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in academic economics?
Evidence from a network
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We collect a network dataset of tenured economics faculty in
Austria, Germany and Switzerland. We rank the 100
institutions included with a minimum violation ranking. This
ranking is positively and significantly correlated with the
Times Higher Education ranking of economics institutions.
According to the network ranking, individuals on average go
down about 23 ranks from their doctoral institution to their
employing institution. While the share of females in our
dataset is only 15%, we do not observe a significant gender
hiring gap (a difference in rank changes between male and
female faculty). We conduct a robustness check with the
Handelsblatt and the Times Higher Education ranking.
According to these rankings, individuals on average go down
only about two ranks. We do not observe a significant gender
hiring gap using these two rankings (although the dataset
underlying this analysis is small and these estimates are likely
to be noisy). Finally, we discuss the limitations of the network
ranking in our context.
1. Introduction
Various gender gaps have been documented among academic
economists. Female economists earn less than their male
colleagues [1,2] and are less likely to receive tenure and to be
promoted to full professor [3]. The finding that, in economics,
male faculty members evaluate (hypothetical) female candidates
less favorably for tenure-track assistant professor positions than
(both male and female) faculty members from three other fields
might be related to this [4]. The fact that the share of females at
each stage of career (from graduate school to full professor)
decreases is known as the ‘leaky pipeline’ [5,6]. Higher-ranked
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academic institutions (where rank is measured by research productivity) have fewer women in both
junior and senior positions than lower-ranked institutions [7]. As economics is both a field with a low
share of female faculty and a field with a gender gap in tenure and promotion [8], it is important to
identify existing gender gaps.

This paper builds on an approach by Clauset et al. [9]. They collected a network dataset of faculty
in three different disciplines (business, computer science and history) in the USA and Canada. They
then used a minimum violation ranking [10] to calculate a social ranking of the academic institutions,
and show that on average, faculty step down 27–47 ranks from their doctoral institution to their
employing institution. In addition, they document a significant ‘gender hiring gap’—women had to
step down further than men.

Our network data consist of tenured economics faculty in Austria, Germany and Switzerland.1

Besides the variables used in [9], we also account for career age effects. While we also find that
faculty step down about 23 ranks on average when we use our network data, we do not find a
significant gender hiring gap. This is confirmed when we consider the Handelsblatt and Times Higher
Education rankings, even though the number of ranks faculty step down is smaller with these two
rankings (where the dataset is smaller than the one underlying the network ranking, thus these
estimates are likely to be noisy). The article concludes with a discussion of the limitations of this
study, and with a few suggestions for improving data availability and, thus, improving future
research on the topic.
:210717
2. Method
Between 6 April and 5 May 2020, we hand-collected publicly available internet data of all institutions that
grant PhDs in economics in Austria (AT), Germany (DE) and Switzerland (CH). All data were
independently checked by a student helper and revised.

The institutions are the nodes in our network.2 An individual faculty member forms the links
between the institutions. We consider a directed network: the source is the institution where an
individual’s PhD was acquired, and the target is the institution where the individual works in a
tenured position. Neither individuals with a non-economics PhD (e.g. in related fields like statistics,
business, political science or agricultural economics) nor individuals with an economics PhD working
in a non-economics department/group (e.g. in one of the aforementioned related fields) are included.
Initially, we use a node to account for the individuals that come with a PhD from outside AT/CH/DE
into our network. Additional variables are the individual’s gender and the year in which the PhD was
acquired (which we transform into career age in years).

Table 1 summarizes the data. The full network contains the node with the individuals with a PhD
from outside the sample. The share of individuals that acquired their PhD outside AT/CH/DE is
22.7%; Switzerland has the highest share and Germany the lowest. For the closed network, we restrict
our sample to the individuals with both their source and target institution in AT/CH/DE. We
consider 100 institutions and 552 individuals. The individuals’ mean career age is about 20 years and
only 14.7% of them are female, with Austria having the largest share and Switzerland the lowest.

The restriction that we use for closing the network raises the question of whether there is a difference
in the gender composition of included and excluded individuals. Table 2 shows the numbers and shares
of male and female individuals inside and outside the closed network. The share of female individuals
inside and outside the closed network is very similar, both when we consider all three countries together
and separately. Fisher’s exact tests, also reported in table 2, confirm that there is no significant association
between the gender composition and included and excluded individuals in all three countries, together
1We consider these three countries for three reasons: (i) A dataset including three countries supplies us with more observations of
individuals and institutions than one single country. (ii) Most of the included faculties are German-speaking (exemptions are the
institutions in the French- and Italian-speaking parts of Switzerland). Within Europe’s generally flexible labour market, the
common language should facilitate the exchange of individuals between the included institutions. (iii) Many associations (like
the Verein für Socialpolitik, the association of economists in German speaking-countries) and rankings (like the Handelsblatt ranking;
it also includes the institutions in the French- and Italian-speaking parts of Switzerland) also focus on these countries’ economics
faculties, thus making comparisons between rankings easier (and our study potentially interesting for a specific audience). For an
analysis of the research and publication activities of economists that received their PhD between 1991 and 2008 in these three
countries, see [11].
2For an introduction to social and economic networks, see [12].



Table 1. Summary statistics of the full and closed network. (Note: the total of the full network includes a single node
representing all individuals with a PhD from outside AT/CH/DE. The closed network only includes individuals in AT/CH/DE with a
PhD from within this closed network. Standard deviations in parentheses.)

full network closed network

total AT CH DE total AT CH DE

no. institutions (nodes) 101 8 12 80 100 8 12 80

no. individuals (links) 714 49 129 536 552 36 72 444

mean career age 19.9 18.7 20.3 19.8 20.2 18.9 21.2 20.2

(8.0) (7.3) (7.7) (8.2) (8.1) (7.5) (7.8) (8.2)

share female 15.4% 22.4% 1 0.1% 16.0% 14.7% 19.4% 9.7% 15.1%

share PhD outside sample 22.7% 26.5% 44.2% 17.2% — — — —

Table 2. Two-way tabulation of individuals’ gender and inclusion in the closed network. (Note: row percentages in parentheses.)

total AT CH DE

female male female male female male female male

PhD inside cl. network 81 471 7 29 7 65 67 377

(14.7%) (85.3%) (19.4%) (80.6%) (9.7%) (90.3%) (15.1%) (84.9%)

PhD outside cl. network 29 133 4 9 6 51 19 73

(17.9%) (82.1%) (30.8%) (69.3%) (10.5%) (89.5%) (20.7%) (79.3%)

Fisher’s exact test p = 0.323 p = 0.451 p = 1.000 p = 0.211
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and separately. We thus conclude that there is no significant effect on the gender composition in the
closed network from excluding individuals with PhDs granted outside the closed network.

Figure 1 visualizes the closed network using the ForceAtlas2 algorithm [13]. In this force-directed
visualization, unconnected nodes repulse each other, while links attract the connected nodes. This
means that institutions are closer to one another when they (unilaterally or bilaterally) exchange
individuals. The exchange of individuals between institutions of different countries is not pronounced
as the institutions of each country are clustered. This observation might be in line with reported
homophily—the tendency that people interact with others who are like themselves—in many other
social networks [14,15]. However, we do not have further data to support this claim.

The network ranking follows the idea that individuals in societies form prestige hierarchies [16] and
translates this idea to institutions. The key assumption is that institutions hire individuals to emulate their
(more successful) doctoral institutions. The social hierarchy of institutions is endogenously determined
by the observed hiring patterns in the network. If the academic job market followed a perfect
hierarchy, we would observe no violations against the ranking and no individual would work at an
institution with a higher prestige than their source institution (an admittedly strong but simple
assumption).

To rank the institutions in our network, we use the algorithm supplied by [9]. Here, we explain how
the algorithm works in our specific case (where we used the default settings with bootstrapping). First
of all, a n × n adjacency matrix is set up (with the n = 100 PhD granting institutions in the rows and
the n = 100 employing institutions in the columns; the numbers in the matrix represent the number of
individuals ‘sent’ from the granting institution to the employing institution). Then, all institutions are
ranked in decreasing order of the number of individuals working at either one of the institutions in
the closed network (the institutions’ out-degree), and the percentage of individuals who violate the
social hierarchy is calculated (equivalent to the share of all individuals in the network that are below
the diagonal in the adjacency matrix). Then, during the burn-in phase (i.e. before the sampling phase),



Figure 1. A force-directed visualization of the closed network. (Note: Austrian institutions are orange, Swiss institutions in green,
German institutions in purple. The size of the nodes corresponds to the number of tenured individuals in the closed network. The
size of the links corresponds to the number of exchanged individuals. The visualization is based on the ForceAtlas2 algorithm [13].)
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n × n = 10 000 iterations of the following procedure are repeated: (i) a uniformly random pair of two
institutions is chosen and a new ranking is proposed in which their ranks are exchanged. (ii) The new
percentage of violating individuals is calculated and compared with the one before the exchange. (iii)
If the exchange (non-strictly) lowers the percentage of violations, the new ranking is implemented.
Otherwise, the ranking before the exchange is kept.

Thus, during the burn-in phase, in each iteration, the algorithm tries to reduce the number of
individuals below the diagonal in the adjacency matrix by sorting them above the diagonal. In the
following sampling phase, during n × n = 10 000 iterations, the algorithm still tries to reduce the
number of violations (as in the burn-in phase) and saves the ranking at each of 100 equidistant
iterations. The ranking of one repetition of the algorithm is the average ranking of the 100 saved
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Figure 2. Comparison of convergence processes. (a) Convergence process of the implemented (default) parametrization with
bootstrapping, (b) convergence process of the longer-running parametrization with bootstrapping.
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rankings during the sampling phase. We used the bootstrapping option to deal with the sparsity of the
adjacency matrix:3 when randomly choosing institutions (with replacement), each institution received a
probability equivalent to the share of individuals working in that institution.4

Complex networks can produce different rankings that entail the same percentage of violations [17].
Instead of relying on just one (randomly chosen) ranking, we conduct 100 repetitions of the algorithm as
stated above and use the average ranking of each institution for our network ranking. Electronic
supplementary material, table A1 supplies the rank and average rank of all institutions. We observe
only 14.67% violations (i.e. individuals that work at higher-ranked institutions). This number is in line
with the findings in [9]: we observe a social hierarchy.

To examine if and how the algorithm converged in our implementation, and also compare our
parametrization with a significantly longer-running one. In this longer-running parametrization, we,
again, conducted 100 repetitions. This time with a burn-in phase of 100 000 iterations (10 times the
number as in our implementation). In figure 2, we compare the convergence processes during
the burn-in phase associated with the different numbers of iterations—we show both the mean and
the median of all 100 repetitions for all iterations. By comparing figure 2a,b, we can see that the
higher number of iterations does not lead to a lower share of violations. Most of the reduction of
the violations takes place during the early iterations of the algorithm. We thus conclude that the
algorithm, using the default settings, converges on about the same minimum as the significantly
longer-running one.5

To test how our network ranking compares to other rankings, we correlate it with the Handelsblatt
(HB) 2019 ranking and the Times Higher Education (THE) 2020 ranking in Economics &
Econometrics.6 The HB ranking is considered the most important ranking to measure the research
productivity of individuals and institutions in AT/CH/DE. It is based on quality-weighted
publications and aggregated at the institution level (for the methodology, see [18]; for criticism of
the weights used, see [19]). The THE ranking measures the reputation of institutions and has a
more general approach than the HB ranking. To measure reputation, it attributes weights to
different performance indicators (some of which are in part collected in a reputation survey) from
five areas: teaching, research, citations, international outlook and industry income (for more details,
see [20]). Table 3 shows the correlation matrix of the three rankings. The network ranking correlates
positively and significantly with the THE ranking. (Note the small number of correlated
observations: the HB ranking publishes only the 25 highest-ranked institutions; the THE ranking
only has 28 included institutions with an exact rank.)
3Sparsity describes the fact that an adjacency matrix has a high number of entries with zeros. This is the case for our network data: we
we only consider 552 individuals in a matrix with 10 000 cells.
4For details on the code, see [9], the electronic supplementary material of [9], and the authors’ documentation of the MATLAB code.
5Note that each time the algorithm is run (on the same dataset with the same settings), it calculates slightly different percentages of
violations. After all, it is a stochastic algorithm with random pairs of institutions both during burn-in and the sampling phase.
6Both rankings are also shown in electronic supplementary material, table A1.
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Table 3. Correlation matrix of the three rankings. (Note: Kendall rank correlation coefficients, adjusted for ties.)

network ranking HB ranking THE ranking

network ranking 1.000

[n = 100]

HB ranking 0.2200 1.000

(p = 0.1290)

[n = 25] [n = 25]

THE ranking 0.3351 0.3410 1.000

(p = 0.0134) (p = 0.0532)

[n = 28] [n = 18] [n = 28]
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3. Results
Nowwe turn to the individuals’ rank changes based on the network ranking.On average, an individual goes
down 22.6 ranks (s.d.=28.3, median=18) from his/her source institution to his/her target institution. This is
significantly different from zero (two-sided t-test, p < 0.001), see the electronic supplementary material,
figure A1 for a histogram of the individuals’ rank changes. Figure 3 shows a scatter-plot with the rank
changes of all individuals by the rank of the source institution and by gender. There, in addition, we also
show a LOWESS filter [21], a non-parametric regression line that visualizes the relationship between the
individuals’ rank changes and the ranks of their source institutions. We observe: (i) there are more
individuals from a higher-ranked source institution in the network than individuals from a lower-ranked
source institution (see the electronic supplementary material, figure A2 for a histogram of the individuals’
ranks of source institutions; it seems to follow a power law). (ii) There is no obvious difference between
female and male individuals (an ordered logit regression shows that the difference (of −0.088) between
females’ and males’ source institutions is not statistically different from zero; p = 0.671).7
7For these analyses, we pooled three countries. We also check the rank changes individually for each country (where institutions are
located in this one country, and individuals can come from all three countries). In AT, all individuals go down on average 18.7 ranks
(s.d. = 25.1, median = 8); In CH, all individuals go down on average 19.4 ranks (s.d. = 25.1, median = 10); in DE, all individuals go down



Table 4. Determinants of rank changes according to the network ranking. (Note: ordered logit regressions of individual rank
changes. Standard errors in parentheses.)

dependent variable: network rank changes

independent variable(s) Model 1 Model 2 Model 3

female-dummy 0.123 0.172 –0.179

(0.208) (0.211) (0.519)

career age 0.013 0.010

(0.009) (0.010)

female � career age 0.020

(0.027)

cutoff list omitted omitted omitted

no. obs. 552 546 546

pseudo R2 0.0001 0.0005 0.0006

p > χ2 0.5541 0.3163 0.4148
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Women on average go down 20.5 ranks (s.d. = 28.7, median = 15), men 23.0 ranks (s.d. = 28.3,
median = 20). Electronic supplementary material, figure A3 shows the cumulative distribution
functions of rank changes by gender. The two functions lie almost exactly on top of one another. An
exact two-sample Kolmogorov–Smirnov test rejects the difference of the two distributions (p = 0.716).
Finally, table 4 shows the results of three different regression models of rank change on a gender-
dummy and career age using ordered logit regressions. (The career age and an interaction term of
career age with the female-dummy is included in Model 3 because females in the network are on
average 3.678 years younger than males, this difference is statistically significant from zero; two-sided
t-test, p < 0.001.) None of the regressions shows a significant gender hiring gap.

For a robustness check, we use the rank changes according to the HB and THE rankings. This approach
has the advantage that rank changes are exogenously determined (i.e. are not directly based on the hiring
network). However, it comes at the price of losing about 70% of observations as we cannot calculate
rank changes for the ca 390 individuals with unranked source or target institutions (75 institutions in
the HB ranking, 72 in the THE ranking). The share of female individuals in these two samples is
comparable with the full and closed network (15.9% in the HB-ranked institutions and 14.9% in the
THE-ranked ones). We also report the HB/THE rank changes by gender. According to the HB ranking,
women on average go down 2.1 ranks (s.d. = 7.6, median = 1.5 ranks down), men 1.3 ranks (s.d. = 8.1,
median = 0). The difference between men and women of about 0.8 is not statistically different from zero
(two-sided t-test, p = 0.644). According to the THE ranking, women on average go down 3.1 ranks
(s.d. = 10.7, median = 2 ranks down), men 2.0 ranks (s.d. = 8.7, median = 0). The difference between men
and women of about 1.1 is not statistically different from zero (two-sided t-test, p = 0.716). We note that
women step down more ranks than men when applying the HB and THE rankings, though these
differences are not significant. As we lost about 70% of individuals focusing on the institutions with
either an HB rank or a uniquely defined THE rank, these estimates are likely to be noisy. We report
scatter-plots and regressions in the electronic supplementary material. The scatter-plots in electronic
supplementary material, figures A4 and A5 give a qualitatively similar picture to figure 3. We note that
the sign of the gender-dummy in all specifications in electronic supplementary material tables A2 and
A3 is negative, in contrast to the coefficient’s signs in the regressions shown in table 4. However, all
coefficients in all regressions are not statistically significant from zero.

So, while using the three different rankings, we do not observe a significant gender hiring gap, it is
interesting to note that the levels of average rank changes are very different between the three rankings.
Using the HB ranking, all individuals go down on average 1.5 ranks (s.d. = 8.0, median = 0); with the THE
ranking all individuals go down on average 2.1 ranks (s.d. = 9.0, median = 0). This is in stark contrast to
the 22.6 ranks (s.d. = 28.3, median = 18), reported at the beginning of this section, when we apply our
on average 23.5 ranks (s.d. = 29.1, median = 20). In none of the three countries, two-sided t-tests detect a difference between male and
female individuals that is significant at all conventional levels.
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network data. Three points might help explain the high level of rank changes in the network ranking.
First, the network ranking reflects the idea that institutions only consider the individuals’ PhD
granting institution when hiring a professor. This idea has some appeal, but it might seem a bit over-
simplistic. Many other factors can also play an important role in hiring an individual: e.g. the
individual’s research output (for which the PhD granting institution might not necessarily be an
accurate predictor), acquired third-party funding, relevant teaching experience, the individual’s fit into
the department, among other factors. Second, in our closed network with three countries, we drop
individuals who attained their PhD at institutions outside these countries with a potentially very high
prestige/reputation. This might lead to a misclassification of institutions. Third, the algorithm—by
design—maximizes the average number of ranks an individual steps down. The ranking was
designed to rank those institutions highest that supply the most students to ‘lower ranked’ institutions
(remember that, in the initial step of the algorithm, institutions are ordered by their out-degree) while
also minimizing the extent to which ‘lower ranked’ institutions supply students to them in return (the
algorithm randomly chooses pairs of institutions to minimize the number of violations). Thus, the
rank changes according to the network ranking represent the upper bound of rank changes.
c.Open
Sci.9:210717
4. Discussion
Let us discuss some caveats and limitations of our results, and some lessons we can learn from them for
future research. First, the network ranking is a result of a static snapshot of stock data in April 2020.
While some individuals changed their employing institution (potentially various times), others did not
(and might be at their institution for a long time). A dynamic ranking that takes all transactions into
account (giving higher weight to more recent transactions) might be more suitable. But it is very difficult
to construct a dynamic dataset (or time-varying network) with all the individuals’ transactions. We
focused on publicly available data, and most variables beyond the PhD date are hard to find or construct.

Second, the high share of hired faculty from outside the closed network in Switzerland might
influence the ranking. If Swiss institutions not only hire from outside of AT/CH/DE but also produce
for this more international market, this might bias the ranking. The fact that the network ranking does
not significantly correlate with the Handelsblatt ranking might be explained by both the static data
aspect mentioned before, and the higher degree of internationalization of Swiss institutions (the
relatively low performance of Swiss institutions in our ranking compared to the Handelsblatt ranking
points into this direction).

Third, the fact that we do not observe a gender hiring gap does not mean that there is not one,
controlling for more variables (e.g. institutional and individual characteristics and the interaction of
the two sets of variables).8 On the one hand, future work should include a wider range of control
variables. On the other hand, more observations (e.g. including other countries’ institutions) could
approach the problem that economics is a field with a low share of female faculty and that maybe
more (female) observations are needed to detect a gender hiring gap.

Fourth, one might object that the low share of female economists in our network might have an effect
on the ranking (which is based on observed transactions). However, we do not observe a difference in the
rank of the females’ source institution in comparison to their male colleagues. Relatedly, the share of
females in our network is comparable to the share of female faculty of computer scientists in [9]
(where females also account for only 15% of faculty) and a gender hiring gap is detected, however
with a higher number of observations than in our study.

Fifth, we only observe the individuals who achieved a tenured position in an economics department
in AT/CH/DE. We do not have information about the pool of individuals who graduate with a Ph.D.
from the institutions we consider and who do not achieve tenure (conditional on trying). Given the
‘leaky pipeline’, the problem that the share of women decreases at each academic career step [5,6], it
seems very relevant to examine the combination of (i) the gender difference of attaining a tenured
position or not (the so-called extensive margin in labour economics) and (ii) the gender hiring gap
(the so-called intensive margin), using a minimum violation ranking.9 However, the data supplied by
8The insight that the composition of search/tenure commissions might matter for the evaluation of candidates [4] and our observation
that exchange of individuals between institutions of different countries is not pronounced point into this direction. The target
institutions’ gender composition could be included to control for the former effect. Both the source and target institutions
geographical references could be used to calculate distances to further examine the latter observation.
9For a good distinction of the extensive and the intensive margin in another context, see [22].
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universities about their PhD graduates is far from complete (for privacy and data protection reasons).
Future work could try to address this issue by working with (anonymized) data from a centralized
academic job market (like the European Job Market of Economists), which has recently been
introduced in Europe.

Sixth, it seems important to conduct more tests with exogenously determined rankings. We worked
with data from two very relevant rankings and had to drop many of the individuals as only about a
quarter of institutions in our data-set were ranked there. More complete rankings (e.g. beyond the top
25 institutions) would help for either robustness checks in studies using minimum violation rankings
or as an exploratory variable when using different approaches than minimum violation rankings.
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