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A SIMPLE NUMERICAL APPROACH

TO THE RIEMANN HYPOTHESIS

N. TARKHANOV

This paper is dedicated to P. M. Gauthier on the occasion of his 70 th birthday

Abstract. The Riemann hypothesis is equivalent to the fact that the recip-
rocal function 1/ζ(s) extends from the interval (1/2, 1) to an analytic function

in the quarter-strip 1/2 < �s < 1, �s > 0. Function theory allows one to
rewrite the condition of analytic continuability in an elegant form amenable

to numerical experiments.
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Introduction

The Riemann hypothesis is that all zeros of the Riemann zeta function ζ(z)
in the critical strip 0 < �z < 1 belong to the critical line �z = 1/2. This just
amounts to saying that the function 1/ζ(z) extends from the interval (1/2, 1) to
an analytic function in the quarter-strip 1/2 < �z < 1, �z > 0. Note that the
restriction of 1/ζ(s) to (1/2, 1) is actually continuous on the closed interval. Hence
the function theory allows one to rewrite the condition of analytic continuability in
an elegant form which is amenable to numerical experiments. More precisely, one
constructs an explicit sequence {cn} of complex numbers, such that the equality

lim n
√|cn| = 1 is fulfilled if and only if the Riemann hypothesis is true. The numbers

cn are integrals of 1/ζ(s) over the interval [1/2, 1] with explicit weight function
depending on n. Computations with the newest versions of Mathematica, Maple
and Matlab performed by my diploma students give certain evidence to the fact
that the limit is 1 indeed. However, the standard computer programmes are not
sufficient to evaluate the sequence n

√|cn| with strict accuracy. The numerical data

2000 Mathematics Subject Classification. Primary 11M26; Secondary 11Mxx.
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asymptotic formulas.
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2 N. TARKHANOV

obtained in this way testify to lim n
√|cn| = 1 not only for 1/ζ(s) but also for other

functions (e.g. 1/(s − 3/4 − ı/2)) which fail to be analytically extendable to the
critical quarter-strip. Thus the paper gives rise to the problem of elaborating an
efficient programme which recognises through the behaviour of the sequence n

√|cn|
those continuous functions on [1/2, 1] which extend to analytic functions in the
quarter-strip.

1. The Riemann zeta function

In this section we gather necessary material about the Riemann zeta function.
For complete proofs the reader is referred to [Tit51, KV92, Con03].

For complex numbers s = �s + √−1�s in the half-plane �s > 1 the Riemann
function is defined by

ζ(s) =
∞∑

n=1

1

ns
,

the series converging absolutely and uniformly in each half-plane �s > s0 with
s0 > 1.

In 1737 Euler proved his product formula which displayed a deep connection of
ζ(s) with the distribution of prime numbers.

Theorem 1.1. If �s > 1 then

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

where the product runs over all prime numbers p (p = 1 is no prime number).

In order to extend ζ(s) to an analytic function on all of C, one uses the analytic
extension of the gamma function constructed by Weierstraß. More precisely,

1

Γ(s)
= seγs

∞∏
n=1

(
1 +

1

n

)
e−s/n

holds for �s > 0, where γ is the Euler-Mascheroni constant.
The right-hand side of this equality is an entire function of s vanishing at the

points s = 0,−1,−2, . . ..

Lemma 1.2. If �s > 1 then

ζ(s) =
πs/2

Γ(s/2)

( 1

s(s− 1)
+

∫ ∞

1

(
xs/2−1 + x−s/2−1/2

) ∞∑
n=1

e−πn2x dx
)
.

The lemma shows that the Riemann zeta function extends to a meromorphic
function in the whole complex plane with the only pole at s = 1 which is simple.

This function vanishes at s = −2,−4, . . ., the other zeros of ζ(s) are known to
lie in the critical strip 0 < �s < 1.

B. Riemann conjectured (1869) that all zeros of ζ(s) in the critical strip belong
to the line �s = 1/2.

The restriction of ζ(s) to the critical strip is symmetric with respect to both
the critical line �s = 1/2 and the interval (0, 1) of the real axis. Moreover, it is
different from zero for all s ∈ [0, 1].

Hence the Riemann hypothesis just amounts to saying that ζ(s) has no zeros in
the quarter-strip 1/2 < �s < 1, �s > 0.
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For real x > 0, let π(x) denote the number of prime numbers p which satisfy
p ≤ x.

B. Riemann showed a formula for the difference

π(x)−
∫ x

0

ds

log s

in terms of x and zeros of ζ(s) lying in the critical strip.
If ζ(s) has no zeros with �s > s0 for some 1/2 ≤ s0 < 1, then the asymptotic

formula

π(x) =

∫ x

0

ds

log s
+O(xs0 log x)

holds. The Riemann hypothesis just amounts to this formula with s0 = 1/2.
Some textbooks in complex analysis include the so-called prime number theorem

proved independently by J. Hadamard and Ch.-J. de la Vallée-Poussin (1896). It
reads π(x) ∼ x/ log x.

2. Analytic continuation in a lune

Denote by D := {w ∈ C : |w| < 1} the open unit disk with center at the
origin in the plane of complex variable w. Let S be a regular curve in D, whose
endpoints lie on the unit circle and which does not run through 0 (i.e. 0 /∈ S). The
curve S divides the disk D into two domains and we write G for the subdomain
of D that does not contain the origin 0. In this way we obtain a bounded domain
with piecewiese smooth boundary which is referred to as lune. The boundary of
G consists of two parts, one of the two is the curve S and the other an arc of the
circle ∂D, see Figure 1.

Fig. 1. A basic domain.

In 1926 T. Carleman found a simple formula for analytic continuation in a corner.
For this reason the following refined formula is named after him. This formula is
well known, see for instance [Aiz93]. Since the proof is very simple we give it for
completeness.

Theorem 2.1. Suppose f is a holomorphic function in G continuous up to the
boundary of G. Then

f(w) = lim
n→∞

∫
S

f(w′)
( w

w′
)n 1

2πı

dw′

w′ − w
(2.1)
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for all w ∈ G.

Proof. Fix an arbitrary w ∈ G. Since 0 /∈ G and f is holomorphic in G and
continuous up to the boundary, the function

F (w′) := f(w′)
( w

w′
)n

is holomorphic in G and continuous on G for all n = 1, 2, . . .. By the integral
formula of Cauchy one gets

F (w) =

∫
∂G

F (w′)
1

2πı

dw′

w′ − w

for all w ∈ G. Substituting F yields

f(w) =

∫
∂G

f(w′)
( w

w′
)n 1

2πı

dw′

w′ − w
.

for each n = 1, 2, . . ..
The integral on the right-hand side splits into two integrals, the first is over S

and the second one over ∂G \ S. So

f(w) =

∫
S

f(w′)
( w

w′
)n 1

2πı

dw′

w′ − w
+

∫
∂G\S

f(w′)
( w

w′
)n 1

2πı

dw′

w′ − w
.

On letting n → ∞ one obtains

f(w) = lim
n→∞

∫
S

f(w′)
( w

w′
)n 1

2πı

dw′

w′ − w
+ lim

n→∞

∫
∂G\S

f(w′)
( w

w′
)n 1

2πı

dw′

w′ − w
,

in the case when at least one of the limits exists.
We now show that the second limit exists and is precisely zero. Since w ∈ G and

w′ ∈ ∂G \ S, we get ∣∣∣ w
w′

∣∣∣ = |w|
1

< 1.

It follows that the sequence (w/w′)n converges to zero uniformly in w′ ∈ ∂G \ S.
So the limit of the second integral can be evaluated under the integral sign and one
obtains

lim
n→∞

∫
∂G\S

f(w′)
( w

w′
)n 1

2πı

dw′

w′ − w
=

∫
∂G\S

f(w′)
(
lim
n→∞

( w

w′
)n) 1

2πı

dw′

w′ − w

= 0,

which establishes the desired formula. �

To our best knowledge, Theorem 2.1 gives the simplest explicit formula of ana-
lytic continuation in complex analysis. Based upon this formula, we show a criterion
of analytic continuability into G for a function f0 given on the part S of boundary
∂G. While polynomials of z are dense in the Banach space C(S), those functions on
S which extend analytically to G form a subspace of infinite codimension in C(S).
In particular, the continuous functions f0 
≡ 0 of compact support in S fail to have
analytic continuation to the domain G, which is a consequence of the uniqueness
theorem.
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Theorem 2.2. Let f0 ∈ C(S) satisfy f0 
≡ 0. In order that there be a holomorphic
function f ∈ C(G ∪ S) in G, such that f(w) = f0(w) for all w ∈ S, it is necessary
and sufficient that

lim sup
n→∞

n

√∣∣∣ ∫
S

f0(w′)
(w′)n+1

dw′
∣∣∣ = 1. (2.2)

Proof. Necessity. Given a nonzero function f0 ∈ C(S), we define the Cauchy-type
integral of f0 by

Cf0 (w) =

∫
S

f0(w
′)

1

2πı

dw′

w′ − w

for w 
∈ S. This is a holomorphic function away from the closure of S, and we denote
by C±f0 the restrictions of Cf0 to G and C\G, respectively. The Sokhotsky-Plemelj
formula says that

lim
ε→0+

(
C+f0 (w

′ + εν(w′))− C−f0 (w′ − εν(w′))
)
= f0(w

′) (2.3)

holds uniformly in w′ on compact subsets of S, where ν(w′) is the inward unit
normal vector to S at a point w′ ∈ S. In particular, if either of the functions C±f0
extends continuously to S then so does the other function. The limit in (2.3) is
obviously zero, if w′ ∈ ∂G \ S.

Assume that there is a holomorphic function f in G which is continuous up to
S and satisfies f = f0 on S. A simple manipulation with the Cauchy integral
formula for f shows that the difference C+f0 − f extends to a continuous (even
C∞) function on G∪S. Since f is continuous on G∪S, the integral C+f0 extends
to a continuous function on G ∪ S. By the above, C−f0 extends continuously to
D \G, too.

Consider the function

F (w) =

{
C+f0 (w)− f(w), if w ∈ G ∪ S,
C−f0 (w), if w ∈ D \G,

in the disk D. This function is holomorphic in D \S and continuous on all of D, for
C+f0 − f = C−f0 on S, which is due to Sokhotsky-Plemelj formula (2.3). From
the Morera theorem we easily deduce that F is actually holomorphic in the unit
disk D. Hence, the Taylor series of this function around the origin converges in all
of D. The series looks like

F (w) =
∞∑

n=0

cnw
n (2.4)

for |w| < 1, where

cn =
1

2πı

∫
S

f0(w
′)

(w′)n+1
dw′,

for F = C−f0 nearby the origin. From the Cauchy-Hadamard formula for the con-
vergence radius of power series we readily conclude that lim sup n

√|cn| ≤ 1. If this
limit is less than 1, then the series (2.4) converges in a a disk about the origin of
radius greater than 1. Hence, C−f0 extends to a holomorphic function in a neigh-
bourhood of the closure of S, and so does Cf0. On applying the Sokhotsky-Plemelj
formula once again we see that f0 ≡ 0 on S, a contradiction. This establishes (2.2),
as desired.

Sufficiency. To prove the converse theorem, let f0 be a continuous function on
the closure of S satisfying (2.2). By assumption, the integral C−f0 is holomorphic
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in a disk of sufficiently small radius ε > 0 around the origin (take ε < dist (0, S)).
Hence, C−f0 expands in this small disk as a power series whose coefficients are
given by

cn =
1

2πı

∫
S

f0(w
′)

(w′)n+1
dw′,

cf. (2.4). Condition (2.2) forces the power series (2.4) to actually converge in the
unit disk D to a holomorphic function F . By the uniqueness theorem, the integral
C−f0 extends holomorphically to all of D, and this analytic continuation is F .
Hence it follows that the integral C+f0 extends to a continuous function on G∪S.
We now set

f(w) := C+f0 (w)− F (w)

for w ∈ G ∪ S, thus obtaining a holomorphic function in G which is continuous up
to S and satisfies f(w) = f0(w) for all w ∈ S, as desired. �

3. A Carleman formula for a half-disk

The upper half-disk D
′ = {z ∈ C : |z| < 1, �(z) > 0} is a canonical domain

of the lune type corresponding to S = (−1, 1). Since 0 ∈ (−1, 1), formula (2.1)
is no longer applicable. To this end one needs a transformation w = h(z) which
maps D

′ conformally onto a lune like that in formula (2.1). We look for such a
transformation in the group of fractional affine automorphisms of the unit disk D.
These have the form

h(z) = eıϕ
z − a

az − 1
for z ∈ D, with ϕ ∈ [0, 2π) and |a| < 1. We pose two additional conditions on h,
namely

1) h(0) = tı, where t ∈ (0, 1);
2) h(ı) = ı.

The desired transformation is illustrated in Figure 2.

Fig. 2. A conformal mapping of D′ onto a lune for t = 1/2.

An easy computation shows that there is only one automorphism of the unit disk
satisfying 1) and 2). This is

h(z) =
z + tı

1− tız
. (3.1)
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Corollary 3.1. Let f be a holomorphic function in the half-disk D
′ continuous up

to the boundary of D
′. Then

f(z) = lim
n→∞

∫ 1

−1

f(z′)
( h(z)

h(z′)

)n 1

2πı

dh(z′)
h(z′)− h(z)

(3.2)

for all z ∈ D
′.

Proof. Set F (w) := f
(
h−1(w)

)
for all w ∈ G. Since z = h−1(w) maps the domain

G conformally onto the half-disk D
′ and f is holomorphic in D

′, the function F is
holomorphic in G. Furthermore, z = h−1(w) extends to a homeomorphism of the
closure of G onto that of D′. Hence, F is continuous up to the boundary of G. By
formula (2.1),

F (w) = lim
n→∞

∫
S

F (w′)
( w

w′
)n 1

2πı

dw′

w′ − w

for all w ∈ G. On substituting w = h(z) and w′ = h(z′) and taking into account
that S is the image of (−1, 1) by h, we arrive at

F (h(z)) = lim
n→∞

∫ 1

−1

F (h(z′))
( h(z)

h(z′)

)n 1

2πı

dh(z′)
h(z′)− h(z)

for all z ∈ D
′, as desired. �

Replacing the function h in (3.2) by its expression (3.1) we write the formula for
analytic continuation from the interval (−1, 1) into the half-disk in explicit form.
More precisely,

f(z) = lim
n→∞

( z + tı

1− tız

)n
∫ 1

−1

f(z′)
(1− tız′

z′ + tı

)n 1− tız

1− tız′
1

2πı

dz′

z′ − z

for all z ∈ D
′. Recall that t is any number in the interval (0, 1). For t = 0 we

recover formula (2.1), however, this value is prohibited, for the integrand becomes
singular at z′ = 0.

Under conformal map (3.1) Theorem 2.2 is also traced back to conditions of
analytic continuability of functions from the interval (−1, 1) to the upper half-disk
D

′. We actually rewrite the same invariant object in other holomorphic coordinates.
Let f0 be a continuous function on [−1, 1]. Then F0 := f0 ◦ h−1 is a continuous
function on S, the image of (−1, 1) by w = h(z). This is a regular curve in D \ {0}
with endpoints

±1− t2

1 + t2
+

2t

1 + t2
ı

on the unit circle. Obviously, f0 extends to a holomorphic function f in D
′, which

is continuous up to (−1, 1), if and only if F0 extends to a holomorphic functions
F := f ◦ h−1 in G continuous up to S. By Theorem 2.2 F0 extends analytically to
G if and only if

lim
n→∞

n
√

|cn| = 1,
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where

cn =
1

2πı

∫
S

F0(w)

wn+1
dw

=
1

2πı

∫ 1

−1

f0(z)

(h(z))n+1
dh(z)

=
1

2πı

1∫
−1

f0(z)
(1− tız

z + tı

)n 1− t2

(z + tı)(1− tız)
dz

(3.3)

for n = 0, 1, . . ., because dh(z) =
1− t2

(1− tız)2
dz.

Corollary 3.2. Let f0 ∈ C[−1, 1] be a nonzero function. In order that there be
a holomorphic function f in D

′ continuous up to (−1, 1) and satisfying f = f0 on

(−1, 1), it is necessary and sufficient that lim sup n
√|cn| = 1, where cn are given by

(3.3).

Using the triangle inequality one finds readily an explicit estimate from above
for the limit in question. Namely,

|cn| ≤
(

sup
z∈(−1,1)

1

|h(z)|
)n+1 1

2π

∫ 1

−1

|f0(z)| |dh(z)|

≤
( 1

|h(0)|
)n+1 1

2π

∫ 1

−1

|f0(z)| 1− t2

1 + t2z2
dz

for all n = 0, 1, . . ., the last inequality being a consequence of the fact that the
modulus of h(z) takes on its global infimum in (−1, 1) at the point z = 0, as is easy
to see from Figure 2. The right-hand side here is a constant multiple of |h(0)|−n,
and so

lim sup n
√
|cn| ≤ 1

|h(0)| =
1

t
. (3.4)

4. Reduction of the Riemann hypothesis

Arguing as in Section 3, we look for a conformal mapping z = k(v) of the critical
quarter-strip H

′ := {v ∈ C : �v ∈ (1/2, 1), �v > 0} onto the half-disk D
′. For this

purpose we need several lemmata.

Lemma 4.1. The function z = tan v maps the strip −π/4 < �v < π/4 conformally
onto the unit disk D.

Proof. As is well known, the function z = tan v maps the strip −π/2 < �v < π/2
conformally into the complex plane C. It remains to specify the image of the strip
−π/4 < �v < π/4 by this mapping. Given any v in the strip −π/4 < �v < π/4,
we get

| tan v| =
√

e2�v − 2 cos(2�v) + e−2�v

e2�v + 2 cos(2�v) + e−2�v
.

By assumption, −π/2 < 2�v < π/2, whence cos(2�v) > 0 and cos(2�v) = 0 if and
only if either �v = −π/4 or �v = π/4. So the quotient under the root sign is less
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than 1 in the open strip and it is equal to 1 if and only if �v = −π/4 or �v = π/4,
as desired. �

From Lemma 4.1 we further deduce

Lemma 4.2. The function z = tan v maps the half-strip

{v ∈ C : −π/4 < �v < π/4, �v > 0}
conformally onto the half-disk D

′. The image of the interval (−π/4, π/4) by this
mapping is the interval (−1, 1).

Proof. Using the Euler formula one easily obtains

tan v =
2 sin(2�v) + ı (e2�v − e−2�v)

e2�v + 2 cos(2�v) + e−2�v
.

If �v > 0, then e2�v > e−2�v, and so � tan v > 0, which shows the first part of
the lemma. For the second part we assume v ∈ (−π/4, π/4), so v is real. Then
z = tan v is also real. Since the function tan v is strongly monotonic increasing on
the interval (−π/2, π/2) and tan(−π/4) = −1 and tan(π/4) = 1, the assertion is
clear. �

In order to construct a conformal mapping of the half-disk D
′ onto the critical

quarter-strip H
′, it suffices to take the composition of z = tan v with an affine

transformation of the v -plane. That is

z := k(v) = tanπ
(
v − 3

4

)
(4.1)

with inverse v = k−1(z) :=
3

4
+

1

π
arctan z, see Figure 3.

Fig. 3. A conformal mapping of H′ onto D
′.

Lemma 4.3. If f is a holomorphic function in the critical quarter-strip H
′, then

the composition f ◦ k−1 is a holomorphic function in the upper half-disk D
′. If

moreover the function f is continuous up to the interval (1/2, 1), then f ◦ k−1 is
continuous up to (−1, 1).

Proof. The proof is obvious by the above. We formulate this lemma for convenience
of references. �
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The function z = k(v) maps the segment �v = 1, �v ≥ 0 homeomorphically
onto the quarter-circle |z| = 1, arg z ∈ [0, π/2) and the segment �v = 1/2, �v ≥ 0
homeomorphically onto the quarter-circle |z| = 1, arg z ∈ (π/2, π]. The inverse
mapping v = k−1(z) extends continuously to the entire boundary of the upper half-
disk D

′ except for the north pole z = ı where k−1 blows up. Thus, the mapping
v = k−1(z) might be used to compactify the closure of H

′ by adding a “point
at infinity” to it. A function f on the closure of H′ is said to be continuous on
such a one-point compactification of the closure of H′ if the composition f ◦ k−1

is continuous on the closure of D′. A Carleman-type formula with integration over
the interval [1/2, 1] still holds for functions f holomorphic in H

′ and continuous on
the compactification of H′. However, the Riemann zeta function does not belong to
this class, so we shall not discuss the Carleman formula for holomorphic functions
in H

′. On the other hand, the criterion of analytic continuability does not require
any continuity on the compactification of the closure of H′. Therefore, it extends
to holomorphic functions in the critical quarter-strip in much the same way as
Corollary 3.2.

Theorem 4.4. Let f0 a continuous function on the interval [1/2, 1]. In order that
there be a holomorphic function f in H

′, such that f is continuous up to the open
interval (1/2, 1) and coincides with f0 on this interval, it is necessary and sufficient
that

lim sup n
√
|cn| = 1,

where

cn =
1

2πı

1∫
−1

f0

(3
4
+

1

π
arctan z

)(1− tız

z + tı

)n 1− t2

(z + tı)(1− tız)
dz. (4.2)

Proof. By assumption,

F0(z) := f0

(3
4
+

1

π
arctan z

)
is a continuous function of z ∈ [−1, 1]. By Lemma 4.3, it extends to a holomorphic
function in the half-disk D

′ continuous up to (−1, 1) if and only if f0(v) extends
to a holomorphic function in the quarter-strip H

′ continuous up to (1/2, 1). The
theorem now follows from Corollary 3.2. �

In Section 1 we have done an alternative formulation of the Riemann hypothesis.
We now make it more precise.

Lemma 4.5. The Riemann hypothesis is true if and only if there exists a holomor-
phic function in H

′ which is continuous up to (1/2, 1) and equal to 1/ζ(s) for all
s ∈ (1/2, 1).

Proof. Since the Riemann zeta function does not vanish on the interval [1/2, 1] and
has a simple pole at s = 1, the function f0(s) := 1/ζ(s) is continuous on [1/2, 1]
and has a simple zero at s = 1. If ζ(s) 
= 0 for all s ∈ H

′, then the function 1/ζ(s)
is actually holomorphic in the whole critical quarter-strip. Hence, the Riemann
hypothesis just amounts to the fact that f0 extends to a holomorphic function in
H

′ continuous up to (1/2, 1). �
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Corollary 4.6. The Riemann hypothesis holds if and only if lim sup n
√|cn| = 1,

where

cn =
1

2πı

1∫
−1

1

ζ
(3
4
+

1

π
arctan z

) (1− tız

z + tı

)n 1− t2

(z + tı)(1− tız)
dz. (4.3)

Proof. This follows immediately from Lemma 4.5 and Theorem 4.4. �

The idea of this approach goes back at least as far as André Weil who first proved
the analogue of the Riemann hypothesis for general curves over finite fields in 1942.
As but one part of his proof was to show that the logarithmic derivative of the
zeta function has no poles in the “critical strip.” Weil proved crucial estimates for
the radius of convergence of the power series in which the logarithmic derivative
expands around the origin. For the Riemann zeta function arguments of Weil were
recovered by Aizenberg et al. in [AAL99]. However, the main formula of [AAL99]
is not correct.

5. Numerical experiments

Formula (4.2) can be rewritten in the form

cn =
1

2πı

∫
S

en(− logw) f0

(
(h ◦ k)−1(w)

) dw

w
,

where S ⊂ D is the image of (−1, 1) by w = h(z). Since the function − logw has
no saddle points in the complex plane, the saddle-point method does not apply to
construct asymptotics of cn as n → ∞. Hence, Theorem 4.4 seems to be of purely
numerical interest.

My graduate students A. Bühmann (2009) and M. Albinus (2010) evaluated

numerically several terms n
√|cn| for the functions 1/ζ(s) and 1/(s − (3/4 + ı)) on

the interval [1/2, 1]. Obviously, the latter function does not extend analytically to

all of H′. Hence, the limit lim sup n
√|cn| for this function is larger than 1 (but

≤ 1/t). Several numerical values of sequence n
√|cn| corresponding to t = 1/2 are

given in Figure 4.
Computations with the newest versions of Mathematica, Maple and Matlab give

certain evidence to the fact that for the function 1/ζ(s) the limit of n
√|cn| is 1 in-

deed. However, on replacing 1/ζ(z) by other functions (e.g. 1/(s−(3/4+ ı))) which
fail to be analytically extendable to the critical quarter-strip computer simulations
still suggest that lim sup n

√|cn| = 1. So the standard computer programmes don’t
allow one to specify by means of Theorem 4.4 those continuous functions on [1/2, 1]
which extend analytically to the critical quarter-strip, cf. [AAL99]. A severe dif-
ficulty consists in rough evaluations of integrals depending on a parameter. For
large values of the parameter the graph of the integrand function in (4.2) fills in a
rectangle. The problem arising is to elaborate an effective programme for numerical
evaluation of the limit lim sup n

√|cn|, where cn are given by formula (4.2). This
features once again the transcendental character of the Riemann problem on zeros
of zeta function.

Acknowledgements The author gratefully acknowledges the excellent pictures of
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1/ζ(s) 1/(s− (3/4 + ı))
n = 1 0,5361 1,5046
n = 2 0,7322 1,1659
n = 3 0,8124 1,0265
n = 4 0,8557 0,9274
n = 5 0,8827 0,8374
n = 6 0,9013 0,7391
n = 7 0,9148 0,6070
n = 8 0,9250 0,5941
n = 9 0,9330 0,7636
n = 10 0,9395 0,8512
n = 11 0,9449 0,8960
n = 12 0,9493 0,9159
n = 13 0,9531 0,9195
n = 14 0,9564 0,9110
n = 15 0,9592 0,8928
n = 16 0,9617 0,8677

Fig. 4. A computer simulation of n
√|cn| for t = 1/2.
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