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Summary

In this thesis, a collection of studies is presented that advance research on complex food webs
in several directions. Food webs, as the networks of predator-prey interactions in ecosystems,
are responsible for distributing the resources every organism needs to stay alive. They are thus
central to our understanding of the mechanisms that support biodiversity, which in the face of
increasing severity of anthropogenic global change and accelerated species loss is of highest
importance, not least for our own well-being.

The studies in the first part of the thesis are concerned with general mechanisms that determine
the structure and stability (in terms of persisting species) of food webs. It is shown in detail how
the allometric scaling of metabolic rates with the species’ body masses supports their persistence
in size-structured food webs (where predators are larger than their prey), and how this interacts
with the adaptive adjustment of foraging efforts by consumer species to create stable food webs
that allow a large number of species to coexist. The importance of body mass as a master trait
that is vital for structuring communities is further exemplified by demonstrating that the specific
way the body masses of species engaging in empirically documented predator-prey interactions
affect the predator’s feeding rate dampens population oscillations, thereby helping both species
to survive. In the first part of the thesis it is also shown that in order to understand certain
dynamical phenomena observed in natural or experimental populations, e.g. a particular type
of population oscillations, it is sometimes necessary to not only take the interactions of a focal
species with other species (predators or resources) into account, but to also consider the internal
structure of the population. This can refer for example to different abundances of age cohorts or
developmental stages, or the way individuals of different age or stage interact with other species.

Building on these general insights, the second part of the thesis is devoted to exploring the
consequences of anthropogenic global change on the persistence of species. The studies focus
on warming, eutrophication and habitat change as three particularly important anthropogenic
stressors on ecological communities. It is shown that warming decreases diversity in size-
structured food webs. This is due to starvation of large predators on higher trophic levels, which
suffer from a mismatch between their respiration rate and their maximum ingestion rate when
temperature increases. In networks with a rather flat size structure, as in host-parasitoid networks,
warming does not have these negative effects, but eutrophication destabilises the systems by
inducing detrimental population oscillations. The studies on habitat change focus on the effects
of increasing habitat isolation, i.e., the increasing distances between habitable patches embedded
in an otherwise inhospitable landscape matrix. On the level of individual patches, increasing
isolation has a similar effect as warming, as it leads to decreasing diversity due to the extinction
of predators on higher trophic levels. In this case it is caused by the increasing dispersal mortality
especially smaller (and therefore less mobile) species suffer when isolation increases. As a
consequence, a higher fraction of their biomass production is lost to the inhospitable matrix
surrounding the habitat patches and cannot be used as resources for the larger species. It is
further shown that increasing habitat isolation desynchronises population oscillations between the
patches, which in itself should help species to persist by dampening fluctuations on the landscape
level. However, this is counteracted by an increasing strength of local population oscillations
fueled by an indirect effect of dispersal mortality on the feeding interactions. Last, a study is
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presented that introduces a novel mechanism for supporting diversity in metacommunities. It
builds on the self-organised formation of spatial biomass patterns in the landscape, which leads
to the emergence of spatially heterogeneous and temporally varying selection pressures that
keep local communities permanently out of equilibrium and force them to continuously adapt.
Because this mechanism relies on the spatial extension of the metacommunity, it is also sensitive
to habitat change.

In the third part of the thesis, the consequences of biodiversity for the functioning of
ecosystems are explored. The studies focus on standing stock biomass, biomass production, and
trophic transfer efficiency as ecosystem functions. It is first shown that increasing the diversity of
animal communities increases the total rate of intra-guild predation. However, the total biomass
stock of the animal communities increases nevertheless, which also increases their exploitative
pressure on the underlying plant communities. Despite this, the plant communities can maintain
their standing stock biomass due to a shift of the body size spectra of both animal and plant
communities towards larger species with a lower specific respiration rate. In another study it
is further demonstrated that the generally positive relationship between diversity and the above
mentioned ecosystem functions becomes steeper when not only the feeding interactions but
also the numerous non-trophic interactions (like predator interference or competition for space)
between the species of an ecosystem are taken into account. Finally, two studies are presented
that demonstrate the power of an approach that does not build on taxonomic diversity (i.e., species
richness) as the main explanatory variable, but on functional diversity. The latter is interpreted
as the range spanned by functional traits of the species that determine their interactions. This
approach allows to mechanistically understand how the ecosystem functioning of food webs with
multiple trophic levels is affected by all parts of the food web and why a high functional diversity
is required for efficient transportation of energy from primary producers to the top predators.

The general discussion draws some synthesising conclusions, e.g. on the predictive power of
ecosystem functioning to explain diversity, and provides an outlook on future research directions.
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Zusammenfassung

In dieser Habilitationsschrift wird eine Zusammenstellung wissenschaftlicher Arbeiten präsentiert,
die die Forschung zu komplexen Nahrungsnetzen in verschiedene Richtungen weiterentwickeln.
Nahrungsnetze sind die Netzwerke der Räuber-Beute-Interaktionen in einem Ökosystem und
bestimmen damit über die Verteilung der von allen Arten zum Überleben benötigten Ressourcen.
Sie sind daher ein zentrales Konzept für das Durchdringen der Mechanismen, die die stabile
Koexistenz einer Vielzahl von Arten ermöglichen. Angesichts der zunehmenden Intensität des
anthropogenen globalen Wandels und sich weiter beschleunigendem Artensterben ist ein solches
Verständnis von zentraler Bedeutung, nicht zuletzt auch für das menschliche Wohlergehen.

Die Studien im ersten Teil der Habilitationsschrift befassen sich mit generellen Mechanismen,
die die Struktur und Stabilität (gemessen an der Zahl persistenter Arten) von Nahrungsnetzen
bestimmen. Es wird im Detail gezeigt, wie die allometrische Skalierung metabolischer Raten
mit der Körpermasse der Individuen ihre Persistenz in größenstrukturierten Nahrungsnetzen
(d.h. solchen, in denen Räuber signifikant größer sind als ihre Beutearten) unterstützt, und wie
dies mit dem adaptiven Jagdverhalten von Räubern interagiert. Diese Interaktion erzeugt stabile
Nahrungsnetzstrukturen, die die Koexistenz einer Vielzahl von Arten ermöglicht. Die Bedeutung
der Körpermasse als ein physiologisches Merkmal, das die Struktur von Nahrungsnetzen mitbes-
timmt, wird auch dadurch gezeigt, dass die spezifische Art und Weise, wie die Körpermassen
empirisch dokumentierter Räuber-Beute-Paare die Stärke der Fraßinteraktion beeinflusst, auftre-
tende Populationsoszillationen abschwächt und damit das Überleben beider Arten ermöglicht.
Es wird ferner gezeigt, dass es zum Verständnis bestimmter populationsdynamischer Phänomene,
die in einer natürlichen oder experimentellen Population beobachtet wurden, notwendig sein
kann, nicht nur die Interaktionen mit anderen Arten (Räubern oder Beuten) zu berücksichtigen,
sondern auch die interne Struktur der betrachteten Population. Dies kann sich zum Beispiel auf
die Größe von Alterskohorten beziehen oder darauf, wie Individuen unterschiedlichen Alters
oder Entwicklungsstandes mit anderen Arten interagieren.

Auf diesen allgemeinen Erkenntnissen aufbauend werden im zweiten Teil der Habilitationss-
chrift Studien vorgestellt, die sich direkt mit den Auswirkungen von anthropogenem globalem
Wandel auf die Persistenz von Arten befassen. Die Studien konzentrieren sich auf Erwärmung,
Eutrophierung und Habitatveränderung, da diese Stressfaktoren im Allgemeinen besonders starke
Auswirkungen auf ökologische Gemeinschaften haben. Erwärmung reduziert die Diversität in
größenstrukturierten Nahrungsnetzen, indem sie zum Aussterben großer Räuberarten führt. Dies
geschieht dadurch, dass die Respirationsrate wechselwarmer Tiere bei Erwärmung schneller
ansteigt als ihre maximale Fraßrate, wodurch insbesondere große Arten ihren Energiebedarf nicht
mehr decken können. In Netzwerken mit eher flacher Größenstruktur, wie z.B. Parasitoid-Wirt-
Netzwerken, hat Erwärmung keinen derartigen negativen Effekt, allerdings führt Eutrophierung
dort durch die Induktion starker Populationsoszillationen zu Destabilisierung und Artensterben.

Die Studien zum Thema Habitatveränderung konzentrieren sich auf die Auswirkungen
zunehmender Habitatisolation. Damit ist der Effekt gemeint, dass in zunehmend anthropogen
überformten Landschaften die Abstände zwischen hinreichend naturbelassenen Habitatflecken
immer größer werden. In den einzelnen Habitatflecken führt zunehmende Isolation, ähnlich wie
Erwärmung, zu einem Rückgang der Diversität aufgrund des Aussterbens von vorrangig großen
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Räuberarten. In diesem Fall wird das durch die Zunahme der Mortalität kleinerer (und daher
weniger mobiler) Arten bei der Wanderung zwischen entfernten Habitatflecken verursacht, welche
dazu führt, dass ein immer größerer Anteil der Biomassenproduktion der kleineren Arten an die
lebensfeindliche Matrix zwischen den Habitatflecken verloren geht, statt den größeren Räubern
als Nahrung zur Verfügung zu stehen. Es wird weiterhin gezeigt, dass zunehmende Isolation zur
Desynchronisierung von Populationsoszillationen zwischen den einzelnen Habitatflecken führt,
was die Stärke der Oszillationen über die gesamte Landschaft gemittelt verringert und somit das
Überleben der Arten erleichtern sollte. Allerdings führt die Zunahme der Wanderungsmortalität
aufgrund eines indirekten Effektes auf die Fraßraten in den Habitatflecken zu einer Verstärkung
der lokalen Populationsoszillationen, was den positiven Effekt der Desynchronisierung ausgleicht.
Zuletzt wird in diesem Abschnitt ein neuartiger Mechanismus vorgestellt, der die Diversität in
Meta-Gemeinschaften unterstützen kann. Er basiert auf selbstorganisierter Bildung räumlicher
Muster in der Biomassenverteilung der Arten. Diese Muster erzeugen räumlich heterogene
und zeitlich fluktuierende Selektionsdrücke, die die lokalen Artengemeinschaften in einem
permanenten Nichtgleichgewichtszustand halten und dazu zwingen, sich ständig neu anzupassen.
Da dieser Mechanismus auf der räumlichen Ausdehnung der Metagemeinschaften basiert, kann
er ebenfalls empfindlich auf Habitatveränderungen reagieren.

Im dritten Teil der Habilitationsschrift werden die Effekte von Biodiversität auf Ökosys-
temfunktionen untersucht. Die entsprechenden Studien beziehen sich dabei vor allem auf den
Biomassenbestand, die Produktionsrate von Biomasse sowie die trophische Transfereffizienz. Es
wird zunächst gezeigt, dass zunehmende Diversität von Tiergemeinschaften die totale Rate intrag-
ilder Prädation (also des Fraßes innerhalb der Tiergemeinschaften) erhöht. Dennoch erhöht sich
der Biomassenbestand der Tiergemeinschaften, wodurch ihr Fraßdruck auf die zugrundeliegenden
Pflanzengemeinschaften zunimmt. Dessen ungeachtet können die Pflanzengemeinschaften ihren
Biomassenbestand halten, was durch eine Verschiebung der Größenspektren von Pflanzen- und
Tiergemeinschaften hin zu größeren Arten mit geringer spezifischer Respirationsrate ermöglicht
wird. In einer weiteren Studie wird gezeigt, dass der im Allgemeinen positive Zusammenhang
zwischen Biodiversität und den genannten Ökosystemfunktionen verstärkt wird, wenn neben
den Fraßbeziehungen der Arten auch die zahlreichen weiteren Interaktionsmöglichkeiten der
Arten (wie zum Beispiel Flächenkonkurrenz sessiler Arten) berücksichtigt werden. Abschließend
werden zwei Studien präsentiert, die die Leistungsfähigkeit eines Ansatzes, der nicht auf der
taxonomischen Diversität (also der Artenzahl) eines Systems basiert, sondern auf funktioneller
Diversität. Letztere wird interpretiert als der Wertebereich, den funktionelle Merkmale, die
die Interaktionen der Arten bestimmen, überspannen. Dieser Ansatz erlaubt es, mechanistisch
nachzuvollziehen, wie die ökologischen Funktionen von Nahrungsnetzen von den einzelnen
Teilen der Netzwerke beeinflusst werden, und warum eine hohe funktionelle Diversität für den
effizienten Transport der Biomasse von den Primärproduzenten zu den Räubern an der Spitze der
Nahrungskette notwendig ist.

In der allgemeinen Diskussion werden einige zusammenfassende Schlussfolgerungen gezogen,
die zum Beispiel die Vorhersagekraft von Ökosystemfunktionen zum Erklären der Diversität
betreffen, und es wird ein Ausblick auf künftige Forschungsansätze gegeben.
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Chapter 1

Introduction

1.1 Modelling food webs

Ecology, as the scientific discipline devoted to the study of organisms and their interactions
among each other and with their environment, is characterised by a remarkable degree of
complexity that pervades every organisational level of the systems under consideration, from
single organisms to the entire ecosphere. Insights in the factors determining the growth of
populations or the coexistence of species in an ecological community are being gained first and
foremost by observation and experiments. However, since its beginnings ecology as a discipline
has also greatly benefited from theoretical considerations and mathematical modelling, which
help to conceptualise ideas and reduce complexity by focusing on processes deemed most relevant
for explaining a certain phenomenon.

Early examples of this are the works of Lotka (1925, 1932) and Volterra (1928), who
independently developed mathematical models to describe predation and competition. With
these models of two fundamental types of interactions they aimed at explaining the periodic
changes in abundance observed in some animal populations and at establishing conditions that
allow competitors of a single resource to coexist. At about the same time, Elton (1927) advanced
the concepts of food chains and especially food webs as the network of all feeding interactions
among the species of a biocoenosis, thereby bringing the need for understanding the dynamics
of interacting populations and the conditions for their coexistence to a new level of complexity.
Based upon empirical observation and phenomenological arguments, for several decades the
consensus among ecologist was that complexity (in terms of number of species or interactions
among them) would increase the stability of these systems. Stability could here either refer to the
ability of communities to withstand invasions, or to the ability to dampen population oscillations
following a perturbation (Odum, 1953; MacArthur, 1955; Elton, 1958). However, a rigorous
mathematical proof of the assumed relation between food web-complexity and stability was not
provided.

Linear stability analysis of multi-species predator-prey systems with generalised Lotka-
Volterra dynamics (May, 1971) as well as numerical and analytical considerations of abstract
random matrices (Gardener and Ashby, 1970; May, 1972) challenged the view that complexity
begets stability by demonstrating that in fact both increasing the number of species or the number
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Figure 1.1: a) Example of a so called community matrix with random elements as in (May, 1972),
with number of species ( = 6, connectance � = 0.2 and mean squared interaction strength U = 1,
b) the corresponding graph of the random network, and c) an explanation of the types of ecological
interactions encoded by the different arrow types. In the example shown, only commensalistic,
amensalistic, and competitive interactions occur. The element 08 9 in row 8, column 9 of the
community matrix A quantifies the effect species 9 has on species 8 at an equilibrium point of
the population dynamics. The elements of A have a non-zero value with probability �. The
actual value is drawn from a probability distribution with mean zero and mean square value U.
The diagonal elements are set to −1 to account for self-dampening of the populations. Since by
construction, the modelled systems do not only contain trophic (predator-prey or host-parasitoid)
interactions, which would be characterised by pairs of non-zero matrix elements 08 9 and 0 98 with
opposite sign, they do not represent food webs, but general ecological networks.

of interactions will actually destabilise the systems. In these studies, stability always referred to
the linear stability of the population dynamics, i.e., it was measured how likely it was that the
interacting populations approach a stable equilibrium instead of exhibiting oscillations. Especially
the study by May (1972) proved hugely influential, as it covered ecological networks of arbitrary
size and included as a testable prediction the result that ecological networks are almost certainly
unstable if

U
√
( · � > 1 . (1.1)

In this formula, ( is the number of species, � = !/(2 is the connectance (with ! the number of
interactions), and U is the mean square value of the interaction strengths. (More details on the
methodology can be found in Fig. 1.1.) The study was particularly influential because its main
result was generally interpreted not to mean that natural communities are either not complex or
not stable, but that they must possess previously ignored or unknown properties that set them
apart from the random networks studied by Gardener and Ashby (1970) and May (1972).

An important step forward was made by Yodzis (1981), who showed that when community
matrices were parameterised using empirical food web data, the systems were far more likely to
be stable than their random counterparts. Later, this was shown to be caused by the negative
correlation of the values of pairs of elements, 08 9 and 0 98, of the empirical community matrices
representing food webs (Allesina and Tang, 2012). Empirical food webs (Briand, 1983) were
also analysed regarding their general topological characteristics (throughout this thesis, topology
refers to the binary network structure, i.e., only presence or absence of links are considered, but
not the strength of interactions or the abundance of species). Certain scale-invariant properties
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like the fraction of top species (which have no predator) or the fraction of basal species (which
have no prey) were found (Briand and Cohen, 1984). Especially noteworthy is the so-called
link-species scaling, i.e., the finding that in these early empirical food webs the total number of
trophic links was proportional to the number of species. As this meant that in empirical food
webs the connectance decreases with species number as � ∼ 1/(, this seemed to provide an
elegant way to avoid the destabilisation of larger food webs predicted by May’s (1972) results
(Eq. (1.1), see also (Cohen and Newman, 1985)). However, this was soon overturned, as larger
and better resolved empirical food webs became available and it was shown that the number of
trophic links increases faster than the number of species (Martinez, 1992; Riede et al., 2010).
Instead, it was shown that the stability of food webs is not determined by the pure number of
interactions, but that it is intricately linked to the non-random distribution of interaction strengths
in food webs (de Ruiter et al., 1995; Neutel et al., 2002; Rooney and McCann, 2012).

1.2 The bioenergetics approach of modelling food web dynam-
ics

The studies discussed above mostly considered only the structure (topology) of food webs or
treated population dynamics only implicitly by evaluating the linear stability of equilibrium points
of the dynamics. Explicit models for the dynamics of interacting populations, formulated as
systems of coupled ordinary differential equations (ODEs) in the form proposed by Lotka (1925)
and Volterra (1928), where however also continuously developed. This was driven for example
by the desire to understand the onset of population oscillations (Rosenzweig and MacArthur,
1963) or the transition to chaotic dynamics (Hastings and Powell, 1991).

Without aiming at explaining a certain phenomenon, Yodzis and Innes (1992) proposed an
approach that ultimately proved to be highly influential. Their main goal was to develop an
ecologically plausible model for consumer-resource dynamics by tying the terms that occur in
the equations more explicitly to physiological processes. Within this approach, the dynamics of
the biomass (i.e., population size times body mass of a typical individual) of a single species is
given by

3�(C)
3C

= 4� −& − ! , (1.2)

where � is the biomass, � is the total rate of ingestion, 4 is the fraction of ingested energy that is
not excreted (such that 4� is the intake rate of metabolisable energy), & is the total respiration
rate, and ! is the rate of biomass loss due to other causes (mostly predation mortality). Starvation
occurs when respiration, &, surpasses the intake of metabolisable energy, 4�, and new biomass is
produced when the reverse is true. A population will then be at equilibrium if the rate of biomass
production, 4� −&, equals the losses, ! (Fig. 1.2).

A major advantage of the approach by Yodzis and Innes (1992) is that the actual parameters
that are needed to turn Eq. (1.2) into a solvable model, like the assimilation efficiency 4 or
the specific respiration rate G = &/�, are based on the body mass and the metabolic type (e.g.
vertebrate ectotherm or invertebrate) of the species or the type of resource that is ingested (animal
or plant). This allowed for an easy generalisation and extension of the model, Eq. (1.2), to
multi-species systems such as food webs. As an example, the corresponding differential equations
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Figure 1.2: Schematic diagram of biomass flows in the bioenergetics approach of modelling
biomass dynamics of a population (Yodzis and Innes, 1992). Ingested biomass is partly excreted
(assimilation losses, fraction 1 − 4), and the remainder is used either for respiration (&) or
production (4� − &). The latter balances mortality (e.g. by predators) and includes somatic
growth and reproduction. In the example shown, the population is not at equilibrium, as losses
do not equal the full production capabilities and excess production occurs, which leads to an
increase in biomass. The dashed rectangle represents the standing stock biomass.

(in slightly adjusted form) used by Brose et al. (2006b) for describing the biomass dynamics of
species in a food web are

3�8 (C)
3C

= A8 (<8)
(
1 − �8

 

)
�8 −

∑
9∈ cons. of 8

G 9 (< 9 )H 9�98 (B)� 9 (1.3)

for producer species 8 and

3�8 (C)
3C

=
∑

9∈res. of 8
4 9G8 (<8)H8�8 9 (B)�8 −

∑
9∈ cons. of 8

G 9 (< 9 )H 9�98 (B)� 9 − G8 (<8)�8 (1.4)

for consumer species 8. These equations are introduced in detail here as they serve as a template
for most of the dynamic food web models analysed in this thesis. Here, A8 (<8) and G8 (<8) are the
mass-specific maximum growth rate of producer species and the mass-specific respiration rate of
consumer species, respectively. Both depend on the body mass <8 of typical individuals of the
respective species in a negative quarter-power law relationship (allometric scaling, (Brown et al.,
2004)). The parameter H8 is maximum ingestion rate relative to the respiration rate. It does not
depend on the body mass, but on the metabolic type of the consumer species (Yodzis and Innes,
1992). The assimilation efficiency 4 9 depends on the type (animal or plant) of resource 9 . The
first terms on the respective right-hand sides of Eqs. (1.3) and (1.4) describe resource intake.
For producer species this is modelled as logistic growth with carrying capacity  . This term
already includes respiration losses. For consumer species, the first term represents feeding on
other species (with functional response �8 9 , see below). This term thus mirrors the second terms
in Eqs. (1.3) and (1.4), which describe losses due to predation mortality. Finally, with the last
term in Eq. (1.4) respiration losses of the consumers are explicitly accounted for.
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The functional response �8 9 describes how the realised feeding rate of consumer species 8 on
prey species 9 depends on the biomass of all of its prey species as well as potentially on its own
biomass. Various mathematical forms that differ in the biological processes they consider exist
for this function (Volterra, 1928; Holling, 1959; Arditi and Ginzburg, 1989; Skalski and Gilliam,
2001). In (Brose et al., 2006b), the following form is used:

�8 9 =
l8 9�

ℎ
9

�ℎ0 +
∑
:∈ res. of 8 l8:�

ℎ
:
+ 28�ℎ0�8

. (1.5)

This accounts for themost important processes shaping the feeding rate: it increases monotonously
with prey density � 9 , but due to handling time constraints (Holling, 1959) saturates when any
of the prey species : is very abundant. Via the Hill exponent ℎ, refuge effects for the prey can
be modelled, which for ℎ > 1 suppress the feeding rate at low prey abundance and thereby
stabilise the dynamics (Williams and Martinez, 2004; Rall et al., 2008). With the parameters l8 9
preferences for the different prey species can be accounted for, which may be due to physiological
constraints (Vucic-Pestic et al., 2010; Schneider et al., 2016) or attempts by the consumer
to maximise its energy gains (Kondoh, 2003; Heckmann et al., 2012). The parameter �0 is
called the half-saturation density and is here an inverse measure of the average attack rate of
the consumer. Finally, the term proportional to the consumer biomass �8 in the denominator
describes interference among the consumers, which limits their effective feeding rate at high
consumer abundance and thereby also stabilises the dynamics (Beddington, 1975; DeAngelis,
1975; Rall et al., 2008; Miele et al., 2019).

The combination of the equations for multi-species biomass dynamics, Eqs. (1.3)–(1.5),
with an algorithm for generating artificial food web topologies, is nowadays often referred to as
an allometric trophic network (ATN) model (Boit et al., 2012). In this thesis the flexibility of
this framework is demonstrated by modifying it to account for the body mass- (Kalinkat et al.,
2013; Schneider et al., 2016) or temperature-dependence (Binzer et al., 2012, 2016) of model
parameters, to turn the prey preferences l8 9 into dynamical variables (Heckmann et al., 2012), to
account for activity respiration (Kath et al., 2018), or to include non-trophic interactions (Miele
et al., 2019). Other questions, regarding for example the internal age structure of populations
(Guill et al., 2014; Pfaff et al., 2014) or dispersal dynamics in metacommunities (Ryser et al.,
2019; Stark et al., 2021; Guill et al., 2021) require dedicated models that are presented in detail
in the respective publications.

1.3 Current developments and challenges for modelling food
webs

The studies discussed in this thesis are all centred around the common theme of modelling food
webs, but advance it in a number of different directions. They address the processes that shape the
structure and dynamics of populations and communities, the determinants of food web stability,
how (meta-)food webs respond to anthropogenic disturbances, and how characteristics of food
webs in turn affect the functioning of ecosystems (Fig. 1.3).
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Figure 1.3: Overview of the research topics discussed in this thesis, centred around the common
theme of modelling food webs. The numbers in parentheses refer to the list of publications in
chapter 2, double mentions indicate connections between the individual topics. The central panel
is a depiction of the ElVerde rain forest-food web. Image produced with FoodWeb3D, written
by R.J. Williams and provided by the Pacific Ecoinformatics and Computational Ecology Lab
(www.foodwebs.org, (Yoon et al., 2004)).

1.3.1 Structure and stability of food webs
One way of testing the ecological relevance of processes assumed to be important for determining
the structure of food webs is to cast them into (stochastic) model algorithms that generate artificial
food web topologies and to compare the statistical properties of these model-generated food webs
with natural ones (Cohen and Newman, 1985; Williams and Martinez, 2000; Cattin et al., 2004;
Allesina et al., 2008). A common feature of these algorithms is that they assume a more or less
strict feeding hierarchy, which can be empirically motivated by the observation that predators
are usually between 10 and 10000 times larger (in terms of average body mass) than their prey
(Brose et al., 2006a).

A mechanistic explanation for the observed predator-prey body-mass ratios is provided for
example by experiments on terrestrial arthropods showing that the attack rate of predators varies
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in a systematic way with the body mass of their (potential) prey (Vucic-Pestic et al., 2010):
attack rates are suppressed when the prey is either too small (due to increased prey agility or
the presence of prey refuges that are inaccessible for the predator) or too large (because prey
individuals become too fast or too strong to be effectively captured and subdued). The emerging
unimodal relationship between the predator-prey body-mass ratio and the attack rate also provides
an important link between the topology of the food web and the biomass dynamics of the species,
as it can be included in the preference parameters in the feeding rates (l8 9 in Eq. (1.5)). Similarly,
the body masses of the species can also be used to predict food web structures by using energetic
reasoning based on the body-mass dependence of feeding rates (Petchey et al., 2008).

This thesis contributes to the research onmechanistic models for dynamic food webs in general
and the role of body mass in particular (Fig. 1.3i) by uncovering in detail how the allometric
scaling of metabolic rates stabilises food webs (Kartascheff et al., 2010), by determining how a
stabilising body-mass structure emerges in a self-organised way when predators can adjust their
foraging efforts (Heckmann et al., 2012), and by demonstrating that the specific way in which the
parameters of functional responses depend on the body masses of predator and prey supports the
persistence of both species (Kalinkat et al., 2013). Schneider et al. (2016) developed a food-web
model in which both the structure of the food webs as well as the parametrisation of the dynamical
equations are consistently based on empirically supported body-mass relations. This makes it a
powerful and flexible modelling platform that can for example easily be extended to meta-food
web scenarios (Ryser et al., 2019). Furthermore, insights in the relation between the stability of
the biomass dynamics in food webs and their complexity are gained by combining conventional
numerical simulations of the biomass dynamics with a novel approach for determining the
stability of fixed points (Plitzko et al., 2012). Finally, the realism of the food-web structures
generated by two variants of the widely used niche model (Williams and Martinez, 2000; Stouffer
et al., 2006) is tested using a method based on ordered three-species motifs (i.e., miniature
sub-graphs of food webs consisting of three species that still exhibit a feeding hierarchy) (Guill
and Paulau, 2016).

One of the shortcomings of the simple models for creating food web topologies like the
niche or nested hierarchy model (Williams and Martinez, 2000; Cattin et al., 2004) is that they
do so in an ad-hoc manner and take the processes that in nature lead to the assembly of these
complex systems, including their evolutionary history, only implicitly into account. That also
means that the produced networks are not controlled for their stability (e.g. in terms of viability
of all populations). While it is commonly made sure that all modelled consumer species have
at least one resource, it is usually not possible to predict, based only on the network topology,
whether a species can actually acquire enough resources to balance its losses (i.e., respiration
and predation mortality). So-called evolutionary food-web models circumvent this problem by
explicitly modelling the dynamical process by which complex food webs emerge (Drossel et al.,
2001; Loeuille and Loreau, 2005; Guill and Drossel, 2008). Starting from a single species, new
species are added to the food web as variants of existing ones (speciation), which allows the model
food webs to grow. By including differential equations for describing the population dynamics,
species deterministically go extinct when their food intake is insufficient or the predation pressure
is too high. The combination of these two processes can lead to a permanent species turnover,
similarly to what is seen in natural communities. In this thesis, one such model is discussed
(Fig. 1.3ii, Allhoff et al. (2015)), which focuses on the body mass of a species, its preferred prey
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body mass and the width of its prey body mass spectrum as evolvable traits. With this setup,
food webs with complex and realistic structures emerge, which nevertheless allow for continuous
species turnover. This demonstrates again the importance body mass has for both the structure
and dynamics of food webs.

Yet another perspective on the determinants of the dynamics of populations and the stability
of communities is taken by studies that consider the internal structure of populations, e.g. in
terms of age, size, developmental stage, phenotype or behavioural types (Fig. 1.3iii). The
models discussed so far ignore the internal structure of populations, which is justified when
the differences between the individuals of one population do not significantly affect the way
they interact with other populations. In the bioenergetics framework it is, after all, not relevant
whether the total biomass of a population increases due to the production of new individuals
or due to somatic growth of existing individuals (Fig. 1.2). However, often the physiological
or phenotypical differences between the individuals of a population are in fact quite significant:
individuals may grow over several orders of magnitude in body mass and/or change their habitat
during their ontogenetic development, with corresponding consequences for the range of prey,
competitor, and predator species they interact with (Werner and Gilliam, 1984; Gaston et al.,
1997). Furthermore, individuals of a population may also pursue different foraging (Agrawal,
2001) or defence strategies (Yamamichi et al., 2018) and adjust them adaptively, which not only
increases the mean fitness of the populations, but also helps to stabilise the communities they are
embedded in (Kondoh, 2003; Uchida and Drossel, 2007).

In this thesis, three different approaches for modelling the internal structure of populations
are considered. In (Heckmann et al., 2012), predators species can adapt their foraging efforts
for their different prey species1. It is shown that the stabilising effect this has on food webs
(e.g. in terms of persisting species) interacts with the stabilising effect of allometrically scaled
metabolic rates by strengthening the size structure of the food webs. In (Guill et al., 2014), the
distinct 4-year oscillations in the abundances of certain populations of the Pacific sockeye salmon
(Oncorhynchus nerka) are analysed. It is shown that this unique dynamic phenomenon can be
explained by a model that takes the semelparous life cycle of the salmon (i.e., they reproduce only
once before they die) and especially the predator-prey interactions in the food web of the nursery
lakes of the salmon fry into account. Last, in (Pfaff et al., 2014) a generic model of a single
population with continuous age-structure (meaning that adult individuals continuously reproduce
and that newborn individuals mature to adults after a fixed time span) is analysed with respect to
different patterns of population oscillations that have been observed in this type of model.

1.3.2 Food webs under anthropogenic disturbances
Biodiversity is declining at unprecedented rates (Barnosky et al., 2011; Pimm et al., 2014),
caused both directly and indirectly by human activities (Duraiappah et al., 2005). Three of the
most important anthropogenic stressors on ecosystems are warming, eutrophication, and habitat
degradation (with the latter subsuming destruction and fragmentation of habitats). Warming
directly affects many biological rates such as respiration, growth and feeding (Gillooly et al.,

1Note that these foraging efforts or strategies can be interpreted as variable fractions of individuals of a predator
species that specialise on a given prey species.
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2001; Brown et al., 2004). As the maximum ingestion rate tends to increase not as strongly with
temperature as the respiration rate (Rall et al., 2012), one direct consequence of warming is that
consumers may starve even in the presence of abundant resources, simply because they become too
inefficient in using ingested energy. The direct effect of eutrophication (or enrichment) has also
long been studied. While it has positive effects on the maximal potential biomass of producers,
increasing eutrophication eventually destabilises the population dynamics of consumer-resource
systems, leading to violent population oscillations that may even end in the extinction of the
consumer (Rosenzweig and MacArthur, 1963; Rosenzweig, 1971).

The interaction of these two stressors is, however, not well studied, and it is far from trivial.
While increasing eutrophication promotes population oscillations, warming tends to dampen them
as it makes energy transfer from resource to consumer species less efficient (Rip and McCann,
2011). Furthermore, the effect warming has on biological rates that determine the interaction
between resource and consumer species depends on the respective body masses, complicating
predictions even further. In this thesis, two studies are presented that are concerned with the
interactive effects of warming and eutrophication in food chains (Binzer et al., 2012) and in food
webs with different size structures (Binzer et al., 2016) (Fig. 1.3iv). In food chains, extinction of
top predators occurs at both very low temperatures (since energy transfer along the food chain is
so efficient that it can cause strong population oscillations) and at very high temperatures (due to
starvation). Both extinction thresholds are shifted towards higher temperatures as eutrophication
increases. In food webs, the interactive effects of warming and eutrophication on diversity depend
very much on the prevailing size structure. When consumers and resources have similar sizes
(flat size structure, as in parasitoid-host systems), warming increases diversity and eutrophication
decreases it, whereas in communities with a strong size structure (predator-prey systems) diversity
declines strongly with warming, but has a mixed response to eutrophication.

In terrestrial systems, destruction and fragmentation of habitat due to changes in land use (e.g.
transformation of previously undisturbed areas for agricultural use) have by far the largest negative
impact on biodiversity (Brooks et al., 2002; Pereira et al., 2010). Considering that extinctions
often occur much later than the habitat disturbance that caused them (Tilman et al., 1994),
studying the effects of decreasing habitat availability or quality on species-rich communities is of
utmost importance. This calls for a metapopulation (Hanski, 1998) or metacommunity approach
(Leibold et al., 2004), where local populations or communities are thought to exist on more or
less well-defined habitat patches and to interact via dispersal (Fig. 1.3v). Within this framework,
various theoretical approaches exist that address a host of different questions, ranging from the
conditions for coexistence of species with different competitive and dispersal abilities (Levins
and Culver, 1971; Tilman, 1994) to the processes that synchronise population oscillations in
space (Koenig, 1999; Sherratt et al., 2000; Koelle and Vandermeer, 2005).

It is well established that a strong correlation between the size of a habitable area and
the number of species within this area exist (Arrhenius, 1921), and that clear cause-effect
relationships link habitat loss to declining diversity (Duraiappah et al., 2005). Often, it is
predicted that species on higher trophic levels are most vulnerable to habitat loss (Melian and
Bascompte, 2002), but usually only relatively simple ecological communities are studied (Holt,
2002; Amarasekare, 2008; Holland and Hastings, 2008). This leaves questions regarding how
species that are embedded in complex food webs react to habitat changes unanswered. In (Ryser
et al., 2019), we analysed for the first time actual meta-food webs, i.e., systems that combine
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the complexity of species-rich communities with multiple trophic levels with equally complex
networks of habitat patches. While the approach for modelling the biomass dynamics is not
suitable for addressing the effect of habitat loss, it is shown that increasing habitat isolation
(which is one aspect of habitat fragmentation) decreases the mean species richness per patch
(U-diversity), but increases differences in species composition between patches (V-diversity). In
line with previous predictions, it is further shown that the risk of local and regional extinction
is highest for large species on higher trophic levels. This is mechanistically explained by the
inability of small species on lower trophic levels, which suffer most from increased dispersal
mortality in highly fragmented landscapes, to energetically support their predators.

Using the same approach for modelling complex habitat networks as Ryser et al. (2019), Stark
et al. (2021) analysed in detail the dynamics of three-species meta-food chains. We showed that
reduced dispersal rates due to increasing habitat isolation lead to less synchronous population
oscillations, as expected (Sherratt et al., 2000; Plitzko and Drossel, 2015). However, contrary to
expectations (Schindler et al., 2015), this did not translate into reduced regional (W-) population
variability. Instead, patch isolation increased local (U-) population variability via indirect effects
on the local trophic interactions, which drove an increase in W-variability.

The third metacommunity study presented in this thesis, (Guill et al., 2021), is not directly
concerned with effects of changing habitat availability, but proposes a novel mechanism for
the maintenance of (functional) biodiversity. The mechanism is based on the self-organised
formation of biomass patterns in the landscape, which supports well defended autotroph species
on some patches and fast growing ones on others. Because this mechanism relies on the spatial
extension of the habitat as well as on sufficiently high dispersal rates between the patches, it is
also sensitive to habitat loss and fragmentation.

1.3.3 Ecological functioning of food webs
So far, questions regarding the stability of populations and communities and thus, ultimately, the
determinants of biodiversity have been at the centre of most of the studies presented. However,
diversity is not only a value of its own. Ecosystems provide important services and functions, like
the production of biomass, and it has been a longstanding question how these functions are related
to biodiversity (Hooper et al., 2005; Loreau, 2010). Early studies were mostly concerned with
the diversity and productivity of the plant level (Tilman and Downing, 1994; Hector et al., 1999),
usually showing a positive relation between species number and plant biomass (Tilman et al.,
2001). Including animal diversity, especially in the context of complex food webs, complicates
predictions significantly, as effects are very context-dependent in this case (Duffy, 2002; Duffy
et al., 2007; Reiss et al., 2009). On the one hand, increasing the diversity of a single trophic level
of consumers (horizontal diversity) increases its exploitation pressure on its resources (Finke
and Snyder, 2008). On the other hand, increasing the number of trophic levels in the animal
community (vertical diversity) may lead to indirect positive effects on the plant level due to
the emergence of trophic cascades (Pace et al., 1999). However, omnivory (i.e., feeding on
multiple trophic levels) is more common in diverse food webs (Riede et al., 2010), which blurs
the distinction of trophic levels and may make trophic cascades less likely again (Halaj and Wise,
2001).

In this thesis, five studies are presented that contribute to the research on the relation between
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diversity and ecosystem functioning. In the body mass-based food-web model developed by
Schneider et al. (2016), increasing the number of animal species increases horizontal and vertical
diversity of the animal community simultaneously, similar to natural food webs. It is shown
that increasing animal diversity leads to higher rates of intra-guild predation, but the animal
community still accumulates more biomass and becomes more exploitative on the plant level.
However, both animal and plant communities shift their size structure towards larger species with
lower per-unit biomass respiration rates, which enables the plant level to maintain its biomass
(Fig. 1.3vi). Kath et al. (2018) added to this by pointing out that ATN models like the one used
in (Schneider et al., 2016) need to take activity respiration (and not only basal respiration, as
suggested by Yodzis and Innes (1992)) into account to avoid unrealistically high trophic transfer
efficiencies.

Miele et al. (2019) complemented research on the biodiversity-ecosystem functioning
relationship in complex foodwebs by an important observation. In natural ecological communities,
there are often more non-trophic than trophic interactions between the species (Kéfi et al., 2015).
These non-trophic interactions can for example represent interference among predators or
competition for space among sessile organisms. The joint effect of these diverse interactions is to
increase the slope between diversity and functioning (Fig. 1.3vii), suggesting that studies that
neglect non-trophic interactions underestimate the effect of species loss.

Finally, Ceulemans et al. (2019, 2021) took a somewhat different approach to studying
the diversity-functioning relationship in food webs. The analysed systems are of intermediate
complexity, with three distinct trophic levels, but only between one and four species per trophic
level. Instead of taking species diversity as the main explanatory variable, these studies focus
on functional diversity, i.e., the ranges spanned by functional traits of the species. These
traits determine for example the selectivity of predators, the defence of prey species, or their
maximal growth rate (Fig. 1.3viii). This trait-based approach facilitates a detailed mechanistic
understanding of the observed patterns (Weithoff, 2003; Hillebrand and Matthiessen, 2009), like
compensatory dynamics of species with complementary trait combinations. Both (Ceulemans
et al., 2019) and (Ceulemans et al., 2021) highlight the importance of high functional diversity
for a number of different ecosystem functions.
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Chapter 2

Overview of the Publications

Publications with the first author(s) in italics are based on the master- or PhD-projects of students
I supervised (as reflected by my last-authorship). The students received intensive guidance while
conducting their projects, but were still granted first-authorship.
Reprints of the publications are provided in the Appendix.

2.1 Structure and stability of food webs
1 Kartascheff, B., Heckmann, L., Drossel, B. & Guill, C. (2010). Why allometric scaling
enhances stability in food web models. Theor. Ecol., 3, 195–208.

In this study we showed that allometric scaling of metabolic rates in size-structured food
webs reduces predation mortality and increases intraspecific competition relative to baseline
metabolic rates. These two effects have been identified as the main mechanisms by which
allometric scaling stabilises complex food webs.

I lead the design of the study (60%) and contributed to the development of the model
(50%), the interpretation of the results (40%) and the writing of the manuscript (30%).

2 Heckmann, L., Drossel, B., Brose, U. & Guill, C. (2012). Interactive effects of body-size
structure and adaptive foraging on food-web stability. Ecol. Lett., 15, 243–250.

This study addresses the interaction of two important mechanisms that stabilise complex
food webs, adaptive foraging of consumers and a body size-structure where consumers are
on average larger than their prey. Most intriguingly, it is shown how stabilising body size
structures emerge from random food web topologies via the dynamic adaptation of the
consumers’ foraging strategies.

I lead the design of the study (60%) and the development of the model (50%), and
contributed to the interpretation of the results (50%) and the writing of the manuscript
(40%).

3 Plitzko, S.J., Drossel, B. & Guill, C. (2012). Complexity-stability relations in generalized
food-web models with realistic parameters. J. Theor. Biol., 306, 7–14.
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This study provides novel insights into the relation between food web-stability and -
complexity by combining two approaches of analysing models of complex food webs. The
first is based on direct numerical integration of coupled ordinary differential equations
describing the biomass dynamics of the species, the second is based on a powerful
semi-analytical method for evaluating the local stability of fixed points of the population
dynamics.
I lead the design of the study (60%) and contributed to the development of the models
(50%), the interpretation of the results (35%), and the writing of the manuscript (25%).

4 Guill, C., Carmack, E. & Drossel, B. (2014). Exploring cyclic dominance of sockeye
salmon with a predator-prey model. Can. J. Fish. Aquat. Sci., 71, 959–972.
This publication reviews several mechanism behind population oscillations in general and
behind the conspicuous 4-year oscillations of the Pacific sockeye salmon spawning in the
Fraser River basin in particular. It further demonstrates that for understanding this example
of population oscillations a model that explicitly accounts for the complex life cycle of
sockeye salmon is required.
I took the lead in the design of this study (80%), as well as in the development and
implementation of the model (80%), the interpretation of the results (70%), and the writing
of the manuscript (70%).

5 Kalinkat, G., Schneider, F.D., Digel, C., Guill, C., Rall, B.C. & Brose, U. (2013). Body
masses, functional responses and predator-prey stability. Ecol. Lett., 16, 1126–1134.
In this study, the analysis of a large experimental data set on arthropod feeding rates
demonstrated how all parameters of a generalised functional response model depend on
the body masses of predator and prey species, thereby revealing a previously unrecognised
effect of body mass on the persistence of predator-prey systems.
I influenced the design of the study (20%) by performing numerical model analyses (100%)
that complemented the experimental data analysis. I made minor contributions to the
manuscript text (<10%).

6 Pfaff, T., Brechtel, A., Drossel, B. & Guill, C. (2014). Single generation cycles and delayed
feedback cycles are not separate phenomena. Theor. Pop. Biol., 98, 38–47.
In this publication it is shown that two types of population oscillations that occur in
age-structured populations and that previously had been suggested to be caused by two
different mechanisms, can in fact be understood as limiting cases of the same underlying
mechanism. The publication thereby generalises important results on the interplay of
life-history and population dynamics.
I contributed to the design of this study (60%), the development of the model (40%), the
interpretation of the results (40%), and the writing of the manuscript (30%).

7 Allhoff, K.T., Ritterskamp, D., Rall, B.C., Drossel, B. & Guill, C. (2015). Evolutionary
food web model based on body masses gives realistic networks with permanent species
turnover. Sci. Rep., 5: 10955.
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This study analyses a food web model on evolutionary time scales, where realistic food
web structures emerge from an interplay of speciation and trophic interactions, thereby
demonstrating the ecological importance of body mass as a master trait.
I contributed to the design of the study (40%), the development of the model (40%), the
analysis and interpretation of the results (30%) and the writing of the manuscript (20%).

8 Guill, C. & Paulau, P. (2016). Prohibition rules for 3-node substructures in ordered food
webs with cannibalistic species. Israel J. Ecol. Evol., 61, 69–76.
This study contributes to our understanding of the structure of food webs by analysing the
spectra of ordered three-species motifs in empirical food webs and in two frequently used
stochastic models for generating artificial food web structures.
I lead the design of the study (80%) and the development of the analytical and numerical
methods to investigate the spectra of the three-species motifs (70%). I produced the results
(100%) and wrote most of the manuscript (80%).

2.2 Food webs under anthropogenic disturbances
9 Binzer, A., Guill, C., Brose, U. & Rall, B.C. (2012). The dynamics of food chains
under climate change and nutrient enrichment. Phil. Trans. Royal. Soc. Lond. B, 367,
2935–2944.
This study demonstrates the individual effects as well as the in parts surprising interactions
of two important drivers of anthropogenic global change, warming and eutrophication, on
the survivability of species in a three-species food chain.
Imade some contributions to the design of the study (20%), but otherwisemostly contributed
to the development and implementation of the model (40%) and the interpretation of the
results (30%).

10 Binzer, A., Guill, C., Rall, B.C. & Brose, U. (2016). Interactive effects of warming,
eutrophication and size-structure: impacts on biodiversity and food-web structure. Global
Change Biol., 22, 220–227.
This comprehensive study shows that two important components of anthropogenic global
change, eutrophication and warming, have antagonistic effects on the diversity of food
webs, which further depend on whether the communities have a flat (as in host-parasitoid
networks) or pronounced size structure (as in predator-prey networks).
For this study, I mainly contributed to the development and implementation of the model
(50%) and to the interpretation of the results (25%).

11 Ryser, R., Häussler, J., Stark, M., Brose, U., Rall, B.C. & Guill, C. (2019). The biggest
losers: habitat isolation deconstructs complex food webs from top to bottom. Proc. Roy.
Soc. Lond. B, 286: 20191177.
This study combines for the first time population dynamics of complex, species-rich food
webs with dispersal dynamics on equally complex spatial networks of interconnected
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habitat patches. This approach allowed us to obtain important mechanistic insights into
how food webs are expected to lose stability under progressing habitat isolation.

This study was carried out as a collaborative project within the DFG-funded research unit
FOR 1748: ’Networks on Networks’, where I was one of the PIs. I contributed substantially
to the design of the study (50%) and the development of the model (50%). I further
contributed to the interpretation of the results (30%) and the writing of the manuscript
(15%).

12 Stark, M., Bach, M. & Guill, C. (2021). Patch isolation and periodic environmental
disturbances have idiosyncratic effects on local and regional population variability in
meta-food chains. Theor. Ecol., 14, 489–500.

In this publication it is shown how indirect effects of trophic interactions modify the effects
of dispersal dynamics in metacommunities, thereby advancing our understanding of the
relation between the synchrony of population oscillations on individual patches and the
stability of metapopulations and -communities.

This study is directly based on my project within the research unit FOR 1748: ’Networks
on Networks’. I lead the design of the study (80%) and contributed substantially to the
development of the model (50%) and the interpretation of the results (50%). I wrote parts
of the manuscript (30%).

13 Guill, C., Hülsemann, J. & Klauschies, T. (2021). Self-organised pattern formation
increases local diversity in metacommunities. Ecol. Lett., 24: 2624–2634.

In this publication a novel mechanism for supporting functional diversity based on self-
organised pattern formation is developed. These innovative results were obtained by
combining state-of-the-art approaches of trait-based ecology and meta-community ecology.

I lead the design of the study (60%), the development of the model equations (50%) and
the development of procedures for the data analysis (80%). I produced parts of the results
(40%) and wrote substantial parts of the manuscript (50%).

2.3 Ecological functioning of food webs
14 Schneider, F.D., Brose, U., Rall, B.C. & Guill, C. (2016). Animal diversity and ecosystem

functioning in dynamic food webs. Nat. Comm. 7: 12718.
This study is the first to systematically explore the effects of animal diversity on ecosystem
functioning in complex food webs, which allows it to simultaneously capture implications
of changing both vertical and horizontal diversity. With this novel approach, important
insights on the consequences of animal species loss for fundamental ecosystem functions
are gained.

I substantially contributed to the design of the study (50%) and lead the development
and implementation of the model (70%). I further contributed to the evaluation and
interpretation of the results (40%) as well as to the writing of the manuscript (25%).
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15 Kath, N., Boit, A., Guill, C. & Gaedke, U. (2018). Accounting for activity respiration
results in realistic trophic transfer efficiencies in allometric trophic network (ATN) models.
Theor. Ecol., 11, 453–463.
This study analyses in a very detailed manner the biomass dynamics predicted by so-called
allometric trophic network models and demonstrates that it is necessary to account for
two different modes of respiration (basal and activity) to obtain realistic estimates of the
efficiency by which biomass is transferred from one trophic level to the next.
I contributed to the design of the study (40%), the development (50%) and implementation
(40%) of the model, the interpretation of the results (35%) and the writing of the manuscript
(20%).

16 Miele, V., Guill, C., Ramos-Jiliberto, R. & Kéfi, S. (2019). Non-trophic interactions
strengthen the diversity-functioning relationship in an ecological bioenergetic network
model. PLoS Comput. Biol., 15: e1007269.
In this study the effects of a large variety of ubiquitous non-trophic interaction pathways
on species diversity and ecosystem functioning are explored. Among others it is shown
that when these non-trophic interactions, which exist in great numbers among the species
of a community, are not accounted for, the negative effects of declining biodiversity on
ecosystem functioning are underestimated.
I contributed to the design of the study (35%), the development and implementation of
the model (50%), the interpretation of the results (30%) and the writing of the manuscript
(20%).

17 Ceulemans, R., Gaedke, U., Klauschies, T. & Guill, C. (2019). The effects of functional
diversity on biomass production, variability, and resilience of ecosystem functions in a
tritrophic system. Sci. Rep. 9: 7541.
We demonstrated the importance of functional trait diversity for the magnitude and stability
of ecosystem functions by systematically analysing simple tri-trophic food webs with
adjustable functional diversity on each trophic level. Additionally, a novel method for
assessing the strength of top-down versus bottom-up control in non-equilibrium situations
is developed in this study.
I substantially contributed to the design of the study (50%) and lead the development of
the model (60%). I further contributed to the interpretation of the results (35%) and the
writing of the manuscript (20%).

18 Ceulemans, R., Guill, C. &Gaedke, U. (2021). Top predators govern multitrophic diversity
effects in tritrophic food webs. Ecology, 102: e03379.
In this study, an exceptionally large data set is generated and analysed with modern
machine-learning methods, which allows to obtain generalisable results regarding the
importance of functional diversity for ecosystem functioning in tri-trophic food webs.
I contributed to the design of the study (35%), the development of the model (40%) and
the interpretation of the results (25%).
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Chapter 3

Discussion

3.1 Synthesis

In this thesis, different facets of contemporary research on ecological networks, food webs in
particular, have been presented. These revolved mainly around the general topics of i) mechanisms
that explain the structure and the stability of natural food webs, ii) the reaction of food webs to
anthropogenic global change, and iii) explaining the relationship between diversity (taxonomic or
functional) and ecosystem functioning. These topics are not only connected by the common food
web-theme, but also by recurrent concepts and methodological approaches.

One of these recurrent concepts is that of body mass as a master trait. As this thesis shows,
body mass is relevant on different organisational, temporal, and spatial scales. In the studies
concerned with the role of allometric scaling of metabolic rates for the stability of food webs
(Kartascheff et al., 2010; Heckmann et al., 2012), it is shown how the body-mass structure of
a network (i.e., the average predator-prey body-mass ratio) determines the broad patterns of
energy transportation through the food web. On a smaller organisational level, Kalinkat et al.
(2013) demonstrated how coexistence in predator-prey systems is facilitated by the specific way
functional response parameters depend on the body masses of the two species. In these examples,
body mass affects the interaction between species and their respiration rates, i.e., processes that
take place on ecological time scales (defined by the life time of organisms). However, body mass
is also a relevant trait for systems considering much longer time scales: Allhoff et al. (2015) used
it as the main evolving trait in their model for food-web evolution and showed that with such an
approach, food webs with realistic structures emerge. Finally, we demonstrated the (potential)
importance of body mass for processes on larger spatial scales in two metacommunity studies
(Ryser et al., 2019; Stark et al., 2021), where it is used to parametrise the dispersal dynamics.
Based on the observation that larger animal species move generally faster than smaller ones
(Peters, 1986; Hirt et al., 2017), it was assumed that they also have a longer dispersal range and
therefore have to endure less dispersal mortality (per distance travelled) than smaller species.
However, while it was originally hypothesised that the longer dispersal range of larger animals
would give them an advantage over smaller ones when habitat isolation increases, this turned out
not to be the case. In fact, larger species have a higher extinction risk under increasing habitat
isolation than smaller ones because the high dispersal mortality of the smaller species means
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that they cannot support their larger predators energetically anymore when habitat isolation is
too high. This shows that a certain body-mass related effect may be real (larger species are
more mobile than smaller ones), but it may still be largely irrelevant for the eventual population
dynamics and the survival of the species.

Methodological approaches create an interesting connection between the first and the third
general topic. In the first one, specific mechanisms are analysed that stabilise food webs and
thus explain their diversity (Kartascheff et al., 2010; Heckmann et al., 2012; Plitzko et al., 2012).
In the third one, in turn, the relation between diversity and ecosystem functioning is explored
(Schneider et al., 2016; Ceulemans et al., 2019, 2021). It is therefore quite straight forward to
ask whether the mechanisms identified in the first topic, like allometric scaling of metabolic
rates in size-structured food webs, or adaptive foraging behaviour, also directly affect ecosystem
functioning. Establishing such connections would lead to a more mechanistic understanding
of the determinants of ecosystem functioning, similar to what approaches based on functional
trait diversity are aiming at (Hillebrand and Matthiessen, 2009; Ceulemans et al., 2019). Some
degree of transitivity in the explanatory power of the fundamental mechanisms is of course
to be expected. For example, adaptive foraging behaviour lets predator species focus on their
most profitable prey species while at the same time minimising competition with other predator
species, which should increase the efficiency of energy transfer through the food web and lead to
overall higher rates of biomass production. However, for other mechanisms it is less clear how
they might affect ecosystem functioning. The size structure of classical predator-prey food webs
(where predators are several orders of magnitude larger than their prey) supports their diversity
(Brose et al., 2006b; Kartascheff et al., 2010), but whether this means that they are also more
productive than systems that lack such a size structure, like parasitoid-host networks, has not
been shown. Extrapolating the conclusions from Schneider et al. (2016), I would hypothesise
that parasitoid-host networks have lower standing stock biomasses than predator-prey networks,
but more dedicated research is certainly needed to obtain a comprehensive picture of the effect of
size structure of trophic networks on ecosystem functioning.

Another connection between the first and the third general topic of this thesis is related to
the study of structured populations. Often, maturation of juvenile individuals to adults does not
occur after a fixed time span (as in Guill et al. (2014); Pfaff et al. (2014)), but when individuals
reach a certain size. Somatic growth, however, depends on resource intake and expenditure (cf.
Fig. 1.2), which can create an ontogenetic bottleneck (de Roos et al., 2007, 2008b). When the
per-capita resource availability for the juveniles of a population is very low, they spend most
of their ingested energy on respiration and very little on growth. As a consequence, the time
to maturation is very long, the total juvenile sub-population accumulates lots of biomass, but
its production rate of new biomass is extremely low (an analogous effect can occur in the adult
stage when reproduction is resource dependent). The consequences of these population-level
functioning effects for the functioning of entire ecosystems have not been systematically explored
so far, only some indirect evidence exists. The occurrence of an ontogenetic bottleneck can
facilitate the persistence of interacting species (de Roos et al., 2008a), and ontogenetic stage
structure of a high fraction of species has been shown to positively affect the diversity of food
webs (Mougi, 2017). However, whether these positive effects on diversity translate into positive
effects on the functioning of the entire community remains as a question for future research.

By looking at the individual studies of this thesis together, another conclusion regarding
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ecosystem functioning can be drawn. The studies of the third general topic were concerned
with the effect biodiversity has on ecosystem functioning. However, they do not show that there
is actually a two-way relationship between diversity and functioning. This can be seen when
interpreting the results of the second general topic, food webs under anthropogenic disturbances,
in terms of ecosystem functioning. One important aspect of ecosystem functioning is how
efficiently energy is transported from the primary producers to the top predators (Ceulemans
et al., 2021). The decreased stability of food chains (Binzer et al., 2012) and food webs (Binzer
et al., 2016) under increasing warming or habitat isolation (Ryser et al., 2019) (and notably
the extinction of species on higher trophic levels) is a direct consequence of insufficient energy
transfer efficiency. Higher ambient temperatures create a mismatch between respiration rates
and maximum ingestion rates, as the former increases faster with temperature than the latter
(Rall et al., 2012). This means that every species along a food chain becomes less efficient
at transferring energy. While this is usually tolerable for species on lower trophic levels, the
combined effect of decreasing trophic transfer efficiency over multiple trophic levels means
that top predators cannot acquire enough resources to balance their elevated respiration rate.
Increasing habitat isolation in metacommunities has the same net effect, although the precise
mechanism is somewhat different. As pointed out above, larger animals (which typically occupy
the upper trophic levels) are quite mobile and may not be directly affected by increasing habitat
isolation. However, less mobile, small species may suffer considerable mortality during dispersal
between far away habitat patches. This means that a considerable fraction of their biomass
production is ’lost’ to the matrix surrounding the patches instead of being transferred up the food
chain. In this case, the length of food chains is thus limited by a strong reduction of trophic
transfer efficiency that occurs mostly at the lower trophic levels. Both examples thus demonstrate
that a restriction of ecosystem functioning by external perturbations significantly affects diversity.

3.2 Outlook
The synopsis of the individual studies of this thesis also suggests interesting avenues for future
research. For example, Guill et al. (2014) showed that in order to explain the large-scale
population oscillations of some populations of a Pacific salmon species, it is necessary to take
the age-structure of the populations into account. However, it is actually also essential for the
proposed mechanism that the salmon individuals undergo a so-called ontogenetic habitat shift:
after spending their first year in freshwater lakes, they migrate to the ocean, where they spend the
majority of their life. Interestingly, the results of Guill et al. (2014) suggest that the interaction of
the salmon fry with their predators (rainbow trout) in the nursery lakes is responsible for the
observed population oscillations, and that the mechanism would break down if more than one
salmon cohort at a time was subject to the predation by the trout. This calls for more systematic
research on the effects of ontogenetic habitat shifts, i.e., a combination of models for age- or
stage-structured populations with a metacommunity approach. Ryser et al. (2019) assumed that
dispersal is triggered by poor growing conditions in a habitat, but it may also be triggered by
ontogenetic development. Such complex life cycles are not uncommon among animal species
(Werner and Gilliam, 1984), and it has already been shown for single populations that they can
have far-reaching consequences like the emergence of alternative stable states (Schreiber and

29



Rudolf, 2008; Guill, 2009). These alternative states are related to the ontogenetic bottlenecks
mentioned above. When juvenile and adult individuals of a species occupy different habitats
and thus also have different resources, a bottleneck (associated with the accumulation of a high
biomass stock, but a low biomass production rate) can occur in either of the states - but not
in both at the same time. The crucial thing to note is that the stage that is not experiencing
the bottleneck becomes a net producer of biomass, which it exports - via the ontogenetic link
(maturation or reproduction) - to the habitat of the bottleneck stage, where it could be exploited
by predators of that stage.

Extending this scenario to a trophically complex community on two patches that are
dynamically coupled by the ontogenetic habitat shifts of a large proportion of the animal species
might lead to some interesting phenomena. For example, if one of the habitats had a lower
a-priori productivity (e.g. due to a reduced influx of nutrients), in that habitat the ontogenetic
stages of species on lower trophic levels would presumably experience a bottleneck due to limited
resource availability and start to accumulate biomass. This biomass would in part originate from
the other habitat with higher productivity, via the mechanism described above. Due to these
ontogenetic ecosystem subsidies, consumer species on the upper trophic levels might experience
relatively even growth conditions in both habitats. This also means that if the ontogenetic biomass
flows across the habitat boundaries are not accounted for, standing stock biomass and biomass
production in the habitat with low a-priori productivity might appear higher than expected, and
vice versa in the higher-productivity habitat.

Another promising direction for future research is to extend the study by Guill et al. (2021).
In this study, a novel mechanism for supporting functional diversity in metacommunities based
on self-organised formation of spatial biomass patterns has been described. However, in order
to facilitate a detailed understanding of this mechanism, central model settings like the spatial
arrangement of the habitat patches or the biodiversity throughout the food chain have been
deliberately kept very simple. In order to establish the ecological relevance of self-organised
pattern formation for the maintenance of diversity, it thus seems reasonable to extend the model
to more realistic, but also more complex scenarios. This could be done by including complex
networks of habitat patches (instead of a simple, one-dimensional ring formation), and by
accounting for functional diversity on multiple trophic levels (instead of only at the producer
level) to allow for co-adaptation of diverse prey and predator communities.

For modelling complex habitat networks, the approach developed by Ryser et al. (2019)
could be adopted. There, habitat networks are created as so-called random geometric graphs by
distributing the patches randomly across a two-dimensional landscape and creating dispersal
links between any two patches whose distance is below a certain threshold. Whether or not
self-organised pattern formation occurs in such a system depends among others on the eigenvalue
spectrum of the so-called Laplacian matrix. The Laplacian is essentially a mathematical
representation of the spatial patch network, encoding presence/absence and strength of dispersal
links between patches (Nakao and Mikhailov, 2010). General mathematical results on these
matrices suggest that the emerging patterns may be localised on small clusters of patches within
the entire network (Brechtel et al., 2018). Ecologically interpreted this may indicate that “islands
of diversity” exist, i.e., single patches or densely connected clusters of a few patches that either
harbour an elevated level of local (U-) functional diversity or that at least differ in community
composition from the rest of the metacommunity, thereby contributing to regional (V-) diversity.
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An important question would therefore be to determine whether such keystone patches (or
clusters) actually exist, and if so, how much they contribute to diversity on the different spatial
scales. To further elucidate the implications of this mechanism for nature conservation, one could
then address how sensitive it is to habitat loss by sequentially removing habitat patches. This
would change the eigenvalue spectrum of the corresponding Laplacian matrix in a discontinuous
way and might lead to sudden shifts between metacommunity states with different spatial patterns
or even without self-organised pattern formation.

As a step towards modelling realistic, trophically complex communities, the potential of
self-organised pattern formation to support functional diversity on the level of consumers (in
addition to the producer level) could be analysed. Even in non-spatial models, biomass-trait
feedbacks between two functionally diverse trophic levels have been shown to lead to complex
adaptation dynamics of the traits (Tirok et al., 2011). By studying co-adaptation of consumer
and resource species in an explicit metacommunity context it could therefore be investigated how
this potential for complex local dynamics interacts with the non-equilibrium dynamics induced
by self-organised pattern formation, and thus whether the mechanism for increasing functional
diversity by self-organised pattern formation can be extended and generalised to multiple trophic
levels.

Similar to what is done for the producers in the publishedmodel, the diversity of the consumers
would be modelled as a continuous distribution of a functional trait that mediates for example a
trade-off between the width of a given predator’s prey spectrum and the efficiency with which it
can attack prey species with different levels of defence (Tirok et al. (2011). Even though this
would increase the mathematical complexity of the model only moderately, much more complex
population- and trait dynamics can be expected to occur when both producer and consumer
species are adaptive (Tirok et al., 2011). However, producer and consumer species may have
considerably different movement or dispersal modes. It is therefore not clear a priori whether the
complex dynamics would translate into maintenance of functional diversity of the consumers. For
example, actively moving consumers can be assumed to disperse much faster among habitats than
producer species that rely on passive transport. While this can have important implications for the
self-organised formation of patterns in the distribution of the species (Guill et al. (2021) showed
that spatio-temporal patterns emerge when consumers have low to medium mobility, while
static patterns emerge when they are highly mobile), very fast movement can also homogenise
the trait distributions across the metacommunity. Over time this would lead to a loss of both
regional and local functional diversity of the consumers, and potentially also the producers.
It would therefore have to be explored very carefully, for which ranges of dispersal rates of
the respective communities self-organised pattern formation occurs, and whether this leads to
positive or negative effects on the functional diversity of producer and consumer communities.

The ideas for exploring the capabilities of self-organised pattern formation to increase
functional diversity in metacommunities (Guill et al., 2021) in both spatially and trophically
more complex scenarios as described above are part of a research proposal submitted to the DFG
and thus constitute a plan for my research in the near future.
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Abstract It has recently been shown that the incorpo-

ration of allometric scaling into the dynamic equations

of food web models enhances network stability if preda-

tors are assigned a higher body mass than their prey.

We investigate the underlying mechanisms leading to

this stability increase. The dynamic equations can be

written such that allometric scaling influences these

equations at three places: the time scales of predator

and prey dynamics become separated, the energy out-

flow to the predators is decreased, and intraspecific

competition is increased relative to metabolic rates.

For five food web topologies and various network sizes

(i.e., species richness), we study the effect of each

of these modifications on the percentage of surviving

species separately and find that the decreased interac-

tion strengths and the increased intraspecific competi-

tion are responsible for the enhanced stability. We also

investigate the range of parameter values for which an

enhanced stability is observed.

Keywords Metabolic theory · Population dynamics ·

Complexity–stability relation · Time scale effect ·

Interaction strength · Intraspecific competition

Introduction

Over the last few decades, there has been an inten-

sive debate about why complex food webs persist in

B. Kartascheff · L. Heckmann · B. Drossel · C. Guill (B)
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64289 Darmstadt, Germany
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nature (McCann 2000). May (1972) demonstrated in

an analytical approach for the dynamics of random

networks near a fixed point that higher complexity

inherently leads to less stability. This overturned the

traditional view of ecologists that more complex ecosys-

tems are more stable (MacArthur 1955; Elton 1958;

Odum 1953), and initiated the so called complexity–

stability debate. However, May’s stability analysis did

not remain uncriticized, mainly because of the linear

stability concept, and because of the random choice

of food web topology and consumer-resource coupling

constants, which are not appropriate for empirical food

webs (DeAngelis and Waterhouse 1987; Pimm 1984;

Yodzis 1981).

Subsequent investigations of food web stability used

more empirically realistic models with non-linear, sat-

urating functional response of type II or III (Williams

and Martinez 2004; Brose et al. 2006; Otto et al. 2007;

Rall et al. 2008). These non-linear functional responses

can be derived in a reasonably convincing way from

first principles of time budgets (Koen-Alonso 2007),

whereas they prevent analytic solutions of the result-

ing population dynamics. Further steps towards more

realistic food web models introduced, among others,

the concept of predator interference (Beddington

1975), more realistic food web structures (Williams

and Martinez 2000; Martinez et al. 2006; Dunne 2006)

and interaction strength patterns (McCann et al. 1998;

Neutel et al. 2002; Paine 1980), or foraging adaptation

(Kondoh 2003).

A variety of stability concepts have been used since

May’s work (McCann 2000). For the survival of a

species, it is not necessary that the dynamics have a

stable fixed point, and therefore, the concept of species

persistence is often employed. We call the proportion
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of species that persist in a food web the “robustness” of

the network.

In a recent study, Brose et al. (2006) demonstrated

that the incorporation of mass-dependent metabolic

rates into the nonlinear dynamical equations of food

web models considerably increases food web robust-

ness. Generally, metabolic rates of individuals are as-

sumed to scale like power laws with body size, with

the allometric exponents being either close to 3/4, as

put forward by the metabolic theory (West et al. 1999;

Enquist et al. 1999; Brown et al. 2004), or close to 2/3,

as can be inferred from simple geometric arguments

(Dodds et al. 2001; White and Seymour 2003). Recent

studies, however, contest the universality of allometric

scaling exponents (Bokma 2004; Glazier 2005; Price

et al. 2009).

In the study by Brose et al. (2006), species were

assigned a body mass according to their trophic level.

The energy losses due to metabolism and the consump-

tion rates thus became a function of the body mass.

Using the modified cascade (Cohen et al. 1990), niche

(Williams and Martinez 2000), and nested hierarchy

model (Cattin 2004), Brose et al. (2006) showed that

a predator–prey body mass ratio between 10 and 100

resulted in robustness values that approached 100%

for large networks, and the authors presented empir-

ical food web data that corroborated this optimum

predator–prey body mass ratio. In a subsequent pub-

lication, Otto et al. (2007) showed how such predator–

prey body mass ratios can stabilize three-species food

chains. How food webs with a more general structure

and with more species can be stabilized by such body

mass ratios is, however, not explained at present.

It is the purpose of this paper to shed light on the

mechanisms that lead to an increased stability of food

webs in the presence of allometric scaling. We evaluate

the robustness R as a function of the species number S

within a wide range 20 ≤ S ≤ 80, and for a fixed value

of the initial connectance C = 0.15, which is the number

of links in the network, divided by S2. We chose Holling

type-II functional responses and collected robustness

data for five simple topological food web models that

allow for fast data generation (see next section).

The differential equations of population dynamics

with and without allometric scaling differ in three

terms. Each of them was considered as a potential

cause for the observed stability increase. In a simulation

setup, we tested each of the potential causes separately

and evaluated their effects on food web stability.

Compared to the model of Brose et al. (2006), our

set of differential equations contains fewer parameters.

This is because we bundled together empirical para-

meters such as the allometric coefficients taken from

Brown et al. (2004) and replaced products of parame-

ters by one effective parameter wherever possible.

Food web models

The food web topologies in this study are the random,

cascade (Cohen and Newman 1985), niche (Williams

and Martinez 2000), nested hierarchy (Cattin 2004),

and layered topology. In contrast to models that gen-

erate food webs by a dynamical process such as the

Webworld (Drossel et al. 2001) or the matching model

(Rossberg et al. 2006), these descriptive and rather

simple models have distinctive topological features that

allow to disentangle specific effects of the web topology

on the stability of the webs under population dynamics.

For the niche model, generalizations have been devel-

oped that predict empirical food web data even better

(Allesina et al. 2008), but for the purpose of this work,

it is sufficient to analyze the basic niche model with its

very simple rules.

The random model imposes no restrictions on the

web topology. Each link is realized with constant prob-

ability C. The cascade, niche, and nested hierarchy

models all order the species along a single niche dimen-

sion and constrain predators to feed (mainly) on prey

with a lower rank. The models differ by the amount

of looping they permit, by the degree distributions,

and by additional constraints such as diet contiguity

in the niche model. In the layered model, species are

placed on distinct trophic levels and are constrained

to prey exclusively on those species on the next lower

level. This creates a very strict feeding hierarchy that

prohibits looping, cannibalism, and even omnivory. The

species are evenly distributed on four trophic levels

(we present only data for species numbers S that are

multiples of 4).

Each simulation run started by randomly generating

a food web consisting of S species according to the rules

of the desired topology. The number of links L for fixed

S and C varied between simulation runs; the average

value, however, was fixed to L = S2 · C.

Two external resources with constant and identical

size Nres were assigned to each model web. They serve

as an inexhaustible pool of nutrients or other sources

of energy, such as sunlight, that is consumed by the

basal species (first trophic level). In the cascade model,

these resources were assigned the lowest ranks, and

in the niche and nested hierarchy models, they were

assigned the smallest niche values. In niche model food

webs, species with a feeding range that do not cover

the resources are nevertheless assigned a link to the re-

sources if their feeding range contains no species at all,
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in accordance with the original algorithm by Williams

and Martinez (Williams and Martinez 2000). In the

random model, links to the resources are assigned in

the same way as all other feeding links. In the layered

model, all species on the first level received links to the

two resources.

Introducing the resources as special nodes in the net-

work has several advantages. First, it guarantees that,

on average, a constant fraction of the trophic species

has a link to the resources, independent of the size of

the network. By this, we do not fix the number of basal

species B, as was done by Brose et al. (2006), and the

energy input per species to the network remains con-

stant. This makes simulation results for small and large

networks comparable. A constant number B would

have a negative impact on the robustness of larger

food webs. Both the slope and typical values of the

robustness decrease, but we confirmed that changes in

robustness caused by allometric scaling for the case of

constant B remain qualitatively the same. Furthermore,

empirical food web data do not suggest a fixed number

of basal species that is independent from food web size.

Second, by representing the resources as nodes in the

networks, we do not need to define special equations

for the basal species. The implementation of constant

resources leads to a logistic growth of the basal species

that depends on the resources because we include in-

traspecific competition in the dynamical equations (see

next section). Our equations are therefore formally

equivalent to those used by Brose et al. (2006), where

five primary producers (basal species) with logistic

growth act as energy supply.

Population dynamics

The population dynamics is determined by a set of

S-coupled ordinary differential equations (ODEs). We

first introduce the ODEs for simulations without allo-

metric scaling, followed by the ODEs for simulations

with allometric scaling. The biomass density of species

i, Ni changes with time according to

dNi

dt
= λi

∑

j∈Ri

gij(N)Ni −
∑

k∈Ci

gki(N)Nk − αi Ni − βi N
2
i ,

(1)

where Ri is the set of prey and Ci the set of preda-

tors of species i. λi denotes the assimilation efficiency

(λi < 1). As long as λi was not too low (λi > 0.1), our

simulation results did not depend qualitatively on the

precise value of this parameter. We set assimilation

λi = λ = 0.4, close to values used by Brose et al. (2006)

or Yodzis and Innes (1992). αi is the biomass loss of

species i due to respiration and mortality (we neglect

other causes of biomass loss, e.g., due to death caused

by diseases or accidents) and βi is the intraspecific com-

petition coefficient. Intraspecific competition depends

on the density of the respective population. It limits

the growth of a species due to a limited availability of

nesting sites or territory. We set the respiration rate

to αi = α = 0.05 and the competition strength to βi =

β = 0.4, as chosen by Ushida and Drossel (2007). We

found that a variation of α and β can have a quantitative

and qualitative influence on the effect of allometric

scaling on food web stability when these parameters are

too large. We discuss the parameter ranges for which

population dynamics with allometric scaling enhance

stability in the conclusion. The functional response gij

was of Holling type-II form,

gij(N) =
aij fijN j

1 +
∑

l∈Ri
ail filhil Nl

, (2)

with constant foraging efforts fij = 1/ωi, where ωi is

the number of prey of species i. fij reduces the inter-

action strength between predator i and prey j if i is

a generalist, i.e., if i forages for many different prey

species, because it has to divide its available searching

time among its different prey. aij is the encounter rate

of predator i and prey j and hil denotes the handling

time, i.e., the time a consumer i needs to digest a unit

biomass of prey l. Encounter rates and handling times

of a predator i are assumed to be the same for all its

prey species, i.e., aij = ai and hij = hi for all j. With this,

the functional response Eq. 2 can be rewritten as

gij(N) =
1

hi

fijN j

1
aihi

+
∑

l∈Ri
fil Nl

. (3)

In this notation, 1/hi can be interpreted as maximal

ingestion rate of a predator individual and 1/hiai is

the half-saturation density. Following Yodzis and Innes

(1992) and Brose et al. (2006), we modelled the latter to

be constant. Since the maximal ingestion rate depends

on the body size of the predator (see below), this also

implies that the encounter rate depends on the predator

body size such that aihi =const. It should be noted

that, although it is quite common, the assumption of a

constant half-saturation density is theoretically not well

justified. However, abandoning this assumption would

limit comparability of our results with previous studies.

The encounter rate was set to ai = 5 for all links

and the handling time was set to hi = 0.3. Simulation

results were qualitatively robust against variations of hi

and ai within a tested parameter range of 0.1 < hi < 0.5
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and 1 < ai < 10. We do not include explicit prey size

dependence of the encounter rates as is suggested by

several recent studies (Brose et al. 2008; Weitz and

Levin 2006) because, implicitly, the food web models

partially account for this by their bias at selecting the

prey species a predator can successfully feed on. How-

ever, note that predator- and prey-size dependency of

the encounter rates would not only influence the diet of

consumers but might also change the dynamic behavior

of the system (Weitz and Levin 2006).

With these parameter values and the large size of the

resource pools (Nres = 700), basal species realize about

99.9% of their maximal ingestion rate. To emphasize

the size of the resource pools, consider that the hy-

pothetical maximal biomass density of an unpredated

basal species is approximately 3.2, i.e., more than two

orders of magnitude smaller than the size of the re-

source pools (this can be shown by a simple fixed-point

calculation). Therefore, any species that has feeding

links to both the resources and another trophic species

in the network will always receive the vast majority of

its food from the resources.

The total biomass density Ni of the population is the

product of the density of individuals and the biomass

per individual (the body mass). Up to now, we have not

yet considered the fact that body mass varies between

species. As mentioned above, the metabolic rates of

individuals are assumed to increase with body mass ac-

cording to a power law. The exponent of this allometric

relationship is highly controversial and may even not

be universal (Bokma 2004; Glazier 2005; Price et al.

2009). However, in order to keep our model simple

and because the value seems to establish as a standard

approximation, we take individual metabolic rates to

increase with body mass with a single exponent of 3/4

(but note that our results do not rely on the precise

value of the allometric exponent; see last paragraph

of this section). The metabolic rate per unit biomass

decreases, therefore, with the body mass M as M−1/4.

Since the metabolic rate affects the ingestion and respi-

ration rates, the dynamic equations take the form

dNi

dt
= λ

∑

j∈Ri

gij(N)Ni

M0.25
i

−
∑

k∈Ci

gki(N)Nk

M0.25
k

−
αNi

M0.25
i

− βN2
i

(4)

when different body masses are accounted for (Brose

et al. 2006; Brown et al. 2004; Enquist et al. 1999).

Intraspecific competition is not a directly metabolically

based process; therefore, it is not scaled allometrically.

As indicated before, this notation implies that ai scales

inversely with body mass as hi, so that aihi =const

(Brose et al. 2006; Yodzis and Innes 1992).

We set the body mass of individuals of basal species

to 1; therefore, Mi represents the mass of one individual

of species i, divided by the mass of a basal individual.

With this choice, the ingestion and respiration rates of

basal species do not change when scaled allometrically.

Therefore, the energy entering the food webs, which

depends only on the ingestion of the basal species,

is constant whether or not allometric scaling is con-

sidered. The body masses of the other species were

assigned according to the rules given in Table 2. In

the cascade, niche, and nested hierarchy models, the

species are ordered along a single niche dimension,

which we assume to be related to the average body

mass of the species. The higher the index or niche value

of a species is, the higher its trophic level (defined

as the length of the shortest path from the species

to the resources via feeding links) is on average. The

scaling factor x introduced in Table 2 denotes how

strongly body mass increases (or decreases, if x < 0)

along the niche axis. Although there is no unique map-

ping between a species’ position on the niche axis (and,

thereby, its mass) and its trophic level, there is still a

strong positive correlation. Therefore, x can be used as

a proxy for the body-mass ratio of predator–prey pairs.

In the layered model, there are only four niches that are

identical to the trophic levels of the species, and in the

random model, the trophic level is the only measure by

which species can be ordered. In these two models, we

therefore relate the body mass of the species directly to

their trophic level and the scaling factor x is the log10 of

the body-mass ratio of species on neighboring trophic

levels. When the scaling factor x = 0, Eq. 4 reduces to

Eq. 1.

With these rules we apply for assigning body masses

to the species, our results do not rely on the precise

value of the scaling exponent of the metabolic rate. A

change of the scaling exponent can be mapped onto

a change of the scaling factor x. Our results obtained

with a scaling exponent of −1/4 are equivalent to

results obtained with an exponent −1/3, but with the

scaling factor x reduced by a factor 3/4. Since our

results are robust against such changes in x, as will be

shown later in the results section (Fig. 3), they are also

robust against changes of the scaling exponent of the

metabolic rates.

Simulation setup

We evaluated the robustness R for the five food web

topologies, varying the species number between 20 and
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Fig. 1 Number of surviving species in representative simulation
runs with allometric scaling and x = 2 for all five topological
models as a function of time. All parameters are at their default
values (Table 1)

80 and the scaling factor x (see Table 2) between −2

and 4. Positive values for x mean that predators are, in

most cases, larger than their prey.

Initial biomass densities of the species were ran-

domly chosen from the interval [0, 1]. If a biomass

density dropped at some time during the simulation

below the value of 10−6 (the extinction threshold), the

species was considered extinct and removed from the

community by permanently setting its biomass value

to 0.

Each simulation run with x = 0 was performed ac-

cording to Eq. 1 for 2,500 time units, which is 125 times

longer than the life span of individuals, 1/αi. Simu-

lations with larger x needed more time since species

with large body mass have a longer life span (e.g.,

maxi(1/αi) = 2000 for x = 2), and their dynamics are

slow. Therefore, these species approach the extinction

threshold very slowly. We used a maximum duration

of 80,000 time units for simulations that involved large

body masses. Tests with a few selected simulation runs

showed that far less than 1% of the species present at

the end of these 80,000 time units would become extinct

even later (see Fig. 1, where we plot the number of

surviving species over time for single simulation runs

of each of the five food web models). The robustness

data shown in the following are therefore very close to

the (hypothetical) exact values.

The numerical integration of the dynamical equa-

tions was performed using the Runge–Kutta–Fehlberg

algorithm with an absolute local error tolerance ǫabs =

10−5 and a relative local error tolerance ǫrel = 10−8.

For each data point, we averaged the data obtained

from 500 runs that used the same network model (i.e.,

random, cascade, niche, nested hierarchy, or layered

topology) and the same values of all parameters, in par-

ticular of S and x. Individual runs differed by the actual

network topology generated within the constraints of

the respective model and by the randomly chosen initial

biomass densities of the species.

Results

We first show that the general effects of allometric

scaling of metabolic rates observed by Brose et al.

(2006) are also found here, despite some differences in

the dynamic equations. This also holds for the two more

artificial network topologies (random and layered) that

have not been analyzed by Brose et al. (2006). When

predators are, on average, larger than their prey, food

web robustness is enhanced by allometric scaling. In

Fig. 2, the robustness obtained using Eq. 1, i.e., without

allometric scaling, is compared with the robustness ob-

tained with allometric scaling (Eq. 4). The data shown

are those for the niche model with scaling exponent

x = 2, those for the other topological models are shown

in Fig. 5. Note that, in contrast to Brose et al. (2006), we

Table 1 Parameters and
variables used in this study

Parameters are set to their
default values unless it is
explicitly stated otherwise. A
numerical value is only given
if it is constant in all
simulations. The unit of
biomass densities is 1/area
and not mass/area because
mass is made dimensionless
by normalizing it to basal
species body mass

Parameter Unit Default value Meaning

S Dimensionless Species richness

C Dimensionless 0.15 Directed connectance

Nres 1/area 700 Size of the resource pools

Ni 1/area Biomass density of species i

λi, λ Dimensionless 0.4 Assimilation efficiency

αi, α 1/time 0.05 Respiration rate

βi, β Area/time 0.4 Intraspecific competition

aij, ai Area/time 5 Encounter rate

hij, hi Time 0.3 Handling time

fij Dimensionless 1/ωi Foraging effort of predator i directed to prey j

ωi Dimensionless Number of prey of predator species i

Mi Dimensionless Body mass of species i relative to basal body mass

x Dimensionless log10 of predator–prey size ratio

 Author's personal copy 

49



200 Theor Ecol (2010) 3:195–208

 0.6

 0.7

 0.8

 0.9

 1

 20  30  40  50  60  70  80

R
o
b

u
s
tn

e
s
s

S

Fig. 2 Robustness vs number of species (S) with (solid line, x =

2) and without (dotted line) allometric scaling in the niche model.
All parameters are at their default values (Table 1)

did not observe that the implementation of allometric

scaling changes the slope of the robustness vs S curves.

Figure 3 presents robustness results for different

predator–prey body mass ratios in all topological mod-

els. Food web robustness is enhanced as long as preda-

tor size increases with the trophic level or with the niche

value (i.e., when x is positive). In the opposite case

(x < 0), a significant decrease of robustness is found,

in line with the results reported by Brose et al. (2006).

The small decrease in robustness for large values of x

is due to decreasing biomass densities of species on the

upper trophic levels. Not enough energy is transported

through the food webs to permit survival of all top
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Fig. 3 Robustness as function of the predator–prey body mass
ratio. The value of x (see Table 2) varied between −2 (predator
100 times smaller than prey) and 4 (predator 104 times larger than
prey). Results are shown for S = 50. The duration of simulation
runs with x > 2 was set to 106 time units. All parameters are at
their default values (Table 1)

predators. From now on, we carry out all simulations

where we consider allometric scaling with body mass

ratio x = 2 since, for this value, robustness is close to its

maximal value in all topological food web models, and

our results are robust to changes of x by ±1. Further-

more, empirical data suggest that this is a typical value

for body mass ratios of predator–prey pairs (Brose et al.

2006) (but note that, in empirical food webs, the log10 of

body mass ratios of individual predator–prey pairs can

be as large as 16 or as small as −6).

In systems with positive values of x, links from small

predators to large prey rarely persisted after popula-

tion dynamics because the prey became extinct. For

instance, in the random model, feeding links connecting

predators from the second trophic level to prey on

the third trophic level almost always resulted in the

extinction of the prey species. However, species on the

second trophic level that are eaten by species on the

first trophic level have a higher chance of survival. This

can be understood as follows: The resources appear

in the denominator of every functional response of a

predator on the first trophic level. Due to their large

size, they drastically decrease the functional response

to prey other than the resources. Theoretical consider-

ations of the survivability of prey species that are much

larger than their predators are provided by Yodzis and

Innes (1992) and by Weitz and Levin (2006).

In the following, we focus on the reasons for the

stability increase due to allometric scaling. To this pur-

pose, we multiply Eq. 4 by M0.25
i and obtain

dNi

dt
· M0.25

i = λ
∑

j∈Ri

gij(N)Ni −
∑

k∈Ci

M0.25
i

M0.25
k

gki(N)Nk

−αNi−M0.25
i βN2

i . (5)

This notation, which is mathematically equivalent to

Eq. 4 (i.e., it gives rise to exactly the same dynamics)

leads to a new interpretation of the effects of allometric

scaling. Formally, Eq. 5 differs at three places from

Eq. 1:

1. The time increment dt is multiplied by a factor

M−0.25, which means that the dynamics of species

Table 2 Rules for assignment of body mass to species

Random, layered model Mi = 10x·(TLi−1).

Cascade model Mi = 104·x·(ni/S).

Niche & nested-hierarchy model Mi = 104·x·nvi

x defines the relationship between species properties and loga-
rithm of body mass, TLi is the trophic level, ni the species index
(Cohen and Newman 1985), and nvi the niche value of species
i. The factor 4 was inserted in order to make cascade, niche,
and nested-hierarchy models comparable to random and layered
models, which usually consist of max. four trophic levels
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with larger body mass is much slower than that of

basal species.

2. The factor M0.25
i /M0.25

k on the right-hand side re-

duces the biomass outflow from prey to predator

when the predator has a larger body mass than the

prey.

3. The competition parameter β is increased by a

factor M0.25
i for non-basal species.

In order to identify the cause for the increasing

stability, we included the mass dependence only at one

of the three places and investigated each of the three

possible cases separately. We compared the simulation

results for each of the three cases with those obtained

from Eq. 1, i.e., without mass effects, and with those

obtained with Eq. 4, i.e., with allometric scaling. In

order to make the notation shorter, we denote the case

without mass effects as the case x = 0, and the case with

allometric scaling as the case x = 2, since we always

chose this value of the exponent x.

In the following three subsections, we present the

simulation results for the three cases.

Different time scales for species with different

body masses

First, we investigated systems with the dynamical

equation

dNi

dt
· M0.25

i = λ
∑

j∈Ri

gij(N)Ni −
∑

k∈Ci

gki(N)Nk

−αNi−βN2
i . (6)

Species with a larger body mass have slower dynam-

ics. We expected this to have a positive impact on

robustness as the slower dynamics of top species gives

species on the lower trophic levels more time to adjust

to predator biomasses, thus reducing oscillations.

However, we found that this intuition appears to be

wrong. The allometric slowing down of the dynamics

of larger species does not increase the robustness of

food webs. Moreover, for most models, it even has

a small negative impact on the food web robustness

(Fig. 6). For this reason, we do not discuss the diversity–

robustness relations for this case in detail.

Mass-dependent intraspecific competition

Next, we investigated systems with the dynamical

equation

dNi

dt
= λ

∑

j∈Ri

gij(N)Ni −
∑

k∈Ci

gki(N)Nk

−αNi − M0.25
i · βN2

i . (7)

One can expect that the mass-dependent factor in the

last term increases robustness, as it reduces preda-

tor biomass densities and, thus, increases the survival

chances of prey. As a preliminary investigation, we

used Eq. 1 to study how the robustness depends on

β when all species have the same value of β (Fig. 4).

Higher intraspecific competition enhances stability by

controlling the biomass densities of the species, but at

high values of β, it may reduce the biomasses of species

too strongly to permit survival of species on the upper

trophic levels (cf. results for the layered model).
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Fig. 4 Robustness and average biomass density per species for all
network types as a function of the competition strength β. Higher
intraspecific competition enhances robustness by reducing the

biomass density per species. All other parameters are at their
default values (Table 1); S = 50
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Fig. 5 Effect of mass-dependent competition coefficients (black

long-dashed lines) and biomass outflow terms (black short-dashed

lines) on robustness for five different network topologies, com-

pared to the case x = 0 (grey dotted lines) and to the case x =

2 (grey solid lines). All parameters are at their default values
(Table 1)

Let us see next how robustness is changed when

β is multiplied by M0.25
i . The simulation results for

the different foodweb topologies are shown in Fig. 5

and compared to the cases x = 0 and x = 2. For all

topologies, robustness was increased compared to the

case x = 0. The extent of the increase depends on the

foodweb architecture. It is largest in the random and

nested hierarchy models, where the robustness even

exceeds that for the case x = 2 when S is high. For the

other models, robustness is close to that for x = 2.
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Mass-dependent biomass outflow

Last, we investigated systems with the dynamical

equation

dNi

dt
= λ

∑

j∈Ri

gij(N)Ni −
∑

k∈Ci

M0.25
i

M0.25
k

gki(N)Nk

−αNi − βN2
i . (8)

Biomass outflow from prey to predator is smaller when

the body-mass ratio between predator and prey is

larger. The robustness data are also shown in Fig. 5,

which allows to compare them with the cases x = 2

and x = 0. While the niche, nested-hierarchy, cascade,

and layered models again show a large increase in

robustness compared to the case x = 0, robustness in

the random model is not increased and even appears to

decrease slightly for small S.

The simulation results for the three cases that in-

clude the mass dependence only at one place in the

equations, as well as for the cases x = 0 and x = 2 are

summarized in Fig. 6. For this bar chart, the robustness

results have been averaged over all foodweb sizes S.

Discussion

Increasing intraspecific competition, and a reduced bio-

mass outflow to predators that are larger than their prey

are both found to increase the robustness of food webs.

However, these mechanisms do not enhance stability to

the same extent; the magnitude of their impact depends

on the topology of the respective food web. For exam-

ple, in randomly connected webs, the modification of

the biomass outflow has almost no effect. In order to

understand the simulation results, we therefore focus

our discussion on the random and layered topologies.

These two rather artificial food web models do not

reflect empirical food web patterns very well, but they

represent extreme topologies whose characteristics can

be found in empirical food webs in alleviated form. The

layered model has the strictest feeding hierarchy. There

are no feeding loops, omnivory is excluded (that means

all predator-prey pairs have body mass ratio x), and

the number of trophic levels (at initialization) is fixed

to four. The random topology, on the other hand, does

not implement any hierarchy, but it allows for various

types of loops and omnivorous links (i.e., feeding links

that connect predator–prey pairs with body mass ra-

tios that deviate strongly from the ideal ratio x). We

hypothesize that the extent to which these topological

characteristics are found in food webs determines the

mechanism by which allometric scaling enhances the

robustness. The other models are between these two

extreme topologies; therefore, the effects we discuss

are also intermediate to those observed in random

and layered food webs. We restrict our discussion to

cases 2 and 3 (mass-dependent competition and mass-

dependent energy outflow), since the mass-dependent

time scale has almost no positive effect on robustness.

Let us first discuss the results obtained for the ran-

dom topology. Remarkably, robustness is not affected

at all by changing the biomass outflow term. This can

be understood by the fact that predators are often

not larger than their prey. There is a high number of

links connecting small predators to large prey, and in

contrast to the feeding loops that occur in the niche and

nested hierarchy models, the body mass ratios in these

links can be rather extreme in the random model (in

the case x = 2, a predator two levels under its prey is

104 times smaller than its prey). The modification of the

biomass outflow term is beneficial only if predators are

larger than their prey, and it is highly disadvantageous

in the opposite case. Positive and negative effects on

stability cancel each other in this case.

In order to understand the simulation results in more

detail, we first show the average biomass density per

species on each trophic level for the four cases under

consideration (x = 0, x = 2, body-mass-dependent en-

ergy outflow, body-mass-dependent competition) after

computing the population dynamics; see Fig. 7.

The average biomass density per species on all four

trophic levels is significantly larger for the simulations

with mass-dependent biomass outflow, compared to the

case x = 0, indicating that the majority of surviving

links connect large predators to small prey. As we have

mentioned before, links from small predators to large
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Fig. 7 Average biomass density per species on the four trophic
levels of the random model. We show results for the cases x = 2

(grey solid lines), x = 0 (grey dotted lines), with mass-dependent

competition coefficients (black long-dashed lines), and with mass-
dependent biomass outflow (black short-dashed lines). All para-
meters are at their default values (Table 1)

prey tend to vanish because the predators drive their

prey to extinction. For the case x = 2, the biomass

density per species on the first trophic level is consid-

erably higher than for the other cases. Apparently, the

combined effect of mass-dependent competition and

reduced energy outflow strongly decreases the preda-

tion pressure on basal species, which, therefore have an

increased biomass density.

Now, we turn to the robustness results obtained

for the layered model. In order to understand why

the mass-dependent biomass outflow has such a strong

effect on robustness in this food web topology, we con-

sider again the distribution of average biomass density

per species on the four trophic levels, shown in Fig. 8.

In contrast to food webs with random topology, lay-

ered foodwebs clearly benefit from the mass-dependent

outflow term because of the absence of feeding loops.

Compared to simulations with x = 0, basal species

have a higher average biomass density because of the

decreased predation pressure. Species on the fourth

trophic level do not have predators; therefore, their

dynamic equations are not changed. Their biomass den-

sity increases because their prey becomes more abun-

dant. Species on the intermediate levels benefit from

both effects: Their prey becomes more abundant, and

their biomass is less reduced by predation. This explains

the high values of average biomass density per species

and the high robustness for the case of mass-dependent

energy outflow in the layered model.

When the competition coefficient is made mass-

dependent, this has a negative impact on the average

biomass density per species on all trophic levels but

the first (compared to the case x = 0). The biomass

density of the basal species increases because, on the

first level, βi does not change (because Mi = 1 for basal

species), but predator abundance and, therefore, pre-

dation pressure is reduced. Note that, for x = 2, βi M
0.25
i

is ten times larger for species on the third level than for

basal species. For even higher values of the competition

strength or of the body mass ratio x, competition on the
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Fig. 8 Average biomass density per species on the four trophic
levels of the layered model. We show results for the cases x = 2

(grey solid lines), x = 0 (grey dotted lines), with mass-dependent

competition coefficients (black long-dashed lines), and with mass-
dependent biomass outflow (black short-dashed lines). All para-
meters are at their default values (Table 1)

upper two trophic levels would decrease prey biomass

density to values too low to permit species survival. The

mass-dependent competition coefficient would thereby

decrease the positive impact of allometric scaling on

robustness (see lines for the layered model in Figs. 3

and 4).

In the case x = 2, the effects of increased compe-

tition and decreased interaction strength act together.

On the lower two levels, this leads to an increase in

biomass density compared to simulations without x =

0. Here, the reduced biomass outflow to predators is the

dominant effect. However, on the third and the fourth

levels, the increased competition coefficient becomes

very prominent. Note the very low biomass density of

the top predators, which is close to that in the case of

modified competition coefficient.

The main conclusions from these considerations are,

thus, the following: when loops are absent, a mass-

dependent outflow term has a positive impact on the

biomass densities of all species apart from basal species.

A body-mass-dependent competition coefficient, on

the other hand, reduces their biomass density. In the

niche and nested hierarchy models, loops can occur, but

in contrast to the random model, the unfavorable body

mass ratios in these links tend to be moderate. Mass-

dependent biomass outflow therefore also increases

robustness in these models (Fig. 5).

Finally, let us briefly assess the possible impact of

food web connectance on our robustness results. As we

wrote in the “Introduction,” we initialized food webs

with average connectance C = 0.15. We confirmed that

the average value of final connectance, i.e., after com-

putation of the population dynamics, was still close to

this value. However, the realized value of C in indi-

vidual simulation runs could differ significantly from

this average, especially in the niche model. It is well

established that different levels of network complex-

ity (measured by C) influence the stability of food

webs (Kartascheff et al. 2009) and could, therefore, be

responsible for part of the differences in robustness
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we observed. We tested for this and found changes

in robustness caused by different values of realized

connectance to be small compared to the differences

caused by allometric scaling.

Conclusion

We have identified two main mechanisms by which

allometric scaling of metabolic rates enhances the ro-

bustness of food webs. (1) Allometric scaling increases

intraspecific competition relative to metabolic rates for

species with higher body mass. (2) Allometric scaling

leads to a reduced biomass outflow from prey to preda-

tor when the predator is larger than the prey. The

second effect is less pronounced when there are more

feeding loops in the food web, and a mass-dependent

outflow does, therefore, not enhance the robustness

of food webs with a random topology. The first effect

becomes less beneficial when the biomass density of
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Fig. 9 Increase in robustness in the case x = 2 compared to the case x = 0 for varying α and β. All other parameters are at their default
values (Table 1); S = 20
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top predators is reduced to the extent that they become

extinct, as it was observed in models with the layered

topology for large values of x or β.

The more realistic cascade, niche, and nested-

hierarchy food web models respond strongly to both

mechanisms. While they allow for omnivory and, ex-

cept for the cascade model, also for feeding loops,

there is still a more or less strict feeding hierarchy, and

the reduced predator–prey interaction strength has a

positive effect on robustness. This is consistent with the

results by Brose et al. (2006), Otto et al. (2007), and

Rall et al. (2008). These results display a robustness

increase of the same order of magnitude as observed by

us. In contrast to our work, their model does not include

intraspecific competition (except for Rall et al. 2008).

However, they have not investigated the two topologies

where this difference becomes most visible.

We conclude by discussing the limits of validity of

our findings. Clearly, allometric scaling will not en-

hance robustness for all possible choices of parameters.

The values of the respiration rate α and the competition

strength β must be such that species on higher trophic

levels still have a sufficiently large biomass density to

be able to persist. The constraints on α and β differ

among the topological food web models (Fig. 9). For

example, in the niche model, the increase in robustness

caused by allometric scaling seems to be nearly inde-

pendent of α in the tested parameter range, while in the

layered model, allometric scaling only increases robust-

ness when β � 1.7 − 2.8α. When this condition is not

satisfied, the effect of allometric scaling on robustness

is neutral or might even become negative.

The size of external resources also has an effect

on the robustness increase. If resource biomass was

reduced by two orders of magnitude compared to the

value chosen by us so that food uptake by the basal

species is no longer close to its metabolically deter-

mined maximal value, allometric scaling would not be

able to increase stability, and it would even decrease

stability in some cases, because biomass flow to the

upper trophic levels would be too small.

The chosen value of the extinction threshold can

affect food web robustness when the average biomass

density of the persisting species becomes lower than

the extinction threshold. At constant biomass density,

large-bodied species have a smaller population density

than small species. We nevertheless assumed a constant

extinction threshold in our simulations because larger

individuals are more mobile than small organisms and

can therefore stand smaller population densities when

searching for a mating partner before the species be-

comes extinct. This need not be exact; therefore, we

also performed simulations with the extinction thresh-

old increasing linearly with the species body mass. We

found that our simulation results are valid as long as the

maximal extinction threshold is not larger than 10−6.
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Abstract
Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our

understanding how natural ecosystems maintain their stability and diversity. The interplay of these two

processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem

stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent

species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size

structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive

foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a

cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-

structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in

complex food webs, thus building a novel bridge between these two important stabilising mechanisms.
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Body mass, networks, optimal foraging, population dynamics, predator–prey, simulation.
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INTRODUCTION

Despite several decades of research, the stability of complex food

webs is not yet completely understood (McCann 2000; Montoya

et al. 2006). May (1972) demonstrated that randomly connected

food webs with random interaction strengths are unstable with

respect to perturbations of an equilibrium point if the number of

species, the number of links or the interaction strengths are too

high. This contradicted the perception of field ecologists (MacAr-

thur 1955) and thus raised the so-called complexity stability debate,

since empirical food webs can be very complex and yet seem to be

stable.

May’s assumptions of random topologies and random interaction

strengths do not lead to ecologically plausible models, however, even

with more empirically motivated topologies (Cohen & Newman 1985;

Williams & Martinez 2000; Cattin et al. 2004; Stouffer et al. 2005),

empirically consistent interaction strength distributions (Yodzis 1981;

de Ruiter et al. 1995; Neutel et al. 2002, 2007) and other notions of

stability (e.g. Williams & Martinez 2004; Brose et al. 2006b;

Kartascheff et al. 2010), it was observed that the stability of model

food webs typically decreases with increasing connectance of the

networks or with the number of species. It increases only when

resources are abundant and the functional response satisfies certain

requirements (Williams & Martinez 2004; Rall et al. 2008; Kartascheff

et al. 2009). Two effects that were reported to enhance the stability of

food webs are those of body-size structure and adaptive foraging

(Kondoh 2003; Brose et al. 2006b; Uchida & Drossel 2007; Rall et al.

2008; Kartascheff et al. 2009). The interplay of these two mechanisms

in determining food-web stability is the focus of the present paper.

Ecological communities generally possess a clear body-size struc-

ture with predators being typically 0.5–4 orders of magnitude larger in

body mass than their prey (Brose et al. 2006a,b; Riede et al. 2011).

Many species traits vary across different species with their average

body size as a power law with exponent different from one, which

creates a specific pattern of interaction strengths in food webs. This

mechanism is often paraphrased as allometric scaling of metabolic

rates. Building on these allometric relationships, Brose et al. (2006b)

and Rall et al. (2008) showed that model food webs exhibit positive

relationships between species number or connectance and stability if

they possess an empirically consistent body-size structure of predators

being larger than their prey. A mechanistic explanation for the

stabilising effect of allometric scaling was provided by Kartascheff

et al. (2010).

Adaptive foraging, which is the ability of species to adapt their

foraging efforts to changing prey abundances, is a widely used concept

in ecological modelling (Uchida et al. 2007; Abrams 2010; Loeuille

2010; Valdovinos et al. 2010) which can also have a positive effect on

food-web stability (Kondoh 2003, 2006; Uchida & Drossel 2007;

Berec et al. 2010). However, few studies include both the effects of

allometric scaling and adaptive processes, notable examples being

Loeuille & Loreau (2005) and Rossberg et al. (2008) where adaptation

on evolutionary time scales in size-structured communities is studied.

In this work, the combined influence of body-size structure and

adaptive foraging on the stability of model food webs is investigated.

Our results show that allometry of metabolic rates stabilises food

webs only if predators are larger than their prey, and that adaptive

foraging can stabilise food webs if adaptation occurs sufficiently fast.

On top of that, by the analysis of randomly connected food webs,

we demonstrate for the first time that an interactive effect between

allometric scaling and adaptive foraging exists: adaptive foraging

dynamically emphasises those predator–prey body-size structures that

favour ecosystem stability. This leads to even higher food-web

stability if both mechanisms act together.

MATERIALS AND METHODS

The model food webs consist of S species, Z of which are basal species

that only feed on a nutrient pool with constant size (called �resource�
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in the following), while S)Z species feed on other species but not on

the resource. The trophic level of a species denotes its minimal distance

to the resource measured in predator–prey links. The connectance C is

the average number of links divided by S 2.

We used two different stochastic models with input parameters S,

Z and C to create the network structure of the food webs. In the

random model, the Z basal species are assigned only a link to the

resource, all other links are realised with the same probability p ¼
CS2/S(S)Z ). In the niche model (Williams & Martinez 2000) each

species is assigned a niche value ni 2 [0,1], which together form an

ordered set. Trophic links are set such that the prey species of a

predator have consecutive niche values that are in general smaller

than the predator’s niche value. In this model, species without prey

are basal species, which are assigned a link to the resource. Only

webs with Z basal species are accepted. Cannibalistic links are never

profitable for adaptive foragers in both models, we therefore do

not allow such links for non-adaptive species either.

The dynamical model is based on the bioenergetics approach of

Yodzis & Innes (1992). The time evolution of the biomass densities Bi

of the S species is described by S coupled ordinary differential

equations (Brose et al. 2006b; Kartascheff et al. 2010), a detailed

derivation of which is given in the Appendix S1:

_Bi ¼k
X
j2Ri

m�0:25
i

afij Bj

1þ
P

l2Ri
afil hBl

Bi

�
X
k2Ci

m�0:25
k

afki Bi

1þ
P

n2Rk
afknhBn

Bk � am�0:25
i Bi � bm�0:25

i B2
i :

ð1Þ
Ri denotes the set of prey species, Ci the set of predator species and mi

the mean body mass of species i. The expression in the first sum

describes the per unit biomass consumption rate of a predator indi-

vidual, which follows a Holling Type II functional response with prey

biomass density Bj, multiplied by the total biomass density of the

predator population. The parameters a and h are the mass-corrected

attack rate and handling time, respectively. fij denotes a foraging effort

describing the percentage of time species i spends on foraging for

species j, which requires
P

j2R fij ¼ 1 (Kondoh 2003, 2006). k is the

assimilation efficiency of consumers, i.e. the capability of converting

consumed biomass into own biomass. The parameters a and b
describe mass-corrected respiration rate and intraspecific competition,

respectively. Intraspecific competition provides a self damping effect

stabilising population dynamics and thereby allowing for more coex-

isting species. For basal species, the first term in eqn 1 gives a constant

growth rate, leading together with the last two terms to logistic

growth.

Respiration rate and maximum ingestion rate of individuals scale

allometrically with body mass, the exponent of the corresponding

power law relations is often recorded to be around 3/4 (Peters 1983;

Brown et al. 2004). Consequently, mass-specific consumption rate (the

first term in eqn 1) and mass-specific respiration rate (the third term in

eqn 1) scale with m�0:25
i . However, the value of the exponent is

controversial: a scaling exponent of 2/3 would correspond to a

geometrical mechanism (White & Seymour 2003), and recently it was

suggested that both exponents may be correct in certain regimes

(Kolokotrones et al. 2010; Ehnes et al. 2011). For simplicity, we

confine ourselves to the exponent 3/4, while lower exponents lead to

qualitatively consistent results. Following the �Metabolic Theory of

Ecology� (West et al. 1997; Brown et al. 2004), equilibrium biomass

densities increase with a 1/4-power law with body mass such that the

last term of eqn 1 also scales with m�0:25
i .

In our simulations, the body-size structure of food webs is created

by assigning the species a body mass mi ¼ 10xni, where ni is a random

number between 0 and 1 in the random model and is identical to the

niche value in the niche model. Basal species are exempted from this

rule; to guarantee comparable energy input into the webs for both

topologies, we impose mbasal ¼ 1. The parameter x fixes the

maximum (minimum for x < 0) possible predator–prey body-mass

ratio in a web, which is 10x. The body-mass ratio of a blue whale to

krill, for example, is c. 108 and could only appear in food webs with

x ‡ 8.

The network model, niche or random, thereby defines whether there

is an initial size structure in the network with predators being either

consistently larger or smaller than their prey or not. The parameter x

determines how strong this body-size structure of the food webs is. In

the niche model, x > 0 means that predators are typically larger than

their prey, and for x < 0, they are mostly smaller than their prey. In

random networks, this holds only for the trophic relations to the basal

species. All other predator–prey pairs have random body-mass ratios,

therefore random food webs have (apart from the basal species) no

body-size structure. To shorten notation, we refer to x as the allometry

coefficient in the following.

We chose parameter values that are motivated empirically (Yodzis

& Innes 1992; Brose et al. 2006b; Williams et al. 2007; Berec et al.

2010; Kartascheff et al. 2010) and set k ¼ 0.65, a ¼ 6, h ¼ 0.35 and

a ¼ 0.3 for all simulations. The biomass density of the resource,

Bres ¼ 500, and the strength of the intraspecific competition, b ¼ 0.5,

were fixed such that the maximum biomass density of a basal species

remains much smaller than the biomass density of the resource. With

our choice of parameters, we have Bmax
basal � 3. All parameters, their

physical dimensions, and, where applicable, allometric scaling rela-

tionships are summarised in Table A1 in the Appendix S1.

The dynamics of the foraging efforts is described by replicator

equations, which is a commonly used form (Kondoh 2003, 2006;

Garcia-Domingo & Saldana 2007; Uchida et al. 2007; Uchida & Drossel

2007). The differential equation for foraging effort fij has the form

_fij ¼ jfij
@Gi

@fij
�
X
k2Ri

fik
@Gi

@fik

 !
; ð2Þ

where Gi is the net growth rate of population i: _Bi ¼ Gi Bi . To avoid

that links that are initially present disappear completely, efforts that

fall below a value of 10)4 are set to this value such that they can

increase again later (Uchida & Drossel 2007). It was tested that our

results do not qualitatively depend on this assumption (see Appen-

dix S2). The parameter j defines the time scale on which foraging

efforts can be adapted to changing prey biomass densities. In the

following, we refer to j as the adaptation rate.

We used two measures of stability that are widespread in the food-

web literature (Brose et al. 2003; Kondoh 2003; Brose et al. 2006b;

Kondoh 2006; Uchida & Drossel 2007). The robustness R is the

percentage of species that survive population dynamics, averaged over

many realisations of food webs constructed using the same parameter

values. The second stability measure is the persistence P of food webs:

For an ensemble of food webs, it describes the fraction of webs in

which all species survived population dynamics.

For our simulations, we set S ¼ 30, Z ¼ 5 and C ¼ 0.15, and we

averaged over 100 food-web realisations for each combination of x
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and j. Initial values for biomass densities are chosen randomly from

the interval [0,1]. Foraging efforts are initialised with fij
0 ¼ 1=pðiÞ,

where p(i) is the number of prey species of species i. A species is

considered to be extinct if its biomass density falls below the

extinction threshold Bext ¼ 10)6, and its density is then set to zero

permanently. The time evolution of the dynamics is run until a fixed

time tend at which the number of surviving species and the links

between them are evaluated. Since larger body-mass ratios lead to

slower dynamics for larger species (cf. eqn A4 in the Appendix S1),

we set tend ¼ 20 000 for allometry coefficients x £ 2 and tend ¼
10 000Æx for larger values of the coefficient. We checked exemplarily

that this time is sufficiently long such that it is unlikely that further

extinctions occur. The computer simulations were performed with C-

programs, using the Runge–Kutta–Fehlberg algorithm provided by

the gnu scientific library, with an absolute local error tolerance eabs ¼
10)6 and a relative local error tolerance erel ¼ 10)8.

RESULTS

We first present results for the stability of model food webs with

random and niche topologies and then analyse the structure of the

persistent networks.

Stability of the food webs

We evaluated the robustness and persistence of the two topological

models for different values of the allometry coefficient x, where

)12 £ x £16 with Dx ¼ 0.8, and different adaptation rates j of the

foraging efforts. The adaptation rate was varied logarithmically

between 10)3 and 102 with a factor of 10, and an additional set of

simulation runs for j ¼ 0, i.e. without adaptation, was performed

(Fig. 1). The main results here are (1) that a larger adaptation rate j
(horizontal direction in the plots in Fig. 1) generally has a stabilising

effect on both models and (2) that predator–prey body-mass ratios

larger than 1 (allometry coefficient x > 0) always stabilise niche model

food webs but not random models. Notably, in random model food

webs a robustness close to 1 is only observed if the allometry

coeffiecient is positive and if the adaptation of foraging efforts occurs

at least on the time scale of the population dynamics (i.e. for

adaptation rates j ‡ 1). For negative values of the allometry

coefficient, only around 30% of the species survive, and the

persistence falls to zero in both models.

An interesting feature of the robustness data shown in Fig. 1 is

the local minimum of stability for allometry coefficients x [ 0 and

intermediate adaptation rates (j » 0.1). This can be understood by

analysing the robustness for each trophic level separately (Fig. 2).

In both models and for all combinations of allometry coefficient

and adaptation rate, species on lower trophic levels have a

higher probability to survive than species on higher trophic levels,

which means that the average trophic level of all surviving species

in the food web closely follows the robustness patterns shown in

Fig. 1.

Species on trophic level 3 or higher hardly ever survive if body

masses decrease with niche value (i.e. for negative allometry

coefficients) irrespective of the value of the adaptation rate j, while

for species on trophic level 2, survival depends on the value of the

Figure 1 Robustness (left) and persistence (right) for niche (top) and random model (bottom). For each model and each combination of the allometry coefficient x (slope of

the log 10 increase of body mass with niche value) and adaptation rate j (speed of foraging adaptation), 100 food webs were evaluated. The abscissae are scaled logarithmically

except for the leftmost columns which correspond to j ¼ 0 (no adaptation).
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adaptation rate: if j [ 1, species on trophic level 2 benefit from small

negative allometry coefficients, while for very large and very small

adaptation rates, their survivability decreases monotonously with the

coefficient x. The robustness of basal species is, irrespective of the

adaptation rate j, close to 1 if the absolute value of the allometry

coefficient is sufficiently large (i.e. if body masses vary over a wide

range).

In the niche model, we find that for large allometry coefficients x

and small adaptation rates j the robustness of the networks is close to

1 while the persistence is close to zero. This is due to the small

fraction of species on the fourth or a higher trophic level, which only

survive if they can adapt sufficiently fast to their most profitable prey

(see Appendix S2).

Structure of the food webs after population dynamics

In order to further investigate the interplay of allometric scaling and

adaptive foraging with respect to their positive influence on food-web

stability, we analysed the structure of these food webs, i.e. the

properties of the persistent species and of the remaining links after

population dynamics. We did this only for positive allometry

coefficients, because the stability results shown in Figs 1 and 2

suggest that for negative allometry coefficients the persistent parts of

the food webs have a trivial network structure with mainly basal

species and their direct predators surviving.

We consider the average trophic level of prey species, compared to

the trophic level of their predators:

hTLpreyi :¼ 1

S 0 � Z 0

XS 0

i¼1

X
j2Ri

fijðTLðjÞ � TLðiÞÞ: ð3Þ

Here, TL(i ) is the trophic level of species i, S¢ is the number of

surviving species and Z ¢ is the number of surviving basal species.

The links are weighted with the values of the respective foraging

efforts at tend to account for the dynamically realised network

structure.

For food webs with a random topology, we also investigated the

average predator–prey body-mass ratio, as in contrast to the niche

model, in random models trophic level and body mass of a species

are initially not correlated, except for basal species which are either

the smallest (x > 0) or the largest (x < 0) species in the network.

Instead of directly evaluating the body-mass ratios, we evaluated the

niche values of the prey species compared to those of their

predators. They are proportional to the log 10 of the body-mass

ratio, but do not explicitly contain the allometry coefficient x

(see Appendix S2).

hnpreyi :¼ 1

S 0 � Z 0

XS 0

i¼1

X
j2Ri

fijðnj � niÞ: ð4Þ

For allometry coefficients x > 0 this is negative if predators prefer

prey that is smaller than themselves. In Fig. 3 we show the final

average prey trophic level (relative to that of the respective predators)

for the niche (a) and the random model (b) as well as the final average

prey niche values for the random model (c). For all values of the

allometry coefficient x and the adaptation rate j these final values are

smaller than the corresponding initial values that are evaluated with

the initial foraging efforts fij. This indicates that predators tend to

focus on prey species on lower trophic levels and with smaller body

masses.

If in the calculation of the average trophic level or the body mass

of the prey species the links are not weighted with the

corresponding foraging effort fij, additional insight on the surviv-

ability of predator–prey pairs can be gained. These final unweighted

values are also smaller than the corresponding initial unweighted

values for all allometry coefficients and adaptation rates showing

that predator–prey pairs have a higher chance to persist if the

predator is larger and on a higher trophic level than the prey (results

not shown).

If the food webs are stable, i.e. for allometry coefficients x ‡ 0 and

adaptation rates j ‡ 1, the final network structures resemble empirical

food webs fairly well (cf. Table 1; Dunne et al. 2004). Not surprisingly,

the niche model performs better than the random model (Williams &

Martinez 2000). The average predator–prey body-mass ratio varies

consistently with the allometry coefficient x. In natural food webs the

most typical mass ratios are between 100.5 and 104 (Brose et al. 2006b;

Riede et al. 2011), which corresponds roughly to allometry coefficients

between x ¼ 2 and x ¼ 10.

DISCUSSION

In the following, we argue that body-size structure and foraging

adaptation provide a mechanism for dynamical ordering and self-

Figure 2 The percentage of surviving species (a) and the total biomass (b) on different trophic levels for the niche model with adaptation rate j ¼ 1 as an example of the non-

monotonous behaviour of the robustness of species on the first and second trophic level for intermediate adaptation rates. These graphs also illustrate how allometry stabilises

food webs: Increasing predator–prey body-mass ratios limit the per unit biomass flow from prey to predators and thus allows all species to accumulate more biomass and

thereby enhance their survivability. For each value of the allometry coefficient x, the data points are averaged over 300 realisations.
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stabilisation of food webs. If foraging adaptation is fast enough, even

in networks with initially random structure stabilising body-size

structures with large predators and small prey emerge dynamically. We

start with a separate analysis of the influence of body-size structure

and adaptive foraging on food webs, before we discuss the interactive

effect.

Effects of body-size structure

Let us first consider network structures that cannot change via

adaptive foraging (adaptation rate j ¼ 0) and focus on the case in

which body masses increase with niche value (allometry coefficient

x > 0). In the random model, predators are initially equally often

larger and smaller than their prey, since body masses are assigned

randomly, while in the niche model, in most predator–prey

relationships the predator is larger than the prey. Our finding that

larger average body-mass ratios (larger values of the allometry

coefficient x) stabilise niche model food webs (Fig. 1a,b, in vertical

direction) thus confirms the well-known result that the allometry of

metabolic rates stabilises model food webs with a strong body-size

structure where species on higher trophic levels have larger body

masses than species on lower levels (Brose et al. 2006b; Kartascheff

et al. 2010). If on the other hand there is no clear body-mass structure

in the food webs, like in the random model, and there are many links

connecting smaller predators to larger prey, we find no stabilisation of

the networks for large allometry coefficients x (Fig. 1c,d). Similarly, if

the allometry coefficient is negative, the persistence falls to zero in all

models (Fig. 1b,d), and robustness decreases in general, too, which

shows that small predators foraging for large prey are not favourable

for stability. These theoretical results are in agreement with the fact

that in empirical (stable) food webs predators are mostly larger than

their prey (Woodward et al. 2005; Brose et al. 2006a,b).

The stabilisation of food webs with strong body-mass structure and

positive allometry coefficient x was mechanistically explained by

Kartascheff et al. (2010). When multiplying eqn 1 with m0:25
i , one can

see that the outflow of biomass from species i to a predator species k

scales with (mi/mk)0.25 (cf. eqn A4 in the Appendix S1), implying that

this outflow is smaller and that the prey survives with higher

probability when mi/mk is smaller. Here, we have shown that this

explanation also holds in networks with adaptive link structure.

The robustness results for the random model are not symmetric

with respect to the sign of the allometry coefficient x because the

body mass of basal species is always mbasal ¼ 1. For x > 0 this

makes them the smallest species in the food webs and for x < 0

the largest. This has either a positive (x > 0) or a negative (x < 0)

effect on the stability of the networks via the mechanism described

above. The niche model allows a few exceptions from the strict

body-mass structure, but these do not have a qualitative effect on

the results as comparative simulations with the generalised cascade

model (Stouffer et al. 2005) that excludes these exceptions have

confirmed.

We therefore conclude that allometric scaling has a stabilising effect

on food webs only if species on higher trophic levels are larger than

species on lower trophic levels. Our results are in agreement with

prior studies concerning the body-size structure of food webs (Brose

et al. 2006b; Kartascheff et al. 2010) that report quantitatively similar

increases in the robustness of non-random networks, and with studies

analysing the evolutionary emergence of size-structured communities

(Loeuille & Loreau 2005; Rossberg et al. 2008). Furthermore, the

Figure 3 Average prey trophic level relative to that of the predators after population

dynamics for the niche model (a) and the random model (b) and average prey niche

value relative to that of the predators after the population dynamics for the random

model (c). The initial values of average prey trophic level and average prey niche

value are independent of j and x. For the niche model, we have

hTLini
preyi ¼ �0:420, and for the random model, we have hTLini

preyi ¼ �0:241

and hnini
preyi ¼ �0:086. The final values shown are all smaller than the initial values,

which indicates that adaptive foragers focus on prey on lower trophic levels and

with smaller body mass (d).
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range of body-mass ratios for which stabilisation occurs in our

simulation fits well to observed ecosystem data (Brose et al. 2006b;

Riede et al. 2011). However, we only considered body masses via the

allometry of metabolic rates, although there is evidence that for

example attack rates exhibit hump-shaped dependencies on predator–

prey body-mass ratios (Wahlstroem et al. 2000; Brose et al. 2008;

Vucic-Pestic et al. 2010). The influences of such more complex and

more realistic assumptions on food-web stability would require further

investigations that are beyond the scope of this work.

Adaptive foraging

We found that adaptive foraging allows for more surviving species in

both niche and random model food webs if adaptation occurs

sufficiently fast (adaptation rate j > 1), in agreement with existing

results (Uchida & Drossel 2007; Guill & Drossel 2008): adaptive

species can focus on their most profitable prey and release

unprofitable prey with low biomass from predation. If the adaptation

is sufficiently fast, species that come close to the extinction threshold

are not preyed upon any more and have therefore a higher chance to

regain biomass and survive. In size-structured ecosystems, predators

will thus preferably focus on small prey species because they have

larger per unit biomass production rates.

If the adaptation rate is very small (j ¼ 10)3), the time scale of

foraging adaptation is by far slower than that of population dynamics.

Adaptation to changing prey abundances is therefore very inefficient

and can hardly stabilise webs compared to the situation of no

adaptation (j ¼ 0). For intermediate adaptation rates (j ¼ 10)2…1),

the effects of body-mass structure and adaptive foraging interact.

Adaptation is fast enough for predators to be able to focus on prey on

lower trophic levels, but if body masses are sufficiently different

within a network (allometry coefficient x Z 3), only niche model

food webs are stable and random food webs are not, because the

effects of body-mass structure dominate. When predator–prey body-

mass ratios are smaller, the energetic demands of predators relative to

the per unit biomass production rates of their prey increase which

leads to overexploitation of species on the lower two trophic levels

and at the same time to starvation of the predators. This leads to the

minimum of robustness around j ¼ 10)1 and x [ 0 (Fig. 2). The

robustness of the food webs increases again slightly at even lower

negative values of the allometry coefficient when the species on the

second trophic level are released from predation due to the extinction

of their predators. This top-down release process leads to stable

flat food webs consisting of only basal species and their direct

predators.

From these considerations follows that fast foraging adaptation of

predators always stabilises food webs. To our knowledge, however, it

is not known to which extent foraging adaptation occurs in nature as a

fast or slow process. Adaptation may occur through evolution or

through a change in behaviour (i.e. learning), and the relative time

scales of these processes are still discussed (Hairston et al. 2005). It is

possible that the adaptation rate j depends on the body mass and is

thus not independent of the allometry coefficient x. Adaptation rate

might be high for both the smallest and the largest species, but small

for intermediate species: small species can have a high evolutionary

potential for fast adaptation due to their larger populations sizes and

short generation times, while larger species might benefit from a fast

learning capability due to their larger brains (Kondoh 2010). The

effect of interspecific variation of adaptation rates is thus another

open question.

Food-web structure

Next, we discuss the resulting structure of stable food webs, i.e. those

with allometry coefficients ‡0. Structurally, we observed in both

models the trend that a predator–prey pair is more likely to persist if

the prey is on a lower trophic level and has a smaller body mass than

its predator. A low average trophic level of the prey corresponds to

the fact that it is favourable for a species to feed on prey close to the

external resource (�food chains are short�). This general result has to

be qualified if, other than we assumed in our dynamical model,

different prey species that are assimilated with low or high efficiency

like plants and animal prey, respectively, have to be considered. In this

case, omnivorous predators would adaptively focus on the resource

that yields the highest net energy gain (consumption rate times

assimilation efficiency).

Evaluating which prey are preferred dynamically, i.e. via the

adaptation of foraging efforts, shows a pronounced preference of

Table 1 Structural properties of stable model food webs with adaptation rate j ¼ 10. Evaluated are the average predator–prey body-mass ratio, the normalised standard

deviations of vulnerability and generality distributions, the fractions of basal, intermediate, and top species, the average trophic level, and the average number of links per

species for different values of the allometry coefficient x. For comparison, we also show minimum and maximum of empirically observed values reported by Brose et al.

(2006b; typical body-mass ratios), Dunne et al. (2004; average trophic levels), and Williams & Martinez (2000; all other quantities). Note that the definition of trophic level used

by Dunne et al. (2004) slightly differs from the one used in this study

x Æmpred/mpreyæ rnorm
V rnorm

G %B %I %T ÆTLæ ÆL/S æ

Niche 0 1.0 0.65 1.01 19.1 72.3 8.7 2.078 3.627

4 7.21Æ101 0.63 1.01 17.2 75.6 7.2 2.163 4.392

8 4.95Æ103 0.65 1.02 16.9 74.9 8.2 2.159 4.355

12 3.00Æ105 0.65 1.04 16.8 75.7 7.4 2.148 4.529

16 2.11Æ107 0.65 1.02 16.8 74.4 8.8 2.187 4.553

Random 0 1.0 0.44 0.62 16.8 82.3 0.9 2.178 4.237

4 4.44Æ101 0.44 0.63 16.7 82.2 1.1 2.168 4.188

8 2.12Æ103 0.44 0.62 16.8 82.2 0.9 2.172 4.149

12 1.22Æ105 0.45 0.62 17.0 81.9 1.1 2.146 4.165

16 5.94Æ106 0.46 0.63 17.3 81.3 1.4 2.128 4.046

Empirical Min 100.5 0.54 0.73 0.04 0.52 0 1.5 2.2

Max 104 1.41 1.42 0.32 0.92 0.32 3.2 10.8
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predators towards smaller prey species on lower trophic levels in both

random and niche model food webs (Fig. 3). This effect is larger in

the random model than in the niche model, since in the niche model

most predators are in the initial networks already larger than their

prey. This finding means that predators do not exploit all of their

potential prey species equally, but focus on prey species on lower

trophic levels and with smaller body masses. This is in agreement with

the result that species in stable food webs should possess few strong

and several weak links if the food web is to be stable (McCann et al.

1998; Kondoh 2006; Scotti et al. 2009).

More precisely, our results are coherent with the finding reported in

Gross et al. (2009) that the stability of niche model food webs is

correlated with the average difference of the niche values of predators

and prey, and that weak links may promote stability in this model only

if these links correspond to predator–prey pairs with a large difference

in niche values. However, for a randomly connected web no such

connection between body masses and stability was established yet.

Thus, our results show that an initially randomly connected web

without body-size structure evolves towards an ordered web with

clear, stabilising body-size structure during population dynamics via

extinctions of unfavourably connected species and via dynamical

focusing of predators on profitable prey species.

CONCLUSIONS

We conclude that body-size structure and adaptive foraging can both

independently stabilise food webs if predator–prey body-mass ratios

are in a range that is also found in real ecosystems (Brose et al. 2006b)

and if adaptation occurs on a time scale faster than population

dynamics. When both mechanisms are accounted for in the model, the

two mechanisms together lead to even more stable food webs

showing that the stabilising influences of both effects interact

positively (Fig. 4).

Most importantly, our results show that even networks with random

linkage patterns and random interaction strengths can be dynamically

stabilised: if a food web initially does not have a body-size structure,

adaptive foraging provides a dynamical mechanism that emphasises

links with favourable connection strengths (i.e. those that are

associated with predator–prey mass ratios larger than 1) and weaken

unfavourable links. By this, stable network topologies with strong,

empirically consistent body-size structure occur (Fig. 3d). This is one

further reason for why May’s results (May 1972), which built on

random networks, may not apply to real ecosystems in which non-

random patterns emerge dynamically. In conclusion, the work

presented here demonstrates that the combination of body-size

structure and adaptive foraging provides a synergetic mechanism that

leads dynamically to the emergence of stable food webs.
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a b s t r a c t

We investigate the relation between complexity and stability in model food webs by evaluating the

local stability of fixed points of the population dynamics using the recently developed method of

generalized modeling. We first determine general conditions that lead to positive complexity–stability

relations. These include (1) high resource abundance and (2) strong density-dependent mortality

effects that limit consumer populations. The parameters that constitute a generalized model have clear

biological meanings. In this work, emphasis is placed on using realistic values for these generalized

parameters. They are derived from conventional ordinary differential equations which are commonly

used to describe population dynamics and for which empirical parameter estimates exist. We find that

the empirically supported generalized parameters fall in regions of the parameter space that allow for a

positive relation between food-web complexity and stability.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Considering the pace of global biodiversity loss and its impact
on ecosystem services (Dobson et al., 2006), understanding the
mechanisms that stabilize ecological communities is of critical
importance. However, this is often hampered by the high com-
plexity of the considered systems. Early theoretical studies have
shown that complexity (in terms of species diversity or connec-
tance of the interaction networks) does not increase stability by
simply providing alternative interaction pathways, but rather
decreases the dynamical stability of the communities (Gardner
and Ashby, 1970; May, 1972). More recent studies have high-
lighted the importance of realistic network topologies (Yodzis,
1981; Martinez et al., 2006), non-random patterns of interaction
strengths (McCann et al., 1998; Neutel et al., 2002; Berlow et al.,
2004; Gross et al., 2009), and effects mediated by natural body
size (Yodzis and Innes, 1992; Brose et al., 2006; Kartascheff et al.,
2010).

Theoretical results concerning the population dynamics of
interacting species always depend to some extent on the mechan-
istic assumptions and the specific form of the equations used in
the respective study. For example, dynamical patterns and the
stability of food webs are often highly sensitive to the exact

mathematical form of the functional response that describes the
interaction rate between predator and prey species (Williams and
Martinez, 2004; Rall et al., 2008) or to the precise values of the
parameters characterizing these rates (McCann et al., 1998).

These limitations are avoided by the method of generalized
modeling (GM) recently developed by Gross and Feudel (2006)
and successfully applied to ecological problems (Gross et al.,
2005, 2009). This method builds on a rescaling of the dynamical
equations describing the population dynamics such that the fixed
points (equilibrium values) of all populations are 1. It avoids the
need to calculate the population dynamics explicitly and deter-
mines instead the stability of the fixed point of dynamics directly
from the Jacobian of the dynamical system. In contrast to May’s
seminal work, which also evaluates the stability of fixed points
(May, 1972), the elements of the Jacobian in GM are not random
numbers, but depend on parameters whose values can be directly
interpreted in terms of simple, but very general statements such
as ‘‘prey is abundant’’ or ‘‘mortality is dominated by density-
dependent effects’’. The method can also be extended to studying
the stability of periodic solutions (Kuehn and Gross, 2011).
However, GM can give no information on species persistence
when the considered fixed point or periodic solution is unstable.

In contrast, the conventional modeling approach, which is
based on integrating differential equations for the population
dynamics, can also evaluate the stability of food webs with
regular or chaotic oscillations by determining the fraction of
species that are able to persist in these dynamical states. These
non-stationary dynamics have been shown to play a crucial role
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in preserving biodiversity in systems that depend only on a few

different limiting nutrients (Huisman and Weissing, 1999). Never-

theless, it appears that in general the conditions for local stability,

such as the one derived by May (1972) for randomly connected

networks, and the conditions for species persistence are very

similar (Sinha and Sinha, 2005). The great advantage of GM is the

ability to derive stability criteria from a more abstract perspec-

tive, which does not rely on specific assumptions concerning the

interactions between populations.

Despite their simple biological meaning, direct estimates for

the values of the parameters used in GM studies are not available

since experimental studies normally focus on quantifying explicit

functional relationships. In this study, we advance the ecological

applicability of GM by first establishing the conditions for a

positive relation between complexity (measured either as species

diversity or as network connectance) and dynamical stability of

communities with realistic network topologies. The latter are

created with the niche model (Williams and Martinez, 2000),

which successfully reproduces empirical food-web patterns. We

then derive values for the generalized parameters from conven-

tional population dynamics equations for which parameter esti-

mates based on empirical and experimental knowledge exist. We

demonstrate that the generalized parameters derived from this

procedure fall in regions of the parameter space that allow for a

positive relation between food-web complexity and stability.

2. The model

In the following, we first describe the food-web topology used

in this study. Then, we introduce the generalized modeling

equations. In order to make the method as transparent as

possible, we start from a broadly used form of conventional

population dynamics equations and explicitly carry out the

generalization procedure.

2.1. Topology of the food-web model

Our investigations are based on the widely used niche model

(Williams and Martinez, 2000). The species in the network are

ordered on a one-dimensional niche axis. A predator species i

preys on all species j whose niche values nj (the position on the

niche axis) are within an interval on the niche axis with width niri
and center ci (see Fig. 1). The ‘‘feeding range’’ of a predator is

therefore given by the interval ci7niri=2. The parameters ni and ri
are chosen at random from probability distributions on the

interval ½0;1�, and ci is drawn with constant probability from

the interval ½niri=2;ni�. The probability distribution used for the

niche value ni is a constant distribution, while the distribution of

the relative width ri is a b-distribution Pðr91,bÞ ¼ bð1�rÞb�1. We

define b¼ ð1�2CÞ=2C including the connectance C, which is the

number of present links divided by the number of possible links.

Species with a feeding range that contains no prey species are

considered as basal species, which obtain their energy from an

external resource pool that is not affected by the dynamics of the

food web.

2.2. Conventional food-web dynamics

The biomass dynamics of S interacting species is generally

described by a system of S coupled ordinary differential equa-

tions. Here, we use the bio-energetics approach developed by

Yodzis and Innes (1992) as a standard model of the conventional

population dynamics (Brown et al., 2004; Brose et al., 2006;

Kartascheff et al., 2010; Heckmann et al., 2012). The nonlinear

differential equations for the biomass densities B¼ ðB1,B2, . . . ,BSÞ

of the species include terms for (in the order of appearance) food

ingestion, losses due to predation, mortality and respiration, and

intraspecific competition

dBiðtÞ

dt
¼ l

X

jARi

GijðB,MiÞBi�
X

kACi

GkiðB,MkÞBk�aiðMiÞBi�biðMiÞB
2
i : ð1Þ

Here, Ri and Ci are the sets of prey species and predators,

respectively, of species i, which are determined by the rules of the

niche model. The parameter l is the assimilation efficiency, ai

summarizes respiration and mortality, and bi is the strength of

intraspecific competition. The latter represents a simplified con-

cept of general self limitation at high population densities with-

out accounting for more specific behavioral mechanisms involved.

Basal species have a constant growth rate qi4ai, which models

primary production, instead of the food ingestion term. In

combination with the term for intraspecific competition, this

leads to a logistic net growth rate of the basal species with a

carrying capacity proportional to 1=bi.

The trophic interaction between predator species i and its prey

j is described by a Holling type II functional response

GijðB,MiÞ ¼
aiðMiÞf iBj

1þ
P

lARi
aiðMiÞf ihiðMiÞBl

, ð2Þ

with ai being the prey capture rate, f i ¼ 1=(number of predator i’s

prey species) denoting the fractional foraging effort invested into

each prey species, and hi being the handling time that a predator

needs to deal with and digest a unit biomass of prey. The constant

growth rate qi of basal species can also be written in the form (2)

by setting qi ¼ aiR=ð1þaihiRÞ, with a constant resource pool of

size R.

The parameters ai, hi, ai, and bi all scale allometrically with body

mass Mi according to the following power laws: ai ¼ aM�0:25
i , hi ¼

hM
0:25
i , ai ¼ aM�0:25

i and bi ¼ bM�0:25
i (Peters, 1986; West et al.,

1997; Brown et al., 2004). Multiplying Eq. (1) with M0:25
i enables us

to write it in a form that is more convenient for the derivation of the

generalized model

dBiðtÞ

dt
M0:25

i ¼ l
X

jARi

GijðBÞBi�
X

kACi

M0:25
i

M0:25
k

GkiðBÞBk�aBi�bB
2
i : ð3Þ

We link the body masses of the species to their niche values

according to Mi ¼ 10x�ni , where ni is the niche value of species i,

and x is a parameter that quantifies the change of body mass with

niche value, here set to x¼8, which means that the ratio between

the largest and smallest body mass of a species is 108. The body

mass of basal species is set to Mi¼1.

When evaluating the stability of a fixed point, a linear analysis

in the neighborhood of a fixed point is sufficient, leading to the

linearized set of equations

d _B ¼ JðBnÞ � dB,

where dB is the deviation of the population sizes from their fixed

point values, and JðBnÞ is the Jacobian matrix, i.e., the derivative

of the right-hand side of the population dynamics equations

with respect to the population sizes Bi at the fixed point Bn

i .

If all eigenvalues of the Jacobian have negative real parts,
Fig. 1. Sketch of the niche model, after Williams and Martinez (2000). Species j

with niche value nj is prey of species i.
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perturbations approach asymptotically zero, and the fixed point is

locally stable.

2.3. Generalized food-web model

Next we will use Eq. (3) to derive the generalized model

introduced by Gross and Feudel (2006). The biomass densities Bi
and functions Ui that depend on biomass densities are normalized

such that their fixed point values becomes 1, by defining the

dimensionless quantities

bi ¼
Bi

Bn

i

; uiðb1,b2, . . . ,bSÞ ¼
UiðB

n

1b1,B
n

2b2, . . . ,B
n

SbSÞ

Un

i

,

where the function at the fixed point is denoted as

Un

i ¼UiðB
n

1,B
n

2, . . . ,B
n

S Þ. In the following we will need three such

functions. The first function is the total biomass density of the

prey of predator i, denoted as Ti or, in its dimensionless form,

ti ¼ T i=T
n

i . The second function is giðtiÞ, which is the dimensionless

version of the first term on the right side of Eq. (3), i.e., of the

biomass gain due to feeding. The third dimensionless function is

miðbiÞ, which describes all biomass loss incurred due to causes

other than predation, i.e., due to the last two terms on the right-

hand side of Eq. (3). They cover respiration, background mortality,

diseases, and competition for all resources other than food.

In order to illustrate how the elements of the Jacobian result

from the population dynamics equations, we derive them starting

from Eq. (3) with the functional response (2). We do not allow

cannibalism, and therefore every species either gains biomass due

to consumption or due to primary production. The latter is being

modeled by a logistic growth function. The negative quadratic

part of this function, which contains the carrying capacity, is

associated with the mortality term. With these simplifications,

the elements of the Jacobian can be written as

Jij ¼ ti Wigiwij�di rjiþ
X

S

l ¼ 1

rliðgl�1Þwlj

 !" #

ð4Þ

and

Jii ¼ ti 1�ð1�diÞmi�di
X

S

l ¼ 1

rli½ðgl�1Þwliþ1�

 !" #

: ð5Þ

The seven parameters in Eqs. (4) and (5) can be classified as scale

parameters and exponent parameters. The scale parameters

describe the relative weights of biomasses or biomass fluxes, or

measure the time scale. These are the parameters ti, Wi, di, rji, and

wji. The exponent parameters m and g measure the extent of

nonlinearity of the functions mi and gi with respect to the

normalized biomass densities bi at the fixed point.

In the following, we will explain all these parameters in more

detail. The parameter ti refers to the characteristic time scale of

the population dynamics of species i and denotes the biomass

turnover rate. The fractions of biomass gain due to consumption

of prey and of biomass loss due to being preyed upon, of species i

are represented by the parameters Wi and di. This means that

ð1�WiÞ describes the fraction of biomass gain due to primary

production, and that ð1�diÞ is the fraction of all other sources of

biomass loss apart from being eaten. The parameter wij measures

the relative weight of population j to the total amount of available

food to species i. rji measures the relative contribution of species j

to the predative loss of species i.

The expressions for these scale parameters in terms of those of

the conventional model are the following:

ti ¼ ðlqiÞþ
X

jARi

laf iB
n

j

1þ
P

j0 ARi
haf iB

n

j0

0

@

1

A

¼
X

kACi

Mi

Mk

� �0:25 af kB
n

k

1þ
P

i0 ARk
haf kB

n

i

0

@

1

Aþ aþbBn

i

� �

,

Wi ¼
1

ti

X

jARi

laf iB
n

j

1þ
P

j0 ARi
haf iB

n

j0
,

ð1�WiÞ ¼
1

ti
lqi,

di ¼
1

ti

X

kACi

Mi

Mk

� �0:25 af kB
n

k

1þ
P

i0 ARk
haf kB

n

i

,

ð1�diÞ ¼
1

ti
ðaþbBn

i Þ,

wij ¼
Bj

P

j0 ARi
Bj0

,

rji ¼
1

tidi

Mi

Mj

� �0:25 af jB
n

j

1þahf jT j

:

The first exponent parameter, mi, denotes the extent of non-

linearity of the mortality effects of species i. We assume it to be in

the interval [1, 2]. mi ¼ 1 means that mortality and respiration are

linear in bi (i.e., density-independent), while density-dependent

effects such as diseases and intraspecific competition are asso-

ciated with a value mi ¼ 2. A value between 1 and 2 implies that

both types of effects are important at the fixed point. The last

parameter, gi, measures predation sensitivity to prey density. It is

identical to the slope of the normalized functional response. We

assume that its value is in the interval ð0;1Þ, which is the range of

values for Holling Type II functional responses. A value of g close

to 1 denotes scarce prey biomass, while g¼ 0 means that prey is

abundant and that the functional response is saturated.

The mathematical expressions of these exponent parameters are

mi :¼
@

@bi
miðbiÞ

�

�

�

�

b ¼ b
n
¼ 1

ð6Þ

and

gi :¼
@

@ti
gijðtiÞ

�

�

�

�

b ¼ bn
¼ 1

: ð7Þ

3. Evaluating the stability of generalized webs

We investigated how the stability of generalized food webs

depends on the generalized parameters. To this purpose, we

evaluate niche model food webs with five basal species ðZ ¼ 5Þ. By

fixing the number of basal species, we keep the energy input into

the food web constant when the number of species or links is

changed. The seven parameters that occur in Eqs. (4) and (5) are

chosen as follows. A species is either a primary producer ðWi ¼ 0Þ or

it is only preying on other species ðWi ¼ 1Þ. We assume that every

prey species j of a predator i contributes the same to its diet, such

that wij does not depend on j and is given by the inverse of the

number of prey species of predator i. Similarly, we assume that

every predator i of species j contributes the same to the predative

losses of this species, such that rij is given by the inverse of the

predator count for species j. Finally, we set the time scale parameter

ti ¼ 1, because we found that there is no connection between the

average stability of a food web and the parameter ti, as was shown

recently for conventional models, too (Kartascheff et al., 2010).

The remaining parameters are varied in an appropriate range.

The value of di has to be chosen from the interval [0, 1) since it

describes the fraction of biomass loss due to predation. Top

S.J. Plitzko et al. / Journal of Theoretical Biology 306 (2012) 7–14 9
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predators have di ¼ 0. A value di ¼ 1 is not realistic because

respiration and background mortality are present for every

species. The nonlinearity parameter of the mortality term mi is

chosen from the interval ½1;2�. We set both parameters to

three different values, d¼ f1=3;1=2;2=3g and m¼ f4=3;3=2;5=3g,

resulting in nine parameter combinations for each value of g. For
the sake of simplicity, we assume in this section that the

parameters are identical for all species (Gross et al., 2009). In

the next section, we will evaluate how these parameters vary

within and between trophic levels. The parameter g depends on

the amount of available prey, which may vary continuously.

We therefore vary g nearly continuously, too (in steps of 0.01),

from 0 to 1.

For each set of parameter values, 10 000 network structures

were generated randomly using the niche model. We accepted

only networks that had no disconnected parts and that had a

connectance that deviated at most by 0.01 from the expected

value of C. The eigenvalues of the Jacobian were evaluated and

when all eigenvalues had negative real parts, a food web was

stable.

We varied the number of species, S¼ f20;30;40;60g for a fixed

connectance C¼0.15, and in a second computation we varied the

connectance, C ¼ f0:10;0:15;0:20;0:30g for a fixed species number

S¼30. Figs. 2 and 3 show the results for these computations. In

general, a larger proportion of food webs is stable if total

mortality is dominated by nonlinear effects such as intraspecific
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competition (large values of m) and if these effects are more

important than mortality due to predation (low values of d).

Indeed, the product ð1�dÞm indicates the importance of mortality

and is the leading negative part in Eq. (5). Negative diagonal

elements in the Jacobian are known to be important for the local

stability of food webs (Takeuchi, 1996). The importance of non-

linear mortality for stabilizing food webs was emphasized for

instance by Gross et al. (2005).

Further, higher sensitivity of the consumption rate gij to prey

density bj (i.e., higher values for g) also increases the proportion of

locally stable food webs. This general observation was already

reported by Gross et al. (2004), but is supplemented here with

some additional results. While in Gross et al. (2004), g approach-

ing 1 always meant stable food webs, here we find that for some

combinations of the generalized parameters stability is highest

for intermediate values of g, especially if food-web complexity is

high. Also, the sensitivity of the consumption rate to prey density

has a qualitative impact on the relation between food-web

connectance and stability: most graphs in Fig. 3 show a positive

complexity–stability relation for low values of g, i.e., stability

increases with increasing connectance, and a negative complexity–

stability relation for high values of g.
An increase of stability with the species number S is much

harder to obtain than an increase with C, compare Fig. 2 with

Fig. 3, and can only be found for very small values of g. This is in

agreement with earlier findings that stability is more likely to

increase with complexity when the latter means more prey

species per predator instead of simply a larger total number of

species (Uchida and Drossel, 2007; Kartascheff et al., 2009).

Our results obtained by the generalized formalism agree also

in other respects with those obtained using other stability criteria.

For instance, the positive effect of a density-dependent mortality

on the stability of a system was previously reported by

Kartascheff et al. (2010) for different food-web models (random,

niche, cascade, nested hierarchy, layer) when evaluating the

network robustness, which is the proportion of species that

survive when the population dynamics are run for a long time.

Earlier, it was found that robustness satisfies a positive

complexity–stability relation in random food webs with a suffi-

ciently large supply of resources (Kartascheff et al., 2009), which

agrees with our finding that a small value of g, i.e., very abundant

prey for Holling type II functional response, leads to positive

complexity–stability relations. Results obtained by other authors

can also be interpreted as implying stability at low values of g. A
study by Uchida and Drossel (2007) has shown that adaptive

behavior can result in positive complexity–stability relations

when higher complexity means more potential prey per species.

Since adaptive behavior leads to larger weights on links to more

abundant prey species, it decreases g. McCann shows in a paper

on the dynamical stability of food webs that a Holling type II

functional response together with weak links has a stabilizing

effect (McCann et al., 1998). A Holling type II functional response

means that g take values between 0 and 1 (in contrast to a Lotka–

Volterra functional response where g¼ 1), and that the per capita

consumption rate is limited. Additional weak links that are

associated with small attack rates or scarce prey species effec-

tively increase g. Together with the above-mentioned stabilizing

effect of decreasing g, this explains the large proportion of stable

food webs observed for intermediate values of g.
A striking feature of some curves in Figs. 2 and 3 is the rapid

change in stability, which is more pronounced when S or C is

larger. By evaluating the eigenvalues of the Jacobian, we could see

that several saddle node or Hopf bifurcations occur close to each

other for certain parameter values of d and m. The occurrence of

several bifurcations in a small parameter range was also pointed

out by Gross et al. (2005) for food chains.

In the next section, we will determine the values of the

generalized parameters from an evaluation of dynamically stable

conventional food web models to obtain a general idea of realistic

parameter regions for our model.

4. Evaluation of the generalized parameters based on stable

conventional webs

So far, we established general conditions for dynamically

stable food webs, assuming that all species have the same values

of the generalized parameters. We will now investigate which

values of the generalized parameters occur in realistic food-web

models and to what extent they differ among species. To this

purpose, we choose a plausible set of parameters for Eq. (3),

summarized in Table 1.

We generated niche model food webs that had only one

component and that had a connectance of C70:01. We used the

realistic parameter set listed in Table 1, and we retained 10 000

webs that were locally stable and had at most four trophic levels.

The fixed points were determined by running computer simula-

tions until the absolute sum of relative changes of biomass

densities (
P

i9dBi=Bi dt9) had become less than 10�8. We define

the trophic level as the shortest distance through feeding links to

the external resource which is the food source for basal species.

The majority of species (� 57:6%) in such webs are on trophic

level 2. Trophic level 3 contains about 24:9% of all species, and

level 4 about 0:8%. We computed the population dynamics

according to Eq. (3), with the parameter values given in Table 1,

and then calculated the generalized parameters from the obtained

population densities for every single food web.

Fig. 4 shows the probability distribution of the parameter g,
evaluated for each trophic level separately. The values of g span a

wide range between 0.14 and 0.83, and the mean value increases

with the trophic level. Note that basal species are not included,

since they have a constant growth term and thus the parameter g
is not defined for them.

Table 1

Realistic values for the standard conventional food-web dynamical equations with

Holling Type II dynamic (Eqs. (2) and (3)) to determine the dynamical behavior

(Brose et al., 2006; Heckmann et al., 2012).

S Z C a l h a b R
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Fig. 4. The probability distribution for the values of g for trophic levels 2, 3, and 4.

The curves are based on the evaluation of 10 000 food webs with 30 species each.
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The increase of g with the trophic level is due to its depen-

dence on prey biomass,

gi ¼
1

1þhaf iT
n

i

, ð8Þ

derived from Eq. (7). Fig. 5 shows that the biomass at the fixed

point decreases with the trophic level. This is due to the energy

loss from one trophic level to the next. Therefore, g increases with

decreasing prey biomass and thus with increasing trophic level of

predator and prey.

Since the majority of species is on trophic level 2, the overall

mean value of g � 0:32 is dominated by the values of species on

this level. We have seen in the previous section (Fig. 3) that such

values of g are likely to be associated with a positive complexity–

stability relation.

As we have seen in the previous section, the stability of the

food webs increases with an increasing value of the product

ð1�dÞm, where d is the fraction of biomass loss due to predation

and m is the nonlinearity of the mortality function. The probability

distributions of the two parameters d and m are shown in

Figs. 6 and 7. Part of the species have a value di ¼ 0, those are

top predators. The probability distribution of d on trophic level

1 is dominated by small values (the mean is close to 0.2), while

the distribution on the higher trophic levels is very wide with a

mean close to 0.4, bell-shaped and similar for all levels. The

reason for the small values of d on level 1 is that the biomass of

basal species is close to saturation and therefore essentially

regulated by intraspecific competition and mortality. There is a

constant pool of resources available for them. The basal species

are therefore best interpreted as plants, which gain energy

directly from the sun. By taking the average over all trophic

levels, we have d � 0:35. In the previous section, we used three

different values of d between 0 and 1, and by comparison we find

that the parameter configurations in the top rows of Figs. 2 and 3,

where we have d¼ 1=3, are good representatives for this section’s

results. For those configurations we have a high percentage of

stable food webs (� 80%) for most values of g, and a positive

complexity–stability relation for small values of g.
The parameter m depends only on the biomass of species i and

is given by the equation

mi ¼ 1þ
bBn

i

aþbBn

i

, ð9Þ

which is obtained from Eq. (6). The distribution of biomass is

shown in Fig. 5. As we can see in Fig. 7, species on trophic level

1 mostly have large values of m (max. mi ¼ 1:84), corresponding to

a high importance of density-dependent effects. The mean of m
decreases monotonously with increasing trophic level, since the

average biomass per species decreases and density-dependent

effects are thus less important. The value of m decreases with

increasing C or S, due to smaller population sizes.

If we compare the calculated average values of m for each

trophic level (1.78, 1.60, 1.50, 1.31 on levels 1–4) and the overall

average of m ¼ 1:59 with the figures from the last section, the food

webs simulated by us are best represented by the two columns on

the right in Figs. 2 and 3, where we have m¼ 3=2 and m¼ 5=3.

Similarly to what we found for d, we also have a high percentage

of stable food webs (� 80%) for a wide parameter range of g, and
for low values of g a positive complexity–stability relation.

Combining the realistic values of d and m we find that the realistic

configurations are the upper configuration in the middle and on

the right of Figs. 2 and 3 with the fraction of stable food webs

about 95%.

To conclude, we have found that the generalized parameters

depend strongly on the trophic level and have broad distributions.

The increase of g and d and the decrease of m with trophic level is

due to the decrease in biomass. We also found that the typical

values of these parameters are such that a large percentage of
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food webs are stable and that positive complexity–stability

relations are possible.

The results of this section show that the values of the general-

ized parameters chosen by Gross et al. (2009) are such that the

resulting food webs are less stable than food webs that we found

to be realistic. Their value g¼ 0:95 implies scarce prey, leading to

negative complexity–stability relations throughout that study.

Their choice of d¼ 0 for top predators and d¼ 1 for all other

species means that species that are not top predators have

negligible respiration and negligible intraspecific competition.

This decreases again the stability compared to more realistic

parameter choices. Further, Gross et al. chose m¼ 1, which is the

exponent of closure that regulates the biomass loss of top

predators. This value means that intraspecific competition is

neglected, which again has a destabilizing effect. The reasons

behind the difference between the parameter choice by Gross

et al. (2009) and our work is that Gross et al. considered marine

systems and defined biomass in terms of nitrogen, which is a

limiting resource. Maintenance costs can be neglected for most

species if biomass corresponds to nitrogen. In contrast, we refer to

terrestrial food webs, with biomass corresponding to energy. Our

findings are valid as long as population dynamics is not con-

strained by a limiting resource apart from energy.

5. Conclusion

By using a generalized modeling approach, which is based on

evaluating the stability of fixed points of population dynamics, we

obtained general conditions for food-web stability and positive

complexity–stability relations. These conditions can be expressed

in terms of the values of generalized parameters, which can in

turn be formulated as very general statements about food-web

properties. The generalized parameters can be written as a

function of the conventional parameters and functional relation-

ships used in explicit population dynamics equations, but they do

not rely on a particular modeling approach. They stand for a

whole class of systems. For example, if the generalized parameter

g, which quantifies the response of predation intensity to prey

density, is set to 1, this can be interpreted as Lotka–Volterra

dynamics but also as Holling Type II dynamics with low prey

density.

One of our main findings is that higher density-dependent

mortality effects (higher m) or a smaller biomass loss due to

predation (lower d) increase stability. This is due to the fact that

intraspecific competition prevents population sizes from becom-

ing too large, which reduces population oscillations and relieves

the predation pressure on the prey of these species. Furthermore,

we found that in general stability increases with increasing g. A
fact found earlier by Gross et al. (2004) studying the influence of

the parameter g on the stability on the system in detail for

different functional forms of the functional response. This is

because a larger g implies a stronger response of feeding rates

to changes in the prey populations. A small value of g implies a

very high energy input into the system. Its destabilizing effect is

known as the paradox of enrichment, first described by

Rosenzweig (1971), which states that enrichment can lead to

oscillations (but not necessarily to extinctions). On the other

hand, when complexity, i.e., S or C, is large, food-web stability

decreases again when g becomes too large, because larger values

of g imply less energy input into the system, which can have a

destabilizing effect when the energy is distributed among too

many species, i.e. when the network is large. Networks with high

complexity are most stable at intermediate values of g, for which

the consumption rates of predators are partially saturated, which

means that predator populations are capable of responding to

changes in prey populations, while the energy input into the food

web through the basal species is sufficiently large. The stabilizing

effect of a sufficiently high energy input was also found by

Kartascheff et al. (2009).

From Figs. 2 and 3 we have obtained a positive complexity–

stability relation for low values of g. These findings agree with

previous results (Uchida and Drossel, 2007; Kartascheff et al.,

2009, 2010; Brose et al., 2006) obtained for conventional food-

web dynamics with other stability criteria. This agreement can be

explained by the fact that the local stability of fixed points (which

is investigated in GM) is related to the extent to which oscillations

are dampened, which in turn prevents species from fluctuating so

much that they go extinct. In fact, the May–Wigner criterion,

which was formulated by May for the local stability of population

dynamics of biological species (May, 1972), has been shown to be

also valid for species persistence by Sinha and Sinha (2005).

In the second part of the paper, we evaluated the typical range

of the values of the generalized parameters for realistic food-web

models with Holling type II dynamics. We found that the general-

ized parameter g shows a trend towards larger values with

increasing trophic level, with a mean of g ¼ 0:32, which is an

intermediate value that leads to high stability. Such values of g
imply that prey with a large biomass is available and that

predators obtain most of their energy from such abundant prey.

For predators on higher trophic levels the biomass of prey species

is smaller, and therefore it is important for food-web stability that

these predators can feed on several prey (i.e, connectance C must

not bee too small).

In our realistic food-web models, we implemented the effect of

allometric scaling of metabolic rates with body mass, which is

known to be an important factor for food-web stability, due to

reducing the biomass flow from prey to predator on higher

trophic levels (Brose et al., 2006; Kartascheff et al., 2009). Without

allometric scaling, the generalized parameter g would take higher

values on the higher trophic levels.

The generalized parameter d, which measures the fraction of

biomass loss due to predation, has a broad distribution on all

trophic levels but the first. The mean value is dt0:4, which is in

the range of values leading to high food-web stability. The

generalized parameter m, which measures density-dependent

effects on mortality, decreases with increasing trophic level, as

expected. Nevertheless, the stabilizing effect of nonlinear con-

tributions to mortality is important also on the highest trophic

levels, where m is sometimes called the ‘‘exponent of closure’’

(Gross et al., 2005).

Apart from demonstrating that realistic food-web models

show a high degree of stability, our results for the typical values

of the generalized parameters serve also as an important input

that can be used in future GM studies. Previous work on GM

(Gross et al., 2009) did not have this information available. We

believe that it should even be possible to obtain some of the

generalized parameters directly from empirical observations. For

instance, the parameter d gives the proportion of deaths due to

predation, which should easily be measurable in field or labora-

tory studies. It would also be worthwhile to investigate the

typical range of generalized parameters in more comprehensive

food-web models. Such models can include the effects of predator

interference, of type III functional responses, or of adaptive

foraging. We expect both effects to increase stability even more

since they reduce oscillations.

Our findings imply that the most crucial stabilizing factor is an

intermediate value of the generalized parameter g, which is

obtained when the total energy input into the food web is large

enough. This means that the restriction of ecosystems by human

interference is a serious threat to food-web stability, because it

decreases the total amount of resources available at the bottom
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level. Such a decrease is most detrimental in large food webs,

leading to a negative complexity–stability relation.

We conclude that GM is a very powerful tool to investigate

factors that stabilize ecosystems, due to its independence of the

detailed model features, and due to the low computational effort,

which makes it possible to scan a huge range of parameter values

and network structures. This method can be used to classify

different types of functional responses and dynamical equations

with respect to the range of values of their generalized para-

meters, which are the main determinants of food-web stability.

For a given class of dynamical equations, the GM method can be

used to express the generalized parameters in terms of the

original parameters and to identify parameter ranges for which

the food webs are stable. If, additionally, direct empirical esti-

mates of the generalized parameters became available, the GM

method could become a universal tool for answering questions

related to food-web stability and the relation between complexity

and stability.
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ARTICLE

Exploring cyclic dominance of sockeye salmon with a
predator–prey model
Christian Guill, Eddy Carmack, and Barbara Drossel

Abstract: We explain in an intuitive and detailed way a predator–prey model that generates cyclic dominance in Fraser River
sockeye salmon. In contrast with usual predator–prey models, this model includes four distinct prey lines and thus a combina-
tion of continuous and discrete dynamics, reflecting the particular freshwater and marine life cycle features of sockeye salmon
(Oncorhynchus nerka) populations. The predator–prey interaction causing the oscillations takes place in the rearing lakes, rather
than in the ocean. The values of most parameters of this model can be estimated from empirical data that are available for the
large salmon-rearing lakes in the Fraser River basin. The mechanism that produces the oscillations in this model is compared
with other mechanisms that can generate population oscillations, and we argue that predator–prey dynamics is the most likely
mechanism to produce the observed patterns. We explain why the period of the oscillation is exactly 4 years, and we explore how
the dynamical pattern is affected by changes in external conditions or by management decisions.

Résumé : Nous expliquons de manière intuitive et détaillée un modèle prédateurs–proies qui produit une dominance cyclique
chez le saumon rouge du fleuve Fraser. Contrairement aux modèles prédateurs–proies habituels, ce modèle comprend quatre
lignées de proies distinctes et, donc, une combinaison de dynamique continue et discrète qui reflète des caractéristiques précises
des portions marines et d’eau douce du cycle biologique des populations de saumons rouges (Oncorhynchus nerka). L’interaction
prédateurs–proies qui cause les oscillations a lieu dans les lacs d’alevinage plutôt que dans l’océan. Les valeurs de la plupart des
paramètres de ce modèle peuvent être estimées à partir de données empiriques disponibles pour les grands lacs d’alevinage dans
le bassin du fleuve Fraser. Le mécanisme qui produit les oscillations dans ce modèle est comparé à d’autres mécanismes qui
peuvent produire des oscillations de la population, et nous arguons que la dynamique prédateurs–proies est le mécanisme le plus
susceptible de produire les distributions observées. Nous expliquons pourquoi la période d’oscillation est d’exactement quatre
ans et nous examinons l’incidence de variations de conditions externes ou de décisions de gestion sur cette dynamique. [Traduit
par la Rédaction]

Introduction
The 4-year oscillation in the number of spawning sockeye

salmon (Oncorhynchus nerka) that return to their native streams
within the Fraser River basin in Canada is a striking example of
oscillations in fish populations (Ricker 1950, 1997; Townsend
1989). The period of oscillation corresponds to the dominant
generation time of these fish, which led to the term “cyclic
dominance”. These oscillations were reported as early as the
19th century and remain evident in the extremely high catches by
fisheries every fourth year (Rounsefell and Kelez 1938).

The special life history of the sockeye salmon sets their popula-
tion oscillations apart from those observed in other populations,
many of which have already been understood and implemented
successfully in mathematical models. Sockeye salmon spawn in
freshwater habitats that discharge into the Pacific Ocean. Sockeye
salmon originating from the Fraser River in British Columbia,
which is one of the most productive river systems for sockeye
salmon in the world, predominantly spawn at the age of 4 years
after returning to the streams in which they hatched. After hatch-
ing and overwintering in the gravel, they rear for 1 year in large
lakes found in the Fraser River system. They migrate to the ocean
in the following spring and stay there for 2 full years. Most sock-

eye salmon then migrate back to their natal spawning grounds
where they die after spawning. This particular life cycle of non-
overlapping generations, in combination with a dominant age at
maturity, gives rise to four largely separated brood lines in each
local, lake-specific population of sockeye salmon. A small minor-
ity of the sockeye (at most 10%) spawns at the age of 5 years,
thereby resulting in some mixing between the brood lines.

In addition to involving four different salmon brood lines, the
oscillations in population abundance observed in Fraser River
sockeye salmon show two other features that make them unique
and that represent a challenge for population modelling. One
feature is that the population oscillation period is exactly 4 years
(with the subdominant year being sometimes stronger than the
dominant one owing to environmental fluctuations), although
the mean generation time of these fish is longer than 4 years. The
other feature is that the magnitude of the oscillation is extremely
large, with the difference between dominant and weak years be-
ing a factor of 100 or even 1000.

In the literature, different explanations and mathematical
models for cyclic dominance can be found, such as dampened
oscillations that are sustained by stochastic influences (Myers
et al. 1998), depensatory predation (Larkin 1971), fishing (Walters
and Staley 1987), or genetic effects (Levy and Wood 1992; Walters
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and Woodey 1992), but none of these explanations are fully con-
vincing (Levy and Wood 1992; Ricker 1997). Recently, we took a
different approach and introduced a three-species model for the
dynamics of the salmon fry, their predator (for instance, rainbow
trout (Oncorhynchus mykiss)), and their food (mainly Daphnia) in the
rearing lake (Guill et al. 2011). This model reproduces the dynam-
ical pattern of cyclic dominance with a period of exactly 4 years
and generates the correct sequence of a dominant, a subdomi-
nant, and two low years, which is seen in three of the largest
sockeye salmon stocks in the Fraser River basin (late Stuart,
Quesnel, and Shuswap stocks; Guill et al. 2011).

Building upon this approach, we here propose an even simpler
model, which is a two-species predator–prey model. Similar to
other predator–prey models, the food of the prey (i.e., of the sock-
eye fry) is taken into account only indirectly by specifying the
carrying capacity of the juvenile-rearing lake. Owing to the rela-
tively small number of parameters, we can estimate most model
parameter values from empirical data. We do not assume a priori
differences between salmon from different brood lines of the
same stock or even between salmon of different stocks to deter-
mine whether or not a stock exhibits cyclic dominance or, if it
does, which line will be dominant and which will be weak. Fur-
thermore, empirical abundance data of the sockeye or the
predator are not required to parameterize the model. Instead,
environmental conditions such as the productivity of the rearing
lake or the degree towhich the predator relies on sockeye fry as its
main resource determine the dynamics of the sockeye stock. Since
the various sockeye stocks from the Fraser River basin and also
other areas such as Bristol Bay (Alaska) or the coastal areas of
British Columbia show a wide variety of environmental condi-
tions and population dynamics, we can use this approach to esti-
mate conditions under which a salmon stock can be expected
to be cyclic or not. A particularly interesting case is the sockeye
population that originates from the Kvichak River (Alaska). This is
another highly productive stock that exhibited cyclic dominance,
but with a period near 5 years.

We begin by a brief comparison of simple models that show
population oscillations, such as classic predator–prey models and
single-species models with density-dependent feedback. This
elucidates different mechanisms that can, in principle, generate
population oscillations and demonstrates the requirements that
need to be fulfilled for each of these mechanisms to occur. Since
the classical models cannot, however, adequately reproduce the
unique type of population oscillations of sockeye salmon, we dis-
cuss the general model features (i.e., biological mechanisms cap-
tured by the model equations) that are essential to obtain cyclic
dominance. Such an approach of using models that account for
only a few central features of the natural system to be described
has proven successful in explaining other iconic population oscil-
lations, such as the lynx–hare (Lynx canadensis – Lepus americanus)
oscillations in Canada (Elton and Nicholson 1942; Odum 1953;
Blasius et al. 1999) or the cyclic outbreak dynamics of the spruce
budworm (Choristoneura fumiferana) (Ludwig et al. 1978; Royama
1984). In each of these cases, a set of general, realistic model
features was sufficient to explain the observed phenomenon.

We conclude by using the model to explore different scenarios
of environmental conditions or conservation and management
measures. Even though the model is not sufficiently detailed to
make precise predictions (within the limits set by stochastic envi-
ronmental perturbations), it allows us to assess the robustness of
cyclic dominance and related impacts in the face of various natu-
ral and anthropogenic disturbances.

General mechanisms behind population oscillations

In this section we describe several mechanisms that are known
to produce population oscillations, and we argue that of these
mechanisms the coupling to a predator is themost likely one to be

the cause of cyclic dominance of sockeye salmon. When the pre-
dominantly 4-year life cycle of the sockeye salmon is not ac-
counted for, however, even predator–prey interactions cannot
generate the oscillation pattern characteristic of cyclic dominance.

Fundamentally, when a population shows a regular oscillation,
there must exist a mechanism that causes the population to be-
come smaller than the average value some time after it has been
larger than the average value, and vice versa. This effect must be
sufficiently robust that the oscillation does not weaken with time
and go to an equilibrium point. Three general classes exist for
such mechanisms. The first one is external periodic forcing. In
this case, the population is influenced by an abiotic or biotic fac-
tor that shows an oscillation and that causes the population to
oscillate at the same period (or a multiple of it). In the simplest
case, this could be the change of abundance of a species during
the course of a year due to the change of the seasons. If an external
periodic driving force was the cause of cyclic dominance (for exam-
ple, a 4-year oscillation in ocean temperatures or currents that af-
fects salmon survival), then all salmon populations would be
required to oscillate in a synchronous manner. Since this is not ob-
served across all Fraser River stocks, an external forcing of cyclic
dominanceof FraserRiver sockeye salmoncanbe ruledout (Levy and
Wood 1992). Furthermore, an external periodic forcing would most
likely lead to an evolutionary response in the life history of the
weaker cycle lines (e.g., an increase of the relative time spent in fresh
water or in the ocean) that could allow them to benefit from the
favourable environmental conditions supporting the dominant line.
This would lead to systematic differences of the age at maturity
between the different cycle lines, which are also not observed in
Fraser River sockeye salmon.

The second type of mechanism that can cause population oscil-
lations is a direct density-dependent feedback, which can best be
observed in certain laboratory populations (Kendall et al. 1999).
Juveniles that grow up at high densities may experience a large
mortality or slow growth and give rise to few or small adults that
lay fewer eggs. In principle, such amechanism could also cause an
oscillation in the density of sockeye salmon. It has been observed,
for example, that the fry produced by a dominant brood line are
on average smaller than those of less abundant years (Hume et al.
1996), probably because of stronger competition for food. This
may have a strong effect on their survival during migration to the
ocean and in the ocean, leading to a smaller spawning popula-
tion in the next generation. The diminished population produces
fewer eggs, leading to better growth conditions and higher ma-
rine survival for its offspring, and the cycle repeats. If this mech-
anism was relevant for the sockeye salmon, however, it would
lead not to cyclic dominance, but to an oscillation with a period of
8 years, because the offspring of an abundant salmon year would
return after 4 years and cause a weak salmon year, leading again
to an abundant year after an additional 4 years. In fact, this is the
mechanism that causes sustained oscillations in the widely used
Ricker model (Ricker 1954; Myers et al. 1998).

The third type of mechanism that can cause population oscilla-
tions is a time delay in the dynamics, which can be caused, for
example, by a coupling to a second species (e.g., a predator). The
origin of oscillations in such systems has been recognized since
Lotka (1925), and Volterra (1926) introduced the first mathemati-
cal predator–prey model. However, a predator–prey oscillation
only occurs if the two species interact strongly with each other
and the influence of other species, which can be alternative food
sources for the predator or other enemies of the prey species, is
sufficiently weak. If the population dynamics of other species
interfered with the predator–prey system, the simple oscillation
pattern would be destroyed. A second requirement for predator–
prey oscillations is that the environment provides the capacity for
a considerable variation in the population densities of predator
and prey. This means that there must be a sufficient amount of
food available for the prey and that factors that limit predator
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density (e.g., the availability of spawning grounds or diseases)
must not be dominant over the effects of its prey (Rall et al. 2008).

Sometimes, depensation (the Allee effect, or inverse density
dependence) due to predation or fishing is proposed as a cause of
cyclic dominance in Fraser River sockeye salmon. The idea behind
this concept is that the predator (or the fisheries) tries to take an
amount of prey that decreases slower than proportionally for
small prey population densities. This causes very high per-capita
mortality in weak salmon lines, thus preventing them from be-
coming stronger. However, this mechanism has been shown to be
very uncommon in fish populations, and in fact it would lead to
the extinction of the weak lines rather than stabilization at low
levels (Myers et al. 1995). Moreover, such a strong interaction be-
tween predator and prey would also affect the predator popula-
tion, and we therefore pursue below the more general idea of
coupled population dynamics of predator and prey.

Other possibilities for the generation of time delays in the dy-
namics are also possible, for example, a shift in the composition
of the prey species in edible and inedible subtypes or a shift in the
genetic composition of a species that is related to growth, but
these are essentially special cases of interactions between two
species or two subpopulations of the same species.

Predator–prey models can be either continuous or discrete in
time. Those that are continuous in time, such as the Lotka–
Volterra and Rosenzweig–MacArthur models (Rosenzweig and
MacArthur 1963), are only appropriate if the population density
changes smoothly in time. Populations with discrete generations,
however, have a discontinuous change in density when adults,
such as salmon, produce offspring and die at the same time. In
this case, one must use a description with discrete time steps. The
model for sockeye salmon and their predator that we consider
here belongs to this latter category. We emphasize that the
predator–prey interaction causing the oscillation must take place
in the rearing lakes and not in the ocean, since the latter would
once again lead to all salmon populations of the same river system
cycle in phase.

To illustrate and compare mechanism two (direct density-
dependent feedback) and mechanism three (time delay in the
dynamics due to coupling to a second species), Table 1 shows the
Ricker model together with two predator–prey models. The first,
known as the Rosenzweig–MacArthur model (Rosenzweig and
MacArthur 1963), is continuous in time, and the second is essen-
tially a time-discrete version of the Rosenzweig–MacArthur model.
Both predator–prey models satisfy the two conditions mentioned
above for oscillations to occur. They also satisfy basic biological
requirements such as predator saturation at large prey density
and limited maximum prey biomass.

All three models show the transition from an equilibrium to an
oscillation as a parameter is changed to increase the maximum
(prey) population density. These parameters are the maximum
reproductive success a for the Ricker model and the carrying ca-
pacity K for the two predator–prey models. For a complete bifur-
cation analysis of the Ricker model, see for example May and
Oster (1976). The transition from an equilibrium to an oscillation
is a so-called flip bifurcation in the Ricker model, a Hopf bifurca-
tion in the continuous predator–prey model, and a Neimark–
Sacker bifurcation in the discrete predator–prey model. In contrast
with the continuous model, the oscillation in the discrete models
is not continuous in time; the population densities change from
one year to the next by a finite amount, which can be large. The
population density in the Ricker model oscillates between two
values only, while the oscillation in discrete predator–prey mod-
els is usually “quasiperiodic”. This means that the pattern of
points is never exactly repeated and that the number of points
that fit into one oscillation period is generally not a rational num-
ber. Thus, when the oscillation becomes strictly periodic, as ob-
served, there must be a specific reason, and this is why it is such a
puzzle that the salmon oscillation appears to have a period of

exactly 4 years. It would bemore general to find an oscillation that

has a period somewhere between 4 and 5 years, which is themean

generation time of the salmon. In this case there would not be one

cycle line that is dominant for all times, but a continuous turn-

over of lines that become dominant only for a number of years

and then decline again.

We finally note that the period of the predator–prey oscillations

shown by the two corresponding models is much longer than the

generation time of the sockeye salmon. In general, the period of

the oscillation depends on the values of the parameters and changes

when the parameters are changed. In the continuous predator–prey

model, even a period of about 4 years can be obtained. However, as

we have argued above, such a model cannot, by its very nature,

adequately describe the discrete life history of sockeye salmon. For

the discrete predator–prey model, it has been shown that predator–

prey oscillations almost always have oscillation periods longer than

two times the generation time of the prey plus four times the gener-

ation time of the predator (Murdoch et al. 2002), which contrasts

with the observed 4-year period of cyclic dominance. This discrep-

ancy canonly be resolved if the discrete, anadromous life cycle of the
sockeye salmon is accounted for.

The model for salmon and its predator

We argued in the previous section that standard predator–prey
models (second and third model in Table 1) cannot produce the
oscillation pattern of cyclic dominance (i.e., a clear 4-year cycle
with one dominant line, followed by a subdominant line and two
nondominant lines). We now present a newmodel that combines
a predator–prey interaction with minimum information on the
life cycle of the sockeye salmon. This model is similar to a three-
species model introduced earlier (Guill et al. 2011), but here the
food of the sockeye fry is taken into account only indirectly
through the carrying capacity of the juvenile-rearing lake.

During a given growth season in the rearing lakes, from early
summer to fall, the sockeye fry interact with a population of
predators. This interaction is described using a continuous-time
dynamical model with equations for the biomass density of the
sockeye fry (Fn(t)) and the predators (Pn(t)). Here, t denotes the time
during the growth season and n is the year. The dynamics during
the growth season are given by the equations

(1)

dFn(t)

dt
� r ·Fn ·�1 �

Fn

K
� � f(Fn, Pn) ·Pn

dPn(t)

dt
� e · f(Fn, Pn) ·Pn � d ·Pn

with the maximum growth rate r of the sockeye fry, the carrying
capacity K of the rearing lake, the feeding rate f(Fn, Pn) of the
predators, the biomass assimilation efficiency e of the predators,
and the respiration and mortality rate d of the predators. The
feeding rate generally is a nonlinear function of both prey and
predator density. Thus, instead of taking a type II feeding rate, as
in the Rosenzweig–MacArthur model (Table 1), which only de-
pends on the prey density, we use the Beddington–DeAngelis
form (Beddington 1975; Skalski and Gilliam 2001):

(2) f(Fn, Pn) �

I ·Fn

B0 � Fn � c ·Pn

which includes not only the effect of predator saturation at
high prey density (through the term Fn in the denominator), but
also interference of predators (through the term c · Pn). I is the
maximum rate at which the predator can ingest food, and B0 is the
half-saturation density (i.e., the prey density at which the preda-
tors consume at half of their maximum rate). All terms occurring
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in eqs. 1 and 2 were introduced in the previous section, and we
chose thembecause they are the simplest formof these terms that
nevertheless take into account the most important effects known
to be present.

To bridge sequential brood lines, the continuous equations of
eq. 1 need to be supplemented by a discrete step that connects the
biomass densities at the end of the growth season (time T) in year n
to the biomass densities at the beginning of subsequent seasons
(time 0). After spending their second winter in the rearing lakes,
most sockeye salmon then spend 2 years in the ocean, migrating
back to their original spawning locations at the age of 4 years. A
certain fraction of each generation, however, stays in the ocean

one additional year and spawns at the age of 5 years, resulting in

some mixing between the brood lines. We assume that the num-

ber of sockeye spawners that produce the fry of the year n + 1 (Sn+1)

is proportional to the number of fry at the end of the respective

earlier growth seasons in the rearing lakes:

(3) Sn�1 � a1 ·a2 · (1 � h) · [(1 � �) ·Fn�3(T) � � ·Fn�4(T)]

The proportionality factors represent conversion of the biomass

density of the fry at the end of the growth season (time t = T) to

number density (a1), marine survivability (a2), and the probability

Table 1. Three simple models that generate population oscillations: top row: direct density-dependent feedback (Ricker model); middle row:

continuous predator–prey model (Rosenzweig–MacArthur model); bottom row: discrete predator–prey model.

Model Time series Bifurcation diagram

Direct density-dependent feedback
Sn�4 � a ·Sn · e
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Continuous predator–prey
dS

dt
� r ·S ·�1 �

S

K� �
I ·S ·P
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dP

dt
� e ·

I ·S ·P

B0�S
� d ·P

Discrete predator–prey

Sn�1 � r ·Sn ·�1 �

Sn

K
� �

I ·Sn ·Pn

B0�Sn

1.8
1.6
1.4
1.2
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Pn�1 � e ·
I ·Sn ·Pn

B0�Sn
� �1 � d� ·Pn

Note: The first column shows the equation for the considered species (S) and, if applicable, its predator (P), with n counting the years in the two discrete models.

The second column shows a time series for a dampened and a sustained oscillation, and the third column shows the bifurcation diagram, which gives all values for

S that occur in the stationary state (i.e., after a sufficiently long transient time) as a function of a control parameter. In the Ricker model, a is the reproductive

parameter, with a = 1.6 (8.5) in the upper (lower) time series. In the continuous predator–prey model, r = 1 is the growth rate of S, K is the carrying capacity with

K = 1.5 (2.8) in the upper (lower) time series, I = 0.6 is themaximum rate at which P can consume and digest S, B0 = 1 is the half-saturation density of the predator feeding

rate, e = 0.85 is the assimilation efficiency, and d = 0.15 is the rate of biomass loss of the predator due to metabolism and death. In the discrete predator–prey model,

the parameters have a similar meaning as in the continuous model. Their values are r = 3, K = 1.8 (2.2), I = 1.2, B0 = 1, e = 0.85, and d = 0.32.
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to survive fishing (1 – h), where h represents the harvest rate. � is
the fraction of salmon spawning at the age of 5 years.

The biomass density of fry at the beginning of the growth sea-
son (time t = 0) produced froma given number density of spawners
is given by a saturating Beverton–Holt recruitment function:

(4) Fn�1(0) �

b ·Sn�1

1 �

b ·Sn�1

KS

The constant b is the maximum fry biomass per spawner. It
includes the number of eggs per female spawner, the sex ratio
among the spawners, the mass of the eggs, and the egg-to-fry
survival probability. The parameter KS denotes the carrying capac-
ity of the spawning grounds, which is the maximum biomass of
fry per square metre lake surface that can be produced on the
spawning grounds. Finally, we assume that a constant fraction sw
of the predators survives over the winter:

(5) Pn�1(0) � sw ·Pn(T)

We assume that details of the life cycle of the predators such as
its age at maturity or the timing of spawning are not important
for the generation of cyclic dominance.

The continuous equations of eq. 1, together with the discrete
step (eqs. 3–5), belong to the class of systems that may display a
Neimark–Sacker bifurcation (Kuznetsov 2004). (For a Hopf bifur-
cation, one would need a fully continuous model.) In fact, our
model can be turned into a discrete model, because the biomass
densities of the two species in the fall of year n + 1 are uniquely
determined from the biomass densities in the fall of the years n – 4
to n. To calculate these biomass densities, however, the equations
must be numerically evaluated on a computer (cf. Guill et al. (2011)
for further details on the mathematical procedure).

Parametrization

We chose model parameter values, summarized in Table 2,
based on published empirical data. The majority of the growth of
the sockeye fry in the rearing lakes occurs when temperature,
light, and nutrient conditions allow phytoplankton and zoo-
plankton to grow. This is mainly from mid-May to mid-October, a
growth season of T = 150 days. The maximum net growth rate r of
the sockeye fry in the rearing lake is the difference between their
maximum food ingestion rate and their metabolic rate. Following
Yodzis and Innes (1992), the maximum ingestion rate of ecto-
therm vertebrates is approximately 3.9 times larger than their
metabolic rate. Metabolic data taken from White et al. (2006)
suggest that the maximum growth rate of sockeye fry with an
approximate bodymass of 1 g is around 0.03 per day. The carrying
capacity K of the rearing lake limits the availability of food when
sockeye fry is very abundant. Hume et al. (2005) report that in both
Quesnel and Shuswap lakes (two of the most important juvenile-
rearing lakes in the Fraser River system), the biomass density of
sockeye fry during the growth season never exceeds 1.4 g·m–2 and
saturates at around 0.8 g·m–2. This saturation value, however,
already includes the losses to predators, sowe assume a somewhat
higher value of K = 2 g·m–2 for the carrying capacity.

The assimilation efficiency e of the predators is set to 0.85,
which is a standard value for carnivores (Yodzis and Innes 1992).
The metabolic rate of the predators d is estimated from data by
White et al. (2006). Assuming a mean body mass of 500 g for the
predators, we obtain d = 0.0046 per day, and for the maximum

ingestion rate, which is again 3.9 times larger than the metabolic
rate, we thus obtain I = 0.018 per day. The half-saturation den-
sity B0 of the feeding rate depends on the attack rate of the pred-
ators on the sockeye fry. Since experimental data for this
parameter are notoriously difficult to transfer to natural environ-
ments, we choose the value of B0 such that it leads to realistic
results, namely that the predator is able to live on the prey but
does not always feed at maximum rate. We therefore set B0 =
0.02 g·m–2 and explore the robustness of the results with respect
to the value of B0 in the Supplementary Material S11. The same
applies to the strength of interference competition among the
predators, specified by the parameter c. We set it to c = 0.5 so that
predators interfere with each other to some extent and again
explore the robustness of the results with respect to the value of c
in the Supplementary Material S11. With all other parameters
as in Table 2, cyclic dominance is predicted by the model for
0.15 � c � 0.85 and for 0 ≤ B0 � 0.04.

The constant a1 converts the biomass density of sockeye fry at
the end of the growth season into number density. We set
a1 � 0.3 g–1, assuming an average body mass of 3 g of the sockeye
fry at the end of the growth season (Hume et al. 1996). The prob-
ability for an individual fry to return as an adult to the spawning
ground is given by themarine survivability a2, which is close to 0.1
(Hume et al. 1996), and the probability to survive fishing (1 minus
the harvest rate h). The harvest rate varied considerably during
the last century and is usually not the same for the four lines of a
cycle. To simplify the analyses, we nevertheless begin by assum-
ing a constant harvest rate of h = 0.7 (English et al. 2011) and
explore the effects of variable harvest rates in the Supplementary
Material S21. The age composition of the sockeye spawners can be
directly observed. We assume a fraction of � = 0.1 of salmon that
spawn at the age of 5 years (Kim Hyatt, personal communication).
The parameter b, which gives the biomass of fry at the beginning
of a growth season derived from one spawner, is set to 12.8 g. It
includes a fraction of roughly 0.5 of effective female spawners
among all spawners (Hume et al. 1996), on average 3200 eggs per
female spawner in the upper Fraser region with a mean mass of
0.1 g (Beacham andMurray 1993), and an egg-to-fry survival rate of
0.08, approximated from data shown by Hume et al. (1996). These
data also show that when there are many spawners, the number
of fry that emerge in the rearing lake at the beginning of the
growth season does not increase indefinitely, but saturates at ap-
proximately KS = 0.1 g·m–2. Finally, the overwinter survivability of
the predators (sw) is set to 0.85 (Carl Walters, personal communi-
cation).

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2013-0441.

Table 2. Summary of parameters of the predator–prey model.

Symbol Parameter Value

T Length of growth season 150 days
r Sockeye maximum net growth rate 0.03 day–1

K Juvenile-rearing lake carrying capacity 2 g·m–2

e Predator assimilation efficiency 0.85
d Predator metabolic rate 0.0046 day–1

I Predator maximum ingestion rate 0.018 day–1

B0 Predator half-saturation density 0.02 g·m–2

c Predator interference competition 0.5
sw Predator overwinter survivability 0.85
� Fraction of sockeye spawning at age 5 0.1
a1 Fry biomass density to number density

conversion

0.3 g–1

a2 Marine survivability 0.1
h Harvest rate 0.7
b Fry biomass produced per spawner 12.8 g
KS Spawning ground carrying capacity 0.1 g·m–2
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Dynamic regimes

Depending on the parameter values, themodel for sockeye prey
and its trout predator produces qualitatively different dynamical
patterns (Fig. 1). If, for example, the carrying capacity K of the
rearing lake is very low, the salmon fry cannot develop suffi-
ciently large biomass densities, and so no oscillations occur. In-
stead, even if initially some differences exist between the four
salmon lines, they are soon dampened away (Fig. 1b). When K is
increased, the stable equilibrium becomes unstable because of
a Neimark–Sacker bifurcation, and quasiperiodic oscillations oc-
cur. When only short parts of the time series are considered
(Fig. 1c, right side of panel), a pattern that is very similar to cyclic
dominance can be observed; every fourth year, the number of
spawning salmon is much higher than in the other years. How-
ever, the pattern changes slowly over time, as is typical for qua-
siperiodic oscillations, and each successive dominant line reaches
a slightly different level than that of 4 years earlier. Only when
considering very long time intervals can it be seen that domi-
nance switches in a regular fashion between the four brood lines
(Fig. 1c, left side of panel).

At increasingly higher values of K, the period of the oscillation
suddenly becomes locked at exactly four (Fig. 1d). The mathemat-
ical mechanism behind this period locking is the so-called strong
resonance, which can occur if the oscillation period subsequent
to a Neimark–Sacker bifurcation is close to two, three, or four
(Kuznetsov 2004). If no stochastic perturbations occur, a brood

line that is dominant will stay dominant for all time. The domi-
nant line is followed by an intermediate or subdominant line and
two subsequent nondominant or off lines, just as it is observed in
some of the largest sockeye populations in the Fraser River region
(Hume et al. 1996; Ricker 1997).

The values of several of the parameters of the model, especially
the rearing lake carrying capacity K and the spawning ground
carrying capacity KS, have been adapted to roughly represent the
situation of the sockeye salmon populations inQuesnel, Shuswap,
and Stuart lakes. Other parameters like the length of the growth
season (T) and the fraction of sockeye spawning at age 5 (�) repre-
sent also most other sockeye stocks (cyclic or not) in the Fraser
River system. The remaining parameters, like the growth rate of
the sockeye fry (r) or the physiological rates of the predator (I and d)
characterize sockeye salmon and their predator in general and
are not specific for certain stocks. We note that none of the pa-
rameters have been fitted numerically to the observed time series
of spawner abundances in lakes that show cyclic dominance. Nev-
ertheless, the spawner abundances predicted by the predator–
prey model match the numbers observed in nature quite well
(Figs. 2a and 2b). This degree of not only qualitative but also quan-
titative agreement with empirical data is, indeed, remarkable for
a strategic model that uses very little system-specific information.

Nevertheless, the model is sufficiently flexible to produce a
variety of dynamical patterns that, in similar form, can also be
found in different natural sockeye stocks. In Fig. 2 we contrast

Fig. 1. Overview of the dynamics of the predator–prey model: (a) Bifurcation diagram of the density of sockeye spawners when varying the

carrying capacity K of the juvenile-rearing lake. Note that small biomass densities are shown on a logarithmic scale. Also note that to make

our simulation results easier to compare with empirical data, we plot the number of spawners per hectare instead of a biomass density

(measured in g·m–2). The dashed vertical lines indicate the values of the carrying capacity that were used to generate the time series of

sockeye spawner densities in the subsequent panels. (b) Stable equilibrium at K = 0.3 g·m–2. (c) Quasiperiodic oscillations at K = 0.53 g·m–2.

(d) Cyclic dominance at K = 2.0 g·m–2. All other parameters are as described in the text. Different symbols in the close-ups of the time series

denote the four cycle lines: dominant (squares), subdominant (diamonds), and two nondominant lines (upright and inverted triangles). For

the quasiperiodic oscillations (c), this assignment refers only to the initial part of the time series, as the four cycle lines change their role

continuously over time.
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Fig. 2. Comparison of model dynamics (left column) with time series of sockeye spawners from different stocks that show a similar

behaviour (right column). (a) Standard set of parameters (Table 2) leading to persistent cyclic dominance. Adding stochastic perturbations to

the model increases the similarity to the dynamics of the Shuswap Lake stock even further (Schmitt et al. 2012). (b) Shuswap (Adams River)

stock. (c) Dampened oscillations due to strong spawning ground limitations (KS = 0.01 g·m–2). (d) Harrison Lake stock. (e) High lake productivity

(K = 4 g·m–2) and spawning ground capacity (KS = 0.2 g·m–2) leading to high abundance of a competitor (threespine stickleback) of the sockeye

fry, which in turn leads to a levelling off of cyclic dominance. (f) Alastair Lake stock. (g) The majority of the sockeye spawns at the age of

5 years (� = 0.9), leading to irregular, persistent cycles with a period close to 5 years. T = 120 days, I = 0.036·day–1, d = 0.0092·day–1. (h) Kvichak

River stock. Unless stated otherwise, all model parameters are as in Table 2.
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model simulations with different parameter values (left column)
with escapement data of four very different sockeye stocks from
the Fraser River and other regions (right column). Aside from the
classic cyclic dominance case (Fig. 2a, parameters as in Table 2,
and Fig. 2b, Shuswap lake stock), we also showwhat happens if the
salmon population is strongly limited by KS. Figure 2c shows a
simulation run with KS = 0.01 g·m–2, or ten times less than the
standard value for this parameter. This reflects the situation of the
Harrison Lake stock (Fig. 2d), which shows no cyclic dominance
despite favourable growth conditions for the sockeye fry in the
rearing lake (Ricker 1950). Importantly, this simulation overesti-
mates the natural spawner densities by a factor of two to five,
indicating that spawning ground limitations for the Harrison
Lake stock might be even more severe than has been assumed.

One of the core assumptions of our predator–prey model is that
the rearing lake is oligotrophic and species-poor (see also Guill
et al. 2011). This ensures a strong coupling of the predator to the
sockeye fry. If the assumption of oligotrophy is violated, other fish
species may occur in the rearing lake and serve as an alternative
food source for the predator, thereby reducing its coupling to the
sockeye fry and impairing the potential for cyclic dominance. This
could be the case in Alastair Lake (Fig. 2f), which is among the
most productive lakes in British Columbia and hosts a large pop-
ulation of threespine stickleback (Gasterosteus aculeatus) in addi-
tion to a noncyclic stock of sockeye salmon (Shortreed et al. 2001).
For the corresponding simulation run, we doubled the lake K to
4 g·m–2 and the spawning ground KS to 0.2 g·m–2. Both factors in
principle increase the potential for cyclic dominance. However,
we also introduced a competitor species (stickleback) that grows
according to the same logistic equation as the sockeye fry (cf. eq. 1)
and is also eaten by the predator. We assume that the predator
prefers sockeye fry and spends two-thirds of its time foraging for
them and one-third foraging for stickleback. Competition be-
tween sockeye fry and stickleback is mediated only via the pred-
ator, not via their resources. In this case, the time series of sockeye
spawner density shows some initial cycles, which, however, are
soon dampened away, and the spawner density settles at a value
comparable to that recorded for the Alastair Lake stock.

The Kvichak River in Alaska is another highly productive river
for sockeye salmon, and its salmon population is also known to
display cyclic dominance. However, the cycles are not as regular
as, for example, in the Shuswap Lake stock, and the period of
the oscillation is often closer to 5 years instead of 4 (Fig. 2h). The
reason for this relates to the spawning age distribution of the
Kvichak River sockeye salmon. A variable but usually high frac-
tion of them spends an additional year in the rearing lakes
(Iliamna and Clark lakes) or at sea (Isakov et al. 2000) (i.e., the most
common age at spawning of Kvichak River sockeye salmon is
approximately 5 years). We can account for this in the model by
increasing the fraction of spawners returning at the age of
5 years (�) from 0.1 to 0.9 (Fig. 2g). For this simulation we also
decreased the length of the growth season (T) from 150 to 120 days
to account for latitude and assumed that the predator is on aver-
age smaller and thus has higher mass-specific metabolic rates
(I = 0.036 g·m–2 and d = 0.0092 g·m–2). The simulated time series is
more variable than in the classic case of cyclic dominance (Fig. 2a),
the oscillation period varies between 4 and 5 years as in the em-
pirical data, and even the so-called precycle (a cycle line with
intermediate abundance that precedes the dominant line) is pre-
dicted by the model.

Exploring scenarios

The predator–prey model given here allows us to examine the
system’s response to certain natural and anthropogenic scenarios
by varying some of its parameters in ways that mimic changing
environmental conditions or imposing new management mea-
sures. We discuss in the following four different scenarios how

internal dynamical behaviour is affected by certain changes in

external forcing conditions. In contrast with the study by Schmitt

et al. (2012), which investigates the role of fluctuating parameters,

we use here constant parameter values and investigate how the

dynamical attractors depend on these values. Taken together, the

two studies show that that pattern of cyclic dominance is very

robust to changes in the environment or management practices.

Scenario 1: warming

Global warming has been identified as a major driver of ecosys-

tem changes (Nelson 2005; Pörtner and Farrell 2008; Brose et al.

2012). We test how the coupled system of sockeye salmon and its

predator respond to warming by applying two simple changes to

the model. First, we assume that warming changes the length of

the growth season, and second, we assume that warming in-

creases mortality during stressful phases in the life cycle of the

salmon, especially during migration to or from the ocean. Let the

impact of warming be quantified by some dimensionless para-

meter x, ranging from 0 to 1, which influences the length of

the growth season T and the total smolt to adult survival a =

a1 · a2 · (1 – h) as follows:

T � (120 � 120 ·x) days

a � (0.0125 � 0.01 ·x)/g

We lack sufficient empirical data to give an exact quantitative

relation between the lengthening of the growth season and the

increase of the migration mortality that is implied by these equa-

tions. Instead, we have chosen the parameter values such that

warming has amarked influence on both the length of the growth

season and the smolt-to-adult survival.

The response of the salmon is shown in Fig. 3. A small temper-

ature increase has a similar effect as an increase in carrying ca-

pacity. It leads to higher spawner numbers in the dominant line,

but to lower spawner numbers in the two nondominant lines

(which, however, can be regarded as negligible because of the low

absolute numbers of spawners in these two lines). If warming

increases the length of the growth season to more than approxi-

mately 160 days and decreases smolt-to-adult survival by more

than 10% (corresponding to x > 0.35), any further warming has a

negative effect on all four brood lines. Eventually, cyclic domi-

nance becomes replaced by quasiperiodic oscillations.

This is, of course, only a very simple analysis of a possible re-

sponse of the system to changing climate conditions. Other re-

sponses are also possible. For example, while the length of the

growth season increases, the productivity of the rearing lakes

might still decrease because of increased thermal stratification

and reduced verticalmixing in the lakes or altered river flows that

may lead to lower nutrient influxes. This would lead to even lower

sockeye abundances and hasten the breakdown of the cyclic or

quasiperiodic behaviour.

Scenario 2: spawning channels

In several lakes spawning channels are operated in some years

to enhance the production of sockeye fry. Spawning channels

have a twofold effect on the parameters of our model, since they

increase KS and the egg survivability b by excluding predators

from the spawning grounds.

The simplest way to take these two effects into account is by

introducing a factor of spawning ground improvement y and to

relate it to KS and b via the following equations:

KS � KS
∗ · y

b � b∗ · y
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where KS
∗

� 0.1 g·m–2 and b* = 12.8 g are the standard values for
these parameters.

If modelled in this way, spawning channels have little effect on
the dominant brood line (Fig. 4). Doubling or even tripling the
spawning ground quality increases spawner abundance by less
than 20%, and higher efforts even have a negative effect. In abso-
lute numbers the subdominant line benefits most from the
spawning channels (diamond symbols in Fig. 4b), although the
nondominant lines (triangle symbols) show a stronger relative
increase. The mean spawner density during one cycle increases
from approximately 40 spawners per hectare at standard condi-
tions to 52 spawners per hectare if the quality of the spawning
grounds is increased by a factor five. In reality, one can expect the
effect on the dominant line to be even smaller, since salmon can
also spawn in the lake when they are very abundant, and the
spawning channels then constitute a smaller proportion of their
spawning grounds.

These simulations demonstrate that if the salmon fry in the
rearing lake are controlled by a predator or by the availability of
food, then the productivity of the stock is increased only margin-
ally by the addition of spawning channels and only by a very high
effort to improve the conditions for egg deposition and develop-
ment. This result depends, however, to some extent on the param-
eter values we used in the simulations. If, for example, the
carrying capacity of the rearing lake is much higher than we

estimated (larger K) or the predator is less efficient in catching
sockeye fry (larger B0), the above conditions do not apply, and
increasing the availability of spawning grounds could substan-
tially increase the biomass density of sockeye fry. If, however, the
quality of the spawning grounds is even lower than we have as-
sumed for standard conditions, themean spawner density quickly
decreases to values below 10 spawners per hectare, and cyclic
dominance does not occur. This may indicate why some rearing
lakes, which should have the capacity to host large populations of
salmon fry, have developed only small sockeye stocks that lack
cyclic dominance. This mechanism was hypothesized by Ricker
(1950) to explain the relatively small sockeye population of Harri-
son Lake.

Scenario 3: predator culling and stock management
Removal of predators (e.g., by increasing sport fishery quotas on

in-lake trout) has been suggested as one possibility to enhance the
abundance of sockeye salmon in all four cycle lines to the level of
the dominant line (Larkin 1971). This would greatly enhance the
biomass of sockeye that could later be harvested by the marine
fisheries. We test this idea by increasing the parameter d of the
model, which contains the mortality and the respiration rate of
the predator (Fig. 5).

Increasing the predator mortality rate to intermediate levels
(d ≈ 0.007) has nearly no effect on the dominant line, but the other

Fig. 3. Effect of warming on the sockeye salmon population (scenario 1). The bifurcation diagram (a) summarizes the response of the salmon

population over a gradient of environmental conditions. For better visibility of the nondominant lines, small spawner densities are shown on

a logarithmic scale. Higher values of the abstract warming parameter x correspond to higher temperatures. The curved dotted line marks the

mean spawner density during one cycle. In the time series (b), it can be seen that the general pattern of the oscillation remains the same and

that mainly the dominant (squares) and the subdominant (diamonds) lines suffer from warming (x = 0.8, open symbols, dash-dotted lines in

both panels) compared with the standard conditions (x = 0.25, filled symbols, dashed lines in both panels).
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Fig. 4. Effect of improving the spawning ground quality by operating spawning channels (scenario 2). (a) Bifurcation diagram over a gradient

of spawning ground quality. For better visibility of the nondominant lines, small spawner densities are shown on a logarithmic scale. The

curved dotted line corresponds to the mean spawner density during one cycle. (b) Time series for standard conditions (y = 1, filled symbols,

dashed lines) and for threefold higher spawning ground quality (y = 3, open symbols, dash-dotted lines).
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lines (especially the subdominant line and the first nondominant
line) increase considerably in abundance (Fig. 5c). This also in-
creases the average spawner abundance significantly. When d is
further increased, cyclic dominance becomes replaced by quasi-
periodic oscillations in a very narrow range of parameters. At
d ≈ 0.0078, these break down, too, and the four salmon lines settle
down at a stable equilibrium. However, in this population state,
the four lines are only at a level comparable to the subdominant
line in the unperturbed system, not at the level of the dominant
line.

Based on the data published by Sebastian et al. (2003) on rain-
bow trout in Quesnel Lake, we estimated a total number of about
40 000 rainbow trout weighing approximately 500 g each and
about half that number weighing 1000 g or more. This results in a
predator biomass density in Quesnel Lake (surface area: 270 km2)
of approximately 0.15 g·m–2. The predator biomass density pre-
dicted by our model is in very good agreement with this estimate
(Fig. 5d). Our simulations also reveal that when the sockeye
salmon display cyclic dominance, the difference between the stron-
gest and the weakest line of the predator is only a factor four,
while in the salmon population it is close to a factor 1000. Such a
rather small numerical response of the predators to highly vari-
able prey abundance, which will most likely be difficult to detect
in nature, has been suggested before (Ricker 1997). Interestingly,
the parameter d, which summarizes mortality and respiration
rate of the predator, can be nearly doubled without reducing the
mean biomass density of the predator. This phenomenon has
been called the hydra effect (Abrams 2009) and is due to the in-
creased availability of food. Only when d is increased beyond 0.01
does the predator biomass density decline to levels lower than in

the unperturbed system, and the predator is finally driven to

extinction at d ≈ 0.013. This decrease of predator biomass density

allows the sockeye population to increase in all four brood lines to

levels even higher than that of the original dominant line.

This strategy to increase the abundance of sockeye salmon is,

however, extremely ill-advised. First, our model does not account

for the life history of the predator. It only accounts for the positive

effect of salmon biomass density on the predator that leads to a

delayed increase in predation mortality of the sockeye fry. While

this is sufficient to generate cyclic dominance, more detailed

models have demonstrated a differential effect of predator mor-

tality. If competition among adult predators is strong, moderately

increasing their mortality might actually increase their recruit-

ment rate (De Roos et al. 2007), which could have negative effects

on the salmon population. Only high levels of additional predator

mortality are guaranteed to negatively affect the predator and

thus benefit the sockeye salmon.More detailed information about

the predator is therefore crucially important, for example about

potential bottlenecks in its life cycle dynamics, to obtain relia-

ble quantitative predictions concerning the outcome of such a

predator-removal program. Second, the most important predator

of sockeye salmon fry in the rearing lakes in the Fraser River

system is the rainbow trout, which have their own ecological and

economic value. As top predators they have a prominent role in

controlling the structure and the dynamics of the rearing lake

ecosystem (Duffy 2003; Casini et al. 2009). Removing them from

the rearing lakes would cause considerable economic losses for

the local tourism industry because of their importance for sport

fishing.

Fig. 5. Effect of increasing the predator mortality rate (scenario 3) on the sockeye salmon (a, c) and on the predators (b, d). The curved dotted

lines in the bifurcation diagrams (a, b) correspond to the mean spawner density and the mean predator biomass density during one cycle,

respectively. In the time series (c, d), filled symbols and dashed lines denote standard conditions (d = 0.0046, no additional predator mortality),

and open symbols and dash-dotted lines denote intermediate levels of additional predator mortality (d = 0.0075). Symbols in the predator time

series (d) correspond to those of the same year in the sockeye spawner time series (c).
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Scenario 4: adjusting harvest rates
With the value of the annual catch of Fraser River sockeye

salmon previously exceeding CAN$100 million in dominant years
(Hume et al. 1996), a major motivation to investigate the popula-
tion dynamics of sockeye salmon is to provide a scientific basis for
management decisions. Our model also allows us to explore the
effects of varying the harvest rate h (eq. 3). For simplicity we have
chosen it to be the same for all four lines of a cycle, with a stan-
dard value of 0.7.

We can, however, vary the harvest rate between 0 and 1 to
explore the consequences for the sockeye population (Fig. 6). The
response of the number of spawners to varying harvest rates is
quite straightforward; the higher the fraction of adult salmon
that are caught, the fewer the fish that reach the spawning
grounds (Fig. 6a). This is true for all four brood lines. At the same

time, higher harvest rates also means that higher absolute num-
bers of fish are caught, as long as the rate is not too high (Fig. 6b).
The yield peaks at a harvest rate of approximately 0.83. This value
appears to near a population threshold, and only slightly higher
rates lead to a drastic decline of the absolute yield in dominant as
well as subdominant years. However, the decrease in the yield is
not as strong as the decrease of the spawner abundance (Figs. 6e, 6f).
Eventually, cyclic dominance breaks down as the stock collapses.
This increases the yield from the formerly nondominant lines, but
this can by far not compensate the much smaller yield from the
formerly dominant and subdominant lines.

The total return (catch plus spawners; Fig. 6c) is close to its
maximum at the standard value of fishingmortality we have used
in this study. Increasing the harvest rate above 0.85 leads to a
rapid collapse of the stock because of overfishing. Lower harvest

Fig. 6. Effects of adjusting the harvest rate (scenario 4) on the abundance of spawners (a), the catch (b), the total return (c), and on the

predators (d). The curved dotted lines correspond to the mean values during one cycle, and the dashed vertical lines mark the standard

conditions. Time series of spawner abundance (e) and fisheries yield (f) are shown for standard conditions (harvest rate h = 0.7, filled symbols,

dashed lines) and for an overfishing scenario (h = 0.94, open symbols, dash-dotted lines).
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rates, however, do not increase the total return, because this only
leads to higher competition on the spawning grounds and higher
predation mortality during the first year in the rearing lake. This
demonstrates that a certain degree of “managed” mortality is
necessary to maximize the production of a salmon stock.

Our model also allows us to estimate some consequences of
fishing at the ecosystem level. Every sockeye salmon that is re-
moved from the system because of fishing is essentially lost to the
freshwater ecosystem, causing a continuous decrease of the pred-
ator biomass density with increasing harvest rate (Fig. 6d). If the
rate is too high (above approximately 0.95), the predator is driven
to extinction. This leads to an increase of the fisheries yield in a
narrow parameter range, but at only slightly higher harvest rates
the sockeye are driven to extinction, too.

With harvest rates regularly exceeding 0.50, the management
strategy applied can be expected to have a strong impact on the
overall population dynamics of the salmon. Here we have as-
sumed that the harvest rate is the same for all four cycle lines.
Other strategies like a constant-escapement policy would lead to
different fishing mortalities in different years of the cycle, which
might either enhance or suppress cyclic dominance. In the Sup-
plementary Material S21, we present simulation results for two
alternative harvest strategies (constant escapement and constant
harvest goal). In either case cyclic dominance still occurs over a
wide parameter range, demonstrating once again the robustness
of this phenomenon to anthropogenic disturbances.

Discussion and conclusions

We have demonstrated that the phenomenon of cyclic dom-
inance of Fraser River sockeye salmon can be explained by a
predator–prey interaction in the juvenile-rearing lakes of the
salmon, as has been hypothesized before (Ricker 1997). It correctly
predicts the sequence of one dominant year, followed by one sub-
dominant year and twonondominant years,which is observed in the
Shuswap, Quesnel, and late Stuart stocks, three of the largest sock-
eye stocks in the Fraser River basin. Unlike othermathematicalmod-
els that have explored this mechanism, our model predicts cyclic
dominance as a stable state of the system that is robust to perturba-
tions (Schmitt et al. 2012) and to a broad range of variations in envi-
ronmental conditions. In the last decades, however, the cyclic
patterns of the Quesnel and late Stuart stocks have begun to show
signs of weakening. The dominant lines are decreasing and one of
theweaker linesmight take over as a newdominant line. Thismight
indicate that the stocks are now actually in or near the quasiperiodic
regime (Fig. 1c), possibly because of a change in environmental con-
ditions that negatively affect the productivity of the lakes (cf. Fig. 1a
and scenario 1, warming). It is, however, also possible that domi-
nance shifts to another line in those stocks following stochastic
perturbations instead of a permanent change of environmental
conditions (Schmitt et al. 2012).

In contrast with an earlier paper based on a three-speciesmodel
(Guill et al. 2011), the present model includes only two species,
thereby specifying the trophic interaction in the rearing lakes
that is likely to be relevant for the occurrence of cyclic domi-
nance. The former study included the zooplankton food of the
sockeye fry. The zooplankton can be neglected as an independent
dynamic variable, as in this study, because its dynamics are usu-
ally much faster than those of the fish species, meaning that the
zooplankton will closely follow a moving equilibrium that is de-
termined by the biomass density of the sockeye fry.

Themodel results are robust to varying the growth efficiency of
the sockeye fry. This can be tested by introducing an exponent (g)
in the growth term of the sockeye fry in eq. 1 (i.e., r · Fn · (1 – Fn/K)

g).
Values of g smaller than 1 imply higher growth efficiencies of the
sockeye fry, but as long as g is not too small (e.g., g > 0.2), this has
no impact on the dynamics other than to increase the abundance
of the dominant line. We interpreted the parameter e in eq. 1 as

the assimilation efficiency of the predator (i.e., as the fraction of
ingested food that is not excreted as faeces or urine). Alterna-
tively, it can be interpreted as growth efficiency, which also ac-
counts for metabolic costs due to specific dynamic action and
higher activity associated with foraging. In this case, ewould have
a smaller value of around 0.55 (instead of 0.85), but the metabolic
rate d of the predator would have a smaller value too, because
parts of the total metabolic demands are already included in e. In
this case, realistic limits for themetabolic rate are 0.002 per day ≤
d≤ 0.003 per day, which leads to the same qualitative behaviour as
before.

The oscillation pattern of cyclic dominance belongs to the class
of single generation cycles, because the period of the oscillation
matches the dominant generation time. Classically, generation
cycles are assumed to be caused by a direct density-dependent
feedback of the dominating cohort on the competing cohorts
(De Roos and Persson 2003). This is seen, for example, in Nichol-
son’s sheep blowfly (Lucilia cuprina) populations (Kendall et al.
1999). In sockeye salmon populations, however, the situation is
quite different. Because the sockeye salmon leave the freshwater
habitat after 1 year, they cannot compete directly — in-lake —

with the subsequent brood lines. Instead, we observe an indirect
competition, which is mediated by the predators. Further, the
mechanism behind the oscillations is also different from classic
predator–prey oscillations, which are characterized by an oscilla-
tion period that is much longer than the generation time of the
prey or the predators (Murdoch et al. 2002). The population oscil-
lations of snowshoe hare and lynx are a typical example for this
kind of oscillations (Elton and Nicholson 1942).

We thus conclude that cyclic dominance is a unique type of
population oscillation that is caused by a subtle interplay between
the life history of the sockeye salmon and its interaction with a
highly piscivorous predator. Owing to the special life history of
sockeye salmon, each brood line experiences predation in the
rearing lakes only for 1 year and feeds a predator population the
size of which will affect the brood line of the following year.
The species-poor food web in the rearing lakes ensures that the
state of the predators is tightly coupled to the abundance of their
prey, the sockeye salmon. The slower life cycle and population
dynamics of the predator leads to a delayed response of the pred-
ators to changing prey abundances; after 2 nondominant years,
the predator population is in a very weak state and it requires
2 years to reach its maximum value again. This delay allows the
dominant and, to a lesser degree, the subdominant brood lines to
express the observed high abundances and subsequently leads to
the suppression of the following brood lines.

Such a delayed effect of a predator population on the sockeye
salmon has also been proposed by Larkin (1971). He introduced
coefficients of delayed density dependence (i.e., a negative effect
of high densities of salmon fry not only on their own survival, but
also on that of following cycle lines) to mimic the effect of a
predator. However, the population dynamics of the predator was
not included explicitly in his model, and the predator was only
represented by its effect on the salmon. This required implement-
ing specific assumptions, for example, that the dominant line is
not (or only weakly) affected by predation. This is also predicted
by our model, but the assumption breaks down as soon as there
are multiple dominant cycle lines. In this case, the higher avail-
ability of food during a whole cycle period would feed back on the
predator population and allow it to increase to levels high enough
to also affect dominant lines. By ignoring this feedback, themodel
of Larkin was able to frequently produce cycles with at least two
dominant lines.

The predator–prey model we have proposed here allows us to
explore scenarios of changing environmental conditions or hu-
man intervention with the natural system. These model-based
experiments are not of sufficient detail to apply them strictly to
management decisions or protection measures. For example, we

970 Can. J. Fish. Aquat. Sci. Vol. 71, 2014

Published by NRC Research Press

C
an

. 
J.

 F
is

h
. 
A

q
u
at

. 
S

ci
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.n
rc

re
se

ar
ch

p
re

ss
.c

o
m

 b
y
 U

N
IV

E
R

S
IT

A
E

T
S

 B
IB

L
 P

O
T

S
D

A
M

 o
n
 0

6
/0

1
/1

6
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 

86



neglected that warming (scenario 1) also affects physiological

rates and thus the predator–prey dynamics (Binzer et al. 2012; Rall

et al. 2012). Nevertheless, these investigations demonstrate the

advantagemechanistic modelling approaches have overmere sta-

tistical or descriptive ones. The analyses further show that cyclic

dominance appears under a wide range of environmental condi-

tions, as long as neither the spawning grounds nor the food avail-

ability are too strongly limiting, and the predator cannot switch

to alternative food sources that completely substitute the sockeye

fry in nondominant years. These conditions are met for some of

the largest salmon stocks in the upper Fraser River region, imply-

ing that cyclic dominance can indeed be the natural state of sev-

eral of the sockeye salmon populations in the Fraser River basin.
Strong empirical evidence for the mechanism we proposed for

the generation of cyclic dominance could be provided by observa-
tions of piscivorous predator populations in the rearing lakes. We
would expect to find an oscillation of the total predator biomass
with a period of 4 years only in rearing lakes of sockeye stocks that
exhibit cyclic dominance, but more constant or even completely
absent predator populations in rearing lakes of noncyclic stocks.
Our simulations, however, predict a comparably small amplitude
of the oscillation in the predator population, which makes detec-
tion of the oscillation (and of distinguishing it from random en-
vironmental perturbations) difficult. So far we can demonstrate
that the biomass density of rainbow trout in Quesnel Lake, where
they are the main predator of sockeye fry, is in the range of what
is predicted by our simulations. This is only a first step, and better
and especially time-resolved data on potential predator popula-
tions is needed. This encouraging result, however, suggests that
enhancing empirical research on the ecological processes in the
freshwater habitat of sockeye salmon might be the key to under-
standing one of themost intriguing phenomena of the population
dynamics of sockeye salmon.
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Abstract
The stability of ecological communities depends strongly on quantitative characteristics of population inter-

actions (type-II vs. type-III functional responses) and the distribution of body masses across species. Until

now, these two aspects have almost exclusively been treated separately leaving a substantial gap in our gen-

eral understanding of food webs. We analysed a large data set of arthropod feeding rates and found that all

functional-response parameters depend on the body masses of predator and prey. Thus, we propose gener-

alised functional responses which predict gradual shifts from type-II predation of small predators on

equally sized prey to type-III functional-responses of large predators on small prey. Models including these

generalised functional responses predict population dynamics and persistence only depending on predator

and prey body masses, and we show that these predictions are strongly supported by empirical data on for-

est soil food webs. These results help unravelling systematic relationships between quantitative population

interactions and large-scale community patterns.

Keywords
Allometric scaling, body size, consumer-resource, ecological modelling, feeding rate, food webs, interaction

strength, metabolic theory.

Ecology Letters (2013) 16: 1126–1134

INTRODUCTION

The stability of populations, communities and ecosystem functions

depends critically on the strengths, distributions and characteristics

of the interactions connecting species in complex food webs

(McCann et al. 1998; Neutel et al. 2002; Rooney et al. 2006). Tradi-

tionally, consumer–resource interactions have been categorised

according to their functional response as hyperbolic (type-II) or sig-

moid (type-III) increases in the consumer’s per capita feeding rate

with the resource density (Holling 1959; Murdoch & Oaten 1975;

Sarnelle & Wilson 2008). Historically, the quest for type-III func-

tional responses has been fuelled by their severe consequences for

population dynamics: they promote stable equilibria by accelerating

predation risk at low resource densities which prevents unstable

population oscillations (Murdoch & Oaten 1975; Williams & Marti-

nez 2004; Fryxell et al. 2007; Rall et al. 2008). Despite their dynami-

cal importance, however, characterising these functional-response

types for each of the myriads of interactions in natural communities

by tedious individual experiments is unfeasible thus rendering a gen-

eralised understanding of natural population dynamics virtually or

nearly impossible.

An alternative approach employs body masses and their allometric

relationships with ecologically important traits of species and their

interactions (Peters 1983; Brown et al. 2004; Brose 2010). This allo-

metric approach predicts the biological rates of populations such as

respiration, consumption and growth by population-averaged body

masses (Peters 1983; Brown et al. 2004) that are often available for

consumer-resource pairs (Digel et al. 2011; Riede et al. 2011). More-

over, this constrains the universe of possible combinations of bio-

logical rates into those that are probable given that they all scale

with species’ body masses (Brose 2010). In this vein, systematic

scaling relationships of the functional-response parameters handling

time and capture rate (see Methods for detailed functional-response

models) have been documented (Wahlstr€om et al. 2000; Aljetlawi

et al. 2004; Vonesh & Bolker 2005; Vucic-Pestic et al. 2010b; McCoy

et al. 2011; Rall et al. 2011). Recently, it was shown that predatory

beetles exhibited type-II or type-III functional responses when feed-

ing on a small or a large prey species, respectively (Vucic-Pestic

et al. 2010b), but this pattern has not been generalised across differ-

ent predator and prey species. Allometric scaling of handling time

and capture rate (also known as attack rate, see Methods) were

included in population dynamic models demonstrating that variance

in body masses has profound effects on population dynamics

(Yodzis & Innes 1992; Weitz & Levin 2006; Otto et al. 2007) and

food-web persistence (Loeuille & Loreau 2005; Brose et al. 2006;

Rall et al. 2008; Heckmann et al. 2012). However, as none of these

models addressed relationships between body masses and func-

tional-response types, they could not explain the radical dynamic

shifts associated with differences between these types (e.g. Williams

& Martinez 2004; Brose et al. 2006; Rall et al. 2008).

We investigated how allometric scaling models can be integrated

into functional-response types. These generalised allometric func-

tional responses go beyond traditional functional-response types by

including a body mass dependency for the capture exponent causing

a gradual transition between hyperbolic and sigmoid functional

responses. After parameterising allometric functional-response mod-

els employing data of terrestrial arthropod consumer–resource inter-

actions, we show in dynamical analyses that allometric scaling of the

capture exponent causes severe differences in population dynamics.

In consequence, this model predicts a more realistic domain of
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stable coexistence for consumer-resource pairs than previous mod-

els, as we show by comparing the match with body-mass data from

an entirely independent data base on natural food webs.

MATERIAL AND METHODS

Functional responses

The functional-response model framework established by Holling

(1959) has been used in a plethora of studies (reviewed in Rall et al.

2012), where the per capita consumption rate of the predator, F,

depends on the density of the prey, N:

F ¼ aN

1þ ahN
; ð1Þ

with the handling time, h [s], needed to kill, ingest and digest a prey

individual (Jeschke et al. 2002) and the capture rate, a [m2 s�1], as a

measure of the predator’s hunting efficiency (originally termed ‘rate

of successful search’; Holling 1959). The capture rate was also

termed ‘attack rate’ in other studies, a term that we consider as dep-

recated because of its ambiguity in excluding or including unsuc-

cessful attempts of attack (Koen-Alonso 2007). This model

framework is suitable for a wide range of consumer–resource inter-

actions but as our experimental work was exclusively based on ter-

restrial invertebrate predators and their prey we will subsequently

adhere to the terminology of predators and prey. Several functional-

response studies have addressed allometric scaling and showed that

capture rates follow hump-shaped relationships with predator–prey

body-mass ratios while handling times decrease with increasing

predator body mass and increase with prey body mass which can be

explained by functional morphological constraints and allometric

arguments based on metabolic theory (Wahlstr€om et al. 2000;

Aljetlawi et al. 2004; Vonesh & Bolker 2005; Vucic-Pestic et al. 2010b;

McCoy et al. 2011; Rall et al. 2011; more references in Brose 2010).

The type-II functional response with a constant capture rate

(eqn 1) can be modified to account for capture rates that vary

with prey density, a = bNq (Williams & Martinez 2004; Rall et al.

2008; Vucic-Pestic et al. 2010b), which yields type-III functional

responses:

F ¼ bN 1þq

1þ bhN 1þq
; ð2Þ

where b is a capture coefficient (sometimes also referred to as

search coefficient), and q is a scaling exponent (hereafter: capture

exponent) that converts hyperbolic type-II (q = 0) into sigmoid

type-III (q > 0) functional responses. Subsequently, we aim to dem-

onstrate that the inclusion of allometric dependencies for the cap-

ture coefficient, b, and capture exponent, q, substantially improve

and generalise functional-response models.

Feeding rate experiments

We integrated data of prior feeding and functional-response studies

(Brose et al. 2008; Vucic-Pestic et al. 2010b; Rall et al. 2011) with

additional feeding experiments. These experiments used different

treatment designs, but where all employing exactly the same micro-

cosm set-up and environmental conditions (see Table S2 in Supple-

mentary Material for a list of predator–prey pairs and reference to

previous publications). In total, this yielded per capita feeding rates

of 25 species of generalist arthropod predators (Coleoptera:

Carabidae, Staphylinidae; Araneae: Lycosidae, Pisauridae, Salticidae;

Chilopoda: Lithobiidae) on eight differently sized prey species [Col-

lembola; Diptera (larvae and adults); Coleoptera (larvae); Isopoda;

Orthoptera) varying between one and 1000 prey individuals per

arena (0.04 m², see Table S1 for species names and density levels

for each predator–prey pair]. All experimental units comprised a

single predator individual and prey density was varied systematically

(e.g. 1, 3, 5, 10, 30, 50 individuals per arena). Here, the definition

of a predator includes its taxonomy and size class (narrow size

ranges). Predators were sampled in the field, and only a small frac-

tion of juvenile centipedes and lycosid spiders were reared in the

laboratory until they reached the designated size. Prey populations

were reared in the laboratory. Body masses of predators were deter-

mined individually. Prey body masses were estimated as averages

across prey populations (see Table S2 for predator and prey species

with ranges of body masses). Prey density levels were replicated two

to eight times resulting in a total number of 2564 experimental units

(see Table S2).

The predator individuals were kept separate in plastic jars dispersed

with water and were deprived of food for at least 48 h before the start

of the experiments. The experiments were performed in acrylic glass

arenas (0.2 9 0.2 9 0.1 m) covered with lids permeable to air. The

arena was floored with moist plaster of Paris (200 g dry weight) to

provide constant humidity during the experiments. Habitat structure

in the arenas was provided by moss (Polytrichum formosum, 2.35 g dry

weight) that was first dried for 3 days at 40 °C to exclude animals and

then re-moisturised prior to the experiments. Prey individuals were

placed in the arenas half an hour in advance of the predators to allow

them to disperse in the arenas. The experiments were run for 24 h

with 12 h dark and 12 h light at a constant temperature of 15 °C in

temperature cabinets. Initial and final prey densities were used to cal-

culate the number of prey eaten. Predators were weighted before and

after the experiments to calculate mean body mass. Control experi-

ments without predators showed that prey mortality or escape was

negligible.

Functional-response models

Different candidate functional-response models were fitted to the

feeding-rate data that were evaluated according to their DAIC (dif-

ference in Akaike Information Criterion). As null models, we esti-

mated constant parameters for non-allometric models of type-II

(h and a in eqn 1) and type-III (h, b and q in eqn 2) functional

responses. The first allometric model was a type-II functional

response (eqn 1) with fixed allometric-scaling exponents according

to Yodzis & Innes (1992), where the handling time,

h ¼ h0mr m
�0:75
c ; ð3aÞ

as well as the capture rate,

a ¼ a0m�1
r m0:75

c ; ð3bÞ
are described with h0 and a0 as constants and the body masses [g],

mc and mr, of the predator c, and the prey r, respectively. These null

models of allometric relations are based on the simplifying assump-

tion that interaction parameters should scale with body masses in

the same way as metabolic rates with a ¾ power law (Peters 1983;

Brown et al. 2004; Brose 2010; see Supplementary Information for a

detailed description of the derivation of functional-response

© 2013 John Wiley & Sons Ltd/CNRS
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parameters from the models in Yodzis & Innes 1992). Subsequently,

we will refer to this first model (inserting eqns 3a,b into eqn 1) as

the allometric type-II functional response.

In the second model, allometric relationships were included

according to a prior study (Rall et al. 2011) where handling time, h,

follows power-law relationships with predator and prey body mass:

h ¼ h0mar

r mac

c ; ð4aÞ

where and ac and ar are allometric exponents (Rall et al. 2011). As

capture rates follow hump-shaped relationships with predator–prey

body-mass ratios (Wahlstr€om et al. 2000; Aljetlawi et al. 2004; Vonesh

& Bolker 2005; Vucic-Pestic et al. 2010b; McCoy et al. 2011) we esti-

mated the allometry of the capture rate, a, using a combined equation

comprising a power-law relationship with prey body mass and an

exponential Ricker function that describes a humped curve with

increasing body-mass ratios of the predator to the prey:

a ¼ a0mbr
r

mc

mr

ee
mc
mr ; ð4bÞ

where a0 is a constant, br is the exponent for the scaling of mr, and

e is a constant which determines the width of the hump (Rall et al.

2011). This pattern of decreases and increases in capture rates at

low and high prey body mass yields a hump-shaped attack model

(Wahlstr€om et al. 2000; Aljetlawi et al. 2004; Vucic-Pestic et al.

2010b; McCoy et al. 2011). We will refer to this second model as

the hump-shaped allometric functional response.

Finally, we extended the second model by including a sigmoid

scaling of the capture exponent, q, with the predator–prey body-

mass ratio R:

q ¼ qmaxR2

q2
0 þ R2

; ð5aÞ

where qmax and q0 are scaling parameters defining the sigmoid rela-

tionship. The capture coefficient, b, follows the same allometric

scaling relationships as the capture rate, a, in the previous model

(eqn 4b), with the constant b0 instead of a0:

b ¼ b0mbr
r

mc

mr

ee
mc
mr : ð5bÞ

Inserting eqns 4a, 5a,b into eqn 2 yielded our third model, the

generalised allometric functional response, accounting for hyperbolic

as well as sigmoid forms of the response in dependence on preda-

tor and prey body masses.

Fitting the models to the data set of experimental observations by

nonlinear least squares methods requires integrating the functional

response to predict Ne, the number of prey individuals eaten during

the experimental time as a function of the initial prey density (‘nls’ in

R; Bolker 2008; R Development Core Team 2010). The application of

Rogers’ random predator equation accounts for decreasing prey densi-

ties during the experiment (Rogers 1972; Vonesh & Bolker 2005;

McCoy & Bolker 2008) and can be solved using the Lambert W

function (implemented in the package ‘emdbook’ for the statistical

software R; Bolker 2008; R Development Core Team 2010 see Sup-

plementary Information for details on equations and fitting procedure).

Model analyses

To illustrate the different consequences of these functional-response

models for population dynamics, we performed bioenergetic simula-

tions of simple predator–prey pairs (Yodzis & Innes 1992; Otto et al.

2007; Heckmann et al. 2012; Schneider et al. 2012) for each of the

three different functional response models: the allometric type-II,

the hump-shaped allometric and the generalised allometric functional

response (see Supplementary Information for methodological details

of the model simulations). We compared the resulting persistence

domains of the model simulations (i.e. the combinations of prey and

predator body masses at which the predator is predicted to persist)

to a new data base on predator and prey body masses of terrestrial

soil food webs from a large biodiversity research project in Germany

(see Supplementary Information for details on food-web assembly).

On basis of the predicted persistence domains, the three models

were compared using a dimensionless score value, S. We defined this

value to be a product of two ratios calculated within to the total area

of the comparison, Atotal (see Supplementary Information, Fig. S1 for

the definition of this comparison envelope):

S ¼
Lpers

Lemp

�
Atotal � Apers

Atotal

: ð6Þ

The first fraction is the percentage of predator–prey pairs for

which persistence is predicted by the model, Lpers, among all empiri-

cally observed links, Lemp. It is multiplied with the fraction of the area

where no persistence of the predator is possible (total area, Atotal,

minus the persistence domain, Apers). Thus, S penalises large persis-

tence domains, which per se include larger proportions of the empiri-

cal links. For the same set of empirical predator–prey pairs, the score

is maximised for a model that includes a maximal number of preda-

tor–prey pairs while predicting a minimal persistence domain.

RESULTS

The comparison via AIC revealed that the generalised functional-

response model with allometric scaling of all parameters including q

was the best-fitting model (AIC = 34087.74; DAIC = 0.0; d.f. = 9)

compared to the hump-shaped allometric functional response

(DAIC = 566.54; d.f. = 7) and the allometric type-II functional

response (DAIC = 1586.69; d.f. = 3). The application of

non-allometric type-II and type-III functional-response models to

the data set scored worst (DAIC = 1688.54, d.f. = 3 and

DAIC = 2134.58, d.f. = 3 respectively; see Table 1 for an overview

of all parameter estimates). Together, these results imply that the

generalised allometric functional-response model provides a substan-

tially better fit to the feeding data over a wide variety of species,

and the subsequent results will be based on this best-fitting model.

For handling time h, we found a significant negative power-law

scaling with predator body mass (h0 = 43 280; standard

error = 8.364; P < 0.001; ac = �0.283; SE = 0.0218; P < 0.001;

Fig. 1a), and a positive power-law scaling with prey body mass

(ar = 0.568; SE = 0.022; P < 0.001; Fig. 1a). Hence, handling times

are highest at very low predator–prey body-mass ratios (i.e. the prey

is larger than the predator, Fig. 1a). Furthermore, we found a

hump-shaped relationship for the capture coefficient b with the

predator–prey body-mass ratio (b0 = 1.680 9 10�8; SE =
4.469 9 10�9; P < 0.001; br = 0.0033; SE = 0.0371; P = 0.378;

e = �0.0182; SE = 0.0008; P < 0.001; Fig. 1b). Finally, the capture

exponent q scaled positively with the predator–prey body-mass ratio

R following a sigmoid relationship (q0 = 1.009; SE = 21.84;

P < 0.001; qmax = 3.306; SE = 0.148; P < 0.001; Fig. 1c) implying

that the higher the body-mass ratio the more sigmoid the functional
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response. This translates into type-II-like responses for small preda-

tors consuming relatively large prey, while large predators should be

feeding on small prey following type-III-like responses according to

the traditional categorisation of functional responses.

These general allometric scaling relationships of handling time,

capture coefficient and capture exponent with predator and prey

body masses allow predicting feeding rates for any combination of

predator and prey body mass, and thus for any predator–prey pair

(shown as solid lines in Fig. 2a-c for three exemplary taxonomic

predator–prey pairs, see Fig. S1 for more examples). Embedding

the parameters of these generalised allometric functional responses

in population models yield predictions of predator–prey biomass

dynamics (shown exemplarily in Fig. 2d-f for the taxonomic pairs

of a-c). Subsequently, we have used one aspect of these biomass

dynamics, predator survival, to compare the predictions of the three

allometric functional-response models. We found that the simula-

tions of the dynamic population model with the three functional

responses predict very different persistence domains of predator

and prey body masses enabling predator survival (non-red areas in

Fig. 3). While the predator in the allometric type-II functional-

response model only persists at very low prey body masses

(Fig. 3a), the other two models produce a more band-shaped persis-

tence domain across the range of predator–prey masses (Fig. 3b-c).

However, these two domains exhibit pronounced differences

including that under the hump-shaped allometric functional

responses large predators can persist across a wide range of prey

body masses (Fig. 3b), whereas the generalised allometric functional

responses produces a cone-shaped persistence domain where the

largest predators can only persist on a very small range of prey

body masses (Fig. 3c).

We compared the persistence domains predicted by the dynamic

population models to empirical body-mass data of forest soil inver-

tebrates. These data were selected for model evaluation, because

they include many of the predator and prey taxa that were used in

the functional-response experiments and thus in the models’ param-

eterisation. We evaluated the three models according to the percent-

age of natural predator–prey links (grey-shaded squares in Fig. 3a-c)

that fall within the persistence domains. This comparison revealed

that the allometric type-II functional-response model yielded a per-

sistence domain that included only 21.9% of the natural body-mass

combinations (Fig. 3a), which is considerably less than the persis-

tence domain of the hump-shaped allometric functional-response

model including 95.8% of the interaction pairs (Fig. 3b). The gener-

alised allometric functional-response model performed best by yield-

ing a persistence domain matching 97.7% of the links in the food-

web data base (Fig. 3c). However, as the sizes of the predicted per-

sistence domains differ (19.9, 66.0 and 50.8% of the total area for

the allometric type-II, the hump-shaped and the generalised func-

tional-response model respectively), the chances of correctly includ-

ing a predator–prey pair in the domain are not equal. To account

for these differences between the models, we penalise for the size

of the predicted persistence domain in the score S (see Methods).

This yielded score values of S = 0.17 for the allometric type-II

model, S = 0.32 for the hump-shaped allometric model and

S = 0.48 for the generalised allometric functional-response model.

Hence, the generalised model predicts the persistence domains sub-

stantially better than the other models, even after accounting for

the different sizes of persistence domains.

DISCUSSION

We examined how the body masses of predators and prey constrain

their interaction strengths. Corroborating prior functional-response

studies (Wahlstr€om et al. 2000; Aljetlawi et al. 2004; Vonesh & Bol-

ker 2005; Vucic-Pestic et al. 2010b; McCoy et al. 2011; Rall et al.

2011), we found power-law relationships between handling time and

predator as well as prey mass and hump-shaped relationships

between capture rates and predator–prey body-mass ratios. In addi-

tion, our study demonstrates for the first time a systematic body-

mass dependency of the capture exponent, converting hyperbolic

(type-II) into sigmoid (type-III) functional responses with increasing

predator body mass and decreasing prey body mass. This suggests

that these functional-response types are not strict categories but

rather gradually shift from type-II predation of small predators on

equally sized prey to type-III functional responses of large predators

on small prey. Thus, we were able to support prior findings that

sigmoid type-III responses can come about in simple one predator

– one prey systems (Sarnelle & Wilson 2008; Vucic-Pestic et al.

2010a,b) and are not necessarily related to the multi-prey environ-

ments as most previous studies on type-III responses and switching

behaviour suggested (Murdoch et al. 1975; Kalinkat et al. 2011).

Hence, our study represents an incremental advancement of prior

studies on allometric constraints on functional responses

Table 1 Summary of the fitted parameters for the competing functional-response

models

Parameter Estimate SE t P

Type-II functional response (DAIC = 1688.54, d.f. = 3)

a 8.478 ∙ 10�8 2.703 ∙ 10�9 31.37 <0.0001***

h 1.475 ∙ 102 2.321 ∙ 101 6.35 <0.0001***

Type-III functional response, q = 1 (DAIC = 2134.58, d.f. = 3)

b 1.609 ∙ 10�11 7.812 ∙ 10�13 20.60 <0.0001***

h 5.999 ∙ 102 1.632 ∙ 101 36.76 <0.0001***

Traditional allometric type-II functional response (DAIC = 1586.69, d.f. = 3)

a0 1.673 ∙ 10�10 7.305 ∙ 1012 22.90 <0.0001***

h0 4.084 ∙ 105 1.853 ∙ 104 22.04 <0.0001***

Hump-shaped allometric functional response (DAIC = 566.54, d.f. = 7)

a0 1.074 ∙ 10�7 3.305 ∙ 10�8 3.25 0.0012**

h0 8.263 ∙ 104 2.101 ∙ 104 3.93 <0.0001***

e �1.892 ∙ 10�3 1.116 ∙ 10�4 �16.96 <0.0001***

br 5.218 ∙ 10�1 4.069 ∙ 10�2 12.82 <0.0001***

ar 6.936 ∙ 10�1 3.056 ∙ 10�2 22.70 <0.0001***

ac �3.116 ∙ 10�1 5.363 ∙ 10�2 �5.81 <0.0001***

Generalised allometric functional response (DAIC = 0, d.f. = 9)

b0 1.680 ∙ 10�8 4.469 ∙ 10�9 3.76 0.0002***

br 3.276 ∙ 10�2 3.711 ∙ 10�2 0.883 0.3775

e �1.821 ∙ 10�2 8.122 ∙ 10�4 �22.43 <0.0001***

qmax 3.306 1.482 ∙ 10�1 22.30 <0.0001***

q0 1.009 ∙ 103 2.184 ∙ 101 46.20 <0.0001***

h0 4.328 ∙ 104 8.364 ∙ 103 5.18 <0.0001***

ar 5.681 ∙ 10�1 2.183 ∙ 10�2 26.02 <0.0001***

ac �2.825 ∙ 10�1 2.177 ∙ 10�2 �12.98 <0.0001***

DAIC: difference in Akaike Information Criterion, AIC, to the generalised allo-

metric functional response (AIC = 34 087.74); d.f.: degrees of freedom used by

the model, SE: standard error; t: students t; P: two-sided P-value.

*P < 0.05.

**P < 0.01.

***P < 0.001.
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(Wahlstr€om et al. 2000; Aljetlawi et al. 2004; Vonesh & Bolker 2005;

Brose 2010; Vucic-Pestic et al. 2010b; McCoy et al. 2011; Rall et al.

2011) but additionally entails far-reaching and important conse-

quences for population and community ecology.

The allometric scaling of handling time is consistent with prior

studies (Aljetlawi et al. 2004; Vucic-Pestic et al. 2010b; Rall et al.

2011, 2012). Compared to established null models based on the

metabolic theory of ecology (Yodzis & Innes 1992; Brown et al.

2004), our results suggest that the power-law exponent of the rela-

tionship between handling time and predator mass (�0.28) is much

shallower than the expected negative ¾ exponent. Moreover, the

power-law increase in handling time with prey mass is also shal-

lower (0.56) than the expected isometric scaling. These shallow scal-

ing relationships of handling time with predator and prey masses

are consistent with the findings from a recent and comprehensive

meta-study on the allometry of feeding rates (Rall et al. 2012).

Together, these results suggest that handling time is constrained by

more complex processes and not solely by metabolism. For

instance, the scaling relationship for predator mass might be biased

by different feeding modes such as sucking or chewing that shift

with increasing body masses. In our data set, liquid-feeding spiders

(mean body mass: 0.036 g; n = 618) and centipedes (0.082 g;

n = 903) are generally smaller than chewing beetles (0.126 g;

n = 1044). Therefore, small liquid feeders that ingest less unpalat-

able parts of their prey such as sclerotised cuticles have relatively

quicker handling times than larger chewers ingesting whole prey

items, which could explain the shallower relationships. On the basis

of a large data base, our results suggest that the assumption of neg-

ative ¾ power-laws should be replaced by shallower scaling relation-

ships for handling time.

The intentional exclusion of the taxonomic information in our

generalised modelling approach is supported by previous work that

has shown how allometric functional-response models can explain a

large part of the variation in empirically observed feeding rates of

taxonomically different predator–prey pairs with a minimal number

of parameters (Rall et al. 2011). Nonetheless, generalised allometric

models can be easily integrated with taxonomic approaches by mak-

ing one or several parameters (e.g. the optimal prey body mass)

dependent on predator taxonomy (Rall et al. 2011). In contrast, tra-

ditional taxonomy-based approaches describe each particular preda-

tor–prey pair with a set of parameters (e.g. Vucic-Pestic et al.

2010b). This traditional approach might produce more precise pre-

dictions (see examples in Fig. 2a-c and Fig. S1 in the Supplementary

Information), but it comes at the cost of using more parameters:

While the generalised model is very efficient in the use of parame-

ters (eight parameters, d.f. = 9), a taxonomic model would have
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required 216 parameters for 72 taxonomic predator–prey pairs (72

times the three parameters h, b and q, d.f. = 217). In a prior study,

we have shown that focussing on these taxonomic differences while

lumping individuals of the same species but different body size yield

less accurate predictions of feeding rates than allometric models that

lump species of different taxonomies (Rall et al. 2011). Furthermore,

generalised models are applicable to predict the feeding rates of

predator–prey pairs depending on their body size, whereas classical

taxonomic models are restricted to predict feeding of those preda-

tor–prey pairs that were used for parameterisation. This last feature

is of high relevance when it comes to estimating feeding rates for

the innumerable trophic interactions in natural communities, where

an experimental measurement of all pairwise interactions is impossi-

ble. Accordingly, increased application of such ‘purely allometric

approaches’ in community ecology has recently been demanded (e.g.

Blanchard 2011), but until now such taxonomy-neglecting allometric

approaches have exclusively been used in the description of pelagic

communities (‘size spectra’, e.g. Sheldon et al. 1972; Jennings &

Mackinson 2003; but see Reuman et al. 2008 for an application to

soil food webs). The allometric functional-response approach of our

study thus gives up accuracy in predicting feeding strengths of spe-

cific interactions while allowing generalising across the myriads of

interactions in natural ecosystems.

This generality of allometric models also allows investigating how

body masses constrain population dynamics of a wide range of

predator and prey pairs. Indeed, allometric scaling of metabolism,

growth and maximum feeding (i.e. the inverse of handling time)

with average individual body masses are the core assumptions of a

bioenergetic model that predicts population dynamics of simple

predator–prey modules (Yodzis & Innes 1992; McCann et al. 1998;

Otto et al. 2007) and complex food webs (Brose et al. 2006; Stouffer

& Bascompte 2010; Heckmann et al. 2012). The early applications

of this model retained some shortcomings such as an arbitrary

choice of free parameters, the basal carrying capacity and the cap-

ture exponent determining the functional-response type, and an

unrealistic power-law scaling of capture rates. A prior model

improvement included an allometric scaling relationship of carrying

capacities and more realistic scaling relationships of capture rates

(Weitz & Levin 2006). In recent years, hump-shaped scaling of cap-

ture rates with predator–prey body-mass ratios became widely

accepted (Wahlstr€om et al. 2000; Aljetlawi et al. 2004; Vonesh &

Bolker 2005; Vucic-Pestic et al. 2010b; McCoy et al. 2011; Rall et al.

2011). Altogether, these efforts helped to eliminate biologically

unrealistic trait combinations (Brose 2010) and implementations of

these improved allometric constraints into the bioenergetic model

were successfully employed to predict population dynamics in com-

plex multi-predator communities (Boit et al. 2012; Schneider et al.

2012). The generalised allometric functional-response models of the

present study allow dropping assumptions on the functional-

response type (II or III) in future studies, which will have far-reach-

ing consequences for stability analyses (e.g. Brose et al. 2006; Rall

et al. 2008).

The biological mechanisms that can lead to type-III functional

responses include prey refuges and optimal foraging processes

(Murdoch & Oaten 1975). Subsequently, we will discuss how they

fit into the allometric framework of our study. The habitat structure

of the moss in our feeding experiments provides refuges for small

prey that are not accessible for large predators. Thus, at very low

prey densities, small prey individuals will have a reduced risk of pre-

dation and the population will not be over-exploited, as it is charac-

teristic for type-III responses (Crawley 1992, p. 53). Consequently,

this would imply that we would not have found type-III responses
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in treatments without habitat structure which was corroborated by

one prior study (Vucic-Pestic et al. 2010a). However, this represents

an extremely artificial environment for the litter-dwelling arthropods

of our experiments, which does not characterise natural ecosystems

that should generally exhibit sufficient habitat structure to provide

refuges for small prey. As a second possibility, sigmoid predation

curves might arise due to behavioural responses of the predators to

the level of prey densities (Sih 1984). Especially at high predator–
prey body-mass ratios it might not be energetically profitable to

pursue relatively small prey individuals at very low densities. Due to

evolutionary optimisation, the predator might ‘activate’ its ‘foraging

mode’ aimed at small prey species only if their overall density is

reaching a certain threshold (Sih 1984). It is important to note that

these active mechanisms of size-driven prey selection evolved in the

context of having alternative prey species available, but nonetheless

will influence the predator individuals’ behaviour in the experiments

with only one prey species present. Overall, both processes, the

availability of prey refuges and optimal foraging, may contribute to

the allometric functional-response patterns documented here.

The functional-response data used for our analyses are obtained

under simplified laboratory conditions which include the restriction

that only combinations of single predator and single prey species

were used here. However, predators exhibit active prey selection in

environments with two prey species present (Kalinkat et al. 2011).

Moreover, these active preferences go beyond the expectations

derived from single-prey experiments and are by themselves func-

tions of predator and prey body masses (Kalinkat et al. 2011). In

reverse, predators should tend to disregard prey whose individual

body mass is too far from this optimum as exemplified by several

zero-consumption replicates in our data set. This is especially

important for the comparison of our model results (i.e. predator

persistence domain) with the soil food-web data (Fig. 3) as the first

was parameterised on base of the ‘single-prey world’ in our experi-

mental setting, whereas the second represents the ‘real, multi-prey

world’. Specifically, our model employs simple predator–prey struc-

tures that in some cases lead to predator extinction if the prey as

the only resource does not support the predator population. How-

ever, this would rarely be observed in natural ecosystems, in which

predators have multiple prey. Hence, we assume that the empirically

observed feeding links should represent those interactions that pro-

vide the major energy channels supporting predator biomass. We

acknowledge that this is a reductionist test for the validity of allo-

metric constraints on feeding rates since in nature predator popula-

tions rely on multiple prey species of different mean body masses

that often also comprise intraspecific size-structure. Prior studies

including these features such as ontogenetic niche differentiation or

cannibalism (e.g. Rudolf 2008; Rudolf & Armstrong 2008) have

demonstrated their importance for population dynamics. Neverthe-
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less, McCoy et al. (2011) have demonstrated recently how size-

dependent functional-response models might successfully predict

prey mortality in short-term experiments with large variation in prey

size although the models were developed from experiments with

homogenous prey-size cohorts invigorating the reliability of our

approach.

Interestingly, our intrinsic assumptions yield relatively small per-

sistence domains for large predators (Fig. 3c). Analyses of empirical

food webs have shown that larger predators tend to be more gener-

alised than smaller predators (Digel et al. 2011), which could be an

evolutionary response to balance their smaller persistence domains

by more diverse diets. Hence, the cone-shaped persistence domain

we found in our model simulations (i.e. large persistent prey size

range for small predators and small persistent prey size range for

large predators) complements with findings from food-web studies

that generality increases with predator mass. While the allometric

functional-response models may represent an important step

towards a generalised understanding of natural interaction strengths,

it will remain an important challenge to cope with other dimensions

of natural complexity such as coexistence of multiple prey (Kalinkat

et al. 2011) and habitat structure (Vucic-Pestic et al. 2010a; Kalinkat

et al. 2013). Furthermore, the allometric scaling relationship of the

capture exponent that we found for terrestrial arthropods of forest

floors still has to be corroborated in studies on other organism

groups and ecosystem types.

Meanwhile, we suggest employing the generalised allometric func-

tional responses in future analyses of population dynamics (Otto

et al. 2007), food-web persistence (Brose et al. 2006) or network

structure (Petchey et al. 2008) to obtain more realistic predictions

and avoid uncertainty caused by the strict distinction into type-II

and -III functional-response models. Ultimately, by providing a gen-

eral framework of feeding interactions that is applicable to entire

communities the generalised allometric approach may bridge the

gap between quantitative studies of population interactions (Holling

1959; Rall et al. 2011) and large-scale comparisons of community

patterns (Riede et al. 2011).
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a b s t r a c t

We study a simple model for generation cycles, which are oscillations with a period of one or a few gen-
eration times of the species. The model is formulated in terms of a single delay-differential equation for
the population density of an adult stage, with recruitment to the adult stage depending on the intensity of
competition during the juvenile phase. This model is a simplified version of a group of models proposed
by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-
feedback cycles. According to these authors, the two oscillation types are caused by differentmechanisms
and have periods in different intervals, which are one to two generation times for single-generation cycles
and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between
the maturation time and the time delay between competition and its effect on the population dynamics,
we find that single-generation cycles and delayed-feedback cycles occur in the samemodel version, with
a gradual transition between the two as the model parameters are varied over a sufficiently large range.
Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinc-
tion between different types of generation cycles is not possible. Cycles of all periods and even chaos can
be generated by varying the parameters that determine the time during which individuals from different
cohorts competewith each other. This suggests that life-cycle features in the juvenile stage and during the
transition to the adult stage are important determinants of the dynamics of density limited populations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Ecological models which involve the age or size structure of a
population have been studied for almost one century now (Ker-
mack and McKendrick, 1927). It is known that the detailed age or
size structure of populations can have amajor influence on the dy-
namics of ecological systems. Vital rates, such as growth rate, death
rate and fecundity are in general dependent on the age of an in-
dividual (de Roos et al., 2003a). The structure of a population is
important for effects such as generation cycles (Gurney and Nis-
bet, 1985; Knell, 1998; Ruxton and Gurney, 1992), juvenile bot-
tle necks (Neill, 1988), life boat mechanisms (Bosch et al., 1988),
host–parasite interaction (Godfray andHassell, 1989;Gordon et al.,
1991; Godfray, 1987) or emergent Allee effects (Courchamp et al.,
1999; de Roos et al., 2003b), as well as for the effects of environ-
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andreasbrechtel@googlemail.com (A. Brechtel), drossel@fkp.tu-darmstadt.de

(B. Drossel), c.p.guill@uva.nl (C. Guill).

mental stochasticity (Bjørnstad et al., 2004). A population can ei-
ther be structured by age or size. In the first case the development
of an individual always follows the same time course, while in the
second case development depends on food intake andmetabolism.
Mathematical models can capture the population structure in dif-
ferent ways, the three most prominent being stage structured
models that divide a population into several stages in which the
vital rates are uniform among all individuals (Gurney et al., 1980,
1983), matrix models that use discrete time steps and a matrix
as the update function of a state vector (Caswell, 2001), and fi-
nally physiologically structured models that define the vital rates
as functions of the continuous structure parameter (de Roos, 1996).

In this paper,we focus on generation cycles and investigate age-
structured stage models. Generation cycles are a consequence of
population structure that has been observed in a wide spectrum
of field and laboratory populations. Even a single species in a con-
stant laboratory environment can exhibit population density os-
cillations, as has been shown by Nicholson in the famous blow-fly
experiments (Nicholson, 1954, 1957). A population of blow flies
was kept under constant conditions with a constant daily amount
of resource and itwas observed that the population fluctuatedwith

http://dx.doi.org/10.1016/j.tpb.2014.10.003

0040-5809/© 2014 Elsevier Inc. All rights reserved.
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a period slightly larger than the generation time. Such an oscilla-
tion period of the order of the generation time is the indicator of
generation cycles. In contrast to this, other types of population cy-
cles, like predator–prey cycles, have larger periods depending on
the life cycle of predator and prey (Murdoch et al., 2002). Genera-
tion cycles are frequently observed in natural populations (NERC,
2010) and they can occur in isolated species as well as in general-
ist species that are likely to have a stable resource basis, whereas
predator–prey cycles are more common for specialist predators
(Murdoch et al., 2002).

Gurney and Nisbet (Gurney and Nisbet, 1985; Gurney et al.,
1983) investigated generation cycles by a comprehensive stage
structured population model and identified mechanisms behind
these cycles. The model was inspired by the laboratory situation of
constant food supply. The population was divided into a juvenile
and an adult stage. The cycles were found to be driven by density
dependent competition of juveniles. According to the model, this
competition can be due to four different effects: a direct death
of juveniles (Larval Death LD), increased development time of
juveniles (Maturation TimeMT ), decreased survival of pupae (Pupal
Survival PS), or a decreased fecundity in the adult stage (Adult
Fecundity AF ). Gurney and Nisbet studied 4 different versions of
their model, each of which contained one of these effects. They
evaluated these models in the vicinity of the Hopf bifurcation
that marks the onset of oscillations in parameter space. The main
findings were that a competition that has a direct influence on the
population dynamics (LD and MT) leads to cycles of 1–2 times the
maturation time τ , while competition that has a delayed influence
on the dynamics (PS and AF) leads to cycles of 2–4 times the
maturation time. These two disjoint intervals of one octave led to
a classification of generation cycles into single generation cycles for
cycles with periods between τ and 2τ , and delayed feedback cycles

for periods from 2τ to 4τ . This theory has been considered to be
among the ‘‘most important advancements in the theory about the
life history-population dynamic interplay’’ (de Roos et al., 2003a).

The findings of Gurney and Nisbet thus suggest that the os-
cillation period does not depend on all details of the model but
essentially on the time period during which density-dependent
competition affects a population. In this respect their results ap-
pear to be very general. On the other hand, their investigation is
constrained by the strict coupling between the maturation time
and the time delay between competition and its effect on the pop-
ulation. This delay is either zero (LD and MT models) or one gen-
eration (PS and AF models). However, the effect of competition is
usually a combination of several of the above-mentioned phenom-
ena. Additionally, competition can have effects over time periods
other than zero and the maturation time, if, for instance, the food
consumption of one cohort affects the food available to another co-
hort, or if the duration of the non-competing egg and pupal stages
cannot be neglected.

In this paper, we present and investigate amodel that fills these
gaps. Ourmodel considers the time period overwhich competition
is felt by a cohort as a separate parameter, different from the
maturation time, and variable within realistic limits. The model
has the same general form as the PS model, but includes a simpler
expression for the density-dependent probability to survive from
birth into the adult stage. It contains the situations described by
the PS and LD models as special cases, and we find in these cases
a dynamical behavior similar to that of the LD and PS models,
thus confirming again that the main determinant of the oscillation
period is the relation between the maturation time and the time
delay over which competition is felt. We corroborate this finding
further by briefly studying two additional model versions that
have a complexity intermediate between our simple model and
the LD and PS models by Gurney and Nisbet and display a similar
dynamical behavior. Due to the greater computer power and new

Fig. 1. Sketch of the model.

numerical solvers, we were able to investigate the original LD
and PS models beyond the parameter range originally studied by
Gurney and Nisbet, revealing oscillation periods much larger than
four times the maturation time in the PS model and even chaos.
We also study our model for general values of the competition
time, confirming and complementing all these results. Typically,
the periods of generation cycles cover a broad range of values
and can be continuously changed by changing the competition
time. It follows that periods do not lie in disjoint intervals of one
octave, whichmakes a clear distinction between single-generation
cycles and delayed-feedback cycles impossible. Furthermore, we
find chaotic behavior in almost all model versions.

Our general model is described in detail in the next section.
Section 3.1 presents the results for the two parameter sets that
show a similar behavior to the LD and PS models by Gurney and
Nisbet, which are also studied. Section 3.2 discusses the model
dynamics for general values of the parameters. The conclusions are
drawn in Section 4.

2. Model

The model is of the same form as the PS model by Gurney and
Nisbet (1985). A sketch of the model is given in Fig. 1. The popu-
lation is divided into two stages, the juvenile stage, which is not
explicitly modeled, and the adult stage with a population density
A(t). Our fundamental equation for the population dynamics is

dA(t)

dt
= s(t) · f · A(t − τ) − d · A(t). (1)

New individuals are born with a rate f (‘‘fecundity’’) that is pro-
portional to the number of adults. The newborn juveniles need a
time τ to mature to adults. Only a proportion s(t) of the juveniles
survive maturation. The survival function s(t) depends on compe-
tition for food during the competitive part of the juvenile stage. The
adults die with a constant death rate d. As we show in Appendix A,
the general model described by Eq. (1) is identical to the PS model
by Gurney and Nisbet (1985). Other model versions by Gurney and
Nisbet are obtained by introducing a density dependent death rate
for the juvenile stage, or bymaking thematuration time τ or the fe-
cundity f density dependent. These versions however are not con-
sidered in the following.

In the PS model, the survival function s(t) depends via a dou-
ble integral on the population densities between time t − 2τ and
t . In general, the survival function is a decreasing function of the
strength of competition that an individual has experienced dur-
ing the juvenile stage, as indicated in Fig. 2(a). In order to make
the model more transparent, while preserving its most important
features, we use a simpler form for s(t) with less parameters than
in the PS model. We assume a linear dependence of the survival
function s(t) on the birth rate of competitors C(t) (to be specified
below) of the cohort that matures at time t , see also Fig. 2(a):

s(t) = max



rmax ·



1 −
C(t)

Cmax



, 0



. (2)

The survival function is rmax without competitors and 0 for C(t) ≥
Cmax. A linear form is a good approximation if the system is close to
a fixed point. In fact, we will see that even far away from the fixed
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(a) Survival function s(t). (b) Sketch of aging.

Fig. 2. (a) Survival function s(t) in dependence on competition C(t). A nonlinear relation (dotted line) is approximated by a function with constant slope s(t) (black solid

line). (b) Age of cohorts at a given time. Juveniles born at t − τ mature at time t (thick arrow). Other juveniles born between t −2τ and t have a time overlap with this cohort

and are thus competitors, if the juveniles compete during their whole life up to the maturation.

point the linear term is sufficient to reproduce the characteristic
periods and amplitudes of generation cycles.

The strength of competition the cohort that matures at time t

experiences is determined by the average birth rate of juveniles in
a time window of length T = Tmax − Tmin. It is given by

C(t) =
f

T

 t−Tmin

t−Tmax

A(t ′)dt ′. (3)

The time parameters in this expression have the following defini-
tion: Individuals maturing at time t were born at t −τ , their oldest
competitorswere born at time t−Tmax and their youngest competi-
tors were born at t − Tmin. Thus the oldest juveniles that compete
with the considered cohort are older by a time Tmax − τ , while the
youngest juveniles are younger by τ −Tmin. In any case, the relation

0 ≤ Tmin ≤ τ ≤ Tmax (4)

(together with 0 < τ and Tmin < Tmax) must hold since the indi-
viduals of one cohort always compete with themselves.

Different values of Tmax and Tmin reflect different life histories
of juveniles: If juveniles compete with all other juveniles present
between their birth at t − τ and their maturation at t , we obtain
Tmin = 0 and Tmax = 2τ (see Fig. 2(b)). This is a situation similar to
the PSmodel by Gurney and Nisbet, and the dynamics described in
the next section are indeed similar to those of the PSmodel. To sim-
plify the notation, we therefore refer to the parameter set Tmin = 0
and Tmax = 2τ as a special model version which we call the Sim-

plified Pupal Survival (SPS) model. Another important situation is
given by Tmin = 0 and Tmax = τ . In this case only younger juve-
niles are considered as competitors. This corresponds to a situation
where most of the older juveniles already died through competi-
tion before reaching the pupal stage, so that their contribution to
the juvenile density is low. As we will see in the next section, the
dynamics of this system is very similar to the ‘‘Larval Deathmodel’’
(LD) of Gurney and Nisbet. The parameter set Tmin = 0 and Tmax =
τ is therefore referred to as the Simplified Larval Death (SLD)model.

Other values of Tmin and Tmax also have a biological significance:
If the life history includes non competing stages before the adult

stage, such as the egg or pupal stage, we obtain Tmin > 0, with the
value of Tmin being the total duration of the egg and pupal stages.
This is because individuals that differ in age by more than τ − Tmin

cannot be in the larval stage at the same time.
If the resources are not supplied at a constant rate on the other

hand, resource availability depends on resource consumption at
earlier times by older cohorts. This means that the maturing
juveniles experience an indirect competition from cohorts that
have already left the larval stage. This effect results in values of
Tmax higher than 2τ . We will see below that Tmax has an important
influence on the oscillation period, which means that the resource
plays a vital role in determining the periods of generation cycles.

Finally, we simplify the model by introducing effective param-
eters and natural units. Time is measured in units of τ (i.e., τ = 1),

which gives the newparameters f̃ = f ·τ and d̄ = d·τ . The popula-
tion density is given in terms of the natural unit Cmax/f , which can
be thought of as the effective carrying capacity. Furthermore, the

product rmax · f̃ is the effective fecundity f̄ . For better readability,
we drop the bar on the new parameters in the following. We thus
obtain the equation

dA

dt
=



r(t) · A(t − 1) − d · A(t) for r(t) > 0
−d · A(t) otherwise

(5)

with

r(t) = f



1 −
1

T

 t−Tmin

t−Tmax

A(t ′)dt ′


.

This is a model with one delay differential equation and the four
parameters f , d, Tmin, and Tmax. The recruitment rate r(t) is obtained
by combining Eqs. (2) and (3).

3. Results

First, we investigate the two cases Tmin = 0 and Tmax = 1 (SLD
model) and Tmin = 0 and Tmax = 2 (SPS model), which are close in
behavior to the LD and PS models by Gurney and Nisbet (1985).

We focus on the influence of the death rate d and the effective
fecundity f on thedynamics. In the second subsection,we study the
influence of the maximum and minimum delays Tmax and Tmin on
the dynamics to obtainmore general results. The simulations were
performed by solvers that are implemented by Mathematica R⃝8
and Euler algorithms with delays, which were both sufficiently
tested to exclude numerical errors.

3.1. Simplified larval death and pupal survival models

Let us first discuss the dynamics of the SLD model, i.e., the case
Tmin = 0 and Tmax = 1. The graphs 3(a) and (c) show the different
types of dynamical behavior and the periods of the periodic
oscillations. The occurring dynamical behaviors of the model are
very similar to the LD model of Gurney and Nisbet. Depending on
the parameters f and d, the dynamical regimes are extinction, a
stable equilibrium, and regular oscillations. Obviously, the species
goes extinct if the effective fecundity is smaller than the adult
death rate, f < d. At f = d, a transcritical bifurcation occurs, and
for f > d the non-trivial fixed point A∗ = (f − d)/f becomes
positive and stable. At even higher values of f , a Hopf bifurcation
occurs. This bifurcation can be investigated analytically by
variational calculus, as performed in Appendix B, giving the exact
bifurcation line and the oscillation periods close to the bifurcation.
Both bifurcation lines in Fig. 3(a) were calculated analytically. The
period of the oscillation (Fig. 3(c)) mainly depends on the death
rate d and is almost independent of f . All periods are in the interval
[1, 2], just as for the LD model by Gurney and Nisbet, for which

101



T. Pfaff et al. / Theoretical Population Biology 98 (2014) 38–47 41

(a) Dynamics SLD model. (b) Dynamics SPS model.

(c) Periods SLD model. (d) Periods SPS model.

(e) Periods LD model. (f) Periods PS model.

Fig. 3. Dynamical behavior and periods of themodel—(a) and (b): dynamical behavior of ourmodels, white: extinction, dark gray: stable, light gray: oscillation, black: chaos,

(c) and (d): periods of our models in units of τ , (e) and (f): periods derived from our new simulations of the original models by Gurney and Nisbet (see Appendix A), (e)

W ′
M = 0.05, W ′

H = 1, Γ ′ = 0.05, (f) X ′ = 0.01, Y ′ = 0.1. Black line in (c)–(f): extinction boundary (f = d).

we also performed computer simulations, shown in Fig. 3(e). The
periods of the twomodels are almost identical at the same value of
d. Only the stability border differs for low values of the death rate
d: while the LDmodel is stable for small d, the SLDmodel oscillates,
but with a very small relative amplitude (see Section 3.2).

The SPS model with Tmin = 0 and Tmax = 2 shows more com-
plex dynamics. Fig. 3(b) shows a chaotic region in addition to a sta-
ble equilibrium (fixed point) and regular oscillations. Chaos has not
been reported so far in models for generation cycles, however, we
find it also in our simulations of the original PS model by Gurney
and Nisbet, see Fig. 3(f). The periods of the oscillations in the SPS
model are shown in Fig. 3(d). There are two types of periodic re-
gions, which are separated by the chaotic region. For smaller val-
ues of d, the periods are in the interval [2, 4], as reported byGurney
and Nisbet. At higher values of d, the periods approach the value 1,
just as for single generation cycles. We also find short periods for
other competition times, as discussed in the next subsection. Our
computer simulations of the original PS model revealed not only
the existence of a chaotic region, but also of oscillationswith larger
periods of up to 7 generation times in the investigated parameter
range. They appear when the fecundity f is increased, i.e., further
away from the Hopf bifurcation line (see Fig. 3(f)).

In order to illustrate the dynamics in the different dynamical
regimes, we show in Fig. 4 different time series of the model. An
oscillation at a small value of d is shown in Fig. 4(a). It has a long
period and a small relative amplitude.With increasing d the ampli-
tude increases and the period decreases (Fig. 4(b)). The PS model
gives rise to similar time series, as shown in Fig. 4(e) for an inter-
mediate case between 4(a) and (b). Also the chaotic behavior of the
SPS and PS models, shown in Fig. 4(c) and (f), looks very similar.
The distance between maxima of the time series is approximately
constant while the amplitude is chaotic. These features of uniform
phase evolution and chaotic amplitude (UPCA) have been observed
in predator–prey interactions with ordinary differential equations
(Blasius et al., 1999). The fast oscillation that is shown in Fig. 4(d)
is not observed in the PS model.

The main observations of this section can be summed up as
follows: (i) Our simplified model shows dynamical features very
similar to the PS and LD models by Gurney and Nisbet. (ii) The
SLD and LD models have almost identical periods at equal val-
ues of d (or δ′ in the LD model). The dynamical behaviors of both
models are very similar, even though the balance equations are
quite different. This suggests that single generation cycles are very
robust against changes of mathematical details in the model. In
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(a) d = 0.5. (b) d = 3.

(c) d = 15. (d) d = 60.

(e) PS model. (f) PS model.

Fig. 4. Time series of the models: (a)–(d): SPS model with parameters f = 200, Tmin = 0, Tmax = 2, (e) and (f): PS model by Gurney and Nisbet, (e) δ′ = 1.0, f ′ = 400,

X ′ = 0.01 Y ′ = 0.1, (f) δ′ = 6.1, f ′ = 700, X ′ = 0.01 Y ′ = 0.1. A(t) is normalized to different natural units in the PS and SPS models, respectively.

fact, we also investigated another model version that includes a
competition-dependent death rate of juveniles instead of the sur-
vival function, andwe found the same behavior. (iii) The SPS and PS
models have equal periods at the stability boundary, but differ fur-
ther away from the Hopf bifurcation. (iv)We observed chaos in the
PS and SPS models. As shown in the following subsection, model
versions without chaos, such as the SLD and LD models appear to
be the exception.

3.2. General Tmin and Tmax

Next, we investigate how the findings reported in the previous
subsection depend on Tmax and Tmin. We found that in general the
value of Tmax has a much larger effect on the dynamical behavior
than the value of Tmin. This is illustrated in Fig. 5, where the phases
with different dynamical behavior and the periods of the oscilla-
tions are given for all possible combinations of Tmin = 0 or 0.5 and
Tmax = 1, 1.4 or 8. As discussed in the model section, the cases
Tmax < 1 and Tmin > 1 are not biologically meaningful, as one co-
hort would not compete with itself in this case. We found that the
dynamics lack chaotic behavior only for the case Tmax = 1, where
the maximum delay and the generation time are in resonance.

Fig. 5 shows the oscillation periods in units of the maximum
delay Tmax, as this proves to be the natural time scale for gener-

ation cycles. In the SLD model (Tmax = 1) the periods are in the
range 1–2, and in the SPS model (Tmax = 2) in the range 2–4 for
themainmode. In general, the periods of the oscillations appear to
be mostly between Tmax and 2Tmax, but they can take much higher
values near to the chaotic regime. As argued in Section 2, the recov-
ery time of the resource increases the maximum delay Tmax, which
can therefore take any value larger than 1. Values between 1 and 2
represent direct competition between the cohort under consider-
ation and cohorts born up to one generation earlier, while values
larger than 2 model indirect competition mediated by resources
with a long recovery time. As Tmax can vary continuously, there is
a smooth transition between dynamical regimes usually classified
a single-generation cycles (Tmax = 1) and delayed-feedback cycles
(Tmax = 2). As the periods lie in a range Tmax to 2Tmax (and even
higher), model versions with intermediate values of Tmax give rise
to both types of periods: those that belong to the interval assigned
to single generation cycles and those that belong to the interval
of delayed feedback cycles. This makes a clear distinction of both
types of cycles impossible. For example at Tmax = 1.4 the periods
have values of 1.4τ and up to 10τ in themain part of the parameter
space. There are no strict borders between single generation cycles
(τ to 2τ ) and delayed feedback cycles (2τ to 4τ ), i.e. the dynamics
cannot be classified based on this distinction.
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Fig. 5. Dynamical behavior—white: extinction, dark gray: stable, light gray: oscillation, black: chaos; Periods (in units of Tmax), system is quasi periodic or chaotic in black

regime.

(a) Tmin = 0, Tmax = 1. (b) Tmin = 0.5, Tmax = 8.

Fig. 6. Relative amplitude of oscillation for two sets of parameters. Relative amplitudes lower than 2 are shaded in gray.

Furthermore, there are also regions in parameter space where
oscillations have periods smaller than Tmax (except for Tmax = 1). In
this case the periods take values near Tmax − τ , Tmax − Tmin or Tmin,
apparently with a preference for the shorter periods. The period
of these short period generation cycles can take unrealistic values
shorter than 0.1τ . However, there are also sets of parameters
where this mode can be important. For example for Tmax = 2 the
Tmax − τ mode is equal to the maturation time. This means again
that the samemodel can showperiods between1 and2 andperiods
between2 and4, i.e., single generation cycles anddelayed feedback
cycles occur in the same model.

We complete our investigation of the dynamical behavior of
the model by studying oscillation amplitudes. Fig. 6 shows the
relative amplitude (Amax − Amin)/Amean of the oscillations. A
harmonic (sinusoidal) oscillation has a relative amplitude smaller
than 2. An oscillation with a relative amplitude larger than 2 has
pronounced peaks, corresponding to discrete generations, as in the
time series of Fig. 4. Large relative amplitudes occur in a large
part of parameter space. The amplitudes increase with f and with
d. Remarkably, they have the highest values close to the stability
boundary.

4. Conclusions

In this paper we investigated a very basic model for generation
cycles. This model considers only one population, which is divided
into a juvenile and an adult stage. Of the four independent
parameters of the model, the effective fecundity f and the death
rate d of adults were found to bemost important for the dynamical
behavior. Generation cycles are driven by density dependent
competition within the juvenile stage. The time scale of the
dynamics is set by the maturation time τ . We did not impose a
strict coupling between maturation time and the time delay of
the competition effect, but instead introduced two parameters
Tmin and Tmax that determine the time interval during which
competitors of a focal cohort are born. A juvenile cohort of a given
age is in competition with all juveniles that are younger by at most
τ − Tmin or older by at most Tmax − τ . A value Tmin > 0 means that
there is a noncompeting stage, such as an egg stage. A value Tmax >
2τ means that juveniles feel the competition of cohorts that have
matured before the juveniles were born, because these cohorts
have left behind exploited resources, which need time to recover.
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Contrary to earlier results, we found that periods of generation
cycles are not within a range of one octavewhen d and f are varied.
Only for Tmin = 0 and close to the Hopf bifurcation are the periods
of the dominant mode in the interval of one octave, which was
already observed by Gurney and Nisbet (1985). A strict distinction
between single generation cycles and delayed competition cycles
is therefore not possible but for a few special cases.

Gurney and Nisbet observed single generation cycles and de-
layed feedback cycles as a result of different models with different
mechanisms of competition, such as the direct death of juveniles
(LDmodel) and the death during pupation (PS model). These mod-
els assume a strict coupling between the maturation time and the
time delay of the effect of competition on the population dynamics,
which can be either zero (LDmodel) or one generation (PS model).
We showed that if this constraint is relaxed, both types of gener-
ation cycles can be obtained from one model and in fact can be
smoothly transformed into another by varying the time delay of
the effect of competition. It is thus not possible to infer the exact
mechanism of competition acting in a population only from the os-
cillation period in an observed time series.

Decoupling maturation time and the time delay of the effect
of competition allowed us to explore a wide range of time delays.
Instead of the maturation time τ the maximum delay Tmax turned
out to be the best measure for the periods of the main oscillation
mode. Further oscillation modes with periods around Tmax − τ ,
Tmax−Tmin, and Tmin also occur, andwe observed a region of chaotic
dynamics for all combinations of Tmax and Tmin, except for the case
Tmax = τ where the competition time and the maturation time
are in resonance. The chaotic region separates the main oscillation
mode, which has the longest periods close to the chaotic region,
from the aforementioned oscillation modes with periods shorter
than Tmax.

We observed all these patterns not only in the simplifiedmodel,
but also in the original models by Gurney and Nisbet, for which
we also performed computer simulations. The effective fecundity f
and the adult death rate d have amajor influence on the dynamical
behavior of the system, which is largely independent of the time
delay of the effect of competition. For f < d the species goes
extinct. At small values of d and f the population dynamics are at a
stable equilibrium. For larger values of f , generation cycles occur.
The amplitude of the oscillation increases with f and d and the
periodic oscillation eventually becomes unstable and gives rise to
chaotic dynamics.

In the simplified model, we considered maximum delays Tmax

of up to eight times the maturation time τ , which we motivated
by resources with a very long recovery time. The periods of the os-
cillations exceeded 40 times the maturation time for some values
of fecundity f and death rate d. These long periods are indeed not
characteristic of generation cycles but of consumer-resource cycles
(Murdoch et al., 2002), thus supporting our interpretation of a (hid-
den) consumer-resource dynamics. It is important to note that in
our model the resource is taken into account only indirectly. Fur-
ther investigations will show if our results hold when resource dy-
namics are modeled explicitly. The dynamical behavior of such a
model was investigated by Ruxton and Gurney (1992), but the in-
fluence of the resource on the periods is still unknown. An impor-
tant question of this approach is whether there is a smooth tran-
sition between generation cycles, predator–prey cycles and prey
escape cycles, as our current results suggest. Furthermore, we ne-
glected the influence of competition on maturation time and fe-
cundity, just as it was done in the PS model by Gurney and Nisbet,
and modeled the effect on direct death of juveniles only indirectly.
An interesting question is thus what happens if several effects are
taken into account explicitly at the same time. The study by Gur-
ney and Nisbet implicitly assumes that there will always be only
one dominant effect of juvenile competition,which determines the
type of generation cycles that will be observed.We suggest that ei-

ther the longest delay Tmax is still the predominant factor for cycles
or periods in the range of one generation time are predominant as
they were observed to be very robust. However, we note that it
is also possible that the different effects interact and result in an
effective delay that is neither identical to the maturation time τ
nor to the maximal delay Tmax. Such a mixed effect would further
challenge the simple picture of either single-generation cycles or
delayed-feedback cycles, as our results suggest that in such a sce-
nario the effective delay would determine the oscillation period.
Finally, we found fast frequency generation cycles which have not
been reported yet. It is important to determine whether these cy-
cles exist inmore complexmodels aswell andprove to be a realistic
concept.
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Appendix A. Mathematical relation to the PS model of Gurney

and Nisbet (1985)

With time normalized to thematuration time τ (i.e., τ = 1), the
pupal survival model is given by

L̇′(t ′) = f ′A′(t ′) − f ′A′(t ′ − 1) (A.1)

Ȧ′(t ′) = f ′α(t ′)A′(t ′ − 1) − δ′A′(t ′) (A.2)

Ẇ ′(t ′) = g ′(t ′) − g ′(t ′ − 1) (A.3)

with the larval density L′, adult density A′, individual weight at
maturationW ′. The parameter f ′ is the fecundity and δ′ is the death
rate. The growth rate g ′ and the survival α are defined by:

g ′(t) =



1/(1 + L′(t ′)) − Γ ′ if L′ < 1/Γ ′ − 1
0 otherwise

(A.4)

and

α(t) =



(W ′(t ′) − W ′
M)/



W ′(t ′) − W ′
M + W ′

H



if W ′ ≥ WM

0 otherwise.
(A.5)

Eqs. (A.1) and (A.3) can be solved by integration, yielding

L(t ′) = f ′

 t ′

t ′−1

A(t̄)dt̄ and (A.6)

W (t ′) =

 t ′

t ′−1

g(t̄)dt̄. (A.7)

Writing the four functions L = L(A), g = g(L),W = W (g) and
α = f (W ) as one function α = α(A) gives

α(t ′) = f



 t ′

t ′−1

g



 t̄

t̄−1

A(¯̄t)d¯̄t



dt̄



. (A.8)

Plugging α(t ′) into Eq. (A.2) finally leads to the single model
equation

Ȧ′(t ′) = f ′α(t ′)A′(t ′ − 1) − δ′A′(t ′). (A.9)

At this point no simplification has beendone.We just integrated
two equations and used simple algebra. Our basic model equation
(1) is identical to this form, except that we denote the share of
larvae surviving until the maturation with s(t) instead of α(t).
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We tested different models with linear functions for g and a
weighting function of the form w(t ′)A(t ′)dt ′ to take into account
that competition strength depends on the age difference of cohorts.
We found that the exact form of the integral has a minor influence
on dynamical properties such as periods and amplitudes. The
essential parameter of this function is the maximum delay that
we introduced as a parameter Tmax. The maximum delay of Eq.
(A.8) is 2. We approximate the double integral by a simple integral

α = α[
 t ′

t ′−2
A(t̄)dt̄]. If the survival α is now approximated by a

linear function (Eq. (2)) then ourmodel in the form given by Eq. (5)
is obtained.

Appendix B. Fixed point and variational calculus of the model

We performed calculations for our model along the same lines
as in the following earlier publications: A variational calculus of the
model by Gurney and Nisbet is given in the appendix of Gurney
and Nisbet (1985). A linearization of a more general system is
given in Jones et al. (1988). For further linearizations see Cooke and
Driessche (1986) and references therein. In this section the fixed
point of our model is calculated and a variational calculus in the
environment of the fixed point is performed using a linearization
of the model at the fixed point. This leads to a better mathematical
understanding of the periods.

The fixed point A∗ of a delayed differential equation

dA(t)

dt
= f



1 − 1/T

 t−Tmin

t−Tmax

A(t ′)dt ′


A(t − 1) − dA(t) (B.1)

is calculated just as in the case of ordinary differential equations,
i.e., it satisfies the condition

0 = f



1 − 1/T

 t−Tmin

t−Tmax

A∗dt ′


A∗ − dA∗. (B.2)

This gives the two fixed points

A∗
0 = 0 and (B.3)

A∗ = 1 −
d

f
. (B.4)

For d > f the trivial fixed point A∗
0 is stable while A∗ is negative

and unstable. At d = f a transcritical bifurcation occurs. Both fixed
points change stability and the nontrivial fixed point becomes pos-
itive.

The transition from stable dynamics to oscillations can be
treated by variational calculus. The solution A(t) of the balance
equation is divided into the fixed point share A∗ and a small de-
viation a(t) around the fixed point, i.e. A(t) = A∗ + a(t). Plugging
this into the model equation (B.1) yields:

da(t)

dt
= f (1 − A∗)A∗ − dA∗

+ f



−1/T



a(t ′)dt ′


a(t − 1) + f (1 − A∗)a(t − 1)

+ f



−1/T



a(t ′)dt ′


A∗ − d · a(t). (B.5)

The first part of this equation equals zero and the second part is
neglected, as only linear terms in a are taken into account. For the
linear equation the exponential ansatz a(t) = eλt with complex λ
is chosen. This gives

λ2eλt = λd


eλ(t−1) − eλt


−
fA∗

T



e−λ(t−Tmin) − e−λ(t−Tmax)


. (B.6)

This equation can be divided by eλt . Furthermore the complex
number λ is divided into a real part α and a complex part iβ with
real numbers α and β . This yields two equations—one for the real
and one for the imaginary part:

(a) Tmax = 1, Tmin = 0.

(b) Tmax = 2, Tmin = 0.

(c) Tmax = 2, Tmin = 0.35.

Fig. B.7. Sketches of Eq. (B.10) for Tmin = 0. (a) and (b): sin(βTmax)-term (dashed),

cos(β) − 1-term (solid), the two terms must add up to zero. This is only possible if

both phases have opposite signs. (c) With additional sin(βTmin)-term (fine).

α2 − β2 = αd(e−α cosβ − 1) + βde−α sinβ

−
fA∗

T



e−αTmin cos(βTmin) − e−αTmax cos(βTmax)


(B.7)

and

2αβ = αd(−e−α sinβ) + βd(e−α cosβ − 1)

−
fA∗

T



−e−αTmin sin(βTmin) + e−αTmax sin(βTmax)


. (B.8)

At a Hopf bifurcation two complex conjugate eigenvalues cross
the imaginary axis. At this point the real part α of the solution
vanishes. Setting α = 0 finally results in

β2 = −βd sinβ +
f − d

T
[cos(βTmin) − cos(βTmax)] (B.9)

0 = −βd(cosβ − 1) +
f − d

T
[− sin(βTmin) + sin(βTmax)] . (B.10)

These equations are symmetric, i.e. for any real valued β the
complex conjugate solution −β is another solution of the system.
The results can be understood by sketching equation (B.10). The
factor (f − d)/T is positive in the considered interval and βd is
positive as one positive β is involved in the Hopf bifurcation. The
three summands of Eq. (B.10) are plotted in Fig. B.7 for the three
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(a) Dynamics LLD. (b) Dynamics LPS.

(c) Periods LLD model. (d) Periods LPS model.

Fig. C.8. Dynamical behavior and periods—(a) and (b): dynamical behavior of our models, white: extinction, dark gray: stable, light gray: oscillation, black: chaos, (c) and

(d): periods of our models in units of τ . The black solid lines mark the extinction boundary (f = d).

combinations of Tmax and Tmin. They must add up to zero. This is
only positive if at least two summands have opposite signs. For
Tmin = 0 the solutions for β turn out to be restricted to certain
intervals. Using T = 2π/β the lowest possible periods are

T = {Tmax, 2Tmax}. (B.11)

This is the main mode of generation cycles. For Tmin > 0
the discussion becomes more complex. It is a common sense in
the literature that noncompetitive stages in generation models
play a minor role. Fig. 5 promotes this idea for Tmax > 1. Yet,
the linearization shows that dynamics might become much more
complex with Tmin > 0 (see Fig. B.7(c)).

Appendix C. Linearizations of the LD and PS models

In this sectionwe present twomoremodels. Thesemodels have
exactly the same form as the original Larval Death model (LD) and
the Pupal Survival model (PS), respectively. The only difference
to the models by Gurney and Nisbet is, that we take linearized
functions for the density dependent competition. We observe that
the linearization of this term has no influence on the dynamics of
the LD model, but changes the dynamics of the PS model. These
findings again promote the result, that the LD dynamics are robust
against changes in themathematical details of themodel,while the
PS dynamics are not robust.

Linearized Larval Death model (LLD). The Linearized Larval Death
model is given by

dL

dt
= f · A(t) − f · A(t − 1) · s(t) (C.1)

− dL(t)J(t) (C.2)

dA

dt
= f · A(t − 1) · s(t) − d · A(t) (C.3)

s(t) = exp



−

 t

t−1

dL(t
′)dt ′



(C.4)

dL(t) = Max[0,D + L(t)] (C.5)

with the larval death rate dL(t) and the linear larval death rate D.
This model is equal to the LDmodel, except that the instantaneous
death of juveniles due to competition is linearized to

DeathL(t) = Max


0,


D0 + DSL(t)


J(t)



. (C.6)

Linearized Pupal Survival model (LPS). The balance equations of the
LPS model are:

dA

dt
=



s(t) · A(t − 1) − d · A(t) for s(t) > 0
−d · A(t) otherwise

(C.7)

with

s(t) = r − r

 t

t−2

(1 − |t ′ − t + 1|)A(t ′)dt ′.

This model is similar to the PSmodel, the basic form is identical
to system (A.1)–(A.3) and Eq. (1), respectively. The recruitment rate
of juveniles in dependence of the number of competitors has been
linearized to

r(t) ∝ rmax



1 −
C(t)

Cmax



. (C.8)

The number of competitors C(t) can be calculated as an integral
over the time-dependent birth rate, weighted by a time function
(1 − |t ′ − t + 1|). This time function reflects that a single larva
has a longer period of competition with larvae of the same age.
On the other hand side it has only small time overlap in the larva
stagewithmuch younger or older individuals. A sketch of this time
overlap is given in Fig. 2(b). No further simplifications have been
used except for the linearization of the recruitment rate term.

Results of the linearizedmodels. The dynamical behavior and periods
of the linearized models are shown in Fig. C.8. Comparing these
simulationswith the simplifiedmodels and the full Gurney–Nisbet
dynamics (Fig. 3) leads to the following results: (i) There is no
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visible difference between the LLD dynamics and the LD dynamics.
The bifurcations, dynamical features and periods are equal within
observable precision. (ii) The dynamical features of the LPS and PS
models are similar. Yet, the exact bifurcation lines, the parameter
space of chaotic behavior and the periods differ in their details.
Thus (iii) we once again find the oscillations in the region of
one generation time to be very robust, while models for delayed
feedback cycles are less generic.
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Evolutionary food web model 
based on body masses gives 
realistic networks with permanent 
species turnover
K.T. Allhoff1, D. Ritterskamp2, B.C. Rall3, B. Drossel4 & C. Guill5

The networks of predator-prey interactions in ecological systems are remarkably complex, but 
nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In 
order to understand the mechanism driving the complexity and stability of such food webs, we 
developed an eco-evolutionary model in which new species emerge as modifications of existing ones 
and dynamic ecological interactions determine which species are viable. The food-web structure 
thereby emerges from the dynamical interplay between speciation and trophic interactions. The 
proposed model is less abstract than earlier evolutionary food web models in the sense that all three 
evolving traits have a clear biological meaning, namely the average body mass of the individuals, the 
preferred prey body mass, and the width of their potential prey body mass spectrum. We observed 
networks with a wide range of sizes and structures and high similarity to natural food webs. The 
model networks exhibit a continuous species turnover, but massive extinction waves that affect more 
than 50% of the network are not observed.

Classical models addressing the structure and stability of food webs are based on stochastic algorithms 
that produce structural patterns similar to empirically measured food webs1, such as the niche model2 
or the cascade model3. A more recent approach is to use the empirically found allometries of body size 
and foraging behaviour of individual consumers to predict the links between species on a more biological 
basis4.

However, real food webs are not produced by a generative algorithm, but have been shaped by their 
evolutionary history and show an ongoing species turnover. New species in a food web occur by immi-
gration and speciation, and species vanish due to extinction. Currently, the world faces one of the largest 
extinction waves ever, which is thought to be caused by anthropogenic drivers such as climate change 
and land use5. Even without human interference or other catastrophic causes, and apart from evolution-
ary suicide due to runaway selection6, biological extinctions occur due to intrinsic processes, i.e., the 
dynamic trophic and competitive interactions among species7,8. The stability of food webs in terms of 
resistance to extinction waves after a perturbation (such as the removal or addition of a species), thus 
also depends on the network structure of these interactions between the species9,10, and conversely the 
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network structure results from species extinctions and additions. Understanding the interplay of food 
web structure and stability has therefore been identified as one of the most important questions in ecol-
ogy11.

Over the last decade, several models were introduced that include evolutionary rules on a longer 
time scale, in addition to population dynamics on shorter time scales: The former enables new species 
to enter the system, whereas the latter determines which species are viable and which go extinct. The 
newly emerging species can be modelled and interpreted either as invaders from another, not explic-
itly considered region or as “mutants” of existing species. The emerging network structures evolve in a 
self-organising manner, giving rise to complex, species-rich communities even when starting from initial 
networks with very few species1.

A particularly simple and often cited evolutionary food web model was introduced in 2005 by Loeuille 
and Loreau12 and subsequently modified by several other authors13–15. Each species is characterised by 
its body mass, which is the only evolving trait. Feeding and competition interactions are determined 
via differences in body mass. The fact that body mass is an ecologically interpretable trait makes the 
results from this model easily comparable to empirical data. This major advantage has been pointed out 
in the review on large community-evolution models by Brännström et al.16. The evolutionary process in 
this model generates large networks that show an almost static behaviour, with clearly defined niches 
all of which are and remain occupied. Even if a newly emerging species is slightly better adapted to the 
resources and therefore displaces a species of similar body mass, it has the same feeding preferences 
and hence the same function in the food web, leading to a very low species turnover without secondary 
extinctions15. The network structure is robust with respect to various changes in the population dynamics 
rules, indicating that some simple, robust mechanism structuring these food webs is at work12,15.

Complex networks with a less rigid structure emerge in the evolutionary version of the niche model17. 
The model allows for the evolution of three traits instead of just one, namely the niche value, the centre 
and the width of the feeding range. Other authors describe a species in a more abstract way by a vector 
of many traits, as implemented in the matching model18,19 and in the webworld model20,21. Recently, 
also several individual-based models for evolving food webs were introduced22–24. The emergence of 
complex food webs in these models is highly nontrivial. Some past attempts to set up an evolutionary 
model lead to repeated network collapse instead of persisting complex networks25. Other attempts lead 
to trivial network structures, like simple food chains in the evolving niche model17 or a single trophic 
level in the webworld model21. In both models, adaptive foraging was required in order to obtain more 
complex networks.

Allhoff and Drossel15 suggested that an evolutionary food web model has to fulfil two conditions to 
be able to generate diverse and complex networks. First, it should allow for the evolution of more traits 
in addition to body mass in order to generate several possible survival strategies like for example spe-
cialists and omnivores. This idea is consistent with results from a recent empirical study by Rall et al.26, 
who found that predators of similar body mass differ significantly in their feeding preferences. Second, 
the evolution of each trait has to be restricted in order to prevent unrealistic trends, for example towards 
extremely small or large body masses or towards extremely broad or narrow feeding ranges. In this con-
text, the stabilising effect of adaptive foraging in previous models could be explained by the fact that a 
predator can focus on its most profitable prey without losing adaptation to other prey.

In this paper, we propose a new evolutionary food web model that includes the restriction of trait 
evolution in a more direct way. Similarly to the evolutionary niche model17 and supported by empirical 
data regarding the body-mass ratios of predator-prey pairs27,28, we characterise a species by three traits 
with clear biological meaning: its own body mass (which determines its metabolic rates), its preferred 
prey body mass, and the width of its potential prey body mass spectrum. The evolutionary rules in our 
model confine the traits within certain boundaries, without the requirement to include adaptive foraging.

The model most similar to our model is the one by Loeuille and Loreau12. It also has body mass as 
a key trait and a similar concept for setting the feeding preferences. Our model differs from the model 
by Loeuille and Loreau in the number of traits that characterize a species (3 instead of 1), the functional 
response (Beddington-deAngelis instead of linear), the competition rules (based on link overlap instead 
of body mass differences), the possibility of cannibalism and loops (included only in our model) and 
the resource dynamics. Moreover, we consider body mass ratios instead of body mass differences so 
that the body masses in our model spread over several orders of magnitude instead of only one. The 
bio-energetics of the species in our model follow well documented allometric scaling relationships29, 
leading to networks with realistic body-mass scaling relations that can be tested directly against empirical 
data.

We demonstrate the capabilities of our model by evaluating 18 common food web properties and 
compare them to a data set of 51 empirical food webs from a large variety of different ecosystems. We 
further use the well-known evolutionary model by Loeuille and Loreau12 as a benchmark to assess the 
quality of the predictions of our model. In principle, both models are able to produce diverse networks. 
However, we obtain a higher variability in the feeding preferences and survival strategies and therefore 
more realistic values for the corresponding network properties. Moreover, while the network structures 
of Loeuille and Loreau are static, species turnover and extinction avalanches occur naturally in our 
model.

110



www.nature.com/scientificreports/

3Scientific RepoRts | 5:10955 | DOi: 10.1038/srep10955

the Model
The model includes fast ecological processes (population dynamics), which determine whether a species 
is viable in a given environment that is created by the other species, and slow evolutionary processes 
(speciation events), which add new species and enable the network to grow and produce a self-organised 
structure. A species i is characterised by its body mass, mi, the centre of its feeding range, fi, and the 
width of its feeding range, si. These traits determine the feeding interactions in the community (see 
Fig. 1) and thereby the population dynamics. A summary of all model parameters and variables is given 
in table 1.

population dynamics. The population dynamics follows the multi-species generalisation of the bio-
energetics approach by Yodzis and Innes30,31. The rates of change of the biomass densities Bi of the 
populations are given by
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is the rate of successful attacks of species i on individuals of species j, with the Gaussian feeding kernel 
Nij as shown in Fig. 1. The parameter hi is the handling time of species i for one unit of prey biomass, 
and cil quantifies interference competition among predators i and l32–34. It depends on their similarity, as 
measured by the overlap ( )∫= ⋅I N N d mlogil ij lj j10

 of their feeding kernels, via
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Figure 1. Model illustration using 4 species . Species 3 (black triangle) is characterised by its body mass 
m3, the centre of its feeding range f3, and the width of its feeding range s3. The Gaussian function (black 
curve) describes its attack rate kernel N3j on potential prey species. Here, species 3 feeds on species 2 and 
1 (grey triangles) with a high resp. low attack rate. Species 1 and 2 are consumers of the external resource, 
represented as species 0 with a body mass m0 =  1 (white triangle). Also shown is the corresponding network 
graph.
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The normalisation of the competition with Iii was proposed by Scheffer et al.35 and accounts for the 
fact that the competition matrix is not symmetric. More specialised species exert a higher competition 
pressure than species with broad feeding ranges. The overlap Iil is similar to the niche overlap discussed 
by May36.

We assume that interference competition is significantly higher within a species than between differ-
ent species, e.g. due to territorial or mating behaviour. To account for this, we introduce an intraspecific 
competition parameter cintra and set cii =  cfood +  cintra.

speciation events. Each simulation starts with a single ancestor species with body mass m1 =  100 
and feeding parameters f1 =  1 and s1 =  1, which is thus feeding on the external resource with its max-
imum attack rate. The initial biomass densities are B0 =  K =  100 for the resource and B1 =  m1 ⋅  ε =  2 ⋅  
10−2 for the ancestor species. The parameter ε is the extinction threshold, i.e., the minimum population 
density required for a population to survive. At each unit time step, species below this extinction thresh-
old get removed from the system.

A speciation event occurs with probability ω =  0.0001 per unit time. This is so rare that the system is 
typically close to a fixed point before the next mutation occurs. Then, one of the currently existing spe-
cies (but not the external resource) is chosen randomly as parent species i for a “mutant” species j. Thus, 
every species has the same probability ω/S to “mutate”, where S is the number of currently viable species. 
The logarithm of the mutant’s body mass, log10(mj), is chosen randomly from the interval [log10(0.5mi), 
log10(2mi)], meaning that the body masses of parent and mutant species differ at most by a factor of 2. 
The mutant’s initial biomass density is set to Bj =  mj ⋅  ε and is taken from the parent species.

The mutant’s feeding traits fj and sj are independent of the parent species. The logarithm of the feed-
ing centre, log10 fj, is drawn randomly from the interval [(log10(mj) −  3), (log10(mj) −  0.5)], meaning that 
the preferred prey body mass is 3 to 1000 times smaller than the consumer’s body mass, and following 
the results from Brose et al.27. The width of the feeding range, sj, is drawn randomly from the interval 
[0.5,1.5]. A small value of sj corresponds to a more specialised consumer, while a large value of sj char-
acterises a consumer with a broad feeding range and lower attack rates. A combination of large preferred 
prey mass fj and a wide feeding range enables a consumer to prey on species with a larger body mass 

parameter meaning

resource

 m0 =  1 body mass

 R =  1 maximum mass-specific growth rate

 K =  100 carrying capacity

 B0 biomass density

species i

 mi  body mass

 fi centre of feeding range

 si standard deviation of feeding range

 Bi biomass density

population dynamics 

 ej =  0.85 (0.45) assimilation efficiency for animal (plant) 
resources

 gij functional response of predator i on prey j

 aij attack rate of predator i on prey j

 = ⋅ .a m1i i
0 75 attack rate parameter

 = . ⋅

− .h m0 398i i
0 75 handling time of predator i

 cil competition on species i from species l

 cfood competition parameter for food

 cintra  intraspecific competition parameter

 = . ⋅

− .x m0 314i i
0 25 respiration rate of species i

evolutionary rules

 ω =  10−4 mutation probability

 ε =
2

104

initial population density of a new species and 
extinction threshold

Table 1.  A summary of all model parameters. The values of the population parameters are based on the 
work by Yodzis and Innes30. If no value is given for a parameter, it is variable.
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than its own. This enables the emergence of cannibalism and feeding loops. The fixed intervals keep the 
evolving traits in reasonable ranges and prevent unrealistic trends, following the results by Allhoff and 
Drossel15.

When testing the robustness of the model predictions with respect to the model details, we used 
alternative rules, where the probability for choosing a parent species is proportional to its biomass (sim-
ilar to the model by Loeuille and Loreau12) or to its inverse generation time − /mi

1 4 so that the mutation 
rate is proportional to the reproduction rate. Furthermore, we tested Gaussian distributions of mutant 
body masses around the parent with a standard deviation between 0.09 and 1. We used a cutoff at two 
standard deviations resulting in a maximum body mass factor between parent and daughter species 
between 102⋅0.09 ≈  1.5 and 102⋅1 ≈  100. The former describes local speciation events, whereas the latter 
describes species invasions from not explicitly modelled regions. We also compared the results to simu-
lations where the mutants body mass is drawn randomly from the interval [10−0.5,106]. Finally, with a 
similar approach, we also included heredity into the feeding parameters si and fi by combining Gaussian 
distributions around the parent’s traits with the above given mutation intervals.

Methods
The computer code for our simulations was written in C. We used the Runge-Kutta-Fehlberg algorithm 
provided by the GNU Scientific library37 for the numerical integration of the differential equations. 
Simulations were run for 5 ⋅  108 time units. For comparison, the generation time of the initial ancestor 
species with body size m1 =  100 is of the order of = ≈

.

.

10
x

1 100

0 3141

0 25

 time units.

The competition parameters cfood and cintra have a strong effect on the diversity of the emerging food 
webs. To obtain the network variability observed in nature, we performed computer simulations with 
all four combinations of cfood =  0.6 or 0.8 and cintra =  1.4 or 1.8. The time series of these simulations are 
shown in the online supplementary material. From each simulation run, we collected 80 food webs 
obtained after every 5 ⋅  106 time units from t =  108 to t =  5 ⋅  108, resulting in a total of 320 different 
networks. Due to the initial build-up of the network, the first 108 time units were not taken into account.

The structure of the emerging food webs is compared both to food webs produced with the model by 
Loeuille and Loreau12 and to empirical food webs. For the empirical data, we re-evaluated 51 of the 65 
food webs from different ecosystem types analysed by Riede et al.38 for which we had body-mass data 
for all species in the network (for the complete list see online supplementary material). For the model 
by Loeuille and Loreau, we evaluated the final network structures obtained with 75 combinations of 
different parameter values. Due to the static network structure, we could not obtain different networks 
from one evolutionary simulation. The niche width was set to = = . , . , . , . , .nw 0 5 1 0 1 5 2 0 2 5

s

d

2

 and the 
competition strength to α0 =  0.1, 0.2, 0.3, 0.4, 0.5, similar to the original work. To get networks of com-
parable size we decreased the competition range, β =  0.025, 0.05, 0.075.

Both models use Gaussian feeding kernels with in principle infinite width to describe the feeding 
interactions, meaning that each species can prey on every other species. Thus, for analysis, very weak 
links have to be cut off in order to obtain meaningful network structures. In our networks, we removed 
all links that contribute less than 75% of the average link to the total resources of a consumer. This 
criterion is weaker than it might seem, because most of the links of a predator are very weak, and so is 
the average link strength. Our cutoff measure depends on both the attack rate and the prey’s biomass 
density. It thereby mimics unavoidable sampling limits in empirical food-web studies. For the networks 
produced by the algorithm of Loeuille and Loreau we used the cutoff criterion of the original work and 
removed all links with an attack rate that is smaller than 15% of the respective predator’s potential maxi-
mum attack rate, disregarding the prey’s biomass density. Since the value of the cutoff criterion is to some 
extent arbitrary, we report its effects on the predicted network properties in the online supplementary 
material. There we also show results obtained for the model by Loeuille and Loreau with our cutoff rule.

Results
A typical simulation run. A typical simulation run with the competition parameters cintra =  1.4 and 
cfood =  0.8 is shown in Fig. 2. After an initial period of strong diversification, the system reaches a size of 
approximately 60 species (panel (a)) on 3 to 4 trophic levels above the resource (panel (c)). The species 
form clusters of similar body masses, as shown in panel (b). New predator and prey species emerge pref-
erentially within these clusters: A prey species in a cluster experiences less predation pressure due to the 
saturation of the functional response of the predator, and the predation input of a predator is larger if its 
feeding preferences match such a cluster. Therefore, we observe a trend towards strong specialisation on 
these clusters, resulting in the following network structure. Species in the first cluster have a body mass 
of approximately 101, specialise on the resource and represent most of the second trophic level. Species 
in the second cluster with a body mass of approximately 102 −  103 feed either on the resource (TL ≈  2) 
or on the first cluster (TL ≈  3). Species in the top cluster with a body mass greater than 103 specialise 
either on the first or on the second cluster and therefore have intermediate trophic positions (3 ≤  TL ≤  4). 
Some species have even higher trophic positions due to cannibalism and loops.

The initial build-up of the network continues until the species in the top cluster are close to the 
extinction threshold. Once all clusters have emerged, the system shows a continuous turnover of species. 
We suppose the following turnover mechanism. Mutants with very few predators can occur occasionally 

113



www.nature.com/scientificreports/

6Scientific RepoRts | 5:10955 | DOi: 10.1038/srep10955

if their body mass is between two clusters and if the other species are specialised on the clusters. If 
such a mutant has viable feeding parameters, it can grow a large population and displace many other 
species at once, potentially even causing secondary extinctions. Examples for such extinction events are 
visible at t ≈  2 ⋅  108 and t ≈  4.3 ⋅  108. After an extinction event, the network rearranges, and temporally 
also species with broader feeding ranges appear, before the trend towards specialisation followed by an 
extinction event starts again.

Network evaluation and comparison. We compared 320 networks from our model with 51 empir-
ical networks and 75 networks from the model by Loeuille and Loreau12, see Fig. 3. Panels (a)–(c) show 
the distributions of body masses of all three data sets. The observed peaks in our simulated data corre-
spond to the body mass clusters mentioned before. The distance between the peak maxima is determined 
by the upper boundary of the mutation interval of the feeding centre. Single empirical food webs show 
a similar peak pattern (not shown). In contrast, the body mass distribution of the model by Loeuille and 
Loreau looks blurred, due to our choice of the niche width =nw

s

d

2

. With smaller values of the feeding 
range s, the network structure is strongly layered and clusters of body masses that are multiples of the 
feeding distance d occur, where each species feeds on those in the cluster below and is prey to those in 
the cluster above15. We also observed that because we based the network structure on predator-prey 
body-mass ratios instead of body-mass differences, the resulting community-size spectra from our model 
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Figure 2. Network size, body masses and flow-based trophic positions60 of all species occurring during 

one exemplary simulation run with competition parameters cintra = 1.4 and cfood = 0.8. Panel (a) also 
shows the average network size and its standard deviation for 18 simulations with identical parameters but 
different random numbers. Body masses and trophic positions were plotted at every 25th mutation event. 
Network visualisations for the time points indicated by vertical lines are shown in the online supplementary 
material.
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follow empirical observations and theoretical predictions more closely than those from the model by 
Loeuille and Loreau, as shown in the online supplementary material.

Panels (d)–(f) show the distributions of trophic levels of all three data sets. Here, we use the 
short-weighted instead of the flow-based trophic level. This allows for better comparison with the empir-
ical data for which the population sizes are often not available. The comparison between the two models 
reveals the main difference between the two different cutoff rules. A link with intermediate attack rate 
to a small prey population represents only a small proportion of the predator’s diet, and is therefore 
neglected when using our cutoff threshold (75% of the average link). However, it is not recognised as a 
weak link with the cutoff rule by Loeuille and Loreau (15% of the maximum attack rate). On the other 
hand, a link with small attack rate to a big prey population (especially to the resource) is deleted in their 

Figure 3. Frequency distributions of body masses and short-weighted trophic level60, as well as the 

distributions of generality (number of prey species) and vulnerability (number of predators). The latter 
two are normalised by the average number of links per species. nm: 320 networks from 4 simulations of 
our new model with all four combinations of cfood =  0.6 or 0.8 and cintra =  1.4 or 1.8. emp: Average over 51 
empirical food webs. LL: Average over 75 simulations of the model by Loeuille and Loreau12. Note that panel 
(c) shows absolute body masses, since in this model all body masses are in the same order of magnitude. See 
Methods for more information.
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model. Thus, trophic levels are overestimated, whereas our model with our cutoff rule results in a quite 
realistic distribution.

Both models have difficulties reproducing the empirical distributions of generality (number of prey 
species) and vulnerability (number of predators), which are much broader than the distributions pro-
duced by the models (panels (g)–(l)). For the model by Loeuille and Loreau, the distribution results 
from the fact that the species in the model feed only on prey with smaller body masses. The situation is 
similar to the cascade model3, which also constrains predators to feed only on prey with a lower rank. 
Consequently, both generality and vulnerability cannot be larger than twice the average number of links 
per species. In our new model, the distribution of the vulnerability shows two humps. The first hump 
contains the carnivores in the higher trophic levels that feed on herbivores or on other carnivores. They 
have a high generality and a small vulnerability. The second hump contains the herbivores that feed on 
the resource. They are prey to many other species and hence have a high vulnerability.

We ascribe the differences between the models and the empirical distributions to the fact that both 
models have only one resource, which means that all herbivores feed on the same resource, whereas in 
empirical networks herbivores can have more than one resource. Furthermore, both models ignore the 
within-species body-mass distribution by assigning to each species a precise value of the body mass. This 
also narrows down the range of body sizes a species can feed on or is vulnerable to.

By analysing the 320 networks from the 4 simulations separately (see Fig.  4), we found two trends 
concerning the network size (panel (a)): First, the stronger the intraspecific competition cintra, the smaller 
are the population sizes and the more populations can survive on the same amount of energy provided 
by the resource. Second, the stronger the competition for food cfood is, the sooner species can displace 
others resulting in rather small networks with fast evolutionary species turnover.

Both models are able to produce networks of realistic sizes, but tend to overestimate the number 
of links per species (panel (b)) and hence the connectance (panel (c)). The effect is much larger in the 
model by Loeuille and Loreau due to their original cutoff rule. This also explains the high fraction of 
omnivores and the low fraction of top and herbivorous species (panels (d)–(f)), as well as the high val-
ues of the number of chains and the clustering coefficient (panel (o) and (p)) and the small value of the 
characteristic path length (panel (r)). In the online supplementary material, we show that the model by 
Loeuille and Loreau provides more realistic predictions when using our cutoff rule.

Both models fail to reproduce the maximum similarity (panel (q)), due to the same reasons that also 
lead to the narrow distributions of generality and vulnerability. For the remaining panels, the model by 
Loeuille and Loreau performs worse than our model regardless which cutoff rule is used. For example, 
the short-weighted trophic levels (panel (j)–(l)) are not only overestimated due to the cutoff rule, but 
also reflect the regular network structure. As mentioned above, these networks are layer-like structures, 

Figure 4. Network properties of four realisations with different values of the competition parameters. 

w/w: Weak competition, cintra =  1.4/cfood =  0.6. w/s: Weak intraspecific competition and strong competition 
for food, cintra =  1.4 / cfood =  0.8. s/w: Strong intraspecific competition and weak competition for food, 
cintra =  1.6 / cfood =  0.6. s/s: Strong competition, cintra =  1.6 / cfood =  0.8. emp: Average over 51 empirical 
food webs. LL: Average over 75 simulations of the model by Loeuille and Loreau12. See Methods for 
more information. Details on the calculation of these network characteristics can be found in the online 
supplementary material.
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where each cluster represents one trophic level. Since all clusters accommodate a similar number of 
species instead of heaving more species on lower levels like in our model, the mean trophic level is 
overestimated. Moreover, the model does not include cannibalism (panel (m)) and loops (panel (n)), for 
which our model provides good predictions.

Due to the evolution of three instead of one trait, we obtain more diverse network structures than 
Loeuille and Loreau. We observe a higher standard deviation of the generality, the vulnerability and the 
linkedness (panel (g)–(i)), reflecting different feeding preferences and survival strategies.

Robustness of the results against variations of the evolutionary rules. In order to ensure that 
our findings are no artefacts of the specific choice of evolutionary rules, we tested the robustness of our 
results against the changes outlined at the end of the model section. We found that making mutation 
probabilities dependent on biomass or body mass influences the time dependency of the network devel-
opment but leaves the averaged network properties, like the total network size, the distribution of body 
masses and the fraction of species or biomasses per trophic level, mostly unchanged. Also the trend 
towards strong specialisation with subsequent extinctions still occurs in these variants.

When changing the degree to which the parent’s body mass is inherited by the mutant, the main 
effect was that species turnover became slower with stronger inheritance. In this case it is less likely that 
mutants with body masses between two clusters occur, which have few predators and cause extinction 
avalanches. The probability for such mutants increases with a decreasing degree of inheritance, which 
is consistent with our oberservation that the body mass clusters appear to be blurred in case of a very 
low degree of inheritance. The same is true for randomly chosen body masses. However, we still obtain 
large, complex networks.

If the parent species i and the mutant j have similar feeding centres, fi ≈  fj, the initial build-up of 
different trophic levels and their recovery after an extinction avalanche is also slowed down. With very 
strong inheritance of the feeding centre, all species will focus on the resource and no mutant emerges 
with a feeding centre matching the first body mass cluster, leading to trivial structures with only one 
trophic level. If parent and mutant have a similar degree of specialisation, si ≈  sj, all species exert and 
experience a similar competition pressure. Thus, instead of one species displacing another, both popula-
tions stay small and hence more populations per trophic level can survive. However, small or intermedi-
ate degrees of inheritance in the feeding traits leave the network characteristics again mostly unchanged. 
The situation is different, when either the feeding range or the feeding centre is chosen from an interval 
around the parent’s trait without any body mass dependent constraint. In consistency with the predic-
tions of Allhoff and Drossel15, these variants lead to unrealistic trends and trivial instead of complex 
network structures.

Discussion
We introduced a new evolutionary food web model where the feeding links are based on body mass, and 
where species differ by body mass, feeding centre, and feeding range. By iterating population dynamics 
and speciation events for a sufficiently long time, we obtained complex networks, which show a high 
degree of commonality with empirical food webs. The new model is able to produce more realistic and 
more diverse network structures than the model by Loeuille and Loreau12.

Both models use a very similar approach of Gaussian feeding kernels to determine the interactions 
between the species, which by construction leads to perfectly interval networks. Following the results of 
Stouffer et al.39, we assume this to be a reasonable approximation. In contrast to the model by Loeuille 
and Loreau, the new model allows for cannibalism and loops, since the feeding range can extend to body 
masses larger than that of the predator. The species in our model can have different feeding preferences 
and survival strategies, due to the larger number of evolving traits in our model. This leads to a higher 
variability in network characteristics such as linkedness, generality and vulnerability, even though natural 
variability is still larger, which we ascribe to the facts that our model has only one basal resource and 
no body-size structure within species. We showed that an appropriate choice of the cutoff rule for weak 
links is essential for obtaining realistic results for connectance and trophic structure.

The increased number of evolving traits compared to the model by Loeuille and Loreau has also a 
large effect on the evolutionary trends. The networks show an ongoing species turnover and are subject 
to constant restructuring. The species in our model form body mass clusters and the evolutionary process 
is characterised by a trend towards increased specialisation on these clusters. Similar specialisation trends 
have also been observed in other studies15,17. We assume the following explanation for the continuous 
species turnover. The evolved specialists gradually replace less efficient species with broader feeding 
ranges that cover also the gaps between the body mass clusters. Those broad ranged species have the role 
of keystone species that stabilise the networks against the occurrence of large extinction avalanches40,41. 
In the absence of control by such predators, new mutants (or invaders) can find niches between two clus-
ters with very little predation pressure, where they can grow to high abundance and cause extinction ava-
lanches propagating from lower to higher trophic levels. After such extinction events, the empty niches 
can be reoccupied also by species with broader feeding ranges, before the speciation process starts again.

This corresponds to the results of Binzer et al.8, who identified specialised species on high trophic 
levels to be prone to secondary extinctions, and to the results of Rossberg42, who suggested a very simi-
lar turnover mechanism for the results of his model. In consistence with the described mechanism, also 
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Mellard and Ballantyne43 reported that co-evolution of species does not necessarily lead to high levels of 
resilience for the ecosystem as a whole. However, such a turnover mechanism is missing in the model 
by Loeuille and Loreau. There, a displaced species is always replaced by a new species of a very similar 
body mass. And since the body mass is the only evolving trait, the new species has automatically the 
same predators and the same prey, excluding the possibility of secondary extinctions or major changes 
in the network structure15. The same is true for the model version by Brannström et al., which led to 
evolutionary equilibria, where no more mutants are able to invade the system14. Ingram et al. reported 
that also their model extension with evolving feeding ranges, but with fixed predator-prey body mass 
ratios, tends to reach dynamically stable configurations with little structural change13.

However, real ecosystems do show extinction events of different sizes, and their distribution evaluated 
over geological times resembles a power law44. For this reason, it has been suggested that ecosystems 
show self-organised criticality (SOC)45, which means that the intrinsic dynamics of the systems is respon-
sible for the power-law size distribution of extinctions. However, the question remains open due to sparse 
and ambiguous data46,47. Some previous evolutionary food web models, for example the evolutionary 
niche model17, exhibit SOC, whereas other models like the webworld model20 or the model by Loeuille 
and Loreau12 do not. The size distribution of extinction avalanches in our model is a power law with an 
exponent around 4 (not shown). Because of its steepness, this power law covers only approximately one 
decade, meaning that extinction events of more than 10 species are extremely rare. This is not the type 
of SOC required to explain the large extinction events in earth history, where up to 90 percent of all 
species went extinct. Regarding the time span a species is present in the system, our model is consistent 
with paleobiological data concerning the fact that higher trophic level species stay in the system for a 
shorter time span than lower level species46, although it should be mentioned that the exact distribution 
of these time spans in our model depends on the relation between a species’ body mass and its mutation 
probability.

The evolutionary rules implemented in our model are simplified and to some extent artificial. To 
make sure that our results do not depend on these simplified rules, we tested several variations concern-
ing the mutation and inheritance rules. Our general finding is that minor changes in the evolutionary 
algorithm have only minor effects on the results. The overall mechanism with a trend towards speciali-
sation followed by an extinction event as explained above is robust to changes in the evolutionary rules. 
Also the time averaged network structures remain mostly unchanged. However, the typical time period 
for a specialisation-extinction cycle can change with extinction events being triggered sooner or later.

The fact that our networks show realistic patterns concerning many common food web properties 
suggests that our model provides a valuable tool to discuss urgent topics in ecological research. For 
example, the allometric equations are extendable by temperature terms (e.g.48–51). This approach would 
allow to model how warming might change evolution and extinction waves, in order to discuss current 
global change questions.

Another idea would be to address habitat loss and habitat fragmentation as a prominent example of an 
external driver of extinction events52,53. Recently, various approaches have been made to study the influ-
ence of the spatial environment on the food web composition and stability. If space has the structure of 
discrete habitats, these food webs can be interpreted as “networks of networks”54,55. However, most of the 
studies on such metacommunities so far focus on spatial aspects under the assumption that the species 
composition is static, although it has been emphasised that combining the spatial and the evolutionary 
perspective is essential for a better understanding of ecosystems56–58. Recently, Allhoff et al. studied a 
spatial version of the model by Loeuille and Loreau59. However, their findings were associated with the 
applied competition rules and the remarkable stability of the original model, highlighting the assumption 
that a more dynamic species turnover as in our new model would lead to a better understanding of the 
interplay between evolving food web structure and spatial structure.
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We evaluate the spectrum of ordered three-node substructures in food webs taking self-links (cannibalism) into account. If
the order of nodes in the network cannot be neglected, 512 substructures can be distinguished. Simple statistical models of
networks impose constraints on the structure that prohibit a large number of substructures completely. We analyse two
variants of the widely used niche model, the original niche model and the generalised niche model, and show analytically
and numerically that they exclude 344 and 320 substructures, respectively. The prohibition rules for three-node substructures
in the two niche-model variants are further contrasted with a large set of empirical food webs, which reveals that up to
about 30% of the three-node substructures that occur in empirical food webs are prohibited by the model algorithms.

Keywords: motif analysis; food webs; cannibalism; node ordering; body mass; niche model

Introduction

Networks are a powerful tool to describe systems as diffe-

rent as transportation and power systems, social commu-

nities, or the World Wide Web (Albert & Barab�asi 2002;

Newman 2003). In the biological sciences, networks are

used to analyse e.g. metabolic pathways in cells (Jeong

et al. 2000), neural systems (Varshney et al. 2011), or the

interactions of species in an ecosystem (Dunne et al.

2002a). In this article, we are interested in the structure of

food webs, which are the networks of predator �
prey interactions in ecological communities (Drossel &

McKane 2005). Understanding the structure of these net-

works is of great importance to unravel the factors that

determine the resistance or vulnerability of ecosystems

against accelerating species loss (Dunne et al. 2002b;

Binzer et al. 2011). The analysis of substructures has been

used successfully to identify important building blocks or

functional units of larger networks. We follow the conven-

tion of Milo et al. (2002) and call such a building block

that occurs significantly more often than in suitably rando-

mised networks a motif. In theoretical ecology, the dynam-

ics of interconnected populations that form a motif (or

module, if the population size associated with a node in the

motif is considered as a dynamic quantity) is a frequently

studied subject (McCann et al. 1998). While in most types

of networks self-links are not important, they naturally

occur in food webs as cannibalistic interactions within spe-

cies (Fox 1975; Polis 1981). They are, however, usually

neglected even in the ecological literature on motif analysis

(Stouffer et al. 2007), despite the intricate effects cannibal-

ism can have on the population dynamics in food-web

modules (Persson et al. 2003; Claessen et al. 2004).

Several models exist that generate artificial food-web

structures using stochastic algorithms. These artificial

networks resemble certain aspects of natural food webs,

but usually also impose constraints on the links among the

species. Often the existence of an order of the nodes (spe-

cies) is assumed, e.g. induced by the mean body masses of

the species, such that species with a higher index have a

higher mean body mass. In the cascade model (Cohen &

Newman 1985) and the generalised cascade model

(Stouffer et al. 2005), the species form a completely

ordered set, and predators are prohibited from having prey

with a higher index (body mass) than themselves. This

has obvious effects on the number of substructures that

may occur in these types of networks. The niche model

(Williams & Martinez 2000) is one of the most widely

used models for food-web structures. It also assumes that

the species form a completely ordered set. It constrains

predators to take their prey from a contiguous interval on

the niche axis, but up to half of the interval may extend

above the niche position of the predator. This makes links

that point in the direction of the node order possible, but

the contiguity of the feeding ranges imposes constraints

regarding the presence of cannibalistic links. The general-

ised niche model (Stouffer et al. 2006) relaxes the conti-

guity constraint of the feeding ranges by assigning

predators a certain number of prey species with a lower

index at random. We use here the convention that links

point from predator to prey (Milo et al. 2002; Newman

2003; Camacho et al. 2007; Stouffer et al. 2007), while

part of the literature about food webs uses another con-

vention, where the links point in the direction of the

resource flow (Drossel & McKane 2005).

The structure of the article is as follows. In the second

section, we describe the full set of ordered three-node sub-

structures including cannibalism, we present the simple

statistical model allowing us to define the spectrum of
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substructures (i.e., the frequencies of their occurrence)

analytically, and we compare it with the results obtained

with our numerical algorithms. In the third section we

build analytically the binary spectra of three-node sub-

structures for food webs generated with the (generalised)

niche model and we compare them with a data set of

empirical food webs. We further determine the quantita-

tive importance of prohibited substructures in the empiri-

cal food webs. The results are discussed in the last section.

The spectrum of ordered three-node substructures

In this article, we consider only simple networks that are

characterised by one type of nodes (biological species in

the context of food webs) and one type of links (feeding

interactions among species). This is indeed a simplification,

as non-trophic interactions can be very common in food

webs (K�efi et al. 2012). A link between two species i and j

is considered directed. Furthermore, the networks are

ordered, i.e., between any two arbitrarily chosen nodes i

and j, we can define a relation such that one of the nodes is

higher than the other. In food webs, the average adult body

mass of the species can be used to define such a relation.

In a recent paper (Paulau et al. 2015), the motif analysis

of food webs has been extended by taking the anisotropy of

ecological niche space and the order of species into

account. In the simplest case, the niche space (a niche axis)

is one-dimensional (Cohen and Stephens 1978) and, fol-

lowing Elton (1927), the position on this axis defines the

feeding interactions of a species. If this one-dimensional

niche space is anisotropic, species with a high position on

the niche axis feed on those with a low position with a dif-

ferent probability than vice versa. Since in food webs it has

been reported that predators are commonly larger than their

prey (at least when parasites are excluded), body mass is

indeed a useful proxy for niche position (Brose et al. 2006).

In such an anisotropic situation, the members of the

13 isomorphism classes of connected three-node

substructures (Milo et al. 2002) that are formed by cyclic

and mirror permutations of nodes are no longer statisti-

cally equivalent and the extended spectrum of three-node

substructures must be analysed (Figure 1). In each sub-

structure, the nodes are ordered in such a way that the

lowest index corresponds to the bottom node, the interme-

diate index corresponds to the middle node, and the high-

est index to the top node. A three-node substructure can

be fully described by a 3 £ 3 adjacency matrix M with

elements Mij that are 1 if i is a predator of j and 0 else.

The six non-diagonal elements correspond to links

between the nodes and there are 26 D 64 different three-

node substructures, as shown in Figure 1.

A lot of literature about networks is focused only on

connected substructures (Milo et al. 2002; Stouffer et al.

2007). If one considers a network of only three nodes and

one of them (i) is isolated, i.e., Mij D Mji D 0 8 j / D i,

then this isolated node has no effect on the others and

only the connected nodes are important. But the consider-

ation of only three-node substructures of larger networks

is a rather rough limitation. If we would study substruc-

tures with one more node, then some of the previously

ignored isolated nodes could be not isolated anymore and

could play an important role in the functioning of the net-

work. Therefore, we include substructures with isolated

nodes in our analysis, because their frequencies are also a

relevant measure of ordered networks.

Usually, the diagonal elements of M are ignored, too,

but as we have pointed out in the introduction, self-links

are important in food webs. We use the diagonal elements

of M to distinguish eight configurations, corresponding to

three cannibalistic links that can be either present or

absent (Figure 2). This leads to a total of 512 different

three-node substructures. We index them using (k, m)

indices, where k (given in binary format for convenience,

see Figure 2) is the cannibalistic configuration and m

(given in decimal format) refers to the configuration of

links between the species (Figure 1).

Figure 1. The 64 ordered three-node substructures without self-links. The index (rank or niche position) of a node increases from bot-
tom to top for each substructure. The horizontal displacement of nodes is only for illustrative purposes. Shaded rectangles mark the sub-
structures that are always prohibited in both the original and the generalised niche model, irrespective of the cannibalistic configuration.
The integer index m 2 [0; 63] is a decimal form of the binary number formed by the off-diagonal elements of the adjacency matrix.
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To illustrate the properties of the spectrum of ordered

substructures and to test our numerical algorithms, we

consider here a modified version of the directed random

graph discussed in more detail by Paulau et al. (2015).

Assume that we have a set of N indexed nodes and the

directed link between each two of them has the probability

p", if the source node index is smaller than target node

index, and p# for an inversely directed link. In addition

each node is cannibalistic (self-linked) with probability

ps. Analogously to (Paulau et al. 2015), one can define the

conditional probabilities for any ordered three-node sub-

structure. For example, the probability Pk,m of substruc-

ture k D 011 and m D 15 in Figure 2 is

P011;15 D p" ð 1¡ p# Þ p" ð 1¡ p# Þ p" p# psps ð 1¡ ps Þ ; (1)

where the first two multipliers describe the link between

middle and top nodes, the third and fourth multipliers

describe the link between bottom and top nodes, the fifth

and sixth multipliers describe the double link between

bottom and middle nodes. Finally, the last three multi-

pliers describe the presence or absence of cannibalistic

links. The number of all possible different combinations

of ordered triplets in a network with N nodes is the bino-

mial coefficient CN
3 D 1

6N ð N ¡ 1 Þð N ¡ 2 Þ and hence the

mean frequency of each substructure can be defined as

hk;m DPk;mC
N
3 : (2)

We numerically generated a large number of initialisa-

tions of the directed random graph with cannibalistic

links. Our counting algorithm allows us to compute the

mean spectrum of ordered substructures numerically. The

last is in perfect agreement with the analytical prediction,

Equation (2) (see Figure 3, this figure is given to demon-

strate the agreement of analytical and numerical results,

rather than to distinguish densities of every separate sub-

structure). We would like to note here, that in the directed

random graph the probabilities Pk,m do not depend on the

size of the network, while frequencies hk,m do depend.

Three-node substructures of food-web models and

empirical data

One of the prerequisites of food-web models to be able to

reproduce empirical food-web topologies is that the niche

values of the species form a totally ordered set (Stouffer

et al. 2005). Very simple early models like the cascade

model (Cohen & Newman 1985) comply with this, but

also more recent and complex models like the niche

model (Williams & Martinez 2000) assume the ordering

of the species. The cascade model constrains predators to

feed only on prey with a lower niche index than itself,

which prohibits every substructure with an upwards arrow

in Figure 1, i.e., there are only eight allowed substructures

(the first and fifth columns of the figure). One of the main

improvements of the niche model over the cascade model

is that it allows for the possibility of upward links. How-

ever, the niche model assumes that a predator species

preys on all species from a contiguous interval on the

niche axis, and the centre of this interval is constrained to

be not higher than the predator’s niche value. Due to this

constraint, a predator that feeds on a prey with higher

niche index is for example always assumed to be a canni-

bal. For three species i, j, k with ordering i < j < k, a sub-

structure is prohibited due to the intervality constraint if at

least one of the following conditions is fulfilled:

Mik D 1 and ð Mii D 0 orMij D 0 Þ (C1)

Mij D 1 andMii D 0 (C2)

Mjk D 1 andMjj D 0 (C3)

Mki D 1 andMkk D 1 andMkj D 0: (C4)

The first condition prohibits substructures where the

bottom species feeds on the top species but not on the

intermediate species or itself, the second condition prohib-

its substructures where the bottom species feeds on the

Figure 2. All substructures of Figure 1 have 8 possible configu-
rations describing the presence and absence of self-links. It is
illustrated for substructure 15. Shaded rectangles mark the sub-
structures that are prohibited in both the original and the general-
ised niche model.

Figure 3. The spectrum of the directed random graph with cannibalistic links. Circles � analytical prediction, dots � numerical results
obtained from 40,000 initialisations of the random graph with N D 100, p" D 0.3, p# D 0.4, and ps D 0.1. The index i is the decimal
form of binary number formed by 0s and 1s of the adjacency matrix.
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intermediate species but not on itself, the third condition

prohibits substructures where the intermediate species

feeds on the top species but not on itself, and the fourth

condition prohibits substructures where the top species

preys on the bottom species and on itself but not on the

intermediate species. The generalised niche model

(Stouffer et al. 2006) was introduced as an interpolation

between the niche model and the generalised cascade

model that, in contrast to the niche model, has no con-

straints regarding diet contiguity, but prohibits upward

feeding links. To this end, a parameter c 2 [0, 1] is intro-

duced that reduces the contiguous feeding range of a pred-

ator. To correct for the decreased expected number of

prey, a corresponding number of prey species is selected

at random from the pool of species with a lower niche

index than the predator that are not already prey of the

predator. This removes the diet-contiguity constraint for

downward links, i.e., condition (C4), but substructures

that fulfil either of the conditions (C1) � (C3) are prohib-

ited in the generalised niche model, too.

With these conditions, we can compute the binary

spectra of allowed and prohibited three-node substructures

in the niche model and the generalised niche model

(Figure 4(a) and 4(b)). Of the 512 potential substructures,

only 168 are allowed in the niche model and only 192 are

allowed in the generalised niche model. Numerical simu-

lations of the two models (Figure 4(c) and (d)) confirmed

the analytical predictions for the binary spectra, but sev-

eral of the allowed substructures were found to occur

extremely rarely in the niche model (e.g. substructure (k

D 111, m D 11)).

Natural feeding relations also underly some con-

straints, although they may be not as strict as in the niche

model algorithms. To determine whether the substructures

that are prohibited by the two niche model variants occur

in empirical food webs, we evaluated 63 food webs from

different habitat types that we obtained from a large food-

web database (Riede et al. 2010; Digel et al. 2014). Only

food webs for which body masses of all species were

available were used. Species numbers in these food webs

ranged from 26 to 492. The food webs in our analysis

included 21 river or stream food webs, 19 lake food webs,

15 terrestrial food webs, 5 marine food webs, and 3 estu-

ary food webs.

Prior to computing the spectrum of three-node sub-

structures, we ordered the food webs according to the

body masses of the species (with the lowest index for the

lightest species). This was not always possible unambigu-

ously because in some webs species with identical body

masses (within the limits of experimental accuracy) were

present. Of all possible three-node substructures we found

that all but one occur in the empirical food webs (the

exception is substructure (101,45)). Three-hundred and

forty three (319) of the 511 present substructures are pro-

hibited in the (generalised) niche model (see Figure 5).

The niche model provides qualitatively good agreement

with experimental webs for some properties such as the

fraction of top species or omnivore species, as well as for

Z-scores of motifs (Stouffer et al. 2007); however, the fre-

quencies of substructures of empirical food webs are often

(e.g. for the most frequently occurring connected sub-

structure (000, 48), see Figure 6 and Paulau et al. (2015))

more than two standard deviations away from the mean of

the niche-model prediction. Some limitations of the niche

model are discussed in (Williams & Martinez 2008), and

more recently other variants of the niche model have been

proposed that relax the assumption of diet contiguity. The

latter include the extended generalised niche model

(Capit�an et al. 2013) and the probabilistic niche model

(Williams & Purves 2011), which both allow for non-con-

tiguous diets both below and above a predator’s niche

position. This will apparently resolve the problem of

Figure 4. Spectra of three-node substructures in the niche model (a) and (c) and the generalised niche model (b) and (d). (a) and (b)
Substructures that appear with nonzero (zero) probability are marked with white (grey) boxes. (c) and (d) Cumulative spectra in logarith-
mic representation (log(1 C hkm)) of 10,000 initialisations of both niche model variants with N D 100 species and connectance C D 0.1.
In the generalised niche model, the factor that reduces the contiguous feeding range of predators is set to c D 0.8. Dark grey corresponds
to zero probability, white corresponds to maximal probability.
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prohibited substructures, while it maintains to be a chal-

lenge to have all frequencies of substructure within §2

standard deviations around the mean of the model

prediction.

The empirical food webs have relatively small con-

nectance (median C � 0.1); therefore, the substructures

with isolated nodes have very high frequencies. The trivial

substructure (k D 000, m D 0) occurs approximately

10 times more often than any other substructure and

nearly all connected substructures may look like

quantitatively unimportant. Therefore, we discuss quanti-

tative details only for connected substructures. In total,

3,702,652 connected substructures exist in the empirical

food webs. Of these, 31.3% are prohibited in the niche

model and 27.9% are prohibited in the generalised niche

model. The three quantitatively most important of them,

(000,48), (000,20), and (100,48), are allowed in both

niche model variants, but of the 12 substructures that

appear with a frequency of at least 0.1 relative to substruc-

ture (000,48), 5 (4) are prohibited in the (generalised)

Figure 5. Cumulative spectrum of empirical food webs in logarithmic representation (log(1 C hkm)). Substructures that are prohibited
in both variants of the niche model but present in the empirical data are emphasised. Substructures that are allowed in the niche model
or that occur with zero density are marked by dark grey colour, and substructures that are allowed in the generalised niche model but pro-
hibited in the niche model are crossed out with a single line. The only substructure that is not observed in the empirical data-set,
(101,45), is emphasised with a white frame. Dark grey corresponds to zero occurrence hk,m, white corresponds to maximal occurrence
hk,m. All substructures that are allowed in the models are also observed in the empirical data (cf. Figure 6).

Figure 6. Quantitative spectra of connected three-node substructures in (a) the entire data-set of 63 natural food webs, (b) lake food
webs, (c) marine food webs, (d) estuary food webs, (e) terrestrial food webs, and (f) river or stream food webs. Substructures that are pro-
hibited in the niche model and in the generalised niche model are marked with black symbols, substructures that are allowed in the gen-
eralised niche model but prohibited in the niche model are marked with grey symbols, and substructures that are allowed in both models
are marked with open symbols. Substructures that appear with relative frequency< 0.02 are omitted in this plot. Frequencies are normal-
ised to the occurrence of the most frequent connected substructure, (000,20) in estuary food webs and (000,48) in all other cases.
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niche model (Figure 6a). The only connected substructure

of high quantitative importance that is allowed by the gen-

eralised niche model but prohibited by the original niche

model is (100,20).

When the empirical food webs are grouped according

to their habitat type, considerable differences can be found

in the fraction of substructures that are prohibited by the

two model algorithms (Figure 6(b) � 6(f)). It ranges from
8.9% (7.2%) in lake food webs up to 37.7% (33.9%) in

river food webs and even 45.0% (44.0%) in terrestrial

food webs (numbers in parentheses refer to the general-

ised niche model).

Discussion

In ecological networks such as food webs, self-links have

a very specific meaning that cannot be ignored. This has

consequences for the spectrum of three-node substructures

in these networks, which consists of 512 different ele-

ments, including 432 connected substructures. The niche

model is a simple, but nevertheless highly successful and

widely accepted model for the prediction of food web

structures. Here we have shown that due to the assumption

of contiguous feeding intervals, which is a central build-

ing block of the niche model, most of the sub structures

cannot occur in the niche model. This is in sharp contrast

with the frequent occurrence of some of these prohibited

substructures in empirical food webs.

The problem of diet contiguity in the niche model has

raised prior criticism (Cattin et al. 2004) and several var-

iants of the niche model have been developed specifically

to address this issue. The generalised niche model is an

example for this, as it allows to create model food webs

with a tunable bias towards diet contiguity. It may, there-

fore, seem surprising that the generalised niche model

prohibits almost as many substructures as the original

niche model. The reason is that the generalised niche

model lifts the intervality constraint only for downward

links where the prey has a lower niche index than the

predator.

The relatively small advantage of the generalised

niche model over the original one indicates that in order

to accurately predict the full spectrum of ordered three-

node substructures in natural food webs, removing the

intervality constraint alone might not be sufficient. It

seems to be necessary to also break the strict connection

between feeding on prey with a higher niche position and

cannibalism that is built into both the original and the gen-

eralised niche model. Considering that cannibalism likely

occurs between differently sized individuals of the same

species, there is no actual mechanism that makes such a

connection between these ecologically quite different pro-

cesses necessary. In fact, the high frequencies of occur-

rence of substructures with upward feeding links but no

cannibalism suggest that there is no such connection. In

more recent variants of the niche model like the probabi-

listic niche model (Williams & Purves 2011), no diet con-

tiguity at either end of the feeding range is assumed. This

model therefore does not prohibit any substructures, but it

still assumes a positive correlation between cannibalism

and upward feeding links. Whether or not this is justified

could be revealed by a quantitative comparison of the pre-

dicted and the empirically observed spectrum of three-

node substructures.

The quantitative evaluation of the spectrum of (con-

nected) three-node substructures in empirical food webs

revealed that approximately 30% of all substructures

are prohibited in both the original and the generalised

niche model. Between different habitat types, this frac-

tion of prohibited substructures varied considerably and

ranged from less than 9% of the three-node substruc-

tures found in lake food webs up to 45% of those found

in terrestrial food webs. These differences might indi-

cate that in terrestrial ecosystems body mass is not as

important for generating feeding hierarchies as it is in

lake ecosystems. In Brose et al. (2006) similar results

have been found and it was hypothesised that this is

due to physical and morphological constraints on tro-

phic interactions. For example, if a lack of hard surfa-

ces (as in pelagic systems) requires predators to

consume their prey in one piece, gape limitation deter-

mines the maximal prey size. However, this should

affect river and stream food webs in a similar way as

lake food webs, which is in contrast to our finding that

more than 33% of the connected three-node substruc-

tures in river or stream food webs are prohibited by the

model algorithms. At this point, we, therefore, cannot

rule out the possibility that methodological differences

in the assembly of the food webs are responsible for the

different fractions of prohibited substructures in food

webs from different habitats. The lake food webs in our

database were on average the smallest networks. This

might be due to lower taxonomic resolution or less

complete sampling, which makes direct comparison of

the quantitative spectra of food webs from different

habitats difficult.

The extent of the disagreement between predictions by

the two niche model variants and relative frequency of

substructures in empirical food webs still might in part be

due to inaccurate data. In a number of food webs, several

species had identical body masses, which in reality should

not be the case. This lead to some ambiguity in the order

of species we used to calculate the spectrum of substruc-

tures. In our data-set of empirical food webs, 31.2% of the

species had a non-unique body mass in their respective

food webs. While this seems like a lot, we calculated that

only 2.3% of all three-node substructures contained spe-

cies that could not be ordered unambiguously. For the

results presented in this manuscript, we, therefore,

decided to use the empirical data ‘as is’, i.e., the order of

species with identical body mass was set randomly. We

also tried to order the species in a conservative way with

respect to prohibited substructures. Whenever a unique

feeding hierarchy existed between species with identical

body mass (e.g. species i feeds on species j, but not vice

versa) we assumed that i had a higher index (niche posi-

tion) than j. Because the majority of the species with non-

unique body mass are basal species between which such a

hierarchy cannot exist, this decreased the fraction of

three-node substructures with two or three species with
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identical body mass only marginally to 2.1%. A further

literature search for more accurate body-mass data could

further attenuate this issue, but limited taxonomic resolu-

tion of the food webs, especially at the basal level, will

also limit the success of such an effort.

Our results might also be affected by another aspect of

limited resolution in the empirical data. Nodes in food

webs often represent average individuals of a population

(Digel et al. 2014). This means that a node summarises

the feeding relations of individuals with different body

masses, e.g. due to different developmental status. Feed-

ing links between (on average) small predator and large

prey species could thus actually occur only between the

largest individuals of the predator species and the smallest

individuals of the prey species. If the size ranges of the

two species overlap, this would reverse the direction of

the feeding link relative to the niche axis and could turn a

prohibited substructure into an allowed one. Given the

prevalence of ontogenetic diet shifts in natural popula-

tions (Werner & Gilliam 1984), resolving the size or stage

dependency of feeding interactions in both models and

empirical data thus seems advisable (see (Rudolf &

Lafferty 2011), for an example of a modelling study that

resolves the stage dependency of feeding links).

Finally, our results have implications for the rich body

of literature that studies the population dynamics of small

modules of (usually two to four) interacting populations

(McCann et al. 1998; Hastings & Powell 1991; Polis &

Holt 1992; Gjata et al. 2012). Due to the allometric rela-

tionship between body mass and metabolic rates (Brown

et al. 2004), the dynamics of interacting populations

depends on their relative niche positions (i.e., predator � -
prey body-mass ratios, Yodzis and Innes 1992) and stable

configurations that allow for the persistence of all species

are usually found if predators are larger than their prey

(Otto et al. 2007; Kartascheff et al. 2010; Heckmann et al.

2012). Most of the three-node substructures that are pro-

hibited by the niche model include links between a small

predator and a large prey, and our results suggest that

these substructures are more common in natural food

webs than previously assumed. For the three-species food

chain (substructures k D 000, m D 6, 9, 17, 24, 34, and

36), it has been shown that almost all instances that are

found in a number of empirical food webs have preda-

tor � prey body-mass ratios that allow for coexistence of

all three species in an isolated food chain (Otto et al.

2007). It might be interesting to see whether this also

applies for other three-node substructures, or if additional

mechanisms that promote species coexistence (such as

coupling to the surrounding food web, or cannibalistic

links) are required.
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The dynamics of food chains under climate
change and nutrient enrichment
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Warming has profound effects on biological rates such as metabolism, growth, feeding and death of
organisms, eventually affecting their ability to survive. Using a nonlinear bioenergetic population-
dynamic model that accounts for temperature and body-mass dependencies of biological rates,
we analysed the individual and interactive effects of increasing temperature and nutrient enrichment
on the dynamics of a three-species food chain. At low temperatures, warming counteracts the desta-
bilizing effects of enrichment by both bottom-up (via the carrying capacity) and top-down (via
biological rates) mechanisms. Together with increasing consumer body masses, warming increases
the system tolerance to fertilization. Simultaneously, warming increases the risk of starvation for
large species in low-fertility systems. This effect can be counteracted by increased fertilization. In
combination, therefore, two main drivers of global change and biodiversity loss can have positive
and negative effects on food chain stability. Our model incorporates the most recent empirical
data and may thus be used as the basis for more complex forecasting models incorporating
food-web structure.

Keywords: global warming; metabolism; paradox of enrichment; fertilization;
biodiversity loss; temperature

1. INTRODUCTION
Current changes in our planet’s ecosystems have the
potential to cause species extinctions [1]. The changes
in nutrient availability (enrichment) and temperature
(climate warming) were identified by the Millennium
Ecosystem Assessment as two major direct drivers of
biodiversity loss [2]. They predict the impact of both
these drivers to increase very rapidly in all biomes [3,
p. 9]. To predict accurately the community effects of
enrichment and warming, it is important to understand
their interactive impact on biological rates. This helps
in developing community protection measures and in
conserving important ecosystem functions.

Both enrichment and warming have wide-ranging
implications for food-web and ecosystem structure,
many of which are mediated by changes in popula-
tion dynamics [4–11]. Rosenzweig [6] analytically
investigated the effect of increased energy input on the
dynamics of a predator–prey system and coined the
term ‘paradox of enrichment’: enrichment drives a pred-
ator–prey system from stable equilibria into oscillations
and finally into extinction when population minima
hit extinction boundaries [6]. This has recently been
generalized as the principle of energy flux: any pro-
cess increasing energy fluxes relative to consumer loss
rate will destabilize systems by shifting biomass up
the trophic levels [12]. This moves the isoclines of the

species towards unstable equilibria. Interestingly, when
consumer mass systematically increases with trophic
levels [13], the destabilizing effects of enrichment are
ameliorated [11].

Warming has profound effects on biological rates
such as organism metabolism [14–16], growth [17],
feeding [18,19] and death [20]. However, the interplay
of these physiological effects at the population level
is not yet entirely clear, and there are several possibi-
lities. Warming might simply accelerate population
dynamics. In a seminal study of population dynamics,
Vasseur & McCann [5] found that increasing tempera-
ture destabilizes systems and increases the amplitudes
of oscillations. These findings are based on assump-
tions such as temperature invariance of the system
carrying capacity (the maximum biomass the system
can support) and the consumer’s half saturation den-
sity. While the former is certainly not supported by
empirical data [21], the latter characterizes the consu-
mer’s efficiency at attacking resources and more recent
studies showed that it is likely to change with tempera-
ture [19,22,23]. Additionally, Vasseur & McCann [5]
assumed that in most natural communities, the species
ingestion increases more with warming than does their
metabolism. However, feeding interactions among
terrestrial and marine invertebrates indicate the oppo-
site [18,19,24]. These studies found that warming
increases species metabolism more strongly than inges-
tion rates. The decreasing energetic efficiencies (the
ratio of ingestion rate to metabolism) lead to increasing
energetic restrictions for predators and decreasing pred-
ator biomasses. This stabilizes the system dynamics and

* Author for correspondence (abinzer@uni-goettingen.de).
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reduces biomass oscillations. These studies emphasize

the possibility of predator starvation at high tempera-

tures when metabolism exceeds ingestion rates

[18,19]. However, dynamic model analyses of these

empirical patterns are still lacking.

Here, we fill this void by developing a nonlinear

bioenergetic population-dynamic model that includes

empirical body-mass and temperature dependencies

for the major biological rates affecting population

dynamics such as carrying capacity [21], production

[17], metabolism [16] and functional response parame-

ters [25]. With this model, we numerically investigated

the solitary and interactive effects of two major drivers

of global change, enrichment and warming, on the

population dynamics of a three-species food chain. We

were particularly interested in the following questions:

(i) What are the individual effects of enrichment and

warming on the dynamics of the food chain? (ii) What

are the combined effects of enrichment and warming

on these dynamics? and (iii) Does the community size

structure with systematically increasing body mass

ratios influence these effects?

2. METHODS

The bioenergetic dynamic model used is based on

Yodzis and Innes’ [26] consumer–resource model

and is updated with allometric coefficients and temp-

erature dependencies of the biological rates. In the

three-species food chain, the basal species (B) is fed

on by the intermediate species (I) which in turn is con-

sumed by the top species (T). The biomass changes of

the species (B
:

B;B
:

I and BT, respectively) are described

by the following differential equations:

B
:

B ¼ rBGBBB � BIfIB; ð2:1Þ
B
:

I ¼ eIBðBI fIBÞ � BT fTI � xIBI ð2:2Þ
and B

:

T ¼ eTIðBTfTIÞ � xTBT: ð2:3Þ

Here, rB is the basal species’ mass and temperature-

specific maximum growth rate, GB is the basal species’

logistic growth term and BB is its population biomass

density. The functional responses fIB and fTI describe

the feeding dynamics of the feeding links in the food

chain. The assimilation efficiencies (efficiency of con-

version of prey biomass into predator biomass), eIB
and eTI, are both set to 0.85 because both species are

carnivores [26]. The metabolism of the intermediate

and top species, xI and xT, also depend on their

masses and the temperature of the system.

We used a logistic growth term where the potential

growth of the population depends on its current

population biomass and its body-mass and temperature-

dependent carrying capacity, KB:

GB ¼ 1� BB

KB

� �

: ð2:4Þ

The functional response, f ji, describes the feeding

dynamics between consumer j and its prey i. It

depends on the consumer’s maximum consumption

rate when feeding on species i, y ji, which depends on

the body-masses of both species j and i and the temp-

erature, the Hill exponent, h, which determines the

shape of the function and the half saturation density

B0. B0 gives the prey population density at which

half the maximum consumption of the consuming

species is reached and depends on the body-masses

of species j and i and the temperature of the system:

f ji ¼
yiB

h
i

Bh
0 ji
þ Bh

i

: ð2:5Þ

The mass and temperature dependencies of the

maximum growth rate of the basal species rB ðs�1Þ
is calculated as follows:

rB ¼ eIrmsrB
B eEarðT0�T=kTT0Þ: ð2:6Þ

Here, eIr is the rate-specific constant, calculated for a

species’ body mass of 1 g and a temperature of 208C

(¼ 293.15K). Its value is modified by the second

term, the body-mass dependency, expressed by the

mass of the species m and a rate-specific scaling coeffi-

cient, s. The term of the temperature dependency is an

extended notation of the Arrhenius equation, where

Ea is the activation energy (eV), T0 the normalization

temperature, T the temperature of the system and k

(eV K�1Þ the Boltzmann constant.

The mass and temperature dependent metabolism

of the intermediate and top species xi (s
�1Þ and the

carrying capacity of the basal species KB ðgm�2Þ
are calculated accordingly:

xi ¼ eIxmsxi
i eEaxðT0�T=kTT0Þ: ð2:7Þ

and

KB ¼ eIKmsKB

B eEaK ðT0�T=kTT0Þ: ð2:8Þ

Both terms of the functional response, the maxi-

mum ingestion, y ji, and the half saturation density,

B0 ji
, depend not only on the temperature of the

system and the body mass of species i, but also on

the body mass of its predator j:

y ji ¼ eIym
syj
j m

syi
i eEayðT0�T=kTT0Þ ð2:9Þ

and

B0 ji
¼ eIB0m

sB0j

j m
sB0i

i eEaB0 ðT0�T=kTT0Þ: ð2:10Þ

Analyses of extensive databases [25] revealed

additional dependencies of the parameters of the func-

tional response. To understand these, it is best to refer

to the traditional Holling type II functional response

model [27]:

f ji ¼
a jiB

h
i

ð1þ a jith jiÞBh
i

: ð2:11Þ

Instead of using the maximum ingestion and half sat-

uration density of the other notation (equation

(2.5)), this uses a ji, the attack rate of the consumer

when it feeds on i, and the handling time, th ji
, the

time the consumer needs to process one prey item

before it can start looking for another one. The

attack rate and the handling time both show a hump-

shaped relationship with the body-mass ratio of the

consumer and its prey. The exponential equations for

these dependencies follow the same principle as

2936 A. Binzer et al. Global change alters food-chain dynamics
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already introduced (see equations (2.6)–(2.10)):

amji ¼ eIamþs1ai lnðmj=miÞþs2aiðlnðmj=miÞÞ2 ð2:12Þ

and

thmji ¼ eIthmþs1thi lnðmj=miÞþs2thiðlnðmj=miÞÞ2 : ð2:13Þ

Here, Im is the intercept, and the consumer–prey mass

ratio has a twofold influence on the feeding par-

ameters: the slope s1 is the ratio’s scaling coefficient

in its simple form, whereas s2 is the scaling coefficient

for its quadratic form.

The handling time also displays a hump shape with

temperature:

thTji ¼ eIthTþs1thTiTþs1thTiT
2

: ð2:14Þ

These additional scaling relationships of the func-

tional response parameters can be incorporated into

the equations for the maximum consumption and

half saturation density by using the interrelation of

the parameters of the two different notations of the

functional response:

B0 ¼
1

ath
; ð2:15Þ

and

y ¼ 1

th
: ð2:16Þ

This yields the following equations to express the

body-mass and temperature scaling of the functional

response parameters:

y ji ¼ eIym
syj
j m

syi
i eEayðT0�T=kTT0Þ 1

thmji

1

thTji

; ð2:17Þ

and

B0 ji
¼ eIB0m

sB0j

j m
sB0i

i eEaB0 ðT0�T=kTT0Þ 1

amjithmji

1

1thTji

:

ð2:18Þ

Inserting all equations accounting for the allometric

and temperature scaling of the biological rates (equations

(2.6)–(2.8), (2.17) and (2.18)) into the differential

equations (2.1)–(2.3) yields a nonlinear bioenergetic

population-dynamicmodel of a three-species food chain.

In this study, we modelled a food chain parame-

trized solely for invertebrates. Whenever possible, we

incorporated values extracted from extensive empirical

databases. These parameters represent a wide range of

different species and ecosystem types. The scaling

relationships for the biological rates and their sources

are summarized in tables 1 and 2. Using these relation-

ships yields a model with five free parameters: (i) the

body mass of the basal species, (ii) the body-mass

structure of the species in the food chain, (iii) the

temperature of the system, (iv) the Hill coefficient

shaping the functional response, and (v) the intercept

of the carrying capacity (basic fertilization level).

We used constants for the basal body mass (0.01 g)

and the Hill coefficient (1, yielding type-II functional

responses). A species was considered extinct and

removed from the system when its biomass fell below

10�12 gm�2. To investigate the individual and com-

bined effects of enrichment and warming, we

systematically varied the intercept of the carrying

capacity (fertilization gradient, range from 1 to 20),

temperature (range from 08C to 408C) and the size

structure of the community in three levels: (i) all

species equally sized (no size structure), or consumers

(intermediate or top) are (ii) 10 times larger or (iii)

100 times larger than their resources. Every species

started with a biomass density ðgm�2Þ equal to half

the carrying capacity of the system with that particular

enrichment and temperature combination. All simu-

lations ran for 100 000 years and we recorded species

biomasses and survival.

3. RESULTS

(a) Single effects of enrichment and warming

Increasing system fertility at a constant temperature

increases the carrying capacity linearly (see figure 1a,

for an example at 208C). The growth rate, the relative

metabolism of the species and its ingestion efficiency

are not affected (figure 1b–d). However, there is an

inverse proportional decrease in the half saturation den-

sity relative to the carrying capacity (figure 1e). This

implies that fertilization increases the efficiency of

Table 1. The parameter values of the model’s mass and

temperature dependencies of the carrying capacity (K

in gm�2), from Meehan (2006) [21], growth (r in

s�1), from Savage et al. [17], maximum ingestion (y in s21),

from Rall et al. [25], half saturation density

(B0 in gm�2), from Rall et al. [25] and metabolism (x in

s�1Þ, from Ehnes et al. [16]. Generally, the parameters scale

with the body mass of the resource species (i) of the

considered species pair; only the feeding parameters scale

additionally with the body mass of the consumer species

( j). The conversion factor used to transform the

metabolism of the species from Joule per hour to s�1 was

taken from Peters [28].

Ki ri y ji B0 ji
xi

intercept (I) 215.68 29.66 3.44 216.54

slope resource

species i ðsiÞ
0.28 20.25 0.45 0.2 20.31

slope consumer

species j ðsjÞ
20.47 0.33

activation

energy (Ea)

0.71 20.84 20.26 0.12 20.69

Table 2. The parameter values for the body-mass ratio and

temperature-dependent hump shape of the functional

response parameters, attack rate and handling time. The

mass ratio and temperature dependencies of the attack rate

(in m2s�1, mass dependency am) and handling time (in s,

mass dependency thm, temperature dependency thT).

am thm thT

intercept (I) 21.81 1.92 0.5

slope term 1 (s1) 0.39 20.48 20.055

slope term 2 (s2) 20.017 0.0256 0.0013
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consumers in attacking resources. The bifurcation dia-
gram shows the classical pattern of the ‘paradox of
enrichment’. At low fertility, all species coexist in an
equilibrium at low densities; the equilibrium biomasses
increase as fertility increases until the biomasses start
cycling (figure 1f ). The amplitude of these cycles
increases until both the top and the intermediate species
are driven into extinction and only the basal species sur-
vives, growing up to its carrying capacity. Increasing the
fertility thus destabilizes the system. Both increasing
bottom-up supply (figure 1a) and increasing top-down
pressure (figure 1e) contribute to this progressive
instability of the system.

Increasing the temperature of the system at a con-
stant fertilization level decreases the carrying capacity
exponentially (see figure 2a for an example at a fertili-
zation value of 3). At the same time, the growth rate of
the basal species increases (figure 2b). The metabolism
of the species increases with temperature at a slower
rate, resulting in a decrease in the relative metabolism
(metabolism relative to basal production) of the
species (figure 2c). The ingestion efficiency (ratio of
ingestion and metabolism of a species) decreases
with temperature: a species’ metabolism increases
more strongly with temperature than its ingestion
(figure 2d). At the same time, the relative half satur-
ation density of the species increases (figure 2e). This

results in a reduced flux of energy from the base to
the top of the food chain. Warming has a marked
effect on species biomasses (figure 2e). At low temp-
eratures, only the basal species survives, growing up
to its carrying capacity. At higher temperatures, the
biomasses of the species oscillate with decreasing
amplitudes along the temperature gradient. Finally,
the system crosses over an inverse Hopf bifurcation
and reaches equilibrium dynamics. A further tempera-
ture increase pushes the top species beyond the point
where its ingestion cannot keep up with its metabolism
and it dies as a result of a poor ingestion efficiency.
At even higher temperatures, the same happens to
the intermediate species and it also dies of starvation.
Warming up the system thus stabilizes population
dynamics, with a pattern of a reversed enrichment
gradient, but very high temperatures can lead to the
extinction of species.

(b) Interactive effect of enrichment and warming

The carrying capacity increases with fertilization and
decreases with warming. This leads to the highest car-
rying capacities at combinations of high fertilization
and low temperature and the lowest carrying capacities
at combinations of low fertilization and high tem-
perature (figure 3a). The number of species extant
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Figure 1. The mass- and temperature-dependent parameters of the model and a bifurcation diagram on a fertilization gradient.
All parameter values are calculated for species with a body mass of 0.01 g at a temperature of 208C. Shown are (a) the carrying
capacity of the basal species (K (g m�2)), (b) the growth rate of the basal species (r (s�1)), (c) the metabolism of a consumer

relative to the basal species’ growth rate (xrel ¼ xr�1, dimensionless), (d) the maximum consumption of the species relative to
their metabolism ( yrel ¼ yx�1, dimensionless), (e) the species’ half saturation density relative to the carrying capacity
(B0rel

¼ B0K�1, dimensionless) and ( f ) the biomass extremes of the three species (basal species: green; intermediate species:
blue, top species: red, ðg m�2) on a fertilization gradient.
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after 10 000 years across all combinations of fertiliza-
tion and temperature is shown in the remaining
panels of figure 3. In the scenario without body-mass
structure, increasing fertility at low temperatures
leads to species extinctions (figure 3b). Warming coun-
teracts these detrimental effects of enrichment: the
higher the temperature, the more the system can be
fertilized before it loses species. The exceptions are
high temperature, low fertility systems (upper left
corner, same panel) where warming decreases the rela-
tive ingestion and increases the relative half saturation
density of the consumer, reducing its efficiency. Con-
sequently, first the top and then the intermediate
species cannot ingest as much energy as they need to
survive and become extinct. These extinctions at
high temperatures are prevented by higher levels of
fertilization. The lower two panels show the surviving
species in a scenario with size structure (figure 3c,
consumer 10 times larger than its prey; basal species:
0.01 g, intermediate species: 0.1 g, top species: 1 g;
figure 3d, consumer 100 times larger than its prey;
basal species: 0.01 g, intermediate species: 1 g, top
species: 100 g). A three-species food chain with a
structured body-size distribution, as is likely in
nature [13,29], is generally less susceptible to the para-
dox of enrichment, and at low temperatures, the

extinctions are postponed to higher fertilization
levels. The rescuing effect of warming that prevents
extinctions caused by unstable oscillations is more pro-
nounced in size-structured food chains, but the top
and intermediate species are more vulnerable to star-
vation and, in the low fertility region, extinctions
occur at lower temperatures. At high temperatures, it
takes more fertilization to rescue the consumers from
starvation due to lower ingestion efficiencies. Warming
thus counteracts the paradox of enrichment at low
temperatures but increases the starvation risk of
species with higher trophic levels in high temperature,
low fertility systems. At high temperatures, increasing
fertility prevents consumer extinctions. The stabiliz-
ing and destabilizing effects of warming are more
pronounced the larger consumers are.

Increasing enrichment increases the carrying
capacity and destabilizes the biomass dynamics of the
species. Extinctions occur when the carrying capacity
exceeds a certain threshold. Warming, in contrast,
reduces the carrying capacity and stabilizes species
biomass dynamics. No further extinctions occur when
the carrying capacity falls below a certain threshold.
If both enrichment and warming would act entirely
through the carrying capacity (i.e. via bottom-up
effects), these thresholds would be the same across all

5
6(a)

0

3
0.8
0.7
0.6
0.5
0.4

8
6
4
2
0

1

80
70
60
50
40
30
20
10

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

4
3K

r 
(×

10
–6

)

x re
l

y re
l

bi
om

as
s

 e
xt

re
m

es

2
1

temperature

(b) (c)

(d)

( f )

(e)

6
5
4
3
2
1
0

B
0 r

el

Figure 2. The mass- and temperature-dependent parameters of the model and a bifurcation diagram on a temperature gradi-
ent. All parameter values are calculated for species with a body mass of 0.01 g at an artificial fertilization level of 3. Shown are
(a) the carrying capacity of the basal species (K (g m�2)), (b) the growth rate of the basal species (r (s�1)), (c) the metabolism of

a consumer relative to the basal species’ growth rate (xrel ¼ xr�1, dimensionless), (d) the maximum consumption of the species
relative to their metabolism (yrel ¼ yx�1, dimensionless), (e) the species’ half saturation density relative to the carrying capacity
(B0rel

¼ B0 K�1, dimensionless) and ( f ) the biomass extremes of the three species (basal species: green; intermediate species:
blue, top species: red, ðg m�2)) on a temperature gradient.
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temperature and fertilization combinations. A carrying
capacity value above this threshold would lead to extinc-
tions, whereas none would occur at lower carrying
capacities. We refer to this threshold as the maximum
feasible carrying capacity: it is the maximum carrying
capacity the system can be subjected to without losing
species. However, instead of being constant, the maxi-
mum feasible carrying capacity follows a nonlinear
curve with temperature, with a maximum at approxi-
mately 388C (figure 4, all curves). This indicates a
‘top-down’ component in the impact temperature has
on the dynamics of the system. Additionally, applying
a body-mass structure to the food-chain increases the
maximum feasible carrying capacity (no structure:
1.47–5.24; consumers ten times larger: 3.65–20.42;
consumers 100 times larger: 10.09–92.04). Warming
operates via both bottom-up and top-down effects.
This increases the maximum carrying capacity that the
system can tolerate without losing species. Again, the
effect of temperature is more pronounced in size-struc-
tured food chains.

4. DISCUSSION
Using a nonlinear bioenergetic population-dynamic
model for a three-species food chain parametrized with
the latest body-mass and temperature dependencies

for biological rates, we investigated the individual and
combined effects of two main drivers of biodiversity
loss, nutrient enrichment and warming, in food chains
with different body size structures. Consistent with
expectations [6,30], enrichment destabilizes the system
and ultimately leads to extinctions. Warming stabilizes
the system by reducing the carrying capacity and the
ingestion efficiency and increasing the relative half satur-
ation density of the species. When the ratio between
maximum ingestion and metabolism of a species falls
below a critical threshold, it becomes extinct as a result
of starvation. Thus, high temperature surprisingly coun-
teracts the destabilizing effects of enrichment. High
temperatures, however, also increase the risk of consu-
mers starving in oligotrophic and low fertility systems.
Higher levels of fertilization, in turn, counteract these
detrimental effects of warming. Larger consumer body
masses enhance the stabilizing as well as the destabilizing
effect of warming and postpone the effects of fertiliza-
tion. Additionally, warming increases the maximum
carrying capacity at which the system retains all its
species, and again, increasing consumer body masses
enhance this effect drastically. This implies novel inter-
actions between two drivers of global change: nutrient
enrichment and warming. Moreover, we found striking
effects of the community size structure amplifying the
impacts of warming.
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Figure 3. The log10 of the carrying capacity of the three-species system ((a), colour-coded, see colour key) and the number of
species surviving after 10 000 years ((b): no body-mass structure; (c): consumer 10 times larger than its prey; (d): consumer

100 times larger than its prey, colour-coded, see colour-key) on a combined gradient of fertilization (x-axis) and temperature
(y-axis (8C)).
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(a) Single effects of enrichment and warming

The carrying capacity of the three-species food chain

increases with enrichment. This decreases the ratio

of half saturation density to carrying capacity and con-

sequently increases the energy flux from the basal to

the top species [5,26]. This direct conversion of

bottom-up supply into top-down pressure destabilizes

the system along the fertilization gradient and results

in the biomass patterns of the ‘paradox of enrichment’

[6]. Consistent with prior studies [11], simulations

with differently sized consumers and prey display a

reduced severity of this effect (figure 3b–d). Inedible,

invulnerable or unpalatable prey and inducible

defences can alleviate the paradox of enrichment in

natural and laboratory environments [31–35]. These

are not accounted for in our model.

Warming stabilizes the biomass oscillations within

the food chain, leading to a pattern of an inverse ‘para-

dox of enrichment’. This corroborates recent feeding

studies of terrestrial arthropods [18,19] and is con-

trary to the predictions of Vasseur & McCann [5].

This discrepancy is explained by differences in the

temperature dependencies of the biological rates. We

assumed that the carrying capacity of the system

decreases with temperature. Simultaneously, the half

saturation density of the species relative to the carrying

capacity increases with warming, decreasing the flux of

energy to the top of the chain and stabilizing the

dynamics. Vasseur & McCann [5] assumed the carry-

ing capacity, the half saturation density and therefore

also their ratio to be temperature independent. The

parameter values of our system suggest that the

growth rate of the basal species increases faster with

warming than with the consumers’ metabolism. The

increase in production outpaces the increasing meta-

bolic demands of the consumers, enhancing the

system’s ability to keep energy at the lower trophic

levels [5]. This reduces biomass oscillations. Also,

the temperature dependencies of ingestion and metab-

olism [16,25] suggest that a species metabolism

increases faster with warming than with its maximum

ingestion, reducing its ingestion efficiency and thus

biomass oscillations. Vasseur & McCann [5] discussed

all possibilities but then assumed that warming

induces faster increases in species metabolism than

in basal species growth rate and the increase in inges-

tion to outpace the increase in metabolism. Together,

this leads to the destabilization of the system they

found. The parametrization of our study is well sup-

ported by empirical data [16,17,21,25], suggesting a

broad generality of the results presented here. There

are, however, cases where warming destabilizes popu-

lation dynamics. Warming increased population

oscillations of the rotifer Brachionus calyciflorus [36]

and also induced the development of defensive

spines [37]. Inducible defences thus might attenuate

not only the detrimental effects of enrichment

[33,35] but also the effects of temperature we found.

Similarly, warming can disrupt species interactions

[38] and thus dynamics in many ways, for example

via changing developmental schedules [39] or dissim-

ilar range shifts [40]. Our model is based solely

on energetic considerations and does not account

for other effects that can modify a system’s response

to warming.

At high temperatures, the metabolism of the consu-

mers exceed their ingestion rates; so their metabolic

demands are higher than the energy gained by inges-

tion. In consequence, they can be surrounded by

prey but starve to death. This phenomenon was

observed in terrestrial [18,19] and aquatic [8] micro-

cosm experiments, where high trophic level species

were found to be at risk of starvation at high tempera-

tures. A three-species laboratory system involving

plankton was destabilized at a high temperature

[41,42]. The data indicate no oscillations though, and

temperature-induced changes of population rates are

likely to have led to consumer starvation [42]. More-

over, increased risk of starvation might help to explain

the warming-induced shift towards smaller species in

aquatic systems [43,44]. Through changing size distri-

butions, warming can indirectly have profound effects

on species communities and ecosystem functioning

(see Brose et al. [45] and citations within).

(b) Interactive effect of enrichment and warming

Fertilization and warming together have interactive

effects on the dynamics of the food chain. At low temp-

eratures, warming counteracts the degrading effects of

enrichment: both the onset of the oscillations and the

occurrence of extinctions connected to increasing ferti-

lization are delayed. Kratina et al. [46] corroborate

our findings and showed for pondmesocosms that ferti-

lization destabilized chlorophyll biomass dynamics at

ambient temperature but not under three degrees of

warming. Interestingly, this stabilizing effect of a small

amount of warming was observed in a temperate seaso-

nal environment with an annual range of about 208C in

daily average temperature. Moreover, Shurin et al. [47]

found a negative interaction between nutrient content

and warming in the experimental ponds: warming
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Figure 4. The maximum feasible carrying capacity able to

sustain all three species in the system (y-axis), depending

on the temperature (x-axis (8C)) for the approach without

body-mass structure (dotted line), with the respective consu-

mer 10 times larger than its prey (dashed line) and with the

respective consumer 100 times larger (solid line).
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reduced the effects of eutrophication. A study of a host–

parasitoid community, however, showed no interactive

effect of temperature and nitrogen levels [48]. This

might be due to the different nature of host–parasitoid

feeding relationships and their different body-size struc-

ture. We found that the rescuing effect of temperature

was more pronounced when the consumers were

larger than their prey. Larger species are more suscep-

tible to the effect of temperature on their biological

rates. A fundamental difference between terrestrial

(without interactive effect) and aquatic (with interactive

effect) systems is not supported by our data because

the parametrization of the model incorporates data of

different ecosystems.

At high temperatures, higher fertility counteracts the

detrimental effects of warming. Fertilization increases

the attack efficiency of the consumers and can thus

save species from warming-induced starvation. In size-

structured communities, this rescuing effect is delayed

to higher fertilization levels. The biological rates of

large species react more strongly to warming and so

need more fertilization to antagonize its effect. Labora-

tory studies could test this model prediction, but it

should be kept in mind that at different temperatures,

varying resource quality affects small species differently

than larger species [49].

The increasing maximum feasible carrying capacity

with warming is a sign for a top-down component in

the effect of warming. Warming has been shown to

strengthen top-down control in food webs [46,50,51],

explaining the increase in the maximum carrying

capacity. Also, warming has stronger effects on larger

species. This increases the maximum feasible carrying

capacity in size-structured food chains. Its slight

decrease at high temperatures is caused by the curve

of the maximum ingestion (maximum around 308C).

The decreasing maximum consumption at higher

temperatures accelerates the decrease of the species’

ingestion efficiency and decreases themaximum feasible

carrying capacity after its maximum.

5. CONCLUSIONS

In this study, we show that it is important to understand

the interactive effects of drivers of global change. On the

basis of our simulations, we expect climate change to

have different effects on nutrient-poor and nutrient-

rich communities, and nutrient enrichment to act differ-

ently in different climates. Warming in both nutrient-

poor and nutrient-rich communities generally decreases

biomass oscillations and stabilizes population dynamics,

with nutrient-poor communities being more stable at

low temperatures than their nutrient-rich counterparts.

At high temperatures, however, consumers in nutrient-

poor communities run a risk of starvation because of an

unfavourable ratio of ingestion to metabolism. This

does not happen in nutrient-rich communities within

the temperature rangewe simulated. Both the stabilizing

and the destabilizing effect of increasing temperatures

are more pronounced when the consumers are larger

than their prey. Consequently, nutrient-poor biomes

are fragile, and, especially, large consumers are at risk

of starvation when temperatures increase. Nutrient-

rich systems are stabilized by increasing temperatures.

Enrichment has different effects on communities in

cold and warm environments. In cold climates, nutrient

enrichment has the detrimental effects described by the

‘paradox of enrichment’. This harmful impact of nutri-

ent loading is attenuated by an increasing body-size

structure in the food chain. Hence, large top consumers

of cold climates are less prone to extinction by nutrient

enrichment than small consumers. In warm environ-

ments, increasing nutrient levels save the consumer

species from starvation, and we observe a beneficial

effect of nutrient enrichment. Increasing consumer

body masses delay the onset of this rescuing effect of

enrichment. Therefore, a small body size is advan-

tageous for consumers at high temperatures, but this

advantage is lost with increasing enrichment.

With our simulations, we have taken an important

step to disentangle the effects of two main direct dri-

vers of global change. We have shown that the

combined effects of warming and nutrient enrichment

are far from trivial and can, depending on the situ-

ation, be supportive or detrimental for the stability of

food chains. Increasing body-mass ratios generally

accentuate the effects of changing temperatures. This

knowledge will help us to develop conservation

measures that are tailored to the specific conditions

of the species environment.
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Abstract

Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their

interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interac-

tive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in

eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure:

Communities of similarly sized species such as parasitoid–host systems are stabilized by warming and destabilized

by eutrophication, whereas the diversity of size-structured predator–prey networks decreases strongly with warm-

ing, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead

to higher connectance in networks without size structure and lower connectance in size-structured communities.

Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may

serve as an important proxy for predicting the community sensitivity to these global change stressors.

Keywords: complex food webs, extinctions, generalists, global change, size structure, specialists
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Introduction

Global change and the resulting changes in biodiversity

are a major threat to the world’s ecosystems. However,

even though the main stressors for biodiversity have

been identified, their interactions remain poorly under-

stood (Pe~nuelas et al., 2013; but see de Sassi et al., 2012;

Sentis et al., 2014). The impact of two of these stressors,

climate warming and eutrophication, is predicted to

become increasingly important, rendering research on

their interactive effects critical.

Despite accumulating evidence on the independent

effects of warming and eutrophication (Petchey et al.,

1999; Vasseur & McCann, 2005; Rall et al., 2008, 2010;

Amarasekare & Coutinho, 2014; Amarasekare, 2015),

their interactions have so far only been investigated for

simplified community modules (Binzer et al., 2012; Gil-

bert et al., 2014; Sentis et al., 2014). They both increase

short-term per capita energy fluxes due to higher activ-

ity (warming) or resource availability (eutrophication).

In consequence, eutrophication increases the bottom-up

energy supply, which may result in unstable oscilla-

tions and consumer extinctions (‘paradox of enrich-

ment,’ Rosenzweig, 1971; Rall et al., 2008). While

similar effects could be expected for warming (Vasseur

& McCann, 2005), empirical studies showed that warm-

ing causes disproportionally stronger metabolic losses

yielding lower consumer densities and long-term popu-

lation-level energy fluxes (Rall et al., 2010, 2012; Fuss-

mann et al., 2014; Gilbert et al., 2014). Consistent with

theoretical predictions, warming thus stabilizes popula-

tion dynamics (Johnson et al., 2010; Fussmann et al.,

2014) and causes consumer starvation (Fussmann et al.,

2014), which explains high trophic level consumer

extinctions in experiments (Petchey et al., 1999; Shurin

et al., 2012). In the same vein, food-chain models

demonstrated that warming prevents species loss by

enrichment-driven unstable oscillations at low temper-

atures, but causes extinctions due to starvation at high

temperatures (Binzer et al., 2012). In more complex

communities, however, these results may differ due to

shifts in the relative strengths of feeding links (Petchey

et al., 2010; Sentis et al., 2014; Tunney et al., 2014).

Together, these results suggest that warming and

eutrophication may have strong interactive effects on

ecological community structure and diversity, but their

interplay in complex communities remains to be

addressed.

In addition, warming alters the body-mass distribu-

tion of natural communities by favouring small over
Correspondence: Amrei Binzer, tel. +4613282965, fax +4613-14 94

03, e-mail: amrei.binzer@liu.se
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large species (e.g., Daufresne et al., 2009; O’Gorman

et al., 2012). Warming and species body masses also

interactively affect network body-mass structure of eco-

logical networks (Gibert & DeLong, 2014). As the

inverted body-mass pyramid (i.e., increases in body

mass with trophic levels, Riede et al., 2011) is critically

important for food-web stability (Brose et al., 2006;

Heckmann et al., 2012), a shift in food-web size struc-

ture may severely undermine the stability of natural

communities. Moreover, the warming and eutrophica-

tion effects on population dynamics in simple three-

species models are also modified by the community

size structure (Binzer et al., 2012; Brose et al., 2012).

Higher consumer-resource body-mass ratios enhance

the stabilizing and destabilizing effects of warming

(Binzer et al., 2012). Consistently, experimental studies

demonstrated positive and negative interactions

between warming and eutrophication at low and high

body-mass ratios, respectively (de Sassi et al., 2012;

Shurin et al., 2012). Accordingly, warming and eutroph-

ication effects on population dynamics and extinctions

in complex food webs may strongly depend on the

community size structure.

Here, we expanded our previous models of simple

modules (Rall et al., 2010; Binzer et al., 2012) by investi-

gating the effects of warming and eutrophication on

complex food webs of varying body-mass structures.

We expected that the opposite effects on consumer-re-

source energy fluxes should lead to antagonistic impacts

of eutrophication and warming on species persistence

(fraction of surviving species). In addition, we also

hypothesized strong interactions between stressors and

consumer-resource body-mass ratios (i.e., size of con-

sumers relative to their prey) in the food webs, leading

to stability impacts of warming. For the first time, we

also address the consequences of the stressors for the

network structure of the food webs (connectance, gener-

ality, vulnerability). This study thus provides a compre-

hensive analysis of how warming, eutrophication and

network body-size structure interactively affect the

structure and diversity of natural communities.

Methods

The model

First, we created food-web structures according to the niche

model (Williams & Martinez, 2000) with an initial species rich-

ness of 30 and a connectance (the connection probability in the

feeding matrix) of 0.1. This yielded static, fully connected net-

work structures of who eats whom in the community.

Subsequently, we assigned ordinary differential equations

(ODE) to each species i of the food web to calculate changes in

the species biomasses, Bi, over time, t, (Yodzis & Innes, 1992;

Brose et al., 2006). A basal species (eqn. 1) grows logistically

with an intrinsic net growth rate, ri, and a carrying capacity,

Ki. The species in the food webs gain and lose biomass by

feeding, Fij, and assimilate consumed biomass with a ratio of

es = 0.85 (assimilation efficiency, Yodzis & Innes, 1992):

dBi

dt
¼ riBi 1� Bi

Ki

� �

�
X

m
FmiBmi ð1Þ

Consumers (eqn. 2) additionally lose biomass through respira-

tion, xi:

dBi

dt
¼
X

s
esFisBi �

X

m
FmiBm � xiBi ð2Þ

The feeding function, Fij, follows a resource density-depen-

dent functional response:

Fij ¼
aijB

q
k

1þ
P

k ThikaikB
q
k

; ð3Þ

with a link-specific attack rate, aij, the handling time, Th, and

the Hill exponent, q = 1.2, determining the shape of the func-

tional response (type II while q = 1; type III while q = 2).

Parameterization

The body mass, mi, of a species i in the food web scales accord-

ing to the following:

mi ¼ m0R
Li�1þei ; ð4Þ

where m0 is the body mass of the basal species in the food

web (m0 = 0.01 g), R is the average body-mass ratio of all spe-

cies in the food web and Li is the prey-averaged trophic level

of the species i (see Williams & Martinez, 2004). To avoid that

all species of a trophic level (e.g., herbivores of trophic level

2) are equally sized, we added random deviations from these

strict scaling relationships by sampling ei for each species i

independently from a normal distribution with a mean of

zero and a standard deviation of 1. All parameters, except for

the assimilation efficiency, e, and the hill exponent, h, scale

with body mass and temperature (Brown et al., 2004; Savage

et al., 2004; Ehnes et al., 2011; Binzer et al., 2012; Rall et al.,

2012):

aij;Thij ¼ fðmi;mj;TÞ ¼ dmb
i m

c
j e

E
T0�T
kTT0 ð5aÞ

ri;Ki; xi ¼ fðmi;TÞ ¼ dmb
i e

E
T0�T
kTT0 ð5bÞ

where d and T0 are constants, k is the Boltzmann constant, mi

and mj are the average body masses of species i and j, respec-

tively, b and c are allometric exponents, E is the activation

energy and T is the temperature in Kelvin. Note that due to

the availability of high-quality data, the parameterization is

based on actively hunting invertebrates. The units and values

of the parameters are given in Table 1.

Model simulations

We set the initial biomass densities of the basal species equal

to their carrying capacities and the initial consumer biomasses
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to 1/8 of the mean of the carrying capacities of the basal spe-

cies in the food web. The carrying capacities vary with body

mass and temperature (see eqn. 5b), and varying the initial

biomasses accordingly prevented basal extinctions during

transient dynamics. Changing these initial biomasses within

ecologically plausible boundaries does not affect the results,

unless basal biomasses are too low to provide sufficient

energy input into the food web. To reach stable attractors of

population dynamics, we ran simulations for an equivalent of

1000 years. During these time series, a species was considered

extinct and removed from the simulation when its biomass

density fell below 10�12.

We analyzed food-web dynamics across gradients of tem-

perature T (0–40 °C in steps of 1 °C), eutrophication (varying

the intercept of the carrying capacity, d, between 1 and 20 in

steps of 1 to manipulate the energy input into the food webs)

and community size structures by varying the log10 con-

sumer-resource body-mass ratio between �1 (consumers ten

times smaller than their prey) and 4 (consumers 104 times lar-

ger than their resources) in steps of 1. For each combination of

these parameters, the simulations were replicated 100 times.

At the end of the time series, we monitored (1) persistence

as the fraction of species that survived, (2) connectance

(C = L/S², L = number of feeding links, S = number of spe-

cies), (3) the average generality (number of links to resource

species) and (4) the average vulnerability (number of links to

consumer species) across all species. As vulnerability and gen-

erality depend on species richness and connectance that

change after extinctions during time series, they cannot be

compared to the initial values. Hence, as a null expectation,

we created 10 000 reference niche food webs according to the

final species richness (thus accounting for extinctions) and ini-

tial connectance (assuming random extinctions that are inde-

pendent of the species’ linkedness and thus without effect on

connectance) of each replicate. To test for nonrandom extinc-

tions, we calculated the log10 ratio between the simulated and

reference food-web values of generality and vulnerability.

Results

Interactive effects of warming and eutrophication on
species persistence

In our complex model food webs, warming, eutrophica-

tion and the body-size structure have interactive effects

on species persistence (Figs 1 and 2). In food webs

without body-mass structure, in which all species are

of equal size, persistence decreases with eutrophication

and increases with warming (Fig. 1a), except for very

low eutrophication (<2.5) and high temperature

(>35 °C), where persistence decreases with warming

(Fig. 1a). These results suggest that the diversity of net-

works without size structure (e.g., parasitoid–host com-

munities) should increase with warming and strongly

decrease with eutrophication.

We compared these results to those of food webs

with a size structure of consumers that are on average

hundred times larger than their resources (Fig. 1b, sim-

ilar results were obtained for other positive log10 body-

mass ratios, see Fig. 2). Here, warming strongly

decreases persistence, most notably at low eutrophica-

tion. Eutrophication itself has only a slightly negative

effect at low temperatures and even increases persis-

tence at intermediate and high temperatures (Fig. 1b).

Hence, the diversity of typical predator–prey communi-

ties with consumers that are larger than their resources

should be severely reduced by warming, whereas

eutrophication has only weak effects that depend on

temperature.

Generally, the interaction between the stressors cre-

ates hump-shaped responses of persistence along the

eutrophication gradient. Here, the entire humps along

the eutrophication axis are, for example, visible for food

webs with an average body-mass ratio of 100 at 10 °C
(Fig. 1b), whereas for most other combinations of body-

mass ratios and temperature only the left half of the

hump is visible.

Our findings can be generalized across different

body-mass ratios: Warming decreases persistence at

medium to high body-mass ratios, but increases persis-

tence at low body-mass ratios (Fig. 2). Moreover,

increasing body-mass ratios yield higher persistence at

low and intermediate temperatures, whereas a more

complex relationship with two maxima in persistence at

high (R~104) and low body-mass ratios (R~101) emerges

at the highest temperatures. Interestingly, these results

suggest the structural stability of arctic and temperate

communities is maximized at the highest body-mass

ratios, whereas tropic ecosystems should have their

maximum stability at either low or high body-mass

ratios. The stable high body-mass ratios, however, do

not sustain over longer time series (e.g., 10 000 years).

Table 1 Model mass and temperature scaling parameters:

carrying capacity (K in [g m�2] (Meehan, 2006)), growth (r in

[1/s], (Savage et al., 2004)), metabolism (x in [1/s], (Ehnes

et al., 2011)), attack rate (a in [m2 s�1]) and handling time (Th

in [s], both calculated from (Rall et al., 2012)). The parameters

scale with the body mass of the resource species (i) of the spe-

cies pair considered, attack rate and handling timescale addi-

tionally with the body mass of the consumer species (j). We

calculated the species metabolism using the conversion factor

from Peters (1983)

Ki ri aji Thji xi

Intercept (I) �15.68 �13.1 9.66 �16.54
Body mass

scaling species i (b)

0.28 �0.25 0.25 �0.45 �0.31

Body mass scaling

predator (c)

�0.8 0.47

Activation energy

(E)

0.71 �0.84 �0.38 0.26 �0.69
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Effects on connectance and link distributions

Generally, the extinctions in our time series are not ran-

dom and cause changes in connectance of the food web

that interactively depend on the body-mass ratio of the

community and temperature (Fig. 3). Connectance

increased in communities with low body-mass ratios,

most notably at low temperatures. Note that the excep-

tion to this pattern at body-mass ratios (R) of 10�1

(Fig. 3) may be caused by the low persistence (Fig. 2)

that led to final food webs of low diversity and

connectance. In contrast, connectance decreased in

communities with high body-mass ratios, in particular

at high temperatures (Fig 3). We found that warmer

food webs generally have a lower connectance than

their cooler counterparts with the same size structure,

with the exception of food webs with very low body-

mass ratios (R < 100). This pattern suggests that warm-

ing increased the likelihood that highly linked species

become extinct, thus decreasing connectance.

In our subsequent analyses, we disentangled whether

this loss in highly linked species was driven by losses

of the most vulnerable or most general species that are

highly linked to consumers or resources, respectively.

We calculated the ratio between the final vulnerability

and generality of the simulated food webs and refer-

ence webs built with the final species richness, but the

initial connectance (see Methods). These ratios thus

represent deviations from the null assumption of ran-

dom extinctions that do not depend on linkedness. We

found that the increases in connectance at low tempera-

tures and low body-mass ratios (Fig. 3) are driven by

increases in vulnerability (Fig. 4a). The decreases in

connectance at high temperatures and high body-mass

ratios (Fig. 3), however, are similarly affected by

decreases in vulnerability (Fig. 4a) and generality

(Fig. 4b). Warming thus causes a dominance of special-

ists, lowering the number of resources (lower general-

ity, Fig. 4b) and also the number of consumers (lower

vulnerability, Fig. 4a).

Discussion

We analyzed dynamic models of complex food webs

and showed that warming, eutrophication and body-

mass structure interactively determine their diversity

and network structure. Consistent with our initial

expectations, we found that warming and eutrophica-
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Fig. 1 The influence of eutrophication (intercept of carrying capacity, x-axes) and temperature (y-axes) on the persistence of species

(averaged over 100 food webs; as a fraction, color coded, see color key) in food webs with (a) predators on average of the same age as

their prey (log10 body mass ratio= 0) and (b) predators on average 100 times larger than their prey (log10 body mass ratio = 2).
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Fig. 2 The influence of temperature (x-axes) and log10 body

mass structure (y-axes) on the persistence of species (averaged

over 100 food webs; as a fraction, color coded, see color key) in

food webs of intermediate eutrophication (intercept of carrying

capacity of 10).
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tion have opposite effects on species persistence. Inter-

estingly, the effect of these antagonistic stressors

depends strongly on the body-mass ratio of the com-

munity. In the following, we discuss these outcomes by

disentangling the interplay of opposing population

parameters that determine the strengths of the ener-

getic pathways and subsequently population stability

(Yodzis & Innes, 1992; Rall et al., 2010; Rip & McCann,

2011; Fussmann et al., 2014). Combining these

principles with food-web theory on consumer-resource

body-mass ratios (Brose et al., 2006) and biomass ratios

(Gilbert et al., 2014) allows a mechanistic understand-

ing of how these antagonistic stressors interactively

determine the diversity and network structure of

species communities.

Warming, eutrophication and community size-structure
effects on species persistence

The classic instability of complex and diverse food

webs can be overcome by increasing predator–prey
body-mass ratios that reduce the consumers’ relative

rates of consumption and metabolism (Yodzis & Innes,

1992), thereby lowering interaction strengths and top-

down pressure and therefore increasing species persis-

tence (Brose et al., 2006; Kartascheff et al., 2009; Heck-

mann et al., 2012). Our results generalize this finding

across gradients in eutrophication and temperature

except for the highest temperatures, where strong meta-

bolic losses impose strong constraints on highly linked

species (see Discussion below for more mechanistic

details).

Eutrophication boosts energy input into the food web

yielding higher biomass densities of resources and their

consumers. These higher densities cause higher popula-

tion-level consumption rates that strengthen top-down

control and lead to unstable oscillations and extinctions

(‘paradox of enrichment,’ Rosenzweig, 1971; Rall et al.,

2008; Rip & McCann, 2011). The lower top-down pres-

sure in size-structured food webs counteracts this

mechanism of unstable oscillations. This provides an

explanation for our novel result that networks without

size structure (e.g., parasitoid–host communities) are

more prone to detrimental eutrophication effects than

size-structured communities (e.g., predator–prey
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communities). Although this result still needs to be rec-

onciled with prior findings on the stabilizing effects of

inducible defences, sigmoidal functional responses and

predator interference (e.g., Vos et al., 2004; Rall et al.,

2008), it offers an empirically testable prediction.

Warming increases metabolism more strongly than it

increases feeding rates (Rall et al., 2010; Vucic-Pestic

et al., 2011; Fussmann et al., 2014). In oscillating sys-

tems, warming thus stabilizes the population dynamics

by lowering the top-down pressure, but these reduced

energy fluxes ultimately lead to starvation when con-

sumers cannot meet their metabolic demand anymore

(Binzer et al., 2012; Fussmann et al., 2014). The antago-

nistic interaction of warming and eutrophication is

caused by their opposite effects on consumer-resource

energy fluxes that drive population stability (Yodzis &

Innes, 1992; Rip & McCann, 2011; Fussmann et al.,

2014). In consequence, warming can stabilize dynamics

in eutrophic ecosystems, whereas it should cause

extinctions due to starvation in oligotrophic systems

(Binzer et al., 2012). Interestingly, in more resident spe-

cies, temperature has no effect on predator–prey inter-

action strengths (Vucic-Pestic et al., 2011; Novich et al.,

2014). For them, temperature should only increase their

metabolic demands, leading to more severe starvation

problems.

Our results indicate that the interactive effects

between warming and eutrophication found in simple

community modules (Binzer et al., 2012) can also be

found in complex food webs. Additionally, we

addressed the entirely new question of how these stres-

sors interact with the community size structure. As an

increasing consumer-resource body-mass ratio

decreases per unit biomass energy fluxes (Yodzis &

Innes, 1992) and top-down control, it should be syner-

gistic with warming (which decreases fluxes) and

antagonistic to eutrophication (which increases fluxes).

Consistent with this hypothesis, we found that an

increasing size structure enforced the stabilizing and

destabilizing effects of warming and buffered against

eutrophication. In consequence, warming increases per-

sistence in communities without size structure (e.g.,

parasitoid–host communities), whereas it decreases

persistence in size-structured networks (e.g., predator–
prey communities). Consistent with our results that

warming can induce extinctions in highly size-struc-

tured webs, microcosm experiments demonstrated that

warming increased biomass of bacteria and their con-

sumers, but led to extinction of larger predators

(Petchey et al., 1999). These results suggest that both

the consumer-resource body-mass ratios of natural

communities and the eutrophication level interact with

temperature and may serve as a proxy for estimating

the sensitivity to detrimental warming effects.

Effects on community diversity, connectance and
linkedness

Our model results demonstrated an interesting emer-

gent pattern: While persistence increased with body-

mass ratios at low-to-intermediate temperatures, it

exhibited two maxima at higher temperatures. How-

ever, one of these, the maximum at high body-mass

ratios and high temperatures, becomes less and less

pronounced the longer the simulations run (data not

shown). This suggests that large-bodied species are to

some extent – over ecological timescales such as the

1000 years of our study – buffered against the detri-

mental effect of increased temperatures, but will still be

affected in the long term over more evolutionary time-

scales. Consistent with emergent empirical patterns

(Daufresne et al., 2009; and for small marine species

Gibert & DeLong, 2014), this suggests a systematic dis-

tribution of consumer-resource body-mass ratios along

global gradients: They should be high in arctic and tem-

perate ecosystems and low in tropic habitats.

Our model analyses suggested that final food-web

connectance decreases with increasing body-mass

ratios and warming. In our simulations, all 100 food-

web replicates were exposed to every body mass ratio–
temperature combination. The clear pattern in final

connectance is thus caused by a systematic effect of

body-mass ratios and temperature on the extinction

risk of generalists (with many links) and specialists

(with few links). In our model, each additional feeding

link of a consumer decreases the strength of each of its

individual links, because they distribute their feeding

efforts across their resources. As a result, specialists

have few, strong feeding links, whereas generalists

have many, weak links to resources. At high body-size

ratios and high temperatures, specialists have an

advantage, because their strong feeding interactions

save them from starvation, whereas generalists die due

to the lower energy supply through their weaker inter-

actions.

Unfortunately, data that relate body-size ratios and

temperature to species degree of generalism are rare or

absent. However, species richness increases from the

poles to the tropics, and increasing species specializa-

tion has been suggested to account for it (MacArthur,

1972). Subsequent studies, however, have given mixed

results, but they employed data on mutualistic net-

works (Schleuning et al., 2012), included many

endotherm species (Davey et al., 2012), spiders (Birkho-

fer & Wolters, 2012) or fish (Gonz�alez-Bergonzoni et al.,

2012). Our model is dedicated to describe actively hunt-

ing invertebrates, which is least partially inconsistent

with these data compilations. Hence, future studies will

need to compile data for testing our prediction that
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specialism of actively hunting invertebrates should

increase with temperature.

The low species vulnerability at high temperatures

and body-mass ratios is caused by the loss of general-

ists in the webs, whose extinction decreases the number

of top consumers. Low mean generality and low mean

vulnerability thus go hand in hand. The increased con-

nectance in webs with low body-mass ratios, however,

is due to the increased vulnerability of the species in

those webs. These food webs at low temperatures com-

bine high interaction strengths (caused by low body-

mass ratios) with low respiration rates (caused by low

temperatures). Consequently, species can use relatively

more of the energy obtained from feeding to build up

own biomass because less of it is lost to respiration.

This leads to higher biomass densities and oscillations.

Less vulnerable species with only a few consumers

accumulate more biomass than vulnerable species with

more consumers. Hence, these oscillations are particu-

larly strong for the less vulnerable species, which

increases their probability of extinction. Warming

increases the respiration rate of the species, and more

energy is lost to metabolism. This results in decreasing

biomass oscillations and fewer species extinctions. The

combination of these processes determines the final

connectance of the food webs. At low body-mass ratios,

connectance increases with warming because species

with few predators (i.e., low vulnerability) are lost pref-

erentially as a result of their unstable oscillations. At

high body-mass ratios, and especially high tempera-

tures, connectance decreases because generalist species

become extinct due to the limited energy supply

through their weak interactions.

Future directions

Of course, the effects found in our study depended

strongly on the values of the model’s scaling coeffi-

cients. Especially, different scaling relationships for

metabolism and feeding rates could change the behav-

ior of the model (Vasseur & McCann, 2005). However,

our parameterization for these rates is based on the lar-

gest and most comprehensive empirical databases com-

piled so far (Ehnes et al., 2011; Rall et al., 2012) and thus

represents the currently most realistic response of bio-

logical parameters to warming and eutrophication.

However, future studies may also include more com-

plex scaling relationships of metabolism and functional

responses with temperature (P€ortner & Farrell, 2008;

Kolokotrones et al., 2010; Ehnes et al., 2011; Colinet

et al., 2015), the temperature dependence of other bio-

logical processes (Dell et al., 2011), asymmetry in spe-

cies responses to warming (Dell et al., 2014), the

dynamics of nutrients and their effect on plant growth

(Brose, 2008), the interactive effects of temperature and

predator body masses on body-size structure (Gibert &

DeLong, 2014) and adaptations of the network structure

to warming (Petchey et al., 2010; Sentis et al., 2014; Tun-

ney et al., 2014). Moreover, our approach was based on

constant temperature, whereas increasing temperature

variation may be an even more important threat of glo-

bal change to natural populations (Sentis et al., 2013;

Vasseur et al., 2014; Colinet et al., 2015). Despite our

simplifying assumptions, the modeling approach pre-

sented here is flexible to include these factors, thus pro-

viding a general signature of how natural ecosystems

may respond to these interacting global change drivers.

Our results provide strong evidence that two of the

most important global change stressors, warming and

eutrophication, should have antagonistic effects on the

diversity and structure of natural communities. In

addition, their effects also depend strongly on the size

structure of the community. Energy flux models

explain that increasing average consumer-resource

body-mass ratios are synergistic with warming and

antagonistic to eutrophication. In this vein, we found

that communities of similarly sized species such as

parasitoid–host systems are stabilized by warming and

destabilized by eutrophication. In contrast, the diver-

sity of size-structured predator–prey networks

decreases strongly with warming, but is less respon-

sive to eutrophication. Additionally, warming

increased species persistence in eutrophic systems,

whereas it imposed negative effects on persistence in

oligotrophic systems. Interestingly, our model analyses

also reveal that the extinctions driven by these two glo-

bal change stressors are nonrandom. Specifically,

warming should lead to higher connectance in net-

works without size structure and lower connectance in

size-structured communities. These multifarious inter-

actions between warming, eutrophication and the com-

munity size structure render responses in the real

world extremely varied. Models like ours can help dis-

entangling these complex effects of global change and

build theory that can be tested in the field. Overall, our

results do not only unravel interactive impacts of

warming and eutrophication on the diversity and

structure of natural communities, and they also sug-

gest that size structure interacts with these global

change stressors and may serve as an important proxy

for predicting the community sensitivity to them.
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Habitat fragmentation threatens global biodiversity. To date, there is only lim-
ited understanding of how the different aspects of habitat fragmentation
(habitat loss, number of fragments and isolation) affect species diversity
within complex ecological networks such as food webs. Here, we present a
dynamic and spatially explicit food web model which integrates complex
food web dynamics at the local scale and species-specific dispersal dynamics
at the landscape scale, allowing us to study the interplay of local and spatial
processes in metacommunities. We here explore how the number of habitat
patches, i.e. the number of fragments, and an increase of habitat isolation
affect the species diversity patterns of complex foodwebs (α-, β-, γ-diversities).
We specifically test whether there is a trophic dependency in the effect of these
two factors on species diversity. In our model, habitat isolation is the main
driver causing species loss and diversity decline. Our results emphasize that
large-bodied consumer species at high trophic positions go extinct faster
than smaller species at lower trophic levels, despite being superior dispersers
that connect fragmented landscapes better. We attribute the loss of top species
to a combined effect of higher biomass loss during dispersal with increasing
habitat isolation in general, and the associated energy limitation in highly frag-
mented landscapes, preventing higher trophic levels to persist. To maintain
trophic-complex and species-rich communities calls for effective conservation
planningwhich considers the interdependence of trophic and spatial dynamics
as well as the spatial context of a landscape and its energy availability.

1. Introduction
Understanding the impact of habitat fragmentation (habitat loss, number of frag-
ments and isolation) on biodiversity is crucial for ecology and conservation
biology [1–3]. A general observation and prediction is that large-bodied predators
at high trophic levels which depend on sufficient food supplied by lower trophic
levels are most sensitive to fragmentation, and thus, might respondmore strongly
than species at lower trophic levels [4,5]. However, most conclusions regarding
the effect of fragmentation are based on single species or competitively interacting
species (see referenceswithin [6–8], but see for example [9–11] for food chains and
simple food web motifs). There is thus limited understanding how species
embedded in complex food webs with multiple trophic levels respond to habitat
fragmentation [4,12–15], even though these networks are a central organizing
theme in nature [16,17].

The stabilityof complex foodwebs is, amongothers, determinedby thenumber
and strength of trophic interactions [18]. While it is broadly recognized that habitat
fragmentation can have substantial impacts on such feeding relationships [19,20],

© 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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we lack a comprehensive and mechanistic understanding of
how thedisruption or loss of these interactionswill affect species
persistence and foodweb stability [15,19,21,22].Assuming that a
loss ofhabitat, a decreasingnumberof fragments, and increasing
isolation of the remaining fragments disrupt or weaken trophic
interactions [7], thereby causing species extinctions [15,20],
population and community dynamics might change in unex-
pected and unpredictable ways. This change in community
dynamicsmight lead to secondary extinctionswhich potentially
cascade through the food web [23,24].

Habitat loss, i.e. the decrease of total habitable area in
the landscape or a reduction in patch size, can limit popula-
tion sizes and biomass production, which might drive
energy-limited species extinct [25,26] and subsequently entail
cascading extinctions [23]. Successful dispersal among
habitat patches might prevent local extinctions (spatial rescue
effects), and thus, ensure species persistence at the landscape
scale [27,28]. Whether dispersal is successful or not depends,
among other factors, on the distance an organism has to
travel to reach the next habitat patch and on the quality of
the matrix the habitat patches are embedded in (in short: the
habitat matrix) [29]. With progressing habitat fragmentation,
suitable habitat becomes scarce and the remaining habitat
fragments increasingly isolated [3,30], affecting the dispersal
network of a species. As a consequence, organisms have to
disperse over longer distances to connect habitat patches,
which in turn might increase dispersal mortality and thus
promote species extinctions [2]. Also, habitat fragmentation
often increases the hostility of the habitat matrix, e.g. owing
to human land use and landscape degeneration [3,31,32]. The
increased matrix hostility might further reduce the likelihood
of successful dispersal between habitat patches as the move-
ment through a hostile habitat matrix is energy intensive,
and thus, population biomass is lost [29,31]. This loss depends
on the distance an organism has to travel and its dispersal
ability, i.e. its dispersal range and the energy it can invest
into movement. Finally, the detrimental effects of habitat loss
and increasing isolation are likely to interact, as dispersal
mortality can be expected to have a larger per capita effect when
a population is already declining owing to decreasing habitat.

In this context, superior dispersersmight have an advantage
over species with restricted dispersal abilities if the distances
between habitat patches expand to a point where dispersal-
limited species can no longer connect habitat patches. If this is
the case, increasing habitat isolation impedes the ability of
organisms tomove across a fragmented landscape and prevents
spatial rescue effects buffering against local extinctions. Increas-
ing habitat isolation might result in increased extinction rates
and ultimately lead to the loss of dispersal-limited species
from the regional species pool. As large animal species are, at
least up to a certain threshold, faster than smaller ones [33,34],
they should also be able to disperse over longer distances
[4,35,36]. In fragmented landscapes, this bodymass-dependent
scaling of dispersal rangemight favour large-bodied consumers
such as top predators, and thus, increase top-down pressure
resulting in top-down regulated communities.

Empirical evidence and results from previous modelling
approaches, however, suggest that species at higher trophic pos-
itions are most sensitive to isolation [9,15,37–39]. Modelling tri-
trophic food chains in a patch-dynamic framework, Liao et al.
[9,10], for example, show that increasing habitat fragmentation
leads to faster extinctions of species at higher trophic levels,
which they ascribe to reduced availability of prey [9]. In the

fragmentation experiment by Davies et al. [39], on the other
hand, the observed loss of top species is attributed to the unstable
populationdynamicsof topspeciesunderenvironmental change.

Despite its relevance, a realistic picture and comprehensive
understanding of how natural food webs might respond
to different aspects of fragmentation such as habitat loss or
increasing isolation, and any alteration to the spatial configur-
ation of habitat in general, are lacking. To understand how
fragmentation affects the diversity of communities organized
in complex food webs requires knowledge of the interplay
between their local (trophic) and spatial (dispersal) dynamics.
The latter are determined by the number of fragments in the
landscape and the distance between them, which can poten-
tially affect the local trophic dynamics. We address this issue
using a novel modelling approach which integrates local
population dynamics of complex food webs and species-
specific dispersal dynamics at the landscape scale (which we
hereafter refer to as the meta-food-web model, see figure 1
for a conceptual illustration). Our spatially explicit dynamic
meta-food-web model allows us to explore how direct and
indirect interactions between species in complex food webs
together with spatial processes that connect sub-populations
indifferent habitat patches interact to producediversity patterns
across increasingly fragmented landscapes. Specifically, we ask
how the number of fragments and increasing habitat isolation
impact the diversity patterns in complex food webs. We further
ask which species or trophic groups shape these patterns.

Following general observations and predictions, we expect
species diversitywithin complex foodwebs to decrease along a
gradient of isolation. Based on the substantial variation in both
dispersal abilities and energy requirements among species and
across trophic levels [4,25,39], we expect species at different
trophic levels to strongly vary in their response to isolation.
Specifically, we expect certain trophic groups such as consumer
species at lower trophic ranks with limited dispersal abilities
or top predators with strong resource constraints to be particu-
larly sensitive to isolation. Additionally, with a larger number
of fragments we expect more potential for rescue effects,
thus fostering survival. This might especially apply to species
with large dispersal ranges, which allow them to connect
many habitat patches. We test our expectations using Whit-
taker’s classical approach of α-, β- and γ-diversity [40], where
α- and γ-diversity describe species richness at the local
(patch) and regional (metacommunity) scale, respectively,
and β-diversity accounts for compositional differences between
local communities.

2. Methods
In the following, we outline amethods summary, for detailed infor-
mation on equations and parameters see themethods section in the
electronic supplementary material. We consider a multitrophic
metacommunity consisting of 40 species on a varying number
of randomly positioned habitat patches (the meta-food-web,
figure 1b). All patches have the same abiotic conditions and each
patch can potentially harbour the full food web, consisting of 10
basal plant and 30 animal consumer species. The potential feeding
links (i.e. who eats whom) are constant over all patches (figure 1a,b)
and are as well as the feeding dynamics determined by the allo-
metric food web model by Schneider et al. [41]. We use a dynamic
bioenergetic model formulated in terms of ordinary differential
equations that describe the feeding and dispersal dynamics. The
rate of change in biomass density of a species depends on its bio-
mass gain by feeding and immigration and its biomass loss by
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metabolism, being preyed upon and emigration. We integrate
dispersal as species-specific biomass flow between habitat patches
(figure 1b,d). Based on empirical observations (e.g. [35]) and pre-
vious theoretical frameworks (e.g. [4,12,34,42]), we assume that the
maximum dispersal distance of animal species increases with their
body mass. As plants are passive dispersers, we model their maxi-
mum dispersal distance as random and body mass independent.
We model emigration rates as a function of each species’ per capita
net growth rate, which is summarizing local conditions such as
resource availability, predation pressure, and inter- and intraspecific
competition [43]. During dispersal, distance-dependent mortality
occurs, i.e. the further two patches are apart, the more biomass
is lost to the hostile matrix separating them. We constructed
30 model food webs and simulated each food web on 72 different
landscapes. For each simulation, we generated landscapes on two
independent gradients covering two aspects of fragmentation,
namely number of patches and habitat isolation (figure 1c). We
achieved a full range for the gradient of habitat isolation (landscape
connectance ranging from 0 to 1, figure 3c). Additionally, we per-
formed dedicated simulation runs to reference the two extreme
cases, i.e. (i) landscapes in which all patches are direct neighbours
without a hostile matrix, and thus, no dispersal mortality and
(ii) fully isolated landscapes, inwhichno species canbridge between
patches, and thus, a dispersal mortality of 100%. Additionally, we
tested a null model in which all species have the same maximum
dispersal distance. To visualize the impact of number of patches
and habitat isolation on species diversity, we used generalized
additive mixed models from the mgcv package in R [44,45].
See the electronic supplementary material for detailed information
on the maximum dispersal distance, the additional simulations
and the statistical analysis.

3. Results
(a) Species diversity patterns
Our simulation results identify habitat isolation (defined as the
mean distance between habitat patches, t, figure 2, x-axis)

as the key factor driving species diversity loss. As expected,
we find fewer species on patches (the averaged local diversity,
a) in landscapes in which habitats are highly isolated
(figure 2a). In contrast to the decrease in a-diversity, β-diversity
(figure 2b), which describes differences in the community com-
position between patches, increases with habitat isolation. This
increase starts around the inflection point of the landscape con-
nectance at amean patch distance of log10 t � of− 0.5, at which
50%of all possible patch to patch connections are lost (figure 3c
and the electronic supplementary material, figure S4).
γ-diversity, the species diversity in the landscape, shows a
more complicated pattern. First it decreases owing to the loss
of a-diversity with habitat isolation. This decrease is then
reversed by the increase of β-diversity and the γ-diversity
increases again with habitat isolation (figure 2c). The number
of habitat patches in a landscape, Z (figure 2, y-axis), only
marginally affects the diversity patterns. The additional
simulations of the two extreme cases (i.e. joint scenario with
no dispersal loss and fully isolated scenario with 100%
dispersal mortality) support these patterns (see the electronic
supplementary material, section S7 for the corresponding
results). We further show that the isolation-induced species
loss also translates into a loss of trophic complexity, i.e. isolated
landscapes are characterized by reduced food webs with
fewer species and fewer trophic levels (see the electronic
supplementary material, figure S2).

(b) Differences among trophic levels
As the number of patches only marginally affects the species
diversity patterns, we hereafter focus on the effects of habitat
isolation on trophic-dependent differences among species
(figure 3). In figure 3, biomass densities, Bi, and landscape
connectances, ρi, represent the average of each species i over
all food webs. Species are ranked according to their body

small dispersal range

large dispersal rangehigh isolationlow isolation
(c) (d)

(a) (b)

Figure 1. Conceptual illustration of our modelling framework. In our meta-food-web model (b), we link local food web dynamics at the patch level (a) through
dynamic and species-specific dispersal at the landscape scale (d ). We consider landscapes with identical but randomly distributed habitat patches, i.e. all patches
have the same abiotic conditions, and each patch can potentially harbour the full food web. We model fragmented landscapes which differ in the number of habitat
patches and the mean distance between patches (c).
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mass. Thus, although species bodymasses differ between food
webs, species 1 is always the smallest, species 2 the second
smallest and so forth. The same applies to ρi, where the land-
scape connectance of consumer species is body mass
dependent, but the connectance of plant species is body mass
independent (see the methods section). In well-connected
landscapes (i.e. landscapes with small mean patch distances,
t), large and medium-sized consumer species (except the

very largest) have higher population biomass densities than
smaller consumers (figure 3a,c). With expanding distances
between habitat patches, large-bodied consumers at high
trophic positions (figure 3a, red to blue lines) show a particu-
larly strong decrease in population biomass densities. Small
consumer species (figure 3a, orange lines) are generally less
affected by increasing habitat isolation. Plant species show a
less consistent response to increased isolation, with most
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Figure 3. Top row: Mean biomass densities [log10(biomass density + 1)] of animal consumer species (a) and basal plant species (b) over all food webs (Bi, log10-
transformed; y-axis) in response to habitat isolation, i.e. the mean patch distance (t, log10-transformed; x-axis). Each colour depicts the biomass density of species i
averaged over all food webs: (a) colour gradient where orange represents the smallest, red the intermediate and blue the largest consumer species; (b) colour
gradient where light green represents the smallest and dark green the largest plant species. Bottom row: Mean species-specific landscape connectance (ρi;
y-axis) for consumer (c) and plant species (d ) over all food webs as a function of the mean patch distance (t, log10-transformed; x-axis). See the electronic sup-
plementary material, figure S9 for standard errors in biomass densities for four exemplary species.
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species slightly increasing their biomass density (figure 3b).
Based on our assumption that the maximum dispersal distance
of animals scales with body mass, the ability to connect a land-
scape follows the same allometric scaling (figure 3c). Despite
this dispersal advantage, intermediate-sized and large animal
species (figure 3a, red to blue lines) lose biomass in landscapes
inwhich they still have the potential to fully connect (almost) all
habitat patches (figure 3c). The differences in plant species bio-
mass densities cannot be attributed to body mass dependent
species-specific dispersal distances as for plants maximum
dispersal distances were randomly assigned, and thus, there
is no connection between body mass and landscape connec-
tance (ρi, figure 3d). Additional simulations, in which we
assumed a constant maximum dispersal distance for all species
of δi = δmax = 0.5, support the negligibility of species-specific
differences in dispersal ability for the emerging diversity
patterns (see the electronic supplementary material, figure S3).

4. Discussion
Habitat fragmentation is a major driver of global biodiversity
decline. To date, a comprehensive understanding of how the
different aspects of habitat fragmentation, i.e. habitat loss [6],
number of fragments and isolation, affect the diversity patterns
of species embedded in complex ecological networks such as
food webs is lacking (see e.g. meta-analysis by Martinson &
Fagan [15], and references therein). Our simulation experiment
allows us to independently explore the effects of number of
fragments (i.e. number of habitat patches in the landscape),
and of habitat isolation (i.e. distance between patches)
onpersistence and biomass densities of species in complex com-
munities. We identified habitat isolation to be responsible for
species diversity decline both at the local and regional scale.

The rate at which a species loses biomass density strongly
depends on its trophic position. Large-bodied consumer
species at the top of the food web are most sensitive to iso-
lation although they are dispersing most effectively (i.e. for
them, increasing distances between habitat patches do not
necessarily result in the loss of dispersal pathways or a sub-
stantial increase of dispersal mortality). Surprisingly, we
find top species to lose biomass density and sometimes
even go extinct in landscapes they can still fully connect,
whereas the biomass densities of small consumer species at
lower trophic levels and plant species are only marginally
affected by increasing habitat isolation. We attribute the accel-
erated loss of top species to the energy limitation propagated
through the food web: with increasing habitat isolation an
increasing fraction of the biomass production of the lower
trophic levels is lost owing to mortality during dispersal
and is thus no longer available to support the higher trophic
levels. Additionally, the reduced top-down pressure on smal-
ler consumers seems to compensate for their increased
dispersal loss. Our model adds a complementary
perspective to previous research pointing towards a trophic-
dependent extinction risk owing to constraints in resource
availability with increasing habitat fragmentation [9,38].

(a) Habitat isolation drives species loss
The increasing isolation of habitat fragments poses a severe
threat to species persistence (but see [46,47]). We demonstrate
in our simulation experiment that the generally observed pat-
tern of species loss with increasing habitat isolation (e.g. [3])

also holds for species embedded in large food webs. The loss of
species occurs both at the local (a-diversity) and regional
(γ-diversity) scale. For the latter, however, an increase in
β-diversity compensates the loss in local diversity (a) when
landscapes become very isolated and γ-diversity increases
again (see section below: Habitat isolation promotes β-diversity).

We modelled dispersal between habitat patches by
assuming an energy loss for the dispersing organisms—a
biologically realistic assumption as landscape degeneration,
which often occurs concurrently with habitat fragmentation,
increases thehostilityof thehabitatmatrix [3]. Consequently, the
dispersal mortality, and thus, biomass loss of populations to
the habitat matrix increases substantially when dispersal
distances between habitat patches expand. To account for
the variation in dispersal ability among trophic groups, we
incorporated species-specific maximum dispersal distances.
For animal species, this maximum dispersal distance increases
like a power law with body mass, therefore weakening the
direct effect of habitat isolation the larger a species is. Despite
this, top predators and other large consumer species respond
strongly to isolation. These species exhibit a dramatic loss in
biomass density or even go extinct in landscapes they still
perceive as almost fully connected (landscape connectance, ρi,
close to one), which indicates that their response to habitat
isolation is mediated by indirect effects originating from the
local food web dynamics.

(b) Local food web dynamics and energy limitation
drive top predator loss

In local food webs, energy is transported rather inefficiently
from the basal to the top species, with transfer efficiency in
natural systems often only around 10% [48]. This energy limit-
ation effectively controls the food chain length [26] and renders
large species at high trophic levels vulnerable to extinction
owing to resource shortage [49]. In our model, energy avail-
ability decreases if habitat isolation is high as this increases
biomass loss during dispersal. This affects particularly small
species at lower trophic levels because they generally have
the highest metabolic costs per unit biomass and therefore
the highest biomass losses per distance travelled [33,41]. The
biomass loss during dispersal consequently reduces the net
biomass production at the bottom of the foodweb and severely
threatens species at higher trophic positions that already oper-
ate on a very limited resource supply.

Moreover, owing to the feedback mechanisms regulating
the community dynamics within complex food webs, a loss
of top consumer species can have severe consequences for
the functioning and stability of the network [21,22]. A loss
of top-down regulation can, for instance, lead to secondary
extinctions resulting in simpler food webs [21,50]—an
additional mechanism that can foster the loss of biodiversity
as observed in our simulations. However, we also see a much
more direct effect of the changing community composition:
the biomass densities of small species that suffer most from
increased dispersal mortality do not, as one might expect,
decline much as isolation progresses. We attribute this to a
release from top-down control as their consumers lose bio-
mass or even go extinct, which counters the negative direct
effect of habitat isolation. These arguments suggest that
differential dispersal capabilities are less important than ener-
getic limitations in explaining the strong negative response of
large consumers to habitat isolation. This claim is supported
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by the additional simulations where all species experienced
the same level of dispersal mortality, which yielded similar
results (see the electronic supplementary material, figure S3).

We did not find an effect of the number of patches on a-, β-
and γ-diversity. As we model biomass densities on patches
without defined area (see section below:Model specifications),
fewer patches do not reflect habitat loss, but rather the loss of
fragments, i.e. stepping stones in the dispersal network. Thus,
the energy limitation in our simulated landscapes derives
from direct dispersal loss and cascading effects of dispersal
losses of resources. For plant and small animal species, this
can be understood easily, as these species are less energy lim-
ited and thus are able to persist on a single habitat patch. For
larger animal species the situation is more subtle: while they
can integrate over multiple patches, feeding interactions still
always occur on one patch at a time. If the biomass densities
of their resources (and thus also the realized feeding rate) is
too low on a particular patch to cover their metabolic require-
ments, they gain no advantage from the addition of more
patches with equally low resource abundance.

(c) Habitat isolation promotes β-diversity
Contrary to the decline in a-diversity with increasing habitat
isolation, we find an increase in β-diversity starting from
around log10 mean patch distance t � �0:5.We assumed iden-
tical abiotic conditions on all habitat patches, i.e. there are no
differences in nutrient availability or background mortality
rates. Therefore, any differences in conditions experienced by
the species on different patches can only originate from the
initial community composition and the structure of the disper-
sal network. Oneway for such different conditions to emerge is
the disintegration of the dispersal network into several smaller
clusters. Up to a log10 mean patch distance t � �0:5, the
species with the largest maximum dispersal distance (which
could be both large animals that have not already gone extinct
and plants with a randomly selected large dispersal distance)
have a landscape connectance (ρi) of at least 0.5. This dispersal
advantage easily allows them to connect all patches to a single
network component, thereby providing homogenization for
the meta-food-web. However, as the mean patch distance
increases further, even these species cannot bridge all gaps in
the habitat matrix any more and clusters of patches emerge
that are for all species disconnected from the other patches.
As these clusters vary in the number of patches and mean
patch distance within the cluster, the level of dispersal mor-
tality experienced by the species on the different clusters can
also vary considerably. Any further increase inmean patch dis-
tance causes the landscape connectance to drop to nearly zero
for all species and all patches within the landscape approach
complete isolation. With no immigration into isolated patches,
non-resident species cannot colonize them and initial com-
munity compositions drive dissimilarities among patches.
However, the initial β-diversity is not sufficient in explaining
the high β-diversity in strongly isolated landscapes (electronic
supplementarymaterial, figure S4). This suggests that different
food web positions of initial species lead to different cascading
effects in local foodweb dynamics withmore or less secondary
extinctions on isolated patches further increasing differences in
local community compositions. The increase in β-diversity is
even stronger than the loss of local diversity resulting in an
increase in γ-diversity in highly isolated landscapes. However,
species contributing to this high γ-diversity tend to occur on

fewer patches and thus are more prone to go extinct in the
whole landscape owing to stochastic extinction events.

(d) Model specifications
The frameworkwe propose here formodellingmeta-food-webs
is very general and allows for a straightforward implementation
of future empirical insight wherewe so far had to rely on plaus-
ible assumptions. The trophic network model for the local food
webs is based on a tested and realistic allometric framework [41]
with a fixed number of 40 species—a typical value in dynamic
food web modelling (e.g. [51,52]). We based all model par-
ameters on allometric principles [33,53] allowing for a simple
adaptation of our modelling approach to other trophic net-
works such as empirically sampled food webs [54] or other
food web models such as the niche model [55]. Moreover,
empirical patch networks (e.g. the coordinates of meadows in
a forest landscape) or other dispersal mechanisms [6,56] may
be incorporated in the future. In our simulations, biomass loss
during dispersal is predominantly responsible for the decline
in species diversity. We linked the maximumdispersal distance
of animals and thereby also their mortality during dispersal to
bodymass,which is plausible because larger animal species can
move faster [34], and thus, have to spend less time in the hostile
habitat matrix. Interestingly, however, we did not find any
empirical study relating body mass directly to mortality or bio-
mass loss during migration. If such information becomes
available in the future, it can be easily incorporated into our
modelling framework. Further, we deliberately assumed all
habitat patches to share the same abiotic conditions [57] as we
wanted to focus on the general effects of the interaction of
complex food web and dispersal dynamics. Adding habitat
heterogeneity among patches, e.g. by modifying nutrient avail-
ability or mean temperature, however, is straightforward and
can be expected to yield additional insight into themechanisms
for the maintenance of species diversity in meta-food-webs.
Finally, by using a dynamicalmodel formulated in terms of bio-
mass densities instead of absolute biomasses (or population
sizes), we make the implicit assumption that patches do not
have an absolute size. Thus, the number of patches in a land-
scape cannot be directly linked to the total amount of habitat
but rather reflects the number of fragments, i.e. stepping
stones in the dispersal network of a species. A decreasing
number of patches thus does not necessarily imply habitat
loss. In order to also address effects of habitat loss (in terms
of area), the model could be adapted to include, for example,
area-specific extinction thresholds and absolute biomasses in
dispersal dynamics, but thiswas beyond the scope of this study.

(e) Synthesis and outlook
Our simulation experiment demonstrates that habitat isolation
reduces species diversity in complex foodwebs in general,with
differences in the effect across trophic levels. In increasingly
isolated landscapes, energy becomes limited, which decreases
the biomass density of large consumers or even drives them
extinct. These primary extinctions may result in a cascade of
secondary extinctions, given the importance of top predators
for food web stability [24,58]. The increased risk of network
downsizing, i.e. simple food webs with fewer and smaller
species [14,59], stresses the importance to consider both
direct and indirect trophic interactions as well as dispersal
when assessing the extinction risk of species embedded in
complex food webs and other ecological networks.
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To date, most conservation research focuses on single
species and does not consider the complex networks of inter-
actions in natural communities [7,14]. However, the patterns
we presented here clearly support previous studies highlight-
ing the importance of trophic interactions (e.g. [9,37,38]). We
show that the fragmentation-induced extinction risk of species
strongly depends on their trophic position, with top species
being particularly vulnerable. Given that top-down regulation
can stabilize food webs [24,58], the loss of top predators might
entail unpredictable consequences for adjacent trophic levels,
destabilize food webs, reduce species diversity and trophic
complexity and ultimately compromise ecosystem functioning
[23,24]. In addition to the trophic position of a species, the
trophic structure of the food web has also been shown to be
an important aspect [11]. Our results suggest that bottom-up
energy limitation caused by dispersal mortality owing to
habitat isolation can be a critical factor driving species loss
and the reduction of trophic complexity. The extent of this
loss strongly depends on the spatial context (see also [6]).
Thus, to maintain species-rich and trophic-complex natural
communities under future environmental change, effective
conservation planning must consider this interdependence of
spatial and trophic dynamics. Notably, conservation planning
should also consider habitat isolation and matrix hostility
(and consequently dispersal mortality) to ensure sufficient bio-
mass exchange between local populations, capable of inducing
spatial rescue effects and to alleviate bottom-up energy limit-
ation of large consumers. Energy limitations can also result
from habitat loss (which we did not model here), decreasing

energy availability at the bottom of the food web affecting
local dynamics intrinsically independent of dispersal. Thus,
avoiding habitat loss remains a crucial aspect [2,47]. We high-
light the need to explore food webs and other complex
ecological networks in a spatial context to achieve a more hol-
istic understanding of biodiversity and ecosystem processes.
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Abstract

While habitat  loss is a known key driver of biodiversity decline, the impact of other landscape properties, such as patch  

isolation, is far less clear. When patch isolation is low, species may benefit from a broader range of foraging opportunities, but  

are at the same time adversely affected by higher predation pressure from mobile predators. Although previous approaches 

have successfully linked such effects to biodiversity, their impact on local and metapopulation dynamics has largely been 

ignored. Since population dynamics may also be affected by environmental disturbances that temporally change the degree 

of patch isolation, such as periodic changes in habitat availability, accurate assessment of its link with isolation is highly 

challenging. To analyze the effect of patch isolation on the population dynamics on different spatial scales, we simulate a 

three-species meta-food chain on complex networks of habitat patches and assess the average variability of local populations 

and metapopulations, as well as the level of synchronization among patches. To evaluate the impact of periodic environmental 

disturbances, we contrast simulations of static landscapes with simulations of dynamic landscapes in which 30 percent of the 

patches periodically become unavailable as habitat. We find that increasing mean patch isolation often leads to more asyn-

chronous population dynamics, depending on the parameterization of the food chain. However, local population variability 

also increases due to indirect effects of increased dispersal mortality at high mean patch isolation, consequently destabilizing 

metapopulation dynamics and increasing extinction risk. In dynamic landscapes, periodic changes of patch availability on 

a timescale much slower than ecological interactions often fully synchronize the dynamics. Further, these changes not only 

increase the variability of local populations and metapopulations, but also mostly overrule the effects of mean patch isolation. 

This may explain the often small and inconclusive impact of mean patch isolation in natural ecosystems.

Keywords Metacommunity dynamics · Dispersal · Patch isolation · Stability · Synchronization · Disturbance

Introduction

Anthropogenic habitat degradation and loss are strong 

negative drivers of biodiversity on local and global scales 

(Butchart et al. 2010; Pereira et al. 2010; Pimm et al. 2014). 

While habitat loss has a clear cause–effect relationship 

with declining diversity induced by, e.g., lack of resources, 

habitat size restrictions or increased mortality (Brooks et al. 

2002; Duraiappah et al. 2005), the effect of other modifica-

tions of the landscape such as fragmentation is still intensely 

debated (Hanski 2015; Fahrig 2017; Fletcher et al. 2018; 

Fahrig et al. 2019). Following Fahrig (2003), habitat frag-

mentation comprises three main components: the number of 

patches, patch isolation and patch size, but excludes habi-

tat loss. Their respective effects are more difficult to assess 

because they are usually weaker than the effects of habi-

tat loss (Fahrig 2003) and often confounded with the latter 

(Didham et al. 2012).

In metacommunities, patch isolation determines to which 

extent individuals can disperse through the landscape and 

thereby contribute to the regional distribution and persistence 

of species. Empirical and experimental studies report, how-

ever, conflicting results of patch isolation at different spa-

tial scales: Negative effects on regional diversity have been 

attributed to the prevention of rescue effects (Levins 1969; 

Gotelli 1991), but also positive effects on local diversity have 

been recorded (Fahrig 2017). On the local scale dispersal can 
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also alter biotic interactions among species directly, empha-

sizing the interplay between local and regional dynamics 

in metacommunities (Walting and Donnelly 2006). Recent 

modeling approaches on metacommunities try to integrate 

more details of local and regional aspects regarding land-

scape attributes and species interactions, but mainly focus 

on species persistence and diversity (Pillai et al. 2011; Ryser 

et al. 2019) and ignore effects of dispersal on local population 

dynamics and its relevance for stability (LeCraw et al. 2014).

A major concern of models that include explicit popula-

tion dynamics are mechanisms that synchronize population  

cycles between habitat patches. Such synchronous oscilla-

tions destabilize metapopulations by amplifying the ampli-

tude of oscillations in their regional abundances and increas-

ing the extinction risk of species in entire regions due to 

correlated local extinction events. Conversely, asynchronous 

oscillations can promote regional persistence and stability 

through rescue effects (Levins 1969; Blasius et al. 1999) 

or the portfolio effect (Schindler et al. 2015; Thorson et al. 

2018). These models, which are often limited to either a 

small number of patches or to regular, rectangular lattices 

(Briggs and Hoopes 2004), have established that the syn-

chronicity of population oscillations between patches gener-

ally increases with dispersal rate (Sherratt et al. 2000; Jansen 

2001). Other factors affecting synchronicity are adaptive 

dispersal (Abrams 2007; Abrams and Ruokolainen 2011), 

inter- and intraspecific density dependence of dispersal rates 

(Hauzy et al. 2010), and costliness or distance dependence 

of dispersal (Koelle and Vandermeer 2005). In larger net-

works of habitat patches, an irregular network structure 

favors asynchronous dynamics (Holland and Hastings 2008), 

but high dispersal rates again lead to synchronous oscilla-

tions that are detrimental for species persistence (Plitzko and 

Drossel 2015). At larger effective distance between patches, 

dispersal between them is limited (Koelle and Vandermeer 

2005; Fletcher et al. 2016), linking the results regarding 

synchronization of population oscillations to research on 

the effect of patch isolation. Indeed, it has been shown that 

synchronization among natural populations declines with 

increasing distance between them (Ranta et al. 1995).

While synchronization is often linked to dispersal rate 

and thereby implicitly to landscape properties like patch iso-

lation, it can also be directly affected by correlated environ-

mental fluctuations (Moran 1953; Ranta et al. 1995; Koenig 

1999; Kahilainen et al. 2018). These fluctuations can affect 

demographic rates of the species via changing environmen-

tal conditions (like ambient temperature or resource avail-

ability), but they can also directly influence the availability 

of patches as habitable areas. As an example for the latter, a 

landscape in which both a temporally variable environment 

and a pronounced spatial structure strongly affect ecological 

communities is kettle holes in formerly glaciated regions 

(Kalettka and Rudat 2006). These small ponds are typically 

formed in large clusters, and seasonal changes of tempera-

ture and precipitation cause some of them to be only tem-

porally filled with water. The local aquatic communities of 

these temporary ponds thus periodically become completely 

extinct, and recolonization through dispersing species from 

permanent ponds is a key element to reestablish the com-

munities (De Meester et al. 2005). As the recolonization 

happens in a temporally correlated manner at the beginning 

of the wet season, a synchronizing effect on the population 

dynamics can be expected. However, this is again contingent 

on the spatial structure of the landscape, as lower disper-

sal rates due to higher mean patch isolation can impede the 

recolonization process.

So far, the interaction between these drivers of synchroni-

zation and population variability in general remains largely 

unexplored (but see (Gouhier et al. 2010)), despite the fact 

that anthropogenic activity continues to increase both habitat 

degradation and environmental variability. In order to fill this 

gap, we examine the dynamics of a meta-food chain in large, 

spatially explicit networks of habitat patches and analyze its 

stability with respect to the mean patch isolation of the land-

scape and environmental disturbances that periodically render 

a subset of the patches uninhabitable. We chose a food chain 

as model system because it has, on the one hand, a simple and 

tractable structure that, on the other hand, already allows for 

indirect effects mediated by feeding interactions on different 

trophic levels. In order to obtain a complete picture of the 

effects of patch isolation and periodic environmental distur-

bances on the extent and synchronicity of population oscilla-

tions in food chains, we analyze two parameterizations of the 

food chain that correspond to contrasting oscillation patterns. 

These patterns are characterized either by a relatively even 

distribution of biomass along the food chain (weak trophic 

cascade) or by marked differences among the species (strong 

trophic cascade), both of which are common in natural eco-

systems (Estes and Duggins 1995; Carter and Rypstra 1995).

Our model setup explicitly addresses one aspect of frag-

mentation, namely patch isolation, while keeping other 

potentially confounding drivers such as the total amount of 

habitat or the number of patches constant. We consider both 

static landscapes, where all patches are constantly avail-

able as habitats, and dynamic landscapes, where periodic 

environmental disturbances regularly render some of the 

patches uninhabitable. The stability of the dynamics of the 

metacommunity is evaluated within the framework of Wang 

and Loreau (2014) that divides population variability into 

an � -, � -, and �-component (similar to the classical diver-

sity indices by Whittaker (1972)): �-variability is the aver-

age coefficient of variation of a species’ local abundances, 

�-variability is the coefficient of variation of the regional 

(metapopulation) abundance, and �-variability quantifies 

differences in oscillations between patches, i.e., how syn-

chronously the local populations oscillate. Generally, it is 
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assumed that higher dispersal rates synchronize population 

dynamics (e.g., Gouhier et al. (2010)). When mean patch 

isolation increases, mortality during dispersal increases, too. 

We expect that this decreases net dispersal flows and thus 

also decreases synchrony of population dynamics among 

patches (i.e., increases �-variability). This may, however, 

be counteracted by (synchronous) periodic disturbances of 

patch availability. Furthermore, we expect local ( � -) vari-

ability to decrease, as increasing mortality allows less bio-

mass to flow up the food chain, thus weakening (and thereby 

stabilizing) the trophic interactions (Rip and McCann 2011). 

If the local population oscillations indeed become less syn-

chronous, this will also decrease regional ( � -) variability as 

habitats become more isolated.

Methods

The model comprises a tri-trophic food chain including 

an autotroph (A), a consumer (C) and a predator (P) spe-

cies. As basis for the growth of the autotroph, a dynamic 

resource (R) serves as essential energy source and can be 

seen as a universal nutrient. This food chain is extended to 

a metacommunity by placing copies of it on habitat patches 

that are randomly distributed in space and connected via 

species-specific dispersal links (Fig.  1). Where applicable, 

the individual parameters are derived from empirical data, 

largely from invertebrate communities.

Trophic interactions

We first describe only the trophic interactions between the 

populations on a single patch and disregard dispersal. The 

local dynamics of the food chain follow a generalization 

of the bioenergetics approach (Yodzis and Innes 1992;  

Brose et al. 2006), supplemented with an equation for the 

resource. Adapted from chemostat dynamics, the rate of 

change of the resource density R is expressed as

with the resource turnover rate D and the supply concentra-

tion R
0
 . Uptake of resources by the autotroph A is described 

by a Monod function GAR = r R
K+R

 with maximum uptake rate 

r and half saturation constant K. The rates of change in bio-

mass density for each species (A, C and P) are expressed by

where the first terms in all three equations represent growth 

due to consumption, the last terms denote metabolic losses, 

and the middle terms in the equations for the autotroph and 

the consumer describe mortality through predation. The 

terms are summarized by the net per capita growth rates gi 

( i = A, C, P ). The parameters e
i
 and x

i
 are assimilation effi-

ciencies and per capita respiration rates, respectively. The 

per capita feeding rate of species i on species j is described 

by a Beddington–DeAngelis functional response (DeAngelis 

et al. 1975; Beddington 1975):

with the attack rate aij , the handling time hij , the interference 

coefficient c
i
 , and B

i
 and Bj as placeholders for the respective 

consumer’s or resource’s biomass density. Since the model 

is formulated in terms of biomass densities (as opposed to 

population densities), the functional response is scaled with 
1

m
i

 , the inverse of the respective consumer’s body mass 

(Heckmann et al. 2012).

The parameters of the trophic dynamics scale allometri-

cally with the body mass of the species. Mass-specific 

(1)
dR

dt
= D ⋅

(
R

0
− R

)
− G

AR
A

(2)

dA

dt
=GARA − FCAC − xAA = gAA

dC

dt
=eCFCAC − FPCP − xCC = gCC

dP

dt
=ePFPCP − xPP = gPP

(3)Fij =
1

mi

aijBj

1 + aijhijBj + ciBi

Fig. 1  a) simplified example 

of a spatial network of habitat 

patches. Dashed lines of differ-

ent grey tones indicate dispersal 

links of the respective species. 

The resource does not disperse 

between patches. b) local food 

chain on each patch comprising 

three trophic levels (autotrophs, 

A, consumers, C, and predators, 

P) plus a dynamic resource, R 
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maximum growth rate and respiration rates are assumed to 

decrease with a negative quarter-power law with body mass, 

i.e., r = r
0
m

−0.25

i
 and x

i
= x0,im

−0.25

i
 (Yodzis and Innes 1992; 

Brose et al. 2006). Following Rall et al. (2012), handling 

times depend on the body masses of both consumer and 

resource with hij = h
0
m−0.48

i
m−0.66

j
 . The same is true for the 

attack rates, but since these parameters were used to differ-

entiate the contrasting states of top-down control, fixed val-

ues were used here (c.f. Table 1) that nevertheless obey the 

general trends found in Rall et al. (2012). Body masses 

increase by a factor of 100 per trophic level, a value  

commonly found in invertebrate communities and known to 

have a stabilizing effect on population dynamics (Brose et al. 

2006; Brose et al. 2006b). Freedom of choosing an appropri-

ate set of units allows us to set the body mass of the auto-

troph to m
A
= 1 . In general, the model is parameterized such 

that the population dynamics of all species are oscillatory 

when dispersal is not accounted for (Table 1, Fig. 2).

Habitat network and dispersal

We use the same rules for modeling spatial interactions as in 

Ryser et al. (2019). Dispersal is considered for the autotroph, 

consumer and predator species in the model. The spatial 

Table 1  Standard parameter set 

used in the model
Parameter Description Value

D Resource turnover rate 0.5

R
0

Resource supply concentration 5

r
0

Intercept mass specific max. resource uptake rate 1

K Half saturation density for resource uptake 0.2

c
C
 , c

P
Interference competition 0.6

e
C

Assimilation efficiency consumer (C) 0.45

e
P

Assimilation efficiency predator (P) 0.85

x0,A Intercept respiration rate plant (A) 0.138

x0,C , x0,P Intercept respiration consumer (C) and predator (P) 0.314

a
AC

Attack rate consumer 105 or 170

a
PC

Attack rate predator 450 or 10000

h
0

Intercept handling time 0.1

D
0

Intercept maximum dispersal distance [0.06: 0.5]

� Scaling exponent for maximum dispersal distance 0.05

�
0

Scaling factor maximum emigration rate 2

b Curvature of emigration function 25

Z Number of habitat patches 30

� Fraction of habitat patches blinking 0.3

� Period length of blinking cycle 6000

Fig. 2  Time series of the 

dynamics for the weak A and 

strong B trophic cascades on a 

single patch without dispersal 

dynamics. In case A, a
CA

= 105 

and a
PC

= 450 ; in case B, 

a
CA

= 170 and a
PC

= 10000 . 

All other parameters are listed 

in Table 1. Note the different 

scales of x- and y-axes in the 

two panels
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setting is implemented as a random geometric graph (RGG) 

(Penrose 2003), where each node of the spatial network 

represents a habitat patch for a local community (Urban 

and Keitt 2001). The (x, y)-coordinates of each patch were 

drawn at random from a bivariate uniform distribution over 

the interval [0 ∶ 1] × [0 ∶ 1] . Dispersal links between the 

patches connect the local populations, enabling exchange  

of biomass between patches and thereby forming a meta-food  

chain (Fig.  1).

Each species perceives its individual dispersal network 

depending on its body mass m
i
 . A dispersal link for species 

i exists between two patches k and l only if the distance 

between them is less than the species-specific maximum 

dispersal distance

The exponent � is set to a positive value to account for 

increased mobility and thus improved dispersal abilities of 

species with a larger body mass (Hein et al. 2012; Peters 

1983).

Dispersal itself is at least for animal species often an 

active process resulting in metabolic costs and potentially 

involving a higher risk of predation. To account for these 

costs (dispersal mortality), we assume that dispersal suc-

cess S
i,lk

 (i.e., the fraction of individuals not dying during 

dispersal) of species i, when moving between patches l and 

k, decreases linearly with the distance between the patches:

where d
i,lk

=

d
lk

D
max,i

 is the distance between the patches rela-

tive to the maximum dispersal distance of species i. For pas-

sively dispersing plants, distance-depending costs can be 

caused by a decreasing probability of propagules finding by 

chance a suitable patch that is further away.

The fraction of individuals emigrating from a source 

patch k that move toward a target patch l is calculated using 

the weight function

where the sum in the denominator is taken over all poten-

tial target patches p that are within the maximum dispersal 

range of species i on patch k (i.e., those with dpk < Dmax,i ). 

This weight function makes dispersal links between nearby 

patches stronger, implying that a larger proportion of emi-

grating biomass arrives there, than those between patches 

that are further apart. Note that while specific distances d
i,lk

 

and success terms S
i,lk

 are symmetric for all pairs of patches, 

the weight function is not (i.e., W
i,lk

≠ W
i,kl

).

In general, the process of dispersal can be described as 

an exchange of biomass between habitat patches that is 

(4)D
max,i = D0m

�

i
.

(5)S
i,lk = max

(

1 − d
i,lk, 0

)

,

(6)Wi,lk =
1 − di,lk

∑

p(1 − di,pk)
,

affecting the population dynamics of species i on patch l 

via emigration ( E
i,l

 ) from this patch and immigration ( I
i,l

 ) 

into the patch. The full population dynamics of species i on 

patch l, comprising both local, trophic dynamics, Eqs. (2), 

and dispersal dynamics, can thus be written as

Emigration is a complex process in nature possibly involv-

ing different environmental cues and species properties. 

Here, we assume an adaptive emigration rate that depends 

on the net per capita growth rate gi,l of species i on patch l, 

reflecting its current situation in this habitat. If a species’ 

net growth is positive, there is little need for dispersal and 

emigration will be low. However, if the local environmental 

conditions deteriorate, e.g., due to low resource availability 

or high predation pressure, the emigration rate increases. 

This is captured by the following function:

The parameter �
i
= �

0
x

i
 determines the maximum per capita 

emigration rate and b determines how sensitively the emi-

gration rate depends on the net growth rate (i.e., how quickly 

it drops when gi,l increases). Finally, immigration of species 

i into patch l depends on the amount of emigration from all 

neighboring patches k as well as on the specific dispersal 

network, encoded in the success and weight functions S
i,lk

 

and W
i,lk

 , according to

The parameters defining the dispersal dynamics are also 

summarized in Table 1.

Simulation setup

Static and dynamic landscapes

The baseline simulations are carried out using static land-

scapes, i.e., with RGG networks of Z = 30 habitat patches 

as described above, where all patches and dispersal links 

are permanently available. However, since the environ-

mental conditions in nature are rarely completely constant, 

we also study dynamic landscapes in which a fraction � of 

the patches becomes periodically unavailable as a habitat. 

This process is called “blinking” and has a period length 

� = 6000 . This period length encompasses several hundred 

generation times of the autotroph, thereby providing suf-

ficient time for the food chain to recover between blinking 

events. Blinking patches are turned on and off synchronously 

and change their state every 
�

2
 time units. When the blinking 

(7)
dBi,l

dt
= gi,lBi,l − Ei,l + Ii,l .

(8)Ei,l =
�iBi,l

1 + eb(gi,l+xi)
.

(9)I
i,l
=

∑

k

S
i,lk

W
i,lk

E
i,k

.
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patches are turned off, the local food chains go extinct imme-

diately. Furthermore, the dispersal network can be disrupted 

because these patches cannot be used as stepping stones for 

dispersal between patches that are too far apart for a direct 

dispersal link.

Patch isolation

To capture the effects of varying mean patch isolation, the 

intercept of the maximum dispersal distance, D
0
 , (Eq. (4)) 

is varied systematically between 0.06 and 0.5. This creates 

habitat networks that range from mostly isolated patches 

to systems where the predator can move in a single step 

between any two patches. The spatial network is quanti-

fied by the mean patch isolation of the predator’s dispersal 

network,

with L
P
 the number of undirected dispersal links of the pred-

ator and Z the number of habitat patches. Note that using the 

isolation of the dispersal network of any of the other species 

to define the mean patch isolation of the landscape would 

only rescale the x-axis of the results (Fig. 3), but not change 

them qualitatively.

Ecosystem stability

We evaluated ecosystem stability according to Wang and 

Loreau (2014) as � -, � -, and �-variability of autotroph, con-

sumer and predator. For the mean local or �-variability of a 

species, the coefficients of variation (CV, 
standard deviation

mean
 ) of 

its local biomass densities on all patches are calculated and 

then averaged across patches (weighted with the respective 

local mean biomass density), while for the �-variability 

(variability of the metapopulation) the CV of the total bio-

mass density (sum over all patches) is evaluated. Similar to 

the � -, � -, and �-diversity indices (Whittaker 1972), �-vari-

ability measures differences between the patches and can 

thus be used to determine how synchronously local biomass 

densities on the different patches oscillate. It is here defined 

as � =
�

�
 . In contrast to the diversity indices, however, vari-

ability decreases with an increase in spatial scale, i.e., � ≤ � 

and thus � ≥ 1 . Spatially synchronous oscillations result in 

a low �-variability and a �-variability that approaches the 

value of the �-variability. Perfect synchronicity is obtained 

at � = 1 . The variability measures of a species do not change 

if it is permanently extinct on one or several patches. An 

intuitive example of two species, one with synchronous and 

one with asynchronous oscillations, is provided in the Online 

Resource (Fig. S1).

(10)I
RGG,P = 1 −

L
P

1

2
Z ⋅ (Z − 1)

,

Numerical simulations

We simulated food chains that were parameterized to 

exhibit either a strong or a weak trophic cascade, corre-

sponding to a very uneven or a relatively even distribution 

of biomass along the food chain, respectively. The weak 

trophic cascade was generated by relatively low attack 

rates of the consumer and predator species ( a
CA

= 105 , 

a
PC

= 450 , Fig.  2a), while for the strong trophic cas-

cade much higher attack rates were chosen ( a
CA

= 170 , 

a
PC

= 10000 , Fig. 2b). The spatial networks were either 

static (all patches permanently available as habitats) or 

dynamic ( 30% of the patches periodically becoming una-

vailable as habitats). The mean patch isolation was con-

stant for each individual simulation run, but was gradually 

varied between simulations by decreasing D
0
 from 0.5 to 

0.06 in steps of 0.01. Simulations were carried out with a 

full-factorial design and 30 replicates for each combination 

of parameters, resulting in a total of 5400 simulation runs. 

Replicates differed in the randomly chosen positions of 

30 patches that formed the spatial networks. Time series 

were simulated for 90 000 time units and split in three sec-

tions of equal length. During the first section, the systems 

settled on the attractor and from the second section, mean 

biomass densities were calculated. These mean biomass 

densities were then used to calculate the variability coef-

ficients from the third section of the time series. During the 

simulations, a species was considered extinct on a given 

patch if its local biomass density fell below 10
−20 . Global 

extinction of a species from the entire meta-food chain 

was never observed. Numerical simulations of the ODE 

model were performed in C (source code adopted from 

(Schneider et al. 2016)) using the SUNDIALS CVODE 

solver (Hindmarsh et al. 2005) with absolute and relative 

error tolerances of 10
−10 . Output data were analyzed using 

Python 2.7.11, 3.6 and several Python packages, in particu-

lar NumPy and Matplotlib (Oliphant 2015; Van der Walt 

et al. 2011; Hunter 2007).

Results

Food chain dynamics without dispersal

To capture how different parameterizations of trophic 

interactions affect the metacommunity dynamics, we ana-

lyzed two contrasting trophic cascades in the food chain 

that were created by assuming either low or high attack 

rates. The first type, called weak trophic cascade, is char-

acterized by a weak predation pressure of the predator, 

a relatively even distribution of biomass along the food 

chain and a high oscillation frequency (note the different 
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scales of the x-axes of the two panels in Fig. 2). The strong 

trophic cascade is, in contrast, characterized by a very une-

ven distribution of biomass with a strong dominance of 

the autotroph (caused by the suppression of the consumer 

by the predator), a much lower oscillation frequency and 

much more drastic population cycles that drive both the 

predator and the consumer biomass densities repeatedly 

to very low values. The difference between the predator 

attack rates in the two cases had to be this pronounced as 

for intermediate values, the food chain is stable and the 

analysis of (meta-)population variabilities is not possible 

(Online Resource, Fig. S2).

Metacommunity dynamics

We evaluated the two different landscape scenarios (static 

vs. dynamic) for both the weak and strong trophic cascade 

over a gradient of the mean patch isolation. All scenarios are 

evaluated with respect to local ( �-variability), between patch 

( �-variability) and metapopulation dynamics ( �-variability). 

The observed trends in population variabilities on the dif-

ferent spatial scales were always the same for all trophic 

levels. We therefore only show results for the predator spe-

cies. Results for the autotroph and consumer species are in 

the Online Resource (Figs. S3 and S4).

Fig. 3  Local ( �-variability, top row), between patch ( �-variability, 

middle row) and metapopulation dynamics ( �-variability, bottom row) 

of the predator for the weak (left column) and the strong trophic cas-

cade (right column). Light gray data points and dashed trend lines 

(second order fit) indicate static landscapes, and dark gray data points 

and solid trend lines indicate dynamic landscapes. Each data point 

represents the result of one simulation run with a unique spatial net-

work of habitat patches. All data points where the variability is below 

10
−6 are set to 10

−6 as differences between them provide no meaning-

ful information that close to the fixed point
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Local dynamics: ̨ ‑variability

In contrast to our expectations, increasing mean patch iso-

lation amplifies biomass oscillations in static landscapes 

(increasing �-variability, Fig. 3a,b). This trend is particu-

larly pronounced in the strong trophic cascade from inter-

mediate mean patch isolation (where many systems even 

settle on a stable fixed point) to high mean patch isolation 

(Fig. 3b). Because �-variability has nonzero values at low 

mean patch isolation, the overall pattern is u-shaped. In the 

weak trophic cascade, �-variability monotonously increases 

with mean patch isolation. In dynamic landscapes, �-vari-

ability is higher than in static landscapes, but its main trends 

with mean patch isolation are significantly weaker than in 

static landscapes (cf. also Table 2).

Synchronization of patches: ˇ‑variability

On the regional scale, we evaluated to what extent the 

biomass dynamics between habitat patches synchronized 

(Fig. 3c,d). In line with our expectations, there is in most 

cases a clear trend toward decreased synchronization 

(increased �-variability, c.f. also Table 2) of the dynam-

ics as mean patch isolation increases. The apparent limita-

tion of synchronization in dynamic landscapes (minimal �

-variability ≈ 2 for both weak and strong trophic cascades) 

is only a numerical effect due to the difference between 

constant and blinking patches.

Only the weak trophic cascade in static landscapes devi-

ates from the general trend: Not only the �-variability is 

higher than in the other cases, but it also appears to decrease 

from low to intermediate mean patch isolation and only 

slightly increases at high mean patch isolation. The initial 

decrease is due to a separate cloud of data points with very 

high �-variabilities, which emerges for I
RGG,P ⪅ 0.4 . This 

suggests that in this part of the parameter space a second 

attractor with even less synchronization between the patches 

exists. The bistability of the system is indeed confirmed by 

dedicated simulations using spatial networks with fixed 

coordinates of the patches (cf. Online Resource, Fig. S5)

Metapopulation : ‑variability

For both the weak and strong trophic cascades, we find a 

relatively constant total biomass of the metapopulation ( �

-variability < 10
−1 , Fig. 3e,f). As expected, �-variability 

is higher in dynamic landscapes than in static ones. Since 

local biomass oscillations are often highly synchronized, the 

trends in the metapopulation dynamics largely follow those 

already observed in the local dynamics (cf. also Table 2). As 

with the �-variability of the weak trophic cascade in static 

landscapes, at low mean patch isolation ( I
RGG

⪅ 0.4 ) a small 

cloud of data points appears to be separated from the rest, 

which have a low �-variability. Again, these data points can 

be attributed to an alternative attractor with less synchro-

nized dynamics and correspondingly a lower �-variability.

Discussion

The impact of habitat fragmentation on biodiversity and com-

munity dynamics is a subject of ongoing debate (Fahrig et al. 

2019; Fletcher et al. 2018). Here, we evaluated the effect of mean 

patch isolation as one aspect of fragmentation on the population 

dynamics of two contrasting states of a meta-food chain in static 

and dynamic landscapes. Most intriguingly, we found that both 

local ( � -) and metacommunity ( � -) variability increased with 

increasing mean patch isolation, despite the fact that synchroni-

zation among patches mostly decreased ( �-variability increased) 

along the same gradient. Periodic environmental disturbances 

that rendered some patches regularly uninhabitable in dynamic 

landscapes weakened these trends, but at the prize of overall 

higher levels of � - and �-variability.

Interactions between dispersal and local 
interactions drive the dynamics in static landscapes

Higher effective dispersal rates at low patch isolation have 

been shown to synchronize the dynamics of metacommuni-

ties (Gouhier et al. 2010), but our results suggest that the 

extent of this effect may depend on the local interactions 

between the populations. While our results largely confirm 

the negative correlation between mean patch isolation (and 

thus, by proxy, effective dispersal rate) and synchronization, 

we also observe a significant deviation from this trend in the 

weak trophic cascade at low mean patch isolation. There, 

an alternative attractor with very asynchronous population 

oscillations (high �-variability) emerges. However, �-vari-

ability is also relatively low on this attractor, which may 

explain the lack of synchronization: When the local popula-

tions do not oscillate much, their emigration rates are also 

almost constant over time, and there is consequently little 

potential for affecting the population oscillations on neigh-

boring patches. This highlights the importance of details of 

Table 2  Summary of the trends of � -, � - and �-variability with 

increasing mean patch isolation for the weak (WTC) or strong (STC) 

trophic cascade in static or dynamic landscapes

State of landscape Type of effect Trend for WTC Trend for STC

Static �-variability ↑ U-shape

Static �-variability ↓ & ↗ ↑

Static �-variability ↑ & → U-shape

Dynamic �-variability → ↗

Dynamic �-variability ↗ ↑

Dynamic �-variability ↘ →
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the local interactions between species (in this case low attack 

rates in the weak trophic cascade that limit �-variability) 

for collective phenomena like synchronization. Other theo-

retical studies also indicate a relevance of local interactions 

for the synchronization of population dynamics. Koelle and 

Vandermeer (2005) show, for example, opposing trends of 

synchronization between species in a food chain, which are 

due to an interaction between dispersal patterns and trophic 

interactions. Moreover, empirical studies provide evidence 

that dispersal may even alter biotic interactions between spe-

cies directly (Walting and Donnelly 2006), further under-

lining the importance of local species interactions for our 

understanding of metapopulation dynamics.

Indirect effects of local trophic interactions also explain 

why our initial hypothesis, regarding decreasing �-variability at  

increasing mean patch isolation, turned out to be incorrect in the  

weak trophic cascade. The hypothesis was based on the “princi-

ple of energy flux” (Rip and McCann 2011), according to which  

an increasing (dispersal) mortality at higher mean patch isola-

tion should weaken and consequently stabilize the trophic inter-

actions along the food chain (and thus decrease �-variability).  

In contrast to this prediction, high dispersal mortality does 

not generally result in a lower � - or �-variability in our model. 

We attribute this counter-intuitive trend to an indirect effect of 

dispersal mortality: Despite their superior dispersal abilities, 

higher trophic levels often suffer most from mean patch isola-

tion because they are energetically more limited than the species 

on lower trophic levels (Ryser et al. 2019). In fact, we also find 

that the higher the mean patch isolation, the lower the mean 

biomass of the predator (see Online Resource, Fig. S6). This 

decreases the per-capita predation mortality of the consumer, 

which more than compensates for the increase in the consumer’s 

dispersal mortality. In line with the principle of energy flux, this 

destabilizes the consumer–autotroph interaction. At high mean 

patch isolation, the �-variability of the predator thus increases 

because the dynamics of the predator is driven by the increas-

ingly unstable consumer–autotroph interaction.

This apparent mismatch between increasing �-variability 

(more asynchronous dynamics) and simultaneously increasing 

�-variability at high mean patch isolation has also implications 

for the so-called portfolio effect (Schindler et al. 2015), which 

is often considered in more applied contexts. Specifically, the 

spatial portfolio effect (Thorson et al. 2018) measures how 

much �-variability is reduced relative to its theoretical maxi-

mum (here given by �-variability = �-variability) due to asyn-

chronous oscillations among different spatial locations. While 

we do observe such a reduction of �-variability relative to �

-variability when mean patch isolation increases, the indirect 

effect of dispersal mortality discussed above still leads to an 

increase in �-variability in absolute terms. This underlines that 

assessing factors that affect the synchronization of population 

dynamics across space is not always sufficient to understand 

the variability of a population on the regional scale.

Bistability in the weak tropic cascade

In static landscapes, the weak trophic cascade is bistable 

for low-to-medium mean patch isolation. In this param-

eter range, in addition to the attractor with intermediate 

synchronicity, which exists for the entire range of mean 

patch isolation, a second attractor with very asynchronous 

dynamics between the patches exists. Interestingly, the 

bistability concerns only the synchronicity of the dynam-

ics (and consequently the �-variability). Local ( � -) vari-

ability is not affected by whether the populations on dif-

ferent patches cycle more or less in synchrony (Fig. 3a).

Such bistability is relevant because it implies hysteresis 

(Scheffer et al. 1993): A small change in environmental 

conditions can drive the system away from one attractor, 

but for the system to return to it, a much larger change of 

the environmental conditions in the opposite direction will 

be necessary. This is particularly concerning here: The 

second attractor, which may be regarded as more desir-

able due to its lower metapopulation variability, loses its 

stability when the mean patch isolation increases beyond 

a certain threshold. However, the system may never return 

to it even when environmental conditions improve again, 

because the primary attractor never loses its stability.

A possible explanation for the occurrence of the alter-

native synchronization patterns we observe is the way 

the dispersal rate is modeled. Specifically, that the rate at 

which individuals emigrate from a given patch depends 

on the net growth rate they experience there. Emigration 

can thus be driven by a lack of resources (in which case 

emigration helps ending the unfavorable growth conditions 

and is thus self-limiting) or by an exceedingly high pre-

dation rate (in which case emigration actually intensifies 

the per-capita predation rate for the remaining individuals 

and becomes self-enforcing). Preliminary analyses suggest 

that dampening or amplification of net dispersal flows by 

synchronous and asynchronous oscillations, respectively, 

creates different feedback loops based on these differ-

ent drivers of emigration, but more detailed analyses are 

required to understand how these contrasting states stabi-

lize themselves.

Effect of periodic environmental disturbances

Periodic environmental disturbances have a stronger effect 

on population variability on all spatial scales than local 

interactions or mean patch isolation. We infer this from the 

observation that both weak and strong trophic cascades, 

which behave very differently in static landscapes, exhibit 

almost identical variability patterns in dynamic landscapes, 

with elevated levels of � - and �-variability and low �-vari-

ability. Further, all three variability measures are almost con-

stant over a wide range from low-to-medium mean patch 
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isolation. Only at high mean patch isolation, where the patch 

networks begin to decompose into several isolated compo-

nents anyway, the effect of the periodic disruption of the 

patch networks by the blinking patches dwindles and the 

variability measures become more similar to their values in 

static landscapes again. Both the increase in �-variability 

and the synchronization of the patches, due to the periodic 

environmental disturbances, are of course not unexpected. 

The blinking of the patches increases �-variability by caus-

ing low-frequency biomass oscillations through the extinc-

tion and recolonization process and by decreasing the mean 

biomass densities on these patches. Similarly, environmental 

fluctuations have long been known to be able to synchro-

nize ecological dynamics in coupled habitats (Moran 1953). 

More surprising is, however, the overruling strength of the 

effect of periodic environmental disturbances, considering 

that a blinking cycle (period length � = 6000 ) is about 150 

times slower than the period length of the population cycles 

in the weak trophic cascade.

Our approach of modeling periodic environmental distur-

bances as dynamic landscapes, where some patches become 

periodically uninhabitable, is inspired by the natural exam-

ple of kettle holes that have a species-rich community during 

the colder and wetter seasons, but can run dry during the 

summer (Kalettka and Rudat 2006). Such periodic (in the 

example: seasonal) environmental disturbances are a com-

mon feature of ecological systems, since in most environ-

ments seasonally fluctuating climatic drivers exist (Fretwell 

1972). Together with the above discussed surprisingly strong 

effect of even very rarely occurring disturbances, this may 

explain why empirically observed effects of patch isolation 

are often small and inconclusive (Fahrig 2003). Environ-

mental disturbances (especially seasonal ones) of course do 

not always lead to the abrupt extinction of entire local com-

munities, but could, for example, simply modify resource 

availability or mortality rates. An interesting avenue for 

future research might therefore be to explore whether such 

less drastic disturbances also have the potential to overrule 

the effects of local interactions and landscape configuration. 

Furthermore, resting stages can play a critical role in the 

recolonization of periodically uninhabitable patches (Wade 

1990). Accounting for them in the model might decrease 

synchronicity, as they allow for an independent restart of 

the local communities.

Relevance and effects of dispersal assumptions

Details of the way species dispersal is implemented within 

a model can have major implications for the arising popula-

tion dynamics. In nature, a multitude of causes affects an 

individual’s decision to leave its home patch (Bowler and 

Benton 2005), among them being, for example, intraspe-

cific competition (Herzig 1995), quality of food resources 

(Kuussaari et al. 1996) or top-down pressure through parasit-

ism or predation (Sloggett and Weisser 2002). In our model, 

we use the net growth rate of a species in a given patch 

to determine its emigration rate. Since the net growth rate 

depends on both food availability and predation pressure, 

the model captures multiple of the above-mentioned causes 

of dispersal. However, we assume that individuals have only 

knowledge about the growth conditions in the patch they are 

currently in and not about the conditions in potential target 

patches. The dispersal rate between any two patches thus 

only depends on the local conditions in the source patch and 

on the spatial arrangement of the patches. Using a consumer-

resource model with two patches, Abrams and Ruokolainen 

(2011) showed that when the dispersal rate depends on the 

difference of the growth rates between source and target 

patch, asynchronous (antiphase) cycles frequently occur, 

which promotes stability. With our approach, we only find 

asynchronous dynamics in static landscapes, but even then 

synchronous metacommunity dynamics frequently occur.

Conclusions

We conclude that due to indirect effects of local ecological 

interactions, dispersal is not necessarily a “double-edged 

sword” (Hudson and Cattadori 1999) (dubbed so because 

too much of it can synchronize metacommunity dynamics 

and increase the risk of correlated extinctions), but also that 

a portfolio effect due to asynchronous oscillations may not 

always result in reduced variability at the metacommunity 

level. Furthermore, in each unique landscape, comprising a 

multitude of abiotic factors, the impact of a periodic envi-

ronmental disturbance has the potential to outweigh local 

interactions present in a community. The extent of the effect 

of mean patch isolation on the variability of population 

dynamics in a metacommunity thus may strongly depend on 

local environmental conditions which are relevant for reli-

able predictions. Whether this is also true for other aspects 

of fragmentation or habitat loss is an intriguing question for 

future investigations. Finally, the non-monotonous stability 

response curve of the strong trophic cascade shows that the 

effect of mean patch isolation on metacommunity dynamics 

may not be trivial and that there might be transitions where 

patch isolation might switch from having a positive to having 

a negative effect.
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INTRODUCTION

Biodiversity is a key prerequisite for the functioning of 
natural communities and ecosystems (Cadotte et al., 
2011; Tilman, 1999), the stable supply of ecosystem goods 
and services (Hooper et al., 2005) and the ability of com-
munities to adapt to environmental change (Yachi & 
Loreau, 1999). The maintenance of diversity within indi-
vidual habitats strongly relies on local processes and spe-
cies interactions such as resource partitioning (Tilman, 
1999), selective predation (Tirok & Gaedke, 2010) or 
neighbourhood- dependent selection (Vasseur et al., 
2011), which may generate sufficient niche differentiation 

among coexisting species. However, local communities 
are naturally embedded in a larger biogeographic con-
text, and thus connected to other communities of adja-
cent habitats (Leibold et al., 2004). Dispersal between 
the habitats of such metacommunities can substantially 
contribute to the maintenance of diversity within local 
communities, for example, through source– sink dynam-
ics (Brown & Kodric- Brown, 1977) that enable the per-
sistence of locally inferior competitors via immigration 
of conspecifics from other habitats (Leibold et al., 2004). 
A necessary condition for this mechanism is spatial het-
erogeneity that allows differently adapted species to co-
exist on a regional scale (Amarasekare, 2003).
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Abstract

Self- organised formation of spatial patterns is known from a variety of different 

ecosystems, yet little is known about how these patterns affect the diversity of 

communities. Here, we use a food chain model in which autotroph diversity is de-

scribed by a continuous distribution of a trait that affects both growth and defence 

against heterotrophs. On isolated patches, diversity is always lost over time due to 

stabilising selection, and the local communities settle on one of two alternative sta-

ble community states that are characterised by a dominance of either defended or 

undefended species. In a metacommunity context, dispersal can destabilise these 

states and complex spatio- temporal patterns in the species’ abundances emerge. 

The resulting biomass- trait feedback increases local diversity by an order of mag-

nitude compared to scenarios without self- organised pattern formation, thereby 

maintaining the ability of communities to adapt to potential future changes in 

biotic or abiotic environmental conditions.

K E Y W O R D S
biomass- trait feedback, fitness gradient, food chain, functional diversity, metacommunity, self- 
organisation, source– sink dynamics, spatio- temporal pattern, trait- based aggregate model, Turing 
instability
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Most previous studies on the influence of dispersal 
on local diversity rely, however, on the assumption that 
spatial heterogeneity in species abundances primarily 
results from differences in abiotic environmental condi-
tions. This premise neglects that heterogeneous species 
abundances may also emerge purely as a consequence of 
local interactions of species and their movement in space, 
so- called self- organised pattern formation (Malchow, 
1993). This process usually results from scale- dependent 
feedback, that is, a situation where positive and nega-
tive feedbacks between species occur at different spatial 
scales (Rietkerk and Van de Koppel, 2008). For example, 
producers can locally facilitate the growth of conspecif-
ics by increasing the availability of a scarce, but mobile 
resource (e.g. surface run- off water in arid ecosystems, or 
dissolved nutrients in aquatic ecosystems) in a small area 
around themselves. This short- range positive feedback 
also creates a long- range negative feedback, as growth 
of producers is inhibited by the depletion of the resource 
in a certain region around areas where producers have 
already established (Figure 1a) (Kéfi et al., 2010).

Self- organised pattern formation through scale- 
dependent feedback was originally described by Turing 
(1952). The emerging patterns can either be stationary 
like the spot or stripe patterns of some animal fur coats 
or vary in time (oscillatory Turing patterns, (Hata et al., 
2014)). Self- organised formation of spatial patterns in 
species abundances has been found in a variety of eco-
logical systems such as vegetation (Klausmeier, 1999; 
Rietkerk and Van de Koppel, 2008), host– parasitoid 
(Hassell et al., 1994), plant– parasite (White & Gilligan, 
1998) and plankton– fish systems (Medvinsky et al., 
2002), and has been proposed as a potential explanation 
for patchy distribution of phytoplankton and herbivores 

in the oceans (Levin & Segel, 1976). However, these pre-
vious studies only analysed the mechanism proposed by 
Turing in the context of pure biomass (or abundance) 
patterns. Recently, it has been shown that self- organised 
patterns in the abundance of a facilitator species can in-
directly promote diversity by creating spatial niches with 
different environmental conditions for beneficiary spe-
cies that are not involved in the pattern- forming process, 
but rely on this environmental heterogeneity for coexis-
tence (Cornacchia et al., 2018). Nevertheless, it remains 
open to what extent self- organised spatial pattern for-
mation in species abundances can directly influence the 
diversity of local communities (i.e. of the species directly 
involved in the pattern- forming process).

In the examples above, self- organised pattern forma-
tion was studied in spatially continuous systems, but the 
extension to networks of discrete habitat patches is well 
developed (Nakao & Mikhailov, 2010; Othmer & Scriven, 
1971). In this case, it is not the patches themselves that 
emerge in a self- organised manner, but the species com-
position or biomass densities on these patches. One way in 
which we expect local diversity to be supported by spatial 
pattern formation in such network- organised metacom-
munities is via the generation of source– sink dynamics 
(Brown & Kodric- Brown, 1977; Shmida & Wilson, 1985). 
Spatially variable biomass densities of interacting species 
lead to heterogeneous biotic environments and thus to 
locally different selection pressures. Consequently, each 
habitat may possess a different species composition in the 
local community, which promotes between- patch diver-
sity. As outlined above, this may positively affect the di-
versity of local communities by continuous immigration 
of species that cannot form persistent populations under 
the prevailing local conditions. In case of oscillatory 

F I G U R E  1  (a) Illustration of the basic mechanism for self- organised pattern formation in nutrients and biomasses. Autotrophs on 
the central patch 2 have grown to high density, which lowers the local nutrient concentration and leads to a net inflow of nutrients from 
neighbouring patches. This allows autotrophs on patch 2 to grow even further (positive short- range feedback), but suppresses their density on 
the neighbouring patches (negative long- range feedback). See Appendix S4 for details. (b) Conceptual representation of the local food chain 
model. The autotroph community exhibits a continuous (logit- normal) distribution of the trait �, characterised by the mean � and the variance 
�. A low trait value signifies a low attack rate of the heterotrophs (due to high investment into defence by the autotrophs), at the cost of a low 
maximal growth rate (visualised by thin arrows), whereas a high trait value leads to a high attack rate but also a high maximal growth rate 
(thick arrows). (c) Shape of the trade- off between maximal growth rate r(�) versus defence against predation, 1 − a(�)

amax

, mediated by the trait �

(a) (b) (c)

168



2626 |   SELF- ORGANISED PATTERN FORMATION INCREASES LOCAL DIVERSITY IN METACOMMUNITIES

Turing patterns, we also expect an interaction between 
source– sink dynamics and the emerging non- equilibrium 
dynamics, but it is not clear a priori whether this will 
have a positive or negative effect on local diversity. These 
mechanisms are particularly relevant for systems where 
the prevailing selection regime is stabilising and would— 
without self- organised pattern formation— promote the 
dominance of a single species.

In this study, we investigate a food chain model with 
abiotic nutrients, a community of autotrophic prey spe-
cies and a heterotrophic predator in a spatial context. 
We explicitly resolve the diversity of the autotrophs by 
considering a continuous trait distribution within each 
local habitat. A network of habitat patches, each hosting 
a local food chain, is interconnected via dispersal and 
thereby forms a metacommunity on the regional scale. 
Under the premise of suitable dispersal rates, we expect 
to find self- organised formation of patterns in the bio-
masses, which we analyse regarding their potential to 
increase local and between- patch diversity, possibly be-
yond classical source– sink dynamics.

M ETHODS

The model consists of multiple food chains that are spa-
tially distributed on a ring of n interconnected habitat 
patches with identical environmental conditions. The di-
versity of the autotroph communities is characterised by 
a logit- normally distributed trait � (∈ [0, 1]), which affects 
both defence and maximal growth rate (Figure 1b,c). We 
follow a trait- based aggregate approach for modelling 
diverse communities (Klauschies et al., 2018; Norberg 
et al., 2001; Wirtz & Eckhardt, 1996) that explicitly de-
scribes the temporal change in the trait distribution on 
each patch by differential equations for the mean trait, 
� , and the trait variance, �. Together with the nutrient 
concentration N and total biomass densities A (auto-
trophs) and H (heterotrophs), the equations for the dy-
namics on a single patch are

where |loc means local dynamics without spatial interac-
tions. The nutrients N follow chemostat dynamics with 
supply concentration S and dilution rate D. The nutrient 
uptake by the autotrophs follows Michaelis– Menten kinet-
ics, with half- saturation constant NH and average maximal 
growth rate r (�) (with r(�) = (rmax − rmin)�

s + rmin ). The 
per capita net growth rate (fitness function) of the auto-
trophs is

where the heterotroph's grazing rate follows a Type II func-

tional response with attack rate a(�) = amax
eb(�−c)

eb(�−c) +1
 and 

handling time h:

The heterotroph's growth is determined by the aver-
age grazing rate g (�) scaled by the conversion efficiency 
e and the total autotroph biomass A. Autotrophs and 
heterotrophs also experience losses due to dilution. The 
average of a function f (�) (where f  can be any of r, GA, g 
or a) across the trait distribution is approximated up to 
the second order (Coutinho et al., 2016; Klauschies et al., 
2018; Norberg et al., 2001):

The local fitness gradient 
�GA

��
|||�  at � (Equation (4)) 

drives changes in � in the direction that enhances the 
per capita net growth rate of the autotrophs. The speed 
of change is scaled by �, which reflects the diversity of 
the local autotroph community: The presence of many 
functionally different species (� large) enhances the ca-
pability of a community to adapt, while a lack of diver-
sity (� small) slows down the adaptation process. 
Internal changes in � are predominantly determined by 
the local curvature of the fitness landscape around �, 
�2GA

��2

|||�, which accounts for stabilising or disruptive selec-
tion (reducing or enhancing � respectively). The second 
term in the parentheses in Equation (5) captures en-
hancing or reducing effects on � through potential 
skewness of the trait distribution (Klauschies et al., 
2018). This keeps � in the range [0, 1] by reducing � (and 
thereby halting change in �) when � approaches the 
limits of the trait range. Last, for numerical reasons, we 
included a boundary function B(�) = �∕(�max − �) to en-
sure that, during transient dynamics, � does not exceed 
the hypothetical maximal value of �max = 0.25 of a dis-
tribution on the interval [0, 1].

The shape of the fitness landscape depends on the 
trade- off between growth and defence of the autotrophs 

(1)
dN

dt

||||loc = D (S −N) − r (�) N

NH +N
A

(2)
dA

dt

||||loc = GAA

(3)
dH

dt

||||loc =
(
eg (�)A −D

)
H

(4)
d�
dt

|||||loc
= �

�GA

��
||||�

(5)
d�
dt

||||loc = �2
(

�2GA

��2

|||||�
+

3(1 − 2�)
�(1 − �)

�GA

��
||||� − B (�)

)
,

(6)GA(�) = r(�) N

NH +N
− g(�)H −D ,

(7)g(�) =
a(�)

1 + ha(�)A
.

(8)f (ϕ) = f
(
ϕ
)
+ �

2

�2f
�ϕ2

|||||ϕ
.
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(Tirok et al., 2011), where a normalised measure for de-
fence is given by 1 − a(�)

amax
. High trait values denote high 

maximal growth rates, r (�), but also weak defence against 
the heterotroph, and vice versa (Figure 1c). The trade- off 
between growth and defence ensures that defended spe-
cies (low �) will thrive when predators are abundant, but 
are at a disadvantage when predators are rare.

The movement of nutrients, autotrophs and hetero-
trophs between neighbouring patches is driven by differ-
ences in concentration or biomass density, respectively 
(diffusive movement). The local dynamics on a patch i 
(Equations (1) to (5)) are thus supplemented by terms de-
scribing the effects of diffusion on Ni, Ai and Hi (together 
summarised as Bi), as well as on �i and �i:

with diffusion constants dB (B = N, A, or H). If trait dis-
tributions differ between neighbouring patches, dispersal 
of the autotrophs also affects the change of �i (Equation 
(10)) and �i (Equation (11)) (Klauschies et al., 2018; Norberg 
et al., 2001). The change of the resident mean trait value 
is affected by the difference between mean trait values of 
resident and incoming species as well as by the ratio of in-
coming to resident biomass. The change of the trait vari-
ance is affected in a similar way by the difference between 
trait variances of resident and incoming species, and it 
increases if the mean trait of the incoming species differs 
from that of the residents (last term in Equation (11)).

Usually, diffusion acts to reduce spatial inhomoge-
neities, but for appropriate values of the diffusion con-
stants, the system can undergo a bifurcation (a so- called 
Turing instability) and spatial patterns in the nutrient 
concentrations and biomass densities emerge in a self- 
organised manner (i.e. without requiring any externally 
imposed spatial heterogeneity). In order to mathemati-
cally determine whether a Turing instability occurs, one 
has to evaluate the dominant eigenvalue � of a set of ma-
trices T

k
 that combine the Jacobian matrix for the local 

dynamics of N, A and H with the diffusion constants and 
information on the spatial arrangement of the patches. 
See Brechtel et al. (2018), Othmer & Scriven (1971) and 
Appendix S2 for details.

As key metrics influencing the pattern formation pro-
cess, we varied the diffusion constants dN, dA and dH of 
nutrients, autotrophs and heterotrophs respectively. The 
other parameters were set to constant values oriented at 
planktonic systems (Table 1). For each combination of 
diffusion constants, 100– 1000 replicates with random 
initial conditions were calculated. As measures for mean 

local (�- ) and between- patch (�- ) diversity, we calculated 
the mean of ⟨�⟩t and the variance of ⟨�⟩t across patches 
and replicates (where ⟨⋅⟩t represents the temporal average 
of the respective variable per patch). Additionally, we 
calculated the probability of maintaining diversity as the 
fraction of replicates with regional (�- ) diversity (= � + �
- diversity) >10‒ 2. If �- diversity fell below this threshold, 
it usually tended towards zero, but at a very slow rate. 
Further details on the output variables and the simula-
tion process are provided in Appendix S1.

RESU LTS

Local dynamics

We first describe the dynamics of the local food chain 
with trait dynamics (Appendix S4, Figures S3 and S4). 
Importantly, the model system is bistable: On one of the 
attractors, a high defence level (𝜙 ≲ 0.4) allows the auto-
trophs to achieve a high biomass density (hereinafter re-
ferred to as the defended attractor), while on the other, a 
low defence level (� ≈ 1) leads to lower autotrophic bio-
mass density (hereinafter referred to as the undefended at-
tractor). The nature of the undefended attractor depends 
on the maximum attack rate amax. At low values of amax

, the attractor is a stable fixed point, but at amax ≈ 1.35, 
it undergoes a Hopf bifurcation and a limit cycle with 

(9)
dBi

dt
=
dBi

dt

||||loc + dB(Bi−1 + Bi+1 − 2Bi)

(10)
d�i

dt
=
d�i
dt

|||||loc
+

∑
k= i±1

dAAk

Ai

(�k − �i)

(11)
d�i
dt

=
d�i
dt

||||loc +
∑

k= i±1

dAAk

Ai

[�k − �i +
(
�k−�i

)2
]

TA B L E  1  Description and values of the model parameters

Parameter Description Dimension Value

S Substrate supply 
concentration

mass area−1 4.8

D Dilution rate time−1 0.3

NH Half- saturation constant 
for nutrient uptake

mass area−1 1.5

rmax Maximum growth rate of 
the autotrophs

time−1 1

rmin Minimum growth rate of 
the autotrophs

time−1 0.1

s Shape parameter of the 
growth rate function

— 0.3

amax Maximum attack rate of 
the heterotroph

area (mass 
time−1)

1.3 or 2.0

B Scaling parameter of the 
attack rate function

— 8

C Scaling parameter of the 
attack rate function

— 0.4

H Handling time for the 
autotrophs

time 0.53

e Conversion efficiency of 
the heterotroph

— 0.33

� Scaling parameter of the 
boundary function

— 10‒ 3

�max Maximum value of the 
trait variance

— 0.25
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oscillations in nutrient concentration and biomass densi-
ties occurs. The defended attractor, conversely, is always 
a stable fixed point that is only marginally affected by 
changing amax. On both attractors and irrespective of the 
Hopf bifurcation, the mean trait � settles at a constant 
value. Initially, selection can be disruptive, but eventually 
the trait variance v always slowly decays to 0 due to stabi-
lising selection closer to the respective attractor, thereby 
preventing any further temporal change of �.

Metacommunity dynamics

For the analysis of the metacommunity dynamics, we 
first established that the range of diffusion constants 
that lead to a Turing instability (TI) of the defended at-
tractor is a proper subset of those that lead to a TI of the 
undefended attractor (Appendix S2, Figure S1). We also 
established that, in the parameter region of interest, the 
dominant eigenvalue of the matrices T

k
, Equation (S10), 

is always complex, implying that an oscillatory TI occurs 
and spatio- temporal patterns in the biomasses emerge. 
There are, thus, three different situations: no TI of any 
attractor, TI of only the undefended attractor and TI of 
both attractors. However, as diffusion constants for the 
third case have to be very high, the strong coupling be-
tween the patches homogenises the system: Both mean 
local (�- ) and between- patch (�- ) diversity are almost al-
ways lost as all patches settle on a single attractor. We, 
therefore, do not consider this case. The occurrence of 
a Hopf bifurcation and a Turing instability of the unde-
fended attractor, thus, leaves us with four qualitatively 
different cases: (1) Undefended attractor is a fixed point 
and no TI occurs; (2) undefended attractor is a limit cycle 
and no TI occurs; (3) undefended attractor is a fixed 
point and a TI occurs; and (4) undefended attractor is a 
limit cycle and a TI occurs.

Figure 2 shows representative time series for the four 
cases in a system with n = 6 patches. Some trait vari-
ance is maintained in all local communities in all four 
cases (Figure 2i– l), even without TI (cases 1 and 2). In 
these cases, local trait variances �i do not vanish because 
coupling of patches with defended and undefended au-
totroph communities leads to source– sink dynamics 
that ensure the local persistence of maladapted spe-
cies (last term in Equation (11)). In case 2, the diffusive 
coupling also synchronises the biomass oscillations on 
patches that host an undefended autotroph community 
(Figure 2b). However, mean trait values �i remain con-
stant, as the low values of the �i, which scale the adap-
tation speed (Equation 4), prevent keeping track of the 
varying selection pressure due to the comparably fast 
biomass oscillations.

In cases 3 and 4 (TI of the undefended attractor), 
complex spatio- temporal dynamics arise (Figure 2c and 
d). On a given patch, the biomass oscillations are nota-
bly slower than those induced by the Hopf bifurcation, 

their amplitudes are larger and they now also affect the 
patches with a defended autotroph community. On most 
patches, trait variance �i is now markedly greater than 
in the cases without TI, which leads to visible temporal 
dynamics in the mean traits �i. However, if only one of 
the attractors (defended or undefended) is present in the 
metacommunity, �i decays to zero on all patches, despite 
pattern formation in nutrients and biomasses still occur-
ring (Appendix S5, Figure S5).

The diffusion constant of the autotrophs (dA) directly 
affects the trait dynamics within the metacommunity 
(cf. Equations (10) and (11)). Figure 3  shows the effect 
of dA on �-  and �- diversity as well as on the probabil-
ity of preserving �- diversity. Increasing dA positively af-
fects �- diversity, but has a neutral to negative effect on 
�- diversity. The latter is due to mean traits of commu-
nities on different patches becoming on average more 
similar when spatial coupling between them intensifies. 
Regarding �- diversity, clear and consistent differences 
between the four cases exist: without TI (cases 1 and 2), 
�- diversity is lowest and similar for the two cases. Case 
3 exhibits an elevated level of �- diversity, especially 
towards higher values of dA, and case 4  stands out by 
showing an increase in �- diversity by about an order of 
magnitude compared to the cases without TI. However, 
case 4 also exhibits the largest loss of �- diversity (mean 
traits of the communities on different patches become 
more similar as dA increases) and the probability of re-
taining �- diversity in the metacommunity strongly 
declines for dA > 10−5. (Note that �-  and �- diversity, 
Figure 3a and b, were only calculated using the replicates 
in which �- diversity was retained.)

Last, we demonstrate that the spatio- temporal pattern 
formation induced by the Turing instability is indeed the 
driving force behind the increased level of �- diversity. 
Comparing the dominant eigenvalue or Floquet multi-
plier (depending on whether the undefended attractor 
of the local dynamics is a fixed point or a limit cycle, 
cf. Appendix S2) of the matrices T

k
, which determines 

whether a TI occurred, with the level of preserved �-   
diversity over a wide range of values of the diffusion con-
stants dN and dH shows that both metrics are coherently 
increasing with the distance of the diffusion constants 
from the Turing instability boundary (Figure 4). This vi-
sual inspection of their dependency is also quantitatively 
supported (Spearman rank- correlation rs = 0.82 for sta-
ble local dynamics and rs = 0.85 for oscillatory local dy-
namics; see Appendix S6).

DISCUSSION

Preserving diversity is essential for the functioning of 
ecosystems (Hooper et al., 2005; Tilman, 2001) and 
their persistence in the face of accelerated global change 
(Duraiappah et al., 2005). Recent studies have shown 
that locally (i.e. in a specific habitat), its maintenance 
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may strongly rely on the immigration of novel species 
(Klauschies et al., 2018; Norberg, 2004; Norberg et al., 
2001). However, these studies did not explicitly account 
for the spatial context and, thus, potential interactions 
between mean local (�- ) and between- patch (�- ) diver-
sity. In the present study, we overcome this limitation by 

investigating the potential impact of dispersal between 
different habitats on the diversity of local autotroph 
communities in a food chain through a novel mechanism 
based on self- organised pattern formation. For a wide 
range of dispersal rates, spatio- temporal patterns in the 
biomasses of the interacting species form, which feed 

F I G U R E  2  Exemplary time series of autotroph biomass densities (top row, a– d), mean traits � (middle row, e– h) and trait variances � 
(bottom row, i– l, y- axes are scaled with the number at the top left corner of the panels) for spatial systems in cases 1– 4 with 6 patches (labelled 
P1 through P6). In cases 1 and 2, no Turing instability (TI) occurs (dN = 10−2), in cases 3 and 4, a TI occurs (dN = 1). In cases 1 and 3, the 
undefended attractor is a fixed point (amax = 1.3 ), in cases 2 and 4, it is a limit cycle (amax = 2.0). In all four cases, dA = 10−5 and dH = 10−3

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F I G U R E  3  The degree of diversity maintenance on different spatial scales depends on the mobility of the autotrophs. In panel (a), the 
biomass- weighted mean trait variance ⟨�⟩t across six patches is shown as a measure of �- diversity; in (b), the biomass- weighted variance of mean 
trait values ⟨ϕ⟩t signifies �- diversity. Results were obtained as arithmetic means over 1000 simulation runs with randomised initial conditions. 
In panel (c), the fraction of simulation runs in which regional (�- ) diversity is maintained (𝛼 + 𝛽 > 10−2), is shown. In cases 1 and 2, dN = 10−2; in 
cases 3 and 4, dN = 1. In all four cases, dH = 10−3

(a) (b) (c)
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back on the distribution of a functional trait. If these 
local biomass- trait feedbacks interact with standing �
- diversity, �- diversity increases up to tenfold compared 
to scenarios without self- organised pattern formation.

�- diversity without pattern formation

Our model reproduces several classic results when no 
self- organised formation of spatial biomass patterns oc-
curs. If some source of �- diversity in the metacommunity 
exists, for example, due to environmental heterogene-
ity or, as is the case here, due to alternative stable local 
community states, dispersal of the autotrophs creates 
source– sink dynamics (Brown & Kodric- Brown, 1977; 
Shmida & Wilson, 1985). Permanent sink populations 
that contribute to �- diversity form if the locally mala-
dapted species are reintroduced via dispersal faster than 
they are competitively excluded (Pulliam, 1988). This 
also explains the frequently made observation that �
- diversity increases— at least up to a certain point— with 
dispersal rate (Grainger & Gilbert, 2016; Mouquet & 
Loreau, 2003). Conversely, �- diversity vanishes when the 
autotroph communities are completely isolated. In our 
model, stabilising selection leads to a dominance of ei-
ther fast- growing, undefended species, or slow- growing, 
well- defended species, but the model precludes coexist-
ence of the two strategies in one patch. Over time, the 

isolated communities thus lose their ability to adapt 
to changing environmental conditions, which makes 
them susceptible to perturbations (Gunderson, 2000; 
Ceulemans et al., 2021).

Increase of �- diversity via self- organised 
pattern formation

When the dispersal rates of heterotrophs and autotrophs 
are at intermediate levels and the diffusion rate of the 
nutrients is high enough to induce a Turing instability, 
spatio- temporal patterns in the nutrients and biomasses 
form. These patterns create differences in consumption 
rates and nutrient availability, and thereby different se-
lection pressures on the autotroph communities, which 
are fluctuating both in space and time. However, with 
no independent source of �- diversity, for example, due to 
the coexistence of defended and undefended communi-
ties in the landscape, these fluctuations in selection pres-
sures proved not strong enough or to vary too quickly 
to overcome the general stabilising selection regime that 
over time eliminates �- diversity.

Nevertheless, if there is an additional source of �
- diversity that is independent of the self- organised bio-
mass patterns, �- diversity is maintained on a far higher 
level than could be expected from simple source– sink dy-
namics, and which now allows for continuing adaptation 

F I G U R E  4  Correspondence between Turing instability and �- diversity. In panels a) and b), the undefended attractor is a fixed point 
(amax = 1.3 ). Panel (a) shows the real part of the dominant eigenvalue � of the matrices T

k
 (Equation (S10)), while panel (b) shows on a 

logarithmic scale the mean trait variance � (averaged over patches and simulation runs), that is, the �- diversity. In panels (c) and (d), the 
undefended attractor is a limit cycle (amax = 2.0). In this case, the matrices T

k
 are time dependent and periodic, and the relevant quantity that 

determines the occurrence of a Turing instability is now the dominant Floquet multiplier � (panel (c), cf. Appendix S2 for details). Panel (d) 
shows the mean trait variance � on a logarithmic scale for this case. For each combination of dN and dH, results were obtained as arithmetic 
means over 100 simulation runs with randomised initial conditions. In both cases, dA = 10−5

(a) (b)

(c) (d)
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of the local communities. We suggest the following mech-
anism by which the interplay of the fluctuating selection 
pressure with the influx of external phenotypes supports 
�- diversity: When the mean trait of a local community is 
at its optimal value (maximising the fitness function GA

), the curvature of the fitness landscape is necessarily 
negative and the trait variance decreases. Under a fluc-
tuating selection regime, however, the optimal trait value 
varies over time, which allows different species to thrive 
at different moments in time. Furthermore, the immigrat-
ing species will usually be maladapted, which in combi-
nation with the constantly changing biotic environment 
keeps the mean trait of the local community sufficiently 
far from its current optimal value that the curvature of 
the fitness landscape may be less negative or at times even 
positive. Thereby, local dynamics do not reduce trait vari-
ance as strongly and can be counterbalanced by the direct 
increase of trait variance by the immigration of species 
with different trait values. When additional temporal 
variability in the form of a limit cycle of the local popu-
lation dynamics is present, �- diversity is increased even 
further. Finally, the standing �- diversity also generates 
spatial heterogeneity in the interaction rates, which has 
been shown to enhance the complexity of the emerging 
patterns (Krause et al., 2020). This increases the magni-
tude of the fluctuations in the selection pressure and may 
thus contribute to maintaining �- diversity.

We hypothesise that even without an independent 
source of �- diversity, it is possible that self- organised pat-
tern formation and the entailing varying selection pres-
sure induce permanent �- diversity. The first evidence for 
this was provided by Eigentler and Sherratt (2020), who 
analysed travelling waves of vegetation on sloped terrain 
in savanna ecosystems. They demonstrated that coexis-
tence of two plant species (grasses and trees) is possible 
due to a colonisation– competition trade- off. In Eigentler 
(2021), these results were extended to cover a wider range 
of environmental conditions by including intraspecific 
competition. In general, conditions under which pattern 
formation might facilitate �- diversity include less strongly 
stabilising selection regimes, more flexible shapes of the 
local trait distributions (e.g. assuming a beta distribution 
instead of a transformed normal distribution (Klauschies 
et al., 2018)), or stationary instead of oscillatory Turing 
patterns. These stationary patterns would create selec-
tion pressures that only vary between habitats, but are 
constant over time in each habitat. This would allow the 
local communities to slowly adapt to the prevailing con-
ditions and thereby create a certain amount of �- diversity 
in a self- organised manner, which in turn could increase �
- diversity via source– sink dynamics.

Loss of �-  and �- diversity at high dispersal rates

The amount of �- diversity maintained correlates 
strongly with the strength of the Turing instability, that 

is, the more pronounced the spatio- temporal patterns 
are, the higher is the �- diversity (Figure 4). Generally, 
this happens when the diffusion or dispersal rates in-
crease, which leads to a higher exchange of nutrients, 
biomass and especially different species between the 
habitat patches.

However, we also observe that dispersal is indeed a 
‘double- edged sword’ (Hudson & Cattadori, 1999), as very 
high dispersal rates eventually reduce diversity by homo-
genising the metacommunity. In fact, it has been observed 
before that stronger ecological coupling may decrease �
- diversity (Mouquet & Loreau, 2003). This makes species 
that are exchanged between habitats increasingly sim-
ilar, which reduces the stimulating effect of dispersal on 
�- diversity. In our system, this is of particular relevance 
since �- diversity directly relies on the coexistence of de-
fended and undefended communities in the landscape. 
Progressive homogenisation thus has a strong effect since 
it increases the probability for all local communities to 
adopt the same strategy (fast- growing, undefended, or 
slow- growing, well- defended), corresponding to a com-
plete loss of �- diversity and eventually also �- diversity.

Applicability in different ecosystem types

While we developed our model with a planktonic system 
in mind, the wide range of autotroph dispersal rates that 
leads to self- organised pattern formation (Figure 3) sug-
gests that our findings may apply to a variety of different 
ecosystems. These range from aquatic environments with 
relatively mobile autotrophs (mid to upper end of the dA 
spectrum) to terrestrial ecosystems with often very lim-
ited autotroph dispersal (lower end of the dA spectrum).

In aquatic metacommunities, local habitats are given 
by ponds or lakes that are interconnected by dispersal, 
for example, through overflows and rivulets (Leibold 
et al., 2004; Vanormelingen et al., 2008). Furthermore, 
aquatic metacommunities can establish in larger wa-
terbodies like large lakes, seas and oceans (Leibold & 
Norberg, 2004) where local communities form in con-
fined areas like embayments or gyres and are intercon-
nected by water currents. The autotrophic level mainly 
consists of phytoplankton which behave like particles 
in water and exhibit moderate mobility. Inorganic nu-
trients are considerably smaller particles with diffusion 
rates several orders of magnitude higher than the diffu-
sion rates of phytoplankton. Due to active movement, 
herbivorous zooplankton can also achieve much higher 
dispersal rates than phytoplankton. Previous theoretical 
studies showed that self- organised pattern formation can 
occur in plankton systems (Malchow, 1993; Medvinsky 
et al., 2001, 2002; Ruan, 1998). However, to our knowl-
edge, none of these studies considered pattern formation 
as an explanation for plankton diversity and as a poten-
tial mechanism contributing to resolving the paradox of 
the plankton (Hutchinson, 1961; Scheffer et al., 2003).
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This mechanism will of course always interact with 
other mechanisms creating diversity in aquatic commu-
nities. Depending on the scale considered, even small sys-
tems like ponds can be internally structured with clear 
distinctions between littoral, pelagic and benthic zones. 
Furthermore, vertical stratification in lakes creates a 
structuring with sufficiently different environmental 
conditions that allow different communities to develop. 
On the one hand, this environmental heterogeneity may 
positively interact with the self- organised formation of 
biomass patterns (Krause et al., 2020), mutually increas-
ing the potential of the respective mechanism to support 
diversity. On the other hand, seasonal mixing events tem-
porally equalise diffusion rates, thereby eliminating a 
necessary condition for self- organised pattern formation.

In terrestrial systems, the autotroph level consists 
of sessile plants, which move only once in their life-
time during seed or propagule dispersal, while nutrient 
transportation (e.g. via ground water) and active herbi-
vore movement are once again relatively fast. The dis-
persal rates of plants are consequently determined by 
their generation time as well as their dispersal strategy 
(Pueyo et al., 2008). Since both factors can vary greatly 
between terrestrial plant species, a variety of different 
autotroph dispersal rates exist in terrestrial metacom-
munities, which are covered by our results. Species di-
versity in terrestrial ecosystems is explained by several 
classical theories like the intermediate disturbance hy-
pothesis (Connell, 1978) or the Janzen– Connell hypoth-
esis (Hyatt et al., 2003). The former links plant diversity 
to non- equilibrium dynamics, while the latter traces it 
back to a reduced probability of seed survival near par-
ent trees through enhanced predation pressure. In stud-
ies of savanna ecosystems, the coexistence of grass and 
tree species has also been linked to self- organised pat-
tern formation (Baudena & Rietkerk, 2013; Gilad et al., 
2007; Nathan et al., 2013). However, these studies usu-
ally assume that only one of the plant species is involved 
in the pattern- forming process (notable exceptions are 
Eigentler, 2021; Eigentler & Sherratt, 2020)), which then 
facilitates the persistence of the other species. The re-
sults of the present study suggest that self- organised 
pattern formation, especially when it interacts with pre- 
existing �- diversity (or spatial heterogeneity in general), 
might be an important mechanism complementing the 
well- established theories on plant diversity.

SU M M ARY A N D CONCLUSIONS

In line with previous studies (Mouquet & Loreau, 2003; 
Venail et al., 2008), our findings show that dispersal acts 
as a link between �-  and �- diversity and that it can have 
both positive and negative effects on local diversity in a 
metacommunity. Besides having the potential to cause 
self- organised pattern formation in biomass densities, 
dispersal determines to what extent functionally different 

species are exchanged between local habitats and there-
fore how �- diversity affects �- diversity. Low dispersal 
rates that do not initiate pattern formation enhance �
- diversity only marginally via source– sink dynamics. 
On the other side, strong dispersal tends to homogenise 
the landscape and thereby eliminates any differences be-
tween the habitats, which ultimately also leads to the loss 
of �- diversity. In contrast, intermediate dispersal leads to 
the highest amount of preserved diversity. It enhances �
- diversity through an interplay of source– sink dynamics 
with variable selection pressures caused by self- organised 
pattern formation while preserving between- patch differ-
ences in the local trait distributions (i.e. �- diversity).

Our results indicate that self- organised pattern for-
mation by the Turing mechanism alone is not neces-
sarily sufficient to create �- diversity in the first place. 
However, this study shows for the first time in a generic 
food- web model that self- organised pattern formation 
can amplify �- diversity from the low levels created by, 
for example, source– sink dynamics in environmentally 
heterogeneous landscapes, to levels required for main-
taining the ability of communities to adapt to changes 
in environmental conditions. To fully understand spatial 
and temporal variation of biodiversity, we thus argue 
that it is necessary to take regional processes like pat-
tern formation and their effects on local dynamics into 
account. Since self- organised pattern formation occurs 
only for certain combinations of dispersal rates, factors 
like obstacles or corridors that reduce or enhance the 
flux of nutrients and organisms in nature potentially 
have strong effects on the diversity of natural metacom-
munities. This has important implications for decision- 
making in ecological management, as both facilitating 
or hindering dispersal can have adverse effects on pat-
tern formation and thus the maintenance of biodiversity.
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animal diversity. We show that diverse animal communities accumulate more biomass and

are more exploitative on plants, despite their higher rates of intra-guild predation. However,
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A
lthough there is much evidence that ecosystem function-
ing is a product of organismal activity1, the relationship
between species diversity and ecosystem functioning

remains enigmatic. Alarmed by the recent rates of species
extinction across all ecosystems, much ecological research over
the past two decades has been driven by the biodiversity effects on
the magnitude and stability of ecosystem functions (the
biodiversity-ecosystem functioning debate)1–3. While most of
this research focused on variation in plant diversity4,5, fewer
studies addressed the consequences of declining animal
diversity6–8 despite the higher extinction risk at higher
trophic levels9. Consequently, we lack a generalized
understanding of the relationship between animal diversity and
ecosystem functioning: Apparently idiosyncratic, positive as well
as negative consequences for plant primary productivity in
response to animal species loss from multi-trophic communities
have been observed10–14, which cannot be explained by species
richness alone.

Partially, this dichotomy of effects may be explained by the
ecosystem’s balance between niche complementarity effects and
community trophic cascades15–17. A simply structured animal
community of a single trophic level is limited to cause direct
negative effects on the trophic level below. Therefore, it would
become more exploitative on the plant community, due to niche
complementarity18, as animal diversity increases. This
mechanism is highly relevant when horizontal diversity, that is,
diversity within a trophic level increases8. For instance, an
increase in the number of obligate herbivorous species should
result in higher absolute rates of herbivory. In contrast, predation
among animals can generate indirect positive effects on the plant
community: the predominant consumption of animal prey
releases the basal community from top–down pressure due to
trophic cascades. As vertical diversity increases through added
trophic levels, the animal communities’ total effect on the basal
plant community would be reduced8,10,15,19,20. Accordingly, the
net effect of increasing animal diversity on basal productivity
could be negative or positive depending on the relative
dominance of increased niche complementarity or trophic
cascades, respectively8.

In natural ecosystems, however, vertical and horizontal
diversity are not independent of each other but are linked due
to the complex feeding interactions within the animal commu-
nity. As species number increases, animals cover larger parts of
the resource niche space (horizontal diversity) and occupy new
trophic levels (vertical diversity)8,21,22. Generalist feeding leads to
omnivory (that is, feeding on resources across trophic levels) and
causes intraguild predation (that is, feeding on resources of the
same trophic group) to be more common in diverse food
webs23,24. Consequently, any clear distinction between trophic
levels would be lost8, which has been hypothesized to make
trophic cascades less likely7,10,18–20,25.

These counteracting mechanisms inhibit any generalized
predictions about how animal diversity affects the plant
compartment and the processes and ecosystem functions related
to it6,16. Usually in experimental studies, the plant biomass
standing stock, rates of herbivore consumption and metabolism
are assessed to quantify ecosystem functions. Therefore, in this
study we employ dynamic simulations of complex food webs to
assess general patterns in these community level quantities of
ecosystem function in response to changes in animal diversity
(Fig. 1).

Food-web models can scale individual and population level
mechanisms to complex communities of interacting species16 to
make predictions about the consequences of altered diversity
across trophic levels26–29. In previous applications, however,
species richness within a trophic level (horizontal diversity) and

the number of trophic levels (vertical diversity) were investigated
separately3,16, with only few exceptions28,30. None of these
models reflected the variability and complexity of natural food
webs, which differ strongly in species richness and composition as
well as the number and strength of their interactions. We fill this
gap by extrapolating dynamic models based on allometric
constraints31, that have successfully been applied to predict
population dynamics and consequences of species extinctions in
simple modules, to the context of entire food webs32–34.

Allometric, or body mass, constraints on multiple species
traits like movement speed, reproduction rates, volume-to-
surface ratios and metabolic rates have long been appreciated35.
More recently, the implications of allometry for community
level properties, such as feeding rates36–40, niche
differentiation32,38,41,42 and food web structure23,41,43,44, have
been quantified. Therefore, we apply an allometric model that
defines the consumer (that is, animal) species’ feeding rates on its
resource (that is, plants and other animals) as functions of
consumer and resource body masses (‘allometric functional
response’)31,32,36–39. The potential feeding rate is highest for an
energetically optimal resource size, while smaller and larger
resource species are less efficiently foraged for (Fig. 2, Methods
section).

During the simulations, biomasses of species adjust dynami-
cally and species extinctions occurr before a steady state is
achieved. Thus, the species that comprise the final community
were ‘selected’ by energetic processes among the allometrically
defined species. While similarly sized species exploit the same
resources and are vulnerable to the same consumers, which
synchronizes their population dynamics, differently sized species
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Figure 1 | Schematic diagram of the ecosystem model. The animal

community, A, feeds on the plant community, P, with rate FP, but also on

members of the own consumer guild with rate FA. Both, plant and animal

community, lose energy due to metabolic demands, XP and XA, respectively.

1

0

P
o
te

n
ti
a
l

fe
e
d
in

g
 r

a
te

Species body mass

i,j

Figure 2 | Potential per-capita feeding rate of a consumer species on its

resources. The feeding efficiency, Li;j of a consumer (grey circle) on its

resources (white circles), is maximized for an energetically optimal

resource size relative to its own body mass. Larger or smaller resource

species are consumed less efficiently.
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contribute complementary features to the community, for
example, exploit a resource that cannot be accessed by others.
By occupying a spot in the upper range of our model’s niche axis,
particularly large animals would form a predatory trophic level on
top of the primary consumer community. The observed levels of
biomass of the animal and plant community as well as the process
rates and energetic losses on the community level arise implicitly
from the allometric constraints at the population level. Being
based on well understood mechanisms at the population level,
this is a generic approach to the functions provided at the
ecosystem level45 (Fig. 1).

Using this generic model framework, we investigate whether
increasing animal diversity causes stronger top–down control on
the plant community via enhanced direct feeding interactions and
complementarity effects, or if it rather weakens top–down control
due to the increase of intraguild predation among animals. We
observe that despite increased intraguild predation in diverse
animal communities, plants are not released from top–down
pressure due to the plasticity of community size structure.

Results
Dynamic food-web model. We cast the concepts outlined above
into a unifying ecological framework by applying a network-
theoretic approach assuming that the species (nodes), connected
by dynamic feeding interactions (edges), compose the higher level
characteristics of ecosystems3,14,16,18. The potential feeding rate
curves of all animal species thus define the network structure of
the entire community. A consumer feeds on all species present in
the local food web that are within a certain body-mass range,
including other consumers (Fig. 3a,b)41. By this definition,
similarly sized species are redundant (as species 13 and 14 in
Fig. 3a,b), while differently sized species are complementary (as
species 11 and 12 in Fig. 3a,b). Also, larger predators occupy a
higher trophic position in the food web which forms distinct

trophic levels and induces cascading effects46. We believe that this
model significantly reflects the major part of bioenergetic fluxes
in ecosystems where body size is the dominant constraint on
feeding rates and food web structure, such as marine and
freshwater systems or terrestrial below-ground systems38,39,41,44.

We applied the model to simulate population dynamics of
21,461 randomly sampled communities over a large gradient of
animal species richness until a steady state was reached. We
included 10–100 animal species of different body mass on top of
30 plant species to build plausible communities of variable
vertical and horizontal diversity (Fig. 3c).

Ecosystem functions respond to animal diversity. We investi-
gated how increasing animal diversity affects ecosystem func-
tioning, defined as the summed biomass stocks of plant and
animal species (P and A, respectively), the rates of consumption
on the plant community (FP) and within the animal community
(that is, intraguild predation, FA), as well as the energetic losses
due to metabolism of both compartments (XP and XA; Fig. 1). We
found that as the number of animal species increased, the total
biomass of animals, A, increased as well (Fig. 4a; a¼ 0.35, and
a¼ 1.2 as least squares estimates of power-law relationship of the
shape A ¼ aSaA fitted as a linear model on log–log transformed
data; Residual standard error on degrees of freedom: s.e.¼ 0.012;
Goodness of fit as indicated by Coefficient of determination:
R2¼ 0.31). In contrast, the total biomass of plants, P, stagnated
(Fig. 4b; a¼ 29.75, and a¼ � 0.08, s.e.¼ 0.005, R2¼ 0.01). Along
with the increase in animal biomasses, we observed an increase in
intraguild predation rates, FA (Fig. 4c, a¼ 0.004, and a¼ 0.92,
s.e.¼ 0.012, R2¼ 0.2). Despite the stable total biomass of plants,
we found an increase in the consumption of plants by animals, FP
(Fig. 4d; a¼ 0.1 and a¼ 0.61, s.e.¼ 0.005, R2¼ 0.38). Moreover,
with increasing animal species richness the total animal metabolic
rates, XA, increased (Fig. 4e; a¼ 0.05 and a¼ 0.58, s.e.¼ 0.005,
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R2¼ 0.38) while the total metabolic rates of plants, XP, decreased
(Fig. 4f; a¼ 6.72 and a¼ � 0.54, s.e.¼ 0.006, R2¼ 0.3).

Sensitivity to model parameters. For the patterns described above,
we explored the sensitivity to parameter choice. The majority of the
parameters were randomly drawn from normal distributions
(allometric scaling parameters, hill-exponent of functional response,
predator interference) and mostly had no visible effects on the
relationship between animal diversity and ecosystem functions.
Solely the allometric scaling exponent of consumer body mass in
attack rates, bi, had important leverage on the effect of species
richness on plant biomass: low exponents resulted in positive effects
and high exponents resulted in negative effects of animal species
richness on plant biomass, but left other ecosystem functions
unaffected (Supplementary Figs 1–6, Supplementary Methods).
While higher plant species richness (SP¼ 50) did not alter
the observed patterns qualitatively, the total plant biomass in
communities with lower plant species richness (SP¼ 10) responded
negatively to animal species richness along with a stronger reduction
in plant respiration (Supplementary Fig. 7, Supplementary
Methods). To assess the role of omnivore feeding as opposed to
strict herbivory, we ran an alternative simulation where 50% of the
animals were only consuming plants. This case of a more
pronounced trophic structure strengthened the suppression of plant
biomass with increasing diversity via increasing plant respiration
(Supplementary Fig. 8, Supplementary Methods). Lower or higher
rates of nutrient turnover did not influence the relationship
qualitatively (Supplementary Fig. 9, Supplementary Methods), but
had an effect on the quantity of biomasses, rates and losses, indi-
cating that bottom–up control was left unimpaired by animal
diversity. We conclude that the structural features of the model,
rather than the precise parameter values, are responsible for the
observed patterns.

Plasticity of community size structure. The dynamic realloca-
tion of biomass within the animal and plant community towards
larger species was responsible for the decoupling of feeding rates
and plant biomass. This biomass shift translates into larger

average individual body masses of animals as species richness
increased (Fig. 5a; a¼ 187.91, and a¼ 0.13, s.e.¼ 0.011,
R2¼ 0.01). On the basal trophic level, larger plants were favoured
over smaller plants, and this effectively reduced total metabolic
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losses while allowing plant biomass to remain constant (Fig. 5b;
a¼ 0.75 and a¼ 0.48, s.e.¼ 0.013, R2¼ 0.06).

In summary, with increasing animal species richness and an
accumulation of more biomass in the animal community (Fig. 6,
compartment A) the total biomass of plants could nevertheless be
maintained at the same level (Fig. 6, compartment P). The
animals’ consumption of plants (Fig. 6, rate FP) increased, which
enhanced the metabolic rate in the animal community (Fig. 6,
compartment A, rates FP and XA). In the plant community, the
increased loss of biomass to consumption was compensated by a
reduction in community metabolism (XP), which rendered the
plant community more efficient in maintaining biomass.

Discussion
We applied a dynamic simulation approach to investigate the
relationship between animal diversity and ecosystem functioning
represented by standing stocks of biomasses and process rates at
the community level. In our model simulation, increasing animal
diversity led to an increase in biomass of the animal compartment
of the ecosystem despite higher energetic losses of the animal
community caused by higher rates of respiration and intraguild
predation. Metabolic losses of animals increased proportionately
to the gains via consumption on plants. The losses due to
intraguild predation increased more strongly in relative terms,
but at lower absolute values.

Our results corroborate the hypothesis that high animal
diversity should lead to increased intraguild predation, with
large species at the top of the food web accumulating more
biomass, while small species are losing. However, the high level
of intraguild feeding will not per se release plants from
top–down control and increase plant biomass. Instead, a diverse
animal community may be more exploitative without imposing
stronger top–down control on plants. The reason for this lack of
an effective top–down control is that the plant community also
responds to the increased pressure by shifting the community

size structure towards larger species. These larger species
compensate for higher losses due to herbivore consumption
with their lower per unit biomass metabolic rates, which enables
them to maintain their levels of biomass as animal diversity
increases.

The allometric food web model applied in our study takes
body mass as the only differentiating parameter for the
particular set of feeding traits and physiological parameters of
a species32. This simplification of ecological systems assumes
that all animal species of equal body mass are equal, in contrast
to neutral animal species models, which assume that all species
are equal. At the cost of adding only one defining parameter,
allometric models provide a much more realistic baseline for the
investigation of systemic processes within food webs and may
easily be extended to integrate phylogeny and other body-mass
independent species traits47 as well as the effects of temperature
on individual metabolism33,39,48. Most importantly, the model
drops the limiting distinction of vertical versus horizontal
diversity8,16. The increase in total intraguild predation with
increasing animal diversity is the consequence of the more
complete niche coverage since allometry defines the resource
range and feeding intensity of consumers on the body-mass axis
relative to their own body mass, analogous to classical niche
concepts49. For plant species and also for smaller and
intermediately sized animals, this enhances the likelihood of
top–down control by an animal consumer. Thus, allometric
feeding rates produce niche complementarity18,41, a concept
that applies when varying horizontal diversity, that is, diversity
within the trophic level8. Further, the allometric niche
differentiation leads to intraguild predation and subsequent
indirect effects16, or trophic cascades within the food web. Thus,
as species number increases the vertical diversity of the
community increases8, resulting in food webs with a ‘taller’
effective trophic height (Fig. 5). The model is consistent with the
natural complexity of food webs that are rich in feeding
interactions across and within trophic levels44.
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Figure 6 | Visualized changes of ecosystem functions at varying animal species richness. Communities visualized for (a) 15, (b) 60 and (c) 90 species

(SA). Arrow width at the base is proportional to biomass change per time; Area of boxes is proportional to biomass stocks. While animal biomass, A,

increased along the gradient due to an increased turnover within the animal community (arrows FP, FA and XA), biomass of plants, P, could be maintained at

the same level owing of a slowing down of biomass turnover in the plant community (arrow XP).
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The model framework further assumes that communities
respond dynamically to the quality and quantity of resource
supply and consumption in the food web context. In this dynamic
process, the biomasses of both animals and plants were allocated
towards larger-sized species as animal species number increased.
This systematic shift in community body mass structure had
strong implications for the effective feeding interactions within
the community. The advantage of large animals in species-rich
communities led to a stronger limitation of smaller species’
populations and enhanced the total direct feeding on plants.
However, this increase in feeding was selective for smaller plant
species, which resulted in large, slow-growing plant species
dominating the community.

The spectrum of simulated communities that we observed at
low species richness is relatively wide and heterogeneous,
potentially allowing for multiple stable ecosystem states,
depending on the feeding traits and food web context of the
species present. In contrast, at high animal species richness this
spectrum of possible ecosystem states narrows down and
becomes more homogeneous with more complementary or
redundant species (that is, insurance effects50) and a greater
probability of including top-predator species of high trophic
level (that is, sampling effects16,51). Thus, increasing diversity
consolidates ecosystem function. The sensitivity analysis
suggests that the scaling of attack rates with consumer
body-mass may also be influential on the relationship between
animal diversity and ecosystem function and encourages further
exploration. Most importantly, it corroborates previous findings
that species-rich communities will be less variable and more
predictable in their functioning than communities with few
species52.

In summary, our food-web simulations indicate that increasing
animal diversity, while fostering intraguild predation, does not
necessarily release plant biomass from top–down control. Instead,
more diverse animal communities favour larger-bodied animal
and plant species which balances the effects on plant biomass. We
therefore revisit a long-established hypothesis which assumes that
increased amounts of intraguild feeding in diverse animal
communities will relax the total pressure on plants. This
traditional notion originated from static, structural concepts of
food webs that neglected compensatory dynamics of comple-
mentary species and the resulting complexity of indirect effects.
In contrast, the approach of this study offers a concept of body-
size regulated community plasticity that reconciles the hypotheses
regarding the relationship between animal diversity and plant
biomass stock. The mechanisms that have been identified as
major drivers of the biodiversity-ecosystem functioning relation-
ship, such as niche complementarity or trophic complexity, are
inherent to the allometric food-web model. The limiting
assumptions of the model approach also represent important
future directions of research that can be added to its flexible
model framework to create tailored null hypotheses. Thus, our
approach opens new possibilities for future studies of multi-
trophic biodiversity and ecosystem functioning. We anticipate
that such a mechanistic and dynamic concept of complex, multi-
trophic communities is indispensable to overcome the unidirec-
tional cause-consequence approach to biodiversity and ecosystem
functioning and to truly understand the dynamic consequences of
imminent species loss.

Methods
Food-web structure. The model food webs consisted of a basal plant compartment
(P) and the consumer compartment (‘animals’, A; Fig. 1). We varied the initial
animal species number, SA, from 10 to 100 species with 300 replicates each. The plant
community has been standardized to SP¼ 30 species. The log10 body mass mi of any
species i was drawn from independent uniform distributions within the inclusive

limits mP¼ (100, 106) for plant species and mA¼ (102, 1012) for animals, constraining
the smallest possible body mass of a plant species to 1 and the largest possible body
mass of an animal species to 1012. Trophic relations are defined by the success curve
of consumers, that is, the probability of a consumer i to actually attack and capture
an encountered resource j (which can be a plant or an animal),

Li;j ¼
mi

mjRopt
e
1� mi

mjRopt

� �g

: ð1Þ

It is defined as an asymmetrical hump-shaped curve (Ricker function)53 with width
g¼ 2, centred around an optimal consumer-resource body-mass ratio Ropt¼ 100
(Fig. 2)37. This success curve is subsequently termed the ‘feeding efficiency’. Very
weak links with Li;j � 0:01 were removed from the model networks, yielding food
webs as depicted in Fig. 3c. Note, that in this model we use body mass as the only
determinant of a generalist resource choice for both carnivorous and herbivorous
feeding. We acknowledge that this simplifying assumption might not reflect the
diversity of natural feeding relationships. Especially in terrestrial above-ground food
webs, other species traits can be more relevant in determining a feeding link, for
example, specialized insect herbivores feeding on large plants may be limited by plant
defense or traits rather than size. However, universal body mass constraints on
feeding are found in many aquatic and belowground terrestrial habitats44.
Implementing additional, size-independent constraints on feeding and higher
degrees of specialization might be an avenue for future investigations.

Feeding rates. The allometric model for the rate at which consumer i feeds on a
resource j applies a multi-prey Holling-type functional response with variable Hill-
exponent54, and includes intra-specific consumer interference (Beddington–
DeAngelis type)32,55,56. The feeding rate,

Fij ¼
oibijR

1þ q
j

1þ cAi þoihi
P

k

bikR
1þ q
k

:

1

mi
; ð2Þ

of one unit of biomass of the consumer, i, (transformed from per capita feeding
rates by dividing by individual body mass, mi) is a function of the biomass density
of the consumer, Ai, and biomass density of the resource, Rj, which can be an
animal or a plant species (thus substitute Aj or Pj). It includes the resource specific
capture coefficient,

bij ¼ b0m
bi
i m

bj
j Li;j; ð3Þ

of a consumer species i on a resource species j, which scales the feeding efficiency
Li;j by a power function of consumer and resource body mass, assuming that the
rate of encounters between consumer and resource scales with their respective
movement speed. Thus, bij increases according to a power law with the body
masses of consumer (mi) and animal resource (mj)

35. For each food web replicate,
the exponents bi and bj were sampled from normal distributions with mean
mbi ¼ 0:47, and s.d. sbi ¼ 0:04, and mbj ¼ 0:15 and sbj ¼ 0:03, respectively39.
Since plants do not move, we assumed a constant m

bj
j ¼ 20 for plant resources. We

further assumed a constant b0¼ 50 for all capture coefficients. The relative
consumption rate oi accounts for the fact that a consumer has to split its
consumption if it has more than one resource species. It thus is defined as
oi¼ 1/(number of resource species of i). Further, the feeding rate includes the time
lost due to consumer interference c, the proportion of time that a consumer spends
encountering con-specifics55, which is independent of body mass15. For each food-
web replicate, c was drawn from a normal distribution (mc¼ 0.8, sc¼ 0.2). The
density-dependent change in search efficiency is implemented via the Hill-
exponent 1þ q, which reduces the feeding rate for low resource densities and varies
the functional response between classic type II (q¼ 0) and type III (q¼ 1)54,55. The
value of q was drawn for each replicate from a normal distribution (mq¼ 0.5,
sq¼ 0.2) within the inclusive limits of 0 and 1 (invalid draws were repeated),
reflecting that different ecosystems provide specific levels of habitat heterogeneity
that reduce feeding at low resource density, for instance by providing refuges55.
Finally, the handling time,

hi ¼ h0m
Zi
i m

Zj
j ; ð4Þ

depends on the body mass of the consumer to the power of Zi (mZi ¼ � 0:48,
sZi ¼ 0:03) and the body mass of the resource to the power of Zj (mZj ¼ � 0:66,
sZj ¼ 0:02), with the scaling constant h0¼ 0.4 (refs 31,39).

All exponents were sampled within the exclusive limits of ±3s. Invalid draws
were repeated.

Population dynamics. The model food webs were energetically based on a
dynamic nutrient model with two nutrients of different importance supplying the
plant community57,58. On top, a variable number of consumers were feeding on the
plant species and among each other as defined by the food-web structure.

The rate of change of the biomass density of an animal species j is defined as

dAi

dt
¼ ePAi

X

j

Fijþ eAAi

X

k

Fik �
X

k

AkFki � xiAi: ð5Þ

The first-term describes the summed gain by consumption of plant species j times
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the conversion efficiency eP¼ 0.45 typical for herbivory that determines the
proportion of biomass of eaten resource that can be converted into own biomass31.
The second term is identical, but refers to the summed gain by consumption of
other animal species k times a conversion efficiency eA¼ 0.85 for carnivorous
consumption31. The third-term sums the mortality due to predation by other
animal species k. The metabolic demands per unit biomass for animals are defined
to scale allometrically with xi ¼ xAm

� 0:25
i (that is, corresponding to a 34 power-

law scaling of per capita metabolic rates)31,58, using the scaling constant31

xA¼ 0.314.
Similarly, the rate of change of the biomass density of any plant species i is

defined as

dPi

dt
¼ riGiPi �

X

k

AkFki � xiPi: ð6Þ

The first-term describes growth due to the uptake of nutrients (see below). The
second-term describes mortality due to predation by animals, summed over all
consumers k of plant species i. Finally, each plant species has metabolic demands,
xi ¼ xPm

� 0:25
i , which scale allometrically with its body mass mi, using xP¼ 0.138

as a constant31,58.
The growth of a plant species is limited by its intrinsic growth rate59 ri ¼ m� 0:25

i

and by the species specific growth factor Gi which is determined dynamically by the
concentration of the nutrient l 2 f1; 2g that is most limiting to i:

Gi ¼ min
N1

Ki1 þN1
;

N2

Ki2 þN2

� �

: ð7Þ

For high nutrient concentrations, the term in the minimum operator approaches 1.
The half-saturation densities Kil determine the nutrient uptake efficiency and are
assigned randomly for each plant species i and each nutrient l (uniform distribution
within the inclusive limits of 0.1 and 0.2). This model makes plants compete for
resources, which is an essential feature of dynamic ecosystem functions, and
generates niche differentiation of the plant species60, which reduces the risk of
competitive exclusion57,58. The dynamic change of nutrient concentration Nl is
defined by

dNl

dt
¼ DðSl �NlÞ� nl

X

i

riGiPi; ð8Þ

with a global turnover rate D¼ 0.25 that determines the rate by which nutrients are
refreshed58. The supply concentration Sl determines the maximal nutrient level
drawn at random from a normal distribution (mS¼ 10, sS¼ 2) and is constrained to
be larger than 0. The nutrient stock is diminished by the summed uptake by all
plants i. The loss of a specific nutrient l is limited by its relative content in the plant
species’ biomass (v1¼ 1, v2¼ 0.5).

The population dynamics were calculated by integrating the system of
differential equations implemented in C using procedures of the SUNDIALS-
CVODE solver (backward differentiation formula; absolute and relative error
tolerances of 10� 10)61,62. Nutrient concentrations Nl were initialized with random
values uniformly distributed between Sl/2 and Sl, animal and plant biomass
densities were initialized with random values uniformly distributed between 0
(exclusive) and 10 (inclusive). The food webs were simulated until t¼ 150,000 to
ensure that stationary dynamics were reached. Species were assumed to be
permanently extinct from the food-web once their biomass fell below a threshold,
that is, if Ai or Pir10� 6 it was immediately set to 0. Replicates that included
consumer-free basal species at the end of the simulation time were discarded from
the data set (n¼ 5,839, corresponding to 21% of the simulations initialized). The
uncontrolled growth of such inedible basal species would outcompete other plants
and reduce overall species richness drastically, leading to a fundamentally different
type of ecosystem28. In total, 21,461 valid food webs were simulated.

Output parameters. The total biomass stocks of the animals, A, and the plants, P,
were calculated as the average of the summed biomasses of all species over an
evaluation period of 10,000 time steps after the population dynamics had reached a
stationary state. Rates of biomass flow from plants to animals, FP (herbivory), and
among animals (carnivory or intraguild predation), FA, were calculated as average
biomass transfer per time step over the same evaluation period. Note, that these
flows represent the rate of biomass production by plants and animals, respectively,
since we calculated them before accounting for losses due to incomplete assim-
ilation. Total metabolic rates of animals, XA, and plants, XP, were calculated as the
sum of the metabolic rates multiplied with the average biomass densities of animal
and plant species, respectively.

Statistical models. The basal and consumer stocks, rates and losses were statis-
tically described as power laws of SA of the form response ¼ a � SaA. A log–log-
transformation yielded the linear model structure of the form log(x)¼ log(a)þ a
log(SA) which was fitted using least squares (using the function lm() in R v3.2.2
(ref. 63)). We report the coefficient of determination, R2, as a goodness of fit metric
for the linear model. For the linear model predicting intraguild predation,
replicates with value zero were omitted (n¼ 28; 0.1% of all replicates).

Data availability. All relevant computer codes and simulation results are available
online64 including the original simulation source code (written in C) as well as the
code for the statistical analysis and figure generation (written in R); Code repository
on GitHub: https://github.com/fdschneider/schneider_et_al_2016_animaldiversity.
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Abstract

Allometric trophic network (ATN) models offer high flexibility and scalability while minimizing the number of parameters

and have been successfully applied to investigate complex food web dynamics and their influence on food web diversity and

stability. However, the realism of ATN model energetics has never been assessed in detail, despite their critical influence on

dynamic biomass and production patterns. Here, we compare the energetics of the currently established original ATNmodel,

considering only biomass-dependent basal respiration, to an extended ATN model version, considering both basal and

assimilation-dependent activity respiration. The latter is crucial in particular for unicellular and invertebrate organisms

which dominate the metabolism of pelagic and soil food webs. Based on metabolic scaling laws, we show that the extended

ATN version reflects the energy transfer through a chain of four trophic levels of unicellular and invertebrate organisms more

realistically than the original ATN version. Depending on the strength of top-down control, the original ATN model yields

trophic transfer efficiencies up to 71% at either the third or the fourth trophic level, which considerably exceeds any realistic

values. In contrast, the extended ATN version yields realistic trophic transfer efficiencies ≤ 30% at all trophic levels, in

accordance with both physiological considerations and empirical evidence from pelagic systems. Our results imply that

accounting for activity respiration is essential for consistently implementing the metabolic theory of ecology in ATNmodels

and for improving their quantitative predictions, which makes them more powerful tools for investigating the dynamics of

complex natural communities.

Keywords Food web . Trophic transfer efficiency . Allometric trophic network model . Allometry . Energy transfer . Activity

respiration

Introduction

The metabolic theory of ecology relates biological rates to

body size and serves to predict metabolic activity from the

individual to the community level (Brown et al. 2004).

Allometrically scaled trophic network (ATN) models imple-

ment this theory in a food web context by linking consumers

to their resources in food webs. Yodzis and Innes (1992) pa-

rameterized the first ATN model which is the theoretical basis

of a fruitful series of ATN modeling studies for ecological

theory building, e.g., contributing to the diversity-stability de-

bate (Benoît and Rochet 2004; Brose et al. 2006; Heckmann et

al. 2012), coexistence theory (Brose 2008), hypotheses on

biodiversity-ecosystem functioning (Schneider et al. 2016),

and for investigating biodiversity loss (Berlow et al. 2009;

Schneider et al. 2012). The main advantage of ATN models

is their scalability from small modules to large and complex

food webs in a widely applicable approach with only few

assumptions.

The ATN approach builds upon the fact that material

ingested by a consumer is either excreted or allocated to

respiration or production (Fig. 1). The assimilation efficien-

cy differs for carnivores and herbivores because of the re-

spective food’s quality and stoichiometry. Regarding losses

to respiration, all previous studies with ATN models except

for Boit et al. (2012) and Kuparinen et al. (2016) considered
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only respiration proportional to biomass, here called basal

respiration, whereas respiratory losses due to activity, here-

after called activity respiration, were not specifically

accounted for. This approximation may apply to homoio-

thermic mammals and birds with high maintenance costs.

However, it appears less suitable for modeling pelagic and

soil food webs, which mostly consist of unicellular and in-

vertebrate organisms with low basal respiration, but high

activity respiration, which is proportional to food uptake

(Anderson 1992). The study by Boit et al. (2012) on the

seasonal plankton succession in Lake Constance already

indicated that the ATN model successfully reproduced gen-

eral community patterns only if the important physiological

process of activity respiration was accounted for. In con-

trast, the original ATN model considerably overestimated

heterotrophic production if activity respiration was ignored

(Boit et al. 2012). Kuparinen et al. (2016) used the ATN

model as extended by Boit et al. (2012) to successfully

model the effects of fishing on a food web and the fish

life-history traits. These two studies called for the in-depth

evaluation of ATN model energetics which we present in

this work. To differentiate between the two model versions,

we employ the terms Boriginal^ (Yodzis and Innes 1992)

and Bextended^ ATN model (Boit et al. 2012).

To quantify and evaluate model energetics, we determine

the trophic transfer efficiency (TTE) between four ascend-

ing trophic levels (autotrophs, herbivores, carnivores, and

top predators) for both the original and the extended ATN

versions. We find that only by accounting for activity respi-

ration, the ATN model achieves realistic TTE towards the

higher trophic levels. To explain this model behavior, we

additionally compared biomasses, respiration, and produc-

tion of both model versions for different levels of top pred-

ator mortality. The latter elucidates the influence of top-

down vs. bottom-up control on the TTE and the formation

of trophic cascades. We discuss our findings in the context

of previous modeling studies and observations from pelagic

systems to promote the inclusion of activity respiration in

future ATNmodels. Achieving more realistic energetics and

improving quantitative predictions will make ATN models

more powerful tools to investigate complex natural food

webs in order to better serve their purpose in ecological

theory building.

Methods

Allometric trophic network (ATN) models represent

consumer-resource relationships based on allometric scaling

of key physiological rates (e.g., ingestion) with individual

bodymass, which achievesminimum data necessity for model

parameterization (Yodzis and Innes 1992). Ingested carbon

serves as surrogate for energy and is allocated to either excre-

tion, respiration, or production (Fig. 1, Begon et al. 2006). The

original ATN model formulation does not differentiate be-

tween basal respiration proportional to the biomass, and

Fig. 1 The carbon (surrogate for

energy) flow scheme

implemented in the ATN model

approach. The original version by

Yodzis and Innes (1992) does not

separate activity from basal

respiration, but assumes that all

respiration is proportional to

biomass. The missing part of

activity respiration proportional to

assimilation (box) is added to the

original ATN model in this study.

Model parameters are e

assimilation efficiency, fa factor

accounting for activity

respiration, fm factor accounting

for basal respiration, x metabolic

rate, B biomass, and I ingestion

(for details see Table 1 and

BMethods^)

454 Theor Ecol (2018) 11:453–463
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activity respiration proportional to the amount of assimilated

food (Fig. 1).

General ATN model equations and parameters

We applied the ATN model equations to a linear chain of four

trophic levels from autotrophs (A) and herbivores (H) to car-

nivores (C) and top predators (T). In order to facilitate com-

parability between studies, our notation and parameterization

closely follow that of previous ATN modeling studies (Brose

et al. 2006; Boit et al. 2012). Growth of the autotrophs is

modeled by a logistic function (Eq. 1), and consumption by

all consumers is described by a Holling type II functional

response (Eqs. 1–4, Holling 1959). Together, the rates of

change of the biomasses Bi (i =A, H, C, T) at the four trophic

levels are given by the following ordinary differential equa-

tions:

dBA

dt
¼ rBA 1−

BA

K

� �

−yxH
BA

B0 þ BA

BH ð1Þ

dBH

dt
¼ f aehyxH

BA

B0 þ BA

BH−yxC
BH

B0 þ BH

BC− f mxHBH ð2Þ

dBC

dt
¼ f aecyxC

BH

B0 þ BH

BC−yxT
BC

B0 þ BC

BT− f mxCBC ð3Þ

dBT

dt
¼ f aecyxT

BC

B0 þ BC

BT− f mxTBT−dBT
2
: ð4Þ

The maximum growth rate of the autotrophs is described

by r and their carrying capacity by K. The functional re-

sponses for consumption are expressed by the metabolic rate

of the respective consumer, xH, xC, xT, the maximum ingestion

rate y normalized by the respective metabolic rate, and the

half-saturation constant B0. The assimilation efficiency for

herbivores is denoted as eh, the one for carnivorous predators

as ec, the fraction of assimilated carbon not respired is defined

by fa, i.e., (1-fa) is the fraction of carbon lost by activity res-

piration, and the fraction of maintenance respiration linked to

biomass is fm. The metabolic rates xi scale allometrically with

body mass mi with an allometric exponent of − 0.25 (Yodzis

and Innes 1992). The autotrophs’ bodymass is set to 1 and the

consumer-resource body-mass ratio is 1000 for all trophic

levels. The standard values of all parameters are given in

Table 1. The death rate constant of the top predator is given

by d (Eq. 4, Table 1), and it was varied between 0 and 0.05 in

steps of 0.0001. The term dBT represents the top predator’s per

capita death rate. The case d = 0 represents an extreme case as

it leads to a massive accumulation of top predator biomass

which in nature would attract pathogens, parasites, or another

carnivore, which all induce mortality.

Calculation of central rates

All central rates, i.e., ingestion, excretion, basal and activity

respiration, and production have the same dimension mass ×

volume−1 × time−1. The total ingestion rate Ii of the consumer

species on trophic level i with biomass Bi is given by

I i ¼ yxi
Bi−1

B0 þ Bi−1

Bi: ð5Þ

Multiplied with the assimilation constant ei and the activity

respiration factor fa, the term Ii constitutes the first term in Eqs.

2–4. The total excretion rate Ei of trophic level i is proportion-

al to its ingestion rate and is given by

Ei ¼ 1−eið ÞI i ¼ 1−eið Þyxi
Bi−1

B0 þ Bi−1

Bi: ð6Þ

The assimilation efficiency ei describes the fraction of

the ingested material that is assimilated and not lost by

excretion. It is higher for carnivores than for herbivores

Table 1 Parameter values. If the original and extended ATN versions are differently parameterized, their values are labeled with orig. and ext.,

respectively. Dimensionless units are labeled as [−]

Parameter name Abbreviation Value [dimension] Literature

Mass-specific maximum growth rate of the autotrophs r 1 [ 1
time

] (Brose et al. 2006)

Carrying capacity K 1 [ mass
volume

] (Brose et al. 2006)

Metabolic rate xi 0.314 massi
−0.25 [ 1

time
] (Brose et al. 2006)

Maximum ingestion rate relative to metabolic rate y 8 [−] (Brose et al. 2006)

Half-saturation constant B0 0.5 [ mass
volume

] (Brose et al. 2006)

Fraction of assimilated carbon used for production fa 1orig /0.4ext [−] (Boit et al. 2012)

Factor for maintenance respiration fm 1orig /0.1ext [−] Boit et al. 2012)

Assimilation efficiency for herbivorous species eh 0.45 [−] (Yodzis and Innes 1992)

Assimilation efficiency for carnivorous species ec 0.85 [−] (Yodzis and Innes 1992)

Death rate constant of top predator d [0, 0.05] [ volume
time mass

] Varied in this study

Theor Ecol (2018) 11:453–463 455
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(Table 1) since the former consume high-quality food of

similar biochemical composition as themselves, whereas

plants often contain nutrient-poor material which is hard

to digest.

Basal respiration is the energy lost due to maintenance

processes. It is analog to the basal metabolic rate defined for

homoiotherms (Gessaman 1973) as measured in the

thermoneutral zone where homoiotherms have very low costs

for thermoregulation and are most similar to ectotherms in this

regard. Basal respiration Rb,i is defined as

Rb;i ¼ f mxiBi ð7Þ

and is therefore proportional to the standing stock biomass.

Activity respiration is the energy spent for processes related to

the production of new biomass (including locomotion, forag-

ing, food handling and digestion, ontogenetic processes, and

reproduction). We call fa the fraction of energy not lost due to

activity processes. Following Boit et al. (2012), the activity

respiration Ra,i is calculated as

Ra;i ¼ 1− f að Þ ei I i ¼ 1− f að Þeiyxi
Bi−1

B0 þ Bi−1

Bi: ð8Þ

This part is neglected in the original ATNmodel, i.e. fa = 1.

The production summarizes all processes that lead to

creation of new biomass (somatic and reproductive

growth). On average, the production at trophic level i

compensates for losses by predation, i.e., the ingestion

by trophic level i + 1. If we neglect non-grazing mortality,

which typically plays a minor role in pelagic systems

(Gaedke et al. 2002), the production Pi can either be cal-

culated as ingestion of the next higher trophic level Ii + 1

or as ingestion at trophic level i minus excretion Ei and

total respiration Ri = Ra,i + Rb,i,

Pi ¼ I iþ1 ¼ I i−Ei−Ra;i−Rb;i: ð9Þ

For the top predator, the ingestion by a higher trophic level

is replaced by its death rate dBT
2 (Eq. 4). These different ways

to calculate the production (Eq. 9) enable us to infer the tro-

phic transfer efficiencies.

Trophic transfer efficiency

The trophic transfer efficiency (TTE) is defined as the

ratio of the production of two adjacent trophic levels

and is therefore dimensionless. It is used to quantify the

fraction of energy passed on to the next trophic level. To

calculate the maximum TTE, it is crucial to remember that

ingested carbon can only be excreted, respired, or

invested into new production (Fig. 1). When one of the

first two rates increases, the production decreases.

Following Yodzis and Innes (1992), carnivores are as-

sumed to have an assimilation efficiency of 85% and

herbivores of 45% (Table 1). From physiological consid-

erations based on a comprehensive data set across differ-

ent taxonomic groups (Humphreys 1979; Hendriks 1999),

it can be estimated that at most half of the assimilated

carbon can be allocated to production (Fig. 1), which

yields an upper limit to the maximum feasible TTEi be-

tween trophic level i and i + 1:

Maximum feasible TTEi→iþ1≤0:5
eiþ1 I iþ1

Pi

: ð10Þ

This results in a maximum feasible TTE of at most 42.5%

of the ingested carbon for carnivores and of 22.5% for herbi-

vores (cf. Table 2). Note that this is a very conservative esti-

mation. Most taxa have considerably higher respiratory losses

and thus lower production to assimilation ratios, resulting in a

lower maximum feasible TTE.

One way to calculate the TTE to the next trophic level in

the model is

TTEi→iþ1 ¼
Piþ1

Pi

¼
eiþ1I iþ1− Ra;iþ1 þ Rb;iþ1

� �

I iþ1

¼
f aeiþ1y

Bi

Bh þ Bi

− f m

y
Bi

Bh þ Bi

: ð11Þ

This expression has an upper limit that is reached for un-

limited food supply Bi →∞. For this limit, the rightmost part

of Eq. 11 can be simplified to

TTEi→iþ1 <
f aeiþ1y− f m

y
ð12Þ

as an expression for the upper bound of the TTE inherent in

the ATN model (Eqs. 1–4). When calculating this model-

inherent maximum TTE from the first to the second trophic

level, the autotrophs’ maximum biomass is their capacity K

and not infinity, and Eq. 11 is used for the calculation instead

of Eq. 12.

To differentiate the inherent TTE (upper bound of the TTE

in the ATN model) from the actually obtained TTE during the

dynamic simulations, the latter will thereafter be called obtain-

ed TTE.

Simulations

Biomasses and resulting values are mean values of the last

50,000 time steps of a 100,000 step time series. All calcula-

tions and figures were made using Python 2.7.6. For integra-

tion of the ordinary differential equations, the adaptive step-

size lsoda solver was used with absolute and relative error

tolerances εabs = εrel = 10−13.
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Results

We first evaluated the maximum inherent trophic transfer

efficiency (TTE) assuming unlimited food supply. We

found a value of 32.5% for the herbivores and 72.5%

for the carnivores and top predators in the original ATN

model, which exceeds by far the maximum feasible TTE

of 22.5% for herbivores and 42.5% for carnivores and top

predators (Eqs. 10, 12, Table 2). In the extended ATN

version, the maximum inherent TTE was 16.1% for the

herbivores and 32.8% for the carnivores and top predators

(Eq. 12, Table 2). The maximum inherent TTE was small-

er in the extended version as more carbon is respired

instead of transported through the food chain to the upper

trophic levels.

As a second and more practical step, we investigated

the TTE obtained in dynamic simulations of a four

trophic-level food chain using both the original and ex-

tended ATN versions over a gradient of the top preda-

tor’s death rate constant d. In the extended ATN ver-

sion, which accounts for activity and basal respiration

separately, the maximum obtained TTE at trophic level

3 and 4 never exceeded the maximum feasible TTE

(Fig. 2, Table 2, Eq. 10). In contrast, in the original

ATN model the obtained TTE at trophic level 4

exceeded the maximum feasible TTE of 42.5% for d >

0.0029 (Fig. 2, maximum observed value 50.5%). At

trophic level 3, the TTE of the carnivores in the origi-

nal ATN model exceeded the maximum feasible TTE

for small values of d (d < 0.0006, Fig. 2). The consis-

tently lower obtained TTE in the extended ATN version

indicates that this model version represents the energy

transfer towards the higher trophic level more realisti-

cally than the original ATN model.

Fig. 2 Trophic transfer efficiency

(TTE) obtained in simulations (in

percent, defined as the production

ratio of upper vs. lower trophic

level) of the top predator (top

panel), carnivore (center), and

herbivore (bottom) in the original

(dashed lines) and extended (solid

lines) ATN versions for different

top predator’s death rate constants

d. Gray vertical lines indicate the

position of the biomass pyramids

provided in Fig. 3. The horizontal

lines indicate the maximum

feasible TTE (see BTrophic

transfer efficiency,^ Table 2)

Table 2 Three trophic transfer efficiencies (TTE) are given, the

maximum feasible TTE according to the given assimilation efficiencies

(Table 1) and assuming that production equals respiration (Humphreys

1979) (Eq. 10), the maximum inherent TTE assuming maximum food

concentration (Eq. 12), and the maximum TTE obtained from the

simulations for both the original and the extended ATN versions for the

three trophic levels in %

Max.

feasible TTE

Max. inherent TTE Max. obtained TTE

Original Extended Original Extended

TTE3➔4 42.5 72.5 32.8 50.5 30.1

TTE2➔3 42.5 72.5 32.8 44.5 30.2

TTE1➔2 22.5 26.3 16.1 14.1 13.2
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With an increasing death rate constant d of the top

predator, its own as well as the herbivore’s obtained

TTE increased, whereas the carnivore’s obtained TTE de-

creased (Fig. 2). This alternating pattern of increasing and

decreasing obtained TTE with increasing d resulted from

a trophic cascade: Higher values of d lowered the top

predator’s biomass, which in turn lowered its total inges-

tion. Released from top-down control, the carnivore’s bio-

mass, and thus, its ingestion increased. This pattern prop-

agated down to the herbivores and autotrophs. Since the

TTE is a monotonously increasing function of the bio-

mass on the respective lower trophic level (Eq. 11,

Appendix, Fig. 7), this alternating pattern of decreasing

and increasing biomasses translates directly to the TTEs

on the different trophic levels.

The herbivore’s obtained TTE remained below the maxi-

mum feasible TTE of 22.5% (Eq. 10) in both model versions

(Fig. 2). The reason is the nonlinear dependence of the auto-

troph’s production on its carrying capacity and its interaction

with the nonlinear grazing function of the herbivore. When

assuming a chain of three trophic levels where the carnivore as

the highest trophic level experiences a quadratic death term,

the herbivore was under strong top-down control and

exceeded its maximum feasible TTE by up to a factor of 1.1

(Appendix, Figs. 5 and 6).

Depending on the top predator’s death rate, the models

exhibited different trophic cascade patterns. For small d

(0.0003), the herbivore and the top predator accumulated high

biomasses resulting in a top-heavy trophic cascade (Fig. 3a,

d). For larger d (0.0030), the biomasses resembled roughly a

column (Fig. 3b, e), and for higher d, a bottom-heavy trophic

cascade occurred (Fig. 3c, f).

To further elucidate the reason for the inconsistencies

between the obtained TTE of the original ATN model and

physiological considerations and realistic estimates, we

analyzed the carbon fluxes in the bottom-heavy trophic

cascade (Fig. 3c, f) in more detail (Fig. 4, Table 3). The

alternating biomasses indicate where the inconsistencies

are most obvious. In the original ATN model, the top

predator’s respiration was small compared to its ingestion,

resulting in a large production per ingested unit of carbon

(Table 3). This led to a production being 33% higher than

the respiration (Fig. 4b) and an obtained TTE of 50%

(Fig. 4b, Table 3). In contrast, in the extended ATN ver-

sion, the respiration per ingested unit of carbon was

higher due to the activity respiration, which resulted in a

lower production and an obtained TTE of 30% (Fig. 4a).

In the original ATN model, respiration per ingestion

and production per ingestion varied considerably more

between trophic levels than in the extended ATN version.

This was due to the overemphasis of basal respiration and

neglecting of the activity respiration: Only a high biomass

(here, of the carnivore) resulted in respiration losses of

substantially more than 50% of the assimilation and, thus,

a realistic TTE in the original ATN model. In the extended

ATN version, respiration per ingestion and production per

ingestion did not vary that much across trophic levels

even in the presence of a strong trophic cascade because

respiration is not solely coupled to the standing biomass

stock, but also to the assimilation. As low biomasses are

connected with high per capita rates in the ATN models, a

low biomass-related basal respiration is counteracted by

high activity respiration and vice versa.

Discussion

Allometric trophic network (ATN) models are an important

tool to analyze dynamics of food webs (Boit et al. 2012;

Hudson and Reuman 2013; Schuwirth and Reichert 2013;

Kuparinen et al. 2016) and their diversity and stability

(Brose et al. 2006; Rall et al. 2008; Berlow et al. 2009;

Heckmann et al. 2012). Despite their frequent use, the ATN

energetics was not yet explicitly addressed, though it decisive-

ly influences dynamic patterns of the model (Boit et al. 2012).

Here, we compared the energetics of the original ATN model

(Yodzis and Innes 1992; Brose et al. 2006) which considers

only basal respiration, and an extended ATN version (Boit et

al. 2012) including both basal and activity respiration. We

found that the trophic transfer efficiency (TTE) could become

unrealistically high in the original ATN model in both static

calculations and dynamic simulations, whereas it always fell

into a physiologically and ecologically realistic range in the

extended ATN version. The reason for the more realistic en-

ergy transfer is the inclusion of the activity respiration that

depends on the amount of assimilated carbon in the extended

ATN version.

The threshold above which we consider a TTE unrealisti-

cally high was set very conservatively and followed from the

assumption that the energy allocated to production can at most

be equal to respiration (Humphreys 1979). This yields a max-

imum feasible TTE of 22.5% for herbivores and 42.5% for

carnivores (Eq. 10). These upper theoretical limits are usually

not reached in natural communities even when dominated by

unicellular organisms or invertebrates, except when a trophic

level is under high predation pressure. Empirically established

maximum TTE ranges between 13% and around 30% for both

herbivores and carnivores from pelagic systems and including

small to large fish (Straile 1997; Jennings et al. 2002; Barnes

et al. 2010). The extended ATN version reflects these natural

energetic constraints well by keeping the obtained TTE in a

realistic range up to 30% (cf. Fig. 2). In contrast, the original

ATN model led to an obtained TTE up to 51% (cf. Fig. 2)

which overestimates the empirical values of at most 30% by a

factor of 1.7.
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The metabolic theory of ecology does not differentiate be-
tween basal respiration proportional to the standing biomass
stock and activity respiration (Brown et al. 2004). Brown et al.
(2004) stated that the metabolic rate generally depends only
on biomass and that the field metabolic rate, analog to our
activity respiration, is a Bfairly constant multiple of the basal
rate^ and therefore also depends only on the biomass. A sim-
ilar assumption also served as basis for the ATN models ac-
counting only for basal respiration proportional to the bio-
mass. This assumption is reasonable if resource levels are
fairly constant; however, biomasses and ingestion rates vary
in nature and dynamic models and so does, ultimately, also the
TTE (Appendix, Fig. 7).

The different patterns of trophic cascades illustrate the
problematic consequences of linking respiration only to

biomass. The amount of top-down control exerted by the
top predator or the carnivore, and thus the strength of the
trophic cascade were modulated by the death rate constant
d. For small d, the top predator had a high biomass and
controlled the carnivore. The carnivore’s obtained TTE
then became unrealistically high in the original ATN mod-
el, and the food web became (too) top heavy. The link
between a high TTE and top heavy food webs is also
described in a review of 23 food webs (McCauley et al.
2018). For intermediate d, the biomasses were approxi-
mately equally distributed across different trophic levels
which is in line with the flat biomass distribution
established for pelagic systems (Gaedke 1992). For higher
d, the top predator was top-down controlled by its death
rate and released the carnivore from grazing pressure, but

Fig. 3 Comparison of the mean biomasses (bold numbers) within the
food chain of the extended ATN version including activity respiration
(a–c) and the original ATN model (d–f), for different top predator’s

death rate constants d = 0.0003 (a, d), d = 0.003 (b, e), and d = 0.03 (c,
f). Arrows indicate production rates. Their width is scaled to autotroph’s
production as 100%. Box widths are scaled with the species’ biomasses
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in this case, the top predator’s obtained TTE became un-
realistically high. In any case, the obtained TTE was too
high at one particular trophic level within a pronounced
trophic cascade because the top-down controlled trophic
levels had a low biomass and thus a low basal respiration.
Thus, the assumption of Brown et al. (2004) that activity
respiration and field metabolic rate are proportional to a
standing biomass stock only holds for equally distributed
biomasses, but not for unequally distributed biomasses in
trophic cascades.

The link between activity respiration and ingestion as we
introduced it here to the ATN model allows for a more flex-
ible reaction to dynamic instead of constant biomasses. This

is important when modeling large food webs with rapidly
changing dynamics such as pelagic systems. ATN and other
food web models are known to form trophic cascades
(Carpenter et al. 2016) which are observed in many ecosys-
tems (Carpenter et al. 1985; Pace et al. 1999; Shurin et al.
2002) and, as we showed here, strongly affects the TTE.
Other ATN models dampened the trophic cascades with
mechanism such as predator interference or type III func-
tional response which obfuscates this underlying energetic
problem to some extent (Rall et al. 2008). However, they do
not solve it, as the model-inherent TTE is independent of
these mechanisms. The ATN approach has also been used to
parameterize large-scale ecosystem models such as the
Madingley model (Harfoot et al. 2014). In this model,
neglecting activity respiration seems to have contributed
to unrealistically top heavy biomass distributions as well,
underlining the importance of more accurate assumptions
regarding basic energetic processes than the original ATN
provides. The pronounced trophic cascades as seen in our
study are due to the structurally simplistic food chain and
would be dampened in natural systems, e.g., by a higher
trophic connectance via omnivory.

Other models, like Rosenzweig-MacArthur-type
predator-prey models (Rosenzweig and MacArthur 1963;
Weitz and Levin 2006), incorporate respiration losses only
by a constant factor named conversion efficiency related
to ingestion and production; thus, this type of model only
accounts for (what we call here) activity respiration. Basal
respiration may be implicitly considered in a death rate
proportional to the biomass. Anderson (1992) pointed out
the difference between basal and activity respiration

Table 3 Respiration to ingestion ratio (R/I) and production to ingestion
ratio (P/I ≜ obtained TTE since non-grazing mortality was not included in
the ATN model for the 1st–3rd trophic level; thus, the production of the
trophic level below is ingested entirely, see BATN model equations^) for
both the original (orig.) and extended (ext.) ATN versions with the top
predator’s death rate constant d = 0.03. Autotrophic respiration is already
included in the growth rate and therefore not listed here. Values were
calculated from the biomass, respiration, and production values shown
in Figs. 3f and 4b for the original ATN model, and in Figs. 3c and 4a for
the extended ATN version, respectively

R/I P/I ≜ TTE

orig. (%) ext. (%) orig. (%) ext. (%)

Top predator 35 55 50 30

Carnivore 79 72 6 12

Herbivore 31 32 14 13

Fig. 4 Comparison of the energy transfer within the food chain of the
extended ATN version including activity respiration (a), and the original
ATNmodel (b). The biomass pyramids are based on the same data as Fig.
3c, f, i.e., d = 0.03. Included values are basal and activity respiration
(numbers on the left, activity above basal respiration), production
(numbers in the middle to the left of the upward arrows), trophic

transfer efficiency (bold large numbers), and excretion (numbers above
the right arrows). All fluxes are standardized to autotroph’s production as
100%, so that wider arrows indicate larger values. Box widths are scaled
with the species’ biomasses. Red values point out inconsistencies with the
physiological considerations that respiration is equal to or less than
production (Humphreys 1979)
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especially for unicellular organisms and invertebrates

whose activity respiration exceeds the basal respiration

as they are poikilotherms with low maintenance costs

when inactive. In our extended ATN version, we com-

bined both respiration rates and implemented these ideas

by introducing the factor fa in the formulation of assimi-

lation (cf. Eq. 8, BMethods,^ Fig. 1), thereby making ac-

tivity respiration proportional to the amount of assimilated

carbon.

Following Boit et al. (2012), we set the parameter fa =

0.4 for all consumers assuming that respiration is slightly

larger than production (Humphreys 1979). Although this

conservative estimate satisfies fundamental energetic con-

straints, a more differentiated picture may emerge when

defining a more empirically grounded value range for fa
for different taxa. In the same way, the parameter fm = 0.1

(following Boit et al. (2012)) may be adapted to fit dif-

ferent taxa. As a recent meta-analysis reveals that the dif-

ferences in respiration rates between taxonomic groups

are not only due to consumer type (e.g., herbivore or

carnivore) (Lang et al. 2017), future research could aim

to entangle the influences of taxonomic group, activity,

and food availability on respiration rates. Until then, due

to the scarcity of experimental data on activity vs. basal

respiration rates of invertebrates, the parameterization of

fa and fm in a specific food web context remains a chal-

lenge for future modeling studies with ATNs.

The complexity of the model did not increase from a

mathematical point of view even though we introduced

two additional parameters (fa and fm) in the extended

ATN version. The number of effective parameters that

independently determine model dynamics is the same in

the original and the extended ATN versions. This be-

comes obvious when we introduce new parameters for

the extended ATN model: eprod,i = eifa as the production

efficiency (equivalent to ei in the original model) and

xb,i = fmxi (equivalent to xi in the original model) as the

per capita basal metabolic rate. When aiming for a con-

cise mathematical description of the model, we recom-

mend to use these effective parameters. Here, however,

we chose not to do so in order to emphasize the under-

lying biological processes. In the same vein, we argue

that we do not merely propose to use different values

for some parameters of the ATN model, but stress the

conceptual advancement of the ATN model by clearly

distinguishing between basal and activity respiration,

which is essential for improving quantitative predictions

about ecosystem energetics.

To conclude, basal and activity respiration depend on dif-

ferent processes and should both be considered explicitly in

models covering metabolic processes. Including activity res-

piration in the ATNmodel lowers the obtained TTE to realistic

values in comparison to empirically derived values. Especially

for food webs mainly based on unicellular organisms and

invertebrates or modeling ecosystems prone to trophic cascad-

ing, we recommend using the extended ATN version to

achieve more realistic energetics. Far more than ameremodel-

ing fix, reflecting the energy flux through food webs in a

realistic way is indispensable for upscaling and integrating

smaller modules to larger community networks or even

large-scale ecosystem models. ATNmodels will then be ready

for quantitatively linking trophic interactions in biodiverse

communities to ecosystem-level biomass dynamics and bio-

geochemical cycling.
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Appendix

We also modeled a three trophic-level food chain in which the

carnivore has a density-dependent death rate equivalent to the

top predator in the chain of four trophic levels (Eq. 4). With

this model setup, we examined the herbivore’s obtained TTE

when being released from top-down control due to increasing

the carnivore’s death rate.

Fig. 5 Trophic transfer efficiency (obtained TTE, defined as the

production ratio of upper vs. lower trophic level) of the carnivore

(upper panel) and herbivore (bottom) in the original (dashed lines) and

extended (solid lines) ATN versions for different carnivore’s death rate

constants d. For one parameter value (vertical line), the biomass pyramids

are provided in Fig. 6. The horizontal lines indicate the maximum feasible

TTE (Eq. 10, Table 2)
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Abstract

Ecological communities are undeniably diverse, both in terms of the species that compose

them as well as the type of interactions that link species to each other. Despite this long rec-

ognition of the coexistence of multiple interaction types in nature, little is known about the

consequences of this diversity for community functioning. In the ongoing context of global

change and increasing species extinction rates, it seems crucial to improve our understand-

ing of the drivers of the relationship between species diversity and ecosystem functioning.

Here, using a multispecies dynamical model of ecological communities including various

interaction types (e.g. competition for space, predator interference, recruitment facilitation in

addition to feeding), we studied the role of the presence and the intensity of these interac-

tions for species diversity, community functioning (biomass and production) and the

relationship between diversity and functioning.Taken jointly, the diverse interactions have

significant effects on species diversity, whose amplitude and sign depend on the type of

interactions involved and their relative abundance. They however consistently increase the

slope of the relationship between diversity and functioning, suggesting that species losses

might have stronger effects on community functioning than expected when ignoring the

diversity of interaction types and focusing on feeding interactions only.

Author summary

The question of how species diversity contributes to the functioning of ecological commu-

nities has intrigued ecologists for decades, and is especially relevant in the current context

of species extinctions. Ecological communities are not only diverse in terms of the species

that compose them but also in terms of the way they interact with each other: for example,

species compete for space and for food, eat and facilitate each other. The diversity of ways

species interact has rarely been taken into account in the study of ecological communities,

although widely acknowledged. Here we show that the diversity of interaction types

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007269 August 29, 2019 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Miele V, Guill C, Ramos-Jiliberto R, Kéfi S
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matters: it affects species diversity, community functioning and the relationship between

them by strengthening this relationship. This means that when the diversity of interaction

types is taken into account, species losses have stronger impacts on the functioning of eco-

logical communities. Our results therefore suggest that species loss may have more impor-

tant consequences than expected based on classical models that do not take the diversity

of interaction types into account.

Introduction

Despite the wide recognition of the coexistence of multiple interaction types linking species in

nature [1–3], research on ecological networks has been massively dominated by studies on a

single interaction at a time (e.g. trophic, competitive or mutualistic; e.g. [4–6]). The implica-

tions of the diversity of interactions for ecological community dynamics and resilience

remains therefore largely unknown, despite a recent growing interest in the ecological litera-

ture [7–10].

Among interaction types, feeding has massively dominated the literature [2], leading to the

analysis of the structural properties of food webs on data sets and to the use of modeling to

investigate the functional consequences of these structures (e.g. [4, 11–16]). Early on, Arditi

and colleagues [17] proposed to integrate non-trophic interactions in such dynamical models

as modifications of trophic interactions (so-called ‘rheagogies’). Building on that idea, Gou-

dard and Loreau [18] investigated the effect of rheagogies on the relationship between biodi-

versity and ecosystem functioning (BEF) in a tri-trophic model. They showed that ecosystem

biomass and production depended not only on species richness but also on the connectance

and magnitude of the non-trophic interactions.

Several studies have investigated the role of incorporating specific interactions in food

webs. For example, incorporating interspecific facilitation in a resource-consumer model

allowed species coexistence in communities of plants consuming a single resource [19]. This

increase in species diversity also happens in ecological communities with higher trophic levels

including both trophic and facilitative interactions [3]. In the same model, intra- and inter-

specific predator interference increased species coexistence as well in multi-trophic webs,

although to a lesser extent than facilitation among plants [3].

More generally, the joint effect of several interaction types is expected to affect community

functioning and stability. Extending May’s work, Allesina and Tang [20] showed that commu-

nities including a mixture of mutualistic and competitive interactions with equal probability

were less likely to be stable than random ones (i.e. where interactions between species are ran-

domly chosen), themselves being less stable than predator–prey communities (i.e. in which

interactions come in pairs of opposite sign). Using a similar approach, Suweis and colleagues

[21] explored the effect of mixing mutualistic and predator-prey interactions on stability, and

showed that, without making any further hypothesis, increasing the proportion of mutualistic

interactions tend to destabilize the community. Conversely, in a spatially explicit model

including both mutualism and antagonism, Lurgi et al. [9] found that increasing the propor-

tion of mutualism increased the stability of the communities. Addressing the relationship

between structure and stability, Sauve et al. [8] showed that the role of nestedness and modu-

larity—structural properties that were shown to promote stability in their single interaction

types networks (more specifically in mutualistic networks for nestedness and in antagonistic

networks for modularity)—was weakened in networks combining mutualistic and antagonistic

The diversity of interaction types matters for community functioning
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interactions. Note that this result contrasts with Allesina and Tang [20]’s result on community

matrices who showed that, for mutualistic interactions, nested matrices were less likely to be

stable than unstructured matrices.

Combining dynamical models with an empirical network analysis including all known

non-trophic interactions between the species of intertidal communities in central Chile [22],

Kéfi et al. [10] found that the specific ways in which the different layers of interactions are

structured in the data increased community biomass, species persistence and tend to improve

community resilience to species extinction compared to randomized counter-parts. More

recently, Garcı́a-Callejas et al. [23] used a dynamical model to investigate the effect of the rela-

tive frequency of different interaction types on species persistence and showed that persistence

was more likely in species-poor communities if positive interactions were present, while this

role of positive interactions was less important in species-rich communities.

Altogether, these studies suggest that the joint effect of several interaction types could alter

fundamental properties of ecological systems—such as species coexistence, production and

community stability—with however a clear lack of consensus on how. So far, most studies

have addressed these questions with specific subsets of non-trophic interactions [3, 8, 18, 19],

in small species modules [24, 25], in networks with limited numbers of trophic levels [19] or

with unrealistic trophic structure [18]. Only a few studies have extended these approaches to

complex networks of interactions with a diversity of interaction types (see e.g. [9, 23, 26]). We

therefore still lack a clear view on the overall role of the diversity of interaction types per se for

species diversity and community functioning, and especially how they may affect the relation-

ship between diversity and functioning.

In the 90ies, because of the raising awareness of the increase in species extinction rates, the

long-lasting interest on the origin and maintenance of species diversity shifted toward the

study of the consequences of biodiversity, and especially of its loss, for ecosystem functioning

[27]. This became an entire sub-field of ecology referred to as ‘Biodiversity and Ecosystem

Functioning’ (so-called BEF) and lead to decades of experimental and theoretical research

investigating how diversity affects functioning (see [28–33] for reviews). Results of experimen-

tal studies suggests that more diverse communities generally produce more biomass than less

diverse ones [34, 35]. Theoretically, the question has been addressed as well; models have long

focused on plant communities (i.e. a single trophic level) (e.g. [36]), but have more recently

started to expand these investigations to more complex, realistic communities (e.g. [37–39]).

Until now, as far as we know, studies had not specifically investigated the role of the diversity

of interactions types on the shape of the BEF.

Here, using a bioenergetics resource-consumer model in which broad categories of non-

trophic interactions were introduced [3], we systematically investigated the functioning of

‘multiplex’ ecological networks, i.e. how multiple interactions (their abundance and intensity)

affect species coexistence, community functioning (biomass and production), and the relation-

ship between diversity and functioning. Our model includes, in addition to the consumer-

resource interactions, competition for space among sessile species, predator interference,

refuge provisioning, recruitment facilitation as well as effects that increase or decrease

mortality.

Methods

The dynamical model

The trophic model. We used an allometric-scaling dynamic food web model [12, 40].

These models have been used extensively to explore the dynamics and stability of complex eco-

logical networks [12, 13, 41].

The diversity of interaction types matters for community functioning
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The food web model consisted of plants (primary producers, at the base of the network,

which consume nutrients not explicitly modeled here), and consumers (animals which eat

plants and other consumers). The number of species (plants and consumers) and the structure

of the web (who eats whom) were initially determined based on the niche model [42] (for

details see section ‘Simulated networks’ in the ‘Numerical simulations’ part). We mapped

dynamical equations to that food web skeleton. The change in species i’s biomass density Bi

(in ½mass�

½area�
) was described by an ordinary differential equation of the general form:

dBi

dt
¼ riGiBi þ Bi

X

j2prey

�ojFij �
X

k2pred

BkFki � xiBi � diBi; ð1Þ

where the first term describes plant growth; the second term describes the biomass gained by

the consumption of other species j; the third term describes mortality due to predation,

summed over all consumers k of species i; the fourth term represents the metabolic demands

of species i; the last term is the natural mortality of species i. More precisely:

• ri is the intrinsic growth rate of primary producers (in [time]−1; ri is positive for primary pro-

ducers and null for other species);

• Gi is the growth term described in Eq (2) below;

• �oj is a conversion efficiency (dimensionless) which determines how much biomass eaten of

resource j is converted into biomass of consumer i;

• Fij is the functional response, i.e. the rate at which consumer i feeds on resource j (see Eq (3)

below; in [time]−1);

• xi is the metabolic demand of consumer species i (in [time]−1); note that for basal species,

metabolic demand is already taken into account in the intrinsic growth rate ri;

• di the natural mortality rate (in [time]−1).

Plant growth. We assumed a logistic growth for basal species:

Gi ¼ 1�
Bi

Ki

� �

ð2Þ

with Ki the carrying capacity of the environment for species i (in ½mass�

½area�
).

Functional response. We used a multi-prey Holling-type functional response. The feed-

ing rate of species i on species j is expressed as:

Fij ¼
wiaijB

1þq
j

mið1þ wi

P

k2preyaikhikB
1þq

k Þ
; ð3Þ

where:

• wi is the relative consumption rate of predator i on its prey, which accounts for the fact that a

consumer has to split its consumption between its different resources (dimensionless);

• aij is the capture coefficient in
½area�

½time�
� ½area�q

½mass�q
(the attack rate here is aijB

q
j which has the unit ½area�

½time�
).

• 1+q is the Hill-exponent, where the Hill-coefficient qmakes the functional response vary

gradually from a type II (q = 0) to a type III (q = 1) [43] (dimensionless);

The diversity of interaction types matters for community functioning
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• hij is the handling time in ½time�

½mass�
.

• Note thatmi, the body mass of species i, is needed here for model and unit consistency [39].

Introducing non-trophic interactions. We introduced in this model a number of non-

trophic effects found to be frequent ones mentioned in the literature [3, 10, 22]. We made the

relevant parameters of the trophic model become a function of the density of the species source

of the effect [3, 18]. As a first approximation, we assume all such dependencies to have a simi-

lar, linear shape.

Competition for space. We add a space-dependent term, gi, which affects species’ net

growth rate:

dBi

dt
¼ gi riGi þ

X

j2prey

�ojFij � xi

 !

Bi �
X

k2pred

BkFki � diBi ð4Þ

gi ¼ ð1� c
0

X

l2comp

gilBlÞ ð5Þ

where gi—the competition for space term—is evaluated as in Eq (5), l refers to all the species

that potentially compete for space with each other, which need to be sessile (excluding intra-

specific competition, i.e. l different from i), c0 is the overall intensity of competition for space

and γil is the strength of competition exerted by species l on species i, which is assumed to

increase with the amount of space occupied by each individual of species l (see upcoming sub-

section on ‘Parameter values used’ in the ‘Numerical simulations’ part). Note that the element

γil is zero if either i or l is non-sessile and even if both species are sessile it is non-zero only

with a certain probability (see ‘Simulated networks’ in ‘Numerical simulations’ part). This

makes competition for space asymmetric, as some species can have a large negative effect on

others but are not negatively affected themselves. Also note that because plants have a higher

probability of being sessile than other species in the web (see upcoming subsection on ‘Simu-

lated networks’ in the ‘Numerical simulations’ part) competition for space occurs more fre-

quently among plants than among other species of the network. Finally, note that if γil is null
for all l, Eq (4) is identical to Eq (1).

Competition for space was assumed to only operate if the net growth rate of the target species

(the first term in between brackets in Eq (4)) is positive, i.e. if ðriGi þ
P

j2prey�ojFij � xiÞ > 0.

0therwise, gi is set to 1.

Predator interference. We introduced predator interference in the feeding rate as fol-

lows:

Fijnew
¼

wiaijB
1þq
j

mið1þ i
0

P

s2preddsiBs þ wi

P

k2preyaikhikB
1þq

k Þ
; ð6Þ

where s denotes all the predators of prey j and δsi is the strength of interference competition

between predators s and i (Beddington-DeAngelis type, [12, 44]). Again, even if two predators

share a prey, this term is non-zero only with a certain probability, and its values is assumed to

depend on the differences of the body mass of the two predators (see upcoming subsection on

‘Parameter values used’ in the ‘Numerical simulations’ part). The constant i0 is the overall

intensity of predator interference.

Effects on mortality. A number of negative interactions lead to a decrease in the survival

of the target species i (e.g. whiplash). Some species might also increase the survival of target

The diversity of interaction types matters for community functioning
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species (e.g. improvement of local environmental conditions). We summarized these two

types of effects on the mortality rate, di as follows:

dinew
¼ di

1þ n
0

P

knkiBk

1þ p
0

P

kpkiBk

� �

; ð7Þ

with n0 and p0 the overall intensities of negative and facilitative effects on mortality (i.e. resp.

increase and decrease in mortality), and n and p the interaction matrices containing zeros and

ones.

Refuge provisioning from predators. Refuge provisioning can happen in different ways:

a species can protect another from abiotic stress (e.g. decreasing its mortality—see previous

example) but a species can also protect another from its predator (e.g. affecting the attack rate

of the predator). A refuge provision from species k to species j from its predators can be mod-

eled as follows. For all the predator species i of j:

aijnew ¼
aij

1þ r
0

P

k�kjBk

; ð8Þ

where aijnew tends to 0 in the presence of facilitators, r0 is the intensity of the refuge effect and ϕ

is the interaction matrix containing zeros and ones.

Effects on recruitment. Species may increase (e.g. habitat amelioration) the recruitment

of new plants in the community. We therefore created the term ei which is multiplied by the

growth rate of the species:

ei ¼ 1þ e
0

X

k

ZkiBk

 !

ð9Þ

rinew ¼ riei ð10Þ

with e0 the overall intensity of facilitative effects on recruitment, and η the interaction matrices

containing zeros and ones. Note that this term only applies to plants.

Numerical simulations

Simulated networks. Trophic networks were generated with the niche model [42] starting

with 100 species including a fixed number of 20 plants (primary producers) and a connectance

of 0.06 (i.e. about 600 trophic links per network) [45]. Cannibalism was allowed but trophic

networks containing cycles were discarded.

We imposed a fixed number of 33 sessile species in each network: for each species, we uni-

formly drew a ‘mobility’ trait with probability 0.2 for plants and 0.8 for other species, and we

repeated the procedure until the network contained 33 sessile species. As a consequence of this

choice of probability, plants have a much higher chance of being sessile in our networks than

other species in the web.

The location of the non-trophic links was chosen randomly in the trophic web, but follow-

ing a number of basic rules inspired from the Chilean data set [10, 22]. Competition for space

was drawn between two sessile species, interference between two mobile predators that have at

least one prey in common, refuge provisioning from a sessile species to a prey (i.e. a species

that has at least one consumer), and recruitment facilitation from any species to a plant. Effects

on mortality were drawn between any pair of species (i.e. no constraint). Non-trophic links

were drawn only between different species because we focused on the role of inter-specific

The diversity of interaction types matters for community functioning
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interactions. Note however that our simulations all include intra-specific interference with

i0−intra = 0.8, as in [39], without which the species diversity at steady state is much lower.

With the previous rules satisfied, the interaction probability (i.e. the probability for a non-

zero element of the corresponding non-trophic interaction matrix) between two species was

respectively set to 0.098, 0.15, 0.01, 0.01, 0.033 and 0.063 for competition, interference, increase

and decrease in mortality, refuge provisioning and recruitment facilitation. These settings

allowed to get, on average, 100 non-trophic links for any of the six types of non-trophic inter-

actions (because of the imposed rules, the probabilities need to be different for each interaction

type). This means that a simulation started with about 600 trophic and 100 non-trophic links

of a given non-trophic interaction type.

Simulations setup. In the first part (Fig 1; see also S1 and S2 Figs), simulations were first

run with trophic links only, and 100 trophic networks were selected in which no disconnected

plant (i.e. plants that have no consumer) was present at the end of the dynamics (as in [39]).

For each of these trophic networks, we drew 50 non-trophic networks of each non-trophic

interaction type (to study the effect of each type of non-trophic interaction individually).

Again, we only kept the networks in which no disconnected plant was present at the end of the

dynamics with the non-trophic links. For each non-trophic interaction type, we defined a

range of non-trophic intensity values as follows. We started from a minimum non-trophic

intensity value, and we linearly increased this value to a maximum. The minimum (resp. maxi-

mum) values were selected so that they correspond to a 2.5% (resp. 10%) variation in species

diversity at the end of the simulation in the case with compared to without NTIs. This was the

case for all NTIs except for positive effects on mortality for which reaching an effect of 10%

change in diversity was not possible even for very high values of p0 (see colored lines in Fig 1).

With this procedure, we put all non-trophic interactions on equal footing, which allowed com-

paring their effect on outcome variables. This procedure allowed us to compute the slope of

the effect of the non-trophic interaction intensity on final species diversity using a linear

regression, which is an indicator of the strength of the non-trophic interaction. The slope of

this regression is displayed on top of each panel of Fig 1.

In the second part (Figs 2 and 3; see also S4 Fig), decrease in mortality (also referred to as

‘positive effects on mortality’ in the text) were discarded because of their lack of significant

effect on species diversity. For the other five non-trophic interaction types, we selected 1000

simulated trophic networks (again with no disconnected plants), and for each of these net-

works, we repeated the following procedure 100 times: we drew five non-trophic networks

(one per non-trophic interaction type), with one quarter of the previous interaction probabili-

ties for the four negative non-trophic interaction types. This way, we ensure that we have

added an equal number of positive and negative links in the networks (i.e. there are as many

positive as negative links in the networks studied). We uniformly drew the non-trophic inter-

action intensities in the same range of values as in the first part (see above). Hence, in this set

of simulations, we started with about 600 trophic links, 100 positive (facilitation for recruit-

ment) and 100 negative non-trophic links (about 25 for each of the four types: competition for

space, interference, refuge and increase in mortality). In the sensitivity analysis (S5 Fig), we

reproduced the same procedure for each of the parameter values investigated (namely the Hill

coefficient, expo and capture coefficient a0—see after).

In the same vein, we did another set of simulations in which the intensities of the non-tro-

phic interactions were fixed (to the values leading to 10% variation in species diversity; i0 = 3,

r0 = 1.75, c0 = 0.012, e0 = 1.8 and n0 = 3), but we varied the number of links of each of the

non-trophic interaction type (S3 Fig). We simulated 100 trophic networks with no discon-

nected plants and, for each trophic network, we drew 100 non-trophic interaction networks

for each non-trophic interaction type of varying size: by modulating the previously mentioned

The diversity of interaction types matters for community functioning
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Fig 1. Changes in species diversity, biomass and production (in columns) as a function of the intensity of the NTI along

the x-axis for each of the 6 NTIs (in rows). Values along the y-axis are evaluated at steady state in networks with NTIs

compared to ones without NTIs. Values on the x-axis correspond to values of the parameters i0 for interference, r0 for refuge

provisioning, c0 for competition for space, e0 for recruitment facilitation, n0 for increase in mortality (i.e. negative effects on

mortality), p0 for decrease in mortality (i.e. positive effects on mortality). For each NTI, their minimum and maximum values

The diversity of interaction types matters for community functioning
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interaction probabilities, we created setups with 100 positive links and 100 negative links (100

of one type or about 25 for each of the four types), 50 and 100, or 100 and 50 respectively.

Again we only retained networks with no disconnected plant at the end of the dynamical simu-

lations with trophic and non-trophic links.

Simulation runs. We used the GNU Scientific Library (https://www.gnu.org/software/

gsl/) solver with the embedded Runge-Kutta-Fehlberg (4,5) method. For each network,

numerical simulations were run until steady state was reached (we set a maximum time

t = 5000 which we observed to be sufficient). During the dynamics, we set a species to extinc-

tion when its biomass was very small (<1e-6). To fairly compare results with and without

non-trophic interactions, we used the same initial conditions in both cases. At steady state, we

measured: diversity, i.e. the number of surviving species (biomass> = 1e-6), total biomass

(sum of the biomass of all surviving species at steady state) and total production (the sum of

the intrinsic growth of basal species and food uptake minus the respiration of consumers, over

all surviving species, i.e. first term in Eq (4)). We also evaluated the normalized ratio of each of

along the x-axis were chosen such that it lead to a ±2.5% (green dashed line; minimum value of the parameter range) to ±10%

(blue line; maximum value of the parameter range) change in species diversity, relatively to the case without NTI. Note that

the y-axes of the different panels differ. The NTIs were categorized into ‘positive’ (i.e. beneficial, recruitment facilitation) vs

‘negative’ (i.e. detrimental; interference, refuge provisioning, competition for space and increase in mortality) based on their

effect on diversity.

https://doi.org/10.1371/journal.pcbi.1007269.g001

Fig 2. Effect of the NTIs on diversity ratio. A) Frequency of simulations leading to a given variation of diversity (x-axis) in networks with trophic links only

compared to those with both trophic and non-trophic links. In these simulations, NTI intensities were picked randomly at the start of the simulation in the ranges

defined in Fig 1. B) Average values of each of the NTI parameters corresponding to the simulations of A (mean parameter value used for the simulations leading to

each of the bar in A). Colors range from light yellow for small average values to red for strong average values. i0: intensity of interference among predators, r0: intensity

of refuge provisioning, c0: intensity of competition for space, e0: intensity of facilitation for recruitment, n0: intensity of increase in mortality. Insert on the top left of

panel B represents the normalized color range of the parameter value used (1 for the maximal value used, and 0 for the minimum value used within the parameter

ranges defined in Fig 1).

https://doi.org/10.1371/journal.pcbi.1007269.g002
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these metrics in the case with and without non-trophic interactions. For instance, we call diver-
sity ratio (in particular in the legends of the figures) the difference between the diversity with

and without non-trophic interactions divided by the diversity without non-trophic

interactions.

Parameter values used.

• �0j
was set to 0.45 if the resource j is a plant and to 0.85 otherwise;

Fig 3. Relationships between species diversity and biomass in networks with compared to without NTIs. Values of all NTIs intensities were taken randomly in a

given range (see Methods). A) Biomass as a function of species diversity (number of species) in networks with trophic interactions only (regression line in blue). B)

Same as A in networks with NTIs (regression line in red; regression line from A) is also superimposed in blue). C) Variation in biomass (in networks with NTIs

compared to networks with TI only; see Methods) as a function of the variation in species diversity (in networks with NTIs compared to networks with TI only; see

Methods). D) Variation in biomass as a function of species diversity in networks with NTIs.

https://doi.org/10.1371/journal.pcbi.1007269.g003

The diversity of interaction types matters for community functioning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007269 August 29, 2019 10 / 20

208



• ri is the intrinsic growth rate of plant species with ri ¼ r
0
m�0:25

i if species i is a plant, and ri =

0 for consumer species [46]; The unit of ri is [time]−1 and r0 is a scaling parameter which is

the same for all species and has the unit ½mass�0:25

½time�
(it defines the time scale of the system). r0 = 1.

• xi is the metabolic demand of species i. If i is not a plant xi ¼ xspeciesm
�0:25
i with xspecies = 0.314.

• di the natural mortality of species i is assumed to be d
0
xspeciesm

�0:25
i with d0 = 0.1 and xspecies =

0.138 if i is a plant and 0.314 otherwise.

• Ki the carrying capacity of the environment for species i (in ½g�

½area�
); Ki ¼ K

0
m0:25

i with K0 = 1.

• wi, the relative consumption rate; it is defines as 1/(number of resources of species i);

• aij is the capture coefficient, such that if i and j are both mobile species: aij ¼ a
0
m

exp1
i m

exp2
j

[47] with exp1 = 0.45, exp2 = 0.15 and a0 = 50; if i is sessile and j is mobile: aij ¼ a
0sesscons

m
exp2
j

with a
0sesscons

¼ 50; if i is mobile and j is sessile: aij ¼ a
0sessres

m
exp1
i with a

0sessres
¼ 50.

• 1 + q is the Hill-exponent; 1 + q = 1.5.

• hij is the handling time in [time], with hi ¼ h
0
m�0:48

i m�0:66
j and h0 = 0.3 [40, 48].

• γij, the effect strength of competition for space of species j on species i, is assumed to depend

on body mass such that gij ¼ g
0
m

2

3

j , with γ0 = 1.

• δij is the term of interference between predator i and predator j; we assume that the more

similar the body masses of the two predators, the stronger the interference between them,

such that dij ¼
1

1þabsðlogðmiÞ�logðmjÞ
.

• We make the non-trophic interaction intensities vary in the following ranges: 0.75� i0 � 3

for inter-specific interference, and i0 = 0.8 for intra-specific interference [39]), 0.25� r0�

1.75, 0.0045� c0 � 0.012, 0.15� e0� 1.8, 0.75� n0 � 3 and 5� p0 � 20.

• Body mass of each of the species in the networks were determined based on the trophic level:

mi ¼ expoðTLi�1Þ, with expo = 50, TLi the trophic level of species i.

Parameter values used in the sensitivity analysis. In order to perform the sensitivity

analysis shown in S5 Fig, we varied the most influential parameters in the model:

• the Hill exponent was tested with q = 0.3 and 0.7 (in addition to the value 0.5 used for the

main simulation)

• we tested a
0
¼ a

0sesscons
¼ a

0sessres
¼ 10 (in this case, we had to set h0 = 0.1 to avoid massive

extinctions) and 250 (in addition to the value 50 used for the main simulation)

• the parameter expo was set to 25 and 75 (in addition to the value 50 used for the main

simulation)

We focused on these three parameters because they are linked with both the largest varia-

tion in real ecological systems and the largest measurement uncertainties. Also, they are

known to strongly affect biomass flow patterns and dynamical stability in food webs. Others

parameters of the bioenergetics model are either fixed by defining the scales for time and bio-

mass density (e.g. r0) or do not show much variation in natural systems (e.g. the assimilation

efficiencies).
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The ranges over which the parameters were varied in the sensitivity analysis were chosen as

broad as possible, but with the constraint of still enabling enough species survival in the food

webs (i.e. in the networks without NTIs). This restriction is useful as the aim of this study is

not to explore conditions for persistence in food web models, but to focus on the effect NTIs

have on diversity, ecosystem functioning, and the relationship between both.

Results

In what follows, we use NTI(s) to refer to non-trophic interaction(s).

Effect of the presence and intensity of each NTI

We ran community dynamics with or without NTIs, and evaluated the relative difference in

community characteristics at steady state obtained in the presence compared to in the absence

of each NTI. This allowed comparing the effects of the different NTI types (for a range of inter-

action intensities; see Methods). At steady state, the measured characteristics of the communi-

ties were: species diversity (the number of species which survived at steady-state, i.e. whose

biomass was above a threshold level), total biomass (the sum of the biomass of all surviving

species at steady state) and total production (the sum of the intrinsic growth of basal species

and food uptake minus respiration of consumers, over all surviving species; first term in Eq (4)

in Methods, ‘The dynamical model’).

The following NTIs were introduced, one at a time, in the consumer-resource model:

i) predator interference, which can occur between two predators which share at least one prey,

ii) refuge provisioning which can happen if a species protects another from its predator (e.g.

affecting the attack rate of the predator), iii) competition for space which occurs predomi-

nantly between sessile species, iv) recruitment facilitation which happens when some species

increase the recruitment of new plants in the community (e.g. by habitat amelioration), v)

increases in mortality when some species decrease the survival of others (e.g. because of whip-

lash) and vi) decreases in mortality when some species increase the survival of others (e.g. by

improving the local environmental conditions).

We found that interference had a negative effect on diversity and community production

and a weak (negative) effect on biomass (1st row of Fig 1). Through time, interference

decreased the consumption of some of the predators; this initially favored some of the basal

and intermediate species (that were less consumed), and eventually lead to the extinction of

some of the intermediate and top predators, as well as to a decrease in their total biomass (1st

rows in S1 and S2 Figs). Primary producers, some of which were relieved from consumers,

exhibited a slight gain in biomass.

Refuge provisioning had similar overall effects, but with a larger effect on biomass than the

one of interference (2nd row of Fig 1). In this case, species benefiting from refuges remained

in the system but were less accessible resources. This lead to a loss of biomass and subsequent

extinctions of some consumers (which could not access their prey; especially top predators),

while their resources remained under protection and gained a bit of biomass (except for those

whose protector went extinct) (see S1 and S2 Figs, 2nd row).

Competition for space had a strong negative effect on all variables (which affected all tro-

phic levels), while recruitment facilitation had a positive effect on all community characteris-

tics (but affected only consumer and predator species; 3rd and 4th rows of Fig 1 and S2 Fig).

Through time, these effects tend to first affect the basal species, then the intermediate and

eventually the top predators (see S1 Fig).

Modifications of mortality rates produced very weak effects overall. Increasing mortality

had a negative effect on diversity and biomass and no effect on production (5th row of Fig 1).
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Decreasing mortality had a very weak positive effect on diversity and biomass and no effect on

production (6th row of Fig 1).In what follows, we did not consider decreases in mortality (also

referred to as ‘positive effects on mortality’) which was the weakest of all NTIs considered

overall and focused instead on the five remaining NTIs, namely interference among predators,

refuge provisioning, competition for space, recruitment facilitation, and increase in mortality

(also referred to as ‘negative effects on mortality’).

Overall, the most influential NTIs among the ones studied were competition for space and

recruitment facilitation, in terms of both diversity and functioning (see slopes linking the

parameter values to see the extent of the effects in Fig 1). The effect of competition for space

on diversity was two orders of magnitude larger than those of all the other NTIs (namely

interference, refuge provisioning, recruitment facilitation and increase in mortality).

Regarding biomass, the effect of competition for space was two orders of magnitude larger

than the one of recruitment facilitation, which was itself an order of magnitude larger than

the one of all the other NTIs (namely interference, refuge provisioning, and increase in

mortality).

For all NTIs except for competition for space, effects seemed to be stronger on intermediate

and top trophic levels at steady state (see S2 Fig). Regarding species diversity, this was partly

due to the fact that plant species already all persisted with trophic interactions only, and—

besides competition for space (and to a much lesser extent increases in mortality)—the other

NTIs were not able to lead to plant extinctions, because their effects either corresponded to a

decrease in plants consumption (interference, refuge) or to a positive effect on plants (recruit-

ment facilitation, decrease in mortality). Therefore, the NTIs studied here had very little

opportunities for affecting plant species diversity. Conversely, the NTIs studied had more

leverage on intermediate and higher trophic levels where species did not all persist in webs

with trophic interactions only, and where they could therefore either increase or decrease spe-

cies diversity. Regarding biomass, effects seemed to first affect basal species but then climb up

the food web to eventually affect the top predators more strongly (see S1 Fig).

This first set of simulations helped us categorize the NTIs studied into ‘positive’ (i.e. benefi-

cial; recruitment facilitation) vs ‘negative’ (i.e. detrimental; interspecific predator interference,

refuge provisioning, competition for space and increase in mortality) based on their effect on

diversity.

Combined effects of the NTIs on species diversity

Next we mixed the five remaining NTIs together, with NTI intensities picked at random

within predefined ranges to study the joint effect of the NTIs considered. These predifined

ranges were chosen so that each NTI increases or decreases the diversity of the system by 2.5%

to 10% compared to the case without NTI (see Methods and Fig 1). Pre-defining these ranges

for each of the NTI taken individually allows to put all NTIs on comparable grounds.

Not unexpectedly, the effect of the presence of the NTIs depended on the relative number

of links of the different NTIs and on their intensities. When all interaction types were together

with an equal proportion of positive and negative NTIs, networks with NTIs tended to have a

smaller species diversity than networks without NTIs (Fig 2A). In other words, NTIs lead to

extinctions of species compared to simulations run with feeding interactions alone. There

were also quite a few number of cases where the net effect on diversity was null.

There was nonetheless a large fraction of cases where NTIs tended to enhance species diver-

sity; these were clearly cases where beneficial NTIs were present and strong (orange and red

areas on Fig 2B). It was noteworthy that the NTI values were all chosen at random for each of

the simulations, so all combinations of intensity values were possible and present across
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simulations, but our results showed that positive effects of NTIs on diversity always happened

when the beneficial NTI (recruitment facilitation) was strong while the detrimental NTIs were

weaker.

Now fixing the intensities of all NTI links to their maximum value (corresponding to a 10%

effect on diversity ratio; see Fig 1) and focusing on their relative abundance, we found that a

greater number of recruitment facilitation links tend to favor positive effects on diversity while

increasing the number of interference, refuge or competitive links pushed toward negative

effects on diversity (S3 Fig).

Combined effects of NTIs on the Biodiversity-Ecosystem functioning
relationship

How did these effects on species diversity translate into community functioning? Using the

previous simulations where NTI intensities were picked at random, we found that both in

food webs (i.e. in ecological networks without NTIs) and in ecological networks with NTIs, the

relationship between species diversity and biomass at steady state was positive (Fig 3A and 3B;

this was also the case for production: see S4 Fig)Strikingly, in presence of NTIs, the relation-

ship was significantly stronger than in their absence (ANCOVA p-value<1e-16; comparing

slopes in Fig 3A and 3B). We checked that this result was robust to changes in the value of

major parameters of the model (namely the Hill exponent which determines the shape of the

functional response, the parameter expo which determines how species body mass depends on

their trophic level, and the capture coefficient a0 of consumers; S5 Fig).

Plotting the biomass ratio (i.e. the variation in biomass with NTIs compared to without

NTIs) as a function of the species diversity ratio suggested that when NTIs contributed to a

gain in species, this generally translated into a gain in biomass as well (Fig 3C). Actually, net-

works with NTIs tended to gain biomass (compared to networks without NTIs) even when

there was no gain (or even a weak loss) in diversity (see boxes at diversity ratios of -0.1 and 0

in Fig 3C).When there was a small loss of diversity in presence of NTI (-0.1–0), the remaining

species took advantage of these extinctions and gained biomass. When there was a gain in spe-

cies diversity compared to the case without NTIs, this was often happening because of the pres-

ence of beneficial NTIs (Fig 2B), and those beneficial links lead to a considerable increase in

biomass as well. There was, however, a large variability around these trends due to the fact that

each simulation corresponded to a different combination of NTI intensities.

Discussion

Using a bioenergetic model in which six types of NTIs were incorporated, we found that these

NTIs in isolation and jointly affected significantly species diversity and community function-

ing (biomass and production), consistently with previous studies addressing the role of the

diversity of interaction types in module or network contexts [3, 10, 17–20, 23].

Overall, when taken together and with a balanced number of beneficial and detrimental

interactions (as defined by their individual effects on diversity), the presence of NTIs tended to

have a slightly negative effect on species diversity. This is in agreement with Goudard and Lor-

eau [18] who studied NTIs that are modifications of feeding links; with equal numbers of posi-

tive and negative effects, they found a decrease in the total number of species when NTIs are

incorporated. In our case, we did not expect this result since the range of NTI intensities

spanned was selected such that each interaction type had equivalent effects on diversity when

taken individually. Yet, despite controlling for both the number and the intensities of NTIs,

the joint effect of the NTIs, when simultaneously incorporated in the model, tended to be neg-

ative for the species diversity of the resulting communities. It is noteworthy that the only
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beneficial NTI studied in this model, recruitment facilitation, operates on a single trophic

level, namely the plants. When considered alone (i.e. without any other NTI), we showed that

the positive effect of recruitment facilitation on diversity of the entire networks was entirely

due to indirect effects on consumer species (trophic level> 2, S2 Fig). Thus, the negative joint

effect of NTIs on diversity suggests that recruitment facilitation has less leverage on diversity

than the other NTIs, and more specifically, that the fact that its positive effect on diversity

comes about only by indirectly affecting species on higher trophic levels, does not allow it to

compensate for the more direct negative diversity effects of some of the detrimental NTIs.

Surprisingly, we found interference between predators to have a negative impact on diver-

sity, which contrasts with other studies reporting stabilizing effects on population dynamics

and positive effects on diversity [12, 49, 50] when interference is included via a Beddington-

DeAngelis functional response [51, 52]. However, these studies included interference either as

a purely intra-specific effect or assumed that intra-specific interference was stronger than

inter-specific interference. Here, intra-specific interference was present in all simulations at a

fixed value, and our aim was to study the effect of changes in the intensity of inter-specific

interference. In this sense, our result that interference reduces diversity is reflecting classic

results from competition theory, namely that competition is destabilizing if it is stronger

between species than within species [53]. As interference was only included for predators that

are already competing for at least one common prey species, the decline in diversity can be

attributed to an increased effect of the competitive exclusion principle [54]. It has to be noted,

however, that the complex network structure of trophic and non-trophic interactions provides

a plethora of niches, which reduces the direct applicability of this principle [13].

Interestingly, we found that NTIs affected the relationship between diversity and function-

ing, and this result seems to be robust to changes in the value of key parameters of our model.

Despite the array of possible effects from the NTIs, individually and combined, the relation-

ship between species diversity and biomass was found to be significantly stronger in networks

with NTIs than in networks without them. Again, this was not necessarily expected since simu-

lations were run with all NTIs together, whose intensity values were picked at random in a

range such that their effects on diversity was controlled; we could therefore have expected, e.g.

compensatory or negative effects since most of the NTIs studied here tended to have negative

effects on diversity (Fig 1). The effect of NTIs on the slope of the diversity-biomass relationship

means that when species-rich networks gain even more species, that goes with a disproportion-

ately higher gain in biomass in the presence than in the absence of NTIs. This also means that,

conversely, species-poor communities lose more biomass with additional species loss with

than without NTI. This is due to the fact that species-rich communities are communities in

which beneficial interactions are present and strong, while species-poor communities are

communities where detrimental NTIs operate. This result is interesting in that it suggests that

species loss may have stronger consequences on community functioning than expected if

ignoring non-feeding interactions. Further work is needed to see if this result extends to other

models as well as to real ecosystems.

Of course, our study presents a number of limitations. The strongest NTIs studied here,

namely competition for space and facilitation for recruitment, both affect mainly plants in our

model. It is therefore unclear whether these NTI types appear to exert stronger effects because

plants are the affected species. This could be a topic of further investigations.

Moreover, we have focused on a selection of six NTIs that are the major ones found to

occur in the Chilean web [10, 22], but other interaction types not present in this data set are

known to be frequent and important in nature. Examples include parasitism, effects on

resource availability, plant dispersal or animal movement. Further work could introduce these

other interactions in a single framework.
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We also assumed here the intensity of the interactions between pairs of species to be con-

stant through time. Some interactions may however be context-dependent (beyond the bio-

mass or abundance of other species). For example, adaptive inducible defenses are a form of

phenotypic plasticity that affects the strength of predator-prey interactions [55]. Changes in

morphological, behavioral, or life-historical traits in response to chemical, mechanical or

visual signals from predators have been reported in the literature for a number of organisms

[56]. These responses can moreover occur with a lag, given that the expression of defenses may

involve considerable time, relative to the organisms life-cycle [57]. The intensity, and even the

type of interactions, could also change with e.g. changes in abiotic factors such as climate.

We have no information regarding the relative importance or intensities of the different

interaction types. We proposed a way of putting all interaction types on equal footing regard-

ing their effect on species diversity. This is however a debatable choice—we could for example

have chosen to make NTIs comparable regarding their effect on biomass. In nature, it is likely

that interaction intensities are not equivalent and that some of them are much stronger than

others. Making progress along these lines requires experimental work aiming at quantifying

different interactions types, which involves a number of challenges [1].

In this study, NTIs were plugged in the food web randomly although with a number of con-

straints based on our knowledge of the Chilean web [10, 22]. We did not explicitly investigate

the role of the structure of the NTI network, despite the fact that previous studies have sug-

gested that it might play an important role [10, 58]. This remains a difficult task since it can be

necessary to take into account the dependency between the structure of the different layers

(e.g. NTI types, as observed in [10]); however this is a promising avenue of future research.

Previous studies have used the community matrix approach focused on net effects between

species to investigate the role of the diversity of interaction types [7, 20]. This approach has a

number of advantages, including the fact that it allows analytical predictions and generaliza-

tions. Here, we chose to focus on a more mechanistic approach, starting from the mechanism

of the NTIs without assuming their net effect. For example, we had initially assumed that ref-

uge provisioning would be a beneficial NTI, meaning that it would have a positive effect on

species diversity. We however found the opposite in the model simulations—indeed, refuge

provisioning protects prey from their consumers but it also deprives consumers from their

resource and it seems that this latter effect has stronger consequences at the community scale.

In a dynamical model, Gross [19] showed that interspecific facilitation among plants allowed

the maintenance of species diversity despite the fact that the net effects measured among plants

remained negative. These results highlight that insights gained from the analysis of few-species

systems cannot be easily translated into the dynamics of complex communities. Focusing on

the net effects between species may conceal important coexistence mechanisms when species

simultaneously engage in both detrimental and beneficial interactions and stresses the impor-

tance of working with mechanistic models to better understand the consequences of NTIs for

community diversity and functioning. Nonetheless, a more mechanistic approach implies, for

each of the NTI identified, to model it in one specific way, matching our knowledge of how

these interactions operate in nature (in our case here, having the Chilean web in mind [10,

22]). For example, regarding refuge provisioning, alternative ways of how it could affect tro-

phic interactions are certainly conceivable. It could increase the Hill coefficient of all predators

of the protected prey, e.g. to mimic the fact that prey at low density would become better pro-

tected, but if prey density is too high, the predators would still see them. This could have a dif-

ferent effect on diversity than found here.

Our study is a step toward getting a better understanding of the dynamics of multiplex eco-

logical networks (i.e. including several interaction types among a set of species), and more pre-

cisely of the role of NTIs on community functioning. Our model results suggest that, when
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simultaneously included, and assembled according to simple rules reflecting observations in

nature, NTIs tend to mechanically strengthen the BEF, making the dependency between the

number of species present in the community and the functioning of this community (in terms

of biomass or production) stronger. This result has important consequences for predicting the

consequences of species loss on community functioning.

Supporting information

S1 Fig. Relative change in species diversity (left column) and biomass (right column) per

trophic level through time for 500 simulations for the main NTI types (5 first rows) and

the NTI all together (6th row). Each simulation starts with 600 trophic links and 100 non-

trophic links. Note that on the x-axis, time is on a log-scale. Green: TL = 1, yellow: TL between

2 and 3, red: TL> 3. TL refers to the prey-averaged trophic level measured as one plus the

mean trophic level of all the species resources, where the trophic level of a resource is the

chain length from the resource to a basal species [59]. Species whose TL is 1 are primary pro-

ducers.

(PDF)

S2 Fig. Relative change in each of the measured variables (3 columns) as a function of the

intensity of the NTI by trophic level, for each NTI type (6 rows). Note that each NTI has its

own y-axis. Green: TL = 1, yellow: TL between 2 and 3, red: TL> 3. TL refers to the prey-aver-

aged trophic level measured as one plus the mean trophic level of all the species resources,

where the trophic level of a resource is the chain length from the resource to a basal species

[59]. Species whose TL is 1 are primary producers. Note that the y-axis differ for the different

NTIs.

(PDF)

S3 Fig. Frequency of simulations leading to a given diversity ratio, i.e. variation in species

diversity in the case with compared to without NTI links. (to match the term defined in the

Methods). The intensity of each NTI type is now fixed and we vary the relative number of links

of different NTI types when put together. The left column correspond to situations where there

are twice more detrimental than beneficial links, the middle column shows results with equal

number of beneficial and detrimental links, and the right column correspond to cases where

there are twice more beneficial than detrimental links. The panels correspond to different com-

binations of NTIs: I for interference, E for recruitment facilitation, N for negative effects on

mortality, R for refuge, C for competition. At fixed intensity and with equal number of links,

detrimental links tend to take over (slightly). There are configurations of relative abundance of

the different types of NTIs in which positive and negative effects can balance each other.

(PDF)

S4 Fig. Changes in production as a function of species diversity in networks with NTIs.

Same as Fig 3B but for production instead of biomass. The slope obtained by linear regression

of the relationship is indicated on top of the panel.

(PDF)

S5 Fig. Sensitivity analysis of the result of Fig 3A and 3B to changes in the value of major

parameters of the model, namely the Hill coefficient, which determines the shape of the

functional response, the parameter expo which determines how species body masses

depend on their trophic level, and the capture coefficient a0 of the consumers. See Methods,

part ‘The dynamical model’, for more details about the parameters and how they contribute to
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the dynamical equations. Independently of the combinations of parameter values found, the

slope of the BEF is stronger in the presence than in the absence of NTIs.

(PDF)
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24. González-Olivares E, Ramos-Jiliberto R. Dynamic consequences of prey refuges in a simple model
system: more prey, fewer predators and enhanced stability. Ecological Modelling. 2003; 166(1):135–
146. https://doi.org/10.1016/S0304-3800(03)00131-5
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37. Thébault E, Loreau M. Food-web constraints on biodiversity–ecosystem functioning relationships. Pro-
ceedings of the National Academy of Sciences. 2003; 100(25):14949–14954. https://doi.org/10.1073/
pnas.2434847100
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The effects of functional diversity 
on biomass production, variability, 
and resilience of ecosystem 
functions in a tritrophic system
Ruben Ceulemans, Ursula Gaedke, Toni Klauschies & Christian Guill  

Diverse communities can adjust their trait composition to altered environmental conditions, which 
may strongly influence their dynamics. Previous studies of trait-based models mainly considered 
only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we 
investigated how the addition of trait variation to each trophic level influences population and 
community dynamics in a tritrophic model. Examining the phase relationships between species of 
adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steady-
state situations. Phase relationships within a trophic level highlight compensatory dynamical patterns 
between functionally different species, which are responsible for dampening the community temporal 
variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with 
two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high 
biomass production at the top level. However, adding trait variation increased the basin of attraction of 
the high-production state, and decreased the likelihood of a critical transition from the high- to the low-
production state with no apparent early warning signals. Hence, our study shows that trait variation 
enhances resource use efficiency, production, stability, and resilience of entire food webs.

Functional diversity has proven to be important for linking community structure to ecosystem functions such 
as biomass production and resource use efficiency1–4. Our understanding of the multifaceted impact of func-
tional diversity on ecosystem functioning, and on the dynamics of populations and communities has been greatly 
advanced by adopting a trait-based point of view5,6. In particular, functional traits link morphological, physio-
logical or phenological features of a species to a certain community or ecosystem function7. A prevalent example 
is simply body size, which is related to several functions such as growth (larger organisms tend to grow slower), 
prey preference (predators tend to be larger than their prey), or nutrient uptake (larger cells have higher nutrient 
demands)8–11. Trait-based models of simple food web modules have facilitated detailed mechanistic understand-
ing of dynamics observed in the laboratory12 and in the field13. For example, observed anti-phase predator-prey 
cycles between zooplankton and algae have been attributed to the co-occurrence of fast-growing undefended and 
slow growing, well defended prey phenotypes14,15.

However, such trait-based models have mainly been restricted to describing trait variation on one or two 
trophic levels13,16–18. Likewise, only up until recently, empirical studies on functional diversity have been limited 
to considering trait variation in only autotrophs (plants or algae)19,20, or both autotrophs and herbivores21,22, 
with few exceptions23. This strongly contrasts with the fact that natural food webs are in general complex mul-
titrophic networks24. Focusing only on direct, bitrophic predator-prey interactions neglects the intricate effects 
of more complex, partly indirect interactions spanning multiple trophic levels, such as trophic cascades25. These 
multi-trophic effects may be very important factors affecting the relevant ecosystem functions26–28. For instance, 
the total number of trophic levels may strongly influence the efficiency of nutrient exploitation29. In addition, as 
predation is an important factor in many food webs, trait variation on the predator level is expected to have an 
important influence on ecosystem functioning4,20,30. Hence, including additional trophic levels with functional 
diversity is a very natural step towards improving the accuracy and descriptive power of trait-based models.
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We developed a tritrophic model to study the effects of trait variation at all trophic levels on food web dynam-
ics. Particularly, the dynamics of a simple tritrophic linear food chain will be compared to a tritrophic food web 
where prey species are either defended or undefended, and predator species are either selective or non-selective 
feeders. Trade-offs between these traits are explicitly built in such that defended prey have a lower growth rate, 
and selective feeders have a lower half-saturation constant to allow for efficient feeding at low prey densities13,31,32. 
Our model structure allows for a gradual increase of the trait differences between the species at each trophic level, 
from a simple linear chain up to a fully separated food web with maximal trait differences (Fig. 1). As the trait 
differences increase, the species will fulfill increasingly different functions; in this way, we are able to link trait 
differences to functional diversity.

We use the tritrophic model to investigate how an increasing degree of trait variation affects:

•	 the production of the system;
•	 the efficiency of the energy transfer towards the higher trophic levels;
•	 the temporal biomass variability at the population and community level; and
•	 the dynamic properties and the resilience of alternative stable system states.

Our results provide theoretical evidence that trait variation has a significant impact on all of these properties. 
To the best of our knowledge, we present the first systematic, multi-trophic study which mechanistically explains 
such patterns and explicitly discusses their relevance to ecosystem functions and stability.

Methods
We developed a tritrophic model where basal species are consumed by intermediate species, which in turn are 
consumed by top species. The species biomass densities are denoted by B, I, and T, respectively. In addition, the 
uptake of a limiting nutrient with concentration N (in this case nitrogen) by the basal species is modeled explic-
itly. We assume a chemostat environment, which causes all nutrients and biomass of species to be washed out at 
an equal rate, δ, the dilution rate. The washed out volume is replaced by new medium rich in nutrients.

Model equations. As in13,33, we include two relevant functional traits. The prey species B and I may be 
defended against predation: specifically, there will be defended (d) and undefended (u) species. Investing in a 
defense strategy requires sacrificing a certain amount of resources which could have otherwise been put into 
growth. Hence, the defended species have a lower growth rate than the undefended species, but are rewarded 
by being insusceptible to certain consumers. The consumer species I and T are able to specialize feeding on 
a certain prey species, leading to selective (s) and non-selective (n) species. Here, the non-selective consumer 
species consume all species on the trophic level below. In contrast, the selective species are only able to consume 
the undefended prey species, but they are able to exploit low food densities at a higher rate, reflected in a lower 
half-saturation constant.

Figure 1. (a) A simple linear tritrophic chain, where nutrients N are taken up by a basal species B, which is 
grazed by an intermediate species I, which in turn is consumed by a top species T. (b) Gradually introducing 
trait variation, where species can be undefended (u) or defended (d) against predators, and/or selective (s) or 
non-selective (n) consumers, starting from a linear chain. (c) Maximally trait-separated food web model. The 
basal and top species have only one trait, but the intermediate species have two. The thickness of the arrows 
indicates the intensity of the trophic interaction, reflecting that selective consumers can exploit their limited 
resources spectrum more efficiently. (d) Schematic shape of the trade-off curves for the top species (top row), 
intermediate species (middle row), and basal species (bottom row). The solid circles indicate that for ∆ = 0, all 
species on a given trophic level have the same trait values, whereas the open circles demonstrate how the trait 
values between the species differ as ∆ is increased to one.
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Representing each possible trait combination on all trophic levels by one species leads to a food web with two 
basal species, four intermediate species and two top species (Fig. 1c). In order to write down the equations com-
pactly, the following equivalence is explicitly stated:

≡ ≡ ≡ ≡B B B B I I I I, , , (1)
u

1
d

2 s
u

1 s
d

2
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In their most general form, the equations used have the following shape:
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with ∈i {1, 2}, ∈j {1, 2, 3, 4}, where N0 denotes the incoming nutrient concentration. Following typical exper-
imental conditions, we assume nitrogen as the limiting nutrient (N). Hence, the nutrients are measured in nitro-
gen concentration, as compared to carbon for biomass, therefore, the nitrogen-to-carbon weight ratio (cN/cC) is 
required to scale the basal (Bi) growth terms. Moreover, the basal growth rate ri is described by a Monod func-
tion34,35, with maximum growth rate ′r i and a nutrient-uptake half-saturation constant hN. The intermediate and 
top species have a generalized Holling-type-III functional response, with maximum growth rates ′g j and γ′i, 
half-saturation constants M and µ, and Hill coefficients h and η, respectively36,37. This means:
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such that e.g. Mu,s indicates the half saturation constant of the undefended species being grazed by the selective 
species, etc.

Finally, our model includes a parameter, ∆, which explicitly controls the species’ trait values. Abstract traits 
such as defense and selectivity are linked to concrete and measurable parameters describing the species’ interac-
tions. For the basal species, their maximal growth rate ′r i is linked to their position on the defense axis (Fig. 1d). 
The intermediate species have two trait values: defense is again linked to their maximal growth rate ⋅ ′e g j, and 
the half saturation constant Mi is determined by their degree of selectivity; both of these traits affect the overall 
growth rate of the intermediate consumers. The top species have only one trait, selectivity, which is linked to their 
half saturation constant µi. As will be shown below, the equations are parametrized in a way such that for ∆ = 0 
the linear chain system, where all species per trophic level are functionally identical, will be described (Fig. 1a). 
As ∆ is increased, the system changes in a continuous way, where some prey species gradually become more and 
more defended (Fig. 1b), such that they can be preyed on less and less by the selective species. In addition, the 
selective species are gradually able to feed more efficiently on the undefended species. Finally, for ∆ = 1 the trait 
differences are maximal, as is the case in Fig. 1c: the selective species do not feed on the defended prey anymore.
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The parameter values are set to vary logarithmically with ∆. This implies that parameter changes occur pro-
portional to the starting value in both directions, since ′r i and ′g i appear as linear factors in the differential equa-
tions. For consistency, the elements of p and φ are also varied logarithmically. Concretely, this means that:

θ θ θ θ∆ = + ∆ ⋅ −log[ ( )] log (log log ) (8)0 1 0

where θ is ′ ′ ′ ′r r g g, , ,u d u d or any of pij or φji. In this way, ∆ = 0 implies θ = θ0 such that all the trait values are equal 
in the following manner:

′ ∆ = = ′ = ′ ∆ =r r r( 0) ( 0), (9)u 0 d

′ ∆ = = ′ = ′ ∆ =g g g( 0) ( 0), (10)u 0 d

∆ = = = ∆ =
M M M

1
( 0)

1 1
( 0),

(11)u,s 0 u,n

and similarly for the other elements of p or φ. We define the parameter values θ0 of the ∆ = 0 system as arithmetic 
averages of the extreme values θ1 in the ∆ = 1 system, on a logarithmic scale, e.g.:

′ =
′ ∆ = + ′ ∆ =

r
r r

log
log[ ( 1)] log[ ( 1)]

2
,

(12)0
d u

and similarly for the other parameters. These extreme values are shown in Table 1.
As the logarithm of 0 is undefined, this requires the elements of p and φ related to the defended-selective spe-

cies’ interactions for ∆ = 1 to be nonzero. In this case 10−4 was taken, which is low enough not to affect our results 
(see Fig. A1, Appendix A). Note also that the set of 9 equations in equation (3), when the species on each trophic 
level are exactly equal (∆ = 0), is mathematically equivalent to a linear chain system with 4 equations, up to a 
slight parameter transformation. Specifically, the 9-equation food web system corresponds to a 4-equation food 

chain by setting →
−M M2 h h( 1)/  and µ µ→

−4 h h( 1)/ . For details of the derivation, see Appendix B.

Model parametrization and analysis. In order to decrease the number of free parameters, and simultane-
ously increase the realism of the model, the species’ growth rates were scaled allometrically to their body mass10,38:

=














λ
m

m

intermediate growth rate

basal growth rate
,

(13)

I

B

with body masses m and the exponent λ given typical for planktonic systems39 (Table 1). The same relationship 
holds true for the ratio between the maximum growth rates of the intermediate and the top species.

This model was developed as a chemostat model, with an eye towards potential experimental application. 
Chemostat experiments have been very successful in identifying and understanding ecological and evolution-
ary interactions of planktonic40, and many other microbiological systems41. In such experiments, many factors 
influencing dynamics in question, such as nutrient supply, light supply, temperature, etc., are kept constant and/
or closely monitored. This procedure greatly facilitates observation of the interactions of interest between spe-
cies in the chemostat. For this reason, extra care was taken to have empirically motivated and realistic values of 

Body mass ratio between adjacent trophic levels mI/mB = mT/mI = 103

Allometric scaling exponent λ = −0.15

Inflow nutrient concentration N0 = 1120 µgN/l

Dilution rate δ = 0.055

Nutrient half-saturation const. of B hn = 10 µgN/l

Nitrogen to carbon ratio of B cN/cC ≈ 0.175

Bu max. growth rate ′r 1 = 1/day

Bd max. growth rate ′r 2 = 0.66/day

I conversion efficiency e = 0.33

Iu max. grazing rate ′g 1,3 ≈ 1.08/day

Id max. grazing rate ′g 2,4 ≈ 0.70/day

Is half-saturation const. M1,2 = 300 µgC/l

In half-saturation const. M3,4 = 600 µgC/l

T conversion efficiency ε = 0.33

T max. grazing rate γ′1,2 ≈ 0.38/day

Ts half-saturation const. µ1 = M1,2 = 300 µgC/l

Tn half-saturation const. µ2 = M3,4 = 600 µgC/l

Table 1. Standard parameter values used in this study when the trait differences are maximal, i.e., ∆ = 1.
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the remaining model parameter values (Table 1). Specifically, the parameter values we use are representative for 
planktonic chemostats. However, this does not mean that our results apply only to planktonic systems. In fact, as 
we show in Appendix A, similar results are obtained when the model parametrization is more adapted towards 
terrestrial food webs, for example.

To get a better understanding of how much certain values of ∆ sets the species on the three trophic levels 
apart, we here consider a few exemplary cases. At ∆ = 0, the varied parameters are identical (and so are the spe-
cies), while at ∆ = 0.2, maximal growth and grazing rates of the undefended species are 9% higher than those of 
defended species, and half saturation constants of non-selective species are 15% higher than selective species. At 
∆ = 0.5, the differences are 23% and 42%, respectively; at ∆ = 1 they are 50 and 100%.

For simplicity and to reduce the dimensionality of the system somewhat, in the rest of the text it will be 
assumed that

η µ= = .h M, and (14)

Hence, h will denote the Hill exponent, and M the half-saturation constant, of the functional response between 
both the first and the second, and between the second and the third trophic level. Additional narrowing of param-
eter ranges was achieved by requiring coexistence of the species in both the chain and the maximally separated 
food web. More information on the size of the range for which all species are able to coexist, as well as generaliza-
tions of our results for different model structures can be found in Appendix A.

To characterize the differences between the different attractors, the different phase relationships between 
predator-prey pairs were investigated. These phase relationships were obtained by calculating the Discrete Fourier 
Transform (DFT) of the simulated time series. Due to the non-sinusoid shape of the biomass oscillations, a signal 
with only a single frequency will generate an infinite amount of peaks in the frequency spectrum. These are neces-
sarily multiples of the original frequency f, and the height of the peaks will scale as 1/f42. This means they are easily 
identified in the frequency spectra when shown on a log-scale, by the linear decay in peak height.

The solutions of the differential equations presented were obtained numerically in C using the SUNDIALS 
CVODE solver43, with relative and absolute tolerances of 10−10. Output data were studied using Python and sev-
eral Python packages; in particular NumPy, SciPy and Matplotlib44,45.

Results
Firstly, we compare the biomass dynamics of the linear chain to the dynamics of the maximally trait-separated 
food web, where trait differences within each trophic level are maximal. Secondly, we study certain properties of 
the system, such as the temporal variability of population and community biomasses, and the relative abundances 
of species, while gradually increasing the amount of standing trait variation at each trophic level from a linear 
food chain to the maximally trait-separated food web.

The amount of trait variation is described by ∆ ranging continuously from 0 to 1. When ∆ = 0 we describe 
the linear chain without trait variation, and when ∆ = 1 we describe the maximally trait-separated food web. 
This fully separated food web consists of defended and undefended prey species, which are being preyed upon by 
non-selective and/or selective predator species (Fig. 1c). The benefits and costs of the different offense-defense 
strategies are linked to each other through predefined trade-offs (see Methods). The defended species have a 
lower growth rate than the undefended species, but in turn, they are not preyed upon by the selective species 
of the next trophic level in the fully separated web. Similarly, the selective species, while unable to prey on the 
defended species, are able to graze the undefended species more efficiently at low prey concentrations than their 
non-selective counterparts.

Our results are first summarized schematically in Fig. 2, subsequent mechanistic details are presented in the 
sections and figures below. We observe two alternative stable states with low vs. high total production (State 1 and 
2 in Fig. 2) in both the linear chain (low trait variation) and the maximally separated food web (high trait varia-
tion). In the low-production state, the high mean concentration of free nutrients corresponds to a low amount of 
total biomass and consequently, a low total production. In the high-production state, in contrast, the low mean 
nutrient concentration implies that most of the nutrients are stored in the biomass which implies a high total 
production. Note that at equilibrium, the total amount of nutrients in the system is always constant because the 
chemostat model’s dilution rate δ is constant for all species.

In the food chain without trait variation (left part of the biomass pyramids in Fig. 2), the population-level 
biomass dynamics for the low-production state (Fig. 3a) exhibit pronounced predator-prey cycles, while the 
high-production state exhibits slower cycles with lower amplitudes (Fig. 3b). The respective phase relationships 
of these oscillations (right part in Figs 2 and 3c,d) may inform about the ecological mechanism behind the two 
different states (for details, see section 3.1). In the low-production state, fast cycles with high amplitudes occur 
due to the strong coupling between adjacent trophic levels. Such a strong interaction between predators and 
their prey is indicated by the quarter-cycle phase lags (henceforth referred to as ¼-lag cycles) (Fig. 3c). In the 
high-production state the top and intermediate level still exhibit ¼-lag cycles, but the phase difference between 
the intermediate and basal level is significantly larger (Fig. 3d). This offset in the phase-relationship indicates that 
the top-down control over the intermediate level is so strong in the high-production state that the intermediate 
level’s dynamics are less closely coupled to the basal level than in the low-production state. The basal level is then 
free to fully exploit the available nutrients.

The decoupling of the intermediate and basal level results in a lower temporal variability, especially at the 
basal level, and hence, reduces times of strong basal suppression during which the nutrients can almost reach 
their capacity as observed in the low-production state. In the high-production state, the overall higher primary 
production combined with the lower temporal variability between the basal and the intermediate level enhances 
the energy transfer through the food chain and results in a top-heavy biomass pyramid.
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When the food chain becomes a food web by adding trait variation (right part of the biomass pyramids in 
Fig. 2), the biomass dynamics of the low-production (Fig. 4a) and high-production state (Fig. 4b) as well as their 
respective phase-relationships (Fig. 4c–f) become more complex because a slow and a fast timescale underlie the 
oscillations (see Section 3.1 for details). Information regarding intensity of top-down control is only deduced 
from the phase-relationships of the oscillatory mode that explains most of the observed variation, i.e. the fast 
timescale of the low-production state (Fig. 4d) and the slow timescale of the high-production state (Fig. 4e). 
Similar to the food chain without trait variation, the strong top-down control by the top level and subsequently, 
the decoupling of the intermediate and basal level in the high production state again results in lower temporal 
variability, a temporally more balanced nutrient use, and a more efficient energy transfer towards the top level. 
Importantly, the high-production state becomes more likely than the low-production state with increasing trait 

Figure 2. Schematic overview of our results. (a) The model system (with B basal species, I intermediate 
consumers and T top predators) always exhibits two alternative stable states, State 1 (low-production) and 2 
(high-production), for both low and high amounts of trait variation. As trait variation is added, the system tends 
toward the high-production state with the top-heavy biomass pyramid (solidly drawn states have a larger basin 
of attraction than grayed out states). (b) The phase differences between predators and their prey inform about 
the intensity of top-down control in the system as indicated by arrow width in (a), i.e. ¼-lag cycles indicate 
strong coupling between predator and prey. (c) Within trophic level out-of-phase cycles indicate compensatory 
dynamical patterns, where the different species exploit different temporal niches, and hence, reduce the 
community temporal variability.

Figure 3. Biomass and nutrient dynamics on the two different states for the tritrophic chain for h = 1.1 (=η), 
and their corresponding phase relationships. (N = nutrients, B = basal species, I = intermediate species and 
T = top species). The relative phases of the low-production state shown in (a) (mean nutrient level ≈ 250 μgN/l) 
are plotted in panel (c). The phases of the high-production state shown in (b) (mean nutrient level ≈ 10 μgN/l) 
are plotted in panel (d). In both cases the phases relative to the top species are shown.
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variation, i.e., its basin of attraction increases, making it more resilient against external disturbances (for details, 
see Fig. 5 and Section 3.2).

As trait variation (Δ) increases, selective and non-selective consumers at the top level exploit different tem-
poral niches and force the intermediate level to split up into two distinct groups comprising the defended and 
the undefended species, respectively. As both groups include both selective and non-selective consumers, this 
further weakens the interaction between the intermediate and basal levels, strengthening the aforementioned 
mechanisms that stabilize the high-production state. Notably, the mean population biomasses stay relatively con-
stant as trait variation increases (cf. Fig. 6c,d), while the community temporal variability decreases (Fig. 6e,f, gray 
lines). This effect could also be predicted from the phase relationship diagrams, which show that with increasing 

Figure 4. The dynamics of the maximally separated food web (see Fig. 1c for structure and species names), for 
h = 1.05 (=η). (a,b) Show the biomass time series on the low- and high-production state, respectively. The phase 
relationships (relative to n ) of the two main temporal modes on the states are shown in panels (c,e) (slow) and 
(d,f) (fast). (See Fig. 5 and its explanation in the text for why the chosen value of h = 1.05 is different from the 
one used to compare the two states on the chain in Fig. 3).

Figure 5. Relative frequency of reaching the high-production state, as a function of the trait difference Δ and 
the Hill-exponents η=h . Each of the points in the 101 × 85 grid shows the relative frequency of reaching the 
high-production state, sampling 200 random initial conditions. The black dashed line shows the approximate 
location of the boundary crisis of the high-production state. The low-production attractor also undergoes a 
boundary crisis, the approximate location of which is indicated by the white dashed line.
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trait variation, competing species within the same trophic level move out-of-phase with each other (Fig. 4c,e,f). 
Such out-of-phase cycles indicate compensatory dynamical patterns with potentially high amplitudes at the pop-
ulation level. However, because the different species are able to exploit different temporal niches, the community 
temporal variability is kept low.

In summary, adding trait variation safeguards the high-production state which is characterized by a high 
top-level biomass resulting from an efficient transfer of energy towards the higher trophic levels, and low tem-
poral variability due to weak coupling between the intermediate and basal levels and prominent compensatory 
dynamics within the lower trophic levels. Contrarily, losing trait variation increases the risk of an irreversible 
transition to the low-production state, which is characterized by a lower top-level biomass resulting from the less 
efficient transfer of energy towards the higher trophic levels, and higher temporal variability. With trait variation 
added, primary production increases from the low- to the high production state by a factor of 1.5 and the effi-
ciency of the energy transfer towards the top level increases by a factor of 2 (See Table C1 in Appendix C). Hence, 
adding trait variation results in a more productive and energy-efficient food web.

More details about the above-mentioned results are presented in the respective sections below.

Phase relationships as a way to identify underlying mechanisms. In order to understand how 
to use the phase relationships between different populations of a complex food web, such as the maximally 
trait-separated web (Fig. 1c), to uncover the mechanisms driving their dynamics, let us first look at the sim-
pler linear chain containing only three species (Fig. 1a). As mentioned above, the state shown in Fig. 3a with a 

Figure 6. Bifurcation diagrams of the defended basal species, Bd (a,b), mean biomasses (c,d), and CV (e,f) of all 
the species in the system, for the low-production (left) and the high-production (right) attractors, for h = 1.05. 
For the bifurcation diagrams of the other species see Appendix C. The CV of the selective top predator is not 
plotted for the region where it goes extinct ( Δ .⪅ ⪅0 0 1 in panel (e)). In panels (e,f), the black to gray lines 
respectively denote the CV of the first, second, and third trophic level as a whole. Note the different scales on the 
x- and y-axes.
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mean nutrient concentration of about 250 µgN/l will be called the low-production state, relative to the other state 
(Fig. 3b) which has a much lower mean nutrient concentration of around 10 µgN/l and therefore will be called 
the high-production state.

Closer inspection of the time series reveals the origin of the difference in mean free nutrient levels between the 
two states. In the low-production state (Fig. 3a) the intermediate level is able to grow to sufficiently high densities 
to graze the bottom level down significantly, despite the predation pressure imposed by the top species. Hence, the 
nutrient uptake is strongly reduced for a considerable amount of time leading to a relatively high mean nutrient 
level. Conversely, in the high-production state (Fig. 3b), the higher biomass at the top level implies a stronger 
grazing pressure on the intermediate level. The intermediate species are thus not able to grow to the density lev-
els reached on the low-production state, and in turn, do not graze the basal level down to low densities. Hence, 
the mean nutrient level is much lower. Here, we define top-down effects simply as effects arising from the terms 
linking a species to the trophic level above it, and vice-versa for bottom-up effects. In this way, increased grazing 
pressure constitutes an increase in top-down control.

Using this definition, we could conclude that the overall control exerted by the top level is higher in the 
high-production state than on the low-production state. Such an observation cannot be made as straightfor-
wardly by inspecting only the mean biomass levels, as the temporal averages of the intermediate and basal bio-
masses are quite similar in both states and thus, they do not inform about potential changes in the production at 
each level. Therefore, examining the degree of top-down or bottom-up control in the case of non-static dynamics 
requires information about the oscillations themselves.

Interestingly, the phase differences between the different trophic levels contain sufficient information to reach 
the same conclusions regarding the strength of top-down control in the two states. In the low-production state, 
the phase differences between the top and intermediate level, and intermediate and bottom level, are about a 
¼-cycle Fig. 3c), reflecting the presence of clear predator-prey oscillations, i.e., cyclic change between top-down 
and bottom-up control, between both the top and intermediate level, and the intermediate and basal level. In 
contrast, in the high-production state, the phase lag between the intermediate and basal level is significantly more 
than a ¼-cycle (Fig. 3d), indicating rather weak interactions between these two different trophic levels.

With this in mind, we now investigate the fully trait-separated food web (∆ = 1, Fig. 1c), whose dynamics are 
shown in Fig. 4a,b. Just as the linear chain, the system settles down to a stable limit cycle. While the dynamics are 
visually much more complex when compared to the linear chain, the basic properties and differences between 
the two states remain the same. However, in contrast to the chain, the discrete Fourier frequency spectra (cf. 
Appendix C, Fig. C3) reveal two distinct frequencies at substantially different timescales. Despite this increase in 
complexity, our results clearly show that the phase relationships between distinct populations of adjacent trophic 
levels provide substantial information about the regulations of trophic interactions and changes therein. The 
absence of qualitatively different interaction types (e.g., omnivory) allows us to meaningfully compare the phase 
relationship between each individual predator-prey pair in our trait-separated food web to its expected value in 
isolation12.

The low-production state of the maximally separated food web (Fig. 4a) exhibits two important timescales 
governing the overall dynamics. First, the same high-frequency oscillations as were observed for the food chain 
are present, with the ¼-lag cycles indicative of predator-prey oscillations (Fig. 4d). Second, oscillations on a 
slower timescale are found. Their phase relationships show that they arise from the trait differences between spe-
cies (Fig. 4c). Here, the top species are almost completely out of phase relative to each other. Consider first the 
selective predator Ts, which preys only on the undefended intermediate species Is

u and In
u. The phase relationship 

diagram shows that these species precede Ts by the regular ¼-lag. The same is true for Tn, which is preceded by a 
quarter-cycle by the defended intermediate species Is

d and In
d. Quarter-lag cycles are not observed between the 

basal and intermediate trophic level, which indicates that the trait differences within the top trophic level influ-
ence the intermediate level more strongly as those on the intermediate level influence the basal level. As the two 
alternating groups of defended and undefended intermediate species contain a selective and non-selective grazer 
on the basal species, they exert together approximately the same grazing pressure on both types of basal species. 
Consequently, no clear phase relationship between the intermediate and basal level is found. However, visual 
inspection combined with analysis of the Discrete Fourier Transform (DFT) spectrum (Appendix C, Fig. C3) 
shows that the high-frequency component is the dominant one, explaining most of the observed variation in the 
biomass. Hence, the biomass dynamics reflect an overall balance between top-down and bottom-up interactions 
in the low-production state, similar to the simple linear chain.

In the high-production state of the maximally separated food web (Fig. 4b), the difference in dynamics as 
compared to the linear chain is even more pronounced. The basal species exhibit a clear compensatory dynamical 
pattern, with alternating biomass peaks of defended and undefended species. While the dynamics appear highly 
irregular, the frequency spectrum shows that they are also mainly driven by two frequencies. On the lower of 
these frequencies, which explains most of the variation observed in this state, the phase relationships resemble 
those of the low frequency in the low-production state (Fig. 4e vs. 4c), with the exception of the basal species, 
which now cycle out of phase. The selective and non-selective top species also move out of phase, which leads the 
groups of defended and undefended intermediate species to behave similarly, as they each precede their respective 
main predator. As in the low-production state, no further relationship can be identified between the intermediate 
and the basal level.

However, the high frequency roughly corresponding to that of the chain also has an influential compo-
nent in the Fourier spectrum. On this frequency, the phase relationships show that the basal species also move 
out-of-phase. In contrast to the dominant lower frequency, the intermediate species are now split into two groups 
according to their main prey type. The non-selective intermediate species follow the defended basal species, 
and the selective intermediate species the undefended basal species, by a ¼-lag. As each of these two groups 
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of intermediate species contains both a defended and undefended type, no further relationship can be drawn 
between the phases of the intermediate and the top level.

In summary, the strength of top-down control across trophic levels may be inferred from the phase relation-
ships in both the linear chain and the maximally separated food web. The phase-relationships further reveal 
compensatory dynamics within trophic levels in the fully separated web.

Trait variation increases resilience of the high-production state. Recall that trait differences 
between the modeled species at each trophic level, determined by ∆ (equation (8)), can be varied continuously. 
Varying ∆ between ∆ = 0 (chain) and ∆ = 1 (maximally separated web) reveals the intermediate region between 
the two extremes considered so far.

In this intermediate region, the food web is not yet completely separated as is the case for Fig. 1c, although 
there are already trait differences between different species at each trophic level. That is, the selective predator 
species are not yet fully specialized: they are still able to prey on the defended species albeit with a lower efficiency 
than the undefended species. Accordingly, the undefended species are not fully defended against the selective 
predators. The difference in growth rates between defended and undefended species is thus gradually increased 
to its maximum value, which is obtained when ∆ = 1. In this way the trade-offs between defense and growth rate, 
and between selectivity and prey grazing efficiency, are explicitly built into the model.

To investigate the effect of trait variation on the likelihood of the system adopting either of the two alternative 
stable states, we determined the size of the basin of attraction of the high-production state. Figure 5 shows the 
relative frequency of a random initial value falling in this basin of attraction, as ∆ is varied. The random initial 
values were sampled from the set of all potentially accessible biomass configurations of the chemostat system, i.e., 
the total carbon content in the system does not exceed the maximum possible carbon content attainable by the 
incoming nutrient concentration N0.

The region of intermediate frequency values confirms that the bistability is an important aspect of the system. 
The typical behavior when varying ∆ from 0 to 1 is an increasing probability of reaching the high-production 
state. Furthermore, the graph shows an important dependency on the predator-prey functional responses’ 
Hill coefficient h: increasing the exponent also increases the probability of reaching the high-production state. 
Investigating the effect of other model parameters on the presence of bistability reveals that it is quite common 
for this type of model structure, and that the trends presented here are not limited to this particular part of the 
parameter space. For details, see Appendix A.

Over the whole range of ∆, there is a very sharp transition between the region where only the high-production 
state exists (dark blue), and the region where both states exist, indicated by the white dashed line (Fig. 5). Notably, 
the border decreases steeply as the trait difference ∆ is increased, indicating the much lower dependence on 
low-density grazing suppression for higher amounts of standing trait variation. The sharp border between the 
two regions is an indication that the low-production state undergoes a catastrophic bifurcation, where it sud-
denly disappears. Similar behavior is observed for the high-production state, indicated by the black dashed line. 
This transition is of particular ecological interest as it implies the sudden disappearance of the high-production, 
low-temporally-variable state. The region for h < 1.04 was not considered, as the amount of extinctions was too 
high. However, the graph indicates that the probability of reaching the high-production state decreases further.

Dynamical properties of the alternative stable states under gradual changes in trait variation.  
Consider now h = 1.05 as a representative value catching the most complex region in Fig. 5, to study the possible 
effects of varying ∆ on the system’s dynamics. In this case, the low-production state exists over the whole range 
of ∆, its bifurcation diagram for the defended basal species Bd is shown in Fig. 6a. The qualitative features of 
the diagram are representative for the other species in the network, whose bifurcation diagrams are shown in 
Appendix C, Figs. C1 and C2.

For ∆ = 0, the oscillations are simple, in the sense that they are governed by a single timescale and have a 
constant amplitude, as the maxima and respectively minima each fall on the same position. As ∆ increases, this 
situation remains unchanged, up until the species become different enough for the second timescale to emerge, in 
which they exhibit a compensatory dynamical pattern. This explains the variation of the values of the extrema as 
the two timescales interact destructively and constructively.

The mean biomasses of the species (Fig. 6c) reveal that the selective top predator goes extinct for low values of 
∆. In this case, the species are too similar to stably coexist due to a lack of niche differences, and the non-selective 
predator outcompetes the selective species. However, it quickly recovers as ∆ is increased and the species become 
more different. While this event causes some disturbances in the mean biomasses of the other species, outside of 
this range the values are more or less constant.

Disregarding the initial region of ∆ where the selective top predator goes extinct, all species’ CV exhibit a 
gradual decrease as ∆ is increased, up to the point where the second timescale enters the system (Fig. 6e). At this 
point, a sharp increase is observed as the complexity is enhanced by the interaction of the two timescales. The 
black to gray lines, depicting the CV of the biomasses at each trophic level as a whole, show that the sharp increase 
is not present on the trophic-level-scale. Hence, the increase in CV for each of the species can be solely attributed 
to the introduction of the second, slower timescale. As discussed above, species with different traits may move out 
of phase on this timescale, and thus the effects of the slower timescale on the temporal variability for the trophic 
level as a whole cancel out.

The bifurcation diagram for the high-production attractor (Fig. 6b) does not cover the full range of 0 ≤ ∆ ≤ 1 
for h = 1.05, as it only exists on the right side of the black dashed line in Fig. 5. Furthermore, the attractor exhibits 
a much richer structure as ∆ is varied than the low-production attractor. Multiple bifurcations occur in which 
the dynamics are altered. In particular, lowering ∆ sufficiently the system undergoes a series of period-doubling 
bifurcations which lead to chaotic dynamics. Eventually the attractor undergoes a boundary crisis, as indicated by 
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both the sudden disappearance of the then chaotic attractor and the presence of a chaotic transient (Appendix C, 
Fig. C4).

The species’ mean biomass on the high-production state (Fig. 6d) reveal a similar monotonicity as those on the 
low-production state (Fig. 6c). A notable observation is the very low mean nutrient level along the whole range of 
∆. The nutrients show a very high CV (Fig. 6f), which can be attributed to their low mean value. In addition, the 
CV for each of the species is higher on the right side of the Hopf-bifurcations (higher ∆), as compared to the left 
side for lower values of ∆. However, just as for the low-production state, these increases are buffered when look-
ing at the temporal variability of the trophic levels as a whole (black to gray lines). This reflects the compensatory 
dynamical pattern of the high-production state, where some of the species move out of phase, which leads to a 
reduction in temporal variability on the entire trophic level.

Discussion
We developed a generic tritrophic model to investigate the effect of varying degrees of trait variation on the 
dynamics of multitrophic food webs and their associated ecosystem functions such as the mean resource use 
efficiency, biomass production, temporal variability and resilience. By increasing the trait difference parameter ∆ 
from 0, the system increases in complexity while it changes gradually from a simple chain without trait variation 
to a complex web with selective and non-selective consumers, and correspondingly defended and undefended 
prey. The relevant parameters affecting these traits (growth rate, edibility, food preference, and half saturation 
constant) are closely linked to the functions of the individual species in the food web. Hence, increasing ∆ also 
increases the functional differences between the species, and thus, the functional diversity of the system. For 
∆ > 0 but low, the trait differences are small which means the species are very similar, hence, the functional 
diversity at each trophic level is low. Correspondingly, for ∆ close to one, the functional diversity of the system is 
high, even though the number of species is kept constant. Therefore, varying ∆ is a means to study the effects of 
changing functional diversity on all three trophic levels on the dynamics of the whole system without potentially 
confounding effects of changing the number of species. The different aspects of how trait variation impacts the 
food web dynamics are discussed in detail below.

Phase relationships help unravel complex trophic interactions. Traditionally, effects of 
multi-trophic interactions such as trophic cascades and the degree of bottom-up or top-down control were stud-
ied using a rigid linear chain in equilibrium46,47. However, natural systems are usually not simple chains, but 
highly complex webs with functionally diverse species at all trophic levels48,49. Moreover, their dynamics may not 
evolve towards an equilibrium fixed point, but rather to a limit cycle50, or a strange attractor51 where they will 
perpetually exhibit oscillatory behavior. This phenomenon can be separated from stochastic noise and has been 
observed in natural communities52. Such oscillatory behavior gives rise to certain phase relationships between the 
biomass dynamics of the different species.

Additionally, in the maximally trait-separated food web (Fig. 1c), calculation of the Discrete Fourier Spectrum 
clearly exposes the two timescales at which major driving mechanisms take place. The emergence of a second 
timescale does not rely on the addition of a third trophic level as this feature has already been found in bitrophic 
models that considered multiple species or phenotypes at only one53 or both trophic levels13. However, our treat-
ment highlights how the phase relationships may shed light on the mechanisms driving complex systems by 
disentangling the different timescales at which these mechanisms may act.

Strength of trophic interactions. We found that the main dynamical differences between the two alternative sta-
ble states present in our system can be explained by an increased top-down control of the top level on the inter-
mediate level. When the intermediate level is strongly controlled, such as is the case on the high-production state, 
its species are unable to control the basal level. The basal level is in turn able to fully exploit the available nutrients, 
increasing the overall production in the system (See Appendix C, Table C1).

This result holds independent of the amount of trait variation present, and is in line with previous stud-
ies showing that reduced top-down control may result in an increased phase difference between predator and 
prey14,15. Importantly, the larger than ¼-cycle phase difference between the basal prey and intermediate predator 
observed in our system with only one species per trophic level (Fig. 1a) shows that the common conception of 
anti-phase cycles as a “smoking gun” for the presence of evolution, or other mechanisms causing trait changes12,54 
does not hold any longer when considering multitrophic systems in which the intermediate predator faces strong 
top-down control by the top predator.

Role of compensatory dynamics. When a community consists of functionally diverse populations, a decline in 
one functional group can be accompanied by an increase of another55. In this way, even though the individual 
populations exhibit high temporal variability in their biomasses in our model, the variability of the commu-
nity biomass per trophic level remains low (Fig. 6f). Such an effect has been observed before in studies investi-
gating the effect of standing trait variation or phenotypic plasticity on population dynamics33,56, and it is often 
made possible through compensatory dynamics between the species57–59. Hence, compensatory dynamics can 
be understood as a mechanism by which ecosystem functions such as biomass production can stay rather con-
stant while individual populations may be highly variable1,33. Compensatory dynamics are observed in both the 
high- and low-production state, for sufficiently high ∆ (Fig. 4a,b). When present, they effectively decrease the 
biomass CV of the trophic level as whole, even though the CVs of the species’ individual biomass may be relatively 
high (Fig. 6e,f). These compensatory dynamical patterns naturally keep species within a trophic level moving 
out-of-phase relative to each other, and thus, can also be inferred by analyzing phase relationship diagrams.

Notably, the compensatory dynamics on the low-production state are only present at the slower timescale 
related to the trait dynamics (Fig. 4c). The dominant faster timescale does not exhibit compensatory dynamics 
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(Fig. 4d), and thus, given substantial variation in the biomass of the individual populations, the CV at the com-
munity level remains relatively high (Fig. 6e). Even so, the sharp increase in temporal variation on the population 
level for high trait variation is buffered on the community scale, through the compensatory dynamics taking place 
on a different timescale than the dominant one. Our time-scale dependent phase-relationships between popu-
lations are in line with empirical observations showing that phytoplankton populations may exhibit compensa-
tory dynamics on the sub-annual scale, likely associated with trophic interactions, combined with synchronous 
dynamics on the annual, externally driven timescale58. Similarly, zooplankton dynamics may be governed by two 
distinct timescales: seasonal variation and experimentally varied environmental conditions60. Hence, unraveling 
the different timescales governing the population dynamics may help to understand the major processes driving 
them.

Trait variation promotes high production at the top-level. In line with our results, bistability has 
been observed in other food chain models18,61–63, ontogenetic growth models27,64, and in other, broader ecological 
contexts65. The presence of two alternative states in our system is an important feature as it may have far-reaching 
consequences regarding the stability and perseverance of food webs when confronted with external perturba-
tions. A commonly made distinction when studying the effects of perturbations is whether they consist of a 
change to the state variables, or to the actual model parameters65,66. The first kind, for example a sudden decrease 
in one of the species’ biomass, is often called a pulse perturbation because of its short duration. The second kind 
is called a press perturbation, because the change to the perturbed parameters is permanent, such as a decrease in 
the nutrient inflow concentration. In a multistable system, pulse perturbations, particularly when they are large, 
might push the system over the edge of one basin of attraction into another, where the dynamics are potentially 
completely different. Press perturbations may produce a similar outcome by causing large changes to an attractor’s 
basin of attraction, or by crossing a bifurcation point where the dynamics change significantly. Therefore, the size 
of the basin of attraction may be used as a measure of resilience65. A highly resilient system will nearly always 
return to its original state, hence its basin of attraction must be very large. Conversely, a non-resilient or fragile 
system is easily pushed out of one basin of attraction into another one.

Recall that the two states in our system have very different dynamical properties: the low-production state 
with low top biomass production and high variability, compared to the high-production state with high top bio-
mass production and low variability. From an ecosystem function perspective, low variability or high biomass 
in higher trophic levels are beneficial for e.g. fish yield. Therefore, it may be desirable to keep the system on the 
high-production state.

While biomass production of a community is known to be mostly positively correlated with its functional 
diversity67,68, we also found the high-production state in the food chain. This corresponds to, e.g., modern agri-
cultural systems, which typically consist of monocultures with a low functional diversity, but a high biomass 
production available for higher trophic levels. However, even though such monocultures may produce more 
biomass than some functionally highly diverse mixtures, they are very fragile against external disturbances69,70. In 
this way, functional diversity is regarded as an insurance against external perturbations. We clearly observed such 
an effect in our system, for both pulse and press perturbations, as illustrated by Fig. 5. Since the basin of attraction 
of the high-production attractor increases in size with ∆, the system becomes less likely to be pushed out of the 
basin of attraction by a pulse perturbation. This trend is persistent when varying not only the Hill exponents, but 
also the dilution rate, and the nutrient inflow concentration (Appendix A, Fig. A3), and is thus not limited to a 
particular part of the model’s parameter space. In addition, the boundary crisis causing the sudden disappearance 
of high-production attractor (Fig. 5, black dashed line) is only present for low values of ∆. Hence, functional 
diversity also protects the high-production state from suddenly disappearing under a press perturbation.

Typical for a boundary crisis, as the high-production state undergoes when decreasing ∆, are the long tran-
sients that are still present near the crisis point71 (Appendix C, Fig. C4). In an ecological context this could be 
problematic as such a long transient implies there is no way to know exactly when the crisis point has been passed 
and the basin of attraction no longer exists, until the system eventually accelerates towards the only remaining 
attractor. Such regime shifts were empirically observed and predicted by a variety of ecosystem models in dif-
ferent contexts72, such as woodlands threatened by fires turning into grasslands73, and shallow lakes threatened 
by eutrophication turning from a macrophyte to a phytoplankton dominated state74. The key idea is that a small 
perturbation near the bifurcation point may move the system to an alternative stable state, but once this has hap-
pened, a much larger perturbation is needed in order to return back to the original state. It has been argued that, 
under certain circumstances, one may be able to observe early-warning signals that a transition is imminent75–77. 
For example, near some types of bifurcations a dampening of the speed-of-return after a pulse perturbations 
may be observed, called critical slowing down75,78. In the case of a boundary crisis, showing the existence of any 
early-warning signals has proven to be difficult79,80. However, even if their existence could be shown mathemat-
ically, they will almost certainly be very difficult or impossible to detect in a real-life setting, where the exact 
chaotic dynamics may be obscured by measurement noise. Our results reveal that maintaining sufficient trait 
variation provides protection from boundary crises, with their often ecologically and economically undesirable 
consequences.

These conclusions rely on the presence of alternative stable states in our model. This is a prominent property in 
tritrophic systems, present in even a simple tritrophic chain with Holling-type-II functional responses and logis-
tic growth of the basal species61. However, there always exist parameter regions where there is only one non-trivial 
stable state. We find that also in such cases, production at the top level and temporal stability both increase with 
∆, as the attractor changes from resembling the low-production to resembling the high-production state in a 
gradual way (See Appendix A, Fig. A6).
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Influence of a sigmoidal functional response. The use of sigmoidal functional responses such as the 
(generalized) Holling type-III ( η= >h 1) has been an active area of discussion for quite some time. Sigmoidal 
functional responses are praised for their favorable effects on food web dynamics such as an increased dynamical 
stability36,81. Such an increase is justified by the apparent discrepancy between the observed stability of natural 
ecosystems, and the highly unstable nature of ecosystem models describing them82. While experimental evidence 
has traditionally mainly supported hyperbolic functional response shapes, such as Holling type-II ( η= =h 1)83,84, 
sigmoidal functional responses such as Holling-type-III provide models with additional stability which may over-
come this discrepancy. Recent experiments studies have found evidence for sigmoidal functional response 
shapes37,85,86, or otherwise have shown the difficulty in distinguishing Holling type-II from type-III functional 
response shapes87. Furthermore, sigmoidal shapes account for natural processes not captured by the model such 
as spatial heterogeneity, refuges, formation of resting shapes, etc. Hence, Hill exponents close to—but higher 
than—one are likely to be relevant, and thus, the requirement of at least some grazing suppression at low densities 
for all species to coexist adds to the realism of the model. Even in the highly-controlled environment of the che-
mostat, some of the proposed mechanisms giving rise to the predation dampening at low prey densities, such as 
prey clumping88 or other induced defenses89, may well be of importance. In addition, while a Hill exponent larger 
than 1 does facilitate coexistence, it is not guaranteed. For example, Fig. 6c shows that one of the top predators is 
not able to survive for ∆ .⪅ ⪅0 0 1.

Nonetheless, Fig. 5 also shows a significant, decreasing dependence on low prey density grazing suppression in 
order to reach the high-production state. For most of the range of ∆, the sharp border between the bistable region 
and the region where only the high-production state exists occurs at a lower value of the Hill-exponent as ∆ is 
increased. Hence, while the grazing suppression at low prey densities is necessary to reach the high-production 
state, it becomes a less important factor as ∆ is increased.

Concluding remarks. Despite the higher dynamical complexity of the resulting food web, the introduction 
of trait variation at all trophic levels to a linear food chain increased the overall reliability of ecosystem functions, 
such as resource use efficiency and high biomass production. Our results highlight that functional diversity on 
different trophic levels can reduce the overall temporal variability at the community level through compensa-
tory dynamics among functionally different species within a trophic level. Investigating the phase relationships 
between the different species of adjacent trophic levels enabled us to identify the regulation of trophic interac-
tions, such as changes in top-down or bottom-up control, in oscillatory dynamical regimes. Accordingly, we 
observed that strong deviations from the expected ¼-lag between predator and prey are possible in a tritrophic 
system, even without any trait variation. Hence, observation of such deviations do not necessarily indicate the 
presence of eco-evolutionary dynamics as is often assumed. Furthermore, independent of the presence or absence 
of trait variation, our tritrophic model shows two alternative states with the top predator exhibiting either a rel-
atively low or high biomass. However, while the high-production state is attainable in a tritrophic food chain, its 
basin of attraction is very small. It becomes more resilient when trait variation is added, underlining the role of 
functional diversity as an insurance against sudden pulse perturbations. In addition, as trait variation decreases, 
this state may suddenly disappear through a boundary crisis. Hence, high functional diversity also protects 
the high-production state under press perturbations. We thus highlight the importance of functional diversity 
regarding resilience against external perturbations, low community temporal variability, resource use efficiency, 
and maintenance of biomass in higher trophic levels.

Data Availability
The numerical datasets generated and analyzed during the current study are available from the corresponding 
author on reasonable request.
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Abstract. It is well known that functional diversity strongly affects ecosystem functioning.
However, even in rather simple model communities consisting of only two or, at best, three
trophic levels, the relationship between multitrophic functional diversity and ecosystem function-
ing appears difficult to generalize, because of its high contextuality. In this study, we considered
several differently structured tritrophic food webs, in which the amount of functional diversity
was varied independently on each trophic level. To achieve generalizable results, largely indepen-
dent of parametrization, we examined the outcomes of 128,000 parameter combinations sampled
from ecologically plausible intervals, with each tested for 200 randomly sampled initial condi-
tions. Analysis of our data was done by training a random forest model. This method enables the
identification of complex patterns in the data through partial dependence graphs, and the com-
parison of the relative influence of model parameters, including the degree of diversity, on food-
web properties. We found that bottom-up and top-down effects cascade simultaneously through-
out the food web, intimately linking the effects of functional diversity of any trophic level to the
amount of diversity of other trophic levels, which may explain the difficulty in unifying results
from previous studies. Strikingly, only with high diversity throughout the whole food web, differ-
ent interactions synergize to ensure efficient exploitation of the available nutrients and efficient
biomass transfer to higher trophic levels, ultimately leading to a high biomass and production
on the top level. The temporal variation of biomass showed a more complex pattern with
increasing multitrophic diversity: while the system initially became less variable, eventually the
temporal variation rose again because of the increasingly complex dynamical patterns. Impor-
tantly, top predator diversity and food-web parameters affecting the top trophic level were of
highest importance to determine the biomass and temporal variability of any trophic level. Over-
all, our study reveals that the mechanisms by which diversity influences ecosystem functioning
are affected by every part of the food web, hampering the extrapolation of insights from simple
monotrophic or bitrophic systems to complex natural food webs.

Key words: food-web efficiency; functional diversity; machine learning; nutrient exploitation;
production; random forest; temporal variability; top predator; trait diversity.

INTRODUCTION

In the face of rapid global biodiversity loss (Pimm
et al. 2014), investigating the influence of biodiversity on
ecosystem functioning is a highly important area of
research. It has become clear that biodiversity is a pre-
dominant factor in determining relevant functions of
ecosystems such as biomass production, resource use
efficiency, and stability (Hooper et al. 2005, Tilman
et al. 2006, Worm et al. 2006). A major factor affecting
the link between biodiversity and these ecosystem func-
tions is functional diversity, that is, the range of differ-
ences between the functions of species contained within
the ecosystem (Petchey and Gaston 2006).

Mechanistically motivated studies into the role of
functional diversity have mainly been performed in the
context of simple communities consisting only of one or,
at best, two trophic levels. Many of these studies
restricted their focus to primary producer diversity, and
were able to show its correlation with relevant ecosystem
functions (reviewed by Cardinale et al. 2011). However,
during the last two decades, more sophisticated theoreti-
cal and experimental studies linking both plant and con-
sumer diversity to these ecosystem functions were
conducted (see Thébault and Loreau 2003, Tirok and
Gaedke 2010, Borer et al. 2012, Filip et al. 2014, Klaus-
chies et al. 2016, Schneider et al. 2016, Seabloom et al.
2017, Flöder et al. 2018, and reviews by Duffy et al.
2007, Griffin et al. 2013, Barnes et al. 2018). In a recent
experimental study, Wohlgemuth et al. (2017) demon-
strated that producer diversity effects on the biomass
distribution and production at higher trophic levels cru-
cially depends on particular traits of the consumer level,
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such as specialization and selectivity. Such studies high-
light how the links between multitrophic functional
diversity and ecosystem functioning are difficult to gen-
eralize, because of their high contextuality. The specific
food webs that are studied, and the theoretical models
used to study them, are often too different to enable a
meaningful attempt at synthesis of their findings
(Thébault and Loreau 2003, Barnes et al. 2018).
For this reason there is a clear need to understand the

effects of diversity on ecosystem functions in a setting
that is as general and context-free as possible. In addi-
tion, the high degree of interplay already observed
between diversity of the primary producer and herbivore
consumer level underlines the importance of including
diversity of even higher trophic levels. In this study, we
want to advance our understanding of how functional
diversity affects ecosystem functioning in model commu-
nities by including a diverse third trophic level.
Although it has often been highlighted how important
the effects of the third trophic level on ecosystem func-
tions are (Bruno and O’Connor 2005, Duffy et al. 2007,
Abdala-Roberts et al. 2019, Daam et al. 2019, Ehrlich
and Gaedke 2020), relatively few studies have attempted
to take these effects into account explicitly. Ceulemans
et al. (2019) showed that functional diversity increases
the biomass production, temporal stability, and biomass
transfer efficiency to higher trophic levels of a tritrophic
food web, when diversity is increased simultaneously at
all three trophic levels. This model analyzed one particu-
lar food-web structure in detail, which raises the ques-
tion of whether the observed trends are to be expected in
general, or whether they are context dependent as well.
Our study tackles this issue by investigating several dif-

ferent tritrophic food web configurations with respect to
the same ecosystem functions. Such a method has been
applied successfully in the past (Gilman et al. 2010,
Kovach-Orr and Fussmann 2013, Poisot et al. 2013), but
this study is the first where the diversity can be indepen-
dently controlled on three trophic levels. We investigated
eight different food-web configurations (Fig. 1), which
differ in the trophic location at which functional diversity

may be present. We measured functional diversity of a
trophic level by thedifferencebetween the functional traits
of the two species residing there: when the trait difference
between the species is large, so is the functional diversity,
andvice versa. In thisway,wewere able to change the func-
tional diversity of a trophic level without changing the
number of species. Adopting such a trait-based rather
than species-specific approach by analyzing functional
diversity through trait differences, instead of using non-
functional metrics of biodiversity such as species number,
allows us to produce results of high generality (McGill
et al. 2006, Hillebrand and Matthiessen 2009, Krause
et al. 2014). Furthermore, the relatively simple and general
structure of our food webs (see Fig. 1) makes our results
accessible for verification by experimental studies, as they
are often limited in howmuch complexity canbe included.
Our model rests on few very general assumptions. The

first is allometry, which states that larger organisms tend
to grow slower than smaller ones (Kalinkat et al. 2013).
Combined with the assumption that consumers tend to
be larger than their prey, we obtain the general property
that the mean growth rate should decrease as the trophic
level increases. This strictly holds for pelagic systems
(Gaedke and Kamjunke 2006), but also for other ones,
except for the plant–herbivore interface (Brose et al.
2006). The third basic assumption is the frequently estab-
lished trade-off between growth rate and defense (Herms
and Mattson 1992; Hillebrand et al. 2000, Kneitel and
Chase 2004, Ehrlich et al. 2017, 2020). It implies that
slow-growing species are generally less affected by graz-
ing than faster-growing species, which invest less in
defense mechanisms because of energetic limitations. In
addition, the nongrazing mortality terms (see Eq. 8) are
of general nature and may be due to several different pro-
cesses, such as basal respiration, the influence of parasites
and viruses, or outflow in an experimental microcosm.
Importantly, food-web dynamics do not only depend

on the topology of the food web, but also on the specific
parametrization used, regarding both external environ-
mental parameters as well as internal parameters such as
growth rates, attack rates, and handling times. To

FIG. 1. Schematic overview of the eight different food webs compared in this study, which differ by the trophic levels (B for
basal, I for intermediate, and T for top) on which diversity is possible (indicated above). In this way, chain refers to the linear chain
that contains no diversity, B to the food web on which only the basal level is diverse, and so on, and finally BIT denotes the food
web that contains diversity on all trophic levels. The thickness of the connections between the nodes illustrates the comparative
intensity of the trophic interaction, which is determined by the amount of diversity, or the trait difference, between the species on
each trophic level (ΔB, ΔI , and ΔT ). Each of these food webs are analyzed as generally as possible, with independently varying
amounts of trait differences and parameters drawn randomly from biologically plausible intervals.
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capture the potentially high variation in biomass dynam-
ics sufficiently, we randomly selected a total of 128,000
parameter combinations from ecologically plausible
intervals for the eight different food webs, as well as
tested 200 initial conditions per parameter combination.
These parameter values were drawn from intervals geo-
metrically centered around values that are particularly
relevant for planktonic systems (Ceulemans et al. 2019),
but are sufficiently wide to capture the behavior of many
different types of food webs (see Table 1). This proce-
dure allows us to obtain results of high generality, as
they apply to the average behavior of tritrophic systems,
independent of its parametrization.

METHODS

The numerical data used in our study were obtained
by storing the mean biomasses and coefficients of varia-
tion (CVs) of the following ordinary differential equa-
tion model:

_N ¼ δ N0�Nð Þ� cN
cC

∑
i
riBi

_Bi ¼ riBi�∑
j
gjiI j�dBiBi

_I i ¼ e∑
j
gijI i�∑

j
γjiT j�dIi I i

_Ti ¼ e∑
j
γijT i�dTiTi

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(1)

TABLE 1. Name and meaning of the parameters that were used
in the study, along with the range from which they were
sampled. For example, the nutrient inflow concentration N0
was randomly sampled from the interval [1/2, 2]�1,120 ≈ [560,
2,240] μg N/l. In this table, B-I refers to the functional
response between the basal (B) and the intermediate (I)
trophic level, and I-T to the intermediate and top (T) level.
The bottom three parameters were kept at fixed values.

Parameter Meaning Range

N0 Nutrient inflow
concentration

[1/2, 2]�1,120 μg N/l

hN Nutrient uptake half-
saturation const.

[1/2, 2]�10 μg N/l

r00 Basal growth rate 1=2, 2½ � �1=d
a0 B-I attack rate [1/2, 2]�1.04 × 10−3/

(d μg C/l)
h0 B-I handling time 1=2, 2½ � �1:15 �d
α0 I-T attack rate [1/2, 2]�4.48 × 10−4/

(d μg C/l)
η0 I-T handling time 1=2, 2½ � �2:62 �d
δ Inflow rate 0:03, 0:06½ � �1=d
ascale Cross link scaling factor 1, 500½ �
n B-I Hill exponent 1, 2½ �
ν I-T Hill exponent 1, 2½ �
e Biomass conversion

efficiency
0:33 (not varied)

cN=cC Basal nitrogen-to-carbon
ratio

0:175 (not varied)

τinc Maximal trait increase 1=2 (not varied)

where the indices i, j∈ 1, 2f g. N describes the free inor-
ganic nutrients in the system, with the inflow concentra-
tion N0, inflow rate δ, and nutrient-to-carbon ratio
cN=cC . The loss rates dBi , dIi , and dTi represent losses
proportional to the biomass present, such as basal respi-
ration, sedimentation, or washout. The basal species’ Bi

uptake rate ri is described by their maximal growth rate
r0i and nutrient uptake half-saturation constant hN :

ri ¼ r0i
N

NþhN
: (2)

The interaction between the intermediate species I i
and the basal species Bj is described by a Holling–Type-
III functional response that is determined by the attack
rate aij, handling time hij, and the Hill exponent n:

gij ¼ aij
Bn

j

∑ j0ai j0hi j0B
n
j0 þ1

: (3)

In the same way, the interaction between top species
Ti and intermediate species I j is given by

γij ¼ αij
I νj

∑ j0αi j0ηi j0I
ν
j0 þ1

(4)

with attack rate αij, handling time ηij, and Hill exponent
ν. Finally, the biomass conversion efficiency for the
intermediate and top species is described by e.

Influence of trait differences on trait parameters

The parameters r0i, hij , aij , ηij , αij, and all death rates
are determined by the trait differences ΔB, ΔI , and ΔT ,
which each can vary from 0 (the two species at each
trophic level are equal) to 1 (maximal trait differences).
As trait differences increase, the species B1, I1, and T1

will be metabolically more active, whereas B2, I2, and T2

will be less active through modifying their maximal feed-
ing rates (which equal the inverse of the handling times
hij and ηij for the intermediate and top species).
In our model, trait differences affect the relevant spe-

cies’ parameters symmetrically, such that an increase for
species 1 leads to a decrease for species 2 by the same
factor. Explicitly

r01¼ r00 �Binc h1i ∼
h0
I inc

η1i ∼
η0
T inc

r02¼
r00
Binc

h2i ∼ h0 � I inc η2i ∼ η0 �T inc

(5)

with

Binc¼ 1þΔB �τinc I inc¼ 1þΔI �τinc T inc¼ 1þΔT �τinc
(6)

so that they are unity for Δi ¼ 0, leaving the species’
parameters unaffected, and maximal for Δi ¼ 1, where
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τinc determines their maximal increase. Note that the
handling times hij and ηij depend on the trait differences
of both the predator and the prey level, hence the pro-
portional relationship ∼ð Þ instead of equality (more
information is provided; cf. Eqs. 7 and 9).
The universality of trade-offs in natural systems

(Kneitel and Chase 2004, Ehrlich et al. 2017) implies
that for any increase or decrease in growth rates, the spe-
cies’ loss rates must change correspondingly. Time and/
or energy that is invested towards a certain defense strat-
egy cannot be used for resource uptake, and thus, comes
at the cost of a lower growth rate (and thus a higher han-
dling time). Conversely, investing in a higher growth rate
(lower handling time) tends to make a species more vul-
nerable to predation, as it leaves less time and/or energy
for employing defense strategies. For simplicity, the loss
rates are affected in the same way as the growth rates.
Thus, Binc affects the handling times hij as well as the
death rates dBi, I inc affects ηij and dIi , and T inc affects
dTi , in the following way:

hi1 ∼
h0
Binc

ηi1 ∼
η0
I inc

hi2 ∼ h0 �Binc ηi2 ∼ η0 � I inc
(7)

and

dB1 ¼ δ �Binc dI1 ¼ δ � I inc dT1 ¼ δ �T inc

dB2 ¼
δ

Binc
dI2 ¼

δ
I inc

dT2 ¼
δ

T inc

: (8)

The handling times hij and ηij are thus dependent on
both Binc and I inc, or I inc andT inc, respectively. Although
the linear relationship that describes this dependence is
almost certainly a simplification of biological reality,
specifying a more complex relationship might make our
model unnecessarily more complicated. As described in
the next section, multiple parameter combinations will
be investigated, which means that our approach is not
limited to one single distinct trade-off curve.
Summarizing:

h¼ h0

1
BincI inc

Binc

I inc
I inc
Binc

BincI inc

0

B

B

@

1

C

C

A

, η¼ η0

1
I incT inc

I inc
T inc

T inc

I inc
I incT inc

0

B

B

@

1

C

C

A

:

(9)

The interaction between predator–prey pairs is not
only determined by the handling times hij and ηij , but
also by the attack rates aij and αij . In our model, these
are responsible for determining the relative strength of
the “cross” links between two adjacent trophic levels
(e.g., B1! I2, etc.). As the functional diversity of adja-
cent trophic levels increases, these cross links will
decrease in strength relative to the “parallel” links (e.g.,
B1! I1, etc.). The rate at which their strength decreases

is determined by the attack-rate scaling parameter ascale.
For details see Appendix S1. In this way, it is possible to
describe a tightly linked food web for ascale≈1, two lar-
gely separated tritrophic chains for ascale≫1, or an inter-
mediate situation.

Parameter selection

In order to capture a high diversity of dynamical out-
comes, within a plausible ecological setting, the parame-
ters of the foodweb were sampled uniformly from certain
intervals determined by a standard value from which the
boundaries are calculated (Table 1). These standard val-
ues are based on Ceulemans et al. (2019), and describe an
ecologically realistic planktonic system with three trophic
levels. In particular, the maximal growth rates
(r00, e=h0 and e=η0) were set to correspond to an allometri-
cally scaled food chain with the body mass ratios between
adjacent trophic levels of 103, with an allometric scaling
exponent of −0.15. However, because of the spread of the
intervals the actual ratio between body masses (assuming
the same scaling exponent λ) can vary between approxi-
mately 1 and 10,000,000 (for details, see Appendix S2). In
thisway, a good balance is made between capturing a high
amount of dynamical variation, while still being ecologi-
cally realistic.
The trait-difference parameters can take the following

values:

ΔB∈ 0, 0:25, 0:5, 0:75, 1f g
ΔI ∈ 0, 0:25, 0:5, 0:75, 1f g
ΔT ∈ 0, 0:25, 0:5, 0:75, 1f g

(10)

so that there are 125 combinations possible. These deter-
mine both the specific food-web topology and the
amount of functional diversity present. For example,
ΔB¼ 1, ΔI ¼ 0:25, and ΔT ¼ 0 implies that we are inves-
tigating the BI food web (Fig. 1), where the basal level is
highly diverse, but the species on the intermediate level
are still relatively similar.
In order to sample a large part of all the possible

dynamical outcomes that can be exhibited by our model,
we randomly sampled 1,024 different parameter combi-
nations, for each selection of ΔB, ΔI , and ΔT (Eq. 10).
Moreover, for every parameter combination, 200 differ-
ent initial conditions were tested to capture potential
alternative stable states. These initial values were ran-
domly sampled such that the total amount of biomass in
the initial state did not exceed 2 �N0. The system was
allowed to relax to its attractor before the mean bio-
masses and the CV of each species, and of each trophic
level, were recorded for a sufficiently long time period.
More detailed information on this procedure can be
found in Appendix S3. Numerical integration of the
ordinary differential equations in Eq. 1 was done in C
with the SUNDIALS CVODE solver version 2.7.0
(Hindmarsh et al. 2005). Subsequent analysis of the
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food-web data was performed in Python 3.6 using
NumPy (Van Der Walt et al. 2011), pandas (McKinney
2010), and Matplotlib (Hunter 2007). Further details on
our computational procedure, as well as the code itself
and the data required to produce Figs. 3–6 and various
Appendix figures can be found in Data S1 (Ceulemans
et al. 2020).

Random forest model

In order to simplify the presentation of our results, and
to extract additional relevant information easily, we
trained a random forest model on our data set. A detailed
description of how this works can be found in Appendix
S3. Essentially, random forests are a class of machine
learning models that are popularly used because of their
relatively simple structure and high versatility (Breiman
2001, Cutler et al. 2007, Thomas et al. 2018).
For each quantity of interest (see Results), an extre-

mely random forest consisting of 2,000 trees was trained
using the Scikit-learn (Pedregosa et al. 2011) package in
Python. Using only those parameter combinations that
lead to coexistence of all species in the food web, the
training data set consisted of the 14 different parameters
(see Table 1 and Eq. 10) as input values, and the mean
biomass and CVs of each trophic level as output values.
During training, the random forest algorithm performed
cross-validation by calculating the out-of-bag (OOB)
score, to estimate its accuracy. After training the random
forest model, we used it to investigate how the basal,
intermediate, and top diversity (ΔB, ΔI , and ΔT ) affect
the quantities of interest, independently of all other
parameters, by examining the partial dependency graphs.
Finally, the random forest also provided us with a mea-
sure of the importance of each of the input parameters in
determining the desired outcome (relative importance).

RESULTS

In order to understand in which ways diversity of dif-
ferent trophic levels affects tritrophic systems, we ana-
lyzed the solutions of the ordinary differential
equation model presented in Methods (Eq. 1) for 128,000
different parameter combinations. For each parameter
combination, we saved the mean nutrient concentration
and biomass density (in short biomass) and CV of each
individual population and trophic level over a long per-
iod of time (see also Appendix S3). In the main text, we
will focus in particular on diversity effects on:

• the nutrient concentration N and biomass per trophic
level BB, BI , BT (see Fig. 3); and

• the CV of the nutrient concentration and biomass per
trophic level CVN , CVB, CVI , CVT (see Fig. 4).

Based on the mean biomasses, we also calculated sev-
eral quantities related to the flow of energy through the
food web. The following ones are shown in the main text

(see Fig. 5, and Eq. 1 and Appendix S5 for more infor-
mation):

• the biomass production on the top level
PT ¼∑idTiTi;

• the amount of basal biomass flowing upward to the
intermediate level Bup;

• the production to biomass ratio of the basal level
P=Bð ÞB¼ Bupþ∑idBiBi

� �

∑iBi
� �

; and
• the food-web efficiency, defined as the ratio between

the biomass production at the top and the basal level:
PT=PB.

Figs. 3–5 are partial dependence graphs revealing how
trait differences on the basal (ΔB), intermediate (ΔI ),
and top (ΔT ) level affect the quantity of interest. Such
partial dependence graphs are calculated from the ran-
dom forest model trained on the food-web data, and
show the average value of the quantity of interest, inde-
pendent of all other model parameters (see Methods).
This presentation allows us to capture the full behavior
of all food webs concisely, as they each occupy a certain
location in the partial dependency graphs (Fig. 2). A
concise summary of our main findings is presented in
Table 2.
In most cases the OOB scores, which measure the

accuracy of the random forest models, were above 0.60,
with some exceptions (Table 3). Such scores indicate a
sufficient model accuracy, as we focus on the average
trends in the predicted quantity as a function of the
functional diversity of different trophic levels, rather
than on predictions for specific parameter values.

FIG. 2. Pictorial representation of the location of the differ-
ent food webs (Fig. 1) in the partial dependence graphs in
Figs. 3–5. On the left-side graph (ΔT = 0, that is, no diversity at
the top level), the chain is on the point (0, 0) (ΔB¼ΔI ¼ 0), the
B food web is located on the line ΔI ¼ 0, the I food web is
located on the line ΔB¼ 0, and the BI web is located in the
plane where both ΔB and ΔI are nonzero. Similarly, on the
right-side graph where ΔT >0 (either low or high in Figs. 3–5),
the T web is located on the point (0, 0) (ΔB¼ΔI ¼ 0), the BT
food web is located on the line ΔI ¼ 0, the IT food web is located
on the line ΔB¼ 0, and finally the BIT web is located in the
plane where ΔB, ΔI , and ΔT are nonzero.
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The quantities of interest were only examined for
those initial conditions and parameter combinations
that actually led to coexistence of all species originally
present (see Fig. 1). Interestingly, there were only very
few parameter combinations that led to coexistence for
the top (T) (1 combination) and basal top (BT) (8 com-
binations) food webs (see Fig. 1, and Appendix S4). One
of the two top species almost always outcompeted the
other in these webs. As we cannot reliably investigate the
behavior of these food webs in general, we did not
include these parameter combinations in our data set.
This implies that our data set contains no data points
with ΔT >0, ΔI ¼ 0, and therefore, the region below
ΔI ¼ 0:25 for ΔT >0 in Figs. 3–5 remains empty.

Nutrient concentration and biomasses

The partial dependency graphs of the free nutrient
concentration and the biomasses on each trophic level

on the trait differences ΔB, ΔI, and ΔT (Fig. 3) reveal
strong differences between the simple chain without any
diversity (ΔB¼ΔI ¼ΔT ¼ 0), and the food web with high
trait differences at every trophic level (ΔB¼ΔI ¼ 1 and
ΔT ¼ high). Comparing these two points shows that the
linear chain has a higher average free nutrient concentra-
tion and a lower intermediate and top biomass than the
diverse food web.
In between these two extremes, the tritrophic structure

of our model gives rise to several interesting patterns.
Comparing the chain and the B, I and BI food webs (i.e.,
ΔT ¼ 0; Fig. 3, left panels) shows that when ΔI is 0 or
low, increasing ΔB leads to a decrease in basal biomass,
whereas if ΔI is high, this pattern reverses as the basal
biomass increases with ΔB. In other words, if functional
diversity is only present on the basal level, basal biomass
tends to decrease with ΔB. However, taking consumer
diversity into consideration in the BI food web shows
that this pattern is not general and strongly depends on
the actual level of consumer diversity (ΔI ).
Investigating the effect of ΔI and ΔT on the intermedi-

ate and top-level biomasses shows exactly the same pat-
tern. When ΔT is 0, intermediate biomass tends to
decrease as ΔI increases, whereas when ΔT is high, it
increases with ΔI (independently of ΔB). Additionally, it
is clear that top biomass increases with ΔT in a gradual
fashion.
The location and strength of trophic cascading in the

food web is also affected by the amount of functional
diversity present on the different trophic levels. For
example, when ΔT is zero, an inverse relationship
between the biomass on the intermediate and basal level
can be observed, whereas the top-level biomass seems
hardly affected by ΔB and ΔI (Fig. 3). When ΔT is low,
biomasses at the top and intermediate levels are strongly
negatively correlated, indicating that a diverse top level
is able to exert a stronger influence on the whole food
web as compared to a nondiverse top level. This negative
relationship does not cascade downwards to the basal

TABLE 2. Comparison of established knowledge of the link between the functional diversity and certain ecosystem functions of
communities consisting of one or two trophic levels (see text for references), to our model where diversity can be changed at three
trophic levels (see Fig. 1). Δi, Bi , and Pi refer to the diversity, biomass, and biomass production at trophic level i∈ B, I , Tf g,
respectively (see Fig. 1 and Results), and the arrows indicate the direction in which these quantities are changing (": increase,%:
moderate increase, ≈ : approximately constant, #: decrease). Our model enables us to understand the mechanisms responsible for
top-down and bottom-up effects that simultaneously cascade through the food web.

Established knowledge In our diverse tritrophic system Shown

Top predators are often keystone species. Confirmed, ΔT and trophic interactions between I andT are most
decisive for the biomasses, CVs, and energetics at all trophic levels.

Fig. 6

More diverse consumers exploit resources more
efficiently.

Confirmed, diversity must be high throughout the whole food web for
efficient exploitation.

Fig. 5

For a single trophic level in isolation:
ΔB" implies :BB" , PB "

Effects of changing Δi depend on the diversity of other trophic levels.

For bitrophic systems: ΔB andΔI": context-
dependent effects on biomasses and production

However, when all Δi": BB# , BI" , BT "
PB≈, PI% , PT "

Fig. 3
Fig. 5

For a single trophic level in isolation:
Δ " implies :CV #

Effects of changing Δi depend on Δ j≠i ; however, all CVs first
decrease, and then increase, with increasing ΔT .

Fig. 4

TABLE 3. Out-of-bag (OOB) scores estimating the accuracy of
the random forest model, for all outcome quantities. An
OOB score of 1 represents a perfect model prediction,
whereas an OOB score of 0 means that the model is as
accurate as simply predicting the mean outcome value every
time.

Outcome variable Out-of-bag score

Nutrient density 0.44
Basal biomass 0.65
Intermediate biomass 0.92
Top biomass 0.77
Nutrient CV 0.26
Basal CV 0.73
Intermediate CV 0.68
Top CV 0.70
PT=PB 0.83
Bup 0.86
ðP=BÞB 0.34
PT 0.78
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FIG. 3. Effect of trait differences at the basal (ΔB), intermediate (ΔI ), and top (ΔT ) trophic levels on the free nutrient concentra-
tion (N, blue), and the biomasses on the basal (B, green), intermediate (I, orange), and top (T, red) trophic level, displayed as partial
dependence graphs. To simplify the presentation, the effects of ΔB and ΔI are shown separately for three levels of ΔT : ΔT ¼ 0 (left),
low ΔT (0.25 and 0.5, middle), and high ΔT (0.75 and 1, right). Fig. 2 shows a detailed explanation on how to read this figure. These
graphs show the expected trends of N, B, I , andT as the amount of diversity of any trophic level is varied (for more information
see Methods and Appendix S5). For example, in the chain (lower left corner of each subplot for ΔT ¼ 0), T is expected to be much
lower than in the highly diverse BIT web (upper right corner for ΔT ¼ high). When ΔT is nonzero, the region below ΔI ¼ 0:25 (T
and BT webs) cannot be shown, as no coexisting parameter combination exists here because of the two distinct top species share
only one resource.
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level, potentially because of the buffering properties of a
diverse intermediate level. However, for ΔT ¼ high, the
strong inverse relationship between top and intermediate
biomass is replaced by a rather positive one, because of
the sharp increase in intermediate biomass as ΔI is
increased.

Temporal variation

We also examined how the functional diversity at each
trophic level (ΔB, ΔI , and ΔT ) influences the temporal
variation of the nutrients and biomasses per trophic
level, by calculating the CV (Fig. 4). One clear overarch-
ing pattern is the covariation of the CVs along the differ-
ent trophic levels. Temporal fluctuations at any trophic
level propagate through the whole food web, affecting all
other levels.
The left column shows how ΔB and ΔI affect the CVs

of the food webs without top diversity (ΔT ¼ 0). In this
case, the CV of any trophic level depends almost solely
on ΔI . Only the CV of the nutrient concentration
depends strongly on ΔB.
These results are strongly affected by the top diversity.

By increasing ΔT from 0 to low, all CVs are considerably
dampened. However, this trend reverses as ΔT is
increased further, as all CVs tend to increase again
(ΔT ¼ high). Hence, while comparing the simple chain
(ΔB¼ΔI ¼ΔT ¼ 0) to the food web with high trait dif-
ferences (ΔB¼ΔI ¼ 1 and ΔT ¼ high) does not immedi-
ately show any notable differences, it is clear that
temporal variability is strongly affected in an intricate
way by the amount of functional diversity at the differ-
ent trophic levels.
Additionally, there is a strong correlation between the

CV of the basal trophic level, and the free-nutrient con-
centration (Fig. 3, bottom row). A low temporal vari-
ability on the basal level leads to a strong increase in
nutrient exploitation efficiency, and therefore low nutri-
ent concentrations.

Biomass production and food-web energetics

We also analyzed metrics related to biomass produc-
tion and food-web energetics: biomass production on
the top level PT , basal biomass flowing to the intermedi-
ate level Bup, basal biomass to production ratio ðP=BÞB,
and the food-web efficiency PT=PB (Fig. 5, and Appen-
dix S5 for more information on these quantities). Exam-
ining these (and related; see Appendix S5) quantities
helped us to understand why the biomass at the top level
is highest when functional diversity everywhere is high
(top right corner in Fig. 3 for ΔT ¼ high). Importantly,
we can infer the quantities PI (total biomass production
of the intermediate level) and Iup (biomass flowing from
the intermediate to the top level) from Bup and PT :
PI ¼ e �Bup, and Iup¼PT=e (see also Appendix S5).
The biomass production by the basal level PB varies

only little, as this quantity is completely determined by

the interaction with the free nutrients (see Appendix S6).
This property lies at the basis for explaining the increase
in top biomass and food-web efficiency as functional
diversity increases everywhere.
When ΔT ¼ 0, the absence of a diverse top trophic

level creates a slight relative advantage for the fast-
growing species I1 (see Appendix S7: Fig. S1). Its effects
on the basal level strongly depend on ΔI . For high ΔI ,
the fast growing B1 is heavily suppressed and the basal
biomass is concentrated in B2, which is less edible for the
prominent I1. For low ΔI (i.e., I1 and I2 are functionally
similar and less specialized), the dominant I1 can also
graze significantly on the slow-growing B2, which
strongly promotes the fast-growing B1. The higher
growth rate of B1 causes strong fluctuations of the basal
biomass (Fig. 4), which, in turn, leads to less efficient
nutrient exploitation (Fig. 3). Thus, for both low and
high intermediate diversity, the basal level is unevenly
exploited, which leads to a relatively high proportion of
basal biomass being lost from the system, instead of
being transferred up the food web (see also Appendix
S7: Fig. S5). The rather low basal biomass that is trans-
ferred to the intermediate level supports only a modest
amount of intermediate biomass, and hence, a low bio-
mass and biomass production on the top level, and a
low food-web efficiency.
In contrast, when the top level is highly diverse (ΔT ¼

high), the intermediate level is more evenly exploited,
leading to a balanced presence of both intermediate spe-
cies. In turn, this leads to an efficient exploitation of the
basal level, especially when ΔI is also high, which is
reflected by high values of ðP=BÞB (Fig. 5). Even though
PB remains roughly the same (Appendix S5: Fig. S2,
and Appendix S6), Bup is increased (Fig. 5) which leads
to a significantly higher intermediate biomass and bio-
mass production (Fig. 3; Appendix S5: Fig. S2), and,
ultimately an increase in biomass on the top level. This
increase subsequently explains the increase in food-web
efficiency through an increased top biomass production
(Fig. 5).

Relative importance of parameters

The random forest model provides an estimate for the
importance of each of the food-web parameters in pre-
dicting the outcome (see Methods). Fig. 6 shows them
for the different biomasses and CVs for each of the 14
model parameters (for the relative importance of the dif-
ferent production metrics, see Appendix S5: Fig. S4).
The parameters are grouped by their mean importance

in descending order in each graph. For example, the Hill
exponent of the functional response describing the inter-
mediate–top interaction (ν) has the highest mean relative
importance for predicting the biomasses on each trophic
level (Fig. 6, top). In particular, it is very important for
predicting the biomass on the top and intermediate level.
On the other hand, the nutrient-uptake half saturation
constant hN is the least important.
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FIG. 4. Effect of trait differences at the basal (ΔB), intermediate (ΔI ), and top (ΔT ) trophic level on the coefficient of variation
of the free nutrient concentration (N, blue), the total biomass at the basal (B, green), intermediate (I, orange), and top (T, red)
trophic levels, displayed as partial dependence graphs. Consult Figs. 2 and 5 for a detailed description on how to read this figure.
Strikingly, we can see that ΔT has a nonmonotonous effect on the temporal variability of the whole food web: a moderate amount
of top predator diversity tends to decrease the temporal variation, but adding yet more diversity to the food web causes it to
increase again.
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One important observation in all three panels is that
although the three possible trait differences ΔB, ΔI , and
ΔT have a strong influence on all the different quantities
we have investigated (see Figs. 3–5), they are never
among the most important parameters. However, this is
not very surprising given the nature of the other parame-
ters in our model: For example, it is very natural that
increasing the nutrient inflow concentration N0 has a
very strong influence on species’ biomasses.
Our results also show a balance between the relative

importance of parameters affecting the external environ-
ment (such as the nutrient inflow concentration N0 and
the inflow rate δ), and internal parameters affecting the
ecological dynamics within the food web (such as the
handling times h0, η0, and Hill exponents n, ν). Remark-
ably, parameters affecting the intermediate–top interac-
tion (ν, η0, α0) are of higher importance than their
intermediate–basal analogues (n, h0, a0). In particular,
the importances of the different diversity measures
ΔT , ΔI , ΔB are consistently ranked by trophic level. In
this way, it is clear that food-web parameters affecting
the top level of are of highest importance.

DISCUSSION

The food-web model analyzed in this manuscript was
built with the aim of being as general as possible, while
still being ecologically realistic. Given the expansive
range of different environmental and ecological situa-
tions that are effectively covered by the model, we did
not intend to answer research questions about specific
environmental or ecological conditions. Rather, we
focused on how the average behavior of tritrophic sys-
tems depends on the diversity of each trophic level sepa-
rately. In particular, we studied how functional diversity
in tritrophic food webs affects the biomass distribution,
temporal variability, and production, on average. The
partial dependence graphs provided by training a ran-
dom forest model on our data served as an ideal tool to
answer these questions. Given the high number of
parameters that were randomly sampled, it is to be
expected that the output data have a high degree of vari-
ation. For example, parameters like the inflow nutrient
concentration N0, or the inflow rate δ naturally have a
very strong influence on the trophic-level biomasses and
temporal variation. Partial dependence graphs revealed
how the predicted outcome changes as a function of one
particular parameter, on average, that is, independently
of all other model parameters (cf. Table 2).

Absence of coexistence in some webs

In two of the food webs we investigated, T and BT (see
Fig. 1), coexistence of all species was extremely rare (see
Appendix S4). In almost every case, one of the two top
species outcompeted the other one, as expected when
applying the competitive exclusion principle (Hardin
1960, Armstrong and McGehee 1980, Klauschies and

Gaedke 2019). For only <0.1% of the parameter combi-
nations did both top species still co-occur at the end of
the simulation time. The structure of these two food
webs entails that the two top species are competing with
each other for only one resource, I, with no other
density-dependent interaction.
In contrast, all species frequently coexisted in the

intermediate (I) and intermediate top (IT) food webs
(see Fig. 1), even though the two intermediate species
also share a single resource, B. This is because of an
additional density-dependent interaction acting on the
intermediate species, by the presence of the top level
(which may or may not be diverse). Therefore, more than
one species can exist at the intermediate level without
the necessity of fine-tuning their interaction parameters
(Huntly 1991, Brose 2008, van Velzen 2020).
Viewed in this way, it is clear that the amount of func-

tional diversity of one trophic level can drastically influ-
ence that of other trophic levels: a loss of functional
diversity at the intermediate level in the ITor basal inter-
mediate top (BIT) food webs (see Fig. 1) leads to a loss
of functional diversity at the top level as well. It is there-
fore crucial to safeguard functional diversity of lower
trophic levels to maintain diversity at higher trophic
levels.

Relative parameter importance

The random forest model trained on the output data
of our simulations (see Methods) provides information
on which of the input parameters (see Table 1) are most
important for estimating the predicted biomasses, CVs,
and production metrics. In short, a parameter is of high
importance when it tends to appear high up in many dif-
ferent trees in the forest. Conversely, when a parameter
only appears near the end of the trees, it is of low impor-
tance in estimating the desired outcome. These relative
importances are ranked from highest to lowest in Fig. 6.
Remarkably, parameters directly affecting the top

trophic level tend to be of high importance, whereas
parameters influencing the nutrient uptake by the basal
species are all situated near the bottom end. The differ-
ent diversity indices ΔB, ΔI , and ΔT are also ranked by
trophic level. This hierarchy shows how important the
higher trophic levels are in determining the biomass dis-
tributions, temporal variation of biomass dynamics, and
energetics of whole food webs. Our model is thus able to
support mechanistically the general observation that
changing the diversity of the top trophic level often has
far-reaching consequences (Ripple et al. 2014).
In addition to most of the parameters governing the

trophic interactions of the top trophic level, the nutrient
inflow rate δ and concentration N0 are also of high
importance. As δ determines the death rates of all the
species in the model (see Eq. 8), and in particular those
of the top level, it has a strong influence on the quanti-
ties we have investigated (Kath et al. 2018). The nutrient
inflow concentration is unsurprisingly also of high
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FIG. 5. Effect of trait differences at the basal (ΔB), intermediate (ΔI ), and top (ΔT ) trophic level on several different metrics
related to the flow of biomass and energy through the food web, displayed as partial dependence graphs. From top to bottom: top
biomass production PT , basal production to biomass ratio (ðP=BÞB), basal biomass flowing to I (Bup), and the food web efficiency
PT=PB. Consult the Results and Appendix S5 for more information on these quantities, and Figs. 2 and 3 for a detailed description
on how to read this figure. In the chain (lower left corner for ΔT ¼ 0), we observe for example a much lower PT=PB than in the
highly diverse BITweb (upper right corner for ΔT ¼ high), which means biomass produced by the basal trophic level is transferred
much more efficiently to the top level.
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importance in estimating these quantities. Its level, rep-
resenting the total biomass carrying capacity of our sys-
tem, affects the basal trophic level most strongly
(Fig. 6), which is in line with field observations (Gaedke
1998).
This analysis shows that the relative importance mea-

sures provided by the random forest model provide use-
ful information to uncover the underlying mechanisms
that govern the dynamics of more complex models. Our
results clearly show how external and internal food-web
parameters do not overpower each other. Information
on both types is required for accurately predicting bio-
masses, biomass variability, and food-web energetics.

The complex relationships between diversity and
ecosystem functioning

Our results show that functional diversity robustly
increases biomass and production efficiency (Fig. 5) at
high trophic levels (Fig. 3), and generally decreases tem-
poral variation (Fig. 4), as summarized by Table 2. In
addition, we reveal intricate and complicated interac-
tions between the degree of diversity at different trophic
levels and these ecosystem functions. These interactions
complicate the comparison of studies on the links
between diversity and functioning in a bitrophic context
(Filip et al. 2014, Wohlgemuth et al. 2017, Flöder et al.
2018, Daam et al. 2019).
For instance, our model shows that the effect of

increasing producer diversity on the biomasses of each
trophic level highly depends on the amount of functional
diversity of the other trophic levels (Fig. 3). When the
top level is not functionally diverse (ΔT ¼ 0), the direc-
tion of the effect of ΔB on the basal biomass is deter-
mined by the amount of functional diversity of the
intermediate level (ΔI ). When ΔI is low, basal and inter-
mediate biomasses tend to decrease with increasing ΔB,
whereas this trend reverses as ΔI becomes higher. A
recent experimental study revealed that the effects of
producer diversity on food-web functioning also depend
on the trait values on the consumer level in a bitrophic
system (Wohlgemuth et al. 2017). Our results indicate
that this interdependency is of a very general nature, and
moreover, is expected to hold for higher trophic levels as
well, which are less manageable in experimental settings.
Indeed, our model shows a similar pattern when investi-
gating the effect of ΔI and ΔT on the intermediate and
top biomasses. Starting from ΔT ¼ 0, increasing ΔI leads
to a reduction in intermediate biomass, in contrast to an
increase in intermediate biomass when ΔT is high.
Our tritrophic food-web comparison also shows that,

when functional diversity is increased everywhere, the
biomass of the intermediate and top species increases
significantly, whereas the basal biomass stays roughly
constant. The same pattern was found in a modeling
study comparing food webs of up to 100 animal species
(Schneider et al. 2016). This correspondency gives credi-
bility to considering the effects of biodiversity on food-

web functioning through changing the functional diver-
sity in simpler food webs, instead of changing the species
number, which significantly increases food-web complex-
ity.
The effect of functional diversity on the temporal vari-

ability (CV) of the biomasses at the different trophic
levels also exhibited a complex dependency on the func-
tional diversity of every single trophic level (Fig. 4). One
particularly robust result, however, is the non-
monotonous relationship between top diversity (ΔT )
and the CV of any trophic level. When ΔT is increased
from 0 to low, the CVs often strongly decreased. Such a
reduction in the CV with increasing diversity has often
been observed (Tilman 1996), and attributed to the pres-
ence of compensatory dynamical patterns (Gonzalez
and Loreau 2009, Bauer et al. 2014). However, as ΔT is
increased further from low to high, the CV of each
trophic level increased again. Hence, additional mecha-
nisms governing the dynamics must also have a strong
influence of the trophic level CVs. In Ceulemans et al.
(2019), we observed a similar pattern in the trophic level
CVs, which could be explained by the increased rele-
vance of an additional dynamical timescale at high ΔT :
the biomasses not only varied rapidly within predator–
prey cycles, but also because of slower trait changes. As
this slower timescale became more dominant, the CV
increased again. Because of the similar model structure,
this mechanism may be responsible for the increase in
CV here as well. This result suggests that mechanisms
for dampening community temporal variability estab-
lished for simple but functionally diverse systems, such
as compensatory dynamics arising from competition for
a joint resource, may be counteracted by destabilizing
effects in more complex—and thus more realistic—sys-
tems.
Examining how the functional composition at each

trophic level and ecosystem functions are linked allows
us to understand mechanistically why the biomass and
biomass production on higher trophic levels is maximal
when every trophic level is diverse, and why the diversity
of the top level plays such a crucial role. This becomes
particularly obvious when comparing the trends of the
different metrics related to biomass production within
the food web (see Results, Fig. 5, and Appendix S5:
Fig. S4).
A functionally diverse consumer community leads to

an efficient exploitation of the production at the prey
level because of their functional complementarity (Gam-
feldt et al. 2005). In our model, this mechanism is pre-
sent between both the top and intermediate, as well as
between the intermediate and basal level: a diverse top
community efficiently exploits the intermediate produc-
tion, which in turn results in the basal production being
efficiently exploited. In contrast, when the top commu-
nity is not functionally diverse, potentially functionally
diverse intermediate and basal communities adjust in
species composition so that they escape efficient preda-
tion (Filip et al. 2014, Seiler et al. 2017). As a
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consequence, a higher proportion of the production is
lost from the system by nongrazing mortality rather
than transferred up to the level above. In this way, the

effects of functional diversity of different trophic levels
synergize to make the food web with diversity every-
where the most efficient configuration in transferring

FIG. 6. Relative importance of the different model parameters (see Table 1) on determining the biomasses and CVs of the differ-
ent trophic levels. The relative importance quantifies how important the value of a certain parameter is to predict the desired quan-
tity accurately, and they sum up to 1. The higher the relative importance of a parameter, the more relevant it is to make a
prediction. In these graphs, the model parameters are ordered by their mean importance for each group of quantities (biomasses
and CVs); for each parameter, the individual bars are ordered by trophic level.
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biomass from the basal to the top level (Fig. 5, PT=PB,
and Appendix S5: Fig. S2). Importantly, analysis of the
individual populations’ biomasses (Appendix S7:
Fig. S1) confirms that the trade-offs function as
intended and prevent any one species from dominating
others on average. This provides additional evidence that
the patterns we observe are caused by changes in trait
differences between the species on each trophic level;
that is, they are due to diversity effects.
The importance of considering multitrophic diversity

has been emphasized before (Gamfeldt et al. 2005,
Filip et al. 2014, Lefcheck et al. 2015, Soliveres et al.
2016, Barnes et al. 2018, Ceulemans et al. 2019). With
these complex interactions between functional diversity
of different trophic levels clearly exhibited by our
model, it is not surprising that studies focusing on a
single food-web structure or a single parametrization
sometimes find incommensurable results. For example,
increased primary producer diversity had often been
linked to an increased producer biomass or biomass
production (Tilman et al. 1997, Cardinale et al. 2011).
Our results show that this relationship not only
depends on the trait values of the consumer level (Sea-
bloom et al. 2017, Wohlgemuth et al. 2017), but cru-
cially also on the top level. Hence, we reveal
considerable variation in the behavior of differently
structured food webs with respect to the relationship
between diversity and ecosystem functioning, explain-
ing the incommensurable results arising from studies
of specific systems. Nevertheless, we are able to iden-
tify clear trends and uncover mechanisms governing
the behavior of tritrophic systems, even when consider-
ing a large range of different parameter combinations.

Concluding remarks

Understanding the link between functional diversity
and the functioning of complex food webs is crucial to
predict accurately how losses in functional diversity will
affect the functions of natural food webs everywhere
around us. Considerable detailed knowledge about this
link has been gained in communities comprising one or
two trophic levels. Partly, the knowledge gained from
bitrophic systems helps us to understand tritrophic ones,
such as the enhanced exploitation of resources by a more
diverse consumer community. However, accounting for
the third trophic level clearly shows that a restriction to
two trophic levels may yield misleading results for com-
plex natural food webs. The present comparison of sev-
eral different food webs consisting of three trophic levels
reveals simultaneously operating bottom-up and top-
down cascading effects over three trophic levels. We
uncover how food-web functioning may be affected dif-
ferently, depending on the amount of functional diver-
sity of every trophic level, which explains the
incommensurable results from past studies based on a
specific food-web structure. Importantly, we find that
functional diversity at lower trophic levels is essential to

support diversity at higher trophic levels. At high func-
tional diversity throughout the whole food web, func-
tional shifts within the individual trophic levels result in
a high food-web efficiency and biomass on higher
trophic levels, and a high degree of nutrient exploitation.
Additionally, we show that the functional diversity of
the top level is a strongly regulating factor for the bio-
mass, temporal variability, and biomass production effi-
ciency of any trophic level. Therefore, to prevent drastic
reduction of important functions, as well as potentially
irreversible transitions, it is of crucial importance to
increase our efforts in conserving diversity of higher
trophic levels, despite the often large operational prob-
lems involved.
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