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Abstract

Subdividing space through interfaces leads to many space partitions that are relevant
to soft matter self-assembly. Prominent examples include cellular media, e.g. soap
froths, which are bubbles of air separated by interfaces of soap and water, but also more
complex partitions such as bicontinuous minimal surfaces.

Using computer simulations, this thesis analyses soft matter systems in terms of the
relationship between the physical forces between the system’s constituents and the
structure of the resulting interfaces or partitions. The focus is on two systems, copoly-
meric self-assembly and the so-called Quantizer problem, where the driving force of
structure formation, the minimisation of the free-energy, is an interplay of surface area
minimisation and stretching contributions, favouring cells of uniform thickness.

In the first part of the thesis we address copolymeric phase formation with sharp inter-
faces. We analyse a columnar copolymer system “forced” to assemble on a spherical
surface, where the perfect solution, the hexagonal tiling, is topologically prohibited. For
a system of three-armed copolymers, the resulting structure is described by solutions of
the so-called Thomson problem, the search of minimal energy configurations of repelling
charges on a sphere. We find three intertwined Thomson problem solutions on a single
sphere, occurring at a probability depending on the radius of the substrate.

We then investigate the formation of amorphous and crystalline structures in the Quan-
tizer system, a particulate model with an energy functional without surface tension
that favours spherical cells of equal size. We find that quasi-static equilibrium cooling
allows the Quantizer system to crystallise into a BCC ground state, whereas quenching
and non-equilibrium cooling, i.e. cooling at slower rates then quenching, leads to an
approximately hyperuniform, amorphous state. The assumed universality of the latter,
i.e. independence of energy minimisation method or initial configuration, is strength-
ened by our results. We expand the Quantizer system by introducing interface tension,
creating a model that we find to mimic polymeric micelle systems: An order-disorder
phase transition is observed with a stable Frank-Caspar phase.

The second part considers bicontinuous partitions of space into two network-like do-
mains, and introduces an open-source tool for the identification of structures in electron
microscopy images. We expand a method of matching experimentally accessible pro-
jections with computed projections of potential structures, introduced by Deng and
Mieczkowski (1998). The computed structures are modelled using nodal representa-
tions of constant-mean-curvature surfaces. A case study conducted on etioplast cell



membranes in chloroplast precursors establishes the double Diamond surface structure
to be dominant in these plant cells. We automate the matching process employing
deep-learning methods, which manage to identify structures with excellent accuracy.
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Zusammenfassung

Die Unterteilung eines Raums durch Grenzfldchen fiihrt zu Raumaufteilungen, die fiir
die Selbstorganisation weicher Materie relevant sind. Bekannte Beispiele sind zelluldre
Medien, wie z.B. Seifenschaum, der aus Luftblasen besteht, getrennt durch Wéande aus
Wasser und Seife, und komplexere Partitionen, wie sie z.B. durch bikontinuierliche
Minimalfldchen erzeugt werden.

In dieser Arbeit werden mit Hilfe von Computersimulationen Systeme weicher Ma-
terie in Bezug auf den Zusammenhang zwischen dem im System vorherrschenden,
physikalischen Kraften und der Struktur der resultierenden Grenzfldchen oder Partitio-
nen untersucht.

Der Schwerpunkt liegt hierbei auf zwei Systemen, eine Copolymerschmelze und das
sogenannte Quantizer Problem, bei denen der treibende Faktor der Strukturbildung,
ndmlich die Minimierung der freien Energie, aus einem Zusammenspiel der Min-
imierung der Oberfliche der Grenzflachen und der gleichzeitigen Minimierung der
Elastizitdtsenergie besteht. Unter diesen Gegebenheiten bevorzugen solche Systeme
Zellen gleichméfiiger Grofe.

Im ersten Teil der Arbeit befassen wir uns mit der Bildung von scharfen Grenzfldchen in
Systemen von Copolymeren. Wir analysieren die zylindrische Phase eines Copolymer-
systems, das gezwungen wird, sich auf einer kugelférmigen Oberfldache zu organisieren.
Die Topologie dieser Oberfldche erlaubt es der optimalen Konfiguration, dem Sechseck-
gitter, nicht, sich zu bilden.

Fiir dreiarmige Copolymere wird die entstehende Struktur durch Losungen des so-
genannten Thomson Problems beschrieben. Letzteres sucht nach der Konfigurationen
von abstoflenden Ladungen auf einer Kugeloberflache mit minimaler Energie. Auf
einem Substrat haben wir eine Kombination aus drei ineinandergreifende Losungen des
Thomson Problems gefunden, wobei der Typ der Losungen statistisch von dem Radius
des Substrates abhangt.

Anschlieflend untersuchen wir die Bildung von amorphen und kristallinen Strukturen
im Quantizersystem, einem teilchenbasierenden Modell, dessen Energiefunktional
keine Oberflichenspannung enthélt und moglichst kugelférmige Zellen gleicher Grofe
begiinstigt. Wird das System quasistatisch im thermodynamischen Gleichgewicht
abgekiihlt, kristallisiert das Quantizersystem in den geordneten BCC Grundzustand.
Wird das System allerdings zu schnell abgekiihlt, sodass es sich nicht mehr im thermody-
namischen Gleichgewicht befindet, bildet sich eine amorphe, anndhernd hyperuniforme
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Struktur aus. Wir konnten zeigen, dass diese Struktur bemerkenswert unabhéngig von
den Ausganszustdnden, sowie der Art der Energieminimierung zu sein scheint. Im Aus-
blick erweitern wir das Quantizersystem, indem wir Oberflichenspannung einfiihren.
Unsere Ergebnisse deutet darauf hin, dass dieses so erweiterte Modell Mizellenphasen
in Polymersystem modellieren kann. Wir beobachten einen Phasentiibergang von einer
ungeordneten, fliissigen Phase hin zu einer festen Frank-Caspar-Phase.

Der zweite Teil der Arbeit behandelt bikontinuierliche Grenzflichen, die den Raum in
zwei netzwerkartige Doméanen aufteilen. Wir fithren eine Open-Source Software ein, das
die Identifizierung von Strukturen anhand derer Mikroskopaufnahmen erméglicht. Hi-
erzu erweitern und verbessern wir eine Methode, die durch den Abgleich experimentell
zuganglicher Projektionen in Mikroskopaufnahmen mit berechneten Projektionen poten-
zieller Strukturen basiert. Dieses Verfahren wurde erstmal von Deng und Mieczkowski
(1998) eingefiihrt. Die simulierten Strukturen basieren auf einer Nodalflichenmodel-
lierung von dreifach-periodischen Fldchen konstanter mittlerer Kriimmung. Wir fiithren
eine Fallstudie an Zellmembranen von Etioplasten, den Vorldufern von Chloroplas-
ten, durch. Wir konnten die Struktur dieser Etioplasten als die Diamond-Struktur
identifizieren. Als Ausblick automatisieren wir den Identifizierungsproyess mit Hilfe
von Deep-Learning-Methoden. Erste Ergebnisse zeigen, dass mit diesem Ansatz die
Identifizierung von Strukturen mit ausgezeichneter Genauigkeit gelingt.
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CHAPTER 1

Optimal partitions as model systems for cellular media

This thesis addresses structure formation in soft matter, with a focus on geometrically
optimal cellular media. In this case, geometrically optimal means that cellular structures
assemble, driven by an optimization of a purely geometric quantity. We will investigate
this geometrical optimization process with the aim of gaining an understanding about
how and why the resulting structures are built.

This introductory chapter provides a broad introduction to cellular partitions in
soft matter, pointing out where each of the chapters of this thesis are placed in the field.
The following chapters then provide more specific and detailed introductions to their
respective content.

To describe cellular media and define a notion of “optimality” a quantitative
description is needed. For this purpose we will use partitions and tilings. Partitions and
tilings are a mathematical model of how to divide space into smaller subvolumes. A
wide array of practical applications of such partitions exists in e.g. geography, chemistry,
biology and physics. Several examples will be given in this introduction.
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1.1 Planar tilings

A well-known example for a planar tiling is the honeycomb structure bees build in their
hives, as shown in fig. (1.1). The honeycomb structure subdivides a planar surface
into hexagons, which do not leave any gaps in between them. This pattern has been
of interest for over 2000 years, when scholars in ancient Rome have been fascinated
by this regular structure and were wondering why bees build them as they do [ Varro,
1934]. The beehive’s hexagonal structure, like any planar tiling, can be described using
vertices (points), edges (lines) and faces (polygons). The vertices mark the start and
end points of edges, whereas a face is determined by its enclosing edges. In the case
of the honeycomb structures, the vertices lie at the six corners of the hexagons and are
connected by edges, where three edges always meet at each vertex at an angle of 120°.

The faces of this particular tiling are regular hexagons.

The honeycomb structure has several compelling properties. First, it is part of a
special subclass of tilings, called regular tilings [ Griinbaum and Shephard, 2013]. These
are tilings which only consists of one type of regular polyhedra. Only three of these
tilings exist in the plane, using a regular triangle, square and hexagon as tile respectively.
A larger subgroup of tilings are so-called Archimedian tilings, which consist of multiple
types of regular polygons. An example of an Archimedian tiling consisting of regular
octagons and squares is shown in fig. (1.3c). A key aspect of tilings is symmetry [Horne,
2000, Griinbaum and Shephard, 2013, Conway et al., 2016]. Not all tilings (or partitions)
are symmetric, as we will see throughout this thesis. We first need to introduce an
isometry, which is a transformation o : E? — E? which preserves distances. An isometry
is also called a congruent transformation since it does not distort objects. There are
four possible isometries in the euclidean plane E*: (1) rotations around a point, (2)

Figure 1.1: A honeycomb as an example of a planar
tiling. A planar surface is subdivided into smaller
domains, called faces (F). Such faces are bounded
| by edges (E), which connects vertices (V). Here, the
plane is tiled by hexagons, each with six vertices.
Image credits Matthias Beutke.
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(b)

Figure 1.2: A three colored, regular tiling of hexagons. This so-called honeycomb pattern is
highly symmetric and can be reconstructed from its smallest, asymmetric unit cell, marked with
white triangles for the single colored hexagonal tiling (a) and the three-colored tiling (c). The
green crosses indicate kaleidoscopic points, i.e. rotation centers where mirror lines meet. The
number indicates the number of mirror lines meeting at the according point. By repeatedly
applying the symmetry operations of the tiling onto the unit cell, here rotations and mirroring,
the entire tiling pattern can be created.

translations along a vector (3) reflections in a line and (4) glide reflections in a line
[Griinbaum and Shephard, 2013, Conway et al., 2016]. A symmetry of a tiling is then an
isometry - or a combination of several isometries - which maps a set S onto itself, i.e.
oS = S, where the set S represents the tiling. A symmetric tiling can then be described
using the smallest, asymmetric patch, called the fundamental region, and the symmetries
of the tiling. The entire tiling can be reconstructed by repeatedly applying the symmetry
operations to the fundamental region as illustrated in fig. (1.2). Symmetric tilings are
thus infinite.

The symmetries of planar tilings can be labelled using the so-called orbifold nota-
tion. For a full description we refer to Conway et al. [2016], here we just indicate the
basics. Each symmetry operation is given a different symbol: e for a rotation center, *
for a mirror line, x for a glide reflection and o for a translation. By adding numbers to
the symbols, the symmetries can be specified more: *6 denotes that 6 mirror lines meet
in a single point in the tiling. The hexagonal tiling has thus an orbifold notation of *632.
An important aspect of the orbifold notation is that it directly describes the topology
of a tiling. More details on the topology of tilings will be provided in chapter 2. Other
popular notations for symmetries include the Hermann-Mauguin or the Schonfliess
notations [Hahn, 2005, Graef and McHenry, 2012], which are popular in crystallography.

Crystallography studies the symmetries and structure of ordered solid materials
and is a well established area of physics with many textbooks available [ Ashcroft et al.,
1976, Sands, 1993, Kittel, 2004, Graef and McHenry, 2012, Szwacki and Szwacka, 2016]. A
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(a) Tiling no symmetries and (b) Arbitrary tiling with no sym- (c¢) Periodic, symmetric tiling
curved egdes metries but straight edges.

Figure 1.3: Examples of planar tilings. Tilings are subdivisions of the plane into non-overlapping
cells leaving no gaps. Tilings can be described in terms of vertices (V), i.e. points where two or
more edges meet, edges (E) connecting vertices and faces (F), which are bounded by edges.

key aspect of crystals is their symmetry: all crystals are built from a so-called translational
unit cell, consisting of one or more atoms, and a lattice on which points the unit cell
is placed. The lattice is given by a set of three unit vectors b,. As such, crystals are
a natural partition of space with the shape of the unit cell determining the partition.
Thus, by definition, any crystal has at least translational symmetry and is thus periodic,
but may have several more symmetries like rotations or inversions, depending on the
type of lattice and choice of unit cell. There exist only a finite number of possible
symmetries for a crystal, these are labelled using so-called plane (two dimensions)
and space groups (three dimensions) [Hahn, 2005]. These play an important role
for the identification of structures, since the symmetry groups can be experimentally
determined using scattering methods [Hahn, 2005, Als-Nielsen and McMorrow, 2011a,
Szwacki and Szwacka, 2016]. For completely disordered and asymmetric tilings, edges
and faces are of arbitrary shape, an example is shown in fig. (1.3a). This leaves us with
the formal definition of a tiling: a covering of space by a set of non-overlapping shapes,
which do not leave any gaps [Griinbaum and Shephard, 2013]. Due to their lack of
symmetries, these tilings can be difficult to handle. Contrary to symmetric tilings, where
providing a unit cell or fundamental region together with its symmetries is enough to
describe the entire tiling, the positions of vertices, edges and faces have to be provided
to completely describe disordered tilings.

An additional layer of complexity can be added by introducing color to tilings
[Griinbaum and Shephard, 2013, Conway et al., 2016]. Here, each face is then assigned
a color. Colored tilings are for example the subject of the famous four-color problem
[Barnette, 1983]. This problem conjectures that for any planar tiling, four colors are

enough to color the entire tiling so that no edge is adjacent to two tiles with the same color.
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® Figure 1.4: A tiling of the sphere

@' } consisting of six four-sided poly-

/ ® \ gons. The rod indicates a rota-

@ N / ﬁ tional symmetry axis. Note that,
é \ due to the curved surface of the

sphere, three squares meet at each
vertex (b), instead of four as is the
case in the planar tiling consisting
of squares (a).

(a) planar tiling by squares  (b) spherical tiling by four-
sided polygons

This conjecture has been proven by Appel and Haken [1977], Appel et al. [1977]. Colors
allow to differentiate between two otherwise identical shapes, as shown in fig. (1.2).
Here the hexagonal pattern is expanded by using three colors and as such has three
different tiles instead of only one tile. By introducing color, the symmetry and the
unit cell of the tiling change. The orbifold notation, for example, of the three-colored
hexagonal tiling is *333, with a fundamental region indicated in fig. (1.2), instead of

x632 of the single-colored version.

1.2 Tilings on curved surfaces

Tilings can be generalised to any kind of surface, such as the surface of a sphere. The
main difference to planar tilings is that the tiled surface is now curved. Curvature
measures the bending, i.e. how much a curve or surface deviates from its flat counter
part [Millman and Parker, 1977]. That is the more a surface bends away from a flat

plane, the higher is its curvature.

The study of spherical tilings is closely connected with the study of polyhedra
with regular polygons as faces: by projecting the vertices and edges onto a sphere,
spherical tilings can be generated, where the edges of the polyhedra becomes great
circles [Coxeter et al., 1954, Griinbaum and Shephard, 1981]. The polyhedra and the
spherical tiling then share the same symmetries and order. An example is presented in
fig. (1.4b), where a cube is projected on the surface of a sphere. Spherical tilings has
been successful in describing the surface structure of spheres. A successful example is
virus capsids [Flint et al., 2015]. These are the spherical shells containing the genetic
information of viruses. This shell is self-assembled, i.e. constructed without external
forces with only very little help from cellular machinery, from one or a few types of
identical building proteins [Berger et al., 1994, Konevtsova et al., 2012]. Caspar and Klug
[1962] laid out basic design principles of the arrangements of these protein building
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blocks and found that many virus capsids show icosahedral symmetry, where the
proteins prefer a local hexagonal symmetry with few pentagonal defects. Mannige and
Brooks [2008] found that for many virus families the surface structure of these capsids
can be represented as a tiling of the sphere, where the basic building blocks (proteins)
are represented by a tile each. These tilings then reflect the order and symmetries of
the protein assemblies. The rules and orderings of possible virus surface structures can
thus be translated to a mathematical problem of how spheres can be tiled.

Further applications of spherical tilings include the modelling of two dimensional
foams [Roth et al., 2012] or bubbles [Mughal et al., 2017a,b] in spherical confinement,
or the description of spherical molecules such as the Buckminster fullerene, a sphere
consisting of 12 pentagons and 20 hexagons [Hebard, 1993].

The general definition of spherical tilings differs little from the one of planar
tilings: a spherical tiling is a covering of S? by sets T; (the tiles) without gaps [Griinbaum
and Shephard, 1981]. However, due to the intrinsic curvature of the sphere, or any curved
surface, the combinatorics of the tiling changes. Where as in the plane the sum of all
angles around a vertex add up to 27, this is not the case on curved surfaces any more, as
visualised in fig. (1.4). This concept is called geometric frustration: a preferred structure
can not be arranged due to geometric constraints. This concept will be the main focus of
chapter 2 of this thesis with more details provided there.

1.3 Optimal tilings

To introduce optimal tilings, we will reconsider the honeycomb pattern and the old
question why bees build their hives in this specific pattern (see fig. (1.1)). This question
dates back as early as 36 B.C., when addressed by the scholar Varro in Ancient Rome.
His answer to that question, without giving proof, was that this shape either is most
suitable for the six legs of the bees, or - the more geometrical approach - that this shape,
i.e. a hexagonal tiling of the plane, encloses the biggest amount of space given a fixed
perimeter length in between cells [Varro, 1934, Hales, 2001]. The latter hypothesis
became to be known as the honeycomb conjecture. When reformulated, this conjecture
states that the hexagonal tiling uses the least edge length among all planar tilings with
tiles of the same area. Considering the energy consumption needed to produce wax
[Coggshall and Morse, 1984], a hexagonal honeycomb would be optimal in a way that it
saves building material, however, the reality is slightly more complex. See references
[Toth, 1964, Weaire and Aste, 2008, Mughal et al., 2017b] for more details.
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The question of the honeycomb tiling being optimal in minimising its edge length
is very similar to the isoperimetric problem: which shape of a given perimeter length
encloses the largest area? The answer to this question in the E? plane is the circle [Bl&sjo,
2005]. However, since disks do not tile the plane without gaps in between them, this
can not be the solution to the question behind the honeycomb conjecture. Such an
arrangement of disks with gaps in between them is called a packing [Conway and
Sloane, 1999, Weaire and Aste, 2008]. The honeycomb conjecture states that the “next

best” shape which tiles space is the hexagon. Partitions can be induced by using a point

P ey +

Figure 1.5: City plan of Potsdam, Germany, with postboxes marked with red dots. The positions
of the postboxes induce a partition (tiling) of the city: each postbox is assigned a tile, representing
the “catchment area”, i.e. the area of inhabitants using this postbox, based on the assumption
each inhabitant uses the closest (measured in Euclidean distance) postbox. This point set induced
tiling is called Voronoi tessellation and assigns each point a cell containing all locations in space
closest to the point. Map data from OpenStreetMap, ©OpenStreetMap

set, for example the centers of a disk packing. We will illustrate this process using an
example: assuming the inhabitants of a town are lazy and will only use the postbox
closest to their home (measured in Euclidean distance), the distribution of the latter
assigns each postbox a “catchment area” of inhabitants using said postbox, as shown
in fig. (1.5). Each catchment area then is a tile in a partition of the city. The shape of
each tile is purely determined by the positioning of the points (postboxes), i.e. the
shapes and areas of the tiles change when the points (respectively postboxes) are moved

around the map. This way of assigning each point the area closer to itself than any other
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point is called the Voronoi tessellation. Using this technique, some tiling problems can be
expressed in terms of the arrangement of points instead of providing information for all
vertices, edges and faces of a partition.

Voronoi diagrams are an important concept of how to create tessellations based on
point sets and is used throughout this thesis. Its origin dates back to Dirichlet [Dirichlet,
1850] and Voronoi [ Voronoi, 1908]. We will provide a brief introduction, however, refer
to relevant textbooks and reviews for more details [ Aurenhammer, 1991, Okabe et al.,
2000, Aurenhammer et al., 2013]

The Voronoi diagram assigns to each point p;, also called site, of a set S a cell V;
[ Aurenhammer, 1991, Okabe et al., 2000]. The latter is defined as

Vi={x|lx—pil| <|x—p;jllforj #i,j € I}, (L.1)

where I, is the set of all site indices. Graphically speaking, the Voronoi cell V; associated
to the site p; is the region containing all points closer to the site i than to any other site.
Each region is bounded by edges, at the end of edges vertices are placed. With the
regions as tiles, the Voronoi diagram creates a partition of space based on a point set.
This Voronoi graph is the dual graph of the Delauny triangulation [ Okabe et al., 2000].

Voronoi tessellations or diagrams have an extensive number of applications,
as reviewed in [ Aurenhammer, 1991], and include nearest neighbor search, structure
analysis in crystallography or local optimisation problems [ Okabe et al., 2000]. Further
examples will be introduced throughout this thesis.

A popular method to compute the Voronoi diagram is to compute the Delauny
triangulation using convex hulls first, and then compute the Voronoi diagram as the dual
graph of the Delauny triangulation [O’Rourke et al., 1998]. However, also a cell-based
algorithm has been developed Rycroft [2009], providing more algorithmic flexibility.

Generalisations to the Voronoi diagram exists, for example the weighted Voronoi
diagram, also called Laguerre diagram [Okabe et al., 2000]. Here each site has a weight,
and the edges of the tessellation are not placed in the middle between two points, but
shifted reflecting the weights of the two sites. These tessellations are thus useful in

describing systems of extended bodies, such as polydisperse sphere packings.

Whereas Laguerre Tessellations have straight edges, tessellations with curved
edges exist, namely the set-Voronoi diagrams [Schaller et al., 2013] and so-called naviga-
tion maps [Richard et al., 2001]. These have the advantage that tessellations of convex

bodies of arbitrary shapes can be described in more detail than the Laguerre or Voronoi
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A Figure 1.6: A schematic energy functional, assigning an
energy, such as the total edge length of a tiling to a con-
local I T o
g figuration of a system, for example a tiling given as a
minima

collection of vertices and edges. The configuration with
the globally lowest energy is called ground state (blue
dot), other minima are called local minima (red dots),
" which can be stable, i.e. a system in such a state will not
evolve to further reach states of lower energy. The process
of energy minimisation would be equivalent to evolve an
initial configuration so that its energy (yellow dot) finds
state—" the glo‘t')a} minima. This complex task might get stuck in
local minima.

energy

configurations

tessellation would allow. In general, the neighborhoods deducted from the Laguerre
tessellation differ to the ones from the navigational maps. We found set-Voronoi dia-
grams to reconstruct the “correct” neighborhood relations - compared to visual analysis
- more robust than a Voronoi or Laguerre tessellation. For a in-depth discussion, we
refer to existing literature, such as [Richard et al., 2001, Katgert and van Hecke, 2010,
Clusel et al., 2009].

We now circle back to the question, as to what constitutes an optimal tiling? The
purpose of the above introduced tiling would be to measure how un/evenly postboxes
are distributed over a city, i.e. a tiling containing cells of strongly varying area indicates
an homogeneous distribution [Du et al., 1999]. To express this quantitatively we define

a function
N

E(P) =Y (A(V)—p")" (1.2)
with P = (pf,pY, p3, 5, ..., 0%, p) being a vector containing all N positions of postboxes,
A() is the function computing the area of a Voronoi cell V; and p = & where F being
the area of the city. As defined in eq. (1.2), £ measures the total deviation of a perfectly
distributed mailbox placement. The larger the value E gets, the less optimal is the
mailbox placement and thus the partition. In physics, the quantity F is often called
energy and the function which assigns an energy to a configuration of cells or points
is called energy functional, or more generally fitness function. Since energy functionals
usually take as input many parameters, a graphical visualisation of the function defined
in eq. (1.2) is impossible. Thus we will introduce some aspects of energy functionals
with the help of a simple, schematic energy functional shown in fig. (1.6). The ground
state of an energy functional is the configuration of a system, which among all possible
configurations, has the lowest energy (blue dot in fig. (1.6)) [Wales and Wales, 2003 ].
Moving the locations of the postboxes around in the example thus changes the value

of the energy functional (eq. (1.2)) of the tiling and therefore its energy. The optimal
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position of the postboxes for a given energy functional is then found, if the system is at
its global minimum, thus the post boxes are perfectly spread out. This process of finding
the optimal locations is called energy minimization. In fig. (1.6), this process is depicted
as an initial configuration (yellow dot) being rearranged so its energy is decreased and
moves towards the global minima. Depending on the exact procedure, a system might
get stuck in stable local minima (marked as red dots in fig. (1.6)). That is the system can
no longer reduce its energy and will remain in a locally optimal configuration, although

the ground state as the globally optimal configuration, is not reached yet.

There exist many different types of energy minimisation methods, each with its
own strengths and weaknesses. Which type to chose depends on the exact problem
to be solved. The implementations of these processes can become arbitrarily complex,
and efficiently designing such a process is beyond the scope of this thesis. However,
the methods used for this thesis will be presented at the appropriate locations in later
chapters.

The energy functional driving the honeycomb conjecture would be the total
length of all edges in the tiling, with a constraint that all faces must have the same area.
But are the bees right and is the honeycomb conjecture true? That is, is the hexagonal
structure indeed the ground state of said energy functional? Many tried to proof the
honeycomb conjecture, as is reviewed by Szpiro [2003]. Although not successful in
proving the conjecture, T6th [1972] formulated the remarkable equivalency of the
honeycomb conjecture and the question of the densest disk packing in the plane [Téth,
1972]. This means that the Voronoi diagram of the most dense disk packing in the plane
would also solve the honeycomb conjecture. This relation again highlights the close
connection of tilings and packings. In 1999, Hales [2001] - almost 2000 years after its
formulation - finally proved the honeycomb conjecture. Since this prove shows that
the hexagonal tiling has the least interface length among all regular tilings, all systems
which are driven by an edge length minimisation will aim to adapt a honeycomb pattern,
as we will see throughout this thesis.

1.4 Partitions of space and packings

We just introduced the hexagonal tiling as the optimal tiling to minimise the total edge
length for a given tile area. This structure is ordered and highly symmetric. In this section,
we will introduce structures which are asymmetric and disordered, but nevertheless
optimal, given some energy functional. The given examples are three dimensional

partitions, subdividing space into cells, which are separated by faces. A face is again
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bounded by edges, which are connected by vertices. Due to their occurrence in everyday

Figure 1.7: A dry foam, consisting of polyhe-
dral cells, filled with air, separated by interfaces
of water and surfactants. Due to its chemical
and physical nature, the foam arranges to min-
imise the total area of its interfaces. (Photo credit
Wiebke Drenckhan-Andreatta)

live, foams (see fig. 1.7) are an excellent example for a cellular material: space is divided
into polyhedral cells filled with air, which are separated by interfaces made up by water
and surfactants [ Weaire and Hutzler, 2001, Stevenson, 2012, Wilson, 2014, Perkowitz
and Perkowitz, 2000, Isenberg, 1992]. That is, the foam provides a disordered, random
partition of space into single foam cells with a specific geometry and structure. Foams
have been of long interest, with Plateau [1873] publishing his research about foams in
1873. Since then this subject has attracted much attention. Among others, structural
properties [Matzke, 1946, Kraynik et al., 2004, Drenckhan and Langevin, 2010], the
aging (coarsening) of foams [Ryan et al., 2016, Evans et al., 2012, 2017] and rheological
properties [Evans et al., 2013b, 2017, Drenckhan et al., 2005] were investigated.

The driving force in foams is the surface tension: a large interface area is energet-
ically less favourable, i.e. the cells deform and arrange in order to minimise the surface
tension in the foam while not being able to exchange air. The air trapped inside the cells
can not be exchanged, so the final structure of a foam is a compromise between minimal
interface area and air pressure inside the cells [ Weaire and Hutzler, 2001]. This again is a
cellular optimization problem, similar to the honeycomb conjecture: which space-tiling
cell minimises its surface area given a fixed cell volume? This problem was introduced
by Lord Kelvin in 1887 [Sir William Thomson, 1887, Weaire, 1997 ] and thus named after
him: the Kelvin problem. Lord Kelvin proposed the truncated octahedron as a solution.
However, over 100 years later, Weaire and R. Phelan [1994] were able to give a counter
example, with a structure consisting of two different cells with equal volume, which
was has in total about 0.3% less surface area than the truncated octahedron [Weaire and
R. Phelan, 1994]. While this is so far the most optimal solution, a conclusive proof is yet
outstanding.

A fascinating property of soap-films is that they solve Plateau’s problem [Harri-

son and Pugh, 2016]. This originally mathematical problem was introduced by Lagrange
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in 1760 [Plateau, 1873] and searches for the surface with a fixed boundary which min-
imises its surface area. Due to the surface tension of soap-films, the latter naturally
solve Plateau’s problem and thus form so-called minimal surfaces. This concept is not
constraint to soap-films and will be discussed in detail in chapter (4).

In the presentation of the honeycomb conjecture, the close connection - sometimes
equivalency - of packing and partition problems has been shown. A three dimensional
analogon for packing problems is the so-called Kepler problem [Szpiro, 2003, Hales,
2006, Torquato and Stillinger, 2010]. The latter searches for the densest sphere packing in
three dimensions. This question dates back to around 1600, and in 1611 Kepler proposed
the now called Kepler conjecture: the densest way of packing spheres in space is to place
the centers on the grid points of a face centered (FCC) cubic grid, visualised in fig. (1.9).
The grid points of a FCC grid sit at the corners of a cube as well as at the centers of its

faces.

An equivalent structure with identical packing density as the FCC packing is
the so-called hexagonal close packing (HCP). Like the packing, it consists of layers of
densely packed spheres, however, the arrangement of the layers differs from the FCC
packing. Since both FCC and HCP packings are built from the same layers of planar
packings, structures with mixed “layers” of FCC and HCP are possible.

Although the Kepler problem is strictly speaking a packing problem, this problem
can be reformulated as a partition problem: using the Voronoi diagram, each sphere
is assigned a cell. Due to its definition, these cell form covering of the space. The

Sl

(a) Kelvin cell (b) Weaire-Phelan cells

Figure 1.8: A single cell and a packing of several unit cells of the Kelvin (a) and the Weaire-
Phelan (b) foams. Whereas the Kelvin cell partitions space in equal cells minimising the interface
area, the Weaire-Phelan structure is the presently best partition of space minimising interface
area, however, using two different cells both of the same volume. The Kelvin cell consists of 14
faces, with six squares and eight hexagons. The Weaire-Phelan structure consists of a 14-sided
polyhedron, with 12 pentagonal and two hexagonal faces, and a 12-sided polyhedra with 12
pentagonal faces.
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most dense sphere packing is then reached for the smallest possible Voronoi cell which
contains the entire sphere. If the search is constrained to regular partitions, i.e. partitions
made up of only a single type of cell, the Kepler problem reduces to the search for the
smallest possible Voronoi cell which can cover space without gaps and overlap.

Similar to the honeycomb conjecture, it took many years and attempts until a
proof of this conjecture was found [Szpiro, 2003 ]. It was again Hales [2005] who was
able to prove this conjecture, using a computer-assisted proof.

The above optimisation problems with their respecting energy functionals are
excellent models for real world cellular materials. These are driven by very similar or
even identical energy functionals [ Weaire and Aste, 2008]: when poured in a container,
granular materials, such as sand, forced by the weights of the grains, compact into
jammed, dense packings [de Gennes, 1999, Weaire and Aste, 2008, Mehta, 2012] and
as such are attempts to solve the Kepler problem. Such packings have been studied
intensively [ Conway and Sloane, 1999, Cohn and Elkies, 2003, Torquato and Stillinger,
2010, Torquato, 2002].

Dry foams and froths, driven by minimization of the surface tension energy
as discussed above, minimise the surface area of their cells and bubbles [ Weaire and
Hutzler, 2001].

The analytical approach of proving that a structure may or may not be the optimal
solution to an optimization problem has the disadvantage that the structure has to be
known beforehand. Using real world systems, such as grain packings, or model systems
implementing the physical behavior, provides the opportunity to find new solutions to

(a) A FCC sphere packing (b) Voronoi diagram of a FCC (¢) Single FCC Voronoi cell
sphere packing

Figure 1.9: (a) A face-centered-cubic (FCC) sphere packing. A sphere is positioned at each
corner and at the centers of each face of a cube. This arrangement has the highest density (~ 74 %)
among all sphere packings. (b) The Voronoi tessellation of a FCC point pattern, partitioning
space into equal cells, each made up of 12 diamond shaped faces. (c) A close up of a single FCC
Voronoi cell.
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said optimisation problems and vice versa.

For example, with the FCC packing being the densest, i.e. optimal packing, i.e.
densest, packing, one might expect spheres poured into a container to arrange in said
structure. Analog foam cells would be expected to take the shape of the Weaire-Phelan
structure, as they are (at least currently) the energetically most favourable configurations.
Experimental experience already shows us that this is not the case: instead of adopting
the optimal solution, disordered states emerge, both for the spheres in a container,
as well as foams. Although these disordered states have a higher energy, i.e. lower
density than the FCC or higher surface area than Weaire-Phelan foam, these disordered
configurations are still stable and do not equilibrate into the respective ground states.

Although these states are disordered, they still are characteristic for their re-
spective energy functional. Bernal’s random close packing (RCP) [Bernal and Mason,
1960, Finney, 2013, Schaertl and Sillescu, 1994] as a disordered solution for the Kepler
problem for example shows a characteristic upper bound (~ 64 %) for its density and
a characteristic average coordination number, i.e. the average number of how many

spheres touch each other.

Even more strict rules, called Plateau’s Laws, apply to the disordered config-
urations solving the Kelvin problem [Kraynik, 2006, Weaire and Hutzler, 2001]: (1)
the faces of each bubble are spherical caps (2) exactly three faces meet at each edge at
an angle of 120° (3) exactly four edges meet at each vertex at an tetrahedral angle of
~ 109.47°.

The concept of disordered, but stable local minima being favored over the respec-
tive ground states is the focus of chapter 3. There, a system will be investigated of which
the ground state is known to be a body centered cubic (BCC) lattice. However, recent
research found a stable, disordered state, analog to the random close packing for the
Kepler problem or Plateau’s foam to the Kelvin problem. The chapter will investigate
the stability of this disordered state.

1.5 Infinite structures

In this last section, we introduce several infinite partitions of space with intriguing

geometry, the so-called triply periodic minimal surfaces (TPMS).

Minimal surfaces minimise their surface area for a given fixed boundary and as

a result have a vanishing mean curvature [Nitsche, 2011]. The previously discussed
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(a) Gyroid (b) Diamond (¢) Primitive

Figure 1.10: Three examples of triply periodic minimal surfaces (TPMS). These surface are
usually highly symmetric and periodic in all three spatial dimensions. As minimal surfaces, i.e.
they minimise their surface area given a fixed boundary, they have a vanishing mean curvature.
The surface divides space in two intertwined but separated channels of equal volume, also see
fig. (4.3) for a visualisation of the channel networks. Such surfaces often occur in soft-matter
systems, where they are build by e.g. polymers or lipids, see also fig. (4.4).

soap films are examples of minimal surfaces. Triply periodic means that the surfaces are
periodic in all three spatial dimensions. TPMSs have the important property that they
divide space into two intertwined, but separate channels. Due to this property, these

structures are also referred to as bicontinuous phases.

Research on TPMSs began as early as 1865, when Schwarz discovered the first
TPMS, which was called the primitive (P) (fig. (1.10c) and diamond (D) surface
(fig. (1.10b). Years later, Schoen [1970] found a number of new of these surfaces,
among them the Gyroid (G) surface (fig. (1.10a). Many interfaces and structures have
been found to assemble into the P, D or G surfaces. These structures have been found
to act as a photonic crystals [Michelson, 1911, Wynberg et al., 1980, Jewell et al., 2007,
Berthier et al., 2014, Sharma et al., 2014, Arwin et al., 2012, Vukusic and Sambles, 2003,
Joannopoulos et al., 2011]: due to their geometry, the structure can exhibit photonic
band gaps at certain wavelengths, causing light with said wavelength to be reflected.
This phenomenon has been observed for a Gyroid structure, where one channel is filled
solid with chitin, in the wing scale of a butterfly [Wilts et al., 2017], providing a bright
green color. A Diamond structure with the same purpose is found in a beetle [Wilts
etal., 2012b].

A complex membrane-like structure is also found in the prolamellar bodies (PLB)
of the precursors of chloroplasts [ Gunning, 1965]. The exact structure of these PLBs,
however, has been long debated. In chapter 4 we are able to identify this structure as a
Diamond surface [Hain et al., 2021]. TPMSs are also found as self-assembled structures
in soft-matter systems, such as polymer melts or ampiphilic lipid systems. Analogous

to foams, these molecules in solution assemble into films minimising their surface area
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while trying to keep the molecular arrangement as little stretched or compressed as
possible (for details, see chapter 2). As a result, the molecules arrange along minimal
surface, see fig. (4.4). Further details on these processes, structures and their references
will be given in chapters 2 and 4.

As the example of the PLB illustrates, the identification of these complex struc-
tures is challenging. Methods include X-ray scattering, but also direct imaging using
e.g. transition electron microscopes. The latter, however, only provides a planar cross
section or projection of a three dimensional structure, making a direct identification

challenging. This problem will be addressed in this thesis in chapter 4

1.6 Qutline and structure of this thesis

This chapter aims to provide a general introduction to cellular media, driven by geo-
metrical optimisation, which is the topic of this thesis. More specifically, we investigate
self-assembly in geometrically driven cellular media. Here three particular aspects are
considered. Two of them are related to self-assembly, namely the effect of geometric
frustration and the stability of disordered phases as local minima of energy functionals.
The third aspect addresses the identification of TPMS in soft-matter systems.

The further structure of this thesis is as follows: each chapter is based on one
publication, presented in full, which is prefaced by a introduction to the corresponding
topic. This introduction provides a literature overview for each publication and connects
the different chapters of this thesis. The last chapter of this thesis provides a coherent
discussion, with a focus on the connection of our results to other research in the field,
of the results from each publication and provides an outlook on future research. The

thesis consists of three publications.

e Chapter 2 is based on [Hain et al., 2019] and will investigate a polymer melt as-
sembling into planar tiling patterns, minimising its interface length. As discussed
above, its ground state is thus the honeycomb pattern. To tweak this structure,
we will force this polymer melt onto a spherical substrate. This spherical geom-
etry is incompatible with the honeycomb pattern, which as a result will have to
adapt. Here Molecular Dynamics simulation will be employed to compute the
self-assembly process. We find that the structure of the tilings is closely related to
the Thomson problem of placing electrons on a sphere.

e Chapter 3 is based on [Hain et al., 2020] and considers the Quantizer problem,
a geometric optimization problem defined on the Voronoi diagram of a point
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set. The Quantizer problem is then the search for the arrangements, where all
cells are of equal volume and as “spherical” as possible. Similar to established
optimization problems, the ground state is known to be the body-centered-cubic
structure, however, recently a disordered but stable structure has been found [Klatt
et al., 2019]. In this chapter we will test the stability of this disordered structure

over its ground state.

e Chapter 4 is based on [Hain et al., 2021] and will present a new open-source
software tool developed by us, called SPIRE: Surface Projection Image Recog-
nition Environment. This tool is based on so-called direct template correlative
matching (DTC): a planar projection of a three dimensional structure, for example
obtained from electron microscope images, is compared to a library of artificial
projections of potential structures. This method has been first introduced by Deng
and Mieczkowski [1998]. With SPIRE, we improve the functionality and usability
of this approach, facilitating faster and more exact structure identification and

analysis.

e Chapter 5 contains a conclusion, synthesis and outlook of this thesis. Here, our
results are presented coherently in the context of relevant work in corresponding

fields. An extensive outlook on our ongoing research and future projects is given.
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CHAPTER 2

Effect of geometric frustration on polymeric self-assembly

This chapter investigates how the self-assembly process and the resulting structure are
influenced by geometric frustration. The topological defects in a three-colored honey-
comb tiling are analysed for systems forced onto a spherical substrate. The honeycomb
tiling is self-assembled by a polymer melt of triblock star copolymers confined to a spher-

ical shell. The self-assembly process is simulated using Dissipative Particle Simulation
(DPD) code.

The core of this chapter is our publication [Hain et al., 2019] which contains
methods, results and a discussion of the latter. The following first section will provide a
general introduction to the background of this article, starting with general polymeric
self-assembly and more specifically self-assembly of tiling patterns using star copolymers.
The concept of topological defects in ordered arrangements caused by curvature is
introduced before the publication is presented in full. A conclusion and outlook is given
in chapter 5.

19
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2.1 Polymeric self-assembly

2.1.1 Foundations of polymeric self-assembly

Self-assembly is the ability of components to arrange into structures without external
influence [Isaacs et al., 1999, Whitesides and Grzybowski, 2002]. A wide variety of
structures are self-assembled, for example molecular [Philp and Stoddart, 1996], liquid
[Mezzenga et al., 2019] or colloidal [Dijkstra and van Roij, 2005, Ellison et al., 2006,
Schonhofer et al., 2017, Loudet et al., 2000] crystals, biological membranes [ Almsherqi
et al., 2009] and cell organelles[Garab, 2016]. Block copolymers have been studied for
over 50 years, since they offer a wide variety of molecular architectures with a well
understood theoretical foundation based on only a few parameters [Reddy et al., 2021].
Due to these properties, block copolymers has been used as a model system to study and
understand the self-assembly of a variety of morphologies in soft-matter, as for example
reviewed by Bates and Frederickson [1999], Bates and Bates [2017], Polymeropoulos
et al. [2017], Reddy et al. [2021]

Block copolymers are macromolecules consisting of at least two different species
of monomers (in here visualised by different colors) combined into chain-like blocks,
that is sections of identical monomers. An arbitrary number of blocks of different species
are joint at so-called grafting points to form a macromolecule. This allows for various
architectures, such as stars, combs or linear triblocks, as shown in fig. (2.1)[Matsen,
2007, Fischer et al., 2014]. The foundation of polymeric self-assembly lies in the chemical
incompatibility of different block types [Bates and Frederickson, 1999]. This incom-
patibility is manifested in repulsive forces between two monomers of different types.
Contacts of different block types are thus avoided, however, can not be avoided com-
pletely since different blocks are joined at grafting points. This results in the polymers
organising into morphologies minimising the interface area between different block
types. This process is called self-assembly. Depending on the chemical composition,
i.e. the strength of the incompatibility, of the polymers and the length of the different

blocks, various different morphologies form.

To introduce some morphologies of block polymers, we present the different
self-assembled structures of a melt of the simplest copolymer, the linear AB diblock.
A polymer melt is a liquid consisting solely of polymer molecules, without a solvent.
AB linear diblocks are copolymer chains, consisting of two linked blocks of types A
and B. The length of the A block as a fraction of the entire chain is given as f5 whereas
the strength of the chemical incompatibility of the different block types is given as the
so-called interaction parameter y 45 [Matsen and Schick, 1994, Matsen and Bates, 1996,
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e~ TR

(a) AB linear diblock (b) ABB star copolymer (¢) AB5 comb
(d) ABC linear triblock (e) ABC star copolymer (f) ABC D dual-chain core star
triblock

Figure 2.1: Different architectures of block copolymers. Block copolymers are molecules where
blocks, i.e. sections of identical species, are joined together into a macromolecule. Different
species are here visualised by different colors and denoted by letters, here "A’, "B” and "C". The
points (black dots) where different blocks are joint are called grafting points. Block polymers
show a rich morphology of self-assembled structures, see e.g. fig (2.2) for morphologies of AB
linear diblock copolymers.

Bates et al., 1994, Bates and Frederickson, 1999]. A phase diagram as a function of fa

and x 45, as well as visual presentations of the common phases is shown in fig. (2.2).

In the following section we will summarise the theoretical foundations of poly-
meric self-assembly following the reviews by Matsen [2002, 2007 ], Bates and Fredrickson
[1990] unless stated otherwise. More details can be found in the cited literature through-
out this introduction or in text books on the topic [Hamley, 1998, Jones and Richards,
1999, Enders and Wolf, 2011, Gedde, 2013].

In the de-facto standard theoretical model, called Gaussian chains, polymers are
treated as continuous curves in space r,(s), where o numerates each polymer chain.
However, an exact knowledge of the position of each molecule is not important, instead,
the quantity considered here is the ensemble average density ®(r)x = <<f>(r) X> of a
monomer species X at a position r with

. n Ix
@X(r):%Z/O 5 (r —1o(s)) ds
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Figure 2.2: Phase diagram (a) and visualisation of the most common phases of AB diblock
copolymers (b-e). For weak interactions of x4gN < 20 the melt is entropy driven and well
mixed, i.e. no microphase separation takes place. For a strong enough interaction strength
xaN > 20, the polymer melt undergoes microphase separation and assembles into ordered
structures. We describe the morphologies with increasing fa. Micelles (b): The short A type
blocks congregate into a spherical domain, called micelles. These micelles float in a matrix made
up of the B tails of the polymer chains. The centers of the micelles has been found to sit on lattice
positions of periodic lattices, such as the cubic body-centered-cubic (BCC) or face-centered-cubic
(FCC), but also the A15 Frank-Caspar phase. Gyroid (c): The A type tails here form an infinite,
triply periodic network, called srs-net, surrounded by a B-typed matrix. See also fig. (4.4c).
Cylinders (d) : A domains are parallel cylinders arranged in a hexagonal order of infinite length,
surrounded by a B-typed matrix. Lamella (e): Alternating layers of A and B type sheets form, a
cross section is shown in fig. (2.3b). Further increasing f4 does not generate new structures, but
due to the symmetry of the linear diblocks, identical structures where A and B type domains
are switched form.
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Figure 2.3: Example of a mixed (a) and microphase separated (b,c) polymer melts.

where p; ! is the volume of a chain segment, NV is the number of segments in a polymer
chain (see fig (2.4)) and fx is the fraction of the block of type X in the polymer. Since
polymer melts can be assumed as almost incompressible liquids, the sum of the densities
of all monomer species must add up to 1. In regions where the polymer species are well
mixed, the densities of different species are about equal, as shown in fig. (2.3a). Regions
with an excess of one monomer species then show a high density of a species. If the
density is close to 1, such a region herein is considered to be a domain of the type of this
species, as depicted in fig. (2.3). Where as in fig. (2.3) the average density of rectangular
regions is computed, domains of purely one monomer species can be of any shape, e.g.
as shown in fig. (2.3c). A full thermodynamical treatment of polymer melts is out of
scope for this thesis, but we will provide a phenomenological approach to the statistical

mechanics of polymer melts.

A system in statistical mechanics is driven by the extremisation of a thermody-
namical potential, in the case of polymer melts this is the free energy /' = U —T'S, where
U is the internal energy of the system due to its interactions, 7" is its temperature and S
is its entropy. As can be seen, for high temperatures the system is entropically driven
and prefers a uniform mixing, as shown in fig. (2.3a), where as for low temperatures
the system is driven by the internal energy. This is the regime where self-assembled
structures form, such as the lamella phase shown in fig. (2.3b).

To model the interactions of polymers, a so-called coarse grained model is em-
ployed. Here, a section of the polymer chain, e.g. a single monomer unit or more, is
treated as a single unit called segment, depicted as a disk in fig. (2.4). Since its internal
structure is consisting of many atoms, a segment has only a statistical length which can

be stretched and compressed. The energy contribution to the free energy of such a chain
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Figure 2.4: The continuous chains mod-
elling polymers in the standard Gaussian
chain model are discretised into a coarse
grained model for theoretical and numeri-

. cal treatment. Here, one or more monomer
units are grouped into a so-called segment,
~~/\

% Vo 4t here depicted by a disk. The color of the
~ disk visualises the type of the segment.
Shown are AB diblock copolymers. Coarse
grained models are also employed when
w using computer simulations.

is consisting of two parts: (1) the energy of the interactions between the segments and

(2) the internal energy of the chain due to stretching and compression of the segments.

The internal energy of the chain in an interval [sy, s, is given as

Es 3 s2

where r,(s) is a space curve describing the polymer chain, NV is the number of segments
in the polymer, a is the statistical segment length, and kg7 is the temperature of the
melt. The internal energy penalises configurations where segments are strongly stressed
or compressed, thus perturbed from their favourite segment length a. This is the case
for configurations where the polymer chain is relatively straight or strongly curled into
a blob.

The interaction between two segments is modelled as a single contact force.
Here, contact force means an interaction potential which only interacts with direct
neighbouring particles. The strength and energy content of the interactions between
two segments of species A and B is modelled by the so-called Flory-Huggins parameter
xap [Flory, 1942, Huggins, 1942, Flory, 1944 |, where a parameter for each pairwise
interaction between monomer species is used. The total energy from interactions U is

given as

= XABPo / ¢a(r)¢p(r)dr (2.2)
where p; ' is the volume taken by a single segment.

To model insoluble, that is chemical incompatible, monomer species, the inter-
action parameter between the latter are chosen higher then the interaction parameter
between identical monomers thus x4 > Xx44. This results in an energy penalty if two
monomers of different species are in contact. Due to the urge of the system to reduce

its energy, the molecules will rearrange to avoid contacts of different monomer species,
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resulting in a separation of the latter.

The strength of this separation process is dependent on the interaction strength
and temperature, as mentioned above. At high temperatures and low interaction forces,
the system will be entropically driven and prefer a thoroughly mixed system. Reducing
the temperature and increasing the interaction strength will then lead to a regime called
weak segregation limit (WSL). In this regime areas with an excess of one monomer types
will form. Further reducing the temperature and increasing the interaction strength will
finally result in the strong segregation limit (SSL). In this limit, different types of polymer
blocks are completely separated and the densities of the polymers are described by step

functions. Sharp interfaces form in between the boundaries.

In the SSL, a mixed system of polymers of solely type A or B will undergo what
is called macrophase separation|[Bates and Fredrickson, 1990, Bates et al., 1994, Bates
and Frederickson, 1999]: two domains will form, where each domain will contain only
a single type of monomers. A more complex behavior show block copolymers: since
blocks of different species are joined, contacts of the latter can never be avoided, but
only reduced as much as possible. Instead of two large, separated domains, many
small domains will form. The larger the interfaces are, the more unfavourable contacts
between different monomer species occur. By the minimisation of the free energy the
system arranges to a morphology reducing the interface area as much as possible. This
phenomenon of unfavored contacts and interface area minimisation is referred to as

surface tension.

The grafting points of the polymers will sit on the interfaces in between domains
and the arms extend in the respective domain, as depicted in fig. (2.3b). If the domains
are getting too stretched out, the polymer arms are getting elongated, resulting in a
penalty in the internal energy of the chain. Microphase separation is thus dominated
by the competition of minimising unfavored segment contacts, thus minimising the

interface area, and minimising the stretching penalty.

The SSL theory has been extensively treated analytically [Helfand and Wasserman,
1976, Olmsted and Milner, 1994, 1998, Semenov, 1985] and is important in this chapter,
since the polymer melts considered in our publication of this chapter (sec. 2.3) are in
the SSL. In this limit, where pure domains of one type of monomer are divided by sharp
interfaces, the free energy of a polymer melt can conveniently be written purely in terms
of the geometry of the macroscopic structure| Likhtman and Semenov, 1994, Helfand
and Tagami, 1972, Semenov, 1985]:

F:Ent+Fst
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with
Fint = ax2 5 (2.3)
2 1
Fy=——— 2(r)d® 2.4
T L (24)

where § is the total interface area, a is the statistical segment length, N is the
number of segments in each polymer chain and z is the shortest path from any point to
the nearest interface [ Likhtman and Semenov, 1994|. The free energy F' is expressed
in two terms: an interfacial term, Fj, contributing the surface tension penalties and a
entropic term, Fy, contributing the chain stretching penalties. This is a key concept for
this thesis: in the SSL, the self-assembled equilibrium structures of a polymer melt can

be expressed as a macroscopic, cellular optimisation problem.

2.1.2 Equilibrium structures and tilings from polymeric self-assembly

Stable, microphase separated equilibrium structures in copolymer melts in the SSL have
been predicted theoretically as well as found experimentally. A successful theory to
predict stable, equilibrium phases is the so-called Self-Consistent-Field-Theory (SCFT):
Helfand and Tagami [1971] first introduced a theory about the interfaces between differ-
ent monomer species in AB diblock copolymer melts. This theory is later extended by
the employment of a mean field theory by the same authors [Helfand and Tagami, 1972].
A connection between the mean field theory and more fundamental statistical dynamics
is made by Helfand [1975]. Helfand and Sapse [1975] extended the theory to unsymmet-
rical polymers using Gaussian random-walk statistics to describe the polymers. Helfand
and Wasserman [1976] introduces a narrow interface approximation. Leibler [1980]
introduced an analytical approximation for melts in the WSL, where earlier theories
could not be applied due to assumptions made, such as narrow interfaces. Semenov
[1985] presents a theory for melts in the SSL and studies the interactions of micelles in
polymer melts. Matsen and Schick [1994] computes the phase diagram of AB diblock
copolymers using SCFT. Matsen and Bates [1996] finally unifies theories for polymers in
the WSL and SSL lifting traditional approximations. A number of articles and reviews
exists for this popular theory, also considering more complex morphologies [Schmid,
1998b, Likhtman and Semenov, 1994, Fredrickson et al., 2002, Ceniceros and Fredrickson,
2004, Schmid, 1998a, Whitmore and Vavasour, 1995, Matsen, 2002, 2007, Arora et al.,
2016].

SCFT assumes the space curves modelling the polymer chains to be random

walks and thus have Brownian motion statistics [ Matsen, 2002]. Instead of considering
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the segment-segment interactions of all molecules, the segments only interact with a
tield, which is generated by the segments of the polymer melt and computed from the
species densities ®x. A set of modified diffusion equations describes the evolution of
the fields [Matsen, 2002, Arora et al., 2016]. Given an initial, educated guess for the
polymer configurations, and thus fields, SCFT then provides a framework to compute

the stable equilibrium configuration, i.e. the free energy minimum [Matsen, 2002].

Another approach is to model polymer segments as particles, which are linked to
chains by harmonic springs, as shown in fig. (2.4). Based on these models established
particle based simulation methods, namely Monte Carlo (MC) [ Verdier and Stockmayer,
1962, Haliloglu and Mattice, 1996, Dotera and Hatano, 1996, Larson, 1989, Micka and
Binder, 1995, Ko and Mattice, 1995, Gemma et al., 2002, Hoffmann et al., 1997, Lii and
Kindt, 2004] and Dissipative Particle Dynamics simulations (DPD) [Groot and Madden,
1998, Kirkensgaard, 2012a, Wang et al., 2021, Espafiol and Warren, 2017, Huang and Yu,
2007] have been applied and adapted to simulate polymeric self-assembly.

Dissipative Particle Dynamics [Hoogerbrugge and Koelman, 1992, Espariol and
Warren, 1995, 2017] is a type of coarsed grained Molecular Dynamics simulation. In this
model multiple segments of a polymer are combined into a single bead which interaction
is described by a soft, repulsive potential. Groot and Madden [1998] found a expression
to write these forces in terms of the Flory-Huggins interaction parameter x and thus
linking it to existing polymer theories. A simulation starts with an initial configuration,
then Newton’s equations of motion F = ma are used to simulate the time evolution of
each particle of the system [Groot and Madden, 1998]. After an appropriate amount of
time the polymer melt is in equilibrium and the self-assembled structure has formed.
DPD simulations has been used extensively to simulate polymeric self-assembly [Groot
and Madden, 1998, Kirkensgaard, 2012a, Wang et al., 2021, Espafiol and Warren, 2017,
Huang and Yu, 2007]. We use DPD simulations in our work; more details about this
technique and its implementation can be found in the Methods section of our publication
[Hain et al., 2019].

With advances in the field of polymer synthesis a vast variety of polymer archi-
tectures can be created experimentally [Polymeropoulos et al., 2017] and thus many
theoretically predicted structures have been confirmed experimentally [Foerster et al.,
1994, Bates et al., 1994, Khandpur et al., 1995, Zhao et al., 1996]. The number of possible
polymer architectures and thus resulting structures is countless [ Bates and Frederickson,
1999, Bates, 2005, Guo et al., 2008, Grason et al., 2003, Grason and Kamien, 2004, Grason,
2006, Ye et al., 2005, Olmsted and Milner, 1998, Polymeropoulos et al., 2017].

In experiments, structures can be identified using scattering techniques, such
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as small-angle X-ray scattering (SAXS)[ Als-Nielsen and McMorrow, 2011b]. But also
direct imaging technologies such as transmission electron microscopy are employed
[Foerster et al., 1994]. Here, a three dimensional structure has to be identified based
on an planar cross section or projection of the latter. This is a challenging task, and not
limited to polymer melts, and is in-parts addressed by chapter 4 of this thesis.

Here, we will address the phase behavior of the ABC' and ABB star copolymers
(see fig. (2.1e)), since these polymers are used in this thesis as model system. The
self-assembly of star copolymer melts has been studied, both theoretically [Olvera de
la Cruz and Sanchez, 1986, Gemma et al., 2002, Grason and Kamien, 2004, Han et al.,
2008, Huang and Yu, 2007, Kirkensgaard, 2012b,a, Kirkensgaard et al., 2014, Zhang et al.,
2010, Tang et al., 2004 ] and experimentally [Okamoto et al., 1997, Takano et al., 2004,
2005, de Campo et al., 2011]. For ABB stars, possible morphologies include micelle,
lamellar and cylindrical phases analog to diblock copolymers. Due to the increased
complexity of ABC star copolymers (there are 3 types of domains instead of 2), the
phase space is more complex than for e.g. AB linear diblocks. To produce simple, clear
phase diagrams, only a few parameters can be changed. In the listed literature, for
example, phase diagrams are presented, where the fraction of only one arm is altered,
with the two remaining arms being chosen at same length, i.e fo # fs = fc, and the
interactions are symmetrical, i.e. xap = xac = xBc. In this case, further phases are
found: lamellar with spheres, perforated lamella, lamella with cylinders, lamella in
micelles, columnar piled disks as well as a bicontinuous, intertwined diamond phase.
We will refrain from going into further details here, but focus on the phase relevant for
this work, the columnar phase.

This phase has already been found for linear diblocks and consists of infinitely
long cylinders which arrange in a certain pattern. In case of the ABB system, A-typed
cylinders are packed in a B-typed matrix, as shown in fig. (2.5b). In ABC systems,
these cylinders are tightly packed, however, since a melt does not allow for gaps the
polymer arms extend beyond the cylinders to fill the gaps, creating a hexagonal shape
for the cylinders [Grason, 2006]. This is also the case for the ABB system, as indicated
in fig. (2.5d), however, since all tiles have identical color, this effect is not visible as

compared to the ABC system.

A cross section perpendicular to these cylinders, both for ABC and ABB systems
as shown in fig. (2.5¢) and (2.5d), thus yields a planar tiling, where each domain
of polymers is considered a tile. Each tile has a “color” associated, determined by
the monomer species. That is tiles of identical shape but different color can still be
differentiated.



CHAPTER 2. EFFECT OF GEOMETRIC FRUSTRATION ON POLYMERIC SELF-ASSEMBLY 29

(a) 3D render of the hexagonal columnar phase in
an ABC star copolymer melt.

(c) Three colored hexagonal tiling obtained by a
perpendicular cross section of the columnar phase
for symmetric ABC star copolymers. Each color
denominates a different monomer species. The
grafting points of the stars can only sit at the ver-
tices of the tilings.

(b) 3D render of the hexagonal columnar phase in
an ABB star copolymer melt.
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(d) Hexagonal columnar phase for symmetric
ABB star copolymers. The grafting points of the
polymers can sit anywhere on the surface of the
cylinder.

Figure 2.5: Hexagonal, planar tiling patterns created through self-assembly of ABC' and ABB
star copolymers. For symmetrical arm lengths and interactions, that is fa = fg = fc and
XAB = XAc = XcB a cylindrical phase assembles. Cross sections perpendicular to the cylinder
axis are planar tiling patterns, in this case a hexagonal tiling.

The size of the tiles are determined by the length of the polymer arms of each

species fx. For symmetric star polymers, thatis f4 = fg = fc and fa = f5, = [B,

respectively, all tiles are of equal size and a honeycomb tiling is formed for both ABC
(see fig. (2.5¢)) and ABB (see fig. (2.5d)) stars. For different fractions, different sized
tiles assemble and the tiling changes from a honeycomb pattern to different tilings. A

vast amount of different tilings have been predicted theoretically [Kirkensgaard, 2012b,a,
Kirkensgaard et al., 2014, Zhang et al., 2010, Gemma et al., 2002 and also been visualised

directly using transmission electron microscopy [Hayashida et al., 2006, 2007, Okamoto
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Figure 2.6: Tiling patterns formed as cross section of the cylindrical phase in ABC star copolymers
with symmetric interactions. Different patterns are assembled by altering the length of one arm
of the star, tuning the size of the tiles created by the latter. Republished with permission of Royal
Society of Chemistry, from [Kirkensgaard et al., 2014]; permission conveyed through Copyright
Clearance Center, Inc.

et al., 1997, Takano et al., 2004, 2005, de Campo et al., 2011]. Some tilings generated by
keeping two arms at constant length while alternating the length of the third arm are
shown in fig. (2.6). Here we can see the optimization aspect of polymeric self-assembly.
As stated earlier the polymer melt tries to minimise the interface area between domains
of different species while keeping all domains as spherical as possible to minimise
the chain stretching penalty. It is known that the honeycomb structure, and thus the
hexagonal arrangement of the cylinders, minimises the total edge length and as such is

the prime candidate to form.

A key aspect of the three-colored tilings generated by the ABC' systems, is that
the grafting points, that is the centers of the stars, have to sit at the vertices of the tilings.
Only at these positions each arm can extend into a domain of its corresponding species.
This has two important implications: (1) the tiling consists only of vertices of order
three [de Campo et al., 2011] and (2) only tiles with an even number of adjacent tiles are
allowed [Gemma et al., 2002]. We will refer to the second implication as color constraint.
The latter is a key aspect in our publication and will thus be discussed in its Introduction
section in more detail, but is also addressed throughout the article.

All of the presented tilings have been found as cylindrical phases in bulk simula-
tions, i.e. a polymer melt in a 3D volume. Several authors addressed the question, if
confining a polymer melt to a certain geometry alters the assembled structures compared
to the bulk case [Han et al., 2008, Lin et al., 2010, Lv et al., 2016]. A melt of ABC star
copolymers was confined to a thin film and a cylinder, with the result that previously



CHAPTER 2. EFFECT OF GEOMETRIC FRUSTRATION ON POLYMERIC SELF-ASSEMBLY 31

existing morphologies are altered and entirely new morphologies assemble. However,
it was argued that a surface field, i.e. an attractive substrate, had a stronger influence on
altering the morphology than the geometric confinement. Xu et al. [2009] addressed an
ABC star copolymer system confined into a cylinder and found new morphologies and
a more complex phase diagram than compared to the bulk case. Li et al. [2013] studied
the morphology of ABC' star polymers confined to a spherical cavity using SCFT. A
number of previously unknown morphologies are found and known structures found

to be altered by the confinement.

Extensive work, however, was put towards the self-assembly of diblock copoly-
mers on a sphere or spherical substrate [Tang et al., 2005, Yu et al., 2007, Chantawansri
et al., 2007, Vorselaars et al., 2011, Zhang et al., 2014]. On the two dimensional surface
of a substrate or spherical volume, the cylinders collapse into a flat patch, which we
will refer to as micelle. The lamella and micelle/cylindrical phases are compared to the
bulk case. In the latter the micelles (respectively cylinders) arrange on a hexagonal grid,
i.e. each micelle has six direct neighbors. On the sphere, however, micelles with five or
seven neighbors appear, which are called topological defects. These occur either isolated
or as so called grain scars, where many defects are linked together. While Li et al. [2013]
briefly studied the tiling patterns of ABC star copolymers in a spherical cavity, it is only
reported that the hexagonal pattern is disturbed, but no further analysis was performed.
This open question of the exact structure is addressed in our publication [Hain et al.,
2019] in sec. 2.3

The origin of the topological defects lie in the curved surface of the sphere, which
renders a hexagonal pattern incompatible. This effect, where a locally preferred pattern
can not be propagated globally, is called geometrical frustration [Sadoc and Mosseri,
1999, Grason, 2016]. This important aspect and its relation to polymeric self-assemblies
and tilings will be discussed in the next section.

2.2 Geometric frustration - topological defects in crys-

talline order

We will approach the subject of geometric frustration using the honeycomb shown in
tig. (2.7). As already stated above, the perfect honeycomb pattern is a tiling of a planar
surface, consisting of only hexagonal faces, as shown in fig. (2.7a). The honeycomb
presented, however, is not planar, but exhibits a “wavy” surface, i.e. there are some
sections which are flat and some which are bend and thus curved. This is indicated

in the height profile at the bottom of fig. (2.7a). Being curved, or curvature, in this
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case means that the flat structure bends out of its two dimensional plane into the three
dimensional space (see also fig. (2.8)). A closer look at different locations, marked
with rectangles in the figure, illustrates two aspects: fig. (2.7b) contains a flat area, here,
a perfect hexagonal tiling is found, as indicated in the figure. Figure (2.7c) shows a
section of the honeycomb, which is curved, as indicated in the height profile. In this
area, the perfect hexagonal structures is disrupted by defects: heptagons and pentagons.
These defects are called topological defects, and their origin lies in the curvature of the
honeycomb. This concept is best explained by considering it “backwards”, as illustrated
in fig (2.8). Panel (a) shows a perfect hexagonal tiling. The angles of the edges align
perfectly with each other, so no gaps occur in the pattern and as such a valid tiling exists.
Panel (b) introduces defects in the hexagonal order in the form of two pentagons. The
angles of the edges do not align and gaps occur. These are, however, not permitted in a
tiling and the only way - apart from deforming the tiles - is to curve the tiles in or out of
the plane, as shown in fig. (2.8c). That is by choosing the tiles of a tiling, its curvature,
thus how the tiling will bend, can be determined. This is an important phenomenon:
the topological features of a tiling, that is the number and order of faces, are connected
to its curvature. This relation is rooted in the Gauss-Bonnet-theorem [Kamien, 2002,

Millman, 1977]:
/ / KdS = 2my (2.5)
M

where the integral is carried over the entire surface of a manifold M, K = &k, is the
Gaussian curvature given as the product of the two principal curvatures «;, k2 (see
fig. (4.2) for a definition) and y is the Euler characteristic. The Euler characteristic is
a topological invariant of a structure. This theorem establishes a connection between
the curvature, and thus geometry, of a surface and its topology given as the Euler
characteristic x. More specifically, it states that the total amount of curvature in a surface
is a topological invariant. In relation to the example in fig. (2.8) this means, that changing
the topology of the tiling, for example by introducing pentagons instead of hexagons,

induces curvature in the tiling.

In the case of the honeycomb in the bee hive (fig. (2.7)), this statement is “re-
versed”: if a curved surface needs to be tiled, one has to introduce non-hexagonal tiles
to cope with the curvature. This constraint applies to the polymer melt confined onto a
spherical, thus curved, surface. That is the hexagonal structure can not be assembled.
The analysis of the resulting defects, especially in regards to the color-constraint, is the

key finding of our publication [Hain et al., 2019].

The Euler-Characteristic of a tiling can be computed using Euler’s Formula
[Kamien, 2002]
V-FE+F=x (2.6)
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(a) A honeycomb from a beehive grown naturally without a frame to force planar construction. The
bottom graph indicates a height profile of the honeycomb showing flat and

PPN

(b) A regular hexagonal structure inside the hon- (¢) Extract from fig. (2.7a). The bees build a
eycombs, extract from fig. (2.7a). Hexagons tile a curved structure which, due to its curvature, can
planar surface without leaving gaps, while min- not be tiled by hexagons (dark blue). As a result
imising the interface area in between cells. a scar of pentagons (red) and heptagons (green)

are included in the tiling to cope with the curva-
ture. Also hexagons close to the scar are deformed
(light blue)

Figure 2.7: Wax honeycomb inside a bee hive. The predominant order is a hexagonal tiling, as
indicated in (b). However, due to the wavy structure (see caption of (b)) and the thus induced
curvature, defects in the form of pentagons and heptagons occur, as indicated in (c). (Photo
credit Matthias Beutke)
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(a) A planar, hexagonal tiling (b) An arrangement of (c¢) Hexagons and pentagons
hexagons and polygons, not bend out of the plane to close
a tiling since gaps exists in the gaps
between tiles

Figure 2.8: Topology induced curvature. (a) The topology of a hexagonal tiling allows to cover
flat surfaces without leaving gaps. (b) By introducing pentagons into the tiling, its topology
changes as described by Euler’s equation, see eq. (2.6). Gaps occur between the tiles, since the
sum of angles at each vertex does not add up to 27. (c) To close the gaps, the polygons bend
out of the plane initially covered by the hexagons. Thus curvature is introduced in the tiling by
changing its topology, as stated by the Gauss-Bonnet theorem, see eq. (2.5)

where V is the number of vertices, £/ the number of edges and ' the number of faces in
a tiling. For an infinite, periodic hexagonal grid eq. (2.6) yields ynex = 0. Evaluating the
left side of eq. (2.5) for a torus yields Xiorus = 0, Where as for a sphere Xsphere = 2 holds.
This means the total amount of curvature in a periodic hexagonal tiling is compatible with
the surface of a torus, but incompatible with the the surface of a sphere. A hexagonal
tiling thus can never curve in a way to fit the surface of a sphere, thus defects, e.g.
pentagons, need to be introduced. These pentagons would then be called topological
defects, caused by the geometric frustration. The Gauss-Bonnet theorem also explains
why deforming the pentagons and hexagons in the example in fig. (2.8) would not help
to fill the gaps: the topology and thus the total amount of curvature would not change
and thus not help to fill the gaps.

We now arrived at the core question of this chapter’s publication: what topological
defects will assemble in a polymer melt of ABC star copolymers confined to a spherical
shell? This is analog to the question which topological defects occur if a hexagonal tiling
is forced onto a spherical shell. This is a question which has been addressed already by

several authors.

Diblock copolymers introduce pentagons and heptagons in their hexagonal order
to cope with the curvature [ Tang et al., 2005, Yu et al., 2007, Chantawansri et al., 2007,
Vorselaars et al., 2011, Zhang et al., 2014]. Similar investigations were made using
repulsive, colloidal particle packings freezing on a sphere. On a plane these particles

would arrange in a hexagonal order with 6 direct neighbors. When computing the
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Voronoi diagram, this order is equivalent to a honeycomb tiling. Bausch et al. [2003],
Lipowsky et al. [2005], Einert et al. [2005] report links of 5-fold and 7-fold defects,
termed scars. That is particles with 5 or 7 direct neighbours, equivalent to pentagons
and heptagons in the tiling, occur in the otherwise hexagonal order. Irvine et al. [2010]
expanded the setup to geometries beyond the sphere and found similar, topologically
neutral scars, that is scars that as such do not contribute to the total amount of curvature.
However, they allow to act like fabric pleats, in the same way as the honeycomb in
fig. (2.7a) curves but in total is flat. Guerra et al. [2018] suggest in a similar system that
clusters of defects arrange in an icosahedral order. Bowick et al. [2006], Kusumaatmaja
and Wales [2013] confirm these experimental results using energy minimisation of
electrostatically charged particles on curved surfaces. Further theoretical treatment was
undertaken by Vitelli et al. [2006].

A historical problem concerning orderings on the sphere is the Thomson problem
[Thomson, 1904 ]. Proposed in course of his atomic model, Thomson asked what the
arrangement of repulsive electrons confined onto a spherical surface is. This problem
has been addressed extensively, with many different methods being employed to find
solutions [Robinson et al., 2013, Erber and Hockney, 1991, Bondarenko et al., 2015,
Altschuler et al., 1994, 1997, Wales and Ulker, 2006]. Alternative Thomson problems
with generalised potentials have been considered as well [ Bowick et al., 2002, Mughal,
2014, Miller and Cacciuto, 2011a].

Robinson et al. [2013] reports that solutions of the Thomson problems form
triangulated polyhedra from which the dual lattice can be constructed. This dual lattice
is equivalent to the Voronoi tessellation of the electron positions. Therefore, finding
Thomson solutions is a way to generate tilings of a sphere and investigate defects in line
with the colloid systems. Altschuler et al. [1997] found for configurations with 12 <
N < 100 charges that most solutions consisted of a majority of hexagons, combined with
a combination of pentagons, heptagons, squares and quadrilaterals. For configurations
with 100 < N < 327 charges Wales and Ulker [2006] found that most configurations
consist of 12 pentagons and otherwise only hexagons. For configurations with N > 327
additional heptagons occur with more than 12 pentagons. However, multiple studies
[Erber and Hockney, 1991, Bondarenko et al., 2015] report an increasing number of local
minima for high values of N > 50, where the ground state might have low statistical
weight.

In conclusion the defect structure of a hexagonal order on a sphere seems to be
reasonably well studied, however, no attempts to investigate the defect structure of a
three colored tiling pattern has been undertaken.
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2.3 Patchy particles by self-assembly of star copolymers
on a spherical substrate: Thomson solutions in a geo-

metric problem with a color constraint

With the following publication, we aim to fill this gap by studying the self-assembly
of star polymers onto a spherical shell. Our research contributes several novel aspects,
however, the main aspect is the color constraint, introduced by the ABC' star copolymers.
That is we investigate the defects in three-colored hexagonal tiling forced onto a spherical
surface. The color constraint forbids 5-fold and 7-fold declinations to form, which are
the dominant topological defects to form in a hexagonal lattice on a spherical surface to
cope with the curvature. The article is now reproduced in full from [Hain et al., 2019]
with permission from the Royal Society of Chemistry.
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Confinement or geometric frustration is known to alter the structure of soft matter, including
copolymeric melts, and can consequently be used to tune structure and properties. Here we investigate
the self-assembly of ABC and ABB 3-miktoarm star copolymers confined to a spherical shell using
coarse-grained dissipative particle dynamics simulations. In bulk and flat geometries the ABC stars form
hexagonal tilings, but this is topologically prohibited in a spherical geometry which normally is alleviated
by forming pentagonal tiles. However, the molecular architecture of the ABC stars implies an additional
‘color constraint’ which only allows even tilings (where all polygons have an even number of edges) and
we study the effect of these simultaneous constraints. We find that both ABC and ABB systems form
spherical tiling patterns, the type of which depends on the radius of the spherical substrate. For small
spherical substrates, all solutions correspond to patterns solving the Thomson problem of placing

Received 18th July 2019, mobile repulsive electric charges on a sphere. In ABC systems we find three coexisting, possibly different
Accepted 29th September 2019 tilings, one in each color, each of them solving the Thomson problem simultaneously. For all except the
DOI: 10.1039/c9sm01460h smallest substrates, we find competing solutions with seemingly degenerate free energies that occur with

different probabilities. Statistically, an observer who is blind to the differences between B and C can tell
rsc.li/soft-matter-journal from the structure of the A domains if the system is an ABC or an ABB star copolymer system.

1 Introduction

The self-assembly of linear diblock copolymers and their phase
diagram is nowadays well understood.'” By contrast, the study
of the phase behaviour of more complex copolymer architec-
tures, like grafts or stars,” remain incomplete, due to the larger
parameter space and, hence, a larger variety of possible
structures.>>*”” Here we consider ABC 3-miktoarm star ter-
polymers, henceforth called ABC star copolymers. These are
copolymers which consist of three linear chains connected at a
central grafting point,>*®° as shown in Fig. 1 or Fig. 2. These
star copolymers can be synthesized so that the three arms are
immiscible; herein we refer to the three polymeric species as
colors: blue, yellow and red. When this immiscibility drives the

“ College of Science, Health, Engineering and Education, Mathematics and Statistics,

Murdoch University, 90 South Street, 6150 Murdoch, Western Australia, Australia. Fig. 1 Polymeric self-assembly of ABC and ABB star copolymers on a
E-mail: G.Schroeder-Turk@murdoch.edu.au spherical substrate. Top panel: Schematic visualization of coarse grained
b physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, models of ABC and ABB star copolymers used for the DPD simulations.
221 00 Lund, Sweden Bottom panel: Snapshots of simulations comprising ABC and ABB star
¢ Department of Food Science, University of Copenhagen, Rolighedsvej 26, copolymers. Polymer arms of identical color agglomerate into patches. The
1958 Frederiksberg, Copenhagen, Denmark. E-mail: jjkk@food. ku.dk ABC system creates a three colored tiling of the sphere, whereas the ABB

7 Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sm01460h  system builds a single tiling made up of only A-type patches in a B-type matrix.
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Fig. 2 Structural constraints imposed by polymer architecture: the color
constraint. Left panel: Since the three different polymer arms making up
domains are bonded at a central junction bead (grafting point), the latter must
sit on points or lines where three different domains meet so that each arm may
extend in a domain of its species. Right panel: For tiling patterns, this results in
the so-called color constraint: only polygons with an even number of edges are
allowed, where the types of all adjacent polygons alternate. The figure illustrates
this: if a polygon with an uneven number of edges is attempted to be formed, a
new interface (dashed line) and grafting point (red point) is introduced by the
architecture of the stars, resulting in an even polygon.

moieties to micro-phase separation, the arms of equal species
will agglomerate into domains, which will self-assemble into
complex structures. Considerable amount of work has been put
towards the investigation of one type of these structures: columnar
phases whose cross-sections are planar tiling patterns.**2°

A distinguished and important feature of ABC star copolymers is
that all structures arising from these molecules must be compatible
with the special architecture of the latter:

1. The grafting points form triple lines'® where three different
domains meet, which, in cross-section, corresponds to vertices of
the tiling pattern.

2. Any given patch of a given color (e.g. yellow), must be
surrounded by an alternating sequence of patches of the other
colors (e.g. blue and red). The number of these surrounding
patches must then be even."?

For more details see Fig. 2. In this article we will refer to
constraint 2 as the color constraint.

If the star copolymers are chosen symmetrically, i.e. all arms
have equal length, and with equal interaction strength between
the arms, a hexagonal columnar phase is formed where a cross
section perpendicular to the columns yields a planar 3-colored
honeycomb pattern which we here consider as the ‘ground
state’ of the system.'®'*'®'%?! The hexagonal tiling can be
tuned into a large variety of tilings by varying the length of one
of the three arms.'®'>'® However, all these tilings consist of
vertices of order three only, which is enforced by the molecular
architecture of the star copolymers.

Apart from changing the chemical composition or interactions
of the polymers, another way to tune structures is by geometric
confinement. A simple analogy illustrates this fundamental geo-
metric concept: the peel of an orange for example cannot be
confined to a flat plane, without tearing or deforming it. This also
applies for the star polymers: the optimal free energy configuration
they form in the plane, the regular honeycomb, cannot be fitted on
a spherical substrate without distorting the planar pattern.

Unlike the restriction of polymers to a thin film, the con-
finement to curved geometries, like spheres, does not only
impose the constraint of physical confinement onto the polymers,

This journal is © The Royal Society of Chemistry 2019
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but also introduces curvature to the system. This alters the shape
and structure of the space available to the polymer melt which can
enforce or prohibit some structures to form. Such curvature-related
effects have been described for multiple self-assembly systems.

Several articles report on the influence of curvature on
hexagonal particle orders on surfaces with positive and negative
curvature, both using experiments®* >’ and simulations.>**%%°
Two dimensional tilings can be created from these particle
assemblies by assigning each particle a polygon where the
number of edges coincides with its coordination number, which
is the number of neighbouring particles. This process is equivalent
to computing a Voronoi diagram of the particles. While these
particles would arrange in a hexagonal order in a plane, and
therefore, form a perfect hexagonal tiling, defects in this patterns
were found after the particles self-assembled on curved surfaces.

Zhang et al.’ found similar defects in the self-assembly of
AB diblock copolymers confined to a spherical substrate using
numerical methods to solve the Landau-Brazovskii theory. For
cylinder forming diblocks, the cylinders distributed over the
surface of the sphere in a generally hexagonal order, however,
5-fold defects were found. For larger systems, scars of connected
5- and 7-fold defects occur. These scars were previously found
by Chantawansri et al®' in their studies about AB diblock
copolymers on spherical substrates using SCFT. They further-
more found that the number of cylinders depends on the radius
of the spherical substrate.

These defects have a fundamental mathematical origin: the
different topologies of the confining surface. Each tiling and
polyhedra (and topological equivalents) have an intrinsic property,
the Euler characteristic y, describing its topological type.*>** An
Euler characteristic of y = 2 corresponds to an object that is a
single component without any handles or cavities, such as the
sphere. A given tiling can only tessellate a surface of the same
topological space, therefore surfaces having the same Euler char-
acteristic as the tiling.*® A planar, periodical hexagonal tiling has
7z = 0, as does a torus. Therefore the hexagonal tiling can be
mapped onto the latter. When a hexagonal lattice is forced onto an
incompatible curved surface, as for example a sphere with y = 2,
the mismatch leads to ‘geometric frustration’: the hexagonal lattice
is incompatible with the topology of the substrate. To cope with
this incompatibility defects occur in the hexagonal order.

To check if a tiling is compatible with a sphere, Euler’s
formula can be used, which reads in case of a sphere:****

J=V—E+F=2 1)

where V, E, F is the number of vertices, edges and facets in the
tiling. If a tiling fulfills this condition, it can be mapped onto a
sphere without defects. In our case, where tilings are generated by
ABC star copolymers, the color constraint can be incorporated into
eqn (1). Since only vertices where three edges meet are allowed,
each edge is shared by two and each vertex by three facets (see also
Fig. 2). In this case, eqn (1) can then be expressed in terms of the
number of polygons in the tiling:

X:Z(lén,-ii-zn,#m):Z<1,é)m:2 )

1
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where 7; is the number of polygons with i edges in the tiling. This
equation easily shows that a hexagonal tiling is incompatible,
since the term in the brackets equals zero for i = 6. Therefore
polygons with a different number of edges need to be introduced
to fulfil the equation. One solution to eqn (1) for the sphere is the
arrangement of 12 pentagons to an icosahedron. Since the left side
of eqn (1) vanishes for hexagons, an arbitrary number of the latter
can be added to the 12 pentagons and the topology will not
change. A well-known configuration is the soccer ball, consisting
of 12 pentagons and 20 hexagons. Apart from investigations of
particles from polymer systems, abstract systems with topological
defects were investigated analytically.***>>” Here the behavior of
abstract disclinations from the crystalline state, for example
particles with 5 neighbours in an otherwise hexagonal lattice,
was investigated using free energy calculations. The results agree
with the results found in the physical particle and polymer
systems: the favoured state are 12 5-fold disclinations, also the
above mentioned scars (connected disclinations) are found.

A very prominent problem of ordering on a sphere is the
so-called Thomson problem. It was formulated by J. J. Thomson
in 1904 in the context of his atomic model. The Thomson
problem is the search for the minimal energy configuration of
n repelling electrons, all of the same negative charge —e, on a
spherical surface.*® The resulting arrangement of electrons and
their symmetries®*** has been found in many seemingly
unconnected problems, as for example in the design of protein
virus capsides,**™*® the construction of fullerens and nano-
tubes,” in more generalized Thomson problem versions,*®
but also in connection with polymeric self-assembly where it
was stated that the cylinders in the cylindrical phase of AB
diblock copolymers on a spherical substrate arrange on the
sphere as particles in the Thomson problem would.*' To reach
the minimal energy solution, the optimal coordination number
of a single electron is six, however, due to the geometric
frustration defects in the hexagonal order must occur, as
explained above.*® For our system, it is useful to interpret the
electron positions of the Thomson problem solutions as vertices
of a polyhedra. The graph of its dual polyhedron is a tiling of the
sphere, where each electron is assigned a tile whose number of
edges is equivalent to the coordination number of the corres-
ponding electron. A solution of the Thomson problem, henceforth
called a Thomson solution, can therefore be described and labeled
by its dual lattice, see Table 1.

In conclusion, using ABC star copolymers confined to a spherical
shell as a model system enables the simultaneous study of two
different constraints: geometric frustration and the influence of
the color constraint. To investigate the effects of each on their
own, a strategy is needed to switch one of them on and off. This
is accomplished by using two different kind of star molecules,
the aforementioned ABC stars and ABB star molecules, see right
panel in Fig. 1. These only differ to the ABC stars in that two
arms are of the same species. Thus the color constraint can be
eliminated, since the grafting points of the ABB stars can move
freely across the interface between A and B type domains. The
A type domains, which are the tiles in the resulting tiling, can
then freely move around in a B type matrix.
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Table 1 Solutions of the Thomson problem for systems with up to 12
electrons described as spherical tilings. The table shows the number of
n-gons and the Schlafli symbol for the dual lattice of a solution of a
N-electron Thomson problem. A Schlafli symbol!2%%7° is a set of (
numbers [ky.k»....k] denoting that a vertex is adjacent to [ tiles with k;
edges respectively (see also right pane in Fig. 5). The Schlafli symbol for an
entire tiling just lists all different types of occurring vertices, see Fig. 5. The
symbols to the left relates to the textures in Fig. 6

Number of tiles with

1 2 3 4 5 6
N Schlifli symbol Edges
Il [1.1] 2
[ 3 [2.2.2] 3
[ 4 [3.3.3]
mE [3.4.4] 3
(] 6 [4.4.4] 6
7 [4.4.5] 5 2
8 [[4.4.5], [4.5.5]] 4 4
9 [[4.5.5], [5.5.5]] 3 6
— 10 [[4.5.5], [5.5.5]] 2 8
e 2 8 1
[ 12 [5.5.5] 12
e Non-Thomson
[ Invalid

2 Methods

2.1 Dissipative particle dynamics of star copolymers

Dissipative Particle Dynamic (DPD) simulations are used to
find equilibrium configurations of the polymer systems. DPD
simulations®*>! are a type of molecular dynamic simulations
designed for coarse grained models of molecules, which makes
it a natural fit for polymer melts.'*"*>** As all molecular
dynamics simulations, the DPD method is based on the for-
ward integration of Newton’s equation of motion in time for
each particle i
d2X,‘ 1

2~ m !

In our case, a particle is a single bead in the polymer arms (see
Fig. 1), where each bead may represent many atoms. A sym-
metric star copolymer then consists of a center particle with
three connected arms, each consisting of a chain of bonded
particles. A schematic representation of such a coarse grained
polymer is shown in Fig. 1.

We use the simulation package HOOMD-BLUE>*>° to perform
our simulations. We will only briefly discuss the parameters used
at this point, for details on the implementation we refer to ref. 57
and the documentation of the HOOMD-BLUE package.’® In this
simulation package all units are given based on three reference
units (distance &, energy  and mass .#) which can be chosen
arbitrarily. All other units, for example a force, can be derived
from these units, for more details we refer to the HOOMD-BLUE
manual.”® In the course of this article, all given values are given in
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terms of these reference units unless stated otherwise. The
package implements the DPD method following the formulation
of ref. 51 and 57. Here the force on particle 7 is given as

=Y (1 R )
i#]

where the sum is over all particle pairs within a cutoff radius
r. = 1 around the i-th particle. The force consists of three
contributions: a conservative force F representing the repulsive
interactions between the particles, a dissipative force F;; and a
random force Fjj. The latter two act as a thermostat to keep the
temperature of the system constant. Since a thermostat is a built-
in feature of the DPD interactions, the system is technically
advanced as a NVE ensemble using a standard velocity-
Verlet step algorithm, although it is effectively a NVT ensemble.
The conservative force is 0 only for r; > r. and is otherwise
given by

AW
Fj = “4‘/(1 - #)fﬁ )
C

where g;; is the maximum repulsion between two particles and
therefore a measure of the interactions strength, r; = r; — r; and
t; = ry/|r;|. The interactions between two particles of the same

S kgT . .
species is given as a; = 75-22 where p is the number density

and kgT the temperature in the polymer melt. The interaction
parameters can be mapped onto the well established Flory-
Huggins interaction parameter 7;°>*° used in polymer science
using a; = a; + 3.268y;.°" We use values of a; = 25 and a; = 40
that, at a temperature of k37 = 1 and a particle density of p = 3,
corresponds to y; ~ 4.6. With an armlength of 8 beads per arm,
this gives yN & 74. Due to the many parameters and complexity
of a star copolymer melt, parameters for an order-disorder
transition are barely existent in the literature. However, a value
of yN ~ 74 is well above the order-disorder transition for diblock
copolymers® and as high as values used in other studies of ABC
star copolymers>'® and thus in the strong segregation limit. As a
measure of the stretching of the polymer molecules the radius of
gyration®® is provided in the ESL*t

The single beads of the polymer chains are bonded by a

1
harmonic potential, given as Vyy(r) = ik(r — ro)?, where k measures
the strength of the bond and r, the bond rest length. In our system
we chose k = 4£ and r, = 0.887 as the position of the first peak
92

of the pair correlation function in a system of unbonded,
identical particles with the given interaction parameters. Each
arm in the polymers consists of 8 beads.

The confinement of the system to a spherical substrate is
modelled as follows: the simulation volume is a spherical shell
bounded by two repulsive spherical walls interacting with the
polymers with a purely repulsive Lennard-Jones potential:

ot =4 (-(0)] v

where 7 in this case is the length of the vector from the particle
perpendicular to the wall, not to be confused with ry, the
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Fig. 3 Simulation setup and substrate model. Left panel. Schematic
sketch of a cross section of the simulation setup. The two black, bold
circles represent spherical, repulsive ‘Lennard-Jones walls” with radii of
R+ dTR +oand R — dTR — 0. As shown, the outer wall exerts a LJ-force on a

particle along a vector perpendicular to the wall towards its center. The
force of the inner shell acts outwards. Together these walls confine the
polymers to a shell of thickness dR. Right panel: Cross section through a
simulation snapshot with radius R = 82 with the same quantities marked.
The image shows the homogeneity of structure in the radial direction of
the shell and gives an idea for the scale of the system.

pairwise distance between two particles, see Fig. 3. AV =

—(r— rcul)—I:(rc) — V1y(re) and o is the range of the repulsive
potential, ¢ would be the strength of the attractive part of the
Lennard-Jones potential, however, is of no relevance in the
purely repulsive version used here. While the outer wall exerts a
force towards its center, the forces of the inner wall acts
outwards. Hence, the wall keeps all particle inside the spherical

shell they enclose. We choose ¢ = 1% and set the cutoff of the

wall potential to r, = 2%0 to cut the attractive tail.

The spherical walls are concentric around the origin with
radii of R; = R — dR/2 — ¢ and R, = R + dR/2 + g, the shell
therefore has a thickness of dR, as shown in Fig. 3. The amount
of curvature forced onto the system can then be tuned by
varying the radius of the spherical shell. The initial position
of the centers of the stars are chosen inside the simulation
volume from a uniform distribution. The arms are then placed
at random positions around the center. In order to achieve a
well mixed configuration the system runs 5.5 x 10° time steps
where the interaction parameter between any species of particles

. & .
is setto a; = a; = 255. After this warmup phase the parameters

are set as stated above according to their species. The temperature
of the system was kept constant at kg7 = 1 for the entire run. All
simulations have been run with time steps of Az = 0.005 and ran at
least 3 x 10® time steps, larger systems with R > 8% ran 5 x 10°
time steps. After these long runs we assume that an equilibrium is
reached, which is confirmed visually in random samples. The radius
R of the spherical shell was varied with R =4, 5, 6, 7, 8,9, 102 with a
shell width of dR = 2. Alternating the radius has two effects: (1) due

. 1
to constant a number density of p = 3@ the number of molecules

increase with a larger shell volume; (2) the curvature of the shell
decreases with increasing radius. For each radius 20 configurations
for each ABC and ABB systems were simulated with different
random initialisations for statistical significance.
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Fig. 4 Two different methods for the analysis of tiling patterns in an ABC
system using Set-Voronoi diagrams. Right: Patches of all colors are used to
generate a single, three-colored, spherical tiling for a single ABC system.
Here the vertices are located at triple lines where three different colors
meet and the edges correspond to inter-domain interfaces. The color
constraint applies directly to the tiling. Left: Only the patches corres-
ponding to a particular polymeric type X (= A, B, or C) are considered in the
tiling analysis, creating a single colored tiling (the image is for X = B, red).
The same could be done with the other two colors, yielding in total three
single-colored tiling for each ABC system. Note that the color constraint
does not apply directly onto this single-colored tiling, i.e. uneven numbers
of edges are possible, however the frustration on the polymer system still
applies. This single-color analysis allows direct comparison to tilings
generated in ABB systems, see e.g. Fig. 5.

2.2 Structure analysis of tiling patterns

When the simulation is deemed to be equilibrated, the resulting
spherical tilings are recovered from the polymer configurations
using Set-Voronoi diagrams®® as implemented in pomelo.®* The
aim is to substitute a domain in the system with a polygon,
representing a tile, where the number of edges of the latter is
equal to the number of neighboring domains.

In the ABB systems we characterize the structure of the A
beads, considering the B particles as a matrix. We use a cluster
algorithm (implemented in the trajectory analysis package
freud®) to identify all A domains. This provides a list of N
clusters, one for each A type domain, each with a list of which
particles it is made from. Then the Voronoi diagram of all A
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type particles is computed, where all cells of particles belonging
to the same cluster are merged, leaving one cell per cluster. The
number of neighbors for each domain are determined from the
number of adjacent cells sharing a common edge. The spherical
tiling is recovered by representing each domain by a polygon
which number of edges equals the number of neighbors.

For the visualizations of the tiling shown in Fig. 5 and 7, the
vertices of a tiling are placed at the vertices of the Voronoi cells
of the patches. The edges connecting vertices are great circle
segments. Fig. 5 shows a simulation snapshot on the left and a
representation of the spherical tiling in the middle. We obtain
2D topological representations of the tilings through the
Mercator projection as used in.*® Each point on the sphere
given in spherical coordinate angles (0,¢) with 0 € [—n/2,n/2]
and ¢ € [0,2n] is mapped in the Cartesian plane by x = R¢ and

2
y=RIn (tan (g+§6>>. An example of such a projection is

shown on the right hand panel of Fig. 5. In these representations,
the plot has periodic boundary conditions in the x direction,
however, not in y direction. The top and bottom tiles therefore
are not adjacent, but represent the tiles at the poles of the sphere.
The purpose of the planar projections is to correctly capture the
topology and neighbor relations, not the geometry, which is
deformed in the projection.

In order to make direct comparison to the single-colored
tilings from ABB systems to tilings from the ABC systems possible,
instead of constructing a three-colored tiling were edges would
follow the inter-domain interfaces (see right panel in Fig. 4), we
analyse each of the three species in the latter individually, treating
the respective other two domains as the matrix, and apply the
same analysis as above. That is, to analyse A, we consider B and C
indistinguishable and to represent the matrix and so on. From
each ABC system three single-colored tilings from the A, Band C
type domains are obtained, as can be seen in Fig. 7. In these
single-colored tilings the vertices are not restricted to triple-lines
and the edges do not correspond to inter-domain interfaces as is

1
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Fig. 5 Spherical tilings from polymeric self-assembly on a spherical substrate. Left panel: A simulation snapshot of an equilibrated ABB star copolymer
melt confined to a spherical shell. The A-type arms have assembled into six domains, which arranged in a cuboidal symmetry in the B-type matrix. Middle
panel: The spherical tiling recovered from the polymer system. Each face in the tiling corresponds to a blue domain in the simulation snapshot as labeled.
Right panel: A modified Mercator projection of the spherical tiling, labeled with the corresponding tiles on the sphere and the domain in the simulation
snapshot. Each vertex is labeled with its Schlafli symbol, the union of all types of distinctive vertex labels gives the Schlafli symbol of the entire tiling, as
shown vertically on the far right. In order to be comparable, all tilings are rotated so all tilings of a type have the same orientation. The gray axis in the
middle panel indicates the orientation of the red, dashed line in the projection in 3D.
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the case in ABB systems, see Fig. 4. Although this single-color
analysis seems to lift the color constraint of these tilings, ie.
polygons with an uneven number of edges are possible, this is a
purely virtual aspect of the analysis and the frustration still
applies on the polymer systems.

Tilings are labeled using Schléfli Symbols, see caption of
Table 1 for details. All simulation screenshots were made using
the Tachyon render® in VMD,®” the renderings of the tilings
were created using a custom script in BLENDER.®®

Every 1 x 10° simulation step, a snapshot of all particles was
made, which results in 300 frames over the simulation time.
The statistics shown in the result section include all tilings
from the latest 15 frames of the simulation to account for
invalid simulation frames. Since 20 independent runs were
made for each radius, 300 frames were analysed for both the
ABC and ABB systems. In the ABB system, this provides
300 spherical tilings, in the ABC system 900 tilings, since there
are three colors in each frame. Note, however, that the ‘“real”
statistics are only based on 20 different runs for each polymer
type and radius, since the tiling in the last 15 frames of each
run are assumed to be equilibrated and therefore is not
expected to change.}

3 Results and discussion

We find the following key features:

e For spherical substrates with R < 8 all tilings generated by
both the ABB and ABC systems are identical to tilings generated
from Thomson solutions, see Fig. 6. Only for radii R > 8, we
observed simulations of ABC systems which were not Thomson-
type solutions (see below). In ABB systems we only found
Thomson solutions.

e For R > 4, instead of a single equilibrium solution, we find
a spectrum of configurations, see Fig. 6. Within our analysis,
these appear as degenerate (or nearly degenerate) configurations
that occur with statistical frequencies.

e The analysis of the three single-colored tilings of an ABC
system shows that they each individually form Thomson solutions,
but not necessarily of the same tessellation type, see Fig. 7.

e The resulting tilings can be tuned by varying the radius of
the sphere where the ABC star copolymer system shows a
different behaviour in the frequencies of the tilings than the
ABB star copolymer systems, see Fig. 6.

To start our discussion we single out the R = 8 systems to
illustrate the key results. Out of the 300 frames in the ABB

i In general the presented analysis method using Voronoi diagrams works well
and is robust. In some rare cases, however, we find it to produce invalid results.
These cases are, when very short edges appear in the Voronoi diagram, which
means two vertices are very close together. In these cases the neighborhood
relations are not clear for the algorithm and small displacements of a single
particle can alter the resulting tiling. The other weak point is the cluster analysis.
Since all systems are run at finite temperature, there might be particles moving
outside their domain in the vicinity of another domains. The cluster algorithm
then can mistake both clusters as a single one. Most of these invalid frames can
be identified and then ignored by checking if y # 2. A neglectable number of
~1.5% frames were found to be invalid in the sense as discussed.
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ABB

ABC

Radius

Fig. 6 Equilibrium configurations of self-assembly of star copolymers on
a spherical substrate. Results of multiple runs of the self-assembly of ABB
(top) and ABC (bottom) star copolymers on a spherical substrate of radius
R. Each color denotes one type of tiling, as labeled in Table 1. The plot
shows the fraction of simulation snapshots found with the respective tiling
for each radius. In general, multiple tilings are found as solutions for a
single radius, where the results for ABB and ABC systems differ. The exact
data in text form in a table can be found in the ESI.{

systems with R = 8, we find the majority of frames (about 95%)
to have 6 tiles in a [4.4.4] configuration, only a very small
proportions of 5% has 5 tiles in a [3.4.4] tiling. Both of the
configurations are identical to tilings generated by Thomson
solutions. The ABC case is slightly more complex: out of the
900 analysed tilings, we find only about 14% of the configuration
with 6 tiles in a [4.4.4] tiling, 47% with 7 tiles in a [4.4.5] tiling, about
31% with 8 tiles in a [4.4.5, 4.5.5] tiling and 6% with 9 tiles as a
[4.5.5, 5.5.5] configuration. As in the ABB systems, all of these are
identical to tilings from Thomson solutions. Only about 1% of the
tilings were found to differ from the Thomson solution tilings.

While for R = 8 the ABB system overwhelmingly forms the
same type of tiling, the ABC misses this feature. We find this
behaviour across most of the other systems on different radii:
all of the ABB systems form at least two different tilings for each
radius, the R = 9 system even three, however, all are Thomson
solutions. All ABC systems show at least three different tilings
for each radius, again almost all of them are Thomson solutions.
We find exceptions for the R = 4 spheres, where for both systems
only a single type of tiling is found and the ABC system for R = 7,
where although three different tilings are found, the majority
(86%) of analysed frames forms only one type. Another exception
are larger ABC systems, where we find an increasing number
(~1% for R = 8, ~12% for R =9, ~44% for R = 10) of tilings not
connected to the Thomson problem. However, we do see these
percentages go down as the simulations are running for longer
times so we conjecture that eventually all non-Thomson solutions
might anneal out.

Since the free energy levels of different tilings is a function
of the sphere radius, as will be discussed later, this may allow
the conclusion that the energy levels are almost degenerate for
the majority of the combinations of the chosen star copolymers
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Fig. 7 The three spherical tilings representing the structure of the A, B and C domains. The figure shows three single-colored tilings, generated by the
self-assembly of ABC star copolymers, in each of the colors on the same sphere. Left panel: Rendering of the simulation snapshot where the patches
creating the tiling are emphasized while showing the others simultaneously. Middle panel: The single-colored tiling derived from the emphasized patch
configuration on the left. Note that only patches of the emphasized colors are considered for the computation of the tiling, which allows for direct
comparison with single-colored tilings from ABB systems. The axis shows the orientation of the axis with the highest symmetry. Right panel: A 2D
projection of the tiling. The black axis in the middle column indicates the position of the red line in the projection plots. The label of the tiling is given on

the far right side.

and simulation volume geometry. The finite temperature of our
simulation then allows the system to jump into local minima
instead of the energetic ground state, which results in the
spectrum of tilings found here. For some systems though
(R=4, ABB on R = 7, ABC on R = 8) the energy level of certain
configurations seems to be deep enough to prevent other
structures to assemble.

For all of the ABB system and ABC systems with R < 8 we
find that all tilings are of Thomson-type solutions, as seen in
Fig. 6. This means that the N A-type (and respectively B- and
C-type) patches will sit at the same positions as the electrons
would in a N-electron Thomson solution, which we checked by
visual observation. This is a remarkable result since although

9400 | Soft Matter, 2019, 15, 9394-9404

the polymers only have short range interactions a structure of
long range order is formed. Such long range interactions in a
similar system of interacting micelles formed by diblock copolymers
has been predicted by ref. 71.

For ABC systems, with increasing radii beginning at R > 8
an increasing number of configurations, up to x~40%, are not
of the Thomson-type. These are shown in Fig. S2-S9 in the ESL.{
An analysis of the patch shapes in Thomson and non-Thomson
solutions did not show statistical significant differences.
Hence, a correlation between patch shape and being a Thomson
or non-Thomson solution could not be found. For more infor-
mation on the methodology and the data see Fig. S1 in the ESLY
We rather argue that these systems are stuck in local minima.
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The Thomson problem in general is known for its high prob-
ability of being stuck in local minima.** Already for N = 32
electrons the probability of finding the global minimum drops
significantly, which roughly coincides with the threshold where
our results show local minima. Using polymer melts instead of
point-like particles adds even more complexity to the energy
landscape. The fact that the ABB systems - somewhat simpler
than the ABC system, due to the missing color constraint for
example - do not show any non-Thomson solutions and that the
proportion of non-Thomson solutions increase with increasing
radius, and thus number of patches, supports this.

Based on the observation that the simulations only show
Thomson solutions up to systems with R = 7, all of those ABC
systems must consist of three different tilings, each of which
solves the Thomson problem on its own while coexisting with
two others on the same sphere. We will elaborate on this again
using an example system from the R = 8 runs using Fig. 7,
however, all systems of various sizes share the same behaviour.

Fig. 7 shows how three different Thomson solutions can
coexist on a single sphere. When only considering the blue
patches, while red and yellow act as a matrix, the resulting
tiling is of type [4.4.4]. Analogue type [4.4.5] and [4.4.4] tilings
are formed in the red and yellow patches respectively. The
tilings have a different orientation on the sphere as can be seen
on the orientation of the axis of highest symmetry.

In the case of the R = 8 tilings, the overwhelming number of
ABC systems were found to be a combination of three Thomson
solutions, where the most prominent combinations are (7/8/8)
with 19%, (7/7/8) with 15%, (7/7/7) with 15% and (6/7/7) with
14%. The number denotes the number of patches in the tiling,
the tiling label can be found using Table 1. Only a small
number of 1% of the systems contained tilings which are not
Thomson solutions. The same holds for systems with smaller
radius: since no tilings were found not to solve the Thomson
problem, all combinations there consist of Thomson solutions.
For larger systems the number of non-Thomson configuration
increases. Therefore, the amount of configurations containing
non-Thomson solutions increases as well, however, we cannot
say if that is caused by increasingly difficult equilibration or
due to other reasons, for example the color constraint preventing
some combinations to be assembled.

In the R = 8 case we found the (7/7/7) combination formed in
two different ways: once with only Thomson solutions, and
once with one Thomson solution and two non-Thomson tilings.
In this case we clearly see that it is possible to build this (7/7/7)
combination using only Thomson solutions, thus proving that
the color constraint does not prohibit the Thomson solutions
to form. This hints towards our guess that combinations with
non-Thomson solutions are not caused by the color constraint
but equilibration issues. Apart from this observation we could
not find any regularities in the frequencies of the different
combinations of the tilings for any radius.

It is important to note that although the simulation data of
ABB systems for R = 8 clearly shows the type [4.4.4] tiling as the
minimal energy configuration, we could only find one out of
300 combinations being a 3 x [4.4.4] tiling on a single sphere in
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the ABC systems of the same radius. This observation is found
as general behaviour across all runs: there are statistically
significant differences in the frequency with which single-
colored tilings occur in ABB and ABC systems. This circumstance
shows that while the general behavior - forming Thomson solu-
tions - seems untouched by the color constraint, it does affect the
self-assembly process: there are differences between ABB and ABC
systems that are manifested in the topology of the adopted struc-
tures, or at least in the statistical properties of the latter. This
observation enables us to answer the following question: if one is
only able to see one kind of color, for example by looking through
colored filters, is it possible to determine if the observed structure is
assembled by an ABB or an ABC system? The answer depends on
the circumstances: if only one configuration is available, the answer
is no, since each configuration found in this article is assembled by
both the ABB and the ABC systems. However, if multiple samples
are available, the answer is yes. The different statistics of frequencies
of the tilings in the different systems as shown in Fig. 7 enables us
to determine the type of systems of the given samples.

To understand why ABC systems behave differently we need
to look at the free energy functional determining the resulting
structures. When assuming that all equilibrium solutions are
Thomson solutions, the resulting tiling type is determined by
the number of patches assembled in the melt. As can be seen in the
data, this number is a function of the radius: with increasing sphere
size the number of patches increases. This follows from the energy
functional of polymer melts in the strong segregation limit:

F = Feont + Fine

where Foon¢ is the entropic contribution determined by the domain
shape and F;, is the enthalpic contribution and measures the
interface area.”* The entropic contribution favours most spherical
patch shapes and penalises domains, where the polymer chains
have to be stretched. Consider an exemplary ABB system with two
A-type patches located at the north and south pole of the sphere.
The interfaces, on which the grafting points of the star copolymers
must sit, are then disk segments centred around the poles. From
there the B type arms stretch to cover the entire sphere. Since the
arm length is kept constant, the arms must stretch increasingly
with increasing sphere radius to cover the surface of the sphere.
This comes with an entropic penalty. At some point it becomes
energetically more favorable to change to a three patch configuration
which, despite the increasing interface energy, relaxes the polymer
arms and reduces the entropic energy contribution. This interplay
between minimising the interface area and entropic energy con-
tribution determines the number of domains and, thus, the
resulting structure in these systems.

The differences in the frequencies of tilings in ABB and ABC
systems are caused by a modification of the energy functional.
While in the ABB systems only A-B interfaces exist, the ABC
systems also develop A-C and B-C interfaces, thus, increasing
the enthalpic energy contribution. The entropic contribution
changes since the grafting points of the star copolymers are not
allowed to move freely along the A-B interface but are constrained
to ABC triple lines, resulting in more constrained polymer paths
leading, presumably, to an entropic penalty.
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Fig. 8 Rendering and three-colored tiling of a three-colored Thomson
solution. The figure shows a three-colored tiling, where each patch of any
color corresponds to a Thomson particle. Each color on its own in terms as
described above solves the Thomson problem, but also the three-colored
tiling solves the Thomson problem. This configuration with N = 6 is one of
only two where this is possible since the tiling in this case only consists of
squares which are allowed with the color constraint.

Apart from the more subtle influences of the color constraint on
single-colored tilings in ABC systems, the effect of the color con-
straint can be directly seen when looking at the three-colored tilings
constructed from patches of all colors. In these tilings the vertices
and edges of the Voronoi cells coincide with the triple lines and
inter-domain interfaces of the polymer structure, see right panel in
Fig. 4 or Fig. 8. Note that unlike the single-colored tilings used so far,
each patch of any color corresponds to a Thomson particle at once.
Here the color constraint can be directly applied to these three-
colored tilings. As can be seen in the references in this article, all
Thomson solutions for N > 12 contain tiles with an uneven number
of polygons, which means these solutions can not be formed by the
polymer melt due to the color constraint. This is backed by our data,
where we did not find any of the Thomson solutions for systems
with N > 12, where N = N, + Ng + N is the total number of patches
in all colors respectively Thomson particles. For systems with R < 7
tilings consisting of 6 squares plus N — 6 hexagons are found, for
system sizes with R > 8 also octagons occur in tilings with N > 25.
For each octagon an additional square must be introduced to fulfil
Eulers equation with y = 2.

As can be seen in Table 1, the only Thomson solutions for N < 12
which only contain polygons with an even number of edges are N=3
and N = 6. While the N = 3 case proved difficult to equilibrate to a
cylindrical phase due to very small system sizes and does not allow
for any conclusions, the N = 6 case is equivalent to a cube with
alternating colored faces and is found for R = 4 in ABC systems (see
Fig. 8). While each color solves the Thomson problem on its own as
single-colored N = 2 tilings, the combination of all three colors also
forms a three-colored Thomson solution unlike any other configu-
ration in our data. This observation gives rise to the assumption that
also for the three-colored tilings the Thomson solutions would be
the optimal state, however, the frustration imposed by the color
constraint keeps the system in a metastable state.

4 Conclusion and outlook

In this article the self-assembly of ABC and ABB star copolymers
confined to a spherical shell was simulated using DPD molecular
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dynamics simulations in order to investigate the combined
influence of geometric frustration and the color constraint
inherent in the ABC system. In bulk simulations, these polymers
form columnar phases whose cross sections are 3-colored,
planar, hexagonal tiling patterns. The architecture of ABC stars
imposes the color constraint onto the resulting structures: only
tiles with an even number of edges are allowed where the color
of all adjacent tiles must alternate. To differentiate between the
influence of the color constraint and the curvature ABB systems were
simulated as reference, where the color constraint does not apply.

We can summarise our findings into four core results:
(1) apart from kinetically stuck configurations in large ABC
systems (R > 8), we find all single-colored tilings in both ABB
and ABC systems to be Thomson solutions. (2) In ABC systems
we find three possibly different tilings on each sphere, one in
each color while neglecting the other two, all of which solve the
Thomson problem for small radii individually. We find some
non-Thomson solutions for larger radii (R > 8) but believe this
is due to equilibration issues as discussed above.

(3) A spectrum of configurations dominates the ensemble,
rather than a single structure. This leads to the occurrence of a
small number of different tilings in both ABB and ABC systems,
with varying probability. (4) The latter can be tuned by varying
the sphere radius, which means we can switch between Thomson
solutions of different numbers of particles. While we could not
find any combination of three tilings on the same sphere which
the color constraint does not allow, the frequencies of the tilings in
the ABC compared to the ABB system show statistically significant
differences. This provides the possibility to differentiate between
the two systems: statistically speaking we can determine if a tiling
was formed by an ABB or and ABC system by only being able to see
a single color.

A direct comparison of our work to the presented results of
frozen particles on a sphere®® or the diblock copolymers on a
spherical substrate®® is somewhat difficult: while in these
systems the number of particles is in the order of 100 (which
is equivalent to one patch in our systems), our largest system
consists of a maximum of 12 domains in a single tiling. At these
system sizes the tilings are missing the regularity to define
“defects” in their structure. Taking the entire ABC system with
all of its colors into account, however, we have a system
consisting of up to 37 patches. Here we can see the influence
of the color constraint: instead of finding isolated pentagonal
defects or scars of pentagons and heptagons, we find either six
squares or a combination of squares and octagons to cope with
the geometrical constraint.

A promising and interesting application of this work can be
found in the field of patchy particles: discrete particles with
patches on their surface which can couple and form bonds to
other patches, e.g. Janus-particles.”>”* A mechanism to assemble
such particles and tune their coordination number include self-
assembly of monolayers of surfactants on spherical substrates.”*”>
Our work presents an example how such a self-assembly could be
realised. Instead of using two repulsive walls to model a spherical
substrate, the architecture and composition of the polymer can be
modified, so that spherical droplets will form in solution, as seen
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in previous work.”®”® Preliminary simulations showed that adding
a fourth arm, immiscible with the already existing arms, would
form the core of such a droplet, on which surface the ABC arms
assemble as presented in this work. By tuning the length of this
fourth arm, the radius of the droplets can be changed. As shown in
this article, the number of patches would change and therefore the
coordination number of the droplet as a patchy particle.
Further, instead of using symmetric star copolymers, the length
of one arm can be varied to generate different, ‘asymmetric’
tilings, analogue to.'®'?
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1 Frequency of Thomson solutions in simulation runs

R N frames found | Proportion [%]
4 2 900 100
5 2 31 3.4
5 3 428 47.6
5 4 441 49
6 3 1 0.1
R || N || frames found | Proportion [%] 6 4 614 68.2
4 2 300 100 6 5 105 11.7
5 2 210 70 6] 6 180 20
5 3 90 30 7 5 92 10.2
6 1] 3 o5 31.7 7 6 794 88.2
6| 4 205 68.3 77 14 1.6
7 17 4 180 60 8 6 128 14.2
7 5 120 40 8 7 425 47.2
3 5 5 5 8 8 282 31.3
8 6 285 95 8 o >0 >
8 NT 9 1
9 6 165 55 8 INV 6 0,7
g Z 11250 450 9 8 129 14.3
9 9 626 69.5
10 8 67 22.3 9 10 27 3
10 || 9 233 77.7 9 || NT 104 11.5
9 || INV 14 1.5
10 10 93 10.3
10 11 370 41.1
10 12 29 3.2
10 NT 398 44.2
10 INV 10 1.1

Table 1 Frequencies and numbers of equilibrium solutions for ABB (left table) and ABC (right table) systems The table lists the values fig. (6)
in the main article is generated from. Shown are the absolute numbers and the frequencies of which equilibrium solutions are found in multiple runs of
the simulations.
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2 Characterization of Non-Thomson solutions

3 NON-THOMSON
THOMSON
2 .
1
oL L1 : ‘ ‘ ‘
0.2 0.4 0.6 0.8 1.0
g R=9
e
< NON-THOMSON
92 THOMSON
2
(o]
o1
C
>
(0]
g 0 —=—=— : : ‘ :
w 0.2 0.4 0.6 0.8 1.0
R=10
NON-THOMSON
2 1 THOMSON
1 .
0 ; ; T . .
0.2 0.4 0.6 0.8 1.0
A1/Az

Figure 1 Shape metrics describing the anisotropy of the patches Shown is the distribution of the dimensionless ratio of the two smaller eigenvalues

% of the tensor of inertia I;; = ):f"’ (\ x| \26,-_,- 7x,-x,-) computed for each patch k. Here X, is the position of particle / in the cluster k and N, is the number of

particles associated with the cluster. The tensor of inertia can be represented by a 3 x 3 matrix and provides information about the mass distribution of a

body in 3D space. Its eigenvalues equal to the moments of inerta around its principal axes. In case of sphere caps the largest eigenvalue corrseponds

to the principal axis in radiall direction, where as the two smaller eigenvalues correspond to the two tangential directions. For a spherical cap these are
1

degenerate and their ratio - equals to one. If the cap is distorted to a ellipsoidal shape one of the eigenvalues will increase, resulting in a decreasing

ratio % Hence, the smaller the ratio of the smaller eigenvalues, the more distorted the cap is from a spherical shape. The slight differences which can
be seen in the distributions of eigenvalue fractions of Thomson and non-Thomson solutions in the figure of our preliminary analysis are too small to be
of statistical significance. Therefore we can find no correllation between the patch shape and the type of the tiling.
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2.1 List of Non-Thomson solutions found in our analysis
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3 Radius of gyration of ABB and ABC star copolymers

[ R=4, ABB
R=4, ABC
0.75 A 1
0.50 A 1
0.25 A1 1
0.00 A1

" R=7, ABB

" R=9, ABB

[ R=10, ABB
R=10, ABC

0.75 A1

0.50

0.25 1

0.00 - T T T T T T T T T
15 20 25 3.0 35 40 45 15 20 25 3.0 35 40 45

Figure 10 Distribution of radii of gyration of ABC star copolymers confined to a spherical shell The figure shows the radius of gyration
Rg = % N 17, where the sum runs over all beads in the polymer and r; is the vector from the i-th bead to the center of mass of the polymer?, for all
polymers in the analyzed frames in terms of the length unit 2. All data is shown for a shell width of dR = 22. The figure shows that polymers in the
ABB system are slightly more compact than in an ABC system.

References
[1] M. Fixman, The Journal of Chemical Physics, 1962, 36, 306-310.
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CHAPTER 2. EFFECT OF GEOMETRIC FRUSTRATION ON POLYMERIC SELF-ASSEMBLY



CHAPTER 3

Jamming and crystallisation in cellular media: the Quantizer problem

In the previous chapter, planar tilings in polymer melts in the strong segregation limit
(SSL) were investigated. These can be considered as cellular media, however, with
deformable cells. In this chapter we will address a Voronoi-based cellular optimisation
problem, the Quantizer problem, as a statistical mechanics problems of interacting
particles at finite temperatures. This model is relevant for the behavior of cellular
materials.

We start by introducing the Quantizer problem as an geometrical optimisation
problem, especially in regards to well established geometric optimisation problems.
As a cellular system, the Quantizer problem is connected to other cellular media, thus
an introduction to the latter and how they are modelled using Voronoi tessellations
and Centroidal Voronoi tessellations (CVT) is provided. The Quantizer problem is
formally introduced, as well as its reformulation as a system of interacting particles,
before presenting our publication [Hain et al., 2020]. The connections and parallels
between the Quantizer problem and cellular media, especially polymer melts in the SSL
is addressed later in chapter 5.
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58 CHAPTER 3. JAMMING AND CRYSTALLISATION IN CELLULAR MEDIA: THE QUANTIZER PROBLEM

[ Ground state | [ stable, disordered state ]

Kepler Problem HCP/FCC Bernal’s RCP

( Kelvin Problem | Weaire-Phelan Plateau foams
[ Quantizer Problem ] BCC [ Klatt (?) ]

Figure 3.1: An overview of previously introduced optimisation problems. Each problem has a
ground state, i.e. a configuration globally minimising the energy functional. Due to the complex
energy landscapes of these problems, local minima in form of disordered states exists for the
Kelvin and Kepler problem.

3.1 The Quantizer problem: a geometric optimisation

problem as model for cellular media

In the introduction of this thesis we introduced two cellular optimisation problems: the
Kelvin problem [Sir William Thomson, 1887, Weaire, 1997] and the Kepler problem
[Szpiro, 2003, Hales, 2006]. For both of these systems crystalline ground states are
known, however, stable disordered states in form of local minima exists, as shown in
fig. (3.1). Both of these stable minima occur in physical systems, e.g. as random foams
[Matzke, 1946, Kraynik, 2006, Weaire and Hutzler, 2001] or in bead packings [Bernal
and Mason, 1960, Finney, 2013, Schaertl and Sillescu, 1994, Conway and Sloane, 1999,
Cohn and Elkies, 2003 ]. In the context of these established global and local minima of
established optimisation problems, we will address a reported universal, amorphous but
hyperuniform state recently found for the Quantizer system [Klatt et al., 2019], herein
called Kiatt structure. Amorphous and hyperuniform point sets, or particles, are systems
with no apparent order, however, a suppression of density fluctuations on large length
scales [ Torquato and Stillinger, 2003, Torquato, 2016, 2018]. We want to highlight two
possible implications of the reported Klatt structure.

The first aspect considers the Klatt structure as a geometric optimisation problem.
The best known minimiser of the Quantizer in three dimensions is the crystalline body
centered cubic (BCC) lattice [ Gersho, 1979, Conway and Sloane, 1999]. Klatt et al. [2019]
put forward the hypothesis that the newly found structure could be the characteristic
disordered, but stable structure for the Quantizer system, as is the random close pack-
ing (RCP) for the Kepler and Plateau’s foams for the Kelvin problem. This chapter’s
publication [Hain et al., 2020] addresses this hypothesis by investigating the stability of
this disordered state under in and out of equilibrium cooling.

The second aspect addresses the Quantizer problem as a model system for cellular
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material. On the one hand it is closely connected, and thus might act as a (partial) model
system to polymer melts, on the other hand insights from the Quantizer system, such
as why the hyperuniform Kiatt structure is stable, may advance the understanding of
other cellular material such as systems modelling skin cells [Bi et al., 2016, Merkel and
Manning, 2018] (also see sec. (3.4)). Both aspects are addressed in detail in chapter 5.

3.2 The Quantizer problem

The Quantizer problem is an optimization problem originating in computer science
[Gersho, 1979, Lloyd, 1982, Conway and Sloane, 1999, Okabe et al., 2000, Du and Wang,
2005, Du et al., 2010, Gray and Neuhoff, 1998]. Gersho [1979] addressed it as a problem
of how to quantify, i.e. discretise, signals with least amount of error. For this purpose
consider a set of output points z;, z, ..., z,, called generators, in a £ dimensional space.
Each point z; is assigned its Voronoi cell. An input vector X located in the cell of the
point z; is discretised to the latter. Lloyd [1982] noted that an optimal Quantizer, i.e.
a Quantizer minimising the discretisation error, is achieved if the Voronoi diagram is

most central, that is if the z are positioned at the centers of their respective Voronoi cell,

see fig. 3.2.

Figure 3.2: The definition of the
Quantizer error, for better visual-
isation in two dimensions. The
Voronoi diagram of a point set of
generators z; is computed, then
the quantizer error can be com-
puted according to eq. (3.1). The
contribution of each cell to the
Quantizer error/energy is the sec-
ond moment of the mass distribu-
tion (i.e., the moment of inertia)
with respect to the Voronoi cen-
ter. A minimal Quantizer error is
achieved by most “spherical” and
equally sized cells.

More specifically, the Quantizer error is minimised if a Voronoi center z minimises

the functional
E(V;,z;) = / l|x — z||2dx, (3.1)
Vi
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where the integral is computed over the entire Voronoi cell V;. As such, the optimal
Quantizer is found for a set of generators y; that collectively minimise the Quantizer

error

Eq = E(Viz). (32)

Equation (3.1) is the second moment of the mass distribution and as such the moment
of inertia of the cell. The Quantizer error thus prefers a homogeneous distribution of
volumes across all cells, where spherical cell shapes are preferred. The best known
global minimum of this energy functional in three dimensions is a point configuration
where the z; sit at the lattice points of the BCC lattice [ Gersho, 1979, Conway and Sloane,
1999].

CVT have been found to minimise the quantizer error [Du et al., 1999, Lu et al.,
2012] and as such are local minima to the Quantizer problem [Klatt et al., 2019].

CVTs, and as such the Quantizer problem, find applications in various fields. In
data compression, especially image procession, for example, CVTs are used to reduce the
number of colors in an image with the least amount of loss of quality [ Heckbert, 1982].
Further examples include the meshing of surfaces [ Du et al., 2010], grid optimisation [ Du
and Gunzburger, 2002], description of cell tissue [Honda, 1978, 1983] or approximately
model animal territorial behavior [Barlow, 1974, Tanemura and Hasegawa, 1980, Atsuo
Suzuki and Masao Iri, 1986].

Lloyd [1982] proposed an algorithm to compute a set of generators that minimise
the Quantizer error, that is a CVT. A single iteration of Lloyd’s algorithm replaces the
centroid c of each Voronoi cell V; with its generator z, as visualised in fig (3.3). Since the
shape of a single Voronoi cell depends on the locations of all adjacent points, the center
of mass of a cell will have moved again after a single Lloyd’s iteration. Thus a CVT is
achieved by many repetitions of Lloyd’s iterations. But also statistical methods has been
employed to compute CVTs, such as the “k-means” algorithm [Cam and Neyman, 1967].
In our publication we employ both a Metropolis [Metropolis et al., 1953 ] Monte Carlo
and Molecular Dynamics [Rapaport, 2004 ] approach to simulate the Quantizer problem
in thermal equilibrium; see the “Methods” section of our publication for more details
[Hain et al., 2020]. For more details on further methods we refer to the review by Gray
and Neuhoff [1998].
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Figure 3.3: An iteration for a sin-
gle cell in Lloyd’s algorithm [Lloyd,
1982]. Lloyd’s algorithm converges
to a centroidal Voronoi tessellation
for an initial point configuration. In
each iteration, the generator z of
each cell is moved to the centroid
(center of mass) c of the cell. Re-
peating these iterations minimises
the Quantizer error (eq. (3.2)) of a
system.

3.3 The Quantizer as a system of interacting particles

Torquato [2010] reformulated the Quantizer problem as a ground state problem of
interacting particles. That is the generators z, are considered particles, which interact
via a potential derived from the Quantizer error (eq. (3.2)). These interactions are
intrinsically multi-body interactions and as such can not be expressed as a superposition

of pair-wise interactions, as for example is the case for the Lennard-Jones fluid.

Ruscher et al. [2015] introduced, based on work by Farago et al. [2014], the so-
called Voronoi liquid: an ensemble of particles with interactions based on the Quantizer
energy. A polarisation vector is defined as 7; = v; (c; — z;), where v, is the volume of
the Voronoi cell Vj}, z; the generator and c; the centroid of the j particle. The forces
acting on a particle is given as F; = 7 with v being a constant coefficient. These forces
are the gradients of the energy landscape of the Quantizer error; see Du et al. [1999],
Liu et al. [2009].

Using this definition, Ruscher et al. [2015] was able to derive a state equation
for the Voronoi liquid and investigated dynamical and structural properties such as
diffusion and the structure factor of this system. An anomalous sound attenuation in the
Voronoi liquid was discovered by Ruscher et al. [2017]. Later this system was extended
to the polydisperse Voronoi liquid. Here, a radius is assigned to each particle. This
radius is used to compute the weighted Voronoi diagram [Ruscher et al., 2018, 2020].
Hence, particles with a larger radius have larger Voronoi cells than particles with a

smaller radius.

In the study of Voronoi liquids, the most relevant result for this thesis was found
by Ruscher [2017]. Using Molecular Dynamics simulations, cooling and heating of
the monodisperse Voronoi liquid and hence an equilibrium physics approach to the
Quantizer problem, was studied. A Liquid-solid/solid-liquid phase transition was found,

where the Voronoi liquid crystallised into a BCC lattice. A hysteresis is observed, that is
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when cooling the system and subsequently heating it again, the liquid-solid and solid-
liquid phase transition occur at different temperatures. These results confirm the BCC
configuration to be the (best known) minimiser of the Quantizer system. No disordered,
stable states were found or investigated for the monodisperse liquid. However, the
bidisperse Voronoi liquid was studied as a glass-former, thus freezing in amorphous
states [Ruscher et al., 2018, 2020].

Klatt et al. [2019] used Lloyd’s algorithm to compute the CVT for a number of
strongly varying initial configurations and found an universal, amorphous but effectively
hyperuniform intrinsic structure. Several significantly different initial configurations
were used, which all evolved into remarkably similar local minima, instead of finding
the best-known global optimum of a BCC structure. Two arguments were put forward
why the amorphous state forms: (1) structures emerge which are locally more optimal
than the crystalline ground state (2) high energy barriers exist between the amorphous

state and two almost degenerate crystalline states.

Lloyd’s algorithm is equivalent to a steepest gradient energy minimization [Du
etal., 1999], which is effectively a maximally fast quench of the system. Whereas Ruscher
[2017] found the Quantizer system to crystallise to its best-known ground state if cooled
sufficiently slowly, a fast quench causes the system to get stuck in a local minima. The
question remains whether the universal, amorphous Klatt structure is a remnant of
Lloyd’s algorithm or if it is a intrinsic feature of the Quantizer problem, as raised by
Klatt et al. [2019]. This open question is addressed in our publication at the end of this
chapter.

3.4 Order transitions in cellular media

A well studied cellular model is the vertex model [Hufnagel et al., 2007, Hilgenfeldt
et al., 2008, Farhadifar et al., 2007, Manning et al., 2010]. Bi et al. [2016] introduced a
self-propelled Voronoi (SPV) model in two dimensions as a model for cells in tissue. It
shares many common properties with the Quantizer problem: Its energy functional is
defined on the Voronoi tessellation of a set of points and as such is an intrinsic many
particle interaction. The energy functional is designed so that each cell strives for an
optimal cell area A, and perimeter F. The forces acting on each particle are the sum
of the gradient of the energy landscape combined with a self-propulsion force. Using
Molecular Dynamics simulations they found a liquid/solid order transition into a glassy,
thus disordered state for a critical value of the parameter p, = Fy/+/Ay. Merkel and
Manning [2018] extended the model to three dimensions, where perimeter and area
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in the energy functional are replaced by the surface area and cell volume. Using an
energy minimisation method a solid/liquid rigidity transition, indicated by a transition
of the shear modulus, was found at some critical value of the preferred shape index
so = So/V?3, where S is the preferred surface area and V the inverse number density
of the system. The authors argue that this transition occurs due to a minimal possible
value of average cell surface area 5 in disordered Voronoi tessellations, similar to the
maximum packing density in RCP systems. Ordered structures, such as the Kelvin or
Weaire-Phelan structures, however, do indeed have smaller 5 values than the reported
critical value of the phase transition. However, standard energy minimisation methods
fail to reach these ordered states. Furthermore a slight dependence on the energy
minimisation protocol are reported. The question whether other methods, such as
Molecular dynamics simulations, would be able to reach those ordered minima remains

unanswered.

Morse and Corwin [2016] studied order metrics defined on the Voronoi diagrams
of a system of jammed packed spheres. In line with the results from the vertex model,
the authors find that after the jamming density the surface area reached a plateau where
it can only decrease further marginally. Similar results are found in system of densely

packed ellipses [Lovri¢ et al., 2019].

This chapter investigates the question of the influence of the energy minimisation
method on the final structure in the Quantizer system. We find that the Quantizer
system exhibits both a liquid/solid phase transition into its crystalline ground state, as
well as a stable, amorphous state subjected to energy minimisation methods. For more
details see the our publication [Hain et al., 2020]. As shown in the example of the Vertex
model, the question of whether a systems freezes into a disordered, amorphous local
minima over its crystalline ground state is relevant for all cellular, geometrically driven

systems.

Here an emphasis lies on polymer melts, since the energy functional of the
Quantizer E (V}, z;) is closely related to the chain stretching contribution Fy of the free
energy in the SSL. Liquid/solid phase transitions haven been experimentally found in
micelle phases in polymer melts [Nicolai et al., 2004 ] further supporting the validity of

this connection. A detailed discussion is provided in chapter 5.

The question of this system being a candidate to form hyperuniform, disordered

structures is yet to be addressed and discussed in a later chapter.
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3.5 Low-temperature statistical mechanics of the Quan-
tizer problem: Fast quenching and equilibrium cool-

ing of the three-dimensional Voronoi liquid

The following publication aims to contribute towards the understanding of disordered
states in amorphous media. Two key aspects are addressed: the stability on the Klatt
structure and its dependence of the energy minimisation method. We find that the
Klatt structure seems to be robust against the choice of minimisation methods and
find that it forms not only for infinitely fast quenches, but also sufficiently fast out of
equilibrium cooling. The article is now reproduced in full from [Hain et al., 2020], with
the permission of AIP Publishing.
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ABSTRACT

The quantizer problem is a tessellation optimization problem where point configurations are identified such that the Voronoi cells minimize
the second moment of the volume distribution. While the ground state (optimal state) in 3D is almost certainly the body-centered cubic lattice,
disordered and effectively hyperuniform states with energies very close to the ground state exist that result as stable states in an evolution
through the geometric Lloyd’s algorithm [M. A. Klatt et al. Nat. Commun. 10, 811 (2019)]. When considered as a statistical mechanics
problem at finite temperature, the same system has been termed the “Voronoi liquid” by Ruscher, Baschnagel, and Farago [Europhys. Lett.
112, 66003 (2015)]. Here, we investigate the cooling behavior of the Voronoi liquid with a particular view to the stability of the effectively
hyperuniform disordered state. As a confirmation of the results by Ruscher et al., we observe, by both molecular dynamics and Monte Carlo
simulations, that upon slow quasi-static equilibrium cooling, the Voronoi liquid crystallizes from a disordered configuration into the body-
centered cubic configuration. By contrast, upon sufficiently fast non-equilibrium cooling (and not just in the limit of a maximally fast quench),
the Voronoi liquid adopts similar states as the effectively hyperuniform inherent structures identified by Klatt et al. and prevents the ordering
transition into a body-centered cubic ordered structure. This result is in line with the geometric intuition that the geometric Lloyd’s algorithm
corresponds to a type of fast quench.

Published under license by AIP Publishing.

I. INTRODUCTION Famous examples in three dimensions (3D) are the Kelvin prob-

lem ~ (that is, the search for a tessellation with equal-volume cells

Geometric optimization problems of tessellations search for
partitions of space into cells with certain optimal geometric prop-
erties. Often, these geometric properties can be expressed as energy
functionals so that the global optimum corresponds to the ground
state of a physical system. Thus, the geometric optimization prob-
lem relates fundamental questions in mathematics and physics.

that have the least surface area) and the Kepler problem™ (that is,
the search for cells with the highest packing fraction of impenetrable
spheres).

While global optima correspond to ground states of physical
systems, local optima correspond to inherent structures (that is,
local minima of complex energy landscapes). At low-temperature,
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an equilibrium system will typically be different from a non-
equilibrium state that is reached by a quench. Such a fast non-
equilibrium cooling often leads to glass-like, highly disordered
states. There are, however, also potentials that exhibit disordered
ground states and that are hence often highly degenerate. Examples
include stealthy potentials where the ground states suppress sin-
gle scattering up a finite wave number K. The potential suppresses
density fluctuations at large scales, ” and as a rigorous conse-
quence, the ground state does not allow for arbitrarily large holes.
Another class of examples are models of “perfect glass,” which
involve up to four-body interactions and do not allow for crystalline
ground states (but only disordered configurations).” Disordered
ground states have also been empirically found in vertex models
that optimize the isoperimetric ratios of cells (modeling biological
tissues).

More generally, we are here interested in models with energy
landscapes that allow for metastable amorphous states that have
energies close to the crystalline ground state.

The geometric optimization problem that we consider here is
the quantizer problem, that is, we optimize the second moment
of inertia of each cell. Intuitively speaking, the optimization prefers
equal-volume cells with “sphere-like” shapes. It is a prominent prob-
lem in computer science, where it is applied, for example, in com-
pression algorithms * or mesh generation of two-dimensional mani-
folds. ~ In recent years, the quantizer problem has attracted attention
in physics since it relates to a many-body interaction that results in
surprising physical and geometrical properties.

Given a configuration of N points in Euclidean space, the
Voronoi quantizer (or Voronoi tessellation) assigns to each point
z; a cell C; that contains all sites in space that are closer to that point
than to any other point in the point pattern. = The cells subdivide
space without overlap. The quantizer energy E; of a single cell C; is
then defined as the moment of inertia of the cell interpreted as a solid
object and measured with respect to the Voronoi center z;.
More precisely, the total energy E of the system is the sum of the
cell energies E;, defined as follows:

N

E=YE, with E=1 f |x - zi|*dx,
i=1 2 Ja

where y is a coefficient to set the dimension of Eq.

and N is the number of points (respectively, cells).

The quantizer problem is defined for a fixed number of points
N. Note that this formulation of the quantizer energy is extensive, in
contrast to the intensive quantizer error, which is the rescaled sum of
all single cell energies (see Ref. 23 for more details). The energy func-
tional can also be expressed by the Minkowski tensors™ of the cell C;
(see below).”” The quantizer energy functional assigns an energy to
each point configuration in Euclidean space. The quantizer problem
in computer science has thus been reformulated as a ground state
problem in statistical physics.

In 3D, the conjectured optimal solution of the quantizer prob-
lem, that is, the ground state, is the body-centered cubic (BCC)
lattice. " It is closely related to Kelvin’s conjectured equal-volume
cells with the least surface area,”” a conjecture that was later dis-
proven by the counterexample of Weaire and Phelan. The proof
of the Kepler conjecture [that no packing of monodisperse spheres

(1)

to an energy
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has a larger packing fraction than the face-centered cubic (FCC)
packing] reformulates the problem as an optimization problem of
tessellations (including Voronoi cells).

Here, we are interested in disordered inherent structures with
energies close to that of the ground state. Following the approach
form Ruscher, Baschnagel, and Farago,” we study both equilibrium
and non-equilibrium dynamics of a many-particle system whose
energy is defined by a rescaled quantizer energy, that is, a geometri-
cally driven particle system with many-body interactions. Our focus
is on order/disorder transitions, that is, on the degree of structural
order and disorder of different states and how it changes during
melting, slow cooling, or a quench.

Ruscher et al. studied in detail this many-particle system from
a thermodynamic point of view and found intriguing physi-
cal behavior like an anomalous sound attenuation.”” They named
the system the Voronoi liquid. The distinct difference to the well-
established model systems such as the Lennard-Jones fluid is that
the interactions in the Voronoi liquid are intrinsically many-body.
Ruscher, Baschnagel, and Farago™ reported theoretical considera-
tions as well as molecular dynamics (MD) simulations that show
that the Voronoi liquid in many ways behaves similar to an ordinary
fluid, including a scaling law for its free energy and derivated quan-
tities as well as dynamic and structural properties. Furthermore, a
melting and a freezing transition when heating and cooling the sys-
tem are found, showing a metastable state with a hysteresis and
under and overcooled states.”” Ruscher et al. studied the Voronoi
liquid as a model glass former where crystallization is prevented by
the integration of a term corresponding to bidispersity. Their
work without the polydispersity term, " and the results of this paper,
shows that the system without polydispersity and defined by Eq.
shows a conventional order/disorder transition upon heating or
cooling.

Here, we are specifically interested in a better understanding of
the inherent structures of the quantizer problem. In a recent study
of Klatt et al.,” the so-called Lloyd’s algorithm ~ was applied to a
broad range of distinctly different random point patterns to find
minimal energy point configurations. At each step of the algorithm,
each point is replaced by the center of mass of its Voronoi cell. Klatt
et al.” showed that upon the application of a sufficient number of
iterations of Lloyd’s algorithm, all initial random point configura-
tions converged to configurations that are amorphous and universal
with the same two-point statistics and Minkowski tensors within
error bars. Moreover, these final configurations are effectively hype-
runiform, that is, they exhibit a strong suppression of large-scale
density fluctuations, as measured by the hyperuniformity index
H = limy_¢S(k)/max S(k) with values of H < 10™%. We will here
refer to these configurations as the converged Lloyd state(s).

In this article on the quantizer energy, we study both the equi-
librium behavior and non-equilibrium quenches. We thus repro-
duce and confirm the results found by Ruscher, Baschnagel, and
Farago.” Therefore, we use, besides MD, also Monte Carlo (MC)
simulations. Moreover, we vary the cooling rates to study both crys-
tallization and the freezing in inherent structures. We thus further
probe the energy landscape of the quantizer problem to address the
question of the stability of the disordered, effectively hyperuniform
states to which Lloyd’s algorithm converges.” Since we here study
in detail the quantizer problem at finite temperature T, we refer to it
as the “QuanTizer problem.”
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This article is structured as followed: in Sec. 11, we give details
about our simulations; in Sec. 111, we present our results and address
the question if a disordered, stable state for the quantizer problem
exists, before we give a summary of this article in Sec.

Il. METHODS

Three different numerical methods for the evolution of a point
pattern are used in this study: Lloyd’s algorithm ~ is a purely geo-
metric algorithm used to compute gradient-descent-like quenches as
previously described and is used in the same way as in Klatt et al.
Molecular Dynamics (MD) and Monte Carlo (MC) codes are used
to determine statistical properties of quasistatic (slowly cooled or
heated) systems. Molecular dynamics is also used to calculate the
non-equilibrium evolution of the system when it is quenched, that
is, with fast cooling rates.

Throughout this article, we will use reduced units. The unit of
length is A = p~ '3, where p is the number density. Thus, we choose
p = 1. Each sample contains N = 2000 particles in a cubic simula-
tion box (of side length 2000\ ~ 12.6)) using periodic boundary
conditions. The unit of energy is [E] = ¢ = y/15 /1000, where the fac-
tor 1000 is chosen following the work of Ruscher, Baschnagel, and
Farago.” The unit of temperature is [T] = &/k, where k is the Boltz-
mann factor. All particles have the same mass m, which here defines
the unit of mass. The arbitrary unit of time for the MD simulation is
[t] = 6. (Note that the MC simulation and Lloyd’s algorithm have no
time scale.)

Monte Carlo method. We use a simple single-step Metropo-

lis algorithm™ implemented in the software package mMocasinns:
a trial move is chosen by selecting a random particle x; in the sys-
tem and moving it by a random displacement vector Ax. The energy
difference AE for this potential new configuration is then com-
puted. The probability of accepting this trial move p(AE) is then
given by

1 for AE<O0
xp(—A—?) for AE>0

for a given system temperature kT. If the trial move is accepted, the
particle is left at its new position, and if the move is declined, it is
moved back to its original position. The direction of the random
displacement vector Ax is random; its length ||x|| is chosen such as
about half of the trial steps are accepted. This is achieved by check-
ing the acceptance ratio in fixed intervals of Monte Carlo steps and
doubling the step size if the acceptance ratio is higher than 0.65 or
cutting it in half for an acceptance ratio smaller than 0.35. A lookup
table was created to quickly find an appropriate step size for a given
particle number and temperature.

An essential part of this algorithm is the computation of the
energy difference. To improve performance, only the energies of the
cells affected by the move are recomputed according to Eq. (1). This
definition of the energy is essentially the second moment of the mass
distribution of the cell and thus can be expressed as the trace of the
Minkowski tensor W;*: E = tr[Wé’O(Ci)]. Minkowski tensors are a
comprehensive set of metrics, describing geometric properties of a
body.

p(AE) = )

ARTICLE scitation.orgl/journalljcp

The computation of the cell energy is carried out in two
steps: first, the Voronoi cell of a particle is computed using the
voro++ software package,”” and the coordinates of the vertices and
edges are then parsed into karamBoLs,” a tool to compute the
Minkowski tensors. The cell energy is then obtained by computing
E= tr[Wé’O(Ci)]. The total energy of a system is just the sum of all
individual cell energies.

Molecular dynamics is a method to simulate particle systems
by forward integration of Newton’s equation of motion a; = ;% in
time for each particle, thus computing the exact trajectory for each
constituent. The essential part of each MD code is thus the com-
putation of the force acting on each particle. We follow Ruscher,
Baschnagel, and Farago™ and define the force on the ith particle as
F; = y7i, where 7; = V; - (¢; — ;) is the so-called polarization vector,
with ¢; being the centroid, z; being the generator, thus the position
of the ith particle, and V; being the volume of the ith cell. The com-
putation of the position of the cell’s centroid as well as its volume is
done using the software voro++.

A velocity Verlet integrator coupled with a simple Nosé-
Hoover thermostat”™ was used to integrate the equation of
motions. The Nosé-Hoover thermostat adds an additional term
géz —(f+1)kT, to the Lagrangian of the system to reproduce config-
urations from the NVT ensemble at a temperature kT. The variable
s is associated with the thermostat, f is the number of degrees of
freedom of the system, kT, is the temperature of the NVT ensem-
ble, and Q determines the time scale of the temperature fluctuations
introduced by the thermostat. We implemented the formulation
by Martyna, Tobias, and Klein.”" In each integration step, time is
advanced by a time step At and the positions x; and velocities x; of
each particle as well as the thermostat variable s and its derivative §
are updated accordingly.

Lloyd’s algorithm is a purely geometric algorithm to minimize
the quantizer energy. It comprises the reposition of a simple step:
move the generator of a cell z;, thus a particle, to the centroid of its
cell c;.

A typical simulation run, either MD or MC, would consist of
the following steps: first, an initial configuration is initialized with a
given particle number N and system size.

Initial configurations can be generated as a perfect BCC crystal
or as an ideal gas; thus, each component of each particle is chosen
uniformly random across the simulation box, corresponding to a
binomial point-process. Furthermore, simulation can be initialized
with arbitrary point configurations read from simple text files, so
a previously saved simulation snapshot can be used as the initial
configuration.

The next step is to choose a cooling schedule: a temperature
step size kAT as well as a number of temperature steps Ny is set.
For each temperature, a set amount of MD or MC steps, called relax
steps, are performed to get the system to thermodynamic equilib-
rium. Once these are done, another set of steps, called measurement
steps, are performed and relevant measurements are taken, the most
important being the energy and 7 order parameter. After these are
done, the system temperature is increased by kAT. This is repeated
until the final number of temperature increments has been added.

In our MD simulations, the cooling rate is defined as o = #kAiT
relax steps-At

and thus has the units of energy over time. For MD or MC quenches,
this cooling schedule would simply consist of a single temperature
kT =0.
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The measurement used to describe structures in this study
are essentially the quantizer energy, the structure factor S(k), and
the 7 order metric.” The structure factor is essentially the scatter-
ing intensity of a structure. For a single snapshot of particles in
a cubic box of length L with periodic boundary conditions, it is
given as

2

S(k) = ; (3)

ZN ik-x;
—ik-x;
i=1

where the sum runs over all particles in the system, k = ||k||, and
ke {Z(hk1l): (hk]l)eZ’}{0}.

The 7 order metric measures spatial correlations on all length
scales and is defined as

1
N

7=
(2m)"

/0 T RS (k) - 172k, 4)

where d is the dimension, in our case d = 3, w, is the surface area
of a unit ball in d dimensions (w3 = 47), and S(k) is the structure
factor. For a completely disordered, uncorrelated structure, 7 van-
ishes, while it diverges as soon as Bragg peaks appear, i.e., especially
for systems with a perfect long range order such as crystals. Since
this parameter unites a large amount of information into a single
scalar value, it is prone to mainly two errors: small changes in the
structure can cause significant change in magnitude of 7; we esti-
mate this error by computing the standard error of multiple runs
with identical parameters to A7g.c = 0.1-0.15, depending on the
parameters chosen. Systematic errors caused by the choice of the
binning of S(k) as well as an upper integration cutoff kmax cannot
be avoided. By computing the standard deviation of different bin-
nings of a single system, we estimate these systematic errors to Atys
= 0.9. Combining both statistical and systematic errors, we assume
a total error of At » 1, which is in line with the previous analysis by
Klatt et al.

A detailed list of the parameters used to generate the data in this
article is provided in Subsection 3 of the . Unless stated
otherwise, temperature is quantified by kT with the Boltzmann con-
stant k and has units of energy, [kT] = . All time steps 8t have time
unit [0t] = 6.

lll. RESULTS

Our key results concern the structures obtained by a quench
of the system, especially in relation to the converged Lloyd states
described by Klatt et al.”" However, we first describe our repro-
duction of the findings of Ruscher™~ of an order/disorder transition
encountered upon slow equilibrium melting or cooling.
and 2 show our results regarding the order/disorder transition upon
slow equilibrium cooling or melting.

shows MD simulations essentially of the same system
investigated by Ruscher, Baschnagel, and Farago,” Ruscher,” and
Ruscher et al.” When a Voronoi liquid of 2 x 10° = 2000 particles is
heated slowly (with a heating rate of o = 2.5 x 10~ *¢/) starting from
positions on a BCClattice at kT = 0.1, it undergoes an order/disorder
transition; at kT, ~ 1.89, the Voronoi liquid abruptly changes from
configurations that represent oscillations around the lattice sites to
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FIG. 1. Molecular dynamics (MD) simulation data of disorder-order (freezing) and
order—disorder (melting) phase transitions of the quantizer system observed at
melting of a BCC crystal and freezing of an ideal gas, and comparison to ear-
lier data by Ruscher-~ (black dashed-dotted line). Shown is the energy [as per
Eq. (1), top panel] and = order metric [as per Eq. (4), bottom panel] of 48 individ-
ual runs for melting and freezing processes. The triangles in the top panel show
the mean energy of isothermal systems run over a long time. All runs show a
discontinuity in the energy and the = order metric at the transition temperatures
that are different for freezing and melting and which vary slightly from run to run.
The insets show the distribution of the transition temperatures. Qualitatively, the
hysteresis between the temperature of the phase transition of the disorder/order
(freezing) and order/disorder (melting) transitions described by Ruscher~ is repro-
duced. The ordered structure obtained by freezing shows variations from the BCC
structure, which are most clearly visible in = and which are indicative of resid-
ual defects in the structure. See Subsection 3 of the for simulation
details.

a configuration with no apparent order. Upon further heating, this
structure is characterized by the correlations typical for a fluid (for
very high temperatures, we expect it to converge to an ideal gas).
This transition is evident in the energy E as well as in the structural
order parameter 7. In our simulations of 48 systems, the transition
temperatures vary slightly, with an average of 1.89 and a standard
deviation of 0.01. These transition temperatures are close to but
slightly above the observed transition kT ~ 1.85 in Refs. 21 and
Our curves for the structure factor in the liquid phase agree with
those from Ref.
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FIG. 2. Monte Carlo (MC) simulation data of disorder-order (freezing) and order—
disorder (melting) phase transitions of the quantizer system observed upon heating
of a BCC crystal and cooling of an ideal gas. The plot shows 48 individual runs for
melting and freezing (dashed, colored lines). The MC data are consistent with the
results from MD simulations (see the figure) with slight differences in the variations
of the transition temperatures; the MC melting runs show a slightly more narrow
distribution of transition temperatures than the MD data, with kT, = 1.886 + 0.006
and kT = 0.97 + 0.03, as seen in the insets showing the distribution of transition
temperatures in colored bars, and the MD data are indicated by light gray dots.
See Subsection 3 of the for simulation details.

Upon cooling (with the same slow rate as above and starting
from an ideal gas configuration at kT = 2.1), the system shows the
reverse transition from a disordered state to an ordered BCC-like
state, at a temperature kT, = 0.96 + 0.04 (again close to but slightly
below the temperature kT ~ 1.05 in Refs. 21 and 22). In line with
expectation for the hysteretic behavior of typical first-order order-
ing transitions, the transition back to the ordered BCC-like state
occurs at a temperature lower than the transition upon heating, i.e.,
T oo < Teir- The ordered structures obtained from this cooling pro-
cess are slightly less ordered than those obtained by slowly heating
up an initially perfect BCC lattice; this is evident in a very slight dis-
crepancy in the energy value (which on the interval kT € [0.25, 0.8]
is on average 0.116% higher than the energy values); it is even more
evident in the structure factor, which is sensitive to structural detail.
The deviations are quantified by the 7 order metric and shown on a
logarithmic scale in

The above findings obtained on systems that are cooled down
or heated up are supported by “isothermal simulations,” that is, sim-
ulations at a fixed temperature with significantly longer simulation
runs with 8.5 x 10° MD steps (as opposed to the 10* MD steps per
temperature step in the cooling/melting simulations above).

The mean energies of these isothermal simulations, shown in

, support our earlier results. Four independent realizations of

the system are simulated for each temperature, as shown in this
figure; data labeled “isothermal melting” result from simulating a
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system from an initial BCC configuration, whereas “isothermal
freezing” refers to a system prepared from an initial ideal gas system;
for further simulation details, see Subsection 3 of the . The
mean energy values of the isothermal simulations coincide largely
with the energy trajectories of the slow cooling and heating pro-
cesses, except in a small region around the order/disorder and disor-
der/order transitions. We thus conclude that the heating and cooling
can be assumed a quasi-static process except in the vicinity of the
order/disorder and disorder/order transition.

The transitions (discontinuities) in the mean energy of the
isothermal simulations are slightly offset from the values of the con-
tinuous cooling/heating transitions. The discontinuity of the mean
energy of the isothermal heating systems occurs at a slightly lower
temperature than all of the slowly heated systems; the discontinu-
ity of the mean energy of the isothermal freezing systems occurs at
a slightly higher value than the average transition temperature of
the slowly cooled systems. This trend could indicate that our slowly
cooled or heated systems are not quite fully equilibrated but fairly
close to equilibrium.

We note that the freezing isothermal systems show a similar
spread of energy values after the disorder/order transition than the
slowly cooled systems, indicating that the residual defects are not
caused by too little equilibration time.

Our results (both for slow cooling/heating and for the isother-
mal simulations) are in good agreement with those from Ruscher’s
study of the Voronoi liquid. We add three comments in regards to
the agreement:

(1) Ruscher’s value for the melting temperature (kT ~ 1.85) is
slightly lower than ours (kT,, ~ 1.886), and Ruscher’s value
for the freezing temperature (kT; ~ 1.05) is slightly higher
than ours (kT ~ 0.96). These slight differences are probably
due to our slightly faster cooling or heating rates, to the dif-
ferent system sizes and to slightly different thermostats and
simulation parameters. (We note that as expected for slower
cooling rates, Ruscher found a transition temperature for the
isothermal melting, which is slightly closer to the isothermal
melting system than ours. Within this systematic error due
to slight differences in cooling/heating rates, we consider that
our results agree with those of Ruscher.)

At the finite size of our simulations (N = 2000 particles), we
find a distribution for the values of the freezing temperature
and the cooling temperatures, which are (average + stan-
dard deviation) ka = 0.96 + 0.04 and kT,, = 1.89 + 0.01
for the MD simulations (1) and kTjeze = 0.97 + 0.03 and
KT,y = 1.886 + 0.006 for the MC simulations (2). We
understand that Ruscher only presented the data for a single
simulation run with about 8000 particles.

In our simulations, the final energy of the freezing curves dif-
fers slightly from that of the perfect BCC lattice. Visual exam-
ination shows that this is due to residual disordered artifacts
in the otherwise ordered lattice. These deviations are more
clearly visible in the 7 parameter that is sensitive to small
deviations from order.

)

(©)

shows Monte Carlo simulation data for the same sys-
tem, which are consistent with the molecular dynamics simulation
data shown in , thereby providing further confirmation of these
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results. The quantitative values for the transition temperatures are
consistent (within error bars) in MD and MC simulations; how-
ever, we observe a narrower spread of transition temperatures for
the melting process in our MC simulations as compared to our MD
simulations, see .

This concludes our analysis of the quasi-static (slow) equilib-
rium cooling and heating of the Voronoi liquid. Confirming the
results by Ruscher et al., we find the system to behave like a typi-
cal first-order order/disorder transition with hysteresis in that limit,
with the low-temperature state given by the BCC lattice.

We now turn to a different question, namely, that of what struc-
tures the Voronoi liquid adopts upon fast non-equilibrium cooling
or a quench. These data are obtained by MD simulations where the
system is initialized in equilibrium configurations at high T and
then cooled at high cooling rates. The limit of an infinite cooling
rate, where the temperature is abruptly set to 0, is here referred
to as quench. These non-equilibrium final configurations are com-
pared, in particular, to the structures obtained by Lloyd’s algorithm,
discussed by Klatt et al.;” Lloyd’s algorithm represents a steepest-
descent minimization of the energy functional in Eq. (1) and can
therefore be regarded as a type of quench.

and present our analysis of the structure of

the configurations that result from quenching the system, that is, by

MD or MC simulations of a system where a high-temperature ideal

gas configuration evolves when the temperature is abruptly set to 0.

shows the structure factors of the structures thus obtained,

and contains the 7 order metric calculated from these. See

also Subsection 1 of the for a technical comparison of an
MD quench and Lloyd’s algorithm.

These final structures are compared to the structures obtained
by the application of the (purely geometric) Lloyd’s algorithm to the
same structures, as suggested by Klatt et al.” (and also to the data for
that same system as reported by Klatt et al.”"). The key result is that
to a high degree of accuracy and within the statistical accuracy of our
data, structures obtained by MD or MC quenches are indistinguish-
able from the converged Lloyd states in terms of the structure factor
and the derived 7 metric (within error bars).

Structural metrics for local order and local packing structure,
namely, the Minkowski structure metrics and cell statistics of the
Voronoi tessellation, also show good agreement of the final struc-
tures of the different quenches. See Subsection 2 of the for
further details. Moreover, we also find a hyperuniformity index H
of the order of magnitude 10™*.

TABLE I. Transition temperatures Tp, for the order/disorder transition (melting) and
T; for the disorder/order (freezing) transition, as computed by molecular dynamics
simulations, Monte Carlo simulations, and as reported by Ruscher.”“ The notation
is T + 8T, where T is the average over all simulation runs and 8T is the standard
deviation. The values for Ruscher’s data are estimates extracted from diagrams in
her article.

kTy kTwm
Molecular dynamics 0.96 + 0.04 1.89 +0.01
Monte Carlo 0.97 +0.03 1.886 + 0.006
Ruscher 1.05 1.85
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FIG. 3. Structure factor S(k) of a quenched ideal gas (binomial point-process) at
kT =0 with N = 2000 particles and a particle density p = 1 using molecular dynam-
ics (MD), Monte Carlo (MC), and the gradient-descent-like Lloyd’s algorithm. Each
structure factor is averaged over 24 individual runs. A detailed description of the
processes and parameters are given in Sec. |I. All methods evolve into disordered
structures with energies and values of the = order metric equal within measure-
ment uncertainties (see ). According to our data, these structures are
identical to the universal, amorphous structures previously found by Klatt et al.
as remarkably stable, disordered minimal energy configurations of the quantizer
system. See Subsection 3 of the for simulation details.

Up to here, we have investigated the two extreme cases being
(a) slow quasi-static heating and cooling (which leads to a hysteric
order/disorder transition) and (b) quenching as the limit of maxi-
mally fast non-equilibrium cooling. We now turn our attention to
the intermittent regime of cooling processes that are too fast to be
quasi-static yet are not a quench.

The key result of is that upon rapid non-equilibrium cool-
ing with sufficiently fast but finite cooling rates, the system tends to
avoid a transition to an ordered (BCC) structure but instead con-
verges to configurations that are similar in structure (as measured
by the structure factor) and similar in energy values to the converged

TABLE II. Final energies and 7 values of quenched ideal gas systems as described
in . The 7 order metric measures the degree of order in the system, diverges
for crystalline structures, and is zero for complete spatial randomness. The value of
the 7 order metric from Kilatt et al.>” is that for configurations from binomial point-
processes (from Table 2 in the supplementary material); here, we added systematic

errors discussed both in Ref. 23 and Sec. |I. See Subsection 3 of the for
simulation details.

E/Epcc T
MD quench 1.008 44 + 0.000 02 33+1
MC quench 1.008 54 + 0.000 03 33+1
Lloyd’s algorithm 1.008 52 + 0.000 03 33x1
Klatt et al. 1.008 + 0.001 32+1
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FIG. 4. Non-equilibrium cooling with a fast but finite cooling rate and slow equilibrium heating of the converged Lloyd states of Klatt et al.

The fast non-equilibrium cooling

of a high-temperature ideal gas results in disordered structures very similar to the converged Lloyd states (dotted green curves). The dependence on the cooling rate o is
only weak for |o| > 4-10~*¢/8 (see the inset). Upon cooling, the energy initially follows the same functional form as for a slow equilibrium cooling; however, it fails to show
any sign of the ordering transition (which the slowly cooled systems undergo for kT e ~ 0.96). When, from small T, the converged Lloyd states are heated up slowly at
0 =25 x 10~* (purple curves), they initially show at kT ~ 0.74 + 0.05 a transition to a (softened) BCC configuration, which then melts at a slightly lower phase transition
temperature at kT", ~ 1.80 + 0.04. The orange curve represents the slow equilibrium melting transition starting from a low-temperature BCC phase. All data shown here is

obtained by molecular dynamics simulations. See Subsection 3 of the
simulations.

Lloyd states. If the cooling is sufficiently fast, the value of the cool-
ing rate only has a minor effect on the final structure that is reached
at kT = 0; the remaining minor differences in energy are visible in
the inset of and are significantly smaller than the difference
between the converged Lloyd states (E/N = 118.82 + 0.02) and that
of the BCC crystal (E/N =117.815).

For the fast cooling rates, the majority of the system do not
show a phase transition. At a cooling rate of —4- 1073, none of the 24
runs showed a phase transition; out of the 24 runs at a cooling rate of
-8-1073, only one underwent a phase transition, and three out of 24
runs showed a phase transition at a cooling rate of —4- 10~ (These
runs are omitted in the data shown here.)

Finally, we have analyzed the slow quasi-static heating of a sys-
tem that is prepared at T = 0 in converged Lloyd states. When heated
slowly, the system energy gradually increases until a certain tem-
perature, following the same (or a very similar) curve to the rapid
cooling cycles, in reverse. At a certain temperature (the value of
which varies, potentially due to finite size effects), the energy jumps
down to almost the energy of a BCC crystal being melted to the
same temperature. When heated further, the system behaves simi-
lar to that of the melting curve of a system that started from a BCC
crystal. There are small remnant differences in the energy (the purple
curves in are slightly above the orange curve), and the even-
tual transition to a disordered structure occurs at a slightly lower
temperature. We do not know the exact nature of these slight dif-
ferences. The degree of residual randomness in these intermediate
BCC-like states appears to facilitate a melting transition at a slightly
lower temperature.

for simulation details. On the left- and right-hand sides, we show the snapshots taken from MD

The “drop” to a BCC-like state can be avoided when a system
prepared as a converged Lloyd state at T = 0 is quickly heated. At
a heating rate of 0 ~ 9.3- 1073, all out of 24 individual runs avoid
the intermediate BCC-like state and follow the curve of a quickly
cooled system up to the liquid state. With decreasing heating rates,
the systems get more likely to fall back into the intermediate states:
at a heating rate of o ~ 4.3- 107>, 6 out of 24 runs return to the BCC-
like state. This behavior while heating is analog to the freezing case:
here too, the BCC ground state can be avoided if the system is cooled
very quickly.

IV. CONCLUSION

We have studied the configuration of the many-particle sys-
tem that is formed by the many-body interaction of the quan-
tizer energy, that is, of the Voronoi liquid.” We confirmed
the freezing and melting transitions found by Ruscher, Baschnagel,
and Farago™ using both MD and MC simulations. A slow cool-
ing in equilibrium leads to the formation of BCC crystallites, as
expected, since the conjectured ground state (at T = 0) is the BCC
lattice.

In contrast, a quench from high temperature states leads to
disordered amorphous structures, more similar to the amorphous
states found by Lloyd’s algorithm.” A finite cooling rate results
in final energies slightly below that of the final state of Lloyd’s
algorithm, but as we increase the cooling rate, the final energies
increase. A quench at T = 0 leads to final states whose energies,
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two-point statistics, and local multi-point statistics coincide within
our statistical accuracy with those of the converged Lloyd
states.

To explain both the similarities and differences between a fast
MD quench and Lloyd’s algorithm, we derive a limit in which a mod-
ified MD quench, where the mass of a particle is given by the volume
of its cell, coincides with the iterations of Lloyd’s algorithm.

Melting the amorphous converged Lloyd states, we find that
the system remains on the amorphous branch for a finite range
of temperatures (before the system returns to the crystalline
branch), which agrees with the meta-stability of the converged Lloyd
states.

In future work, MC simulations of the “QuanTizer prob-
lem” (i.e., Voronoi liquid) make it possible to determine the den-
sity of states (e.g., using the Wang-Landau algorithm ) to fur-
ther study the intriguing energy landscape of this many-particle
interaction.

Lloyd’s algorithm is a gradient-descent minimization method
tailored to the quantizer problem, in the following sense: The
displacement of each point into the direction of the center of
mass of its Voronoi cell corresponds to the direction of the neg-
ative gradient. Furthermore, the displacement into the center of
mass of the Voronoi cell (rather than just in that direction) pro-
vides a “local optimum displacement” for the individual cell. The
question arises naturally what final structures are obtained when
applying other energy minimization methods such as the conju-
gate gradient-descent method, BFGS, or others. The preliminary
results indicate that conjugate gradient methods, steepest descent as
well as BFGS minimization methods as implemented in the GSL
seem to evolve random initial structures into amorphous structures
that are very similar to the inherent structure found by Lloyd’s
algorithm. (Note that these algorithms were provided with the gra-
dient direction from Lloyd’s algorithm as a closed formula for
the gradient of the energy functional is not available.) A quan-
titative statistical analysis needs to include a detailed analysis of
the observed cases where the minimization methods get stuck in
seemingly shallow local minima and is beyond the scope of this
article.

Ultimately, the research presented in this article supports the
search for disordered ground states and long-lived inherent struc-
tures that offer novel physical properties due to their isotropy (in
contrast to their crystalline counter parts). A key question for exper-
imental realizations is the role of long- and short-range interaction
in such systems.
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APPENDIX: ALGORITHMIC EQUIVALENCY,
ADDITIONAL STRUCTURE METRICS,
AND SIMULATION DETAILS

1. Lloyd's algorithm as a limit of an MD quench

We showed that a fast MD quench results in a structure similar
to the converged Lloyd states. Here, we discuss the conditions under
which an MD quench collapses to a “Lloyd quench.” MD simulations
compute the time evolution of particles, where each step advances
time by an increment At; thus, the position of the ith particle at time
t, given by r;(t), is equivalent to ri(nAt) =: r; .

Since Lloyd’s algorithm is missing an intrinsic definition of a
time scale, a Lloyd quench can only be compared to an MD quench
on a step by step basis. The position of the ith particle at step # is
denoted by r; .. A single Lloyd iteration is then given by t; n+1 = Ci,n,
where ¢ , is the centroid of the Voronoi cell associated with the ith
particle at step n.

The position of the ith particle after one MD step of time length
At is given by rj 1 = r;(t + At), which can be approximated by its
Taylor series,

Tin+l = Yip + Ein AL + (A1)

ti» + higher orders,

(an)*
2

where a dot denotes the time derivative: ¥ = %r. The force acting

on particle i is given as ¥; = :1— = y% (ci — r;). Substituting this into
Eq. yields
Vi (At)? Vi (At)?
Yip = (1 - yi())rm + (y‘())cim + Fip,
mi mi 2

where we neglect orders higher than the second derivative. For an
MD step being equivalent to a Lloyd iteration, r;(¢ + At) = ¢; must
hold. Thus, the time step At must be chosen as

A=y 2
y Vi

For this equation to hold, the masses of all particles must be set equal
their volume before each simulation step. The temperatures are set
to zero after each simulation step; this acts as a thermostat simu-
lating a quench. In this limit, an MD step is equivalent to a Lloyd
iteration.

On the one hand, this limit demonstrates similarities of Lloyd’s
algorithm and a quench for Voronoi tessellations with energies close
to the ground state (with a sharp cell volume distribution). On the
other hand, the analysis reveals subtle differences that may lead to a
slightly different energies and (global) structures.

2. Local structure metrics

Structures can be locally characterized using the so-called
Minkowski metrics.” " These define several scalar, vectorial, and
tensorial quantities measuring the shape of a convex body K such as
a Voronoi cell. Here, we specifically employ the surface Minkwoski
tensors W* describing the radial distribution of outer normal
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vectors of K.
harmonics,

It can be conveniently decomposed into spherical

47 ZkAkYSm(nk)
2s+1 ZkAk

pi(K) =

>

where Ay are the surface areas of the faces of the body K and ny are
the outer normal vectors. From this tensor, rotational invariants can
be constructed,

4(K) = 3 (O

m=-s

These gs describe the shape of a cell independent of its size
and orientation and thus can be used as a shape metric. Here, we

-~ BCC
= 20 MD Quench
S MC Quench
= MD Freeze
~l-o=4-10-2
MD Freeze
0c=8-10"3
’g-_ F MD Freeze
-+- o _ —4
= o=4-10
—— Lloyd
@
)
b
o
)
=
)
)
L=
T T T
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FIG. 5. Local order and structure measures of the final structure obtained by MD,
MC, and Lloyd quenches, as well as fast freezing MD simulations. Shown are the
rotational invariants 456 Of the face-normal Minkowski tensors. These robust
and sensitive measures characterize the shape of single Voronoi cells and thus the
local order and structure of the systems. The values of a BCC shaped cell is shown
for reference. The data show good agreement of the final structures of MD, MC,
and Lloyd quenches within statistical uncertainties, indicating that the final struc-
tures of the MD and MC quenches are identical to the ones of the Lloyd quench.
The fast freezing MD simulations show good agreement in g, and q4, however,
increasing differences in gs, g, and qg with increasing cooling rate, indicating a
difference in the local order compared to the structures obtained by the quenches.
These findings are in line with the decreasing energies of the final structures with
increasing cooling rates.
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compute the quantities g24568 for each cell in a system and show
their normalized distribution.

The distribution of the number of edges of faces as well as the
number of faces of each cell in the Voronoi tessellation is presented
as a further measurement of the local packing.

Our results are shown in and 6. We present the shape
metrics and Voronoi cell statistics for the final structures obtained
from MC, MD, and Lloyd quenches, as well as fast cooling MD sim-
ulations. For each quench type, the distribution is averaged over 24
individual simulation runs. The data show good agreement within
the statistical limits of the distributions of the MD, MC, and Lloyd
quenches. These findings further support the equality of the final
structures, as previously indicated by equal energies as well as 7
values.

The distributions of the final structures obtained by quickly
cooled systems, however, show significant differences compared to
the quenched structures. A clear trend is visible: the higher the (abso-
lute value of the) cooling rate, the higher the deviation from the
inherent structure. This is visible in the Minkowski structure met-
rics, but even more in the Voronoi statistics. These results are in
line with a similar trend in the final energies, which decrease—
hinting toward more optimal structures—with increasing heating
rates.

15000 - ™ Lloyd
MD Quench i
) MC Quench
g 10000 4 MD Freeze
< 0=4-1073 i
S MD Freeze
O 50004" g=8-10"3
MD Freeze
o=4-10"*
0 T T T T —
1 2 3 4 5 6 7
Polygon number of edges
1000
800
3
§ 600 .
>
o 400 A 0
o
2004 ‘ ‘
0 [ TH —
12 13 14 15 16

Polyhedra number of faces

FIG. 6. Cell and face order distributions of the Voronoi cells in the structures
obtained by MD, MC, and Lloyd quenches as well as fast freezed MD simula-
tions. Shown is the number of faces with n edges (top) and the number of cells
with n faces in the Voronoi tessellation of the final structures. The data show good
agreement within statistical limits of the MD, MC, and Lloyd quenches, where as
the fast freezing MD runs show significant deviations increasing with the increasing
cooling rate.
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3. Simulation parameters

Quenches, , : All initial configurations are bino-
mial point-processes (ideal gases) with N = 2000 and p = 1. The
structure factors, 7, and energy values of MC, MD, and Lloyd’s algo-
rithm runs are averaged over 24 individual runs. MD: The MD step
size is chosen as At = 0.005, and the initial temperature is set to
kT = 2.1. An initial set of 5000 MD steps are performed at kT = 2.1
to equilibrate the initial configuration, then the temperature is set to
KT = 0, and the system is run for 6 x 10> MD steps. MC: Immedi-
ately after initialization, the temperature is set to kT = 0, and then,
a total of 8.1 x 10® MC steps are run. The step size is adapted every
3 x 107 steps. Lloyd’s algorithm: A total of 50 000 steps are run.
While the 7 value in was taken from the supplementary
material from Ref. 23, the structure factor shown in was
generated by us from the dataset 3D-FINAL-CONFIGURATION-DERIVED-FROM-
BINOMIAL-PP-1.DAT provided by Klatt et al.”" All structure factors are
computed with a bin width of 0.25 and a cutoff of kmax = 25.

MD melting/freezing, : 48 individual runs for each melt-
ing and freezing were run. Melting runs were initialized as BCC
lattices, with each component of the velocities randomly drawn
from a normal distribution to match a system temperature of
kT = 0.1. The velocities are modified, so the center of mass of
the system is at rest. The initial thermostat temperature is set to
kT = 0.1. Freezing runs were initialized as ideal gas; thus, each posi-
tion component is randomly chosen to uniformly cover the simu-
lation box with random velocities matching an initial temperature
of kT = 2.1 with the center of mass of the system at rest. For both
melting and freezing runs, the thermostat is initialized with Q = 20,
s=1,and § = 1, and the MD time step is chosen as At = 0.001.
All systems ran a set of 5 x 10° initial relax steps to equilibrate the
system and thermostat at the respective initial temperature. Then,
800 (melting)/840 (freezing) temperature steps, each with an incre-
ment of AkT = 2.5 x 10™> are run, resulting in a cooling rate of

0 = % = 2.5 x 107 *¢/6. For each temperature, 10000 MD
relax steps are run, followed by a measurement phase comprising
1500 MD steps where every 25 steps the energy and structure factor
is measured. For the isotherms, four runs at each temperature for
each freezing and melting systems are run. The particles in melt-
ing systems are initialized on a BCC lattice with velocities drawn
from a normal distribution to match their respective temperature
with a resting center of mass. The initial positions of the particles
in the isothermal freezing systems are uniformly distributed over
the simulation box with velocities drawn from a normal distribu-
tion to match their respective temperature (ideal gas). Both melt-
ing and freezing isothermal systems are then run for 8.5-10° steps
with a time step of At = 0.001. The thermostat is initialized with
Q=20,s=1,and § = 1. The mean energies are averaged over the
last 1.7 - 10° steps.

MC melting/freezing, : Since MD simulations outper-
forms the MC code by far, we used MD simulations to generate
initial configurations very close to the phase transition region and
then continued these runs with the MC code. The parameters for
the MD runs are identical to the ones mentioned above with these
exceptions: no initial relax steps are performed, and the positions
of the particles in the systems initialized as ideal gas are iden-
tical across all systems; however, they do have randomly chosen
velocities. In total, 48 runs were given different initial thermostat

ARTICLE scitation.orgl/journalljcp

settings, where two runs shared one of the combinations between
Q € {60, 50, 40, 30, 20, 10} and (s,5) € {(0.2,0),(1,0.5),(1.5,1),
(4,3)}. Only 500 measure steps were performed at each temper-
ature. The initial configurations for the MC runs were taken after
the relax phase at kT = 1.87 (melting) and kT = 1.02 (freezing). A
total of 213 (melting)/320 (freezing) temperature increments each
with AKT = 4.7 x 107" were simulated. At each temperature,
a total of 6 x 10° MC relax steps were performed, followed by
3.8 x 10* measurement steps, with 2000 MC steps in between
individual measurements.

Melting of the converged Lloyd states, : The 48 indi-
vidual MD simulations are initialized with converged Lloyd states;
thus, N = 2000 and p = 1. Random temperatures are assigned to
match an initial temperature kT = 0.05 with the center of mass of
the system at rest. 2 x 10° initial relax steps are performed. The ther-
mostat is initialized with Q =20 and s = § = 1. The MD time step is
chosen as At = 0.001. A total of 840 temperature increments with
AKT = 2.5 x 107° are computed. Each temperature has 10000
relax steps and 1500 measurements steps with 25 steps in between
individual measurements. All data represented by symbols are MD
simulations initialized as ideal gas, with random velocities match-
ing their initial temperatures, with the center of mass at rest. All
ran a set of initial relax steps of 20000 MD steps and had 2400
relax and 100 measurement MD steps for each temperature incre-
ment, with 25 MD steps between each measurement. The olive
circles (“o = —4-107%”) are combined data from 10 sets, each set
consisting of 24 averaged runs, starting at different initial tem-
peratures kT = (2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95).
Each set had six temperature increments of AkT = —0.5. Com-
bining the interlaced sets yields the curve as shown. The same
was done for the olive triangles (‘o = -8- 1073”); however, only
two sets (each averaging over 24 runs) started at kT = (2.1, 2.15)
and had 22 temperature increments with AKT = —0.1. The olive
pyramids (“c = —4-10"*”) are a single set averaging over 24
runs starting at kT = 2.1 with 43 temperature increments with
AKT = -0.05.

DATA AVAILABILITY

The data that support the findings of this study and the code
used to generate them are available from the corresponding author
upon reasonable request.
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CHAPTER 4

Structure identification in soft materials using microscopy images

The first two chapters of this thesis address the structure formation process of cellular
media and partitions of space. This chapter forms the second part of the thesis and
will present a method to identify structures, called direct template correlative matching
(DTC). This method aims to identify the geometrically complex partitions of space,
triply periodic minimal surfaces (TPMS), specifically based on transmission electron
microscope (TEM) images. This is a challenging task: a two dimensional projection, as
available from TEM images, condenses the spatial information of a three dimensional
structure into a planar image. Naturally, information is lost during that process. A
further layer of complexity is added when parameters of the projection process, such
as the viewing angle onto the three dimensional structure, are unknown. DTC was
first introduced by Landh [1996] and Deng and Mieczkowski [1998] and found several
applications since then [Deng et al., 1999, Almsherqi et al., 2005, 2006].

In this chapter, based on our publication [Hain et al., 2021], we introduce a new
open-source software tool, SPIRE, re-implementing and expanding DTC for several
reasons. The original software library, first introduced in [Deng and Mieczkowski, 1998 ]
only allowed the generation of entire libraries of projections and thus no interactive
matching process and is not accessible for the public anymore. With SPIRE, we devel-
oped a software tool, with a focus on an interactive matching process. A screenshot
of the user interface illustrating this is shown in fig. (4.1). The influence of structural

parameters on the projection can be seen in almost real time, promoting an intuitive
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approach to understand DTC. We also added a larger variety of accessible structural
parameters, allowing finer control of the projection and new features, such as structural
measurements. This latter feature especially provides valuable insight on possible func-
tions of structures. SPIRE is designed to be capable of creating large data sets to train

artificial neural networks (ANN) to automate the matching process in the future.
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We start by giving a technical introduction to minimal surfaces and TPMSs and
their mathematical description, before highlighting their occurrence and significance in
biological systems.

4.1 Triply periodic minimal surfaces

To understand minimal surfaces, the term curvature needs to be introduced first. An
intuitive explanation was provided in chapter 1, here, we will follow a more quantitative,
but yet intuitive approach by Andersson et al. [1988]. The curvature « of a curve at a
point p is the inverse of the radius of the osculating circle which fits the the curve in p
most tightly, as shown in fig. (4.2). For a surface, there are infinitely many curvatures
along the lines radiating from a point: given the normal vector np to the surface at a
point p, the intersection of a plane containing np with the surface yields a curve, with
a curvature &, as illustrated in fig. (4.2). For continuous surfaces, rotating this plane
around np then continuously yields different curvatures. The minimum and maximum
values of all these curvatures are called the principle curvature «; and x5 of the surface.
The mean curvature is then H = % (k1 + K2), where as the Gaussian curvature is defined
as K = k1 - ko. Minimal surfaces are defined by a vanishing mean curvature at each point
[ Grosse-Brauckmann, 2012, Klinowski et al., 1996b]. This is equivalent to the surfaces

minimising their surface area given a fixed boundary [Nitsche, 2011]. As addressed
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K=1/r

Figure 4.2: The definition of principal curvatures x of
a surface. Shown is a minimal surface, called monkey
saddle given as z = x3 — 3zy? and a curve created by
the intersection of the surface with a plane containing
the normal vector onto the surface in a point p. The
curve has a curvature of £ = 1 in p, with r being the
radius of the circle with the best fit to the curve in p.
The curvature is a smooth function by rotating the
plane containing the normal vector around the latter.
The minimum and maximum values are the principal
curvatures x1 and x9 of the surface in p.

in the introduction a familiar example are soap films suspended from wire frames. A
close relative to minimal surfaces are constant mean-curvature (CMC) surfaces [Grosse-
Brauckmann, 2012, Karcher, 1989]. These have a constant mean curvature across the
entire surface, however, the latter is not 0. This is equivalent to minimising the area of a
surface given a fixed boundary and volume. Natural examples are soap bubbles: they

enclose a fixed amount of air and due to surface tension minimise their surface area.

This chapter focuses on a special class of minimal surfaces with negative Gaussian
curvature: the TPMS [Klinowski et al., 1996b |, as well as some of their CMC counterparts.
The latter can be seen as topologically and symmetrically identical, but geometrically
deformed surfaces at a distance to the original TPMS [ Anderson et al., 1990, Grosse-
Brauckmann, 2012, Karcher, 1989, Han and Che, 2018].

One characteristic property of TPMS (and of their corresponding companions
[Grosse-Brauckmann, 1997]) is that they are periodic in each spatial dimension, i.e. they
are invariant under a translation along the coordinate axes [Grosse-Brauckmann, 2012].
The first TPMS were studied by Schwarz [1890] and Neovius [1883], who found the
primitive (P) and diamond (D) by solving Plateau’s problem for suitable fundamental,
asymmetrical patches with fixed boundaries. As discussed in the context of tilings in the
introduction, repeatedly applying appropriate symmetries on the fundamental patch
then yields infinite, periodic, highly symmetric minimal surfaces. The boundaries of
both P and D surfaces are straight lines or have mirror planes. The symmetries of the
surfaces are described using crystallographic space groups [Hahn, 2005]. For the P
surface it is (SG229) and for the D surface Pn3m (SG224) [Han and Che, 2018]. Another
important surface, the Gyroid (G) surface with the space group 7a3d, was later found
by Schoen [1970]. In contrast to the P and D surfaces, the latter is chiral and does not
contain straight lines or mirror planes [ Grosse-Brauckmann, 1997, Han and Che, 2018].

Visualisations of the surfaces and their medial skeletons are shown in fig. (4.3). An
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(a) Primitive (P) (b) Diamond (D) (¢) Gyroid (G)

Figure 4.3: Three common triply periodic minimal surfaces (TPMS) with their corresponding
medial skeleton. TPMS are minimal surfaces, i.e. surfaces with zero mean curvature everywhere
and a negative Gaussian curvature. See main text for details. These three TPMS divide the space
into two intertwined, open but disconnected subvolumes. The medial skeleton of the latter is
often used to describe the topology and structure of the channel.

exact parameterisation of these three surfaces is given by the Weierstrass representation
[Gandy et al., 1999, Gandy and Klinowski, 2000a,b]. This is a set of three complex
integrals providing a way to compute the surfaces in Cartesian coordinates [ Andersson
et al., 1988, Hyde et al., 1996, Nitsche, 2011]. A more accessible description of TPMS
is the so-called nodal representation [Klinowski et al., 1996b, Gandy et al., 2001]. von
Schnering and Nesper [1991] developed the latter based on a Fourier expansion of
the structure factor of a structure. Using only a few terms of the Fourier series yields
an approximation of these surfaces. For the P, D and G surface these so-called nodal
representations read

Fp(z,y,z) = cos(X)+ cos(Y) + cos(Z)
Fp(x,y,z) = cos(X)cos(Y)cos(Z) — sin(X)sin(Y) sin(Z)
Fo(z,y,z) = sin(X)cos(Y) +sin(Y) cos(Z) + cos(X) sin(2)

where X = 2% with a being the periodicity of the surface in each spatial dimension. For
F(z,y,z) = 0 this implicit formula describes a surface which approximates the minimal
surface with a high accuracy [Gandy et al., 2001 ], where as parameters F'(z,y,2) = c # 0
yield approximations of symmetrically and topologically identical CMC companions
of the TPMS for small enough values c. Following the original DTC tool by Deng and
Mieczkowski [1998], SPIRE uses the nodal representation to compute voxelised TPMS
or CMC companions thereof [Hain et al., 2021].

TPMS separate space into two separated, intertwined but completely open chan-
nels [ Andersson et al., 1984, Feng et al., 2019, Schroder-Turk et al., 2007, 2006, Schroder
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et al., 2004, 2003]. In biological contexts the term bicontinuous phases is used frequently,
referring to the presence of two infinite channels. Whereas the two channels of the P
and D surface are identical, the two channels of the Gyroid are identical down to an
inversion. Here the CMC companions play an important role, since they separate two
channels of different volumes, see fig. (4.4). However, also TPMS, such as the I-WF
surface exists, which separate two non-identical channels of different volumes [Hyde
etal., 1996]. A new feature introduced in SPIRE is the computation of the volumes of
the channels of the three dimensional structure, which projection is matched to a TEM
image. We refer to our publication [Hain et al., 2021] for more details. The geometry

v

(a) (b) ()

Figure 4.4: Constant mean curvature companions of the Gyroid surface. (a) A unit cell of the
Gyroid minimal surface (b) Two CMC companion surfaces of the Gyroid, centered around the
minimal surface Gyroid (indicated as transparent surface). The structure has two continuous
channels of equal volumes. These can model, for example, a lipid bi-layer membrane with a finite
thickness or polymer melts in solution, where the head group (red spheres) or the minority
part of the polymer is in-between the two surfaces. (c) A single CMC surface separating two
channels of different volumes. These structures are found e.g. in polymer melts or protein based
structures with one solid channel, filled by protein or the minority part of the polymers, and one
larger volume occupied by a solvent like water or the majority part of the polymer. These solid
channels are follow the medial skeleton of the structures.

and structure of the surface and its channels is often described by the medial skeleton
of their channels. This is a network of rods placed in the center of the channels. These
networks are often relevant, since they are self-assembled by for example polymers, as
we will address further below.

The skeleton of the D surface is the atomic structure of a diamond, i.e. has 4-
connected vertices, where as the skeleton of the P surface consists of 6-connected vertices
placed on a simple cubic lattice [Han and Che, 2018, Cui et al., 2020]. The skeleton of
the Gyroid is the srs net [O’Keeffe et al., 2008], a chiral network without straight lines
based on the atomic structure of SrSi, [Pringle, 1972].

Some of the fundamental minimal surfaces are connected by the Bonnet trans-
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formation. The latter transforms the D and G surface continuously without changing
the curvature of the surface. This is a significant result since it helped identifying the
coexistence of these structures in lipid-water systems [ Andersson et al., 1988, Hyde
etal., 1984].

4.2 Occurrence and significance of TPMS in natural and

artificial systems

Self-assembled complex bicontinuous structures occur often in natural and artificial
systems. The intriguing shapes have long been of interest and were eventually identified
as one of three fundamental TPMS, the Gyroid, Primitive and Diamond surface. As

Cubic bicontinuous phases

Natural systems Synthetic systems
~12 up to 500nm ~10nm, max. 50nm
Lipid-protein-based membranes Polymer-based
intracellular extracellular
membranes membranes

lyotropic mesophases

Eliojpeline- e sEe Lipid-based liquid

Figure 4.5: A selection of synthetic and natural systems forming cubic phases. The most impor-
tant difference between synthetic and artificial systems are the length scales of the assembled
structures, as indicated with in the figure. The length scales play an important role in the choice
of method to analyse the morphology of the structures. For references see the main text.

fig. (4.5) suggests cubic, bicontinuous phases, i.e. TPMSs or CMCs, can be differentiated
between naturally occurring or synthetic structures. There are two main differences
between artificial and synthetic (membrane)systems. First, unlike artificial systems,

natural occurring membrane structures are not purely built from lipids, but include
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more complex molecules like proteins, which influence their self-organisation [Han
and Che, 2018, Cui et al., 2020, Mezzenga et al., 2019, Hyde et al., 1996]. Second, the
typical unit cell sizes differ substantially. Where as lyotropic liquid crystals are only
of a few nanometers in size, natural membrane structures can be as large as several
hundreds nanometers [Cui et al., 2020]. This difference in size is not only relevant for
the functionality of the structures, but also for the analysis and identification of the
latter.

Notable synthetic systems include, but are not limited to, polymer self-assemblies
[Bates, 2005, Meuler et al., 2009, Stefik et al., 2015], both as melt and in solution, and
lyotropic liquid crystals, such as a lipid /water systems [ Hyde et al., 1996, Mezzenga et al.,
2019]. Naturally occurring systems may be grouped into intracellular and extracellular

membranes.

The driving force of both synthetic and natural lipidic, as well as biopolymeric
self-assembly is similar to the already addressed polymer melts: the reduction of un-
favourable contacts of the immiscible entities, e.g. polar and fatty or hydrophilic and
hydrophobic components [Chandler, 2005]. In a lipid/water system the polar head
groups of the lipids aggregate to avoid water contacts, where as the apolar tails reach
into the water phase. Depending on the type of lipid and conditions in the system,
different structures, including lamellar phases, inverse hexagonal phases, inverse micel-
lar and bicontinuous cubic phases, emerge [Hyde, 2002, Mezzenga et al., 2019]. There
are two possibilities to form a bicontinuous structure: (1) a bi-layer membrane, where
the heads of the lipids aggregate on both sides of a TPMS (see fig. (4.4b)), separating
two channels filled with solvent or (2) a structure with one CMC surface, where one
channel is filled solid with the biopolymer (see fig. (4.4c)). Polymers in solution behave
analogously, where the minority block of the chain is equivalent to the head group,
where as in melts the membrane or solid assembles in a matrix made up by the majority

part of the polymer molecule.

Bicontinuous cubic phases with a network-like structure in soft matter systems has
been reported by Luzzati et al. [1968]. The authors identified these phases in lipid /water
systems using X-ray diffraction. The proposed structure is described as two interwoven
but disconnected networks of three-connected rods on a body-centered cubic lattice.
This network can be thought of a CMC companion of a TPMS, where one channel is
of smaller volume than the other and filled with the head groups of the lipids, where
as the other channel is filled with water into which the tails of the lipid extend (see
fig. (4.4c)). The size of the unit cell of the lattice varies on the specific lipid, but in
all cases is reported to be less than 10 nm. Scriven [1976] proposed that bicontinuous

minimal surfaces, partitioning space into two continuous subvolumes, called channels,
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can occur in fluids such as micellar solutions, lyotropic crystals or colloid structures.
Here the two channels can have different volumes with different compositions of matter
and as such need to be described using CMC rather than TPMS. Lindblom et al. [1979]
report lipid bi-layer membranes, continuous in all three spatial directions, and Larsson
et al. [1980] proposed that these membranes take the shape of TPMS as described by
Schoen [1970]. Longley and McIntosh [1983] and Larsson [1983] report two cubic
phases with a primitive and a body-centered lattice, where bi-layer membranes in the
shape of minimal surfaces separate two water-filled channels. Hyde et al. [1984] presents
proof that the membranes with a body-centered lattice have the shape of the Gyroid
surface. These cubic phases are also found in self-assembled nanoparticles, then called
cubosomes [Garg et al., 2007]. Their internal structure provides them with unique
properties, applicable in e.g. drug delivery.

Much work since then has been devoted to further study minimal surfaces in
lipid systems and their significance, which are summarised in a number of reviews
and articles [Larsson, 1989, Larsson and Tiberg, 2005, Hyde et al., 1996, Larsson, 1986,
Luzzati, 1997, Cui et al., 2020, Landh, 1996, Mezzenga et al., 2005, 2019]. The P, D and
G surfaces have been found to be the principal minimal surfaces of the bicontinuous
surfaces found in lipid /water systems [ Larsson and Tiberg, 2005]. Differential geometry
has been established as the preferred method to handle not only the geometry and
description of cubic phases, but also the connection between the mathematical minimal
surfaces and their biological features [ Andersson et al., 1984, 1988, Hyde et al., 1996].

Bicontinuous phases are also assembled in synthetic polymer systems, either
as melt or in solution. Thomas et al. [1986] identified a cubic phase in a star block co-
polymer melt. Here, one block of the polymers formed a bicontinuous network of rods
(see fig. (4.4c)) with the structure of a double diamond cubic lattice. The structure was
recognised using a combination of small-angle X-ray scattering (SAXS) methods and
direct TEM imaging. A double diamond network structure was also found in a system of
copolymers in solution by Hasegawa et al. [1987]. A finite thickness Gyroid membrane
(see fig. (4.4b)) was found in diblock copolymer melts by Hajduk et al. [1994] and were
identified using SAXS methods and comparing TEM images with computer generated
images. Unit cell sizes between 35 and 50 nm are suggested. Further Gyroid surfaces
were found in experiments and theory in ABC' triblock copolymers by Matsushita et al.
[1998]. Fischer et al. [2014] found a new tricontinous phase in ABC' star polymers with
an extended core. A number of reviews about network like phases and bicontinuous

phases in copolymer systems exists [Bates, 2005, Meuler et al., 2009, Stefik et al., 2015].

As already addressed in fig. (4.5), naturally occurring bicontinuous phases can

be grouped into biopolymer and lipid-protein based structures.
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Biopolymer based, solid bicontinuous structures include for example the skeleton
of echtinoderms [Donnay and Pawson, 1969]. A Gyroid structure is reported in the
wing scales of the butterfly (Callophrys rubi), where one of the channels is filled solid
with chitin [Saranathan et al., 2010, Schroder-Turk et al., 2011b]. This structure acts as
a photonic crystal providing green color. A similar example is provided by Wilts et al.
[2012a,b], where a single diamond structure is found in a diamond weevil (Entimus

imperialis).

Lipid based bicontinuous liquid-crystalline structures can be found for example
in milk: Salentinig et al. [2015] analysed the digestion of breast milk, an oil-in-water
emulsion, by human infants. The authors found Im3m-type bicontinuous phases formed
inside the oil droplets. This structure formation is reported to be linked with the digestion
process of breast milk. Pham et al. [2020] report the same cubic bicontinuous phases in
goat and bovine milk, however, at different stages of the digestion process.

An example for intracellular membranes which has been of interest for some time
now are the prolamellar bodies (PLB) of plant etioplasts. These structures are at the
center of this chapter’s publication [Hain et al., 2021]. Latest research suggest that PLBs
act as an efficient lipid storage for the transition to chloroplasts [ Armarego-Marriott
et al., 2019, Pipitone et al., 2021]. The structure of PLBs has been long debated: Gunning
[1965] found a hyperbolic membrane structure in PLBs which was identified to be of
the p-type. Ikeda [1968], however, report the structure to have four-connected vertices,
contradicting previous observations. With further structures proposed [ Gunning, 2001,
Menke, 1963, Landh, 1996, the exact geometric shape of the surface is still unknown.
An open question, which is addressed using SPIRE in [Hain et al., 2021].

Further bicontinuous membrane structures in cells and cell compartments have
been reported [ Gunning, 1965, Deng and Mieczkowski, 1998, Deng et al., 1999, Almsherqi
et al., 2006, 2009, Mezzenga et al., 2019, Foelix et al., 1987]. Apart from single bi-layer
membranes, structures with up to 12 bi-layer membranes were found (reviewed in
[Almsherqi et al., 2012]). Several reviews summarise occurrences and functions of
bicontinuous membrane structures [Hyde et al., 1996, Almsherqi et al., 2009, Mezzenga
et al., 2019]. Functions include for example transport and controlled release of nutrients
or control structural properties. For many of these cubic phases, however, the functions

are elusive.

Nature’s ability to build functional structures on large length scales (compare
membranes found in amoeba with unit cell sizes around 200 nm to synthetic lipid or
polymer systems with ~ 5nm lattice parameters) is unparalleled by artificial bottom-up
assemblies. Studying natural structures in order to mimic their formation processes
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provides blueprints for a powerful tool to construct materials [Han and Che, 2018]. An
important step of these investigations is of course the identification of the assembled
structures. In the presented examples, essentially three methods were used for that
purpose: X-ray scattering, especially SAXS, electron tomography or direct imaging using
transmission (TEM) or scanning electron microscopy (SEM) [ Weiner et al., 2021]. SPIRE

is designed to identify structures based on images obtained by microscopy.

SAXS methods provide scattering intensities which allow the identification of the
symmetries, i.e. the crystallographic space group, of structures with length scales from
1 to 100 nm [Willis and Carlile, 2017, Impéror-Clerc, 2012]. The exact microstructure
determination is not straight forward and requires considerable effort [Hajduk et al.,
1994, Impéror-Clerc, 2012] since many structures share the same space group.

3D electron microscopy has been used to reconstruct three dimensional structures,
see e.g. [Kowalewska et al., 2016, 2019] and allows a direct visualisation of the three
dimensional structure. However, these methods are very time and money-consuming

and thus limited in their application [ Neumidiller, 2018].

Next to the just introduced methods of structure identification, DTC has estab-
lished itself as a reliable and efficient method to identify cubic phases on all length scales.
(Electron)Microscopy allows direct visualisation of structures, however, only provides a
planar projection or cross section of the structure, making the identification of the under-
lying three dimensional structure challenging. This is emphasised by several structures,
such as the PLBs, being mis-identified in the past. The standard method of identi-
fying structures is to compare electron microscopy images with computer generated

projections of possible candidate structures.

Although this method has been used to identify structures before (see e.g. [Thomas
et al., 1986, Hasegawa et al., 1987] and references above), Deng and Mieczkowski [1998 ]
were the first, to our knowledge, to made a systematic approach by creating large li-
braries of artificial projections with varying parameters. TEM image are then matched
against this library. By finding a match from the library, the structure can be identified.

4.3 SPIRE—a software tool for bicontinuous phase recog-

nition: application for plastid cubic membranes

In the paper, we expand on the projection matching method by Deng and Mieczkowski
[1998], Deng et al. [1999] by introducing a new open-source tool, called SPIRE (Surface
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Projection Image Recognition Environment). SPIRE generates projections of cubic
bicontinuous structures and allows an intuitive and easy-to-use interactive matching
and thus identification process. Our results can be found in Hain et al. [2021] and in the
following section. A video tutorial on the usage can be found online’. Using SPIRE, we
were able to identify the structure of the PLBs to be a diamond structure with unequal

channel sizes.

http://chloroplast.pl/spire


http:// chloroplast.pl/spire
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Abstract

Bicontinuous membranes in cell organelles epitomize nature’s ability to create complex functional nanostructures. Like
their synthetic counterparts, these membranes are characterized by continuous membrane sheets draped onto topologi-
cally complex saddle-shaped surfaces with a periodic network-like structure. Their structure sizes, (around 50-500 nm), and
fluid nature make transmission electron microscopy (TEM) the analysis method of choice to decipher their nanostructural
features. Here we present a tool, Surface Projection Image Recognition Environment (SPIRE), to identify bicontinuous struc-
tures from TEM sections through interactive identification by comparison to mathematical “nodal surface” models. The
prolamellar body (PLB) of plant etioplasts is a bicontinuous membrane structure with a key physiological role in chloro-
plast biogenesis. However, the determination of its spatial structural features has been held back by the lack of tools en-
abling the identification and quantitative analysis of symmetric membrane conformations. Using our SPIRE tool, we
achieved a robust identification of the bicontinuous diamond surface as the dominant PLB geometry in angiosperm etio-
plasts in contrast to earlier long-standing assertions in the literature. Our data also provide insights into membrane storage
capacities of PLBs with different volume proportions and hint at the limited role of a plastid ribosome localization directly
inside the PLB grid for its proper functioning. This represents an important step in understanding their as yet elusive struc-
ture—function relationship.
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Introduction

Biological membranes, dynamic yet stable unique assemblies
of lipids and proteins, are selective barriers and enzymati-
cally active regions playing a crucial role in orchestrated
cells’ functioning. From a structural point of view, they are
described mainly as flat sheets or small folded isolated enti-
ties called vesicles. Interestingly, in specific cases, almost all
types of cellular membranes can form symmetrical, bicontin-
uous configurations called “cubic membranes” (Almsherqi
et al, 2006, 2009). These are characterized by a spatial struc-
ture based on a periodic network or labyrinth-like geometry,
defined by uninterrupted negatively curved membranes and
with high symmetry (often cubic; Luzzati, 1997). These can
be modeled by negatively curved surfaces as the spatial
model for the bilayer membrane. Note, that herein the
phrase “cubic membrane” is used synonymously for any
bicontinuous membranes with two membrane-separated
aqueous channels and with a cubic or otherwise highly sym-
metric spatial structure.

Cubic membranes are observed in cells of different organ-
isms, from protozoa to mammals. They can self-organize
from almost all types of membranes, including, for example,
endoplasmic reticulum, plasma membrane, mitochondria
and plastid inner membranes, and inner nuclear membrane
(reviewed in Almsherqi et al, 2009). Due to the length scale
of such structures with typical periodicities between 50 and
500 nm, our knowledge about cubic membrane arrange-
ments is almost exclusively obtained from electron micros-
copy data. Note that this is in contrast to bicontinuous soft
matter phases, with much smaller periodicity and homoge-
neous nature of samples, where X-ray and neutron scatter-
ing have been traditionally used to identify structures.

Although the highly regular nature of the membrane
arrangements has been noted by many authors, structure
identification remains difficult, due to a lack of widely avail-
able image processing tools for this purpose. As a result,
many of these structures have been inaccurately identified
as, for example, tubular inclusions, undulating membranes,
or cisternal systems (for the review of this issue, see
Almsherqi et al,, 2006, 2009; Cui et al, 2020), instead of asso-
ciating them correctly with cubic phases. The deep under-
standing of the factors governing the formation of such
complex amphiphilic arrangements is still not established,
partially due to the scattered nature and incorrect annota-
tions of reported data. On the other hand, considerable ad-
vancement in recognition of intrinsic and extrinsic factors
playing a role in elementary membrane bending and curva-
ture sensing has been made, forming a solid foundation for
further studies in understanding how the complex architec-
ture of cubic membranes controls cellular traffic (Kozlov
et al, 2014; Jarsch et al, 2016; Lou et al, 2018; Simunovic
et al, 2019; Callens et al,, 2020).

Recently, there is a growing interest in the possibility of
obtaining nature-inspired and, therefore, stable, large length-
scaled cubic systems (>50nm) to develop concepts to
tackle different multidisciplinary issues and healthcare

Hain et al.

problems (reviewed in Mezzenga et al, 2019). The potential
application of inducible cubic membranes in plant synthetic
biology has also been raised (Sandor et al, 2021). However,
such broad interdisciplinary interest in bicontinuous systems
has not yet been addressed by recent fundamental research
on naturally occurring cubic membranes. Key factors con-
straining advances in this field are the recognition and spa-
tial analysis of observed membrane arrangements. Such data
are crucial to establishing a model system for further bio-
chemical studies and, finally, to discover the shape-
dependent role of cubic membranes. This generates a great
demand for methods to recognize and measure 3D proper-
ties of periodic assemblies.

In terms of topology and geometry, cubic membrane
structures can be described using triply periodic minimal
surfaces (TPMSs). Minimal surfaces are surfaces that locally
minimize their surface area based on some global constraint
(e.g a surface between a given boundary). As a consequence
of this minimization, they have a mean curvature of zero at
all points on the surface. TPMSs are minimal surfaces with a
crystalline, symmetric structure where they repeat in three
independent translation directions in space. A wide array of
TPMSs has been described mathematically with different
crystallographic  symmetries. However, three particular
TPMSs with cubic symmetry are most commonly observed
in biological cubic membranes. Primitive and diamond types
were characterized by Schwarz in 1865 and the so-called
gyroid recognized by Schoen (1970) almost a hundred years
later (1970) (reviewed in Hyde et al., 1996). TPMSs divide in-
ner space into two separated, intertwining yet open chan-
nels. In terms of cubic membranes, the presence of such
isolated regions of given sizes might have tremendous con-
sequences in constraining molecular motion.

One of the examples of extensively studied cubic mem-
brane assemblies is a prolamellar body (PLB) of plant etio-
plasts, see Figure 1. The PLB is a direct precursor of the
chloroplast thylakoid network, and their lipid—pigment—pro-
tein composition shares some similarities (for the review of
PLB composition, see Adam et al, 2011; Pribil et al, 2014;
Kowalewska et al, 2019). The PLB is considered as a lipid
reservoir during tubular-lamellar transition increasing the ef-
ficiency of grana formation (Armarego-Marriott et al,, 2019;
Pipitone et al, 2021). The number of PLB building blocks
plays a crucial role in maintaining its structure, including the
protochlorophyllide:light-dependent protochlorophyllide
oxidoreductase:NADPH complex as well as particular galac-
tolipids and carotenoids (Sperling et al, 1998; Fujii et al,
2019; Bykowski et al,, 2020; Cazzonelli et al., 2020; Floris and
Kuhlbrandt, 2021; Nguyen et al, 2021). Although the role of
light-dependent  protochlorophyllide  oxidoreductase in
membrane tubulation was proven recently using electron
cryo-tomography techniques (Floris and Kuhlbrandt, 2027;
Nguyen et al, 2021), factors governing the transition of tu-
bular arrangements into cubic configuration remain elusive
(Wietrzynski and Engel, 2021). PLBs are rare examples of cu-
bic membranes which can be modeled using imbalanced
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Figure 1 Cellular localization of cubic membrane assembly—PLB in etiolated seedlings of oat. Cubic structure of PLBs located in etiolated seed-
lings of angiosperms—here exemplified by growing for 7d in complete darkness. PLBs develop in etioplasts present in developing leaves’ meso-
phyll cells (yellow parts of the seedling visible above white part of the shoot). The cubic arrangement of the PLB is characterized by a single
membrane separating two water channels of different volumes (referred to as being imbalanced, with volume proportions different from 50%)
and a relatively small length scale compared to other naturally occurring cubic membranes. Note that recent results indicated that PLB mem-
branes are densely decorated with light-dependent protochlorophyllide oxidoreductase protein, whose role in membrane tubulation has been
proven in in vitro studies (Floris and Kuhlbrandt, 2021; Nguyen et al., 2021). Apart from marked elements, the presented photographs, and elec-
tron micrographs are not shown to scale; mesophyll cell and etioplast are free-form selected manually from TEM images of etiolated oat leaves.

TPMS, that is, the two channels separated by the membrane
are geometrically different such that one has a smaller vol-
ume. In relation to the PLB, this means the volumes of the
two aqueous channels differ substantially—beyond natural
fluctuations—from each other. The smaller channel is a di-
rect precursor of thylakoid Ilumen of chloroplasts
(Kowalewska et al, 2016). In early studies, PLB structures
were most frequently referred to as zinc sulfide crystal forms
of wurtzite (lonsdaleite) and zincblende type, both based on
tetrahedral units forming complex hexagonal networks and
as such with hexagonal instead of cubic symmetry. The
primitive, face-centered diamond and double diamond cubic
membrane types were also proposed (Menke, 1963; Ikeda,
1968; Gunning and Steer, 1975; Landh, 1996). These variable
structural annotations were made based on the analyses of
randomly cut PLB sections visible in 2D transmission elec-
tron microscopy (TEM) micrographs via their comparison
with 3D models (physical or rendered) of the mentioned
structures. However, even comparing many 2D projections
of a 3D structure (TEM specimen) at different viewing
angles with an actual 3D model is not directly verifiable and
probably led to such inconsistency in the identification of
the most abundant spatial PLB configuration.

There are two main methods for analyzing the 3D struc-
ture of PLB and other cubic membrane arrangements. Both
methods are based on the assumption that cubic membrane
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structures correspond directly to mathematically well-
defined TPMSs. The first approach consists of the visualiza-
tion of cubic membranes using electron tomography, further
segmentation, modeling the periodic arrangement, and fi-
nally, its direct comparison to the rendered 3D model of
different bicontinuous structures with variable surface
parameters and length scales (Chong and Deng 2012;
Demurtas et al, 2015 Kowalewska et al, 2016). Such a
method is time, money, and computational power-
consuming due to the operation on the 3D objects. It is also
limited to the cubic membrane structures of particular
length scales. Moreover, it should be stressed that manual
segmentation of cubic membranes is complicated, and auto-
mated methods, while sufficient to estimate general struc-
tural parameters (e.g. channel volume or surface area), fail in
terms of precise shape visualization.

Alternatively, the second method is performed using 2D
TEM images of cubic membranes and their direct compari-
son with a simulation of a 2D TPMS projection of given
parameters. The idea of the “template matching” method
for cubic structure recognition was initially introduced by
Mark Mieczkowski and Yuru Deng (Deng and Mieczkowski,
1998; Deng et al, 1999). It was successfully implemented to
recognize the surface type of several membrane arrange-
ments, for example, in mitochondria of starved Chaos caroli-
nensis (Deng et al, 1999) or chloroplasts of green alga
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Zygnema sp. in the log phase of growth (Zhan et al., 2017)
using the developed software called cubic membrane simu-
lation program (QMSP). The QMSP tool enabled the genera-
tion of a library of projection images for structures of
primitive, double diamond, and gyroid surfaces; the user
could manipulate the direction of the projection, number of
visualized unit cells (UCs), and thickness of the projected
TPMS region. The tool is not publicly available and has lim-
ited functionalities in projection scaling, surface types, chan-
nel balance, and measurement properties.

Inspired by Deng and Mieczkowski (1998), we introduce
Surface Projection Image Recognition Environment (SPIRE),
an open-source tool to simulate TEM images of TPMSs. It
addresses the aforementioned issues, vastly extends and
improves the structure identification process by focusing on
interactive matching, and lays the foundation for an auto-
mated identification process.

The SPIRE tool focuses on the interactive matching of
TEM images, with access to a large range of parameters and
metrics of the structure. It is broadly applicable to reliably
recognize and analyze structural, spatial properties of bicon-
tinuous arrangements visualized in electron microscopy. A
widespread representation of cubic membranes in living
organisms highlights the importance of our tool for a large
community of biologists. The intuitive SPIRE graphical user
interface (GUI) can be used by a broad group of scientists,
including those with no explicit knowledge of the geometri-
cal description of cubic structures.

Although we developed SPIRE to investigate cellular cubic
membranes visualized in TEM images, it is also a suitable
tool for analyzing microscopy images of any highly symmet-
ric arrangement such as cuboids or polymer assemblies. In
the latter, we see similar geometries to those found in the
biological cubic membranes (Bates, 2005; Kirkensgaard et al,
2011; Han et al., 2020) or cubic rod packings (O'Keeffe et al,,
2001). The latter is used to model the keratin microstructure
in skin cells, a geometry that is closely related to—and likely
coexistent with—a gyroid surface (Norlen and Al-Amoudi,
2004; Evans and Hyde, 2011; Evans and Roth, 2014).
Synthetic cubic structures are mainly analyzed using scatter-
ing methods, but in nonuniform samples, additional micros-
copy analyses are required.

This article first describes the main concepts and algo-
rithms of the software, followed by a detailed walkthrough
of a structure identification process using the PLB arrange-
ments in etiolated seedlings as an example.

Results

Numerical procedures

Figure 2 illustrates the major steps in the simulation pro-
cess used in SPIRE: the simulation of TEM images of ultra-
thin sections of biological samples, which are essentially
planar projections, thus 2D images, of the 3D structures in-
side the sample. The TEM image of a 3D structure encodes
the amount of beam attenuating material along its path
that generates the microscope image: whereas dark regions
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Figure 2 The basic steps in the process of computing a planar projec-
tion (1) Schematic representation of the rectangular simulation box
(called slice) with the dimensions (L, L,, L,), filled with a grid of n, -
ny - n, voxels of size (Ly/ny, L,/ny, L,/n,). The viewing direction is
perpendicular to the L,L, plane. Note that the space between voxels is
just for visualization and is not existent in the simulation. (2) All vox-
els are evaluated using the mathematical model of the surface struc-
ture: the slice is superimposed in the oriented membrane structure; a
voxel is marked if located within a membrane (2) The projection is
computed by adding the values of voxels with identical x and y coor-
dinates, that is, all voxels congruent in viewing direction. Each marked
voxel is valued as “1,” whereas unmarked voxels do not contribute (3).
The simulated planar projection, a pixel image where each pixel
brightness holds the number of marked, thus membrane, voxels. Its
resolution is determined by the number of voxels (ny, n,) in the ini-
tial slice.

in the image represent areas of a large amount of material
along the beam path, brighter regions present less material.

To simulate those projections, a model of the sample is
created by using one or multiple membranes, modeled as
minimal or negatively curved surfaces. A discrete grid of
points, where each point is either marked as “attenuating,”
or not marked, that is “translucent,” is then used to com-
pute the planar projection. In this section, details on the un-
derlying processes and methods are presented.

Mathematical modeling of bicontinous membranes
The so-called nodal representation is used to describe mem-
brane geometries. In this model, the true TPMSs are approx-
imated by implicit functions f(x,y,z) : E? — R, the so-called
nodal functions (von Schnering and Nesper, 1991; Klinowski
et al, 1996). Surfaces are then defined using so-called level
set parametrization: the surface is the set of all points where
f(x,y,2) = ¢, with ¢ being an arbitrary constant. Different
values of ¢ yield different surfaces.

SPIRE contains nodal representations for several surfaces
as well as rod packings. Three surfaces with cubic symme-
tries are included: the gyroid, diamond, and primitive sur-
face. The nodal representations of the latter are taken from
von Schnering and Nesper (1991). We computed the nodal
representation of the lonsdaleite (“hexagonal diamond”) sur-
face from its corresponding spacegroup (SG194) and its
structure factor (similar to Wohlgemuth et al, 2001, and
references therein). The leading term only representation
reads
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f(x,y,2) = —c0s(2Z) + cos(X) + cos(Y) + cos(X — Y)
+ sin(Z)[—sin(X) + sin(Y) + sin(X — Y)]

with
X,v,2) = 211:A71.(x,y,z)_

and A being the matrix comprising the three canonical lat-
tice vectors of a structure with hexagonal symmetry:

T T
a = (1,0,0)", aZ:(—%,“g,o), a3—<o,o,\/§>

and the dot denoting the matrix product (see section
“Crystallographic nature of highly symmetricmembranes” for
more details). Note, that due to their repeating nature, all
representations of triply periodic surfaces can be expressed
solely using periodic trigonometric functions. Although the
presented formula yields a surface with a topology and ge-
ometry equivalent to the lonsdaleite structure, it is not a
minimal surface. For the implementation in SPIRE, we there-
fore used a numerically optimized version. A triangulated,
minimal lonsdaleite surface was created using an input file
by Ken Brakke for the surface evolver (Brakke, 1992). A vox-
elized version of the surface was created by marking points
on a rectangular grid as “1” on one side of the surface and
“~1” on the other side. This discrete, 3D test function is ap-
proximated by a Fourier series f(xy,z). The latter has a root
everywhere on the surface, thus f(xy,z) is a nodal representa-
tion of the surface. The same numerical protocol was used
to compute nodal representations of two cubic rod pack-
ings, namely the B-Mn and X" rod packings. The original
input was generated by placing cylinders of a given radius
along the invariant axes of the rods, as described in O’'Keeffe
et al. (2001). Note that for convenience, in this implementa-
tion, instead of using the canonical choice of lattice vectors
for a hexagonal symmetry, we use orthogonal lattice vectors
with a rhomboidal symmetry. Please refer to Supplemental
Figure S1 and Supplemental Table S1 in the supplementary
material for detailed information.

All TPMSs divide space into two intertwining channels.
Here, the nodal representation is chosen such as f(x,y,z) = 0
yields the balanced case: the membrane separates two
channels of equal volume. Membranes at f(x,y,z) =c
with arbitrary ¢, separate two channels with unequal vol-
umes. The constant c is thus a measure of the proportion
of volumes of the two channels. SPIRE allows to choose
the position of the membrane either based on the con-
stant ¢ (“level set”) or the volume proportion of the two
channels. Note, however, that only for membranes where
f(x;y,2,) = 0 the nodal representation does approximate a
true minimal surface! Whereas the surface f(xy,z) = 0 will
converge toward the true minimal surface by adding more
terms to the series expansion, this is not the case for surfa-
ces with f(xy,z) = ¢ where 0. The latter, however, are to-
pologically equivalent (within a symmetric interval of ¢
values) nonminimal, triply periodic surfaces.
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Obtained models can only be matched to actual samples
within a margin of error due to various reasons such as
quality of TEM images, fluctuations in the biological sample,
etc. Once matched, however, the model is intrinsically well
defined and exact, which means all model parameters are
without error margins. Only when using the model to de-
scribe the actual sample variability error margins are
relevant.

Discretization of structure models

For the discretization of the structure models, an approach
combining level sets of the nodal representations with a dis-
tance map is employed as follows. The process begins by
computing the value of the nodal representation
f(px: by, p;) for each voxel at position (px; py, p;) in the sim-
ulation box. As shown in Figure 2, a voxel is marked, if
¢ —Af<, f(px:py,p;)<+X where A is a constant with
the meaning of the width of the membrane. In a naive im-
plementation, visually speaking a voxel is marked if it is lo-
cated within the space bounded by the two level-set
surfaces given by f(x,y,z) =c+A and f(x,y,z) =c— A
Note that these two surfaces bounding the membrane are
not necessarily parallel and thus would create a membrane
with varying width. To resolve this issue, the following pro-
cedure is used: the parameter A is chosen very small, such
that ideally the resulting membrane width is only a single
voxel. A so-called Euclidean distance map (EDM)
(Felzenszwalb and Huttenlocher, 2012) is then computed.
This function EDM(px, py, p,) assigns each voxel in the slice
the value of the distance (in length units) of the current
voxel to the closest marked one, thus the closest membrane
voxel. All voxels inside one channel are assigned a positive
distance, whereas voxels in the other channel have negative
distances to the membrane. The membrane with the desired
width is then obtained by marking all voxels where the
value EDM(py, py, p,) is smaller than or equal to half of the
membrane width.

Although less common, more complicated geometries
such as double bilayer membranes occur in nature (Deng
and Mieczkowski, 1998). To model such systems, SPIRE
allows for multiple membranes. The positions of additional
membranes are given as a distance to the initial, positioned
by the level-set membrane, whereas additional parameters
control the width of each membrane (see Supplemental
Figure S2). Voxels of additional membranes are marked us-
ing the EDM computed before: for each membrane i of
width w; and distance d; all voxels for which d; —
(wi/2) EDM(px, py,p.) di + (wi/2) holds are marked.

Whereas a single bilayer membrane separates space into
two channels, each additional membrane will add a further
domain (called “channel” in the software; meaning the space
between two parallel membranes). Since membranes have a
finite width and thus a volume, this software internally con-
siders the latter as channels, too. Channels are labeled with
increasing integers starting at “1” with the innermost chan-
nel (containing the center of the UC), the innermost
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membrane then has the channel number “2,” etc. Also see
Supplemental Figure S2 for more information.

So far, only systems related to the double “gyroid” (or
other “double phases”) where a membrane (modeled as ab-
sorbing) separates two aqueous channels (modeled as trans-
lucent) were considered. Several examples in nature, such as
a gyroid surface in the wing scales of the butterfly
(Schroder-Turk et al,, 2011) have been reported with a single
surface separating two intertwining channels, where one of
the two is filled by a solid material. To account for such sys-
tems, the software allows to mark all voxels inside a channel,
thus models it as opaque.

Crystallographic nature of highly symmetric
membranes

After introducing the mathematical description of the
TPMSs and their geometries, this description is now used to
create synthetic images corresponding to the membrane
structure in voxelized (3D pixel) form.

The simulation process starts with the initialization of the
simulation box, a cuboid with dimensions L,, L,, and L,
where each edge is aligned with its corresponding axes of
the canonical base, see Figure 2. The simulation box will be
called “slice” and represents the region of interest (L, and L,)
as well as physical thickness (L,) of the ultrathin section of
tissue captured by the TEM image, and will be filled with a
discretized version of the membrane structure. To store the
latter, the simulation box is fitted with a regular, rectangular
grid of a total of n, - n, - n, sites, see part 1 in Figure 2. On
each site, a small cuboid with dimensions (dx, dy, dz), a
so-called voxel, is placed, such as there is no overlap or space
between two adjacent voxels. Each of these voxels can be
“unmarked,” that is, translucent, or “marked,” that is, opaque.
In Figure 2, this property is represented by the color “white”
and “red” and will be assigned in a later step.

The slice dimension (L, Ly, L;) is an important parameter
to match the simulated projection to the size of the TEM
image. That is, the slice dimensions should be chosen to cor-
respond to the size of the TEM image of the section consid-
ered. The number of voxels in the slice can be tuned by
providing the number of voxels in x (ny) and z (n;) direc-
tion. To obtain voxels with a square footprint (dx = dy) the
number of voxels in y direction is then computed to n, =
Ly/Ly - ny (or nearest integer). The voxel dimensions are
computed automatically. The number of voxels determines
the resolution and hence the quality of the projection, in
line with the resolution of the TEM image.

The software focuses on the modeling of periodic mem-
brane structures. The latter is characterized by the fact that
the entire information of a periodic structure is stored in a
translational UC and three replication directions, called lat-
tice vectors u, v, and w. We conveniently choose these vec-
tors as the bounding edges of the UC (see Figure 3),
although other choices exist and may be more fitting for dif-
ferent purposes. As a consequence, the size and shape of
the UC is, apart from the structure itself, solely determined
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Figure 3 The definition of a UC and its base vectors. An example of a
2D, periodic structure with two choices of lattice vectors and resulting
UCGs: the fundamental UC (smallest UC with least amount of informa-
tion to fully replicate the infinite structure while being cubic or rect-
angular) and an inclination UC (see main text for definition). The
black dots are a choice of lattice points and represent geometrically
identical, since repeating locations in the structure. The choice of lat-
tice vectors and thus UCs is arbitrary and the size of the UC depends
on the choice of lattice vectors: for v = (1,0) and w = (0, —1) the
UC is square with an edge length of a (lattice constant), whereas for
v=(1,1) and w = (0, 1) the UC is a parallelogram with edge lengths
v = v/2a and w = a. The dashed vector v demonstrates that lattice
vectors (and thus the UC) can get very long for odd directions.

by a choice of the three lattice vectors u, v, and w, that is
the replication directions. An infinitely large, continuous
structure can be constructed by repeating the UC along the
replication directions. Due to this repeating nature, points
with identical geometry but different spatial coordinates,
here called lattice points, can be identified. The black dots
in Figure 3 represent a possible choice of lattice points.
Given a periodic structure, there is no unique choice of a
UC: the lattice vectors and thus the UC can be chosen arbi-
trarily. We introduce a distinct choice of the UC, the herein
called fundamental UC. The latter is the cubic (for the surfa-
ces with cubic symmetries, for example, the primitive, dia-
mond, and gyroid surface) or rectangular (for rectangular
symmetries, as the Lonsdaleite) UC which among all choices
has the smallest volume and content possible (in Figure 3 ex-
actly one lattice point) while still containing all information
needed to reproduce the entire structure. In the case of cubic
or rectangular TPMSs the lattice vectors u, v, and w, with
u=c¢ v =aandw = b, of the fundamental UC can be con-
veniently aligned with the Cartesian coordinate axes x, y, and
z. Any UC with a different shape or choice of lattice vectors,
especially rotated versions of the fundamental UC, will herein
be called inclination UC. The Supplemental Figure S3 lists all
fundamental UCs of the structures built into the software.
Whereas in real samples the orientations of the TPMS
structures are in most cases random and thus unknown
(there are cases, where structures grown onto substrates
may exhibit preferred orientations, see Winter et al, 2015;
Yoshioka et al, 2014), simulations provide the ability to gen-
erate projections with identified orientations. The fixed
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Figure 4 Definition of Miller indices and orientation denotation (left)
Formally h,k,and | are defined by h = p/S,, k =p/S, and | = p/S,
where p is the smallest integer, for which (hkl) is a triplet of integers
without a common divisor. S, S,, and S, are the points, given in
terms of the lattice vectors v, w, and u, where the plane, denoted by
the Miller indices (hkl), intersects the x, y, and z axes (for detailed de-
scription of Miller indices principles, see Kittel, 2004). Thus the Miller
indices define a plane fixed by three points in space. An index value of
0 means the plane is parallel to the respective axis. For structures with
cubic or rectangular fundamental UCs (i.e. all structures implemented
in the tool), the normal vector nyy on the (hkl) plane—and thus a
direction—can be written in terms of the Miller indices:
nme = ((1/a) - h, (1/b) -k, (1/c) -1)T. The polar angle ® is the angle
between the x-axis and the projection of ny onto the xy-plane, the
azimuthal angle © is the angle between the z-axis and npy. (right).
Examples of planes denoted by different values of Miller indices. The
red line denotes the normal vector on the plane, whose coordinates,
in the case of cubic symmetry, are given by the Miller indices. The
black dots denote the coordinate grid spanned by the lattice vectors;
each dot represents a symmetrically equivalent position. As a result,
although at different positions and with different Miller indices, the
two planes in the upper row are equivalent.

viewing direction onto the sample is reflected in SPIRE by fixing
the viewing direction on to the 3D slice arbitrarily but conve-
niently to the negative z-direction, that is, perpendicular to
the L,L, plane of the slice, as shown in panel 1 in Figure 2.

The orientation of the membrane structure within the slice
is described using the so-called Miller indices (hkl) (Kittel,
2004), a triplet of integer numbers denoting the orientation
of a lattice plane and its normal vector nyy, see Figure 4 for
more details. Note that due to the choice of using a rectan-
gular fundamental UC for cubic structures and the hexagonal
Lonsdaleite alike, the (hkl) values do not correspond to the
expected direction in the crystallographic convention and ex-
tra care needs to be taken when specifying the inclination.
Supplemental Table S1 lists the exact dimensions and choice
of lattice vectors of all fundamental UCs in the software.
Internally, the orientation of the normal vector given as
Miller indices is converted in two angles, the polar angle @,
and the azimuthal angle ®, as defined in Figure 4.

In SPIRE, the orientation of the fundamental UC, where v,
w, and u align with the coordinate axes, is assigned the
“neutral” orientation (001) with ngy =z, that is, the orienta-
tional normal vector nyy aligns with the positive z direction.
The two orientation angles then are ® = 0 and ® = 0.

In the software, a triplet of Miller indices indicates the
desired viewing angle on the structure as a vector npy.
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However, since the viewing angle in the tool is fixed to the z
axis, the vector nyy—and with it the structure—needs to be
aligned with the z-axis, as described in Figure 5.

After the alignment, the structure can still be rotated
around the z axis without changing the orientation deter-
mined by npy. This remaining rotation is related to the
choice of in-plane base vectors v and w. The software first
chooses the two lattice vectors v and w in the plane
denoted by (hkl), and thus perpendicular to npy, so that
both vectors are as short and as orthogonal to each other
as possible (see the blue cell in comparison with the yellow
one in Figure 3). Then the surface is rotated around the
z-axis until the longer of the two vectors v or w is aligned
with the x-axis. Since the lattice in the plane, that is, the
pattern of the points in Figure 3, is dependent on the ori-
entation of the plane, the choice of the base vectors differs
for each choice of viewing directions ny.

Note that for odd combinations of large Miller indices,
the UC vectors v, w, and u—and with it, the inclination
UC—can get very large (many multiples of the size of the
fundamental UC). Figure 3 shows an example vector v,
which is long compared to the size of the fundamental UC.
This behavior directly translates to three dimensions.

Having the orientation fixed, the last step is to fix the
translational degrees of freedom. This can be imagined as
the oriented slice being a stencil, cutting a rectangular piece
out of the infinite, periodic membrane structure at different
locations. Moving a stencil along a periodic structure does
not substantially change its content, given the stencil is at
least the size of an inclination UC: the slice will in most
cases contain one or multiple copies of the UC. As most bi-
ological samples will be ultra-thin slices, that is, have a
much larger base than thickness, this caveat is met in most
cases in the v and w direction of the sample, that is, its
width and height, but not the u direction, the viewing direc-
tion. Thus, whereas translating the slice through the mem-
brane structure in v and w direction does barely affect the
projection, moving it along the u direction will impact the
projection substantially, since different parts of the structure
are contained in the slice.

SPIRE always centers the slice around the origin, however,
allows translation along the normal vector npy. In the case
of a slice thickness smaller than the size of the inclination
UC in the normal direction, this provides the ability to scan
through different parts of the UC.

Synthetic microscopy images as projections of the
discretized membrane model

The planar projection of a virtual membrane structure is a
pixel image, thus an array of n, X n, pixels, each with a
value indicating the brightness of the pixel. In the biological
sample, a dark pixel in a TEM image indicates that much of
the brightness of the incident beam has been lost due to a
large amount of attenuation with matter, that is, much
electron-dense material is located along the path of the
beam corresponding to that particular pixel.
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Figure 5 Orienting the membrane structure in the virtual sample. To simulate a projection with the desired viewing angle, the structure needs to
be aligned accordingly inside the slice. Starting at the orientation of the fundamental UC, the structure is first rotated around the z-axis by the po-
lar angle @, rotating the vector u into the yz-plane, and subsequently around the y-axis by the azimuthal angle ®, aligning u with the z-axis and
thus the viewing direction. The last rotation around the z-axis aligns the in-plane vector v with the x-axis, such that the inclination UC has mini-
mal volume given the normal vector ny. In a last step, the structure can be translated along the z-axis to choose the termination.

This behavior is imitated in SPIRE: each voxel marked as
being inside a membrane is assigned a numerical value of
“1,” whereas all unmarked pixels, thus representing aqueous
phases, are assigned a value of “0.” A value of “1” means that
a membrane, therefore attenuating material, is located at
that voxel. Adding all voxel values along a given direction
yields the total amount of material interaction along that
particular path. The values for each pixel at position (i, j) are
computed by choosing a path along the viewing direction,
thus normal to the L,L, plane, where the path is located
such that it intersects all voxels with identical x and y posi-
tions at p, = i - dx and p, = j - dy, as shown in Figure 2. As
a result, the final resolution of the projection is determined
by the resolution of the voxel grid in the simulation box.

To avoid different brightnesses of projections due to vary-
ing numbers of voxels, all pixel values in the planar projec-
tion images are rescaled to an integer in the range between
0 and 255. This scaling allows for a linear or a logarithmic
scale, which depending on the membrane structure may re-
veal more details in the projection.

Additional structural properties

On demand, the software can compute the channel volume,
the surface area of the membranes, and the percolation
threshold of all channels as described below.

Channel volume

Each voxel occupies a volume of V, = dx - dy - dz, thus the
total volume of a channel is just the number of all voxels as-
sociated to that channel multiplied with the volume of a
single voxel. While there are discretization errors, these are
small and decay quickly when voxel sizes are small.

Membrane surface area

The surface area of the membranes is computed using a trian-
gulation of the membrane surface. The triangulation is com-
puted by an algorithm called “Advancing front surface
reconstruction,” implemented in the computational geometry
algorithms library (CGAL) (Da and Cohen-Steiner, 2020; The
CGAL Project, 2020), applied to the surface voxels of the

membranes. The total surface area of the membrane is the
sum of the areas of all triangles in the triangulation. The qual-
ity of the approximation of the membrane surface by the tri-
angulation, and thus the accuracy of the surface area, increases
with an increasing number of voxels in the simulation box.

Percolation threshold

Percolation theory is an area in mathematics, statistical
physics, and material science considering basic global con-
nectivity properties of networks and graphs (Stauffer and
Aharony, 1992). A network is said to percolate if a path
through this network from a defined starting and end point
can be found. Removing elements of such a percolating net-
work can cause the connecting path to be cut and thus ren-
ders the network nonpercolating.

This software uses percolation analysis to compute the
percolation threshold of a channel, that is the maximum di-
ameter of a body (eg a sphere or molecule) which can
move freely through a channel of the entire structure with-
out getting stuck at narrow passages (Mickel et al, 2008).
This measurement is found by increasing the width of the
membranes enclosing a channel step by step and checking if
the channel is still percolating. The width at which the chan-
nel stops to percolate is called the percolation threshold,
and denotes the most narrow diameter in the channel. A
Hoshen—Kopelmann (Hoshen and Kopelman, 1976) algo-
rithm is used to perform a cluster analysis of all voxels in a
channel, that is, all connected nodes of the network are
grouped into a single object. The channel is percolating if
only a single cluster is found during said analysis, that is each
node (and thus voxel) in the channel can be reached from
any other node in the same channel. A number of two or
more clusters means that the channel has been separated.

Identification of the structure of prolamellar
bodies
Structure identification process

Here, we present the essential SPIRE features exemplified by
matching TEM images of etioplast PLBs with software-
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generated projections. A video tutorial is provided, propos-
ing an efficient workflow to recognize surface types with
proper structural parameters visible on TEM images (http://
chloroplast.pl/spire). The appearance of a 3D structure in a
2D projection depends mostly on (1) the scale of a structure
regarding its magnification, (2) the thickness of the visual-
ized section, and (3) the orientation of a structure in the
TEM sample. We discuss how to use these parameters for
proper and efficient matching.

Since the size of the TEM sample is known, the first
parameters which can easily be fixed to start the matching
are the slice height, width, and thickness. While the height
and width only extend or reduce the size of the simulated
sample, the thickness does influence the projection, as visu-
alized in Supplemental Figure S4. Two examples of plastid
cubic membranes varying in UC size and volume proportion
of the two aqueous channels are provided: a gyroid mem-
brane with a large UC and balanced channel volumes pre-
sent in Zygnema sp. chloroplasts (Zhan et al, 2017) and a
diamond membrane with a relatively small UC and imbal-
anced channel volumes found in runner bean (Phaseolus
coccineus) etioplasts (Kowalewska et al, 2016). Drastic differ-
ences in the image characteristics point to the crucial role
of the proper identification of scale and channel volume
proportion of observed structures. All these properties can
be easily calculated directly from the TEM micrographs us-
ing standard image analysis tools (e.g. Image)).

The next step is to make an initial (educated) guess for
the structure type and orientation. A small gallery of all
implemented surface types of different UC scales, volume
proportions, and orientations are presented in Supplemental
Figure S5, which can be used to facilitate this step. Using
the bulk creation functions in SPIRE, a user can also create
their own, more refined, and suitable galleries to provide
better options for an initial guess. In the next step, the user
can finely tune all parameters—with direct visual feed-
back—to further match the simulated projection to the
TEM image.

If the slice thickness is not equal to the size of the inclina-
tion UG, that is, it contains a fraction of an inclination UC
(the UC in orientation), the projection differs depending on
which parts of the inclination UC are contained in the sam-
ple. In the software, the UC region is chosen by the slice po-
sition parameter. Figure 6 shows three serial sections of the
same PLB structure. Selected regions marked with different
colors are matched with the following slices, taking into ac-
count the slice’s progressing position. The slight inaccuracies
in the (hkl) values for the same regions in the subsequent
slices are probably due to the sample warping during its vi-
sualization in TEM; note that neither the UC size nor the
channel volume proportion was disturbed.

If possible, the identification of the structure should be
confirmed by performing the matching procedure on several
different regions of the sample with different orientations.
These might be taken from different images or from a single
image of a polycrystalline sample. PLBs often have a
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polycrystalline-like structure providing views of several pro-
jections of different orientations within one etioplast on a
single micrograph; for details see Figure 7.

The user can directly extract different structural features
of identified surfaces from the measurement tab of SPIRE.
Therefore, it is possible to automatically calculate variable
3D features of a recognized surface based on a 2D TEM im-
age of the structure. Such information is particularly valu-
able from a biological point of view. Due to the lack of
control over the direction of cubic membrane sectioning
during sample preparation, recognition of surface type is
based on different (hkl) projections. Calculations of channel
diameters and UC sizes from 2D data are reliable only in
cases of specific projections and in terms of primitive surface
type also only in the exact depth of the slice. Therefore, the
measurement functions of SPIRE, enabling calculations of
the 3D features of the recognized structure, bring reliable in-
formation about, for example, the membrane area, the vol-
ume of the aqueous channels, and the penetrability of the
network by molecules of a given sizes; see percolation limit
definition above.

Diamond as the predominant geometry in
angiosperm PLBs

Using SPIRE and the described matching process, we identi-
fied the diamond surface type to be a dominating form of
PLB cubic structures in the plethora of angiosperm species
representing hypo- and epigeal germination as well as mono
and dicotyledonous plants (oat (Avena sativa): Figures 6-8;
pea (Pisum sativum), runner bean, cucumber (Cucumis sati-
vus), Arabidopsis thaliana, and maize (Zea mays): Figure 8).
Although in all analyzed examples the PLBs matched the di-
amond surface, the UC size and volume proportion of both
aqueous channels varied between 73.5-90.5nm and 0.2-0.3,
respectively (see Supplemental Table S1). It was reported be-
fore that, in particular species or growing conditions, PLBs
can also adopt an unusual structural type described as an
“open PLB” (Gunning, 2001; Rudowska et al, 2012; Skupien
et al, 2017). Among all registered PLB micrographs of ana-
lyzed plants (100-300/species), we observed such geometry
only in <2% of visualized oat PLBs. We also showed that
other network structural parameters were very similar both
within one seedling (Supplemental Figure S6) and in differ-
ent plants of the same species identically grown (see net-
work parameters for oat in Figures 6-10). Note, however,
that the etiolation period can influence PLB structural
parameters. We detected that extended time of etiolation
resulted in the increase of PLB UC size in oat etioplasts,
from 80nm registered in 1-week etiolated plants up to
~87.3 after 2 weeks of skotomorphogenesis (Figures 6-10;
Supplemental Figure S6).

In specific cases, the PLB can adopt a—within matching
accuracy—geometrically balanced diamond structure with a
volume proportion reaching 0.5. Such a configuration has
been so far identified in mutant plants with a disturbed
composition of the PLB membranes only; for example,
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Figure 6 Surface type recognition in particular regions of oat PLB shown in serial TEM sections. Superimposed TEM images (a + b + c) showing
PLB projections of a given thickness (70 nm) simulating a thick TEM specimen (210 nm) (A). Serial sectioning of a leaf sample enables visualization
of subsequent regions of the PLB cubic structure (B-D); see an exemplary 3D model of the cubic surface presenting the idea of parallel cutting of
the specimen block (E). In principle, in selected regions (marked with yellow and green) of subsequent slices (a—c) matched projections should be
the same (identical (hkl) values) but localized in the different depth of the structure. Such expected depth shift is observed in recognized projec-
tions (1) of a diamond surface type; however, matched projections are similar but not always identical in subsequent slices. Such an effect is proba-
bly due to the thin TEM sample’s warping during its visualization in the TEM chamber. Accuracy of projection matching is confirmed by
superposition of computed projection and TEM image using multiply blend mode (F-H; regions marked with white border); all parameters used
to generate projections are listed in Supplemental Table S1.
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PLB micrograph + overlayed projections PLB micrograph

PLB built of computed projections

Figure 7 Construction of simulated oat PLB image built of computed
projections. In many cases, PLBs and other naturally occurring cubic
membranes are composed of several connected regions of bicontinu-
ous surfaces at different orientations, forming “polycrystalline”
arrangements (A). For a high confidence identification of the surface
type, all different regions should be matched and analyzed. (A; same
color indicates identical projections visible in PLB regions connected
at different angles). To confirm the consistency of a match, the simu-
lated projections can be superimposed on top of the TEM images (B;
regions marked with white squares). To visualize the high accuracy of
matches, we constructed an entirely simulated PLB built of particular
computed projections (C) connected in the areas marked with white
dashed lines visible on (A). Note that random noise was overlaid on
computed projections to simulate the typical appearance of the TEM
image; black dots added on top of composed projections (C) indicate
the position of plastoglobules visible on the TEM micrograph (A, B);
all parameters used to generate projections are listed in Supplemental
Table S1.
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Figure 8 Diamond surface type—a dominating form of the PLB struc-
ture in etioplasts of angiosperms. Ultrastructure of the PLB in etio-
lated seedlings of several species from monocots (A and B) and dicots
(C-F) exhibiting hypogeal (A-D) and epigeal (E and F) germination
show the diamond type of cubic structure. Regions marked with rec-
tangles present superposition of computed projections and TEM
images using multiply blend mode (A-F). Matched computed projec-
tions are shown together with insets presenting 111 orientations of
particular surfaces (G-L); all parameters used to generate projections
are listed in Supplemental Table S1.

PHYTOCHROME-INTERACTING FACTOR 1 mutant plants
(pif1) over-accumulating chlorophyll precursor (protochloro-
phyllide) (Bykowski et al,, 2020; Figure 9). Note that a sub-
stantial increase in volume proportion alone, without
changes in UC size, causes a rise in the membrane area
packed in a given volume (Figure 9). Therefore, when the
PLB size is maintained between different genotypes, such a
geometrically balanced PLB network might store significantly
larger amounts of membrane components, including enzy-
matic proteins and galactolipids crucial for efficient etio-
plast—chloroplast transition.
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Volume proportion = 0.25
Unit cell size = 80 nm
Membrane area / Structure volume = 3.71 x 102 nm™*

Volume proportion = 0.50
Unit cell size = 80 nm
Membrane area / Structure volume = 4.90 x 102 nm™*

798979

Figure 9 Imbalanced versus balanced nature of PLB cubic membranes. PLBs are cubic membranes of diamond configuration characterized by an
imbalanced structure in which two aqueous channels are geometrically different (A and B); regions marked with colored rectangles show a super-
position of computed projections and TEM images using multiply blend mode. Changes in the volume proportion resulting in geometrically bal-
anced PLB structure without disturbances in the UC size are observed in plants over accumulating protochlorophyllide (pifi mutants of
Arabidopsis)—a primary precursor pigment of etioplasts (C and D). Computed projections show differences in the observed patterns of networks
that structurally differ only in the volume proportion ratio (E). This variability also influences the structure’s membrane packaging potential; geo-
metrically balanced PLBs can accumulate more membrane components in the given volume; all parameters used to generate projections are listed
in Supplemental Table S1.
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~25 nm

Figure 10 Penetrability of the 3D prolamellar network—combining ultrastructural and molecular data. To estimate the maximum diameter of a
sphere that can freely penetrate through a channel of the entire structure, the “percolation threshold” implemented in SPIRE can be computed
(A). Here we used an example of plastid ribosome (B, PDB 5SMMM, spinach (Spinacia oleracea) 70S chloroplast ribosome modeled using Chimera
software) whose size is comparable with diameters of the oat PLB channels. Using the percolation threshold function, it is possible to estimate
whether a molecule whose spatial structure is already revealed could move freely through the channels of a particular cubic surface (C). The per-
colation threshold (31.57 nm) of a given network (UC size 80 nm, volume proportion 0.25), identified by a structure’s projection (D), can be calcu-
lated in SPIRE. The diamond network of oat PLB in (111) direction is presented with ribosomes in the same scale, the region marked with a white
square presents superposition of computed projection and TEM image using multiply blend mode. Note that proper calculations are also pro-
vided for the surfaces recognized by projections in which the channel’s maximal diameter (40.11 nm) is not visible. In this example, ribosome size
is smaller than the oat PLB'’s percolation limit, which indicates that this molecule can move freely through the larger aqueous channel of the PLB
network (stroma) of oat, hypothetically fulfilling its biological function directly inside the cubic structure; all parameters used to generate projec-

tion are listed in Supplemental Table S1.

In Figure 10, we present the exemplary utilization of the
percolation threshold function. The obtained values indicate
that the oat PLB structure enables a free flow of chloroplast
ribosome particles through a larger aqueous network chan-
nel. Our percolation limit calculation stays in line with re-
cent experimental electron cryo-tomography data, which
confirmed the presence of fully assembled ribosomes at a
stromal side of a ruptured pea etioplast PLB (Floris and
Kuhlbrandt, 2021). However, it should be stressed that in
both cases the size of the ribosome and the channel diame-
ter are similar. Therefore, in PLBs of smaller UC size or vary-
ing volume proportion registered in different species, such
mobility will be blocked. This suggests that ribosome pres-
ence in the PLB network may not be crucial for its proper
functioning.

Discussion

In this work, we introduced a software tool (SPIRE), which,
based on “nodal surface” models, generates synthetic mi-
croscopy images of cubic membranes, bicontinuous phases
and other structures. This tool enables the stereological
identification of 3D structures based on their 2D projections,
a key element in understanding structure—function relation-
ships. We have demonstrated the basic concepts and work-
flow of SPIRE with a novel application to one of the
common examples of cubic membranes occurring in na-
ture—etioplast prolamellar bodies. We revealed that PLB
configurations resemble a diamond surface type and, despite
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earlier assumptions, is not based on a lonsdaleite (wurtzite)
structure, at least for the plants analyzed here. Moreover,
this work serves as a reference paper for the open-source
SPIRE tool.

The development of the interdisciplinary field of naturally
occurring cubic structures relies on the availability of tools
to analyze observed structures; tools which can be robustly
used without a need for an in-depth understanding of the
mathematical background.

At this stage, much of the experimental work of biologists
does not contribute to the field and might even pass unno-
ticed due to the lack of a common recognition of cubic
arrangements. This is particularly regrettable given that bio-
logical bicontinuous structures have achieved a property
that remains largely elusive in synthetic cubic phases: struc-
ture sizes (lattice parameters) > 50 nm.

By expanding the pioneering work by Deng and
Mieczkowski (1998), SPIRE fills a gap in the field of surface
type identification of cubic membranes, which has only
been partially covered by previous methods.

In future work, we aim to improve and extend SPIRE ca-
pabilities. A prime target is to automate the matching pro-
cess of the simulated projection with the actual TEM image.
Here the toolbox of image analysis and classification can be
employed. A very promising approach here is deep neural
networks, specifically convolutional neural networks, which
have been proven to efficiently classify images (Krizhevsky
et al, 2012, Rawat and Wang 2017). Having several
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projections of a structure at different orientations available
(as is the case for the samples presented here) could signifi-
cantly increase the matching accuracy. SPIRE is ideally suited
to generate training data sets of nearly arbitrary size for
these purposes.

An anticipated broad interest in periodic structure recog-
nition in biological samples enabled by SPIRE will lead to
the proper identification of many naturally occurring bicon-
tinuous structures, including geometric measurements com-
puted by the tool. Starting with and extending the tables
and data of cubic membrane occurrence in biological sys-
tems provided by Almshergi et al. (2009), Landh (1996) and
further literature, this could be the start for a new reposi-
tory, connecting geometric structures with their natural or
synthetic occurrence and functions. Such a database would
open opportunities for the meta-analyses of geometric
arrangements occurrence in the contexts of their, for exam-
ple, composition, evolutionary background, developmental
importance, and biological meaning, and thus pave the way
for insights on broader scales.

In most of the studies, the cubic membranes’ appearance
is reported without further interpretation of neither the
data nor their numerical analyses. SPIRE could help to re-
evaluate and properly annotate numerous already published
structures. SPIRE enables acquiring several spatial parameters
of the network, which might also be interpreted in the con-
text of other experimental data, for example, percolation
limit with the mobility of molecules of given sizes whose
presence in the aqueous environment of the network has
been confirmed in biochemical studies.

SPIRE is a key tool to accelerate the dynamic field combin-
ing actual biological data, computer modeling, and finally,
obtaining synthetic periodic structures based on natural
ones. Therefore, SPIRE has the potential to broaden our un-
derstanding of cellular cubic membranes, their biological
role, and their relevance in designing nature-inspired artifi-
cial bicontinuous phases of comprehensive utilization.

Materials and methods

Implementation details

The tool (https://sourceforge.net/projects/spire-tool/) as well
as the source code (https://github.com/tohain/SPIRE) and all
dependencies are open source and thus freely and openly
available. The software was entirely written in C+ + provid-
ing an intuitive GUI, shown in Supplemental Figure S7, imple-
mented using the QT libraries (https://docqtio/). Several
libraries are used in this tool: integer math library (https://cs.
uwaterloo.ca/~astorjoh/imLhtml), openblas (https://www.open
blas.net/), gnu multiprecision library (https://gmplib.org/), and
gnu multiple precision floating point reliable library (https://
www.mpfrorg/) are used to compute minimal UGCs, zlib
(https://wwwzlib.net/), and libpng (http://www.libpngorg/
pub/png/libpnghtml) are used to output projections to the
.png image format, the (CGAL (https://www.cgal.org/) is used
to reconstruct surfaces to measure their area. Furthermore
the algorithms from (Felzenszwalb and Huttenlocher, 2012)
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are implemented to compute the EDM and the Hoshen and
Kopelman (1976) algorithm is used to compute the percola-
tion threshold.

A separation of the computational core code and the in-
terface code allows the use as a library to incorporate into
further projects. A simple command line interface for the
creation of large batches of projections as an example is
included.

The code is designed to allow an easy implementation
of further surface types, given in the form of an implicit
level-set equation.

Plant material and growth conditions

Oat (A. sativa L.), maize (Z mays L), pea (P. sativum L.),
runner bean (P. coccineus L.), and cucumber (C. sativus L.)
dark-germinated seedlings were etiolated for 1week in high
closed glass containers on wet paper moistened with nutri-
ent solution containing 3mM Ca(NO;),, 1.5mM KNO;,
12mM MgSO, 1.1 mM KH,PO,, 0.1mM CyoH1,N,OgFeNa,
5uM CuSO, 2 UM MnSO; - 5H,O, 2uM ZnSO; - 7H,0,
and 15nM (NH,)6Mo;0,4 - 4H,0, pH 6.0-6.5, room tem-
perature (RT). An additional week of etiolation was applied
for oat seedlings used in particular experiments. Seeds of A.
thaliana Col-0 (N1092) and mutant pifl (N66041; Huq et al,,
2004) were obtained from The European Arabidopsis Stock
Center. Seeds were stratified in 4°C for 24h, and 4h illumi-
nation (120 umol photons m™ s™' 23°C) was applied to in-
duce germination. Seedlings were etiolated for 5d in Petri
dishes on Murashige and Skoog Basal Medium supple-
mented with Gamborg B5 vitamin mixture (M0231; Duchefa
Biochemie, Haarlem, Netherlands) and 0.8% (w/v) Phytagel
(P8169; Sigma-Aldrich, St Louis, MO, USA) in 23°C. Leaf and
cotyledon samples were collected under photomorphoge-
netically inactive dim green light.

TEM

Leaf specimens were fixed in 2.5% (v/v) glutaraldehyde in
0.05M cacodylate buffer, pH 7.4 (prepared using 25% v/v
glutaraldehyde solution G5882, Sigma-Aldrich; sodium caco-
dylate trihydrate C0250, Sigma-Aldrich; pH adjusted with
0.1 M HCI) for 2 h, washed, and postfixed in 2% (w/v) OsO,
in 0.05M cacodylate buffer, pH 7.4 (prepared using 4% w/v
OsO; solution R1023; Agar Scientific, Essex, UK) at 4°C
over-night. Samples were dehydrated in a graded series of
acetone and embedded in epoxy resin (AGR1031 Agar 100
Resin Kit, Agar Scientific). The material was cut on a Leica
UCT ultramicrotome into 70 nm sections. Samples were an-
alyzed in a JEM 1400 electron microscope (Jeol) equipped
with a Morada G2 CCD camera (EMSIS GmbH, Minster,
Germany) in the Laboratory of Electron Microscopy, Nencki
Institute of Experimental Biology of Polish Academy of
Sciences, Warsaw, Poland. The PLB ultrastructural features
were measured with the help of Image) software (Abramoff
et al, 2004). The periodicity of 2D sections was calculated
based on averaged values obtained from Fast Fourier
Transform of PLB cross-sections. PLB tubule diameters were
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measured manually based on each tubule’s outer limits in
particular orientations of PLB cross-sections.

In silico image generation and manipulation
Projections obtained using SPIRE were superimposed on
TEM micrographs (where applicable) using multiply blend
mode in Adobe Photoshop. In Figure 7C, the image was
obtained using Adobe Photoshop by deleting a portion of
the TEM micrograph and substituting it with projections
generated using SPIRE. Random noise was added using Add
Noise filter with Gaussian Distribution and Monochromatic
settings on a uniform gray image (RGB 127 127 127), blurred
using Gaussian blur filter, and superimposed on the image
using multiply blend mode. Meshes of 3D models were gen-
erated in Houdini using the level-set representation of the
surfaces and rendered using Autodesk Fusion 360 software.
The 70S chloroplast ribosome was obtained from RCSB PDB
(accession number 5MMM) and rendered using UCSF
Chimera software (Pettersen et al.,, 2004).

Supplemental data

The following materials are available in the online version of
this article.

Supplemental Figure S1. Choice of lattice vectors of the
fundamental UC of the lonsdaleite surface.

Supplemental Figure S2. Multi-layer membrane struc-
tures and channel enumeration.

Supplemental Figure S3. Renderings of the fundamental
UGs of the built-in structures.

Supplemental Figure S4. Diamond and gyroid type surfa-
ces and computer simulation of TEM images of respective
structures cut into sections of variable thickness (40—
250 nm).

Supplemental Figure S5. Gallery of selected hkl projec-
tions of four different surface types implemented in the
software.

Supplemental Figure S6. PLB network structural parame-
ters are stable in etioplasts of the same seedling.

Supplemental Figure S7. Screenshot of the GUI of SPIRE.

Supplemental Table S1. Choice of lattice vectors for fun-
damental UGs.

Supplemental Table S2. Parameters used to generate
projections.
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.1 Supplementary figures

Supplemental Figure S1: Choice of lattice vectors of the fundamental unit cell of the lonsdaleite
surface. Shown is a top-down view of a hexagonal structure with the canonical choice of the unit cell
(lattice vectors a; and ag) and a rectangular unit cell (lattice vectors v and w). For convenience, we
chose the rectangular unit cell over the canonical choice. The exact dimensions of the fundamental unit

cell are provided in Table S1

L outer membrane

Supplemental Figure S2: Multi-layer membrane structures and channel enumeration A primitive
surface multi-layer membrane system and its 2D projection in (100) orientation with two membranes
of width w at a distance of d computed as parallel surfaces from the level-set membrane, the minimal
surface at f(x,y,z) = 0, shown in red. The latter is only computed internally and does not show in the
projection. The inner membrane is inside of the level-set membrane, therefore has a negative distance.
The numbers denote the channel numbers of a total of 5 channels, of which 3 are “true” channels and 2

are membranes, also considered as channels internally.
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Primitive Diamond

Lonsdaleite

B-Mn rod packing 2* rod packing

Supplemental Figure S3: Renderings of the fundamental unit cells of the built-in structures
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Surface type Surface type
Gyroid Diamond Gyroid Diamond

g atetetete:

8 8525852

Unit cell size = 256 [nm] Unit cell size = 89 [nm]
Volume proportion = 0.5 Volume proportion = 0.25

Supplemental Figure S4: Diamond and gyroid type surfaces and computer simulation of
Transmission Electron Microscopy (TEM) images of respective structures cut into sections
of variable thickness (40—-250 nm) The first row presents three-dimensional (3D) models of eight unit
cells (UCs) of gyroid and diamond surfaces with balanced (A) and imbalanced (B) channel proportion.
Computer simulations of TEM images are based on structural parameters (UC size and volume proportion
— see bottom of the image) of cubic membranes recognized in (A) — gyroid of Zygnema sp. chloroplasts
(Zhan et al., 2017) and (B) — diamond of bean P. coccineus etioplasts (Kowalewska et al., 2016). Note
that for a better comparison, both surface types are simulated using the same structural parameters and
are presented in (111) direction only. The figure shows how the slice thickness (subsequent rows) and
structure scale (large (A) vs. small (B)) influence the pattern observed in computer simulations and,
therefore, actual TEM images of such structures. Insets visible in the upper right corners of the second
row of panel (A) present projections from panel (B) scaled equally; all parameters used to generate

projections are listed in Table S2.
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Supplemental Figure S5: Gallery of selected (hkl) projections of four different surface types
implemented in the software. The efficient process of surface matching is preceded by obtaining
structural parameters such as unit cell (UC) size and volume proportion estimated directly from Trans-
mission Electron Microscopy (TEM) images. The second step is completed by selecting a proper surface
type and recognizing the structure’s orientation on the particular micrograph. For this purpose, a basic
gallery showing variable (hkl) projections of different surface types, based on the idea provided by (Deng
and Mieczkowski, 1998), computed for balanced /imbalanced and large/small length scaled structures is
a good starting point. Custom, more tailored galleries can be created by the user with the bulk creation
function of the tool. Note that projections were computed to simulated TEM samples of 70 nm thickness
for membrane structural parameters (UC size and volume proportion), same as in Figure S4 on panels
(A) and (B), respectively. three-dimensional (3D) models of periodic surfaces (first row) are presented
for a single UC of all surface types; computed projections of TEM images are scaled to show the same

number of UC despite the structure’s length scale; all parameters used to generate projections are listed
in Table S2.
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Supplemental Figure S6: Prolamellar body (PLB) network structural parameters are stable
in etioplasts of the same seedling. Electron micrographs of mesophyll cells in two-week etiolated
oat seedlings (same plant) showing etioplasts with diamond-type PLBs (A-H). PLB surface type was
recognized via matching with computed projections of diamond surface type. Regions marked with
rectangles present superposition of computed projections and TEM images using multiply blend mode;
Regions marked with rectangles present superposition of computed projections and TEM images using

multiply blend mode.
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Parameters | Measurements  Batch creation | Export | About @ License

Surface type Unit Cell Scale Factor (xy) Unit Cell Scale Factor (z)
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Surface control parameter
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Supplemental Figure S7: Screenshot of the Graphical User Interface (GUI) of SPIRE

111



.2  Supplementary tables

Supplemental Table S1: Choice of lattice vectors for fundamental unit cells

Primitive ar = (1,0,0)T, az = (0,1,0)T, az = (0,0,1)T
Diamond a; = (1,0,0)T, as = (0,1,0)T, a3 = (0,0, 1)T
Gyroid a; = (1,0,0)T, as = (0,1,0)T, a3 = (0,0, 1)T
Lonsdaleite a1 = (1,0,0)T, az = (0,v/3,0)7, az = (0,0, 1.732692)7
Beta rod packing  a; = (1,0,0)7, as = (0,1,0)T, a3 = (0,0, 1)T
Sigma rod packing a; = (1,0,0)7, as = (0,1,0)T, a3 = (0,0, 1)T

Supplemental Table S2: Parameters used to generate projections
shown across the article including those matching actual TEM bi-
ological data.

Structure ucC Vol. Slice dimensions  Slice position . . Membrane
Orientation width
type Scale prop. [nm] [nm)] ]
Figure 6 F
Diamond 80 0.25 350 x 350 x 70 200 (535) 7
Figure 6 G
Diamond 80 0.25 350 x 350 x 70 140 (10 13 10) 7
80 0.25 350 x 350 x 70 140 (537 7
Figure 6 H
Diamond 80 0.25 350 x 350 x 70 60 (535) 7
80 0.25 350 x 350 x 70 60 (232) 7
Figure 7B, C
Diamond 80 0.25 350 x 350 x 40 190 (184 1) 5
80 0.25 350 x 350 x 40 190 (83 100 107) 5
80 0.25 350 x 350 x 40 190 (1841) 5
80 0.25 350 x 350 x 40 190 (79 26 70) 5
80 0.25 350 x 350 x 40 190 (90 100 11) 5
80 0.25 350 x 350 x 40 190 (184 1) 5
80 0.25 350 x 350 x 40 190 (45 50 54) 5
80 0.25 350 x 350 x 40 190 (1841) 5
80 0.25 350 x 350 x 40 190 (90 100 11) 5
80 0.25 350 x 350 x 40 190 (79 26 70) 5
80 0.25 350 x 350 x 40 190 (411) 5
Figure 8A, G
Diamond 80 0.25 300 x 300 x 80 0 (20 3 26) 7
Figure 8 B,H
Diamond 73.5  0.22 300 x 300 x 80 313 (122 104 96) 8
Figure 8 C, 1
Diamond 90.5 0.25 300 x 300 x 70 275 (99 113 10) 8
Figure 8D, J

Diamond 82 0.22

300 x 300 x 80 %) (19 13 10) 8
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Supplemental Table S2: continued from previous page

Figure 8 E, K
Diamond 77.9  0.22 300 x 300 x 80 50 (105117 98) 8
Figure 8F, L
Diamond 75.1 0.3 300 x 300 x 80 50 (876) 8
Figure 9 A
Diamond 80 0.25 350 x 350 x 70 57 (16 40 41) 5
Figure 9B
Diamond 80 0.22 350 x 350 x 70 58 (79 89 79) 5
Figure 9C
Diamond 80 0.48 350 x 350 x 70 50 (1011 9) 5
Figure 9D
Diamond 80 0.45 350 x 350 x 70 50 (11 24 14) 5
Figure 10D
Diamond 80 0.25 120 x 240 x 60 195 (111) )
Figure S4 A
Gyroid 256 0.5 800 x 800 x 40 400 (111) 15
256 0.5 800 x 800 x 70 400 (111) 15
256 0.5 800 x 800 x 90 400 (111 15
256 0.5 800 x 800 x 250 400 (111) 15
Diamond 256 0.5 800 x 800 x 40 400 (111) 15
256 0.5 800 x 800 x 70 400 (111) 15
256 0.5 800 x 800 x 90 400 (111) 15
256 0.5 800 x 800 x 250 400 (111) 15
Figure S4B
Gyroid 89 0.25 350 x 350 x 40 175 (111) 5
89 0.25 350 x 350 x 70 175 (111) 5
89 0.25 350 x 350 x 90 175 (111) 5
89 0.25 350 x 350 x 250 175 (111 5
Diamond 89 0.25 350 x 350 x 40 175 (111) 5
89 0.25 350 x 350 x 70 175 (111) 5
89 0.25 350 x 350 x 90 175 (111) 5
89 0.25 350 x 350 x 250 175 (111) 5
Figure S5 A
Primitive 256 0.5 1006 x 1006 x 70 60 (100) 15
256 0.5 1006 x 1006 x 70 60 (101) 15
256 0.5 1006 x 1006 x 70 60 (110) 15
256 0.5 1006 x 1006 x 70 60 (111) 15
256 0.5 1006 x 1006 x 70 60 (201) 15
256 0.5 1006 x 1006 x 70 60 321) 15
256 0.5 1006 x 1006 x 70 60 (525) 15
Diamond 256 0.5 1006 x 1006 x 70 60 (100) 15
256 0.5 1006 x 1006 x 70 60 (101) 15
256 0.5 1006 x 1006 x 70 60 (110 15
256 0.5 1006 x 1006 x 70 60 (111) 15
256 0.5 1006 x 1006 x 70 60 (201) 15
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Supplemental Table S2: continued from previous page

256 0.5 1006 x 1006 x 70 60 (321) 15
256 0.5 1006 x 1006 x 70 60 (525) 15
Gyroid 256 0.5 1006 x 1006 x 70 60 (100) 15
256 0.5 1006 x 1006 x 70 60 (101) 15
256 0.5 1006 x 1006 x 70 60 (110) 15
256 0.5 1006 x 1006 x 70 60 (111) 15
256 0.5 1006 x 1006 x 70 60 (201) 15
256 0.5 1006 x 1006 x 70 60 321) 15
256 0.5 1006 x 1006 x 70 60 (525) 15
Lonsdaleite 256 0.5 1006 x 1006 x 70 60 (100) 15
256 0.5 1006 x 1006 x 70 60 (101) 15
256 0.5 1006 x 1006 x 70 60 (110 15
256 0.5 1006 x 1006 x 70 60 (111) 15
256 0.5 1006 x 1006 x 70 60 (201) 15
256 0.5 1006 x 1006 x 70 60 321) 15
256 0.5 1006 x 1006 x 70 60 (525) 15
Figure Sb B
Primitive 89 025 350x350x70 60 (100) 5
89 025 350x350x70 60 (101) 5
89 0.25 350 x 350 x 70 60 (110) )
89 0.25 350x350x70 60 (111 5
89 0.25 350x350x70 60 (201) 5
89 0.25 350x350x70 60 (321) 5
89 025 350x350x70 60 (525) 5
Diamond 89 0.25 350 x 350 x 70 60 (100) )
89 0.25 350 x 350 x 70 60 (101) )
89 0.25 350x350x70 60 (110) 5
89 025 350x350x70 60 (111) 5
89 0.25 350x350x70 60 (201) 5
89 0.25 350 x 350 x 70 60 (321) )
89 0.25 350 x 350 x 70 60 (525) )
Gyroid 89 0.25 350x350x70 60 (100) 5
89 0.25 350x350x70 60 (101) 5
89 0.25 350x350x70 60 (110) 5
89 025 350x350x70 60 (111) 5
89 0.25 350 x 350 x 70 60 (201) )
89 0.25 350 x 350 x 70 60 (321) 5
89 0.25 350x350x70 60 (525) 5
Lonsdaleite 89 025 350x350x70 60 (100) 5
89 025 350x350x70 60 (101) 5
89 0.25 350 x 350 x 70 60 (110) )
89 0.25 350 x 350 x 70 60 (111) )
89 0.25 350x350x70 60 (201) 5
89 0.25 350x350x70 60 (321) 5
89 025 350x350x70 60 (525) 5
Figure S6 A
Diamond 872 025 300x300x70 25 (91 13 92) 7
Figure S6 B
Diamond 87.2  0.25 300 x 300 x 70 25 (183 7) 7
Figure S6 C

10
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Supplemental Table S2: continued from previous page

Diamond 87.2 0.25 300 x 300 x 70 25 (7119 72)
Figure S6 D

Diamond 87.2 0.25 300 x 300 x 70 25 (181 25 11)
Figure S6 E

Diamond 87.2 0.25 300 x 300 x 70 25 (90 111 7)
Figure S6 F

Diamond 87.5 025 300 x 300 x 70 25 (33 19 22)
Figure S6 G

Diamond 87.5 0.25 300 x 300 x 70 25 (78 9 75)
Figure S6 H

Diamond 87.5 0.25 300 x 300 x 70 25 (81 28 74)
Figure S61

Diamond 87.5 0.25 300 x 300 x 70 25 (89 89 76)

11
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116 CHAPTER 4. STRUCTURE IDENTIFICATION IN SOFT MATERIALS USING MICROSCOPY IMAGES



CHAPTER b

Conclusion and outlook: geometrically driven functional materials

In this thesis we have addressed geometrically driven soft matter systems. Our contri-
bution is of special interest in regards to what we refer to as functional geometry: the
functionality of a system or tissue is provided through its geometric structure. Examples
include dynamical processes like the swelling of skin under prolonged exposure to water
[Evans and Roth, 2014 ], “static” properties like water repelling surfaces [ Darmanin and
Guittard, 2015], structural color [Schroder-Turk et al., 2011b, Wilts et al., 2012a,b] or
biological membranes with a vast variety of functions (reviewed e.g. in [ Almsherqi
et al., 2009, Mezzenga et al., 2019, Cui et al., 2020]). However, often the functionality of

structures stay elusive.

Many of the aforementioned systems, especially biological systems, are self-
assembled, i.e. constituents arrange without external influences solely due to internal
forces. Using this process, nature’s ability to build highly functional structures on larger
length scales (> 150 nm) is unparalleled. A complete knowledge and understanding
of these structures thus would provide powerful blueprints for the engineering of
nano materials with a vast variety of functions. Two important aspects of this field are
addressed by this thesis: the identification and formation of self-assembled structures.

In this concluding chapter we recap our results and put them in context with
existing and ongoing research to emphasize our contribution to the field of self-assembly

and structures in soft matter.
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118 CHAPTER 5. CONCLUSION AND OUTLOOK: GEOMETRICALLY DRIVEN FUNCTIONAL MATERIALS

5.1 Self-assembly of geometrically optimal cellular mate-

rials

Chapter 2 addressed quasi-planar micelles in copolymer melts. When such a system is
exposed to curvature the ground state shifts from a hexagonal honeycomb pattern in
bulk systems to solutions of the Thomson problems on spherical surfaces. By tuning
the radius of the spherical substrate the number of micelles, and thus tiles in the tiling,
can be controlled. While introducing a color constraint does not change the general
behavior of this system, we find a number of non-Thomson solutions, i.e. configurations
corresponding to local minima in the energy landscape. We argue that introducing the
color-constraint increases the complexity of the energy landscape and a simple quench
as employed here can not reliably find the global minima. In this first section, we address
three different approaches on how to interpret our results.

The first perspective from which our research can be seen is from the study of the
defect structure of a three-colored, planar, hexagonal tiling forced onto a topologically
incompatible curved surface. For single-colored tilings this is a well studied problem,
both using polymeric self-assembly as well as other methods (see chapter 2 and our
publication [Hain et al., 2019] for details and references). Our approach of using three-
armed star polymers to generate three-colored tilings to study the defect structure on
spherical surfaces is to our knowledge new in the literature.

Our fine-grained approach using Molecular Dynamics simulations and set-Voronoi
diagrams allows a detailed analysis of the shapes of the tiles, compared to a purely
topological study of the tiling. Here, further studies could investigate possible influences
of the color constraint on the shape of the tiles. First steps towards these studies has been
implemented and carried out in the supplement of our first publication. A difference
of the radius of gyration of the polymers in ABB and ABC systems, i.e. systems with
and without color constraint, has been found. The shape of tiles has been analysed
using the tensor of inertia. Comparing non-Thomson to Thomson solutions did not
yield significant differences, however, comparing ABB to ABC systems is a promising
approach. For finer shape analysis, the Minkowski tensors used in the Quantizer chapter
could be employed. Due to the high computational effort of the Molecular Dynamics ap-
proach, the system sizes were kept moderately small, meaning the radius of the spherical
substrate is relative small compared to the size of the patches. A careful consideration if
possible shape differences are due to the color constraint or the relatively small system
sizes has to be made, for example by studying trends in increasing substrate radii.

A natural extension to our study is to use more complex, confining geometries,
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especially surfaces with negative Gaussian curvature, such as capillary bridges studied
by Irvine et al. [2010, 2012], Kusumaatmaja and Wales [2013]. Patterns and tilings on
hyperbolic surfaces has been studied before [ Nesper and Leoni, 2001, Robins et al., 2004,
Ramsden et al., 2009, Dotera et al., 2012, Kirkensgaard, 2012b, Evans et al., 2013a, Kolbe
and Evans, 2021], for example by projecting tilings of the two-dimensional hyperbolic
plane onto TPMS [Evans et al., 2013a]. However, the investigation of polymeric self-
assembly on hyperbolic surfaces, especially with the implication of generating three-
colored tilings, seems to be lacking in the literature.

The second interpretation of our results is that we present a process to create
spherical substrates whose surface structure is controlled by its radius. As addressed in
the final section of our publication [Hain et al., 2019], we propose to make use of this

fact to create spherical nano particles with controlled surface structures.

Nano particles self-assembled from diblock copolymers with internal structures
have been extensively studied before [Jeon et al., 2007, Ku et al., 2019, Cui et al., 2019,
Wong et al., 2020, Shin et al., 2020, Ku, 2021, Higuchi et al., 2008a,b]. The internal
structure, size or anisotropy of these particles could be controlled by, among other
factors, the composition of the polymers. ABC' star polymers, which we used for our
studies, have also been used to prepare nano particles [ Xu et al., 2015], however, with a
focus on the internal structure as well as the size of the particles, not the surface structure
as proposed here.

Nano particles with a controlled surface structure have also been studied in the
context of patchy particles [ Pons-Siepermann and Glotzer, 2012a,b]. The latter were
assembled by surfactants adsorbed onto gold nano particles. This approach is analog to

our simulation setup, where polymers are forced into a spherical shell.

In sum, self-assembled nano particles with a focus on controlling their internal
structure have been studied, as well as nano particles with controlled surface structure,
however, on a predefined substrate. Here we propose to merge those two approaches:

create self-assembled nano particles with a controlled surface structure.

To create nano particles without the need of a substrate, we propose to use ABBD
and ABCD star polymers in a solvent. The A, B and C blocks are chosen soluble where
as the D block is insoluble. A spherical substrate forming the core of the nano particle is
then assembled by the D blocks, covered by the other blocks to avoid contact of the D
blocks and the solvent. Using DPD simulations as described in our publication [Hain
et al., 2019], we were able to show that this approach of creating nano particles works,

and spherical micelles, as shown in fig. (5.1a), with a core indeed assemble.
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(a) Internal structure of mi- (b) Self-assembled Janus-

celles in solution Particle as the Thomson
solution for N = 2 with ABBD
star polymers

Figure 5.1: A micelle assembled from four-armed star copolymers in solution (not shown). A
long arm (pink) forms the core of the micelle and acts as a substrate. The remaining three arms
will assemble the tilings found in this thesis on the substrate.

As we find in our publication [Hain et al., 2019], the surface of the structure of
the nano particles is given by Thomson problem solution configurations. The number of
tiles, and thus the surface structure, can be tuned by varying the length of the D block,
which controls the radius of the core. An exemplary N = 2 solution for ABBD stars is
shown in fig. (5.1b).

We argue that nano particles as proposed here, that is polymer micelles with a
defined surface structure, can act as patchy particles: patches of the same block type on
the surface of the particles are effectively attractive when put in an appropriate solvent
and can act as connectors between particles. This way patchy particles can self-organise
into larger structures [Zhang and Glotzer, 2004, Walther and Miiller, 2013]. As such our
results form a key building block for hierarchical self-assembly [ Groschel and Miiller,
2015], where macroscopic structures could self-assemble from ABC' D star copolymers,
analogous to previous work with ABC' linear triblocks [ Groschel et al., 2012, Lobling
etal., 2016].

As a last remark to the first article, we suggest that our project can contribute
towards the field of so-called “soft granular media”: these are e.g. systems consisting of
bubbles of gas which are tightly packed in an emulsion [Giustiniani et al., 2016, 2018
and are driven by interface tension and bubble-bubble interactions. Since these bubbles
can deform, packings of the latter stand in contrast to “hard”, non-deformable granular
media. These systems has been introduced briefly in chapter 1, examples include hard
sphere and bead packings, both in bulk or on curved surfaces, [Giarritta et al., 1992, 1993,
Burke et al., 2015, Mascioli et al., 2017, Dotera et al., 2012, Lovri¢ et al., 2019, Giarritta



CHAPTER 5. CONCLUSION AND OUTLOOK: GEOMETRICALLY DRIVEN FUNCTIONAL MATERIALS 121

et al., 1992, 1993], soft sphere packings [Miller and Cacciuto, 2011b, Mughal, 2014] or
optimization problems such as the Kepler problem [de Gennes, 1999, Szpiro, 2003 ]. Our
polymer system can be seen as a packing of soft, deformable and interacting bubbles,
very similar to a soap froth. The significant differences are an additional stretching
term in the energy functional and that the geometry of the interface is not constraint by
Plateau’s laws. As such, our polymer system might be transferable to the field of “soft

granular media” and packings on curved surfaces. The concept of a “polymer foam’

has been raised before, and will be discussed in the following section.

Our second publication [Hain et al., 2020] investigates the Quantizer system as a
statistical mechanics problem at finite temperatures, which was previously introduced
as the so-called Voronoi liquid [Farago et al., 2014, Ruscher et al., 2015]. In our work we
confirm a liquid/solid order transition into its BCC ground state when a Quantizer sys-
tem is cooled quasi-statically [Ruscher, 2017]. Whereas Ruscher [2017] used Molecular
Dynamics, we implemented a new Monte Carlo Metropolis algorithm of the Voronoi

liquid.

Our key finding, however, is related to a previously found universal, amorphous
inherent structure, which is formed when the system is subjected to a maximally fast
quench [Klatt et al., 2019]. We are able to reproduce (within statistical limits) this
previously found structure using fast quenches of Molecular Dynamics and Monte Carlo
simulations. This addresses a particular question raised in [Klatt et al., 2019]: does the
local minima depend on the method of energy minimization - thus quenching? Although
a definite answer could not be given, our results strongly supports the universality of
the structure.

Furthermore we show that the inherent structure is not only stable when subjected
to a maximally fast quench, but also when cooled sufficiently fast enough. In this case
the system does not undergo a phase transition, but stays amorphous. This result on its
own sheds more light on the complex energy landscape of the Quantizer problem, such
as the height and origins of energy barriers around local minima. For example, Royall
et al. [2015] investigated the role of locally favored structures, that is local clusters which
have a lower energy than the global minimum, as reasons for systems to stay amorphous.
Such studies could be especially fruitful if put in context with similar findings from
other cellular systems, such as the vertex model [Bi et al., 2016, Merkel and Manning,
2018] introduced in chapter 3.

So far, we only ran simulations of the Quantizer system at fixed density. Extending
the simulation code to allow for varying densities, i.e. systems at a fixed pressure, would

allow us to address following questions: Would the system collapse at zero temperature?
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Could this potential collapse be stabilized by entropic effects at finite temperatures?
Would this allow coexistence of the crystalline ground state and the amorphous local

minima?

The stability of the inherent structure is especially interesting from the point
of view of established, geometric optimization problems, as introduced in chapter 3,
specifically in fig. (3.1). Here the hypothesis was raised that the inherent structure found
by Klatt et al. [2019] could be an equivalent “characteristic”, amorphous local minima
of the Quantizer problem, analog to Plateau’s foams of the Kelvin, and RCP packings of
the Kepler problem. This hypothesis is supported by our findings strengthening the

universality of the inherent structure.

Our Quantizer implementation builds the base for the study of the so-called
diblock foam model (DFM) [Reddy et al., 2018], modelling micelle phases in diblock
copolymers. For the latter, an interface energy term is added to the Quantizer energy
functional, modelling the immiscibility of the two different blocks of the polymer chains.
Such a model has been proposed earlier by Ziherl and Kamien [2000] for general micelle
systems. Our implementation of the DFM can be interpreted from two points of view:
(1) as introduced by Reddy et al. [2018] this new energy functional represents a Voronoi
based, coarse grained, particulate model of micelle phases in diblock copolymer melts
and (2) enables the study of “mixed” optimisation problems, in this case a combination of
the Kelvin and the Quantizer problem. These two interpretations are strongly connected,
as a polymer melt is a natural implementation of the aforementioned combination of
Kelvin and Quantizer problem. The particulate model interpretation thus allows to study
micelle structures in polymer melts at different temperatures. The “mixed” optimization
problem approach allows fine control over the strength of the interface contribution,
allowing us to study the influence of the interfacial term on the ground state and possible

local minima.

Using our Monte Carlo implementation of the DFM, we briefly present two case
studies: a quasi static cooling of systems with a small number of particles, respective
micelles, and a fast quench. These two are representative of the two interpretations

mentioned above.

The slow cooling of the Quantizer system investigates the ground state of the
DFM and thus minimal energy micelle configurations in the polymer melt at 7" = 0.
Previous work predicted the Frank-Kasper A15 phase to be stable, using the DFM [Reddy
etal., 2018]. Later Bates et al. [2019] gave experimental proof for the existence of the A15
phase, where as [Bates et al., 2020] found the o Frank-Kasper phases in AB,, copolymers.
Kim et al. [2017] found both ¢ and A15 phases in systems of micelles of surfactants.
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According to eq. (2.3) and (2.4), the chain stretching term of the polymeric free
energy scales with Fy; oc r° whereas the interface term scales with Fj; o< 7. In both terms
r is the radius of the micelle. The “amount” of surface tension can thus be controlled by
tuning the micelle size. The free energy of different possible groundstates at different
micelle sizes p~! are shown in fig. (5.2). The data shows that for large micelles, where
the chain stretching (Quantizer) term dominates, the ground state is a BCC lattice. For
small, interface tension dominated micelles an A15 lattice is the optimal configuration.
At the minimum of the free energy, i.e. the micelle size that would form in real samples,
the optimal structure is A15 which is in line with theoretical and experimental earlier
results [Reddy et al., 2018, Bates et al., 2019]. Monte Carlo simulations of systems slowly
cooled are in line with these results. The stable A15 phase indicates that the polymer
melt is indeed behaving like a foam: the best-known minimiser for purely interfacially
driven soap froths is the Weaire-Phelan structure which is the Voronoi cells of points

sitting on an A15 lattice.
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Apart from the ground state analysis, our Monte Carlo implementation also

provides the ability to investigate the dynamics of the cooling process, as we did in the
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publication [Hain et al., 2020] about the Quantizer problem. Here, we find that the DFM
has a liquid/solid phase transition, analogous to the Quantizer problem. Similar phase

transitions have been found experimentally [Nicolai et al., 2004] which supports the
validity of the DFM model.

A shortcoming of this model as presented is that it only models systems at fixed
density and thus micelle size. In real experiments though, the micelle size is not fixed,
but depends on the chemical and architectural properties of the polymers. This can
be modeled by running the system at variable density or variable particle (micelle)
number. This is especially interesting in conjunction with above mentioned variable-
density experiments of the Quantizer problem. A different approach would be to use
weighted Voronoi tessellations, thus assigning each particle a variable radius that is

tuned throughout the simulations.

The results of the DFM model subjected to a fast quench are shown in fig (5.3).
The preliminary data shows the statistically different structure factors of inherent, “char-
acteristic” structures of the Kepler and Quantizer problem in comparison to the quenched
structure of the DFM. Given these results, we propose to address two questions. The
tirst one considers polymer melts as natural, real implementations of the DFM: can the
structural signature, such as the structure factor, of an amorphous micelle configuration
of the DFM be found in real systems, such as studied by Nicolai et al. [2004]? The second
question is based on the assumption of having access to a structural signature of an
amorphous micelle configuration. Can a geometrical interaction driving the system be
deduced solely based on the structural signature of a system?

—— Quantizer .
Figure 5.3: Structure factors of inher-
4 - ‘ - Kepler ent structures, i.e. local minima, of dif-
| — DFM ferent optimisation problems: the Quan-
. \ tizer problem (Klatt structure) [Klatt et al.,
~3 J 2019], Kepler problem (random closed
N5 packing) [Torquato and Stillinger, 2010]
: and a quench of the diblock foam model
computed using our Monte Carlo model.
The preliminary data shows a statistically
significant difference between the inherent
structures of the pure Quantizer problem
and the DFM model due to the added in-
terface tension.

Although, the first experiments with our DFM model implementation seems to

be in good agreement with existing results on micelle phases in polymer melts and



CHAPTER 5. CONCLUSION AND OUTLOOK: GEOMETRICALLY DRIVEN FUNCTIONAL MATERIALS 125

lyotropic liquid crystals, more work is needed to assess its validity of being a model
of micelle phases in polymer melts. Regardless, the presented DFM model proves
to be valuable for the study of ground states and inherent structures of geometrical

optimization problems.

To conclude this first part, we argue that both of our publications [Hain et al., 2019,
2020] address geometrical optimization problems: the Quantizer problem minimising
the Quantizer error and the polymers minimising the free energy, which is essentially
the Quantizer error extended by an interface tension term. We investigate the assembly
process of structures representing both ground states and local minima of the geometric
energy functionals with different methodologies. In this section we have shown how

our results have a broad range of implications for future work.

5.2 Structure identification: automated direct template

matching

The second part of this thesis introduced a software tool facilitating structure iden-
tification. As stated in chapter 4, three methods are primarily used to identify three
dimensional structures: small-angle X-ray scattering, 3D electron microscopy and tem-
plate matching based on electron microscope images. Due to the comparably easy access
to microscope images from soft materials, template matching has became an impor-
tant standard. Our work contributes by significantly extending the existing matching
processes and publishing an open-source software tool facilitating the structure identi-
fication process based on microscope images. Since its publication, a first study used
the tool successfully to identify structures, highlighting SPIRES’ potential in the field
[Sandoval-Ibafiez et al., 2021].

In the current state, however, the matching process is still manually and involves
the testing of many hundreds of parameter combinations to fit the generated projection
to the TEM images. Many of those can be eliminated by educated guesses and previous

information about the structure e.g. the symmetry group from SAXS experiments.

This drawback of the current identification process is addressed in ongoing
research. We aim to automate the matching process, without any need of previous
knowledge or manual parameter testing. Our choice of tools are Deep Convolutional
Neural Networks (CNN) [Goodfellow et al., 2016, which have been used successfully
for image classification [Krizhevsky et al., 2012 ] before. These deep learning models also

guided image classification in biological applications [Moen et al., 2019] and specifically
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feature recognition on TEM images [Horwath et al., 2020].

In image classification, a CNN is a model taking an image as input and outputting
a vector of probabilities, where the vector has as many entries as possible classes there
are. The highest probability indicates the predicted structure. A CNN is essentially a
mathematical model capable of training its parameters to maximise a fitness function.
For this training a large set of labelled images is needed, i.e. images whose classes are
known [Goodfellow et al., 2016]. The biggest challenge hereby is to collect and label

said training data set.

(b)

Figure 5.4: A clean (a) and noisy (b) projection in (221) direction of a Gyroid minimal surface.
The artificial noise is to mimic real TEM images and provide more realistic training data set for
deep learning.

Thus we propose to use an artificial training data set, generated by SPIRE. Since
the images are generated from known parameters, the labelling process is automated.
For this purpose the tool includes a so-called batch creation functionality, allowing
to generate a large set of projections with different parameters. Functions to create
artificial, “noisy” data are provided to create a more realistic training data set, as shown
in fig. (5.4).

The quality of the trained model greatly depends on the size and quality of the
data set. The size of the data set needs to be chosen to avoid under- or overfitting.
Furthermore it should cover all parameter ranges which are expected to be encountered
in the images to be classified. Our choices of parameter ranges are oriented on existing
biological systems, such as the PLBs introduced in chapter 4. As possible structures, we
included projections from Gyroid, Diamond, Primitive and Lonsdaleite surfaces. Each
input image is thus classified as one of those four possible structures. We also included
images with a varying level of artificial noise, so the model is trained to handle different
qualities of electron microscope images.
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An additional measurement to expand the data set is so-called data augmentation.
Here, images are modified and then reused for training. Typical image modifications
include rotation and cropping. A rotation can be interpreted as changing the in-plane
orientation of the biological sample shown in the image, whereas cropping an image is
equivalent to reducing the sample size.

A CNN can be considered to consist of two parts: the convolutional layers and
some fully connected layers. Whereas the convolutional layers extract geometric patterns
present in the input images and create so-called feature maps, the fully connected layers
pieces these future maps together and predicts the structure [ Goodfellow et al., 2016].

We also make use of the fact, that many biological samples are poly-crystalline.
Poly-crystallinity occurs when different regions in the structure are grown in different
orientations, providing projections of the same structure from different perspectives.
This provides microscope images from the same structure, but different orientations.
There exists several approaches to deal with so-called multi-view input [Seeland and
Mader, 2021]. One includes fusing the feature maps of all input images with differ-
ent views and pass them through merging layers. The second, and somewhat easier

approach fuses only the prediction scores, i.e. the vector of probabilities for each class.

For preliminary results, we created a training data set of about 1000 images with
artificial noise for each of the four considered structure types. The multi-view approach
is not considered for now. A test data set was created in the same way. First results
using standard architectures of CNN for image classification show good accuracies:
around 90 % of artificial projections are identified as the correct structure. By including
the multi-view approach, the accuracy is increased by about 4 % points.

To truly validate the network, a test data set of real, labelled microscope images
is needed. The latter is still being collected, so no assumption about the true accuracy of

this automated matching approach can be made yet.

Although the validation of our model with real data is still missing, our SPIRE-
enabled approach using CNN to automate the structure identification process looks
promising. Especially the connection between geometric structure identification and
the thriving field of Al research proves to be fruitful and interesting.
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