
high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect
ratio Cartesian grids

polynomials, but must account for the missing weight from corner and
edge neighbors. Specifically, we compute

𝑤(𝑆)𝑝 =𝑊(𝝃(𝑆)𝑝 ) (3.27)

by evaluating the scalar weight function𝑊(𝝃) at the logical coordinates
𝝃(𝑆)𝑝 of the grid points in the subdomain. These subdomain-logical
coordinates coincide with the element-logical coordinates of the central
element, and extend outside the central element such that 𝜉(𝑆) = ±3
coincides with the sides of the overlapped neighbors that face away from
the subdomain (see abscissa of Fig. 3.9). The scalar weight function

𝑊(𝝃) =
𝑑∏
𝑖=0

𝑤(𝜉𝑖) (3.28)

is a product of one-dimensional weight functions,

𝑤(𝜉) = 1
2

(
𝜙

(
𝜉 + 1
𝛿

)
− 𝜙

(
𝜉 − 1
𝛿

))
(3.29)

with 𝜙(𝜉) =
{

1
8
(
15𝜉 − 10𝜉3 + 3𝜉5) 𝜉 ∈ [−1, 1]

sign(𝜉) |𝜉| > 1,
(3.30)

where 𝜙(𝜉) is a second-order smoothstep function, i.e., a quintic polyno-
mial, and 𝛿 ∈ (0, 2] is the overlap width. The overlap width is the logical
coordinate distance from the boundary of the central element to the first
collocation point outside the overlap region (see Fig. 3.9). With this defini-
tion the overlap width is nonzero even when the overlap extends only
to a single LGL point in the neighbor, which coincides with the element
boundary. Furthermore, the weight is always zero at subdomain-logical
coordinates 𝜉(𝑆) = ±3, even for 𝛿 = 2 when the overlap region covers the
full neighbor in width. This is the reason we never include the collocation
points on the side of the neighbor facing away from the subdomain (see
Section 3.3.4). Figure 3.9 illustrates the shape of the weight function.

To account for the missing weight from corner and edge neighbors,
we could add it to the central element, to the overlap data from face
neighbors, or split it between the two. We choose to add it to the face
neighbors that share a corner or edge, since in a DG context that is where
the information from those regions propagates through.

Algorithm

Fig. 3.10 illustrates our task-based implementation of the additive Schwarz
solver. In each iteration, the algorithm computes the residual 𝑟 = 𝑏 −
A𝑢, restricts it to all subdomains as 𝑟(𝑆) = R𝑆 𝑟, and exchanges it on
overlap regions with neighboring elements. Once an element has received
all residual data on its subdomain, it solves the subdomain problem,
Eq. (3.24), for the correction Δ𝑢(𝑆). Since all elements perform such

https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
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Figure 3.10: Parallelization structure of
the task-based Schwarz smoother (Sec-
tion 3.3.4).

Schwarz
Repeat on all elements:

A𝑢

Overlap residuals

Solve subdomains

Overlap solutions

Weighting

a subdomain solve, we end up with a subdomain solution Δ𝑢(𝑆) on
every element-centered subdomain, and the solutions overlap. Therefore,
the algorithm exchanges the subdomain solutions on overlap regions
with neighboring elements and adds them to the solution field 𝑢 as the
weighted sum, Eq. (3.25).

In order to compute the residual 𝑟 that is restricted to the subdomains
to serve as source for the subdomain solves, we must apply the global
linear operator A to the solution field 𝑢 once per Schwarz iteration. This
operator application, as well as the steps to communicate the residuals
and the solutions on overlaps, incur soft synchronization points through
nearest-neighbor couplings. However, once the residuals on overlaps are
communicated, all subdomain solves are independent of each other. This
constitutes the main source of parallelization in the elliptic solver.

The subdomain solves not only run in parallel, but also scale with the
problem size. Increasing the number of grid points in the elements
(𝑝 refinement) makes the subdomain solves more expensive, but the
effectiveness of a Schwarz iteration ideally remains the same. Increasing
the number of elements (ℎ refinement) leads to more subdomain solves
that can run in parallel. The Schwarz solver does not resolve large-scale
modes, so Krylov-type solvers still rely on the multigrid algorithm to
scale with ℎ refinement.

3.3.5 Subdomain solver

Once overlapping subdomains have exchanged data we can solve all
subdomain problems (3.24) in parallel with data local to each subdo-
main. Since the subdomain operator A𝑆 is defined as a matrix-vector
product, we solve Eq. (3.24) with a preconditioned GMRES algorithm,
or with conjugate gradients for symmetric positive definite problems.
The algorithm is the same as detailed in Section 3.3.2 for our task-based
parallel Krylov-subspace linear solver, but implemented separately as a
serial algorithm. In future work, we may opt to parallelize the subdomain
solver over a few threads with shared memory, but currently we prefer
to employ the available cores to solve multiple subdomain problems
in parallel. In particular, on coarse multigrid levels where the number
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of elements can be smaller than the number of available cores, paral-
lelizing the subdomain solves over otherwise idle cores may increase
performance.

The iterative Krylov subdomain solves constitute the majority of the total
computational expenses, so a suitable preconditioner for them can speed
up the elliptic solve significantly. To our knowledge, preconditioners for
Schwarz subdomain solvers have gotten little attention in the literature so
far. In some cases, the discretization scheme allows to construct a matrix
representation for the subdomain operator explicitly, making it possible
to invert it directly with little effort [200]. In other cases, the subdomain [200]: Stiller (2016), Robust multigrid for

high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect
ratio Cartesian grids

operator is small enough to build the matrix representation column-by-
column (see section on the explicit-inverse subdomain solver below),
e.g., when solving the Poisson equation. However, when solving sets of
coupled elliptic equations the subdomain operator can easily become too
large to construct explicitly. For example, the subdomain operator for the
XCTS equations (3.4) (five variables) on a three-dimensional grid with 83

grid points per element and 𝑁overlap = 2 is a matrix of size 6400 × 6400.
Stored densely, it requires over 300 MB of memory per element, so typical
contemporary computing clusters with a few GB of memory per core
could only hold a few elements per core. Sparse storage reduces the
memory cost significantly, but still requires 6400 subdomain-operator
applications to construct the matrix representation and a nonnegligible
cost to invert and to apply it. With an iterative Krylov-subspace algorithm
and a suitable preconditioner we can solve the subdomain problems
on an element with significantly lower cost and memory requirements.
For example, test problem 3.4.2 completes about an order of magnitude
faster with the subdomain preconditioner laid out in this section, than
with an unpreconditioned GMRES subdomain solver.

Laplacian-approximation preconditioner

We support the iterative subdomain solver with a Laplacian-approximation
preconditioner. It approximates the linearized elliptic PDEs with a Pois-
son equation for every variable. A similar preconditioning strategy has
proven successful for the SpEC code [139], but in the context of a spectral [139]: Pfeiffer et al. (2003), A multidomain

spectral method for solving elliptic equationsdiscretization scheme and a very different linear-solver stack. Specifi-
cally, we approximate the subdomain problem, Eq. (3.24), as a set of
independent Poisson subdomain problems

APoisson
𝑆 Δ𝑢(𝑆)𝐴 = 𝑟(𝑆)𝐴 , (3.31)

where the index𝐴 iterates over all primal variables (see Section 3.2). Here,
APoisson
𝑆 is the DG-discretization of the negative Laplacian −𝑔 𝑖 𝑗∇𝑖∇𝑗 on

the subdomain according to Section 3.2. For example, a three-dimensional
XCTS problem has five variables, so Eq. (3.31) approximates the lineariza-
tion (3.16) of the five equations (3.4) as

∇̄2𝛿𝜓 = 0, ∇̄2𝛿(𝛼𝜓) = 0 and ∇̄2𝛿𝛽𝑖 = 0. (3.32)

Depending on the elliptic system at hand we either choose a flat back-
ground metric 𝑔𝑖 𝑗 = 𝛿𝑖 𝑗 , or the background metric of the elliptic system,
such as the conformal metric 𝑔𝑖 𝑗 = 𝛾̄𝑖 𝑗 for an XCTS system. A curved

https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
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background metric reduces the sparsity of the Poisson operator but ap-
proximates the elliptic equations better. In practice, we have found little
difference in runtime between the flat-space and curved-space Laplacian
approximations.

We choose homogeneous Dirichlet or Neumann boundary conditions
for APoisson

𝑆 . For variables and element faces where the original boundary
conditions are of Dirichlet type we choose homogeneous Dirichlet bound-
ary conditions, and for those where the original boundary conditions
are of Neumann type we choose homogeneous Neumann boundary
conditions. This may lead to more than one distinct Poisson operator on
subdomains with external boundaries, one per unique combination of
element face and boundary-condition type among the variables. Subdo-
mains that have exclusively internal boundaries only ever have a single
Poisson operator, which applies to all variables. Note that the choice of
homogeneous boundary conditions for the Poisson subdomain problems
is compatible with inhomogeneous boundary value problems, because
the inhomogeneity in the boundary conditions is absorbed in the fixed
sources when the equations are linearized [1].[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

To solve the Poisson subdomain problems (3.31), one per variable, we
can (again) employ any choice of linear solver, such as a (preconditioned)
Krylov-subspace algorithm.10 However, at this point we have reduced10: The absurdity of adding a third layer

of nested preconditioned linear solvers
was not lost on the authors.

the full elliptic problem down to a single Poisson problem limited to a
subdomain that is solved for all variables, or a few Poisson problems on
subdomains with external boundaries. Therefore, it becomes feasible, and
indeed worthwhile, to construct the Poisson subdomain-operator matrix
explicitly and to invert it directly. In particular, the approximate Poisson
subdomain-operator matrix remains valid throughout the full nonlinear
elliptic solve, as long as the grid, the background metric, and the type of
boundary conditions remain unchanged, so that its construction cost is
amortized over many applications.

Explicit-inverse solver

We solve the Poisson subproblems of the Laplacian-approximation pre-
conditioner, Eq. (3.31), with an explicit-inverse solver. It constructs the
matrix representation of a linear subdomain operator A𝑆 column-by-
column, and then inverts it directly by means of an LU decomposition.
Once the inverse A−1

𝑆 has been constructed, each subdomain problem
A𝑆 Δ𝑢(𝑆) = 𝑟(𝑆) is solved by a single application of the inverse matrix,

Δ𝑢(𝑆) = A−1
𝑆 𝑟(𝑆). (3.33)

This means that subdomains have a large initialization cost, but fast
repeated solves.

When the explicit-inverse solver is employed as a preconditioner, e.g., to
solve the individual Poisson problems of the Laplacian-approximation
preconditioner (Section 3.3.5), the inverse does not need to be exact.
Therefore, we construct an incomplete LU decomposition with a config-
urable fill-in and store it in sparse format. Then, each subdomain problem
reduces to two sparse triangular matrix solves. We use the Eigen [203][203]: Eigen, http://eigen.tuxfamily.

org sparse linear algebra library for the incomplete LU decomposition, which

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
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uses the ILUT algorithm [204]. The Poisson subdomain-operator matri-[204]: Saad (1994), ILUT: A dual threshold
incomplete LU factorization ces APoisson

𝑆 have a sparsity of about 90 %, which translates to a sparsity of
about 90 % for the incomplete LU decomposition as well, since we use a
fill-in factor of one. The sparsity of the inverse reduces the computational
cost for applying it to every subdomain problem, as well as the memory
required to store the inverse.

Note that the explicit matrix must be reconstructed when the linear
operator changes. The Poisson operators of the Laplacian-approximation
preconditioner do not typically change, which makes the explicit-inverse
solver very effective (see Section 3.3.5). However, in case we apply
the explicit-inverse solver to the full subdomain problem directly, the
linearized operator typically changes between every outer nonlinear
solver iteration. In such cases, we can choose to skip the reconstruction
of the explicit matrix to avoid the computational expense, at the cost of
losing accuracy of the solver. When the reconstruction is skipped, the
cached matrix only approximates the subdomain operator, but can still
provide effective preconditioning.

3.4 Test problems

The following numerical tests demonstrate the accuracy, scalability, and
parallel efficiency of the elliptic solver on a variety of linear and nonlinear
elliptic problems.

All computations were performed on our local computing clusterMinerva.
It is composed of 16-core nodes, each with two eight-core Intel Haswell E5-
2630v3 processors clocked at 2.40 GHz and 64 GB of memory, connected
with an Intel Omni-Path network. We distribute elements evenly among
cores following the strategy detailed in Section 3.3, leaving one core per
node free to perform communications.

3.4.1 A Poisson problem

As a first test we solve the flat-space Poisson equation in two dimen-
sions,

−𝜕𝑖𝜕𝑖𝑢(𝒙) = 𝑓 (𝒙), (3.34)

for the solution
𝑢analytic(𝒙) = sin (𝜋𝑥) sin (𝜋𝑦) (3.35)

on a rectilinear domain Ω = [0, 1]2 with Dirichlet boundary conditions.
This problem is also studied in the context of multigrid-Schwarz methods,
with slight variations, in Refs. [199, 200]. To obtain the solution (3.35) [199]: Lottes and Fischer (2005), Hybrid

Multigrid/Schwarz Algorithms for the Spec-
tral Element Method
[200]: Stiller (2016), Robust multigrid for
high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect
ratio Cartesian grids

numerically we choose the fixed source 𝑓 (𝒙) = 2𝜋2 sin (𝜋𝑥) sin (𝜋𝑦),
select homogeneous Dirichlet boundary conditions 𝑢b = 0, and solve the
DG-discretized problem (3.9) with penalty parameter 𝐶 = 1. We have
evaluated the properties of the DG-discretized operator for this problem
in Ref. [1]. To assess the convergence behavior of the elliptic solver for this

[1]: Fischer and Pfeiffer (2022), Unified
discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

test problem we choose an initial guess 𝑢0, where each value is uniformly
sampled from [−0.5, 0.5].
Figure 3.11 illustrates the effectiveness of our algorithm in resolving
small-scale and large-scale modes in the solution. Plotted is the error to

https://doi.org/10.1002/nla.1680010405
https://doi.org/10.1002/nla.1680010405
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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(a) Initial error 𝑢0 − 𝑢analytic (b) Error after 6 unpreconditioned GMRES iterations

(c) Error after 6 Schwarz-smoothing iterations (d) Error after 1 multigrid-Schwarz V-cycle

Figure 3.11: Intermediate errors of the 2D sinusoidal Poisson problem (Section 3.4.1) with different components of the elliptic solver.
Panel (a) shows the error of the random initial guess. Panels (b)–(d) show the error after six applications of the linear operator.

the analytic solution, 𝑢 − 𝑢analytic. Figure 3.11a depicts the initial error on
a computational domain that is partitioned into 8 × 8 quadratic elements
with 9 × 9 grid points each. Figures 3.11b to 3.11d present the error after
six applications of the linear operator, but with different components of
the elliptic solver enabled. Figure 3.11b employs no preconditioning at all,
thus reaches six operator applications after six iterations of the GMRES
algorithm. It resolves some of the random fluctuations, but retains the
large-scale sinusoidal error. Figure 3.11c preconditions every GMRES
iteration with six Schwarz-smoothing steps, thus reaches six operator
applications after a single GMRES iteration. The Schwarz smoother uses
𝑁overlap = 2. It resolves most of the random fluctuations, but retains the
large-scale error. Note that the six operator applications do not accurately
reflect the computational expense to arrive at Fig. 3.11c, because a sig-
nificant amount of work is spent on the subdomain solves. We employ
the explicit-inverse subdomain solver directly here to solve subdomain
problems because the Laplacian-approximation preconditioner is redun-
dant for a pure Poisson problem (see Section 3.3.5), but note that the
subdomain solver has no effect on the results depicted in Fig. 3.11 as long
as it is sufficiently precise. Finally, Fig. 3.11d preconditions every GMRES
iteration with a single four-level multigrid-Schwarz V-cycle. The V-cycle
employs three Schwarz presmoothing and postsmoothing steps on every
level, thus reaches six operator applications on the finest grid after a
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Figure 3.12: Number of linear-solver
iterations for the Poisson problem (Sec-
tion 3.4.1). The multigrid-Schwarz pre-
conditioner achieves scale indepen-
dence.

single GMRES iteration. Again, the number of operator applications
is not entirely representative of the computational expense because it
disregards the work done on coarser levels. The V-cycle successfully
resolves the large-scale error.

Figure 3.12 presents the number of GMRES iterations that the elliptic
solver needs to reduce the magnitude of the residual by a factor of 1010,
for a series of ℎ-refined domains. We construct ℎ-refinement levels 𝐿
by repeatedly splitting all elements in the rectangular domain in two
along both dimensions. All elements have 6 × 6 grid points. Shown in
Fig. 3.12 are an unpreconditioned GMRES algorithm, a GMRES algorithm
preconditioned with three Schwarz-smoothing steps per iteration, and a
GMRES algorithm preconditioned with one multigrid-Schwarz V-cycle
per iteration. The number of multigrid levels is equal to the number 𝐿
of refinement levels, so that the coarsest level always covers the entire
domain with a single element. Every level runs three presmoothing and
postsmoothing steps, and subdomains have 𝑁overlap = 2. The Schwarz
preconditioning alone reduces the number of iterations by a factor of
∼ 10, but does not affect the scaling with element size. However, the
multigrid-Schwarz preconditioning removes the scaling entirely, meaning
the number of GMRES iterations remains constant even when the domain
is partitioned into more and smaller elements. The multigrid algorithm
achieves this scale independence because it supports the iterative solve
with information from coarser grids, including large-scale modes in the
solution that span the entire domain. Each preconditioned iteration is
typically more computationally expensive than an unpreconditioned
iteration, but the preconditioner reduces the number of iterations such
that the solve completes faster overall.11

11: Note that the cost of unprecondi-
tioned GMRES iterations is eventually
dominated by the orthogonalization pro-
cedure (see Section 3.3.2), which slows
down the unpreconditioned solve sig-
nificantly at large iteration counts. This
effect can be remedied by restarting GM-
RES variants, but at the cost of possible
stagnation. See Sec. 6.5.5 in Saad [127]
for a discussion. Conjugate gradient al-
gorithms avoid this issue for symmetric
linear operators.

We find that even for the simple
Poisson problem the unpreconditioned algorithm becomes prohibitively
slow around O(103) elements (𝐿 = 5), approaching an hour of runtime
and the memory capacity of our ten compute nodes. In contrast, the
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Figure 3.13: Convergence of the ellip-
tic solver for the linear Poisson prob-
lem with ℎ-refinement level 𝐿 = 1. The
solid line shows the relative linear-solver
residual magnitude ∥𝑏 −A𝑢∥2, and the
dashed line shows the error to the ana-
lytic solution, ∥𝑢 − 𝑢analytic∥2 as a root
mean square over grid points, which ap-
proaches the DG discretization error.

0 10 20 30 40 50 60

10−2

10−6

10−10

No preconditioning

Linear residual ‖b−Au‖2
Error ‖u− uanalytic‖2

0 1 2 3 4 5 6

10−2

10−6

10−10

Schwarz

0 1 2 3 4

Linear solver iteration

10−2

10−6

10−10

Multigrid-Schwarz

Schwarz preconditioner reduces the runtime to solve the same problem
to below one minute, and the multigrid-Schwarz preconditioner reduces
the runtime to only three seconds. Crucial to achieving these runtimes at
high resolution are the parallelization properties of the algorithms. In
particular, the additional computational expense that the preconditioner
spends Schwarz-smoothing all multigrid levels is parallelizable within
each level. The following test problem 3.4.2 explores the parallelization
in greater detail.

Figure 3.13 gives a detailed insight into the convergence behavior of
the elliptic solver for the 𝐿 = 1 configuration. Presented is both the
linear-solver residual magnitude ∥𝑏 −A𝑢∥2, and the error to the analytic
solution, ∥𝑢 − 𝑢analytic∥2. The linear-solver residual (solid line) is being
reduced by a factor of 1010 by the GMRES algorithm, equipped with
the three different preconditioning configurations explored in Fig. 3.12.
With no preconditioning, the convergence stagnates until large-scale
modes in the solution are resolved (see also Fig. 3.11). The Schwarz
preconditioner reduces the number of iterations by about an order of
magnitude, and the multigrid-Schwarz preconditioner achieves clean
exponential convergence. The error to the analytic solution (dashed line)
follows the convergence of the residual magnitude. Once the discrete
problem A𝑢 = 𝑏, Eq. (3.1), is solved to sufficient precision, the remaining
error 𝑢 − 𝑢analytic is the DG discretization error. It is independent of
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Figure 3.14: A cut through the uniformly-
refined spherical-shell domain used in
the black hole problem (Section 3.4.2).
The domain consists of six wedges with
a logarithmic radial coordinate map en-
veloping an excised sphere. In this exam-
ple each wedge is isotropically ℎ-refined
once, i.e., split once in all three dimen-
sions, resulting in a total of 48 elements.
Note the elements are split in half along
their logical axes, so the element size
scales logarithmically in radial direction
just like the distribution of grid points
within the elements. Each element has
six grid point per dimension, so fields
are represented as polynomials of degree
five.

the computational technique used to solve the discrete problem, and
determined entirely by the discretization scheme on the computational
grid, as summarized in Section 3.2 and detailed in Ref. [1].12 [1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.
12: For a study of the DG discretization
error for this problem see Fig. 2.7, where
the configuration solved in Fig. 3.13 is
circled.

3.4.2 A black hole in general relativity

Next, we solve a general-relativistic problem involving a black hole.
Specifically, we solve the Einstein constraint equations in the XCTS
formulation, Eq. (3.4), for a Schwarzschild black hole in Kerr-Schild
coordinates. To this end we set the conformal metric and the trace of the
extrinsic curvature to their respective Kerr-Schild quantities,

𝛾̄𝑖 𝑗 = 𝛿𝑖 𝑗 + 2𝑀
𝑟
𝑙𝑖 𝑙 𝑗 (3.36a)

and

𝐾 =
2𝑀𝛼3

𝑟2

(
1 + 3𝑀

𝑟

)
, (3.36b)

where 𝑀 is the mass parameter, 𝑟 =
√
𝑥2 + 𝑦2 + 𝑧2 is the Euclidean

coordinate distance, and 𝑙 𝑖 = 𝑙𝑖 = 𝑥 𝑖/𝑟.13 The time-derivative quantities 13: See Table 2.1 in Baumgarte and
Shapiro [17].
[17]: Baumgarte and Shapiro (2010), Nu-
merical Relativity: Solving Einsteins Equa-
tions on the Computer

𝑢̄𝑖 𝑗 and 𝜕𝑡𝐾 in the XCTS equations (3.4) vanish, as do the matter sources
𝜌, 𝑆, and 𝑆𝑖 . With these background quantities specified, the solution to
the XCTS equations is

𝜓 = 1, (3.37a)

𝛼 =
(
1 + 2𝑀

𝑟

)−1/2
, (3.37b)

𝛽𝑖 =
2𝑀
𝑟

𝛼2𝑙 𝑖 . (3.37c)

Note that we have chosen a conformal decomposition with 𝜓 = 1 here,
but other choices of 𝜓 and 𝛾̄𝑖 𝑗 that keep the spatial metric 𝛾𝑖 𝑗 = 𝜓4𝛾̄𝑖 𝑗
invariant are equally admissable.

We solve the XCTS equations numerically for the conformal factor 𝜓, the
product 𝛼𝜓, and the shift 𝛽𝑖 . The conformal metric 𝛾̄𝑖 𝑗 and the trace of
the extrinsic curvature, 𝐾, are background quantities that remain fixed

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
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Figure 3.15: Number of linear-solver it-
erations for the black hole problem (Sec-
tion 3.4.2). The multigrid-Schwarz pre-
conditioner achieves scale independence.
The 𝐿 = 1 configuration (48 elements) is
pictured in Fig. 3.14.
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throughout the solve. Note that for this test problem the conformal metric
𝛾̄𝑖 𝑗 is not flat, resulting in a problem formulated on a curved manifold.

We employ the DG scheme (3.9) with penalty parameter 𝐶 = 1 to dis-
cretize the XCTS equations (3.4) on a three-dimensional spherical-shell
domain, as illustrated in Fig. 3.14. The domain envelops an excised sphere
that represents the black hole, so it has an inner and an outer external
boundary that require boundary conditions. To obtain the Schwarzschild
solution in Kerr-Schild coordinates we impose Eqs. (3.37a) to (3.37c)
as Dirichlet conditions at the outer boundary of the spherical shell
at 𝑟 = 10𝑀. We place the inner radius of the spherical shell at 𝑟 = 2𝑀
and impose mixed Dirichlet and Neumann conditions at the inner bound-
ary. Specifically, we impose the Neumann condition 𝑛 𝑖𝜕𝑖𝜓 = 0 on the
conformal factor, and Eqs. (3.37b) to (3.37c) as Dirichlet conditions on
the lapse and shift. The reason for this choice is to mimic apparent-
horizon boundary conditions, as employed in the following test problem
(Section 3.4.3). Choosing apparent-horizon boundary conditions for the
Kerr-Schild problem is also possible, but requires either an initial guess
close to the solution to converge, or a conformal decomposition different
from 𝜓 = 1. The reason is the strong nonlinearity in the apparent-horizon
boundary conditions that takes the solution away from 𝜓0 = 1 initially.
We have confirmed this behavior of the XCTS equations with the SpEC

code, and have presented the convergence of the DG discretization error
with apparent-horizon boundary conditions for the Kerr-Schild problem
in Ref. [1]. With the simpler Dirichlet and Neumann boundary condition[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

we can seed the elliptic solver with a flat initial guess, i.e., 𝜓0 = 1, 𝛼0 = 1
and 𝛽𝑖0 = 0, which allows for better control of the test problem.14

14: I discuss this behavior of the XCTS
equations in detail in Section 4.1.1. To assess the convergence behavior of the elliptic solver for this problem

we successively ℎ refine the wedges of the spherical-shell domain into
more and smaller elements, each with six grid points per dimension.

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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Figure 3.16: Convergence of the Newton-
Krylov elliptic solver for the black hole
problem with ℎ-refinement level 𝐿 =
1. The dotted line shows the relative
residual magnitude of the nonlinear
solver, ∥𝑏 − A𝑢∥2, which is driven by
a linear solve in every iteration (solid
lines, see Eq. (3.16)). The dashed line
shows the error to the analytic solution,
∥𝑢 − 𝑢analytic∥2 as a root mean square
over all five variables of the XCTS equa-
tions, {𝜓, 𝛼𝜓, 𝛽𝑖}, and over grid points.
It approaches the DG discretization er-
ror.

We iterate the Newton-Raphson algorithm until the magnitude of the
nonlinear residual has decreased by a factor of 1010. In all configurations
we have tested, the nonlinear solver needs five steps and no line-search
globalization to reach the target residual. The linear solver is configured
to solve the linearized problem, Eq. (3.16), by reducing its residual mag-
nitude by a factor of 104. Schwarz subdomains have 𝑁overlap = 2, and we
run three Schwarz presmoothing and postsmoothing iterations on every
multigrid level, including the coarsest. Figure 3.15 presents the total num-
ber of linear-solver iterations accumulated over the five nonlinear solver
steps. Just like we found for the simple Poisson problem in Fig. 3.12, the
multigrid-Schwarz preconditioner achieves scale-independent iteration
counts under ℎ refinement.

Figure 3.16 presents the convergence behavior of the elliptic solver for
the 𝐿 = 1 configuration (pictured in Fig. 3.14) in detail. The convergence
of the nonlinear residual magnitude (dotted line) is independent of
the preconditioner chosen for the linear solver in each iteration (solid
lines), since the linearized problems are solved to sufficient accuracy
(10−4). Similar to the Poisson problem in Fig. 3.13, the multigrid-Schwarz
preconditioning achieves clean exponential convergence, reducing the
linear residual by an order of magnitude per iteration. The nonlinear
residual magnitude decreases slowly at first, when the fields 𝑢 are still
far from the solution, and begins to converge quadratically, following the



98 3 Publication: Task-based parallel elliptic solver in SpECTRE

Figure 3.17: Number of subdomain-
solver iterations for the black hole prob-
lem (Section 3.4.2) with the Laplacian-
approximation preconditioner. The do-
main is isotropically ℎ-refined thrice, so
the solve involves four multigrid levels.
Dots illustrate the average across all sub-
domains on the level, and shaded regions
the smallest and largest number of itera-
tions. When approximating all equations
with a Dirichlet-Laplacian (black), sub-
domains facing the inner excision bound-
ary (see Fig. 3.14) require more iterations
than the average. Matching the Lapla-
cian boundary conditions to the problem
(green) reduces the iteration count and
resolves the load imbalance.
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linear-solver residual, once the fields are closer to the solution and hence
the linearization is more accurate (see Section 3.3.1). The error to the
analytic solution (dashed line) approaches the DG discretization error,
as detailed in Section 3.4.1.1515: For a study of the DG discretization

error for this problem see Fig. 2.11, where
the configuration solved in Fig. 3.16 is
circled.

To solve subdomain problems here we equip the GMRES subdomain
solver with the Laplacian-approximation preconditioner, and solve the
five Poisson subproblems on every subdomain with the incomplete
LU explicit-inverse solver (see Section 3.3.5). Figure 3.17 illustrates the
importance of matching the boundary conditions of the approximate
Laplacian to the original problem. When we approximate all five tensor
components of the original XCTS problem with a Dirichlet-Laplacian,
ignoring that we impose Neumann-type boundary condition on 𝜓 at the
inner boundary, some subdomains require a significantly larger number
of subdomain-solver iterations than others. We have confirmed that these
subdomains face the inner boundary of the spherical shell. When we
use a Laplacian approximation with matching boundary-condition type
for these subdomains, they need no more subdomain-solver iterations
than interior subdomains. Specifically, the subdomain preconditioner
constructs a Poisson operator matrix with homogeneous Neumann
boundary conditions to apply to the conformal-factor component of the
equations, and another with homogeneous Dirichlet boundary conditions
to apply to the remaining four tensor components. Therefore, subdomains
that face the inner boundary of the spherical shell domain build and
cache two inverse matrices, and all other subdomains build and cache a
single inverse matrix, in the form of an incomplete LU decomposition.
Furthermore, when the Laplacian-approximation preconditioner takes
the type of boundary conditions into account, we find that it is sufficiently
precise so we can limit the number of subdomain-solver iterations
to a fixed number. This further balances the load between elements,
decreasing runtime significantly in our tests. Therefore, in the following
we always limit the number of subdomain-solver iterations to three. With
this strategy we find a reduction in runtime of about 50 % compared to
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Figure 3.18: Parallel scaling of the black
hole problem (Section 3.4.2).

the naive Dirichlet-Laplacian approximation.

Figure 3.18 presents the wall time and parallel efficiency of the elliptic
solves for the black hole problem on up to 2048 cores, which approaches
the capacity of our local computing cluster. We split the domain into
more and smaller elements, keeping the number of grid points in each
element constant at six per dimension, and solve each configuration
on a variable number of cores. These configurations are increasingly
expensive to solve, involving up to 42 million grid points, or ∼200 million
degrees of freedom. They all complete in at most a few minutes of wall
time by scaling up to a few thousand cores, until they reach the capacity
of our cluster. We compute their parallel efficiency as

Parallel efficiency =
𝑡serial
𝑡CPU

, (3.38)

where 𝑡CPU = 𝑁cores 𝑡wall is the CPU time of a run, i.e., the product of
wall time and the number of cores, and 𝑡serial is the wall time of the
configuration runing on a single core. Since configurations with 24576
elements and more did not complete on a single core in the allotted
time of two hours, we approximate 𝑡serial with the CPU time of the run
with the lowest number of cores for these configurations, meaning that
they begin at a fiducial parallel efficiency of one. The parallel efficiency
decreases when the number of elements per core becomes small and falls
below 25 % once each core holds only a few elements.

Figure 3.18 also shows that the parallel efficiency decreases more steeply
when filling up a single node, than it does when we begin to allocate
multiple nodes. We take this behavior as an indication that shared
hardware resources on a node currently limit our parallel efficiency, which
is an issue also found in Ref. [201]. We have confirmed this hypothesis by [201]: AlOnazi, Markomanolis, and

Keyes (2017), Asynchronous Task-Based
Parallelization of Algebraic Multigrid

running a selection of configurations on the same number of cores, but
distributed over more nodes, so each node is only partially subscribed,
and found that runs speed up significantly. We intend to address this

https://doi.org/10.1145/3093172.3093230
https://doi.org/10.1145/3093172.3093230
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issue in future optimizations of the elliptic solver. Possible resolutions
include better use of CPU caches, e.g., through a contiguous layout
of data on subdomains, or a shared-memory OpenMP parallelization
of subdomain solves, so the cores of a node are working on a smaller
amount of data at any given time. The parallel efficiency also decreases
once we reach the capacity of our cluster, at which point we expect that
communications spanning the full cluster dominate the computational
expense. We intend to test the parallel scaling on larger clusters with
more cores per node in the future. We also plan to investigate the effect
of hyperthreading on the parallel efficiency of the elliptic solver.

3.4.3 A black hole binary

Finally, we solve a classic black hole binary (BBH) initial data problem,
which stands at the beginning of every BBH simulation performed
with the SpEC code. Again, we solve the full Einstein constraint system
in the XCTS formulation, Eq. (3.4), but now we choose background
quantities and boundary conditions that represent two black holes in
orbit. Following the formalism for superposed Kerr-Schild initial data, e.g.,
laid out in Ref. [75, 78], we set the conformal metric and the trace of the[75]: Lovelace et al. (2008), Binary-black-

hole initial data with nearly-extremal spins
[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets

extrinsic curvature to the superpositions

𝛾̄𝑖 𝑗 = 𝛿𝑖 𝑗 +
2∑
𝑛=1

𝑒−𝑟
2
𝑛/𝑤2

𝑛 (𝛾(𝑛)𝑖 𝑗 − 𝛿𝑖 𝑗) (3.39a)

and

𝐾 =
2∑
𝑛=1

𝑒−𝑟
2
𝑛/𝑤2

𝑛𝐾(𝑛), (3.39b)

where 𝛾(𝑛)𝑖 𝑗 and 𝐾(𝑛) are the conformal metric and extrinsic-curvature
trace of two isolated Schwarzschild black holes in Kerr-Schild coordinates
as given in Eq. (3.36). They have mass parameters 𝑀𝑛 and are centered
at coordinates 𝑪𝑛 , with 𝑟𝑛 being the Euclidean coordinate distance
from either center. The superpositions are modulated by two Gaussians
with widths 𝑤𝑛 . The time-derivative quantities 𝑢̄𝑖 𝑗 and 𝜕𝑡𝐾 in the XCTS
equations (3.4) vanish, as do the matter sources 𝜌, 𝑆 and 𝑆𝑖 .

To handle orbital motion we split the shift in a background and an excess
contribution [139],[139]: Pfeiffer et al. (2003), A multidomain

spectral method for solving elliptic equations 𝛽𝑖 = 𝛽𝑖background + 𝛽𝑖excess, (3.40)

and choose the background shift

𝛽𝑖background = (𝛀0 × 𝒙)𝑖 , (3.41)

where 𝛀0 is the orbital angular velocity. We insert Eq. (3.40) in the XCTS
equations (3.4) and henceforth solve them for 𝛽𝑖excess, instead of 𝛽𝑖 .

We solve the XCTS equations on the domain depicted in Fig. 3.19. It
has two excised spheres with radius 2𝑀𝑛 that are centered at 𝑪𝑛 , and
correspond to the two black holes, and an outer spherical boundary at
finite radius𝑅. We impose boundary conditions on these three boundaries
as follows. At the outer spherical boundary of the domain we impose

https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
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(a) Black hole binary domain

(b) Close-up

Figure 3.19: A cut through the three-
dimensional black hole binary domain
used in Section 3.4.3. It involves two
excised spheres centered at 𝑪𝑛 along
the 𝑥-axis and extends to a spherical
outer surface at radius 𝑅. The domain
is ℎ-refined such that spherical wedges
have equal angular size, so the cube-to-
sphere boundary is nonconforming. All
elements in this picture have eight an-
gular grid points, and {7, 8, 8, 9, 11, 11}
radial grid points in the layers ordered
from outermost to innermost.

asymptotic flatness,

𝜓 = 1, 𝛼𝜓 = 1, 𝛽𝑖excess = 0. (3.42)

Since the outer boundary is at a finite radius, the solution will only
be approximately asymptotically flat. On the two excision boundaries
we impose (nonspinning) quasiequilibrium apparent-horizon boundary
conditions [113] [113]: Cook and Pfeiffer (2004), Excision

boundary conditions for black hole initial
data

𝑠𝑘𝜕𝑘𝜓 = − 𝜓3

8𝛼
𝑠𝑖𝑠 𝑗

(
(𝐿̄𝛽)𝑖 𝑗 − 𝑢̄ 𝑖 𝑗

)
− 𝜓

4
𝑚̄ 𝑖 𝑗∇̄𝑖𝑠 𝑗 + 1

6
𝐾𝜓3, (3.43a)

𝛽𝑖 =
𝛼

𝜓2 𝑠
𝑖 , (3.43b)

where 𝑚̄ 𝑖 𝑗 = 𝛾̄𝑖 𝑗 − 𝑠 𝑖𝑠 𝑗 (see Section 1.2.3). Here, 𝑠𝑖 = −𝑛𝑖 = 𝜓−2𝑠𝑖 is the
conformal surface normal to the apparent horizon, which is opposite
the normal to the domain boundary since both are normalized with the
conformal metric. For the lapse we choose to impose the isolated solution,

https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.70.104016
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Figure 3.20: Comparison of the BBH initial data problem (Section 3.4.3) solved with our new elliptic solver in SpECTRE (black), and with
the SpEC elliptic solver (gray). Left: Both codes converge exponentially with resolution. SpECTRE needs about 30 % more grid points per
dimension than SpEC to reach the same accuracy. Right: Parallel scaling of both codes. The SpEC elliptic solver scales to at most eleven
cores and reaches a speedup of at most a factor of two compared to the single-core runtime. Our new elliptic solver in SpECTRE is faster
than SpEC on eight cores, and scales the problem reliably to 120 cores, at which point it is seven times faster than SpEC’s single-core
runtime. The dotted line corresponds to a configuration with the same number of grid points as SpEC (but lower accuracy), which is
faster than SpEC on only two cores.

Eq. (3.37b), as Dirichlet conditions at both excision surfaces. Note that
this choice differs slightly from Ref. [78], where the superposed isolated[78]: Varma, Scheel, and Pfeiffer (2018),

Comparison of binary black hole initial data
sets

solutions are imposed on the lapse at both excision surfaces.

To assess the accuracy and parallel performance of the elliptic solver for
the BBH initial data problem we solve the same scenario with the SpEC [55,
139] code. In SpEC we successively increment the resolution from Lev0[55]: Spectral Einstein Code (SpEC),

black-holes.org/code/SpEC

[139]: Pfeiffer et al. (2003), A multidomain
spectral method for solving elliptic equations

to Lev6, which correspond to domain configurations determined with
an adaptive mesh-refinement (AMR) algorithm. In SpECTRE we simply
increment the number of grid points in all dimensions of all elements by
one from each resolution to the next, based on the domain depicted in
Fig. 3.19. To compare the solution between the two codes, we interpolate
all five fields 𝑢𝐴 = {𝜓, 𝛼𝜓, 𝛽𝑖excess} to a set of sample points 𝒙𝑚 . We do
the same for a very high-resolution run with SpECTRE that we use as
reference, 𝑢𝐴,ref, for which we have split every element in the domain
in two along all three dimensions. Then, we compute the discretization
error for all SpEC and SpECTRE solutions as an 𝐿2-norm of the difference
to the high-resolution reference run over all fields and sample points,

∥𝑢 − 𝑢ref∥ B
(∑
𝐴,𝑚
(𝑢𝐴(𝒙𝑚) − 𝑢𝐴,ref(𝒙𝑚))2

)1/2
. (3.44)

We have chosen 𝑀𝑛 = 0.4229, 𝑪𝑛 = (±8, 0, 0), Ω0 = 0.0144, 𝑤𝑛 = 4.8,
𝑅 = 300, and sample points along the 𝑥-axis at 𝑥1 = 8.846 (near horizon),
𝑥2 = 0 (origin) and 𝑥3 = 100 (far field) here. This configuration coincides
with our convergence study in Ref. [1], where we list the reference values[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

𝑢𝐴,ref(𝒙𝑚) at the interpolation points explicitly (Table 2.2).

Figure 3.20 compares the performance of the BBH initial data problem

https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://www.black-holes.org/code/SpEC
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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with the SpEC code. Both SpEC and SpECTRE converge exponentially with
resolution, since SpEC employs a spectral scheme and SpECTRE a DG
scheme under 𝑝 refinement. SpECTRE currently needs about 30 % more
grid points per dimension to achieve the same accuracy as SpEC. To an
extent this is to be expected, since we split the domain into more elements
than SpEC does and hence have more shared element boundaries with
duplicate points. In particular, SpEC employs shells with spherical basis
functions that avoid duplicate points in angular directions altogether.
While the SpEC elliptic solver always decomposes the domain into eleven
subdomains, each with up to 34 grid points per dimension in our test,
our domain in SpECTRE has 232 elements with up to 13 grid points per
dimension. However, neither is our BBH domain in SpECTRE optimized
as well as SpEC’s yet, nor have we refined it with an AMR algorithm. We
are planning to do both in future work. Furthermore, SpEC’s initial data
domain involves overlapping patches to enable matching conditions for
its spectral scheme, which our DG scheme in SpECTRE does not need.
Therefore, we expect to achieve domain configurations that come closer
to SpEC in their number of grid points with future optimizations.

The right panel in Fig. 3.20 demonstrates the superior parallel perfor-
mance that our new elliptic solver achieves over SpEC’s. We choose the
runs marked with ∗ in the left panel because they solve the BBH problem
to comparable accuracy. We scale these runs to an increasing number of
cores and measure the wall time for the elliptic solves to complete. Since
the SpEC initial data domain is composed of eleven subdomains, it can
parallelize to at most eleven cores. The runtime decreases by a factor of
about 1.5 to 2 when the solve is distributed to multiple cores, but shows
little reliable scaling. Some SpEC configurations at higher resolutions
have shown slightly better parallel performance, but none that exceeded
a factor of about two in speedup compared to the single-core runtime.
Our new elliptic solver in SpECTRE, on the other hand, scales reliably to
120 cores, at which point each core holds no more than two elements. On
a single core it needs 1176 s where SpEC, with fewer grid points, needs
only 268 s, but it overtakes SpEC on eight cores and completes in only
37 s on 120 cores. For reference we have also included a scaling test with
SpECTRE that uses the same number of grid points as SpEC but does not
yet reach the same accuracy (marked with †). It overtakes SpEC on two
cores and completes in only 14 s on 120 cores. The configuration repre-
sents a potential improvement in the domain decomposition with future
optimizations. We find the parallel efficiency for the BBH configurations
behaves similarly to the single black hole configurations we investigated
in Section 3.4.2.

3.5 Conclusion and future work

We have presented a new solver for elliptic partial differential equations
that is designed to parallelize on computing clusters. It is based on
discontinuous Galerkin (DG) methods and task-based parallel iterative
algorithms. We have shown that our solver is capable of parallelizing
elliptic problems with ∼200 million degrees of freedom to at least a few
thousand cores. It solves a classic black hole binary (BBH) initial data
problem faster than the veteran code SpEC [55] on only eight cores, and [55]: Spectral Einstein Code (SpEC),

black-holes.org/code/SpEC

https://www.black-holes.org/code/SpEC
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in a fraction of the time when distributed to more cores on a computing
cluster. The elliptic solver is implemented in the open-source SpECTRE [10][10]: SpECTRE, spectre-code.org
numerical relativity code, and the results in this article are reproducible
with the supplemental input-file configurations [205].[205]: Supplemental material: input-

file configurations to reproduce the re-
sults presented in this article with the
SpECTRE code, arXiv:2111.06767/anc

So far we can solve Poisson, elasticity, puncture and XCTS problems,
including BBH initial data in the superposed Kerr-Schild formalism with
unequal masses, spins and negative-expansion boundary conditions [78][78]: Varma, Scheel, and Pfeiffer (2018),

Comparison of binary black hole initial data
sets

(in this article we only explored an equal-mass and nonspinning BBH).
In the short term we are planning to add the capability to solve for
binary neutron star (BNS) and black hole–neutron star (BHNS) initial
data, which involve the XCTS equations coupled to the equations of
hydrostatic equilibrium.

A notable strength of our new elliptic solver is the multigrid-Schwarz
preconditioner, which achieves iteration counts independent of the
number of elements in the computational domain. Therefore, we expect
our solver to scale to problems that benefit from ℎ refinement, e.g., to
resolve different length scales or to adapt the domain to features in the
solution. Such problems include initial data involving neutron stars with
steep gradients near the surface, equations of state with phase transitions,
or simulating thermal noise in thin mirror coatings for gravitational-wave
detectors [3, 167].[3]: Vu et al. (2021), High-accuracy numeri-

cal models of Brownian thermal noise in thin
mirror coatings. Chapter 5 of this thesis.
[167]: Lovelace, Demos, and Khan (2018),
Numerically modeling Brownian thermal
noise in amorphous and crystalline thin coat-
ings

Our solver splits the computational domain into more elements than the
spectral codeSpEC to achieve superior parallelization properties. However,
the larger number of elements with shared boundaries also means that
we need more grid points than SpEC to reach the same accuracy for a BBH
initial data problem. Variations of the DG scheme, such as a hybridizable
DG method, can provide a possible resolution to this effect [206–208].[206]: Cockburn, Gopalakrishnan, and

Lazarov (2009), Unified Hybridization of
Discontinuous Galerkin, Mixed, and Con-
tinuous Galerkin Methods for Second Order
Elliptic Problems
[207]: Giacomini, Sevilla, and Huerta
(2021), HDGlab: An Open-Source Imple-
mentation of the Hybridisable Discontinuous
Galerkin Method in MATLAB
[208]: Muralikrishnan, Bui-Thanh, and
Shadid (2020), A multilevel approach for
trace system in HDG discretizations

Even without changing the DG scheme, we expect that optimizations of
our binary compact object domain can significantly reduce the number
of grid points required to reach a certain accuracy. Possible domain
optimizations include combining the enveloping cube and the cube-to-
sphere transition into a single layer of blocks, equalizing the angular
size of the enveloping wedges in a manner similar to Ref. [108], or more

[108]: Rashti et al. (2021), Elliptica: a new
pseudo-spectral code for the construction of
initial data

drastic changes that involve cylindrical or bipolar coordinate maps, such
as the domain presented in Ref. [209].16 To retain the effectiveness of

[209]: Buchman et al. (2012), Simulations
of unequal-mass black hole binaries with spec-
tral methods
16: I discuss domain optimizations since
the publication of this article in Sec-
tion 4.2.2.

the multigrid solver it is important to keep the number of blocks in the
domain to a minimum under these optimizations. We have shown that
our new elliptic solver reaches comparative single-core performance to
SpEC when using the same number of grid points, with the added benefit
of parallel scaling. Since every contemporary computer has multiple
cores, we prioritize parallelization over single-core performance.

To put the grid points of the computational domain to most effective
use, adaptive mesh-refinement (AMR) techniques will be essential. All
components of the elliptic solver, including the DG discretization, the
multigrid algorithm, and the Schwarz subdomains, already support ℎ𝑝-
refined domains. The refinement can be anisotropic, meaning elements
can be split or differ in their polynomial degree along each dimension
independently. A major subject of future work will be the development
of an AMR scheme that adjusts the refinement during the elliptic solve
automatically based on a local error estimate, distributing resolution to
regions in the domain where it is most needed.

https://spectre-code.org
https://arxiv.org/src/2111.06767/anc
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1137/070706616
https://doi.org/10.1137/070706616
https://doi.org/10.1137/070706616
https://doi.org/10.1137/070706616
https://doi.org/10.1007/s11831-020-09502-5
https://doi.org/10.1007/s11831-020-09502-5
https://doi.org/10.1007/s11831-020-09502-5
https://doi.org/10.1016/j.jcp.2020.109240
https://doi.org/10.1016/j.jcp.2020.109240
https://doi.org/10.1103/PhysRevD.86.084033
https://doi.org/10.1103/PhysRevD.86.084033
https://doi.org/10.1103/PhysRevD.86.084033


3.5 Conclusion and future work 105

Along with AMR, we expect load balancing to become increasingly
important. We currently approximately load balance the elliptic solver
at the beginning of the program based on the number of grid points
in each element. Charm++, and hence SpECTRE, also support dynamic
load-balancing operations that migrate elements between cores periodi-
cally, or at specific points in the algorithm. Charm++ provides a variety of
load-balancing algorithms that may take metrics such as runtime mea-
surements, communication cost and the network topology into account.
When the computational load on elements changes due to 𝑝-AMR, or
when elements get created and destroyed due to ℎ-AMR, we intend to
invoke load balancing to improve the parallel performance of the elliptic
solves.

The elliptic solver algorithms can be improved in many ways. The multi-
grid solver may benefit from an additive variant of the algorithm, which
smooths every level independently and combines the solutions [201]. An [201]: AlOnazi, Markomanolis, and

Keyes (2017), Asynchronous Task-Based
Parallelization of Algebraic Multigrid

additive multigrid algorithm has better parallelization properties than
the multiplicative algorithm that we employ in this article, since coarse
grids do not need to wait for fine grids to send data before the coarse-
grid smoothing can proceed. However, the additive multigrid algorithm
typically requires more iterations to converge than the multiplicative.
Furthermore, multigrid patterns other than the standard V-cycle may
accelerate convergence, such as a W-cycle or F-cycle pattern [198]. [198]: Briggs, Henson, and McCormick

(2000), A Multigrid Tutorial
Schwarz solvers also come in many variations, e.g., involving face-
centered subdomains, that we have not explored in this article. Our
element-centered subdomains that eliminate corner and edge neighbors
have served well for our DG-discretized problems so far, and we have
focused on accelerating the subdomain solves with suitable precondition-
ers. Faster explicit-construction and approximate-inversion techniques
for the subproblems in the Laplacian-approximation preconditioner
have the greatest potential to speed up the elliptic solver. Possibilities
include constructing matrix representations analytically, either from the
DG scheme or from an approximate finite-difference scheme, and faster
methods to solve the subproblems than the incomplete LU technique we
currently employ.

A possible avenue for a more drastic improvement of the elliptic solver
algorithm is to replace the multigrid-Schwarz preconditioner, or parts of
it, altogether. For example, recent developments in the field of physics-
informed neural networks (PINNs) suggest that hybrid strategies, com-
bining a traditional linear solver with a PINN, can be very effective
[210, 211]. Hence, an intriguing prospect for accelerating elliptic solves in [210]: Markidis (2021), The Old and the

New: Can Physics-Informed Deep-Learning
Replace Traditional Linear Solvers?
[211]: Guidetti et al. (2021), dNNsolve: an
efficient NN-based PDE solver

numerical relativity is to combine our Newton-Krylov algorithm with a
PINN preconditioner, use the PINN as a smoother on multigrids, or use
it to precondition Schwarz subdomain solves.

Looking ahead, fast, scalable and highly-parallel elliptic solves in nu-
merical relativity not only have the potential to accelerate initial data
construction to seed high-resolution simulations of general-relativistic
scenarios, and at extreme physical parameters, but they may also support
evolutions. For example, some gauge constraints can be formulated as
elliptic equations, and solving them alongside an evolution can allow
the choice of beneficial coordinates, such as maximal slicing [17]. The [17]: Baumgarte and Shapiro (2010), Nu-

merical Relativity: Solving Einsteins Equa-
tions on the Computer

apparent-horizon condition is also an elliptic equation, though current

https://doi.org/10.1145/3093172.3093230
https://doi.org/10.1145/3093172.3093230
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.3389/fdata.2021.669097
https://doi.org/10.3389/fdata.2021.669097
https://doi.org/10.3389/fdata.2021.669097
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
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NR codes typically find apparent horizons with a parabolic relaxation
method [115]. Some NR codes employ a constrained-evolution scheme,[115]: Gundlach (1998), Pseudospectral ap-

parent horizon finders: An Efficient new al-
gorithm

which evolves the system in time through a series of elliptic solves, or
employ implicit-explicit (IMEX) evolution schemes [122]. Lastly, Einstein-

[122]: Lau, Lovelace, and Pfeiffer (2011),
Implicit-explicit (IMEX) evolution of single
black holes

Vlasov systems for collisionless matter involve elliptic equations, as do
simulations that involve solving a Poisson equation alongside an evolu-
tion, such as simulations of self-gravitating protoplanetary disks [212–
214]. Currently, elliptic solvers are rarely applied to solve any of these[212]: Deng, Mayer, and Latter (2020),

Global Simulations of Self-gravitating Mag-
netized Protoplanetary Disks
[213]: Hopkins (2015), A new class of ac-
curate, mesh-free hydrodynamic simulation
methods
[214]: Enzo (2014), Enzo: An Adaptive Mesh
Refinement Code for Astrophysics

problems alongside an evolution because they are too costly. Fast elliptic
solves have the potential to enable these applications.
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Discussion chapter

In this chapter I discuss the applicability of the discontinuous Galerkin
discretization scheme (Chapter 2 and Ref. [1]) and my new task-
based parallel elliptic solver (Chapter 3 and Ref. [2]) to the initial
data problem in numerical relativity. This is not the only target
application of the elliptic solver (I present another in Chapter 5, and
have discussed further possible applications in Chapter 1), but it is
certainly the primary application, and the one that has primarily
driven the development of the SpECTRE code thus far. The results
in this chapter are as yet unpublished. They extend the test cases
in Chapters 2 and 3 to ready-to-evolve initial data for simulations
of binary black holes and neutron stars, with the goal to seed our
general-relativistic evolutions with the SpECTRE code.a

aAt the time of writing, the SpECTRE code is capable of evolving BBH systems in the
generalized harmonic (GH) formulation using pregenerated control-system data from a
preceding SpEC simulation, which is used to control the position and shape of the excision
surfaces throughout the SpECTRE evolution. Therefore, these BBH evolutions currently rely
on SpEC initial data interpolated to the SpECTRE grid. Work on control systems in SpECTRE

is underway and will enable evolutions of the BBH initial data sets presented in this chapter,
making BBH evolutions in SpECTRE independent of SpEC. Work on GRMHD evolutions in
SpECTRE is also underway and will enable the evolution of initial data involving neutron
stars. See Ref. [7] for recent progress on GRMHD evolutions in SpECTRE.

In this chapter, I solve the elliptic Einstein constraint equations in the
XCTS formalism (see Section 1.2.3) to generate slices of general-relativistic
spacetime representing astrophysical scenarios with black holes and
neutron stars. I discuss single black hole spacetimes in Section 4.1, BBH
initial data slices in Section 4.2, single neutron stars in Section 4.3, and a
preview of BNS initial data slices in Section 4.4.

4.1 Single black hole spacetimes

Numerical solutions of the XCTS equations that represent Kerr spacetime
are essential test cases for non-conformally-flat elliptic solves. I have
already presented the convergence of the DG discretization error for
a Schwarzschild black hole in Kerr-Schild coordinates in Section 2.4.3,
and a detailed study of the elliptic solver convergence and parallel
scaling for this problem in Section 3.4.2. These two studies dealt with
a numerical subtlety that I detail in the following section. I also study
the convergence of spinning Kerr solutions with negative-expansion
boundary conditions, find apparent horizons in the data slices, and
compute horizon quantities.
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4.1.1 A numerical subtlety with apparent-horizon

boundary conditions

The Newton-Raphon algorithm exhibits a divergence that occurs when
apparent-horizon boundary conditions are coupled with the naive initial
guess

𝜓0 = 1, 𝛼0 = 1, 𝛽𝑖0 = 0. (4.1)

This defect also occurs in SpEC and I do not expect it to play a role
in BBH initial data problems where we choose a smarter initial guess.
However, the defect is sufficiently prominent in the commonly used
XCTS formalism that it warrants a closer study. Specifically, it occurs
with the configuration detailed in Section 2.4.3 that solves the XCTS
equations for a Schwarzschild black hole in Kerr-Schild coordinates. The
conformal metric is set to the spatial Kerr metric so the solution for the
Kerr-Schild conformal factor is trivially𝜓 = 1, Eq. (3.37a), coinciding with
the initial guess. This configuration, though reasonably straightforward,
fails to converge when apparent-horizon boundary conditions (2.54) are
imposed along with the Neumann-type lapse boundary condition

𝑛𝑘𝜕𝑘 (𝛼𝜓) = 0, (4.2)

which is commonly employed in the literature.1

1: See, e.g., Eq. (59a) in the early arti-
cle by Cook and Pfeiffer [113], Eq. (44)
in Lovelace et al. [75], and also con-
temporary studies such as Eq. (49) in
Rashti et al. [108] or Eq. (61) in Papen-
fort et al. [89]. These studies simplify
the problem by employing conformal
flatness and/or maximal slicing, so they
do not encounter the particular issue re-
ported here.
[75]: Lovelace et al. (2008), Binary-black-
hole initial data with nearly-extremal spins
[89]: Papenfort et al. (2021), New public
code for initial data of unequal-mass, spin-
ning compact-object binaries
[108]: Rashti et al. (2021), Elliptica: a new
pseudo-spectral code for the construction of
initial data
[113]: Cook and Pfeiffer (2004), Excision
boundary conditions for black hole initial
data

The strongly nonlinear
apparent-horizon boundary conditions couple the variables in such a way
that the solution is initially corrected away from 𝜓 = 1 and is then unable
to recover. Note that the Neumann-type lapse boundary condition (4.2)
yields a slice of Schwarzschild spacetime that differs slightly from the
Kerr-Schild slice, Eq. (3.37). Specifically, for the configuration studied
here the solution is 𝜓 = 1 within a few percent.

Figure 4.1: Numerical solution for
the shift 𝛽𝑖 in a slice through the
shell-shaped computational domain af-
ter the first Newton-Raphson step with
apparent-horizon boundary conditions
and the Neumann-type lapse boundary
condition, Eq. (4.2). For details on the
configuration refer to Section 2.4.3 and
input file KerrSchildDefect.yaml.

Fig. 4.1 shows the numerical solution after the first Newton-Raphson step.
It exhibits a deterioration from the initial guess away from the solution
for the shift. The linearized apparent-horizon boundary conditions flip
the shift vector inward in the vicinity of the inner shell boundary, where
it should point outward. The reason for this effect is the linearization of
Eq. (2.54), in particular

𝛿𝛽𝑖 =
(
3
(𝛼𝜓)
𝜓4 𝛿𝜓 − 𝛿(𝛼𝜓)

𝜓3

)
𝑛 𝑖 , (4.3)

which favors a correction of the shift aligned with the normal 𝑛 𝑖 (pointing
out of the computational domain, i.e., toward the center of the shell)
when 𝛿𝜓 > 0 and 𝛿(𝛼𝜓) < 0. In the configuration considered here, both
conditions are initially true. Consequently, the first Newton-Raphson step
drives the numerical solution to a configuration from which it is unable
to recover. I have confirmed this defect with the SpEC elliptic solver [55,
139], which diverges with the same behavior for this configuration.

The defect is less pronounced when a Dirichlet-type boundary condition
is employed for the conformal factor instead of Eq. (4.2). Section 2.4.3
makes this choice, imposing the analytic Kerr-Schild lapse, Eq. (2.53b), at
the inner shell surface so the exact Kerr-Schild slice is recovered. Many
contemporary approaches to black hole initial data choose variations of
Dirichlet-type lapse boundary conditions, such as most recent studies
with the SpEC code [75, 78]

[75]: Lovelace et al. (2008), Binary-black-
hole initial data with nearly-extremal spins
[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets

, and also Grandclément [133], Eq. (56).[133]: Grandclément (2010), KADATH: A
spectral solver for theoretical physics

https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1016/j.jcp.2010.01.005
https://doi.org/10.1016/j.jcp.2010.01.005
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Figure 4.2: Convergence of the ellip-
tic solver for the single black hole prob-
lem detailed in Section 2.4.3, i.e., with
Dirichlet-type lapse boundary condition,
from the naive initial guess 𝜓0 = 1,
𝛼0 = 1, 𝛽𝑖0 = 0, Eq. (4.1). The Newton-
Raphson algorithm converges in eleven
iterations, of which six require a line-
search globalization step that reduces
the step length 𝜆 to the fraction printed
above the marker representing the full-
step residual. Solved here is the configu-
ration with 𝐿 = 1 and 𝑃 = 5 depicted in
Fig. 2.10, circled in Fig. 2.11, and detailed
in input file KerrSchildDefect.yaml.

Fig. 4.2 shows the convergence of the elliptic solver when the Dirichlet-
type lapse boundary condition is chosen. The configuration is identical
to Section 2.4.3 except for the initial guess, which is still Eq. (4.1).2 2: Input file KerrSchildDefect.yaml

(Appendix B.1)The Newton-Raphson algorithm overshoots but converges successfully,
albeit slowly, with the help of the line-search globalization described
in Section 3.3.1. Evidently, the nonlinear apparent-horizon boundary
conditions pose a hard problem for the Newton-Raphson algorithm but
the elliptic solver proves capable of it. The solve presented in Fig. 4.2
completed in around ten seconds on 30 compute cores of the type detailed
in Section 3.4.

The defect can be fully resolved with an initial guess that is closer to
the solution for the shift, Eq. (2.53c). In BBH initial data problems we
typically choose an initial guess derived from a superposition of Kerr
solutions, which has proven sufficient to mitigate this problem. Another
possible resolution that allows the single black hole problem to converge
from the trivial initial guess, Eq. (4.1), is to choose a different conformal
background 𝛾̄𝑖 𝑗 than the Kerr-Schild solution. For instance, I found the
Newton-Raphson algorithm converges with the Neumann boundary
condition (4.2) from the trivial initial guess (4.1) when 𝛾̄𝑖 𝑗 = 𝛾Kerr

𝑖 𝑗 /(1 +
𝑀/(2𝑟))4, so the solution for the conformal factor is 𝜓 = 1 + 𝑀/(2𝑟)
(resembling isotropic coordinates) instead of 𝜓 = 1.

0 2 6 10 14 17

Cumulative linear solver iteration

10−2

10−6

10−10

Nonlinear residual ‖b−A(u)‖2
Linear residual

Figure 4.3: Replication of the bottom
panel of Fig. 3.16, for comparison with
Fig. 4.2. The only difference between the
two studies is the choice of apparent-
horizon boundary conditions with a
Dirichlet lapse condition in Fig. 4.2, and
linear Dirichlet and Neumann bound-
ary conditions derived from the analytic
Kerr-Schild solution here. The remaining
DG discretization error (not replicated
here) is approximately the same between
the two studies at about 10−6.

The preceding chapters dealt with this defect in different ways. In
Section 2.4.3 we chose an initial guess close to the analytic solution
in order to study the DG discretization error with apparent-horizon
boundary conditions. Since the DG discretization error is independent
of the convergence behavior of the Newton-Raphson algorithm (see
the discussion in Section 3.4.1 related to Fig. 3.13) we initialized the
elliptic solver with the analytic solution so it converges quickly toward
the numerical solution. On the other hand, in Section 3.4.2 we begin
at a flat initial guess to study the convergence behavior of the elliptic
solver. We choose a combination of Dirichlet and Neumann boundary
conditions that mimic apparent-horizon boundary conditions but remain
linear. The convergence of the Newton-Raphson algorithm for this choice
is presented in Fig. 3.16, and replicated here in Fig. 4.3 to the side.
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It can be contrasted with Fig. 4.2, which differs only in the choice of
inner boundary conditions. With the additional insight gained in this
section we could have chosen apparent-horizon boundary conditions
and a Dirichlet-type lapse condition in Section 3.4.2 just as well. The
convergence of the Newton-Raphson algorithm has no effect on the
results presented in Section 3.4.2, which concern the convergence, scaling
and parallel performance of the preconditioned Krylov solver. Finally, in
the BBH problems studied in Section 2.4.4 and Section 3.4.3 we employ
apparent-horizon boundary conditions. The defect is resolved because
we choose a superposition of Kerr solutions as initial guess. I present
convergence studies of the Newton-Raphson algorithm for BBH problems
further down in this chapter.

4.1.2 Spins and apparent horizons

Previous chapters presented only nonspinning black hole solutions.
Here, I generalize these results and study spins with deformed excision
surfaces, negative-expansion boundary conditions, and apparent-horizon
quantities. To this end, I employ the spinning apparent horizon boundary
conditions introduced in Section 1.2.3, Eq. (1.59), that involve rotation
parameters 𝛀𝑟 .

The complication that arises from spinning apparent-horizon boundary
conditions is related to the choice of the excision surface. The boundary
conditions impose that the excision surface is a spinning apparent horizon,
so the slice of spacetime depends on our choice for the placement and
shape of the boundary. The excision surface must be chosen consis-
tently with the free data, such as the conformal metric 𝛾̄𝑖 𝑗 , to allow for
equilibrium solutions.

r

r +

Figure 4.4: Surfaces of constant Boyer-
Lindquist radius 𝑟BL in Kerr-Schild coor-
dinates, Eq. (4.5), for dimensionless spin
𝜒 = 𝑎/𝑀 = 0.9. The spin is aligned with
the vertical axis (side view).

For example, a coordinate sphere cannot represent the horizon of a
spinning Kerr solution in Kerr-Schild coordinates. The inner and outer
Kerr horizons are located at constant Boyer-Lindquist radii 33: Eq. (6.82) in Carroll [15]

𝑟± = 𝑀 +
√
𝑀2 − 𝒂2, (4.4)

which describe ellipsoids in Kerr-Schild coordinates (see Fig. 4.4). These
ellipsoids of constant Boyer-Lindquist radius 𝑟BL are defined by 4

4: Eq. (47) in Visser [215]
[215]: Visser (2007), The Kerr spacetime: A
Brief introduction

𝒙2 = 𝑟2
BL + 𝒂2 − (𝒂 · 𝒙)

2

𝑟2
BL

(4.5a)

= 𝑟2
BL

𝑟2
BL + 𝒂2

𝑟2
BL + (𝒂 · 𝒙̂)2

(4.5b)

or, inversely,

𝑟2
BL =

1
2

(
𝒙2 − 𝒂2 +

√
(𝒙2 − 𝒂2)2 + 4 (𝒂 · 𝒙)2

)
(4.5c)

in Kerr-Schild coordinates 𝒙. If we were to excise a coordinate sphere
from a spinning Kerr-Schild conformal background and impose apparent-
horizon boundary conditions, the solution would be a perturbed black
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hole. Therefore, we deform the boundary at which we impose apparent-
horizon boundary conditions so it conforms to surfaces of constant
Boyer-Lindquist radius 𝑟BL.

Horizon-conforming excision surfaces

To deform the inner boundary of a spherical shell but keep the outer
boundary spherical at a finite radius, I taper off the deformation toward
the outer boundary. When the boundaries of the shell are spherical in
coordinates 𝑥̊ 𝑖 , I apply a “shape” coordinate map

𝑥 𝑖 = 𝑥̊ 𝑖 − (𝑥̊ 𝑖 − 𝑥̊ 𝑖C) 𝑓 (𝑟)𝜆(𝜃, 𝜙), (4.6)

where 𝜆(𝜃, 𝜙) describes a radial distortion, 𝑓 (𝑟) is a transition function
responsible for tapering off the deformation, and 𝒙̊C is the center of the
radial distortion. The transition function for the spherical shell with inner
radius 𝑟min and outer radius 𝑟max is

𝑓 (𝑟) = 𝑟min𝑟max

𝑟max − 𝑟min

1
𝑟
− 𝑟min

𝑟max − 𝑟max
, (4.7)

so 𝑓 (𝑟min) = 1 and 𝑓 (𝑟max) = 0. This means a coordinate sphere of
radius 𝑟 ∈ [𝑟min , 𝑟max] around 𝒙̊C is mapped to a distorted surface with
radius

𝑟(𝑟, 𝜃, 𝜙) = 𝑟
(
1 − 𝑓 (𝑟)𝜆(𝜃, 𝜙)) (4.8)

in the coordinates 𝑥 𝑖 . At the inner boundary of the shell the deformation
is

𝜆(𝜃, 𝜙) = 1 − 𝑟min(𝜃, 𝜙)
𝑟min

, (4.9)

where 𝑟min(𝜃, 𝜙) > 0 is freely specifiable and defines the deformation.

I choose 𝑟min(𝜃, 𝜙) so the inner boundary has constant Boyer-Lindquist
radius 𝑟min,

𝑟min(𝜃, 𝜙) = 𝑟min

√
𝑟2

min + 𝒂2

𝑟2
min + (𝒂 · 𝒙̂)2

, (4.10)

using Eq. (4.5b), where the angular dependence is encoded in 𝒙̂ =
(cos 𝜙 sin𝜃, sin 𝜙 sin𝜃, cos𝜃). Now the inner boundary of the shell
conforms to the outer Kerr horizon in Kerr-Schild coordinates when we
choose 𝑟min = 𝑟+, Eq. (4.4), or to any other Boyer-Lindquist radius 𝑟BL by
another choice of 𝑟min = 𝑟BL. The right panel of Fig. 4.5 illustrates the
horizon-conforming deformation of a spherical shell.

The transition to a spherical outer boundary of the shell also allows
composing a domain for binary black holes, such as depicted in Fig. 3.19.
The strategy to conform the initial excision boundary to a Kerr-Schild
horizon has been employed in the SpEC code since Ref. [75]. However, the [75]: Lovelace et al. (2008), Binary-black-

hole initial data with nearly-extremal spinsSpEC initial data solver does not transition to a spherical outer boundary
because it employs overlapping subdomains that do not need to attach
seamlessly. The configuration detailed here comes closer to the evolution
domains in SpEC, where a shape map of the form (4.6) is employed to
deform excision surfaces dynamically during the evolution.

https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017


112 4 Discussion: Initial data with black holes and neutron stars

20 40 60 80

Number of grid points per dimension (Npoints)
1/3

10−12

10−10

10−8

10−6

10−4

10−2

D
is

cr
et

iz
a
ti

o
n

er
ro

r
||u
−
u

a
n
a
ly

ti
c
||

L0

L1

L2

Figure 4.5: Left: Convergence of the DG discretization error with spinning apparent-horizon boundary conditions, Eq. (1.59), for a
Kerr-Schild black hole with 𝝌 = (0, 0, 0.9). Each of the three h-refinement levels span configurations from four to twelve grid points per
element and dimension (polynomial order 𝑃 = 3 to 𝑃 = 11). The discretization error to the analytic Kerr-Schild solution is defined by
Eq. (2.46). Right: A slice through the three-dimensional spherical shell domain with a horizon-conforming inner boundary used in these
simulations. Pictured is the configuration with 𝐿 = 1 and 𝑃 = 5 that is circled in the convergence plot on the left.

Spinning Kerr-Schild solution

As a first test, I now show numerically that the apparent-horizon bound-
ary conditions with spin, Eq. (1.59), are consistent with a Kerr black hole
in Kerr-Schild coordinates. To this end I excise an ellipsoid with constant
Boyer-Lindquist radius 𝑟+ and choose the rotation parameters 55: See, e.g., Eq. (6.92) in Carroll [15] and

note that 𝑟2+ + 𝒂2 = 2𝑀𝑟+.

𝛀𝑟 =
𝝌

2𝑟+
, (4.11)

so they coincide with the horizon angular velocity of a Kerr solution with
dimensionless spin 𝝌 = 𝒂/𝑀. I solve the XCTS equations as detailed in
Section 2.4.3. The spinning Kerr-Schild solution is [215][215]: Visser (2007), The Kerr spacetime: A

Brief introduction

𝛼 = (1 + 2𝐻)−1/2 , (4.12a)

𝛽𝑖 = 2𝐻𝛼2𝑙 𝑖 , (4.12b)

with the background quantities

𝛾̄𝑖 𝑗 = 𝛿𝑖 𝑗 + 2𝐻𝑙𝑖 𝑙 𝑗 , (4.12c)

𝐾𝑖 𝑗 = 2𝛼
(
𝐻𝜕(𝑖 𝑙 𝑗) + 𝑙(𝑖𝜕𝑗)𝐻

+ 2𝐻2𝑙(𝑖 𝑙𝑘𝜕𝑘 𝑙 𝑗) + 𝐻𝑙𝑖 𝑙 𝑗 𝑙𝑘𝜕𝑘𝐻
)
,

(4.12d)

𝐾 = 𝛾𝑖 𝑗𝐾𝑖 𝑗 , (4.12e)
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where

𝐻 =
𝑀𝑟3

BL

𝑟4
BL + (𝒂 · 𝒙)2

, (4.12f)

𝒍 =
𝑟BL𝒙 − 𝒂 × 𝒙 + (𝒂 · 𝒙) 𝒂/𝑟BL

𝑟2
BL + 𝒂2

, (4.12g)

and where 𝑟BL is the Boyer-Lindquist radius defined in Eq. (4.5). Note
that Eq. (4.12) reduces to Eq. (2.53) for 𝒂 = 0. The choice of the Kerr-
Schild spatial metric for the conformal metric, Eq. (4.12c). implies that
the solution for the conformal factor is 𝜓 = 1.

The left panel of Figure 4.5 shows the convergence of the DG dis-
cretization error to the analytic Kerr-Schild solution with dimensionless
spin 𝝌 = (0, 0, 0.9). The domain configuration is the same as detailed in
Section 2.4.3 but with the new horizon-conforming inner boundary, as
pictured in the right panel of Fig. 4.5.6 The convergence is exponential 6: Input file KerrSchildSpin.yaml

(Appendix B.2)with a rate slightly lower than that for the nonspinning case presented in
Fig. 2.11.

Evidently, the Kerr-Schild slices, Eq. (4.12), fulfill the spinning apparent-
horizon boundary boundary conditions, Eq. (1.59), with rotation parame-
ters (4.11) at the ellipsoidal surface of constant Boyer-Lindquist radius 𝑟+.
The elliptic solver is equipped to reproduce this solution. A useful exer-
cise for future explorations of spinning Kerr slices in coordinates different
than Kerr-Schild, such as harmonic or spherical Kerr-Schild coordinates,
is to check their consistency with Eq. (1.59).

4.1.3 Negative-expansion boundary conditions

Evolutions of binary black holes with the generalized harmonic formalism
proceed on slices that extend slightly into the apparent horizons, so the
dynamic horizon finder can always track the horizons. Therefore, initial
data must be available also somewhat inside the apparent horizons.
For a long time, the SpEC code has accomplished this by solving initial
data with apparent-horizon boundary conditions and then extrapolating
the initial data into the horizons.7 More recently, Varma, Scheel, and 7: See Pfeiffer [170], Section 7.9.

[170]: Pfeiffer (2003), Initial Data for Black
Hole Evolutions

Pfeiffer [78] have proposed to replace this procedure by negative-expansion

[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets

boundary conditions that require no extrapolation. The idea is to impose
the expansion on the boundary to be slightly negative, instead of zero, so
it represents a surface within the apparent horizon. We accomplish this
by adding the quantity

𝜓3

4
ΘKerr (4.13a)

to the Neumann-type boundary condition for the conformal factor,
Eq. (1.59a), and the quantity

𝜖 = 𝑠𝑖𝛽𝑖Kerr − 𝛼Kerr (4.13b)

to the orthogonal part 𝑠𝑖𝛽𝑖 of the Dirichlet-type boundary condition for
the shift, Eq. (1.59b).8 Here, the quantities ΘKerr, 𝛼Kerr, and 𝛽Kerr are the 8: See Eqs. (25) and (26) in Varma, Scheel,

and Pfeiffer [78].expansion, lapse, and shift of a Kerr solution evaluated at the boundary,
where the expansion Θ is given by Eq. (1.58). They are axisymmetric,
but may vary along the azimuthal direction. Note that both corrections,

https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
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Figure 4.6: Kerr-Schild black hole with negative-expansion boundary conditions. The black region is excised from the computational
domain and the boundary conditions are imposed on its surface. The blue region lies inside the (numerically determined) apparent
horizon, but is part of the computational domain.

Eqs. (4.13a) and (4.13b), vanish when the boundary is a horizon of the
solution.

Figure 4.6 presents a solution to the XCTS equations representing a
spinning Kerr-Schild black hole with negative-expansion boundary
conditions. It differs from the Kerr-Schild configurations solved in Fig. 4.5
only in the choice of inner boundary, and the resulting corrections to
the apparent-horizon boundary conditions that follow from the choice
of boundary away from the horizon, Eq. (4.13).9 Specifically, I excise an9: Input file KerrSchildSpin.yaml

(Appendix B.2) ellipsoid of constant Boyer-Lindquist radius 𝑟min = 𝑀, which is halfway
between 𝑟+ and 𝑟−. To obtain a dimensionless spin of approximately 𝝌
I choose

𝛀𝑟 =
𝝌

2𝑟min
, (4.14)

following Eq. (4.11).

The left panel in Fig. 4.7 shows the convergence of the discretization
error with ℎ𝑝 refinement for the spinning Kerr-Schild black hole with
negative-expansion boundary conditions. Since this configuration only
approximates a Kerr-Schild solution, I compute the discretization error
as detailed in Section 2.4.4, by interpolating the solution variables to a
set of sample points 𝒙𝑚 and computing the 𝐿2 norm of the difference to
a high-resolution reference run, Eq. (2.59). I choose the sample points
𝒙1 = (1.6, 0, 0) (near the bulge of the horizon), 𝒙2 = (0, 0, 1.2) (near
the top of the horizon), and 𝒙3 = (9, 0, 0) (outside the horizon). The
discretization error ∥𝑢 − 𝑢ref∥ converges exponentially. Also shown is the
exponential convergence of the constraint norm discussed in Section 4.2.4
below. All simulations, which involve up to ∼ 26.5 million degrees of
freedom for the 𝐿 = 3 and 𝑃 = 11 reference run, completed in at most a
few minutes on up to 240 cores.

Apparent horizon quantities

Since the inner boundary now extends into the apparent horizon, we
can employ an apparent horizon finder to determine the location of the
apparent horizon on the slice numerically. I use the apparent horizon
finder implemented in the SpECTRE code, which is based on the parabolic
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Figure 4.7: Left: Convergence of the Kerr-Schild problem with negative-expansion boundary conditions, at ℎ-refinement levels 𝐿 ∈ [0, 3]
and 𝑃 ∈ [3, 11]. The constraint norm C and the shaded area below are defined in Section 4.2.4. The discretization error is measured to
the highest-resolution reference configuration (𝐿 = 3, 𝑃 = 11). Right: Convergence of apparent horizon quantities. The light gray lines
illustrate the discretization error, as shown in the left panel.

relaxation method by Gundlach [115]. The numerically determined appar- [115]: Gundlach (1998), Pseudospectral ap-
parent horizon finders: An Efficient new al-
gorithm

ent horizon is shaded blue in Fig. 4.6. On it we can extract the irreducible
mass 𝑀irr, the spin magnitude 𝑆, the Christodoulou (or “Kerr”) mass 𝑀,
and the dimensionless spin 𝜒, as

𝑀2
irr =

𝐴
16𝜋

, (4.15)

𝑆 =
1

8𝜋

∮
𝑧Ωd𝐴 , (4.16)

𝑀2 = 𝑀2
irr +

𝑆2

4𝑀2
irr

, (4.17)

𝜒 =
𝑆
𝑀2 , (4.18)

where 𝐴 is the area of the apparent horizon,10

10: See, e.g., Eq. (7.2) in Baumgarte
and Shapiro [17] for 𝑀irr, and see Ap-
pendix D in Baumgarte et al. [216] or Ap-
pendix C in Baumgarte and Shapiro [17]
for details on computing the area ele-
ment on the apparent horizon.
[216]: Baumgarte et al. (1996), Implement-
ing an apparent horizon finder in three-
dimensions

and 𝑆 is the quasilocal
spin magnitude measured by solving a generalized eigenvalue problem
for the spin potential 𝑧 and projecting it on the spin function Ω over the
apparent horizon surface [75].11

11: See Eq. (9) in Ref. [217] for the defi-
nition of the spin potential 𝑧 in terms of
an eigenvalue problem, and Eq. (10) in
Ref. [218] for the definition of the spin
function Ω. We compute 𝑆 as the Eu-
clidean norm of Eq. (4.16) over the three
spin potentials with the smallest eigen-
values.
[75]: Lovelace et al. (2008), Binary-black-
hole initial data with nearly-extremal spins
[217]: Owen (2009), The Final Remnant
of Binary Black Hole Mergers: Multipolar
Analysis
[218]: Owen et al. (2019), Black Hole Spin
Axis in Numerical Relativity

The right panel in Fig. 4.7 shows the convergence of the Christodoulou
mass 𝑀 and the dimensionless spin magnitude 𝜒 measured on the ap-
parent horizon. Their errors are computed as the difference to the highest-
resolution reference run also used in the left panel. I find 𝑀 ≈ 0.836 and
𝜒 ≈ 0.864. These values deviate from the parameters 𝑀 = 1 and 𝜒 = 0.9
of the background Kerr-Schild solution defining the conformal metric and
trace of the extrinsic curvature, because the negative-expansion bound-
ary conditions are only approximately consistent with a Kerr-Schild
slice. Instead, the slice solves the Einstein constraints but represents a
perturbed Kerr solution in approximate Kerr-Schild coordinates. For

https://doi.org/10.1103/PhysRevD.57.863
https://doi.org/10.1103/PhysRevD.57.863
https://doi.org/10.1103/PhysRevD.57.863
https://doi.org/10.1103/PhysRevD.54.4849
https://doi.org/10.1103/PhysRevD.54.4849
https://doi.org/10.1103/PhysRevD.54.4849
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.80.084012
https://doi.org/10.1103/PhysRevD.80.084012
https://doi.org/10.1103/PhysRevD.80.084012
https://doi.org/10.1103/PhysRevD.99.084031
https://doi.org/10.1103/PhysRevD.99.084031
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this reason 𝜓 ≠ 1 at the percent level in Fig. 4.6. In practice, we would
perform an iteration procedure to find mass and rotation parameters
so 𝑀 and 𝜒 take the desired values, such as the procedure detailed by
Ossokine et al. [181] used in SpEC. Nevertheless, a careful study with[181]: Ossokine et al. (2015), Improvements

to the construction of binary black hole initial
data

the goal to optimize the negative-horizon boundary conditions so the
measured horizon quantities come as close as possible to the background
Kerr-Schild solution has the potential to reduce perturbations in initial
data slices.

4.2 Binary black holes

For binary black holes (BBH) initial data I choose the background quanti-
ties in the XCTS equations based on superposed isolated solutions [75],[75]: Lovelace et al. (2008), Binary-black-

hole initial data with nearly-extremal spins and impose quasiequilibrium apparent-horizon boundary conditions
on excised regions of the domain to represent black holes [113]. This[113]: Cook and Pfeiffer (2004), Excision

boundary conditions for black hole initial
data

procedure is detailed in Section 2.4.4 for orbiting, but nonspinning,
superposed Kerr-Schild (SKS) initial data.

My implementation in SpECTRE is based on the new task-based parallel
elliptic solver developed in Chapter 3 and Ref. [2]. It also supports spins,[2]: Vu et al. (2022), A scalable elliptic solver

with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

unequal masses, an initial radial velocity, horizon-conforming excision
surfaces (see Section 4.1.2), and negative-expansion boundary conditions
(see Section 4.1.3). This feature set is already comparable to SpEC. In SpEC,
separate rootfinding routines control the free input parameters [181],[181]: Ossokine et al. (2015), Improvements

to the construction of binary black hole initial
data

correct the center of mass, and control eccentricity [219–221]. These

[219]: Pfeiffer et al. (2007), Reducing orbital
eccentricity in binary black hole simulations
[220]: Buonanno et al. (2011), Reducing
orbital eccentricity of precessing black-hole
binaries
[221]: Mroue and Pfeiffer (2012), Precess-
ing Binary Black Holes Simulations: Quasi-
circular Initial Data

routines invoke the elliptic solver repeatedly, and will be straightforward
to adapt to the new code.

The new elliptic solver algorithms allow to scale initial data problems to
supercomputers, which is the most prominent advancement presented
in this thesis over the SpEC elliptic solver [139]. The superior parallel

[139]: Pfeiffer et al. (2003), A multidomain
spectral method for solving elliptic equations

performance is demonstrated in Section 3.4.3 and Fig. 3.20 for equal-mass
and nonspinning SKS initial data. In this section I present optimizations,
test cases, and results not yet included in Chapter 3.
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Figure 4.9: Binary black hole initial data in superposed Kerr-Schild coordinates solved in Section 3.4.3. The conformal background is a
superposition of Kerr-Schild metrics modulated by Gaussians, the inner lapse boundary condition is of Dirichlet type, and the outer
boundary is at radius 300 (see input file BbhSks.yaml).

Furthermore, my implementation in SpECTRE supports superposing any
two isolated solutions in orbit, and is therefore neither limited to Kerr-
Schild black holes, nor to vacuum solutions. At the time of writing, the
following Schwarzschild solutions are implemented in addition to the
spinning Kerr-Schild solution:

Isotropic Conformally flat, 𝛾̄𝑖 𝑗 = 𝜂𝑖 𝑗 , and maximally sliced, 𝐾 = 0, coor-
dinates for Schwarzschild spacetime that arise from the canonical
Schwarzschild coordinates by a radial transformation.12

12: See Eq. (1.60) and Table 2.1 in Baum-
garte and Shapiro [17].

This is
traditionally a very convenient coordinate system for simple ini-
tial data problems, but generalizes poorly to spinning solutions
because the Kerr spacetime does not admit conformally flat slices.
The coordinates are singular at the horizon, but Cook and Pfeif-
fer [113]

[113]: Cook and Pfeiffer (2004), Excision
boundary conditions for black hole initial
data

show that the lapse boundary condition at the horizon
can select another maximal Schwarzschild slice that can be radially
transformed to conformal flatness.13

13: See Sec. III.C in Cook and Pfeif-
fer [113], and Sec. 7.4.2 in Pfeif-
fer [170]. Note the missing factor 𝐶/𝑟4 in
Eq. (7.44c) in Ref. [170].
[170]: Pfeiffer (2003), Initial Data for Black
Hole Evolutions

Painlevé-Gullstrand In these coordinates the spatial metric is flat, 𝛾𝑖 𝑗 =
𝜂𝑖 𝑗 , and the lapse is trivial, 𝛼 = 1.14

14: See Table 2.1 in Baumgarte and
Shapiro [17].In contrast to (isotropic)

Schwarzschild coordinates the shift and extrinsic curvature are
nontrivial in Painlevé-Gullstrand coordinates, making them useful
to test the momentum sector of the Einstein constraint equations.

Isotropic Kerr-Schild (or Eddington-Finkelstein) Horizon penetrating
and conformally flat coordinates that arise from the Schwarzschild
metric in Kerr-Schild coordinates, Eq. (2.53), by a radial transforma-
tion. In contrast to isotropic Schwarzschild coordinates the radial
transformation requires numerical rootfinding.15

15: See Sec. 7.4.1 in Pfeiffer [170] for de-
tails.

Harmonic Horizon penetrating coordinates that are harmonic in both
time and space,16

16: See Eqs. (45) to (50) in Cook and
Scheel [222] which represent the zero-
spin limit of the time harmonic and hori-
zon penetrating slices of Kerr spacetime
presented in the paper. We add the radial
transformation 𝑟 → 𝑟 +𝑀 to make the
spatial coordinates harmonic as well (see
Eq. (43) in Ref. [222]), so the coordinates
remain harmonic under boosts.
[222]: Cook and Scheel (1997), Well-
behaved harmonic time slices of a charged,
rotating, boosted black hole

meaning they satisfy the harmonic coordinate
conditions 𝑔𝜇𝜈∇𝜇∇𝜈𝑥𝜌 = 0.17

17: See Sec. 4.3 in Baumgarte and
Shapiro [17] for details on harmonic co-
ordinates. Note that Eq. (4.45) in Baum-
garte and Shapiro [17] is missing a minus
sign:

(
𝜕𝑡 − 𝛽 𝑗𝜕𝑗

)
𝛽𝑖 = −𝛼2 (𝛾𝑖 𝑗𝜕𝑗 ln 𝛼 −

𝛾 𝑗𝑘Γ𝑖𝑗𝑘
)
.

Work is underway to generalize the
harmonic Schwarzschild solution to include spin, which will enable
superposed harmonic Kerr (SHK) initial data [78]

[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets

.

The matter solutions currently implemented in the SpECTRE initial data
solver and available for superposition are listed in Section 4.4 below. A
brief introduction to produce BBH initial data with SpECTRE is available
online [223]

[223]: Vu et al. (2022), Binary black hole
initial data example in the SpECTRE docu-
mentation

.
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Figure 4.10: Convergence of the ellip-
tic solver for the equal-mass and non-
spinning SKS configuration marked ∗ in
Fig. 3.20 and pictured in Fig. 3.19 and
Fig. 4.9.
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My implementation also allows to superpose two different isolated so-
lutions to construct a conformal background, which has not yet been
explored in the literature. For example, based on the conclusions drawn
by Varma, Scheel, and Pfeiffer [78] the combination of Kerr-Schild co-[78]: Varma, Scheel, and Pfeiffer (2018),

Comparison of binary black hole initial data
sets

ordinates for a highly spinning black hole, and harmonic coordinates
for a second black hole with moderate spin, can be advantageous for
evolutions.

To connect to Pfeiffer [170], I present in Fig. 4.8 a BBH initial data slice in[170]: Pfeiffer (2003), Initial Data for Black
Hole Evolutions superposed isotropic Kerr-Schild coordinates with Neumann-type lapse

boundary condition, Eq. (4.2), which reproduces Fig. 7.5 in Ref. [170].1818: Input file BbhKsi.yaml
(Appendix B.3) This initial data slice is conformally flat.

4.2.1 Superposed Kerr-Schild initial data

Superposed Kerr-Schild (SKS) initial data has seeded routine SpEC simu-
lations for over a decade now [9, 75]. I have studied the applicability of[9]: SXS (2019), The SXS collaboration cata-

log of binary black hole simulations
[75]: Lovelace et al. (2008), Binary-black-
hole initial data with nearly-extremal spins

the discontinuous Galerkin scheme to SKS initial data in Section 2.4.4,
and the superior parallel performance of the new SpECTRE elliptic solver
for the same problem in Section 3.4.3. Figure 4.9 shows a visualization of
this equal-mass and nonspinning slice of SKS initial data.

Figure 4.11: Deformation of the confor-
mal factor near the horizons in SKS initial
data, Fig. 4.9.

A notable feature in Fig. 4.9 is the deformation of the conformal factor
close to the two black holes. It is depicted in more detail in Fig. 4.11. The
feature also appears when this configuration is solved in SpEC, which
is unsurprising since the difference of the configuration solved in SpEC

and SpECTRE is convergent, as detailed in Section 3.4.3. The shape of the
feature is indicative of an orbital effect. Since the conformal background is
a superposition of isolated solutions at rest, the conformal factor accounts
for both the gravitational interaction between the two bodies as well
as the orbital motion. Therefore, it is likely that the feature diminishes
when a Lorentz boost is added to the individual background solutions
with a corresponding deformation of the excision surfaces to conform to
the boosted isolated horizons. This has been the practice in SpEC since
Lovelace et al. [75] but has never been studied in detail. Eliminating the

https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1103/PhysRevD.78.084017
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Figure 4.12: Slice through the optimized
BBH domain with equiangular maps and
a bulged envelope. The outer spherical
shell is ℎ refined such that wedges have
equal angular size. All elements in this
picture have seven angular grid points,
and {7, 7, 8, 11} radial grid points in the
layers ordered from outermost to inner-
most.

sharp peaks visible in Fig. 4.11 potentially reduces the required resolution
close to the excision surfaces, as well as nonequilibrium perturbations in
the initial data slice.

Figure 4.10 shows the elliptic solver convergence for an SKS initial data
run.19 Specifically, it shows the run marked ∗ in Fig. 3.20, which corre- 19: Input file BbhSks.yaml

(Appendix B.4)sponds to the domain pictured in Fig. 3.19 and replicated here in Fig. 4.13
to the side. It involves 54 irreducible blocks, ℎ𝑝 refinement with non-
conforming boundaries, and ∼ 700k grid points. Despite this significant
increase in complexity from the simple spherical shells studied in, e.g.,
Fig. 3.16, the multigrid-Schwarz preconditioned GMRES algorithm drives
the linear residual down by a factor of 10−3 in only seven to ten iterations
per Newton-Raphson step. The solve completes in 44 seconds on 90 cores,
and reaches an accuracy of ≲ 10−6 (see Fig. 3.20).

Figure 4.13: BBH domain (replicated
from Fig. 3.19).

4.2.2 Domain optimizations

In an effort to accelerate the elliptic solver further, some of the domain
optimizations suggested in Section 3.5 have been implemented in SpECTRE

since the publication of Ref. [2]. Figure 4.12 illustrates the optimized [2]: Vu et al. (2022), A scalable elliptic solver
with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

domain.

Most prominently, we eliminated the layer of ten blocks that transi-
tioned from the cube to the sphere enveloping the center in Fig. 4.13.
This transition layer employed an inefficient linear radial coordinate
distribution, and had to resolve the grid compression at the corners of
the cube. Instead, we now bulge out the ten wedges of the cube to a
sphere directly, bringing the number of blocks in the domain down to
44. The intermediate nonspherical layer shown in Fig. 4.12 arises from
radial ℎ refinement. This is preferable over block boundaries because it
enables the multigrid solver to coarsen the grid by an additional level
(see Section 3.3.3).

https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
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Figure 4.14: Power monitors for SKS initial data on the domain pictured in Fig. 4.12. Panels from left to right correspond to layers in the
domain, from innermost (shells enclosing the excision surfaces) to outermost (spherical shell extending to the outer radius). Plotted
is the power monitor (4.20) in every direction of every DG element in the domain. The five XCTS variables 𝑢𝐴 = {𝜓, 𝛼𝜓, 𝛽𝑖excess} are
combined as an 𝐿2 norm, so the plotted power monitor in direction 𝑖 of element Ω𝑘 is (∑𝐴 𝑃𝑝𝑖 (𝑢𝐴)2)1/2. Horizontal lines indicate the
largest power in the highest mode over all elements in the panel, indicative of the truncation error of that axis.

Furthermore, a new equiangular coordinate map increases angular
resolution considerably. It ensures that equally-spaced logical coordinates
on a reference cube remain equally spaced in angular direction when the
reference cube is deformed to a wedge (see Fig. 2.1b). The equiangular
map is favorable for the spherical shells involved in the domain.

To inform domain optimizations I employ power monitors, which are
diagnostic quantities geared toward an adaptive mesh refinement (AMR)
algorithm.20 First, I compute the modes 𝑢̃𝑝 associated with the nodal20: See Eq. (52) in Szilágyi [224] for a

definition of power monitors in the con-
text of spherical harmonics employed in
the SpEC code.
[224]: Szilágyi (2014), Key Elements of Ro-
bustness in Binary Black Hole Evolutions
using Spectral Methods

data 𝑢𝑝 on an element Ω𝑘 , as

𝑢̃𝑝 = V−1
𝑝𝑞 𝑢𝑞 , (4.19)

where V𝑝𝑞 =
∏𝑑

𝑖 Φ𝑞𝑖 (𝜉𝑝𝑖 ) is the Vandermonde matrix on the element. It
transforms between the nodal representation, formulated in terms of
Lagrange polynomials rooted at the LGL collocation points 𝜉𝑝𝑖 , and
the modal representation, formulated in terms of Legendre polynomials
Φ𝑝𝑖 (𝜉).21 Then, a definition of the power in the modes in dimension 𝑖 of21: See Section 2.3.1 for details on the

domain decomposition, and Sec. 3.1 in
Hesthaven and Warburton [126] for a
discussion of the Vandermonde matrix.

element Ω𝑘 is

𝑃𝑝𝑖 (𝑢) =

√√√√√√∑𝑁
𝑞=1
𝑞𝑖=𝑝𝑖

��𝑢̃𝑞 ��2∑𝑑
𝑗≠𝑖 𝑁𝑗

. (4.20)

Recall from Section 2.3.1 that 𝑝𝑖 ∈ {1, . . . , 𝑁𝑖} enumerates the modes
(or grid points) in dimension 𝑖 of the element Ω𝑘 , and 𝑝 ∈ {1, . . . , 𝑁}
identifies the mode (or grid point) regardless of dimension (see Fig. 4.15
to the side, which replicates Fig. 2.1b). I have dropped the index 𝑘 that
identifies the element in these expressions.

𝜉

𝜂
(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

Figure 4.15: Enumeration of grid points
on the regular grid of a two-dimensional
element. The power monitor along di-
rection 𝑖, Eq. (4.20), marginalizes over
all orthogonal dimensions 𝑗 ≠ 𝑖 of the
grid. This illustration is a replication of
Fig. 2.1b.

Figure 4.14 shows the power monitors for SKS initial data on the domain
pictured in Fig. 4.12. Modes decay exponentially, but at different rates.
The magnitude of the highest mode (horizontal lines) gives an indication
which direction of the grid dominates the discretization error. While
this analysis has guided my domain optimizations, it may not yet be
sufficient to inform an anisotropic AMR algorithm by itself. For example,
I have found a high radial resolution in the inner shells reduces the
discretization error considerably, but appears excessive in Fig. 4.14 (left
panel).

https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1142/S0218271814300146
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Figure 4.16: Improved convergence and speed accomplished by recent domain optimizations for the BBH initial data problem solved
in Section 3.4.3. The gray lines correspond to the data shown in Fig. 3.20, and the black line corresponds to the optimized domain
(Fig. 4.12 and input file BbhDomain.yaml). Left: The optimized domain requires fewer grid points to reach the same accuracy. Right: The
run marked ∗ on the optimized domain is faster than SpEC on four cores. It scales reliably to 120 cores, at which point it is about ten times
faster than SpEC.

Figure 4.16 presents an update to Fig. 3.20 with an additional curve
representing the convergence of the DG discretization error on the
optimized BBH domain.22 The optimized domain achieves the same 22: Input file BbhDomain.yaml

(Appendix B.5)accuracy with fewer grid points, hence accelerating the elliptic solver.
The run marked ∗ completes in 28 seconds on 90 cores while reaching
an accuracy of ≲ 10−6, which is over 50 % faster than the previous
configuration.

Further domain optimizations are possible, some of which are already
mentioned in Section 3.5. Work is underway to equalize the angular size
of wedges, which is a flaw apparent in Fig. 4.12. Clearly, the wedges
toward the left and right of the bulged envelope are larger than the
wedges toward the top and bottom in Fig. 4.12. This flaw also manifests
in ℎ-nonconforming boundaries between the outer shell and the bulged
envelope.

Figure 4.17: Block boundaries in the BBH
domain.

To illustrate this point, Fig. 4.17 shows all block boundaries in the domain.
The angle 𝜙 is covered by four outer wedges of equal size. However, the
angle 𝜃 is covered by six outer wedges: two full-size wedges plus four
half-wedges split by the vertical symmetry plane. To obtain outer wedges
of equal angular size, I first split all outer wedges in two along the angle 𝜙.
Then, I also split the two full-size outer wedges at the poles of 𝜃 in two
along both angles. To carry this ℎ refinement inward, I split all wedges
of the bulged envelope in two along both angles to conform to the two
central cubes. The resulting asymmetry in resolution along 𝜃 is evident
in Fig. 4.12. It is also visible in the power monitors in Fig. 4.14, where the
residual power in a few angular elements dominates the discretization
error in the bulged envelope, and carries over into the inner cubes. This
issue can be resolved by an equatorial compression such that all wedges
cover 60◦ in 𝜃 and 90◦ in 𝜙. The asymmetry between the two angles can
be compensated by 𝑝 refinement.
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Figure 4.18: Slice through the BBH do-
main based on Fig. 4.12 with unequal
masses and an ellipsoidal excision sur-
face on the left. The shell around the
excision surface transitions to a coordi-
nate sphere.

4.2.3 Spinning and unequal-mass SKS initial data with

negative-expansion boundary conditions

In this section I present an SKS initial data slice with spin, unequal
masses, and negative-expansion boundary conditions. I find apparent
horizons in the data and study the convergence of horizon quantities.
For this study I choose the case labeled q3 by Ossokine et al. [181], which[181]: Ossokine et al. (2015), Improvements

to the construction of binary black hole initial
data

has 𝑞 = 3, 𝝌1 = (0, 0.49,−0.755), and 𝝌2 = (0, 0, 0).23

23: Input file BbhSpin.yaml
(Appendix B.6)

The black holes are placed at coordinate separation 𝐷0 = 15.48 and orbit
with Ω0 = 0.01515 (see Table 1 in Ref. [181]). I approximate the center
of mass by 𝑪COM = (𝑀1𝑪1 +𝑀2𝑪2) /𝑀, so the left black hole with
Kerr mass parameter 𝑀1 = 0.75 is placed at 𝑥 = −3.87, and the right
black hole with 𝑀2 = 0.25 is placed at 𝑥 = 11.61. I choose falloff widths
𝑤1 = 7.5 and 𝑤2 = 2.5 for the superposition.

I excise ellipsoids of constant Boyer-Lindquist radius 𝑟min as detailed in
Section 4.1.2, choosing the spin of the respective Kerr-Schild solution to
define the Boyer-Lindquist radius for each of the two excision surfaces,
Eq. (4.10). For the left black hole I excise at 𝑟min,1 = 0.97, and for the right
black hole at 𝑟min,2 = 0.45. These choices correspond to 𝑟min ≈ 0.9𝑟+, so
the excision surfaces lie within the horizons of the two isolated solutions.
I impose spinning apparent-horizon boundary conditions, Eq. (1.59),
with negative-expansion corrections, Eq. (4.13), on the ellipsoidal excision
surfaces, and choose the rotation parameters

𝛀𝑟 =
𝝌

2𝑟min
(4.21)

for each of the two excisions, following Eq. (4.14).

To solve the XCTS problem numerically I employ the optimized domain
detailed in Section 4.2.2. It accounts for the shifted center of mass by
distorting the bulged envelope, and for the ellipsoidal excision surface

https://doi.org/10.1088/0264-9381/32/24/245010
https://doi.org/10.1088/0264-9381/32/24/245010
https://doi.org/10.1088/0264-9381/32/24/245010
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Figure 4.19: Spinning and unequal-mass SKS initial data with negative-expansion boundary conditions. The spinning black hole (left) is
represented by a nonspherical excision boundary. Since its spin 𝝌1 is tilted toward positive 𝑦, the excision boundary is slightly elongated
horizontally in this plot.

by transitioning to a spherical shell in the vicinity of the left black hole
(see discussion in Section 4.1.2). Figure 4.18 illustrates these effects. I have
not reanalyzed the domain based on power monitors.

Figure 4.19 shows a visualization of a two-dimensional slice through the
initial data. Note that the addition of a spin unaligned with the orbital
axis has broken the symmetry with respect to the orbital plane. This
is evident in the right panel of Fig. 4.19, where the shift component
𝛽𝑧 is nonzero around the spinning (left) black hole. Therefore, a fully
three-dimensional formalism is required to solve this configuration.

Figure 4.20 (left panel) presents the convergence of the solution under
ℎ𝑝 refinement of the domain. The circled configuration corresponds
to the domain depicted in Fig. 4.18. I compute the discretization error
as detailed in Section 2.4.4, by interpolating the solution variables to a
set of sample points 𝒙𝑚 and computing the 𝐿2 norm of the difference
to a high-resolution reference run, Eq. (2.59). To account for the loss
of symmetry I choose sample points near both excisions, specifically
𝒙1 = (−5.14, 0, 0) (near the left excision), 𝒙2 = (12.11, 0, 0) (near the
right excision), 𝒙3 = (0, 0, 0) (origin), and 𝒙3 = (100, 0, 0) (far field).
The discretization error ∥𝑢 − 𝑢ref∥ converges exponentially, and at a
slightly lower rate than for the equal-mass and nonspinning configuration
(Fig. 4.16). Also shown is the exponential convergence of the constraint
norm discussed in Section 4.2.4 below.

The right panel of Fig. 4.20 shows the convergence of quantities extracted
on the apparent horizons of the two black holes. I find the apparent
horizons numerically and measure their quantities using the methods
laid out in Section 4.1.2. They converge exponentially for both black
holes, following the convergence of the discretization error plotted in
the left panel. I measure a Christodoulou mass of 𝑀1 ≈ 0.987 and a
dimensionless spin magnitude of 𝜒1 ≈ 0.925 for the left black hole,
and 𝑀2 ≈ 0.321 and 𝜒2 ≈ 0.013 for the right black hole. These values
deviate from the parameters imposed on the background Kerr-Schild
solutions, as discussed in Section 4.1.2.
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Figure 4.20: Left: Convergence of the spinning SKS initial data, Fig. 4.19, at three ℎ-refinement levels 𝐿 ∈ [0, 2]. The constraint norm C
and the shaded area below are defined in Section 4.2.4. Right: Convergence of apparent horizon quantities. The light gray lines illustrate
the discretization error, as shown in the left panel.

4.2.4 Constraint norms

The Hamiltonian and momentum constraints, Eqs. (1.42a) and (1.42b), can
be evaluated numerically to indicate how accurately an initial data slice
satisfies the Einstein equations. Since we solve them numerically as part
of the XCTS equations, Eq. (1.56), we expect their residual to converge to
zero with increasing numerical resolution. I define the Hamiltonian and
momentum constraints as

CH =
1
2

(
𝑅 + 𝐾2 − 𝐾𝑖 𝑗𝐾 𝑖 𝑗

)
− 8𝜋𝜌H, (4.22a)

C 𝑖M = ∇𝑗
(
𝐾 𝑖 𝑗 − 𝛾𝑖 𝑗𝐾

)
− 8𝜋𝑆𝑖 , (4.22b)

including a factor of 1/2 in the Hamiltonian constraint for consistency
with SpEC and to scale the source terms in both constraints the same. I
also define the combined constraint norm

C =

√
C2

H +
3∑
𝑖=1
|C 𝑖M |2. (4.23)

The constraint norm is plotted alongside the discretization error for the
spinning single black hole problem in Fig. 4.7, and for the spinning BBH
problem in Fig. 4.20. In both cases, the solid black line represents the 𝐿2
norm over all grid points in the domain. As expected, the constraint norm
converges exponentially, and with a lower rate than the discretization
error because it involves two numerical derivatives.24 Note that the24: See Fig. 6.3 in Ref. [170] for a similar

result.
[170]: Pfeiffer (2003), Initial Data for Black
Hole Evolutions

constraints are not normalized to a dimensionless quantity, as is done,
for instance, by Varma, Scheel, and Pfeiffer [78].

[78]: Varma, Scheel, and Pfeiffer (2018),
Comparison of binary black hole initial data
sets

While the constraints converge exponentially as expected, their 𝐿2 norm

https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
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Figure 4.21: Cut through nonspinning
Kerr-Schild data on a spherical shell do-
main. Upper half: Analytic solution eval-
uated on the grid. Lower half: Numeric
DG-discretized solution. Left half: Dis-
cretization error |𝑢 − 𝑢analytic |, Eq. (4.24).
The upper-left panel is identically zero.
Right half: Constraint norm C, Eq. (4.23).
The constraint norm accumulates error at
element boundaries on the cubed-sphere
grid, with little difference between the
analytic and numeric solution.

over grid points is larger when computed on the cubed-sphere grid in
SpECTRE than on the spherical shells in SpEC. This holds for data with the
same discretization error on both grids. For instance, the three highest-
resolution configurations in Fig. 4.16 agree with each other to ≲ 10−7 at
the sample points. However, the 𝐿2 constraint norm over all grid points in
SpEC is ∼ 10−6 while it is ∼ 10−3 in SpECTRE, three magnitudes larger.

The reason for the large 𝐿2 constraint norms on our cubed-sphere grid
is that numerical errors from the two numerical derivatives accumulate
toward element boundaries, and get amplified by the nonlinearity in the
Hamiltonian and momentum constraints, Eq. (4.22). Figure 4.21 illustrates
this effect. It shows a logarithmically scaled close-up of the discretization
error and the constraint norm in the vicinity of an analytic Kerr-Schild
solution. The discretization error is computed to the analytic solution
as

|𝑢 − 𝑢analytic | =
√∑

𝐴

(
𝑢𝐴 − 𝑢𝐴,analytic

)2, (4.24)

where 𝑢𝐴 = {𝜓, 𝛼𝜓, 𝛽𝑖} for this XCTS problem. The upper left panel of
Fig. 4.21 confirms that the discretization error is identically zero when
the analytic solution is evaluated on the computational grid. The lower
left panel shows the discretization error of the numerical solution, with
choices identical to those made in Section 2.4.3.25 It provides a measure 25: Input file

KerrSchildConstraints.yaml

(Appendix B.7)
of the accuracy with which the computational domain can represent
the solution, and is ≲ 10−5 throughout the grid. This is consistent
with the circled configuration in Fig. 2.11. The right panels show the
constraint norm C, Eq. (4.23). It accumulates errors up to three orders of
magnitude larger than the discretization error at the element boundaries,
and particularly at the element corners. Note that the cutting plane in the
illustration is also an element boundary (in the third dimension). The
constraint norm computed from the analytic data (top) and the numeric
solution (bottom) show no significant difference.

The 𝐿2 constraint norm over grid points emphasizes the error at element
boundaries further, since LGL grid point spacing reduces quadratically
toward the edges. A volume integral norm in element-logical coordinates
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can cure this over-emphasis because it weights grid points with their
quadrature weight, but the errors at element boundaries and corners will
still dominate the norm. To quantify this effect I also plot the 𝐿2 constraint
norm over only the interior grid points of all elements as colored bands
in Figs. 4.7 and 4.20, excluding grid points on element boundaries. It
converges exponentially with the same rate as the 𝐿2 constraint norm
over all grid points, but remains about one order of magnitude smaller.

Evidently, the 𝐿2 constraint norm over grid points converges exponentially,
but is not a reliable measure of the discretization error on our cubed-
sphere LGL grids. Instead, both the convergence of field values at sample
points and the convergence of apparent horizon quantities provide
measures of the discretization error that are consistent with each other
and with SpEC. In the future we may explore shells with spherical
harmonic basis functions in SpECTRE, which potentially resolve this effect
by eliminating element boundaries in angular directions.

4.3 Single TOV stars

In this section I solve for isolated Tolman-Oppenheimer-Volkoff (TOV)
stars with the XCTS formalism, exploring the applicability of the dis-
continuous Galerkin scheme and my new elliptic solver to problems
involving neutron stars. I employ a polytropic equation of state in this
section, but none of the studies is specific to this choice. The polytropic
equation of state is 2626: Eq. (1.86) in Baumgarte and

Shapiro [17], or Eq. (2.242) in Rezzolla
and Zanotti [114].

𝑃(𝜌0) = 𝐾𝜌Γ0 , (4.25)

where 𝐾 is the polytropic constant, and Γ is the polytropic exponent
related to the polytropic index 𝑛 by Γ = 1 + 1/𝑛. Ongoing work is
concerned with implementing a range of analytic and tabulated equations
of state in SpECTRE.

4.3.1 Integration schemes for the TOV equations

Before solving TOV stars with the XCTS formalism in three dimensions I
compute TOV profiles using conventional one-dimensional integration
schemes for comparison. To this end, I develop an extension of the TOV
integration scheme by Lindblom [225] to isotropic coordinates in this[225]: Lindblom (1998), Phase transitions

and the mass-radius curves of relativistic
stars

section.

The TOV equations are a set of coupled ordinary differential equations
(ODEs) representing a spherically symmetric perfect fluid in hydrostatic
equilibrium.27 The spherically symmetric and static line element is 2827: See, e.g., Sec. 1.3 in Baumgarte and

Shapiro [17] or Sec. 12.1 in Rezzolla and
Zanotti [114].
28: See Sec. 1.3 and Chapter 8 in Baum-
garte and Shapiro [17].

d𝑠2 = −𝑒2Φ𝑡 d𝑡2 + 𝑒2Φ𝑟 d𝑟2 + 𝑒2ΦΩ 𝑟2 dΩ2 , (4.26)

parametrized by the metric potentials Φ𝑡 , Φ𝑟 , and ΦΩ. The 3+1 quantities

https://doi.org/10.1103/PhysRevD.58.024008
https://doi.org/10.1103/PhysRevD.58.024008
https://doi.org/10.1103/PhysRevD.58.024008
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in this parametrization are

𝛼 = 𝑒Φ𝑡 , (4.27a)

𝛽𝑖 = 0, (4.27b)

𝛾𝑖 𝑗 = 𝑒2Φ𝑟 𝛿𝑖 𝑗 +
(
𝑒2Φ𝑟 − 𝑒2ΦΩ

) 𝑥 𝑖𝑥 𝑗
𝑟2 (4.27c)

in Cartesian coordinates.

Schwarzschild (areal) coordinates

The canonical TOV solution employs areal coordinates where we choose

𝑒2ΦΩ = 1, (4.28)

so the solution outside the star is Schwarzschild spacetime in standard
Schwarzschild coordinates. We also reparametrize the radial metric
potential as 29 29: See Eq. (1.76) and Eq. (1.80) in Baum-

garte and Shapiro [17]. Note that Eq. (1.76)
is missing a factor of 2 in the exponent.𝑒2Φ𝑟 =

(
1 − 2𝑚(𝑟)

𝑟

)−1

, (4.29)

defining the interior mass 𝑚(𝑟). Then, the Einstein and Euler equations
with a perfect fluid source reduce to the standard TOV equations 30 30: Eqs. (1.77) to (1.79) in Baumgarte and

Shapiro [17].
d𝑚
d𝑟

= 4𝜋𝑟2𝜌, (4.30a)

d𝑃
d𝑟

= − (𝜌 + 𝑃) 𝑚/𝑟
2 + 4𝜋𝑟𝑃

1 − 2𝑚/𝑟 , (4.30b)

dΦ𝑡

d𝑟
= − (𝜌 + 𝑃)−1 d𝑃

d𝑟
, (4.30c)

where 𝜌 is the energy density and 𝑃 is the pressure. The fluid variables
are closed by an (isentropic) equation of state 𝑃(𝜌0).
To integrate the TOV equations in areal coordinates we follow the strategy
laid out by Lindblom [225]. We define the variables [225]: Lindblom (1998), Phase transitions

and the mass-radius curves of relativistic
stars

𝑢 B 𝑟2 and 𝑣 B
𝑚(𝑟)
𝑟

(4.31)

to rewrite the TOV equations as 31 31: See Eqs. (A2) and (A3) in Lind-
blom [225], and note that the quantity ℎ
in Ref. [225] is actually the logarithm of
the specific enthalpy, which we denote
ln ℎ here.

d𝑢
d ln ℎ

= −2𝑢 (1 − 2𝑣)
4𝜋𝑢𝑃 + 𝑣 (4.32a)

d𝑣
d ln ℎ

= − (1 − 2𝑣) 4𝜋𝑢𝜌 − 𝑣
4𝜋𝑢𝑃 + 𝑣 . (4.32b)

At the center of the star, 𝑢 = 0 = 𝑣, Eq. (4.32) has the limits 32 32: Eqs. (A7) and (A8) in Lindblom [225]

d𝑢
d ln ℎ

����
𝑟=0

= − 3
2𝜋(𝜌𝑐 + 3𝑃𝑐) , (4.33a)

d𝑣
d ln ℎ

����
𝑟=0

= − 2𝜌𝑐
𝜌𝑐 + 3𝑃𝑐

. (4.33b)

Here, 𝜌c is the central density of the star chosen to parametrize all
solutions. It determines all other fluid variables at the center of the star,

https://doi.org/10.1103/PhysRevD.58.024008
https://doi.org/10.1103/PhysRevD.58.024008
https://doi.org/10.1103/PhysRevD.58.024008
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such as the central pressure 𝑃c and the central enthalpy ℎc, using the
equation of state.
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Figure 4.22: TOV profile for the central
enthalpy ℎc = 1.2, and a polytropic equa-
tion of state with constant 𝐾 = 123.6489
and exponent Γ = 2.

We integrate the TOV equations, Eq. (4.32), from the center of the star
to its surface. The choice of variables in Eq. (4.32) allows us to integrate
numerically in the fixed interval ln ℎ ∈ [ln ℎc , 0], evaluating the areal
radius 𝑟 and𝑚(𝑟)/𝑟 along the way. Therefore, the result of the integration
is the radial profile ln ℎ(𝑟) and𝑚(𝑟)/𝑟 in the interior of the star, as well as
the areal radius 𝑅 of its surface, as illustrated in Fig. 4.22. We can obtain
all fluid variables from the enthalpy profile and the equation of state, the
radial metric potential from 𝑚(𝑟)/𝑟, and the temporal metric potential
Φ𝑡 = ln 𝛼 from Eq. (4.30c),33

33: Eq. (A1) in Lindblom [225]

Φ𝑡 −Φ𝑡 ,𝑅 = −
∫ 𝑃

0

d𝑃′

𝜌 + 𝑃′ = − ln ℎ. (4.34)

Here, Φ𝑡 ,𝑅 is the value of Φ𝑡(𝑟) at 𝑟 = 𝑅 that we now match to the exterior
solution.

Outside the star the spacetime is Schwarzschild with mass parameter

𝑀 = 𝑚(𝑅) =
∫ 𝑅

0
4𝜋𝑟2𝜌d𝑟 . (4.35)

From Eq. (4.30c) we recover the Schwarzschild lapse outside the star,

Φ𝑡(𝑟) = 1
2

ln(1 − 2𝑀/𝑟), 𝑟 ≥ 𝑅, (4.36)

where we have chosen the integration constant so Φ𝑡 = 0 as 𝑟 → ∞.
Therefore, the matching constant in Eq. (4.34) is

Φ𝑡 ,𝑅 =
1
2

ln(1 − 2𝑀/𝑅). (4.37)

Note that the matching constant is the injection energy 3434: Eq. (3.99) in Rezzolla and Zan-
otti [114]

E = −ℎ𝑘𝜇𝑢𝜇 = ℎ𝛼 = 𝛼𝑅 = 𝑒Φ𝑡 ,𝑅 , 𝑟 ≤ 𝑅. (4.38)

It is the Bernoulli conserved quantity along streamlines 𝑢𝜇 = 𝑢𝑡 𝑡𝜇

associated with the Killing vector 𝑘𝜇 = 𝑡𝜇 of this static problem. The
second equality in Eq. (4.38) follows from the normalization 𝑢𝜇𝑢𝜇 = −1,
so 𝑢𝑡 = 1/𝛼 and 𝑢𝑡 = −𝛼. The third equality holds because the injection
energy is conserved within the static star, ∇𝜇E = 0, since streamlines are
aligned with the Killing vector.35

35: See Eq. (4.5) in Moldenhauer
et al. [87].
[87]: Moldenhauer et al. (2014), Initial
data for binary neutron stars with adjustable
eccentricity This approach based on conservation

laws also reproduces Eq. (4.34).

Transformation to isotropic coordinates

Since the TOV solution is spherically symmetric, we can transform it to
isotropic coordinates 𝒙̄ in which the spatial metric is conformally flat.
This strategy is employed in many numerical codes, but rarely detailed
in the literature.36

36: The Einstein toolkit includes some
notes by Baumgarte [226]. Tsokaros,
Uryū, and Rezzolla [110] describe a simi-
lar procedure in Appendix B. Clark and
Laguna [100] detail a procedure based
on a symmetry reduction of the XCTS
equations.
[100]: Clark and Laguna (2016), Bowen-
York Type Initial Data for Binaries with Neu-
tron Stars
[110]: Tsokaros, Uryū, and Rezzolla
(2015), New code for quasiequilibrium ini-
tial data of binary neutron stars: Corotating,
irrotational, and slowly spinning systems
[226]: Baumgarte (2009), Oppenheimer-
Volkov solution in isotropic coordinates

Here, I describe the TOV integration scheme that I
have developed and implemented in SpECTRE to extend the scheme by
Lindblom [225] to isotropic coordinates.

https://doi.org/10.1103/PhysRevD.90.084043
https://doi.org/10.1103/PhysRevD.90.084043
https://doi.org/10.1103/PhysRevD.90.084043
https://doi.org/10.1103/PhysRevD.94.064058
https://doi.org/10.1103/PhysRevD.94.064058
https://doi.org/10.1103/PhysRevD.94.064058
https://doi.org/10.1103/PhysRevD.91.104030
https://doi.org/10.1103/PhysRevD.91.104030
https://doi.org/10.1103/PhysRevD.91.104030
https://einsteintoolkit.org/thornguide/EinsteinInitialData/TOVSolver/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinInitialData/TOVSolver/documentation.html
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We reparametrize the spatial metric potentials in terms of the conformal
factor 𝜓,

𝑒2ΦΩ̄ = 𝑒2Φ𝑟 = 𝜓4, (4.39)

so the spatial metric, Eq. (4.27c), reduces to the conformally flat form

𝛾𝑖 𝑗 = 𝜓4𝛿𝑖 𝑗 (4.40)

in Cartesian coordinates. We only transform coordinates radially, so
dΩ̄ = dΩ and d𝑡 = d𝑡. Comparing the line element, Eq. (4.26), in areal
and isotropic coordinates we find

𝜓2 =
𝑟
𝑟

(4.41)

from the angular component and

d𝑟
𝑟

=
(
1 − 2𝑚(𝑟)/𝑟)−1/2 d𝑟

𝑟
(4.42)

from the radial component. Therefore, the conformal factor parametrizes
the coordinate transformation between areal and isotropic radius, and is
determined by the ODE (4.42).

Outside the star, the mass is 𝑚(𝑟) = 𝑀 for 𝑟 ≥ 𝑅. Therefore, we can
integrate Eq. (4.42) analytically to obtain the standard Schwarzschild
solution in isotropic coordinates,37 37: Eq. (31.23) in Misner, Thorne, and

Wheeler [227]
[227]: Misner, Thorne, and Wheeler
(1973), Gravitation𝑟 = 𝑟

(
1 + 𝑀

2𝑟

)2

, (4.43a)

or 𝑟 =
1
2

(√
𝑟2 − 2𝑀𝑟 + 𝑟 −𝑀

)
, (4.43b)

or 𝜓 = 1 + 𝑀
2𝑟

, (4.43c)

where we fixed the integration constant so areal and isotropic radius
coincide as 𝑟 →∞.

In order to integrate Eq. (4.42) inside the star, we rewrite the equation as
an ODE for the conformal factor 𝜓 following Baumgarte [226], [226]: Baumgarte (2009), Oppenheimer-

Volkov solution in isotropic coordinates
d𝑟
𝑟
− d𝑟
𝑟

= d ln 𝑟 − d ln 𝑟 = −2 d ln𝜓 (4.44a)

=
1 −

√
1 − 2𝑚(𝑟)/𝑟√

1 − 2𝑚(𝑟)/𝑟
d𝑟
𝑟

. (4.44b)

At this point we deviate from the literature. We employ the variables
𝑢 = 𝑟2 and 𝑣 = 𝑚(𝑟)/𝑟, Eq. (4.31), as well as d ln ℎ = −dΦ𝑡 , Eq. (4.34), to
rewrite the ODE for the conformal factor as

d ln𝜓

d ln ℎ
=

√
1 − 2𝑣

1 + √1 − 2𝑣
𝑣

4𝜋𝑢𝑃 + 𝑣 , (4.45)

using the TOV equation for the pressure, Eq. (4.30b). At the stellar surface,
Eq. (4.45) has the limit

d ln𝜓

d ln ℎ

����
𝑟=0

=
1
2

𝜌𝑐
𝜌𝑐 + 3𝑃𝑐

. (4.46)

https://einsteintoolkit.org/thornguide/EinsteinInitialData/TOVSolver/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinInitialData/TOVSolver/documentation.html
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It can be integrated numerically from the center of the star to the surface
alongside the Lindblom TOV equations, Eqs. (4.32) and (4.33). The TOV
equations are independent of the conformal factor, but the side-by-side
integration eliminates the need for a second numeric integration. It
also allows the use of the variables 𝑢 and 𝑣 in Eq. (4.45) directly at the
(adaptive) integration steps, instead of interpolating them afterwards.

0.0
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interior exterior

Interior mass m M = 1.412

1.0

1.1

1.2
Specific enthalpy h R̄ = 9.709

0 5 10

Isotropic radius r̄
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1.15

Conformal factor ψ ψc = 1.160

Figure 4.23: TOV profile in isotropic co-
ordinates for the same parameters listed
in Fig. 4.22.

Because Eq. (4.45) is an ODE for the logarithm of 𝜓, it leaves an overall
multiplicative factor undetermined. We begin the numeric integration
with ln𝜓 = 0 at the center of the star. After the integration is complete,
we rescale

𝜓(𝑟) → 𝜓(𝑟) 1 +𝑀/(2𝑅̄)
𝜓(𝑅) , (4.47)

to achieve continuity at the stellar surface with the exterior conformal
factor, Eq. (4.43c). Here, the outer isotropic radius of the star, 𝑅̄, is
determined from the outer areal radius 𝑅 and the total mass 𝑀 by
Eq. (4.43b). Fig. 4.23 shows a TOV profile in isotropic coordinates obtained
from this integration scheme.

Fluid variables are determined from the enthalpy profile and the equation
of state, just like they are in areal coordinates. The temporal metric
potential Φ𝑡 is also still given by Eq. (4.34) in the interior of the star, and
by Eq. (4.36) in the exterior. Spatial metric potentials are determined by
the conformal factor, Eq. (4.39). Where needed, the conformal factor can
also be used to transform between areal and isotropic radius, Eq. (4.41).

4.3.2 TOV star solutions to the XCTS equations

In preparation for initial data involving neutron stars I study single TOV
stars using the full three-dimensional XCTS formalism with matter. Of
particular interest is the applicability of the discontinuous Galerkin (DG)
scheme to the TOV problem, since the solution is not smooth at the stellar
surface.

To explore the effect of the stellar surface, I source the XCTS equations
with a static TOV matter profile obtained from the ODE integration
scheme detailed in Section 4.3.1 above. I impose conformal flatness,

𝛾̄𝑖 𝑗 = 𝜂𝑖 𝑗 , (4.48)

and maximal slicing,
𝐾 = 0, (4.49)

consistent with the TOV solution in isotropic coordinates, as well as the
matter sources (1.43),

𝜌H = 𝜌, 𝑆𝑖 = 0, and 𝑆 = 3𝑃. (4.50)

I find it unnecessary to conformally scale the matter sources for this
problem.38

38: Baumgarte, Ó Murchadha, and Pfeif-
fer [228] suggested a conformal matter
scale of eight, so 𝜌̄H = 𝜌8

H. Many recent
studies use a scale of six instead, such as
Refs. [108, 112]. Papenfort et al. [89] use
no conformal matter scale at all.
[89]: Papenfort et al. (2021), New public
code for initial data of unequal-mass, spin-
ning compact-object binaries
[108]: Rashti et al. (2021), Elliptica: a new
pseudo-spectral code for the construction of
initial data
[112]: Tacik et al. (2016), Initial data for
black hole–neutron star binaries, with rotat-
ing stars
[228]: Baumgarte, Ó Murchadha, and
Pfeiffer (2007), The Einstein constraints:
Uniqueness and non-uniqueness in the con-
formal thin sandwich approach

I solve the XCTS equations on a spherical domain and impose
the TOV solution for 𝜓, 𝛼𝜓, and 𝛽𝑖 as Dirichlet conditions at the outer
boundary.

Figure 4.24 shows the convergence of the DG discretization error to
the TOV solution with increasing resolution.39 Since the matter profile39: Input file Tov.yaml (Appendix B.8)
is not smooth at the surface of the star (see Figs. 4.22 and 4.23), the

https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1088/0264-9381/33/22/225012
https://doi.org/10.1088/0264-9381/33/22/225012
https://doi.org/10.1088/0264-9381/33/22/225012
https://doi.org/10.1103/PhysRevD.75.044009
https://doi.org/10.1103/PhysRevD.75.044009
https://doi.org/10.1103/PhysRevD.75.044009
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Figure 4.24: Convergence of the TOV problem with the DG-discretized XCTS formalism in three dimensions. Left: The discretization
error converges polynomially with radial ℎ refinement when the stellar surface lies within a DG element (𝐿 = 1 to 𝐿 = 3). Exponential
convergence is recovered when the stellar surface coincides with a block boundary (𝑆). All four curves cover polynomial degrees
𝑃 ∈ [1, 8] per element and dimension (see input file Tov.yaml). Right: Domain and discretization error for the four circled configurations
in the left panel. The configurations 𝐿 = 1 to 𝐿 = 3 transition from a cube covering the origin to a sphere at 𝑟 = 6 (first black inner ring in
upper left quarter). The orange ring indicates the position of the stellar surface at 𝑅 = 9.709, where the configuration 𝑆 transitions to a
sphere.

DG discretization scheme (or any spectral scheme) loses exponential
convergence when the surface lies within an element. However, we can
still radially ℎ refine the domain to reduce the error polynomially. An
adaptive mesh refinement (AMR) algorithm, such as developed in Ref. [8], [8]: Vincent, Pfeiffer, and Fischer (2019),

hp-adaptive discontinuous Galerkin solver
for elliptic equations in numerical relativity

may take advantage of the smoothness of the solution in all elements but
those covering the stellar surface, and only ℎ refine the latter.

Figure 4.24 also shows that the DG scheme recovers exponential con-
vergence when the stellar surfaces is placed at a grid boundary. This
is straightforward for a TOV problem where the position of the stellar
surface is known, but nontrivial in initial data problems with orbiting,
spinning, and tidally deformed stars. Many contemporary spectral codes
employ surface-fitted coordinates to deform grid boundaries such that
they conform to the numerically determined stellar surfaces, and update
the grid deformation accordingly throughout the elliptic solver proce-
dure [107, 182]. A subject of future work will be to develop a surface-fitting [107]: Dietrich et al. (2015), Binary Neutron

Stars with Generic Spin, Eccentricity, Mass
ratio, and Compactness - Quasi-equilibrium
Sequences and First Evolutions
[182]: Foucart et al. (2008), Initial data for
black hole-neutron star binaries: A Flexible,
high-accuracy spectral method

algorithm for our DG scheme, an AMR algorithm to resolve the surface
using ℎ refinement, or both. The technology to deform excision surfaces
to black hole horizons detailed in Section 4.1.2 can also be used to conform
grid boundaries to stellar surfaces. In Chapter 5 I present encouraging
results applying our DG scheme to another discontinuous problem.

4.4 Preview: binary neutron stars

We can solve for binary neutron star (BNS) initial data with a procedure
similar to binary black holes, meaning that we impose background quan-
tities by a superposition of isolated solutions and solve for the XCTS

https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.92.124007
https://doi.org/10.1103/PhysRevD.92.124007
https://doi.org/10.1103/PhysRevD.92.124007
https://doi.org/10.1103/PhysRevD.92.124007
https://doi.org/10.1103/PhysRevD.77.124051
https://doi.org/10.1103/PhysRevD.77.124051
https://doi.org/10.1103/PhysRevD.77.124051
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Figure 4.25: Head-on BNS initial data with two TOV stars that are initially at rest. The density and pressure profiles (bottom) determine
the gravity sector (top). Note that 𝛽𝑖 = 0 for this problem.

variables 𝜓, 𝛼𝜓, and 𝛽𝑖 in three dimensions with no symmetry assump-
tions. At the time of writing, I have implemented the following isolated
matter solutions in SpECTRE for composing conformal backgrounds:

TOV The TOV solution in standard Schwarzschild (areal) coordinates
(see Section 4.3.1). It is maximally sliced, 𝐾 = 0.

Isotropic TOV The TOV solution in isotropic coordinates, which is both
conformally flat, 𝛾𝑖 𝑗 = 𝜂𝑖 𝑗 , and maximally sliced, 𝐾 = 0 (see
Section 4.3.1).

Constant-density star A spherical star with constant density, assuming
a moment of time symmetry, 𝐾𝑖 𝑗 = 0, and conformal flatness,
𝛾𝑖 𝑗 = 𝜂𝑖 𝑗 . This solution is described in detail by Baumgarte, Ó
Murchadha, and Pfeiffer [228], and also in Exercise 3.8 in Baumgarte[228]: Baumgarte, Ó Murchadha, and

Pfeiffer (2007), The Einstein constraints:
Uniqueness and non-uniqueness in the con-
formal thin sandwich approach

and Shapiro [17], since it exhibits nonuniqueness properties that

[17]: Baumgarte and Shapiro (2010), Nu-
merical Relativity: Solving Einsteins Equa-
tions on the Computer

are typical for the XCTS system.

These solutions can be superposed with any other vacuum or nonvacuum
solution to compose the conformal metric and the trace of the extrinsic
curvature by Eq. (2.55).

With neutron stars we have no excision surfaces that require boundary
conditions, but we need to handle the fluid sources and their dynamics
as described in Section 1.2.4. A particularly simple case is initial data
representing two TOV stars initially at rest, some coordinate distance 𝐷0
apart, which will approach each other head-on and collide when evolved.
We can solve for the gravity sector of this scenario with the XCTS
equations when we source them with the density and pressure profile of
two isolated TOV stars, Eq. (4.50).

Figure 4.25 shows a solution for the gravity induced by the density and
pressure profile of two isotropic TOV stars at rest.40 The conformal factor40: Input file BnsHeadOn.yaml

(Appendix B.9) and lapse are axisymmetric (though the problem was solved in three
dimensions) and show the gravitational interaction between the two
bodies. The shift is zero, 𝛽𝑖 = 0, since this spacetime is maximally sliced
and 𝑆 𝑗 = 0, so the momentum constraint (1.56c) is trivially satisfied.

https://doi.org/10.1103/PhysRevD.75.044009
https://doi.org/10.1103/PhysRevD.75.044009
https://doi.org/10.1103/PhysRevD.75.044009
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
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Figure 4.26 shows the convergence of the discretization error and the
domain configuration. We recover exponential convergence by placing
grid boundaries at the neutron star surfaces, as detailed in Section 4.3.

Such superposed and constraint-solved initial data represent valid so-
lutions to the Einstein and Euler equations, but will only approximate
astrophysical scenarios. Due to tidal interactions between the binary
components, the superposed matter profiles will not be in hydrostatic
equilibrium initially. We can use these solutions to seed experimental
head-on BNS evolutions with the GRMHD part of SpECTRE, and simulta-
neously work on more realistic astrophysical initial data that treat the
matter sector dynamically (see Section 1.2.4).

Figure 4.27 presents the convergence of the Newton-Krylov elliptic solver
for the head-on BNS problem. Starting at an initial guess constructed
by superposing the two isolated TOV solutions, the Newton-Raphson
algorithm converges in five steps, each with up to eleven multigrid-
Schwarz preconditioned GMRES iterations. This configuration completed
in 32 seconds on 60 cores. The highest-resolution 𝐿 = 0 configuration
pictured in Fig. 4.26, which reaches a discretization error of ≲ 10−8,
completed in≈ 3.5 minutes on 60 cores. Even the 𝐿 = 2 configuration with
comparable discretization error and over 200 grid points per dimension
completed in under ten minutes on 240 cores, and also needed no more
than five Newton-Raphson steps with up to eleven GMRES iterations each.
This scale independence of the convergence behavior is a feature of the
multigrid-Schwarz preconditioning (see discussion in Section 3.4.1 and
Fig. 3.12). It is particularly promising for problems involving equations
of state with phase transitions, where ℎ refinement is advantageous.

Looking ahead, we will solve for the equilibrium matter profile alongside
the gravity sector as discussed in Section 1.2.4. Contemporary studies
of single rotating stars, BNS, and BHNS initial data typically employ an
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Figure 4.27: Convergence of the elliptic
solver for the head-on BNS configuration
circled in Fig. 4.26.
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iteration procedure of varying complexity.41 They solve the Einstein and41: Tacik et al. [112] solve the XCTS equa-
tions together, and the velocity potential
equation separately. References [81, 108,
183] solve all equations separately and
in succession. See also Price, Markakis,
and Friedman [229] for a convergence
analysis of an iteration procedure for
Newtonian stars. Tsokaros, Uryū, and
Rezzolla [110] illustrate the iteration pro-
cedure of the COCAL code in Appendix C.
[81]: Uryū et al. (2016), New code for equi-
libriums and quasiequilibrium initial data
of compact objects. III. Axisymmetric and
triaxial rotating stars
[87]: Moldenhauer et al. (2014), Initial
data for binary neutron stars with adjustable
eccentricity
[108]: Rashti et al. (2021), Elliptica: a new
pseudo-spectral code for the construction of
initial data
[110]: Tsokaros, Uryū, and Rezzolla
(2015), New code for quasiequilibrium ini-
tial data of binary neutron stars: Corotating,
irrotational, and slowly spinning systems
[112]: Tacik et al. (2016), Initial data for
black hole–neutron star binaries, with rotat-
ing stars
[183]: Tichy et al. (2019), Constructing bi-
nary neutron star initial data with high spins,
high compactnesses, and high mass ratios
[229]: Price, Markakis, and Friedman
(2009), Iteration Stability for Simple Newto-
nian Stellar Systems
[230]: Huang et al. (2008), Quasiequilib-
rium models for triaxially deformed rotating
compact stars

Euler equations along with updates to the grid deformation, control of
intrinsic parameters such as masses and spins of the object, and control of
extrinsic parameters such as eccentricity, orbital angular velocity, linear
momentum, and center of mass. These iteration procedures typically
invoke the elliptic solver tens to hundreds of times, and can take hours
to days to complete. Therefore, accelerated elliptic solves parallelized
to computing clusters have the potential to speed up such iteration
procedures considerably.

Furthermore, the iterations are often damped, advancing variables only
by step lengths of 10 % to 50 % [87, 108, 110, 112, 183, 230]. Therefore,
advancements to the iteration procedure have considerable potential to
accelerate initial data generation. For example, I am confident that the
elliptic solver technology I present in this thesis is capable of solving
the velocity potential equation, Eq. (1.63), alongside the XCTS equations
instead of solving the equations successively. A possible subject of future
work is to explore iteration procedures that leverage this capability to
provide more accurate updates, and hence the potential for reduced
damping. More accurate iterations also have the potential to increase the
robustness of these procedures, which can be prone to failure, e.g., for
highly-compact neutron stars [231].

[231]: Henriksson et al. (2016), Initial data
for high-compactness black hole–neutron star
binaries
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Publication

This chapter is based on the article High-accuracy numerical models of
Brownian thermal noise in thin mirror coatings [3], submitted to Phys.
Rev. D on Nov 16, 2021 (arXiv:2111.06893). It applies my new ellip-
tic solver in SpECTRE to simulate thermal noise in interferometric
gravitational-wave detectors to unprecedented accuracy. This is pos-
sible because the thermal noise problem involves elliptic equations
similar to the general-relativistic initial data problems discussed in
the preceding Chapter 4. It shows the interdisciplinary application of
my work, in the field of gravitational-wave astronomy alone.
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Abstract Brownian coating thermal noise in detector test masses is
limiting the sensitivity of current gravitational-wave detectors on Earth.
Therefore, accurate numerical models can inform the ongoing effort
to minimize Brownian coating thermal noise in current and future
gravitational-wave detectors. Such numerical models typically require
significant computational resources and time, and often involve closed-
source commercial codes. In contrast, open-source codes give complete
visibility and control of the simulated physics and enable direct assess-
ment of the numerical accuracy. In this article, we use the open-source
numerical relativity code SpECTRE and adopt a novel discontinuous
Galerkin numerical method to model Brownian coating thermal noise.
We demonstrate that SpECTRE achieves significantly higher accuracy than
a previous approach at a fraction of the computational cost. Further-
more, we numerically model Brownian coating thermal noise in multiple
sub-wavelength crystalline coating layers for the first time. Our new
numerical method has the potential to enable fast exploration of realistic
mirror configurations, and hence to guide the search for optimal mirror
geometries, beam shapes and coating materials for gravitational-wave
detectors.

Declaration of authorship This article is a collaborative research effort
between the authors. I led the editorial process of writing the article,
argued the direction it should take, wrote most of the text, implemented
the numerical scheme presented in Section 5.2 in the SpECTRE code, per-
formed all numerical simulations presented in Section 5.3, and produced
all figures in the article. I also co-supervised Tom Włodarczyk for the
duration of his master thesis project, which led to contributions to this
article. He implemented the elasticity equations in SpECTRE, studied the
construction of suitable computational domains, and performed simu-
lations with SpECTRE in preparation for our results. Samuel Rodriguez
performed the numerical simulations with the deal.ii code that are

https://arxiv.org/abs/2111.06893
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presented in Figs. 5.2 and 5.3 for comparison, and performed simulations
with SpECTRE in preparation for our results. Geoffrey Lovelace and Har-
ald Pfeiffer acted as advisors in this project and wrote parts of Sections 5.1
and 5.2.1. The remaining co-authors contributed to the SpECTRE code
in a manner that enabled the present research. For example, Gabriel
Bonilla contributed coordinate maps that are essential to construct the
computational domains. The contributions by all authors were essential
to conduct the present research, and highlight the collaborative research
effort with the open-source SpECTRE code. Aside from the contributions
listed above, the work presented in this article is my own.

5.1 Introduction

Brownian coating thermal noise is the limiting noise source for current-
generation, ground-based gravitational-wave detectors in their most
sensitive frequency bands. For instance, following the A+ upgrade
anticipated for completion in the mid 2020s, the Laser Intererometer
Gravitational-Wave Observatory (LIGO) detector noise is dominated by
Brownian coating thermal noise at frequencies 𝑓 ∼ 100 Hz [29]. This[29]: Barsotti et al. (2018), The A+ design

curve noise arises from thermal fluctuations in the reflective coatings of the
detectors’ test masses [232].[232]: Cole et al. (2013), Tenfold reduction

of Brownian noise in high-reflectivity optical
coatings Therefore, a reduction of the Brownian coating thermal noise directly

increases a detector’s sensitivity and thus its astronomical reach. Theoret-
ical models of Brownian coating thermal noise are important for working
toward this goal. Thermal noise modeling typically follow the approach
pioneered by Levin [166], which computes the thermal noise in terms[166]: Levin (1998), Internal thermal noise

in the LIGO test masses: A Direct approach of an auxiliary elasticity calculation using the fluctuation-dissipation
theorem [233–235]. While an approximate analytic solution is well known[233]: Callen and Welton (1951), Irre-

versibility and generalized noise
[234]: Bernard and B. Callen (1959), Irre-
versible Thermodynamics of Nonlinear Pro-
cesses and Noise in Driven Systems
[235]: Kubo (1966), The fluctuation-
dissipation theorem

in the limit where coating thickness and edge effects can be neglected,
numerical calculations of thermal noise are necessary to study effects
that arise from the finite test-mass size, the finite coating thickness, and
from crystalline materials.

In this article we calculate Brownian coating thermal noise by numer-
ically solving the auxiliary linear elasticity problem. Such numerical
simulations typically adopt a conventional finite-element approach, as
some of the authors did in Ref. [167]. These methods are widely used,[167]: Lovelace, Demos, and Khan (2018),

Numerically modeling Brownian thermal
noise in amorphous and crystalline thin coat-
ings

but achieving high accuracy with them can require significant compu-
tational resources and time, because of their relatively slow rates of
convergence.

For the first time to our knowledge, we apply a discontinuous Galerkin
(DG) method to model Brownian coating thermal noise. DG methods
are well suited to this problem because they can retain high-order con-
vergence in the presence of discontinuities, which arise at the interfaces
between the mirror substrate and its reflective coatings. In this article,
we extend the DG method for elliptic equations presented in Ref. [1] to[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

problems with discontinuous material properties. With this extension,
our method converges exponentially with resolution, allowing us to
solve coating thermal noise problems numerically at high accuracy using
considerably less computational resources and time than conventional
finite-element methods.

https://doi.org/10.1038/nphoton.2013.174
https://doi.org/10.1038/nphoton.2013.174
https://doi.org/10.1038/nphoton.2013.174
https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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We implement the numerical method and the elastostatic equations
in SpECTRE [10], a new open-source numerical relativity code. While [10]: SpECTRE, spectre-code.org
SpECTRE’s primary aim is to model merging black holes and neutron
stars, the elliptic solver needed to construct initial data for such simula-
tions is also very well positioned to solve the DG-discretized elastostatics
equations for thermal noise modeling [1, 2]. As an open-source code, our [1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.
[2]: Vu et al. (2022), A scalable elliptic solver
with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

approach has advantages compared to the closed-source and commercial
solutions that are often adopted: we can directly control the physics
incorporated in the calculation, and we can assess the accuracy and con-
vergence rate of our simulations in a straightforward way. Our code also
benefits from SpECTRE’s task-based parallelism approach, implemented
using the Charm++ [141] library, enabling our code to efficiently scale to [141]: The Charm++ Parallel Program-

ming System, https : / / charm . cs .

illinois.edu
large numbers of compute cores [142].

[142]: Kidder et al. (2017), SpECTRE: A
Task-based Discontinuous Galerkin Code for
Relativistic Astrophysics

This article is organized as follows. Section 5.2 summarizes the elastic
problem to be solved and presents the discontinuous Galerkin numerical
method. Section 5.3 presents our results using this method to model
thermal noise in cylindrical mirrors with thin coatings. We discuss our
results and future work in Section 5.4.

5.2 Methods

In this section, we formulate the auxiliary elasticity problem based on
Refs. [166, 167], discretize it with the discontinuous Galerkin scheme [166]: Levin (1998), Internal thermal noise

in the LIGO test masses: A Direct approach
[167]: Lovelace, Demos, and Khan (2018),
Numerically modeling Brownian thermal
noise in amorphous and crystalline thin coat-
ings

developed in Ref. [1], and outline the numerical method we employ to
solve the discretized problem with the SpECTRE code [2]. Section 5.2.2
details a novel extension of this method to handle discontinuous material
properties at layer interfaces.

5.2.1 Auxiliary elasticity problem

We consider a gravitational-wave detector that measures the position of
a test mass with a laser beam with a Gaussian intensity profile

𝑝(𝑟) = 1
𝜋𝑟2

0
𝑒−𝑟

2/𝑟2
0 . (5.1)

Here, 𝑟 is the cylindrical radial coordinate from the center of the beam
with width 𝑟0. The intensity profile is normalized so that∫ 2𝜋

0
d𝜙

∫ ∞

0
d𝑟 𝑟𝑝(𝑟) = 1. (5.2)

The laser beam effectively measures a weighted average 𝑞 of the displace-
ment 𝑍 of the test mass surface,

𝑞(𝑡) =
∫ 2𝜋

0
d𝜙

∫ 𝑅

0
d𝑟 𝑟𝑝(𝑟, 𝜙)𝑍(𝑟, 𝜙, 𝑡). (5.3)

As shown by Levin [166], Brownian thermal noise can be calculated from
the energy dissipated in an auxiliary elastic problem. Specifically, to
compute the thermal noise at frequency 𝑓 , one applies an oscillating

https://spectre-code.org
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://charm.cs.illinois.edu
https://charm.cs.illinois.edu
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
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pressure to the face of the mirror with frequency 𝑓 , with a pressure distri-
bution profile 𝑝(𝑟) equal to the beam intensity, and with an amplitude 𝐹0.
In this auxiliary problem, the energy 𝑊diss will be dissipated in each
cycle of the oscillation. The fluctuation-dissipation theorem relates this
dissipated energy 𝑊diss to the thermal noise, specifically to the power
spectral density 𝑆𝑞 associated with 𝑞,11: See, e.g., Eq. (11.90) in Thorne and

Blandford [16].
[16]: Thorne and Blandford (2017), Mod-
ern Classical Physics 𝑆𝑞 =

2𝑘B𝑇
𝜋2 𝑓 2

𝑊diss

𝐹2
0

, (5.4)

where 𝑇 is the mirror temperature and 𝑘B is Boltzmann’s constant.
Because 𝑊diss ∝ 𝐹2

0 , it follows that 𝑆𝑞 does not depend on the overall
amplitude 𝐹0.

For frequencies 𝑓 ∼ 100 Hz much lower than the resonant frequencies
𝑓 ∼ 104Hz of the test-mass materials, the dissipated power can be
computed using the quasistatic approximation. In this approximation, a
static pressure is applied to the mirror with amplitude 𝐹0 and profile 𝑝(𝑟),
and the dissipated energy can be written as

𝑊diss = 𝑈𝜙, (5.5)

where𝑈 is the potential energy stored in the deformation of the test-mass
and 𝜙 is the material’s loss angle determined by the material’s imaginary,
dissipative elastic moduli.

Therefore, our goal in this article is to solve the equations of elastostatics
for the deformation of the test mass,

∇𝑖𝑇 𝑖 𝑗 = 𝑓 𝑗(𝒙), (5.6)

when its surface is subjected to an applied pressure with profile 𝑝(𝑟).
Here, 𝑇 𝑖 𝑗 is the stress and we adopt the Einstein summation convention
so that repeated tensor indices are summed over. The source 𝑓 𝑗 is the
force density acting on each volume element of the mirror as a function
of position 𝒙, which vanishes in our situation, 𝑓 𝑗 = 0. The pressure
acting on the external surface of the test-mass will be reflected in suitable
boundary conditions.

Equation (5.6) is an equation for the displacement vector field 𝑢 𝑖(𝒙), which
describes the deformation of the elastic material as a function of the
undeformed coordinates.2 The symmetric part of the gradient of the2: I denote the displacement field with

𝑢 𝑖(𝒙) instead of 𝜉𝑖(𝒙) in this article to
avoid confusion with the logical coordi-
nates 𝝃.

displacement vector field is the strain

𝑆𝑘𝑙 = ∇(𝑘𝑢𝑙). (5.7)

For sufficiently small 𝐹0, the strain is proportional to the applied stress,

𝑇 𝑖 𝑗 = −𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙 , (5.8)

where the constitutive relation 𝑌 𝑖 𝑗𝑘𝑙(𝒙) captures the elastic properties of
the material in the linear regime. The constitutive relation is symmetric
on its first two indices, on its last two indices, and under exchange of the
first pair of indices with the second pair of indices.

Inserting Eqs. (5.7) and (5.8) into Eq. (5.6) yields the equations of linear

http://books.google.com/books?vid=ISBN9780691159027
http://books.google.com/books?vid=ISBN9780691159027
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elasticity,
−∇𝑖𝑌 𝑖 𝑗𝑘𝑙∇(𝑘𝑢𝑙) = 𝑓 𝑗(𝒙), (5.9)

which we will solve numerically.

We consider layers of piecewise amorphous or cubic-crystalline consti-
tutive relations. The amorphous constitutive relation is isotropic and
homogeneous,

𝑌 𝑖 𝑗𝑘𝑙 = 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇
(
𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘

)
, (5.10)

with Lamé parameter 𝜆 and shear modulus 𝜇.3 A cubic-crystalline material 3: The Lamé parameter can also be re-
placed by the bulk modulus 𝐾 = 𝜆+ 2𝜇/3.
Alternatively, the two parameters can
be replaced by the Young’s modulus 𝑌 =
9𝐾𝜇/(3𝐾 + 𝜇) = 𝜇(3𝜆 + 2𝜇)/(𝜆 + 𝜇) and
the Poisson ratio 𝜎 = (3𝐾 − 2𝜇)/(2(3𝐾 +
𝜇)) = 𝜆/(2(𝜆 + 𝜇)).

is characterized by the constitutive relation

𝑌 𝑖 𝑗𝑘𝑙 =


𝑐11 for 𝑖 = 𝑗 = 𝑘 = 𝑙

𝑐12 for 𝑖 = 𝑗 , 𝑘 = 𝑙 , 𝑖 ≠ 𝑘

𝑐44 for 𝑖 = 𝑘, 𝑗 = 𝑙 , 𝑖 ≠ 𝑗 or 𝑖 = 𝑙 , 𝑗 = 𝑘, 𝑖 ≠ 𝑗

(5.11)

where 𝑐11, 𝑐12 and 𝑐44 are three independent material parameters. The
constitutive relation in Eq. (5.9) is composed by discontinuously choosing
either Eq. (5.10) or Eq. (5.11) in each layer of the material.

After solving the linear elasticity equations, Eq. (5.9), the potential energy
is evaluated by an integral over the volume of the material,

𝑈 = −1
2

∫
𝑉
𝑑𝑉𝑆𝑖 𝑗𝑇 𝑖 𝑗 . (5.12)

For a material with a thin, reflective coating with different elastic prop-
erties than the substrate, the dissipated energy, Eq. (5.5), decomposes
as [236] [236]: Harry et al. (2002), Thermal noise in

interferometric gravitational wave detectors
due to dielectric optical coatings

𝑊diss = 𝑈sub 𝜙sub +𝑈coat 𝜙coat , (5.13)

where 𝑈sub and 𝜙sub are the potential energy and loss angle of the
substrate, respectively, while 𝑈coat and 𝜙coat are the potential energy
and the loss angle of the coating. Note that a material can also have
different loss angles associated with the different independent elastic
moduli of a material [237]. We do not consider further decompositions [237]: Hong et al. (2013), Brownian thermal

noise in multilayer coated mirrorsof the elastic potential energy in this article, but note that such quantities
can straightforwardly be extracted from our simulations.

An approximate analytic solution exists for amorphous materials in the
limit where the coating thickness 𝑑 is small compared to both the size
of the mirror and the width 𝑟0 of the pressure profile. The approximate
coating thermal noise is 4 4: See Eq. (22) in Ref. [236], where 𝑤 =√

2 𝑟0, 𝜙∥ = 𝜙𝜙 = 𝜙coat, and we consider
only the coating contribution.

𝑆 coat
𝑞 =

𝑘B𝑇
𝜋2 𝑓

1 − 𝜎2
sub

𝑟0𝑌sub

𝑑
𝑟0

𝜙coat

𝑌sub𝑌coat(1 − 𝜎2
coat)(1 − 𝜎2

sub)
× (
𝑌2

coat(1 + 𝜎sub)2(1 − 2𝜎sub)2+
𝑌2

sub(1 + 𝜎coat)2(1 − 2𝜎coat)
)
.

(5.14)

5.2.2 Discontinuous Galerkin discretization

We employ the discontinuous Galerkin (DG) scheme detailed in Ref. [1] to [1]: Fischer and Pfeiffer (2022), Unified
discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

https://doi.org/10.1088/0264-9381/19/5/305
https://doi.org/10.1088/0264-9381/19/5/305
https://doi.org/10.1088/0264-9381/19/5/305
https://doi.org/10.1103/PhysRevD.87.082001
https://doi.org/10.1103/PhysRevD.87.082001
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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Figure 5.1: Top: Geometry of our layered
cylindrical domain, with the laser beam
indicated in red. Four wedge-shaped el-
ements envelop a cuboid. Another set
of wedges extends to the outer radius of
the cylinder. In 𝑧 direction the cylinder
is partitioned into layers that can have
different material properties (black and
gray). The substrate layer has a logarith-
mic coordinate map in 𝑧 direction and is
split in two twice in this example (thin
horizontal lines). Bottom: The coordinate
transformation 𝝃(𝒙)maps an element to
a reference cube 𝝃 ∈ [−1, 1]3 with logical
coordinate-axes 𝝃 = (𝜉, 𝜂, 𝜁). In this ex-
ample we chose 𝑁𝑘,𝜉 = 3 and 𝑁𝑘,𝜂 = 4
LGL collocation points along 𝜉 and 𝜂,
respectively.

H

G

I

Laser
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Ω: /(x)

x(/)

�

�
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discretize the elasticity problem, Eq. (5.9). We summarize the discretiza-
tion scheme in this section, and extend it to problems with discontinuous
material properties.

Skip ahead

The following two sections summarize Chapter 2 of this thesis. If you
have read Chapter 2, skip ahead to the discussion of the numerical
flux, Eq. (5.25).

Domain decomposition

We simulate a cylindrical mirror in three dimensions with radius 𝑅 and
height 𝐻. The cylinder axis coincides with the 𝑧 axis of our coordinates,
and the plane 𝑧 = 0 represents the surface of the mirror on which the
external pressure 𝑝(𝑟) is applied. We decompose the cylindrical domain
Ω = [0, 𝑅]×[0, 2𝜋)×[0, 𝐻] into a set of nonoverlapping elementsΩ𝑘 ⊂ Ω
shaped like deformed cubes, as illustrated in Fig. 5.1a (ℎ refinement).
Each element carries a coordinate map from the Cartesian coordinates
𝒙 ∈ Ω𝑘 , in which the elasticity equations (5.9) are formulated, to logical
coordinates 𝝃 ∈ [−1, 1]3 representing the reference cube, as illustrated in
Fig. 5.1b. The coordinate map to the reference cube is characterized by its
Jacobian,

J𝑖𝑗 =
𝜕𝑥 𝑖

𝜕𝜉 𝑗
(5.15)

with determinant J and inverse (J−1)𝑗𝑖 = 𝜕𝜉 𝑗/𝜕𝑥 𝑖 . On the reference cube
we choose a set of 𝑁𝑘,𝑖 Legendre-Gauss-Lobatto (LGL) collocation points
in each dimension 𝑖 (𝑝 refinement).

Fields are represented numerically by their values at the collocation
points. We denote the set of discrete values for the displacement vector
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field 𝑢 𝑖 within an element Ω𝑘 as

𝑢 𝑖 ,(𝑘) = (𝑢 𝑖 ,(𝑘)1 , . . . , 𝑢 𝑖 ,(𝑘)𝑁𝑘
), (5.16)

and the collection of discrete displacement vector field values over all
elements as 𝑢 𝑖 . The values at the collocation points within an element
define a three-dimensional Lagrange interpolation,

𝑢 𝑖 ,(𝑘)(𝒙) B
𝑁𝑘∑
𝑝=1

𝑢 𝑖𝑝𝜓𝑝(𝝃(𝒙)) with 𝒙 ∈ Ω𝑘 , (5.17)

where the basis functions 𝜓𝑝(𝝃) are products of Lagrange polynomials,

𝜓𝑝(𝝃) B
3∏
𝑖=1

ℓ𝑝𝑖 (𝜉𝑖) with 𝝃 ∈ [−1, 1]3, (5.18)

based on the collocation points in the three logical directions of the
element. Since Eqs. (5.17) and (5.18) are local to each element, fields over
the entire domain are discontinuous across element boundaries.

DG residuals

To formulate the elasticity equations in first-order form for the DG
discretization, we use the symmetric strain 𝑆𝑘𝑙 as auxiliary variable.
Following Ref. [1], we first compute the discrete auxiliary variables on [1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

the computational grid as

𝑆𝑘𝑙 = D(𝑘 · 𝑢 𝑙) + L · ((𝑛(𝑘𝑢 𝑙))∗ − 𝑛(𝑘𝑢 𝑙)), (5.19)

where we make use of the discrete differentiation matrix D𝑖 B M−1MD𝑖 ,
the mass matrix

M𝑝𝑞 =
∫
[−1,1]3

𝜓𝑝(𝝃)𝜓𝑞(𝝃) J d3𝜉 , (5.20)

the stiffness matrix

MD𝑖 ,𝑝𝑞 =
∫
[−1,1]3

𝜓𝑝(𝝃)
𝜕𝜓𝑞

𝜕𝜉 𝑗
(𝝃) (J−1)𝑗𝑖 J d3𝜉 , (5.21)

the lifting operator

ML𝑝𝑞 =
∫
[−1,1]2

𝜓𝑝(𝝃)𝜓𝑞(𝝃) JΣ d2𝜉 , (5.22)

and L B M−1ML on the element Ω𝑘 [1]. The integral in Eq. (5.22) is over
the boundary of the element, 𝜕Ω𝑘 , where 𝑛𝑖 is the outward-pointing unit
normal one-form and JΣ is the surface Jacobian. The operation · denotes
matrix multiplication with the field values over the computational grid
of the element. In a second step, we compute the DG residuals in strong
form [1],

−MD𝑖 · 𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙 −ML · ((𝑛𝑖𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙)∗ − 𝑛𝑖𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙) = M · 𝑓 𝑗 , (5.23)

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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which represent the set of algebraic equations for the values 𝑢 𝑖 of
the displacement vector field on the computational grid that we solve
numerically.

Numerical flux

The quantities (𝑛(𝑘𝑢 𝑙))∗ and (𝑛𝑖𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙)∗ in Eq. (5.23) denote a numerical
flux that couples grid points across nearest-neighbor element boundaries.
We employ the generalized internal-penalty numerical flux developed
in Ref. [1], with one notable extension. Contrary to Ref. [1] we allow[1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

neighboring elements to define different constitutive relations, meaning
𝑌 𝑖 𝑗𝑘𝑙(𝒙) can be double-valued on shared element boundaries.5 Therefore,

5: In the language of Ref. [1] we allow
the fluxes F 𝑖

𝛼 [𝑢𝐴 , 𝑣𝐴; 𝒙] to be double-
valued on shared element boundaries.

we define the quantity

𝑌 𝑖 𝑗𝑘𝑙∗ =
1
2

(
𝑌 𝑖 𝑗𝑘𝑙int + 𝑌

𝑖 𝑗𝑘𝑙
ext

)
, (5.24)

where “int” denotes the interior side of an element’s shared boundary
with a neighbor, and “ext” denotes the exterior side, i.e. the neighbor’s
side. With this quantity we can define the numerical flux

(𝑛(𝑘𝑢 𝑙))∗ =
1
2

[
𝑛int
(𝑘 𝑢

int
𝑙) − 𝑛ext

(𝑘 𝑢
ext
𝑙)

]
, (5.25a)

(𝑛𝑖𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙)∗ =
1
2

[
𝑛int
𝑖 𝑌

𝑖 𝑗𝑘𝑙
int D(𝑘 · 𝑢int

𝑙) − 𝑛ext
𝑖 𝑌 𝑖 𝑗𝑘𝑙ext D(𝑘 · 𝑢ext

𝑙)
]

−𝜎
[
𝑛int
𝑖 𝑌

𝑖 𝑗𝑘𝑙
∗ 𝑛int

(𝑘 𝑢
int
𝑙) − 𝑛ext

𝑖 𝑌 𝑖 𝑗𝑘𝑙∗ 𝑛ext
(𝑘 𝑢

ext
𝑙)

]
, (5.25b)

where 𝑛ext
𝑖 = −𝑛int

𝑖 for the purpose of this article. Equation (5.25) is the
generalized internal-penalty numerical flux defined in Ref. [1], with a
choice between 𝑌 𝑖 𝑗𝑘𝑙int , 𝑌 𝑖 𝑗𝑘𝑙ext , and 𝑌 𝑖 𝑗𝑘𝑙∗ for every occurrence of the con-
stitutive relation. The particular choice in Eq. (5.25) ensures that the
numerical flux remains consistent, meaning that (𝑛𝑖𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙)∗ = −𝑛int

𝑖 𝑇
𝑖 𝑗

when both 𝑛int
𝑖 𝑌

𝑖 𝑗𝑘𝑙
int D(𝑘 · 𝑢int

𝑙) = −𝑛ext
𝑖 𝑌 𝑖 𝑗𝑘𝑙ext D(𝑘 · 𝑢ext

𝑙) C −𝑛int
𝑖 𝑇

𝑖 𝑗 and
𝑛int
(𝑘 𝑢

int
𝑙) = −𝑛ext

(𝑘 𝑢
ext
𝑙) . In particular, note that the penalty term in Eq. (5.25b)

vanishes when the displacement is continuous across the boundary, and
that the numerical flux admits solutions where the stress is continuous
across the boundary but the strain is not. Such solutions may arise in a
layered material under stress, because the layers remain “glued together”
but each layer responds to the stress differently.

The penalty function in Eq. (5.25b) is

𝜎 = 𝐶
(max(𝑝int , 𝑝ext) + 1)2

min(ℎint , ℎext) , (5.26)

where we make use of the polynomial degree 𝑝 and a measure of the
element size, ℎ, orthogonal to the element boundary on either side of the
interface, as detailed in Ref. [1]. We choose 𝐶 = 100 in this article.

Boundary conditions

We impose boundary conditions through fluxes, i.e. by a choice of exterior
quantities in the numerical flux (5.25). Specifically, on external boundaries

https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1103/PhysRevD.105.024034
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we set

(𝑛(𝑘𝑢 𝑙))ext = (𝑛(𝑘𝑢 𝑙))int − 2𝑛int
(𝑘 𝑢

b
𝑙) and (5.27a)

(𝑛𝑖𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙)ext = (𝑛𝑖𝑌 𝑖 𝑗𝑘𝑙𝑆𝑘𝑙)int + 2𝑛int
𝑖 𝑇

𝑖 𝑗
b , (5.27b)

where we choose either 𝑢 𝑖b to impose Dirichlet boundary conditions,
or 𝑛int

𝑖 𝑇
𝑖 𝑗

b to impose Neumann boundary conditions on the boundary
collocation points, and set the respective other quantity to its interior
value.

For the thermal noise problem we impose the pressure induced by the
laser beam,

𝑛int
𝑖 𝑇

𝑖 𝑗
b = 𝑛 𝑗𝑝(𝑟), (5.28)

as Neumann boundary condition on the 𝑧 = 0 side of the cylindrical
mirror, where 𝑝(𝑟) is the laser beam profile given in Eq. (5.1). On the side
of the mirror facing away from the laser we impose

𝑢 𝑖b = 0 (“fixed”) (5.29)

as Dirichlet boundary condition, and on the mantle we impose

𝑛int
𝑖 𝑇

𝑖 𝑗
b = 0 (“free”) (5.30)

as Neumann boundary condition. Equation (5.29) means that the back
of the mirror is held in place, whereas Eq. (5.30) implies no pressure on
the sides, which however, are free to deform in response to the pressure
applied to the front.

5.2.3 SpECTRE elliptic solver

Once discretized, the linear algebraic equations (5.23) are solved numeri-
cally for the displacement vector field values 𝑢 𝑖 on all elements and grid
points in the computational domain. As is typical for discretized elliptic
equations, Eq. (5.23) defines a matrix equation

A𝑢 = 𝑏, (5.31)

where 𝑢 denotes the set of all 𝑁DOF = 3𝑁points = 3 ∑
𝑘 𝑁𝑘 displacement

vector field values in the computational domain, and A is a matrix with
𝑁DOF × 𝑁DOF entries. To solve Eq. (5.31) means inverting the matrix A.
However, as the resolution of the computational domain increases, the
matrix A easily becomes too large to construct explicitly, to store on an
ordinary computer, and to invert directly.

Therefore, we solve Eq. (5.31) with the elliptic solver component of the
open-source SpECTRE code [2, 10]. It employs an iterative generalized [2]: Vu et al. (2022), A scalable elliptic solver

with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.
[10]: SpECTRE, spectre-code.org

minimal residual (GMRES) algorithm to solve Eq. (5.31) to the requested
precision. A multigrid preconditioner accelerates the GMRES algorithm
by supporting each iteration with an approximate solution from a hier-
archy of successively coarser grids. On every grid, an additive Schwarz
smoother decomposes the problem into many overlapping subproblems,
one per element in the domain, which are solved independently and in
parallel. The subproblems are distributed across the cores of a computing

https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://spectre-code.org
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cluster by a task-based parallelization paradigm. The elliptic solver is
detailed in Ref. [2].

5.3 Results

Our simulations with SpECTRE were performed on one or more 16-core
compute nodes, each with 64 GB of memory and two eight-core Intel
Haswell E5-2630v3 processors clocked at 2.40 GHz, connected with an
Intel Omni-Path network. We distribute the elements that compose the
computational domain evenly among cores, leaving one core per node
free to perform communications.

We compare our results to previous work using an open-source finite
element code to calculate the Brownian coating thermal noise for amor-
phous and crystalline materials. Its methods are described in Secs. 2.4–2.6
of Ref. [167]. The code was built using the deal.ii [238, 239] finite ele-[167]: Lovelace, Demos, and Khan (2018),

Numerically modeling Brownian thermal
noise in amorphous and crystalline thin coat-
ings
[238]: Arndt et al. (2021), The deal.II

Library
[239]: Arndt et al. (2021), The deal.II fi-
nite element library: Design, features, and
insights

ment framework and we henceforth refer to it as deal.ii. It adopted a
standard weak form of the elastostatic equations, discretized them using
a conventional finite element approach, and solved them using deal.ii

with the PETSc [136] conjugate gradient linear solver and the ParaSAILS

[136]: PETSc, https://www.mcs.anl.
gov/petsc

preconditioner in the hypre [138] package. The deal.ii code relies on

[138]: Falgout, Jones, and Yang (2006),
The Design and Implementation of hypre, a
Library of Parallel High Performance Pre-
conditioners

the Message Passing Interface (MPI) for parallelization.

5.3.1 Single-coating comparison

First, we consider the single-coating scenario investigated in Ref. [167] and
demonstrate the superior performance of our new approach. We choose
the parameters listed in Ref. [167], Table 1 for a cylindrical mirror of radius
𝑅 = 12.5 mm with a single 𝑑 = 6.83 µm thin effective-isotropic AlGaAs
coating. We simulate the scenario both with the deal.ii approach
employed in Ref. [167] and with our new approach with the SpECTRE

code.

Figure 5.2 presents the numerical precision and computational cost
of both approaches. To assess the numerical precision we successively
increase the resolution in both codes. In SpECTRE we increase the res-
olution by incrementing the number of grid points in all dimensions
of all elements in the domain by one, and in deal.ii we employ an
adaptive mesh-refinement scheme [167]. We compute the error in the
elastic potential energy relative to a high-resolution reference simula-
tion. We use a reference configuration simulated in SpECTRE where we
have split all elements in two along all three dimensions, relative to the
highest-resolution configuration included in Fig. 5.2.

We find that both codes converge to the same solution, but our new
approach in SpECTRE achieves about four orders of magnitude higher
accuracy than the deal.ii approach using the same number of grid
points. Furthermore, our new approach simulates this scenario with sub-
percent error in only 30 s on 15 cores, for which the deal.ii approach
required multiple hours on 324 cores. Our new approach also achieves a
fractional error below 10−5 in only half a core-hour, or two minutes of real
time, which was prohibitively expensive with the deal.ii approach.

https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://dealii.org/deal93-preprint.pdf
https://dealii.org/deal93-preprint.pdf
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.camwa.2020.02.022
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://books.google.com/books?vid=ISBN978-3-540-31619-0
http://books.google.com/books?vid=ISBN978-3-540-31619-0
http://books.google.com/books?vid=ISBN978-3-540-31619-0
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Figure 5.2: Relative error of the potential energy in a single amorphous coating layer (dashed lines) and in the full mirror (solid lines).
Left: SpECTRE, with our discontinuous Galerkin method, resolves the coating layer at high precision using only a fraction of the number
of grid points needed by the deal.ii approach. Right: SpECTRE solves the elliptic problem using only a fraction of the computational
resources needed by the deal.ii approach.

5.3.2 Accuracy of the approximate analytic solution

Second, we study the accuracy of the approximate analytic solution for
the single-coating thermal noise, Eq. (5.14), using the superior numerical
precision we can now achieve over the results presented in Ref. [167]. [167]: Lovelace, Demos, and Khan (2018),

Numerically modeling Brownian thermal
noise in amorphous and crystalline thin coat-
ings

The approximate solution holds for a thin coating, 𝑑/𝑟0 ≪ 1, a semi-
infinite mirror, 𝑟0/𝑅 ≪ 1 and 𝑑/𝑅 ≪ 1, and for isotropic-homogeneous
materials. Therefore, it does not capture the finite-size effects included in
our simulations, and approximates the crystalline AlGaAs coating as an
amorphous material.

To assess the magnitude of the finite-size effects, we employ the simu-
lations detailed in Section 5.3.1, which use the same effective-isotropic
model for the AlGaAs coating that underpins the approximate analytic
solution. Figure 5.3 presents both the thermal noise computed from the
simulations and the approximate analytic solution (black). Error bars
are computed as Δ

√
𝑆 coat
𝑞 /

√
𝑆 coat
𝑞 = 1/2Δ𝑈coat/𝑈coat from the relative

numerical error in the elastic potential energy. While Ref. [167] estimated
the magnitude of finite-size effects for this problem to 7 %, we can now
report that their simulations captured the effect to (7.5± 0.2)%. With our
new numerical method, we can make this statement more precise and
report a finite-size effect of (7.616 649 ± 0.000 006)%.

To assess the magnitude of the amorphous approximation to the crys-
talline coating material, we repeat the simulations with a crystalline
constitutive relation. The thermal noise computed from these simulations
is presented in Fig. 5.3 as well (red). We refine the estimate of 4 % from
Ref. [167] to (4.5 ± 0.2)%, and report (4.667 990 ± 0.000 006)% using our
new numerical method.

https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
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Figure 5.3: Thermal noise in an AlGaAs-
coated mirror computed from the ap-
proximate analytic solution (5.14) and
from our numerical simulations. The
effective-isotropic simulation (black) re-
tains the amorphous approximation for
the material, but includes finite-size ef-
fects. The crystalline simulation (red)
eliminates this approximation. Previous
simulations with the deal.ii approach
are shown in lighter colors to the left.
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Figure 5.5: Convergence test of the elas-
tic potential energy in each coating layer,
and in the substrate. Our new numeri-
cal method achieves exponential conver-
gence despite the discontinuous material
properties.

5.3.3 Multiple sub-wavelength crystalline coatings

Finally, we apply our new computational approach to a scenario that
presents many of the challenges we expect for applications to realistic
mirror configurations. We simulate a cylindrical mirror of the same
radius 𝑅 = 12.5 mm as before, but split the 𝑑 = 6.83 µm thin coating into
nine layers, so the thickness of each coating layer is below the typical
1 µm wavelength of the laser. The coating layers alternate between fused
silica and crystalline AlGaAs, with the elastic moduli 𝑐11, 𝑐12 and 𝑐44
listed in Ref. [167], Table 1. Neither sub-wavelength coatings nor multiple [167]: Lovelace, Demos, and Khan (2018),

Numerically modeling Brownian thermal
noise in amorphous and crystalline thin coat-
ings

layers were simulated in Ref. [167], but our new computational approach
in SpECTRE achieves both.

Figure 5.4 presents our numerical solution of this scenario. Our new com-
putational approach based on discontinuous Galerkin methods resolves
the thin coating layers at high accuracy without spurious oscillations.
Figure 5.5 presents the numerical precision of the solution. We increase
the resolution by incrementing the number of grid points per element
and dimension and compute the relative error to a high-resolution ref-
erence configuration, as we did in Section 5.3.1. The error converges
exponentially, which is a feature of our discontinuous Galerkin method
with grid boundaries placed at the layer interfaces.

5.4 Discussion

We have presented a new numerical method to model Brownian thermal
noise in thin mirror coatings based on a discontinuous Galerkin (DG)
discretization. With our new method, we model thermal noise in a one-
inch cylindrical mirror with a microns-thick coating at unprecedented
accuracy at a fraction of the time needed in a previous, conventional
finite-element approach [167]. Using these high-accuracy simulations,
we find that a commonly-used approximate analytic solution overesti-
mates the coating thermal noise for this problem by 7.6 % when taking

https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
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only finite-size effects into account, and by 4.7 % when modeling it as
a crystalline material, which refines a previous estimate in Ref. [167].
We also demonstrate that, unlike the approach in Ref. [167], our new
method is capable of resolving multiple sub-wavelength coatings, includ-
ing coatings of a cubic-crystalline material. Our new numerical method
is implemented in the open-source SpECTRE code and the results pre-
sented in this article are reproducible with the supplemental input-file
configurations.

We found that it is crucial for the success of our new method that the
interfaces between layers of different materials coincide with element
boundaries in our computational domain. Then, our discontinuous
Galerkin discretization with a suitable choice of numerical flux converges
exponentially, achieving high accuracy with a small number of grid
points. The scheme can potentially be improved in future work. Most
notably, an adaptive mesh-refinement (AMR) algorithm would have great
potential to further improve the accuracy and efficiency of the scheme,
by distributing the resolution in the computational domain to regions
and dimensions where it is most needed.

Furthermore, the elliptic solver in the SpECTRE code that we employ to
solve the discretized problem numerically can be improved to accelerate
thermal-noise calculations. The calculations we have presented in this
article require a few hundred solver-iterations to converge, or up to∼ 1400
for our highest-resolution simulation with multiple sub-wavelength
crystalline coatings. While simple configurations complete in seconds or
minutes of real-time on 15 cores, where the previous approach needed
hours on 324 cores, the more challenging configurations, which were
prohibitively expensive with the previous approach, solve in about an
hour on 45 cores.

We expect additional speedup with further improvements to the elliptic
solver algorithm in SpECTRE. In particular, improvements to its multigrid
preconditioner have great potential to speed up the simulations. The
multigrid algorithm relies on solving the problem approximately on
coarser grids to resolve large-scale modes in the solution. It currently
cannot coarsen the grid any further than the size of each coating layer
because the layers define the material properties. To accelerate the
calculations, we intend to let the multigrid algorithm combine layers
with different materials into fiducial coarse layers with effective material
properties. This approach is possible because the partitioning of the
domain into layers is necessary only to define material properties, not
to define the geometry of the domain. Reference [2] shows that the[2]: Vu et al. (2022), A scalable elliptic solver

with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

multigrid algorithm can achieve resolution-independent iteration counts
when the domain can be coarsened sufficiently. Note that the fiducial
coarse layers affect only the convergence behavior of the solver, but have
no effect on the solution once the solver has converged.

Our numerical models of thermal noise have the potential to inform up-
grades that increase the sensitivity of gravitational-wave detectors, using
the advanced computational technology that we develop for numerical-
relativity simulations in the SpECTRE code. In the future, we intend to
apply our new numerical method to simulate Brownian thermal noise
in more realistic mirror configurations and materials that are under
consideration for current and future gravitational-wave detectors, such

https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
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as the optimized configuration found in Ref. [240]. While approximate an- [240]: Venugopalan, Arai, and Adhikari
(2021), Global optimization of multilayer di-
electric coatings for precision measurements

alytic solutions can provide useful estimates, only numerical models can
precisely quantify the finite-size effects of changing the mirror geometry.
In particular, finite-size effects are more important for real gravitational-
wave detectors than for tabletop experiments measuring thermal noise.
Tabletop experiments often use small beam sizes to enlarge the thermal
noise and hence make it easier to measure, whereas gravitational-wave
detectors prefer large beam sizes to minimize thermal noise. Therefore,
we plan to employ our new numerical method to explore realistic mirror
configurations, with the goal of finding configurations that minimize
Brownian coating thermal noise.
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In this thesis I have developed an elliptic solver for numerical relativ-
ity that scales effectively to supercomputers. It is targeted to support
numerical simulations of astrophysical scenarios with the new SpECTRE

code [10] for the emerging era of gravitational-wave and multimessenger [10]: SpECTRE, spectre-code.org
astronomy. It employs a discontinuous Galerkin (DG) numerical scheme
to discretize the elliptic equations, and task-based parallel algorithms to
distribute computation to supercomputers.

The DG scheme that I have developed is applicable to a wide range
of nonlinear elliptic problems that appear in numerical relativity, such
as the XCTS and puncture initial data formalisms [1]. It also applies to [1]: Fischer and Pfeiffer (2022), Unified

discontinuous Galerkin scheme for a large
class of elliptic equations. Chapter 2 of this
thesis.

elliptic equations throughout computational physics, such as elasticity
problems. It recovers exponential convergence for smooth problems.
At the same time, it allows for ℎ𝑝 refinement to adapt the grid to
the problem at hand. This makes it particularly suited for problems
involving discontinuities, such as neutron stars with phase transitions or
layered elastic materials, recovering exponential convergence when the
discontinuities are placed at grid boundaries. The DG scheme generally
needs more grid points than comparable domains in SpEC [55] because [55]: Spectral Einstein Code (SpEC),

black-holes.org/code/SpECpoints on element boundaries are duplicate, and because we tend to
split domains into a larger number of elements to favor parallelization.
For instance, where SpEC always employs eleven large subdomains for a
binary black hole (BBH) initial data problem, and hence scales to at most
eleven cores, my new DG scheme splits the domain into a few hundred
smaller elements to balance high-order convergence with parallelizability.
Optimal domain decompositions and ℎ𝑝-adaptive mesh refinement
(AMR) procedures are major subjects of future research to improve the
efficiency of the DG scheme.

I have developed a stack of task-based parallel iterative algorithms to
solve the sparse matrix equations arising from the DG discretization [2]. [2]: Vu et al. (2022), A scalable elliptic solver

with task-based parallelism for the SpECTRE
code. Chapter 3 of this thesis.

These algorithms constitute the elliptic solver of the SpECTRE code. The
centerpiece is a highly parallelizable multigrid-Schwarz preconditioner
supporting a Newton-Krylov algorithm. From an algorithmic perspec-
tive, the preconditioner achieves scale-independent iteration counts: the
computational work required to solve problems at higher resolution
manifests in harder and more numerous subproblems, rather than in-
creasing the number of iterations. From a technological perspective,
these subproblems represent tasks that can be distributed on computing
clusters. The additive Schwarz algorithm overlaps the computation of
subproblems as much as possible by avoiding global synchronization
points. Each subproblem represents a preconditioned iterative solve
by itself, and I have developed efficient subdomain preconditioners to
accelerate the elliptic solver. It has proven capable of distributing over
200 million degrees of freedom effectively to thousands of cores. In the
future we intend to explore the performance of the elliptic solver on even
larger problems, e.g., involving neutron stars, and more cores.

I have applied the new elliptic solver to generate initial data for numeri-
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cal relativity simulations. Using the superposed Kerr-Schild formalism
for the XCTS equations, I have demonstrated that the elliptic solver
already generates BBH initial data about ten times faster than SpEC by
parallelizing computation to 120 cores. This means in particular that
my new elliptic solver can use modern computing clusters effectively,
which consist of nodes with considerably more than the eleven cores
usable by the SpEC elliptic solver. The feature set of the initial data solver
is already comparable to SpEC, supporting superposed Schwarzschild
and Kerr solutions in various coordinate systems to construct confor-
mal backgrounds, as well as horizon-conforming excision surfaces and
negative-expansion boundary conditions for unequal-mass and spinning
black hole binaries. The initial data sets are ready to be evolved by the
hyperbolic component of the SpECTRE code, which is currently complet-
ing work on control systems for the position and shape of the excision
surfaces during the evolution. Future work on the initial data solver
includes rootfinding routines that invoke the elliptic solver repeatedly to
control free parameters.

A major avenue for applications of the elliptic solver is initial data
with neutron stars. I have demonstrated that the DG scheme converges
exponentially for single and binary TOV stars when the stellar surface is
placed at grid boundaries. Therefore, I intend to employ the technology
used to deform black-hole excision surfaces to conform the grid to
stellar surfaces and other discontinuities in the problem, such as phase
transitions within the stars. I have demonstrated the capability to solve for
the gravity sector of head-on binary neutron star (BNS) initial data based
on the density and pressure profiles of two TOV stars at rest. Solving
the equations of hydrostatic equilibrium alongside the gravity sector
will enable orbiting and spinning BNS initial data. Iteration procedures
are used throughout the literature to couple the gravity and hydrostatic
sectors and to control free parameters, but they are often fragile and
strongly damped. Therefore, I intend to explore solving the coupled XCTS
and hydrostatic equations together to obtain more accurate iterations,
accelerate the generation of BNS and BHNS initial data, and cover their
parameter space robustly.

As an interdisciplinary application of the elliptic solver I have simulated
Brownian thermal noise in thin mirror coatings [3]. This source of[3]: Vu et al. (2021), High-accuracy numeri-

cal models of Brownian thermal noise in thin
mirror coatings. Chapter 5 of this thesis.

noise limits the sensitivity of current interferometric gravitational-wave
detectors. The DG scheme is able to resolve the thin coating layers with
high-order convergence, and the elliptic solver in SpECTRE solves these
thermal-noise problems orders of magnitude faster than a previous
study based on lower-order finite-element methods. Equipped with
this capability we have simulated, for the first time, thermal noise in
multiple sub-wavelength crystalline coating layers. I intend to extend our
fast, high-resolution numerical simulations of thermal noise to mirror
configurations under consideration for future upgrades of the LIGO
detectors, such as the optimized configuration presented in Ref. [240].[240]: Venugopalan, Arai, and Adhikari

(2021), Global optimization of multilayer di-
electric coatings for precision measurements

Therefore, our numerical models of thermal noise have the potential
to inform upgrades that increase the sensitivity of gravitational-wave
detectors, using the advanced computational technology that we develop
for numerical-relativity simulations.

A fast elliptic solver also has the intriguing potential to support evolutions.
For example, the study of planetesimal formation in protoplanetary disks
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requires extensive numerical simulations, in particular when magnetic
fields are involved to study magneto-rotational or gravitational instabili-
ties [241]. These simulations account for the self-gravity of the disk by [241]: Riols and Latter (2019), Gravitotur-

bulent dynamos in astrophysical discssolving for its Newtonian gravitational potential alongside the evolu-
tion [212–214]. With SpECTRE we can potentially achieve high-resolution [212]: Deng, Mayer, and Latter (2020),

Global Simulations of Self-gravitating Mag-
netized Protoplanetary Disks
[213]: Hopkins (2015), A new class of ac-
curate, mesh-free hydrodynamic simulation
methods
[214]: Enzo (2014), Enzo: An Adaptive Mesh
Refinement Code for Astrophysics

simulations of self-gravitating protoplanetary disks using my fast, iter-
ative and task-based parallel elliptic solver for the Newtonian gravity
sector, in combination with AMR, load-balancing and our high-order
numerical methods for hydrodynamic evolutions.

A particularly promising approach to support evolutions within numer-
ical relativity is to stabilize challenging simulations by solving elliptic
constraints, such as magnetic divergence cleaning [120], favorable gauges,
or even (parts of) the Einstein constraints on a path toward fully con-
strained evolutions [85]. Constraint damping and divergence cleaning [85]: Cheong, Lin, and Li (2020), Gmunu:

Toward multigrid based Einstein field equa-
tions solver for general-relativistic hydrody-
namics simulations

schemes are essential for contemporary numerical simulations, and it
remains to be seen to what extent they can be supported by a fast elliptic
solver. Along a similar line of thought, stiff terms in evolution equa-
tions can potentially be replaced by elliptic problems in implicit-explicit
(IMEX) evolution schemes [120–123]. To solve these elliptic problems [120]: Cheong et al. (2021), An extension of

Gmunu: General-relativistic resistive magne-
tohydrodynamics based on staggered-meshed
constrained transport with elliptic cleaning
[121]: Pareschi and Russo (2005), Implicit-
explicit runge-kutta schemes and applica-
tions to hyperbolic systems with relaxation
[122]: Lau, Lovelace, and Pfeiffer (2011),
Implicit-explicit (IMEX) evolution of single
black holes
[123]: Ripperda et al. (2019), General rel-
ativistic resistive magnetohydrodynamics
with robust primitive variable recovery for
accretion disk simulations

alongside an evolution we can explore dispatching only a few asyn-
chronous Schwarz-smoothing steps every couple of time steps to keep
constraint violations below a tolerance with maximal parallel efficiency,
or run full multigrid-Schwarz preconditioned Newton-Krylov iterations
when needed. Applications like these have received little attention in the
numerical relativity community in the last decade, but may be enabled
by a fast and highly parallel elliptic solver.
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A
Visualizations of gravitational-wave events

Figures 1.3 and 1.7 to 1.9 show snapshots from visualizations of gravitational-
wave events that I have produced for LIGO outreach efforts. They show
three “exceptional” events that were detected by the LIGO and Virgo
collaborations during the first part of the third observing run (O3a):

▶ GW190412 [35] (Figs. 1.3 and 1.7 and visualization [242]) was the [35]: LIGO, Virgo (2020), GW190412: Ob-
servation of a Binary-Black-Hole Coalescence
with Asymmetric Masses
[242]: Fischer et al. (2020), Visualization
of the GW190412 event

first observed black hole merger with significantly unequal masses
(about 30 M⊙ and 8 M⊙), a nonzero spin of the larger black hole,
and an indication that the system was precessing. My visualization
is based on a precessing SpEC simulation with 𝑞 = 3.5, 𝝌1 =
(0.52, 0, 0.3), and 𝝌2 = 0.1 1: The SpEC simulation is not yet

public at the time of writing. It
is identified internally by the name
PrecBBH000029, and will carry the pub-
lic name SXS:BBH:1253.

▶ GW190814 [36] (Fig. 1.8 and visualization [243]) was a merger event

[36]: LIGO, Virgo (2020), GW190814:
Gravitational Waves from the Coalescence of
a 23 Solar Mass Black Hole with a 2.6 Solar
Mass Compact Object
[243]: Fischer et al. (2020), Visualization
of the GW190814 event

with particularly unequal masses (about 23 M⊙ and 2.5 M⊙ to 3 M⊙).
Since the mass of the smaller object was so small, it may have been
either a light black hole or a heavy neutron star. My visualization
assumes it was a black hole. The large mass ratio emphasized higher
harmonics in the gravitational-wave signal, and kept the signal in
band of the detectors for over 10 s (or about 160 orbits). Since this
inspiral is longer than any available NR simulation with consistent
parameters, I combined the SpEC simulation SXS:BBH:1108 [9] [9]: SXS (2019), The SXS collaboration cata-

log of binary black hole simulations(𝑞 = 9.2 and nonspinning) with a long waveform computed by the
SEOBNRv4HM model [46]. I highlight the higher harmonics in the [46]: Cotesta et al. (2018), Enriching the

Symphony of Gravitational Waves from Bi-
nary Black Holes by Tuning Higher Harmon-
ics

visualization.

▶ GW190521 [37] (Fig. 1.9 and visualization [244]) was a very short
[37]: LIGO, Virgo (2020), GW190521: A
Binary Black Hole Merger with a Total Mass
of 150𝑀⊙
[244]: Fischer, Pfeiffer, and Buonanno
(2020), Visualization of the GW190521 event

signal from the merger of two particularly heavy black holes (about
85 M⊙ and 66 M⊙). For numerical relativity simulations, only the
mass ratio of the two black holes is relevant, not their total mass. For
the visualization I used the SpEC simulation SXS:BBH:1006 [9] with
𝑞 = 1.03, 𝝌1 = (0.64, 0.21,−0.35), and 𝝌2 = (−0.48, 0.18, 0.50).

I also contributed to the visualization of the BHNS merger event
GW200115 [245]. [245]: Dietrich et al. (2022), Simulation

of an NSBH coalescence consistent with
GW200115The pictures were produced with my gwpv software package [12]. It dis-
[12]: gwpv, github:nilsvu/gwpvpatches to the ParaView scientific visualization toolkit [175] to generate
[175]: Ahrens, Geveci, and Law (2005),
ParaView: An End-User Tool for Large-
Data Visualization

three-dimensional renderings of gravitational waveforms from a nu-
merical simulation or from a waveform model. Waveforms are typically
stored in the form of complex spin-weighted spherical harmonic (SWSH)
modes ℎ𝑙𝑚(𝑡). Currently, only the SXS waveform file format is supported,
which stores the SWSH modes extrapolated from a SpEC simulation in
an HDF5 file [9]. For the visualization, I load the waveform data and [9]: SXS (2019), The SXS collaboration cata-

log of binary black hole simulationsevaluate the SWSH expansion (1.10) for the GW strain 𝑟ℎ(𝑡 , 𝑟 , 𝜃, 𝜙) in a
(1.10): ℎ = ℎ+ − 𝑖 ℎ× =
1
𝑟
∑∞
𝑙=2

∑𝑙
𝑚=−𝑙 ℎ𝑙𝑚(𝑡)−2𝑌𝑙𝑚(𝜃, 𝜙)

three-dimensional volume. I evaluate the expansion on a uniform grid
of points, since I have found that ParaView provides the best volume
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rendering capabilities on uniform grids. The waveform modes ℎ𝑙𝑚(𝑡)
are evaluated at the retarded time 𝑡𝑟 = 𝑡 − 𝑟/𝜆 on the grid, where 𝑟 is
the Euclidean coordinate distance from the origin and 𝜆 is a scale factor
used to control the visualization. Since the waveform modes are stored
at a set of discrete sample times, their evaluation at the retarded times
requires an interpolation, which I have optimized for uniformly sampled
waveforms. The polarization of the visualized gravitational radiation
is selected by taking either the real part or the imaginary part of the
SWSH expansion (1.10). Optionally, the radial scaling with 1/𝑟 is either
added or omitted. At an inner radius 𝑟min and at an outer radius 𝑟max the
visualized quantity is multiplied by a smoothstep function to activate
and deactivate the visualization radially.

I employ the spherical package [246] to compute the spin-weighted[246]: Python package spherical,
10.5281/zenodo.4045222 spherical harmonics −2𝑌𝑙𝑚(𝜃, 𝜙) in the expansion (1.10) on every grid

point. Evaluating the SWSH grid incurs a considerable computational
cost, but it can be cached and reused for all timesteps in a visualization. I
also cache the SWSH grids on disk and reuse them for multiple visual-
ization. The SWSH caching is essential to achieve reasonable rendering
performance.

The number of modes that contribute to the SWSH expansion (1.10) is
configurable. In many cases, only the dominant (2, 2) mode is needed
for the visualization, but higher modes become important at high mass
ratios or for asymmetric GW events such as hyperbolic encounters. For
the GW190814 visualization [243] I also rendered images of individual[243]: Fischer et al. (2020), Visualization

of the GW190814 event modes, scaled in amplitude to their respective maxima.

Figure A.1: A “sawtooth” transfer func-
tion in ParaView. The abscissa defines
the color map and the ordinate defines
the opacity for mapping the GW strain
in the volume to colors.

Once the GW strain is computed on the uniform grid, a ParaView pipeline
produces the image. The pipeline dispatches to ParaView’s GPU-based
volume renderer, which traces rays through the volume to accumulate
the color for each pixel. The GW strain is translated to colors by a
transfer function (Fig. A.1). I generally construct the transfer function by
choosing a colormap, and by dividing a range of values for the GW strain
into a number of uniformly or logarithmically spaced peaks in opacity
(“sawtooth”-shaped opacity function). This choice of transfer function
creates visually pleasing sharp contours of different colors that “peel off”
from the center.

In addition to the gravitational radiation, the visualizations show the
apparent horizons extracted from the numerical simulations along
with optional visual indicators such as the trajectories, spins, and two-
dimensional Ricci scalar of the horizons. Visualizations of the apparent
horizons are particularly instructive near merger, where they deform
considerably and form a common horizon. Additional ParaView filters
can be added to the visualizations, e.g., to create slices or clips, or for
camera motion. All components of the visualizations are composed in
scenes, represented by a stack of YAML configuration files.

Figure A.2: Background with somewhat
realistically distributed stars.

The background of the visualizations shows randomly distributed stars
(Fig. A.2). To generate the background image, I uniformly sample the
positions of the stars on the sky, and sample random distances 𝐷 in
the volume, i.e. from a cubic power law. From the randomly sampled
distances I scale the radius of each star by 1/𝐷 according to the small-
angle approximation, and compute the opacity of each star according

https://doi.org/10.5281/zenodo.4045222
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to its flux, i.e., scaled by 1/𝐷2. The background image is mapped to a
sphere in ParaView that envelops the visualization volume.

The visualizations were rendered on the GPU machine Slartibartfast
at AEI Potsdam with an Nvidia Quadro P4000 GPU. Rendering a single
frame at high resolution took ∼40 s and required up to ∼40 GB of RAM
and ∼1 GB of GPU memory. Since rendering multiple frames is “em-
barassingly parallel” I employ Python multiprocessing to distribute
the rendering to multiple cores. The number of cores that the rendering
can scale to is typically limited by the available memory on a node.

Since the visualizations use only waveform data (and optionally apparent
horizons from a numerical simulation), they can be generated from any
waveform published in a catalog or produced by a waveform model.
In future work I intend to add optional support for visualizing the
strong-field gravitational field extracted from a numerical simulation
to capture the violent dynamics near merger. I also intend to visualize
hydrodynamic quantities extracted from simulations involving neutron
stars. Finally, a particularly intriguing prospect is to extend the open-
source ray tracing capabilities of ParaView to support gravitational
lensing. Work along this avenue has been done by Bohn et al. [247] in [247]: Bohn et al. (2015), What does a binary

black hole merger look like?SpEC. Building gravitational lensing directly into ParaView would benefit
from its advanced rendering capabilities, and has the potential to generate
quite spectacular visualizations of numerical relativity simulations.

https://doi.org/10.1088/0264-9381/32/6/065002
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B
Input-file configurations

These input files reproduce the results referenced throughout this thesis. They all run with the SolveXcts

executable of the SpECTRE code [10], compiled on the following branch:

▶ https://github.com/nilsvu/spectre/tree/thesis

B.1 KerrSchildDefect.yaml

1 Background: &kerr
2 KerrSchild:
3 Mass: 1.
4 Spin: [0., 0., 0.]
5 Center: [0., 0., 0.]
6

7 InitialGuess: Flatness
8

9 DomainCreator:
10 Shell:
11 InnerRadius: 2.
12 OuterRadius: 10.
13 InitialRefinement: 1
14 InitialGridPoints: [6, 6]
15 UseEquiangularMap: True
16 EquatorialCompression: None
17 WhichWedges: All
18 RadialPartitioning: []
19 RadialDistribution: [Logarithmic]
20 TimeDependence: None
21 Shape: None
22 BoundaryConditions:
23 InnerBoundary:
24 ApparentHorizon:
25 Center: [0., 0., 0.]
26 Rotation: [0., 0., 0.]
27 # Neumann-type lapse boundary condition, Eq. (4.2)
28 Lapse: Auto
29 # Dirichlet-type lapse boundary condition, Eq. (2.53b)
30 # Lapse: *kerr
31 NegativeExpansion: None
32 OuterBoundary:
33 AnalyticSolution:
34 ConformalFactor: Dirichlet
35 LapseTimesConformalFactor: Dirichlet
36 ShiftExcess: Dirichlet
37

38 Discretization:
39 DiscontinuousGalerkin:
40 PenaltyParameter: 1.
41 Massive: True
42

43 Observers:
44 VolumeFileName: "KerrSchildVolume"
45 ReductionFileName: "KerrSchildReductions"
46

47 NonlinearSolver:
48 NewtonRaphson:
49 ConvergenceCriteria:
50 # Increase MaxIterations to ˜20 for Fig. 4.2
51 MaxIterations: 1
52 RelativeResidual: 0.
53 AbsoluteResidual: 1.e-10

54 SufficientDecrease: 1.e-4
55 MaxGlobalizationSteps: 40
56 Damping: None
57 Verbosity: Quiet
58

59 LinearSolver:
60 Gmres:
61 ConvergenceCriteria:
62 MaxIterations: 30
63 RelativeResidual: 1.e-4
64 AbsoluteResidual: 1.e-12
65 Verbosity: Quiet
66

67 Multigrid:
68 Iterations: 1
69 MaxLevels: Auto
70 PreSmoothing: True
71 PostSmoothingAtBottom: False
72 Verbosity: Silent
73 OutputVolumeData: False
74 ElementAllocation:
75 WeightByNumPoints: True
76

77 SchwarzSmoother:
78 Iterations: 3
79 MaxOverlap: 2
80 Verbosity: Silent
81 SubdomainSolver:
82 Gmres:
83 ConvergenceCriteria:
84 MaxIterations: 3
85 RelativeResidual: 1.e-4
86 AbsoluteResidual: 1.e-12
87 Verbosity: Silent
88 Restart: None
89 Preconditioner:
90 MinusLaplacian:
91 Solver:
92 ExplicitInverse:
93 FillFactor: 1
94 Verbosity: Silent
95 BoundaryConditions: Auto
96 SkipResets: True
97 ObservePerCoreReductions: False
98

99 EventsAndTriggers:
100 ? Always
101 : - ObserveNorms:
102 SubfileName: ErrorNorms
103 TensorsToObserve:
104 - Name: Error(ConformalFactor)
105 NormType: L2Norm
106 Components: Sum

https://github.com/nilsvu/spectre/tree/thesis
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107 - Name: Error(LapseTimesConformalFactor)
108 NormType: L2Norm
109 Components: Sum
110 - Name: Error(ShiftExcess)
111 NormType: L2Norm
112 Components: Sum
113 - ObserveNorms:
114 SubfileName: Norms
115 TensorsToObserve:
116 - Name: HamiltonianConstraint
117 NormType: L2Norm
118 Components: Individual
119 - Name: MomentumConstraint
120 NormType: L2Norm
121 Components: Individual

122 - ObserveFields:
123 SubfileName: VolumeData
124 VariablesToObserve:
125 - ConformalFactor
126 - LapseTimesConformalFactor
127 - ShiftExcess
128 - Error(ConformalFactor)
129 - Error(LapseTimesConformalFactor)
130 - Error(ShiftExcess)
131 - HamiltonianConstraint
132 - MomentumConstraint
133 InterpolateToMesh: None
134 CoordinatesFloatingPointType: Float
135 FloatingPointTypes: [Float]

B.2 KerrSchildSpin.yaml

1 Background: &kerr
2 KerrSchild:
3 Mass: &kerr_mass 1.
4 Spin: &kerr_spin [0., 0., 0.9]
5 Center: [0., 0., 0.]
6

7 InitialGuess: *kerr
8

9 DomainCreator:
10 Shell:
11 # 𝑟min = 𝑟+ = 𝑀 +

√
𝑀2 − 𝒂2, Eq. (4.4)

12 # Set to 𝑟min = 𝑀 = 1 for Fig. 4.6
13 InnerRadius: 1.4358898943540672
14 OuterRadius: 10.
15 Shape:
16 Mass: *kerr_mass
17 Spin: *kerr_spin
18 Modes: [20, 20]
19 RadialPartitioning: []
20 RadialDistribution: [Logarithmic]
21 InitialRefinement: {{L}}
22 InitialGridPoints: [{{P+1}}, {{P+1}}]
23 UseEquiangularMap: True
24 EquatorialCompression: None
25 WhichWedges: All
26 TimeDependence: None
27 BoundaryConditions:
28 InnerBoundary:
29 ApparentHorizon:
30 Center: [0., 0., 0.]
31 # 𝛀𝑟 = 𝝌/(2𝑟min), Eq. (4.11)
32 # Set to `[0., 0., -0.45]` for Fig. 4.6
33 Rotation: [0., 0., -0.3133945031366293]
34 Lapse: *kerr
35 # Set to `*kerr` for Fig. 4.6
36 NegativeExpansion: None
37 OuterBoundary:
38 AnalyticSolution:
39 ConformalFactor: Dirichlet
40 LapseTimesConformalFactor: Dirichlet
41 ShiftExcess: Dirichlet
42

43 Discretization:
44 DiscontinuousGalerkin:
45 PenaltyParameter: 1.
46 Massive: True
47

48 Observers:
49 VolumeFileName: "KerrSchildVolume"
50 ReductionFileName: "KerrSchildReductions"
51

52 NonlinearSolver:
53 NewtonRaphson:
54 ConvergenceCriteria:
55 MaxIterations: 20
56 RelativeResidual: 0.
57 AbsoluteResidual: 1.e-10

58 SufficientDecrease: 1.e-4
59 MaxGlobalizationSteps: 40
60 Damping: None
61 Verbosity: Verbose
62

63 LinearSolver:
64 Gmres:
65 ConvergenceCriteria:
66 MaxIterations: 100
67 RelativeResidual: 1.e-3
68 AbsoluteResidual: 1.e-11
69 Verbosity: Quiet
70

71 Multigrid:
72 Iterations: 1
73 MaxLevels: Auto
74 PreSmoothing: True
75 PostSmoothingAtBottom: False
76 Verbosity: Silent
77 OutputVolumeData: False
78 ElementAllocation:
79 WeightByNumPoints: True
80

81 SchwarzSmoother:
82 MaxOverlap: 2
83 Iterations: 3
84 Verbosity: Silent
85 SubdomainSolver:
86 Gmres:
87 ConvergenceCriteria:
88 MaxIterations: 3
89 RelativeResidual: 1.e-4
90 AbsoluteResidual: 1.e-10
91 Verbosity: Silent
92 Restart: None
93 Preconditioner:
94 MinusLaplacian:
95 Solver:
96 ExplicitInverse:
97 FillFactor: 1
98 Verbosity: Silent
99 BoundaryConditions: Auto

100 ObservePerCoreReductions: False
101 SkipResets: True
102

103 EventsAndTriggers:
104 ? Always
105 : - ObserveNorms:
106 SubfileName: ErrorNorms
107 TensorsToObserve:
108 - Name: Error(ConformalFactor)
109 NormType: L2Norm
110 Components: Individual
111 - Name: Error(ConformalFactor)
112 NormType: L2IntegralNorm
113 Components: Individual
114 - Name: Error(LapseTimesConformalFactor)
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115 NormType: L2Norm
116 Components: Individual
117 - Name: Error(LapseTimesConformalFactor)
118 NormType: L2IntegralNorm
119 Components: Individual
120 - Name: Error(ShiftExcess)
121 NormType: L2Norm
122 Components: Individual
123 - Name: Error(ShiftExcess)
124 NormType: L2IntegralNorm
125 Components: Individual
126 - ObserveNorms:
127 SubfileName: Norms
128 TensorsToObserve:
129 - Name: ConformalFactor
130 NormType: Max
131 Components: Individual
132 - Name: Lapse
133 NormType: Min
134 Components: Individual
135 - Name: Magnitude(ShiftExcess)
136 NormType: Max
137 Components: Individual
138 - Name: HamiltonianConstraint
139 NormType: L2Norm
140 Components: Individual
141 - Name: HamiltonianConstraint
142 NormType: L2IntegralNorm
143 Components: Individual
144 - Name: MomentumConstraint
145 NormType: L2Norm
146 Components: Individual
147 - Name: MomentumConstraint
148 NormType: L2IntegralNorm
149 Components: Individual
150 - ObserveFields:
151 SubfileName: VolumeData
152 VariablesToObserve:
153 - ConformalFactor
154 - Error(ConformalFactor)

155 - Error(LapseTimesConformalFactor)
156 - Error(ShiftExcess)
157 - Lapse
158 - Shift
159 - Magnitude(ShiftExcess)
160 - SpatialMetric
161 - ExtrinsicCurvature
162 - HamiltonianConstraint
163 - MomentumConstraint
164 InterpolateToMesh: None
165 CoordinatesFloatingPointType: Double
166 FloatingPointTypes: [Double]
167 # For Fig. 4.6:
168 - ObserveAtPoint:
169 Coordinates: [1.6, 0, 0]
170 SubfileName: NearBulge
171 TensorsToObserve:
172 - ConformalFactor
173 - LapseTimesConformalFactor
174 - ShiftExcess
175 - HamiltonianConstraint
176 - MomentumConstraint
177 - ObserveAtPoint:
178 Coordinates: [0, 0, 1.2]
179 SubfileName: NearTop
180 TensorsToObserve:
181 - ConformalFactor
182 - LapseTimesConformalFactor
183 - ShiftExcess
184 - HamiltonianConstraint
185 - MomentumConstraint
186 - ObserveAtPoint:
187 Coordinates: [9, 0, 0]
188 SubfileName: Outside
189 TensorsToObserve:
190 - ConformalFactor
191 - LapseTimesConformalFactor
192 - ShiftExcess
193 - HamiltonianConstraint
194 - MomentumConstraint

B.3 BbhKsi.yaml

1 Background: &background
2 Binary:
3 XCoords: [&x_left -5., &x_right 5.]
4 ObjectA: &kerr_left
5 Schwarzschild:
6 Mass: 1.
7 Coordinates: KerrSchildIsotropic
8 ObjectB: &kerr_right
9 Schwarzschild:

10 Mass: 1.
11 Coordinates: KerrSchildIsotropic
12 AngularVelocity: 0.04266
13 Expansion: 0.
14 FalloffWidths: None
15

16 InitialGuess: *background
17

18 DomainCreator:
19 BinaryCompactObject:
20 ObjectA:
21 InnerRadius: 1.2727410334221052
22 OuterRadius: 3.5
23 XCoord: *x_left
24 Interior:
25 ExciseWithBoundaryCondition:
26 ApparentHorizon:
27 Center: [*x_left, 0., 0.]
28 Rotation: [0., 0., 0.]
29 Lapse: Auto
30 NegativeExpansion: None
31 Shape: None
32 UseLogarithmicMap: True

33 ObjectB:
34 InnerRadius: 1.2727410334221052
35 OuterRadius: 3.5
36 XCoord: *x_right
37 Interior:
38 ExciseWithBoundaryCondition:
39 ApparentHorizon:
40 Center: [*x_right, 0., 0.]
41 Rotation: [0., 0., 0.]
42 Lapse: Auto
43 NegativeExpansion: None
44 Shape: None
45 UseLogarithmicMap: True
46 UseEquiangularMap: True
47 EnvelopingCube:
48 Radius: 55.
49 UseProjectiveMap: True
50 Sphericity: 0.
51 OuterShell:
52 InnerRadius: 60.
53 OuterRadius: 1e6
54 RadialDistribution: Inverse
55 BoundaryCondition: Flatness
56 InitialRefinement:
57 ObjectAShell: [{{L+1}}, {{L+1}}, {{L+1}}]
58 ObjectBShell: [{{L+1}}, {{L+1}}, {{L+1}}]
59 ObjectACube: [{{L+1}}, {{L+1}}, {{L }}]
60 ObjectBCube: [{{L+1}}, {{L+1}}, {{L }}]
61 EnvelopingCubeUpperZLeft: [{{L+1}}, {{L+1}}, {{L }}]
62 EnvelopingCubeLowerZLeft: [{{L+1}}, {{L+1}}, {{L }}]
63 EnvelopingCubeUpperYLeft: [{{L+1}}, {{L+1}}, {{L }}]
64 EnvelopingCubeLowerYLeft: [{{L+1}}, {{L+1}}, {{L }}]
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65 EnvelopingCubeLowerX: [{{L+1}}, {{L+1}}, {{L }}]
66 EnvelopingCubeUpperZRight: [{{L+1}}, {{L+1}}, {{L }}]
67 EnvelopingCubeLowerZRight: [{{L+1}}, {{L+1}}, {{L }}]
68 EnvelopingCubeUpperYRight: [{{L+1}}, {{L+1}}, {{L }}]
69 EnvelopingCubeLowerYRight: [{{L+1}}, {{L+1}}, {{L }}]
70 EnvelopingCubeUpperX: [{{L+1}}, {{L+1}}, {{L }}]
71 CubedShellUpperZLeft: [{{L }}, {{L+1}}, {{L }}]
72 CubedShellLowerZLeft: [{{L }}, {{L+1}}, {{L }}]
73 CubedShellUpperYLeft: [{{L }}, {{L+1}}, {{L }}]
74 CubedShellLowerYLeft: [{{L }}, {{L+1}}, {{L }}]
75 CubedShellLowerX: [{{L+1}}, {{L+1}}, {{L }}]
76 CubedShellUpperZRight: [{{L }}, {{L+1}}, {{L }}]
77 CubedShellLowerZRight: [{{L }}, {{L+1}}, {{L }}]
78 CubedShellUpperYRight: [{{L }}, {{L+1}}, {{L }}]
79 CubedShellLowerYRight: [{{L }}, {{L+1}}, {{L }}]
80 CubedShellUpperX: [{{L+1}}, {{L+1}}, {{L }}]
81 OuterShellUpperZLeft: [{{L }}, {{L+1}}, {{L }}]
82 OuterShellLowerZLeft: [{{L }}, {{L+1}}, {{L }}]
83 OuterShellUpperYLeft: [{{L }}, {{L+1}}, {{L }}]
84 OuterShellLowerYLeft: [{{L }}, {{L+1}}, {{L }}]
85 OuterShellLowerX: [{{L+1}}, {{L+1}}, {{L }}]
86 OuterShellUpperZRight: [{{L }}, {{L+1}}, {{L }}]
87 OuterShellLowerZRight: [{{L }}, {{L+1}}, {{L }}]
88 OuterShellUpperYRight: [{{L }}, {{L+1}}, {{L }}]
89 OuterShellLowerYRight: [{{L }}, {{L+1}}, {{L }}]
90 OuterShellUpperX: [{{L+1}}, {{L+1}}, {{L }}]
91 InitialGridPoints:
92 ObjectAShell: [{{P+1}}, {{P+1}}, {{P+4}}]
93 ObjectBShell: [{{P+1}}, {{P+1}}, {{P+4}}]
94 ObjectACube: [{{P+1}}, {{P+1}}, {{P+2}}]
95 ObjectBCube: [{{P+1}}, {{P+1}}, {{P+2}}]
96 EnvelopingCube: [{{P+1}}, {{P+1}}, {{P+1}}]
97 CubedShell: [{{P+1}}, {{P+1}}, {{P+1}}]
98 OuterShell: [{{P+1}}, {{P+1}}, {{P }}]
99

100 Discretization:
101 DiscontinuousGalerkin:
102 PenaltyParameter: 1.
103 Massive: True
104

105 Observers:
106 VolumeFileName: "BbhVolume"
107 ReductionFileName: "BbhReductions"
108

109 NonlinearSolver:
110 NewtonRaphson:
111 ConvergenceCriteria:
112 MaxIterations: 20
113 RelativeResidual: 0.
114 AbsoluteResidual: 1.e-10
115 SufficientDecrease: 1.e-4
116 MaxGlobalizationSteps: 40
117 Damping: None
118 Verbosity: Verbose
119

120 LinearSolver:
121 Gmres:
122 ConvergenceCriteria:
123 MaxIterations: 100
124 RelativeResidual: 1.e-3
125 AbsoluteResidual: 1.e-10
126 Verbosity: Quiet
127

128 Multigrid:

129 Iterations: 1
130 MaxLevels: Auto
131 PreSmoothing: True
132 PostSmoothingAtBottom: True
133 Verbosity: Silent
134 OutputVolumeData: False
135 ElementAllocation:
136 WeightByNumPoints: True
137

138 SchwarzSmoother:
139 MaxOverlap: 2
140 Iterations: 3
141 Verbosity: Silent
142 SubdomainSolver:
143 Gmres:
144 ConvergenceCriteria:
145 MaxIterations: 3
146 RelativeResidual: 1.e-4
147 AbsoluteResidual: 1.e-10
148 Verbosity: Silent
149 Restart: None
150 Preconditioner:
151 MinusLaplacian:
152 Solver:
153 ExplicitInverse:
154 FillFactor: 1
155 Verbosity: Silent
156 BoundaryConditions: Auto
157 SkipResets: True
158 ObservePerCoreReductions: False
159

160 EventsAndTriggers:
161 ? HasConverged
162 : - ObserveNorms:
163 SubfileName: Norms
164 TensorsToObserve:
165 - Name: ConformalFactor
166 NormType: Max
167 Components: Individual
168 - Name: Lapse
169 NormType: Min
170 Components: Individual
171 - Name: Magnitude(ShiftExcess)
172 NormType: Max
173 Components: Individual
174 - Name: HamiltonianConstraint
175 NormType: L2Norm
176 Components: Individual
177 - Name: MomentumConstraint
178 NormType: L2Norm
179 Components: Individual
180 - ObserveFields:
181 SubfileName: VolumeData
182 VariablesToObserve:
183 - ConformalFactor
184 - Lapse
185 - Shift
186 - ShiftExcess
187 - Magnitude(ShiftExcess)
188 - HamiltonianConstraint
189 - MomentumConstraint
190 InterpolateToMesh: None
191 CoordinatesFloatingPointType: Float
192 FloatingPointTypes: [Float]

B.4 BbhSks.yaml

1 Background: &background
2 Binary:
3 XCoords: [&x_left -8., &x_right 8.]
4 ObjectA: &kerr_left
5 KerrSchild:
6 Mass: 0.4229
7 Spin: [0., 0., 0.]
8 Center: [0., 0., 0.]

9 ObjectB: &kerr_right
10 KerrSchild:
11 Mass: 0.4229
12 Spin: [0., 0., 0.]
13 Center: [0., 0., 0.]
14 AngularVelocity: 0.0144
15 Expansion: 0.
16 FalloffWidths: [4.8, 4.8]
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17

18 InitialGuess: *background
19

20 DomainCreator:
21 BinaryCompactObject:
22 ObjectA:
23 InnerRadius: 0.8458
24 OuterRadius: 5.
25 XCoord: *x_left
26 Interior:
27 ExciseWithBoundaryCondition:
28 ApparentHorizon:
29 Center: [*x_left, 0., 0.]
30 Rotation: [0., 0., 0.]
31 Lapse: *kerr_left
32 NegativeExpansion: None
33 Shape: None
34 UseLogarithmicMap: True
35 ObjectB:
36 InnerRadius: 0.8458
37 OuterRadius: 5.
38 XCoord: *x_right
39 Interior:
40 ExciseWithBoundaryCondition:
41 ApparentHorizon:
42 Center: [*x_right, 0., 0.]
43 Rotation: [0., 0., 0.]
44 Lapse: *kerr_right
45 NegativeExpansion: None
46 Shape: None
47 UseLogarithmicMap: True
48 UseEquiangularMap: False
49 EnvelopingCube:
50 Radius: 55.
51 UseProjectiveMap: True
52 Sphericity: 0.
53 OuterShell:
54 InnerRadius: 60.
55 OuterRadius: 300.
56 RadialDistribution: Inverse
57 BoundaryCondition: Flatness
58 InitialRefinement:
59 ObjectAShell: [{{L+1}}, {{L+1}}, {{L+1}}]
60 ObjectBShell: [{{L+1}}, {{L+1}}, {{L+1}}]
61 ObjectACube: [{{L+1}}, {{L+1}}, {{L }}]
62 ObjectBCube: [{{L+1}}, {{L+1}}, {{L }}]
63 EnvelopingCubeUpperZLeft: [{{L+1}}, {{L+1}}, {{L }}]
64 EnvelopingCubeLowerZLeft: [{{L+1}}, {{L+1}}, {{L }}]
65 EnvelopingCubeUpperYLeft: [{{L+1}}, {{L+1}}, {{L }}]
66 EnvelopingCubeLowerYLeft: [{{L+1}}, {{L+1}}, {{L }}]
67 EnvelopingCubeLowerX: [{{L+1}}, {{L+1}}, {{L }}]
68 EnvelopingCubeUpperZRight: [{{L+1}}, {{L+1}}, {{L }}]
69 EnvelopingCubeLowerZRight: [{{L+1}}, {{L+1}}, {{L }}]
70 EnvelopingCubeUpperYRight: [{{L+1}}, {{L+1}}, {{L }}]
71 EnvelopingCubeLowerYRight: [{{L+1}}, {{L+1}}, {{L }}]
72 EnvelopingCubeUpperX: [{{L+1}}, {{L+1}}, {{L }}]
73 CubedShellUpperZLeft: [{{L }}, {{L+1}}, {{L }}]
74 CubedShellLowerZLeft: [{{L }}, {{L+1}}, {{L }}]
75 CubedShellUpperYLeft: [{{L }}, {{L+1}}, {{L }}]
76 CubedShellLowerYLeft: [{{L }}, {{L+1}}, {{L }}]
77 CubedShellLowerX: [{{L+1}}, {{L+1}}, {{L }}]
78 CubedShellUpperZRight: [{{L }}, {{L+1}}, {{L }}]
79 CubedShellLowerZRight: [{{L }}, {{L+1}}, {{L }}]
80 CubedShellUpperYRight: [{{L }}, {{L+1}}, {{L }}]
81 CubedShellLowerYRight: [{{L }}, {{L+1}}, {{L }}]
82 CubedShellUpperX: [{{L+1}}, {{L+1}}, {{L }}]
83 OuterShellUpperZLeft: [{{L }}, {{L+1}}, {{L }}]
84 OuterShellLowerZLeft: [{{L }}, {{L+1}}, {{L }}]
85 OuterShellUpperYLeft: [{{L }}, {{L+1}}, {{L }}]
86 OuterShellLowerYLeft: [{{L }}, {{L+1}}, {{L }}]
87 OuterShellLowerX: [{{L+1}}, {{L+1}}, {{L }}]
88 OuterShellUpperZRight: [{{L }}, {{L+1}}, {{L }}]
89 OuterShellLowerZRight: [{{L }}, {{L+1}}, {{L }}]
90 OuterShellUpperYRight: [{{L }}, {{L+1}}, {{L }}]
91 OuterShellLowerYRight: [{{L }}, {{L+1}}, {{L }}]
92 OuterShellUpperX: [{{L+1}}, {{L+1}}, {{L }}]
93 InitialGridPoints:
94 ObjectAShell: [{{P+1}}, {{P+1}}, {{P+4}}]
95 ObjectBShell: [{{P+1}}, {{P+1}}, {{P+4}}]
96 ObjectACube: [{{P+1}}, {{P+1}}, {{P+2}}]

97 ObjectBCube: [{{P+1}}, {{P+1}}, {{P+2}}]
98 EnvelopingCube: [{{P+1}}, {{P+1}}, {{P+1}}]
99 CubedShell: [{{P+1}}, {{P+1}}, {{P+1}}]

100 OuterShell: [{{P+1}}, {{P+1}}, {{P }}]
101

102 Discretization:
103 DiscontinuousGalerkin:
104 PenaltyParameter: 1.
105 Massive: True
106

107 Observers:
108 VolumeFileName: "BbhVolume"
109 ReductionFileName: "BbhReductions"
110

111 NonlinearSolver:
112 NewtonRaphson:
113 ConvergenceCriteria:
114 MaxIterations: 20
115 RelativeResidual: 0.
116 AbsoluteResidual: 1.e-10
117 SufficientDecrease: 1.e-4
118 MaxGlobalizationSteps: 40
119 Damping: None
120 Verbosity: Verbose
121

122 LinearSolver:
123 Gmres:
124 ConvergenceCriteria:
125 MaxIterations: 100
126 RelativeResidual: 1.e-3
127 AbsoluteResidual: 1.e-10
128 Verbosity: Quiet
129

130 Multigrid:
131 Iterations: 1
132 MaxLevels: Auto
133 PreSmoothing: True
134 PostSmoothingAtBottom: True
135 Verbosity: Silent
136 OutputVolumeData: False
137 ElementAllocation:
138 WeightByNumPoints: True
139

140 SchwarzSmoother:
141 MaxOverlap: 2
142 Iterations: 3
143 Verbosity: Silent
144 SubdomainSolver:
145 Gmres:
146 ConvergenceCriteria:
147 MaxIterations: 3
148 RelativeResidual: 1.e-4
149 AbsoluteResidual: 1.e-10
150 Verbosity: Silent
151 Restart: None
152 Preconditioner:
153 MinusLaplacian:
154 Solver:
155 ExplicitInverse:
156 FillFactor: 1
157 Verbosity: Silent
158 BoundaryConditions: Auto
159 SkipResets: True
160 ObservePerCoreReductions: False
161

162 EventsAndTriggers:
163 ? HasConverged
164 : - ObserveAtPoint:
165 Coordinates: [0, 0, 0]
166 SubfileName: Origin
167 TensorsToObserve:
168 - ConformalFactor
169 - LapseTimesConformalFactor
170 - ShiftExcess
171 - ObserveAtPoint:
172 Coordinates: [8.846, 0, 0]
173 SubfileName: NearHorizon
174 TensorsToObserve:
175 - ConformalFactor
176 - LapseTimesConformalFactor
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177 - ShiftExcess
178 - ObserveAtPoint:
179 Coordinates: [100, 0, 0]
180 SubfileName: FarField
181 TensorsToObserve:
182 - ConformalFactor
183 - LapseTimesConformalFactor
184 - ShiftExcess
185 - ObserveNorms:
186 SubfileName: Norms
187 TensorsToObserve:
188 - Name: ConformalFactor
189 NormType: Max
190 Components: Individual
191 - Name: Lapse
192 NormType: Min
193 Components: Individual
194 - Name: Magnitude(ShiftExcess)
195 NormType: Max
196 Components: Individual

197 - Name: HamiltonianConstraint
198 NormType: L2Norm
199 Components: Individual
200 - Name: MomentumConstraint
201 NormType: L2Norm
202 Components: Individual
203 - ObserveFields:
204 SubfileName: VolumeData
205 VariablesToObserve:
206 - ConformalFactor
207 - Lapse
208 - Shift
209 - ShiftExcess
210 - Magnitude(ShiftExcess)
211 - HamiltonianConstraint
212 - MomentumConstraint
213 InterpolateToMesh: None
214 CoordinatesFloatingPointType: Float
215 FloatingPointTypes: [Float]

B.5 BbhDomain.yaml

1 Background: &background
2 Binary:
3 XCoords: [&x_left -8., &x_right 8.]
4 ObjectA: &kerr_left
5 KerrSchild:
6 Mass: 0.4229
7 Spin: [0., 0., 0.]
8 Center: [0., 0., 0.]
9 ObjectB: &kerr_right

10 KerrSchild:
11 Mass: 0.4229
12 Spin: [0., 0., 0.]
13 Center: [0., 0., 0.]
14 AngularVelocity: 0.0144
15 Expansion: 0.
16 FalloffWidths: [4.8, 4.8]
17

18 InitialGuess: *background
19

20 DomainCreator:
21 BinaryCompactObject:
22 ObjectA:
23 InnerRadius: 0.8458
24 OuterRadius: 4.
25 XCoord: *x_left
26 Interior:
27 ExciseWithBoundaryCondition:
28 ApparentHorizon:
29 Center: [*x_left, 0., 0.]
30 Rotation: [0., 0., 0.]
31 Lapse: *kerr_left
32 NegativeExpansion: None
33 Shape: None
34 UseLogarithmicMap: True
35 ObjectB:
36 InnerRadius: 0.8458
37 OuterRadius: 4.
38 XCoord: *x_right
39 Interior:
40 ExciseWithBoundaryCondition:
41 ApparentHorizon:
42 Center: [*x_right, 0., 0.]
43 Rotation: [0., 0., 0.]
44 Lapse: *kerr_right
45 NegativeExpansion: None
46 Shape: None
47 UseLogarithmicMap: True
48 UseEquiangularMap: True
49 EnvelopingCube:
50 Radius: 60.
51 UseProjectiveMap: True
52 Sphericity: 1.

53 OuterShell:
54 InnerRadius: Auto
55 OuterRadius: 300.
56 RadialDistribution: Inverse
57 BoundaryCondition: Flatness
58 InitialRefinement:
59 ObjectAShell: [{{L+1}}, {{L+1}}, {{L+1}}]
60 ObjectBShell: [{{L+1}}, {{L+1}}, {{L+1}}]
61 ObjectACube: [{{L+1}}, {{L+1}}, {{L+1}}]
62 ObjectBCube: [{{L+1}}, {{L+1}}, {{L+1}}]
63 EnvelopingCubeUpperZLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
64 EnvelopingCubeLowerZLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
65 EnvelopingCubeUpperYLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
66 EnvelopingCubeLowerYLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
67 EnvelopingCubeLowerX: [{{L+1}}, {{L+1}}, {{L+1}}]
68 EnvelopingCubeUpperZRight: [{{L+1}}, {{L+1}}, {{L+1}}]
69 EnvelopingCubeLowerZRight: [{{L+1}}, {{L+1}}, {{L+1}}]
70 EnvelopingCubeUpperYRight: [{{L+1}}, {{L+1}}, {{L+1}}]
71 EnvelopingCubeLowerYRight: [{{L+1}}, {{L+1}}, {{L+1}}]
72 EnvelopingCubeUpperX: [{{L+1}}, {{L+1}}, {{L+1}}]
73 OuterShellUpperZLeft: [{{L }}, {{L+1}}, {{L }}]
74 OuterShellLowerZLeft: [{{L }}, {{L+1}}, {{L }}]
75 OuterShellUpperYLeft: [{{L }}, {{L+1}}, {{L }}]
76 OuterShellLowerYLeft: [{{L }}, {{L+1}}, {{L }}]
77 OuterShellLowerX: [{{L+1}}, {{L+1}}, {{L }}]
78 OuterShellUpperZRight: [{{L }}, {{L+1}}, {{L }}]
79 OuterShellLowerZRight: [{{L }}, {{L+1}}, {{L }}]
80 OuterShellUpperYRight: [{{L }}, {{L+1}}, {{L }}]
81 OuterShellLowerYRight: [{{L }}, {{L+1}}, {{L }}]
82 OuterShellUpperX: [{{L+1}}, {{L+1}}, {{L }}]
83 InitialGridPoints:
84 ObjectAShell: [{{P+1}}, {{P+1}}, {{P+5}}]
85 ObjectBShell: [{{P+1}}, {{P+1}}, {{P+5}}]
86 ObjectACube: [{{P+1}}, {{P+1}}, {{P+2}}]
87 ObjectBCube: [{{P+1}}, {{P+1}}, {{P+2}}]
88 EnvelopingCube: [{{P+1}}, {{P+1}}, {{P+1}}]
89 OuterShell: [{{P+1}}, {{P+1}}, {{P+1}}]
90

91 Discretization:
92 DiscontinuousGalerkin:
93 PenaltyParameter: 1.
94 Massive: True
95

96 Observers:
97 VolumeFileName: "BbhVolume"
98 ReductionFileName: "BbhReductions"
99

100 NonlinearSolver:
101 NewtonRaphson:
102 ConvergenceCriteria:
103 MaxIterations: 20
104 RelativeResidual: 1.e-10
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105 AbsoluteResidual: 1.e-11
106 SufficientDecrease: 1.e-4
107 MaxGlobalizationSteps: 40
108 Damping: None
109 Verbosity: Verbose
110

111 LinearSolver:
112 Gmres:
113 ConvergenceCriteria:
114 MaxIterations: 100
115 RelativeResidual: 1.e-3
116 AbsoluteResidual: 1.e-10
117 Verbosity: Quiet
118

119 Multigrid:
120 Iterations: 1
121 MaxLevels: Auto
122 PreSmoothing: True
123 PostSmoothingAtBottom: True
124 Verbosity: Silent
125 OutputVolumeData: False
126 ElementAllocation:
127 WeightByNumPoints: True
128

129 SchwarzSmoother:
130 MaxOverlap: 2
131 Iterations: 3
132 Verbosity: Silent
133 SubdomainSolver:
134 Gmres:
135 ConvergenceCriteria:
136 MaxIterations: 3
137 RelativeResidual: 1.e-4
138 AbsoluteResidual: 1.e-10
139 Verbosity: Silent
140 Restart: None
141 Preconditioner:
142 MinusLaplacian:
143 Solver:
144 ExplicitInverse:
145 FillFactor: 1
146 Verbosity: Silent
147 BoundaryConditions: Auto
148 SkipResets: True
149 ObservePerCoreReductions: False
150

151 EventsAndTriggers:
152 ? HasConverged
153 : - ObserveAtPoint:
154 Coordinates: [0, 0, 0]
155 SubfileName: Origin

156 TensorsToObserve:
157 - ConformalFactor
158 - LapseTimesConformalFactor
159 - ShiftExcess
160 - ObserveAtPoint:
161 Coordinates: [8.846, 0, 0]
162 SubfileName: NearHorizon
163 TensorsToObserve:
164 - ConformalFactor
165 - LapseTimesConformalFactor
166 - ShiftExcess
167 - ObserveAtPoint:
168 Coordinates: [100, 0, 0]
169 SubfileName: FarField
170 TensorsToObserve:
171 - ConformalFactor
172 - LapseTimesConformalFactor
173 - ShiftExcess
174 - ObserveNorms:
175 SubfileName: Norms
176 TensorsToObserve:
177 - Name: ConformalFactor
178 NormType: Max
179 Components: Individual
180 - Name: Lapse
181 NormType: Min
182 Components: Individual
183 - Name: Magnitude(ShiftExcess)
184 NormType: Max
185 Components: Individual
186 - Name: HamiltonianConstraint
187 NormType: L2Norm
188 Components: Individual
189 - Name: MomentumConstraint
190 NormType: L2Norm
191 Components: Individual
192 - ObserveFields:
193 SubfileName: VolumeData
194 VariablesToObserve:
195 - ConformalFactor
196 - LapseTimesConformalFactor
197 - Lapse
198 - Shift
199 - ShiftExcess
200 - Magnitude(ShiftExcess)
201 - HamiltonianConstraint
202 - MomentumConstraint
203 InterpolateToMesh: None
204 CoordinatesFloatingPointType: Double
205 FloatingPointTypes: [Double]

B.6 BbhSpin.yaml

1 Background: &background
2 Binary:
3 XCoords: [&x_left -3.87, &x_right 11.61]
4 ObjectA: &kerr_left
5 KerrSchild:
6 Mass: &mass_left 0.75
7 Spin: &spin_left [0., 0.49, -0.755] # |𝜒 | ≈ 0.9
8 Center: [0., 0., 0.]
9 ObjectB: &kerr_right

10 KerrSchild:
11 Mass: &mass_right 0.25
12 Spin: &spin_right [0., 0., 0.]
13 Center: [0., 0., 0.]
14 AngularVelocity: 0.01515
15 Expansion: 0.
16 FalloffWidths: [7.5, 2.5]
17

18 InitialGuess: *background
19

20 DomainCreator:
21 BinaryCompactObject:

22 ObjectA:
23 # 𝑟+ = 1.0768098644472042, 𝑟min ≈ 0.9 𝑟+
24 InnerRadius: 0.97
25 OuterRadius: 4.
26 XCoord: *x_left
27 Shape:
28 Mass: *mass_left
29 Spin: *spin_left
30 Modes: [20, 20]
31 Interior:
32 ExciseWithBoundaryCondition:
33 ApparentHorizon:
34 Center: [*x_left, 0., 0.]
35 # 𝛀𝑟 = 𝝌/(2𝑟min), Eq. (4.14)
36 Rotation: [0., -0.25257731958762886, 0.38917525773195877]
37 Lapse: *kerr_left
38 NegativeExpansion: *kerr_left
39 UseLogarithmicMap: True
40 ObjectB:
41 InnerRadius: 0.45
42 OuterRadius: 4.
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43 XCoord: *x_right
44 Shape: None
45 Interior:
46 ExciseWithBoundaryCondition:
47 ApparentHorizon:
48 Center: [*x_right, 0., 0.]
49 Rotation: [0., 0., 0.]
50 Lapse: *kerr_right
51 NegativeExpansion: *kerr_right
52 UseLogarithmicMap: True
53 UseEquiangularMap: True
54 EnvelopingCube:
55 Radius: 60.
56 UseProjectiveMap: True
57 Sphericity: 1.
58 OuterShell:
59 InnerRadius: Auto
60 OuterRadius: 300.
61 RadialDistribution: Inverse
62 BoundaryCondition: Flatness
63 InitialRefinement:
64 ObjectAShell: [{{L+1}}, {{L+1}}, {{L+1}}]
65 ObjectBShell: [{{L+1}}, {{L+1}}, {{L+1}}]
66 ObjectACube: [{{L+1}}, {{L+1}}, {{L+1}}]
67 ObjectBCube: [{{L+1}}, {{L+1}}, {{L+1}}]
68 EnvelopingCubeUpperZLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
69 EnvelopingCubeLowerZLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
70 EnvelopingCubeUpperYLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
71 EnvelopingCubeLowerYLeft: [{{L+1}}, {{L+1}}, {{L+1}}]
72 EnvelopingCubeLowerX: [{{L+1}}, {{L+1}}, {{L+1}}]
73 EnvelopingCubeUpperZRight: [{{L+1}}, {{L+1}}, {{L+1}}]
74 EnvelopingCubeLowerZRight: [{{L+1}}, {{L+1}}, {{L+1}}]
75 EnvelopingCubeUpperYRight: [{{L+1}}, {{L+1}}, {{L+1}}]
76 EnvelopingCubeLowerYRight: [{{L+1}}, {{L+1}}, {{L+1}}]
77 EnvelopingCubeUpperX: [{{L+1}}, {{L+1}}, {{L+1}}]
78 OuterShellUpperZLeft: [{{L }}, {{L+1}}, {{L }}]
79 OuterShellLowerZLeft: [{{L }}, {{L+1}}, {{L }}]
80 OuterShellUpperYLeft: [{{L }}, {{L+1}}, {{L }}]
81 OuterShellLowerYLeft: [{{L }}, {{L+1}}, {{L }}]
82 OuterShellLowerX: [{{L+1}}, {{L+1}}, {{L }}]
83 OuterShellUpperZRight: [{{L }}, {{L+1}}, {{L }}]
84 OuterShellLowerZRight: [{{L }}, {{L+1}}, {{L }}]
85 OuterShellUpperYRight: [{{L }}, {{L+1}}, {{L }}]
86 OuterShellLowerYRight: [{{L }}, {{L+1}}, {{L }}]
87 OuterShellUpperX: [{{L+1}}, {{L+1}}, {{L }}]
88 InitialGridPoints:
89 ObjectAShell: [{{P+1}}, {{P+1}}, {{P+5}}]
90 ObjectBShell: [{{P+1}}, {{P+1}}, {{P+5}}]
91 ObjectACube: [{{P+1}}, {{P+1}}, {{P+2}}]
92 ObjectBCube: [{{P+1}}, {{P+1}}, {{P+2}}]
93 EnvelopingCube: [{{P+1}}, {{P+1}}, {{P+1}}]
94 OuterShell: [{{P+1}}, {{P+1}}, {{P+1}}]
95

96 Discretization:
97 DiscontinuousGalerkin:
98 PenaltyParameter: 1.
99 Massive: True

100

101 Observers:
102 VolumeFileName: "BbhVolume"
103 ReductionFileName: "BbhReductions"
104

105 NonlinearSolver:
106 NewtonRaphson:
107 ConvergenceCriteria:
108 MaxIterations: 20
109 RelativeResidual: 0.
110 AbsoluteResidual: 1.e-10
111 SufficientDecrease: 1.e-4
112 MaxGlobalizationSteps: 40
113 Damping: None
114 Verbosity: Verbose
115

116 LinearSolver:
117 Gmres:
118 ConvergenceCriteria:
119 MaxIterations: 100
120 RelativeResidual: 1.e-3
121 AbsoluteResidual: 1.e-12
122 Verbosity: Quiet

123

124 Multigrid:
125 Iterations: 1
126 MaxLevels: Auto
127 PreSmoothing: True
128 PostSmoothingAtBottom: True
129 Verbosity: Silent
130 OutputVolumeData: False
131 ElementAllocation:
132 WeightByNumPoints: True
133

134 SchwarzSmoother:
135 MaxOverlap: 2
136 Iterations: 3
137 Verbosity: Silent
138 SubdomainSolver:
139 Gmres:
140 ConvergenceCriteria:
141 MaxIterations: 3
142 RelativeResidual: 1.e-4
143 AbsoluteResidual: 1.e-10
144 Verbosity: Silent
145 Restart: None
146 Preconditioner:
147 MinusLaplacian:
148 Solver:
149 ExplicitInverse:
150 FillFactor: 1
151 Verbosity: Silent
152 BoundaryConditions: Auto
153 SkipResets: True
154 ObservePerCoreReductions: False
155

156 EventsAndTriggers:
157 ? HasConverged
158 : - ObserveAtPoint:
159 Coordinates: [0, 0, 0]
160 SubfileName: Origin
161 TensorsToObserve:
162 - ConformalFactor
163 - LapseTimesConformalFactor
164 - ShiftExcess
165 - ObserveAtPoint:
166 Coordinates: [-5.14, 0, 0]
167 SubfileName: NearLeftHorizon
168 TensorsToObserve:
169 - ConformalFactor
170 - LapseTimesConformalFactor
171 - ShiftExcess
172 - ObserveAtPoint:
173 Coordinates: [12.11, 0, 0]
174 SubfileName: NearRightHorizon
175 TensorsToObserve:
176 - ConformalFactor
177 - LapseTimesConformalFactor
178 - ShiftExcess
179 - ObserveAtPoint:
180 Coordinates: [100, 0, 0]
181 SubfileName: FarField
182 TensorsToObserve:
183 - ConformalFactor
184 - LapseTimesConformalFactor
185 - ShiftExcess
186 - ObserveNorms:
187 SubfileName: Norms
188 TensorsToObserve:
189 - Name: ConformalFactor
190 NormType: Max
191 Components: Individual
192 - Name: Lapse
193 NormType: Min
194 Components: Individual
195 - Name: Magnitude(ShiftExcess)
196 NormType: Max
197 Components: Individual
198 - Name: HamiltonianConstraint
199 NormType: L2Norm
200 Components: Individual
201 - Name: MomentumConstraint
202 NormType: L2Norm
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203 Components: Individual
204 - ObserveFields:
205 SubfileName: VolumeData
206 VariablesToObserve:
207 - ConformalFactor
208 - Lapse
209 - Shift
210 - ShiftExcess

211 - Magnitude(ShiftExcess)
212 - SpatialMetric
213 - ExtrinsicCurvature
214 - HamiltonianConstraint
215 - MomentumConstraint
216 InterpolateToMesh: None
217 CoordinatesFloatingPointType: Double
218 FloatingPointTypes: [Double]

B.7 KerrSchildConstraints.yaml

1 Background: &kerr
2 KerrSchild:
3 Mass: 1.
4 Spin: [0., 0., 0.]
5 Center: [0., 0., 0.]
6

7 InitialGuess: *kerr
8

9 DomainCreator:
10 Shell:
11 InnerRadius: 2.
12 OuterRadius: 10.
13 RadialPartitioning: []
14 RadialDistribution: [Logarithmic]
15 InitialRefinement: 1
16 InitialGridPoints: [6, 6]
17 UseEquiangularMap: True
18 EquatorialCompression: None
19 WhichWedges: All
20 TimeDependence: None
21 Shape: None
22 BoundaryConditions:
23 InnerBoundary:
24 ApparentHorizon:
25 Center: [0., 0., 0.]
26 Rotation: [0., 0., 0.]
27 Lapse: *kerr
28 NegativeExpansion: None
29 OuterBoundary:
30 AnalyticSolution:
31 ConformalFactor: Dirichlet
32 LapseTimesConformalFactor: Dirichlet
33 ShiftExcess: Dirichlet
34

35 Discretization:
36 DiscontinuousGalerkin:
37 PenaltyParameter: 1.
38 Massive: True
39

40 Observers:
41 VolumeFileName: "KerrSchildVolume"
42 ReductionFileName: "KerrSchildReductions"
43

44 NonlinearSolver:
45 NewtonRaphson:
46 ConvergenceCriteria:
47 MaxIterations: 20
48 RelativeResidual: 0.
49 AbsoluteResidual: 1.e-10
50 SufficientDecrease: 1.e-4
51 MaxGlobalizationSteps: 40
52 Damping: None
53 Verbosity: Verbose
54

55 LinearSolver:
56 Gmres:
57 ConvergenceCriteria:
58 MaxIterations: 100
59 RelativeResidual: 1.e-4
60 AbsoluteResidual: 1.e-11
61 Verbosity: Quiet
62

63 Multigrid:
64 Iterations: 1

65 MaxLevels: Auto
66 PreSmoothing: True
67 PostSmoothingAtBottom: False
68 Verbosity: Silent
69 OutputVolumeData: False
70 ElementAllocation:
71 WeightByNumPoints: True
72

73 SchwarzSmoother:
74 MaxOverlap: 2
75 Iterations: 3
76 Verbosity: Silent
77 SubdomainSolver:
78 Gmres:
79 ConvergenceCriteria:
80 MaxIterations: 3
81 RelativeResidual: 1.e-4
82 AbsoluteResidual: 1.e-10
83 Verbosity: Silent
84 Restart: None
85 Preconditioner:
86 MinusLaplacian:
87 Solver:
88 ExplicitInverse:
89 FillFactor: 1
90 Verbosity: Silent
91 BoundaryConditions: Auto
92 ObservePerCoreReductions: False
93 SkipResets: True
94

95 EventsAndTriggers:
96 ? Always
97 : - ObserveNorms:
98 SubfileName: ErrorNorms
99 TensorsToObserve:

100 - Name: Error(ConformalFactor)
101 NormType: L2Norm
102 Components: Individual
103 - Name: Error(LapseTimesConformalFactor)
104 NormType: L2Norm
105 Components: Individual
106 - Name: Error(ShiftExcess)
107 NormType: L2Norm
108 Components: Individual
109 - ObserveNorms:
110 SubfileName: Norms
111 TensorsToObserve:
112 - Name: HamiltonianConstraint
113 NormType: L2Norm
114 Components: Individual
115 - Name: MomentumConstraint
116 NormType: L2Norm
117 Components: Individual
118 - ObserveFields:
119 SubfileName: VolumeData
120 VariablesToObserve:
121 - ConformalFactor
122 - Lapse
123 - Shift
124 - Error(ConformalFactor)
125 - Error(LapseTimesConformalFactor)
126 - Error(ShiftExcess)
127 - HamiltonianConstraint
128 - MomentumConstraint



170 B Input-file configurations

129 InterpolateToMesh: None
130 CoordinatesFloatingPointType: Float

131 FloatingPointTypes: [Float]

B.8 Tov.yaml

1 Background: &background
2 TovStar:
3 CentralDensity: 0.0008087415253997405 # ℎ = 1.2
4 PolytropicConstant: 123.6489
5 PolytropicExponent: 2.
6 Coordinates: Isotropic
7

8 InitialGuess: *background
9

10 DomainCreator:
11 Sphere:
12 InnerRadius: 3.
13 OuterRadius: 18.
14 # For configuration "S":
15 RadialPartitioning: [&star_radius 9.709353324763269]
16 InitialRefinement: 1
17 # For configurations "L1" to "L3":
18 # RadialPartitioning: [6.]
19 # InitialRefinement:
20 # InnerCube: [1, 1, L ]
21 # Shell0: [1, 1, L - 1 ]
22 # Shell1: [1, 1, L + 1 ]
23 InitialGridPoints: [{{P+1}}, {{P+1}}, {{P+1}}]
24 RadialDistribution: [Linear, Linear]
25 UseEquiangularMap: True
26 BoundaryCondition:
27 AnalyticSolution:
28 ConformalFactor: Dirichlet
29 LapseTimesConformalFactor: Dirichlet
30 ShiftExcess: Dirichlet
31

32 Discretization:
33 DiscontinuousGalerkin:
34 PenaltyParameter: 1.
35 Massive: True
36

37 Observers:
38 VolumeFileName: "TovVolume"
39 ReductionFileName: "TovReductions"
40

41 NonlinearSolver:
42 NewtonRaphson:
43 ConvergenceCriteria:
44 MaxIterations: 20
45 RelativeResidual: 0.
46 AbsoluteResidual: 1.e-10
47 SufficientDecrease: 1.e-4
48 MaxGlobalizationSteps: 40
49 Damping: None
50 Verbosity: Verbose
51

52 LinearSolver:
53 Gmres:
54 ConvergenceCriteria:
55 MaxIterations: 100
56 RelativeResidual: 1.e-3
57 AbsoluteResidual: 1.e-10
58 Verbosity: Quiet
59

60 Multigrid:
61 Iterations: 1
62 MaxLevels: Auto
63 PreSmoothing: True
64 PostSmoothingAtBottom: False
65 Verbosity: Silent
66 OutputVolumeData: False
67 ElementAllocation:
68 WeightByNumPoints: True
69

70 SchwarzSmoother:

71 MaxOverlap: 2
72 Iterations: 3
73 Verbosity: Silent
74 SubdomainSolver:
75 Gmres:
76 ConvergenceCriteria:
77 MaxIterations: 3
78 RelativeResidual: 1.e-4
79 AbsoluteResidual: 1.e-10
80 Verbosity: Silent
81 Restart: None
82 Preconditioner:
83 MinusLaplacian:
84 Solver:
85 ExplicitInverse:
86 FillFactor: 1
87 Verbosity: Silent
88 BoundaryConditions: Auto
89 SkipResets: True
90 ObservePerCoreReductions: False
91

92 EventsAndTriggers:
93 ? HasConverged
94 : - ObserveNorms:
95 SubfileName: ErrorNorms
96 TensorsToObserve:
97 - Name: Error(ConformalFactor)
98 NormType: L2Norm
99 Components: Individual

100 - Name: Error(ConformalFactor)
101 NormType: L2IntegralNorm
102 Components: Individual
103 - Name: Error(LapseTimesConformalFactor)
104 NormType: L2Norm
105 Components: Individual
106 - Name: Error(LapseTimesConformalFactor)
107 NormType: L2IntegralNorm
108 Components: Individual
109 - Name: Error(ShiftExcess)
110 NormType: L2Norm
111 Components: Individual
112 - Name: Error(ShiftExcess)
113 NormType: L2IntegralNorm
114 Components: Individual
115 - ObserveNorms:
116 SubfileName: Norms
117 TensorsToObserve:
118 - Name: ConformalFactor
119 NormType: Max
120 Components: Individual
121 - Name: Lapse
122 NormType: Min
123 Components: Individual
124 - Name: HamiltonianConstraint
125 NormType: L2Norm
126 Components: Individual
127 - Name: MomentumConstraint
128 NormType: L2Norm
129 Components: Individual
130 - ObserveFields:
131 SubfileName: VolumeData
132 VariablesToObserve:
133 - ConformalFactor
134 - Lapse
135 - Conformal(EnergyDensity)
136 - Conformal(StressTrace)
137 - Error(ConformalFactor)
138 - Error(LapseTimesConformalFactor)
139 - Error(ShiftExcess)
140 - HamiltonianConstraint
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141 - MomentumConstraint
142 InterpolateToMesh: None

143 CoordinatesFloatingPointType: Float
144 FloatingPointTypes: [Float]

B.9 BnsHeadOn.yaml

1 Background: &binary
2 Binary:
3 XCoords: [&x_left -20., &x_right 20.]
4 ObjectA: &star
5 TovStar:
6 CentralDensity: 0.0008087415253997405 # ℎ = 1.2
7 PolytropicConstant: 123.6489
8 PolytropicExponent: 2.
9 Coordinates: Isotropic

10 ObjectB: *star
11 AngularVelocity: 0.
12 Expansion: 0.
13 FalloffWidths: None
14

15 InitialGuess: *binary
16

17 DomainCreator:
18 BinaryCompactObject:
19 ObjectA:
20 InnerRadius: 4.
21 OuterRadius: &star_radius 9.709353324763269
22 XCoord: *x_left
23 Interior: Auto
24 UseLogarithmicMap: False
25 Shape: None
26 ObjectB:
27 InnerRadius: 4.
28 OuterRadius: *star_radius
29 XCoord: *x_right
30 Interior: Auto
31 UseLogarithmicMap: False
32 Shape: None
33 UseEquiangularMap: True
34 EnvelopingCube:
35 Radius: 120.
36 UseProjectiveMap: True
37 Sphericity: 1.
38 OuterShell:
39 InnerRadius: Auto
40 OuterRadius: 600.
41 RadialDistribution: Inverse
42 BoundaryCondition: Flatness
43 InitialRefinement:
44 ObjectAInterior: [{{L+1}}, {{L+1}}, {{L+1}}]
45 ObjectBInterior: [{{L+1}}, {{L+1}}, {{L+1}}]
46 ObjectAShell: [{{L+1}}, {{L+1}}, {{L+1}}]
47 ObjectBShell: [{{L+1}}, {{L+1}}, {{L+1}}]
48 ObjectACube: [{{L+1}}, {{L+1}}, {{L+1}}]
49 ObjectBCube: [{{L+1}}, {{L+1}}, {{L+1}}]
50 EnvelopingCubeUpperZLeft: [{{L+1}}, {{L+1}}, {{L }}]
51 EnvelopingCubeLowerZLeft: [{{L+1}}, {{L+1}}, {{L }}]
52 EnvelopingCubeUpperYLeft: [{{L+1}}, {{L+1}}, {{L }}]
53 EnvelopingCubeLowerYLeft: [{{L+1}}, {{L+1}}, {{L }}]
54 EnvelopingCubeLowerX: [{{L+1}}, {{L+1}}, {{L }}]
55 EnvelopingCubeUpperZRight: [{{L+1}}, {{L+1}}, {{L }}]
56 EnvelopingCubeLowerZRight: [{{L+1}}, {{L+1}}, {{L }}]
57 EnvelopingCubeUpperYRight: [{{L+1}}, {{L+1}}, {{L }}]
58 EnvelopingCubeLowerYRight: [{{L+1}}, {{L+1}}, {{L }}]
59 EnvelopingCubeUpperX: [{{L+1}}, {{L+1}}, {{L }}]
60 OuterShellUpperZLeft: [{{L }}, {{L+1}}, {{L }}]
61 OuterShellLowerZLeft: [{{L }}, {{L+1}}, {{L }}]
62 OuterShellUpperYLeft: [{{L }}, {{L+1}}, {{L }}]
63 OuterShellLowerYLeft: [{{L }}, {{L+1}}, {{L }}]
64 OuterShellLowerX: [{{L+1}}, {{L+1}}, {{L }}]
65 OuterShellUpperZRight: [{{L }}, {{L+1}}, {{L }}]
66 OuterShellLowerZRight: [{{L }}, {{L+1}}, {{L }}]
67 OuterShellUpperYRight: [{{L }}, {{L+1}}, {{L }}]
68 OuterShellLowerYRight: [{{L }}, {{L+1}}, {{L }}]
69 OuterShellUpperX: [{{L+1}}, {{L+1}}, {{L }}]
70 InitialGridPoints:

71 ObjectAInterior: [{{P+1}}, {{P+1}}, {{P+1}}]
72 ObjectBInterior: [{{P+1}}, {{P+1}}, {{P+1}}]
73 ObjectAShell: [{{P+1}}, {{P+1}}, {{P+2}}]
74 ObjectBShell: [{{P+1}}, {{P+1}}, {{P+2}}]
75 ObjectACube: [{{P+1}}, {{P+1}}, {{P+2}}]
76 ObjectBCube: [{{P+1}}, {{P+1}}, {{P+2}}]
77 EnvelopingCube: [{{P+1}}, {{P+1}}, {{P+1}}]
78 OuterShell: [{{P+1}}, {{P+1}}, {{P }}]
79

80 Discretization:
81 DiscontinuousGalerkin:
82 PenaltyParameter: 1.
83 Massive: True
84

85 Observers:
86 VolumeFileName: "BnsVolume"
87 ReductionFileName: "BnsReductions"
88

89 NonlinearSolver:
90 NewtonRaphson:
91 ConvergenceCriteria:
92 MaxIterations: 20
93 RelativeResidual: 0.
94 AbsoluteResidual: 1.e-10
95 SufficientDecrease: 1.e-4
96 MaxGlobalizationSteps: 40
97 Damping: None
98 Verbosity: Verbose
99

100 LinearSolver:
101 Gmres:
102 ConvergenceCriteria:
103 MaxIterations: 100
104 RelativeResidual: 1.e-3
105 AbsoluteResidual: 1.e-10
106 Verbosity: Quiet
107

108 Multigrid:
109 Iterations: 1
110 MaxLevels: Auto
111 PreSmoothing: True
112 PostSmoothingAtBottom: True
113 Verbosity: Silent
114 OutputVolumeData: False
115 ElementAllocation:
116 WeightByNumPoints: True
117

118 SchwarzSmoother:
119 MaxOverlap: 2
120 Iterations: 3
121 Verbosity: Silent
122 SubdomainSolver:
123 Gmres:
124 ConvergenceCriteria:
125 MaxIterations: 3
126 RelativeResidual: 1.e-4
127 AbsoluteResidual: 1.e-10
128 Verbosity: Silent
129 Restart: None
130 Preconditioner:
131 MinusLaplacian:
132 Solver:
133 ExplicitInverse:
134 FillFactor: 1
135 Verbosity: Silent
136 BoundaryConditions: Auto
137 SkipResets: True
138 ObservePerCoreReductions: False
139

140 EventsAndTriggers:
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141 ? HasConverged
142 : - ObserveAtPoint:
143 Coordinates: [0, 0, 0]
144 SubfileName: Origin
145 TensorsToObserve:
146 - ConformalFactor
147 - LapseTimesConformalFactor
148 - ShiftExcess
149 - ObserveAtPoint:
150 Coordinates: [-20, 0, 0]
151 SubfileName: StarCenter
152 TensorsToObserve:
153 - ConformalFactor
154 - LapseTimesConformalFactor
155 - ShiftExcess
156 - Conformal(EnergyDensity)
157 - Conformal(StressTrace)
158 - ObserveNorms:
159 SubfileName: Norms
160 TensorsToObserve:
161 - Name: ConformalFactor
162 NormType: Max
163 Components: Individual
164 - Name: Lapse
165 NormType: Min
166 Components: Individual
167 - Name: Magnitude(ShiftExcess)

168 NormType: Max
169 Components: Individual
170 - Name: Conformal(EnergyDensity)
171 NormType: Max
172 Components: Individual
173 - Name: Conformal(StressTrace)
174 NormType: Max
175 Components: Individual
176 - Name: HamiltonianConstraint
177 NormType: L2Norm
178 Components: Individual
179 - Name: MomentumConstraint
180 NormType: L2Norm
181 Components: Individual
182 - ObserveFields:
183 SubfileName: VolumeData
184 VariablesToObserve:
185 - ConformalFactor
186 - Lapse
187 - Shift
188 - HamiltonianConstraint
189 - MomentumConstraint
190 - Conformal(EnergyDensity)
191 - Conformal(StressTrace)
192 InterpolateToMesh: None
193 CoordinatesFloatingPointType: Float
194 FloatingPointTypes: [Float]
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