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1 Introduction

The UN’s Sustainable Development Goals emphasize the importance of air quality within
cities and explicitly list the improvement of urban air quality as a key measure to make
agglomerations safer, healthier, more resilient and sustainable.1 Key contributing factors
to air pollution, particularly in cities, are car traffic and congestion. Indeed, research
highlights that reduced congestion and traffic can lead to better air quality and better
health outcomes (Margaryan, 2021; Knittel et al., 2016; Currie and Walker, 2011). Fre-
quently proposed measures to reduce car traffic and thereby air pollution include the
extension of public transport supply and the reduction of its cost, thereby ultimately
encouraging a modal switch towards publicly provided means of transportation. This
paper leverages a unique policy intervention in Germany to causally estimate how lower
public transport prices impact air quality.

In June 2022, Germany introduced the so called “9-Euro-Ticket” (9ET), which tem-
porarily reduced prices for regional public transportation to a flat rate price of 9 Euros
per month from June until August. This policy intervention is unusual in the sense
that it temporarily and relatively suddenly reduced public transport fares for a whole
country. Further, the implied price drop was substantial - in Berlin, for example, the
monthly standard fare ticket, normally priced at 86 Euros, experienced a price decrease
of about 90%.2 The aim of the ticket’s introduction was twofold. First, as part of a set
of relief measures, passed in the first half of 2022, mitigating rising cost of living was a
central goal of the policy. Second, it was seen as a potential means to promote green
mobility by incentivizing a reduction in car traffic and thereby carbon emissions and
pollution (Spiegel Online, 2022). The introduction of such a temporary public transport
subsidy was highly debated in German politics with parties such as the Greens and the
Left supporting an extension of the ticket beyond a three month period, especially if the
ticket is proven to sucessfully incentivize individuals to substitute car travel for public
transport (Spiegel Online, 2022).

First descriptive and anecdotal evidence on the 9ET’s impact suggests that car traf-
fic in June 2022 was indeed reduced: following the introduction of the ticket, the level
of congestion in many German cities decreased between May and June 2022, while the
amount of train travel increased (Süddeutsche Zeitung (SZ), 2022; German Federal Office
for Statistics, 2022). A decrease in traffic and congestion in response to the public trans-
port subsidy can also imply positive externalities such as carbon emission reduction and
a decrease in air pollution (Beaudoin et al., 2015), which will be the focus of this study.
In the absence of effective road pricing systems that may internalize external effects of

1See Goal 11 at https://sdgs.un.org/goals.
2See https://www.bvg.de/de/tickets-und-tarife/alle-tickets/zeitkarten/monatskarte.
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auto travel such as pollution, interventions in the public transit sector, e.g. subsidies like
the 9ET or extending the network, are potential viable second best solutions.

A large body of research shows a positive impact of public transit provision on air
quality. Anderson (2014) and Bauernschuster et al. (2017) use unexpected public trans-
port strikes as a quasi-natural experiment and find a temporary increase in congestion
and in air pollution respectively. Other papers look at the effect of building or extend-
ing new subway lines, which have been shown to positively affect air quality (Chen and
Whalley, 2012; Gendron-Carrier et al., 2022). In Germany, Lalive et al. (2018) find a
positive effect of railway expansions on air quality. A second strand of literature devel-
ops and calibrates quantitative equilibrium models to quantify welfare effects of public
transport investments. For instance, Parry and Small (2009) and Basso and Silva (2014)
document significant welfare gains from subsidizing public transport. Borck (2019), in
a counterfactual analysis, shows that subsidies reduce air pollution, albeit only mod-
estly due to offsetting long term equilibrium effects such as residential relocation. In
contrast, causal reduced form evidence on the effect of public transport pricing on air
quality is, to the best of our knowledge, scarce and limited to the study of price in-
creases. Yang and Tang (2018) using a synthetic control group approach paired with
difference-in-differences analysis find that an increase in Beijing’s public transport fare
led to a short run increase in air pollution of approximately 16 percent. Fully under-
standing how public transport prices and in particular a price reduction via subsidized
tickets impact air quality, however, is crucial, as price adjustments might offer an easy
to implement measure for policymakers to reduce air pollution - especially in spatially
constrained cities where extending existing networks or constructing new ones might not
be an option.

Based on previous literature, we would expect a price reduction, as studied in our set-
ting, to reduce air pollution. However, conclusive and causal evidence directly studying
the impact of a public transport subsidy does not exist. To the best of our knowledge,
our paper thus is the first to causally isolate the effect of an actual policy intervention
in the form of a public transport subsidy on air pollution, thereby providing evidence
on how a price reduction actually impacts air quality. Further, in contrast to previous
research on the relation of public transport and air quality we provide evidence for a
whole country, i.e. Germany, and not only selected cities.

Our research therefore contributes to fully understanding the effects of a price subsidy
for public transport on air quality and thus is crucial for research and policy alike. In
particular, our results may have important policy and health implications: they show
that subsidizing public transportation might be a viable option to reduce air pollution
particularly in cities, thereby contributing to the UN’s sustainability goal of creating
more resilient, safer and healthier urban agglomerations. For instance, reductions in air
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pollution have been shown to substantially reduce cardiovascular diagnoses (Margaryan,
2021) and improve infant health (Knittel et al., 2016).

In order to analyze whether a reduction in public transport prices ultimately reduces
air pollution and to elicit causal effects of the subsidy’s introduction on air quality,
the empirical strategy of the paper adopts a difference-in-differences approach. More
precisely, the empirical setting compares changes in air quality between months May and
June in previous, non-treatment years to changes in air quality for those two months in
the treatment year 2022. We construct a state of the art air pollution index also used
by the European Environmental Agency and show that the index decreases by about six
to seven percent in response to the introduction of the ticket. Further, we document
effect heterogeneity and show that the effect is largest in urban areas, during work days,
in areas with high levels of public transport provision and stations measuring pollution
directly stemming from traffic.

The remainder of the paper is structured as followed. Section 2 provides the rele-
vant institutional background. Section 3 introduces the different data sources used for
estimation and presents the estimation approach. Section 4 presents and discusses the
results and Section 5 concludes.

2 Institutional Background

The 2021 general election in Germany resulted in a new coalition government of Social
Democrats (SDP), the Greens and the Liberals (FDP). The creation of a sustainable
mobility sector was one of the topics highlighted in the new government coalition agree-
ment.3 Since 2022 and particularly the start of the war in Ukraine living cost and in
particular energy prices increased drastically, which prompted the government to pass
a set of relief measures aiming to mitigate rising costs of living and energy prices. The
9ET was part of a second set of such relief measures seeking to, amongst others, maintain
affordable means of transportation. Additionally, in particularly the co-governing Green
party frenquently emhasized the ticket’s potential to reduce carbon emissions and pro-
vide a more sustainable alternative for the mobility sector, as stipulated by the coalition
agreement (Spiegel Online, 2022).

On February 23rd, 2022 a first relief package (“Erstes Entlastungspaket”) consisting
of several relief measures such as temporary tax cuts was decided upon by the ruling
coalition parties. After the start of the war in Ukraine one day later and the consequent
steep increase in gas and oil prices in May, 2022 a second relief package was passed
in the German Bundestag. This second set of relief measures included a reduction of
the energy tax on fuel in order to help people commuting by cars. Figure A.1 in the

3see Coalition Agreement 2021.
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Appendix depicts the development of gasoline and diesel prices in 2022. The beginning
of the war in Ukraine was followed by a steep increase of all types of fuel prices. After
reaching a peak at the beginning of March, the price stabilized at moderately lower levels
until June 1st. The energy tax implied a temporary drop in fuel prices. However, diesel
regained pre-tax prices just after a few days. Overall, prices for all types of fuel remained
at a relatively high level especially compared to the rest of the year. Crucially, in our
identification strategy presented in the following section we can control for daily fuel
prices to account for these patterns and the tax cut.

In order to additionally compensate users of public transportation, the relief package
also included the 9-Euro-Ticket. For a total price of nine Euros a month, it allows its
holders to use most types of public transportation like buses, subways, and regional trains
all over Germany. The ticket was available from June 1st, 2022 until the end of August
of 2022.4 One of the aims of subsidizing public transportation was to foster its utilization
and thereby to speed up sustainable transportation. Just before June 1st, about seven
million tickets had been sold.5 By the end of June approximately 21 million tickets had
been sold.6 Factoring in the roughly 9 million regular subscribers to monthly or yearly
tickets whose fare is automatically reduced to 9 Euros from June to August, more than
thirty million 9ETs are in circulation.

3 Data and Empirical Approach

In order to analyse the 9-Euro-ticket’s impact on air pollution, we collect pollution mea-
surements for three key pollutants and data on covariates that have been shown to
influence air pollution, such as weather conditions and holidays. Crucially, we also col-
lect data on fuel prices allowing us to fully account for the tax cut in fuel prices that
was simulatenously introdcued with the 9ET (see above). The remainder of this section
firstly presents our different data sources to then introduce our empirical approach.

3.1 Data

Air pollution data We have access to air pollution data for months May and July
from 2018 to 2022. The data is provided as hourly measures by the Federal Environ-
mental Agency (Umweltbundesamt, 2022).7 We observe whether a measuring station is
located close to a street (traffic station) or in quieter more residential areas (background

4See https://www.bundesfinanzministerium.de/....html for more information on the relief packages.
5See https://www.handelsblatt.com/politik/deutschland/sonderticket-es...html
6See https://www.sueddeutsche.de/wirtschaft/9-euro-ticket-stau-tomtom-1.5612144
7All data can be requested by directly writing to the Federal Environmental Agency or by using their

API: https://www.umweltbundesamt.de/daten/luft/luftdaten/doc.
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station). While the former provides information on air quality in relation to traffic, the
latter rather indicates the general quality of the air in an area.8 We make use of this
differentiation in our estimations: in our main specification we exclusively focus on air
pollution concentrations measured by traffic stations, in order to test whether there in-
deed is a reduction in car traffic due to the 9ET. In a heterogeneity check, we exclusively
focus on background stations where we expect the potential effect of the ticket to be
smaller.9 Further, the data includes information on whether the station lies in rural,
suburban or urban areas.

In order to assess air quality we look at the pollutants nitrogen dioxide (NO2), par-
ticulate matter with diameter of 10 micrometer and smaller (PM10), and particulates
smaller than 2.5 micrometers (PM2.5), which we then use to construct a daily air qaulity
index (AQI), commonly used by national and international authorities in order to assess
pollution levels and provide information on potential health impacts at local levels.10 We
use this air quality index as our key outcome variable. For the construction of the AQI,
we follow the Common Air Quality Index by the European Union (Van den Elshout et al.,
2014), which bases the index on the core pollutants NO2, PM10, and PM2.5 for traffic
stations and additionally O3 (ozone) for background stations. The index itself takes on
values between 0 and 100, which is then further classified into four categories from very
low pollution (index number 0-25) to high pollution (index numbers 75-100).11

Fuel prices We also collect data on local fuel prices. Since 2013, fuel stations have been
obliged to report each and every change of fuel prices (specifically for diesel and gasoline)
in real time to the Market Transparency Office for fuels (“Markttransparenzstelle für
Kraftstoffe”) run by the German Cartel Office.12 We aggregate all fuel prices to district
level by taking the daily mean of all stations within each administrative entity.13

8Stations measuring air quality close to industrial sites are excluded in our data set.
9In our data set, 411 ground-level stations measure the concentration of NO2, 360 stations measure

PM10 and 273 PM2.5. One of the reasons why there are fewer measuring stations for PM2.5 is that
the coverage of this pollutant has only started relatively recently and the measuring net is still being
extended.

10The website http://www.airqualitynow.eu/comparing_home.php e.g. provides air quality indices
for various cities in Europe.

11Basically, the highest hourly value within a day of any of the three pollutants at each measuring
site determines the index value. In order to make values between the pollutants comparable over days,
we normalize each pollution value to an index value. As suggested by table 4 in Van den Elshout et al.
(2014), we for example get an index value of 25 in cases when NO2 is 50, PM10 is 25 or PM2.5 is 15.
Also note that Van den Elshout et al. (2014) introduce a fifth category for values above 100 by capping
the index at 100. The upper cap of 100 bears the additional advantage of the AQI to control for outliers.

12For more information see https://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-
Fuels/...

13Real time and historic price data is provided at the following website:
https://creativecommons.tankerkoenig.de/.
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Meteorology When analyzing air quality data, it is critical to control for current
weather conditions. Wind and rain tend to improve air quality, since they clean the air
e.g. from polluants such as particulates. We use weather data aggregated to daily levels
to control for mean temperature, mean wind speed and total precipitation levels. In
order to do so, we acquired measurements from about 3.000 stations from the German
Meteorological Service (DWD Climate Data Center (CDC), 2022). Since measurement
stations are independently located from air quality measuring stations, we follow the
approach by Auffhammer and Kellogg (2011) to match the nearest air quality to weather
station.14 Through this method, we are able to match about 99 percent of pollution
observations to the weather variables of interest.

Regional and further controls In parts of the analyses, we use district specific
data.15 In particular, the German Federal Office for Statistics provided us with dis-
trict level data of the total mileage of regional and local trains as well as buses per
district-specific population. This information originally stems from enterprises that are
the suppliers of public transport. We use this information in our heterogeneity analysis to
check whether effects differ across districts with low and high levels of public transport.

Furthermore, we construct variables that indicate whether a day falls on a weekend, a
public holiday or school holidays.16 In order to be able to differentiate between effects in
urban areas including their commuting zones, we resort to OECD definitions of functional
urban areas (FUAs).17 Those are constructed based on commuters’ daily movements
and normally include a core, which is the center to which people commute to and the
surrounding commuting zone (Dijkstra et al., 2022). In Germany, there are 96 FUAs in
total.

3.2 Empirical Approach

The paper employs a difference-in-differences (DiD) design using month June as the
treatment group and May as the control group. For the pre-treatment period we focus

14The approach conducts the following steps: After calculating Vincenty distances, we identify the
ten closest weather stations to each pollution station within a 75 kilometer distance and a maximum
elevation difference of 200 meters. Then, the “primary station” is chosen as the closest meteorology
station with more than 50 percent of non-missing observations and matched to the pollution data.
Following, missing values are filled by regressing non-missing weather observations of primary stations
on weather measurements of the nine other closest stations and using the predicted values from these
regressions. Missing values still remain in the case that one of the nine stations had a missing observation.
In this case the above step is repeated using the eight closest stations. The number of stations is then
subsequently lowered. For a more thorough description see Auffhammer and Kellogg (2011).

15In total there are 400 district level regional units in Germany.
16Information about state-level holidays and vacations are retrieved from http://www.feiertage-api.de/

and https://ferien-api.de/ respectively.
17Shapefiles can be downloaded from https://www.oecd.org/regional/regional-statistics/functional-

urban-areas.htm.
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on pollution measurements from years 2018 and 2019. We explicitly exclude years 2020
and 2021, as due to changes of COVID 19 restrictions in May and June 2020 and 2021
respectively there might be confounding factors influencing air pollution outcomes in
these years.18 Equation 1 describes the approach in more detail.

psymd = αs + γy + ζd + +β1Junem + β2Junem · γ2022 + X ′
kymdθ + ϵkymd (1)

psymd is the logarithm of the air quality index measured at station s, in year y for
month m, at day of the week d. We regress this outcome on station level fixed effects, αs,
controlling for all potential time invariant station-specific observables and unobservables
such as the number of lanes the station is placed at or the distance to rail tracks. Further,
we include yearly fixed effects, γy, to control for general differences across years. We also
control for day of the week fixed effects, ζd. This allows us to only compare pollutant levels
at the same day of the week with one another. This is necessary as there are pollution
trends across days of the week and thus comparing pollutant levels on a Wednesday and
a Friday might falsely pick up a difference in pollution between years that can simply
be attributed to these trends.19 We then include a dummy variable Junem, which is
equal to one if the month of the observation is June. Interacting the June indicator with
an indicator variable for the year 2022, i.e γ2022, then gives the difference-in-differences
estimate for coefficient β2. This setup allows us to test whether there indeed is a change
in air quality between May and June in 2022, i.e. the year when the 9ET was introduced,
that goes beyond the changes observed between these two months in previous years that
were not subject to such a policy intervention. In addition, we control for a matrix of
covariates, X ′, including an indicator variable for weekends and holidays respectively
as well as linear and squared daily weather conditions in the vicinity of each pollution
station such as wind speed, precipitation and temperatures, as these have been shown to
influence pollution levels. Further, we control for daily average fuel prices and interact
the fuel prices with the year fixed effects in order to account for different effects across
years. Controlling for fuel prices is crucial as at the same time as the 9ET a fuel tax
cut was introduced (see Section 2). As detailed above, fuel prices fell in response to the
tax cut, however, compared to the yearly trend only moderately (see Figure A.1). In the
robustness checks of the paper we also present specifications excluding the first days in
June and the last days in May to account for the temporary fall in gasoline prices and
potential anticipation effects, which could entail that individuals drove less before June

18For example, in most federal states in-class teaching only restarted in late May/June in 2021 and
mid and late May in 2020

19For example, on Fridays there may be a higher tendency to work from home.
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in order to wait for a fall in gas and public transport prices. ϵkymd is the error term,
which is clustered at the district level in our main specification.

The difference-in-differences approach presented above identifies the causal effect of
the 9ET on air pollution if pollutant levels for a given day of the week in May and June
2022, in the absence of the introduction of the 9-Euro-Ticket, would have developed
parallely. We can check this assumption by carefully examining air pollution averages
for both months before the ticket was introduced and after the ticket wat introduced,
as will be presented in the next section. In addition, together with our main results we
also provide a placebo test where the reform date is shifted forward to 2019, thereby
explicitly testing for common pre-trends using years 2018-2019.

4 Results

Descriptive Results We can check the identifying assumption by comparing pre-
trends, i.e. air quality before 2022 for treatment (June) and control month (May). More
precisely, we compare average values for a given day of the week in May and June before
and after the introduction of the 9-Euro-ticket as we control for days of the week fixed
effects in our main specification. Figure 1 shows the day of the week specific average for
the logarithm of the air quality index for the pre-policy period, i.e. 2018-2019 (left), and
the post policy period (right), i.e. the year 2022, respectively. The graph illustrates that
when assessing pre-trends it is crucial to only compare pollutant levels at the same day
of the week with one another, as there are clear general patterns in the average pollutant
levels for a certain day of the week. For example, in general there appears to be a greater
level of pollution in the middle of the week and lower levels over weekends.

Figure 1 supports our identification assumption: during the pre-treatment period,
air quality index values for treatment and control months behaved relatively similarly
and followed a parallel trajectory, throughout the week, albeit at slightly different levels.
The corresponding average values for working days depicted in the textbox show that on
average pollution on working days in June is 0.03 log points lower than in May. Looking
at the post treatment period, i.e. the year 2022, we can see that average pollution for the
control month May follows a similar weekly trajectory as in the pre-treatment period,
albeit at an overall lower level. However, in contrast, average pollution falls substantially
for the treatment month. In particular, during the week there appears to be a sharp
decline in the log of the AQI in 2022, which suggests an improvement in air quality.
This is further confirmed by comparing the average log values of the air quality index for
working days, i.e. Monday to Friday, in May and June in the post-treatment period, as
presented in the textbox: on average air pollution is 0.11 log points smaller in June than
in May 2022 - a difference substantially larger than during the pre-treatment period.

8



Figure 1: Day of the week averages for log(AQI).

Note: Day of the week averages for log(AQI) before and after the introduction of the 9-Euro-ticket for
treatment (June) vs. control month (May). Average working day values and differences for May and
June before and after the reform are displayed in the graph’s textboxes. The p-values are derived from
a two-sided t-test on the difference between both values. Corresponding values for weekends are
2018/19: June= 3.414, May= 3.402, Diff= 0.0124, p-value= 0.32; 2022: June= 3.349, May= 3.136,
Diff= 0.214, p-value= 0.00.
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Table 1: Main Results: log(AQI)

(1) (2) (3) (4) (5)
Interaction -0.0476∗ -0.0473∗ -0.0980∗∗∗ -0.0642∗∗∗ 0.0154

(0.0247) (0.0248) (0.0237) (0.0236) (0.0144)
Covariates No No No Yes Yes
Day of Week FE No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Station FE No No Yes Yes Yes

Observed Years 18,19,22 18,19,22 18,19,22 18,19,22 18,19
Observations 24,268 24,268 24,268 24,103 16,068

Note: Source: own calculations. Standard errors in parentheses and clustered at district level,
significance levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table displays regression results using the
log of the air quality index as outcome variable. All specifications control for year specific fuel prices.
Column (1) shows the results for a basic difference-in-differences approach. Columns (2)-(4) augment
the estimation with additional fixed effects and covariates. Column (5) implements a placebo test
where year 2019 is used as the new policy date.

In contrast, weekend average values in June in comparison to May visibly increase
across pre- and post-treatment years. In 2018/19 average pollution on weekends was
0.012 log points smaller in June. However, average pollution on weekends in June 2022
was 0.21 log points higher than in May 2022. Anecdotal evidence suggests that due to
lower public transport prices for regional trains there was a substantial influx in train
travel over weekends (Zeit Online, 2022). In particular students and young people are
said to have used trains increasingly for weekend trips and holidays, leading to newspaper
articles about and TV coverage concerning crowded and delayed trains. This potentially
had a deterring effect on travellers who might have switched to car use in order to avoid
crowded trains, which could possibly explain the observed increase on weekends.

We then proceed by estimating our main specification and presenting our main results.
Following the visual inspection of the graphs, we expect a negative effect of the 9ET on
air pollution during weekdays and a positive effect during weekends. Further, we revisit
our identification assumption by explicitly testing for common pre-trends conditional
on covariates and fixed effects using a placebo framework solely focussing on the years
2018/19.

Main Results: Table 1 presents the results using log(AQI) as an outcome variable. In
all specifications we control for daily fuel prices in order to account for the tax rebate in
fuel prices introduced at the same time as the 9ET. Specification (1) shows the results
for a basic difference-in-differences approach including a post treatment indicator for the
year 2022, the monthly fixed effect for June and the interaction between both. We find
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a negative point estimate for the interaction term suggesting that the average AQI fell
by just under five percent. The estimated effect is signifcant at the ten percent level.
Since an index value of 0 indicates the best possible air quality, the result suggests an
overall average improvement in air quality. In specification (2) we additionally include
year fixed effects and day of the week fixed effects. The point estimate remains similar
in size and continues to be significant at the ten percent level. Finally, in specifications
(3) and (4) we include station fixed effects and covariates, such as the weather conditions
and variables controlling for public and school holidays. In specification (3) we find a
relatively large and highly significant effect implying an approximate change of just under
ten percent. In specfication (4), when inlcuding the full range of covariates and fixed
effects, the point estimate slightly decreases in absolute value to -0.0642 and remains
highly significant at the one percent level. Thus our most restrictive specification, using
the full set of covariates and fixed effects, points towards a fall in air pollution by more
than six percent.

Lastly, in column (5) we repeat our preferred specification, i.e. the specification used
in column (4), for the years 2018 and 2019 only. Crucially, we treat year 2019 as if
the 9-Euro-Ticket was introduced in June 2019. This allows us to run a placebo test
and explicitly test for the common pre-trend assumption. The point estimate is positive
and insignificant, thereby supporting the notion that there is no systematic difference
between treatment and control months across years previous to the actual introduction
of the ticket.

All in all the results indicate a substantial fall in the air quality index of more than
six percent. In order to relate the size of the effect to general trends in air quality,
we can compare the air quality index in May/June 2018 and May/June 2019 with one
another. We observe an overall yearly reduction of about ten percent in the index, when
controlling for weather conditions and holidays. This is in line with a generally decreasing
air pollution trend for Germany.20Our results thus suggest that the 9ET has the potential
to accelerate this trend.

Mechanisms and Heterogeneous Results In a next step, we split our sample along
several dimensions to analyze heterogeneous effects and potential mechanisms. Table 2
depicts the results. All specifications control for the full set of covariates and fixed ef-
fects. First, in columns (1)-(4) we split our sample into the core of a functional urban
area (FUA), the total FUA and non-FUA (rural) areas.21The effect is driven by a sub-
stantial reduction in pollution in core areas. One potential explanation is that most jobs
are situated in core areas. If more individuals commute to these core areas by public

20See e.g. EEA Air Pollution: Germany
21The total FUA includes the core as well as the commuting zone of a FUA.
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transport there will be less traffic and congestion in these areas implying a fall in pollu-
tion concentration levels. Another possible explanation is that there is more supply of
public transport in these areas, which would then allow for an easier switch to public
means of transportation.

In order to generally assess the role of public transport supply, we split our sample
into districts with a relatively high and low level of public transport infrastructure (see
columns (5)-(6)). We can do so by using the aforementioned data on public transport
kilometers per population for districts in Germany. More precisely, we split our sample
into districts in the highest 25 percentiles of public transport kilometers per person and
the lowest 75 percentiles. The results show that for both groups we find significant
effects at the ten and five percent level respectively. As expected the effect size is more
pronounced for the group with higher levels of public transportation.

Next, in columns (7)-(8) we confirm what the visual examination above indicated:
the effect is driven exclusively by weekdays. For weekends we find a positive, albeit
insignificant effect when including the full set of covariates and fixed effects.

Unfortunately, we do not have access to data on the mode of transportation and
whether individuals switched in response to the introduction of the ticket. Therefore
we do not see whether such a modal switch is the cause of the improvement in air
quality. However, in our data we can differentiate between air quality measured by
stations directly next to roads and background measurements in quieter areas. If there
indeed is less traffic due to more individuals using public transport, the effect at stations
directly exposed to traffic should be stronger. In our main specifications we have so far
exclusively focused on traffic stations. In column (9) of Table 2 we repeat our estimation
for background stations. Only using background stations we would expect a smaller
or zero effect size, as these stations are not directly positioned next to streets. The
results confirm this notion, as the point estimates now is positive, relatively small and
insignificant.
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Table 2: Heterogeneous Results

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Core FUA Non Core FUA Non FUA High PT Low PT Weekend Weekday Background St.

Interaction -0.0863∗∗∗ 0.0095 -0.0708∗∗∗ 0.0033 -0.0791∗ -0.0589∗∗ 0.0259 -0.1020∗∗∗ 0.0101
(0.0233) (0.0610) (0.0219) (0.0965) (0.0403) (0.0270) (0.0387) (0.0248) (0.0155)

Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day of Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Station FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 19,700 4,403 21,814 2,289 6,051 18,052 6,840 17,263 46,914

Note: Source: own calculations. Standard errors in parentheses and clustered at district level,
significance levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table displays regression results using the
log of the air quality index as outcome variable. Column (1) shows the results for stations from the
core of functional urban areas, column(2) for stations positioned outside the core. Specification (3) just
includes observations from functional urban areas and specification (4) from outside these areas. (5)
solely uses measurements from stations in districts with a high level of public transport supply and (6)
in districts with a low level. (7) and (8) split the sample into weekdays and weekends and (9) solely
includes measurments from backgraound stations. All specifications control for the full set of
covariates and fixed effects.

Robustness In the Appendix we repeat our main estimation for different standard
error clusters, i.e. at the station specific level and at the station-year level. Tables A.1
and A.2 show the results. Inference and statistical significance do not change across these
different clusters.

Further, as detailed in Section 2, in addition to the 9ET, a tax cut on gasoline prices
was implemented from June, 1st. The corresponding law, however, was already passed
on May 19th, 2022. Car owners thus might have waited for June 1st in order to purchase
new fuel and drive again. As a consequence pollution levels directly before June 1st
might have been slightly dampened and heightened at the beginning of June, leading to
a lower estimated decrease in pollutants after the introduction of the 9ET. In order to
analyze these potential anticipation effects in the run up to June 1st, we repeat our main
estimation for the log(AQI) in a leave-one-out exercise. Here we successively drop the
first and last two days in May and June respectively. The results, presented in Table A.3
in the Appendix, indicate no substantial difference in the point estimates for the variable
of interest, which remain very similar in size across specifications.

Lastly, we use each pollutant that contributes to the air quality index as a outcome
variable seperately, in order to check that it is not simply the construction method of the
air pollution index that drives the results. Table A.4 in the Appendix shows the results
for PM10, PM2.5 and NO2 respectively. All point estimates are significant and negative
supporting the results in the main specification using the air quality index as the key
measure for air quality.
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5 Conclusion

In this paper, we provide novel causal evidence on the effect of a large scale public
transport subsidy on air pollution. The policy we study is unique in the sense that
it reduced public transport fares for a whole country in some areas by as much as 90
percent. To the best of our knowledge, we are the first to causally study the effects of a
public transport subsidy on air pollution, thereby expanding previous literature, which
has so far predominantly focussed on price increases (Yang and Tang, 2018), calibrated
quantitative models (Borck, 2019) or leveraged natural experiments such as unexpected
public transit strikes (Bauernschuster et al., 2017) to study the general relationship
between public transport and air pollution.

As our key finding, we show that pollution levels measured by a state of the art air
pollution index fall in response to the policy intervention. In particular, the air pollution
index decreases by approximately six to seven percent. Further, we document effect
heterogeneity showing that the effects are largest during the week, i.e. when individuals
commute to and from work. We also show that the effects are more pronounced in urban
areas and regions with a well developed public transport network.

Our results are relevant for policymakers and researchers alike. First, our findings
suggest that subsidizing public transportation can indeed incentivize a modal switch,
which sparks a decrease in pollution levels and potentially other outcomes not studied
in this paper such as carbon emissions. Further, the results echo findings of quantitative
equilibrium models e.g. by Borck (2019), who also finds a decrease in pollution in response
to lifting public transport fares all together. Our effect sizes lie in between the relatively
small effect of public transport on air pollution documented in general equilibrium models
by Borck (2019) and relatively large effects found in other papers studying price changes
in public transport fares such as Yang and Tang (2018). The differences in effect sizes is
plausible, as we estimate the short-term impact of the subsidy and can hence not account
for long term equilibrium effects, which might work in offsetting directions.22 Further,
we focus on pollution measurements across Germany, whereas other papers have singled
out large urban agglomerations where a stronger relationship between public transport
and air pollution seems plausible, and indeed is also shown in our heterogeneity analyses.

More generally, the documented effect might have important health implications.
Margaryan (2021), for example, shows that a three percent decrease in particulates im-
plies a fall of approximately two percent in the number of patients with cardiovascuar
diagnoses. Overall, the findings thus indicate that subsidizing public transport might be
a viable option to reduce pollution in the short term and given results by Borck (2019)
potentially also in the long term. Thereby, a policy intervention such as the 9-Euro-ticket

22In particular, (Borck, 2019), in his model, emphasizes relocation mechanisms and an increase in
housing consumption and residential emissions.

14



may indeed contribute to the UN’s sustainability goal of creating more resilient, safer
and healthier urban agglomerations.
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Appendix

Figure A.1: Development of average gasoline and diesel prices in Germany, 2022
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Table A.1: Results for SE Station Clusters

(1) (2) (3) (4) (5)
Interaction -0.0476∗ -0.0473∗ -0.0980∗∗∗ -0.0642∗∗∗ 0.0154

(0.0247) (0.0248) (0.0237) (0.0236) (0.0144)
Covariates No No No Yes Yes
Day of Week FE No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Station FE No No Yes Yes Yes

Observed Years 18,19,22 18,19,22 18,19,22 18,19,22 18,19
Observations 24,268 24,268 24,268 24,103 16068

Note: Source: Own calculations. Standard errors in parantheses and clustered at district level,
significance levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.. The table displays regression results using the
log of the air quality index as outcome variable. All specifications control for year specific fuel prices.
Column (1) shows the results for a basic difference-in-differences approach. Columns (2)-(4) augment
the estimation with additional fixed effects and covariates. Column (5) implements a placebo test
where year 2019 is used as the new policy date.

Table A.2: Results for SE Station-Year Clusters

(1) (2) (3) (4) (5)
Interaction -0.0476∗ -0.0473∗ -0.0980∗∗∗ -0.0642∗∗∗ 0.0154

(0.0247) (0.0248) (0.0237) (0.0236) (0.0144)
Covariates No No No Yes Yes
Day of Week FE No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Station FE No No Yes Yes Yes

Observed Years 18,19,22 18,19,22 18,19,22 18,19,22 18,19
Observations 24,268 24,268 24,268 24,103 16068

Note: Own calculations. Standard errors in parantheses and clustered at district level, significance
levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.. The table displays regression results using the log of the air
quality index as outcome variable. All specifications control for year specific fuel prices. Column (1)
shows the results for a basic difference-in-differences approach. Columns (2)-(4) augment the
estimation with additional fixed effects and covariates. Column (5) implements a placebo test where
year 2019 is used as the new policy date.
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Table A.3: Leave-One-Out Results

(1) (2) (3)
Interaction -0.0642∗∗∗ -0.0645∗∗∗ -0.0630∗∗

(0.0236) (0.0241) (0.0242)
Covariates Yes Yes Yes
Year FE Yes Yes Yes
Station FE Yes Yes Yes
Day of Week FE Yes Yes Yes

Observations 24,103 23,837 23,572

Note: Standard errors in parentheses and clustered at district level, significance levels
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.. Outcome variable is the log of the air quality index. (1) leaves
out no observations before and after the introduction, (2) the first day on each side and (3) the first
two days on each side. All specifications control for the full set of covariates and fixed effects.

Table A.4: Results for Different Air Pollutants

(1) (2) (3)
log(PM10) log(PM2.5) log(NO2)

Interaction -0.0511∗∗ -0.1057∗∗∗ -0.0380∗

(0.0231) (0.0320) (0.0227)
Covariates Yes Yes Yes
Year FE Yes Yes Yes
Station FE Yes Yes Yes
Day of Week FE Yes Yes Yes

Observations 19,925 12,179 23,142

Note: Own calculations. Standard errors in parantheses and clustered at district level, significance
levels∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.. All specifications control for year specific fuel prices.
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