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Abstract

A decade ago, it became feasible to store multi-terabyte databases in main memory.
These in-memory databases (IMDBs) profit from DRAM’s low latency and high through-
put as well as from the removal of costly abstractions used in disk-based systems, such as
the buffer cache. However, as the DRAM technology approaches physical limits, scaling
these databases becomes difficult. Non-volatile memory (NVM) addresses this challenge.
This new type of memory is persistent, has more capacity than DRAM (4x), and does
not suffer from its density-inhibiting limitations. Yet, as NVM has a higher latency
(5-15%) and a lower throughput (0.35x), it cannot fully replace DRAM.

IMDBs thus need to navigate the trade-off between the two memory tiers. We present
a solution to this optimization problem. Leveraging information about access frequen-
cies and patterns, our solution utilizes NVM’s additional capacity while minimizing the
associated access costs. Unlike buffer cache-based implementations, our tiering abstrac-
tion does not add any costs when reading data from DRAM. As such, it can act as a
drop-in replacement for existing IMDBs. Our contributions are as follows:

(1) As the foundation for our research, we present Hyrise, an open-source, colum-
nar IMDB that we re-engineered and re-wrote from scratch. Hyrise enables realistic
end-to-end benchmarks of SQL workloads and offers query performance which is com-
petitive with other research and commercial systems. At the same time, Hyrise is easy to
understand and modify as repeatedly demonstrated by its uses in research and teaching.

(2) We present a novel memory management framework for different memory and
storage tiers. By encapsulating the allocation and access methods of these tiers, we
enable existing data structures to be stored on different tiers with no modifications to
their implementation. Besides DRAM and NVM, we also support and evaluate SSDs
and have made provisions for upcoming technologies such as disaggregated memory.

(3) To identify the parts of the data that can be moved to (s)lower tiers with little
performance impact, we present a tracking method that identifies access skew both in the
row and column dimensions and that detects patterns within consecutive accesses. Unlike
existing methods that have substantial associated costs, our access counters exhibit no
identifiable overhead in standard benchmarks despite their increased accuracy.

(4) Finally, we introduce a tiering algorithm that optimizes the data placement for
a given memory budget. In the TPC-H benchmark, this allows us to move 90% of the
data to NVM while the throughput is reduced by only 10.8% and the query latency is
increased by 11.6%. With this, we outperform approaches that ignore the workload’s
access skew and access patterns and increase the query latency by 20% or more.

Individually, our contributions provide novel approaches to current challenges in sys-
tems engineering and database research. Combining them allows IMDBs to scale past
the limits of DRAM while continuing to profit from the benefits of in-memory computing.
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Zusammenfassung

Seit etwa einem Jahrzehnt konnen Datenbanken mit einer Grofle von mehreren Terabytes
im Hauptspeicher abgelegt werden. Diese Hauptspeicherdatenbanken (In-Memory Data-
bases) profitieren einerseits von der niedrigen Latenz und dem hohen Durchsatz von
DRAM und andererseits vom Fehlen teurer Abstraktionsschichten, wie dem Buffer Cache,
welcher in Festplatten-basierten Datenbanksystemen von Noéten war. Dadurch, dass die
Entwicklung der DRAM-Technologie mehr und mehr auf physikalische Grenzen stoft,
wird es jedoch zunehmend schwierig, Hauptspeicherdatenbanken zu skalieren. Non-
volatile Memory (NVM) adressiert diese Herausforderung. Dieser neue Speichertyp ist
persistent, hat eine um einen Faktor 4 hohere Kapazitat als DRAM und leidet nicht
unter den Einschrankungen, welche die Erhéhung der Speicherdichte von DRAM limi-
tieren. Da NVM jedoch eine héhere Latenz (5-15x) und einen niedrigeren Durchsatz
(0.35%) aufweist als DRAM, kann es DRAM noch nicht vollstandig ersetzen.

Bei der Entwicklung von Hauptspeicherdatenbanken muss daher der Zielkonflikt zwis-
chen den beiden Speichertypen ausbalanciert werden. Die vorliegende Arbeit prasentiert
eine Losung fiir dieses Optimierungsproblem. Indem wir Informationen zu Zugriffshaufig-
keiten und -mustern auswerten, konnen wir die zusatzliche Kapazitdt von NVM aus-
nutzen und gleichzeitig die mit NVM verbundene Erhchung von Zugriffskosten min-
imieren. Anders als bei bestehenden Ansétzen, welche auf einen Buffer Cache aufsetzen,
bleiben bei unserer Ansatz die Kosten von Zugriffen auf DRAM unveréandert. Dadurch
kann unsere Losung als unmittelbarer Ersatz fiir existierende Hauptspeicherdatenbanken
genutzt werden. Unsere Arbeit leistet hierfiir die folgenden Beitrage:

(1) Als Grundlage fiir unsere Forschung préasentieren wir Hyrise, eine quelloffene, spal-
tenorientierte Hauptspeicherdatenbank, welche wir von Grund auf neu entwickelt haben.
Hyrise ermoglicht realistische End-to-End Benchmarks von SQL Workloads und weist
dabei eine Performance auf, welche mit anderen Datenbanksystemen aus Industrie und
Forschung vergleichbar ist. Hierbei ist Hyrise leicht zu verstehen und modifizieren. Dies
wurde durch den wiederholten Einsatz in Forschung und Lehre demonstriert.

(2) Wir prasentieren ein neuartiges Speicherverwaltungs-Framework, welches verschie-
dene Speicherebenen (Tiers) unterstiitzt. Indem wir die Allokations- und Zugriffsmeth-
oden dieser Speicherebenen kapseln, erméglichen wir es, bestehende Datenstrukturen
auf diese Ebenen aufzuteilen ohne ihre Implementierung anpassen zu miissen. Neben
DRAM und NVM unterstiitzt unser Ansatz SSDs und ist auf zukiinftige Technologien
wie Disaggregated Memory vorbereitet.

(3) Um jene Teile der Daten zu identifizieren, welche auf langsamere Ebenen ver-
schoben werden koénnen, ohne dass die Performance des Systems als Ganzes negativ
beeintrachtigt wird, stellen wir mit unseren Access Countern eine Tracking-Methode
vor, welche ungleich verteilte Zugriffshaufigkeiten sowohl in der Zeilen- als auch in der
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Spaltendimension erkennt. Ebenfalls erkennt die Tracking-Methode Zugriffsmuster in
aufeinanderfolgenden Zugriffsoperationen. Trotz ihrer hohen Genauigkeit weisen unsere
Access Counter keine messbaren Mehrkosten auf. Dies unterscheidet sie von bestehen-
den Ansétzen, welche ungleichverteilte Zugriffsmuster weniger gut erkennen, gleichzeitig
aber Mehrkosten von 20% verursachen.

(4) Abschliefilend stellen wir einen Tiering-Algorithmus vor, welcher die Verteilung
von Daten auf die verschiedenen Speicherebenen optimiert. Am Beispiel des TPC-H-
Benchmarks zeigen wir, wie 90% der Daten auf NVM verschoben werden kénnen, wobei
der Durchsatz nur um 10.8% reduziert und die durchschnittliche Antwortzeit um 11.6%
erhoht wird. Damit iibertreffen wir Ansétze, welche Ungleichverteilungen in den Zu-
griffshaufigkeiten und -mustern ignorieren.

Einzeln betrachtet stellen unsere Beitrdge neue Herangehensweisen fiir aktuelle Her-
ausforderungen in der systemnahen Entwicklung und der Datenbankforschung dar. In
ihrem Zusammenspiel erméglichen sie es, Hauptspeicherdatenbanken tiber die Grenzen
von DRAM hinaus zu skalieren und dabei weiterhin von den Vorteilen des In-Memory
Computings zu profitieren.

iv



Contents

1 Introduction

1.1 Motivation . . . . . . .. .
1.2 Research Questions . . . . . . . .. .. .
1.3 Contributions . . . . . . . . . ...
1.4 Scope of this Thesis . . . . . . . . ...
1.5 Outline . . . . . . . . . e

2 Background

2.1 DBMS Design Space . . . . . . . .. e
2.1.1 In-Memory Databases . . . ... ... ... ... .. ........
2.1.2 Column-Oriented Storage . . . . . . .. ... ... ... .. ....

2.2 Non-Volatile Memory . . . . . . . .. .. ..
2.2.1 Definition . . . . . .. e
2.2.2  Physical Foundations . . . . . . . . ... ...
2.2.3 Hardware/Software Interaction . . . . .. ... ... ... .....
2.24 Persistency . . . ...

3 Related Work

3.1 Modern Multi-Tier DBMS Architectures . . . . . . . .. ... ... ....
3.1.1 Anti-Caching as a Concept . . . . . . . .. .. ... ... .....
3.1.2  Anti-Caching as Implemented in H-Store . . . . . ... ... ...
3.1.3 Microsoft SQL Server, Hekaton, and Siberia . . . . . ... ... ..
3.1.4 SAP HANA . . . . .
3.1.5 Leanstore, Umbra, and Mosaic . . . .. ... .. ... ... ....
3.1.6 Further Approaches . . . . ... ... . ... ... .. .......

3.2 Tiering Outside of Database Systems . . . . . . . . . ... ... .. ....
3.21 Paging . . . . . ..
3.2.2 Library Support . . . . . . . .. ..
3.2.3 Data Structures and Algorithms . . . . ... ... ... ... ...

3.3 Summary ... ...

4 The Research DBMS Hyrise

4.1 Requirements . . . . . . .. ..
4.1.1 Functional Requirements . . . . .. ... ... ... ... .....
4.1.2 Non-Functional Requirements . . . . . . .. .. ... ... .....

4.2 Architecture Overview . . . . . . . . . . . ..

11
13
13
14
18
21

25
25
25
26
28
30
32
35
35
35
36
37
38

39
40
40
42
44



vi

4.3

4.4

4.5
4.6

4.7

Physical Table Layout . . . . .. .. .. .. ... oL

4.3.1 Chunks and Segments . . . . . . ... ... .. 0L
4.3.2 Tterators . . . . . . . .o
4.3.3 Hybrid Row- and Column-Based Layout . . . . . ... .. ... ..
Query Parsing and Execution . . . . . . ... ... ... ... .. .....
4.4.1 SQL Parsing . . . . . . ...

4.4.2 Translation from Parsed SQL to Logical Query Plans (LQPs) . . .
4.4.3 Optimization . . . . . .. .. . oL

4.4.4 Translation from LQPs to Operators . . . . .. .. .. .. .. ...
4.4.5 Execution Engine . . . . . . ... .00
Multi-Threading . . . . . . . . . . .
Evaluation . . . . . . .. .
4.6.1 Benchmarking and Reproducibility . . . . . .. .. .. .. .. ...
4.6.2 Single-Threaded TPC-H Performance . . ... ... ... .....
4.6.3 Multi-Threaded TPC-H Performance . . . . . . . ... ... ....
SUMMATY . . . . o o e e e e e e e e

Multi-Tier Memory Management and Data Migration

5.1
5.2
5.3

5.4
9.5

5.6
5.7

Tier-Agnostic Data Access . . . . . . . . . . ..
Space Allocation on Different Tiers . . . . . . . . . ... ... ... ....
Use of Allocated Space by Data Structures . . . ... .. ... ... ...
5.3.1 Running Example . . ... ... ... ... 0 o0
5.3.2 Stateful Allocators . . . . . . . . . ...
5.3.3 Polymorphic Memory Resources . . .. ... ... ... ......
Migration of Data Structures Between Tiers . . . . . . . . ... ... ...
Evaluation . . . . . . . . ...
5.5.1 Access Methods. . . . . . . ... .. ... ... ...
5.5.2 Allocation Primitives . . . . . . . . . . ... ... ... .. ...,
5.5.3 PMR-based Data Structures . . .. .. .. ... ... .. ... ..
5.5.4 End-to-End Allocation Performance . . . . ... ... ... ....
5.5.5  Migration from DRAM to DRAM . . . ... ... ... ......
5.5.6 Migration between DRAM and Lower Tiers . . . . . . . ... ...
5.5.7 Summary of the Evaluation . . . . . ... ... ... .. ......
Use Beyond Automatic Tiering . . . . . . .. ... ... ... ... ....
SUMMATY . . . . o o e e e e e e e e

Access Tracking

6.1

6.2
6.3

Possible Approaches . . . . . . . ...
6.1.1 Granularity . . . . . . .. .. ... e
6.1.2 Tracking Method . . . . . . . . . ... ...
Implementation . . . . . . .. ...
Evaluation . . . . . . ... o
6.3.1 Information Quality . . . . . ... ... ... ... ...
6.3.2 Tracking Cost . . . . . . . . . . . .

o1

61
62
64
66
66
67
69
71
73
73
7
79
81
82
84
85
85
86



6.4 Use Beyond Automatic Tiering . . . . . . . .. ... .. ... .. .....
6.5 Summary . . .. ... e
7 Decision Making
7.1 TImplementation . . . . . . . . ...
7.1.1 Knapsack for Multiple Tiers . . . . . . . . .. .. ... ... .. ..
7.1.2  Visualization of the Decision Making Process . . . . . . ... ...
7.2 Evaluation . . . . . . . .. e
7.2.1 Benchmark Setup. . . . . . . .. ... o
7.2.2 Benefits of Weighted Access Patterns. . . . . ... ... ... ...
7.2.3 Benefits of Multi-Dimensional Tracking . . . . ... ... ... ..
7.2.4 Solver Efficiency . . . ... ... ... ...
7.3 Summary . . ... .. e e e
8 Discussion
8.1 Threats to Validity . . . . . . .. .. ..
8.2 Future Work . . . . . . .
8.3 Conclusion . . . . . . . .
List of Figures
List of Tables
List of Code Listings
Acronyms
Bibliography

101
102
103
104
105
106
110
111
112
114

115
115
116
117

119
120
120
121

122

vii






1 Introduction

In this chapter, we present the motivation for our research on automatic tiering for
in-memory databases and state the research questions that are answered by this thesis.
Furthermore, we explicitly list our contributions, describe how these advance the current
state of the art and discuss how they can be applied beyond the scope of automatic
tiering. Finally, we define the scope of this thesis and explain its structure.

1.1 Motivation

By storing data on fast DRAM instead of slow SSDs or HDDs, in-memory databases
(IMDBs) outperform traditional disk-based databases. At the same time, DRAM suf-
fers from one fundamental restriction: the future scalability of single-node in-memory
databases is constricted by the stagnation of DRAM capacities [159]. Even though the
physical boundaries have been repeatedly pushed, the underlying problems have not
been solved [227]: physical limitations make it difficult to shrink cells (the one-bit build-
ing blocks of DRAM) in order to increase the DRAM density and thus its capacity.
Shrinking the individual components of DRAM even further increases the error rates
and has already led to security issues [123]. As such, researchers expect that the density,
and with it, the capacity of DRAM will soon hit an upper limit [227]. Ultimately, this
means that without new hardware innovations, it will become harder for single-node
in-memory databases to keep up with continuously growing amounts of data.

An innovation that can help in moving past this limitation is non-volatile memory
(NVM!Y). As of mid-2021, only one NVM product is publicly available, namely Intel
Optane Persistent Memory. It is also marketed as DCPMM?, which is the term that
we use when specifically referring to this product. While DRAM uses a traditional
transistor /capacitor architecture, DCPMM uses a new physical approach based on phase-
change memory. This approach has several benefits over DRAM. First, because it does
not rely on a capacitor to hold the state of a cell, it maintains its state even without
power. This makes it non-volatile. Second, DCPMM can be produced with a higher
density than DRAM, which allows the modules to achieve a higher capacity. Besides
DCPMM, the advantage of higher capacities is projected for several upcoming types of
NVM. It is the aspect of better scalability that is of interest in this thesis.

The advantages of NVM currently still come with a cost, namely higher access latencies
and lower bandwidth compared to DRAM. While the read and write latencies of NVM
come close to those of DRAM, they are not yet on par. This is visualized in the memory

! Also referred to as NVRAM, Persistent Memory (PMem), and Storage-Class Memory (SCM).
2DC stands for “data center”, PMM for “persistent memory module”.
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15ns 240 GB/s <50 MB
per CPU per CPU

r: 101 GB/s 128 GB
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NVM read (r): 350 ns r: 37 GB/s 512 GB
write (w): 1050 ns  w: 6.8 GB/s per DIMM
r: 3.5 GB/s 2TB
/ SSD \ 20,000 ns w:2.7GB/s  per SSD
\

Figure 1.1: The memory and storage hierarchy, including key performance figures. Num-
bers are only given for reference and vary from product to product. Partially
based on data taken from [104, 111, 242, 256].

pyramid shown in Figure 1.1. Programs that want to use NVM’s higher memory capacity
need to address this trade-off between capacity and performance. In the case of in-
memory databases, a solution is to move pieces of data that are less-frequently accessed
to NVM, thus keeping the frequently used pieces in DRAM. This process is known as
tiering and the different devices that data can be stored on are referred to as tiers.
Tiering must not affect the correctness of query results. All pieces of the data that
can contain values relevant to the result must be accessed regardless of their location. It
is the goal of a tiering mechanism to minimize these accesses by making efficient tiering
decisions in which only less-frequently accessed data is stored on (s)lower tiers.

Both prior work and our own research demonstrate that such less-frequently accessed
data exists in the cosmos of enterprise IMDBs. Hoppner and Rauhe show that in an ana-
lyzed ERP system, 65% of the data is used by less than 6% of the executed queries [106].
In one of our own case studies, we analyzed the meta data of a real-world ERP system.
Here, we found an unusual amount of unused data stored in the audit log tables. This
data was inserted by automatic processes that were inefficiently updating data in the
customer address tables. Instead of changing a single field, e.g., last contacted on, the
processes deleted and re-inserted the entire row. This led to an unnecessary amount of
audit logs being generated. In total, these logs amounted to almost 250 GB of DRAM.
While the DBAs were aware that the audit log tables were large, they were previously
unaware of where this data was generated and whether it served a purpose. From this
case study, we deduce (1) that less-frequently or even unused data exists in in-memory
databases, and (2) that the responsibility of identifying rarely used data should not be
imposed on the DBA.

Thus, we argue that future database systems need to make more decisions automati-
cally. With this thesis and the presented implementation of automatic tiering, we work
towards this goal.



So far, we have discussed two tiers, namely DRAM and NVM. However, in computer
science, “[t/he only reasonable numbers are zero, one and infinity” [157]. It is thus
unreasonable to settle for just DRAM and NVM. While SSDs are too slow to compete
with the two memory types, they can still be used to further extend the capacity of
in-memory databases [225]. This allows the system to store data that would otherwise
have to be removed or archived, i.e., moved to storage outside of the database’s control.
By including SSDs in our tiering approach, we enable continued access to such data
without the need of de-archiving the data. At the same time, designing an architecture
that can handle an arbitrary number of tiers makes our approach more future-proof.
This design decision has already proved fruitful as we established a new collaboration
with a hardware vendor and will explore such an additional tier as part of future work.

While we are not the first to discuss tiering data in in-memory databases, existing so-
lutions are lacking in one or multiple dimensions. Previous approaches either (1) require
manual user intervention, (2) do not identify access skew in both the row and column
dimensions as well as varying access patterns, or (3) only support two tiers, usually
DRAM and either NVM or SSD. We discuss these existing solutions in Chapter 3.

1.2 Research Questions

With the goal of using NVM’s capacity efficiently while keeping the performance close to
that of a DRAM-only in-memory database, we pose the following two research questions:
1. How can data be stored on different memory and storage tiers in a transparent man-

ner that is consistent with the DRAM-first approach of in-memory databases and
does not negatively affect the performance when accessing data stored on DRAM?
Storing data in main memory has proven beneficial from both a performance and
an ease-of-development perspective. Our goal is to benefit from the existing work
on IMDBs and to enrich them with additional capabilities to ensure their growth
beyond DRAM scalability boundaries.
From an engineering perspective, the question is how multiple tiers can be in-
cluded in a manner that does not permeate the entire system’s architecture but
instead allows components below and above the tiering layer to remain unmodi-
fied. Neither should it be necessary to reimplement data structures to enable their
storage on different tiers, nor should operators need to be adapted to access data
on different tiers. From a user’s perspective, tiering should neither complicate the
administration of the system, nor deteriorate its performance.
The performance aspect of this research question has previously been stated by
Ma et al.:

“The main challenge in supporting larger-than-memory databases on an
in-memory DBMS lies in accessing the data stored on a secondary storage
device without slowing down the regular in-memory operations.”

While several approaches for this have been proposed in the past, none meet all of
our criteria for flexibility, performance, and non-intrusiveness.



2. How can a DBMS automatically (a) identify those parts of data that should remain
on DRAM for performance reasons, and (b) migrate the remainder of the data
without disrupting the continuous operation of the system?

To automatically migrate data, the system needs to gather information on the
access characteristics of different parts of data and use this information to solve
the underlying optimization problem. For part a of this question, we want to
understand which information is valuable, how it can be gathered efficiently, and
how it can be used in a decision making process.

Second, when applying a new configuration, this needs to be done in a way that
keeps the impact on concurrently executed queries to a minimum (part b). The
migration needs to handle concurrent modifications of the migrated data in a way
in which no updates are lost and the concurrent queries do not have to wait for
the migration to finish.

To be able to answer these questions, several prerequisites have to be met. The most
substantial of these is the availability of an open-source research platform that allows
us to test and evaluate different approaches for automatic tiering. Existing systems are
either closed-source or do not provide the flexibility needed to implement the proposed
storage concepts. In the following section, we describe the contributions made both to
meet the prerequisites as well as those made to answer the listed research questions.

1.3 Contributions

This thesis makes the following contributions: first, we present the in-memory DBMS
Hyrise (Chapter 4). Hyrise is being developed by our group as an open-source research
IMDB that facilitates our research on autonomous database management. Since starting
in 2017, we have re-engineered the previous implementation of Hyrise and re-written the
system from scratch. Additions include SQL support, a comprehensive query optimizer,
and a flexible storage layer that provides a high degree of flexibility with regards to
physical data management. This new version of Hyrise now also enables realistic end-
to-end evaluations. In the TPC-H benchmark, the performance of Hyrise is competitive
with that of comparable systems such as MonetDB, DuckDB, HyPer, and Umbra.

Hyrise is being worked on by a team of PhD and master’s students without whom a
project of this size would not be possible. Since the start of the Hyrise rewrite, I have
significantly guided its architecture and the project’s development process. As such, I
consider Hyrise to be a significant contribution made as part of the work on this thesis.
Still, I do not claim full credit for Hyrise and cannot overemphasize the value of my
collaborators’ input.

Second, we contribute a new abstraction layer for data stored on different memory
and storage tiers (Section 5). This abstraction layer makes it possible to store arbitrary
data structures (including, but not limited to, arrays, trees, and hashmaps) on DRAM,
NVM, and file-based block devices. Our approach is less intrusive than previous memory
management approaches. It can be applied to existing code by adding a single template
argument to a variable’s definition, which then enables them to be stored on different



tiers. The implementation of the data structure itself does not need to be modified.
This allows developers to write code that works regardless of where the data is stored.
Despite this high degree of flexibility, the abstraction layer adds an overhead of only 0.6%
compared to a DRAM-only system. With this, we solve the cited challenge of accessing
data on secondary storage without slowing down the regular in-memory operations.

Third, we introduce a new type of multi-dimensional data access tracking method
(Section 6). Unlike existing approaches, which mostly track accesses on either a row or
a column level, we track accesses in both dimensions. With this, we can identify types of
data skew that could not be identified if only one dimension was covered. Additionally,
our tracking method identifies access patterns, such as sequential, monotonically increas-
ing, or random accesses. This allows us to better take the performance characteristics of
the underlying memory and storage tiers into account. We show how the access tracking
can be implemented as an extension to the existing access abstraction layer [25] in a way
that adds no measurable performance overhead.

Fourth and finally, we propose automatic decision making for horizontally partitioned,
columnar in-memory databases (Section 7). This final contribution builds upon the pre-
vious three contributions: it uses data obtained from the access tracker to identify those
parts of the data for which moving them to a lower tier comes with the lowest perfor-
mance impact. The tiering decisions are then transparently applied via our multi-tier
memory management framework. The decision making algorithm is fully implemented
in Hyrise, which allows us to perform end-to-end benchmarks with industry datasets and
standard research benchmarks. In the case of the public TPC-H benchmark, when 90%
of the data is moved to NVM, the throughput is decreased by only 10.8% and the run-
time is increased by 11.6%. Because the tiering decisions are periodically re-evaluated,
they help the system to dynamically adapt to changing workloads without requiring any
user intervention.

The first three contributions (Hyrise itself, the abstraction layer, and the access track-
ing) are self-contained in that they can also be used outside the scope of this thesis:
(1) Besides being used as part of several other PhD theses, Hyrise is being used in
Master’s courses to introduce students to database and system development. Internally,
we use Hyrise for collaborations with multiple hardware vendors as a means to evalu-
ate the performance of in-memory databases on hardware prototypes. Furthermore, it
is the basis for proof-of-concepts developed in our group as part of externally funded
database research. Hyrise or parts of it have also been used by researchers outside of our
group [50, 217]. (2) The memory abstraction layer, which allows data structures to be
transparently stored on and migrated across different tiers, is not limited to Hyrise or
even database systems in general. Our approach can be applied to various scenarios in
which C++ data structures have to be allocated, accessed, and migrated transparently
across different memory and storage tiers. (3) Our access tracking is internally used
by other self-driving components that require fine-grained information about access fre-
quencies and patterns. Its approach can be transferred to other database systems that
use similar indirections and abstractions to access their table data.



1.4 Scope of this Thesis

To answer our research questions, it is necessary to make some assumptions and define
the scope of this work. To the best of our understanding, none of these constitute a
fundamental limitation to the approaches used in this thesis. Instead, we expect that
future work will ease some of these constraints and thus extend the applicability of our
work to additional scenarios.

Database Paradigms

We limit our discussions to the world of relational databases. While we have reason
to believe that many results are transferable to, e.g., graph databases, these database
paradigms are outside our area of expertise. Furthermore, we only consider column-
oriented databases. In Section 3.1, we discuss how previous publications have addressed
similar questions in the world of row-oriented databases. Finally, our starting point is
the textbook in-memory database system [194], which stores all data on DRAM. We
extend the idea of in-memory databases to cover additional memory and storage layers.
Still, we orbit around the core paradigm, which assumes that all relevant data is stored
on fast DRAM. This is in contrast to other tiering approaches that aim at building
“disk-based system[s] with in-memory performance” [177].

Interaction with other Self-Driving Components

Automatic Tiering is just one part of our group’s vision for an autonomous, or self-
driving, database system. Other PhD candidates are working on topics like automatic
index selection, automatic data compression, and automatic partitioning. In the future,
multi-dimensional decisions will profit from the interactions between these optimization
aspects. However, as these components are still being developed, we have to evaluate
automatic tiering in isolation.

Our plan is for Hyrise to have a central driver that provides holistic tuning across
different dimensions [127]. This driver will analyze and forecast workloads, take runtime
information into account, and use an internal tuner to balance different optimization
goals. This component, too, is still being researched. In its absence, we evaluate our
automatic tiering implementation in a stand-alone fashion. This means that we exclude
those features that will be part of the driver and instead focus on those that are unique
to automatic tiering. At the same time, our architecture is designed in such a way that
it is possible to adapt it into the planned comprehensive self-driving framework.

The automatic tiering approach further benefits from data being partitioned in a way
that groups frequently used data together. A Hyrise plugin that performs this task has
been developed as part of a Master’s thesis [154] but has not yet reached the code stability
needed to be fully included in Hyrise. As such, this thesis uses static partitioning. In case
of the TPC-H benchmark, this means that the data is clustered by certain date columns,
simulating the natural insert order of business data. This is done in accordance with the
TPC-H specification [239].



Persistency

When data is moved to non-volatile tiers, including NVM or SSDs, these tiers can also be
used as part of the DBMS’s persistency concept. Data that is no longer stored on volatile
DRAM does not need to be recovered in the case of a sudden power outage. In our previ-
ous work, we have shown how our proposed multi-tier memory management framework
can be extended to persistently store data on NVM [62]. For this thesis, however, we
exclude the persistency aspect. The reason for this is that the programming model for
persistency on NVM will greatly change with Intel’s 3rd Generation Intel Xeon Scalable
Processors and the next-generation of Optane DC' Persistent Memory, codenamed Bar-
low Pass. Together, these introduce a new feature called Fxtended Asynchronous DRAM
Refresh [92, 110]. Simply said, this solves an issue with the current generation of NVM
in which data needs to be explicitly flushed from CPU caches in order to be persistently
available after a power failure. We explain eADR in more depth later. Dropping the re-
quirement for explicit flushes significantly changes the performance implication of using
NVM for persistency. As such, a discussion of the persistency aspects would have to be
revisited.

1.5 Outline

The remainder of this thesis is organized as follows: in Chapter 2, we give background
information on the problem space in which we operate. This includes a high-level de-
scription of the state of the art in IMDBs and an introduction to non-volatile memory.
We present a discussion of work related to tiering in in-memory databases in Chapter 3.
Next, we present our in-memory database Hyrise in Chapter 4. This is followed by the
three building blocks of our automatic tiering approach, namely the memory manage-
ment (Chapter 5), the access tracking (Chapter 6), and the decision making (Chapter 7).
Because these are self-contained contributions, they are individually evaluated in their
corresponding chapters. We conclude the work with a summary of the presented results
and a discussion of further opportunities in Chapter 8.






2 Background

In this chapter, we provide background information on (1) the type of database systems
that we discuss in this thesis as well as on (2) non-volatile memory. Both topics are
complex enough that entire books have been written about them [74, 194, 214]. We
thus cannot discuss them exhaustively. Instead, the selection of which aspects to cover
is based on the knowledge that later chapters build on.

2.1 DBMS Design Space

Our automatic tiering approach is designed for relational, column-oriented in-memory
database systems. This means that the data stored by the user in our database is
organized in two-dimensional tables with rows and columns. The term relational database
system originally strictly referred to systems that used the relational model developed
by Codd in 1970 [42]. These days, however, relational and SQL-based are often used
synonymously [17]. Strictly speaking, there are several differences, such as duplicate
or NULL values that are supported in SQL, but not in the relational model. Codd
called these deviations from his original model “serious flaws” of SQL [44, p. 371].
Additionally, some terminologies differ between the two models: while Codd discusses
relations, tuples and attributes, SQL uses tables, rows and columns. While we build
and use a SQL-based DBMS, the finer disagreements between the two models are of no
relevance to our tiering approach and we use the two terms interchangeably.

2.1.1 In-Memory Databases

In-memory databases can be best explained by contrasting them with traditional buffer-
cache-driven disk-based systems. For decades, the limited amount of main memory
forced database systems to store their data on hard drives. When accessed, data was
moved into the main-memory buffer cache (aka. buffer pool) where it resided until it was
evicted as other data was loaded into DRAM. This architecture was used to alleviate
the orders of magnitude that lie between DRAM and HDD access latencies. With disk
accesses being substantially more expensive than DRAM accesses, a fine-tuned buffer
cache management was needed to benefit from DRAM’s performance as often as possible.
These caches were implemented in the DBMS, as the operating system caches were found
to be insufficiently optimized for database workloads [231]. As such, the buffer caches
complicated the DBMS architecture. At the same time, they added costs even for data
that was already present in DRAM as the cache indirection had to be resolved before
data could be accessed. Harizopoulos et al. quantified the overhead caused by the buffer
cache for memory-resident data as 35% of the overall runtime [96].



With DRAM capacities increasing and prices decreasing, it became viable to keep all
data in main memory. DeWitt et al. predicted this development as early as 1984 [55].
Still, it took another 25 years before general-purpose in-memory databases became com-
mercially successful. From many perspectives, SAP HANA, introduced in 2010, can be
considered the first widely adopted in-memory database [75]. Other large vendors fol-
lowed with their own in-memory database systems two years later [213], including IBM
solidDB [153], Oracle TimesTen [139], and Microsoft Hekaton [57]. A more comprehen-
sive overview of In-memory databases is given by Zhang et al. [264].

At first, some “in-memory” systems took only a half-hearted step away from their
disk-based legacy. Stonebraker et al. noted that “some main memory database products
on the market, such as TimesTen and SolidDB, |[...] inherit the baggage of System
R” and continue to use components that impose “substantial performance overheads”,
including the buffer cache [232]. In contrast, most modern in-memory databases do not
use a buffer cache anymore but perform direct loads and stores to DRAM. Leis et al.
go as far as to call the lack of a buffer manager “one of the defining characteristics of
main-memory databases” [148].

When the buffer cache and other “baggage” were removed, memory suddenly became
“the new bottleneck” [29]. Previously, the cost of disk accesses dominated that of memory
accesses. With disks gone, the details of memory accesses, including caches, prefetching,
and NUMA effects became relevant contributors to a query’s runtime. While main
memory was previously considered to be homogenous, developers and researchers now
consider it to be “less and less appropriate to think of the main memory [...] as ‘random
access” memory.” [29].

The fact that Random Access Memory can no longer be considered to have equal access
times for random addresses shows in a number of places. We give four examples: first,
data stored in one of the CPU caches is accessed significantly faster than data that has
to be retrieved from actual DRAM. Depending on the system, this can make a difference
of more than an order of magnitude. As a result, the designs of data structures [202]
and algorithms [99] are designed to be more cache-sensitive. In Hyrise, this can be
found, e.g., in the hash-join operator, which partitions the input data to better match
the CPU’s cache structure. Second, when data is read from consecutive addresses, CPUs
can anticipate the next address that will be needed and prefetch the data before it is
even requested by the application. This means that sequential accesses are faster than
random accesses. In our work on automatic tiering, we see this pattern for both DRAM
and NVM. In Section 7.1, we discuss how we include this knowledge in our decision
making algorithm. Third, IMDBs usually use large servers with multiple NUMA nodes.
Here, accesses to node-local memory are faster than accesses that have to traverse one
or multiple NUMA hops. Psaroudakis et al. have shown how placing tasks and data
in a NUMA-aware manner can improve the throughput by 5x [196]. In Hyrise, we use
NUMA-aware task placement and implicit data placement. In Section 5.6, we outline
how some of our contributions can be used to enable NUMA-aware data placement.
Fourth, the physical organization of the data on DRAM introduces another source of
non-randomness. It is described in the next subsection.
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Figure 2.1: Visualization of row- and column-oriented storage in the case of a table with
three columns: ID, Name, and Date of Birth (DOB).

2.1.2 Column-Oriented Storage

CPU caches are faster than DRAM by more than one order of magnitude [61]. At
the same time, their size is limited. On a current Intel server processor, the Level 1
Data cache (L1D) has a size of 48 KB - around eight orders of magnitude less than
the possible DRAM size [111]. This means that CPUs must have a sophisticated cache
eviction strategy to manage the available cache slots efficiently. Part of this strategy is
to use tags that establish a mapping between a cache slot and the physical address of the
data that is stored in the slot. The use of these tags allows for a more flexible mapping
between DRAM addresses and cache entries and thus increases the cache hit rate. At
the same time, storing these tags requires additional space besides the 48 KB available
for the cached data. Thus, the size of the tags needs to be limited [61]. To reduce the
space consumption of the tags, the least significant five bits of the cached address are
not stored in the tag. As a result, cache management happens on the granularity of
26 = 64 Bytes!. This is known as one cache line. Even when accessing a single 8-Byte
word, an entire cache line has to be transferred. This involves eight individual 64 Bit
reads (aka. bursts) from DRAM [15]. Having just transferred 56 additional bytes, it is
only efficient to use this data instead of treating it as cutting scrap.

Organizing data in a way in which all transferred data can be used is the core of the
row versus column store debate. When storing a two-dimensional table on conceptually
one-dimensional storage or memory, data can be stored in a row-oriented or a column-
oriented format. An example of a table with three columns is shown in Figure 2.1. On
the top, the table is organized in a row-oriented format. The three values of the first
row are stored contiguously, followed by those of the second row. For each column,
this means that the individual entries are stored one tuple size apart. Because of the
variable length of the strings, the tuple size corresponds to 20 Bytes (2 Bytes ID, 1 Byte
string length, 9 Bytes “Alexander”, 8 Bytes Date of Birth, DOB), 17, 16, or 19 Bytes,
respectively. When scanning the 8-Byte DOB column, a cache line of 64 Bytes? thus

'For the purpose of this discussion, we stick to current Intel Xeon architectures.
2The cache line is visualized as a grey bar in the middle of the figure
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only holds 24 Bytes of used information, i.e., three dates of birth. In other words, 62.5%
of the memory bandwidth is wasted. If the table contained additional columns, this
number would increase further. For wide tables, it is not unrealistic to use only a single
byte out of a 64 Byte cache line.

In the columnar layout on the bottom, all values of a column are stored contiguously.
This means that a scan on the DOB column can utilize the entire cache line. Up to eight
dates of birth fit into a single cache line. For scans on large tables, this means that no
transfer bandwidth is wasted. While the columnar layout obviously excels for column
scans, reconstructing a row becomes more expensive. Here, the row-oriented layout is
at an advantage, as it stores the row in contiguous memory.

Hybrid approaches exist that try to find the optimal balance between row- and column-
oriented storage [6, 12, 91]. Still, the two approaches remain conceptually irreconcilable.
For a long time, relational databases have stored their data in the row-oriented layout,
also known as the n-ary storage model (NSM) [46]. Column stores became popular
in combination with in-memory databases, but the discussion of the columnar model’s
benefits predates in-memory databases by decades. A first comprehensive discussion of
the two models was written by Copeland and Koshafian in 1985 [46]. In their work, the
columnar layout is referred to as the decomposition storage model (DSM).

Traditionally, row-based layouts are associated with transactional workloads in which
single rows are accessed via indexes and modifications across the entire width of the
table are common. Column-based layouts, on the other hand, are considered beneficial
for analytical applications, “which typically examine a small number of columns from a
large number of rows” [138]. This distinction has been questioned, arguing that column
stores can also be suitable for transactional applications [228]. Especially for enterprise
(e.g., ERP) data, the columnar layout has a number of advantages:

e Tables in ERP systems are notoriously wide. In the case of an SAP ERP system,
several tables have hundreds of attributes [26]. Virtually no transaction needs to
access all columns. One of the reasons for these wide tables is that ERP systems
are generalized for different use cases. In turn, this means that, for a given instance
of an ERP system, several of these columns remain unused. In a columnar layout,
the system can easily ignore these unused columns.

e With a growing number of columns, a full tuple reconstruction (i.e., the materi-
alization of all values in a row) is rarely needed, even in transactional workloads.
For fast data ingestion in these transactional workloads, writes can be buffered in
a write-optimized, row-oriented area and periodically merged into the main part
of the table [228].

e Having all values of a column stored in contiguous memory enables fast operations
on all data in that column [67, 252, 253]. This in turns removes the need for
pre-materialized aggregates and analytical indexes [138, 195].

By physically arranging data according to its predominant access patterns, column-
oriented database systems thus improve the accesses to that data. Automatic tiering
has similar goals: as we cannot make individual tiering decisions for every single value
stored in the database, we need to group values with similar access characteristics. We
discuss the two dimensions (row vs. column) of tiering in Section 6.1.1.
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2.2 Non-Volatile Memory

In our automatic tiering concept, non-volatile memory (NVM) is the second-most impor-
tant tier after DRAM. In fact, one can easily argue that automatic tiering for in-memory
databases only became feasible with the introduction of NVM. This is because only NVM
shows performance characteristics that are similar enough to DRAM to be treated as
larger, but slightly slower DRAM. SSDs on the other hand, show substantially different
characteristics and are too slow to be used in the place of DRAM. While we also support
SSDs, we consider them more of a fallback tier and focus on DRAM and NVM.

Given that NVM is relatively new, having only been commercially available since the
end of 2018, we give some background information on this new technology. We first
define what separates NVM from other memory and storage types. Next, we explain the
physical foundations of these hardware components. This helps to better understand
what causes the volatility of DRAM and why the different technologies exhibit different
performance characteristics. After this, we describe how NVM is integrated into the
system and how it is made available to applications. Finally, we discuss the challenges
associated with using NVM for persistent data and explain why we exclude persistency
from the scope of this thesis.

2.2.1 Definition

The term non-volatile memory has been used as early as 1982 by Klein and Tchon [125]:

“The nonvolatile RAM most closely realizes an ideal solid state nonvolatile
memory product. It combines fast read/write memory and nonvolatility. A
near perfect memory.”

For this, they present a type of memory that is a combination of static RAM (SRAM)
and an EEPROM cell. The former is used for reads and writes; the latter serves as a
“crash-protection device”. In case of a power failure, the energy remaining in the system,
which is available for around 30 ms after the power failure, is used to write all SRAM
contents into the corresponding EEPROM. A similar concept is called battery-backed
DRAM, in which a traditional DRAM DIMM is combined with some type of non-volatile
storage, such as NAND flash. Here, a battery or a supercapacitor is used to guarantee
that the contents of the DRAM can be persisted to NAND flash. Narayanan and Hod-
son extend this concept to include the CPU caches [174]. These approaches guarantee
the persistency of the data and are valuable when it comes to adding persistency to a
system in a non-disruptive manner. Because they rely on SRAM and DRAM as memory
components, they do, however, not provide any memory capacity beyond the existing
limitations of SRAM and DRAM. As such, they are not relevant to our goal of expanding
the capacity of in-memory databases.

A second type of non-volatile memory uses entirely new physical foundations. Instead
of relying on existing memories such as SRAM and DRAM and combining them with
durable storage, they combine both aspects in a single device. These new types of hard-
ware are sometimes also referred to as emerging memories [163]. This group includes
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phase-change memory (PCM), which is the basis for Intel’s DC Persistent Memory Mod-
ules (DCPMM) [40, 245] and which we use as the second memory tier. Other emerging
memories are Ferroelectric RAM (FeERAM) and Magnetoresistive RAM (MRAM). The
advantage of these emerging memories is that they are not bound by the limitations of
SRAM and DRAM. They have the potential to be faster than DRAM (e.g., STT-RAM)
or to allow for higher capacities (e.g., PCM) [32]. While some of these memories are
already used, e.g., in chip cards, only DCPMM is advanced enough to challenge DRAM.
The biggest purchasable DCPMM DIMM is four times larger than a traditional DRAM
DIMM. It is this aspect of non-volatile memory that is most relevant for this thesis.
We use NVM synonymously for both non-volatile memory as a concept and Intel’s
NVM product. We do this because the architecture of our tiering component is largely
agnostic of the actual NVM product. Whenever the difference between the two does
make a difference, we use NVM for the concept and DCPMM for Intel’s product.

2.2.2 Physical Foundations

We now describe the physical principles that underlie DRAM, SSDs, and different types
of NVM. Discussing this helps to understand why these memory and storage devices
differ in dimensions like their access latency, capacity, durability, and endurance. For the
purpose of this thesis, we have to condense the explanation of these physical properties.
Details such as multi-level cells, the layout beyond a single cell, and the implications on
accessing multiple bytes have been omitted. For more in-depth information, including
performance numbers of NVM technologies other than DCPMM as well as a literature
review of their uses, we refer to the works of Boukhobza et al. [32] and Meena et al. [163].

All memory and storage devices exploit some physical property to store individual bits.
For CDs, this is a gap in the data layer that allows light to reflect from the reflective layer
below. Hard drives (HDDs) use platters coated with magnetic materials. The strength
of the remanent magnetism is used to distinguish between ones and zeroes. Both CDs
and HDDs are non-volatile storage mechanisms: once an information is written, it is
held for a long period of time, which is measured in years. Their main limitation is their
access performance. Because they require the storage location to be physically moved
to the reader, i.e., the laser diode or the magnetic head, they are limited by how fast
this movement can occur. This affects both their latency (how fast can the reader be
positioned) and their throughput (how fast can the storage device spin). More modern
devices, including DRAM, NVM, and SSD, do not rely on any physical movement and
are based on the movement of electrons instead.

DRAM

DRAM does not require any physical movement. Instead, it uses semiconductors, more
specifically, one capacitor and one transistor, to store one bit in a cell. To write a value,
the transistor’s gate is supplied with voltage, thus selecting the cell®. Depending on
whether the source has a higher or lower voltage, the capacitor is then either charged

3We omit the source gate precharge and the details of true/anti cells for brevity.
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or discharged. Similarly, data can be read by selecting the cell and measuring whether
electricity flows from the capacitor back through the transistor into the source gate.
This would represent a boolean one [19]. The process of writing to and reading from
DRAM is also visualized in Figure 2.2.

Because the charge level of the capacitor is changed when it is accessed, the read
operation is destructive [134]. As such, after a value has been read, the capacitor has
to be recharged to its original value. The time needed for the capacitor to discharge
together with the time to recharge it limits the read performance of DRAM [61]. As
a second limitation, the capacitors leak charge even when they are not accessed. To
prevent data from being lost, the charge has to be periodically refreshed. For a single
cell, this refresh process happens every 64 milliseconds and consists of a read and a
write of the stored value. While a cell is being recharged, it cannot be accessed [39].
Additionally, these recharges add up to significant power consumption [24].

SSDs

Unlike DRAM, the cells used in flash memory, e.g., in SSDs, use only a single transistor
and do not require a capacitor?. This makes it possible to build flash memory with
a higher density (and thus capacity) than DRAM. Instead of storing a charge in the
capacitor, SSDs store their state within the transistor itself. Various methods for this
exist. Modern 3D NAND flash memory traps electrons in a charge trapping layer in
a process called hot-carrier injection. Because of this, the technology is called charge-
trap flash, or short CTF. The trapped electrons cause a field effect that affects the
conductivity of the transistor, making it possible to distinguish between zeroes and
ones. Again, this is visualized in Figure 2.2.

Whereas in DRAM a read operation depletes the capacitor, the electrons in CTF
remain trapped when the cell is read. Electrons can only move in and out of the electri-
cally isolated charge trap if a sufficiently high voltage difference is applied to the control
gate. For this reason, the state of a CTF cell remains stable over a long period of time
and does not require periodic refreshes. One disadvantage, however, is that reliably
trapping electrons takes longer than charging a DRAM’s capacitor, resulting in higher
write latencies for CTF cells compared to DRAM. A second disadvantage is that apply-
ing this high voltage deteriorates the isolation layer. Over time, this leads to a cell not
being able to reliably hold its data anymore, causing potential data loss. This limits the
lifetime (or endurance) of CTF. One vendor states that 40 nm CTF can endure only
100k write cycles [132]. To compensate for this, SSDs overprovision the number of cells
and use wear-leveling to disable cells that are expected to fail soon. The deterioration
of the isolation layer also limits the scaling of SSDs: when shrinking from 40 nm CTF
to 28 nm, it sustains only a tenth of the write cycles [132].

4The description of flash memory is largely based on Micheloni’s book 3D Flash Memories [165].
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Figure 2.2: Visualization of (1) DRAM, (2) Charge-Trap Flash (CTF), and (3)
Phase-Change Memory (PCM) in four situations: (a) reading in the unset state,
(b) setting, (c) set, and (d) reading in the set state. The figure combines own
work and visualizations from several sources [32, 68, 93, 212].

DRAM is read by applying voltage to the control gate. In the unset state, the
capacitor is empty and no electrons flow between source and drain (1a). It is set
by applying voltage to the source gate and the control gate (1b). This charges the
capacitor (1c). If the transistor is selected and the capacitor holds charge (1d),
electrons flow from the capacitor to the source, where a one can be sensed.

For CTF in the unset state (2a), the trap does not hold any electrons. This
allows electrons to flow from the source to the drain if a low voltage is applied
to the control gate, representing a one. To set the cell (2b), a higher voltage
is applied to the control gate while also keeping the source gate powered. This
causes some electrons to move into the trap where they remain when the cell is
depowered (2c). When the cell is then read (again using a low control voltage),
the field effect caused by the trapped electrons blocks the flow from the source
to the drain, thus representing a zero (2d).

Finally, for PCM in the unset state (3a), the PC material is amorphous. This
state has a high resistance (g;g5) and does not allow electrons to flow from the
source to the drain. This represents a zero. To set the cell, a higher voltage is
applied for a longer period of time and slowly reduced (cf. Figure 2.3) (3b). This
causes the PC material to change into the crystalline state (3c). This crystalline

state has a lower resistance (€21,0,,) and allows electrons to flow, thus representing
a one (3d).
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NVM

DRAM and SSDs are the two rims forming the gap in the memory hierarchy that NVM
is trying to fill. Having discussed the physical structure and the resulting performance
implications of DRAM and SSDs, we can now talk about how NVM is supposed to
combine the best of both worlds, namely
e a non-volatile data storage that does not rely on a continuous power supply and
periodic refreshes;
e a higher capacity than DRAM, enabled by a lower number of elements (e.g., tran-
sistor or capacitors) and a lower size of these elements;
e faster accesses than SSDs by using a write mechanism that is faster than trapping
electrons; and
e better write endurance than SSDs by limiting the physical degradation of the
components.

Several technologies have been identified that could meet these goals. Together, they
are known as emerging memories [163]. While many show promising in-vitro results,
most of these still are lacking in at least one of the four named dimensions and only few
are already commercially available. Three advanced technologies are FeRAM, MRAM,
and PCM:

Ferroelectric RAM (FeRAM) has been used productively even before DCPMM was
announced. It can be found in railway passes, automobile equipment, or domestic ap-
pliances [79]. Its design is similar to that of DRAM in that it uses one capacitor and
one transistor. Unlike DRAM, however, the state is not stored as a charge but as a
polarization state in the capacitor. While reads continue to be destructive, the polariza-
tion state is not lost over time [116]. FeRAM has a significantly higher endurance than
flash memory and performance characteristics that come reasonably close to DRAM.
However, its density and thus, its capacity, is still only in the range of megabytes and
still insufficient to fill the gap between DRAM and SSDs [32, 51].

Magnetoresistive RAM (MRAM) uses magnetic effects similar to those used by mod-
ern HDDs. Instead of relying on a read/write head to move to the individual bits, MRAM
includes the read/write component in the individual cells. The magnetic state of the
cell influences its resistance, thus making it possible to sense its value [122]. Within the
category of MRAM, several mechanisms are used, including Spin-Torque Transfer (STT-
MRAM), which is the first type of MRAM to be commercially available [113]. Current
commercial STT-MRAM chips are too small to solve the capacity issues of DRAM (1 Gb
STT vs. 16 Gb DRAM), but forecasts by the vendor expect the gap to be closed soon [4].

Finally, Phase-Change Memory (PCM) is the only technology that, as of now, fulfills
the four criteria listed above and is commercially available. It stores information in the
phase of a special type of glass called chalcogenide glass that can be toggled between
an amorphous (“glassy”) and a crystalline state. Interestingly, this material is similar
to that previously used for rewritable CDs (CD-RWs) [137]. Unlike CD-RWs, however,
PCM does not use the optical but the electrical properties of chalcogenide glass. The
amorphous and the crystalline state exhibit a different electrical resistance, which can be
used to measure the state of the cell in a non-destructive way [32]. To write to a cell, the
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Figure 2.3: Phase change memory can be read and written by applying an electrical
pulse. Depending on the voltage and length of the pulse, the material is
either unchanged (read pulse) or changes its phase [93].

material is either quickly heated to a high temperature (placing it in an amorphous state
when cooling) or slowly heated to a lower temperature (placing it in a crystalline state)
- see Figure 2.3. Comparing the length of the SET pulse, to that of the READ pulse also
explains why writes take significantly longer than reads, which is a main characteristic
for main types of NVM.

While PCM can endure more writes than flash memory, it does not reach the endurance
of DRAM. Also, the phase modifications currently take longer than charging a DRAM
capacitor does. A big advantage of PCM is that its features are expected to scale better
than those of DRAM and CTF. Together with the possibility of storing multiple values
within a single cell [136], this could allow PCM to scale beyond the limitations seen
for DRAM [143]. DCPMM is the first commercial product that uses PCM to fill the
DRAM/SSD gap [245]. We discuss its performance characteristics in Section 5.5.

2.2.3 Hardware/Software Interaction

The difference between non-volatile memory and (non-volatile) storage is how it is ac-
cessed. While memory is directly attached to the CPUs’ memory controllers, storage
devices are attached via interfaces such as a PCle/NVMe. According to Sun et al.,
these interfaces “/burn/ well in excess of 10000 CPU cycles for every 1/0, adding several
microseconds of latency and making small accesses costly in time and power” [235].

A second performance factor of storage devices is the software layer. Unlike DRAM,
which can be immediately accessed by the CPU, storage devices use abstraction layers
including blocks, file systems and page caches. With modern SSDs, these software layers
contribute as much to the read latency as the actual hardware access does [144, 209].
Attaching NVM directly to the memory controller addresses these issues. It means that,
from a conceptual perspective, individual bytes on NVM can be accessed by the CPU
in the same way that DRAM is used, namely by using load and store instructions. The
actual size of these transfers is determined by the data transfer size (64 bits), the cache
line size (64 byte), and, for DCPMM, the internal block size of 256 byte [242].

On a higher abstraction layer, however, there is an important difference between
DRAM and NVM: in the case of DRAM, the lifetimes of the operating system (i.e.,
from startup to shutdown) and of the DRAM contents are identical. The OS kernel can
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assume that the DRAM address range is conceptually empty when the system starts. It
then hands out DRAM pages to processes, which subdivide the pages to store individual
data structures. When a process exits, these pages are returned to the kernel and can be
reused. For non-volatile memory, contents from the previous run of the OS may still be
present when the system boots. Not only must these not be overwritten, but they must
be made accessible to the newly started processes. Because there is no continuity of
individual processes across system restarts, the mapping of pages to processes is either
lost or invalid. To re-establish this mapping, an abstraction layer that organizes pieces
of data and makes it possible to access them across restarts is needed.

Conceptually, such an abstraction layer already exists in the form of filesystems. Pro-
cesses can access the data stored in files across restarts. The filesystem does not only
provide the functionality of a catalogue but also enforces access permissions. Addition-
ally, filesystems make it easy for the user to manage stored data, which includes moving
or deleting it as well as creating backups of the data. As such, filesystems are well suited
for organizing data on NVM across restarts.

However, traditional filesystems come with two limitations that would significantly
reduce the performance of NVM: first, because the filesystem and the device drivers are
part of the kernel, reads and writes involve context switches. For traditional storage
devices, for which the physical access time is in the range of tens of microseconds, these
context switches are acceptable. For NVM with a sub-microsecond latency, they become
“Filler microseconds” [21]. Second, when data on filesystems is accessed, it is first copied
into the DRAM page cache before it can be used by the CPU. This wastes both DRAM
capacity and bandwidth. Dulloor et al. showed that avoiding these copies can improve
the bandwidth of cp by 2.8x [201].

These limitations are addressed with a kernel feature called Direct Access (DAX),
which is available for both Linux and Windows®. DAX allows applications to bypass
the filesystem for individual reads and writes and to instead perform direct accesses to
NVM. The corresponding NVM configuration is called App Direct Mode. The left side
of Figure 2.4 visualizes this concept. While traditional file API accesses (e.g., read and
write) are still possible, the preferred access mode is to use memory mappings. DAX
allows applications to use mmap to create 1:1 mappings between virtual addresses and
physical NVM addresses. Once such a mapping is established, the CPU can directly
access data on NVM. These accesses bypass both the filesystem and the page cache.
Besides reducing the latency, this also removes the need for a DRAM page cache.

Because the mapping is created by the filesystem, this method of interacting with NVM
is called fsdaz. A second way to use NVM’s App Direct Mode is called devdaz and uses
NVM without a filesystem. It is not shown in the figure. Instead of creating a mapping
to a file in the NVM filesystem, a character device file /dev/daxX.Y is mapped. It now
becomes the responsibility of the application to manage the memory region. devdax is
only viable in cases in which the entire NVM device is under control of the application.
Because of this, fsdax is suggested as the preferable way of interacting with NVM [161].

5We exclude other approaches to these limitations, including SPDK, user-space NVMe, and MMIO for
the sake of brevity.
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Figure 2.4: Two different methods to access NVM: App Direct Mode on the left, Memory
Mode on the right, partially based on [59].

Recently, Daase et al. found that because devdax can forgo page fault handling, it
exhibits a 5%-10% bandwidth improvement in certain benchmarks [50]. This finding is
not yet reflected in our results. However, our benchmarks in Section 5.5 suggest that
these 5%-10% would not have a significant impact on the bandwidth difference between
the DRAM and NVM tiers.

Besides the App Direct Mode (fsdax and devdax), NVM supports a second configu-
ration mode, called Memory Mode. In Figure 2.4, it is shown on the right. Instead of
exposing NVM to the OS, DRAM and NVM DIMMSs on the same channel are combined
into a volatile memory pool. In this pool, DRAM serves as a transparent cache to NVM.
The pool is presented to the OS as if it was DRAM. The OS (and thus the applica-
tions) benefits from a larger capacity and, if the cache hit ratio is sufficiently high, from
DRAM-like performance. On first sight, this appears as if it might be a solution for our
initial problem, namely the limited capacity of in-memory databases. However, there
are two reasons why the Memory Mode cannot replace automatic tiering:

e Because the Memory Mode is entirely transparent to the OS, it does not provide
any control over where data is placed and which criteria are used for eviction. This
makes it hard to leverage the database system’s knowledge about access patterns.

e The DRAM cache is inclusive [248], meaning that the DRAM cache duplicates data
stored on NVM. While this makes the eviction of unmodified cache lines cheaper,
it limits the capacity of the volatile memory pool to the size of the NVM DIMMs.
In other words, the capacity of the DRAM DIMMs used for the pool is lost.

As a result, one design decision for our work was to use NVM in App Direct Mode
and with fsdaz. A second design decision was to exclude the persistency aspect for now.
We explain this decision in the following subsection.
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2.2.4 Persistency

In this subsection, we explain how data structures can be stored persistently on NVM,
what the associated challenges are, and why we decided to exclude persistency from the
scope of this thesis (cf. Section 1.4).
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Having non-volatile memory with DRAM-like performance
could allow us to resolve the “dichotomy between memory and
durable storage in database management systems” [11]. In-
stead of storing data once in DRAM (for processing) and once
on persistent media (for durability), a DBMS could store a sin-
gle copy both for processing and durability on NVM. Doing so
would simplify the architecture of database systems, as entire
subsystems built around logging, checkpointing, and recovery
could be removed. If data no longer needs to be recovered, but
is inherently available for consumption by the CPU, this also
reduces the restart times of large IMDBs from several hours to
minutes [223]. To date, no such system has reached commercial
relevance. While SAP HANA uses NVM for persistency, some
parts of the data still require traditional persistency methods
(cf. Section 3.1). In the following, we discuss the technical
background that makes this vision hard to realize.

The challenges when trying to store data persistently on
NVM are not primarily caused by the current latency and
throughput of NVM. Even if NVM was as fast as DRAM,
we would see many of the same problems. This is because
the challenges lie not on the NVM side, but on the CPU side:
while NVM is non-volatile, the CPU caches continue to be
volatile. As such, cache lines in the CPU caches are lost in
case of a power failure. They become persistent only when the
CPU evicts them from the cache or when the programmer ex-
plicitly requests that their contents be written back to NVM.
For this, the CLFLUSH[OPT] (cache-line flush [optimized]) and
CLWB (cache-line write back) instructions are used [11].

More accurately, CLWB does not write data from the CPU
caches directly to NVM, but into the Write Pending Queue
(WPQ). The WPQ is part of the CPU, more specifically it is
part of its integrated memory controller (iMC). In the case of a
power failure or a system crash, an interrupt is triggered, which
causes the contents of the WPQ to be persisted on NVM. This

feature is called Asynchronous DRAM Refresh, or short ADR. It uses residual energy
that remains in the system even after the power supply unit signals an error state. As
such, while both the caches and the WPQ are part of the CPU, only the latter holds

persistently stored data. Together with the NVM DIMMSs, the WPQ forms the ADR
Persistency Domain as visualized in Figure 2.5.
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Figure 2.6: Modification of a persistent vector with different modification orders [219].

Calling CLWB to move data into the persistency domain guarantees that this data is
persisted. However, the opposite is not true: even when CLWB is not called, data might
reach the WPQ as part of the CPU’s cache eviction mechanisms. If a modified (aka.
dirty) cache line in the last-level cache (here: L3) is evicted, it is written back to its
physical address, i.e., to NVM. As such, there is no guarantee of ordering between explicit
(CLWB) and implicit (eviction) write backs.

Figure 2.6 shows an example in which this may corrupt the data. It shows a vector (a
resizable array) with a capacity of 6. In State 1, n = 4 values have been inserted and the
end pointer points to the element at position n + 1. The remaining two elements have
an undefined value. We want to insert a fifth value into this vector. The result is shown
in State 4. Between the initial and the target state, two modifications have to be made:
writing the new value and advancing the end pointer. Usually, the order in which these
two steps happen does not make a difference as long as the vector is not read before the
modifications have completed.

With NVM, only one transition is safe, namely writing the value first, calling CLWB on
the written value, then advancing the end pointer and calling CLWB again, this time on
the location of the end pointer itself. If the system crashes, it is either in State 1, 2, or 4.
While the in-flight modification might have been lost, the data structure continues to be
in a consistent state. Thus, the modifications are atomic. On the other hand, if the end
pointer was incremented first and the value written afterwards, the system would pass
through State 3 in which a crash would leave it with a corrupted data structure: because
the end pointer has already been incremented but no valid value has been written, the
vector would be inconsistent after recovery.

Given the complexity of adding a value to a simple vector, defining an order in which
modifications need to occur becomes more difficult for bigger data structures. Unfor-
tunately, it does not end here. Besides implicit and explicit cache-line write backs, the
order in which data appears in the persistency domain is also influenced by out-of-order
execution (OOQO). Two types of OOO are important here. First, modern CPUs do not
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execute instructions in the order defined by the program, but reorder them in a way that
makes better use of the available CPU resources [45]. The CPU architecture guarantees
that despite instructions being executed out-of-order, the externally visible state is con-
sistent with the original order. This guarantee, however, is only valid for single-threaded
execution on a continuously running system.

A system may lose power at any moment. As such, a different instruction order in
which not all writes are persisted on NVM may result in inconsistent data structures.
This means that even if the correct order of modifications and CLWBs is used by the
programmer, the CPU may reorder the commands and break the consistency guarantees.
Furthermore, Intel CPUs, which are the only ones that support DCPMM, only guarantee
that eight bytes are written atomically [150]. This means that when writing a bigger
data structure (for example a longer string), cache eviction may lead to incomplete writes
even within the same cache line.

The second type of OOO is introduced by the compiler of the programming language.
For example, the C++ as-if-rule “[afllows any and all code transformations that do
not change the observable behavior of the program” [47]. The definition of “observable
behavior” does not cover what is visible in the persistency domain. As long as the
continously running program is deterministic, the order in which its memory contents
are written can vary. To address the two types of out-of-order execution, programmers
thus need to explicitly state that certain instructions (most importantly, the CLWBS) may
not be reordered. This is usually done by the use of memory fences (e.g., SFENCE).

Requiring CLWB and SFENCE has two drawbacks: first, it increases the burden on the
developer. Having to always maintain the correct order of writes to the persistency
domain negatively impacts their productivity and is likely to introduce additional bugs.
Libraries, such as PMDK [214], are designed to relieve the developer from some of this
burden. Still, from a programmer’s perspective, it appears as if the “dichotomy between
memory and durable storage” [11] is still easier to maintain than to remove.

The second drawback is that with explicit write-backs, we are now introducing addi-
tional writes from the CPU caches into the memory subsystem. Taking the vector as an
example, the end pointer would likely be kept in the CPU cache. To make the vector
persistent, we now need to write it to NVM every time we change the vector’s size. As
such, we not only deal with NVM’s higher cost of individual writes, but also with an
increased number of such writes. This write amplification means that even if NVM was
as fast as DRAM, we would still suffer from increased write costs.

Fortunately, these additional costs will be addressed with the next generation of
DCPMM (codenamed Barlow Pass) and the 3rd generation of their Xeon SP proces-
sors (codenamed Ice Lake-SP). While the former is already available, the latter is on
back order and only expected for late 2021 [207, 208]. Together, these introduce a fea-
ture called Extended Asynchronous DRAM Refresh, or short eADR [110]. With eADR,
the persistency domain is extended to include the CPU caches. This is also visualized
in Figure 2.5. In case of a power failure, a backup battery on the mainboard is used
to provide sufficient energy to perform the writebacks of modified cache lines [169], not
only from the WPQ, but also from the CPU caches. As such, CLWB and fences are no
longer needed.
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It is easy to see that this will cause changes to the previously discussed programming
model. For some data structures, eADR improves the bandwidth by more than 7x [207].
With these upcoming changes, many existing pieces of code and published performance
evaluations will have to be revisited. It is for this reason that we decided to exclude the
aspect of persistency from the scope of this thesis.

In our previous work, we have shown how our memory management framework (most
notably, PMR-based memory management as described in Chapter 5) can be modified to
include the steps required for persisting data on current NVM [62]. We have decided to
exclude this discussion from this thesis in the light of the upcoming changes and because
we consider them to be only a possible, but not required, addition to our self-contained
automatic tiering approach.
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3 Related Work

In this chapter, we discuss existing approaches to modern, NVM-aware multi-tier mem-
ory management for in-memory databases (IMDBs) as well as the surrounding research
areas of (1) library support for NVM-aware tiering and (2) NVM-optimized data struc-
tures. We discuss how existing systems relate to our research questions and contextualize
our contributions.

Two aspects are excluded from this chapter: we have integrated the discussion of
related work in the area of access tracking (Research Question 2a) into Section 6.1.1.
This was done because it is easier to follow the decision for a certain access tracking
granularity with all alternatives being presented side-by-side. Secondly, concerning the
work that is related to Hyrise as a DBMS but not to tiering in particular, we refer to
the respective sections in previous publications [30, 66].

3.1 Modern Multi-Tier DBMS Architectures

All traditional database systems could be considered to be multi-tier systems. Because
the capacity of DRAM was insufficient to store all data, data was stored on secondary
storage (HDDs and later SSDs) and loaded into DRAM by the means of a buffer cache.
As DRAM grew bigger and IMDBs became viable, one of the first optimizations was to
reconsider the need for a buffer cache. Because existing buffer cache implementations
were found to cause a 35% overhead even for data stored on DRAM [96], most IMDBs
removed this abstraction layer. Together with the buffer cache, however, they lost their
ability to store data on tiers other than DRAM. A growing interest in benefiting from
the speed of IMDBs without sacrificing database capacity as well as the emergence of
NVM prompted researchers and developers to reconsider multi-tier database systems.

3.1.1 Anti-Caching as a Concept

A seminal paper on how to handle larger-than-memory data sets in in-memory databases
was published in 2013 by DeBrabant et al. [54]. Their goal was to enable in-memory
databases to store data beyond the capacity limits of DRAM without incurring the
overhead imposed by the traditional buffer cache approach. For their research DBMS
H-Store [117], they developed the concept of Anti-Caching and described it as follows:

“In this new architecture, main memory, rather than disk, becomes the pri-
mary storage location. Rather than starting with data on disk and reading
hot data into the cache, data starts in memory and cold data is evicted to the
anti-cache on disk.”
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Besides the implementation in H-Store by DeBrabant et al., this concept can also
be found in other multi-tier architectures, including Siberia [71], which is discussed in
Section 3.1.3. It is also the concept that we use for our work on automatic tiering. While
these systems share the idea of anti-caching, their implementations differ significantly.
In their survey on anti-caching, Zhang et al. [264] decoupled anti-caching as a concept
from its implementation in H-Store. We follow this distinction and describe the two
aspects in separate subsections.

Anti-caching competes against caching and paging. They share the same goal, namely,
to balance the latency and bandwidth advantages of DRAM with the increased capacity
of lower tiers (usually SSD or HDD). In the case of caching, the key difference lies in what
DeBrabant calls the “primary storage location”. Traditional databases store their data
on slow SSDs and HDDs and use the DRAM buffer cache to profit from faster accesses
to cached data. Data read from lower tiers into the cache may occupy any cache slot.
As such, even when accessing data that is already present on DRAM, operators need
to obtain the virtual address of the cache slot and calculate the offset of the requested
data. Additionally, the cache slot needs to be latched in order to make sure that it is not
evicted while it is being read [87]. This indirection adds complexity and introduces the
buffer manager as a contention point. In contrast to caching, anti-caching stores data
natively on DRAM and uses lower tiers to profit from their higher capacity. This allows
for memory-resident data to be accessed without indirections.

Drawing the line between anti-caching and paging is more difficult. The goal of paging
is to allow processes to allocate memory beyond what is available in the form of DRAM.
If all DRAM is used, data is paged out to storage. As such, one could consider paging
to fulfil the definition of anti-caching cited above. Indeed, the survey by Zhang et
al. [264] lists OS paging as one possible implementation of anti-caching. We, however,
see three important differences: first, OS paging is driven by the kernel and the DBMS
process does not influence which pages get evicted. Depending on the page replacement
algorithm, pages that have not been recently accessed are chosen for eviction. Anti-
Caching, on the other hand, uses domain knowledge to exert control over which data is
moved to a lower tier. We discuss the advantages of the different tiering granularities in
Section 6.1.1. Second, the lack of fine-grained control over the OS paging mechanisms
means that multiple database instances (e.g., in a multi-tenant scenario) compete over
the available DRAM. Regardless of whether these instances run in individual processes
or in a single DBMS process, the tenant that produces the highest load will cause
other tenants to be paged out. With anti-caching, in which the DBMS actively limits
the amount of used DRAM, multiple instances can co-exist and better stick to defined
resource limits. Third, OS paging is limited to two tiers (DRAM and the device of the
page file), whereas anti-caching can be programmatically extended to three or more tiers
as proposed in this thesis.

3.1.2 Anti-Caching as Implemented in H-Store

DeBrabant et al.’s original implementation of anti-caching [54] is tailored to the archi-
tecture of H-Store and its unique transaction and partitioning model [117]. H-Store is
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a distributed, row-oriented research DBMS that is optimized for transactional (OLTP)
workloads. Its commercial spin-off is VoltDB [233]. In H-Store, data is partitioned into
sites. Each site has exactly one worker thread that operates on the site’s data. This
removes the need for any type of concurrency management within that site and greatly
increases the throughput of transactional workloads. Across sites, a distributed trans-
action framework is used to guarantee the serializability of multi-site queries. Because
of the transaction-focused nature of H-Store, most read accesses are expected to utilize
an index. Originally, H-Store was designed under the assumption that all data fits into
DRAM. The work of DeBrabant et al. relaxes this assumption.

To identify data that is less frequently accessed, H-Store maintains an LRU (least
recently used) chain' across the rows of a table. Each tuple holds a pointer to the
previous and the next entry. If a row is accessed, it is removed from its current position
and placed at the end of the list. The overhead of maintaining this list is measured to be
within 5% of the baseline. An independent publication by Levandoski et al., however,
measured an increased overhead of up to 25% for this approach [151].

When the memory consumption of the database exceeds a user-defined limit, a syn-
chronous eviction process takes the least recently used rows from the front of the list.
These rows are copied into a 1 MB block that is then written to disk after which the
DRAM space occupied by those rows is released. To be able to retrieve the row without
scanning the entire disk storage, a block table keeps a mapping from tuple ID to block ID.
The migration process is done by the site’s worker thread. While this avoids concurrency
issues, it also blocks other queries from executing while a migration is ongoing.

As part of the query execution, a pre-pass phase identifies all rows that will be accessed
as part of the query. This is possible because in H-Store, most lookups utilize an existing
index, which returns the tuple IDs matched by the query’s predicates [117]. If all of these
rows are memory-resident, the query continues regularly. If any rows have been evicted
earlier, they are now loaded back into memory. However, the pre-pass phase cannot
always identify all accessed rows. When multiple tables are joined, the rows accessed by
a later join are only known after earlier joins complete. In this case, the pre-pass phase
is repeated. The worst case is when data is accessed by non-indexed attributes. In our
understanding, this could require entire tables to be unevicted.

Because each site in H-Store is handled by exactly one thread, waiting for data to
be loaded from disk would prevent other queries on the same site from being executed.
Even data that is fully memory-resident would not be accessible anymore until the earlier
query finishes. To fix this blocking behavior, a query that causes a load from disk is
aborted together with its corresponding transaction. This allows following queries to
be executed. The rows from the earlier query are then asynchronously loaded back
into memory by a different thread. After this, the transaction is restarted. Restarting
the transaction is only possible because H-Store transactions are self-contained stored
procedures and do not allow for any user interaction. While this approach works well
for H-Store, it is hard to generalize. In regular SQL, transactions cannot be restarted
by the DBMS alone. Instead, an aborted transaction has to be restarted by the user.

!The paper uses the term “(linked) chain” instead of the more common “linked list”.
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This increases the cost of restarts and thus, the cost of accessing disk-resident data.
It also makes it difficult to use H-Store’s anti-caching implementation in scenarios in
which queries involve some type of user interaction, such as order processes that include
Available-to-Promise checks [167] and reserve order items for the duration of the process.
Here, an aborted transaction would significantly impact the user experience.

A second drawback of the implementation is that its pre-pass phase depends on in-
memory indexes to identify the rows that need to be loaded from disk. This inhibits its
applicability to unindexed ad-hoc queries, for which the entire table needs to be loaded
from disk, as well as to queries with complex joins for which it is not possible to identify
all accessed rows in a single pre-pass phase. Relying on an index-based pre-pass phase
also means that those indexes must remain in DRAM, limiting the space savings of the
eviction method [71].

A later paper by DeBrabant et al. describes how anti-caching could be used to utilize
the additional capacity of NVM [53]. Here, evicted data is moved to NVM instead of
disk. Even though NVM is byte-addressable, the data is still un-evicted into DRAM
before it is processed. As such, NVM is only used as a faster disk and most of its
capabilities remain untapped.

H-Store’s anti-caching implementation and our tiering implementation share the same
goals, but the two approaches are different in many regards:

e Hyrise can directly access data on both DRAM and NVM. It is not necessary to
copy data from NVM to DRAM to access it (cf. Section 5.1).

e Data migrations in Hyrise are non-blocking. We exploit the existing concurrency
scheme to ensure that transactions can continue while data is being migrated
(cf. Section 5.4).

e Because of its column-oriented nature, Hyrise cannot migrate data on the row level.
Instead, we track and migrate data on the segment granularity (cf. Section 6.1.1).

e H-Store supports only two tiers, either disk [54] or NVM [53]. While multi-tier
support was discussed, it was never implemented [189]. Hyrise supports multiple
tiers (cf. Chapter 7).

3.1.3 Microsoft SQL Server, Hekaton, and Siberia

Eldawy et al. describe another implementation of the anti-caching concept, which they
call Siberia [71]. Their work adds secondary storage to Hekaton [57]. Hekaton is an
in-memory, row-based OLTP engine within Microsoft’s SQL Server. DBAs can move
tables between the disk-based SQL server and the memory-optimized Hekaton engine.
Queries can access tables in both locations and can even combine disk-based (also called
“regular”) and Hekaton tables. However, certain optimizations, such as just-in-time
compilation, are only available if all accessed tables are stored in Hekaton. As such,
research publications usually discuss Hekaton as an isolated engine [7, 71, 151]. Similar
to anti-caching in H-Store, the goal of Siberia is to move less frequently accessed rows
from DRAM to secondary storage. However, Siberia addresses several shortcomings of
the H-Store approach, specifically the need for in-memory indexes and the need for a
pre-pass phase. The authors divide the challenge of anti-caching into four subproblems:
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. Cold data classification: To identify less frequently accessed rows, the authors
evaluated H-Store’s LRU chain approach but found that maintaining the LRU
chain adds an overhead of 25% to the cost of lookups and 16 bytes to every record?.
Instead, they decided for an approach in which accesses are logged and analyzed
offline [151]. Not only does this reduce the runtime and space overhead, but it also
allows for the log to be processed externally.

. Cold data storage: Evicted data needs to be stored in some disk-based data struc-
ture. The paper does not go into detail here but states that “records in the cold
store contain the same key and payload fields as their hot counterparts plus a field
Txnld that stores the Id of the (migration) transaction that inserted the record into
the cold store”. We thus assume that no additional transformation occurs besides
the addition of the transaction id.

. Cold storage access reduction: Siberia explicitly does not store information about
individual cold records in memory. However, they can use compact Bloom and
range filters to reduce the number of accesses to cold records [7]. Within the cold
store, indexes may be used for faster accesses to the individual record. This is
unlike H-Store, which requires in-memory indexes and an in-memory block table
for efficient accesses to cold data.

. Cold data access and migration mechanisms: Siberia migrates data between the
two tiers by deleting it in one tier and inserting it in the other. For this, it uses
Hekaton’s Multi-Version Concurrency Control scheme [142]. This allows them to
ensure that exactly one version of the record is visible at a given moment. Execut-
ing the migration within a transaction also ensures that concurrent modifications
can be identified. To read data, Siberia uses transparent cursors that can access
hot and cold data alike. If cold data is accessed, the row is copied into an in-
memory cache that is private to the current transaction. While this copy blocks
the current transaction, it does not block other transactions from making progress.
Siberia also differs from H-Store in that it is not limited to only one transaction on
a given site and allows for accesses to cold records without causing the transaction
to be aborted. Furthermore, Siberia does not automatically un-evict rows that are
accessed once but waits for their access frequency to meet the overall threshold for
being considered frequently accessed. Finally, Siberia’s use of its MVCC protocol
solves H-Store’s issue of migrations blocking the execution of regular queries.

One goal of Siberia is to reduce the impact of their implementation on the overall
architecture and on the execution performance. This is achieved by (1) tracking the
accesses outside of the individual rows, (2) hiding the details of accesses to hot and cold
stores behind a common cursor interface, and (3) using the existing MVCC mechanisms
to guarantee the transactional safety. When devising the design of our tiering approach,
the abstraction introduced by Siberia served as an inspiration. Similar to Siberia, Hyrise
uses a cursor (in Hyrise: iterator) abstraction that hides the access method from the
accessing operators (cf. Section 4.3.2) and that can read data from lower tiers without

2DeBrabant et al. state that they use two 4 byte offsets instead of 8 byte pointers [54] for their LRU
chain. This is confirmed by Leis et al. [148].
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the need to un-evict it (cf. Section 5.1). We also employ filters to reduce the number
of accesses to evicted segments (cf. Section 4.3.1). Finally, we exploit the immutability
guaranteed by the combination of our chunk concept and our MVCC implementation to
migrate data between tiers without jeopardizing the transactional safety (cf. Section 5.4).

A main difference between Siberia and Hyrise is the granularity of our tracking and
eviction methods. Whereas Siberia is row-oriented, Hyrise works on the level of segments.
A second difference is that Hyrise uses the iterator abstraction not only for accessing
data, but also for tracking the access frequencies. In Chapter 6 we describe how this
is implemented with virtually no runtime or space overhead. Third, Hyrise supports
multiple tiers and allows for immediate accesses to DRAM and NVM. While Microsoft
discussed experiments that used NVM for persistency [56], we are not aware of Siberia
being extended to support multiple tiers.

3.1.4 SAP HANA

SAP HANA [75, 146, 162, 195, 228] was one of the first commercially successful in-
memory databases. To enable high throughput rates for both analytical and trans-
actional queries, it organizes its data using a main/delta architecture in which tables
consist of two horizontally divided fragments [228]: most of each table is stored in the
main fragment of the table, a heavily read-optimized column store. This fragment em-
ploys compression techniques that are efficient in terms of their memory savings and
throughput, but do not allow for modifications, such as ordered dictionaries and bit-
compressed vectors [253]. To amortize the cost of updating the main fragment and to
enable fast inserts into the table, a write-optimized delta fragment is used for new rows.
Because of its insert-only approach, these new rows include updated rows for which the
original version was invalidated and a new version was inserted. Periodically, the delta
fragment is merged into the main fragments [133].

In 2018, HANA was the first commercial DBMS to support non-volatile memory [8].
For users, NVM brings two advantages: first, because it is non-volatile, data stored on
NVM does not have to be restored after a planned or unplanned restart. In HANA
without NVM, the recovery time grows by one hour per loaded terabyte [211]. For data
stored on NVM, restoring access is orders of magnitude faster and can be done in almost
constant time. However, no end-to-end recovery durations are given in the paper.

Much of the engineering effort went towards enabling this type of persistency and
recovery in an ACID-compliant manner. As discussed in Section 1.4, this thesis excludes
the aspect of persistency. The second advantage of NVM support in HANA is that
it increases the amount of available memory. This aspect is of greater interest in the
context of this thesis.

The NVM support of HANA is unlike that of H-Store, Hekaton, and Hyrise in that it
uses NVM as the primary storage location. By default, all main fragments of the table
are stored on NVM. Even when they are heavily accessed, HANA does not migrate
them to DRAM in the way that the other three systems do. At the same time, the delta
fragments, as well as all temporary data, always remain on DRAM. This is done for
two reasons: first, persistency can be implemented more efficiently for data that is not
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undergoing constant modification. Second, accesses to the main fragment are dominated
by sequential reads, which are less affected by NVM’s increased latency than the random
reads and writes seen for the delta fragment and temporary data [8]. The decision to
statically assign the fragments to different tiers means that accesses to the main fragment
cannot profit from the lower latency and higher throughput of DRAM. While the use
of NVM can be disabled for individual tables, partitions, or columns within partitions,
this decision has to be manually made by the DBA [211].

By default, all data stored in HANA is memory-resident, i.e., stored on either DRAM
or NVM. To prepare for situations with high memory pressure, columns are kept in a
least recently used list [225]. When necessary, the least recently used columns are evicted
(or “unloaded” in HANA terminology) from DRAM (or NVM). This mechanism is called
column-loadable data. Because this setting applies to entire columns, it does not allow for
fine-grained tiering decisions. With the Native Storage FExtension, or short NSE, HANA
adds a second tiering mode, called page-loadable data [225]. DBAs can mark tables or
parts thereof as page-loadable, which means that, instead of always being present in
memory, they are primarily stored on a lower tier and are brought back into memory
when accessed. For this, the existing data structures have been modified in a way that
makes them partially accessible on a per-page basis [226]. These pages can then be
individually loaded into a DRAM buffer cache. This is very similar to the buffer caches
used in traditional disk-based databases. The main difference to traditional systems is
that, in NSE, the buffer cache is only used selectively: data that is not marked as page-
loadable (i.e., column-loadable data) remains in main memory and is accessed without
any additional abstraction layer.

The DBA is aided in the decision of which data to mark as page-loadable by the NSE
Load Unit Advisor [225]. The advisor bases its recommendations on access statistics,
which are gathered for each column fragment. The number of accesses to a fragment
is put into relation to the fragment’s size. This ratio of accesses is called the scan
density. Depending on system-wide thresholds, the objects with the lowest scan density
are suggested to be marked as page-loadable. The DBA then has to decide whether the
proposed layout is applied.

For both HANA with NVM and NSE, the tiering decisions have to be made manually.
For HANA with NVM, the default is for all main fragments to be stored on NVM. If
one of these fragments is heavily accessed and would profit from the performance of
DRAM, a DBA has to identify this pattern and act accordingly. For NSE, the DBA
is supported by the Load Unit Advisor but still has to manually verify and apply the
suggested configuration. In our approach presented, these tiering decisions are made
automatically. From our understanding, there is no conceptual reason why HANA could
not also apply the advisor’s suggestions automatically.

Our work shares several design decisions with NSE: both implementations keep track
of the column access frequency. NSE uses column fragments, Hyrise uses segments. In
addition to the number of accesses, Hyrise also identifies access patterns (cf. Chapter 6).
As a second similarity, the Load Unit Advisor and Hyrise share a comparable concept
for deciding which data should be placed on which tier. NSE orders the fragments
by their scan density and Hyrise uses a branch-and-bound knapsack implementation.
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The scan density used by NSE is equal to the profit density used in a greedy knapsack
algorithm [60]. In addition to the number of accesses and the size of the segments, Hyrise
uses previously tracked access patterns (cf. Section 7.1) to identify which segments are
read mostly sequentially and which are accessed in a random fashion. This is because
sequentially accessed segments are less likely to be impacted by NVM’s higher latency.
The same reason was given by Andrei et al. for placing the main fragment on NVM [8].

A main difference between NSE and Hyrise is the primary location of the data. Hyrise
follows the anti-caching approach in which DRAM is the primary location and less-
frequently accessed data is moved to lower tiers. NSE, on the other hand, uses multiple
primary storage locations. In a system that uses both NVM and NSE, frequently accessed
data is either stored on NVM (main fragments) or DRAM (delta fragments) while less
frequently data is stored on disk and accessed via the buffer cache. Hyrise, on the other
hand, primarily stores data in DRAM and fluently moves it to lower tiers as appropriate.

3.1.5 Leanstore, Umbra, and Mosaic

A different approach to achieving the performance of in-memory databases while bene-
fiting from the capacity of disk-based databases has been chosen by researchers at TU
Munich. Leanstore [148] is a new storage engine that implements a buffer cache in a
way that avoids the bottlenecks of traditional implementations. Umbra [177] is a DBMS
that combines the Leanstore storage layer with an execution engine that is the “spiritual
successor of HyPer” [120]. Like HyPer before, it is used as a vehicle for several research
projects [31, 118, 121, 254]. Finally, Mosaic [243] is an alternative buffer manager for
Umbra that focuses on optimizing scan-heavy workloads on SSDs and HDDs. We group
the three research projects both because of the overlap in the development team and
because of their shared technical ancestry.

Leanstore

Instead of removing the buffer cache, Leis et al. [148] aim at replacing those components
of traditional buffer caches that cause them to be inefficient for DRAM-resident data.
Traditional buffer caches use a single hash table to store the state of the buffer cache.
If a page is loaded into DRAM, an entry is added; if a page is evicted, the entry in the
hash table is removed. When referencing a page, its identifier first needs to be translated
into a virtual memory offset. Again, this entails an access to the hash table. Because
accesses to this hash table have to be synchronized, an increasing degree of parallelism
results in high contention. Leanstore addresses this bottleneck by replacing the central
hash table with a decentralized bookkeeping method.

The core idea is for each page to be owned by exactly one swip. A swip is a reference
to a page and can take one of two forms, depending on whether the page is stored on
DRAM or on disk. For an in-memory page, the swip holds its virtual memory address;
for a disk-resident page, the swip holds a page identifier that can be used to retrieve the
page from disk. The two states are encoded in a 1-bit flag as part of the 64-bit swip.
This approach is called pointer swizzling [251].
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In Leanstore, the swip itself stores the information on whether the data is disk- or
memory-resident. This is only possible because there is exactly one swip per page.
Because an in-memory swip already holds the virtual address of the page, no hash table
lookup is necessary. This means that the access to DRAM-resident data is, except for
a single if statement to check the flag, as fast as a regular pointer access. When disk-
resident data is accessed, the page is loaded into the buffer cache and the owning swip
is swizzled, i.e., replaced with a pointer to the virtual memory address. For eviction,
Leanstore uses a speculative second chance algorithm. Pages are randomly marked as
cooling by unswizzling their swip without evicting them and placing them into a FIFO
queue. In this state, their content is still DRAM-resident and accessing them swizzles
them again and removes them from the FIFO queue. If, however, they reach the head
of the FIFO queue, they are evicted to disk.

The swizzling mechanisms and the one-swip-per-page policy place requirements on
data structures used within Leanstore. First, each data structure has to be implemented
in a way that stores inter-page references as swips. Second, these inter-page references
have to form a tree-like structure. Even for trees, this becomes a challenge, as pointers
between the leaf nodes are prohibited [177]. This means that Leanstore cannot easily
replace the memory management component of an existing storage layer. Instead, most
data structures need to be adapted to Leanstore’s ownership principle.

Van Renen et al. [240] propose how NVM could be included in a system like Leanstore.
They compare a traditional IMDB with all data on DRAM to (1) an IMDB that pri-
marily stores data on NVM, (2) a system in which DRAM serves as a buffer for data on
NVM and SSD, and (3) a system in which NVM is an additional caching layer between
DRAM and SSD. To reference data across different tiers, they use the same swizzling ap-
proach that Leanstore uses. As a result, the discussions about Leanstore’s architectural
challenges apply similarly.

Umbra

With Umbra [177], Neumann and Freitag present a DBMS that builds on Leanstore as
a storage layer but improves it by allowing for mixed-size pages. Leanstore, as many
buffer managers before it, requires that all pages are of the same size. This significantly
simplifies the handling of the page cache, as each loaded page can be evicted and replaced
by an equally-sized previously evicted page. Umbra relaxes this requirement and allows
for multiple page size classes, which are multiples of the system page size and whose size
is exponentially growing with a growth factor of 2. The operating system’s mapping
between virtual and physical pages is used to prevent fragmentation. The advantage of
mixed-size pages is that larger data structures can be stored within one page: “If we can
rely upon the fact that a dictionary is stored consecutively in memory, decompression is
Just as simple and fast as in an in-memory system” [177].

To reference data, Umbra uses the same pointer swizzling / swip concept used by
Leanstore. It continues to require all data to be organized in a tree-like structure. To
satisfy this requirement, Umbra stores tuples in the form of B+-trees. These tuples, in
turn are stored in a PAX-like layout [6]. For evictions, Umbra adopts Leanstore’s page
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replacement method, which is based on a second-chance FIFO algorithm.

Together with Leanstore’s page management approach, Umbra also inherits what we
consider to be a disadvantage for the flexibility of the DBMS: all data structures have
to be re-implemented to allocate memory on a per-page basis and to use swips for inter-
page references. This is in contrast to our PMR-based implementation (cf. Section 5.3),
which allows us to include arbitrary data structures in our tiering concept.

Above the storage layer, Umbra shares many concepts with HyPer [120]. Similarly
to the latter, it uses just-in-time compilation for query execution. However, instead of
compiling the plan into a single binary, Umbra disassembles the plan into multiple steps
that can be executed in parallel. Umbra also inherits HyPer’s morsel concept, which
Hyrise used as an inspiration for the chunk concept (cf. Section 4.3.1). We compare the
performance of Hyrise and Umbra in Section 4.6.

Mosaic

Mosaic [243] by Vogel et al. is an alternative storage layer for Umbra. Its goal is to
support diverse storage devices and to distribute data across the devices in a way in
which the performance of the system is maximized. Mosaic focuses on the spectrum
between the fastest SSDs and the slowest HDDs. As such, Mosaic solves a problem that
is different from the systems described before and the approach presented by us. We
include Mosaic in the discussion of related work because its placement strategy works
under assumptions similar to our work and is more sophisticated than the solution
presented in Chapter 7.

Mosaic is specifically designed for scan-heavy workloads whose performance is bound
by the available I/O bandwidth. Unlike existing approaches, Vogel et al. present a
tierless storage engine. While other systems, including Hyrise, try to maximize the
utilization of the faster tiers before resorting to lower tiers, Mosaic distributes data
across all devices in a way that maximizes the cumulative bandwidth.

Data is moved with the granularity of column chunks, which are comparable to the
segments used in Hyrise (cf. Section 4.3.1). For Hyrise, we use the same granularity for
our migrations and accesses. Mosaic only tracks access patterns on the granularity of
columns and considers columns to be atomic for the purpose of the placement algorithm.
As such, while column chunks could be moved independently, the access skew across
column chunks is ignored. This decision was made to reduce the complexity of the linear
programming problem.

Mosaic can additionally consider several compression schemes and seek a balance
between the I/O bandwidth saved by the compression and the CPU cost of decompressing
the data. For Hyrise, such a multi-faceted optimization is subject to future work. A
second aspect in which Mosaic’s decision making is ahead of our current implementation
is that its placement decision uses a more sophisticated cost model that incorporates the
seek time and the bandwidth of the devices as well as the compression ratio. As such,
even though it solves a slightly different problem, Mosaic gives valuable input for our
future work.
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3.1.6 Further Approaches

The concept of evicting data from DRAM to lower tiers is not limited to relational
databases. Jibril et al. [115] describe how a graph database can profit from NVM and how
query compilation can be adapted to hide the increased latency of NVM. Panthera [246] is
a storage abstraction for Spark [262] that identifies data access patterns and moves data
between DRAM and NVM accordingly. Li and Li propose data spilling for Flink [38].
They follow the anti-caching approach [54] and evict cold data from DRAM to disk.
Hershcovitch [102] implemented an NVM-aware storage engine for MongoDB.

Several Projects explored how a DBMS can store all data on NVM and deliver on the
vision of resolving the “dichotomy between memory and durable storage in database man-
agement systems” [11]. Gotze et al. [88] and Kuznetsov [135] summarize the challenges
and existing approaches. In several publications, Alruraj revisited the architecture of
traditional buffer managers and logging components [10, 11, 13, 14]. Oukid presented
SOFORT [184, 186], a DBMS that removes the traditional logging component and per-
sistently stores data on NVM. This allows for almost-instant recovery. Similar work has
been done in our group on the previous version of Hyrise [220, 223].

If NVM is used as a primary means for persistency and no traditional logging is used,
a failure of NVM could result in data losses. To guarantee high availability and allow
for disaster recovery, the data has to be stored redundantly. Zarubin et al. [263] present
a node-local mechanism that duplicates data across multiple NVM DIMMSs in the same
system. Mojim [266] uses RDMA to replicate NVM-resident data across independent
nodes. Vilamb [119] is a user-space library that also duplicates data across multiple
nodes but allows for the replication to occur asynchronously.

3.2 Tiering Outside of Database Systems

Instead of implementing tiering in the DBMS, as described in the previous section, other
approaches move the responsibility of identifying access patterns to other layers, includ-
ing the operating system or additional abstraction layers below the DBMS. Pupykina
and Agosta surveyed several of these techniques [197].

3.2.1 Paging

One of the most important features of an operating system is to make DRAM available
to different applications. For this, virtual memory management (VMM) is used. The
available physical memory is subdivided into pages that are mapped into the virtual
address space of the processes. Supported by the CPU, an application’s access to such
a virtual address is mapped to the corresponding physical address. This allows multiple
processes to be executed in isolation. Modern operating systems allow for the available
memory to be overcommitted. If more memory is allocated than is available, pages that
have not been recently used are moved to lower tiers. This process is known as paging. If
the virtual addresses assigned to these pages are later accessed, they need to be brought
back into the physical memory. We discuss this process in greater detail in Section 5.1.
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Conceptually, paging appears to address a similar issue, namely, to allow for allocations
beyond the DRAM limits. It is, however, not suitable for IMDBs in general and not
a solution to our problem in particular. The first issue is the selection of the pages
that are evicted. Graefe et al. [89] show that “the OS VM layer is particularly poor
at making eviction decisions for transactional workloads”. Stoica and Ailamaki [230]
find that “default OS paging [causes] unpredictable performance degradation”. Leis et
al. [148] cite DBMS manuals that explicitly instruct DBAs to prevent paging. One of the
reasons for OS paging being unsuitable is said to be the lack of any pattern identification
(e.g., large sequential reads) in the OS paging algorithms.

Stoica and Ailamaki [230] propose to assist the operating system in identifying those
pages that should be evicted. For this, they track accesses on the tuple level and divide
tuples into hot and cold regions. The pages in the hot region are then excluded from
paging by calling mlock. As a result, only pages in the cold region are evicted when the
memory pressure increases.

In addition to the operating system making inefficient placement decisions, a second
factor that makes OS paging less suitable for answering our research questions is that
it is only designed for two tiers. Pages are either in-memory or moved into the page
file. Neither multi-tier memories (DRAM and NVM), nor multi-tier storage hierarchies
(SSDs and HDDs) are considered.

Influencing the kernel’s paging decisions is difficult. Some publications propose modi-
fications to the kernel’s memory management module [77, 83]. These require additional
kernel modules or even entirely custom-built kernels. For security and stability reasons,
kernel modifications are generally avoided in productive settings. An alternative to this
is to use user-space libraries. These are discussed in the next subsection.

3.2.2 Library Support

Memkind [215] is a heap manager that allows developers to allocate space on DRAM,
NVM, and high-bandwidth memory using a shared interface. Instead of calling malloc,
developers call memkind_malloc and pass a memory kind. This kind can either be one of
the listed hardware resources, or a policy such as highest capacity or lowest latency. In
Section 5.2, we explain how Hyrise uses Memkind to allocate space on NVM. Umpire [23]
is similar to Memkind in that it provides a homogenous interface to memory operations
on heterogenous hardware. It bears some resemblance to the Polymorphic Memory
Resources used in Section 5.3 as it supports multiple memory resources and pools that
modify the allocation behavior. Hexe [181] and the SharP Unified Memory Allocator [2]
follow an approach similar to Memkind. Unlike Memkind, they allow for data to be
split across multiple devices using one of four data-splitting policies. X-Mem [69] uses a
two-pass approach in which the application is profiled in a first pass, after which a static
“relative priority of data structures” is computed. During regular execution (the second
pass), this priority is used to allocate data accordingly. To map allocations between
the two runs, all allocations have to be statically tagged by the programmer. As noted
by the authors, this “assumes homogeneous behavior within a data structure”, which is
incompatible to the access skew seen, e.g., in ERP systems.
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None of these libraries provides any migration capabilities. Once space has been allo-
cated, it is the developer’s job to identify access patterns and to migrate data accordingly.
Several libraries can be used to help with this identification [101, 250]. The lack of trans-
parent and automatic migration capabilities in these libraries can be explained easily:
from the perspective of the application, a pointer to a data structure (i.e., a virtual
address) must remain valid throughout the migration process. The pointer itself can
usually not be modified because the tiering library does not know where the pointer is
stored and if there are any aliasing copies of the pointer.

An exception to this is Unimem [255]. While Unimem allows data to be migrated,
it heavily restricts where memory can be allocated and how pointers can be copied.
Additionally, it requires the “main loop”, i.e., the most-compute intensive part of the
program to be programmatically defined. As such, Unimem requires the application to
be built around its memory management paradigm.

A second way to allow for transparent migration would be to employ the virtual
memory abstraction, i.e., to migrate entire pages between different tiers. This comes
close to the paging approaches presented in the previous subsection. We discuss the
advantages and disadvantages of page-based migration in Section 5.4, explain why we
decided against such an implementation, and present how Hyrise solves the issue of
transparent migrations on the layer above the allocator.

3.2.3 Data Structures and Algorithms

For a long time, data structures and algorithms have been designed to take the charac-
teristics of different memory and storage tiers into account. Well-known data structures,
such as the B-Tree family [22, 200] have been designed for a system in which DRAM
is a scarce resource. They aim to minimize the number of reads from disk, or more
precisely, the number of pages read from disk. Traditional disk-based database systems
use such disk-optimized data structures to make optimal use of the disk bandwidth and
minimizing the read latency. Similarly, special implementations of database operators
have been developed to process data larger than what fits into DRAM [52]. Again, these
optimize for the hardware characteristics of disks.

With in-memory databases, the surrounding conditions changed. Their assumption is
that all data can be stored and processed in DRAM. Previous constraints, such as having
to read data with a page-level granularity, disappeared. This prompted the design of
new, IMDB-focused data structures and algorithms. In the case of our examples, B4-
Trees were adapted to optimize their use of the CPU caches [202], and hash joins were
implemented to utilize cache-friendly hash tables with vectorized accesses [205, 267].

In Section 2.2.4, we have already described the additional steps needed to persistently
store data on NVM. Again, these requirements resulted in newly developed additions to
the B-Tree family [9, 156, 185]. But even if NVM is only used for its additional capacity,
it is worthwhile to be considerate of its performance characteristics. Aspects such as
NVM’s asymmetric read/write latencies, its preference for 256 B block reads, and its
higher susceptibility to write contention [112, 260] mean that not everything that was
beneficial for DRAM works equally well for NVM.
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Daase et al. [50] analyzed how these characteristics affect the development of DBMS
algorithms and proposed seven best practices for the use of NVM by OLAP database
systems. As part of their work, they executed the Star Schema Benchmark [180] both
with traditional database operators and with hand-crafted, NVM-optimized algorithms.
In both cases, all temporary data structures were stored on NVM. As a baseline, they
used Hyrise and our polymorphic memory resources (cf. Section 5.3) to move the joins’
temporary data to NVM). They found that the joins in Hyrise took 5.3x longer if all data,
including temporary data, was stored on NVM instead of DRAM. By using Dash [155],
a hashmap specifically built for NVM, they could reduce the impact to 1.66x. From
this, they draw the conclusion that “future research on random access data structures
and operations is essential to achieve a good OLAP performance”. Their work com-
plements our work: we show how stored table data can be transparently moved from
DRAM to lower tiers. While this reduces the DRAM pressure, it does not eliminate the
possibility of operators requiring more temporary memory than available. Developing
join algorithms that can gracefully handle these situations by spilling to NVM would
further improve the flexibility of our system.

3.3 Summary

We have presented existing approaches for automatic tiering across memory and storage
tiers. The approach that comes closest to our implementation is that of Microsoft SQL
Server, which utilizes cursors for transparent data accesses across tiers and leverages
multiversion concurrency control for transactional safety. Differences to the existing
approaches can be found in the way that accesses are tracked and the granularity of
the migrations. Our work is the first to enable autonomous and transparent multi-
level tiering for column-oriented in-memory databases and to track accesses and access
patterns across both the row and column dimension.

Besides comparing different DBMS tiering implementations, we have discussed ap-
proaches that do not requires database-specific knowledge. Neither OS paging, nor
application library or tiering-specific data structures provide the functionality needed
for efficient data tiering in in-memory databases.
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4 The Research DBMS Hyrise

In this chapter, we present the research DBMS Hyrise, which is used as the foundation
for our work on automatic tiering. We describe its fundamental architecture and dive
into selected implementation details. The focus is on areas in which the architecture
and implementation are relevant for the following discussion of our tiering approach.

A first version of Hyrise was developed by Grund et al. as a hybrid database system
that combines the benefits of row- and column-oriented approaches [91]. By storing
data that is frequently accessed together (e.g., an item’s price and the currency), it re-
duced the number of CPU cache misses. In addition to being used to evaluate these
hybrid layouts, Hyrise was used by various other research projects in our group. These
focused on other aspects of in-memory database management, including “work on data
compression [25], secondary indexes [76], multi-version concurrency control [221], dif-
ferent replication schemes [222], and non-volatile memories for instant database recov-
ery [223]” [66]. Over the time, however, it became more and more apparent that the
DBMS originally built for research on hybrid row/column layouts was not suited for fu-
ture research projects. In our previous work, we have identified four key limitations [66]:

o “Data layout abstractions were resolved at runtime and incurred costs that some-
times had a disproportional overhead.

e Prototypical components have been implemented to work in isolation, but did not
interact well with other components.

o The lack of SQL support required query plans to be written by hand and made
executing standard benchmarks tedious.

o Accumulated technical debt made it difficult to understand the code base and to
integrate new features.”

As such, we needed a new platform for our research. In 2016, we started a complete
rewrite of Hyrise!, taking our experiences with us but leaving the technical debt behind.
In our 2019 EDBT paper, we describe the motivation for this rewrite and the lessons
learned in greater detail [66].

One might question why it was necessary to develop a new DBMS instead of using
one of the existing systems. Given the existing collaborations between our research
group and SAP, the most obvious choice would have been SAP HANA. Unlike most
other researchers, we are allowed to access their code repository and have access to
their compilation infrastructure. This access has been previously used for the research
on a caching structure for aggregates [168]. However, the aggregate cache project was
accompanied by SAP colleagues without whom the modifications to HANA would have

IFor the remainder of this thesis, unless explicitly referring to the previous version of Hyrise, we use
the name Hyrise as a reference to this rewritten platform. We are well aware of the ambiguities this
causes for people who discuss Hyrise and, in retrospective, should have chosen a different name.
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been difficult. Even with this support, we found that the implementation of hardware-
level optimizations [64, 65] became too difficult for a quick evaluation. Furthermore,
some concepts of SAP HANA that we wanted to challenge, for example the limitation
to two levels of partitioning [225], were too deeply engrained in HANA'’s architecture for
us to experiment with different approaches. Finally, using a proprietary DBMS would
have made it difficult to publicly share our results in a reproducible way. Still, Hyrise
shares many design principles with SAP HANA. This allows us to continue the fruitful
exchange of ideas and results with the SAP teams.

4.1 Requirements

Having decided to develop a new research DBMS, we needed to identify the fundamental
requirements that would guide our architecture. In this section, we list the functional and
non-functional requirements and describe how we have fulfilled these. For the distinction
between functional and non-functional requirements, a number of definitions exist [84].
Only few of these definitions are applicable to a research DBMS that is intended to
be used for benchmarking different implementations and not for actually being used in
production. The definition for non-functional requirements that we found most useful
for our purposes has been given by Kotonya and Sommerville [131]:

“Requirements which are not specifically concerned with the functionality of a system.
They place restrictions on the product being developed and the development process, and
they specify external constraints that the product must meet.”

4.1.1 Functional Requirements

Vice versa, functional requirements are those that define the functionality of our DBMS.
The basic functionality is the same for all databases, namely, to store data and to return
it when queried. In our case, we broaden the definition of functional requirements to
include those features that are required in order to use Hyrise as a platform for our
research projects.

F1 - Relational, In-Memory, and Column-QOriented

Considering our group’s involvement in the early steps of the HANA project, it should
not come as a surprise that Hyrise and HANA share fundamental principles. Both are
SQL-based relational databases [43]. They primarily store data in main memory but
support additional features to include non-DRAM tiers. For HANA, this is the support
for Persistent Memory as well as the Native Storage Extension (NSE); for Hyrise it is
the automatic tiering presented in this thesis. Furthermore, both systems are primarily
column-oriented for the reasons listed in Chapter 2.

Having written tens of papers and a textbook [194] about relational, column-oriented
IMDBs gave our group a significant head start for the development of our new version
of Hyrise. Second, aligning our requirements with the principles of SAP HANA allows
us to build on the past experience of our group allows us to continue the exchange of
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ideas with the SAP HANA team. We believe that database research profits from a
regular exchange between researchers and commercial developers. Doing so improves
our understanding of those problems actually seen in productive settings. All too often,
these diverge from what is discussed in the research community [244].

At the same time, while sharing the three named principles, we diverge from the
design of HANA in a number of ways. This includes our storage concept, the focus on
autonomous data management, and the design of the execution engine.

F2 - End-to-end SQL Support

In order for our research results to be transferable into productive settings, our setup has
to be as realistic as possible. While some aspects of data management can be evaluated
in micro-benchmarks, these have been rightfully criticized as neglecting the larger picture
and as showing results that are skewed with regards to local and global costs [160]. Early
on, we have decided for end-to-end evaluations and against microbenchmarks in which
components are tested in isolation. From a user perspective, this can be described as
being able to execute a SQL-based workload end-to-end.

Internally, this brings a number of additional requirements. Supporting SQL does not
only include parsing the query string, but more importantly also includes its transforma-
tion into a query plan and the optimization thereof. For Hyrise, we have implemented a
comprehensive optimizer that features most state-of-the-art optimizations for the TPC-
H benchmark as well as additional optimizations [63]. To further increase the degree of
realism, Hyrise provides support for the PostgreSQL network layer, which allows us to
execute external workloads by connecting to Hyrise via ODBC or JDBC.

Our requirement for enabling end-to-end benchmarks does not mean that we build a
feature-complete DBMS. Examples for features that were excluded because they are not
in the focus of our research interests are authentication or character sets and collations.

F3 - Flexible Physical Layout

The performance of databases is, to a large extent, influenced by physical design de-
cisions. In our group, we research how better designs can exploit the hardware more
efficiently. For example, storing data in a columnar layout and employing dictionary
compression make it possible to implement full table scans as vectorized scans on a list
of integers. This in turn allows for unparalleled scan performance [67, 252, 253].

To be suitable as a platform for research on such properties, the DBMS has to be
flexible enough for explorative changes to its physical layout. The introduction of mul-
tiple tiers should not disrupt the architecture of the system. Furthermore, it should be
possible to selectively apply different configurations to small parts of the data.

This requirement is shared with other research projects in our group: in the case of
automatic compression selection [25], we apply different compression schemes to parts
of the data, depending on their data and usage characteristics. In the case of auto-
matic partitioning, we require support for a fine-grained physical layout that can handle
multiple partition dimensions with explicit and implicit partitioning criteria.
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F4 - Self-Driving Capabilities

The overarching theme of our group’s database research projects is autonomous data
management, or, in more colorful words, the goal of building the self-driving database.
This goal is motivated by the realization that both database systems and databases
themselves become bigger and more complicated. As seen in the case study presented
in Section 1.1, database administrators (DBAs) can no longer be expected to know each
facet of their workload or each knob in their DBMS. As such, we believe that database
systems need to relieve DBAs from most tuning tasks [127, 130]. Our work on automatic
tiering, which we present in this thesis, is part of that effort.

To fulfill these tuning tasks, self-driving databases require improved or new features
for internal consumption. These include access tracking, cost modeling and benefit
estimation, workload modeling and prediction, as well as tuning algorithms [130]. Ad-
ditionally, for as long as DBAs and self-driving capabilities coexist, the DBMS should
provide means for DBAs to monitor, supplement, and override decisions made by the
self-driving database [128].

4.1.2 Non-Functional Requirements

In addition to the previous functional requirements, four non-functional requirements
have been identified. While the previous requirements described which features the
DBMS should support, the following describe what the DBMS must “look like” to be
useful as a research platform:

NF1 - Competitive Performance

Hyrise is designed to be a system that enables research on new concepts without having to
navigate the complexity of a productive DBMS. As Hyrise is not used as a product itself,
the results of our research are only of value if they can be transferred to other systems.
If a new algorithm or implementation yields improved results in Hyrise, these results
should also be seen when implemented in a similar DBMS. For this, the performance of
Hyrise shall be measurably comparable to that of similar database systems.

NF2 - Reproducibility and Comprehensibility

“An article about computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship. The actual schol-
arship is the complete software development environment and the complete
set of instructions which generated the figures.”

This ideal, given by Buckheit and Donoho [35], is the distilled version of an article by
Claerbout and Karrenback [41]. Following its spirit, we believe that a research DBMS
should allow for the published results to be reproduced. Our benchmark tools, which
are described in Section 4.6.1, make it possible to execute benchmarks in a single step.
Compared to other systems, this relieves the reader from having to generate and load
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data, starting multiple processes, or even having to execute queries manually. Further-
more, we believe that readers should be empowered to fully dissect the steps that led to
these results. To allow for this, we publish both the source code? and the modifications
made for individual research papers [63].

It is not enough for the source code to be technically accessible, but it needs to be
comprehensible, too. For this, we enforce the code quality through automatic code
analysis and strict code reviews. While comprehensibility is hard to quantify [36], we
track this requirement by using Hyrise not only as a research but also as a teaching
platform. Since the rewrite, 93 master’s students have participated in four iterations of
our project seminar. Most of these students knew about the user-facing principles of
databases, but none have developed a DBMS before. In the seminar, they worked on the
Hyrise code base and were able to contribute new code within weeks. We take this as an
indicator that the code base is comprehensible enough to be understood by outsiders.

NF3 - Modularity

A research platform needs to support experimentation with different components. It
should be easy to replace parts of the system in order to evaluate new approaches. For
this to be possible, the system must be designed in a modular way and handle modified
components gracefully.

In Hyrise, this modularity can be found in many places: in the storage layer, compres-
sion algorithms can simply be added. Our compile-time abstraction layer automatically
handles the code generation for all database operators. Because of this, no operator code
needs to be modified when adding a new compression scheme.

In the optimizer, rules can be added and removed arbitrarily. While some rules perform
better if certain plan optimizations have been previously made by other rules, there is
no requirement for any rule to be executed before the query can be evaluated. In
fact, the entire optimizer can be disabled. A current research project looks at how
this flexibility can be used to reduce the operator costs for short-running transactional
queries. Similarly, the scheduler can be easily replaced. Hyrise can even run without
a scheduler at all, in which case tasks are linearized and executed in an order that is
guaranteed to make progress. This modularity allows us to run experiments both with
a reduced as well as with the full feature set without any modifications.

NF4 - Decoupling of Research Projects

Closely related to the idea of modularity is the requirement of having research projects
decoupled from the core database. Again, this is based on experience gained during
the work on the previous version of Hyrise. We found that indiscriminately admitting
code to the master branch hinders future research. While this is obvious for code that
does not meet code quality criteria, it also applies to code that is fine on its own, but
either (1) is relevant to only a minority of users, (2) works only with tightly controlled

’https://github.com/hyrise/hyrise
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parameters, or, (3) even worse, becomes stale. We thus require that individual research
projects are separated from the DBMS core project.

Doing so shifts their maintenance burden from the DBMS maintainers to the individual
researcher(s). If an individual research project becomes stale, this does not affect the
future development of the DBMS core as no project code has to be maintained.

This also applies to our work on automatic tiering. Both the option of having data
on NVM in the first place and the algorithm that decides what data should be moved
there would not be considered a core functionality of a research DBMS. In Sections 5.3
and 7.1, we describe how these were implemented in a way that fulfills the requirement
of decoupling research projects.

4.2 Architecture Overview

Figure 4.1 depicts the high-level architecture of Hyrise. It consists of the Hyrise Core
and Plugins. The Hyrise Core provides the features traditionally expected from a DBMS
as well as the foundation for the self-driving capability. The self-driving features, such
as the automatic tiering, are encapsulated in plugins. These plugins can be stored in
their own code repository and are loaded at run-time. This increases the modularity
of the system and decouples individual research projects. For better orientation, we
have highlighted and numbered five areas. The components that are not highlighted
(SQL Objects and Plan Caches) are not discussed here as they are not relevant for the
remainder of the thesis. For these, we refer to our previous work [66, 129].

Starting at the top left, the user has 1 three options to communicate with the
database. The CLI® Console is the easiest way to interact with the database. Not
only does it allow for the execution of queries, but it also supports the in-line generation
of benchmark data and the visualization of queries. The second option is to use the
PostgreSQL-compatible network interface, either via the psql client or via PostgreSQL-
compatible libraries. Finally, the benchmark binaries can be used to execute standard
benchmarks with a single command and without having to prepare input data or post-
process output data.

The @ SQL Pipeline is responsible for executing SQL queries. It describes not just a
concept but a class that encapsulates all steps that are necessary to turn a SQL string
into a result table. This makes it both easy to execute queries from within Hyrise and
to follow the queries’ path through the system. In Section 4.4, we describe the pipeline
and its steps in greater detail.

Naturally for a relational DBMS, the ® storage layer is built around the tables. Hyrise
horizontally partitions tables into chunks that have a fixed number of rows. New rows
are inserted into the last chunk. Updates are realized as a combination of invalidations
and inserts. For this, the MVCC information tracks the visibility of the rows. Besides
the primary data (tuples and MVCC information), tables can store secondary data.
This includes inverted indexes for faster lookups, filters that make it possible to skip

3Command Line Interface

44



Hyrise Core
(J 2

{Query Result)— o
l 1 SQL Pipeline @
CLI Console <
Physical 2
; SQLtoLQP| | - LQP to PQP )
4 psql Cllent}- SQL Parser —| Translator Optimizer —= Translator | Query Plan 3 %
R (Operators; o =
User Benchmark Binaries VAN 3
Q :
c
................................ =}
Q
. ‘ =
SQL Objects Plan Caches | : Chunks Secondary Data| @8
LQP Cache]| | E/IVCS g lr;t,iltexes §
Prepared ﬁ ncode ilters a
Statements PQP Cache || : Segments Statistics
4 T O8TToowoooooouoopoooooooonoooouob
Driver >
\ 95
Hyrise [+(Constraints) ( Runtime KPIs ) [ Cost Model : 25
Cockpit » Workload Analyzer)—» Decision Making —( Decisions o
IR\ DVEITaes /gl N e 2 J—Q Plugin 23
DBA { (_Tuning Options ) Solver ‘ Manager Y5
* [
T - |
MVCC Compression T _— =
Vacuuming Selection Partitioning ’ Tiering %‘

Figure 4.1: Architecture diagram of Hyrise.

chunks during execution, and statistics that are used by the query optimizer and some
self-driving components. Section 4.3 describes the physical table layout in greater detail.

Next, we look at the 4 components designed to make Hyrise a self-driving database.
Much of this is developed as part of separate PhD theses. As such, it is discussed here
for completeness. The center of our approach is the driver. It consolidates runtime
information from different parts of the system, such as KPIs from the SQL pipeline, or
workload statistics from the plan caches. Together with the different tuning options, this
information is fed into the decision making algorithm. This algorithm uses an internal
cost model to estimate the costs and benefits of a solution and uses an arithmetical
solver to reach tuning decisions. These decisions are then applied. Tuning options can
be provided by plugins. These are kept separate from the Hyrise core in order to isolate
individual research projects. They can be loaded and unloaded on-the-fly via the Plugin
Manager. While the system is designed to operate autonomously, DBAs can monitor its
decisions and influence the decision making by supplying constraints and overrides via
the Hyrise cockpit [128].

Three parts of the self-driving component are highlighted 5. These correspond to
three contributions made in this thesis: our memory management framework (Chapter 5)
is largely encapsulated in the tiering plugin. As such, it can be individually enabled
and is decoupled from the Hyrise core. Next, the access tracking method described
in Chapter 6 is part of the Workload Analyzer and can be used by all plugins alike.
Finally, the decision making algorithm presented in Chapter 7 interpretes the reports of

the access counters and decides which parts of the data are stored on which tier.
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4.3 Physical Table Layout

The table layout was designed to fulfill the requirement of a flexible storage layout.
Understanding how data is organized in Hyrise is important for the following discus-
sion of our data tiering approach as the architectural decisions made here influence the
granularity on which the access tiering and the data migration operate.

4.3.1 Chunks and Segments

In Hyrise, tables are horizontally partitioned into chunks. This is displayed in Figure 4.2.
A table starts with a single chunk into which data is inserted. Within a chunk, a segment
exists for each column of the table. Once the chunk reaches a threshold size?, a new
chunk is appended to the table and future inserts are written at the end of that new
chunk. Similarly to other database systems that follow the insert-only paradigm [204,
257], data is never modified once written. Instead, updates and deletes mark rows as
invalid, which excludes them from future query results. An asynchronous vacuum process
later removes those invalid rows.

Chunks can be, and regularly are, compressed. Hyrise supports a number of compres-
sion mechanisms, namely dictionary compression [1], run-length compression [206], LZ4,
and Frame-of-Reference [86]. In the context of this thesis, we exclusively use dictionary
compression for all data. A dictionary-compressed segment consists of a vector that
holds all distinct values within that segment in sorted order (the dictionary) and a list
of offsets (also called value ids) into that dictionary, called the attribute vector. Not
only can dictionary compression reduce the footprint of the segment, but it also greatly
improves the performance of scans [67, 253].

The decision to use chunks was inspired by a paper by Leis et al. [147]. They describe
morsel-driven parallelism, in which tables are subdivided into so-called morsels that
operators can work on independently. Depending on the system load, the degree of
parallelism can be chosen at run time by varying how many morsels are processed by
a single worker. Based on their promising results, we adopted this concept for Hyrise.
Besides being useful for multi-threading, we have identified additional benefits of having
an architecture-level horizontal subdivision of tables:

e Compression: Instead of requiring an entire column to be dictionary-compressed,
different compression methods can be applied to individual segments. This can be
used to reduce the data footprint. The decision which method to use can be based
on the data distribution or the access pattern. Automating this decision is studied
as part of a separate PhD thesis.

e Pruning: By storing statistics on the chunk-level, the query optimizer can identify
chunks that do not contain data that is relevant for a given query. Excluding these
chunks as part of the optimizer significantly reduces the amount of data accessed
in the execution phase.

e Indexing: Instead of requiring a single index over the entire table, Hyrise allows for
chunks to be indexed individually. Because all but the last chunk are immutable,

4Currently set at 2'6 — 1 = 65535 rows.
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Figure 4.2: Chunks are horizontal partitions of a table. Within a chunk, segments rep-
resent the chunk’s part of a column. Data is always appended into the last
chunk. Once this chunk reaches a certain size, it is marked as immutable and
can be asynchronously compressed. [66]. The visibility of rows is controlled
by the 3-tuple in the MVCC data vectors. These vectors are always writable,
even if the chunk is immutable.

this allows for the corresponding indexes to be immutable, too. Having immutable
indexes greatly reduces the index maintenance cost. Together with chunk pruning,
immutable indexes also allows for semi-indexed tables, in which only the chunks
that are regularly not pruned from the result are indexed [249].

e Tiering: By dividing the table horizontally into chunks and vertically into seg-
ments, we achieve a great degree of flexibility when it comes to moving data be-
tween memory and storage locations. This is used in the following chapters to
independently move less-frequently used segments to lower tiers.

e Partitioning: While all but the last chunk are immutable in the sense that no data
is ever inserted into them, this does not mean that their data cannot be physically
reorganized. This is done as part of the previously mentioned vacuum process, but
it can also be used to partition the data by arbitrary criteria.
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4.3.2 lterators

Allowing compression methods to vary on a per-segment basis adds a great degree of
flexibility to the database. At the same time, it increases the complexity of accessing
data. To fulfill our requirement of modularity, this complexity should be decoupled from
most of the code base. For example, for the Projection operator, which is responsible
for calculating an expression such as amount * price, the work is the same no matter
whether dictionary or LZ4 compression is used. As such, the compression’s details
should be hidden from the execution engine. For this, the storage layer has to provide
an abstraction layer that allows developers to implement algorithms without being aware
of the data’s physical representation.

Hyrise provides such an abstraction layer in the form of iterators [26, 114]. The key to
this approach is its use of static polymorphism, which means that almost all indirections
can be resolved at compile time. Boissier et al. showed that this reduces the overhead
of the indirection for dictionary segments by more than 3x [25] compared to an object-
oriented implementation with dynamic polymorphism.

With iterators, the code needed for an operator to access all values of a segment can be
as easy as shown in Listing 4.1. Note that the iterator approach neither requires the data
type nor the compression method to be explicitly specified. Instead, they are retrieved
from the segment’s meta data through compression-specific code that is auto-generated
using template metaprogramming.

At the same time, some operators benefit from knowing the physical representation.
For example, a full table scan on a dictionary-compressed segment can be performed
by first looking up the value id of the search value and then searching for that value id
in the attribute vector. By doing so, the segment does not have to be fully decoded.
The abstraction layer provides an interface that allows developers to provide specialized
implementations for single data types or compression mechanisms. During compilation,
these are then compiled into the operator instead of the general-purpose iterators.

The iterators form the basis of our access counters. We revisit the iterators and
describe how they enable light-weight tracking in Chapter 6.

auto segment = table->get_chunk(0)->get_segment (0);
segment_with_iterators (segment, [](auto it, auto end) {
for (; it != end; ++it) {
// decltype(it->value) is deduced based on the segment’s
// data type
std::cout << it->value << "\n";
}
B

Listing 4.1: Example code for accessing the data stored in a segment through iterators.
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Figure 4.3: The chunk layout is flexible enough to support hybrid row- and column-
based layouts. In the example, the price and currency columns are stored in
contiguous memory to improve the locality of memory accesses.

4.3.3 Hybrid Row- and Column-Based Layout

The previous version of Hyrise was developed to evaluate hybrid row- and column-based
data layouts [91]. Its idea was that columns that are frequently accessed at the same
time could be stored together. For example, by storing an item’s price and its currency
in the same cache line, both can be retrieved at the cost of a single memory access. At
the same time, as unrelated columns are stored separately, the hybrid approach still has
the column store’s benefit of not reading unrelated data when scanning a column.

For the current implementation of Hyrise, this hybrid approach has not yet been
implemented for two reasons: first, for most of our group’s research projects, the hybrid
approach was found to be an orthogonal optimization. We thus did not yet spend
the time to re-implement it. Second, while the original paper has often been cited as an
example of such a hybrid layout, the concept has not been widely adopted in commercial
or open-source database systems. We suspect that this is the case because its advantages
do not justify the increased architectural complexity both in the execution engine and
the optimizer.

Still, the chunk-based storage layout of Hyrise would allow for hybrid partitioning
to be re-introduced. This could be done by allowing multiple segments to share an
underlying block of memory, as seen in Figure 4.3. Iterators would take care of accessing
the data at the correct offsets, thus encapsulating the hybrid layout in the storage engine
and allowing operators to access these hybrid tables without any modifications to the
operator code. Again, this highlights the flexibility of the iterator concept.
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Figure 4.4: Steps involved in the execution of a SQL query (excerpt from Figure 4.1).

4.4 Query Parsing and Execution

Having described how data is organized in memory, we now describe how it is queried. We
outline the steps taken from receiving an SQL query to returning a table that contains
the query result. The SQLPipeline serves as a frontend for this process. It is the
key component for fulfilling the requirement of end-to-end SQL execution. Callers,
such as the psql server, the console, or unit tests, create a pipeline with an SQL input
string and simply call get_output_table. This method returns a Table object. The
pipeline object automatically handles transactional safety, the execution of multiple
queries within a single string, and provides methods for inspecting the runtime metrics
of the execution. Internally, the SQLPipeline performs a number of transformation and
optimization steps. The involved components and the intermediary artifacts are shown
in Figure 4.4 and are described in further detail in the next sections. We follow an
architecture pattern commonly found in other database systems [82, 166]. As such, we
discuss most of these components only to the degree to which they are relevant for the
following discussions.

4.4.1 SQL Parsing

The first step in executing an SQL query is to parse the incoming SQL string into an
abstract syntax tree (AST). We use GNU flex® as a lexer generator and GNU Bison®
as a parser generator. The initial implementation of the SQL parser’ was the result of
a project in our group’s database research seminar. At that time, no easy-to-use open-
source and stand-alone C or C++ SQL parser was available. The parser has since been
extended to support more complex features as needed, e.g., for the TPC-DS benchmark.
Even though the parser was not originally planned as a stand-alone component, it has
been used externally in research [217], the open-source Envoy MySQL Proxy, and by
several other Github users with undisclosed commercial affiliations. It also continues to
be the number one Google result for “C++ SQL Parser” and the most-starred repository

on GitHub tagged as sql-parser®.

Shttps://www.gnu.org/software/flex/
Shttps://www.gnu.org/software/bison/
"https://github.com/hyrise/sql-parser
Shttps://github.com/topics/sql-parser
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4.4.2 Translation from Parsed SQL to Logical Query Plans (LQPs)

Once the SQL string has been parsed, the different syntax elements are interpreted
semantically. This includes the lookup of identifiers (mostly table and column names)
in the catalogue, but also more challenging tasks such as the mapping and resolution of
potentially shadowed identifiers. This task is performed by the SQLTranslator. It takes
the AST generated by the SQL Parser and converts it into a Logical Query Plan (LQP).
An LQP consists of edges, which represent intermediary results (i.e., tables), and nodes,
which are loosely related to operators in the relational algebra [43]. For example, the
PredicateNode represents the restriction operator.

Most node types have features that go beyond Codd’s definition of the relational
algebra. This includes outer joins, subqueries, and more complex predicates such as IN.
Also, unlike Codd’s definition, LQPs take the form of a directed, acyclic graph (DAG)
instead of forming a tree. This facilitates the reuse of intermediary results.

A number of LQP nodes take expressions as parameters. The simplest examples of
such expressions are columns or scalar values. These can then be built upon to form
more complex expressions, including arithmetic and logical operations, functions, nested
logical expressions, as well as correlated and uncorrelated subqueries.

While SQL is a declarative language, the LQP is an imperative description of how to
obtain the result table. As such, the order in which joins and predicates occur in the
LQP heavily influences the execution cost of the query. Reducing this cost by modifying
the LQP is the job of the optimizer.

4.4.3 Optimization

Query optimization has been described as “absolutely essential for virtually any database
system that has to cope with reasonably complex queries” [176]. The importance of
this step can hardly be overstated. In our analysis on the impact of different query
optimizations on the TPC-H benchmark [63], we found that several optimization steps
have an impact of multiple orders of magnitude.

The Hyrise optimizer consists of a number of rules (17 at the time of writing), which
transform the LQP from one valid representation of the original query into a more
efficient, but semantically identical representation. This new representation is not nec-
essarily expressible in SQL anymore. An example of this is the use of exclusive between
operators: while SQL only provides WHERE x BETWEEN a and b, which includes both a
and b, the between expression used in the LQP can also support intervals that are open
on either or both sides. As such, a predicate such as o_orderdate >= ’1996-07-01’
AND o_orderdate < ’1996-10-01’ can be rewritten into a single predicate in which
o_orderdate is only accessed once. Identifying this optimization opportunity, even if
the two predicates are at different positions in the LQP, is the job of the BetweenCom-
positionRule. Instead of describing all remaining rules in detail, we refer to our previous
work [63].
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4.4.4 Translation from LQPs to Operators

The individual LQP nodes do not contain any code needed to execute, e.g., a join.
This code is part of the individual operators that constitute the execution engine. LQP
nodes do not always have a 1:1 mapping into operators. For example, a scan node can be
implemented in the form of a full table scan or an index lookup. Translating LQP nodes
into operators and, in the bigger context, logical into physical query plans (PQPs), is
the job of the LQPTranslator.

There are two reasons for this separation: first, it makes for a clear separation of
concerns and allows for the logical plan (including its optimizations) and the operators
to be tested individually. Second, this approach makes it easy to provide multiple
implementations for a single LQP node. As described above, a join can be executed
using different algorithms. In Hyrise, (1) hash joins, (2) sort-merge joins, (3) index
joins, and (4) nested loop join are supported. The optimizer identifies the most efficient
algorithm for a given join and stores a corresponding hint in the JoinNode describing
which strategy should be used. Based on this hint, the LQPTranslator instantiates the
appropriate join operator.

4.4.5 Execution Engine

Once it is translated into a physical query plan (PQP), the query can finally be exe-
cuted. Hyrise follows an operator-at-a-time model, as made popular by MonetDB [28].
In this model, plans are executed bottom-up so that operators (e.g., scan, join) are ex-
ecuted before the succeeding operator is started”. This approach was chosen because it
enables an easier reuse of intermediary results, is easier to debug, and is better suited
for intra-operator vectorization. While we have experimented with inter-operator vec-
torization [67], this is currently not part of Hyrise.

Instead of fully materialized results, the output of most operators consists of position
lists, or short PosLists, which are indirections into the original table. Figure 4.5 shows
two consecutive scans colB > 4 and colA < 10. The original data is stored in uncom-
pressed ValueSegments (VS). A scan of these segments results in ReferenceSegments.
The table scan operator produces one chunk for each input chunk that contains at least
one result. This allows for easy parallelization of the operator. To reduce the cost
of producing the PosLists and their memory consumption, PosLists can be shared be-
tween ReferenceSegments in the same output chunk. The indirection introduced by
the ReferenceSegments is resolved as late as possible in order to reduce the number of
materializations: when a following operator accesses a value, that value is materialized
on-demand.

9This still allows for multiple operators to be executed in parallel if their input dependencies are
independently satisfied.
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Figure 4.5: Temporary tables as produced by operators contain position lists (short:
PosLists), which are indirection into the original table.

4.5 Multi-Threading

Hyrise supports both inter- and intra-query parallelism. In case of the former, multiple
queries are executed in parallel; for the latter, operators (or parts thereof) within a single
query are parallelized. In both cases, the unit of work is a task. Tasks can spawn other
tasks themselves. For example, the table scan operator spawns one task per scanned
chunk so that the table is scanned in parallel.

Tasks are scheduled by adding them to a task queue. Workers (one per CPU core) take
tasks from their assigned queue and execute them. If the queue is empty, a task from a
different queue is taken. This is known as work-stealing. Using fewer queues increases
the synchronization overhead while having too many queues increases the scheduling
overhead. For Hyrise, having one task queue per NUMA node was found to be optimal.

In our research, we find it important to be able to selectively use optimizations, in-
cluding multi-threading. As such, Hyrise can also run in a single-threaded mode by using
a pseudo-scheduler that does not spawn additional threads but instead flattens the task
dependency graph to a linear execution order and completes one task after another.

On the concurrency side, Hyrise uses an approach based on Multi-Version Concurrency
Control with Group Commit as originally developed for the first version of Hyrise [221].
This approach has been found to be one of the more scalable approaches out of all
concurrency methods analyzed by Wu et al. [257]. Compared to the originally described
approach, we have added some further optimizations that make use of the chunk-based
layout of the new version of Hyrise. These skip the validation of chunks that are entirely
visible or invisible to the current transaction. Especially in analytical workloads, in which
old data is rarely, if ever, updated, this significantly improves the query performance.
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Figure 4.6: Number of publications indexed on Google Scholar referencing “TPC-H”,
“TPC-DS”, or “TPCx-HS”, starting with the year of the benchmark’s pub-
lication [63].

4.6 Evaluation

Having introduced the key concepts of our architecture, we now present a performance
evaluation of Hyrise. In this section, we look at the core DBMS without any tiering-
specific modifications. This evaluation is done to establish that the baseline performance
provided by Hyrise is comparable to that of other research database systems. It also
gives some insight into the strengths and weaknesses of Hyrise. At the same time, it is
not the purpose of this evaluation to advertise Hyrise as being superior to any of the
compared systems. Too many factors play into these benchmarks for the comparison to
be used as any type of advertisement [198].

4.6.1 Benchmarking and Reproducibility

Hyrise natively supports a number of publicly available benchmarks. In our research and
development, we use these to measure the impact of code modifications on the query
latency and throughput. The TPC-H Benchmark [239], introduced in 1999, was one
of the first extensive OLAP benchmarks. It models a decision support system based
around customers, orders, parts, and suppliers. 22 queries are defined and filled with
random parameters.

The TPC-H benchmark has been criticized as being partially unrealistic because of its
linear and homogeneous data distribution, the use of 3NF instead of a star schema [173],
and the lack of complexity in its queries compared to real-world workloads [244]. Still,
it is among the most popular benchmarks among academic researchers, as shown in
Figure 4.6.

Other benchmarks that are natively supported in Hyrise are JCC-H (a modification
of TPC-H that introduces data and access skew) [27], the Join-Order Benchmark [149],
and the transactional TPC-C benchmark [237]. The decision support benchmark TPC-
DS [238] is partially supported (62 of 103 query variants).

In Section 4.1.2, the second non-functional requirement called for a benchmark setup
that makes it easy to reproduce benchmark results. This includes the generation of the
data and the queries, as well as the execution and the reporting of the results. In Hyrise,
these are combined in the hyriseBenchmarkTPCH binary and corresponding binaries

o4



for the other benchmarks. These binaries perform all necessary steps for running the
benchmark and return the result both in a text and a JSON format. The latter contains
not only the runtime of each individual query execution, but also information about
the code version that was benchmarked and the chosen benchmark parameters, allowing
users to later re-run the benchmark with the same configuration. Further, it is the data
basis for most visualizations of benchmark results.

4.6.2 Single-Threaded TPC-H Performance

For the first benchmark, we execute the TPC-H benchmark on MonetDB [28, 100,
109], DuckDB [199], HyPer [80, 120, 147], Umbra [118, 177, 254], and Hyrise. These
systems were chosen because they have already been extensively studied by the research
community. In the first benchmark, we execute all benchmarks in a single-threaded
configuration. This is done because it helps to isolate the performance characteristics of
the individual operators. While the multi-threaded performance is at some point capped
by the available memory bandwidth, a single-threaded execution cannot reach this cap.
Furthermore, it allows us to distinguish the performance of the query execution engine
from that of the scheduler.

Benchmark Setup

This benchmark is executed on a 2017 Fujitsu Primergy RX4770 M4 with four Xeon
8180 CPUs (2.5 GHz base, 3.8 GHz turbo, 28 physical cores) and a total of 1.5 TB
RAM. The database systems are configured as follows:

e The MonetDB team provides a collection of scripts online'®. We start the server
with set gdk_nr_threads=1 and use their horizontal_run.sh script to execute
the queries. MonetDB version 11.37.7 is installed using from the official packet
sources.

e DuckDB (commit 2fa2e62) does not explicitly provide a benchmark facility with
tunable parameters. We use a modified internal benchmark script to generate
TPC-H data with a scale factor of 10, disable the result validation'!, and run a
single query per template.

e For Hyrise, the integrated benchmark binary hyriseBenchmarkTPCH is used with
the -r 1 parameter to limit the number of query executions and -s 10 for a scale
factor of 10. We present two entries, Hyrise Paper and Hyrise WIP. The former
represents formerly published and peer-reviewed results [63], the latter is based on
a yet unpublished version of Hyrise. This work-in-progress version includes the
changes since the paper has been published as well as some optimizations that
have not yet been merged into the master. This is because the corresponding code
reviews and the development of additional tests has not been completed at the
time of writing.

https://github.com/MonetDBSolutions/tpch-scripts
"https://github. com/hyrise/tpch_paper/blob/master/3_experimental_setup/duckdb.diff
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DBMS HyPer | Umbra | MonetDB | DuckDB | Hyrise Paper | Hyrise WIP
Total [ms] 19747 | 16696 | 27750 94063 73978 39753
rel. to Umbra | 1.18 1 1.66 5.63 4.43 2.38

Table 4.1: Summed latency of all TPC-H queries (similar to TPC-H Power Metric).

e Because HyPer is not publicly available, we instead cite previously published num-
bers [72]. Essertel et al. used a benchmark environment that is very comparable
to the one that we use for our benchmarks. Most importantly, the used processors
are very similar (Xeon 8168 vs. Xeon 8180). The presented numbers use a scale
factor of 10, which we thus use for the other systems, too.

e In April 2020, we were kindly provided with a version of Umbra. TPC-H is exe-
cuted by setting the PARALLEL environment variable to off and running demo-tpch.
This script executes 22 hard-coded queries once each, so the results are comparable
to HyPer in terms of the number of executions.

One might argue that instead of executing only a single query per TPC-H query tem-
plate, we should execute multiple instances of these. Doing so would allow the systems to
warm up and cache reoccurring query plans. Indeed, we found that the performance of
Query 2 on Hyrise improved significantly after several executions. However, in order to
avoid tainting the comparability to the HyPer and DuckDB results, we decided against
modifying the developer-provided benchmark scripts or tuning their parameters.

In prior work, we have compared Hyrise with two more database systems [66], namely
Quickstep [187] and Peloton [188]. Both systems have since then been discontinued,
which is why we exclude them from the comparison. For all queries supported by Peloton,
and all but two queries supported by Quickstep, Hyrise is now faster. We further do not
publish any results from commercial database systems because of the infamous DeWitt
clause [203], which puts researchers publishing benchmark results in legal jeopardy.

Results

Figure 4.7 shows the result of the single-threaded execution of the TPC-H queries. We
show the runtimes of the individual queries as well as the overall sum, i.e., the time to
execute each query once. For five out of 22 queries, Hyrise is the fastest out of the five
evaluated systems. At the same time, there are two queries for which Hyrise is slower
than all other systems.

When summing the execution time of all queries (Table 4.1), we find that Hyrise
takes 2.38 x longer to execute the TPC-H benchmark than the fastest measured DBMS,
Umbra. Because both database systems were fully memory-resident, we attribute this
not to the storage layer of the systems, but to Umbra’s execution engine. While this
certainly shows room for improvement, we also believe that it allows us to claim that the
single-threaded performance of Hyrise is at least in the same ballpark as other research
database systems. It is important to note that in its current version, Hyrise does not use
any primary key indexes, which could bring an additional boost to its join performance.
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Figure 4.7: Latencies for a single-threaded execution of TPC-H on different systems.

4.6.3 Multi-Threaded TPC-H Performance

We now look at the multi-threading performance of Hyrise. Unfortunately, the bench-
mark facilities provided by the systems used for comparison are not flexible enough to
execute different types of multi-threaded benchmarks. Most importantly, they do not
provide options to run multiple clients (also known as query streams) in parallel. We
thus wrote a Python-based benchmark suite to measure the multi-threaded performance.

Benchmark Setup

The multi-threaded benchmark uses the same setup as used in the single-threaded bench-
mark. For MonetDB, we load the TPC-H data into the database using MonetDB’s test
scripts and use the pymonetdb package to connect to the database. For Hyrise we use
psycopg2, which is a library that connects to the PostgreSQL-compatible network in-
terface of Hyrise. Umbra has no public Python interface and HyPer was not available to
us. For these reasons, the multi-threaded benchmark is limited to MonetDB and Hyrise.
The benchmark executes a shuffled run, in which one or multiple parallel client(s)
execute(s) all queries in a random order for one hour. Only full runs are counted and
long-running queries have a higher relative impact on the result than smaller queries.
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Figure 4.8: Multi-threaded TPC-H results for Hyrise and MonetDB with a varying num-
ber of CPU cores and either 1 or 50 concurrent clients (aka. query streams).

To show how the systems perform on a varying number of CPU cores, we limit the
number of cores available to the DBMS using numact1(8). This tool takes a range of
logical core IDs that a child process should be constrained to. On the test system, logical
core IDs are first grouped by the Hyper-Threading sibling id, then by the socket number,
and then by the physical core number. As such, when executing a benchmark with a
core count varying from 1 to 56, cores 1 to 28 are independent physical cores, while 29 to
56 are the corresponding Hyper-Threading siblings. While MonetDB observes the CPU
affinity set by numactl, it continues to spawn as many threads as there are cores in the
system, which is why we continue to use set gdk_nr_threads.

Results

The results of this experiment are shown in Figure 4.8. It shows measurements both for
a single client and for 50 clients. With a single client, the query throughput of Hyrise
does not significantly benefit from a higher number of threads. Reasons for this include
the aggregate operator in Hyrise, which has not yet been parallelized, as well as the lack
of concurrent bloom filters in the hash join, which results in a sequential filter merge
step. MonetDB is slightly more effective when it comes to intra-query parallelism, but
also needs more than a single client to reach its full potential.

Looking at the multi-client benchmark, the benefits of having multiple cores become
more pronounced. Here, Hyrise and MonetDB reach almost the same performance.
Both reach their peak performance when all 56 cores are used, with MonetDB maxing
out at 0.496 iter/s (with one iteration being a full execution of all 22 queries) and Hyrise
reaching 0.494 iter/s.
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Our experiment shows that not only the single-threaded but also the multi-threaded
performance of Hyrise is competitive for the TPC-H benchmark. In fact, while Hyrise
is still slower than MonetDB by 43% in the single-threaded benchmark, it can show its
strengths in the multi-threaded benchmark, in which both systems are on eye level. As
such, we conclude that Hyrise as a research platform exhibits a reasonable approximation
of a productive system’s performance.

4.7 Summary

In this chapter, we have presented Hyrise, which is the open-source in-memory DBMS
that is used as the experimental platform for our automatic tiering implementation.
In Hyrise, tables are organized in horizontal partitions, which are called chunks. Each
chunk consists of several segments, one segment for each column of the table. These
segments can be individually compressed. They are accessed via iterators, which serve
as an abstraction that hides the compression details of the segment from the database
operators. To execute SQL queries, Hyrise translates the queries into logical query
plans (LQPs), optimizes these plans, transforms the LQPs into individual operators that
are part of physical query plans (PQPs) and executes these operators. Most operators
produce ReferenceSegments: instead of copying all input values into the operator output,
the values in the original table are referenced. This reduces the amount of data that has
to be written. In single-threaded and multi-threaded benchmarks, Hyrise can compete
with other database systems.
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5 Multi-Tier Memory Management and
Data Migration

The first pillar of automatic tiering is the handling of different memory and storage
types and the migration of data between these. Our goal is for this to be implemented
in a (1) transparent and (2) extensible manner that adds (3) little overhead. In this
context, (1) transparency means that the different tiers shall not be exposed to the
entire DBMS but be contained to the tiering component. Operators should not have to
be modified to profit from different tiers. At the same time, to fulfill the requirement
of decoupling the research projects, using non-DRAM tiers shall remain just an option.
As such, our functionality shall be easy to disable or even remove as needed. Second,
our implementation shall be (2) extensible in a way that does not account for only
DRAM and NVM, but also allows for existing tiers like SSD and upcoming tiers like
disaggregated memory (cf. Section 8.2). Finally, the (3) performance of the DBMS shall
not be substantially affected by any abstraction layers. Accesses to data on DRAM shall
not be measurably slower than in a system without tiering support. Similarly, we want
to be able to exploit the full performance of byte-addressable NVM. Ideally, we would
also exploit the full performance of block-addressed devices, such as SSDs.
In the following, we describe how Hyrise solves these challenges and fulfills the goals
of transparency, extensibility, and performance. Our approach integrates existing tech-
niques, including Polymorphic Memory Resources, memkind, and umap, into a novel,
comprehensive multi-tier memory management framework. It enables automatic tiering
for data structures that have not been developed with tiering in mind and that have so
far evaded any evaluation from that perspective. As such, our framework constitutes
both a contribution to the goal of this thesis as well as to future research.
The remainder of this section is organized by the following guiding questions:
1. How can NVM and SSD tiers be accessed by data structures that were not devel-
oped with different tiers in mind? (Section 5.1)

2. Which allocation primitives are needed to perform fine-grained allocations on these
tiers? (Section 5.2)

3. With each tier using a different allocation primitive, how can data structures allo-
cate space in a unified and type-safe manner? (Section 5.3)

4. How can data structures be migrated between tiers without stopping the system
and even if the data structure was never designed to be migrated? (Section 5.4)

5. What are the performance implications of the abstractions introduced to solve the
aforementioned challenges? (Section 5.5)

6. Can these abstractions be used for other challenges outside of automatic tiering?
(Section 5.6)
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Figure 5.1: Access methods for different memory and storage tiers. The trees, shown on
the left, are logical representations of data structures of the physical data
stored on DRAM, NVM, or SSD; shown on the right. For DRAM and NVM,
accesses only require a translation from a virtual to a physical address. For
SSDs, such a physical address does not exist, and a page fault handler has
to copy the data block into a DRAM buffer. Optimizations, such as the
translation lookaside buffer (TLB) are not displayed.

5.1 Tier-Agnostic Data Access

How can NVM and SSD tiers be accessed by data structures that were not developed with
different tiers in mind?

In an in-memory (i.e., DRAM) DBMS, data structures are stored in the virtual address
space of a process. Pointers to other virtual addresses are used to connect them and
build more complex data structures. When a virtual address is accessed by the CPU,
it is transparently translated into a physical address by looking up the corresponding
mapping in the page table. The CPU can then access the data at the physical address.

For NVM, which, just like DRAM, is byte-addressable and attached to the CPU’s
memory controller, data structures are equally accessible by the CPU. This is true
even though NVM is usually managed by a filesystem overlay (fsdaz, cf. Section 2.2.3).
Figure 5.1 shows these accesses for DRAM and NVM as Access 1 and Access 2. For the
purpose of this thesis, we exclude the steps that NVM requires to perform persistent
writes (cf. Section 1.4).

On the other hand, block devices, such as SSDs, cannot be immediately addressed
by the CPU. Traditionally, functions like read are used to explicitly copy (parts of)
a file into DRAM, where the data can then be used by the CPU. The explicit call to
read is part of the data structure’s implementation. For example, a tree can hold a file
descriptor and use it to read the children of a node. This, however, is incompatible with
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our goal of requiring no changes to the implementation of the data structures.

Instead, we need a mechanism that implicitly brings data from block devices into
DRAM when accessed. This mechanism exists with the concept of memory-mapped
files. Such a mapping is established using either the mmap system call or user-defined
page fault handling. We first describe mmap with its shortcomings before we come to
umap, which we ultimately use for Hyrise. mmap updates the process’ page table and
assigns a virtual address range to the mapped file. If such a virtual address is accessed,
a page fault is triggered. The kernel’s page fault handler copies the data from the block
device into the page cache and updates the page table. This process is shown as Access
8 in Figure 5.1. The application can then continue and access the page. The mmap
mechanism makes it possible to run address-based functions on data stored in a file
without having to adapt the implementation of the function. However, mmap on block
devices comes with known drawbacks. Most prominently, Linus Torvalds commented on
its performance on the Linux kernel mailing list (LKML) [236]:

“It’s not the 10 on the pages themselves, it’s actually the act of populating the
page tables that is quite costly. And doing that in the background is basically
impossible. [...] And on top of that you still have the actual CPU TLB miss
costs etc. Which can often be avoided if you just re-read into the same area
instead of being excessively clever with memory management just to avoid a
copy. memcpy() (ie ‘read()’ in this case) is always going to be faster in many
cases, just because it avoids all the extra complexity. While mmap() is going
to be faster in other cases.”

In our case, in which explicit calls to read are not an option, we have to accept a
certain overhead for accesses to block-level devices. We quantify that overhead when we
evaluate our memory management concept in Section 5.5.

Another disadvantage of mmap is that it holds data in DRAM until the operating
system’s memory pressure is sufficiently high. Only then do pages get dropped from the
OS page cache. While this generally increases the number of cache hits, it also makes
the access times to data stored on block-level devices hard to predict. Furthermore, it
means that all processes on a machine share the same page cache. In a multi-tenant
scenario, this means that the reads of one tenant may evict data from a second tenant
and that no guarantees on the individually available cache size can be given. For the
sake of performance and robustness, we prefer a method that allows the size of the cache
to be restricted and that reliably causes physical reads from these devices instead of
cached reads.

Such a method is provided by the umap [191] library. Similarly to mmap, it manipu-
lates the page tables so that virtual addresses are provided for the mapped file. However,
accesses to these pages are not handled by the kernel’s page fault handler, but by a han-
dler that is implemented in the user space (userfaultfd). In Figure 5.1, this is shown
as Access 4. Pages that are read by this handler are not stored in the OS page cache,
but in a umap- and process-internal cache. This mechanism allows umap to provide
more fine-grained control over the paging behavior than mmap offers. Most importantly
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for our use case, it allows us to limit the size of the page cache to a fixed size instead
of relying on the variable OS page cache size. This is controlled by the UMAP_BUFSIZE
environment variable, which defaults to using 90% of the free DRAM. For our purposes,
it needs to be set to a lower value. Otherwise, a large buffer cache may prevent reads
from actually being served from disk. By choosing a low cache size of 16 MB, we ensure
that umap does not act as an additional cache but only as a means to access data from
lower tiers.

To summarize, we use direct mapping for byte-addressable memory (DRAM/NVM)
and umap for block-level devices (SSDs). These different approaches are necessary be-
cause we need to translate between the byte-based accesses of data structures whose
code we cannot modify, and the block-based operations of, e.g., SSDs. The presented
combination of mmap and umap gives us a unified method to access data on different
tiers via virtual addresses without requiring any modifications to the source code of the
stored data structures.

5.2 Space Allocation on Different Tiers

Which primitives are needed to perform fine-grained allocations on these tiers?

The next task is to subdivide the fixed-size pages (or blocks) into consumable units.
The process of allocating memory on DRAM is usually well-understood: in C, a call
to malloc(n) returns a virtual address at which n bytes can be used. Because the
available physical memory is shared between processes, new memory has to originally be
allocated from the kernel. For a variety of reasons, the kernel does not support byte-level
allocations but operates on the level of pages. It is thus the job of a dynamic allocator
to subdivide the pages. This allocation method needs to be implemented in a way that
reduces internal and external fragmentation [229].

For NVM, the allocation process is slightly different. Other than it is the case for
DRAM, the kernel does not “own” the NVM physical address space. Instead, NVM
is often exposed as a file system (fsdaz, cf. Section 2.2.3). Memory on NVM can be
“allocated” by creating a new file. As with files on traditional storage devices, these
files cannot be allocated with byte-level granularity. This again creates the need for a
dynamic allocator that subdivides NVM files into smaller allocation sizes. Depending
on the use case, different allocators exist: when NVM is used as a persistent data store,
the allocator has to be designed accordingly, ensuring ACID! criteria even across system
failures [218]. For this use case, PMDK [214] is commonly used.

In our use case, NVM is used for its higher capacity, not for its persistency. Because
files are not re-used when the DBMS process restarts, the challenges of making alloca-
tions persistent and non-leaking are not of concern. Instead, the data can be discarded
by deleting the file. Thus, no additional requirements exist for the allocator beyond
those known from DRAM. This relaxation makes it possible to re-use existing alloca-
tors such as jemalloc [73] instead of more expensive persistency-aware allocators such as
those included in PMDK. This allocator has already been shown to be highly efficient

! Atomicity, Consistency, Isolation, Durability
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for in-memory databases [70]. For jemalloc to be used on different tiers, it needs to be
modified so that its backing memory is not retrieved from by extending the DRAM map
of the process, but by increasing the size of the pool files on the different tiers.

Jemalloc allows developers to define additional memory arenas that draw their backing
memory (also called extents) not from the standard system calls (brk and mmap), but by
calling a custom extent allocation hook. This hook can then allocate memory on NVM
by creating (or enlarging) a file on the NVM file system. The files from which memory
is allocated are also called pools. Such hooks have been implemented by the memkind
library [215], which provides a unified API for allocations on DRAM and NVM. This is
shown in Listing 5.1.

// Traditional allocation
auto a = malloc (10);

// Allocation on DRAM with memkind:
auto b = memkind_malloc (MEMKIND_REGULAR, 10);

// Preparation for NVM, done only once:
auto nvm_kind = memkind_t{};
memkind_create_pmem ("/mnt/nvm/", 0, &nvm_kind);

// Allocation on NVM with memkind:
auto ¢ = memkind_malloc(nvm_kind, 10);

Listing 5.1: Allocation using malloc and memkind_malloc primitives.

For SSD and other block devices, we would like to use the same concept. Because
memkind does not generally require the pool file to be created on NVM, it could also
support other devices. However, as it internally uses mmap, it suffers from the mmap-
related problems that were described in the previous section. We thus experimented
with a custom jemalloc-based allocator for block devices. Here, we found that jemalloc
does not support a separation of meta data and allocated data. Storing the meta data
on block devices, such as SSDs, proved to come with an unacceptable overhead. For as
long as a separation of the meta data extents [158] is not implemented in jemalloc, we
thus use a different approach: we create one file per tiered data structure and subdivide
it using a monotonic allocation strategy. Once the data structure is deleted, the file is
deleted, too. This is sufficient for our use case in which only immutable data structures
are migrated between tiers and no regular re-allocations need to be made.

To summarize, the NVM and SSD tiers require custom dynamic allocators. With
memkind, we use an existing library that supports volatile allocations on NVM. For
SSDs, we use a custom allocator that is optimized for immutable data structures.
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5.3 Use of Allocated Space by Data Structures

With each tier using a different allocation primitive, how can data structures allocate
space in a unified and type-safe manner?

Having allocated space from a specific tier, we need to make this space accessible to
the data structures used by the DBMS. This is challenging for a number of reasons:

e As described in the previous two subsections, accesses and allocations on DRAM,
NVM, and SSD build on different mechanisms. When a data structure requires
more space, it needs to call the correct mechanism. All mechanisms must return a
virtual address that is properly mapped and that allows transparent access to the
allocated space.

e This also applies to nested data structures. An inverted index that holds heap-
stored data types (e.g., variable-length strings) should use the pool not only for
its own allocations but also for those of the contained data type.

e When the allocated space is no longer needed, it must be returned to the same pool
that it was allocated from. For this, the deallocate method of the corresponding
allocator has to be called.

e The solution to the previous challenges should be applicable to arbitrary data
structures without modifications. This is especially relevant for research, as it
allows researchers to evaluate third-party data structures without having to change
their internals.

5.3.1 Running Example

Before we describe our solution, we introduce a running example. It represents an
inverted index on a single chunk. As shown in Figure 5.2, the chunk holds two columns,
namely the double a and the integer value b. It also contains three rows. The inverted
index uses an std::map, which is usually implemented as a red-black-tree. We chose
this example instead of, e.g., an uncompressed data vector, because it shows that our
memory management abstraction can deal even with complicated data structures that
include internal pointers. Outside of this example, a more efficient data structure would
be chosen as an index data structure. In the following, we describe how this index can
be migrated to a different tier and how the aforementioned challenges can be addressed.
We limit the discussion to the DRAM and NVM tiers with no loss of generality.

const auto& segment = chunk.get_column (1) ;

using InvertedIndex = std::map<double, uint>;

auto index = InvertedIndex<{};

for (auto i = 0; i < segment.size(); ++i)
index->emplace (segment [i], 1i);

// index == {{1.4, 1}, {3.5, 2}, {4.2, O}}

Figure 5.2: Sample chunk and simplified creation of an inverted index.
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5.3.2 Stateful Allocators

Excursus on the term allocator: Knuth describes dynamic storage allocation as
“algorithms for reserving and freeing variable-size blocks of space from a larger
storage area” [126]. In contrast, C++ defines allocators as “class-type objects that
encapsulate the information about an allocation model. This information includes
[...] the memory allocation and deallocation primitives for it” [37, p.475]. Here,
the traditional task of subdividing a memory or storage pool is called an allocation
primative. Luckily, the context in which the term allocator is used, together with
the awareness of the differing definitions, is usually sufficient to avoid ambiguities.

By default, the red-black-tree created in the running example allocates its space from
DRAM. This is governed by one of std: :map’s implicit template parameters:
std::map<..., Allocator=std::allocator<std::pair<const Key, T>>>
Internally, this allocator calls malloc, which is the fundamental way of allocating space
in C++. Instead of having the standard allocator allocate space on DRAM, we now
want to use NVM. In the previous section, we have shown how memkind can be used to
manage and subdivide an NVM pool. It is thus our goal to change the tree from using
malloc to memkind_malloc. The straight-forward way of doing this is to implement a
custom C++ allocator and use it instead of the default allocator. During compile time,
the maps’s allocation will then automatically be linked to memkind_malloc. This is
shown in Listing 5.2.

template <class T>
class nvm_allocator {
memkind_t nvm_kind;
nvm_allocator () {
memkind_create_pmem("/mnt/pmem/...", O, &nvm_kind);
}
Tx allocate(std::size_t n) {
return (T*) memkind_malloc(nvm_kind, n * sizeof (T));

}

// Deallocation and destructor omitted

using InvertedIndexDRAM = std::map<double, int>;
using InvertedIndexNVM = std::map<double, int,
nvm_allocator<std::pair<const double, int>>>;

Listing 5.2: Allocating space on NVM using memkind_malloc.

While this nvm_allocator allows us to store data on NVM, it has one drawback: the
DRAM- and the NVM-based indexes now have two different types. In a strictly typed
language such as C++, this means that they are incompatible. They have no common
super class and none can be added. As a result, a chunk can either hold a DRAM- or
an NVM-based index and this decision has to be made at compile time. To rectify this,
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we store the information whether DRAM or NVM should be used in the allocator object
instead of the allocator type. This makes the allocator stateful, as shown in Listing 5.32.

template <class T>
class multitier_allocator {
struct memkind *kind;

multitier_allocator (struct memkind *kind) : kind(kind) {3}
T+* allocate(std::size_t n) {

return (T*) memkind_malloc(kind, n * sizeof (T));

¥

using InvertedIndex =
std::map</*[...]*/, multitier_allocator</*[...]*/>>;

auto dram_index = InvertedIndex{dram_kind};
auto nvm_index = InvertedIndex{nvm_kind};

Listing 5.3: Allocating space on a memkind that is specified at runtime.

With this modification, the index now draws its space from a memkind (i.e., DRAM
or NVM) that is specified at runtime. The allocator’s deallocate method can be
implemented in the same way. Because the compile-time types of the two inverted
indexes are identical, they can be used interchangeably. This allows us to store both
DRAM and NVM indexes, e.g., in the same vector of inverted indexes. Using stateful
allocators fulfils our goals of (1) ensuring that (re-)allocations and deallocations use the
correct memory pool and (2) not requiring any modifications to the implementation of
the data structures.

Still, this solution is not yet ideal. First, it introduces tight coupling of all tierable
data structures to the memkind library. The allocator and with it, the memkind struct,
becomes part of every tierable data structure’s type. This counteracts our efforts to
make automatic tiering transparent not only to the user, but also to other developers.
Second, this allocator is only used for the top-level data structure (here: the index) and
is not passed down. It is not used for any nested, heap-stored data structures, such as
variable-length strings®. Finally, this allocator only supports memkind. For SSD and
other tiers, we would have to extend the allocator to distinguish between memkind and
non-memkind allocations.

2Using std: :variant would also make it possible to mix the two types. As this would make the code
more complicated and comes with other drawbacks, we do not further pursue this option.

3We have experimented with scoped_allocator_adaptors, which could technically address the second
problem and have since then been proposed for similar use cases [215]. Compared to polymorphic
allocators, which are described next, scoped allocator adaptors have no benefits but require explicitly
stating all nested types and hence further increase the coupling.
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Figure 5.3: Comparison of an approach that uses only stateful allocators (left) and one
that includes polymorphic memory resources (right). Both allow the data
structure on top to allocate space from one of the DRAM, NVM, or SSD
pools. The PMR abstraction helps to decouple the details of the tiering
implementation as only the abstract memory_resource interface needs to be
exposed to the Hyrise Core.

5.3.3 Polymorphic Memory Resources

To quote David J. Wheeler, “we can solve any problem by introducing an extra level of
indirection” [140]. In this case, this indirection is called Polymorphic Memory Resources,
or short PMR. With PMR, the allocation behavior is changed from being a compile-time
property to being an execution-time property that is resolved using dynamic polymor-
phism (i.e., inheritance). It introduces a memory_resource interface. Implementations of
this interface provide methods for allocating and deallocating memory. Data structures
that use these memory resources call (de)allocate via virtual method calls. Originally,
PMR was intended to support “thoughtfully-chosen local (‘arena’) memory allocators”,
which can “yield significant (sometimes order-of-magnitude) performance improvements
over [...] general-purpose global allocators” [95]. In other words, it was designed to
support different allocation strategies on DRAM. We present a novel approach in which
PMR is used to add tiering capabilities to arbitrary data structures.

Figure 5.3 gives an overview of the architecture of the previously described stateful
allocators and the PMR improvement presented here. For now, we focus on the compo-
nents printed with black font. We discuss default and layered resources later. Starting
from the top, the data structure uses the polymorphic_allocator, a class included in
the C++ standard. This allocator is constructed using either the memkind_resource or
the umap_resource. The former allocates memory on DRAM or NVM using memkind,
the latter allocates storage space on SSD using our custom monotonic allocator, both
of which were described in Section 5.2. An example on how PMR can be used for the
running example is given in Listing 5.4.
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using InvertedIndex =
std::map</*[...]#*/, polymorphic_allocator</*[...]*/>>;

// Allocation on DRAM
auto dram_allocator = polymorphic_allocator (&dram_resource);
auto dram_index = InvertedIndex{dram_allocator};

// Allocation onm NVM (using implicit conmstruction)
auto nvm_index = InvertedIndex{&nvm_resourcel};

// Allocation on DRAM (fallback without ezplicit resource)
auto dram_index2 = InvertedIndex{};

Listing 5.4: Implementation of an inverted index using PMR.

On first sight, this looks similar to the code used for the stateful allocators in List-
ing 5.2, maybe even more complicated. However, Figure 5.3 reveals some advantages:

e The colored parts on the side of the figure show which components have to be
implemented in the Hyrise core, which ones can be encapsulated in the tiering
component, and which ones are handled by C++’s standard library (STL). Thanks
to PMR, fewer components have to be implemented in the core. Namely, the only
necessary modification in the Hyrise core is to add the polymorphic_allocator
to data structures that should be subject to tiering. Because the polymorphic
allocator is part of the C++4 library, no additional dependencies are introduced
into the Hyrise core.

e PMR has a default memory resource which falls back to the default malloc behavior
if no memory resource is specified*. As such, both the memkind and umap libraries
and the corresponding memory resources can be fully encapsulated within the
tiering plugin. Not even their headers have to be included in the Hyrise Core. Only
the tiering plugin needs to know about their existence and they can be dynamically
loaded together as part of the plugin. If no memory resource is provided, Hyrise
falls back to using regular malloc (more specifically, jemalloc).

e Memory resources can be layered, “i.e., one [resource] provides some memory-
management functionality and goes to another backing [resource] when additional
memory is needed” [95]. An example of such a layered resource is the monotonic
buffer resource, which linearly allocates memory in a contiguous buffer and defers
the deallocations to the deletion of the entire buffer. This can be used to remove
deallocation costs for very short-lived data structures. By introducing PMR into
Hyrise, we can profit from these layers in operators that create numerous temporary
objects, such as the hash-based aggregate and join operators.

4Reproducibility Notice: The STL’s polymorphic_allocator calls get_default_resource, which is a
synchronized method [179, page 219]. In our experiments, we have found this to be a significant
performance bottleneck. As such, we use a modified polymorphic allocator, which uses a static
new_delete_resource if no explicit resource is passed in.

70




Two more advantages of PMR cannot be visualized in the architecture diagram but
are nevertheless relevant:

e Being a C++ library concept, polymorphic memory resources have carefully de-
signed and tested semantics.

e PMR solves the challenge of propagating the memory resource to nested data
structures. If a PMR-enabled container (e.g., a variable-length string) is stored in
another PMR container, they automatically share the same memory resource.

To summarize, we use polymorphic memory resources as a mean to enable tiering for
arbitrary C++ data structures. These data structures do not have to be designed with
PMR in mind, but have to conform to C++’s allocation interface. Using PMR instead
of regular stateful allocators allows us to decouple the use of these data structures from
the different tiering layers. Furthermore, it enables “rapid prototyping and enhanced
predictability” [95], which has already been named as a “collateral benefit” for PMR
without tiering. To the best of our knowledge, we are the first to use PMR in the
context of data tiering.

5.4 Migration of Data Structures Between Tiers

How can data structures be migrated between tiers without stopping the system and even
if the data structure was never designed to be migrated?

By now, all building blocks for storing data structures on different tiers have been
presented. To finally put them to use, we need a mechanism to migrate data structures
from DRAM to lower tiers and back. Conceptually, there are two approaches: for the first
approach, which we call page migration, the space on which the data structures are stored
is moved from one tier to another. Afterwards, the page table is updated accordingly.
With the second approach, which we call object migration, the data structures themselves
are moved (more exactly: copied) from one space to another. We do this by calling the
C++ copy constructor as shown in Listing 5.5.

auto nvm_segment = DictionarySegment<T>(dram_segment,
&nvm_resource) ;

// Post-Conditions: dram_segment == num_segment,
// &dram_segment != &num_segment

Listing 5.5: Migration of a DRAM-resident segment to NVM.

Both approaches have their advantages and disadvantages as shown in Table 5.1.
After weighing these against each other, we consider the object migration approach
to be less intrusive and more maintainable than the page migration approach. The
maintainability aspect played a significant role in our decision for the object migration
approach. Past experience has shown that overly smart low-level hacks have a tendency
to not be maintained once the original developer has passed on the ownership of the
component.
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e Migrating the pages that a data structure is stored on is data structure-
agnostic. Because the virtual addresses remain the same, the migration is
invisible to both the data structure and its user.

e As the migration is completed by atomically updating the page table,
read-only data structures (such as immutable segments) can be migrated
without any type of synchronization. For mutable data structures, this
synchronization can be implemented by write-protecting the page(s) for
the duration of the migration. Similar approaches have been successfully
used, e.g., for modifying concurrent data structures [58].

e Some systems provide co-processors with a limited instruction set that can
be used to move data without blocking a CPU core. For example, the HPE
Integrity MC990 X server (formerly SGI UV 300), feature a co-processor
called HARP. We have previously shown the value of its bcopy primitive
for offloading memory operations [64, 65]. This could similarly be used to
asynchronously move data between tiers.

e To migrate a data structure, the pages that it occupies need to be known.
While this can be achieved without modifications to the data structure
implementation [62], this tracking adds additional costs.

e Pages may contain multiple data structures. While this is only an edge case
for data structures that occupy contiguous memory, it is a more common
case for data structures with many internal allocations (such as trees). To
cleanly migrate individual data structures without affecting others, a 1:n
mapping from data structures to pages is needed. This increases the cost
of allocations and introduces additional external fragmentation.

e Even nested or circular data structures are automatically handled as
long as they fulfill the C++ requirements for allocator-aware and copy-
constructable classes. This is commonly the case.

e Copy construction is more intuitive and, thus, the implementation is easier
to understand than manipulations of the page table would be. Even though
this component is transparent to most of the code, its simplicity plays a
role for the maintainability of the memory management framework itself.

e Data structures without a copy constructor cannot be migrated using this
approach. Mostly, this applies to data structures that are implemented in
plain C.

e Invoking the copy constructor is more expensive than performing a binary

Advantages

Page Migration

Disadvantages

Advantages

Object Migration

copy of the underlying data.

e Thread-safety in the presence of concurrent writes cannot be guaranteed
as easily as with the page migration approach. While parallel reads on
the old data structure are innocuous, writes can either be lost or lead to a
corrupt new copy. The absence of such writes thus has to be guaranteed
by other mechanisms.

Disadvantages

Table 5.1: Advantages and disadvantages of the page and object migration approaches.
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When migrating segments, their immutability is guaranteed by the table model and
the insert-only properties of Hyrise. As such, two copies can safely co-exist and we do not
require additional measures to guarantee the thread-safety of the migration. Without
pausing the execution of queries, we (1) copy the segment from the old tier to the new
tier, (2) atomically update the chunk’s segment pointer from the old to the new copy,
and (3) wait for all pending operations on the old segment to complete, at which point
the old segment can be destructed and deallocated.

This approach cannot be used for data that is being modified during the migration. In
the case of tables, this means that neither mutable segments nor the MVCC information
can be migrated. Because there is only a single mutable segment per column and the size
of the MVCC information that remains on DRAM is only 12 Byte per row, we consider
this limitation to be acceptable.

5.5 Evaluation

What are the performance implications of the abstractions introduced to solve the afore-
mentioned challenges?

So far, we have discussed all components that are needed to store data structures on
different tiers and to migrate them between these tiers. We now evaluate these building
blocks bottom-up. This includes the access and allocation methods, the PMR-based
data structures, and the migration approach.

For the performance of Intel’s memory modules alone, and excluding the use of NVM
in individual data structures or even entire applications, we are aware of six publications
that aim at providing a better understanding of the modules’ low-level performance
characteristics [92, 103, 112, 190, 242, 260]. It is not the goal of this thesis to supple-
ment these 114 pages of low-level performance evaluations. Instead, we focus on those
performance aspects that we found helpful for the development of our automatic tier-
ing approach. At the same time, we reiterate that our architecture is not designed for
a specific NVM product and can be used equally for other tiers that exhibit different
performance characteristics.

5.5.1 Access Methods

In Section 5.1, we described an abstraction layer that hides the details of different tiers
behind the page table mechanism. For DRAM and NVM, this uses 1:1 mappings be-
tween logical and physical pages; for SSDs, it uses the umap library. We have already
discussed that the page manipulation mechanisms used by mmap and umap come with
a certain overhead. This overhead is quantified by comparing the two access methods
with traditional reads. For the latter, which is not used by Hyrise, we use the Flexible
I/0 Tester fio, “a tool that [is] able to simulate a given I/O workload without resorting
to writing a tailored test case again and again” [18]. This tool has previously been used
in other publications to establish baselines for the performance of different devices [112,
234, 247, 258, 261].
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System A (DRAM and SSDs) System B (NVM)

CPUs | 4x Xeon Platinum 8180 (2.5 GHz base,  2x Xeon Gold 52208 (2.7 GHz base, 3.9
3.8 GHz turbo, 28 physical cores) GHz turbo, 18 physical cores)

DRAM | 2x3x Samsung DDR4-2666 64 GB 2x6x Samsung DDR4-2933 16 GB
(M386A8K40BM2-CTD) (M393A2K40CB2-CVF)

0S Ubuntu 20.10 (Kernel 5.9.10) Ubuntu 18.04.4 LTS (Kernel 4.15.0)

Table 5.2: Configuration of the benchmark systems.

—Dbs=[variable]| —numjobs=[variable] —ioengine=[variable]
—group._reporting —size=2147483648 —offset_increment=134217728
—runtime=10 —gtod_reduce=1 —rw=randread —norandommap=1 —thread=1

—scramble_buffers=0 —time_based

Listing 5.6: Parameters used for executing the fio benchmarks.

Benchmark Configuration. The benchmarks are executed with the following de-
vices serving as different memory and storage tiers:
e DRAM: Samsung DDR4-2666 (M386A8K40BM2-CTD), 3 DIMMs per CPU, accessed
via tmpfs, node locality guaranteed with mpol=bind:0
e NVM: Intel Optane DCPMM (NMA1xxD128GPS), 6 DIMMSs per CPU, node locality
guaranteed by selecting the corresponding /dev/pmem device
e SSD 1: Intel 3D XPoint DC P4800X (SSDPED1K375GA), an SSD that uses the same
physical storage mechanism as the NVM DIMM, but is attached via PCI/NVMe
e SSD 2: Samsung 850 Pro, a “traditional” NAND-based and SATA-attached SSD

Unfortunately, NVM is only available to us as a shared resource in HPI’s Data En-
gineering Lab. These NVM servers do not have internal SSDs and use an old kernel
version that is incompatible with umap. We were unable to overcome these limitations
without causing significant disruptions to the service’s availability to other users. As
such, the NVM and SSD benchmarks have been executed on two different systems: the
DRAM and SSD benchmarks use the system that was already used for the benchmarks
in Section 4.6. We use two different SSDs, one attached via NVMe and another one via
SATA to broaden the scope of the evaluation. For NVM, we use the shared server. The
details of both servers are given in Table 5.2. Because we are only benchmarking the raw
bandwidth of the systems without producing any compute-intensive load, we consider a
comparison across the two systems to be relatively safe.

We use fio in version 3.25-15 and umap in version 2.1.0. All devices were formatted
using xfs, NVM was accordingly configured as fsdax. For fio, we use the parameters
given in Listing 5.6 and limited the benchmarks to a single NUMA node.

When using fio, the number of threads is controlled via the numjobs parameter, not
the thread parameter. For all but DRAM (for which the parameter is not supported
and would not make a difference), we also use the ~direct=1 parameter, which leads to
the files being opened with 0_DIRECT, thus minimizing the system-internal buffering.
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Figure 5.4: Bandwidth (left) and number of operations per second (right) for a random
read workload on different devices. These numbers serve as the baseline with
which we can compare the performance of our access method in a following

experiment.

Findings. Figure 5.4 shows the findings of a benchmark in which random blocks of
varying size (x-axis) are read from different devices (different lines) by a varying number
of threads (vertical graphs). The left two graphs show the achieved bandwidth on the
y-axis; the right two graphs show the number of operations per second. Each data point
was obtained by running fio three times for ten seconds each and taking the mean of
these runs. The lower end of the block size dimension (x-axis) is 512 Byte, as this is the
minimum I/O size of the SSDs and no 0_DIRECT access is possible below this size. We
make the following observations:

1. The memory and storage tiers can be clearly identified. As expected, DRAM is
the fastest device regardless of the configuration, followed by NVM, and finally
the PCle and SATA SSDs in that order. The bandwidth of the memory and the
storage tiers differs by more than an order of magnitude.
For the SSDs, the maximum bandwidth matches the numbers found in the hard-
ware specifications. For DRAM and NVM, fio does not yet reach the maximum
bandwidth as measured by other tools like ml1c and discussed in previous publica-
tions [241, 261]. This is because in this experiment, we use the sync engine. In a
follow-up experiment, we use the mmap engine.
In all cases, the maximum bandwidth can only be achieved when multiple threads
read data concurrently. This is especially the case for DRAM and NVM, which
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cannot be saturated by just four threads.

4. Sequential reads are strongly preferred by all devices. In almost all cases, bigger
block sizes (i.e., larger values on the x-axis) lead to a higher bandwidth.

Before we interpret these findings and their relevance for our work, we present a second
benchmark. This benchmark uses memory mapping as discussed in Section 5.1. As a
microbenchmark, it resembles the access methods that are used by Hyrise.

Benchmark Setup (cont.). For both mmap and umap, the cache size is limited to
16 MB. In the cast of mmap, which does not natively support this limitation, the limit
was set via cgroup. For umap, we test two configurations: one, in which the cache entry
size is 16 KB and one in which it is 64 KB. The cache entry size determines how much
data is read on a single (user space) page fault. It is independent of the block size, which
describes how much data is actually consumed.

Findings (cont.). Looking at Figure 5.5, we make the following observations:

5. Starting with the mmap measurements (a), we can see a higher bandwidth for both
DRAM and NVM than in the fio benchmark with the sync engine. Both mem-
ory types now reach their maximum bandwidth as reported by mlc and previous
publications [241, 261].

6. The SSDs, on the other hand, exhibit a consistently lower bandwidth than mea-
sured with fio/sync. Especially for small block sizes, it is notable that a higher
number of threads no longer helps in saturating the potential bandwidth.

7. Now looking at the umap experiments (b and c), the bandwidth is, for the most
part, still lower than that measured for the experiment in Figure 5.4. However,
compared to mmap, umap shows both a higher average bandwidth and a more
consistent distribution across different block sizes.

8. Unsurprisingly, umap performs best when the entire cache entry (16 KB in exper-
iment b and 64 KB in experiment c) are consumed.

We acknowledge that there are further observations that can be made and additional
benchmarks that could be conducted. In the case of NVM, entire publications have
been written to partially understand the performance characteristics of this new type of
memory. We have discussed some of these in Chapter 3. For this thesis, it was necessary
to limit the scope of our investigation to those experiments that help us to understand
the performance implications of our memory access method. From these experiments,
we draw the following conclusions:

Interpretation. The two experiments allow us to draw a number of conclusions for
the implementation of our memory management and to identify requirements for the
components that build upon it: first of all, DRAM and NVM are faster than SSDs by
at least an order of magnitude (Finding 1). This supports our approach of using SSD
only as a fallback tier. For DRAM and NVM, mmap is clearly the more efficient access
method, as shown by Findings 2 and 5. This is different in the case of the SSDs, for
which read was more efficient (Finding 6). For our goal of supporting transparent tiering
without code modifications, however, using read is not an option.

The umap library provides a decent improvement over mmap (Finding 7). This is both
because of more efficient page fault handling and because of a customizable cache entry
size. Still, umap can only play its strengths when large blocks of data are read (Findings
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Figure 5.5: Bandwidth when accessing random blocks of a given size (x-axis) on different
devices using the mmap and umap methods. In all cases, the cache size is
16 MB. In the case of umap, a varying cache entry size of 16 and 64 KB
is used. Because umap does not support DRAM/NVM, only the SSDs are
shown in the corresponding plots. For comparison, the previous results from
the fio-based benchmark Figure 5.4 have been added as dotted lines.

4 and 8). For our tiering concept, this is the most important realization, as it urges us to
preferably move those types of data to a lower tier that are predominantly read sequen-
tially. This imposes requirements on both the access tracking method (which needs to
identify sequential accesses) and on the decision making algorithm (which needs to take
these accesses into account). We discuss how our memory management incorporates this
result in Chapters 6 and 7.

Finally, the benchmarks show that to fully utilize the available bandwidth, multiple
threads need to access the data (Finding 3). As Hyrise parallelizes both within operators
and across queries, this is taken into account by default.

5.5.2 Allocation Primitives

Next, we evaluate the performance of the allocation mechanism. In Section 5.2, we
described our use of memkind to allocate space on NVM. As part of the entire memory
management component, we need to verify that this abstraction does not introduce any
undue overhead. The memkind paper [215] provides some initial benchmarks. Our past
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Figure 5.6: Costs when replaying the allocations performed during the execution of the
TPC-H benchmark, comparing the default jemalloc allocator with memkind.
Allocations are rounded to the next power of two and placed into the corre-
sponding allocation class. The graph on the left shows the average cost per
allocation, the one on the right shows the summed cost.

experience, however, has shown that results from general allocator benchmarks do not
automatically translate to the allocation patterns used by databases. As such, a custom
IMDB-specific benchmark is used to evaluate the overhead of memkind.

Benchmark Configuration. For this, we instrument Hyrise to log its memory
allocations into a binary file. We log the size of the allocations, the resulting pointer,
and the corresponding deallocations. With this information, we can simulate the malloc
and free calls in chronological order. The trace is generated by running each TPC-H
query for ten seconds. It results in a log that contains just over two billion allocations.
In a second step, a dedicated microbenchmark reads this file and replays the log using a
user-defined allocator. This benchmark design isolates the performance of the allocator
from that of Hyrise. In Section 5.5.4, we also show end-to-end benchmarks.

As a baseline, we use jemalloc, which is the default allocator in Hyrise and is used
whenever malloc is called. It has also been found to perform best in other database
systems, such as Umbra [70]. Next, we run the same workload against memkind in
the MEMKIND_DEFAULT mode. Internally this also uses jemalloc to manage the different
arenas but adds an abstraction layer that deals with the different kinds of memories.

Results. The results are shown in Figure 5.6, which shows a run in which eight
threads allocated memory concurrently. Grouped by allocation classes (powers of two),
it shows both the mean cost of a single allocation (left) and the aggregate cost over
the entire microbenchmark (right). The results for jemalloc and memkind are within
close vicinity, suggesting that the allocation costs are very similar. In both cases, the
mean cost constantly increases with growing allocation classes. At 32 KB (for memkind)
and 64 KB (for jemalloc), the mean allocation cost doubles. Later, at 16 MB, the cost
increases even more significantly. However, when looking at the summed allocation costs,
the relatively high costs for larger allocations only contributes little to the overall costs.
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Instead, the summed allocation costs show that the majority of the allocation costs come
from small allocations in the range between 16 and 512 Byte.

In total, jemalloc performs slightly, but noticeably better than memkind. In absolute
numbers, jemalloc spends 6.713 seconds on the allocations, while memkind needs 8.172
seconds. This means that for a workload specific to in-memory databases and based on
the allocations seen in Hyrise, memkind is 22% slower.

Interpretation. The 22% overhead measured for memkind exceeds the 15% reported
in the memkind paper [215]. While 22% might sound like a significant cost, it needs to
be seen in the context of the microbenchmark, which mimics the allocation behavior of
220 seconds of TPC-H queries. It does not perform any actual work usually associated
with query execution. Relative to those 220 seconds, the allocators’ costs correspond
to only 3.1% (when Hyrise uses jemalloc) and 3.7% (for memkind). We consider the
difference of 0.6 percentage points to be bearable. Still, we cross-validate this result in
an end-to-end benchmark in Section 5.5.4.

5.5.3 PMR-based Data Structures

Next, we look into the overhead of the Polymorphic Memory Resources (PMR). Again,
we first evaluate this concept in isolation. This shows the worst-case costs of PMR.
The PMR concept was described in Section 5.3. To recapitulate, polymorphic allocators
differ from std: :allocator in that they do not call statically malloc to allocate memory
but draw the memory from a memory resource that is only known at runtime. Similarly,
when the allocated data structure is deallocated, the memory has to be returned to the
correct memory resource. The polymorphic allocator handles this by storing a pointer
to the resource and calling virtual allocation and deallocation methods on that pointer.
As such, the overhead of PMR is (1) the space in the allocator to store the pointer
to the memory resource and (2) one virtual method call per allocation or deallocation.
Accesses to the allocated space are not affected by PMR.

The increased memory consumption is less of an issue. Each container holds exactly
one allocator object. For example, the compressed attribute vector of a dictionary-
compressed segment (cf. Section 4.3.1) is stored as an std::vector<ValueID>. The
memory occupied by a regular vector consists of three pointers plus the space allocated
on the heap [179, page 70]. For a segment with the default size of 65535 that stores
256 distinct values, this results in 3 x 8 B+ 65535 x 1 B = 65669 B. PMR only adds
eight additional bytes to this. As such, for most data structures, the memory cost of
PMR is negligible. There is one exception to this: for as long as the C++ library
implementations do not fully support ranges, it is more efficient for strings in Hyrise
to be individually placed on the heap instead of using a more compact form of storage.
As the std: :strings containers are subject to tiering, they also hold a PMR pointer.
For the time being, this increases the overall footprint for TPC-H scale factor 10 by 7%.
Once the ranges-based solution can be applied, the footprint increase caused by PMR
can be reduced to 124 KB. This corresponds to less than 0.02% for the entire dataset.

Benchmark Configuration. To measure the runtime cost of PMR, we reuse the
microbenchmark from the previous subsection. Our goal is to quantify the cost of the
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Figure 5.7: Costs for allocations via the PMR abstraction. The non-PMR allocation
methods from Figure 5.6 (jemalloc and memkind_default) are included for
comparison. For the most part, they overlap with their PMR counterparts.

virtual method calls to the individual allocators. Again, we replay the allocation behavior
of Hyrise in a stand-alone binary. This time, we include the PMR, indirection: instead of
calling malloc or memkind_malloc directly, we benchmark memory resources that wrap
the corresponding methods. In the case of malloc, this is done by the library’s default
resource (pmr::get_default_resource, which calls jemalloc); for memkind, we use a
memory_resource wrapper that calls memkind_malloc.

Results. Figure 5.7 shows the results of this benchmark and compares them to
those of the previous benchmark. Two sets of overlapping lines can be seen: first,
jemalloc and its PMR version default_resource show a high degree of correlation.
Second, memkind_default and dram_memory_resource are similarly correlated. The
correlations can be found in both the graph for the mean allocation cost (left) and that
of the summed allocation cost (right).

Table 5.3 shows the total cost of the different allocation methods depending on whether
PMR is used or not. Interestingly, the overhead of PMR is higher for jemalloc than it
is for memkind. This is reproducible across multiple runs.

Interpretation. Polymorphic Memory Resources add an overhead to the cost of
allocations. This is caused by the cost of an additional virtual method call per allocation.
Theoretically, we would expect this cost to be the same for both allocation methods. We
currently do not have an explanation for the differing PMR overhead between jemalloc
and memkind.

non-PMR PMR relative
jemalloc | 6.713 7.063 + 5.2%
memkind | 8.172 8.191 + 0.2%
relative +21.7%  + 16.0%

Table 5.3: Summed costs (in seconds) for different allocation methods.
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By comparing jemalloc without PMR and memkind with PMR, we can now calculate
the absolute overhead of our memory management approach: (8.191/6.713) — 1 = 22%.
As explained in Section 5.5.2, the allocations that are replayed in this benchmark cor-
respond to a 220 second execution of the TPC-H benchmark in Hyrise. This puts the
absolute overhead of 8.191 — 6.713 = 1.478 seconds into perspective.

5.5.4 End-to-End Allocation Performance

To conclude the evaluation for the allocation and abstraction layers, we perform an end-
to-end benchmark of Hyrise without PMR, with PMR, and with PMR plus memkind.
This comparison allows us to evaluate whether we have fulfilled our constraint of not
introducing a significant overhead to the traditional DRAM-only code base.

Benchmark Configuration. We run the TPC-H benchmark in the same configu-
ration as used previously in Section 4.6.3. Most importantly, this involves 56 worker
threads that execute queries and thus allocate memory in parallel. The benchmark
queries are executed by 50 clients in a shuffled order.

We define three configurations as follows: for (1) the benchmark of Hyrise with-
out PMR, we disable PMR by replacing the polymorphic_allocator with a regular
std::allocator. Next, (2) Hyrise with PMR is the unmodified Hyrise master branch.
Finally, we measure the (3) overhead of memkind by setting the default memory resource
to a memory resource that calls memkind_alloc instead of (je)malloc.

Results. Table 5.4 shows the results of this benchmark. For both PMR and memkind,
we see a measurably increased latency as well as a reduction in the throughput. The
total overhead of PMR + memkind, however, is dominated by memkind.

Interpretation. Compared to the isolated benchmarks in the previous subsection,
the overhead of PMR and memkind are significantly lower. This is expected, as the
isolated benchmarks performed no work other than allocating memory. For the execution
of the TPC-H benchmark, these allocations are only a small, unavoidable step. Because
of the different workloads, the relative changes cannot be directly compared between the
benchmarks. However, the tendency of memkind being responsible for the biggest share
of the performance overhead remains.

We conclude that PMR alone adds an overhead of 0.6% to the DRAM-only codebase.
This is low enough not only to justify the flexibility gained by automatic tiering, but
also low enough to justify the use of PMR throughout the codebase even if automatic
tiering is not used. In the case of data stored on DRAM, we can avoid the additional
overhead of memkind by allocating memory directly from (je)malloc. For NVM, for

Latency [ms] rel. to (1) | Throughput [Tx/s|] rel. to (1)
(1) jemalloc only 108421.5 0.4553
(2) PMR 109 039.5 0.6% 0.4539 —0.3%
(3) PMR + memkind | 111747.3 3.1% 0.4423 —2.8%

Table 5.4: Absolute latency and throughput numbers of different allocation strategies.
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which memkind cannot be avoided as easily, we accept an additional overhead of 2.5
percentage points (+3.1% latency instead of 40.6%). This overhead is notable, but not
high enough to justify the search for memkind alternatives.

5.5.5 Migration from DRAM to DRAM

Finally, we quantify the cost of migrating data between different tiers. This cost is com-
prised of two parts, namely the implementation-defined cost of allocating and copying
the data structures, and second the hardware-defined cost of reading from and writing to
the different tiers. The first is compute-bound, the second is bandwidth-bound. In the
first benchmark, we limit the evaluation to the former by migrating data from DRAM
to DRAM, thus excluding the additional costs hardware of lower tiers. In the following
benchmark, we then include these tiers.

Benchmark Setup. For the benchmark, we migrate data from the TPC-H bench-
mark as well as from the Join Order Benchmark (JOB) [149]. TPC-H uses uniformly
generated, synthetic data, JOB uses data from the Internet Movie Database, i.e., real-
world data with realistic value distributions. Unlike the default setting used by Hyrise,
we do not use dictionary compression. Using uncompressed data allows us to reason
about the impact of different data types more easily, as we do not have to take the
compression ratio and the number of bits used for the attribute vectors into account.
We re-include dictionary compression in the subsequent benchmark.

The data is fully loaded into DRAM using the Hyrise benchmark binaries. Instead
of executing the benchmark queries, the binaries are instrumented to migrate the data
to a different DRAM pool and to measure the time elapsed per migrated segment.
The migration is performed by a single thread. This matches the usage pattern of our
automatic tiering implementation.

Results. Figure 5.8 shows the cost of migrating the two datasets. The x-axis gives
the size of the migrated segment, the y-axis the effective bandwidth of the migration.
The color and shape of the markers represent the different data types. For the purpose of
the migration, ints and floats are indistinguishable - both are primitive (i.e., trivially
copyable [37, page 68]) 32-bit values. For strings, we distinguish short strings for which
the small-string optimization (SSO) avoids heap allocations® from strings that use heap-
allocated memory. We make the following observations:

1. Two vertical clusters of segments with the same size can be identified. These

correspond to the 32-bit types and to SSO strings.

2. As the size of the migrated segments grows, so does the migration bandwidth.

3. For strings, the migration of SSO strings results in a higher bandwidth than that
of heap-allocated strings. Long heap-allocated strings are migrated with a higher
bandwidth than short heap-allocated strings.

4. The bandwidth maxes out at around 2 GB/s. This bandwidth is only reached by
primitive data structures and by SSO strings.

°In most C++ libraries, the memory allocated for a basic_string is used either for the begin, end,
and capacity pointers or for storing the string in the object itself. For short strings, this avoids the
need of having to allocate heap memory and improves the strings’ cache-efficiency [164, page 205].
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Figure 5.8: Migration costs between two DRAM pools. Each marker represents a single
segment, its color represents its data type. Segments in which 90% or more
of all strings are stored using the small-string optimization (SSO) are placed
in a separate bucket.

Interpretation. We interpret the four findings as follows:

1. The two clusters of segments with the same size, i.e., the two vertical lines, can be
explained by the chunk size in combination with the data type. With a maximum
chunk size of 65535, a full segment of 32-bit integers consumes 65535 x 4 B ~
262 KB. No segment that contains primitive 32-bit values can be larger. However,
there are some smaller segments. These correspond to the last chunks of each ta-
ble, which do not necessarily reach the maximum chunk size. For SSO strings, the
cluster can be explained similarly. Each string object requires 4 x 8 B, correspond-
ing to the four 64-bit pointers for the begin, end, capacity, and the underlying
memory resource. This results in 65535 x 32 B ~ 2097 KB, which is where the
cluster is located.

2. When migrating small segments, the fixed part of the costs (allocating memory,
atomically replacing the segment) takes a larger share of the overall costs. This
causes the migration of small segments to be less efficient.

3. Migrating segments with a large number of heap-allocated strings is more expensive
than migrating the same number of SSO strings. This does not come as a surprise,
as each migrated string now results in an additional allocation (with the costs
as discussed in the previous experiment). These allocation costs are increasingly
amortized for longer heap-allocated strings.

4. The maximum bandwidth of 2 GB/s is significantly lower than the maximum
DRAM bandwidth of a single core. A comparative benchmark using fio with the
--memcpytest parameter shows a maximum bandwidth of 8 GB/s. We believe that
the discrepancy is caused by the way libstdc++ implements the copy algorithm
for vectors: even for trivially copyable data types, the entries are copied one-by-one
instead of copying them en-bloc using SIMD-enabled memcpy.
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5.5.6 Migration between DRAM and Lower Tiers

Having measured the maximum bandwidth for the migration of a single segment by
“migrating” from DRAM to DRAM, we now look into how long it takes to migrate an
entire data set from DRAM to a lower tier. It is not our goal to make this step as fast as
possible. After all, Hyrise shall migrate data asynchronously. Still, we need to quantify
the bandwidth that can be reached and verify that we do not introduce any unexpected
bottlenecks.

Benchmark Setup. The setup is similar to that of the previous experiment. Instead
of only migrating from DRAM to DRAM, we now use all available tiers. Furthermore,
we re-introduce dictionary compression. For both datasets, we then measure the time
spent to migrate the segments from DRAM to the lower tier.

Results. Table 5.5 shows the results for the different configurations. For all configu-
rations, the migration to lower tiers takes longer than to higher tiers. The effect of the
data size of the segments is visible. For DRAM and the SSDs, a compression factor of 3x
(TPC-H) or 2x (Join-Order Benchmark) results in a correspondingly shorter migration
cost. For NVM, the difference is less pronounced: when the Join-Order Benchmark data
is compressed by 2x, the migration cost is only reduced by 23%.

Interpretation. The migration to lower tiers taking longer matches the expectations.
In the case of the two SSDs, the migration benefits from the data first being written to
umap’s DRAM buffer cache, before it is written as an entire page to the SSDs. This
allows the migration to reach the maximum bandwidth shown in Figure 5.5. For NVM,
this is not the case, and the effect of NVM’s read/write asymmetry becomes visible.
This causes the migration to NVM to be slightly slower than to DRAM-buffered tiers.

In a future version, this bottleneck could be removed by a custom implementation.
Alternatively, more CPU cores could be dedicated to the migration process. Because
the system’s architecture calls for the migration to happen asynchronously, we currently
do not see any benefit in dedicating additional resources to it.

Dataset TPC-H Join-Order Benchmark
Compression | Uncompr. Dictionary | Uncompr. Dictionary
DRAM-to-... (3.048 GB) (1.015 GB) | (14.946 GB) (6.687 GB)
DRAM 2137 ps 780 ws 10063 ps 5008 us
NVM 3094 us 2400 pus 10690 s 7757 us
Intel P4800X 7191 ps 2429 us 33629 us 15487 us
Samsung 850 Pro 9796 us 3591 us 46 538 s 21489 ps

Table 5.5: Total duration of the migration for different configurations, consisting of dif-

ferent benchmark datasets and compression methods.

All data starts on

DRAM and is then migrated to the tier listed in the left-most column.
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5.5.7 Summary of the Evaluation

In six benchmarks, we have evaluated the performance of the memory management
stack. For our access methods mmap and umap, we found that the maximum bandwidth
can only be reached when data is accessed sequentially and by multiple threads. This
was found to be especially important when data on SSDs is accessed using the umap
abstraction. For allocating memory via memkind and PMR, we reported an end-to-end
overhead of 0.6% for DRAM and 3.1% for NVM. Finally, for the migration between
tiers, we found that these do not yet reach the maximum possible bandwidth but are
sufficiently fast enough for our purposes.

5.6 Use Beyond Automatic Tiering

Can these abstractions be used for other challenges outside of automatic tiering?

The concepts described in this section are not limited to automatic tiering. The PMR-
based allocation and migration model is beneficial in many cases in which a simple malloc
from default memory is not sufficient. An example is the targeted placement of data
on different NUMA nodes: co-locating data and execution leads to a more efficient
use of available hardware resources. In turn, this improves the throughput of both
relational [20, 124, 196] and non-relational database systems [90, 265]. Currently, Hyrise
allocates memory using the operating system’s default policy, which tries to allocate
memory on the current node. With our memory management model, we can add a
memory resource that makes this node assignment explicit. In turn, this would allow
us to migrate data from an overloaded node to another one. This migration would use
the same mechanisms that are used for moving data between memory and storage tiers.
We have previously investigated this as part of two supervised Master’s Theses [175,
210]. While we were able to show benefits especially for the scan operator, the work
revealed (and fixed) more pressing multi-threading issues than NUMA placement-specific
optimizations. Because of this, NUMA-specific memory resources are currently not used.

In Figure 5.3, we have discussed layered resources, which are memory resources
that draw their memory from another upstream memory resource. Hyrise uses the
monotonic_buffer_resource, which is optimized for ephemeral allocations. In our
implementation of the hash-based aggregate operator, using this layer is a three-line
change and results in a 5% throughput benefit for TPC-H Query 1. A second example
is the use of the unsynchronized_pool_resource in the hash-based join operator. In
this operator, many small position lists are allocated and regularly resized. Using layers
allows us to serve these frequent allocations from a thread-local pool.

Another use of layered resources is to track the semantic context of allocations
in order to understand where memory is allocated. Most allocation profilers track infor-
mation with a line-of-code granularity. While this helps programmers in understanding
where the memory was used, it does not help them in understanding which “instance of
a data structure” is consuming or accessing the memory [178]. PMR provides a natural
of providing such a mapping. By providing information such as the table and column
name to the memory resource, allocations could be tracked on a semantic level.
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For all use cases, a main benefit is that the static data types remain the same. No code
other than the memory resource that is passed into the polymorphic allocator has to be
modified. Furthermore, the described layers can be combined. It is not only conceivable,
but also reasonable, to have (1) tracked, (2) NUMA-aware allocations (3) on DRAM and
NVM, which use (4) their own, optimized allocation method for fine-grained allocations.

5.7 Summary

In this chapter, we have presented our memory management framework. It is used to
allocate and access data on different tiers and to migrate data structures between tiers.
The design proposed in this chapter answers the first research question:

How can data be stored on different memory and storage tiers in a transpar-
ent manner that is consistent with the DRAM-first approach of in-memory
databases and does not negatively affect the performance when accessing data
stored on DRAM?

To make the handling of multiple tiers as unintrusive to the remaining code basis as
possible, we propose a new combination of polymorphic memory resources (PMR) and
the memkind and umap libraries. While the implementation of this requires a certain
level of C++ proficiency, it makes using the abstraction in the rest of the system much
easier. We measured an overhead of 0.6% for DRAM and 3.1% for NVM, which we
consider to be low enough to be used in productive settings. With this, we enable
transparent migrations to lower tiers without sacrificing the DRAM-first approach of
IMDBs and its performance benefits. As such, the design proposed in this chapter is a
partial answer to our first research question:

Furthermore, we have shown how data structures can be migrated across different
tiers. This addresses part of our second research question:

How can a DBMS automatically [...] [migrate] data without disrupting the
continuous operation of the system?

By performing this migration on immutable chunks, it can be performed without
influencing concurrent queries. During the migration, the data exists on multiple tiers,
which allows ongoing transactions to complete their work on the old copy of the data.
Because the migration is implemented using the C++ copy constructor, arbitrary data
structures can be migrated without modifying their internal implementation.

86



6 Access Tracking

Establishing which data is frequently used and which data is seldom accessed is the
second pillar of automated data tiering. If we want the system to make any decisions
autonomously, it needs to have data on which to base these decisions. Collecting this
data is the job of the access tracking component.

In this chapter, we describe different options for implementing access tracking and
discuss their advantages and disadvantages. We describe our choices and evaluate our
tracking approach with regards to its information quality and performance impact. Fi-
nally, we discuss how having an efficient access tracking mechanism helps with challenges
beyond those of automatic tiering.

We contribute a novel access tracking method that allows us to quantify accesses
in both the row and column dimensions as well as the distribution of access patterns
within consecutive accesses. By reusing the iterator abstraction layer in Hyrise [25], we
can design the access counters in a way in which their overhead cannot be identified in
benchmarks.

A first version of the access counters has been implemented as part of a previous
Master’s thesis [78] that was supervised during the work on this thesis. In addition to
having guided the original implementation, the contribution of this thesis consists of the
full tmplementation of access counters for all types of data segments, the fine-tuning of
the access pattern detection, the differentiation to existing approaches, as well as the
TPC-H/JCC-H-based evaluation.

6.1 Possible Approaches

A suitable access tracking method needs to fulfil three criteria. First, it needs to contain
the right information for the task at hand. Second, the tracking mechanism needs to be
designed in a modular and non-intrusive way; tight coupling between the accessing code
and access counters complicates the code. Third, the performance impact needs to be
low enough so that it does not outweigh the benefits achieved by whatever builds on the
performance counter. This is deliberately phrased vaguely, as tracing components that
are enabled by the user (i.e., the DBA) have a higher accepted performance impact than
automatic tuning solutions that should be invisible to the user. Bearing these require-
ments in mind allows us to discuss two key design decisions, namely the granularity of
the tracking and the actual tracking method.
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Figure 6.1: Different access tracking granularities and their use in commercial and re-
search database systems. Grey boxes denote the atomic unit of tracking
within which accesses are indistinguishable.

6.1.1 Granularity

The granularity describes the unit of data on which accesses are tracked. For the use
case of automatic tiering, this depends on the desired tiering dimensions. Row-level
counters do not hold any information that allows for identifying unused columns, while
column-level counters cannot track any temporal skew in data accesses. The choice
of a granularity level is also dependent on the database system’s physical layout and
additionally desired purposes of the access counters.

Figure 6.1 gives an overview of different tracking granularities used by commercial and
research database systems that have been described in previous work. Going beyond the
general discussion of these systems in Section 3.1, we now focus on the granularity of
their access tracking methods. On the far left, the entire table is used for the tracking
granularity, which is too coarse to be the basis of meaningful access statistics. Starting
from there, the tracking granularity is refined in the row (shown on the top) and the
column (bottom) dimensions.
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In the row dimension, small horizontal partitions are the first possible granularity.
In Hyrise, these partitions are called chunks. X-Engine [107] calls them extents and
tracks their “access frequency in a recent window” in order to move “colder” extents
to lower storage tiers. Slalom [182] is a DBMS that operates on external data that
is mostly stored in CSV files. Instead of loading this data into a DBMS-proprietary
format, queries are directly executed on that external data. To speed up this process,
Slalom automatically builds indexes on heavily accessed horizontal partitions. These are
identified using partition-based counters. Tracking accesses on the granularity of small
horizontal partitions works well when the access patterns within such a partition are
mostly homogeneous.

Choosing a finer granularity leads us to row-level access tracking. This is done by
Siberia [151], Stoica and Ailamaki [230], and the Anti-Caching approach built for H-
Store [54]. Unlike access tracking with a granularity of horizontal partitions, row-level
tracking does not assume access correlations between co-located rows. It is thus more
accurate. At the same time, it increases costs when updating and storing data. For this
reason, some approaches use sampling to track only the statistically relevant rows [230].

In the column dimension, partitions or column groups are rarely used as the granu-
larity of access tracking. Unlike rows, whose number may easily reach the billions, tables
usually do not exceed a three-digit number of columns. As such, grouping columns does
not significantly save tracking and storage costs. A rare exception is Microsoft SQL
Server [5], which uses the number of queries that access a column group to optimize the
partitioning layout. Even there, we suspect that this metric is actually aggregated from
individual column access counts.

Tracking data on a column level is the natural granularity for column-oriented sys-
tems. This granularity is used by Mosaic [243] (a storage component integrated into
Umbra [177]), the previous version of Hyrise [26], SAP HANA as modified by Héppner
et al. [106], as well as SAP HANA’s Near Storage Extension (NSE) [225]. Hoppner et
al. found that “/o/nly about one-third of the columns are accessed in more than 5% of
all queries” [106]. Column-level counters are well suited for identifying these cases. For
row stores, on the other hand, column level counters are only of limited use, as even
unused columns cannot be separated from the row record. They may, however, still be
useful for use cases such as automatic index selection.

The intersection of the row- and column-level tracking approaches is to track accesses
on the level of individual values. While this provides the most accurate information, it is
too expensive for most purposes. Noll et al. [178] propose a tracking approach that works
on individual memory addresses and comes closest to tracking accesses on individual
values. In their case, this information allows for manual introspection of the system’s
behavior, for example to analyze access patterns within operators. Casper [16] tracks
accesses to single values in a column to establish optimal partition boundaries. Brendle
et al. [34] capture value domain accesses in addition to accesses on small horizontal
partitions in order to identify value boundaries by which a table should be re-partitioned.

In the scope of this thesis, we assume that data has already been partitioned in a
way that co-locates data with similar access characteristics (cf. Section 1.4). We use
a combination of small horizontal partitions (in our case: chunks) and columns as the
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granularity for our access tracking. In Section 6.3.1, we show how these segment-level
counters allow us to capture the access patterns that are relevant for our use case and
outperform access counters that are solely on the chunk or column level with regards to
their information quality.

We include one more option for the sake of completeness: access tracking on the
page or block level has been the default for all disk-based systems that use a buffer
manager to load and unload pages from disk. There are too many of these to list here. It
continues to be an approach used by systems without a buffer cache. HyPer [80] tracks
page accesses and maps the virtual addresses to allocated data structures. They use
this information to identify hot and cold clusters in the data. While tracking accesses
on a page level may result in a higher granularity, they later aggregate the data on a
vector level, which is the equivalent to segment-level in Hyrise. Next, Thermostat [3]
is a DBMS-agnostic kernel extension that identifies “cold” pages with more fine-grained
information than traditional OS paging but without mapping the accesses to rows or
columns. Page-level tracking is also used by traditional OS paging in the case of a
memory shortage.

For our work, we have decided for segment-level granularity and against page-level
granularity for the following reasons: first, Hyrise does not yet have an explicit concept
of pages. Introducing another level of granularity with additional statistics objects below
the segment level would complicate both the architecture and the code. Second, not all
compression methods store memory in one consecutive block of memory. For example, in
the case of dictionary compression, the attribute vector and the dictionary are stored at
different memory locations and thus different pages. This further complicates tracking.
Third, it would require us to consider the page size in our method, which makes it harder
to run Hyrise on different architectures and to compare results.

6.1.2 Tracking Method

Besides the access granularity, the tracking method is another architectural decision.
Accesses can, for example, be tracked by incrementing a counter or by reusing the hard-
ware’s page bits. Depending on the method, it may or may not be possible to quantify
the number of accesses. Knowing the access frequency helps automatic tiering because
having a low, but non-zero, number of accesses to lower tier data may be acceptable,
while a high number of accesses would require the page to be moved to a higher storage
tier. Similarly, some tracking methods allow for the access pattern (sequential, mono-
tonic, or random) to be identified. Again, this information can help in automatic tiering
as sequential accesses are significantly cheaper than random accesses on most (if not all)
memory and storage devices. An important finding from Section 5.5 was that our tiering
approach should take these access types into account.

Different methods have a different overhead on query execution. Depending on the
use case, the acceptable cost varies. Some tracking methods have to rely on sampling, as
tracking each access would be prohibitively expensive. Table 6.1 shows different tracking
methods as used by different systems and analyzes them in these dimensions.

The different systems also use different approaches to track the data. Counters and
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q A Pattern q Overhead
Granularity | Approach | Quantitative Identif. Sampling Limitationé
Boissier [26] Column Plan Cache | Yes Indirect No
Brendle [34] Value Unclear No No Future work | 14-19%
Casper [16] Value Trace Yes Yes Yes
H-Store [54] Row LRU Chain | No No Yes 5%
HANA NSE [225] | Column Counter Yes No No
“virtually no”,
Hyper [80] Page/Block | MMU No (page bit) |No No kernel only
before 2.6.25
Hoppner [106] Column Plan Cache | Yes Indirect No
Mosaic [243] Column Trace Yes ]S:‘ocuses % No
cans only
Noll [178] Attribute Trace Yes Yes Yes 27%-230%
virtually no
OS Paging Page/Block | MMU No (page bit) |No No (MMU internal),
no user control
Siberia [151] Row Trace Yes Unused Optional
Slalom [182] Hor. Part. Counter Yes No * No
Stoica [230] Row Trace Yes Unused Yes
Thermostat [3] | Page/Block | MMU s (i, W | pq Yes <1%,
TLB misses) kernel only
X-Engine [107] Hor. Part. Unclear Yes No * No *
Our approach |Segment Counter | Yes Yes No <1%

Table 6.1: Access tracking methods compared in different dimensions. Entries marked
with a asterisk are not explicitly discussed in the corresponding publication
and thus only reflect our understanding of the presenting approach.

traces actively instrument the code and collect data during execution. Counter-based
approaches, such as used by Slalom [182], SAP HANA NSE [225], and by our implemen-
tation, update one or multiple counters as data on the given granularity level is accessed.
Traces (or logs) are buffers that are filled during execution with row identifiers [151, 230],
column identifiers [243], or logical addresses [178] of the data that has been accessed.
These buffers are then processed by an asynchronous process. To further reduce the
performance impact, this work can even be done on external compute units [151, 230].
H-Store [54] uses the uncommon approach of storing an LRU chain, i.e., a double-linked
list of recently accessed pages.

Other approaches do not add instrumentation but use already existing data. Boissier
et al. [26] (based on the previous work of Hyrise) as well as Hoppner et al. [106] use
pre-existing information from the query plan cache to identify heavily used columns.
HyPer [80] and Thermostat [3] re-use MMU page flags, which are usually used by the
operating system’s paging algorithms to identify pages to evict. Because these flags are
maintained anyway, these approaches usually have a very low overhead.

The question of whether accesses can be quantified and whether access patterns
across multiple accesses can be identified is immediately decided by the chosen approach.
Traces can always be analyzed both for the number of accesses and their pattern. For
counters, only those patterns that are tracked at collection time can be counted. Plan
caches can theoretically derive the access pattern by identifying whether non-order-
preserving operators have been executed, but they cannot accurately quantify the num-
ber of accesses. As the plan cache is not updated with the actual cardinalities, they
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have to resort to the optimizer’s cardinality estimations, which are known to be inaccu-
rate [149]. Other approaches, such as H-Store’s LRU chain or the MMU’s page bits hold
only binary, thus qualitative, information.

Finally, the need to sample accesses is usually established by the overhead of the
tracking method if it was unsampled. Some approaches, such as that used by Siberia [151]
make sampling optional. This way the allow the consumer of the tracking data to fine-
tune the counters’ overhead and balance it with the desired accuracy.

Our novel approach combines most benefits of the other solution: we can accurately
count the number of accesses and can identify three types of access patterns. This
information is available at run-time and does not need to be post-processed. At the
same time, our use of the iterator abstraction layer in Hyrise allows us to minimize
the tracking costs without resorting to sampling. By tracking accesses on the segment
granularity, we achieve a higher precision than solely row- or column-oriented approaches.

6.2 Implementation

We implement access tracking as an addition to the existing segment iterators. These
iterators decouple the compression methods from operators that access the data (cf. Sec-
tion 4.3.2). Building the counters into the iterators has the advantage of being operator-
agnostic. No operator code has to be modified to support access counters. This supports
our goal of modularity.

Figure 6.2 shows how operators, iterators, and segment access counters interact. It
is based on Figure 4.5, which was previously used to introduce the PosList indirection.
Two scans are shown: one operates on a data table (i.e., a table as created and stored
by the user), the other operates on a temporary table that is created by the first scan.
In both cases, iterators are used to access the table data. The number of accessed values
can be determined in the iterator’s destructor: for an iterator that has reached the end
of a data segment, the number of accessed values is equal to the size of the segment. For
temporary tables, for which the data has already been filtered or joined, the number of
accessed values is equal to the number of values in the PosList that defines the reference
segment. If the iterator has not reached the end of the segment (e.g., in the case of a limit
clause) or the iterator was used in a non-sequential manner (e.g., for binary searchers),
the calculation is adapted accordingly.

In addition to the number of accessed values, the segment access counters also track
information about the predominant access pattern. Data tables are accessed sequentially
except for binary searches on sorted segments. For temporary tables, the access pattern
is identified by sampling the values of the PosList. We distinguish between sequential
(linear) accesses, monotonic accesses (in which some values are skipped, but the traversal
is mono-directional), and random accesses.

Due to the inter- and intra-query parallelism in Hyrise, multiple iterators can access
a segment. To synchronize the access to the counters, atomic integers are used. As the
counters are only updated once per iterator creation, rather than once per iteration, the
number of write accesses is relatively low and does not become a performance factor.
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Figure 6.2: A table is scanned by two scan operators. Internally, these operators use
iterators to access the raw values of the underlying data table. It is the
job of the iterators to update the segment access counters. The first scan
sequentially scans the table, accessing seven values in the second column.
The second scan only accesses those four rows that were selected in the
first scan. Because these are not sequential anymore, they are accessed in a
monotonically increasing pattern. The access counter for the first column is
updated accordingly.

For a scale factor of 10 and when executing each query once, a total of 421 003 atomic
accesses is performed. This translates to roughly 400 atomic accesses per second or
3.2 MB/s. Previous research has found the “bandwidth” for atomic compare-and-swap
modifications on contended addresses to be in the range of gigabytes per second even on
hardware from 2012 [224]. The experiments in Section 6.3.2 show that the cost of these
atomic updates are, indeed, not of relevance.

The counters themselves do not store a temporal component. Instead, consumers
of the counters can easily establish the temporal dimension by periodically retrieving
the monotonically increasing counter value and comparing it to the value seen in the
previous time period. We consider this approach to be superior to one that reports the
number of accesses in, e.g., the last minute, as it does not impose any limitations on the
temporal dimension’s granularity. Instead, every consumer of the counters can retrieve
their values at an interval that is independent of other consumers.

Two interfaces expose the access counters to consumers. First, for internal con-
sumers (i.e., those that run in the DBMS process and can use the C++ API), seg-
ment counters are directly accessible via the segment itself. For a given segment s,
s.access_counter [AccessType: :Sequential] returns how often s has been sequen-
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tially read since it was created. Second, segment access counters can also be read using
our SQL meta table interface. The meta_segments table contains not only information
about each segment’s memory consumption and compression method, but also reports
the number of accesses to that segment, broken down by access pattern. This allows
external consumers, such as the Hyrise Cockpit [128], to visualize this information and
make it consumable for, e.g., the database administrator.

6.3 Evaluation

We now evaluate the segment access counters both from an information quality and a
performance point of view.

6.3.1 Information Quality

One of our arguments for using segment-level access counters is that they provide more
accurate information than column- or row-level counters alone. To evaluate this claim,
we again use the TPC-H benchmark. When executing the different benchmark queries,
the state of the access counters is automatically logged to a JSON file. This is part of
the benchmark binary and can be enabled with the ——metrics option. These metrics
are then used to plot access heatmaps.

An example of an access heatmap is shown in Figure 6.3. It displays the number
of accesses for TPC-H Query 5. On the y-axis, it shows the different tables and their
columns. On the x-axis, it shows the chunks. The number of chunks depends on the row
count of the table. The color symbolizes the number of accesses, with brighter colors
corresponding to a higher number of accesses, and black corresponding to a segment that
is never accessed. Additionally, the average number of accesses per chunk and column
are plotted.

Out of the 22 chunks in the orders table, five chunks are not accessed at all. This can
be explained by a quick look into the SQL query, shown in Listing 6.1. The query filters
the orders table for orders in a given year. The TPC-H specification defines this pa-
rameter as a “randomly selected year within [1993 .. 1997]”. TPC-H, however, contains
data for the years 1992 to 1998. Because the orders table is sorted by o_orderkey,
the first and last chunks do not contain any orders for the years requested by Query
5. Thanks to the chunk statistics, the optimizer can prune these chunks before any

SELECT n_name, SUM(l_extendedprice * (1.0 - 1l_discount))

FROM customer, orders, lineitem, supplier, nation, region

WHERE 1_orderkey = o_orderkey AND /* more joim criteria */
AND r_name = ’AMERICA’ AND o_orderdate >= 21994-01-01"
AND o_orderdate < ’1995-01-01"

GROUP BY n_name;

Listing 6.1: TPC-H Query 5 with sample parameters, slightly condensed.
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Figure 6.3: Segment accesses for TPC-H Query 5, visualized as a heatmap with logarith-
mic access frequency-to-color mapping. Segments printed in black are not
accessed at all, yellow segments are heavily accessed.

operator is executed. Without pruning, we would expect these chunks to show some
accesses in the orders.o_orderdate line, caused by the scans, but no accesses in the
other columns.

The heatmap also shows that for 17 of 91 chunks in the 1ineitem table, some segments
are not accessed at all. The reason for this is less obvious as it is for the orders
table. Query 5 does not contain any filters on these columns. However, the lack of
accesses can be explained by the join between the lineitem and orders table. Both
tables are ordered by a date column. In the case of lineitem, this is 1_shipdate,
for orders, it is o_orderdate. The shipping date and the order date correlate. As
such, the lineitem chunks at the beginning and the end of the table contain only line
items that belong to orders outside of the queried range. Unlike the orders table,
this information is not known at optimization time, because the correlation between
1_shipdate and o_orderdate is unknown to the optimizer. As such, we cannot avoid
accesses to 1_orderkey.

Because the access pattern is skewed on two dimensions, only segment-level counters
can identify the two described patterns. This demonstrates the benefit of our approach.
We can find further arguments for using segment-level granularity when looking at the
JCC-H benchmark [27]. As described in Section 4.6.1, JCC-H uses the same schema and
queries as TPC-H but adds additional skew to the data and query parameter generation.
Because the entire purpose of the access counters is to identify skews in data accesses,
JCC-H gives us an impression of whether this goal has been reached.
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Figure 6.4: Access heatmap for TPC-H (top) and JCC-H (bottom) queries 18, only the
orders and lineitem tables are shown. Unlike Figure 6.3, a linear color
map is used to make the identification of absolute values easier.

In Figure 6.4, we can see the effect of this added skew, namely that of “Black Friday”:
“JCC-H introduces a so-called Black Friday, which is one day in the year where there
are many more orders. [...] [O]n this day, 50% of all orders are placed. [...] However,
we do not do this in 2 out 7 the years, namely 1995 and 1996. [...] The reason is that
1995 and 1996 should be sanctuaries from join skew.” [27]

The orders table has 22 chunks, which cover the seven years (1992-1998) for which
data is generated. Two years have no Black Fridays. The remaining five Black Fridays
can clearly be visually identified in the heatmap. Again, this access pattern would remain
undiscovered if only column level access counters were used.

6.3.2 Tracking Cost

Having shown the value of accurate per-segment access counters, we now discuss their
performance impact. We show that this impact is less than one percent and can be
considered negligible. To reach this conclusion, we compare three configurations: Version
1 uses no access counters, Version 2 uses non-atomic access counters, and Version 3 uses
full access counters. Non-atomic access counters are a middle ground, for which writes
between multiple threads are not synchronized. In rare cases, when two threads update
the same access counter at the same time, one of these updates thus may be lost!.
Table 6.2 shows the absolute latencies and their relative latency change for the 22
TPC-H queries. The benchmark is executed with a high number of parallel clients (50)
in order to stress potential synchronization issues. For non-atomic counters, the latency
increases slightly. Across all queries, we report additional costs of 0.9%. For full (i.e.,
atomic) counters, the latency surprisingly decreases. Compared to the version without
counters, the benchmark with full counters is 1.1% faster. This is counter-intuitive,

!Technically, non-synchronized accesses are undefined behavior in C++. At least on x86, however, the
hardware guarantees atomic modifications of the access counters’ 64-bit values.
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No Counters | Non-Atomic Counters Full Counters
Query Latency Latency Relative | Latency  Relative
1 11566.2 111713.8 +1.3% 11534.6 -0.3%
2 61.4 162.1 +1.1% 61.9 +0.8%
3 4309.5 44 296.6 -0.3% 4270.3 -0.9%
4 4114.3 34121.9 +0.2% 4069.2 -1.1%
5 10549.2 110520.7 -0.3% 10497.4 -0.5%
6 113.4 2113.9 +0.4% 113.6 +0.2%
7 1794.6 21805.6 +0.6% 1786.2 -0.5%
8 961.9 1960.7 -0.1% 949.8 -1.3%
9 15915.8 215926.6 +0.1% 15812.8 -0.6%
10 5957.6 65941.5 -0.3% 5831.9 -2.1%
11 399.8 4404.0 +1.1% 395.7 -1.0%
12 1298.3 11 303.6 +0.4% 1287.2 -0.9%
13 10436.6 210611.5 +1.7% 10444.7 +0.1%
14 764.3 1767.4 +0.4% 753.6 -1.4%
15 374.6 4375.6 +0.3% 371.4 -0.9%
16 2000.8 42021.3 +1.0% 1975.4 -1.3%
17 292.5 4292.4 +0.0% 290.3 -0.8%
18 26 794.1 527 468.9 +2.5% 26184.0 -2.3%
19 317.5 7321.9 +1.4% 315.3 -0.7%
20 348.0 5352.2 +1.2% 345.1 -0.8%
21 11035.2 111 054.9 +0.2% 10882.7 -1.4%
22 1330.6 21 336.6 +0.5% 1306.1 -1.8%
Sum 110736.3 111773.7 +0.9% | 109479.3 -1.1%

Table 6.2: Absolute TPC-H latency numbers and relative changes for non-atomic and
full counters. Scale Factor 10, 56 cores, 50 clients.

as the added code has to have some cost. In the best case, this cost would not be
measurable, but, at least theoretically, it should not make the overall execution faster.
This behavior, however, is something that we have seen and reported before [63]. It is
stable for a given code version, which is why additional runs do not change the results.
Previous research has identified code alignment and environment changes as possible
culprits [170, 171]. For example, instruction code that was added at the initialization
site of the iterator could cause an operator’s hot loop to be moved further “down” in
the binary to a place where it fits on a single page and where the execution causes less
cache misses. Unfortunately, existing experimental mitigation strategies [48] cannot be
applied to Hyrise as they rely on outdated compiler versions that are not supported by
Hyrise.

The goal was to show that segment access counters come with only a minimal, and thus
acceptable, overhead. Without claiming that we overachieved this goal, we conclude that
the performance impact of the counters is below the analytical limits and thus negligible.

6.4 Use Beyond Automatic Tiering

In addition to being necessary for identifying rarely used data that can be moved to lower
memory or storage tiers, segment-level access counters can be used for other purposes,
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too. In our research group, other research projects also benefit from these counters:

We already explained that Hyrise supports different compression methods (cf. Sec-
tion 4.3.1). This thesis exclusively uses dictionary-compressed segments. However, there
are cases in which other compression algorithms are more beneficial. For example, for
data that is locally highly repetitive, such as order dates, run-length compression is
more suitable. As a second example, when compressing strings, heavy-weight compres-
sion algorithms, such as LZ4, often achieve a better compression rate than dictionary
compression. Using a more heavy-weight compression algorithm does, however, result in
higher access costs. In our group, we work on choosing the most efficient compres-
sion scheme based on data characteristics, access patterns, and the available memory
budget. Currently, our implementation uses column-level statistics from the query plan
cache to estimate the access frequency for different segments [25]. Segment-level access
counters make it possible to make better decisions on a more accurate per-segment level.

A recently completed Master’s thesis in our group looks at reducing the access costs
for indexes. As of now, Hyrise stores indexes on a per-chunk level. While this virtually
eliminates maintenance costs for immutable chunks, it means that index lookup costs
increase linearly with the number of indexed chunks. This unnecessarily limits the index
performance especially for index-based joins. As a solution, we are working on indexes
that cover multiple chunks. This raises the question of whether all chunks should be
indexed. Knowing which chunks are heavily accessed and which access patterns are
predominant can improve the efficiency of index selection algorithms.

Finally, our group is looking into partial table replication. Replication is often used
to improve the overall availability of the system [145]. Often, the entire database is
replicated to a second server of the same size. This is not only useful from a High
Availability or Disaster Recovery (HA/DR) aspect but can also be used to improve the
performance of the system. Beyond this, additional replicas can be added to further
improve the performance. These do not necessarily need to store all data, as the data is
already sufficiently distributed from an HA /DR perspective. Such heterogeneous replicas,
which only store parts of the data, can be more efficient from a cost perspective [94].
To decide which data should be replicated on these heterogeneous replicas, it is
beneficial to have accurate access information in both table dimensions. Again, this
information can be provided by our segment access counters.

6.5 Summary

In this chapter, we have presented a novel access tracking approach. With this, we can
answer part of our second research question:

How can a DBMS automatically identify those parts of data that should re-
main on DRAM for performance reasons [...]?

We have started by comparing existing approaches and discussing their benefits and
drawbacks. From there, we have weighed different design options to find the solution that
works best with our automatic tiering concept but can also be used for other projects in
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the realm of self-driving databases. We propose to track data with a segment-level gran-
ularity, which combines the advantages of tracking small horizontal partitions [107, 182]
with those of column-level tracking [26, 106, 225, 243]. To this, we add the identification
of access patterns, which most existing approaches do not support. The implemented
solution leverages an existing abstraction layer, namely our iterators. Doing so mini-
mizes its architectural impact and its performance costs. Using the TPC-H and JCC-H
benchmarks as examples, we have shown how this novel tracking approach helps to
identify patterns in data that would otherwise remain hidden. Finally, we have experi-
mentally verified that our access counters do not have a measurable negative impact on
the performance of the system.
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7 Decision Making

The third, and final, pillar of our automatic tiering solution is the decision making. Its
goal is to make efficient use of a given memory budget by keeping frequently used data
close to the CPU and moving less frequently used data to lower tiers. The main source of
information for these decisions are the segment access counters (cf. Chapter 6). Based on
the number of accesses to the individual segments and the predominant access patterns,
segments are moved to one of the available tiers by calling the migration methods of our
memory management framework (cf. Chapter 5).

Our vision is for Hyrise to make complex autonomous decisions based on the workload,
the system utilization, and the tuning options provided by the self-driving plugins. The
driver is responsible for combining these parameters and choosing the most efficient
combination of the possible options (cf. Section 4.2). Centralizing these responsibilities
in the driver brings a number of advantages to the individual self-driving plugins:

e A single driver can evaluate the combined consequences of tuning options from
different plugins. For example, both the compression and the tiering plugins aim
at satisfying a given memory constraint [25]. When executed separately, this can
lead to unwanted effects in which the actions of one plugin (e.g., compressing
data to reduce the DRAM footprint) cause counteracting actions of the other
plugin (increasing the footprint by moving data from NVM to DRAM). A central
driver allows us to prevent these undesirable positive feedback loops. Going one
step further, it also enables us to exploit synergy effects between different tiering
options: when segments are moved to lower tiers, it may be beneficial to use a
heavier compression algorithm in order to better exploit the available bandwidth.

e Sharing common subcomponents, like models and solvers, not only improves the
code quality, but also allows us to decouple the research and engineering efforts.
Instead of implementing workload classification and prediction in each plugin, these
features can be independently developed as a part of the driver.

e Finally, having only a single driver makes monitoring and administering the system
easier. These efforts include logging the tuning decisions that were made as well
as the KPIs of the system. This data can later be used to identify issues in the
tuning process. For Hyrise, this is done in the Hyrise Cockpit [128]. This cockpit
also enables the DBA to influence the behavior of the system by inputting certain
constraints, rolling back or overriding tuning decisions, or even using an emergency
stop button for all self-driving features.

For this chapter, we implemented a driver with limited functionality. It allows us
to evaluate the benefits of automatic tiering in isolation. At the same time, we are
prepared to replace the interim driver and to integrate the tiering functionality into a
more sophisticated driver. This driver is part of a separate ongoing research project.
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This chapter is organized as follows: we first explain the implementation of our de-
cision making component and discuss its theoretical foundation. Next, we evaluate the
decisions made by the component and show the impact of different optimizations. As
part of this, we show how our segment-level granularity and the tracking of the access
patterns are used to improve the value function used in the optimization process. Finally,
we summarize our current decision making approach.

7.1 Implementation

The goal of the decision making component is to find the configuration in which a given
DRAM budget is respected and the performance of the system is maximized. Storing a
segment on DRAM improves the performance (i.e., it adds value) but consumes part of
the DRAM budget (i.e., it has a cost). A possible abstraction for this type of problem
is the knapsack problem.

When translated into a knapsack problem, storing a segment on DRAM corresponds
to packing an item into the knapsack. The segment’s memory consumption is defined
as its cost; its number of accesses is used as the segment’s value. With this, we optimize
the profit density: if, across all segments, more accesses can be satisfied from DRAM,
the database will spend less time loading data from lower tiers and will thus be faster.
In its current form, decision making consists of three steps:

1. Collecting statistics: All segments are queried for their access counters. These
counters track the number of accesses since the start of the Hyrise process. Because
we want the decision making to quickly react to changing workloads, we need to
convert these figures into an interval-based metric. This is done by calculating the
difference in the number of accesses in two subsequent intervals. The difference is
then used as the value for the segment. We also retrieve the memory consumption
of the segment and use it as the segment’s weight.

2. Assigning segments to tiers: In the second step, the knapsack problem is solved.
For this, we use a branch-and-bound solver [141], which is implemented as part of
Google’s Operations Research Tools [192, 193]. This solver was chosen because of
its high result quality even with low runtime limits and because it was one of the
few C++-based solvers that could be used in the Hyrise project without licensing
issues. In Section 7.2.4, we evaluate the quality of its results and show that they
are sufficiently accurate.

3. Reconfiguration: Once a new tiering configuration has been calculated, it is ap-
plied. Segments are migrated using the object migration approach described in
Section 5.4. This is done concurrently with the ongoing query execution.

A common challenge of the knapsack problem is that it assumes the linearity of the
items: packing or unpacking an item must not influence the value of other items. For
other aspects of a self-tuning database, this becomes an issue. For example, in index
selection, a multi-attribute index can also be used for single-attribute queries. Packing
the former reduces the value added by the latter. Schlosser et al. find that in these
cases, the interaction between different items turns the knapsack abstraction into “an
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oversimplification of the problem” [216]. In the case of automatic tiering, however,
this type of interaction is less of a concern: the cost of reading data from segments
on different tiers is linearly composed of the individual access costs. Even though the
available bandwidth of a tier is shared between all accesses to that tier, an exhaustion
of that bandwidth affects all segments equally and does not systematically change the
value of individual segments.

A learning from our low-level hardware benchmarks in Section 5.5 was that while ran-
dom accesses are slower than sequential reads for all tiers, this effect is more pronounced
for lower tiers such as NVM and SSD. We took this as a reason to build access counters
that can identify these access patterns (cf. Section 6.2). To incorporate this information
in our decision making process, we opted for a weight-based approach: random accesses
are multiplied with a factor that corresponds to the additional cost of accessing the data.
We discuss the benefit of adding this factor in Section 7.2.

7.1.1 Knapsack for Multiple Tiers

The previous description is limited to a single knapsack for which a segment is stored on
DRAM (part of the knapsack) or NVM (not part of the knapsack). It can be generalized
to provide solutions for more than two tiers. This generalization of the knapsack problem
is called the multilevel generalized assignment problem (MGAP). First described by
Clover et al. [85], it has been more succinctly summarized by Oncan as follows [183]:

“Given n items and m knapsacks, the Generalized Assignment Problem (GAP)
is to find the optimum assignment of each item to exactly one knapsack,
without exceeding the capacity of any knapsack. [...] The [Multilevel GAP
(MGAP)] deals with the determination of the minimum cost assignment of
tasks to agents with varying efficiency levels. The key difference between the
MGAP and the classical GAP is that in the former, agents can perform tasks
at more than one efficiency level.”

In our case, tasks correspond to segments being stored, agents to the different tiers,
and the efficiency level to the performance of these tiers. Based on this definition, we
can use MGAP models to identify the optimal placement of data across tiers. While
different approaches to solving the MGAP problem have been discussed, there is no open
source and ready-to-use implementation of such a solver.

If, instead of requiring the optimal solution, we accept a reasonably good heuristic
solution, we can instead also model the different tiers as a series of independent knapsack
problems: first, we exhaust the first knapsack’s budget by placing the most valuable (i.e.,
most heavily accessed) segments on DRAM. Next, the NVM budget is exhausted by
choosing the most valuable segments from the remaining segments. Finally, all segments
that have been placed neither on DRAM nor NVM are placed on SSD.
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Figure 7.1: Visualization of the knapsack problem and the resulting tiering decision.
Each marker in the upper graph corresponds to a column in the TPC-H
benchmark. Some extremes are labeled with their column names. The lower
graph shows the individual segments. A sample tiering configuration with a
DRAM capacity of 10% and an NVM capacity of 30% is shown.

7.1.2 Visualization of the Decision Making Process

Figure 7.1 shows how the knapsack approach is applied to the TPC-H data. It contains
two subfigures, with the first graph showing one marker per column of the TPC-H tables
and the second graph showing one marker per segment. Because most TPC-H tables are
stored in multiple chunks, the second graph contains significantly more markers.

The x-axis gives the size of these columns and segments, the y-axis gives the number
of accesses to the respective column or segment. Note that both axes are scaled logarith-
mically. Different colors denote the different TPC-H tables, the shape of the markers in
the lower graph visualizes the tier on which the data is stored. The data set has a size
of 10 GB. In Section 7.2.3, we show that our approach also works equally well for larger
database sizes.
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Looking at the different columns of the TPC-H data in the upper graph, we observe
that some columns are not being accessed at all'. Together, they account for 56% of the
data set. The inclusion of unused columns in the benchmark’s data set can be explained
by the row-oriented history of most traditional analytical database systems. By including
a large string in each tuple, the TPC-H authors increased the amount of data that has
to be read per tuple. Column-oriented systems, such as Hyrise, store 1_comment in a
separate memory region. These unused columns are thus ignored during the execution
of the benchmark and the corresponding memory regions are never touched. As such,
they are a great candidate for being migrated to a lower memory tier. However, not all
comment columns are unused. For example, o_comment from the orders table, shown
on the top right, is among the most frequently accessed columns.

The lower graph in Figure 7.1 differs from the upper graph in that the individual
segments of the columns are shown. For small tables like nation and region, which fit
into a single chunk, this makes no difference. For tables that hold multiple chunks, the
markers move towards the bottom left as both the size and the number of accesses is
lower for the individual segments. To a certain degree, columns seen in the upper graph
can still be identified in the lower graph. For example, the 1_comment segments are
still visible at 3 x 10% B. Also notable are two vertical clusters between 10* and 10° B.
These are caused by the default size of the segments: with a fixed maximum chunk size,
many chunks use a similar amount of memory. Smaller variations are introduced by the
size of the segments’ dictionaries. This is comparable to the pattern previously seen in
Figure 5.8, where we used an allocation trace from Hyrise to evaluate the performance
of our allocators and identified two clusters in the allocation sizes.

Additionally, the second graph shows an example tiering configuration. The white
area denotes segments stored on DRAM and the shaded areas denote segments stored
on NVM and SSD, respectively. We allowed for 10% of the data to be stored on DRAM,
another 30% on NVM, and store the remaining data on SSD. These budgets are used
by the knapsack algorithm and result in an assignment of the segments to the different
tiers as shown by the shape of the markers. We also added a skyline polygon to better
visualize the boundaries of the tiers. Note that the choice of the axis limits together with
the logarithmic scale distorts the visual perception and makes the DRAM look bigger
than 10%.

7.2 Evaluation

The decision making component connects the access tracking and the memory man-
agement components. Without access tracking, it cannot create the knapsack model;
without memory management, the resulting decisions cannot be realized and the per-
formance impact of a good or bad decision cannot be quantified. As such, the decision
making component can only be benchmarked in end-to-end experiments. Not only do
these experiments allow us to verify and quantify the individual influence factors for a

'To include them in a graph with logarithmic scaling, these are plotted with y=1.
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close-to-optimal tiering solution, but they also serve as an end-to-end validation of our
entire tiering approach.

7.2.1 Benchmark Setup

In our benchmarks, we show how a certain configuration of the decision making algorithm
influences the performance of the TPC-H benchmark. For this, we measure the TPC-H
query latency under different DRAM budgets. Once our implementation is embedded
in a centralized driver for Hyrise, the DRAM budget will be set by that driver. In the
absence of budgets provided by the driver, we benchmark pre-defined DRAM budgets,
which are defined as a percentage of the entire data set. Every five minutes, a new
budget is chosen and the tiering configuration is automatically adapted accordingly. We
call this five minute period an epoch.

Each individual query execution is written into a JSON result file. This JSON file
also contains the start and end timestamps of each epoch as logged by the tiering plugin.
These logs are not only visible in the JSON benchmark result, but are also made available
to the DBA via the Hyrise Cockpit [128].

We execute the benchmarks on System B as previously described in Table 5.2. Because
of the Linux kernel bug described in Section 5.5 and the configuration of the available
benchmark systems, we are unable to benchmark the NVM and SSD tiers simultaneously
and limit the discussion in this section to two tiers.

For the benchmarks, we use all available NUMA nodes. The 22 TPC-H queries are
executed by 20 clients in parallel. As larger amounts of data result in longer benchmark
durations, we use a scale factor of 10 for most experiments. This results in roughly
10 GB, partitioned across 19 142 segments. Each benchmark is executed for at least ten
hours to allow for the measurements to stabilize. In Section 7.2.2, we show that the
system works equally well for larger amounts of data.

The result of such a benchmark run is shown in Figure 7.2. We show the figure as
an intermediary step to explain how we postprocess this raw data. The x-axis shows
the progressing runtime of the benchmark, the y-axis represents the latency of a single
query execution. While all 22 TPC-H queries were executed, the figure only shows the
latencies of Query 10 for the sake of legibility. Each marker represents a single query
execution. For example, a marker at (2:900s,y:18s) means that 15 minutes after the
start of the benchmark, TPC-H Query 10 was started and took 18 seconds to execute.

Dashed lines link the x-axis to log entries that were written by the tiering plugin when
a different configuration was applied. These entries allow us to map individual query
executions to epochs and thus to the DRAM budget that was valid at the given point
in time. From the log entries, we know that at (2:900s, 5% of the data were stored on
DRAM.

Some epochs can be clearly identified by the increased runtime of the query. For
example, Query 10 takes longer to execute in the second period (spanning from 600
to 1000 seconds) than in the period before. The log messages explain why this is the
case: in the second epoch, the DRAM budget was sufficient for only 5% of the dataset,
meaning that 95% of the data were stored on NVM. In the first epoch, 100% of the data
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Figure 7.2: TPC-H Q10 latency over time. Each dot represents a single execution of
the query. At pre-defined intervals, the DRAM budget is modified. These
intervals are marked and explained in the log entries at the bottom. The log
is cropped on the bottom to conserve space. Twelve outliers with a duration
of more than 40 seconds are not shown in the graph.

was stored on DRAM. As such, the increase in query latency is the expected effect of
data tiering. While this effect is visible when comparing the first two epochs, it is harder
to identify for other epochs.

Besides the average latency within a given epoch being hard to read, the graph also
shows only a single TPC-H query and does not allow us to compare different benchmark
runs. To make the graph more consumable, we perform two transformations: first, all
query executions in an epoch are grouped and their mean duration is calculated. The
time between the epochs, i.e., the time needed to calculate and apply a new tiering
configuration, is excluded.

Second, the data is then pivoted so that the DRAM budget becomes the x-axis and
the average runtime of all TPC-H queries becomes the y-axis. Furthermore, we increase
the number of measured data points starting at 30% because this is the point at which
most queries start to be affected. Doing so allows us to balance the benchmark’s degree
of detail with its execution duration. The result of these transformations is shown in
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Figure 7.3: TPC-H latency as a function of the amount of data stored on DRAM.

Figure 7.3. Two queries, 13 and 18, will be discussed in detail. These are individually
colored in green and blue, respectively. All other queries are not discussed in the text
and are plotted in grey. Additionally, the average across all 22 queries is shown by a
thick black line.

The far left side of the graph shows the latency at a point at which all data is stored
on DRAM; the far right side represents all data being stored on NVM. Thus, the latency
increasing towards the right side of the graph is the expected result: as more data is
moved to NVM, the queries are increasingly affected by NVM’s higher latency and its
lower bandwidth.

Not all queries are affected equally. Query 18, plotted in blue, whose most expensive
operator performs an unfiltered aggregation of TPC-H’s biggest table, performs a num-
ber of sequential accesses for the aggregation. Queries with this access pattern generally
tolerate higher memory latencies better. This is in line with our previous experiments
and can be explained by the prefetcher hiding some of the increased access latencies.
Query 13, shown in green, on the other hand, performs a large hash join that produces a
large result table with columns that reference the input data in a random order. Resolv-
ing these indirections and accessing the underlying tables with a random access pattern
is highly susceptible to increased latency, which cannot be hidden by the prefetcher.
For Query 13, the latency drastically increases as the DRAM capacity is reduced from
10% to 8%. Here, an often referenced part of the customer table is migrated to NVM,
causing the corresponding accesses to be slowed down.

The average latency of all queries (i.e., the thick black line) appears to vary only
insignificantly. This is visually misleading and only caused by the scale of the y-axis.
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Figure 7.4: Different tiering decisions influencing the performance of the benchmark.

In absolute numbers, the latency increases from 4.3 seconds (all data on DRAM) to 6.1
seconds (all on NVM), which is an increase of 42%. For the following graphs, we focus
on this relative change and choose the axes parameters accordingly.

We now run the TPC-H benchmark in different configurations, highlighting some of
the workload-aware features enabled by our access counters. Figure 7.4 is a sketch on
how the following graphs can be interpreted. Again, the x-axis shows the amount of
data stored on DRAM and the y-axis shows the latency. Two fixpoints are marked: the
one on the left denotes the latency measured when all data is stored on DRAM. This is
the starting point of this thesis and is used as a reference point for the relative latency.
The second fixpoint on the far right denotes the latency that is measured if all data is
stored on NVM. In both cases, the decision making algorithm has no influence over the
latency. Between the two fixpoints, the algorithm is responsible for keeping the latency
as low as possible while increasing amounts of data are moved to lower tiers. The figure
shows four examples of tiering decision approaches:

(1) With random tiering, segments are randomly moved from DRAM to lower tiers
as the DRAM budget is decreased. The 191000 segments are progressively moved to
NVM. While not all of these segments have the same performance impact, the law of
large numbers causes the relative latency to change in an approximately linear fashion.

(2) A first, trivial algorithm could simply identify those segments that are never ac-
cessed. In Section 7.1.2, we have explained that 55% of the data is unused in the TPC-H
benchmark. Moving the corresponding segments to lower tiers does not cause an in-
crease in latency. Once other segments, which are actually accessed, are moved to lower
segments in a random order, the latency develops in the same way as it does with the
previous approach.

(3/4) With Decision A and B, two algorithms are sketched that make different deci-
sions about which segments should be moved to NVM first. For example, one algorithm
could take the different access patterns into account while the other treats all accesses
equally. While even the best algorithm will converge towards the right endpoint, its
behavior up to that point determines its quality. An algorithm is better if it either re-
sults in a higher benchmark performance for a given budget or if it provides the same
performance with less consumed DRAM.
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Figure 7.5: Influence of varying random access weights on the TPC-H performance.
For a varying DRAM budget and different weights of random accesses, the
database’s latency and throughput are compared to a DRAM-only database.

7.2.2 Benefits of Weighted Access Patterns

In Section 5.5, we evaluated the costs of sequential and random accesses. When data is
moved to lower tiers, the cost of random accesses increases not only in absolute numbers,
but those random accesses also become relatively more expensive compared to sequen-
tial accesses. In other words, moving a segment to a lower tier hurts the performance
disproportionately more if that segment is usually accessed in a random order.

To counteract these effects, our access counters identify these access patterns (cf. Sec-
tion 6.2). In the decision making algorithm, these random accesses can then be given
a greater weight compared to sequential accesses. This artificially increases the value
of the segment as used in the knapsack algorithm and makes it more likely that the
randomly accessed segment is stored on DRAM. Being able to incorporate the access
patterns into the tiering decision is one of the features that sets Hyrise apart from other
approaches. We now show how the inclusion of this information into the decision making
algorithm improves the efficiency of its decisions.
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Figure 7.5 shows three experiments in which the weight of the random accesses is
varied between 1 (i.e., no added weight), 100, and 10000. It follows the layout previously
explained in Section 7.2.1. We exclude the range between 100% and 50% DRAM as it
only includes the previously identified unused data.

The graph shows that applying a weight to random accesses is beneficial for a range
of different memory budgets. The impact depends on the chosen DRAM budget. For a
fixed budget of 16%, a weight of 100 reduces the relative latency by 8 percentage points
(pp). Alternatively, when keeping the relative latency fixed at 16%, applying a weight
to the value function makes it possible to further reduce the DRAM budget by 9.5 pp.
In other words, compared to an implementation that is unaware of access patterns, our
approach allow us to move almost 10% more data to NVM without reducing the system’s
performance.

Besides weights of 1 and 100, we also show a weight of 10000. The graph shows that
this overestimates the costs of random accesses. Still, the decision making algorithm
performs better with a weight of 10000 than if it ignores the access patterns (i.e., uses a
weight of 1). Intuitively, one would thus try to find the optimal weight factor. We do not
expect for such a single factor to exist. Trying to determine such a single factor would
likely cause the parameters to be overfitted a single benchmark. Instead, we propose
that this parameter shall be automatically fine-tuned by the driver, which can use a cost
model [130] to estimate the physical access costs related to a specific segment.

Compared to a DRAM-only database, the experiment shows that we can move 90%
of the data to NVM (i.e., 10% remaining on DRAM) at a cost of increasing the latency
by 11.6% and decreasing the throughput by 10.8%.

7.2.3 Benefits of Multi-Dimensional Tracking

In Chapter 6, we argue that accesses should be tracked on a more fine-granular level than
just the individual columns. In Hyrise, we use the existing segment-based architecture
both as a unit of access tracking and for data migration. In the following experiment,
we show that segment-based tiering outperforms column-based and chunk-based tiering.
Because the standard TPC-H data is largely homogeneous, we introduce skew into the
benchmark by adding multiple tenants to the TPC-H data set. This is similar to a
benchmark proposed by Braun et al. [33]. Each of the ten tenants has its own TPC-H
data set with a scale factor of 10, resulting in an overall data size of 100 GB. Because
the server used for benchmarking has only 192 GB of DRAM and the DBMS needs to
allocate temporary memory for the individual operators, this 100 GB data set comes
close to the maximum supported by this particular system.

While all tenants store the same amount of data, the number of issued queries varies.
We use a binomial distribution with a p value of 0.5 and nine trials. This means that
tenant 4 is responsible for approximately 25% of all queries, while tenants 0 and 9 only
issue 1% of the queries. The tables are clustered by the tenant id. As a result, the
segments storing data from tenant 4 are accessed 25 times more than those of tenants
0 and 9. We expect this pattern to be detected and that incorporating this information
makes a material difference in the quality of the tiering decisions.
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Figure 7.6: Benefit of access tracking and migration on a segment level.

The results of this benchmark are visualized in Figure 7.6. Because the latency and
throughput graphs are largely reciprocal (cf. Figure 7.5), we only show one of them,
namely the latency graph. Three lines are shown, corresponding to decision making on
the chunk, column, and segment granularities. The segment granularity clearly outper-
forms the approaches in which a homogeneous access pattern across the entirety of a
column or a chunk is assumed.

At a DRAM budget of 10%, segment-level tracking reduces the cost of data tiering
by 7 percentage points. When optimizing for a minimal DRAM budget with a given
acceptable latency increase, segment-level tracking can reduce the needed DRAM budget
by 5% of the overall data set’s size. Compared to the per-chunk granularity, segment-
level tracking performs better because of the unused columns in the TPC-H benchmark.
If the column dimension is ignored, these columns are included in the data that is kept on
DRAM, where they occupy space that could otherwise be used for data that is actually
accessed. For a budget of 6%, making tiering decisions on a segment-level granularity
decreases the overhead by 16 percentage points compared to tracking on the chunk-level.

This benchmark shows that the segment granularity correctly identifies parts of the
table that are accessed less frequently and that incorporating this information into the
decision making algorithm consistently leads to better results.

7.2.4 Solver Efficiency

When describing the implementation of the decision making component in Section 7.1,
we explained that we use the branch-and-bound knapsack solver included in Google’s
or-tools [192, 193]. Besides the aspects of licensing and availability, an important aspect
that guides the choice of a solver is its speed and the quality of its solutions. For knapsack
problems, for which the goal is to maximize the summed value of all items (the profit)
while satisfying the capacity constraint, the quality of a solution can be described as the
ratio between the profit of the found solution to that of the optimal solution.
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Figure 7.7: Quality of the solutions by CPLEX and or-tools as a function of their time
budget. The optimality gap is the distance between the found solution and
the best known bound.

Calculating the optimal solution of a knapsack problem with many items is infeasible.
However, as part of the branch-and-bound algorithm, an upper bound is calculated and
constantly updated. This upper bound limits the highest possible profit [172]. With an
increasing number of iterations, the proposed solution and the upper bound converge.
We can use this upper bound to estimate the quality of our solution.

To evaluate the speed and the quality of the solutions found by or-tools, we compare
it to IBM ILOG CPLEX Optimization Studio (short CPLEX) [81], a commercial solver.
CPLEX is available for free via the public NEOS (Network-Enabled Optimization Sys-
tem) server [49] and can be accessed via the Pyomo library [97]. The data set is taken
from the benchmark in Section 7.1.2 and consists of 17816 individual segments. We
vary the time budget given to the solver. Between two powers of ten, we execute four
measurements, resulting in data points at, e.g., 1s, 2.15s, 4.64s, and 10s. We track the
profit of the proposed solution after this time budget has been exhausted as well as the
lowest identified upper bound. The results in Figure 7.7 show the quality of the proposed
solution as a percentage of the globally lowest upper bound.

CPLEX obtains a result that is within 99% of the optimal solution after 464 ms.
Shorter time limits, such as 100 ms, lead to substantially worse results, and even shorter
results lead to no result at all. The solver from or-tools, which we use for our tiering
implementation, proposes a solution that is within 99.8% of the optimal solution in just
1 ms. At the same time, even after 1000 seconds, it does not reach the maximum result
quality obtained by CPLEX: the best result produced by CPLEX has an overall value
that is 0.15% higher than the best or-tools results. For Hyrise, we value the availability
and speed of or-tools over the minimally higher solution value of CPLEX.
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Based on this experiment, we also find that working on a segment granularity does
not increase the problem size to a point at which solving the knapsack problem becomes
infeasible. Even with low time budgets, solutions can be found that are within 99.8% to
the optimal solution. Rather than optimizing for less than one percent, we believe that
it makes more sense for future work to further optimize the profit metric.

7.3 Summary

In this chapter, we have described how tiering decisions are made and applied. For
this, we have discussed how our decision making component fits into the bigger picture
of Hyrise as a self-driving database and how it can interact with optimizations that
are developed in other research projects. We have discussed how decision making for
tiering can be reduced to a knapsack problem and visualized how this allows us to assign
segments to multiple tiers.

The evaluation done for our decision making component also serves as an evaluation of
our entire tiering concept. With several benchmarks, we verified the functionality of our
implementation, quantified the benefit of fine-grained access counters, and measured the
impact of different tiering decisions on end-to-end benchmarks. We report a reduction
in the cost of tiering of up to 16 percentage points when accesses are tracked on the
two-dimensional segment level compared to one-dimensional tracking. The knowledge
of the data access patterns reduces the overhead by 8 percentage points.

Our implementation and evaluation of the decision making component completes our
previous answer to the first part of the second research question:

How can a DBMS automatically identify those parts of data that should re-
main on DRAM for performance reasons |[...[?

Segments that are suitable for tiering can be identified by tracking their accesses in
both the row and column dimensions as well as their access patterns. For this, we use the
access counters presented in Chapter 6. Less frequently segments with predominantly
sequential access patterns should be migrated to lower tiers first.
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8 Discussion

In this chapter, we first discuss the limitations to the evaluations in this thesis and their
potential impact on the generalizability of our contributions. Next, we suggest directions
for future work on automatic tiering and potential synergy effects with related areas in
database and hardware research. Finally, we conclude this thesis with a summary of the
answers to our research questions and of the presented contributions.

8.1 Threats to Validity

Even though TPC-H is a widely accepted benchmark, its accuracy as a simulation for
real-world workloads has been repeatedly questioned [173, 244]. We argue that both our
memory management (Chapter 5) and our access tracking (Chapter 6) components are
too low-level to be severely impacted by the choice of a benchmark. For our decision
making component (Chapter 7) on the other hand, we expect different workloads to
show different results. More specifically, we expect that the relative NVM overhead for
a given memory budget varies with the workload’s access patterns. As an example, we
have discussed the fact that some comment columns in the TPC-H data are entirely
unused. With this, the performance impact of tiering only becomes visible once 56% of
the data has been moved to lower tiers. In other workloads, we expect less unused data
and an earlier onset of tiering-related performance changes. Still, we have no reason
to believe that the qualitative conclusions drawn from these experiments would change.
Segment-based tiering will continue to outperform concepts in which access skew in the
column or row dimensions is ignored. Moving sequentially accessed data to lower tiers
will still be more efficient than moving randomly read data.

The evaluation could be improved by using a real-world workload that has been ex-
tracted from an existing, sufficiently large in-memory database. We were able to acquire
metadata from an SAP customer’s ERP system. This data was used for the case study
presented in Section 1.1. The aggregated data allowed us to verify our assumptions but
was insufficient for an evaluation of our tiering approach. Even if we had a full data
export and query trace from that industry partner, the evaluation would run the risk
of being overfitted towards the characteristics of that particular database. For a full
evaluation, we would thus need to execute benchmarks on multiple data sets.

The problem of a lack of suitable datasets and corresponding workload traces is shared
by large parts of the database research community [108, 244]. Some cloud database
providers address this challenge by re-executing queries “using a separate set of resources
without impacting the customer’s production workload” and obfuscating the results to
guarantee the data’s confidentiality [259].
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8.2 Future Work

So far, we have applied tiering to move the user-provided tables from DRAM to lower
tiers. The temporary data generated during query execution remains in DRAM. In
our benchmarks, this temporary data accounts for roughly half of the database’s memory
usage. The exact number varies depending on the number of concurrent queries and the
input cardinalities of accumulating operators like joins and aggregates. We expect that
not all of this data needs to be continuously stored in DRAM. Instead, we anticipate that
some sequentially written and read data structures, such as the position lists generated
during a scan (cf. Figure 4.5) or the materializations used for the hash join, could be
good candidates for being stored on lower tiers. Daase et al. showed that our memory
management framework already makes it possible to migrate temporary data but that
further work is needed to do this in a way that does not harm the query performance [50].
Hassan et al. [98] present heuristic data placement for hash joins on hybrid DRAM and
NVM memory. We expect that Hyrise can benefit from their contributions.

Our architecture was designed to easily accommodate additional tiers. We especially
see great potential in the inclusion of disaggregated memory, i.e., memory that is shared
across servers as part of an external memory blade [152]. This external memory is
connected via fast, coherent interconnects such as Gen-Z [105]. As it is not managed
by one of the CPUs’ memory controllers, it is not subject to the capacity limits that
currently define the upper bound of an in-memory database’s size. We have shown
that moving large amounts of data to slower memory tiers can be done in a way that
strikes a balance between the DRAM savings and the access overhead. Depending on
the performance of disaggregated memory, we anticipate similar results for this new type
of hardware. Disaggregated memory is especially promising in combination with cloud-
based in-memory databases: instead of sizing each server to accommodate the maximum
expected workload, memory could be dynamically provisioned from a shared memory
blade. Across all servers, this would even out usage peaks and result in a more efficient
use of the available memory capacity.

Our research plan for making Hyrise a self-driving database involves the combina-
tion of different tuning options. Automatic tiering is only one of these options. Others
include automatic index selection, automatic data compression, and automatic parti-
tioning. As described in Chapter 7, these topics do not only share requirements in the
areas of workload tracking and algorithmic optimization, but they also interact with
each other. For example, different compression algorithms perform differently on differ-
ent memory and storage tiers. Taking these multi-dimensional optimization problems
into account as part of a centralized driver will be a challenging but rewarding task.

For an integration of our tiering concept with a future persistency layer, the main
goal would be to profit from data that is already stored on non-volatile tiers. This data
would not have to be recovered from logs but would be immediately available after a
DBMS restart, similar to the main-on-NVM concept used by SAP HANA [8]. Special
care would have to be given to the persistency of writes to umap-managed tiers, as
umap currently only writes to disk as part of its eviction process [191]. We also refer
to the remarks given by Graefe et al. on the correctness and performance of persisting
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memory-mapped data [89]. Besides using the table data for recovery, we suggest that
the information from the access counters should be persisted and reused not only for
making tiering decisions after a restart, but also to prioritize the recovery of previously
DRAM-resident segments.

Most of our previous work focused on analytical queries [63]. For transactional work-
loads, a key aspect is to improve the handling of secondary indexes. A first step
towards flexible indexes in Hyrise has been made by Weisgut [249]. He proposes an
indexing concept in which a horizontally partitioned table can be partially indexed on
a multi-chunk basis and in which these indexes can be updated asynchronously. These
partial indexes combine a high hit rate with reduced memory and maintenance costs.
For their automatic creation, they can benefit from the presented access counters. Addi-
tionally, they can also leverage our flexible memory management concept, which allows
the indexes’ internal data structures to be placed on arbitrary tiers. Some indexes that
might not be desirable on DRAM could become desirable on NVM. We expect that
some existing index selection algorithms that already calculate the cost/benefit ratio of
DRAM indexes [216] can be reused to perform this calculation across multiple tiers.

8.3 Conclusion

Current in-memory databases are limited by the number and size of DRAM DIMMSs that
a server can physically support. In recent years, the resulting capacity has stagnated.
To further accommodate growing amounts of data, IMDBs thus need to expand beyond
DRAM. A promising candidate is non-volatile memory, which quadruples the amount of
available memory while still providing access characteristics similar to those of DRAM.
As such, NVM fills the gap between DRAM and SSDs.

To exploit this new type of hardware, we enable in-memory databases to use multiple
non-DRAM tiers as additional storage in a way that is consistent with the paradigm of
in-memory computing and that can be implemented in a way that is transparent to the
upper layers of the DBMS as well as to the user.

We present the research DBMS Hyrise, which has been re-engineered and re-written
from scratch as a contribution made during the work on this thesis. Hyrise is an open-
source, columnar in-memory DBMS that allows for realistic end-to-end benchmarks while
providing an infrastructure with a track record of being maintainable and extensible. We
further present our implementation of automatic tiering for Hyrise with new approaches
for (1) memory management, (2) access tracking, and (3) decision making. This allows
us to answer our research questions as follows:

1. How can data be stored on different memory and storage tiers in a transparent man-
ner that is consistent with the DRAM-first approach of in-memory databases and
does not negatively affect the performance when accessing data stored on DRAM?

We present a novel way of storing data structures on multiple memory and storage
tiers. Polymorphic Memory Resources (PMR) are used as an abstraction mecha-
nism that encapsulates the allocation and access methods of the individual tiers.
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All data structures can be accessed via virtual memory addresses and existing code
does not have to be modified. Accesses to these virtual addresses are transparently
translated into the corresponding byte- or block-level reads and writes. As such,
the DRAM-first paradigm is maintained from an engineering perspective.

We also maintain the DRAM-first paradigm in terms of performance: unlike exist-
ing approaches in which accesses require a check on whether the data is DRAM-
resident, our implementation relies on the CPU’s virtual memory management and
does not introduce additional steps for accessing data on DRAM. When allocating
or deallocating data, PMR requires an additional virtual method call. This results
in a 0.6% overhead compared to a DRAM-only DBMS.

. How can a DBMS automatically (a) identify those parts of data that should remain

on DRAM for performance reasons, and (b) migrate the remainder of the data
without disrupting the continuous operation of the system?

The access pattern has a significant impact on the cost of reads from different
tiers. This impact becomes more pronounced for lower tiers, meaning that random
accesses have a disproportionately higher impact if they are performed on NVM or
even SSD. As such, there is a need to track both the number of accesses and their
access patterns. For part a of the question, we present an implementation that
tracks access pattern information without introducing a measurable performance
cost. This is made possible by extending the existing iterator abstraction and
updating the access counters only once per iterator invocation instead of once per
individual access. Accesses are also tracked on a per-segment basis, which allows
us to identify skewed workloads both in the row and the column dimensions.

The information from these counters is used by our decision making component,
which translates the task of assigning segments to the different tiers into a multi-
level knapsack problem. After a tiering decision has been made, we apply it by
asynchronously copying data structures to their new location. To address part b, we
coordinate the migrations with the Multi-Version Concurrency Control mechanism
of Hyrise. In short, the insert-only property of an optimistic concurrency algorithm,
together with our chunk concept, allows us to consistently operate on two copies
of the data and thus allows concurrent queries to be executed without limitations.

Compared to a pattern-agnostic tracking method, our knowledge of the access
patterns allows us to either move an additional 9.5% of the TPC-H dataset to
NVM without sacrificing any performance or to reduce the performance impact of
storing 85% of the data on NVM by 8 percentage points to under 10%. By making
decisions on the segment level instead of on the chunk or column levels, we can
further half the performance hit of automatic tiering. In total, this allows us to
move 90% of the data to NVM while increasing the query latency by only 11.6%.

With these results, we enable the growth of in-memory databases beyond the limita-
tions of DRAM while maintaining their DRAM-first paradigm, and thus, their perfor-
mance benefits. B
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