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0Abstract
Data profiling is the extraction of metadata from relational databases. An impor-
tant class of metadata are multi-column dependencies. They come associated
with two computational tasks. The detection problem is to decide whether a
dependency of a given type and size holds in a database. The discovery problem
instead asks to enumerate all valid dependencies of that type. We investigate
the two problems for three types of dependencies: unique column combinations
(UCCs), functional dependencies (FDs), and inclusion dependencies (INDs).

We first treat the parameterized complexity of the detection variants. We
prove that the detection of UCCs and FDs, respectively, is WW[2]-complete when
parameterized by the size of the dependency. The detection of INDs is shown to
be one of the first naturalWW[3]-complete problems. We further settle the enumer-
ation complexity of the three discovery problems by presenting parsimonious
equivalences with well-known enumeration problems. Namely, the discovery
of UCCs is equivalent to the famous transversal hypergraph problem of enu-
merating the hitting sets of a hypergraph. The discovery of FDs is equivalent to
the simultaneous enumeration of the hitting sets of multiple input hypergraphs.
Finally, the discovery of INDs is shown to be equivalent to enumerating the
satisfying assignments of antimonotone, 3-normalized Boolean formulas.
In the remainder of the thesis, we design and analyze discovery algorithms

for unique column combinations. Since this is as hard as the general transversal
hypergraph problem, it is an open question whether the UCCs of a database can
be computed in output-polynomial time in the worst case. For the analysis, we
therefore focus on instances that are structurally close to databases in practice,
most notably, inputs that have small solutions. The equivalence between UCCs
and hitting sets transfers the computational hardness, but also allows us to apply
ideas from hypergraph theory to data profiling. We devise an discovery algorithm
that runs in polynomial space on arbitrary inputs and achieves polynomial delay
whenever the maximum size of any minimal UCC is bounded. Central to our
approach is the extension problem for minimal hitting sets, that is, to decide for
a set of vertices whether they are contained in any minimal solution. We prove
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that this is yet another problem that is complete for the complexity class WW[3],
when parameterized by the size of the set that is to be extended. We also give
several conditional lower bounds under popular hardness conjectures such as
the Strong Exponential Time Hypothesis (SETH). The lower bounds suggest that
the running time of our algorithm for the extension problem is close to optimal.

We further conduct an empirical analysis of our discovery algorithm on real-
world databases to confirm that the hitting set perspective on data profiling
has merits also in practice. We show that the resulting enumeration times
undercut their theoretical worst-case bounds on practical data, and that the
memory consumption of our method is much smaller than that of previous
solutions. During the analysis we make two observations about the connection
between databases and their corresponding hypergraphs. On the one hand,
the hypergraph representations containing all relevant information are usually
significantly smaller than the original inputs. On the other hand, obtaining
those hypergraphs is the actual bottleneck of any practical application. The
latter often takes much longer than enumerating the solutions, which is in stark
contrast to the fact that the preprocessing is guaranteed to be polynomial while
the enumeration may take exponential time.
To make the first observation rigorous, we introduce a maximum-entropy

model for non-uniform random hypergraphs and prove that their expected
number of minimal hyperedges undergoes a phase transition with respect to the
total number of edges. The result also explains why larger databases may have
smaller hypergraphs. Motivated by the second observation, we present a new
kind of UCC discovery algorithm called Hitting Set Enumeration with Partial
Information and Validation (HPIValid). It utilizes the fast enumeration times in
practice in order to speed up the computation of the corresponding hypergraph.
This way, we sidestep the bottleneck while maintaining the advantages of the
hitting set perspective. An exhaustive empirical evaluation shows that HPIValid
outperforms the current state of the art in UCC discovery. It is capable of
processing databases that were previously out of reach for data profiling.
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0Zusammenfassung

Data Profiling ist die Erhebung von Metadaten über relationale Datenbanken. Ei-
ne wichtige Klasse von Metadaten sind Abhängigkeiten zwischen verschiedenen
Spalten. Für diese gibt es zwei wesentliche algorithmische Probleme. Beim De-
tektionsproblem soll entschieden werden, ob eine Datenbank eine Abhängigkeit
eines bestimmt Typs und Größe aufweist; beim Entdeckungsproblem müssen
dagegen alle gültigen Abhängigkeiten aufgezählt werden. Wir behandeln beide
Probleme für drei Typen von Abhängigkeiten: eindeutige Spaltenkombinationen
(UCCs), funktionale Abhängigkeiten (FDs) und Inklusionsabhängigkeiten (INDs).

Wir untersuchen zunächst deren parametrisierte Komplexität und beweisen,
dass die Detektion von UCCs und FDsWW[2]-vollständig ist, wobei die Größe der
Abhängigkeit als Parameter dient. Ferner identifizieren wir die Detektion von
INDs als eines der ersten natürlichen WW[3]-vollständigen Probleme. Danach klä-
ren wir die Aufzählungskomplexität der drei Entdeckungsprobleme, indem wir
lösungserhaltende Äquivalenzen zu bekannten Aufzählungsproblemen konstru-
ieren. Die Entdeckung von UCCs zeigt sich dabei als äquivalent zum berühmten
Transversal-Hypergraph-Problem, bei dem die Hitting Sets eines Hypergraphens
aufzuzählen sind. Die Entdeckung von FDs ist äquivalent zum simultanen Auf-
zählen der Hitting Sets mehrerer Hypergraphen und INDs sind äquivalent zu den
erfüllenden Belegungen antimonotoner, 3-normalisierter boolescher Formeln.

Anschließend beschäftigen wir uns mit dem Entwurf und der Analyse von Ent-
deckungsalgorithmen für eindeutige Spaltenkombinationen. Es ist unbekannt, ob
alle UCCs einer Datenbank in worst-case ausgabepolynomieller Zeit berechnet
werden können, da dies genauso schwer ist wie das allgemeine Transversal-
Hypergraph-Problem. Wir konzentrieren uns daher bei der Analyse auf Instan-
zen, die strukturelle Ähnlichkeiten mit Datenbanken aus der Praxis aufweisen;
insbesondere solche, deren Lösungen sehr klein sind. Die Äquivalenz zwischen
UCCs und Hitting Sets überträgt zwar die algorithmische Schwere, erlaubt es uns
aber auch Konzepte aus der Theorie von Hypergraphen auf das Data Profiling
anzuwenden. Wir entwickeln daraus einen Entdeckungsalgorithmus, dessen
Berechnungen auf beliebigen Eingaben nur polynomiellen Platz benötigen. Ist

vi



zusätzlich die Maximalgröße der minimalen UCCs durch eine Konstante be-
schränkt, so hat der Algorithmus außerdem polynomiell beschränkten Delay.
Der zentrale Baustein unseres Ansatzes ist das Erweiterbarkeitsproblem für mi-
nimale Hitting Sets, das heißt, die Entscheidung, ob eine gegebene Knotenmenge
in einer minimalen Lösung vorkommt. Wir zeigen, dass dies, mit der Größe der
Knotenmenge als Parameter, ein weiteres natürliches Problem ist, welches voll-
ständig für die Komplexitätsklasse WW[3] ist. Außerdem beweisen wir bedingte
untere Laufzeitschranken unter der Annahme gängiger Schwere-Vermutungen
wie der Starken Exponentialzeithypothese (SETH). Dies belegt, dass die Laufzeit
unseres Algorithmus für das Erweiterbarkeitsproblem beinahe optimal ist.
Eine empirische Untersuchung unseres Entdeckungsalgorithmus auf realen

Daten bestätigt, dass die Hitting-Set-Perspektive auch praktische Vorteile für
das Data Profiling hat. So sind die Berechnungzeiten für das Finden der UCCs
bereits sehr schnell und der Speicherverbrauch unseres Ansatzes ist deutlich
geringer als der existierender Methoden. Die Untersuchung zeigt auch zwei
interessante Verbindungen zwischen Datenbanken und ihren zugehörigen Hy-
pergraphen: Einerseits sind die Hypergraphen, die alle relevanten Informationen
enthalten, meist viel kleiner als die Eingabe-Datenbanken, andererseits ist die
Berechnung dieser Hypergraphen die eigentliche Engstelle in der Praxis. Sie
nimmt in der Regel viel mehr Zeit in Anspruch, als das Aufzählen aller Lösungen.
Dies steht im deutlichen Gegensatz zu den bekannten theoretischen Resultaten,
die besagen, dass die Hypergraph-Vorberechnung polynomiell ist, während der
Aufzählungsschritt exponentielle Zeit benötigen kann.

Umdie erste Beobachtung zu formalisieren, führenwir einMaximum-Entropie-
Modell für nicht-uniforme Hypergraphen ein und zeigen, dass die erwartete
Anzahl ihrer minimalen Hyperkanten einen Phasenübergang druchläuft. Un-
sere Ergebnisse erklären auch warum größere Datenbanken mitunter kleinere
Hypergraphen haben. Die zweite Beobachtung inspiriert uns zu einen Entde-
ckungsalgorithmus neuer Art, „Hitting Set Enumeration with Partial Information
and Validation“ (HPIValid). Dieser nutzt die schnellen Aufzählungszeiten auf
praktischen Daten aus, um die langwierige Berechnung des zu Grunde liegen-
den Hypergraphens zu beschleunigen. Dadurch umgehen wir die Engstelle und
können gleichzeitig die Vorteile der Hitting-Set-Perspektive beibehalten. Eine
ausgiebige empirische Analyse zeigt, dass HPIValid den aktuellen Stand der
Technik im Bereich der UCC-Entdeckung deutlich übertrifft. HPIValid kann
Datenbanken verarbeiten, für die Data Profiling zuvor unmöglich war.
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0Preface
This thesis presents the results of my research as a member of the Algorithm
Engineering group, headed by Tobias Friedrich, at the Hasso Plattner Institute
of the University of Potsdam from May 2015 until November 2021. Between
January 2019 and June 2020, I was supported by the Investitionsbank des Landes
Brandenburg (ILB) as part of the ILB ProFIT project “Virtual Compressor” under
agreement number 80173319. Each chapter of this thesis is based on conference
and journal publications with several coauthors. The thesis also contains some
unpublished material, all of which is currently under review as part of the
respective journal extensions. I give some context for the individual chapters
below and highlight my contribution to the publications.

Chapter 3 After a talk by Michael Fellows (University of Bergen) at the Hasso
Plattner Institute in September 2015, Felix Naumann approached Thomas Blä-
sius, Tobias Friedrich, and me to suggest studying multi-column dependency
problems in relational databases through the lens of parameterized complexity.
In the follow up, we were able to settle the complexity of detecting unique col-
umn combinations, functional dependencies, and inclusion dependencies. The
results were jointly developed by Thomas Bläsius, Tobias Friedrich, and myself
and published at the 11th International Symposium on Parameterized and Exact
Computation (IPEC 2016) [BFS16]. I contributed the WW[2]-completeness results
and major parts of the writing. After publication, I recognized that essentially all
results about the detection problems can be lifted to parsimonious equivalences
for the corresponding discovery problems. For this thesis, I overhauled the
exposition in order to adequately present the new results on enumeration. In the
time between submission and defense, the chapter appeared in the Theoretical
Computer Science journal [BFS22].

Chapter 4 Thomas Bläsius and I met Kitty Meeks (University of Glasgow)
at IPEC 2016, where she presented her work on enumeration algorithms and
extension problems. During her research visit in Potsdam in March 2017, we
developed an algorithm for the transversal hypergraph problem. I proved its
correctness and the WW[3]-completeness of the extension problem for minimal

viii



hitting sets. These preliminary findings were further deepened at my return
visit in Glasgow in May 2018. The same year, Thomas Bläsius and I co-advised
the bachelor’s thesis of Julius Lischeid who improved the upper bound on the
delay and conducted extensive run time experiments. The combined theoretical
and empirical work was announced at the Dagstuhl Seminar on Algorithmic
Enumeration in October 2018 and appeared at the 21st Meeting on Algorithm
Engineering and Experiments (ALENEX 2019) [Blä+19b]. I was responsible for
the write-up of both the conference version and the journal extension that
appeared in the Journal of Computer and System Sciences [Blä+22]. For the
latter, I proved several new fine-grained lower bounds. Erik Kohlros conducted
additional experiments regarding the practical behavior of the extension oracle.
Chapter 5 This chapter originated as a section of the ESA 2020 paper [BFS20]
(see Chapter 6), it gives a combinatorial proof for a version of the Chernoff–
Hoeffding theorem that is tight up to constant factors. The presented results are
entirely my own work.
Chapter 6 The empirical work on enumeration made apparent that often the
number of minimal difference sets of a real-world database is much smaller than
the size of the original input. Thomas Bläsius suggested a maximum-entropy
model for hypergraphs to explain this behavior. I proved a phase transition in
the expected size of its minimization. The main obstacle in the analysis were the
loose bounds of the Chernoff–Hoeffding theorem, which had to be improved
(see Chapter 5). The results were published at the 28th European Symposium on
Algorithms (ESA 2020) [BFS20].
Chapter 7 Since proposing the research topic to us, Felix Naumann and
Thorsten Papenbrock continuously supported our work and shared their experi-
ences from practice. This led to a joint collaboration whose preliminary results
were announced at the 3rd International Workshop on Enumeration Problems and
Applications (WEPA) in October 2019. The final work appeared in the Proceedings
of the VLDB Endowment [Bir+20] and were presented at the 46th International
Conference on Very Large Databases (VLDB 2020). For this paper, Johann Birnick,
a bachelor student at that time, Thomas Bläsius, and I jointly developed the
HPIValid algorithm. I proved a general result on the duality of hypergraphs
with their transversals that implied the algorithm’s correctness.

Besides the work that appears in this thesis, I was fortunate to be able to con-
tribute also to other fields during my PhD studies. Building on my master thesis
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as well as previous work [KP16], Timo Kötzing and I proposed the new re-
search direction of compiling an atlas of computational learning theory [KS16].
Subsequently, this area has been further developed by myself [KSS17] and oth-
ers [Ber+21; DK20; DK21a; DK21b; KKS21; KS21]. I also worked on the theory of
evolutionary computation and randomized search heuristics in close collabora-
tion with other researchers of the Algorithm Engineering group, colleagues from
Frank Neumann’s group at the University of Adelaide, and Benjamin Doerr (École
Polytechnique). We showed that majority vote crossover [Fri+16] as well as
island models with randomized rumor spreading [Doe+17; Doe+19] are powerful
tools to accelerate evolutionary algorithms. We were also the first to rigorously
investigate evolutionary computation under constraints [Fri+17; Fri+20; Fri+22;
Shi+17; Shi+19; Shi+20]. Recently, I extended my interest to fault-tolerant data
structures in a collaboration with Davide Bilò (University of L’Aquila) [Bil+21a;
Bil+21b], Keerti Choudhary (Indian Institute of Technology Delhi) [Bil+22b],
and other members of the Algorithm Engineering group [Bil+22a]. Finally,
I co-advised several student research projects, among them were the master
thesis of Philipp Fischbeck on reduction rules for the minimum hitting set prob-
lem [Blä+19a], and the bachelor thesis of Felix Mujkanovic [Muj+20] (preprint)
on explainable time series classification.

A comprehensive list of all my publications, as of Summer 2022, can be found at
the end of this thesis.
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1 Introduction

Data profiling is the extraction of metadata from relational databases. Among
the first things a data scientist records when given a new dataset are the number
of rows and columns, the value types in each column, like string, integer, float, or
Boolean, the distribution of values, their range, sum, and mean. This information
facilitates subsequent optimizations in storage and access and already provides
valuable tools to unearth the knowledge in the data. A more subtle class of
metadata are the hidden dependencies between values in multiple columns or
even across different datasets. The prototype of multi-column dependencies are
unique column combinations (UCCs). The table in Figure 1.1 gives an example.
Knowing the Name and Area Code of an entry is already enough to identify any
of the rows. The reason is that, say, the pair (�Doe,John�, �UK-W1K�) appears
in the third row and the third row only. Note that neither the Name nor the Area
Code alone have this discriminatory power, the UCC is inclusion-wise minimal.
UCCs serve as small fingerprints of the whole database. They are natural candi-
dates for primary keys, avoiding the need to introduce surrogate identification.
More importantly, knowing the unique column combinations enables various
data cleaning tasks as well as query optimization. The values appearing in a
unique column combination are distinct by definition and form groups of size 1,
thus SQL queries can skip the grouping phase and the DISTINCT operation, even
if requested by the user. Also, the presence of UCCs allows for early returns of
SELECT and ORDER BY operations. The surveys by Papenbrock, Naumann, and
coauthors [Abe+18; KPN21] give an overview of many applications of UCCs.
Unfortunately, a dataset only rarely comes annotated with its dependencies.

Much more often they need to be computed from raw data. This leads to two
different computational tasks. The detection problem is to decide for a given
database whether it admits a UCC with only a few columns. The discovery
problem instead asks for a complete list of all minimal UCCs, regardless of their
size and number. An equivalent term for the latter, which is probably more
common in the algorithms community, is the enumeration of minimal solutions.
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Chapter 1 Introduction

Name

Nightingale, Florence

Address

South Street 8

City

London

Area Code

UK-W1K

Doe, John South Street 8 Philadelphia US-PA-19145

Menigmand, Morten Trøjburgvej 24 Aarhus

Mustermann, Max Mittelstraße 125 Potsdam D-14467

Mustermann, Max W Broadway 400 San Diego US-CA-92101

Doe, John South Street 8 London UK-W1K

DK-8200

Age

90

33

25

47

47

76

Figure 1.1: Example of a relational database. The column pair Name and Area Code is
a minimal unique column combination.

In this thesis, we investigate those two problems for three types of multi-
column dependencies: unique column combinations, functional dependencies
(FDs), and inclusion dependencies (INDs). (A formal definition of the types is
deferred to Chapter 2.) We examine the computational complexity of detection
and discovery, and design enumeration algorithms and data models with a
particular focus on applications in data profiling.

The discovery of data dependencies is intimately connected to the transversal
hypergraph problem, which asks to enumerate the minimal hitting sets of a given
hypergraph. Consider the first two rows of the database in Figure 1.1, they differ
in the Address, City, and Area Code. Intuitively, any unique column combina-
tion must contain at least one of these three attributes as otherwise the two rows
would be indistinguishable. It is a folklore result that the UCCs are indeed the
hitting sets of the hypergraph of difference sets of all pairs of rows. The origins
of the transversal hypergraph problem can be traced back to three independent
papers all appearing in 1987 by Mannila and Räihä [MR87], Demetrovics and
Thi [DT87], and, maybe lesser known, by Reiter [Rei87]. Interestingly, the first
two articles derived the enumeration problem from database applications. Since
then, finding the hitting sets of a hypergraph has also found uses in many other
areas like artificial intelligence, machine learning, distributed systems, monotone
logic, and bioinformatics. We refer the reader to the surveys by Eiter, Gottlob
and coauthors [EG95; EMG08] as well as Gainer-Dewar and Vera-Licona [GV17].
The transversal hypergraph problem has developed into the most important

yard stick for enumeration complexity. Unlike for decision problems, the border
of tractability here does not run between polynomial and super-polynomial time,
at least not when measured in the input size only. The number of solutions that
need to be computed may be exponential, ruling out any polynomial algorithm.
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Instead, one could hope for an algorithm that scales polynomially both in the
input and the number of solutions. For more than three decades now, it is the ma-
jor open question in enumeration whether the transversal hypergraph problem
can be solved in output-polynomial time. The best known upper bound, given
by Fredman and Khachiyan [FK96], is 𝑁O( log𝑁/log log𝑁 ) , where 𝑁 is the combined
input and output size. The fastest algorithm in practice, albeit without any
performance guarantees, is the one by Murakami and Uno [GV17; MU14].
Eiter and Gottlob [EG95] showed that the unique column combinations of

a database can be enumerated in output-polynomial time if and only if this is
possible for the hitting sets of a hypergraph. This observation resulted from a
line of research that examines enumeration problems indirectly through their
“associated” decision problems. For example, the one corresponding to the
transversal hypergraph problem is the decision, given two hypergraphsH and
G, whether G consists of exactly the minimal hitting sets ofH . Indeed, there is
an output-polynomial algorithm for the transversal hypergraph problem if and
only if the decision problem is solvable in polynomial time (in the combined sizes
ofH and G) [BI95]. While those equivalences are theoretically pleasing, they
are unusable in practice. The main issue is that data profiling algorithms based
on such Turing-style reductions have a space requirement that scales with the
number of solutions and is therefore inherently exponential. We instead relate
the discovery problems more directly via so-called parsimonious reductions,
without the indirection through a decision problem. This class of reductions is
much more restrictive but, therefore, also more utile in practice. We generalize
the equivalence of Eiter and Gottlob [EG95] by extending it to this class, and also
obtain similar results for functional dependencies and inclusion dependencies.
While our results are entirely lifted to enumeration problems, our insights

also stem from studying decision problems. However, we propose to use classes
of problems that are much more closely related to enumeration itself. In the
case of data profiling, the detection of unique column combinations, functional
dependencies, and inclusion dependencies naturally also tells us something
about the discovery of those objects. For the transversal hypergraph problem,
the extension problem, deciding whether a partial solution is contained in any
minimal hitting sets, turns out to be very fruitful. We approach those problems
with a parameterized analysis. Conceived by Downey and Fellows [DF13; DF99],
parameterized complexity is now a standard tool in the design and analysis
of decision algorithms. It aims to ascribe the computational hardness to some
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structural aspects of the inputs beyond their mere size. This is encompassed by
a positive integer, the parameter, with a small value indicating “easy” instances.
The hope is to find fixed-parameter tractable (FPT) algorithms for which the com-
binatorial explosion is confined to the parameter in such a way that, whenever
it is constant, the running time is only polynomial in the input (with a degree
independent of the parameter). Note that there exists a line of research, along
the works of Fernau [Fer02], Damaschke [Dam06], Creignou et al. [Cre+17],
Meier [Mei20], and Golovach et al. [Gol+22], that applies parameterized analysis
also to enumeration complexity. In this thesis, we do not go into this direc-
tion for two reasons: First, we are primarily interested in classical (polynomial)
enumeration complexity, only our tools are parameterized. Secondly, to obtain
an enumeration algorithm with, say, FPT-delay it is often necessary that the
associated decision problems are fixed-parameter tractable. This is not the case
for us. In fact, all the decision problems we examine are surprisingly hard.
In the practitioner’s eyes, WW[1]-hardness is the parameterized analogue of

NPNP-hardness. If a problem is hard for WW[1] with a certain parameter, there is
little hope to obtain an FPT-algorithm for it. From a complexity theoretician’s
perspective, however, WW[1] is only the first level of an–presumably infinite–
ladder of complexity classes known as the WW-hierarchy. It has a class for each
positive integer and beyond, all of which contain problems whose classical
counterparts are in NPNP. Each of those classes is epitomized by their complete
problems. Downey and Fellows [DF95a] defined WW[𝑡] as all parameterized
problems reducible to the weighted satisfiability problem for Boolean circuits
with of constant depth and weft 𝑡 . (Again, see Chapter 2 for details.) While this
family of problems is useful to reduce to, it is not very natural, that is, weft-𝑡
circuits do not regularly arise from practical computation. The classes WW[1]
and WW[2] (and of course FPTFPT, the 0-th level of the hierarchy) are populated with
ample natural complete problems, most of them on graphs. Beyond the second
level, however, only very few complete problems are known.
We add two more with this thesis. We show that the detection problem

for inclusion dependencies, parameterized by the solution size, as well as the
extension problem for minimal hitting sets, where the parameter is the size of
the set to be extended, are both complete for the classWW[3]. We thereby advance
what is known about the medium levels of the WW-hierarchy and develop new
proof techniques to show hardness. This has already inspired new research at
the intersection of parameterized complexity and data profiling. Prior to the
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first announcement of the results presented here, there was only one natural
WW[3]-complete problem known, given by Chen and Zhang [CZ06] in the context
of supply chain management. Since then, Casel et al. [Cas+21], building on
Chapter 4 of this thesis, have shown WW[3]-hardness already for the special case
of extension to minimal dominating sets in bipartite graphs. Very recently,
Hannula, Song, and Link [HSL21] used the ideas of Chapter 3 to prove that the
detection of independence in databases is complete for WW[3] as well.
The conjecture FPTFPT ≠ WW[1] can be seen as a conditional running time lower

bound by ruling out FPT-algorithms for WW[1]-hard problems, much in the same
way as PP ≠ NPNP does for NPNP-hard problems. The idea to derive barriers on the
performance of efficient algorithms from plausible–albeit unproven–hardness
assumptions has developed into a subfield of its own in recent years, called
fine-grained complexity [Vas19]. It aims at pinpointing the exact exponent of the
time needed to solve fundamental computational problems in the polynomial,
exponential, as well as the parameterized domain. There are two especially
popular conjectures in that area. The first one is the Exponential TimeHypothesis
(ETH) [IP01], stating that the satisfiability of 3-CNF formulas on 𝑛 variables
cannot be decided in time 2o(𝑛) . The other one is a strengthening of that, fittingly
named Strong ETH (SETH) [IPZ01], positing that the same problem for CNF
formulas with unbounded clause width cannot be solved in time O(2(1−𝜀 )𝑛) for
any constant 𝜀 > 0. Using those (and many more) hypotheses as starting points,
a net of reductions has been developed that proves strong lower bounds for
problems as diverse as finding the longest common subsequence of two strings,
a maximum independent set in a graph, or deciding whether a Turing machine
accepts its input within only a few steps. We apply ideas from fine-grained
complexity to the extension problem for minimal hitting sets and offer several
lower bounds. They differ both in the strength of the conjecture one is willing to
assume and the resulting bound. All of them show that our solution for extension
is close to optimal.

After settling the parameterized and enumeration complexity of the detection,
extension, and discovery problems, we focus on the design and analysis of enu-
meration algorithms for unique column combinations. Since the close connection
between data profiling and hitting sets is well-known for decades, it is surprising
that it still bears some untapped potential for algorithmic improvements in both
theory and practice. The connection does imply that discovering dependencies
from data is computationally hard, which may discourage some practitioners.
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Notwithstanding, we prove in this thesis that the hitting set perspective also
enables new algorithms with drastically reduced space requirements and non-
trivial performance guarantees on instances that occur in practice. Those are
much needed in the era of big data. The most important obstacle holding back
data profiling today is not the time needed for enumeration, but the large mem-
ory footprint of current methods. Usually, it is proportional to the number of
solutions and once the outputs exceed main memory capacity, the resulting slow
down stalls the whole profiling pipeline [Abe+18; PN17].
One of the prominent features of real-world databases is them having small

multi-column dependencies, whichwe exploit algorithmically. Our first approach
uses a search tree that is optimally pruned by an oracle for the extension problem
for minimal hitting sets. It may seem counterintuitive to solve the enumeration
problem by reducing it to a hard decision problem. The key insight is that the
extension problem is tractable if the partial solution contains only a few vertices.
Combined with the small solutions, we obtain an algorithm that uses linear space
in the input only and, on𝑚-edge, 𝑛-vertex hypergraphs with maximum solution
size 𝑘∗, achieves a delay, the worst-case time between consecutive outputs, of
O(𝑚𝑘∗+1𝑛2). Our algorithm is oblivious to 𝑘∗, which is not given as part of the
input and is known to be NPNP-hard to compute or even approximate within a
factor of 𝑛1−𝜀 for any constant 𝜀 > 0 [Baz+18]. An experimental analysis shows
that our enumeration method surpasses its worst-case running time guarantees
on hypergraphs stemming from real-world databases and that the low memory
footprint is a clear advantage of the hitting set perspective on data profiling.
However, the analysis also reveals two other phenomena. On the one hand,

the hypergraphs of difference sets, which contain all information necessary for
the enumeration, are often much smaller than the original input databases. On
the other hand, while the enumeration succeeds within a reasonable time frame
on practical data, the real bottleneck is the preprocessing of extracting those
hypergraphs. Even though this computation is guaranteed to be polynomial, it
usually takes much longer than the actual enumeration. The reason for both
observations is that hardly any pair of rows contributes a meaningful, that is,
inclusion-wise minimal difference set, and finding the relevant pairs is hard.

We investigate the size of theminimization of an hypergraph, that is, the num-
ber of its minimal edges, more rigorously by conducting an average-case analysis.
Most of the existing models in the literature are for uniform hypergraphs, mean-
ing that all edges have the same cardinality. Clearly, those are not suitable to
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examine a property that stems exclusively from some edges being contained
in others. We therefore introduce a maximum-entropy model for non-uniform
hypergraphs. It turns out that the perplexity from information theory is the
right concept to describe the size of the minimization in this model. While the
more common entropy function measures the average number of bits needed to
communicate the outcomes of a Bernoulli random variable, the perplexity is the
exponential of the entropy. It is thus the total amount of contained information.
Fitting the parameters of the variable to the size of the hypergraph results in a
close estimate for the expected number of minimal edges.

We discover that this expectation undergoes a phase transition by showing
that, up to the transition point, a constant fraction of all edges is minimal, but
adding more edges beyond that causes the minimization to get smaller instead,
until it eventually collapses to a single edge. Our results explain why we can
expect only a few record pairs of a database to yield relevant information and
why larger databases may have smaller corresponding hypergraphs. For the
mathematical treatment, we need tail inequalities on the binomial distribution
function that are tight up to constant factors. Such are usually derived from
(a sufficiently tight variant of) the Chernoff–Hoeffding theorem [Hoe63]. We
find that most of the existing so-called Chernoff bounds have some conceptual
weaknesses. They are either too loose, exhibiting at least polynomial gaps, or
their proofs use heavy analytic machinery and examine the binomial distribution
only via its normal approximation. We dedicate the excursive Chapter 5 to give
a combinatorial proof of Chernoff–Hoeffding that is tight up to constants.

Finally, we develop a completely new approach for the discovery of unique
column combinations. It heavily exploits the second observation that enumera-
tion is fast in practice while preprocessing the input database is slow. We call
the algorithm Hitting Set Enumeration with Partial Information and Validation
(HPIValid). Instead of receiving all difference sets up front, it works on a partial
hypergraph (empty in the extreme case) and employs quick enumeration of
candidate UCCs to pinpoint precisely the parts of the database where yet unseen
information is hidden. We evaluate HPIValid on 54 databases from various
application domains and compare it to the current state-of-the-art method in
UCC discovery HyUCC [Pap+15; PN16; PN17]. HPIValid significantly improves
over HyUCC with respect to both run time and memory usage. Those are direct
consequences of viewing data profiling through the lens of hitting sets. In fact,
the advantage of HPIValid over existing techniques is so extensive that it is
able to process datasets that were previously out of reach for data profiling.
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Contribution and Outline. In Chapter 3, we characterize the parameterized
complexity of detecting unique column combinations, functional dependencies,
and inclusion dependencies when parameterized by the solution size. We show
that the problem for UCCs and FDs is WW[2]-complete, while it is WW[3]-complete
for INDs. We derive the enumeration complexity of the corresponding discovery
problems. Under parsimonious reductions, the discovery of UCCs is equivalent
to the transversal hypergraph problem, while for FDs it is equivalent to the
simultaneous enumeration of the hitting sets of multiple input hypergraphs. The
discovery ofmaximal INDs is shown to be equivalent to enumerating themaximal
satisfying assignments of antimonotone, 3-normalized Boolean formulas.

Chapter 4 shows theWW[3]-completeness of the extension problem for minimal
hitting sets, with the size of the partial solution as parameter. We present an
algorithm that decides whether a set𝑋 of vertices is extendable in an 𝑛-vertex,𝑚-
edge hypergraph in time O(𝑚 |𝑋 |+1𝑛). We give several fine-grained lower bounds.
They show in their strongest form that, assuming SETH, the extension problem
cannot be solved in time𝑚 |𝑋 |−𝜀polypoly(𝑛) for any constant 𝜀 > 0. We argue that
closing the remaining gap of O(𝑚) may be hard by showing that proving tight
SETH-hardnesss violates a recently conjectured non-deterministic extension of
SETH (NSETH) [Car+16]. We employ the extension algorithm as a subroutine to
enumerate hitting sets and achieve linear space and a delay of O(𝑚𝑘∗+1𝑛2), where
𝑘∗ is the maximum size of any minimal solution. An experimental evaluation of
the algorithm’s performance on real-world data for the UCC discovery problem
reveals that the preprocessing is the actual bottleneck in practice. Also, the
corresponding hypergraphs are much smaller than the input database.
In Chapter 6, we introduce a maximum-entropy model for 𝑛-vertex,𝑚-edge

hypergraphs with expected edge size 𝑝𝑛 for 𝑝 ∈ (0, 1). Our main result is that,
after 𝑚 = 1/(1 − 𝑝)𝛼𝑛 edges are sampled, the number of minimal edges is
Θ(𝑚) · P[Bin(𝑛, 𝑝) ≤ (1 − 𝛼)𝑛] in expectation. We then estimate this quantity
in terms of the perplexity of the exponent 𝛼 , which reveals a phase transition at
𝑚∗ = 1/(1 − 𝑝) (1−𝑝 )𝑛 . We require a tail bound on the binomial distribution. For
this purpose, Chapter 5 prepares a version of the Chernoff–Hoeffding theorem
that is tight up to constant factors. We give a purely combinatorial proof.

In Chapter 7, we develop and engineer an algorithm for the discovery of unique
column combinations working on partial input hypergraphs. We evaluate our
method exhaustively on real-world data and show that it outperforms the current
state of the art and broadens the reach of data profiling.
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2 Preliminaries

This chapter introduces notation and basic concepts. We assume the reader to be
familiar with discrete mathematics, probability theory, and classical (polynomial)
complexity theory. For an overview on the latter, we recommend the textbook
by Arora and Barak [AB09b]. For an exposition on probabilities, we refer the
reader to Mitzenmacher and Upfal [MU17] or Motwani and Raghavan [MR95].

2.1 General Notation

Most of our notation is standard, we highlight only the specifics of this thesis.
We letN = {0, 1, 2, . . . } denote the set of all non-negative integers,N+ = N\{0}
the positive integers, R+0 the non-negative reals, and R+ = R+0\{0} the positive
reals. Unless explicitly stated otherwise, the variables 𝑖 , 𝑗 , 𝑘 , ℓ range over N, 𝑑 ,
𝑚, 𝑛 range overN+, 𝑝 , 𝑞, 𝑦, 𝑧 overR+0 , and 𝑐 , 𝜀 overR+. For some 𝑑 ∈ N+, we let
[𝑑] = {1, 2, . . . , 𝑑} denote the first 𝑑 positive integers. We use ®𝑎, ®𝑏, ®𝑝, ®𝑥 to denote
vectors, including infinite ones. For a suitable 𝑖 , 𝑎𝑖 is the 𝑖-th component of ®𝑎.

Sets are denoted by italic capitals 𝐴, 𝐵, 𝐸, 𝐹 , 𝐻 , 𝑅, 𝑆 , 𝑇 ,𝑈 , 𝑉 , 𝑋 , 𝑌 , or 𝑍 . For a
set 𝑆 , P(𝑆) is the power set of all subsets of 𝑆 . Hypergraphs are subsets of the
power set and are denoted by calligraphic capitals D, F , G,H , S, T ,U, and
W. They are our primary object of study, see Section 2.2 for more details
All computational objects are implicitly assumed to be encoded as finite bit

strings, that is, elements of {0, 1}∗ = ⋃
𝑖∈N{0, 1}𝑖 . We abstract from the technical

details of this encoding and only assume that it is not excessive in length. In
more detail, we are not concerned with the precise length of the resulting string
and instead resort to more expressive complexity parameters. Those parameters
are, however, required to be polynomially related to the length of the encoding.
Taking hypergraphs as an example, we let 𝑛 denote the number of vertices, and
𝑚 the number of edges. Clearly, there is an encoding for hypergraphs that uses
at most𝑚𝑛 bits, is computable in time polynomial in 𝑛 +𝑚, and the hypergraph
can be retrieved from the encoding in time polynomial in its bit-length.
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We use big-O notation to describe growth rates in the usual way. We are
mainly interested in the case where 𝑛 tends to infinity. For example, we under-
stand 𝜔 (1) as the class { 𝑓 : N → R+0 | ∀𝑥 ∈ R+0 ∃𝑛0 ∈ N ∀𝑛 ≥ 𝑛0 : 𝑓 (𝑛) ≥ 𝑥}.
Following convention, we use the non-symmetric equality sign to denote mem-
bership, that is, 𝑛 = O(𝑛 log𝑛) instead of 𝑛 ∈ O(𝑛 log𝑛). If the input size is
additionally described by some parameter𝑚, it is implicitly assumed to be a
function of 𝑛 and only the univariate asymptotics in 𝑛, for arbitrary choices of
𝑚 =𝑚(𝑛), are expressed. Two notable exception to this rule are the running time
of output-polynomial enumeration algorithms (see Section 2.4.1) as well as the
complexity of parameterized decision problems and algorithms (Section 2.4.2).
We let polypoly(𝑛) = ⋃

𝑖∈N O(𝑛𝑖) denote the class of polynomial growth rates. For
any 𝑚, the notation polypoly(𝑛,𝑚) stands for polypoly(𝑛 +𝑚), analogously for more
than two arguments.

2.2 Hypergraphs and Hitting Sets

This thesis is about hypergraphs. The concepts introduced in this section are
taken from [Ber89]. A hypergraph is a non-empty, finite vertex set 𝑉 ≠ ∅ together
with a set of subsetsH ⊆ P(𝑉 ), the (hyper-)edges. We identify a hypergraph
with its edge setH if this does not create any ambiguities. We do not exclude
special cases of this definition like the empty graph (H = ∅), an empty edge
(∅ ∈ H ), or isolated vertices (𝑉 ⊋

⋃
𝐸∈H 𝐸). We let 𝑛 = |𝑉 | denote the number

of vertices and𝑚 = |H | the number of edges. The rank of a hypergraphH is its
maximum edge cardinality, rank(H) = max𝐸∈H |𝐸 |. If all edges have the same
size, the hypergraph is uniform. A graph is a uniform hypergraph of rank 2. We
do not prescribe any a priori bound on the rank; in particular, the hypergraphs
we deal with are usually neither uniform nor is their rank bounded.

A hypergraph is Sperner1 if none of its edges is contained in another. The
minimization ofH is the subset of all inclusion-wise minimal edges, min(H) =
{𝐸 ∈ H | ∀𝐸′ ∈ H : 𝐸′ ⊆ 𝐸 ⇒ 𝐸′ = 𝐸}. This should not be confused with the
notation for a minimum element of a set. The minimization is always Sperner.

Inmulti-hypergraphs, we allow multiple copies of the same edge to be present,
that is,H is a multiset. However, we never allow multiple copies of the same
vertex. The definition of the rank immediately transfers to multi-hypergraphs;

1 Berge [Ber89] calls Sperner hypergraphs simple. This term is not used consistently in the
literature, compare [FM13].
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the notion of Sperner hypergraphs is not applicable. To transfer theminimization,
we require that whenever a minimal edge has multiple copies, only one of them is
included in the minimization. This way, min(H) is always a mere hypergraph (a
set). For a multi-hypergraphH , we use |H | to denote the total number of edges
counting multiplicities, and ∥H ∥ for the number of distinct edges. Evidently, we
have |min(H)| ≤ ∥H ∥ ≤ |H |.
Any total ordering ⩽ of the vertex set 𝑉 induces a lexicographical order on

the subsets of 𝑉 . For two sets 𝑆,𝑇 ⊆ 𝑉 , let 𝑆△𝑇 = (𝑆\𝑇 ) ∪ (𝑇 \𝑆) denote
the symmetrical difference. Set 𝑆 is lexicographically smaller2 than 𝑇 , denoted
𝑆 ⩽lex 𝑇 , if 𝑆 = 𝑇 or min⩽ (𝑆△𝑇 ) ∈ 𝑆 . This means that the ⩽-first element in
which 𝑆 and 𝑇 differ is in 𝑆 . We occasionally call a hypergraph over a totally
ordered vertex set an ordered hypergraph.
We define a preorder3 ≼ on hypergraphs by requiring that, for hypergraphs
H , G on the same vertex set, H ≼ G shall hold if every edge of H contains
some edge of G. This generalizes set inclusion asH ⊆ G impliesH ≼ G. On
Sperner hypergraphs, ≼ is antisymmetric. Namely, it is then a partial order.

A hitting set, or transversal, for a hypergraph (𝑉 ,H) is a set𝑇 ⊆ 𝑉 of vertices
such that 𝑇 has a non-empty intersection with every edge 𝐸 ∈ H . A hitting
set is (inclusion-wise) minimal if it does not contain any other hitting set. We
make extensive use of the following well-known observation, which is an easy
consequence of the definition of minimality.

▶ Observation 2.1 (Folklore). Let (𝑉 ,H) be a hypergraph. A hitting set𝑇 ⊆ 𝑉
for H is minimal if and only if for every element 𝑥 ∈ 𝑇 , there exists an edge
𝐸𝑥 ∈ H such that 𝐸𝑥 ∩𝑇 = {𝑥}. ◀

We call such an 𝐸𝑥 a private (hyper-)edge4 of 𝑥 with respect to the transversal 𝑇 .
The minimal hitting sets of some hypergraphH form a Sperner hypergraph on

the same vertex set, the transversal hypergraph Tr(H). We denote its cardinality
by 𝑁min = | Tr(H)|. We use the term transversal rank of H to refer to the
maximum cardinality of its minimal hitting sets, that is, rank(Tr(H)). If there is
no ambiguity about the underlying hypergraph, we abbreviate it as 𝑘∗. Regarding
transversals, it does not make a difference whether the full hypergraph H

2 The definition follows [JPY88]. The same concept has also been described as the lexicographi-
cally larger set, compare [EGM03].

3 A preorder is a binary relation that is reflexive and transitive.
4 Private edges are also known as critical hyperedges [MU14].
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is considered or its minimization, it holds that Tr(min(H)) = Tr(H). The
minimization and the transversal hypergraph are mutually dual in the sense that
the minimal edges are exactly the minimal hitting sets of the minimal hitting
sets, meaning Tr(Tr(H)) = min(H).

2.3 Relational Databases

Most of the hypergraphs we discuss arise from relational databases. Our notation
of the latter is an adaption of the one used by Abedjan et al. [Abe+18]. A
(relational) schema 𝑅 is a non-empty, finite set of attributes or columns. Each
attribute comes implicitly associated with a set of admissible values. A row, or
record, over schema 𝑅 is a tuple 𝑟 whose entries are indexed by 𝑅 such that, for
any attribute 𝑎 ∈ 𝑅, the value 𝑟 [𝑎] is admissible for 𝑎. A (relational) database 𝔯
over 𝑅 is a finite set of such records. The database and the schema will usually
be clear from the context. For any row 𝑟 and any subset 𝑋 ⊆ 𝑅 of columns, 𝑟 [𝑋 ]
is the subtuple of 𝑟 projected onto 𝑆 . We let 𝔯 [𝑋 ] denote the family of all such
projections of rows in 𝔯. Note that 𝔯 [𝑋 ] is a multiset as the same combination of
values may appear in different rows.

2.3.1 Unique Column Combinations

A unique column combination (UCC), or simply unique, for some database 𝔯 over
schema 𝑅, is a subset 𝑈 ⊆ 𝑅 of attributes such that for any two records 𝑟, 𝑠 ∈ 𝔯,
𝑟 ≠ 𝑠 , there is an attribute 𝑎 ∈ 𝑈 such that 𝑟 [𝑎] ≠ 𝑠 [𝑎]. Intuitively, a UCC
𝑈 uniquely identifies the rows of a database as any combination of values of
attributes in 𝑈 appears at most once among the rows, the collection 𝔯 [𝑈 ] is
indeed a set (as opposed to a multiset). We say a UCC𝑈 ′ is a generalization of a
UCC 𝑈 if 𝑈 ′ ⊊ 𝑈 . A UCC is (inclusion-wise) minimal if it does not contain any
other UCC, that is, if it does not have a generalization.
There is an intimate connection between UCCs and transversals in hyper-

graphs. To describe it, we need the notion of difference sets. For any two distinct
rows 𝑟1, 𝑟2, 𝑟1 ≠ 𝑟2, over the same schema 𝑅, their difference set {𝑎 ∈ 𝑅 | 𝑟1 [𝑎] ≠
𝑟2 [𝑎]} is the set of attributes in which the rows disagree. For a fixed database
(𝑅, 𝔯), a difference set is (inclusion-wise) minimal if it does not properly contain
a difference set for another pair of rows in 𝔯. We denote the hypergraph of
minimal difference sets by (𝑅,D). The following observation is well-known in
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the literature, see [Abe+18; Dat03]. Probably the first explicit mention was by
Mannila and Räihä [MR87]. While the proof is elementary, we include it here
due to the result’s fundamental importance for this thesis.

▶Observation 2.2 (Folklore). The unique column combinations are the hitting
sets of difference sets. In particular, let 𝔯 be a database and D the hypergraph of
its minimal difference sets. Then, any edge of Tr(D) is a minimal UCC of 𝔯 and
there are no other minimal UCCs. ◀

Proof. It is sufficient to show that any unique of 𝔯 is a hitting set for D and vice
versa. The assertion of minimality then follows from the definition of Tr(D).
Conversely, any (non-minimal) UCC/hitting set can be generated from a minimal
one by adding more attributes/vertices arbitrarily.

Let 𝑅 be the schema of 𝔯 and 𝐶 ⊆ 𝑅 a set of attributes. If there exists an edge
𝐸 ∈ D such that 𝐶 ∩ 𝐸 = ∅, then there are two rows 𝑟, 𝑠 ∈ 𝔯 such that their
difference set is 𝐸 and𝐶 does not contain any attribute in which 𝑟 and 𝑠 disagree.
Now suppose 𝐶 is a hitting set for D, that is, it contains an attribute of every
minimal difference set. Clearly, 𝐶 then intersects all difference sets (not only the
minimal ones) of pairs of rows in 𝔯, it is a UCC. ■

2.3.2 Null Semantics

Relational data in practice may exhibit a nullmarker⊥, distinct from all admissi-
ble values, to indicate that there is no value in the corresponding entry [GUW08].
This is an issue for the discovery of unique column combinations, because the dif-
ference sets may vary depending on how nullmarkers compare to the values and
other null markers. In all our empirical evaluations, we follow the pessimistic
null comparison semantics. That means, we define ⊥=⊥ and ⊥≠𝑥 for any (ad-
missible) value 𝑥 . This is in line with related work on data profiling, see [AN11;
AQN14; Hei+13; PN17; Sis+06]. More detailed interpretations of null markers
for UCCs use so-called possible world and certain world models [Köh+16], lead-
ing to specialized definitions and discovery approaches [WLL19]. Research on
null semantics is not our focus, hence we resort to the practical definition. We
note that all algorithms presented in this thesis can easily be adapted to cover
all standard null semantics.

13
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2.3.3 Functional and Inclusion Dependencies

Functional dependencies (FDs) over a schema 𝑅 are expressions of the form𝑋→𝑎

for some set 𝑋 ⊆ 𝑅 and a single attribute 𝑎 ∈ 𝑅. The set 𝑋 is the left-hand side
(LHS) of the dependency and 𝑎 is the right-hand side (RHS). We say that the
FD has size |𝑋 |. An FD 𝑋→𝑎 holds, or is valid, in a database 𝔯 (over 𝑅) if any
pair of records that agree on 𝑋 also agree on 𝑎, that is, if 𝑟 [𝑋 ] = 𝑠 [𝑋 ] implies
𝑟 [𝑎] = 𝑠 [𝑎] for any 𝑟, 𝑠 ∈ 𝔯. Otherwise, 𝑋→𝑎 is said to fail in 𝔯, or be invalid.
Intuitively, 𝑋→𝑎 holds if the value of attribute 𝑎 is a functions of the values
appearing in𝑋 . The FD ∅→𝑎 holds iff all rows agree on 𝑎. A generalization of an
FD 𝑋→𝑎 is another FD 𝑋 ′→𝑎 that is valid and satisfies 𝑋 ′ ⊊ 𝑋 . An FD 𝑋→𝑎

is (inclusion-wise) minimal if it holds in 𝔯 and does not have a generalization,
that is, if 𝑋 ′→𝑎 fails for any proper subset 𝑋 ′ ⊊ 𝑋 . A functional dependency is
non-trivial if 𝑎 ∉ 𝑋 . Observe that trivial FDs hold in any database.

Inclusion dependencies model the case where values appearing in one database
are also contained in another, potentially over a different schema. Let 𝑅 and 𝑆
be two relational schemas and 𝔯 and 𝔰 databases over 𝑅 and 𝑆 , respectively. For
some 𝑋 ⊆ 𝑅, let 𝜎 : 𝑋 → 𝑆 be an injective map. The pair (𝑋, 𝜎) is an inclusion
dependency (IND) if, for each row 𝑟 ∈ 𝔯, there exists some 𝑠 ∈ 𝔰 such that
𝑟 [𝑎] = 𝑠 [𝜎 (𝑎)] for every 𝑎 ∈ 𝑋 , that is, 𝔯 [𝑋 ] ⊆ 𝔰[𝜎 (𝑋 )].

If the map 𝜎 is given in the input, we say that 𝑋 is the dependency. A general-
ization of 𝑋 is another inclusion dependency with 𝑋 ′ ⊋ 𝑋 . Note that here the
subset relation is in the opposite direction compared to UCCs and FDs. An inclu-
sion dependency then is maximal if the set 𝑋 is inclusion-wise maximal among
all INDs with map 𝜎 between 𝔯 and 𝔰. In the general case with arbitrary map-
pings, we define a partial order on the pairs (𝑋, 𝜎). We say that (𝑋, 𝜎) ≼ (𝑋 ′, 𝜎 ′)
holds if 𝑋 ⊆ 𝑋 ′ and 𝜎 is the restriction of 𝜎 ′ to 𝑋 . An inclusion dependency
then ismaximal if it is an ≼-maximal element among the inclusion dependencies
between 𝔯 and 𝔰. The notion of a generalization is adjusted accordingly. INDs
are indeed downward closed with respect to ≼. However, it may happen that
(𝑋, 𝜎) and (𝑋 ′, 𝜎 ′) are both maximal although 𝑋 ′ ⊊ 𝑋 is a proper subset.

2.4 Computational Complexity

We are mainly developing and analyzing enumeration algorithms. Computa-
tional decision problems are a means for this purpose. For the latter, we adopt
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a parameterized view and additionally borrow some ideas from fine-grained
complexity. We only review the more specific notions here.

2.4.1 Enumeration Complexity

Enumeration is the task of compiling and outputting a list of all solutions to a
computational problem without repetitions. Note that this is different from a
counting problem, which asks for the mere number of solutions. More formally,
an enumeration problem is a function Π: {0, 1}∗ → P({0, 1}∗) such that, for all
instances 𝐼 ∈ {0, 1}∗, the set of solutions Π(𝐼 ) is finite. An algorithm solving this
problem needs to output, on input 𝐼 , all elements of Π(𝐼 ) exactly once, see [CS19].
Unless explicitly stated otherwise, we do not impose any order on the output. We
focus on the enumeration of minimal hitting sets, that is, Π : (𝑉 ,H) ↦→ Tr(H),
and minimal unique column combinations, Π′ : (𝑅, 𝔯) ↦→ Tr(D), in the notation
of the previous section.

The former is known as the transversal hypergraph problem. There exists a class
of hypergraphs such that the number 𝑁min of solutions growths exponentially
in both the number of vertices 𝑛 = |𝑉 | and the number of edges𝑚 = |H |. As
an example, let H be a matching on 2𝑘 vertices for some positive integer 𝑘 ,
that is,H = {𝑢𝑖 , 𝑣𝑖}1≤𝑖≤𝑘 . Then,H has 2𝑘 minimal transversals, namely, all sets
{𝑥1, . . . , 𝑥𝑘 } with 𝑥𝑖 = 𝑢𝑖 or 𝑥𝑖 = 𝑣𝑖 . This rules out any polynomial algorithm
for the enumeration problem. Instead, one could ask for an output-polynomial5

algorithm running in time polynomial in the combined input and output size,
such an algorithm terminates within polypoly(𝑛,𝑚, 𝑁min) steps.
A (seemingly) stronger requirement is an incremental polynomial algorithm,

generating the solutions in such a way that the 𝑖-th delay, the time between the
(𝑖−1)-st and 𝑖-th output, is bounded by polypoly(𝑛,𝑚, 𝑖). This includes the prepro-
cessing time until the first solution arrives (𝑖 = 1) as well as the postprocessing
time between the last solution and termination (𝑖 = 𝑁min + 1). We note that there
is also an alternative definition of incremental polynomial time which requires
that there are polynomials 𝑝, 𝑞 : N → N such that, for every positive integer
𝑖 ≤ 𝑁min, the first 𝑖 solutions are enumerated in time 𝑝 (𝑖)𝑞(𝑛 +𝑚). Both notions
are equivalent if the algorithms is allowed to take exponential space in 𝑛 and
𝑚 [CS19]. Throughout this thesis, we exclusively use the former definition.

5 Output-polynomial algorithms are sometimes said to run in polynomial total time [Str13], we
avoid this term due to ambiguities.
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The strongest form of output-efficiency is that of polynomial delay, where the
delay is universally bounded by polypoly(𝑛,𝑚). Besides the execution time, one can
also restrict the memory consumption of an enumeration algorithm. Ideally, it
uses space polynomial in the input size only.
In the particular case of enumerating minimal hitting sets, it is known that

there exists an output-polynomial algorithm if and only if there is an incremental
polynomial one [BI95]. Polynomial delay seems to be a strictly stronger notion.
It is the major open question in the field whether the transversal hypergraph
problem can actually be solved in output-polynomial time.

Arguably the most restrictive way to relate enumeration problems are parsimo-
nious reductions.6 Such a reduction from problem Π to Π′ is a pair of polynomial
time computable functions 𝑓 : {0, 1}∗ → {0, 1}∗ and 𝑔 : ({0, 1}∗)2 → {0, 1}∗ such
that, for any instance 𝐼 ∈ {0, 1}∗, 𝑔(𝐼 , ·) is a bijection from Π′(𝑓 (𝐼 )) onto Π(𝐼 ).
The behavior of 𝑔(𝐼 , ·) on {0, 1}∗\Π′(𝑓 (𝐼 )) is irrelevant. Intuitively, any enu-
meration algorithm for Π′ can then be turned into one for Π by first mapping
the input 𝐼 to 𝑓 (𝐼 ) and translating the output solutions back via 𝑔. Note that
Observation 2.2 establishes a parsimonious reduction from the enumeration of
minimal UCCs to the transversal hypergraph problem with 𝑓 : (𝑅, 𝔯) ↦→ (𝑅,D)
and 𝑔((𝑅, 𝔯), ·) being the identity over subsets of 𝑅.

2.4.2 Parameterized Complexity

The central idea of parameterized complexity is to identify a quantity of the
input to a decision problem, other than its size, that captures the computational
hardness. See the textbooks [Cyg+15; DF13; FG06; Nie06] for a more thorough
introduction. For an instance 𝐼 ∈ {0, 1}∗, let |𝐼 | denote some expressive quantifi-
cation of the input size of 𝐼 , polynomially related to the bit length. The decision
problem associated with a language Π ⊆ {0, 1}∗ is to determine whether 𝐼 ∈ Π.
A decision problem is parameterized if any instance 𝐼 is additionally augmented
with a parameter 𝑘 = 𝑘 (𝐼 ) ∈ N+, we thus have Π ⊆ {0, 1}∗ ×N+. A parame-
terized decision problem Π is fixed-parameter tractable (FPT), if there exists a
computable function 𝑓 : N+ → N+ and an algorithm that decides any instance
(𝐼 , 𝑘) in time 𝑓 (𝑘) · polypoly( |𝐼 |). Intuitively, for FPT-problems, a family of instances
for which the parameter is bounded can be solved in polynomial time and the

6 The concept of parsimonious reductions between enumeration problems is inspired by, but
should not be confused with, the homonymous reductions for counting problems [CS19].
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degree of the polynomial is independent of the parameter. The complexity class
FPTFPT is the collection of all fixed-parameter tractable problems.
Let Π and Π′ be two parameterized problems. A parameterized reduction, or

FPT-reduction, from Π to Π′ is an algorithm running in time 𝑓 (𝑘) · polypoly( |𝐼 |)
on instances (𝐼 , 𝑘), which outputs some instance (𝐼 ′, 𝑘 ′) such that 𝑘 ′ ≤ 𝑔(𝑘)
holds for some computable function 𝑔 : N+ → N+, and (𝐼 , 𝑘) ∈ Π is true if and
only if (𝐼 ′, 𝑘 ′) ∈ Π′ is. Due to the time bound, we have |𝐼 ′ | ≤ 𝑓 (𝑘) polypoly( |𝐼 |).7
Thus, any (hypothetical) FPT-algorithm for Π′ yields an FPT-algorithm for Π.
If additionally there is an FPT-reduction also from Π′ to Π, we say that the
problems are FPT-equivalent. A notable special case of FPT-reductions are linear
parameterized reductions in which 𝑔 is a linear function, that is, 𝑘 ′ = O(𝑘).
Even more restrictive are polynomial many-one reductions that preserve the
parameter, meaning 𝑘 ′ = 𝑘 .

Parameterized reductions give rise to theWW-hierarchy of complexity classes by
specifying a complete problem for each class. We discuss two slightly different
families of such problems, one each on Boolean circuits and formulas. A (Boolean)
circuit is a directed acyclic graph whose vertex set consists of input nodes, NOT-,
AND- and OR-gates with the obvious semantics, and a single output node. AND-
and OR-gates have potentially unbounded fan-in. The depth of a circuit is the
maximum length of a directed path from an input to the output node. The weft is
the maximum number of so-called large gates with fan-in greater than 2 on any
path. The Weighted Circuit Satisfiability problem is to decide for a given
circuit and a positive integer 𝑘 whether the circuit has a satisfying assignment of
(Hamming) weight 𝑘 , that is, with exactly 𝑘 input nodes set to true. The budget
𝑘 serves as the parameter.

For every positive integer 𝑡 ,WW[𝑡] is defined to be the class of all parameterized
problems that admit an FPT-reduction to Weighted Circuit Satisfiability
restricted to circuits of constant depth and weft at most 𝑡 . When taking all pa-
rameterized problems that allow an FPT-reduction to the unrestricted Weighted
Circuit Satisfiability problem, we get WW[PP].

Before introducing the second family, consider the Independent Set problem
on graphs8 parameterized by the size of the sought solution. This problem is com-

7 This is intended to mean that there exists a non-negative integer ℓ such that |𝐼 ′ | ∈ O(𝑓 (𝑘) · |𝐼 |ℓ ).
We find the chosen notation to be more suggestive.

8 The Independent Set problem is to decide for a graph and a positive integer 𝑘 whether the
graph has a set of 𝑘 vertices such that no two of them share an edge.
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plete for the classWW[1]. A (Boolean) formula is a circuit in which every logic gate
has fan-out 1. The input nodes, the variables, may have unbounded fan-out. For
some positive integer 𝑡 , a formula is 𝑡-normalized if it is a conjunction of disjunc-
tions of conjunctions of disjunctions (and so on) of literals with 𝑡 −1 alternations
or, equivalently, 𝑡 levels of AND- and OR-gates starting with an AND-level at the
output node. The Weighted Circuit Satisfiability problem on 𝑡-normalized
formulas is called Weighted 𝑡-normalized Satisfiability. For every 𝑡 ≥ 2,
Weighted 𝑡-normalized Satisfiability isWW[𝑡]-complete.9 The classWW[SAT] is
the class of all parameterized problems admitting an FPT-reduction toWeighted
Circuit Satisfiability on arbitrary formulas.

The classes FPTFPT ⊆ WW[1] ⊆ WW[2] ⊆ · · · ⊆ WW[SAT] ⊆ WW[PP] form an ascending
hierarchy. All inclusion are conjectured to be strict, which is, however, unproven.
ThewholeWW-hierarchy is contained in the class (uniform) XPXP of all parameterized
problems whose instances (𝐼 , 𝑘) can be decided in time |𝐼 | 𝑓 (𝑘 ) for computable 𝑓 .

2.4.3 Fine-Grained Complexity

Fine-grained complexity aims to determine the exact exponent of the best worst-
case running time of any algorithm for some decision problem. The more precise
analysis comes at the cost of results often relying on unproven hypotheses. The
first two such conjectures treat the satisfiability of Boolean formulas. For a
positive integer 𝑘 , the 𝑘-CNF Satisfiability problem is to decide the existence
of a satisfying assignment to the variables of a formula in conjunctive normal
form (CNF) where each clauses has exactly 𝑘 literals.

▶ Hypothesis 2.3 (Strong Exponential Time Hypothesis, SETH [IP01;
IPZ01]). For every constant 𝜀 > 0, there exists a positive integer 𝑘 = 𝑘 (𝜀) such
that the 𝑘-CNF Satisfiability problem on formulas with 𝑛 variables does not
admit an algorithm running in time O(2(1−𝜀 )𝑛). ◀

▶ Hypothesis 2.4 (Exponential Time Hypothesis, ETH [IP01; IPZ01]).
There exists a constant 𝜀 > 0, such that the 3-CNF Satisfiability problem on
formulas with 𝑛 variables does not admit an algorithm running in time 𝑂 (2𝜀𝑛).

◀

9 The definition via normalized formulas comes with an inconsistency at 𝑡 = 1. A 1-normalized
formula is a single conjunctive clause, the associated weighted satisfiability problem is trivially
seen to be in PP and thus in FPTFPT.
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SETH indeed implies ETH [IP01], an inverse connection is not known. So-
called fine-grained reductions10 transfer the conjectured hardness of 𝑘-CNF
Satisfiability to other problems. We use two results of this kind pertaining to
problems in PP and WW[1], respectively.

The Orthogonal Vectors problem is to decide, given two sets 𝐴 and 𝐵 of 𝑛
binary vectors each in 𝑑 dimensions, whether there are ®𝑎 ∈ 𝐴 and ®𝑏 ∈ 𝐵 such
that ®𝑎 · ®𝑏 =

∑𝑑
𝑖=1 𝑎𝑖𝑏𝑖 = 0. The problem has a trivial O(𝑛2𝑑)-time algorithm

and the Orthogonal Vectors Conjecture claims that this is essentially optimal,
up to sub-polynomial factors. There are several different formulations of this
hypothesis in the literature, we follow the nomenclature by Gao et al. [Gao+18].

▶Hypothesis 2.5 (Orthogonal Vectors conjecture inmoderate dimensions
(OV conjecture)). For every constant 𝜀 > 0, the Orthogonal Vectors problem
does not admit an algorithm running in time O(𝑛2−𝜀) · polypoly(𝑑). ◀

The OV conjecture is lent credibility by the fact that it is implied by SETH [Wil05],
any truly subquadratic algorithm for Orthogonal Vectors would thus lead to
a major breakthrough in satisfiability. Chen et al. [Che+06] showed a similar
connection between ETH and parameterized complexity.

▶ Proposition 2.6 (Chen et al. [Che+06]). Assume ETH holds. Then, the
Independent Set problem parameterized by the solution size 𝑘 on 𝑛-vertex and
𝑚-edge graphs does not admit an algorithm running in time 𝑓 (𝑘) · (𝑛 +𝑚)o(𝑘 )
for any computable function 𝑓 . Moreover, if there is a linear parameterized
reductions from Independent Set, to some parameterized problem Π′, then Π′
does not admit an algorithm running in time 𝑓 (𝑘 ′) · |𝐼 ′ |o(𝑘 ′ ) . ◀

The proposition states that any worst-case running time for Independent Set
has a linear dependency on 𝑘 in the exponent. Since the problem is inWW[1], ETH
implies WW[1] ≠ FPTFPT. The second part of the assertion can easily be extended to
the case in which the parameterized reduction to Π′ is not linear, but observes
𝑘 ′ = 𝑔(𝑘) for some bijective computable function 𝑔. In this case, Π′ cannot be
solved in time 𝑓 (𝑘 ′) · |𝐼 ′ |o(𝑔−1 (𝑘 ′ ) ) , unless ETH fails.

10 We are not concerned with the technical details of fine-grained reductions, we refer the
interested reader to the work of Vassilevska Williams and Williams [VW18].
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2.5 Information Theory

Some concepts in probability, and even combinatorics, allow for a very concise
and elegant description using the language of information theory. In what
follows, we intend the expressions 0 log𝑎 0 and 0 log𝑎 ( 00 ) to both mean 0 for
any positive real base 𝑎. Note that this convention implies 00 = 𝑎0 log𝑎 0 = 1 and
( 00 )

0 = 1. We use ld𝑥 for the binary (base-2) logarithm of some positive real 𝑥 .
Let ®𝑝 = (𝑝𝑖)𝑖∈N be a discrete probability distribution. Its entropy11 is 𝐻 ( ®𝑝) =
−∑

𝑖∈N 𝑝𝑖 ld𝑝𝑖 . If ®𝑝 has a finite support,𝐻 ( ®𝑝) can be interpreted as the minimum
average word length of any binary code to communicate the outcomes of a
random variable 𝑋 ∼ ®𝑝 . The entropy function H is the entropy of the Bernoulli
distribution. That is, we have, for any probability 𝑥 ,

H(𝑥) = 𝐻 ((𝑥, 1−𝑥)) = −𝑥 ld𝑥 − (1−𝑥) ld(1−𝑥) .

The entropy function is symmetric around 1/2 with H(𝑥) = H(1 − 𝑥). On the
open unit interval, H is positive and strictly concave It has its maximum at 1/2
with a value of H(1/2) = 1. The entropy power 2H(𝑥 ) = 1/(𝑥𝑥 (1 − 𝑥)1−𝑥 ) is the
perplexity of 𝑥 . We use it to estimate binomial coefficients, see [CT06].

▶ Proposition 2.7. Let 𝑛 be a positive integer and 0 < 𝑥 < 1 a rational number
such that 𝑥𝑛 is an integer, then

2H(𝑥 )𝑛√︁
8𝑛𝑥 (1 − 𝑥)

≤
(
𝑛

𝑥𝑛

)
≤ 2H(𝑥 )𝑛√︁

𝜋𝑛𝑥 (1 − 𝑥)
. ◀

Let ®𝑞 = (𝑞𝑖)𝑖∈N be a second distribution such that ®𝑝 is absolutely continuous
with respect to ®𝑞, meaning that, for all 𝑖 , 𝑞𝑖 = 0 implies 𝑝𝑖 = 0. The divergence12
to ®𝑝 from ®𝑞 is 𝐷 ( ®𝑝 ∥ ®𝑞) = −∑

𝑖 𝑝𝑖 ld( 𝑞𝑖
𝑝𝑖
). Note that in general the divergence is

not symmetric, that is, 𝐷 ( ®𝑝 ∥ ®𝑞) ≠ 𝐷 ( ®𝑞 ∥ ®𝑝). In terms of binary codes, 𝐷 ( ®𝑝 ∥ ®𝑞) is
the average number of bits wasted when communicating the outcomes of 𝑋 ∼ ®𝑝
with a code that is optimized for the distribution ®𝑞.

11 In full detail, this is the binary Shannon entropy or, equivalently, the binary Rényi entropy of
order 1. We do not use any other kind of entropy in this thesis.

12 In full detail, this is the binary Kullback–Leibler divergence or, equivalently, the binary Rényi
divergence of order 1. It is sometimes also called relative entropy [CT06], we avoid this term
due to ambiguities. We do not use any other kind of divergence in this thesis.
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We are only interested in the divergence between Bernoulli distributions. Let
𝑥 and 𝑦 be two probabilities and define

D(𝑥 ∥ 𝑦) = 𝐷 ((𝑥, 1−𝑥) ∥ (𝑦, 1−𝑦)) = −𝑥 ld
(𝑦
𝑥

)
− (1−𝑥) ld

(
1 − 𝑦
1 − 𝑥

)
.

The function D is convex in both 𝑥 and 𝑦, and attains its minimum 0 for 𝑥 = 𝑦.
It observes D(𝑥 ∥ 𝑦) = D(1−𝑥 ∥ 1−𝑦) and its partial derivative with respect to 𝑥
is 𝜕

𝜕𝑥
D(𝑥 ∥ 𝑦) = ld

(
𝑥

1−𝑥
1−𝑦
𝑦

)
.

We show next that the divergence scales quadratically in the difference 𝑦 − 𝑥 .

▶ Lemma 2.8. Let 0 < 𝑥 ≤ 𝑦 < 1 be two non-trivial probabilities. Define 𝑡+ to
be the maximizer of 𝑡 (1− 𝑡) over the interval [𝑥,𝑦], and 𝑡− the minimizer. Then,

(𝑦 − 𝑥)2
𝑡+(1 − 𝑡+) ≤ 2 ln(2) · D(𝑥 ∥ 𝑦) ≤ (𝑦 − 𝑥)2

𝑡− (1 − 𝑡−) . ◀

Proof. Let 𝜀 = 𝑦 −𝑥 . The function D(𝑦 − 𝜀 ∥ 𝑦) is two-times differentiable w.r.t. 𝜀,

𝜕

𝜕𝜀
D(𝑦−𝜀 ∥ 𝑦) = ld

(
𝑦

1 − 𝑦
1 − 𝑦 + 𝜀
𝑦 − 𝜀

)
; 𝜕2

𝜕𝜀2 D(𝑦−𝜀 ∥ 𝑦) = 1
ln 2

1
(𝑦 − 𝜀) (1 − 𝑦 + 𝜀) .

The divergence and its first derivative vanish at 𝜀 = 0. By Taylor’s theorem,
there exists a real number 𝜉 with 0 ≤ 𝜉 ≤ 𝜀 such that

D(𝑦 − 𝜀 ∥ 𝑦) = 𝜀2

2! ·
𝜕2

𝜕𝜀2 D(𝑦 − 𝜀 ∥ 𝑦)
����
𝜀=𝜉

=
𝜀2

2 ln 2 (𝑦 − 𝜉) (1 − 𝑦 + 𝜉) .

The lemma follows from 𝑦 − 𝜉 ranging over [𝑥,𝑦]. ■

We mainly use the following divergence power, which closely resembles the
perplexity, 2−D(𝑥 ∥ 𝑦) = 2H(𝑥 ) · 𝑦𝑥 (1 − 𝑦)1−𝑥 =

( 𝑦
𝑥

)𝑥 ( 1−𝑦
1−𝑥

)1−𝑥 . The next lemma
relates those quantities for different parameters.

▶ Lemma 2.9. Let 0 ≤ 𝑥 ≤ 𝑦 ≤ 𝑧 ≤ 1 be three probabilities, then

2−D(𝑥 ∥ 𝑧 ) =

(
𝑦

1 − 𝑦
1 − 𝑧
𝑧

)𝑦−𝑥
· 2−D(𝑥 ∥ 𝑦) · 2−D(𝑦 ∥ 𝑧 ) .

In particular, for any fixed 𝑧, 2−D(𝑥 ∥ 𝑧 ) is non-decreasing in 𝑥 as long as 𝑥 ≤ 𝑧. ◀
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Proof. The convention ( 00 )
0 = 1 ensures that

( 𝑦

1−𝑦
1−𝑧
𝑧

)𝑦−𝑥 is well-defined.

2−D(𝑥 ∥ 𝑧 )

2−D(𝑦 ∥ 𝑧 ) =

(
𝑧
𝑥

)𝑥 ( 1−𝑧
1−𝑥

)1−𝑥(
𝑧
𝑦

)𝑦 ( 1−𝑧
1−𝑦

)1−𝑦 =

(
𝑧
𝑥

)𝑥 ( 1−𝑧
1−𝑥

)1−𝑥(
𝑧
𝑦

)𝑦−𝑥 (
𝑧
𝑦

)𝑥 (
1−𝑧
1−𝑦

)1−𝑥 (
1−𝑧
1−𝑦

)𝑥−𝑦
=

1(
𝑧
𝑦

)𝑦−𝑥 (
1−𝑧
1−𝑦

)𝑥−𝑦 (𝑦
𝑥

)𝑥 (
1 − 𝑦
1 − 𝑥

)1−𝑥
=

(
𝑦

1 − 𝑦
1 − 𝑧
𝑧

)𝑦−𝑥
2−D(𝑥 ∥ 𝑦) .

The monotonicity follows from the last two factors being at most 1. ■

2.6 Polynomials of Probabilities

We occasionally need to estimate expressions of the form (1 − 𝑥)𝑛 where 𝑥 is a
probability. The first inequality for this task is taken from the textbook [MR95].

▶ Proposition 2.10. Let 𝑛 be a positive integer and 𝑥 a real such that |𝑥 | ≤ 𝑛,

𝑒𝑥
(
1 − 𝑥2

𝑛

)
≤

(
1 + 𝑥

𝑛

)𝑛
. ◀

We reach rather tight bounds on (1 − 𝑥)𝑛 by substituting 𝑥 for −𝑛𝑥 above, and
combining it with the simple fact that (1 + 𝑥) ≤ 𝑒𝑥 holds for all 𝑥 .

▶ Corollary 2.11. Let 𝑛 be a non-negative integer and 𝑥 a probability, then(
1 − 𝑛𝑥2) ≤ 𝑒𝑛𝑥 (1 − 𝑥)𝑛 ≤ 1. ◀

The last inequality was given by Badkobeh, Lehre, and Sudholt [BLS15].

▶ Proposition 2.12 (Lemma 10 in [BLS15]). Let 𝑛 be a non-negative integer
and 𝑥 a probability, then

𝑛𝑥

1 + 𝑛𝑥 ≤ 1 − (1 − 𝑥)𝑛 ≤ 𝑛𝑥. ◀
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3 Complexity of Dependency
Detection and Discovery

We prove the parameterized complexity of deciding the existence of certain multi-
column dependencies in relational databases with the solution size as parameter.
We prove that detecting unique column combinations and functional dependencies
is WW[2]-complete, while the corresponding problem for inclusion dependencies is
WW[3]-complete. We then use those results to settle the enumeration complexity of
the associated discovery problems under parsimonious reductions.

3.1 Introduction

The ability to discover multi-column dependencies from unannotated relational
databases is paramount for data profiling. We have already seen the importance
of unique column combinations as fingerprints of the data that allow subsequent
query optimizations. Another type of dependencies are the functional dependen-
cies (FDs). They model the case in which we are only interested in identifying the
values of a specific column, instead of all columns. In the extended example in
Figure 3.1, if one knows the Name and Area Code one can infer all other values
since the columns form a UCC. If one is only interested in the City, however, it
is enough to use the Area Code since it already determines the latter, the Name
is not needed. More formally, the FD Area Code→ City is valid and minimal.
We also investigate inclusion dependencies (INDs) that reveal connections

between different databases. A unary IND holds if all values in a column of the
first database are also contained in one column of the second database. All values
of the Name attribute in the first table of Figure 3.1 appear again as an Author in
the second table. The same holds, maybe accidentally, for the Age and ID. An
inclusion dependency has higher arity if the inclusion also pertains to the tuples
of values in multiple columns. Note that this is not the case in Figure 3.1. In
contrast to UCCs and FDs–where we want solutions to be small–we ought to find
large and ideally maximal inclusion dependencies. Those are much more likely
to be caused by the inherent structure of the data than by mere coincidence.
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Name

Nightingale, Florence

Address

South Street 8

City

London

Area Code

UK-W1K

Doe, John South Street 8 Philadelphia US-PA-19145

Menigmand, Morten Trøjburgvej 24 Aarhus

Mustermann, Max Mittelstraße 125 Potsdam D-14467

Mustermann, Max W Broadway 400 San Diego US-CA-92101

Doe, John South Street 8 London UK-W1K

DK-8200

Age

90

33

25

47

47

76

Author

Mustermann, Max

Title

Lovelace, Ada K. Sketch of the Analytical Engine

Doe, John The Art of Computer Programming

Menigmand, Morten

Nightingale, Florence Cassandra

ID

76

90

25

33

47

Prinsessen paa Ærten

Grundzüge der Theoretischen Logik

Figure 3.1: Illustration of multi-column dependencies. The Name and Area Code

together are a minimal UCC in the first database. Due to the uniqueness, the FD
Name, Area Code→ City holds. Its left-hand side is not minimal since the generaliza-
tion Area Code→ City is also valid. There are two maximal INDs of size 1 between
the first and the second database, Age is included in ID and Name in Author. They
cannot be combined to an IND of size 2 because, for example, the value combination
(33, �Doe, John�) does not appear in the column combination ID, Author.

Similar to UCCs, discovering the functional dependencies and inclusion depen-
dencies of a database (respectively of pairs thereof) is an important preprocessing
step intended to improve the subsequent data access. The valid FDs and INDs
are used for example in cardinality estimation in query plan optimizers [Ily+04],
query rewriting [Gia+02], and joins [CFP84]. For a detailed exposition of the
applications of data dependencies see [KPN21].
The detection (decision) problems for all three types of dependencies are

NPNP-complete.1 Notwithstanding, detection algorithms often perform well on
practical datasets [Abe+18]. One approach to bridge this apparent gap is to
analyze whether properties that are usually observed in realistic data benevo-
lently influence the hardness of the problem. Exploiting those properties may
even lead to algorithms that guarantee a polynomial running time in case these
features are present in the problem instance. This is formalized in the concept
of parameterized algorithms [Cyg+15; DF13; Nie06]. The algorithm designers

1 See Sections 3.2.1 and 3.3.1 for precise statements and references.
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unique column combinations

0

300

1 2 3 4

100

200

functional dependencies

0

1500

1 2 3 4 5 6 7

1000

500

inclusion dependencies

1 2 3 4 5 6

12k

24k

36k

0

Figure 3.2: The number of minimal unique column combinations, minimal functional
dependencies, and maximal inclusion dependencies for varying solution sizes in the
MusicBrainz database.2

then have to identify suitable parameters that can be exploited algorithmically
and are actually small in practice.

Consider, for instance, the histograms in Figure 3.2, showing the size distribu-
tion of minimal unique column combinations and functional dependencies, as
well as maximal inclusion dependencies in the MusicBrainz database [Swa02].
The majority of dependencies, of all types, are very small. Beside surrogate keys
that give rise to multiple functional dependencies of size 1, causalities in the
data can also lead to small FDs. For example, the name of an event together with
the year in which it started determines the year in which it ends, implying an
FD of size 2. Note that the starting year alone is usually not enough to infer
this information. The name of the action, however, seems to indicate whether
the event ends in the same year or the next. The size of the dependency is thus
a natural candidate for an algorithmic parameter. Notwithstanding, we show
that it is unlikely to be the sole explanation for the good practical performance.
We prove that the detection of unique column combinations and functional
dependencies is WW[2]-complete with respect to the size of the sought solution,
detecting inclusion dependencies is even WW[3]-complete. For all we know, this
excludes any algorithm parameterized by the size.

The hardness of detecting INDs is surprising also from a complexity-theoretic
standpoint. Currently, there are only a handful of natural problems known to

2 We are thankful to Sebastian Kruse, Felix Naumann, and Thorsten Papenbrock for providing
the data presented in the Figure 3.2.
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be complete for the class WW[3]. We show here that the detection of inclusion
dependencies has this property. Building on the work presented in Section 3.3,
Hannula, Song, and Link [HSL21] have identified independence detection in
relational databases as another representative of this class.

We use the insights gained on the detection of multi-column dependencies to
also investigate their discovery (enumeration). The case of unique column com-
binations is inseparably related to the transversal hypergraph problem, where we
are tasked to compute all minimal hitting sets of a given hypergraph, see Observa-
tion 2.2. Namely, the minimal UCCs can be discovered in output-polynomial time
if and only if the transversal hypergraph problem has an output-polynomial solu-
tion [EG95]. Already at its conception, the transversal hypergraph problem was
linked to databases [DT87; MR87], but it also emerges in many other applications
in fields as diverse as artificial intelligence [Rei87], machine learning [DMP99],
distributed systems [GB85], integer linear programming [Bor+02], monotone
logic [EMG08], and bioinformatics [Pus+20]. Despite the large interest, the exact
complexity of the enumeration problem is still open. In particular, there is no
output-polynomial algorithm known. However, many methods work well on
practical instances [GV17]. Data profiling is no exception as modern algorithms
succeed within reasonable time frames on many real-world databases [Abe+18].

The mentioned equivalence between the discovery of UCCs and the transver-
sal hypergraph problem was proven via a reduction that continuously calls
a decision subroutine to check whether the enumeration has found all solu-
tions [EG95]. The construction inherently requires space proportional to the
output size and is therefore hardly useful in practice. We are able to radically
simplify and at the same time generalize this equivalence by relating unique
column combinations, functional dependencies, and hitting sets directly at the
enumeration level using parsimonious reductions, running in polynomial time
and space. We give similar results also for the discovery of maximal inclusion
dependencies. The (even closer) connection to the transversal hypergraph prob-
lem explains in parts why dependency discovery works quite well on real-world
databases. Moreover, it allows us to transfer ideas from the design of hitting set
enumeration algorithms to data profiling, thereby connecting the two research
areas. For example, there are very space-efficient algorithms known for the
transversal hypergraph problem, while memory consumption still seems to be a
major obstacle in dependency discovery [PN16; WLL19]. Indeed, the foundations
laid here will later lead to improved profiling algorithms in Chapters 4 and 7.
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Main Results. We settle the parameterized complexity of the cardinality-
constrained decision problems for unique column combinations, functional
dependencies, and inclusion dependencies in relational databases, with the
solution size as parameter. We prove the following theorems.

▶ Theorem 3.1. Detecting a unique column combination of size 𝑘 in a relational
database is WW[2]-complete when parameterized by 𝑘 . The same is true for the
detection of a valid, non-trivial functional dependency with a left-hand side of
size at most 𝑘 , even if the desired right-hand side is given in the input. ◀

▶ Theorem 3.2. Detecting an inclusion dependency of size 𝑘 in a pair of
relational databases is WW[3]-complete when parameterized by 𝑘 . The result
remains true even if both databases are over the same relational schema with
the identity mapping between their columns. ◀

We also characterize the complexity of enumerating all multi-column depen-
dencies of a certain type in a database. We do so by proving parsimonious equiv-
alences with well-known enumeration problems and generalizations thereof.

▶ Theorem 3.3. The following enumeration problems are equivalent under
parsimonious reductions:

(𝑖) discovering the minimal unique column combinations of a relational
database;

(𝑖𝑖) discovering the minimal, valid, and non-trivial functional dependencies of
a relational database with a fixed right-hand side;

(𝑖𝑖𝑖) the transversal hypergraph problem.

The discovery of functional dependencies with arbitrary right-hand sides is
equivalent to simultaneously enumerating the hitting sets of multiple input
hypergraphs. The latter two problems are at least as hard as the transversal
hypergraph problem. ◀

▶ Theorem 3.4. The following enumeration problems are equivalent under
parsimonious reductions:

(𝑖) discovering the maximal inclusion dependencies of a pair of relational
databases;

(𝑖𝑖) enumerating the maximal satisfying assignments of an antimonotone,
3-normalized Boolean formula.
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This remains true even if the two databases are over the same schema and only
inclusions between the same columns are allowed. All those problems are at
least as hard as the transversal hypergraph problem. ◀

We also briefly discuss the consequences of our findings to the approximability
of minimum dependencies.

3.2 Unique Column Combinations and Functional
Dependencies

Theoreticians as well as practitioners in data profiling and database design
are frequently confronted with the task of finding a small collection of items
that has a non-empty intersection with each member of a prescribed family
of sets, see [Abe+18; Dat03; DR94; Kan+92; Mai83]. They thus aim to solve
instances of the hitting set problem. In this section, we show that this encounter
is inevitable in the sense that detecting a single small unique column combination
or functional dependency in a relational database is the same as finding a hitting
set in a hypergraph. Even more so, this equivalence extends to enumeration.
We show that the associated discovery problems of finding all UCCs or FDs is
indeed the same as enumerating all hitting sets.
We first formally define the respective decision and enumeration problems

we discuss here. The decision versions are always parameterized by the solution
size. We then order them in a (seemingly ascending) chain via parameterized
reductions. However, the beginning and end of this chain will turn out to be FPT-
equivalent, which settles the complexity of the problems involved as complete
for the parameterized complexity class WW[2]. We then use our gained insights
to also show the equivalence of the corresponding enumeration problems.

3.2.1 Problem Definition

Recall the definitions of hitting sets as well as unique column combinations
and functional dependencies from Sections 2.2 and 2.3. We are interested in
the parameterized complexity of the associated cardinality-constrained decision
problems. The constraint always serves as the parameter.

28



Unique Column Combinations and Functional Dependencies Section 3.2

Hitting Set
Instance: A hypergraph (𝑉 ,H) and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Is there a set 𝑇 ⊆ 𝑉 with |𝑇 | = 𝑘 such that 𝑇 is a hitting set forH?
Note that if 𝑘 > |𝑉 |, then the answer to the decision problem is trivially false;
otherwise, there is no difference between deciding the existence of a transversal
with at most or exactly 𝑘 elements since every superset of a hitting set is again
a hitting set. We ignore the special case of a too large 𝑘 as parameterized
complexity is primarily concerned with the situation that the parameter is much
smaller than the input size. The unparameterized Hitting Set problem is one of
Karp’s initial 21 NPNP-complete problems [Kar72]. In fact, its minimization variant
is even NPNP-hard to approximate3 within a factor of (1− 𝜀) ln |𝑉 | for any constant
𝜀 > 0 [DS14]. The parameterized decision problem is WW[2]-complete [DF13].

The corresponding enumeration problem broadens the notion of a “small”
solution, the task is now to list all inclusion-wise minimal hitting sets, that is,
the edges of the transversal hypergraph Tr(H). All other (non-minimal) hitting
sets can be trivially obtained from the minimal ones by arbitrarily adding more
vertices. The term enumeration contains the requirement not to repeat outputs.

Transversal Hypergraph
Instance: A hypergraph (𝑉 ,H).

Enumeration: List all edges of Tr(H).
Let 𝑁 = |H | + | Tr(H)| + |𝑉 | denote the combined input and output size, the
fastest known algorithm to enumerate4 Tr(H) runs in time 𝑁O( log𝑁/log log𝑁 ) [FK96].
We generalize the problem to the enumeration of minimal hitting sets for

multiple input hypergraphs. We do not prescribe any order on the output, in
particular the hypergraphs do not need to be processed one by one. However,
we want to be able to quickly tell to which input a solution belongs. For this,
let Tr(H) ¤∪ Tr(G) denote the disjoint union of the transversal hypergraphs of

3 Dinur and Steurer [DS14] show optimal hardness of approximation for Set Cover, which is,
given a hypergraph (𝑉 ,H), finding a subhypergraph G ⊆ H with the minimum number of
edges such that 𝑉 =

⋃
𝐸∈G . The folklore reduction to Hitting Set preserves approximations.

4 The algorithm by Fredman and Khachiyan [FK96] was initially conceived to solve the equivalent
problem of dualizing monotone Boolean formulas, that is, given a CNF formula without
negations, compute the equivalent DNF.
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(𝑉 ,H) and (𝑊,G), with the additional requirement that the union is encoded
such that, for any 𝑇 ∈ Tr(H) ¤∪ Tr(G), the containment 𝑇 ∈ Tr(H) is decidable
in time polypoly( |𝑉 |, |𝑊 |, |H |, |G|) independently of the sizes | Tr(H)| and | Tr(G)|.

Transversal Hypergraph Union
Instance: A 𝑑-tuple of hypergraphs (H1,H2, . . . ,H𝑑 ).

Enumeration: List all edges of Tr(H1) ¤∪ Tr(H2) ¤∪ . . . ¤∪ Tr(H𝑑 ).
Clearly, Transversal Hypergraph Union is at least as hard as the Transversal
Hypergraph problem.

We now define the detection and discovery problems of multi-column depen-
dencies in relational databases, again starting with the cardinality-constraint
decision problems.

Uniqe Column Combination
Instance: A relational database 𝔯 over schema 𝑅 and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Is there a set𝑈 ⊆ 𝑅 with |𝑈 | = 𝑘 such that
𝑈 is a unique column combination in 𝔯?

The minimization variant5 of Uniqe Column Combination is NPNP-hard [SR92].

Discover Minimal UCCs
Instance: A relational database 𝔯.

Enumeration: List all minimal unique column combinations of 𝔯.
Regarding functional dependencies, we define two variants of the decision

problem that slightly differ in the given input. The first one fixes the right-
hand side of the desired dependency, while the second one asks for an FD with
arbitrary RHS holding in the database. The parameterized complexity of their
detection will turn out to be the same, but there are differences in their discovery.

5 Skowron and Rauszer [SR92] consider the problem of finding a minimum reduct, defined in
rough set theory. A reduct is the same as a minimal unique column combination in a knowledge
representation system (a database), see [Paw91].
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Functional Dependencyfixed RHS
Instance: A relational database 𝔯 over schema 𝑅, an attribute 𝑎 ∈ 𝑅,

and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Is there a set 𝑋 ⊆ 𝑅\{𝑎} with |𝑋 | = 𝑘 such that
the functional dependency 𝑋→𝑎 holds in 𝔯?

Functional Dependency
Instance: A relational database 𝔯 over schema 𝑅 and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Is there a set 𝑋 ⊆ 𝑅 with |𝑋 | = 𝑘 and an attribute 𝑎 ∈ 𝑅\𝑋 such that
the functional dependency 𝑋→𝑎 holds in 𝔯?

The unparameterized variant6 of the Functional Dependencyfixed RHS problem
is NPNP-complete even if the number of admissible values in each column of the
database is at most 2 [DR94]. It is virtually the same to ask for a functional
dependency whose left-hand side is of size at most 𝑘 ; unless 𝑘 ≥ |𝑅 | since then
no non-trivial FD adheres to the (exact) size constraint. Again, we ignore this.

Recall that we say that a valid functional dependency 𝑋→𝑎 is minimal if its
LHS 𝑋 is inclusion-wise minimal among all 𝑋 ′ ⊆ 𝑅 such that 𝑋 ′→𝑎 is valid.

Discover Minimal FDsfixed RHS
Instance: A relational database 𝔯 over schema 𝑅 and an attribute 𝑎 ∈ 𝑅.

Enumeration: List all minimal, valid, non-trivial functional dependencies of 𝔯
with right-hand side 𝑎.

Discover Minimal FDs
Instance: A relational database 𝔯.

Enumeration: List all minimal, valid, non-trivial functional dependencies of 𝔯.
Regarding the complexity of Discover Minimal UCCs and Discover Minimal
FDs, it is known that they can be solved in output-polynomial time (in incre-
mental polynomial time or with polynomial delay, respectively) if and only if
this is possible for the Transversal Hypergraph problem [EG95].

6 Functional Dependencyfixed RHS appears under the name Min-Features in [DR94].
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3.2.2 Detection

Next, we prove the parameterized complexity of the detection problems for
unique column combinations and functional dependencies.
We remark that the Uniqe Column Combination and the Functional

Dependencyfixed RHS problem have been studied before from a parameterized
perspective, under different names and in different contexts. Therefore, some
of the following results already appear in prior literature. Namely, Lemma 3.5
has been obtained independently by Froese et al. [Fro+16]7 as well as Akutsu
and Bao [AB96].8 Cotta and Moscato [CM03] showed the WW[2]-completeness
of Functional Dependencyfixed RHS restricted to binary databases using an
approach different from ours.9 Also, some of the techniques that appear in
the following proofs were preempted by articles studying the classical (polyno-
mial) complexity of Uniqe Column Combination and Functional Depen-
dencyfixed RHS , for example by Davies and Russel [DR94]. Our work can be seen
as a unifying framework that also incorporates the more general Functional
Dependency problem (with arbitrary right-hand side) and proofs the parameter-
ized complexity of the detection problems in a way that additionally sheds some
light on the enumeration complexity of the related discovery problems.
We start by proving that Uniqe Column Combination is hard for WW[2].

Recall from Section 2.4.2 that a parameterized reduction is parameter-preserving
if the parameter of the resulting instance is the same as that of the input.

▶ Lemma 3.5. There is a polynomial, parameter-preserving reduction from
Hitting Set to the Uniqe Column Combination problem. ◀

Proof. Let (𝑉 ,H) be the hypergraph given in the input to the Hitting Set
problem. Without loss of generality, we can assume it to be Sperner; otherwise,
we replace it by its minimization min(H) (in quadratic time). Observe that
min(H) has a hitting set of size at most 𝑘 iffH has one. We construct fromH
in polynomial time a database 𝔯 over schema 𝑉 such that the minimal difference
sets of 𝔯 are the edges ofH . The lemma then follows immediately from Obser-
vation 2.2. In particular, since Observation 2.2 transfers solutions, the parameter
𝑘 is preserved by the reduction.

7 The Uniqe Column Combination problem is called Distinct Vectors in [Fro+16].
8 It is called Minimum Key-II in [AB96].
9 Functional Dependencyfixed RHS is called 𝑘-Feature Set in [CM03].
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𝑎 𝑏 𝑐 𝑑 𝑒𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

𝐸1 = {𝑎, 𝑏, 𝑑}
𝐸2 = {𝑎, 𝑑, 𝑒}
𝐸3 = {𝑏, 𝑑, 𝑒}
𝐸4 = {𝑏, 𝑐}
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Figure 3.3: Illustration of the Lemmas 3.5 and 3.6. Figure (a) shows an instance of
Hitting Set and the equivalent instance of Uniqe Column Combination. In (b) an
instance 𝔯 of Functional Dependencyfixed RHS with fixed right-hand side 𝑎 is reduced
to instance 𝔯′ of Functional Dependency. The functional dependencies 𝑎𝑏→𝑑 holds
in 𝔯, but not in 𝔯′.

Let 𝐸1, 𝐸2, . . . , 𝐸𝑚 be the edges of H . We take the integers 0, 1, . . . ,𝑚 as the
admissible values for all attributes in 𝑉 . As rows, we first add the all-zero tuple
𝑟0 = (0)𝑎∈𝑉 to 𝔯. For each 𝑖 ∈ [𝑚], we also add the record 𝑟𝑖 defined as

𝑟𝑖 [𝑎] =
{
𝑖, if 𝑎 ∈ 𝐸𝑖 ;
0, otherwise.

See Figure 3.3 (a) for an illustration. Clearly, 𝔯 can be computed in linear time.
Any edge 𝐸𝑖 is a difference set in 𝔯, namely, that of the pair (𝑟0, 𝑟𝑖). Any other

difference set must come from a pair (𝑟𝑖 , 𝑟 𝑗 ) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. It is easy to see
that those rows disagree in 𝐸𝑖 ∪ 𝐸 𝑗 , which is not minimal. SinceH is Sperner, it
contains exactly the minimal difference sets of 𝔯. ■

The next two reductions are rather straightforward due to the similar struc-
tures of uniques and functional dependencies. While a UCC separates any pair
of rows, an FD 𝑋→𝑎 needs to distinguish only those with 𝑟 [𝑎] ≠ 𝑠 [𝑎].

▶ Lemma 3.6. There are polynomial, parameter-preserving reductions

(𝑖) from Uniqe Column Combination to Functional Dependencyfixed RHS ;

(𝑖𝑖) from Functional Dependencyfixed RHS to Functional Dependency. ◀

33



Chapter 3 Complexity of Dependency Detection and Discovery

Proof. The idea to prove Statement (𝑖) is to add a single unique column to the
database and fix it as the right-hand side of the sought functional dependency.
Let 𝔯 = {𝑟1, 𝑟2, . . . , 𝑟 |𝔯 |} be a database over schema 𝑅, and 𝑎 an attribute not
previously in 𝑅. We construct 𝔯′ over 𝑅 ∪ {𝑎} by adding, for each 𝑟𝑖 , the row
𝑟 ′𝑖 defined by 𝑟 ′𝑖 [𝑅] = 𝑟𝑖 [𝑅] and 𝑟 ′𝑖 [𝑎] = 𝑖 . The reduction maps an instance
(𝔯, 𝑅, 𝑘) of Uniqe Column Combination to the instance (𝔯′, 𝑅 ∪ {𝑎}, 𝑎, 𝑘) of
Functional Dependencyfixed RHS . Since, for any two distinct rows 𝑟 ′𝑖 , 𝑟 ′𝑗 ∈ 𝔯′,
𝑖 ≠ 𝑗 , we have 𝑟 ′𝑖 [𝑎] ≠ 𝑟 ′𝑗 [𝑎], the left-hand sides of the non-trivial, valid FDs
𝑋→𝑎 in 𝔯′ are in one-to-one correspondence to the UCCs in 𝔯.

To reduce Functional Dependencyfixed RHS to Functional Dependency, we
need to mask all “unwanted” FDs with RHS different from the fixed attribute
𝑎. See Figure 3.3 (b) for an example. Let again 𝔯 be the input database over 𝑅.
To construct the resulting database 𝔯′ over the same schema 𝑅, we take all rows
from 𝔯 and add |𝑅 | − 1 new ones. Fix an arbitrary record 𝑟 ∗ ∈ 𝔯 and let × be
a new symbol that does not previously appear as a value. For each attribute
𝑏 ∈ 𝑅\{𝑎}, we add the row 𝑟𝑏 satisfying 𝑟𝑏 [𝑅\{𝑏}] = 𝑟 ∗ [𝑅\{𝑏}] and 𝑟𝑏 [𝑏] = ×.
The rows 𝑟 ∗ and 𝑟𝑏 now witness that any non-trivial FD 𝑋→𝑏 fails in 𝔯′.

It is left to prove that 𝑋→𝑎 holds in 𝔯 if and only if it holds in 𝔯′. Evidently,
any valid FD in 𝔯′ is also valid in the subset 𝔯. Suppose 𝑋→𝑎 holds in 𝔯 and
let rows 𝑟, 𝑠 ∈ 𝔯′ be such that 𝑟 [𝑎] ≠ 𝑠 [𝑎]. The only case where the conclusion
𝑟 [𝑋 ] ≠ 𝑠 [𝑋 ] may possibly be in doubt is if 𝑟 ∈ 𝔯′\𝔯 and 𝑠 ∈ 𝔯 (all new rows in
𝔯′\𝔯 agree on 𝑎). Hence, 𝑟 = 𝑟𝑏 for some 𝑏 ≠ 𝑎. If 𝑏 ∈ 𝑋 , the new value × appears
in the projection 𝑟 [𝑋 ] but not in 𝑠 [𝑋 ]; otherwise, we have 𝑟 [𝑋 ] = 𝑟 ∗ [𝑋 ]. Since
𝑋→𝑎 holds for the pair 𝑟 ∗, 𝑠 ∈ 𝔯, the relation 𝑟 [𝑋 ] = 𝑟 ∗ [𝑋 ] ≠ 𝑠 [𝑋 ] follows. ■

The next lemma proves that every instance of the unrestricted Functional
Dependency problem can be expressed as an equivalent Boolean formula in con-
junctive normal form. Since CNF formulas (of unbounded clause width) are ex-
actly the 2-normalized ones, we obtain a reduction to Weighted 2-normalized
Satisfiability. This is the main result of this section.

Cotta and Moscato [CM03] have previously shown the WW[2]-completeness of
Functional Dependencyfixed RHS . To prove containment in WW[2], they reduce
the problem to Weighted Circuit Satisfiability on circuits of weft 2 whose
depth is not constant but a function of the parameter 𝑘 , thus formally placing it
in what is known as the complexity class WW∗ [2]. They then apply the equality
WW∗ [2] = WW[2] [DF98] as a black box. We find it more intuitive to directly reduce
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to Weighted 2-normalized Satisfiability. This also seamlessly incorporates
the more general version of Functional Dependency for arbitrary RHSs.

▶ Lemma 3.7. There is a parameterized reduction from Functional Depen-
dency to the Weighted 2-normalized Satisfiability problem. ◀

Proof. Given a database 𝔯 over 𝑅, we derive a CNF formula that has a satisfying
assignment of Hamming weight 𝑘 +1 if and only if there is a non-trivial FD with
left-hand side of size𝑘 that holds in 𝔯. We use two types of variables distinguished
by their semantic purpose, Var𝐿𝐻𝑆 = {𝑥𝑎 | 𝑎 ∈ 𝑅} and Var𝑅𝐻𝑆 = {𝑦𝑎 | 𝑎 ∈ 𝑅}.
Some variable 𝑥𝑎 from Var𝐿𝐻𝑆 being set to true corresponds to the attribute
𝑎 appearing on the left-hand side of the sought functional dependency; for 𝑦𝑎
from Var𝑅𝐻𝑆 , this means the attribute is the right-hand side.
We start with the RHS. It might be tempting to enforce that any satisfying

assignment chooses exactly one variable from Var𝑅𝐻𝑆 . We prove below that this
is not necessary and forgoing the O( |𝑅 |2) clauses representing this constraint
allows for a (slightly) leaner construction. However, we do have to ensure that
at least one variable from Var𝑅𝐻𝑆 is set to true and the corresponding one
in Var𝐿𝐻𝑆 is false. This is done by the clauses 𝐶𝑅𝐻𝑆 =

∨
𝑦𝑎∈Var𝑅𝐻𝑆

𝑦𝑎 and
𝐶𝑎 = ¬𝑦𝑎 ∨ ¬𝑥𝑎 for each 𝑎 ∈ 𝑅. The subformula 𝜑𝑅𝐻𝑆 is their conjunction.

We now model the LHS. For any attribute 𝑎 ∈ 𝑅 and rows 𝑟, 𝑠 ∈ 𝔯, we define

𝐶𝑎,𝑟,𝑠 = ¬𝑦𝑎 ∨
∨

𝑏∈𝑅\{𝑎}
𝑟 [𝑏 ]≠𝑠 [𝑏 ]

𝑥𝑏 .

Intuitively, the clause𝐶𝑎,𝑟,𝑠 represents the fact that if𝑋→𝑎 is a valid, non-trivial
FD, then 𝑋 has to contain at least one attribute 𝑏, different from 𝑎, such that
𝑟 [𝑏] ≠ 𝑠 [𝑏]. From these clauses, we assemble the subformula

𝜑𝑎 =
∧
𝑟,𝑠∈𝔯

𝑟 [𝑎]≠𝑠 [𝑎]

𝐶𝑎,𝑟,𝑠 .

The output of our reduction is the formula 𝜑 = 𝜑𝑅𝐻𝑆 ∧
∧

𝑎∈𝑅 𝜑𝑎 . Indeed, 𝜑 is
in conjunctive normal form and has O( |𝑅 | |𝔯 |2) clauses with at most |𝑅 | literals
each. An encoding of the formula is computable in time linear in its size.

Regarding the correctness of the reduction, recall that we claimed 𝜑 to have a
weight 𝑘 +1 satisfying assignment iff a non-trivial functional dependency 𝑋→𝑎
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of size 𝑘 holds in 𝔯. Suppose that the latter is true. We show that setting the
variable 𝑦𝑎 as well as all 𝑥𝑏 with 𝑏 ∈ 𝑋 to true (and all others to false) satisfies
𝜑 . Note that the assignment automatically satisfies𝐶𝑅𝐻𝑆 and all𝐶𝑏,𝑟,𝑠 with 𝑏 ≠ 𝑎.
We are left with the subformula 𝜑𝑎 containing the clauses 𝐶𝑎,𝑟,𝑠 for row pairs
with 𝑟 [𝑎] ≠ 𝑠 [𝑎]. To distinguish these pairs, the LHS 𝑋 includes, for each of
them, some attribute 𝑏 ∈ 𝑅\{𝑎} such that 𝑟 [𝑏] ≠ 𝑠 [𝑏]. Clause 𝐶𝑎,𝑟,𝑠 is then
satisfied by the corresponding literal 𝑥𝑏 .

For the other direction, we identify assignments with the variables they set to
true. Let𝐴 ⊆ Var𝐿𝐻𝑆∪Var𝑅𝐻𝑆 be an assignment of Hammingweight |𝐴| = 𝑘 +1
that satisfies 𝜑 . The assignment induces two subsets of the schema 𝑅, namely,
𝑋 = {𝑎 ∈ 𝑅 | 𝑥𝑎 ∈ 𝐴 ∩ Var𝐿𝐻𝑆 } and 𝑌 = {𝑎 ∈ 𝑅 | 𝑦𝑎 ∈ 𝐴 ∩ Var𝑅𝐻𝑆 }. Due to
the clause 𝐶𝑅𝐻𝑆 , 𝑌 is non-empty and 𝑋 contains at most 𝑘 elements. Moreover,
𝑋 and 𝑌 are disjoint as the 𝐶𝑎 are all satisfied. We say that the generalized
functional dependency𝑋→𝑌 holds in a database if𝑋→𝑎 holds for every 𝑎 ∈ 𝑌 .
It is clearly enough to show that 𝑋→𝑌 indeed holds in 𝔯.
Assume 𝑋→𝑎 fails for some 𝑎 ∈ 𝑌 . This is witnessed by a pair of rows

𝑟, 𝑠 ∈ 𝔯 with 𝑟 [𝑋 ] = 𝑠 [𝑋 ] but 𝑟 [𝑎] ≠ 𝑠 [𝑎], whence the clause 𝐶𝑎,𝑟,𝑠 is present in
𝜑 . Since 𝑦𝑎 ∈ 𝐴 is in the assignment, the literal ¬𝑦𝑎 evaluates to false. Also, as
𝑋 is disjoint from the difference set {𝑏 ∈ 𝑅\{𝑎} | 𝑟 [𝑏] ≠ 𝑠 [𝑏]}, no other literal
satisfies 𝐶𝑎,𝑟,𝑠 , which is a contradiction. ■

We have established a chain of parameterized reductions between the de-
pendency detection problems of unique column combinations and functional
dependencies. Since the endpoints Hitting Set and Weighted 2-normalized
Satisfiability are both WW[2]-complete, all of them are, proving Theorem 3.1.

3.2.3 Approximation and Discovery

Our reductions have implications beyond the scope of parameterized complexity.
Observe that the transformations in Lemmas 3.5 and 3.6 are computable in
polynomial time, do not change the size of the vertex set/relational schema (by
more than an additive constant), and preserve approximations with respect to the
solution size 𝑘 or |𝑋 |, respectively. Also, recall that the minimization version of
Hitting Set is NPNP-hard to approximate within a factor of (1− 𝜀) ln |𝑉 | for every
𝜀 > 0 [DS14]. As a consequence, the minimization versions of Uniqe Column
Combination, Functional Dependencyfixed RHS , and Functional Dependency
all inherit the same hardness of approximation with respect to the size |𝑅 | of the
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schema. Previously, an approximation-preserving reduction was only known for
the Uniqe Column Combination problem, starting from Set Cover in [AB96],
and for Functional Dependencyfixed RHS from Dominating Set [CM03].
Rather than approximating minimum solutions, we are mainly interested in

the discovery of minimal dependencies in databases. Traditionally, enumeration
has been studied via embedded decision problems that are different from those
defined in Section 3.2.1. Instead, the Transversal Hypergraph problem (enu-
merating minimal hitting sets) has been associated with the problem of deciding
for two hypergraphsH and G whether G = Tr(H) or, equivalently,H = Tr(G),
called the Dual problem. Discover Minimal UCCs analogously corresponds to
decide for a database 𝔯 and hypergraphH , whetherH consists of all minimal
uniques of 𝔯. Intuitively, this formalizes the decision whether an enumeration
algorithm has already found all solutions.
Both decision problems are in cocoNPNP and it was proven by Eiter and Gott-

lob [EG95] that they are many-one equivalent.10 Using a lifting result by Bioch
and Ibaraki [BI95], this shows that minimal hitting sets can be enumerated in
output-polynomial time if and only if minimal UCCs can, which is the case if and
only if Dual is in PP. Such an equivalence is theoretically appealing and has led to
the quasi-output-polynomial upper bound on the running time of hitting set/UCC
enumeration that is currently the best known [FK96]. The connection to enumer-
ation has also inspired the intriguing result that Dual is likely not cocoNPNP-hard
as it can be solved in polynomial time when given access to O( log2 𝑁/log log𝑁)
suitably guessed nondeterministic bits [BF99; EGM03; KS03], where 𝑁 denotes
the total input size of the pair (H ,G). There are classes of hypergraphs for
which Dual is indeed in PP, see for example [BGH98; DMP99; EGM03; PS94], or
at least in FPTFPT with respect to certain structural parameters [EHR08]. The two
most well-known special cases that are polynomial-time solvable are the classes
of hypergraphs with constant maximum degree [DMP99] or edge size [EGM03],
respectively. Translated to our database setting, this means that attributes can
only participate in a bounded number of (minimal) difference sets or that any
two rows can differ only in a bounded number of columns. Both are severe
restrictions and fairly uncommon in real-world databases. For a much more
thorough overview of decision problems associated with enumeration, see the
recent work by Creignou et al. [Cre+19].

10 Eiter and Gottlob [EG95] in fact consider the complementary problem, whether 𝔯 admits a
unique column combination not inH , under the name Additional Key.
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Unfortunately, the approach described above holds only limited value when
it comes to designing practical algorithms. Imagine an implementation of the
discovery of minimal UCCs of a database 𝔯 via repeated checks whether the
hypergraph H of previously found solutions is already complete. Such an
algorithm is bound to use an amount of memory that is exponential in the size of
𝔯. This is due to the fact that some databases have exponentially many minimal
solutions and the decision subroutine at least has to read all of H . Note that
such a large memory consumption is not at all necessary as there are algorithms
known for Transversal Hypergraph whose space complexity is only linear
in the input size [EHR08; MU14]. In fact, enumeration algorithms are often
analyzed not only with respect to their running time, but also in terms of space
consumption, see [Con+20; CS19]. For data profiling problems like Discover
Minimal UCCs on the other hand, space-efficient algorithms have only recently
started to received some attention. We give two examples in Chapters 4 and 7 of
this thesis, another one is due to Köhler et al. [Köh+16].

In the following, we simplify and thereby extend the above equivalences mak-
ing them usable in practice, namely, we prove Theorem 3.3. It states the existence
of parsimonious reductions, in both directions, that relate the input instances
directly on the level of the enumeration problems, without decision problems as
intermediaries. This way, we characterize the enumeration complexity of unique
column combinations as well as functional dependencies, both with fixed and
arbitrary right-hand side. It is worth noting that our insights on enumeration do
stem from the study of decision problems, but the results are entirely lifted.

The reductions between the decision problems Hitting Set, Uniqe Column
Combination, Functional Dependencyfixed RHS , and Functional Dependency
(in that order) for minimum dependencies described in Lemmas 3.5 and 3.6 are
all built on bijective correspondences between the solutions. The running times
of the reductions are polynomial and independent of the given budget 𝑘 . Finally,
the mappings of the solution spaces also preserve set inclusions. This means, the
same input transformations applied to the discovery ofminimal dependencies are
in fact parsimonious reductions from Transversal Hypergraph to Discover
Minimal UCCs and onward to Discover Minimal FDs/FDsfixed RHS . For the
inverse direction, Observation 2.2 shows that the enumeration of UCCs is at most
as hard as that of hitting sets, that is, DiscoverMinimal UCCs and Transversal
Hypergraph are equivalent. It is worth noting that the parsimonious reductions
increase the size of the instances at most by a polynomial factor (in most cases a
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Figure 3.4: Illustration of Lemma 3.8. The three hypergraphsH1,H2,H3 on the vertex
set 𝑉 are on the left and the equivalent database 𝔯 is on the right. The hypergraphsH1
andH2 share the edge {𝑏, 𝑐}, but this results in two rows 𝑟2 and 𝑟3. The corresponding
transversal hypergraphs are Tr(H1) = {{𝑎, 𝑐}, {𝑏}}, Tr(H2) = {{𝑏}, {𝑐, 𝑏}, {𝑐, 𝑒}}, and
Tr(H3) = {{𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑒}}. The functional dependencies 𝑏→𝑥1 and 𝑏→𝑥2
indeed hold in 𝔯, and adding the attribute 𝑎 further gives 𝑎𝑏→𝑥3. The rows in the last
block eliminate all trivial functional dependencies 𝑋→ 𝑣 for 𝑣 ∈ 𝑉 .

constant one) in the input size only and therefore transfer the space complexity
of any enumeration algorithm from one side to the other.

To complete the proof of Theorem 3.3, we still need the following lemma that
characterizes the complexity of functional dependency discovery in terms of the
Transversal Hypergraph Union problem.

▶ Lemma 3.8. Discover Minimal FDs and Transversal Hypergraph Union
are equivalent under parsimonious reductions. Moreover, there is a parsimonious
reduction from Discover Minimal FDsfixed RHS to Transversal Hypergraph.

◀

Proof. This proof uses techniques that already helped to establish the previous
lemmas of this section. Let 𝔯 be a database over schema 𝑅, 𝑎 ∈ 𝑅 some attribute,
𝑟, 𝑠 ∈ 𝔯 two rows with 𝑟 [𝑎] ≠ 𝑠 [𝑎]. Recall that their difference set is 𝐷 (𝑟, 𝑠) =
{𝑏 ∈ 𝑅 | 𝑟 [𝑏] ≠ 𝑠 [𝑏]}. We define their punctured difference set to be 𝐷 (𝑟, 𝑠)\{𝑎}.
It is implicit in the proof of Lemma 3.7–and easy to verify from the definition–
that a set 𝑋 ⊆ 𝑅\{𝑎} is the left-hand side of a valid, minimal, non-trivial FD
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𝑋→𝑎 if and only if it is a minimal hitting set for the hypergraph of punctured
difference sets D𝑎 = {𝐷 (𝑟, 𝑠)\{𝑎} | 𝑟, 𝑠 ∈ 𝔯; 𝑟 [𝑎] ≠ 𝑠 [𝑎]}.
Transforming the input database 𝔯 over schema 𝑅 = {𝑎1, . . . , 𝑎 |𝑅 |} into the |𝑅 |

hypergraphs D𝑎1, . . . ,D𝑎 |𝑅 | gives a parsimonious reduction from the Discover
Minimal FDs problem to Transversal Hypergraph Union. In the same fash-
ion, fixing the desired right-hand side in the input reduces Discover Minimal
FDsfixed RHS to the Transversal Hypergraph problem.
The opposite reduction is the main part of the lemma. We are given hyper-

graphsH1, . . . ,H𝑑 , without loss of generality all on the same vertex set 𝑉, and
we need to compute some database 𝔯 such that its valid, non-trivial functional
dependencies are in one-to-one correspondence with the hitting sets of theH𝑖 .
An example can be seen in Figure 3.4. As the relational schema, we take the set
𝑅 = 𝑉 ∪ {𝑥1, . . . , 𝑥𝑑 }, where the 𝑥𝑖 are attributes not previously appearing in 𝑉.
The construction of 𝔯 starts similarly to Lemma 3.5. We first add the all-zeros
row 𝑟0 (with 𝑟0 [𝑎] = 0 for every 𝑎 ∈ 𝑅). Let𝑚 =

∑𝑑
𝑖=1 |H𝑖 | be the total number of

edges and 𝐸1, 𝐸2, . . . , 𝐸𝑚 an arbitrary numbering of them. Note that if the same
set of vertices is an edge of multiple hypergraphs, it appears in the list with that
multiplicity. For every edge 𝐸 𝑗 , we add the following row 𝑟 𝑗 ,

𝑟 𝑗 [𝑎] =


𝑗, if 𝑎 ∈ 𝐸 𝑗 ;
0, if 𝑎 ∈ 𝑉 \𝐸 𝑗 ;
1, if 𝑎 = 𝑥𝑖 such that 𝐸 𝑗 ∈ H𝑖 ;
0, otherwise.

In other words, the subtuple 𝑟 𝑗 [𝑉 ] is the characteristic vector of 𝐸 𝑗 only that its
non-zero entries are 𝑗 instead of 1; the subtuple 𝑟 𝑗 [{𝑥1, . . . , 𝑥𝑑 }] has a one 1 at
the position corresponding to the hypergraph containing 𝐸 𝑗 and 0 everywhere
else. The remaining construction of database 𝔯 uses an idea of Lemma 3.6 (𝑖𝑖).
Let × be a new symbol. For every vertex 𝑣 ∈ 𝑉 , we add the row 𝑟𝑣 with 𝑟𝑣 [𝑣] = ×
and 𝑟𝑣 [𝑎] = 0 for all other attributes 𝑎 ∈ 𝑅\{𝑣}. The database 𝔯 can be obtained
in time polynomial in𝑚 and |𝑉 |.
We claim that the minimal, valid, non-trivial functional dependencies of 𝔯

are exactly those having the form 𝑇→𝑥𝑖 with 𝑇 ∈ Tr(H𝑖). The existence of a
parsimonious reduction from Transversal Hypergraph Union to Discover
Minimal FDs easily follows from that. Let 𝑋 ⊆ 𝑅 and 𝑎 ∈ 𝑅\𝑋 be such that the
FD 𝑋→𝑎 holds in 𝔯 and is minimal. For any 𝑣 ∈ 𝑉 , the rows 𝑟0 and 𝑟𝑣 differ

40



Unique Column Combinations and Functional Dependencies Section 3.2

only in attribute 𝑣, therefore 𝑣 is not the right-hand side of any non-trivial FD,
whence 𝑎 = 𝑥𝑖 for some 1 ≤ 𝑖 ≤ 𝑑 . As seen above, the set 𝑋 must be a minimal
transversal of the hypergraph D𝑥𝑖 = {𝐷 (𝑟, 𝑠)\{𝑥𝑖} | 𝑟, 𝑠 ∈ 𝔯; 𝑟 [𝑥𝑖] ≠ 𝑠 [𝑥𝑖]}. We
are left to prove thatD𝑥𝑖 has the same minimal transversals asH𝑖 . Let 𝑟, 𝑠 ∈ 𝔯 be
rows that differ in attribute 𝑥𝑖 , say, 𝑟 [𝑥𝑖] = 1 and 𝑠 [𝑥𝑖] = 0. We thus have 𝑟 = 𝑟 𝑗
for some 1 ≤ 𝑗 ≤ 𝑚. The rows 𝑟 and 𝑠 share only the value 0, if any. Therefore,

𝐷 (𝑟, 𝑠) =


𝐸 𝑗 ∪ {𝑥𝑖}, if 𝑠 = 𝑟0;
𝐸 𝑗 ∪ 𝐸𝑘 ∪ {𝑥𝑖 , 𝑥ℓ }, if 𝑠 = 𝑟𝑘 for 1 ≤ 𝑘 ≤𝑚 such that 𝐸𝑘 ∈ Hℓ ;
𝐸 𝑗 ∪ {𝑥𝑖 , 𝑣}, if 𝑠 = 𝑟𝑣 for 𝑣 ∈ 𝑉.

In the second case, note that ℓ ≠ 𝑖 since 𝑠 [𝑥𝑖] = 0. The above implies that
H𝑖 ⊆ D𝑥𝑖 ; moreover, all edges in D𝑥𝑖\H𝑖 are supersets of ones in H𝑖 . The
respective minimizations min(D𝑥𝑖 ) = min(H𝑖) are thus equal and, by duality,
also their transversal hypergraphs Tr(D𝑥𝑖 ) = Tr(H𝑖) are the same. In particular,
this also shows that every FD of the form 𝑇→𝑥𝑖 for 𝑇 ∈ Tr(D𝑥𝑖 ) is valid and
minimal (and of course non-trivial) in 𝔯. ■

Discover Minimal FDs can also be solved in output-polynomial time (in-
crementally polynomially/with polynomial delay) if and only if Transversal
Hypergraph can [EG95], this has been established along the same lines as dis-
cussed in the remarks preceding Lemma 3.8. We leave it as an open problem to
give a parsimonious reduction. We have shown above that this is equivalent to
encoding the hitting set information of |𝑅 | different hypergraphs in a single one.
Notably, Eiter and Gottlob [EG95] additionally presented an alternative con-

struction that is almost parsimonious. The only condition they needed to relax
is the bijection between the solution spaces. They transformed a database over
schema 𝑅 into some hypergraph (𝑅2, F ) such that most of its minimal hitting
sets indeed correspond to the functional dependencies with arbitrary RHS. Addi-
tionally, F has some O( |𝑅 |4) excess solutions, that is, polynomially many in the
input size only, which do not have an FD counterpart, but are easily recognizable.
We include their result here since the extended version of [EG95] does not seem
to be widely available and we feel that the techniques used in the proof might be
helpful to establish a fully parsimonious reduction. We discuss the construction
entirely in the language of hitting sets as justified by Lemma 3.8.

41



Chapter 3 Complexity of Dependency Detection and Discovery

▶ Proposition 3.9 (Theorem 7.6 in the extended version of [EG95]). Let
H1,H2, . . . ,H𝑑 be hypergraphs, all on the same vertex set 𝑉. There exist hyper-
graphs F and G on the vertex set 𝑉 × [𝑑] and a bijective function

𝑔 : Tr(F ) → Tr(H1) ¤∪ Tr(H2) ¤∪ . . . ¤∪ Tr(H𝑑 ) ¤∪ G

such that the following three statements hold.

(𝑖) F is computable from 𝑉 ,H1, . . . ,H𝑑 in polynomial time;

(𝑖𝑖) G is of size |G| ≤
(
𝑑
2
)
· |𝑉 |2;

(𝑖𝑖𝑖) 𝑔(𝑆) is computable in time linear in |𝑆 | for any 𝑆 ∈ Tr(F ). ◀

Proof. We fix some notation for the pairs in𝑉 × [𝑑]. We use their second compo-
nent to indicate the hypergraph of origin. For some index 𝑖 ∈ [𝑑] and edge 𝐸 ∈H𝑖 ,
we let 𝐸′ = {(𝑣, 𝑖) | 𝑣 ∈ 𝐸} be the result of augmenting the index as the second
component; the same with𝑇 ∈ Tr(H𝑖), for which we define𝑇 ′ = {(𝑣, 𝑖) | 𝑣 ∈ 𝑇 }.
Conversely, for some set 𝑆 ⊆ 𝑉 × [𝑑], let 𝜋1(𝑆) = {𝑣 ∈ 𝑉 | ∃𝑖 ∈ [𝑑] : (𝑣, 𝑖) ∈ 𝑆} be
the projection onto the first component and 𝜋2(𝑆) = {𝑖 ∈ [𝑑] | ∃𝑣 ∈ 𝑉 : (𝑣, 𝑖) ∈ 𝑆}
the projection onto the second component.
We first construct the hypergraph F . Fix some 𝑖 ∈ [𝑑] and 𝐸 ∈ H𝑖 . Given the

augmented edge 𝐸′, add all possible pairs with second component different from
𝑖 to obtain 𝐸′′ = 𝐸′ ∪ {(𝑣, 𝑗) | 𝑣 ∈𝑉 ; 𝑗 ∈ [𝑑]\{𝑖}}. The intermediate hypergraphs
F𝑖 = {𝐸′′ | 𝐸 ∈ H𝑖} consist of all edges defined this way and F =

⋃
𝑖∈[𝑑 ] F𝑖 is

their union. Clearly, F can be computed in time polynomial in the input.
Assume for the moment that all hitting sets ofH𝑖 , for every 𝑖 , have at least

two elements. Define G = { {(𝑣, 𝑖), (𝑢, 𝑗)} | 𝑢, 𝑣 ∈ 𝑉 ; 1 ≤ 𝑖 < 𝑗 ≤ 𝑑}, it has(
𝑑
2
)
|𝑉 |2 edges. We claim that the minimal hitting sets of F can be partitioned as

Tr(F ) = {𝑇 ′ | 𝑇 ∈ Tr(H1)} ¤∪ . . . ¤∪ {𝑇 ′ | 𝑇 ∈ Tr(H𝑑 )} ¤∪ G.

In particular, the solutions in Tr(F ) carry the information to which input hyper-
graph they belong. Note that this implies that the desired linear-time computable
bijection is

𝑔(𝑆) =
{
𝜋1(𝑆), if |𝜋2(𝑆) | = 1;
𝑆, otherwise.

In order to prove the claim, let 𝑇 ∈ Tr(H𝑖) be a minimal transversal. The
augmented set 𝑇 ′ hits all of the 𝐸′ for 𝐸 ∈ H𝑖 and therefore all edges of F𝑖 .

42



Inclusion Dependencies Section 3.3

Any pair (𝑣, 𝑖) ∈ 𝑇 ′ alone suffices to hit the edges contained in any of the other
hypergraphs F𝑗 with 𝑗 ≠ 𝑖 . To show that 𝑇 ′ is in fact minimal, let 𝑣 ∈ 𝑇 be a
vertex and 𝐸𝑣 ∈ H𝑖 its private edge as guaranteed by Observation 2.1. Removing
the pair (𝑣, 𝑖) from𝑇 ′ would result in edge 𝐸′′𝑣 being unhit. Therefore,𝑇 ′ ∈ Tr(F )
is minimal. Also, {(𝑣, 𝑖), (𝑢, 𝑗)} ∈ G hits all edges of F : vertex (𝑣, 𝑖) was added
to all edges in F𝑗 , 𝑗 ≠ 𝑖 , and (𝑢, 𝑗) to the ones in F𝑖 . By the assumption that
neitherH𝑖 norH𝑗 admit singleton transversals, those sets are minimal as well.

Conversely, let 𝑆 ⊆ 𝑉 × [𝑑] be any hitting set for F . We show that 𝑆 contains
an edge of G or of some {𝑇 ′ | 𝑇 ∈ Tr(H𝑖)}. If |𝜋2(𝑆) | ≥ 2, the first case is true.
Otherwise, we have 𝜋2(𝑆) = {𝑖} for some 𝑖 ∈ [𝑑] and 𝑆 intersects all edges of F𝑖
in their 𝐸′-part. Thus, 𝑆 contains an augmented transversal 𝑇 ′ of 𝑇 ∈ Tr(H𝑖).

Finally, if there is an index 𝑖 ∈ [𝑑] and a vertex 𝑣 ∈ 𝑉 such that the singleton
{𝑣} ∈ Tr(H𝑖) alone is a minimal hitting set for H𝑖 , then we remove all edges
{(𝑣, 𝑖), (𝑢, 𝑗)} for 𝑢 ∈ 𝑉 and 𝑗 ∈ [𝑑]\{𝑖} from G to preserve minimality. ■

3.3 Inclusion Dependencies

We now discuss inclusion dependencies in relational databases. We show that
their detection problem, when parameterized by the solution size, is one of the
first natural problems to be complete for the classWW[3]. We do so by proving its
FPT-equivalence with the weighted satisfiability problem for a certain fragment
of propositional logic. Later in Section 3.3.4, we show how to transfer our results
to the discovery of maximal inclusion dependencies.

3.3.1 Problem Definition

A Boolean formula whose NOT-gates (if any) appear only immediately after
an input node is antimonotone if all inputs are negated. We identify a variable
assignment with the set of those variables that are assigned true. In the case of
antimonotone formulas, this means that the satisfying assignments are closed
under arbitrarily turning variables to false, that is, taking subsets. The empty
assignment that assigns false to all variables is always satisfying. Recall from
Section 2.4.2 that a formula is 3-normalized if it is a conjunction of disjunctions
of conjunctions of literals or, equivalently, if it is a conjunction of subformulas
in disjunctive normal form (DNF). An example formula is

((¬𝑥1∧¬𝑥2∧¬𝑥4)∨(¬𝑥3∧¬𝑥4))∧((¬𝑥1∧¬𝑥3)∨(¬𝑥2∧¬𝑥5)∨(¬𝑥1∧¬𝑥4∧¬𝑥5)) .
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It admits satisfying assignments of Hamming weight 0, 1, and 2, but none of
larger weight. We used the Weighted 3-normalized Satisfiability problem to
define the classWW[3]. Weighted Antimonotone 3-normalized Satisfiability
is the special case in which the inputs are restricted to antimonotone formulas.

Weighted Antimonotone 3-normalized Satisfiability (WA3NS)

Instance: An antimonotone, 3-normalized Boolean formula 𝜑
and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Does 𝜑 admit a satisfying assignment of Hamming weight 𝑘?

By the above remark, this is the same as asking for an assignment of weight at
least 𝑘 . The Antimonotone Collapse Theorem of Downey and Fellows [DF95a;
DF95b] implies that the WA3NS special case is WW[3]-complete in its own right.

The inclusion-wise maximal satisfying assignments carry the full information
about the collection of all satisfying assignments. It is therefore natural to define
the corresponding enumeration problem as follows.

Enumerate Maximal Satisfying WA3NS Assignments

Instance: An antimonotone, 3-normalized Boolean formula 𝜑 .

Enumeration: List all maximal satisfying assignments of 𝜑 .

For inclusion dependencies, the situation is similar. Every subset of a valid
IND is also valid. Asking for a dependency of size exactly 𝑘 is thus the same as
asking for one of size at least 𝑘 . We define two variants of the decision problem,
similar as we did with functional dependencies. The more restricted variant
requires the two databases to have the same schema with the identity mapping
between columns.

Inclusion DependencyIdentity
Instance: Two relational databases 𝔯, 𝔰 over schema 𝑅

and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Is there a set 𝑋 ⊆ 𝑅 with |𝑋 | = 𝑘 such that
𝔯 [𝑋 ] ⊆ 𝔰[𝑋 ] is an inclusion dependency?
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Inclusion Dependency
Instance: Two relational databases, 𝔯 over schema 𝑅 and 𝔰 over 𝑆 ,

and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Is there a set 𝑋 ⊆ 𝑅 with |𝑋 | = 𝑘 and an injective mapping
𝜎 : 𝑋 → 𝑆 such that 𝔯 [𝑋 ] ⊆ 𝔰[𝜎 (𝑋 )] is an inclusion dependency?

The unparameterized variant of the general Inclusion Dependency problem is
NPNP-complete11 already for pairs of binary databases [Kan+92].

The solutions of Inclusion DependencyIdentity are mere subsets of the under-
lying schema, therefore it is clear what we mean by a maximal solution. The
case of the general Inclusion Dependency problem is slightly more intricate.
Recall from Section 2.3.3 that we say a general inclusion dependency (𝑋, 𝜎) is
maximal if there is no other IND (𝑋 ′, 𝜎 ′) such that 𝑋 ⊊ 𝑋 ′ is a proper subset
and 𝜎 is the restriction of 𝜎 ′ to 𝑋 . Note that the pair (𝑋 ′, 𝜏) with an alternative
mapping 𝜏 might still be a valid inclusion dependency. This leads to the following
enumeration problems.

Discover Maximal INDsIdentity
Instance: Two relational databases 𝔯, 𝔰 over the same schema.

Enumeration: List all maximal valid inclusion dependencies between 𝔯 and 𝔰
with the identity mapping between the columns.

Discover Maximal INDs
Instance: Two relational databases 𝔯 and 𝔰.

Enumeration: List all maximal valid inclusion dependencies between 𝔯 and 𝔰.

3.3.2 Membership in𝑾 [3]

We show that both variants of the Inclusion Dependency decision problem are
contained in the class WW[3]. Recall that Inclusion DependencyIdentity restricts
the input to pairs (𝔯, 𝔰) of databases over the same schema and forbids solutions

11 Kantola et al. [Kan+92] define Full IND Existence as the special case of Inclusion Depen-
dency with 𝑘 = |𝑅 | and show its NPNP-completeness.
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in which the set of values 𝔯 [𝑎] of one column are contained in 𝔰[𝑏] for some
other column 𝑏 ≠ 𝑎. As a first step, we show that (not entirely surprisingly) this
variant is at most as hard as the general problem.

▶ Lemma 3.10. There is a parameterized reduction from the Inclusion De-
pendencyIdentity problem to Inclusion Dependency. ◀

Proof. Let 𝔯 and 𝔰 be two databases over the schema 𝑅 and let 𝑡× = (×𝑎)𝑎∈𝑅 be a
new row, where the ×𝑎 are |𝑅 | different symbols none of which are previously
used anywhere in 𝔯 or 𝔰. In the restricted setting, an inclusion dependency is a
set 𝑋 ⊆ 𝑅 of columns such that 𝔯 [𝑋 ] ⊆ 𝔰[𝑋 ]. It is easy to see that (𝔯, 𝔰) has such
an inclusion dependency of size 𝑘 , for any 𝑘 , if and only if (𝔯∪{𝑡×}, 𝔰∪{𝑡×}) has
an inclusion dependency of the same size with an arbitrary mapping between
the columns since ×𝑎 ∈ 𝔰[𝑏] holds iff 𝑎 = 𝑏. The lemma follows from here. ■

To demonstrate the membership of the general problem in WW[3], we reduce
is to WA3NS. Namely, we compute from the two databases an antimonotone,
3-normalized formula which has a weight 𝑘 satisfying assignment if and only if
the databases admit an inclusion dependency of that cardinality. For this, we
use a correspondence between pairs of attributes and Boolean variables.

▶ Lemma 3.11. There is a parameterized reduction from Inclusion Depen-
dency to Weighted Antimonotone 3-normalized Satisfiability. ◀

Proof. Let𝑅 = {𝑎1, . . . , 𝑎 |𝑅 |} and 𝑆 = {𝑏1, . . . , 𝑏 |𝑆 |} be two schemas. We introduce
a Boolean variable 𝑥𝑖, 𝑗 for each pair of attributes 𝑎𝑖 ∈ 𝑅 and 𝑏 𝑗 ∈ 𝑆 . We let Var𝑃
denote the set of variables corresponding to a collection 𝑃 ⊆ 𝑅 × 𝑆 of such
pairs. Consider a subset 𝑋 ⊆ 𝑅 together with an injection 𝜎 : 𝑋 → 𝑆 . From this,
we construct a truth assignment including the variable 𝑥𝑖, 𝑗 (setting it to true)
iff 𝑎𝑖 ∈ 𝑋 and 𝜎 (𝑎𝑖) = 𝑏 𝑗 . The resulting assignment has weight |𝑋 | and the
collection of all possible configurations (𝑋, 𝜎) is uniquely described by Var𝑅×𝑆
and the truth assignments obtained this way. Moreover, these assignments all
satisfy the following antimonotone Boolean formula 𝜑𝑚𝑎𝑝 .

𝜑𝑚𝑎𝑝 =

( |𝑅 |∧
𝑖=1

|𝑆 |−1∧
𝑗=1

|𝑆 |∧
𝑗 ′=𝑗+1

(¬𝑥𝑖, 𝑗 ∨ ¬𝑥𝑖, 𝑗 ′)
)
∧

( |𝑆 |∧
𝑗=1

|𝑅 |−1∧
𝑖=1

|𝑅 |∧
𝑖′=𝑖+1
(¬𝑥𝑖, 𝑗 ∨ ¬𝑥𝑖′, 𝑗 )

)
.

The first half of 𝜑𝑚𝑎𝑝 expresses that, for every pair of variables 𝑥𝑖, 𝑗 and 𝑥𝑖, 𝑗 ′ with
𝑗 ≠ 𝑗 ′, at most one of them shall be true; the second half is satisfied if the same

46



Inclusion Dependencies Section 3.3

holds for all pairs 𝑥𝑖, 𝑗 and 𝑥𝑖′, 𝑗 with 𝑖 ≠ 𝑖′. Conversely, a satisfying assignment 𝐴
(a subset of Var𝑅×𝑆 ) for 𝜑𝑚𝑎𝑝 defines a relation 𝜎 ⊆ 𝑅 × 𝑆 and a set 𝑋 ⊆ 𝑅 by
setting 𝜎 = {(𝑎𝑖 , 𝑏 𝑗 ) | 𝑥𝑖, 𝑗 ∈ 𝐴} and 𝑋 = {𝑎𝑖 ∈ 𝑅 | ∃ 1 ≤ 𝑗 ≤ |𝑆 | : 𝑥𝑖, 𝑗 ∈ 𝐴}. By
construction, the relation 𝜎 is not only a function 𝜎 : 𝑋 → 𝑆 , but an injection. In
summary, 𝜑𝑚𝑎𝑝 is fulfilled exactly by the assignments described above. Observe
that𝜑𝑚𝑎𝑝 is in CNF and therefore also 3-normalized as each literal is a conjunctive
clause of length 1.

We now formalize the requirement that a configuration (𝑋, 𝜎) is an inclusion
dependency in a given pair of databases 𝔯 and 𝔰 over the respective schemas
𝑅 and 𝑆 , that is, that 𝔯 [𝑋 ] ⊆ 𝔰[𝜎 (𝑋 )] holds. First, assume that each database
consists only of a single row 𝑟ℓ and 𝑠𝑚 , respectively. We say a pair of attributes
(𝑎𝑖 , 𝑏 𝑗 ) ∈ 𝑅 × 𝑆 is forbidden for 𝑟ℓ and 𝑠𝑚 if 𝑟ℓ [𝑎𝑖] ≠ 𝑠𝑚 [𝑏 𝑗 ]. Let 𝐹ℓ,𝑚 be the set
of all forbidden pairs. For an configuration (𝑋, 𝜎) to be an IND, the variables
𝑥𝑖, 𝑗 need to be set to false for all (𝑎𝑖 , 𝑏 𝑗 ) ∈ 𝐹ℓ,𝑚 . In terms of Boolean formulas,
this is represented by the conjunctive clause12 𝑀ℓ,𝑚 =

∧
𝑥∈Var𝐹ℓ,𝑚 ¬𝑥 . It follows

that (𝑋, 𝜎) is an inclusion dependency if and only if the corresponding variable
assignment satisfies both 𝜑𝑚𝑎𝑝 and𝑀ℓ,𝑚 .

Now suppose 𝔰 has multiple rows, while 𝔯 is still considered to have only
one. The configuration (𝑋, 𝜎) is an IND for (𝔯, 𝔰) iff it is one for at least one
instance (𝔯, {𝑠𝑚}) with 𝑠𝑚 ∈ 𝔰. If also 𝔯 has more records, then (𝑋, 𝜎) is an IND
for (𝔯, 𝔰) iff it is one in each instance ({𝑟ℓ }, 𝔰) with 𝑟ℓ ∈ 𝔯. Therefore, we obtain
an inclusion dependency if and only if 𝜑𝑚𝑎𝑝 and the formula

𝜑 =
∧
𝑟ℓ ∈𝔯

∨
𝑠𝑚∈𝔰

𝑀ℓ,𝑚

are simultaneously satisfied by the assignment corresponding to (𝑋, 𝜎).
The formula 𝜑 ∧ 𝜑𝑚𝑎𝑝 is antimonotone and 3-normalized. The (disjunctive)

clauses of 𝜑𝑚𝑎𝑝 can be constructed in total time O( |𝑅 |2 |𝑆 | + |𝑅 | |𝑆 |2) and all sets
𝐹ℓ,𝑚 together are computable in time O( |𝔯 | |𝔰 | |𝑅 | |𝑆 |). An encoding of 𝜑 ∧ 𝜑𝑚𝑎𝑝

can thus be obtained from the input databases 𝔯 and 𝔰 in polynomial time.
Finally, by the above observation that any solution for the sub-formula 𝜑𝑚𝑎𝑝 that
corresponds to (𝑋, 𝜎) has weight |𝑋 |, the reduction preserves the parameter. ■

12 Conjunctive clauses are sometimes also called monoms [Weg91].
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3.3.3 Hardness for𝑾 [3]

We now show that detecting inclusion dependencies is also hard for WW[3]. We
argue that the existence of weighted satisfying assignments for 3-normalized, an-
timonotone formulas can be decided by solving instances of the more restricted
Inclusion DependencyIdentity variant. For this, we make use of indicator func-
tions. On the one hand, we interpret propositional formulas 𝜑 over 𝑛 variables
as Boolean functions 𝑓𝜑 : {0, 1}𝑛 → {0, 1} in the obvious way. On the other hand,
for a pair of databases 𝔯 and 𝔰 over the same schema 𝑅, we represent any subset
𝑋 ⊆ 𝑅 by its characteristic vector of length |𝑅 |. We then define the indicator
function 𝑓(𝔯,𝔰) : {0, 1} |𝑅 | → {0, 1} by requiring that 𝑓(𝔯,𝔰) (𝑋 ) = 1 holds iff 𝑋 is an
inclusion dependency (with the identity mapping between the columns).

We claim that for any formula 𝜑 that is antimonotone and 3-normalized, there
is a pair (𝔯, 𝔰) of databases computable in polynomial time such that 𝑓𝜑 = 𝑓(𝔯,𝔰) .
Clearly, this gives a parameterized reduction from WA3NS to the Inclusion
DependencyIdentity problem. The remainder of this section is dedicated to proving
this claim. Recall that the top-level connective of a 3-normalized formula is a
conjunction. We start by demonstrating how to model this using databases.

▶ Lemma 3.12. Let (𝔯 (1) , 𝔰 (1) ) and (𝔯 (2) , 𝔰 (2) ) be two pairs of databases, all over
the same schema 𝑅, with indicator functions 𝑓 (1) and 𝑓 (2) , respectively. There
exists a polynomial time computable pair (𝔯, 𝔰) (over 𝑅) of size |𝔯 | = |𝔯 (1) | + |𝔯 (2) |
and |𝔰 | = |𝔰 (1) | + |𝔰 (2) |, having indicator function 𝑓(𝔯,𝔰) = 𝑓 (1) ∧ 𝑓 (2) . ◀

Proof. Without loosing generality, the values appearing in 𝔯 (1) and 𝔰 (1) are
disjoint from those in 𝔯 (2) and 𝔰 (2) . We straightforwardly construct (𝔯, 𝔰) as
𝔯 = 𝔯 (1) ∪ 𝔯 (2) and 𝔰 = 𝔰 (1) ∪ 𝔰 (2) , which matches the requirements on both the
computability and size. We still need to show 𝑓(𝔯,𝔰) = 𝑓 (1) ∧ 𝑓 (2) .

Equivalently, we prove that a set 𝑋 ⊆ 𝑅 is an inclusion dependency in (𝔯, 𝔰) if
and only if it is one in both pairs (𝔯 (1) , 𝔰 (1) ) and (𝔯 (2) , 𝔰 (2) ). Let 𝑋 be an IND in
(𝔯 (1) , 𝔰 (1) ) as well as (𝔯 (2) , 𝔰 (2) ). That means, for every row 𝑟 ∈ 𝔯 (1) , there exists
some 𝑠 ∈ 𝔰 (1) with 𝑟 [𝑋 ] = 𝑠 [𝑋 ]; same for 𝔯 (2) and 𝔰 (2) . As all those rows are
also present in (𝔯, 𝔰), 𝑋 is an IND there as well. Conversely, suppose 𝑋 is not an
inclusion dependency in, say, (𝔯 (1) , 𝔰 (1) ). Then, 𝔯 (1) has a row 𝑟 that disagrees
with every 𝑠 ∈ 𝔰 (1) on some attribute in 𝑋 . The record 𝑟 is also in present in 𝔯

and all rows in 𝔰 belong either to 𝔰 (1) or have completely disjoint values. This
results in 𝑟 [𝑋 ] ≠ 𝑠 [𝑋 ] for every record 𝑠 ∈ 𝔰, as desired. ■
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𝜑 = 𝑀1 ∨𝑀2 ∨𝑀3

𝑀1 = (¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3)
𝑀2 = (¬𝑥2 ∧ ¬𝑥4 ∧ ¬𝑥5)
𝑀3 = (¬𝑥1 ∧ ¬𝑥3 ∧ ¬𝑥4 ∧ ¬𝑥6)

1 1 1 0 0 0
0 2 0 2 2 0
3 0 3 3 0 3

0 0 0
2 2 0
3 0 3

1 1 0
0 0 0
3 3 3

1 0
2 2
0 0

× × ×
× × ×
× × ×

× × ×
× × ×
× × ×

× × × ×
× × × ×
× × × ×

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

Figure 3.5: Illustration of Lemma 3.13. The antimonotone DNF formula 𝜑 on the left
has the three conjunctive clauses 𝑀1, 𝑀2, 𝑀3. The equivalent instance of Inclusion
DependencyIdentity consists of database 𝔯 in the center and 𝔰 on the right. There are
three maximal inclusion dependencies {𝑎4, 𝑎5, 𝑎6}, {𝑎1, 𝑎3, 𝑎6}, and {𝑎2, 𝑎5}. Adding any
more attributes to either of them would create a hitting set for the conjunctive clauses,
corresponding to an unsatisfying assignment.

One could hope that there is a method that translates disjunctions to the
database domain in a similar fashion as above. However, we believe that there
is none that is both computable in FPT-time and compatible with a comple-
menting way of representing conjunctions. The reason is as follows. Negative
literals are easily expressed by pairs of single-row databases. Together with
FPT-time procedures of constructing conjunctions as well as disjunctions, one
could encode antimonotone Boolean formulas of arbitrary logical depth. The
Antimonotone Collaps Theorem [DF13], states that the Weighted Antimono-
tone 𝑡-normalized Satisfiability problem is WW[𝑡]-complete for every odd
𝑡 ≥ 3. This would then render Inclusion DependencyIdentity to be hard for all
classes WW[𝑡] and, as a consequence of Lemmas 3.10 and 3.11, the WW-hierarchy
would collapse to its third level. That being said, there is a method specifically
tailored to antimonotone DNF formulas.

▶ Lemma 3.13. Let 𝜑 be an antimonotone formula in disjunctive normal form.
There are relational databases 𝔯 and 𝔰 over the same schema computable in time
polynomial in the size of 𝜑 such that 𝑓𝜑 = 𝑓(𝔯,𝔰) . ◀

Proof. Let 𝑥1, . . . , 𝑥𝑛 be the variables of 𝜑 . Define the schema 𝑅 = {𝑎1, . . . , 𝑎𝑛}
by identifying variable 𝑥𝑖 with attribute 𝑎𝑖 . We first describe the database 𝔯
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and subsequently construct a matching database 𝔰. Each of the𝑚 constituting
conjunctive clauses 𝑀1, . . . , 𝑀𝑚 of the DNF formula 𝜑 is represented by some
row in 𝔯, see Figure 3.5. Similar to the proof of Lemma 3.5, define row 𝑟 𝑗 as

𝑟 𝑗 [𝑎𝑖] =
{
𝑗, if 𝑥𝑖 occurs in clause𝑀 𝑗 ;
0, otherwise.

The second database 𝔰 is constructed by first creating𝑚 copies of 𝔯. Let × be a
new symbol not appearing anywhere in 𝔯. In the 𝑗-th copy of 𝔯, we set the value
for attribute 𝑎𝑖 to × whenever variable 𝑥𝑖 occurs in 𝑀 𝑗 . (See Figure 3.5 again.)
Note that |𝑅 | = 𝑛 equals the number of variables of 𝜑 and |𝔯 | is linear in the
number𝑚 of conjunctive clauses, while |𝔰 | is quadratic. The time to compute
the pair (𝔯, 𝔰) is linear in their combined size and polynomial in the size of 𝜑 . It
is left to show that the indicator function satisfies 𝑓𝜑 = 𝑓(𝔯,𝔰) .
First, suppose 𝑓𝜑 (𝑋 ) = 1 for some length-𝑛 binary vector 𝑋 or, equivalently,

for some subset 𝑋 ⊆ 𝑅. We show that 𝑓(𝔯,𝔰) (𝑋 ) = 1, meaning that 𝑋 is an
inclusion dependency in (𝔯, 𝔰). Necessarily, we have 𝑓𝑀𝑗

(𝑋 ) = 1 for at least
one conjunctive clause 𝑀 𝑗 . Since 𝑀 𝑗 contains only negative literals, all of its
variables evaluate to false. This is equivalent to 𝑋 not containing any attribute
that corresponds to a variable in𝑀 𝑗 . In the 𝑗-th copy of 𝔯 in the database 𝔰, the
values were changed to × for exactly those attributes. Thus, the projection 𝔰[𝑋 ]
contains an exact copy of 𝔯 [𝑋 ] and 𝑋 is indeed an IND, resulting in 𝑓(𝔯,𝔰) (𝑋 ) = 1.
For the opposite direction, suppose 𝑓𝜑 (𝑋 ) = 0. Each conjunctive clause thus

contains a variable corresponding to some attribute in 𝑋 . Consequently, in each
row of 𝔰, there is an attribute in 𝑋 whose value was replaced by ×. As 𝔯 does
not contain the symbol × at all, 𝑋 is not an IND and 𝑓(𝔯,𝔰) (𝑋 ) = 0. ■

Lemmas 3.12 and 3.13 imply that, given an antimonotone, 3-normalized for-
mula 𝜑 , we can build an instance (𝔯, 𝔰) of Inclusion DependencyIdentity in
FPT-time (even polynomial) such that 𝑓𝜑 = 𝑓(𝔯,𝔰) . Together with the findings of
Section 3.3.2, this finishes the proof of Theorem 3.2 showing that Inclusion
DependencyIdentity and Inclusion Dependency are WW[3]-complete.

3.3.4 Discovery

As we did with minimal unique column combinations and functional depen-
dencies, we can lift our results from detecting a single inclusion dependency to
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discovering all of them. It turns out that there is a parsimonious equivalence
with the enumeration of assignments to antimonotone, 3-normalized formulas,
as detailed in Theorem 3.4. The key observations to prove this are once again
that the reductions above are polynomial time computable, independently of the
parameter, and that they preserve inclusions.

Lemmas 3.12 and 3.13 describe how to turn the formula 𝜑 in polynomial time
into a pair of databases over the common schema 𝑅, which is effectively the same
as Var𝜑 , such that the inclusion dependencies 𝑋 ⊆ 𝑅 are in canonical correspon-
dence with the satisfying assignments 𝐴 ⊆ Var𝜑 . Moreover, the parameterized
reduction preserves inclusion relations between the solutions such that the
maximal dependencies also correspond to the maximal assignments. In other
words, Lemmas 3.12 and 3.13 induce a parsimonious reduction from Enumerate
Maximal Satisfying WA3NS Assignments to Discover Maximal INDsIdentity .
It is also easy to see that Lemma 3.10 implies a parsimonious reduction from the
enumeration of such restricted inclusion dependencies to the general Discover
Maximal INDs problem. The lemma does nothing else but invalidating all non-
identity mappings between the columns. Finally, Lemma 3.11 shows how to
translate general inclusion dependencies back to an antimonotone, 3-normalized
formula 𝜑 . Observe that the (inclusion-wise) maximal satisfying assignments of
the resulting formula correspond exactly to the notion of maximality for general
INDs (see Sections 2.3.3 and 3.3.1 for details). This shows the equivalence of all
the enumeration problems involved. Again, the space complexity is preserved
up to polynomial factors by the parsimonious reductions.
We complete the proof of Theorem 3.4 by showing that the problems are at

least as hard as Transversal Hypergraph. This is an easy exercise using the
structure of antimonotone CNFs.

▶ Lemma 3.14. The enumeration of maximal satisfying assignments of an-
timonotone Boolean formulas in conjunctive normal form is equivalent to
Transversal Hypergraph under parsimonious reductions. In particular, Enu-
merate Maximal Satisfying WA3NS Assignments is at least as hard as the
Transversal Hypergraph problem. ◀

Proof. For the reductions, in both directions, we identify the (disjunctive) clauses
of an antimonotone CNF formula 𝜑 with the sets of variables they contain. To
spell it out, let Var𝜑 be the set of all variables of 𝜑 and 𝐶1, . . . ,𝐶𝑚 ⊆ Var𝜑 the
clauses. Since the formula is antimonotone, any 𝐶𝑖 is satisfied iff there is a
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variable 𝑥 ∈ 𝐶𝑖 that is assigned false. In other words, an assignment 𝐴 ⊆ Var𝜑

(the set of true variables) is satisfying iff its complement 𝐴 = Var𝜑\𝐴 is a
hitting set of the hypergraph {𝐶𝑖}𝑖∈[𝑚] . Assignment 𝐴 is maximal in that regard
iff 𝐴 ∈ Tr({𝐶𝑖}𝑖) is a minimal transversal. In the very same fashion, we can
construct from any hypergraph (H ,𝑉 ) an antimonotone CNF formula on the
variable set {𝑥𝑣 | 𝑣 ∈ 𝑉 } by setting 𝜑 =

∧
𝐸∈H

∨
𝑣∈𝐸 ¬𝑥𝑣. Complementing the

maximal satisfying assignments of 𝜑 recovers the minimal hitting sets ofH .
The second part of the lemma follows from any CNF formula being also

3-normalized by viewing literals as conjunctive clauses of length 1. ■

3.4 Conclusion

We determined the complexity of the detection problems for multi-column de-
pendencies parameterized by the solution size. Our results imply that they do not
admit fixed-parameter tractable algorithms, unless the WW-hierarchy collapses.
This is unfortunate as the choice of parameter is very natural in that the require-
ment of a small solution size is regularly met in practice. Notwithstanding those
barriers, one can still obtain FPT-algorithms by using other parameters. For ex-
ample, to solve the problem Uniqe Column Combination for a database over
some schema 𝑅, one can consider all subsets of 𝑅 and check for each whether it
is a unique column combination. (The same considerations also hold for Func-
tional Dependency and Inclusion Dependency.) This takes polynomial time
for each of the 2 |𝑅 | subsets. Thus, this leads to an FPT-algorithm with |𝑅 | as
parameter. This is of course not very satisfying, as assuming |𝑅 | to be small is a
much stronger assumption than assuming the solution size to be small.

Similarly, one could consider the maximum number 𝑑 of attributes on which
two tuples in a relation 𝑟 disagree. The standard bounded search tree technique
then gives an FPT-algorithm for Uniqe Column Combination with respect to
the sum 𝑑 +𝑘 . However, assuming that any two pairs in a relation differ only on a
few columns seems to be unrealistic for most data sets. More structural research
is needed to identify properties of realistic databases that yield parameters
for which the detection problems are tractable. This could involve designing
multivariate algorithms with more than one parameter and may even lead to
further improvements in the run time of practical methods.
On the other hand, our results regarding the discovery of all dependencies

of a certain type in a database are indeed able to explain the good run times
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in practice. We proved that the profiling of relational data has the transversal
hypergraph problem at its core. Although the exact complexity of the latter is still
open, there are many empirically efficient algorithms known. Most importantly,
modern algorithms for the enumeration of hitting sets have the advantage that
their space complexity is only linear in the input size, this is a feature many
data profiling algorithms are still lacking today. In the following chapters, we
continue to follow the lead of hitting sets and small solution sizes to develop
improved enumeration algorithms.
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We devise an enumeration algorithm for minimal hitting sets. It uses linear space
and has delay O(𝑚𝑘∗+1𝑛2), where 𝑘∗ is the transversal rank. The enumeration uses
a search tree pruned by an extension oracle. We prove that the extension problem for
minimal hitting sets is WW[3]-complete when parameterized by the size of the set to
be extended. We also give several fine-grained lower bounds on its complexity. In an
experimental study, we verify that hypergraphs arising from real-world databases
are particularly suitable for enumeration.

4.1 Introduction

Motivated by the results in the previous chapter, we approach the discovery
of minimal unique column combinations via the Transversal Hypergraph
problem (see Section 3.2.1 for a formal definition). In the absence of an output-
polynomial algorithm for general inputs, special classes of hypergraphs have
received a lot of attention. For example, it is known that the enumeration of
minimal hitting sets is tractable when restricted to hypergraphs with bounded
rank, bounded maximum degree [Bor+00], or dual-conformality [Kha+07], as
well as for acyclic hypergraphs [EG95; EGM03]. Here, we are interested in
the case where the solutions are small. Let 𝑘∗ denote the transversal rank of a
given hypergraph, that is, the maximum cardinality of its minimal hitting sets.
Indeed, it is very common for hypergraphs arising in data profiling to have low
transversal rank, see [Kru+16; Pap+15] and our own analysis in Section 4.5.
Eiter and Gottlob [EG95] gave an output-polynomial algorithm for hyper-

graphs for which 𝑘∗ is a constant. Unfortunately, it is not usable for data pro-
filing applications much for the same reason why their equivalence between
Transversal Hypergraph and Discover Minimal UCCs is not practical: the
space consumption of their method scales with the number of solutions. Also,
one would like to have a guarantee on the delay, the worst-case time between
two consecutive outputs, that is independent of the output size. Lastly, although
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the transversal rank can be expected to be small usually no a priori bound on
𝑘∗ is known before the enumeration. In fact, it is WW[1]-hard to compute 𝑘∗ and
NPNP-hard to approximate [Baz+18]. We are able to improve in all those aspects and
obtain an algorithm that is oblivious to 𝑘∗, has a space requirement independent
of the output, and, in the case that 𝑘∗ is indeed constant, has polynomial delay.
Central to our algorithm is a subroutine that decides for a set 𝑋 of vertices

whether it is contained in any minimal hitting set. We examine the complexity
of the extension problem, when parameterized by the cardinality |𝑋 | of the partial
solution, and prove it as yet another natural problem to be complete for WW[3].
Similar to the Inclusion Dependency problem already being used by other
researchers, Casel et al. [Cas+21] (previously announced in [Cas+18]) employ
the techniques we develop here for the extension to minimal hitting sets in order
to prove WW[3]-hardness already for the special case of extension to minimal
dominating sets in bipartite graphs.

We also investigate the extension problem with tools from fine-grained com-
plexity. Assuming the Strong Exponential Time Hypothesis (SETH), we prove
that our subroutine algorithm is almost optimal. Moreover, we argue that closing
the remaining gap between the upper and lower bound is likely to be hard,
using a nondetermistic extension of SETH recently conjectured by Carmosino
et al. [Car+16]. Next, we give an overview of the results of this chapter in detail.
Main Results. We solve the Transversal Hypergraph problem simultane-
ously with polynomial delay and space on hypergraphs of bounded transversal
rank. More generally, we devise an enumeration algorithm that does not need
to know 𝑘∗. Its analysis, however, depends on the transversal rank.
▶ Theorem 4.1. There exists an algorithm that on 𝑛-vertex, 𝑚-edge hyper-
graphs enumerates the minimal hitting sets with delay O(𝑚𝑘∗+1𝑛2) in O(𝑚𝑛)
space, where 𝑘∗ is the maximum cardinality of any minimal hitting set. ◀

The algorithm employs a tree search pruned by deciding for a given set 𝑋 of
vertices whether it can be extended to a minimal hitting set. We analyze the
parameterized complexity of this decision with respect to the parameter |𝑋 |.
▶ Theorem 4.2. The extension problem for minimal hitting sets on a partial
solution 𝑋 is complete for the class WW[3] when parameterized by |𝑋 |. ◀

Indeed, we design an efficient enumeration algorithm using a reduction to a
hard decision problem. This only makes sense because extension is tractable
provided that 𝑋 contains only a few vertices.
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▶ Theorem 4.3. There exists an algorithm that decides for an 𝑛-vertex,𝑚-edge
hypergraph and a set𝑋 of vertices whether𝑋 is contained in any minimal hitting
set in time O(𝑚 |𝑋 |+1𝑛) and space O(𝑚𝑛). ◀

It is natural to ask whether the exponential dependency on |𝑋 | in the running
time can be improved. We give several conditional lower bounds, all of which
indicate that Theorem 4.3 is close to optimal. They present a trade-off between
the strength of the conjecture one is willing to assume and the resulting bound.

▶ Theorem 4.4. Let 𝑓 : N → N be an arbitrary computable function. No
algorithm can decide for an 𝑛-vertex,𝑚-edge hypergraph and a set 𝑋 of vertices
whether 𝑋 is contained in any minimal hitting set

(𝑖) in time 𝑓 ( |𝑋 |) · polypoly(𝑚,𝑛), unless WW[3] = FPTFPT;

(𝑖𝑖) in time 𝑓 ( |𝑋 |) · (𝑚 +𝑛)o( |𝑋 | ) , unless WW[2] = FPTFPT;

(𝑖𝑖𝑖) in time𝑚 |𝑋 |−𝜀 · polypoly(𝑛) for any constant |𝑋 | ≥ 2 and 𝜀 > 0, unless the
Strong Exponential Time Hypothesis (Hypothesis 2.3) fails. ◀

The SETH-lower bound matches our algorithmic result up to a factor of𝑚. There
is a complexity-theoretic obstacle for closing the remaining gap. We argue that
if one could show tight SETH-hardness of the extension problem with a time
bound of𝑚 |𝑋 |+1−𝜀 · polypoly(𝑛) via a deterministic reduction, this would refute the
Nondeterministic Strong Exponential Time Hypothesis (NSETH) [Car+16] and
thereby resolve several open problems in circuit complexity and satisfiability.
Finally, we evaluate an implementation of our algorithm by applying it to

the Discover Minimal UCCs problem (using the parsimonious reduction from
Observation 2.2). Our experiments show that our method is much faster on
hypergraphs stemming from real-world databases than the running time bounds
would suggest. In practice, a few simple checks can avoid the worst-case behavior
on many instances, which boosts the performance. We also confirm the low
memory footprint of our approach.

4.2 Enumerating Minimal Hitting Sets

In this section, we outline our enumeration algorithm for minimal hitting sets.
Our main motivation comes from data profiling, so we design our method with
an eye on instances that have small solutions. Nevertheless, we aim for a general-
purpose algorithm and do not restrict the possible input hypergraphs. Therefore,
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the algorithm does not make any assumptions on the inputs and relies only on
the given hypergraph itself. Its analysis, however, incorporates the transversal
rank. Before we present our algorithm, we discuss some alternative approaches
and asses how we can improve upon them.

4.2.1 On the Transversal Rank

We review herewhat is known algorithmically about the transversal rank𝑘∗. This
also serves to highlight the subtle differences in measuring the complexity of an
enumeration algorithm. Eiter and Gottlob [EG95] showed that the Transversal
Hypergraph problem can be solved in incremental polynomial time on instances
for which 𝑘∗ is bounded. Their result hinges on the following proposition.

▶ Proposition 4.5 (Eiter and Gottlob [EG95]). LetH ,G be hypergraphs on
the same vertex set 𝑉 and 𝑘 = rank(G). There exists an algorithm that decides
whether G = Tr(H) in time O(𝑘 |H ||G| + 𝑘 ( |H |+|G|) |𝑉 |𝑘 + |H |𝑘+2 |𝑉 |) and
space O(( |H |+|G|) |𝑉 |). Moreover, if G ⊊ Tr(H), the algorithm finds a minimal
transversal 𝑇 ∈ Tr(H)\G within the same bounds. ◀

The enumeration starts with the empty hypergraph G = ∅ and repeatedly
checks whether G = Tr(H), that is, whether G already contains all solutions. If
not, a new solution 𝑇 ∉ G is computed. Note that G ⊆ Tr(H) is an invariant,
whence 𝑘 = rank(G) is always at most 𝑘∗ = rank(Tr(H)). However, this
approach has two drawbacks. It is already unfortunate that the delay depends on
|G| and thus on | Tr(H)|, but it is indeed prohibitive in practice that the space
consumption scales with the number of solutions.

If one is working with a class of hypergraphs for which one suspects 𝑘∗ to be
small, albeit no a priori bound is known, one could be tempted to compute the
transversal rank1 first and then brute-force all sets up to that size. Computing
𝑘∗ is NPNP-hard [Che+90; CN08]. Bazgan et al. [Baz+18] further showed that it is
WW[1]-hard, parameterized by 𝑘∗, and that 𝑘∗ cannot be approximated within a
factor of 𝑛1−𝜀 for any constant 𝜀 > 0, unless PP = NPNP.

The parameterized hardness stems from the potentially unbounded size of the
hyperedges. Fernau [Fer05] showed that the transversal rank of a graph2 can

1 Occasionally the term Maximum Minimal Hitting Set is used both for the maximization
problem as well as the decision problem whether 𝑘∗ ≥ 𝑘 for a given integer 𝑘 [Dam11].

2 This is more commonly known as Maximum Minimal Vertex Cover [BDP15; Fer05].
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be computed in FPT-time by presenting an algorithm running in time O(2𝑘∗) +
polypoly(𝑛), which was later improved to 1.5397𝑘∗ · polypoly(𝑛) [BDP15]. For an arbitrary
constant 𝑐 , Damaschke [Dam11] used Proposition 4.5 to give an algorithm that
computes the transversal rank of a hypergraph whose edges have at most 𝑐
vertices in time 𝑐𝑘∗ · 𝑝𝑐 (𝑚,𝑛), where 𝑝𝑐 is a polynomial whose degree depends
on 𝑐 . If 𝑐 is seen as another parameter (namely, computing 𝑘∗ parameterized by
𝑐 + 𝑘∗), there is an FPT-algorithm running in time 2𝑐𝑘∗ · polypoly(𝑚,𝑛) [Ara+21].

Returning to hypergraphs with unbounded edge size, the parameterized re-
duction in [Baz+18, Theorem 23] that shows the WW[1]-hardness of computing
the transversal rank has a quadratic blowup in the parameter. The lower bound
on Independent Set by Chen et al. [Che+06] (see Proposition 2.6) thus im-
plies that 𝑘∗ cannot be computed in time 𝑓 (𝑘∗) (𝑚 + 𝑛)o(

√
𝑘∗ ) for any computable

function 𝑓 , unless the Exponential Time Hypothesis (ETH; Hypothesis 2.4) fails.
Very recently and independently of each other Araújo et al. [Ara+21] as well
as Dublois, Lampis, and Paschos [DLP21] raised the bound to 𝑓 (𝑘∗) (𝑚 + 𝑛)o(𝑘∗ ) .
This essentially matches the currently fastest algorithm, which uses the follow-
ing characterization of the transversal rank by Berge and Duchet [BD75]. Recall
from Section 2.2 that a hypergraph is Sperner if none of its edges is contained
in another, that we can make any hypergraphH Sperner in quadratic time by
computing its minimization min(H), and that H and min(H) have the same
transversal rank (in fact, the same transversals). For a hypergraph (𝑉 ,H), sub-
hypergraph H ′ ⊆ H , and vertex 𝑣 ∈ 𝑉 , let degH′ (𝑣) = |{𝐸 ∈ H ′ | 𝑣 ∈ 𝐸}|
denote the degree of 𝑣 inH ′.
▶ Proposition 4.6 (Berge and Duchet [BD75; Ber89]). Let (𝑉 ,H) be a
Sperner hypergraph and 𝑘 ≥ 2 an integer. The transversal rank ofH is at most
𝑘 if and only if, for all subhypergraphsH ′ ⊆ H with |H ′ | = 𝑘 + 1 edges, there
exists an edge ofH that is contained in the set {𝑣 ∈ 𝑉 | degH′ (𝑣) > 1}. ◀

When computing the transversal rank 𝑘∗, the assumption of the input being
Sperner does not loose generality. We can test the condition of Proposition 4.6 for
increasing 𝑘 . The value that satisfies it for the first time is 𝑘∗. The last iteration
dominates the running time, which gives a bound of O

( (
𝑚

𝑘∗+1
)
(𝑘∗ +𝑚)𝑛

)
=

O(𝑚𝑘∗+2𝑛). The subsequent test of the sets with up to 𝑘∗ vertices adds another
O(𝑚𝑛𝑘

∗) term. The enumeration time is polynomial for bounded 𝑘∗, but the
algorithm does not admit any non-trivial guarantees on the delay. Also, the
space requirement again depends on the total number of solutions because one
has to avoid testing supersets of minimal solutions.
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In contrast, we give an algorithm with delay O(𝑚𝑘∗+1𝑛2), which is better than
the bound above for𝑚 > 𝑛. More importantly though, our algorithm uses space
that is only linear in the input size, regardless of 𝑘∗.

4.2.2 Backtracking Enumeration with an Extension Oracle

It is a common pattern in the design of enumeration algorithms to base them
on a so-called extension oracle as introduced by Lawler [Law72]. The oracle,
tailored to the combinatorial problem at hand, is queried with a set of elements
of the underlying universe and decides whether there exists a solution that
contains these elements. Applications of this technique usually involve settings
in which the extension problem is solvable in polynomial time, like for cycles
and spanning trees [RT75], motif search in graphs [Bjö+15], or satisfying as-
signments for restricted fragments of propositional logic [CH97]. For us, the
situation is different in that the extension problem for minimal hitting sets is
NPNP-complete [BGH98]. We show later in Section 4.3 that the problem is also
hard in a parameterized sense. At first, it may seem paradoxical that reducing
enumeration to a hard decision problem can speed up the resulting algorithm.
We exploit the fact that the time needed to solve the extension problem is small
(enough) for sets that contain only a few vertices.

The original oracle technique [Law72] consists of fixing certain elements
of the partial solution and then extending it to the optimum, with respect to
a certain ranking function, among all objects that share the fixed elements.
During the computation the new candidates are stored in a priority queue. The
main bottleneck is the space demand of the queue. For every partial solution,
the number of newly introduced candidates can be equal to the size of the
universe, meaning exponential growth. Therefore, modifications are necessary
to implement the technique efficiently.

In addition to the extension oracle, we use a decision tree to guide the search
for minimal solutions in the power lattice of all subsets of the universe. This is
known as backtracking enumeration [RT75] or flashlight technique [MS19]. It
allows us to reduce the space requirement to only polynomial in the input.
In the following, we show how to combine both ideas. Let (𝑉 ,H) be a

hypergraph. Suppose we are given an oracle that, queried with disjoint sets
𝑋,𝑌 ⊆ 𝑉 , answers whether there exists a minimal solution 𝑇 ∈ Tr(H) such
that 𝑋 ⊆ 𝑇 ⊆ 𝑉 \𝑌 , that is, whether 𝑋 is extendable avoiding 𝑌 . We use this to
enumerate all such 𝑇 . If 𝑋 ∪ 𝑌 = 𝑉 , this can only be 𝑇 = 𝑋 itself. Otherwise,
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Algorithm 1: Recursive algorithm for Transversal Hypergraph.
The initial call is enumerate(∅, ∅, 𝑉).
Data: Non-empty ordered hypergraph (𝑉 , ⩽,H).
Input: Partition (𝑋,𝑌, 𝑅) of the vertex set 𝑉 .
Output: The minimal hitting sets 𝑇 ∈ Tr(H) with 𝑋 ⊆ 𝐻 ⊆ 𝑉 \𝑌 .

1 Procedure enumerate(𝑋,𝑌, 𝑅):

2 if 𝑅 = ∅ then return 𝑋 ;
3 𝑣 ← min⩽ 𝑅;
4 isExtendable← extendable(𝑋∪{𝑣}, 𝑌);
5 if isExtendable == minimal then return 𝑋 ∪ {𝑣};
6 if isExtendable == true then enumerate(𝑋 ∪ {𝑣}, 𝑌 , 𝑅\{𝑣});
7 if (isExtendable == false or extendable(𝑋,𝑌 ∪ {𝑣}) == true) then

enumerate(𝑋,𝑌 ∪ {𝑣}, 𝑅\{𝑣});

we recursively compute the solutions for the pairs (𝑋 ∪ {𝑣}, 𝑌 ) and (𝑋,𝑌 ∪ {𝑣}),
where 𝑣 is a vertex neither contained in 𝑋 nor 𝑌 . In other words, we (implicitly)
build a binary tree whose nodes are labeled with the pairs (𝑋,𝑌 ). The node
(∅, ∅) is the root and the children of (𝑋,𝑌 ) are (𝑋 ∪ {𝑣}, 𝑌 ) and (𝑋,𝑌 ∪ {𝑣}).
Let ⩽ be a total order on 𝑉 . Recall from Section 2.2 that this implies a lexico-

graphical order on both the edges of a hypergraph and its transversals. Always
choosing the 𝑣 as the ⩽-smallest element of𝑉 \(𝑋 ∪ 𝑌 ) gives a universal branch-
ing order. This obviates the need of additional communication between the nodes
or any shared memory. It is another ingredient to reduce the space demand. In
particular, we do not need to record previously found solutions to guide the
search. Distinct branches of the tree are independent making the algorithm
trivially parallelizable. This is, however, not the focus of this work.
In the absence of any pruning, the recursion would produce the full binary

tree with leaves (𝑋,𝑉 \𝑋 ) for every possible set 𝑋 ∈ P(𝑉 ). However, we only
need to enter the subtree if one of its leaves is labeled with a minimal hitting
set. For the subtree rooted in (𝑋,𝑌 ), this is the case iff 𝑋 can be extended to a
minimal hitting set without the vertices in 𝑌 .

We formalize this approach in Algorithm 1. Assume for now that subroutine
extendable(𝑋,𝑌) solves the extension problem for the given pair of sets and
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additionally reports if 𝑋 itself is already a minimal hitting set. Namely, it returns
minimal if𝑋 ∈ Tr(H), true if there exists some𝑇 ∈ Tr(H) with𝑋 ⊊ 𝑇 ⊆ 𝑉 \𝑌 ,
and false otherwise. We defer the implementation details of extendable to
Section 4.4. Procedure enumerate handles the work inside a node of the decision
tree. Besides the depth-first, pre-order traversal of the tree, it also exercises two
short-cut evaluations. For this, the ternary variable isExpendable holds the result
of the first check. If the set𝑋 ∪{𝑣} is a minimal solution, we output it and return.
If it cannot be extended, we immediately recurse on the right-child without
calling the potentially expensive second check extendable(𝑋,𝑌 ∪ {𝑣}). The
initial call is enumerate(∅, ∅, 𝑉).

▶ Lemma 4.7. Let (𝑉 ,H , ⩽) be a non-empty ordered hypergraph. Suppose,
for disjoint sets 𝑋,𝑌 ⊆ 𝑉 , subroutine extendable(𝑋,𝑌) decides whether there
exists a 𝑇 ∈ Tr(H) with 𝑋 ⊆ 𝑇 ⊆ 𝑉 \𝑌 and, if so, whether 𝑋 = 𝑇 . Then,
Algorithm 1 enumerates the edges of Tr(H) in ⩽-lexicographical order. ◀

Proof. The correctness is almost immediate from the discussion above. Only the
shortcut evaluations have not yet been argued. If the set 𝑋 ∪ {𝑣} is not only
extendable without 𝑌 , but even minimal itself, then adding any more vertices
from 𝑉 \(𝑋 ∪ 𝑌 ∪ {𝑣}) will make it unextendable. Adding these vertices to 𝑌
instead does not change 𝑋 ∪ {𝑣} being a minimal solution. In summary, we
already know in advance the outcomes of all extension checks in the whole
subtree rooted in (𝑋 ∪ {𝑣}, 𝑌 ). The set 𝑋 ∪ {𝑣} is the only solution that remains
in that tree and we can safely output it and backtrack.

Regarding the second shortcut in line 7, the recursion enters the node (𝑋,𝑌 )
only if there exists a 𝑇 ∈ Tr(H) with 𝑋 ⊊ 𝑇 ⊆ 𝑉 \𝑌 . If the first check
extendable(𝑋 ∪{𝑣}, 𝑌) returns false, no such𝑇 contains the vertex 𝑣. Instead,
all solutions occur in the subtree rooted at the right child (𝑋,𝑌 ∪ {𝑣}) and we do
not need to perform the second evaluation. Note that extendable(𝑋 , 𝑌 ∪ {𝑣})
cannot return minimal due to 𝑋 ≠ 𝑇 .

IfH has no hitting sets (that is, ∅ ∈ H ) both checks in lines 6 and 7 fail already
in the root node and the algorithm returns without an output. Here, we use the
assumption thatH has at least one vertex, whence 𝑅 = 𝑉 ≠ ∅ holds in the root.
Finally, we prove that the algorithm outputs the minimal transversals in

lexicographical order. First, observe that the labeling of the nodes is injective as
it encodes the unique path from the root. To see this, let 𝑣1 ⩽ 𝑣2 ⩽ . . . ⩽ 𝑣𝑛 be
the total order. Any node with distance 𝑘 to the root has𝑋 ∪𝑌 = {𝑣1, . . . , 𝑣𝑘 } and
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𝑋 contains exactly those branching nodes at which the recursion entered the left
child. Now let 𝑎 = (𝑋𝑎, 𝑌𝑎) and 𝑏 = (𝑋𝑏, 𝑌𝑏) be two distinct leaves such that the
pre-order traversal visits 𝑎 before 𝑏. We have𝑋𝑎 ≠ 𝑋𝑏 from the injective labeling,
whence the symmetric difference 𝑋𝑎 △𝑋𝑏 = (𝑋𝑎\𝑋𝑏) ∪ (𝑋𝑏\𝑋𝑎) is non-empty.
Define 𝑣 = min⩽ 𝑋𝑎 △𝑋𝑏 . This is the branching vertex of the lowest common
ancestor of 𝑎 and 𝑏. Algorithm 1 first tries to add 𝑣 to the current partial solution
in line 6, from which 𝑣 ∈ 𝑋𝑎 and 𝑋𝑎 ⩽lex 𝑋𝑏 follow. ■

Algorithm 1 bears some similarity to the backtracking method by Elbassioni,
Hagen, and Rauf [EHR08, Figure 1]. The main difference is the search for new
solutions. In our algorithm, the nodes in the decision tree maintain the partial
solution 𝑋 and additionally the set 𝑌 of vertices that have already been excluded.
The branching vertex 𝑣 is chosen, somewhat arbitrarily, by the order ⩽. In
contrast, the algorithm in [EHR08] works only on the partial solution 𝑋 and
explicitly computes a new vertex to extend it, which is computationally expensive.
Also, their check whether 𝑋 is already minimal is redundant. This information
can be obtained as a by-product of a careful implementation of the subroutine
extendable at no extra cost, see Lemma 4.17.
We use the order on the vertex set to reduce the need for external coordina-

tion. However, the induced lexicographic order on the outputs has applications
in data profiling as well. It ensures that interesting unique column combina-
tions are discovered first. Suppose the attributes of a database are ranked by
importance, then the lexicographic enumeration starts with those combinations
that contain many important attributes. However, the order also raises some
complexity-theoretic issues. Johnson, Papadimitriou, and Yannakakis [JPY88]
proved that the computation of the lexicographically smallest minimal hitting set
is NPNP-hard.3 Therefore, it is unlikely that any implementation of the extension
subroutine can lead to Algorithm 1 having polynomial delay on all ordered
hypergraphs. Notwithstanding, we present an implementation such that our
algorithm achieves polynomial delay at least on instances with bounded transver-
sal rank. We also evaluate the impact of the order on the empirical run time on
real-world databases in our experiments in Section 4.5.

3 The NPNP-hardness of computing the lexicographically smallest minimal hitting set does not
conflict with the statement by Eiter, Gottlob, and Makino [EGM03, Remark 3.1] that the “[lexi-
cographically] smallest” solution can be obtained in linear time. The definition of lexicographic
order in [EGM03] is exactly inverse to the one in [JPY88]. We use the latter in this thesis.
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4.3 The Minimal Hitting Set Extension Problem

We previously assumed an oracle deciding whether a set of vertices can be
extended to a minimal hitting sets. Here, we examine the computational hardness
of this decision. The insights gained here will later lead to an algorithm for the
subroutine with an almost optimal running time.

It is easy to see that, for a hypergraph (𝑉 ,H) and disjoint sets 𝑋,𝑌 ⊆ 𝑉 , there
exists a minimal transversal 𝑇 ∈ Tr(H) such that 𝑋 ⊆ 𝑇 ⊆ 𝑉 \𝑌 if and only if
the truncated hypergraphH ′ = {𝐸\𝑌 | 𝐸 ∈ H} has a minimal hitting set𝑇 with
𝑋 ⊆ 𝑇 . Indeed, the witnessing transversal 𝑇 is the same for bothH andH ′. We
thus define the extension problem as follows.

Minimal Hitting Set Extension (MinHSExt)

Instance: A hypergraph (𝑉 ,H) and a sets 𝑋 ⊆ 𝑉 .

Parameter: The cardinality |𝑋 |.
Decision: Is there a minimal hitting set 𝑇 ofH with 𝑋 ⊆ 𝑇 ?

Both the classical and parameterized complexity of this problem have received
quite some attention. Boros, Gurvich, and Hammer [BGH98] showed that the
unparameterized variant of MinHSExt is NPNP-complete. By now, it is known that
already many restricted cases are intractable. For example, Mary observed in his
PhD thesis [Mar13] (see also [Kan+14]) that extension tominimal dominating sets
is NPNP-hard, a result that has subsequently been refined by Bazgan et al. [Baz+18]
to planar cubic graphs. In a separate work, Bazgan et al. [Baz+20] showed
that extension to minimal vertex covers (that is, MinHSExt in hypergraphs of
rank 2) is NPNP-hard as well. However, it was proven in [BGH98] that extension
is polynomial-time solvable if the size of the partial solution |𝑋 | is constant.
This, and the fact that the hitting sets in many applications are small, warrants a
parameterized investigation with respect to |𝑋 |. However, Casel et al. [Cas+19]
provedWW[1]-completeness for extension to minimal vertex covers, which implies
the WW[1]-hardness of Minimal Hitting Set Extension.
It is known that extension can be reduced to a certain covering problem in

hypergraphs, see [BGH98] and Proposition 4.8 below for a formal definition. We
generalize this result by proving that the extension and covering problems are
in fact equivalent under parameterized reductions. We then use this equivalence
to show that Minimal Hitting Set Extension is another natural problem to
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be complete for the parameterized complexity class WW[3]. We further prove
conditional lower bounds on the running time of any algorithm for the extension
problem, assuming that certain collapses in theWW-hierarchy do not occur or that
the Strong Exponential Time Hypothesis holds, respectively.

4.3.1 𝑾 [3]-Completeness

We present necessary and sufficient conditions for a set of vertices to be a subset
of some minimal hitting set. This broadens the characterization of minimal
transversals in Observation 2.1 in a natural way. The result appears implicitly
in [BGH98], we give a self-contained proof here.

▶ Proposition 4.8 (Boros, Gurvich, and Hammer [BGH98]). Let (𝑉 ,H) be
a hypergraph and 𝑋 ⊆ 𝑉 a set of vertices. There is a 𝑇 ∈ Tr(H) with 𝑋 ⊆ 𝑇 if
and only if there exists a family of edges {𝐸𝑥 }𝑥∈𝑋 ⊆ H such that

(𝑖) for every vertex 𝑥 ∈ 𝑋 , we have 𝐸𝑥 ∩ 𝑋 = {𝑥};
(𝑖𝑖) for every edge 𝐸 ∈ H contained in

⋃
𝑥∈𝑋 𝐸𝑥 , we have 𝐸 ∩ 𝑋 ≠ ∅. ◀

Proof. Let𝑇 be a minimal hitting set that contains𝑋 . Observation 2.1 guarantees
a private edge 𝐸𝑥 ∈ H with respect to 𝑇 for every 𝑥 ∈ 𝑋 . Let further 𝐸 ∈ H be
such that 𝐸 ⊆ ⋃

𝑥∈𝑋 𝐸𝑥 . As𝑇 is a hitting set, there exists a vertex𝑦 ∈ 𝐸∩𝑇 . From
(⋃𝑥∈𝑋 𝐸𝑥 ) ∩𝑇 = 𝑋 , we get 𝑦 ∈ 𝑋 . The private edges also fulfill Condition (𝑖𝑖).
Conversely, suppose {𝐸𝑥 }𝑥∈𝑋 is a suitable collection of hyperedges. Condi-

tion (𝑖𝑖) implies that𝐻 = 𝑋 ∪ (𝑉 \⋃𝑥∈𝑋 𝐸𝑥 ) is a (not necessarily minimal) hitting
set ofH . Let 𝑇 ⊆ 𝐻 be any minimal hitting set, then 𝑇 contains every 𝑥 ∈ 𝑋 as
otherwise 𝐸𝑥 would not intersect 𝑇 by Condition (𝑖). ■

We call an edge 𝐸 a candidate private edge for 𝑥 ∈ 𝑋 (with respect to set 𝑋 )
if 𝐸 ∩ 𝑋 = {𝑥} holds. The partial solution 𝑋 has some extension 𝑇 ∈ Tr(H) iff
there is a collection of candidate private edges {𝐸𝑥 }𝑥∈𝑋 that satisfy Condition (𝑖𝑖).
Then, the 𝐸𝑥 indeed serve as private edges with respect to 𝑇 .

In light of this characterization, we define an intermediate problem called
Multicolored Independent Family. Consider the following task: given 𝑘 lists
of sets together with an additional collection of “forbidden” sets, one has to select
one set from each list such that they do not completely cover any forbidden set.
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Multicolored Independent Family (MultIndFam)
Instance: A (𝑘+1)-tuple (S1, . . . ,S𝑘 ,T) of hypergraphs

on the common vertex set𝑈 .

Parameter: The non-negative integer 𝑘 .

Decision: Are there edges 𝑆1 ∈ S1, . . . , 𝑆𝑘 ∈ S𝑘 such that
⋃𝑘

𝑖=1 𝑆𝑖
does not contain an edge of T ?

The Multicolored Independent Family problem generalizes the WW[1]-
complete Multicolored Independent Set problems on graphs where the
vertex set is partitioned into 𝑘 “color classes” and the desired independent set is
required to contain one vertex of each color [Fel+09]. Instead, we now select
sets of vertices such that their union has to be independent. Now the sets have
“colors” and the S𝑖 represent the color classes. Multicolored Independent Set
is the special case in which the hypergraphs S𝑖 consist entirely of singletons
and T of the edges of the graph. Evidently, MultIndFam is WW[1]-hard.
Next is the FPT-equivalence between Multicolored Independent Family

and Minimal Hitting Set Extension. We report the features of the second
reduction below in detail as we need them later for the fine-grained lower bounds.

▶ Lemma 4.9. Minimal Hitting Set Extension and Multicolored Indepen-
dent Family are equivalent under polynomial, parameter-preserving reductions.

The reduction from Multicolored Independent Family to the Minimal Hit-
ting Set Extension takes time O((∑𝑘

𝑖=1 |S𝑖 | + |T |) · |𝑈 |) and results in instances
with 𝑛 = |𝑈 | + 𝑘 vertices,𝑚 =

∑𝑘
𝑖=1 |S𝑖 | + |T | edges, and parameter |𝑋 | = 𝑘 . ◀

Proof. Let (H , 𝑋 ) be the input to MinHSExt. The set 𝑋 is extendable iff there
are edges {𝐸𝑥 }𝑥∈𝑋 ∈ H with 𝐸𝑥 ∩ 𝑋 = {𝑥} and their union

⋃
𝑥∈𝑋 𝐸𝑥 does not

contain any edge that is disjoint from 𝑋 . This can be phrased as an instance
of MultIndFam by defining, for each 𝑥 ∈ 𝑋 , the hypergraph S𝑥 = {𝐸 ∈ H |
𝐸 ∩ 𝑋 = {𝑥}}. The last hypergraph T consists of the edges that are disjoint
from 𝑋 . Edges that intersect 𝑋 in more than one vertex can be cast aside. This is
indeed a polynomial reduction.
For the inverse direction, let (𝑈 ,S1, . . . ,S𝑘 ,T) be the instance of Multi-

colored Independent Family. Let 𝑋 = {𝑥1, . . . , 𝑥𝑘 } be a set of 𝑘 new vertices
not previously in𝑈 . We define the hypergraphH on the vertex set𝑉 = 𝑈 ∪𝑋 by
adding all edges of T as well as 𝑆∪{𝑥𝑖} for every 𝑖 ∈ [𝑘] and 𝑆 ∈ S𝑖 . Hypergraph
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H can be computed in time

O
(

𝑘∑︁
𝑖=1

∑︁
𝐸∈S𝑖

|𝐸 | +
∑︁
𝐸′∈T
|𝐸′ |

)
= O

((
𝑘∑︁
𝑖=1
|S𝑖 | + |T |

)
· |𝑈 |

)
.

For any edge 𝐸 ⊆ H , the set 𝐸 ∩𝑉 is an edge of S𝑖 if and only if 𝐸 ∩𝑋 = {𝑥𝑖}.
Moreover, the elements of T are exactly those edges ofH that are disjoint from
𝑋 . Therefore, there are 𝑆1 ∈ S1, . . . , 𝑆𝑘 ∈ S𝑘 such that 𝐸′ ⊈

⋃𝑘
𝑖=1 𝑆𝑖 holds for all

𝐸′ ∈ T if and only if {𝑆𝑖}𝑖∈[𝑘 ] satisfies Conditions (𝑖) and (𝑖𝑖) of Proposition 4.8,
that is, if and only if 𝑋 is extendable to a minimal hitting set ofH . ■

The rich structure of Multicolored Independent Family is appreciated
when designing algorithms. For the discussion of its complexity, however, it is
convenient to also have the freedom to choose the sets from a single list. We
thus define the following variant without colors.

Independent Family (IndFam)

Instance: Two hypergraph S, T on the common vertex set𝑈
and a non-negative integer 𝑘 .

Parameter: The non-negative integer 𝑘 .

Decision: Are there 𝑘 distinct edges 𝑆1, . . . , 𝑆𝑘 ∈ S such that
⋃𝑘

𝑖=1 𝑆𝑖
does not contain an edge of T ?

The two variants are indeed FPT-equivalent.

▶ Lemma 4.10. Multicolored Independent Family and Independent Fam-
ily are equivalent under polynomial, parameter-preserving reductions. ◀

Proof. To reduce MultIndFam to its uncolored variant, it is enough to enforce
that selecting two sets of the same color is never a correct solution. They
must always cover some forbidden set. Let (S1, . . . ,S𝑘 ,T) be an instance of
MultIndFam. For every index 𝑖 ∈ [𝑘], and 𝑆 ∈ S𝑖 , we introduce a new element
𝑥𝑆,𝑖 . The sets are augmented with their respective elements, 𝑆 ∪ {𝑥𝑆,𝑖}, and the
results are collected in the single hypergraph S. Adding the pair {𝑥𝑆,𝑖 , 𝑥𝑆 ′,𝑖} to
T for each 𝑖 and 𝑆 ≠ 𝑆 ′ ∈ S𝑖 invalidates all unwanted selections. It is easy to
check that this destroys no valid solution.
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Figure 4.1: Illustration of Lemma 4.11. On the left side is an instance of Independent
Family, on the right is the resulting circuit of weft 3. All edges are directed downwards.
Selecting {𝑎, 𝑐}, {𝑐, 𝑒}, and {𝑐, 𝑔} from S solves the instance for parameter 𝑘 = 3, any
other combination of three sets covers a member of T .

For the other direction, we make 𝑘 copies of S. To ensure that no two copies
of the same set are selected together, we take a new element 𝑥𝑆,𝑖 for each 𝑆 ∈ S,
𝑖 ∈ [𝑘], define S𝑖 = {𝑆 ∪ {𝑥𝑆,𝑖} | 𝑆 ∈ S}, and add the sets {𝑥𝑆,𝑖 , 𝑥𝑆,𝑗 }𝑖≠𝑗 to T . ■

We now prove that Independent Family is complete for WW[3]. This transfers
to Multicolored Independent Family and Minimal Hitting Set Extension
via the reductions in Lemmas 4.9 and 4.10. In Section 3.3.2, we showed the
membership of the Inclusion Dependency problem in WW[3] by reducing it to
Weighted Antimonotone 3-normalized Satisfiability. Here, we instead use
the more flexible Weighted Circuit Satisfiability problem on weft-3 circuits,
which originally was used to define this class. Still, a connection to normalized
formulas will become apparent in the hardness proof in Lemma 4.12.

▶ Lemma 4.11. There is a polynomial parameter-preserving reduction from
Independent Family to Weighted Circuit Satisfiability on constant-depth
circuits of weft 3. In particular, Independent Family is in WW[3]. ◀

Proof. Given an instance 𝐼 = (𝑈 ,S,T , 𝑘) of IndFam, we build a Boolean circuit
𝐶 of weft 3 that has a satisfying assignment of Hamming weight 𝑘 iff 𝐼 is a
yes-instance. Figure 4.1 shows an example instance and the resulting circuit.
The nodes of𝐶 are in one-to-one correspondence to objects in 𝐼 , slightly abusing
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notation we do not distinguish between nodes and their object. The input nodes
are the edges of S. Circuit 𝐶 has a large OR-gate for each vertex in 𝑢 ∈ 𝑈 . Node
𝑆 ∈ S is wired to gate 𝑢 whenever 𝑢 ∈ 𝑆 . Next, we introduce a layer of large
AND-gates, one for each forbidden set 𝐸 ∈ T . Again, 𝑢 is connected to 𝐸 iff
𝑢 ∈ 𝐸. All AND-gates lead to a single large OR-gate, its negated output serves as
the output of the whole circuit.

Note that the circuit can be constructed from instance 𝐼 in polynomial time. It
has depth 4 and weft 3 as every path from an input node to the output passes
through exactly one large gate in each if the 3 layers and the (small) NOT-gate.
We claim that 𝐶 is satisfied by setting the input nodes 𝑆1, . . . , 𝑆𝑘 to true if and
only if the union

⋃𝑘
𝑖=1 𝑆𝑖 contains no edge of T .

Let 𝑆1 to 𝑆𝑘 be a selection of 𝑘 distinct edges of S. Assigning true to the 𝑆𝑖
and false to all others satisfies exactly the OR-gates 𝑢 ∈ ⋃𝑘

𝑖=1 𝑆𝑖 . Any AND-gate
𝐸 of the second layer is satisfied iff all its feeding OR-gates are satisfied, that is, iff
𝐸 ⊆ ⋃𝑘

𝑖=1 𝑆𝑖 . The results for all forbidden edges 𝐸 ∈ T are collected by the large
OR-gate in the third layer and subsequently negated. Circuit 𝐶 being satisfied is
thus equivalent to no edge 𝐸 being contained in the union of 𝑆1, . . . , 𝑆𝑘 . ■

Recall that a formula is antimonotone and 3-normalized if it is a conjunction
of subformulas in disjunctive normal form (DNF) with only negative literals.
The following formula is an example:

((¬𝑥1∧¬𝑥2∧¬𝑥4)∨(¬𝑥3∧¬𝑥4))∧((¬𝑥1∧¬𝑥3)∨(¬𝑥2∧¬𝑥5)∨(¬𝑥1∧¬𝑥4∧¬𝑥5)) .

It has satisfying assignments of Hamming weight 0, 1, and 2, but none of larger
weight. The intuition behind the WW[3]-hardness proof is as follows. The circuit
𝐶 constructed in Lemma 4.11 has a single NOT-gate as the output node. The
OR-gates of the first layer are the only ones with fan-out larger than 1, but they
are connected exclusively to gates of the second layer. Moving the negation
all the way up to the inputs using De Morgan’s laws, and duplicating the first
layer at most |T | times hence results in an antimonotone formula that is indeed
3-normalized. We show that this is not a mere artifact of the reduction, but due
to a characteristic property of the problem itself. Namely, every such formula
can be encoded in an instance of the Independent Family problem.

▶ Lemma 4.12. There is a polynomial parameter-preserving reduction from
Weighted Antimonotone 3-normalized Satisfiability to Independent
Family. In particular, Independent Family is hard for WW[3]. ◀
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x1 ∧ ∧
(( )

∨(x2 x5 x6 )∨(x1 x3 x4 x5 )x2 x3

)
∧
(
(x2 x6 x7 x8) ∨ (x2 x6 x9) ∨ (x1 x2 x4 x5)

)
∧
(
(x1 x5 x8 x9 ) ∨ (x1 x3 x9 ) ∨ (x1 x2 x9 )

)

L1,1

C1

D
Sx7 = {L2,1}
Sx8 = {L2,1, L3,1}
Sx9 = {L2,2, L3,1, L3,2, L3,3}

T1 = {L1,1, L1,2, L1,3}
T :

Sx4 = {L1,3, L2,3}
Sx5 = {L1,2, L1,3, L2,3, L3,1}
Sx6 = {L1,2, L2,1, L2,2}

S:
Sx1 = {L1,1, L1,3, L2,3, L3,1, L3,2, L3,3}
Sx2 = {L1,1, L1,2, L2,1, L2,2, L2,3, L3,3}
Sx3 = {L1,1, L1,3, L3,2}

T2 = {L2,1, L2,2, L2,3}
T3 = {L3,1, L3,2, L3,3}

∨

Figure 4.2: Illustration of Lemma 4.12. On the left side is an antimonotone, 3-normalized
formula. Negative literals ¬𝑥𝑖 are abbreviated as 𝑥𝑖 and conjunctions inside a clause as
juxtaposition. On the right is the resulting instance of Independent Family. Positions
marked with grey boxes are indexed by the respective sets: 𝐷 for the DNF subformulas,
𝐶1 for the conjunctive clauses of the first subformula, and 𝐿1,1 for the first clause of the
first subformula. The formula admits a satisfying assignment of weight 4 by setting 𝑥4,
𝑥5, 𝑥7, and 𝑥8 to true. Equivalently, the union of the sets 𝑆𝑥4 , 𝑆𝑥5 , 𝑆𝑥7 , and 𝑆𝑥8 does not
cover any forbidden set in T . No assignment of Hamming weight at least 5 is satisfying.

Proof. A Boolean formula 𝜑 on the variable set Var𝜑 is antimonotone and
3-normalized if and only if it can be written as

𝜑 =
∧
𝑑∈𝐷

∨
𝑐∈𝐶𝑑

∧
ℓ∈𝐿𝑑,𝑐

¬𝑥𝑑,𝑐,ℓ ,

for an index hierarchy 𝐷 , {𝐶𝑑 }𝑑∈𝐷 , {𝐿𝑑,𝑐 }𝑑∈𝐷,𝑐∈𝐶𝑑
, and 𝑥𝑑,𝑐,ℓ ∈ Var𝜑 . The index

𝑑 ranges over the constituent DNF subformulas, 𝑐 over their conjunctive clauses,
and ℓ over the negative literals. Of course, a variable may appear multiple times
in the formula, so different triples (𝑑, 𝑐, ℓ) may point to the same variable.
We construct an instance (𝑈 ,S,T , 𝑘) of Multicolored Independent Family

that is a yes-instance if and only if 𝜑 has a weight-𝑘 satisfying assignment.
This is illustrated in Figure 4.2. We take as vertex set the conjunctive clauses
𝑈 = {𝐿𝑑,𝑐 | 𝑑 ∈𝐷, 𝑐 ∈𝐶𝑑 } and add the edge 𝑆𝑥 = {𝐿𝑑,𝑐 | ∃ℓ : 𝑥𝑑,𝑐,ℓ =𝑥} to
S for each variable 𝑥 ∈ Var𝜑 . Namely, 𝑆𝑥 contains all clauses in which 𝑥

occurs. The DNF subformulas are represented in the hypergraph T via the edges
𝐸𝑑 = {𝐿𝑑,𝑐 | 𝑐 ∈ 𝐶𝑑 } for all 𝑑 ∈ 𝐷 .
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The key observation is the following. Consider a truth assignment represented
by the set 𝐴 ⊆ Var𝜑 of the variables assigned true. Since 𝜑 is antimonotone,
clause 𝐿𝑑,𝑐 is satisfied if and only if none of its variables 𝑥𝑑,𝑐,ℓ is in 𝐴. As a result,
subformula 𝑑 is true iff 𝐴 is not a hitting set for the clauses of 𝑑 .
Suppose the assignment 𝐴 = {𝑥1, . . . , 𝑥𝑘 } is satisfying. Then, the union⋃𝑘
𝑖=1 𝑆𝑥𝑖 contains exactly the conjunctive clauses that are not satisfied. If this

union were to cover any forbidden edge in T , the corresponding subformula,
and hence 𝜑 , would be unsatisfied, a contradiction. Therefore, (𝑈 ,S,T , 𝑘) is
a yes-instance of Independent Family. Conversely, let 𝑆𝑥1 through 𝑆𝑥𝑘 be a
selection of edges from S such that their union covers no member of T . In other
words, each subformula has at least one clause that is disjoint from {𝑥1, . . . , 𝑥𝑘 }.
Assigning true to (exactly) those variables 𝑘-satisfies 𝜑 . ■

4.3.2 Fine-Grained Lower Bounds

We now discuss consequences of our reductions beyond parameterized complex-
ity. They allow us to derive lower bounds on the running time of any algorithm
for Minimal Hitting Set Extension from certain hypotheses. These lower
bounds are conditional in that the hypotheses, albeit plausible, are still unproven.

The common belief that NPNP-hard problems do not have polynomial algorithms,
or that WW[1]-hard ones do not admit FPT-solutions, can be cast as conditional
running time lower bounds in that they rely on unproven hypotheses. In the last
decade, this perspective has been developed into the area of fine-grained com-
plexity, see the surveys by Bringmann [Bri19] and Vassilevska Williams [Vas19].
The field tries to determine the exact exponent of the time needed to solve
various problems in the polynomial, exponential, and parameterized domain.
The proven lower bounds often match closely with the best known algorithms,
but they come with the caveat of relying on even more hardness assumptions.
Such bounds need to strike a balance between the plausibility of the conjecture
and the strength of the result following from it.
We offer three lower bounds on the extension problem. They are presented

in order of increasing strength and are respectively derived from ever stronger
conjectures about the WW-hierarchy and Boolean satisfiability. The first one im-
mediately follows from Minimal Hitting Set Extension beingWW[3]-complete.
If WW[3] ≠ FPTFPT, there is no FPT-algorithm solving the extension problem in time
𝑓 ( |𝑋 |) · O((𝑚+𝑛)𝑐) on hypergraphs with 𝑛 vertices and𝑚 edges for any com-
putable 𝑓 and constant 𝑐 . Note that the parameterized reductions above also show
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that Multicolored Independent Family and Independent Family cannot be
solved in time 𝑓 (𝑘) · polypoly( |S1 |, . . . , |S𝑘 |, |T |, |𝑈 |) and 𝑓 (𝑘) · polypoly( |S|, |T |, |𝑈 |).

The next lower bound follows from the stronger assumption that WW[2] ≠ FPTFPT.
For this, we use a proposition4 by Chen et al. [Che+06].

▶ Proposition 4.13 (Chen et al. [Che+06]). Let 𝑓 be an arbitrary computable
function. If there exists an algorithm solving the Weighted Antimonotone
3-normalized Satisfiability problem on formulas of size𝑚 with 𝑛 variables
in time 𝑓 (𝑘) 𝑛o(𝑘 ) polypoly(𝑚), then WW[2] = FPTFPT. ◀

Note that the reductions from WA3NS to IndFam, and further to MultIndFam
and MinHSExt in Lemmas 4.9, 4.10 and 4.12 are all polynomial-time computable
and linear the sense that they increase the parameter by at most a constant
factor. In fact, they even preserve the parameter exactly. Any algorithm solving
the Minimal Hitting Set Extension problem in time 𝑓 ( |𝑋 |) (𝑚+𝑛)o( |𝑋 | ) on
𝑛-vertex,𝑚-edge hypergraphs would thus give a fast algorithm for Weighted
Antimonotone 3-normalized Satisfiability and thus imply the collapse
WW[2] = FPTFPT. Similar bounds also hold for the intermediate problems.

The above bound states that the exponent of the worst-case running time
for MinHSExt necessarily has a linear dependence on the parameter |𝑋 |. We
show next that the leading coefficient of that dependency is likely to be 1. The
Orthogonal Vectors (OV) problem serves as an illustration of this kind of
result. Recall that for this problem we are given two sets, each with 𝑛 binary
vectors in 𝑑 dimensions, and we ought to decide whether there is one vector
from each set such that their inner product is 0. Straightforwardly testing all
pairs yields an O(𝑛2𝑑)-time algorithm. Maybe surprisingly, Williams [Wil05]
showed that this cannot be improved to 𝑛2−𝜀 · polypoly(𝑑) for any constant 𝜀 > 0,
at least not if one believes that CNF SAT on formulas with 𝑛 variables cannot
be solved in time O(2(1−𝜀/2)𝑛). Such an improved algorithm would be a huge
breakthrough in satisfiability, its conjectured non-existence is the core of the
Strong Exponential Time Hypothesis.
We derive our hardness result from a generalization of OV, known as the

𝑘-Orthogonal Vectors problem. Let 𝑘 ≥ 2 be an integer.

4 The proposition follows from a more general result [Che+06, Theorem 4.2] on the weighted
satisfiability of what the authors call structured Π𝑡 -circuits. For 𝑡 = 3, the structure coincides
with that of antimonotone, 3-normalized formulas.
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𝑘-Orthogonal Vectors (𝑘-OV)
Instance: Sets 𝐴1, . . . , 𝐴𝑘 ⊆ {0, 1}𝑑 with |𝐴1 | = · · · = |𝐴𝑘 | = 𝑛.

Decision: Are there vectors ®𝑥 (1) ∈𝐴1, ®𝑥 (2) ∈𝐴2, . . . , ®𝑥 (𝑘 ) ∈𝐴𝑘

such that
∑𝑑

𝑗=1
∏𝑘

𝑖=1 𝑥
(𝑖 )
𝑗

= 0?
The addition and multiplication are those inN, not the field F2. We also empha-
size that this defines a family of problems, one for each 𝑘 ≥ 2, as opposed to a
single parameterized problem.
The following conjecture generalizes Hypothesis 2.5 from OV to 𝑘-OV.

▶ Hypothesis 4.14 (𝒌-Orthogonal Vectors conjecture in moderate di-
mensions (𝒌-OV conjecture)). For any constants 𝜀 > 0 and 𝑘 ≥ 2, the
𝑘-Orthogonal Vectors problem cannot be solved in time 𝑛𝑘−𝜀 · polypoly(𝑑). ◀

It is well-known that a slight change of the reduction in [Wil05] proves that
SETH implies Hypothesis 4.14. Nevertheless, it is consistent with our current
knowledge that the 𝑘-OV conjecture holds while SETH is false. The assumptions
WW[3] ≠ FPTFPT and WW[2] ≠ FPTFPT used above also follow from SETH but are possibly
much weaker, see the discussion in [Che+06; Cyg+15; IP01; IPZ01]. Again, no
inverse connection nor any relation between the conjectures on theWW-hierarchy
and on 𝑘-Orthogonal Vectors are known.
We aim to disprove the existence of an algorithm for Minimal Hitting

Set Extension running in time 𝑚 |𝑋 |−𝜀 · polypoly(𝑛) for any constant 𝜀 > 0 and
constant parameter |𝑋 |. By Lemma 4.9, such an algorithm impliesMulticolored
Independent Family being solvable in time (∑𝑘

𝑖=1 |S𝑖 | + |T |)𝑘−𝜀 · polypoly( |𝑈 |). We
show that the latter assertion contradicts the 𝑘-Orthogonal Vectors conjecture.

▶ Lemma 4.15. If there exists an algorithm solving Multicolored Indepen-
dent Family in time (∑𝑘

𝑖=1 |S𝑖 | + |T |)𝑘−𝜀 · polypoly( |𝑈 |) for any constants 𝜀 > 0 and
𝑘 ≥ 2, then the 𝑘-OV conjecture fails. ◀

Proof. Naturally, we reduce from𝑘-OV. Figure 4.3 illustrates the construction. Let
𝐴1, . . . , 𝐴𝑘 ⊆ {0, 1}𝑑 be sets with 𝑛 binary vectors each. The constructed instance
of MultIndFam has𝑈 = [𝑘] × [𝑑] as its vertex set. Let 1( ®𝑥) = { 𝑗 ∈ [𝑑] | 𝑥 𝑗 = 1}
be the set with characteristic vector ®𝑥 . For each 𝑖 ∈ [𝑘], we let the hypergraph
S𝑖 represent the set 𝐴𝑖 by adding the edge {𝑖} × 1( ®𝑥) = {(𝑖, 𝑗) | 𝑗 ∈ 1( ®𝑥)} for
each ®𝑥 ∈ 𝐴𝑖 . Hypergraph T contains the edge 𝐹 𝑗 = [𝑘] × { 𝑗} for every 𝑗 ∈ [𝑑].
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A1 = {111110,

A1 = {011011,

A2 = {010111,

A2 = {011101,

A3 = {011011,

A3 = {011100,

S1 = {{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)},

S1 = {{(1, 2), (1, 3), (1, 5), (1, 6)},

S2 = {{(2, 2), (2, 4), (2, 5), (2, 6)},

S1 = {{(2, 2), (2, 3), (2, 4), (2, 6)},

S3 = {{(3, 2), (3, 3), (3, 5), (3, 6)},

S3 = {{(3, 2), (3, 3), (3, 4)},

T = {{(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 2), (3, 2)},
T = {{(1, 3), (2, 3), (3, 3)}, {(1, 4), (2, 4), (3, 4)},
T = {{(1, 5), (2, 5), (3, 5)}, {(1, 6), (2, 6), (3, 6)}}

A1 = {001111,

A1 = {010101}

S1 = {{(1, 3), (1, 4), (1, 5), (1, 6)},

S1 = {{(1, 2), (1, 4), (1, 6)}}

A2 = {101110,

A2 = {111011}

S2 = {{(2, 1), (2, 3), (2, 4), (2, 5)},

S1 = {{(2, 1), (2, 2), (2, 3), (2, 5), (2, 6)}}

A3 = {110110,

A3 = {101111}

S3 = {{(3, 1), (3, 2), (3, 4), (3, 5)},

S3 = {{(3, 1), (3, 3), (3, 4), (3, 5), (3, 6)}}

Figure 4.3: Illustration of Lemma 4.15 for 𝑘 = 3. On the left side is an 3-Orthogonal
Vectors instance with 𝑛 = 4 vectors in 𝑑 = 6 dimensions. On the right is the resulting
instance of Multicolored Independent Family. The three vectors 010101 ∈ 𝐴1,
101110 ∈ 𝐴2, and 011011 ∈ 𝐴3 together are orthogonal, the union of the corresponding
edges from S1, S2, and S3 does not contain any edge of T .

Intuitively, 𝐹 𝑗 being completely covered by the union of hyperedges means that
the corresponding vectors all share a 1 in the 𝑗-th component.

Let ®𝑥 (1) ∈𝐴1, ®𝑥 (2) ∈𝐴2, . . . , ®𝑥 (𝑘 ) ∈𝐴𝑘 be a selection of vectors. For any 𝑖 ∈ [𝑘]
and 𝑗 ∈ [𝑑], we have 𝑥 (𝑖 )

𝑗
= 0 if and only if (𝑖, 𝑗) is not contained in the edge

{𝑖} × 1( ®𝑥 (𝑖 ) ) ∈ S𝑖 . Moreover, no edge of any other Sℓ , ℓ ≠ 𝑖 , can contain (𝑖, 𝑗).
Therefore, we have 𝐹 𝑗 ⊈

⋃𝑘
𝑖=1({𝑖} × 1( ®𝑥 (𝑖 ) )) iff

∏𝑘
𝑖=1 𝑥

(𝑖 )
𝑗

= 0. Finally, this is the
case for all 𝐹 𝑗 ∈ T iff the vectors ®𝑥 (1) , . . . , ®𝑥 (𝑘 ) are orthogonal.
Recall that 𝑘 ≥ 2 is a constant. There are

∑𝑘
𝑖=1 |S𝑖 | + |T | = 𝑘𝑛 + 𝑑 = 𝑂 (𝑛+𝑑)

edges on |𝑈 | = 𝑘𝑑 vertices and the new instance is computable in time O(𝑘𝑛𝑑 +
𝑘𝑑) = O(𝑛𝑑). The algorithm for Multicolored Independent Family running
in time (∑𝑘

𝑖=1 |S𝑖 | + |T |)𝑘−𝜀 · polypoly( |𝑈 |) would solve 𝑘-Orthogonal Vectors in

O((𝑛 + 𝑑)𝑘−𝜀) · polypoly(𝑑) = O(𝑛𝑘−𝜀 + 𝑑𝑘−𝜀) · polypoly(𝑑) = 𝑛𝑘−𝜀 · polypoly(𝑑). ■
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4.3.3 The Nondeterministic Strong Exponential Time Hypothesis

Any algorithm solving the Minimal Hitting Set Extension problem in time
𝑚 |𝑋 |−𝜀 ·polypoly(𝑛) for arbitrary constants |𝑋 | and 𝜀 > 0 violates SETH. In Section 4.4,
we present an O(𝑚 |𝑋 |+1𝑛)-time solution. This raises the question what is the
“true” exponent of𝑚. Although we believe that our algorithm is optimal with
respect to𝑚, at least up to subpolynomial factors, we sketch an argument why it
might be hard to raise the lower bound of Lemma 4.15 to, say,𝑚 |𝑋 |+1−o(1) ·polypoly(𝑛).
Carmosino et al. [Car+16] identified a fundamental obstacle for proving

SETH-hardness. A co-nondeterministic algorithm for some decision problem
is one whose computation path may have nondeterministic transitions. On
a yes-instance, every path is required to produce the answer true, on a no-
instance, there must be at least one path resulting in false. The only known
co-nondeterministic algorithm for CNF SAT that improves over brute force is
randomized [Wil16]. The Nondeterministic Strong Exponential Time Hypothe-
sis (NSETH) conjectures that this behavior is inherent to the problem in that
no non-randomized co-nondeterministic algorithm can break the 2𝑛-barrier on
formulas with 𝑛-variables.

▶ Hypothesis 4.16 (Nondeterministic Strong Exponential Time Hypothe-
sis, NSETH [Car+16]). For every constant 𝜀 > 0, there exists a positive integer
𝑘 such that no co-nondeterministic algorithm without access to randomness can
decide 𝑘-CNF SAT on 𝑛-variable formulas in time O(2(1−𝜀 )𝑛). ◀

NSETH can be seen as a common generalization of SETH and NPNP ≠ coNPNP.
The value of the conjecture lies not so much in its plausibility–it is false for
randomized algorithms–but the fact that both proving and refuting NSETH
has interesting consequences. Finding a fast co-nondeterministic algorithm for
satisfiability would immediately yield new circuit lower bounds, see [Car+16].
Proving NSETH would, among other things, resolve the PP vs. NPNP problem.

The conjecture also rules out the existence of certain fine-grained reductions.
Consider a decision problem Π that admits an algorithm A running in time
𝑇 (𝑚,𝑛) and also a non-randomized co-nondeterministic algorithm B running in
time𝑇 (𝑚,𝑛)1−𝜀 for some constant 𝜀 > 0. If NSETH is true, then no deterministic
reduction from CNF SAT to Π can prove that algorithmA is optimal under SETH
since the very same reduction would give an improved co-nondeterministic
algorithm for CNF SAT using algorithm B.
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For the further discussion regarding the hardness of Minimal Hitting Set
Extension, we use the language of first-order model checking. For an introduc-
tion to first-order logic in parameterized complexity, see the textbook Flum and
Grohe [FG06]. The equivalent Multicolored Independent Family problem
can be seen as deciding whether the input (𝑈 ,S1, . . . ,S𝑘 ,T) is a model5 for

𝜑 = ∃𝑥1 ∈ S1 . . . ∃𝑥𝑘 ∈ S𝑘 ∀𝑦 ∈ T ∃𝑧 ∈𝑈 : 𝑧 ∈ 𝑦 ∧
𝑘∧
𝑖=1

𝑧 ∉ 𝑥𝑖 .

MultIndFam is a graph problem in the sense that the maximum arity of any
relation in (𝑈 ,S1, . . . ,S𝑘 ,T) is 2. Formula 𝜑 has 𝑘 existential quantifiers, fol-
lowed by a universal one, and then another existential quantifier. We abbreviate
this to ∃𝑘∀∃. Since MultIndFam is WW[3]-complete, the quantifier structure is a
characteristic property of the problem, see [FG06].

Let𝑘 be a positive integer and let ℓ denote the total number of “edges”, meaning
the tuples in the binary relations. Note that for MultIndFam ℓ can be as large as
(∑𝑘

𝑖=1 |S𝑖 | + |T |) · |𝑈 |. Along the lines sketched above, Carmosino et al. [Car+16,
Theorem 4] showed that under NSETH the only graph problems with 𝑘 + 2
quantifiers that can be proven to be SETH-hard with a time bound ℓ𝑘+1−o(1) via
deterministic reductions are those with quantifier structure ∃𝑘+1∀ or ∀𝑘+1∃.
Using SETH to disprove the existence of an algorithm for Multicolored

Independent Family running in time O(ℓ𝑘+1−𝜀), that is,

O©­«
((

𝑘∑︁
𝑖=1
|S𝑖 | + |T |

)
|𝑈 |

)𝑘+1−𝜀ª®¬ =

(
𝑘∑︁
𝑖=1
|S𝑖 | + |T |

)𝑘+1−𝜀
· polypoly( |𝑈 |),

for any 𝜀 > 0, would therefore need to introduce randomness in a non-trivial
way or provide a breakthrough co-nondeterministic algorithm for CNF SAT.

4.4 An Algorithm for the Extension Problem

To finish the description of our hitting set enumeration algorithm, we need to
implement the subroutine for the extension problem. We not only assumed that

5 Strictly speaking, we express the instance (𝑈 ,S1, . . . ,S𝑘 ,T) as a relational structure over the
universe𝑈 ∪ S1 ∪ · · · ∪ S𝑘 ∪ T with unary relations 𝑆1, . . . , 𝑆𝑘 ,𝑇 , where 𝑆𝑖 𝑥 is interpreted as
𝑥 being an edge of S𝑖 , and one binary relation ∈ ⊆ 𝑈 × (S1 ∪ · · · ∪ S𝑘 ∪ T).
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Algorithm 2: Algorithm for Minimal Hitting Set Extension.
Input: Hypergraph (𝑉 ,H),H ≠ ∅, and

disjoint sets 𝑋 = {𝑥1, . . . , 𝑥 |𝑋 |}, 𝑌 ⊆ 𝑉 .
Output: minimal if 𝑋 ∈ Tr(H), true if there is a 𝑇 ∈ Tr(H)

with 𝑋 ⊊ 𝑇 ⊆ 𝑉 \𝑌 , and false otherwise.

1 if 𝑋 = ∅ then
2 if 𝑉 \𝑌 is a hitting set then return true;
3 else return false;

4 initialize hypergraph T = ∅;
5 foreach 𝑥 ∈ 𝑋 do initialize hypergraph S𝑥 = ∅;
6 foreach 𝐸 ∈ H do
7 if 𝐸 ∩ 𝑋 = {𝑥} then add 𝐸\𝑌 to S𝑥 ;
8 if 𝐸 ∩ 𝑋 = ∅ then add 𝐸\𝑌 to T ;
9 if ∃𝑥 ∈ 𝑋 : S𝑥 = ∅ then return false;

10 if T = ∅ then return minimal;
11 foreach (𝐸𝑥1, . . . , 𝐸𝑥 |𝑋 | ) ∈ S𝑥1 × · · · × S𝑥 |𝑋 | do
12 𝑊 ← ⋃ |𝑋 |

𝑖=1 𝐸𝑥𝑖 ;
13 if ∀𝑇 ∈ T : 𝑇 ⊈𝑊 then return true;

14 return false;

we can decide for disjoint sets 𝑋 and 𝑌 whether 𝑋 can be extended to a minimal
hitting set avoiding 𝑌 , we additionally claimed that it is possible to find out
whether 𝑋 is itself a solution at no additional cost.

Despite the hardness results, the investigation in Section 4.3 also revealed
some structure of the Minimal Hitting Set Extension problem that can be
exploited algorithmically. Justified by Lemma 4.9, we approach it via Multi-
colored Independent Family. LetH be the input hypergraph. IfH = ∅ does
not contain a single edge,𝑋 is a minimal transversal if and only if𝑋 = ∅ is empty
as well. In the remainder we assume thatH is non-empty and solve the extension
problemwith Algorithm 2. To handle the set𝑌 of excluded vertices, the algorithm
computes the truncated hypergraph {𝐸\𝑌 }𝐸∈H and then reduces it to an instance
of MultIndFam. In fact, both steps can be computed in one pass (line 4–8).
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Lemma 4.15 suggests that we cannot improvemuch over brute forcewhen solving
the resulting instance, at least not in the worst case. There are, however, several
sanity checks possible that may avoid unnecessary computations in practice.
The first check is the special case of an empty set 𝑋 = ∅. It is extendable without
using 𝑌 if and only if 𝑉 \𝑌 is a hitting set, that is, iff 𝑌 does not contain an edge.
The other two checks (in lines 9 and 10) assess whether the instance at hand can
be decided immediately. If the checks are inconclusive, the instance is indeed
solved by brute force (line 11–14). Note that the existence of a minimal extension
is decided without explicitly computing one. As shown in Section 4.2, this is
enough for the enumeration.
Recall that 𝑛 = |𝑉 | denotes the number of vertices and𝑚 = |H | the number

of edges of the hypergraph. We now show that the running time of Algorithm 2
matches the OV-lower bound of Lemma 4.15 up to an O(𝑚)-factor.

▶ Lemma 4.17. Let (𝑉 ,H) be a non-empty hypergraph and 𝑋,𝑌 ⊆ 𝑉 disjoint
sets of vertices. Algorithm 2 returns minimal if 𝑋 ∈ Tr(H) is a minimal hitting
set, true if there is a 𝑇 ∈ Tr(H) with 𝑋 ⊊ 𝑇 ⊆ 𝑉 \𝑌, and false otherwise. The
algorithms runs in O(( 𝑚|𝑋 | )

|𝑋 | ·𝑚𝑛) time and O(𝑚𝑛) space. ◀

Proof. The first part up to line 10 of the algorithm computes the reduction
from MinHSExt to MultIndFam (Lemma 4.9) for the truncated hypergraph
(𝑉 \𝑌, {𝐸\𝑌 }𝐸∈H). The sanity checks in lines 1, 9 and 10 filter out trivial in-
stances. The foreach-loop starting in line 11 is then brute-forcing the result of
the reduction, checking all tuples in the Cartesian product

∏
𝑥∈𝑋 S𝑥 .

SinceH is non-empty, the empty set 𝑋 = ∅ cannot be a hitting set ofH . For
some 𝑋 ≠ ∅ to be a hitting set, the corresponding hypergraph T must be empty,
as verified in line 10. Observe that this reduces Proposition 4.8 about candidate
private edges to Observation 2.1. Therefore, such an𝑋 is minimal iff every 𝑥 ∈ 𝑋
has a private edge, which is exactly what is tested in line 9. Algorithm 2 correctly
identifies the minimal transversals 𝑋 and returns Minimal in line 10.

Regarding the time complexity, we assume that all set operations (membership,
product, union, intersection, and difference) are implemented such that they take
time proportional to the total number of elements contained in the input and
output of the operation. Checking whether 𝑉 \𝑌 is a hitting set and computing
the hypergraphs S𝑥1 , . . . , S𝑥 |𝑋 | , and T can thus be done in time O(𝑚𝑛). The
running time is dominated by the brute-force phase. The cardinality of the
Cartesian product is maximum if all hypergraphs have the same number of
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sets and no edge is cast aside. There are thus at most (𝑚/|𝑋 |) |𝑋 | many tuples.
For each of them, the algorithm computes the union𝑊 in O( |𝑋 |𝑛) time and
checks all forbidden sets in T in O(𝑚𝑛). The fact that every element of 𝑋 has a
candidate private edge implies |𝑋 | ≤ 𝑚 and O( |𝑋 |𝑛 +𝑚𝑛) = O(𝑚𝑛).
Regarding the space requirement, note that S𝑥 and T are all disjoint subhy-

pergraphs of {𝐸\𝑌 }𝐸∈H , using at most as much space as (𝑉 ,H). ■

Finally, we use Lemma 4.17 to prove a guarantee on the maximum delay
between consecutive outputs of Algorithm 1. The bound is stated in terms
of the transversal rank 𝑘∗ = rank(Tr(H)). Recall that 𝑘∗ is not known to
the algorithm, the input consists only of the hypergraph itself. For bounded
transversal rank, we achieve polynomial delay. In particular, Algorithm 1 then
solves the Transversal Hypergraph problem in output-polynomial time.

▶ Lemma 4.18. Consider Algorithm 1 with Algorithm 2 implementing the
subroutine extendable. On input (𝑉 , ⩽,H), it enumerates the edges of Tr(H)
in ⩽-lexicographical order with delay O(𝑚𝑘∗+1𝑛2), where 𝑘∗ = rank(Tr(H)).
The algorithm uses O(𝑚𝑛) space. ◀

Proof. The correctness was treated in Lemmas 4.7 and 4.17. We have also shown
there that the label of the current node contains all relevant information to
govern the tree search. In particular, it encodes the path to the node in the (only
implicitly constructed) recursion tree for backtracking. The total space usage is
thus dominated by the O(𝑚𝑛) of Algorithm 2.
We are left to bound the delay. The height of the tree is |𝑉 | = 𝑛. After exiting

a leaf, the pre-order traversal expands at most 2𝑛 − 1 inner nodes before arriving
at the next leaf. In the worst case, method extendable is invoked in each of
them, even with the shortcut evaluations. The O(( 𝑚|𝑋 | )

|𝑋 |𝑚𝑛) = O(𝑚 |𝑋 |+1𝑛)
subroutine dominates the time spent in each node.
We prove that during the enumeration any set 𝑋 appearing as the first argu-

ment of extendable is of cardinality at most |𝑋 | ≤ 𝑘∗. To reach a contradiction,
assume a node (𝑋,𝑌, 𝑅 =𝑉 \(𝑋∪𝑌 )) with |𝑋 | > 𝑘∗ is expanded by Algorithm 1.
This cannot be the root as 𝑋 is non-empty. Thus, prior to entering (𝑋,𝑌 ;𝑅),
either extendable(𝑋 ,𝑌) has been called or the shortcut evaluation inferred
the outcome true from the previous calls. Set 𝑋 is neither a minimal solution
nor can it be extended to one as its cardinality is larger than the transversal
rank. The check returned false and (𝑋,𝑌, 𝑅) is never entered, a contradiction.
Therefore, the delay is bounded by (2𝑛 − 1) ·O(𝑚𝑘∗+1𝑛) = O(𝑚𝑘∗+1𝑛2). ■
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4.5 Enumerating Unique Column Combinations

We apply our enumeration algorithm to hypergraphs arising in data profiling as
a proof of concept. Specifically, we solve Discover Minimal UCCs. The folklore
reduction translates this to the Transversal Hypergraph problem, and we
showed in Chapter 3 that encountering hitting sets is really unavoidable when
dealing with UCCs. Observation 2.2 implies a two-phased approach for their
discovery. First, generate the hypergraph of minimal difference sets. Secondly,
list its minimal transversals. The first phase takes time polynomial in the size
of the database. The second phase, which has exponential complexity in the
worst case, is the focus of this section. In the following, we thus assume that the
Sperner hypergraph of minimal difference sets is given as the input.

4.5.1 Data and Experimental Setup

We evaluate our enumeration algorithm on a total of 12 databases. Ten of them
are publicly available. These are the abalone, echocardiogram, hepatitis,
and horse datasets from the University of California Irvine (UCI) Machine Learn-
ing Repository;6 uniprot from the Universal Protein Resource;7 the datasets
civil_service,8 ncvoter_allc9 and flight_1k10 provided by the respec-
tive authorities of the City of New York, the state of North Carolina, and the
federal government of the United States; call_a_bike of the German railway
company Deutsche Bahn,11 as well as amalgam1 from the Database Lab of the
University of Toronto.12 They are complemented by two randomly generated
datasets fd_reduced_15 and fd_reduced_30 using the dbtesma data gener-
ator.13 Databases with more than 100k rows are cut by choosing 100k rows
uniformly at random.

The algorithms are implemented in C++ and run on a Ubuntu 16.04 machine
with two Intel® Xeon® E5-2690 v3 2.60 GHz CPUs and 256 GB RAMWe made

6 archive.ics.uci.edu/ml
7 uniprot.org
8 opendata.cityofnewyork.us
9 ncsbe.gov
10 transtats.bts.gov
11 data.deutschebahn.com
12 dblab.cs.toronto.edu/∼miller/amalgam
13 sourceforge.net/projects/dbtesma
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Dataset Columns Rows 𝑛 𝑚 𝑘∗ UCCs

call_a_bike 17 100 000 13 6 4 23
abalone 9 4177 9 30 6 29
echocardiogram 13 132 12 30 5 72
civil_service 20 100 000 14 19 7 81
horse 29 300 25 39 11 253
uniprot 40 19 999 37 28 10 310
hepatitis 20 155 20 54 9 348
fd_reduced_15 15 100 000 15 75 3 416
amalgam1 87 50 87 70 4 2737
fd_reduced_30 30 100 000 30 224 3 3436
flight_1k 109 1000 53 161 8 26 652
ncvoter_allc 94 100 000 82 448 15 200 907

Table 4.1: The databases used in the evaluation, ordered by the number of minimal
UCCs. Columns and Rows denote the respective dimension of the database, 𝑛 and𝑚
refer to the resulting hypergraph of minimal difference sets, 𝑘∗ is the transversal rank,
that is, the size of the largest minimal UCC.

the code and data available.14 In some experiments, we collect the run times of
intermediate steps, for example the calls to the subroutine (Algorithm 2). To
avoid interference with the overall run time measurements, we use separate
runs for these. Also, we average over multiple runs to reduce the noise of the
measurements. See the corresponding sections for details.

Table 4.1 gives an overview of the data. It lists the number of columns and rows
in the database, the number of vertices and edges of the resulting hypergraph, the
transversal rank/maximum cardinality of a minimal UCC, as well as the number
of solutions. The table is sorted by the number of minimal hitting sets/UCCs.
All plots below use this order.

After computing the minimal difference sets, we removed all vertices that do
not appear in any edge as they are irrelevant for the enumeration. Therefore,
the number 𝑛 of vertices can be smaller than the number of columns in the
database. The particularly stark difference for flight_1k stems from a large

14 hpi.de/friedrich/research/enumdat
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portions of the columns being empty. The total number of difference sets of
a database with |𝑟 | rows is

( |𝑟 |
2
)
in the worst case. However, Table 4.1 shows

that the number𝑚 of minimal difference sets tends to be much smaller than 𝑟 ,
let alone quadratic. Put it the other way around, only very few pairs of rows
actually contribute to the UCCs and the hypergraph perspective thus provides a
very compact representation of the discovery problem. As was observed before
by other researchers in data profiling [Abe+18; Köh+16; Pap+15], the maximum
cardinality 𝑘∗ of the minimal UCCs is small in practice. In particular, there does
not appear to be any relationship between 𝑘∗ and the input size.

4.5.2 Run Time, Delay, and Memory

Our enumeration method (Algorithm 1) branches on the vertices in a certain
global order. Although the order does not matter for our asymptotic bounds, it
does affect the shape of the explored decision tree, which in turn impacts the
practical run time. Even on the theoretical side, it has been shown that there
exist orders that render already finding the (lexicographically) first solution an
NPNP-hard search problem [JPY88]. We are therefore interested how much the
branching order influences the performance.
To support the enumeration, we heuristically sort the vertices descendingly

by the number of distinct values that appear in the corresponding column of the
original database. The intuition is that columns with many values have a higher
discriminative power over the pairs of rows and thus are more likely to appear in
many minimal UCCs. Including an expressive vertex makes many other vertices
obsolete, which should lead to early pruning of the tree. Conversely, excluding
such vertices (adding them to the set 𝑌 in Algorithm 2) makes it likely that
only a few hitting sets survive, which also prunes the tree early. Note that
reducing the size of the decision tree, and thus the number of subroutine calls,
does not automatically reduce the run time. The remaining calls may have a
larger average return time. We discuss this in more detail in Section 4.5.3. As
a side note, preliminary experiments showed that sorting the vertices by their
hypergraph degree instead (that is, the number of minimal difference sets in
which they appear) resulted in similar but slightly worse run times.

Besides using our heuristic order, we also evaluate the algorithms on 1000 ran-
dom branching orders per dataset. The ncvoter_allc instance is an exception,
the larger enumeration times do not permit that many experiments. We report
on this dataset separately. The run times, averaged over 10 measurements for
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Figure 4.4: Overall run times of the enumeration algorithm. The dot marks the time
using the heuristic branching order. For all datasets except ncvoter_allc, the box plot
shows the times for 1000 random orders. Their median is indicated by a vertical line, the
boxes range from the first to third quartile, and the whiskers chart the 1.5 interquartile
range above and below those quartiles. Outliers outside of this range are marked by
crosses. Each data point is the average over 10 runs.

each data point, are shown in Figure 4.4. The 𝑥-axis is scaled logarithmically. The
boxes show the first to third quartile of the samples, with the median indicated
as a horizontal line. The whiskers represent the smallest data point within 1.5
interquartile range (IQR) of the lower quartile and the highest one within 1.5
IQR of the upper quartile. We count everything beyond that as outliers.

The median run times generally scale with the number of solutions, which is to
be expected. They range from 0.25 ms for the 23 minimal UCCs of call_a_bike
to roughly 27 min for the more than 200k solutions of ncvoter_allc. The
only exceptions from this trend, that have shorter enumeration times albeit
more solutions, are the artificially generated instances fd_reduced_15 and
fd_reduced_30. For most of the instances, the branching order had only little
impact and the enumeration times are concentrated around the median. Our
heuristic outperformed the median random order on all instances, indicating
that it is a solid choice in practice. On the flight_1k dataset, the heuristic even
resulted in a better run time than any of the random orders. For ncvoter_allc,
however, the influence of the branching order was significantly larger. Using the
heuristic, the enumeration completed in less than half an hour. For comparison,
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Figure 4.5: Delays between consecutive outputs of minimal unique column combina-
tions using the heuristic branching order. The box plots show the same quartiles as in
Figure 4.4. Each data point is the average over 100 runs.

on four out of the eleven random orders we tested, the process only finished after
59.7 h, 105.3 h, 113.7 h, and 167.7 h, respectively. The other seven runs exceeded
the time limit of 168 h (one week).
Lemma 4.18 gives a worst-case guarantee on the delay that depends on the

maximum size 𝑘∗ of a minimal UCC. The box plot in Figure 4.5 shows the
empirical delays when using the heuristic branching order. Again, the time-
axis is logarithmic. Recall that the output order of the solutions is entirely
determined by the branching order of the vertices. Each data point in Figure 4.5
corresponds to one output, it was obtained by averaging the delay prior to
the same solution over 100 runs. The plot shows that there is a high variance
in the delays for the different solutions of an instance. The extreme case is
ncvoter_allc where the delays range from the order of 10−1 ms to over 103 ms.
Nevertheless, the maximum delay was always less than 2 s, which is reasonably
low. The ncvoter_allc instance also has the largest solutions with 𝑘∗ = 15.
However, the next smaller datasets in that category, horse and uniprot with
transversal ranks of 11 and 10, respectively, have a much lower delay. In general,
we cannot confirm a significant correlation between 𝑘∗ and the empirical delays.
In the following section, we investigate the delays more closely by looking at
the run time distribution of the calls to the subroutine.
In Lemma 4.18, we also prove a bound on the space requirement, which is
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Figure 4.6: The complementary cumulative frequencies of the run times of the sub-
routine calls on the real-world databases using the heuristic branching order. Plot (a)
shows all calls, (b) only those entering the brute-force loop in line 11 of Algorithm 2.
Each data point is the average of the same call over 100 runs.
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independent of the number of solutions. We measured the memory consumption
during the enumeration as an average over 5 runs, except for nc_voter_allc
where we did only a single run. All datasets used between 4.52 MB and 4.68 MB
RAM. For comparison, just loading the program without an input takes 4.41 MB.
The memory overhead is marginal and independent of the number of solutions.
In our experiments, it even seemed to be insensitive to the given instance.

4.5.3 Subroutine Calls

The only potential reasons for super-polynomial delays are the calls to Algo-
rithm 2. It is interesting to examine how many calls we need during the enumer-
ation and how long they actually take in practice. For our heuristic branching
order, we measured the run times of each individual call, averaged over 100 runs
to reduce the noise. Figure 4.6 shows the complementary cumulative frequencies
(CCF) of the run times in a log-log plot. That means, for each time 𝑡 on the
𝑥-axis, the plot shows on the 𝑦-axis the number of calls with run time at least
𝑡 . We exclude the artificial instances fd_reduced_15 and fd_reduced_30 for
now, they are reported separately.

First, we examine the impact of the total number of calls on the run time. The
legend of Figure 4.6 is ordered by increasing number of solutions, the same as in
the previous plots. For the real-world databases, this is also the same as ordering
them by increasing enumeration time. For comparison, the total number of
subroutine calls is marked by the 𝑦-value of the left-most endpoint of each curve.
The two orders are almost the same. An interesting exception is the hepatitis
dataset. It has fewer calls than horse and uniprot, but these calls take more
time on average, leading to a higher overall run time. Instance amalgam1 needs
even more calls, which then outweighs the smaller average. Similarly, the calls
for horse take more time than those for uniprot, but the higher number in the
latter case causes a longer run time. In preliminary experiments, we observed
these effects also when comparing different branching orders for the same dataset.
Aiming for a small number of calls is a good strategy, although there are cases
where a higher number of easier calls gives a better result.

Next, we discuss the distribution of the calls. The prominent (almost) hor-
izontal lines on the left of Figure 4.6 (a) stem from the few trivial calls with
𝑋 = ∅. Those are one to two orders of magnitude faster than all other calls since
they do not need to construct the instance of Independent Family. For the
non-trivial cases with 𝑋 ≠ ∅, the extension algorithm first checks whether the
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resulting instance can already be decided by the sanity checks in lines 9 and 10 of
Algorithm 2. This way, a significant portion of them can be solved in linear time.
These calls can be seen in the CCF plots as the steep dip immediately following
the horizontal lines. Observe that the 𝑦-axis is logarithmic, so the proportion of
trivial and easy subroutine calls is significant. Over all databases, slightly more
than half of the calls are solved this way. In fact, for the three instances with the
most calls, namely, amalgam1, flight_1k, and ncvoter_allc, no more than
32% of the calls entered the brute-force loop in line 11.

This loop is the only part of the algorithm that may requires super-polynomial
running time. Figure 4.6 (b) shows the CCFs only for the brute-force calls. The
differences between Figures 4.6 (a) and 4.6 (b) in the lower parts of call_a_bike
and uniprot are artifacts of the separate measurements to create these plots. The
run times are heterogeneously distributed with many fast invocations and only a
few slow ones. As an example, we investigate the calls of the flight_1k instance.
The database has 1000 rows over 109 columns of which 39 are empty and 17
more do not participate in anyminimal difference set. The output of flight_1k
are 26 652 minimal UCCs. During the enumeration process Algorithm 2 is called
242 449 times, 22 (0.009%) calls are trivial, the vast majority of 165 767 (68.4%) are
decided easily by the sanity checks, the remaining 76 660 (31.6%) calls enter the
loop. Of the brute-force calls, 41 353 (53.9%) take only a single iteration to find
a suitable combination of candidate private edges verifying that the respective
input set 𝑋 is indeed extendable to a minimal solution (line 13). However, there
are also two calls that need the maximum of 74 880 iterations, which corresponds
to a run time of 16 ms. In those two cases, all possible combinations of potential
witnesses had to be tested, only to conclude that the set is not extendable (line 14).
It is inherent to the hardness of Minimal Hitting Set Extension that those
inputs that are not extendable because all combinations of candidate private
edges cover at least one unhit edge incur the highest number of iterations and
thus longest subroutine run times, see Lemma 4.17. Fortunately, those occasions
were rare in our experiments. In the case of flight_1k, only 622 calls take
more than 10 000 iterations, they make up for 0.8% of the brute-force calls and
0.2% of all invocations.
The run time distributions for the other real-world databases are similar to

that of flight_1k, see Figure 4.6 (a). There is always a non-vanishing chance
that any given call to the subroutine incurs a high run time, which is hardly
avoidable for a worst-case exponential algorithm, but even the slowest calls are
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reasonably fast in practice. However, the majority of calls is far away from the
worst case, leading to a very low run time on average. The heterogeneity of
the brute-force calls is also showing in the CCFs (Figure 4.6 (b)). They roughly
resemble a power-law distribution (straight lines in a log-log plot), albeit their
tendency towards small run times (concavity of the plots) is stronger than one
would expect for a pure power-law.

Another important point of saving related to the subroutine are those calls that
are never actually executed due to the shortcut evaluation in line 7 of Algorithm 1.
We compared the implementation as presented here with a version in which this
optimization is turned off. Still, the latter version outputs a minimal hitting set
as soon as it is found in line 5. We used the heuristic branching order again. Over
all real-world instances, the ratio of calls of the non-optimized version that are
skipped by the shortcuts is between 12.36% for the abalone dataset and 66.11%
for ncvoter_allc, with a median saving of 37.42%. The skipped calls are those
for which we can be certain that the given partial solution is indeed extendable,
but not yet minimal. Besides the few calls with 𝑋 = ∅, all of them would have
entered the brute-force phase to find a suitable set of candidate private edges.
On the other hand, they do not need to cycle through all possible combinations
and thus are not the hardest calls. A given ratio of skipped calls does not directly
translate to a certain time saving. Compared to the enumeration time of the
non-optimized version, the shortcuts gain moderate speedup factors from 1.12
for abalone up to 2.26 on the uniprot dataset, with a median of 1.43.
Finally, the two artificial instances fd_reduced_15 and fd_reduced_30 be-

have very differently from the real-world databases. Figure 4.7 shows their
CCFs. The staircase shape indicates that there are only five types of calls, with
roughly the same run time for all calls of the same type. Also, the shortcut
evaluation hardly saves anything on those datasets. Only 1.90% of the calls
for fd_reduced_15 and 4.97% for fd_reduced_30 are skipped, resulting in a
speedup factor of 1.06 on both instances.

4.6 Conclusion

We devised a backtracking algorithm for the Transversal Hypergraph prob-
lem by reducing the enumeration to the NPNP-complete decision whether a set of
vertices can be extended to a minimal solution. Although this may seem coun-
terintuitive, it allowed us to reduce both the space usage of the enumeration and
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Figure 4.7: The complementary cumulative frequencies of the run times of the subrou-
tine calls on the artificial using the heuristic branching order.

the delay. In particular, we proved that the transversal hypergraph problem can
be solved simultaneously with polynomial delay and space on instances whose
transversal rank is bounded. We further showed that the extension problem,
when parameterized by the size of partial solution, complete for the class WW[3].
We presented several conditional lower bounds and showed that our extension
algorithm is almost optimal assuming SETH. With the nondeterministic gener-
alization of SETH, we identified a complexity-theoretic barrier for closing the
remaining gap between our algorithmic results and the lower bounds.

The features of our enumeration method make it particularly suitable for the
profiling of relational databases, a domain where the solutions can be expected
to be small. Since the size of the largest solution is the degree of the worst-case
time bound, it could have been that the run times are still prohibitively large in
practice. To guard against such issues, we evaluated our algorithm by discovering
the minimal unique column combinations of several real-world and artificially
generated databases. The experiments showed that our method succeeds within
a reasonable time frame, even when tasked with computing several hundred
thousand solutions.

As the empirical run time depends on the branching order of the vertices, we
gave a heuristic that achieves good results in practice by reducing the number
of calls to the extension subroutine. We also verified that the main reason for
the low overall run times is not only the small number of calls but the fact that
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the calls are very fast on average. In particular, they regularly avoid the worst
case that was the basis for the large theoretical bound.

The tree search underpinning our algorithm obviates the need of expensive co-
ordination between branches or any postprocessing of the solutions. This makes
our method easy to implement and memory efficient. Most notably, approaching
the discovery of unique column combinations as a hitting set problem resulted
in an algorithm that does not need to store previous solutions. This seems to
be a major issue even for current state-of-the-art data profiling algorithms such
as DUCC [Hei+13] and HyUCC [PN17]. Papenbrock and Naumann, the authors of
HyUCC, posed the following challenge [PN17].

For future work, we suggest to find novel techniques to deal with
the often huge amount of results. Currently, HyUCC limits its results
if these exceed main memory capacity [...].

We will show that this can be solved by viewing data profiling from a hitting
set perspective. Until then, there are still some hurdles that need to be overcome
to obtain a ready-to-use algorithm. The enumeration phase is the hard core of
the problem, but it turns out not to be the true bottleneck in practice. Instead,
the quadratic preprocessing step of comparing all pairs of rows in the database
regularly took much longer in our experiments than actually enumerating all
solutions. Here, careful engineering has the potential of huge speedups on real-
world instances. Combining this with the natural advantages of our enumeration
approach will yield the novel technique we are looking for.
Our empirical analysis also revealed that the hypergraphs of difference sets

are usually much smaller than the input databases. It seems that the hyperedges
resulting from most row pairs are non-minimal and therefore do not contribute
to the unique column combinations. We investigate these observations more
thoroughly in the remainder of the thesis. In Chapter 6, we introduce a model
for random hypergraphs that offers an explanation for the small minimizations,
but not before we prepare some technical tools in Chapter 5. Finally, we exploit
the fast enumeration in Chapter 7 to sidestep the slow preprocessing.
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5 A Combinatorial Proof of the
Chernoff–Hoeffding Theorem

The Chernoff–Hoeffding theorem estimates the tail of the binomial distribution
in terms of the Kullback–Leibler divergence. We give a combinatorial proof for a
version in which the upper and lower bounds match up to constant factors. We
highlight some applications that fall outside of the topic of hypergraphs.

5.1 Introduction

The minimization, that is, the collection of inclusion-wise minimal edges, of
hypergraphs arising from the profiling of relational databases are often much
smaller than the databases themselves. In the next chapter, we will conduct
a rigorous study of a model for random hypergraphs that shows the same
behavior. It will become apparent that the model is closely related to the binomial
distribution, the sum of independent Bernoulli trials. For this analysis, we need
the Chernoff–Hoeffding theorem bounding the tail of that distribution. It states
that the distribution function decays exponentially in the distance from its
mean. We are mainly interested in the asymptotics of this decay with respect
to the number of trials and we need upper and lower bounds that are tight up
to constant factors. Such results are usually obtained by approximating the
binomial distribution with a normal one and estimating the latter analytically.
However, we prefer a combinatorial derivation as this tends to provide some
insight on how many trials are needed for the asymptotics to set in. There does
not seem to be a version of the theorem readily available in the literature that
suits our needs, so we prove it here. Since the Chernoff–Hoeffding theorem
has applications also in many other fields of math and science and the proof
involves rather lengthy calculations, we present it in a stand-alone manner. We
also highlight some consequences that are not related to hypergraphs.
The binomial distribution is ubiquitously used to describe complex systems

emerging from the overlapping effects of many independent choices. Its typical
behavior is well understood, as described in the central limit theorem and the
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strong law of large numbers. Bounding its tails, however, remains the subject
of ongoing research. The resulting concentration inequalities play a significant
role, for example, in the theory of large deviations [DS89; DZ10], the analysis
of randomized algorithms and search heuristics [Doe20; DP09; MU17], and
computational learning theory [KV94]. Most of these results can be traced back
to the Chernoff–Hoeffding theorem [DP09; Hoe63]. We abbreviate the binary
(base-2) logarithm as ld𝑥 . Fix a positive integer 𝑛 and probabilities 𝑥 and 𝑝 . Let

D(𝑥 ∥ 𝑝) = −𝑥 ld
(𝑝
𝑥

)
− (1 − 𝑥) ld

(
1 − 𝑝
1 − 𝑥

)
denote the binary Kullback–Leibler divergence between the respective Bernoulli
distributions, see also Section 2.5. The theorem employs this divergence to bound
the probability that a binomially distributed random variable 𝑋 ∼ Bin(𝑛, 𝑝)
deviates from its expectation E[𝑋 ] = 𝑝𝑛. Namely, for all 0 ≤ 𝑥 ≤ 𝑝 , it holds that

P[𝑋 ≤ 𝑥𝑛] ≤ 2−D(𝑥 ∥ 𝑝 )𝑛 =

(𝑝
𝑥

)𝑥𝑛 (
1 − 𝑝
1 − 𝑥

) (1−𝑥 )𝑛
.

It follows easily that also P[𝑋 ≥ 𝑥𝑛] ≤ 2−D(𝑥 ∥ 𝑝 )𝑛 is true for all 𝑝 ≤ 𝑥 ≤ 1 due to
the symmetry of 𝑋 . Several weaker but more practical inequalities have been
derived from that, colloquially summarized as Chernoff bounds [Doe20; MU17].
Cramér’s theorem asserts that the exponent D(𝑥 ∥ 𝑝) is tight [Cra38; DS89]. Any
improvement of this inequality can therefore be at most subexponential in 𝑛.
Stirling’s approximation, see [Ash90], gives the following lower bound assuming
that the product 𝑥𝑛 is an integer,

P[𝑋 ≤ 𝑥𝑛] ≥ 1√︁
8𝑛𝑥 (1 − 𝑥)

· 2−D(𝑥 ∥ 𝑝 )𝑛 .

There is an obvious gap of order
√
𝑛 between the two estimates and there seems

to be some disparity between the approaches in mathematics and in computer
science how to proceed from here. Most of the literature in computer science,
for example [Doe20; DP09; MR95; MU17], is satisfied with knowing the order
of exponential decay given by 2−D(𝑥 ∥ 𝑝 )𝑛 and disregard polynomial factors. In
fact, usually bounds that are exponentially weaker than the Chernoff–Hoeffding
theorem are used if their application is more convenient. In pure mathematics
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on the other hand, not only the polynomial factors are calculated, but the leading
coefficients and lower-order terms as well, sometimes even admitting a Taylor-
style expansion [Lit69; Mck89; Pro53; Slu77]. All of the latter results are obtained
by approximating the binomial distribution via the normal one and analytically
estimating the approximation error. We try to strike a balance between the two
sides by instead giving a combinatorial proof for bounds that are tight up to
constants. In more detail, we show the following.

▶ Theorem 5.1. Let𝑛 be a positive integer, 0 < 𝑝 < 1 a probability,𝑋 ∼ Bin(𝑛, 𝑝)
a binomially distributed random variable. Suppose 𝑥 = 𝑥 (𝑛) takes real values in
the interval [𝜀, 1− 𝜀] for some positive real 𝜀 > 0. Let 𝜑 and𝜓 denote

𝜑 (𝑛, 𝑝, 𝑥) = min
(
1, 1
(𝑝 − 𝑥)

√
𝑥𝑛

)
and 𝜓 (𝑛, 𝑝, 𝑥) = min

(
1, 1
(𝑥 − 𝑝)

√︁
(1 − 𝑥)𝑛

)
,

where we additionally define 𝜑 (𝑛, 𝑝, 𝑝) = 1 and𝜓 (𝑛, 𝑝, 𝑝) = 1.

Then, there exist constants 𝐶1,𝐶2,𝐶3,𝐶4 > 0, independent of 𝑛, 𝑥 but possibly
depending on 𝑝 , 𝜀, such that the following holds for all 𝑛 sufficiently large.

(𝑖) If 𝑥 ≤ 𝑝 , then 𝐶1𝜑 · 2−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≤ 𝑥𝑛] ≤ 𝐶2𝜑 · 2−D(𝑥 ∥ 𝑝 )𝑛 .

(𝑖𝑖) If 𝑥 ≥ 𝑝 , then 𝐶3𝜓 · 2−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≥ 𝑥𝑛] ≤ 𝐶4𝜓 · 2−D(𝑥 ∥ 𝑝 )𝑛 . ◀

Before we commence with the proof, we remark that asymptotics akin to The-
orem 5.1 (more precisely, Lemma 5.6) can alternatively be obtained by combining
a result of McKay [Mck89, Theorem 2] with an estimate on the complementary
cumulative distribution function of the standard normal distribution.

5.2 Integral Case

We split the proof of Theorem 5.1 into two major parts. The first one treats
those 𝑥 for which the product 𝑥𝑛 is an integer, the second part extends this to
the general case. The parts are further subdivided depending on the limiting
behavior of 𝑥 = 𝑥 (𝑛), namely, whether it converges to 𝑝 or not. For the integral
case, we first use a proposition by Klar [Kla00] about the connection between
the binomial distribution function and the probability mass function (PMF).
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▶ Proposition 5.2 (Proposition 1(c) in [Kla00]). Let 𝑛 be a positive integers,
𝑝 ≠ 0 a probability, and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable. For all non-negative
integers 𝑘 ≤ 𝑝𝑛, it holds that

1 ≤ P[𝑋 ≤ 𝑘]
P[𝑋 = 𝑘] ≤

𝑝 (𝑛 + 1 − 𝑘)
𝑛 + 1 − 𝑘 − (𝑛 + 1) (1 − 𝑝) . ◀

We combine this with the perplexity bound on the binomial coefficient from
Proposition 2.7. The explicit form of the lower bounds in the next lemma was
known before, see for example the textbook by Ash [Ash90, Lemma 4.7.2], we
reprove it here en passant.

▶ Lemma 5.3. Let 𝑛 be a positive integer, 0 < 𝑝 < 1 a non-trivial probability,
and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable. Suppose 0 < 𝑥 < 1 is a rational such that
𝑥𝑛 is an integer.

(𝑖) If 𝑥 < 𝑝 , then

1√︁
8𝑛𝑥 (1 − 𝑥)

· 2−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≤ 𝑥𝑛] ≤ 𝑝
√

1 − 𝑥
(𝑝 − 𝑥)

√
𝜋 𝑥𝑛

· 2−D(𝑥 ∥ 𝑝 )𝑛 .

(𝑖𝑖) If 𝑝 < 𝑥 , then

1√︁
8𝑛𝑥 (1 − 𝑥)

·2−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≥ 𝑥𝑛] ≤ (1 − 𝑝)
√
𝑥

(𝑥 − 𝑝)
√︁
𝜋 (1 − 𝑥)𝑛

·2−D(𝑥 ∥ 𝑝 )𝑛 .

◀

Proof. Applying the first statement to the variable 𝑋 ∼ Bin(𝑛, 1−𝑝) implies the
second statement since P[𝑋 ≥ 𝑥𝑛] = P[𝑋 ≤ (1−𝑥)𝑛]. Hereby, we use that the
Kullback–Leibler divergence observes D(1−𝑥 ∥ 1−𝑝) = D(𝑥 ∥ 𝑝).
We are left to prove the first statement. Proposition 2.7 gives the following

error bounds on the probability mass function P[𝑋 = 𝑥𝑛] =
(
𝑛
𝑥𝑛

)
·𝑝𝑥𝑛 (1−𝑝) (1−𝑥 )𝑛 .

1√︁
8𝑛𝑥 (1 − 𝑥)

≤ P[𝑋 = 𝑥𝑛]
2H(𝑥 )𝑛 · 𝑝𝑥𝑛 (1 − 𝑝) (1−𝑥 )𝑛

=
P[𝑋 = 𝑥𝑛]
2−D(𝑥 ∥ 𝑝 ) 𝑛 ≤

1√︁
𝜋𝑛𝑥 (1 − 𝑥)

.

The lower bounds follows immediately from P[𝑋 ≤ 𝑥𝑛] ≥ P[𝑋 = 𝑥𝑛].
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For the upper bound, we use Proposition 5.2 at the integer position 𝑘 = 𝑥𝑛.
Let 𝑓𝑛,𝑥𝑛 (𝑝) denote the resulting bound on the ratio P[𝑋 ≤ 𝑥𝑛]/P[𝑋 = 𝑥𝑛],

𝑓𝑛,𝑥𝑛 (𝑝) =
𝑝 (𝑛 + 1 − 𝑥𝑛)

𝑛 + 1 − 𝑥𝑛 − (𝑛 + 1) (1 − 𝑝) =
𝑝 (𝑛 + 1 − 𝑥𝑛)
𝑝 (𝑛 + 1) − 𝑥𝑛 =

𝑝 (1 − 𝑥𝑛
𝑛+1 )

𝑝 − 𝑥𝑛
𝑛+1

.

We claim that for all 𝑥 and 𝑝 with 𝑥 < 𝑝 , the function 𝑓𝑛,𝑥𝑛 (𝑝) is increasing in 𝑛.
We show this by verifying that the (partial) discrete derivative ∆𝑛 (𝑓𝑛,𝑥𝑛) with
respect to 𝑛 is positive.

∆𝑛 (𝑓𝑛,𝑥𝑛) (𝑝) = 𝑓𝑛+1,𝑥 (𝑛+1) (𝑝) − 𝑓𝑛,𝑥𝑛 (𝑝) =
𝑝 (𝑛 + 2 − 𝑥 (𝑛 + 1))
𝑝 (𝑛 + 2) − 𝑥 (𝑛 + 1) −

𝑝 (𝑛 + 1 − 𝑥𝑛)
𝑝 (𝑛 + 1) − 𝑥𝑛

=
𝑝 (1 − 𝑝)𝑥

((𝑝 − 𝑥)𝑛 + 𝑝) · ((𝑝 − 𝑥)𝑛 + 2𝑝 − 𝑥) > 0.

The function 𝑓𝑛,𝑥𝑛 (𝑝) thus converges from below to 𝑝 (1 − 𝑥)/(𝑝 − 𝑥) as 𝑛
increases, giving an upper bound on P[𝑋 ≤ 𝑥𝑛]/P[𝑋 = 𝑥𝑛] for all 𝑛. Multiplying
with the error bounds and the divergence completes the proof. ■

The upper bounds above are already very close to the desired ones of Theo-
rem 5.1. In fact, we will see that the lemma is enough to conclude P[𝑋 ≤ 𝑥𝑛] ≤
𝜑 · 2−D(𝑥 ∥ 𝑝 ) 𝑛 if 𝑥𝑛 is an integer and 𝜑 = min(1, 1/((𝑝 − 𝑥)

√
𝑥𝑛)). The lower

bound in Statement (𝑖), however, matches the upper one only if the 𝑥 = 𝑥 (𝑛) is
bounded away from 𝑝 for all 𝑛. More work is needed for the case 𝑥 → 𝑝 . It has
already been useful to have a good estimate for the ratio P[𝑋 ≤ 𝑘]/P[𝑋 = 𝑘].
Unfortunately, Proposition 5.2 gives only a trivial lower bound. We strengthen
this in the next lemma, Lemma 5.5 then shows how this translates into a stronger
lower bound on the binomial distribution function. Finally, Lemma 5.6 combines
all results of this section into a version of the Chernoff–Hoeffding theorem,
which is tight whenever the product 𝑥𝑛 is an integer.

▶ Lemma 5.4. Let 𝑛 be a positive integer, 0 < 𝑝 < 1 a non-trivial probability,
and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable. Then, for all non-negative integers 𝑖 and
𝑘 with 𝑖 ≤ 𝑘 ≤ 𝑝𝑛, it holds that

P[𝑋 ≤ 𝑘]
P[𝑋 = 𝑘] ≥ (𝑘 − 𝑖 + 1)

(
1 − 𝑝𝑛 − 𝑖

𝑝𝑛(1 − 𝑘
𝑛
)

)𝑘−𝑖
. ◀

95



Chapter 5 A Combinatorial Proof of the Chernoff–Hoeffding Theorem

Proof. The PMF of 𝑋 is increasing for arguments smaller than 𝑝𝑛, therefore

P[𝑋 ≤ 𝑘]
P[𝑋 = 𝑘] =

𝑘∑︁
𝑗=0

P[𝑋 = 𝑗]
P[𝑋 = 𝑘] ≥

𝑘∑︁
𝑗=𝑖

P[𝑋 = 𝑗]
P[𝑋 = 𝑘] ≥ (𝑘 − 𝑖 + 1) P[𝑋 = 𝑖]

P[𝑋 = 𝑘] .

The last ratio is lower-bounded by

P[𝑋 = 𝑖]
P[𝑋 = 𝑘] =

𝑘! (𝑛 − 𝑘)!
𝑖! (𝑛 − 𝑖)!

(
1 − 𝑝
𝑝

)𝑘−𝑖
=

𝑘−𝑖∏
ℓ=1

𝑖 + ℓ
𝑛 − 𝑖 − ℓ + 1 ·

(
1 − 𝑝
𝑝

)𝑘−𝑖
≥

(
𝑖

𝑛 − 𝑖
1 − 𝑝
𝑝

)𝑘−𝑖
.

For the base of the last expression we get

𝑖

𝑛 − 𝑖
1 − 𝑝
𝑝

= 1 − 𝑝𝑛 − 𝑖
𝑝𝑛 − 𝑝𝑖 = 1 − 𝑝𝑛 − 𝑖

𝑛𝑝 (1 − 𝑖
𝑛
)
≥ 1 − 𝑝𝑛 − 𝑖

𝑛𝑝 (1 − 𝑘
𝑛
)
. ■

The first factor 𝑘 − 𝑖 + 1 increases as 𝑖 gets smaller while at the same time
the second factor decreases. Therefore, in order to apply Lemma 5.4, one has to
choose a balancing cut-off point. We do so in the proof of the following lemma.

▶ Lemma 5.5. Let 𝑛 be a positive integer, 0 < 𝑝 < 1 a non-trivial probability,
and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable. Suppose 0 < 𝑥 < 1 is a rational such that
𝑥𝑛 is an integer.

(𝑖) If 𝑥 < 𝑝 , then

P[𝑋 ≤ 𝑥𝑛] ≥ 𝑝
√

1 − 𝑥
16
√

2
·min

(
1, 1
(𝑝 − 𝑥)

√
𝑥𝑛

)
· 2−D(𝑥 ∥ 𝑝 )𝑛 .

(𝑖𝑖) If 𝑝 < 𝑥 , then

P[𝑋 ≥ 𝑥𝑛] ≥ (1 − 𝑝)
√
𝑥

16
√

2
·min

(
1, 1
(𝑥 − 𝑝)

√︁
(1 − 𝑥)𝑛

)
· 2−D(𝑥 ∥ 𝑝 )𝑛 . ◀
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Proof. The second statement follows from the first as in Lemma 5.3. Define an
auxiliary integer function 𝑔 = 𝑔(𝑛, 𝑝, 𝑥) as

𝑔(𝑛, 𝑝, 𝑥) =
⌊
𝑝 (1 − 𝑥)

2 ·min
(√

𝑥𝑛,
1

𝑝 − 𝑥

)⌋
.

Applying Lemma 5.4 at position 𝑘 = 𝑥𝑛 with the cut-off point 𝑖 = 𝑥𝑛 − 𝑔 gives

P[𝑋 ≤ 𝑥𝑛] ≥ (𝑔 + 1)
(
1 − 𝑝𝑛 − 𝑥𝑛 + 𝑔

𝑝𝑛(1 − 𝑥)

)𝑔
· P[𝑋 = 𝑥𝑛] . (5.1)

We want to lower-bound the middle factor in Inequality (5.1) by a constant.
Bernoulli’s inequality gives(

1 − 𝑝𝑛 − 𝑥𝑛 + 𝑔
𝑝𝑛(1 − 𝑥)

)𝑔
=

(
1 −

𝑝 − 𝑥 + 𝑔

𝑛

𝑝 (1 − 𝑥)

)𝑔
≥ 1 −

𝑔(𝑝 − 𝑥) + 𝑔2

𝑛

𝑝 (1 − 𝑥) .

We claim that the numerator 𝑔(𝑝 −𝑥) +𝑔2/𝑛 is at most 3𝑝 (1−𝑥)/4. We split the
argument depending on the relative size of

√
𝑥𝑛 and 1/(𝑝−𝑥). If

√
𝑥𝑛 ≥ 1/(𝑝−𝑥),

then we have 𝑔 = ⌊ 𝑝 (1 − 𝑥)/2(𝑝 − 𝑥)⌋ and thus

𝑔(𝑝 − 𝑥) + 𝑔
2

𝑛
≤ 𝑝 (1 − 𝑥)

2 + 𝑝
2(1 − 𝑥)2

4 · 1
(𝑝 − 𝑥)2𝑛 ≤

𝑝 (1 − 𝑥)
2 + 𝑝

2(1 − 𝑥)2
4 · 𝑥 .

Conversely, if
√
𝑥𝑛 ≤ 1/(𝑝 − 𝑥), then 𝑔 = ⌊ 𝑝 (1 − 𝑥)

√
𝑥𝑛/2⌋ and

𝑔(𝑝−𝑥)+𝑔
2

𝑛
≤ 𝑝 (1 − 𝑥)

2 · (𝑝−𝑥)
√
𝑥𝑛+𝑝

2(1 − 𝑥)2
4 ·𝑥𝑛

𝑛
≤ 𝑝 (1 − 𝑥)

2 +𝑝
2(1 − 𝑥)2

4 ·𝑥 .

The last expressions of both inequalities are the same and can be bounded by
3𝑝 (1 − 𝑥)/4. The middle factor is therefore at least a constant since

1 −
𝑔(𝑝 − 𝑥) + 𝑔2

𝑛

𝑝 (1 − 𝑥) ≥ 1 − 3𝑝 (1 − 𝑥)
4

1
𝑝 (1 − 𝑥) =

1
4 .
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Reinserting this into Inequality (5.1) and applying the definition of 𝑔 and
Proposition 2.7 gives the result.

P[𝑋 ≤ 𝑥𝑛] ≥ 𝑔 + 1
4 · P[𝑋 = 𝑥𝑛] ≥ 𝑝 (1 − 𝑥)

8 ·min
(√

𝑥𝑛,
1

𝑝 − 𝑥

)
· P[𝑋 = 𝑥𝑛]

≥ 𝑝 (1 − 𝑥)
8 ·min

(√
𝑥𝑛,

1
𝑝 − 𝑥

)
· 1√︁

8𝑛𝑥 (1 − 𝑥)
· 2−D(𝑥 ∥ 𝑝 )𝑛

=
𝑝
√

1 − 𝑥
16
√

2
·min

(
1, 1
(𝑝 − 𝑥)

√
𝑥𝑛

)
· 2−D(𝑥 ∥ 𝑝 )𝑛 . ■

Next, we prove Theorem 5.1 for the case that 𝑥𝑛 is an integer. We emphasize
the facts that Lemma 5.6 holds for all positive integers 𝑛, not only asymptotically,
and 𝑥 may range over the whole interval [0, 1].

▶ Lemma 5.6 (integral case of Theorem 5.1). Let 𝑛 be a positive integer,
0 < 𝑝 < 1 a non-trivial probability, and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable.
Suppose 𝑥 = 𝑥 (𝑛) takes rational values in the unit interval such that 𝑥𝑛 is an
integer. Let 𝜑 and𝜓 denote the functions

𝜑 (𝑛, 𝑝, 𝑥) = min
(
1, 1
(𝑝 − 𝑥)

√
𝑥𝑛

)
and 𝜓 (𝑛, 𝑝, 𝑥) = min

(
1, 1
(𝑥 − 𝑝)

√︁
(1 − 𝑥)𝑛

)
,

with additionally 𝜑 (𝑛, 𝑝, 0) = 𝜑 (𝑛, 𝑝, 𝑝) = 1 and𝜓 (𝑛, 𝑝, 1) = 𝜓 (𝑛, 𝑝, 𝑝) = 1.

(𝑖) If 𝑥 ≤ 𝑝 , then 𝑝
√

1−𝑝
16
√

2 · 𝜑 · 2
−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≤ 𝑥𝑛] ≤ 𝜑 · 2−D(𝑥 ∥ 𝑝 )𝑛 .

(𝑖𝑖) If 𝑥 ≥ 𝑝 , then (1−𝑝 )
√
𝑝

16
√

2 ·𝜓 · 2−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≥ 𝑥𝑛] ≤ 𝜓 · 2−D(𝑥 ∥ 𝑝 )𝑛 . ◀

Proof. Statement (𝑖𝑖) follows from (𝑖) in the usual way, where we use𝜓 (𝑛, 𝑝, 𝑥) =
𝜑 (𝑛, 1−𝑝, 1−𝑥). Let 𝐶 = 𝑝

√
1 − 𝑝/16

√
2. Note that 𝐶 is at most 0.045 for any 𝑝 .

We first discuss the corner cases 𝑥 = 0 and 𝑥 = 𝑝 (assuming that 𝑝𝑛 is an integer).
If 𝑥 = 0, then we have P[𝑋 ≤ 0 · 𝑛] = (1 − 𝑝)𝑛 = 𝜑 (𝑛, 𝑝, 0) · 2−D(0 ∥ 𝑝 )𝑛 . If 𝑥 = 𝑝 ,
the upper bound P[𝑋 ≤ 𝑝𝑛] ≤ 1 = 𝜑 (𝑛, 𝑝, 𝑝) · 2−D(𝑝 ∥ 𝑝 )𝑛 holds vacuously. The
lower bound follows from 𝑝𝑛 being the median of the binomial distribution,
which implies P[𝑋 ≤ 𝑝𝑛] ≥ 1/2 ≥ 𝐶 = 𝐶 · 𝜑 (𝑛, 𝑝, 𝑝) · 2−D(𝑝 ∥ 𝑝 )𝑛 .
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Assume 0 < 𝑥 < 𝑝 . The original Chernoff–Hoeffding theorem and Lemma 5.3
together imply that

P[𝑋 ≤ 𝑥𝑛] ≤ min
(
1, 𝑝

√
1 − 𝑥

(𝑝 − 𝑥)
√
𝜋 𝑥𝑛

)
· 2−D(𝑥 ∥ 𝑝 )𝑛

≤ min
(
1, 𝑝
√
𝜋

1
(𝑝 − 𝑥)

√
𝑥𝑛

)
· 2−D(𝑥 ∥ 𝑝 )𝑛 ≤ 𝜑 · 2−D(𝑥 ∥ 𝑝 )𝑛 .

Finally, the lower bound in this case is an easy consequence of Lemma 5.5 and
𝑝
√

1 − 𝑥/16
√

2 being larger than 𝐶 = 𝑝
√

1 − 𝑝/16
√

2. ■

5.3 General Case

The second major step of the argument is to extend the result above from integral
products 𝑥𝑛 to arbitrary real 𝑥 . The equality P[𝑋 ≤ 𝑥𝑛] = P[𝑋 ≤ ⌊𝑥𝑛⌋ ] holds
universally as 𝑋 assumes only integer values. In Section 5.2, we have given
bounds on the second probability P[𝑋 ≤ ⌊𝑥𝑛⌋ ] in terms of the ratio ⌊𝑥𝑛⌋/𝑛.
To reach the generality of the Chernoff–Hoeffding theorem, we need to infer
bounds on P[𝑋 ≤ 𝑥𝑛] in terms of 𝑥 . In what follows, let 𝑥 ′ abbreviate ⌊𝑥𝑛⌋/𝑛.
Consider the upper bound in Lemma 5.6 (𝑖) as an illustrating example. It states

P[𝑋 ≤ 𝑥𝑛] = P[𝑋 ≤ 𝑥 ′𝑛] ≤ min
(
1, 1
(𝑝 − 𝑥 ′)

√
𝑥 ′𝑛

)
· 2−D(𝑥 ′ ∥ 𝑝 )𝑛 .

If there exists some constant 𝐶 , possibly dependent on 𝑝 but independent of 𝑥
and 𝑛, such that

1
(𝑝 − 𝑥 ′)

√
𝑥 ′𝑛
· 2−D(𝑥 ′ ∥ 𝑝 )𝑛 ≤ 𝐶

(𝑝 − 𝑥)
√
𝑥𝑛
· 2−D(𝑥 ∥ 𝑝 )𝑛,

then our estimate transfers to the general case; similarly for the other bounds.
The next two lemmas prepare the necessary technical machinery to show

the existence of those constants. Lemma 5.7 clarifies the monotonicity of the
functions in question. It shows that transitioning from 𝑥 ′ to 𝑥 can only increase
the upper bound, meaning that we can actually choose 𝐶 = 1 in the above
illustration. For the opposite direction, Lemma 5.8 asserts that this transitions
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incurs a multiplicative loss that is at most linear in 𝑥 . Below, we often conclude
the monotonic behavior of a product of functions from that of its factors. While
in general the product of non-decreasing functions is not itself non-decreasing,
the monotonicity transfers if all factors are additionally non-negative.

▶ Lemma 5.7. Let 𝑛 be a positive integer, and let 𝑝 and 𝑥 be two probabilities.
The function

𝑔𝑛,𝑝 (𝑥) =
2−D(𝑥 ∥ 𝑝 )𝑛

(𝑝 − 𝑥)
√
𝑥𝑛

is non-decreasing for all 𝑥 such that 1/𝑛 ≤ 𝑥 < 𝑝 for all 𝑛 is sufficiently large. ◀

Proof. Quantity 2−D(𝑥 ∥ 𝑝 )𝑛 is non-decreasing for 𝑥 ≤ 𝑝 (Lemma 2.9) and it is not
hard to prove this also for 1/(𝑝 − 𝑥)

√
𝑥𝑛 given that 𝑥 ≥ 𝑝/3. The main focus of

this proof is to show that the divergence power dominates the monotonicity of
𝑔𝑛,𝑝 also for 1/𝑛 ≤ 𝑥 ≤ 𝑝/3.

To ease notation, let 𝜉 = (𝑝 − 𝑥)
√
𝑥𝑛. Taking the derivative of 𝑔𝑛,𝑝 gives

d𝑔𝑛,𝑝 (𝑥)
d𝑥 =

√
𝑛

𝜉2 ·
((

𝜕

𝜕𝑥
2−D(𝑥 ∥ 𝑝 )𝑛

)
(𝑝 − 𝑥)

√
𝑥 − 2−D(𝑥 ∥ 𝑝 )𝑛

(
𝜕

𝜕𝑥
(𝑝 − 𝑥)

√
𝑥

))
=

√
𝑛

𝜉2 ·
(
𝑛 ln

(
1 − 𝑥
𝑥

𝑝

1 − 𝑝

)
2−D(𝑥 ∥ 𝑝 )𝑛 (𝑝 − 𝑥)

√
𝑥 − 2−D(𝑥 ∥ 𝑝 )𝑛 𝑝 − 3𝑥

2
√
𝑥

)
=

√
𝑛 2−D(𝑥 ∥ 𝑝 )𝑛 (𝑝 − 𝑥)

𝜉2 √𝑥
·
(
𝑛 ln

(
1 − 𝑥
𝑥

𝑝

1 − 𝑝

)
𝑥 − 𝑝 − 3𝑥

2(𝑝 − 𝑥)

)
.

The first factor is positive for all 𝑛 and 1/𝑛 ≤ 𝑥 < 𝑝 , the same is true for the
second one if 𝑝/3 < 𝑥 . Assume 𝑥 ≤ 𝑝/3 in the remainder. Then, the last term
of the second factor, −𝑝−3𝑥

2
√
𝑥
, is at least − 1/2. It is thus sufficient to prove the

non-negativity of

ℎ𝑛,𝑝 (𝑥) = 𝑛 ln
(
1 − 𝑥
𝑥

𝑝

1 − 𝑝

)
𝑥 − 1

2
on the subinterval [1/𝑛, 𝑝/3] for all 𝑛 large enough. We do this in two claims. First,
ℎ𝑛,𝑝 is concave there and, secondly, its values at the endpoints of the interval
are non-negative. Regarding the concavity, observe that the derivative

d
d𝑥 ℎ𝑛,𝑝 (𝑥) = 𝑛 ln

(
1 − 𝑥
𝑥

𝑝

1 − 𝑝

)
− 𝑛

1 − 𝑥
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is the sum of two non-increasing functions of 𝑥 ; 𝑛 ln( 1−𝑥
𝑥

𝑝

1−𝑝 ) is non-increasing
as it is the derivative of the concave mapping 𝑥 ↦→ −D(𝑥 ∥ 𝑝)𝑛. At 1/𝑛, we have

ℎ𝑛,𝑝

(
1
𝑛

)
= ln

(
(𝑛 − 1) 𝑝

1 − 𝑝

)
− 1

2 ,

which is non-negative for all 𝑛 ≥ (
√
𝑒 (1 − 𝑝)/𝑝) + 1. Similarly at endpoint 𝑝/3,

ℎ𝑛,𝑝

(𝑝
3

)
= 𝑛 ln

(
3 − 𝑝
1 − 𝑝

)
𝑝

3 −
1
2

is non-negative for 𝑛 ≥ 3/2𝑝 ln( 3−𝑝1−𝑝 ). ■

▶ Lemma 5.8. Let 𝑛 be a positive integer, 𝑝 and 𝑥 two probabilities. Define
𝑥 ′ = ⌊𝑥𝑛⌋/𝑛, and again

𝑔𝑛,𝑝 (𝑥) =
2−D(𝑥 ∥ 𝑝 )𝑛

(𝑝 − 𝑥)
√
𝑥𝑛

.

The following inequalities hold for all 𝑥 with 1/𝑛 ≤ 𝑥 < 𝑝 and 𝑛 sufficiently large.

(𝑖) 𝑔𝑛,𝑝 (𝑥 ′) ≥ 1−𝑝
𝑝
√

2 𝑒
− 1

2−2𝑝 · 𝑥 · 𝑔𝑛,𝑝 (𝑥);

(𝑖𝑖) 2−D(𝑥 ′ ∥ 𝑝 )𝑛 ≥ 1−𝑝
𝑝

𝑒
− 1

2−2𝑝 · 𝑥 · 2−D(𝑥 ∥ 𝑝 )𝑛 . ◀

Proof. We make heavy use of the facts that 𝑥 − 1/𝑛 < 𝑥 ′ ≤ 𝑥 , and that 𝑥 ≥ 1/𝑛
implies 𝑥 ′ ≥ 1/𝑛. The relative difference between 𝑔𝑛,𝑝 (𝑥 ′) and 𝑔𝑛,𝑝 (𝑥) is

𝑔𝑛,𝑝 (𝑥 ′)
𝑔𝑛,𝑝 (𝑥)

=
2−D(𝑥 ′ ∥ 𝑝 )𝑛

2−D(𝑥 ∥ 𝑝 )𝑛 ·
𝑝 − 𝑥
𝑝 − 𝑥 ′ ·

√︂
𝑥

𝑥 ′
.

The last factor is at least 1 and the middle one is 𝑝−𝑥
𝑝−𝑥 ′ = 1 − 𝑥−𝑥 ′

𝑝−𝑥 ′ ≥ 1 − 1
𝑝𝑛
≥ 1√

2
given that 𝑛 ≥ 2/(2 −

√
2)𝑝 . Using Lemma 2.9 and 𝑥 ′ − 𝑥 ≤ 1/𝑛, we get

2−D(𝑥 ′ ∥ 𝑝 )𝑛

2−D(𝑥 ∥ 𝑝 )𝑛 =

(
𝑥

1 − 𝑥
1 − 𝑝
𝑝

) (𝑥−𝑥 ′ )𝑛
2−D(𝑥 ′ ∥ 𝑥 )𝑛 · 2−D(𝑥 ∥ 𝑝 )𝑛

≥ 𝑥

1 − 𝑥
1 − 𝑝
𝑝

2−D(𝑥 ′ ∥ 𝑥 )𝑛 · 2−D(𝑥 ∥ 𝑝 )𝑛

≥ 𝑥 · 1 − 𝑝
𝑝

2−D(𝑥 ′ ∥ 𝑥 )𝑛 · 2−D(𝑥 ∥ 𝑝 )𝑛 .
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It remains to show that 2−D(𝑥 ′ ∥ 𝑥 )𝑛 is at least a constant, namely, we claim
2−D(𝑥 ′ ∥ 𝑥 )𝑛 > 𝑒

− 1
2−2𝑝 . Let 𝑡− = arg min𝑡 ∈[𝑥 ′,𝑥 ] 𝑡 (1 − 𝑡), observe that 1/𝑛 ≤ 𝑡− < 𝑝

holds. By Lemma 2.8, the exponent D(𝑥 ′ ∥ 𝑥)𝑛 (to the base 1/2) is bounded.

D(𝑥 ′ ∥ 𝑥) · 𝑛 ≤ (𝑥 − 𝑥 ′)2
𝑡− (1 − 𝑡−) 2 ln 2 · 𝑛 <

1
𝑛2

1
𝑛
(1 − 𝑡−) 2 ln 2

· 𝑛

=
1

(1 − 𝑡−) 2 ln 2 <
1

(2 − 2𝑝) ln 2 . ■

We now have the tools ready to prove Theorem 5.1 in its entirety.

▶ Theorem 5.1 (restated with explicit constants). Let 𝑛 be a positive integer,
0 < 𝑝 < 1 a non-trivial probability, and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable.
Suppose the function 𝑥 = 𝑥 (𝑛) takes real values in the interval [𝜀, 1− 𝜀] for
some 𝜀 > 0. Let 𝜑 and𝜓 denote the functions

𝜑 (𝑛, 𝑝, 𝑥) = min
(
1, 1
(𝑝 − 𝑥)

√
𝑥𝑛

)
and 𝜓 (𝑛, 𝑝, 𝑥) = min

(
1, 1
(𝑥 − 𝑝)

√︁
(1 − 𝑥)𝑛

)
,

with additionally 𝜑 (𝑛, 𝑝, 𝑝) = 1 and 𝜓 (𝑛, 𝑝, 𝑝) = 1. The following statements
hold for all 𝑛 sufficiently large.

(𝑖) If 𝑥 ≤ 𝑝 , then 𝜀 (1−𝑝 )
3
2

32 𝑒
− 1

2−2𝑝 ·𝜑 · 2−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≤ 𝑥𝑛] ≤ 𝜑 · 2−D(𝑥 ∥ 𝑝 )𝑛 .

(𝑖𝑖) If 𝑥 ≥ 𝑝 , then 𝜀 𝑝
3
2

32 𝑒
− 1

2𝑝 ·𝜓 · 2−D(𝑥 ∥ 𝑝 )𝑛 ≤ P[𝑋 ≥ 𝑥𝑛] ≤ 𝜓 · 2−D(𝑥 ∥ 𝑝 )𝑛 . ◀

Proof. We only need to prove the first statement. Let 𝑥 ′ = ⌊𝑥𝑛⌋/𝑛. This implies
𝑥 ′ ≤ 𝑥 and makes 𝑥 ′𝑛 an integer such that P[𝑋 ≤ 𝑥 ′𝑛] = P[𝑋 ≤ 𝑥𝑛]. Recall the
definition of 𝑔𝑛,𝑝 from Lemma 5.7. It is chosen such that for all 𝑛, 𝑝 , and 𝑥 ,

𝜑 (𝑛, 𝑝, 𝑥 ′) · 2−D(𝑥 ′ ∥ 𝑝 )𝑛 =

{
2−D(𝑥 ′ ∥ 𝑝 )𝑛, if 1 ≤ 1

(𝑝−𝑥 ′ )
√
𝑥 ′𝑛

or 𝑥 ′ = 𝑝;
𝑔𝑛,𝑝 (𝑥 ′), otherwise.

Lemmas 5.7 and 2.9 together establish 𝜑 (𝑛, 𝑝, 𝑥 ′) · 2−D(𝑥 ′ ∥ 𝑝 )𝑛 ≤ 𝜑 (𝑛, 𝑝, 𝑥) ·
2−D(𝑥 ∥ 𝑝 )𝑛 in both cases, provided that 𝑛 is large enough. The upper bound in
Statement (𝑖) now follows from the integral case (Lemma 5.6). Regarding the
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lower bound, Lemma 5.8 gives for all 𝑛 large enough,

𝜑 (𝑛, 𝑝, 𝑥 ′)·2−D(𝑥 ′ ∥ 𝑝 )𝑛 ≥


1−𝑝
𝑝

𝑒
− 1

2−2𝑝 · 𝑥 · 2−D(𝑥 ∥ 𝑝 )𝑛, if 1 ≤ 1
(𝑝−𝑥 ′ )

√
𝑥 ′𝑛

or 𝑥 ′ = 𝑝;
1−𝑝
𝑝
√

2 𝑒
− 1

2−2𝑝 · 𝑥 · 𝑔𝑛,𝑝 (𝑥), otherwise.

In summary, using Lemma 5.6 and the assumption 𝑥 ≥ 𝜀, we have

P[𝑋 ≤ 𝑥𝑛] = P[𝑋 ≤ 𝑥 ′𝑛] ≥ 𝑝
√

1 − 𝑝
16
√

2
· 𝜑 (𝑛, 𝑝, 𝑥 ′) · 2−D(𝑥 ′ ∥ 𝑝 )𝑛

≥ 𝜀 (1 − 𝑝) 3
2

32 𝑒
− 1

2−2𝑝 · 𝜑 (𝑛, 𝑝, 𝑥) · 2−D(𝑥 ∥ 𝑝 )𝑛 . ■

5.4 Applications

In this excursive section, we highlight two applications of Theorem 5.1 that do not
fall into the main direction of this thesis, we find them instructive nevertheless.
First, we give an alternative proof for the intuition that the probability of a
binomial variable taking values outside of a few standard deviations around its
expectation may be small but does not converge to 0. The result was previously
obtained via the Berry–Esseen inequality using the normal approximation of the
binomial distribution [OW15]. Secondly, we improve the rate of convergence in
Cramér’s theorem for sequences of Bernoulli variables.

Anti-Concentration Inequalities. Chernoff bounds are usually interpreted as
concentration inequalities [DP09]. They formalize that the mass of the binomial
distribution is concentrated around itsmean and that the probability for any other
value falls exponentially in the distance to the expectation. However, it is also
known that the probability of a binomial random variable 𝑋 ∼ Bin(𝑛, 𝑝) taking
values outside of a constant number of standard deviations from E[𝑋 ] does not
vanish, even as 𝑛 grows large. Results of the latter kind are occasionally called
anti-concentration inequalities. The particular bound1 we are interested in was
given by Oliveto and Witt [OW15]. We reprove it giving a purely combinatorial
argument that avoids the normal distribution.

1 Lemma 6.1 in [OW15] only states the existence of a pair of specific constants 𝑐 ,𝐶 . It is, however,
easy to verify that their proof remains valid for any 𝑐 ≥ 0. For a generalization to unequal
probabilities, see Lemma 1.10.16 in [Doe20].
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▶ Corollary 5.9 (Lemma 6.1 in [OW15]). Let 𝑛 be a positive integer, 0 <

𝑝 < 1 a non-trivial probability, and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable. Let
𝜎𝑋 =

√︁
𝑛𝑝 (1 − 𝑝) denote the standard deviation of 𝑋 . For every non-negative

real 𝑐 ≥ 0, there exists some positive 𝐶 > 0, independent of 𝑛 but possibly
dependent on 𝑐 and 𝑝 , such that

P[𝑋 ≤ E[𝑋 ] − 𝑐 · 𝜎𝑋 ] ≥ 𝐶.

Conversely, for any non-negative function 𝑓 = 𝑓 (𝑛) with lim𝑛→∞ 𝑓 (𝑛) = ∞,

lim
𝑛→∞

P[𝑋 ≤ E[𝑋 ] − 𝑓 · 𝜎𝑋 ] = 0. ◀

Proof. Let 𝑐′ = 𝑐
√︁
𝑝 (1 − 𝑝). In the notation of the previous sections, we have

𝑥 =
E[𝑋 ] − 𝑐 · 𝜎𝑋

𝑛
= 𝑝 − 𝑐′

√
𝑛
.

We assume 𝑥 ≥ 𝑝/2, this does not loose generality as 𝑥 converges to 𝑝 . Applying
Theorem 5.1 gives

P[𝑋 ≤ E[𝑋 ] − 𝑐 · 𝜎𝑋 ] ≥
𝑝 (1 − 𝑝) 3

2

64 𝑒
− 1

2−2𝑝 ·min
(
1, 1

𝑐′
√
𝑥

)
· 2−D(𝑥 ∥ 𝑝 )𝑛 .

The minimum is at least 1/𝑐𝑝√1 − 𝑝 . To show that the last factor is bounded, we
use an argument similar to the one in Lemma 5.8. Let 𝑡− = arg min𝑡 ∈[𝑥,𝑝 ] 𝑡 (1− 𝑡).
We have 𝑝/2 ≤ 𝑡− ≤ 𝑝 , resulting in

D(𝑥 ∥ 𝑝) · 𝑛 ≤

(
𝑐′√
𝑛

)2

𝑡− (1 − 𝑡−) 2 ln 2 · 𝑛 =
𝑐2 𝑝 (1 − 𝑝)

𝑡− (1 − 𝑡−) 2 ln 2 ≤
𝑐2 𝑝 (1 − 𝑝)

𝑝

2 (1 − 𝑝) 2 ln 2
=

𝑐2

ln 2 .

If we move away from E[𝑋 ] by more than a constant number of standard
deviations, already the original Chernoff–Hoeffding theorem is sharp enough
to prove that the distribution function vanishes. For some non-negative 𝑓 (𝑛) =
𝜔 (1), define 𝑥 = 𝑝 − (𝑓

√︁
𝑝 (1 − 𝑝) /

√
𝑛 ). If 𝑥 is negative, the statement holds

vacuously; otherwise, we have P[𝑋 ≤ E[𝑋 ] − 𝑓 · 𝜎𝑋 ] ≤ 2−D(𝑥 ∥ 𝑝 )𝑛 . Let 𝑡+ =
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arg max𝑡 ∈[𝑥,𝑝 ] 𝑡 (1 − 𝑡). Lemma 2.8 gives

D(𝑥 ∥ 𝑝) · 𝑛 ≥ 𝑓 (𝑛)2 𝑝 (1 − 𝑝)
𝑡+(1 − 𝑡+) 2 ln 2 = 𝜔 (1) . ■

Cramér’s Theorem. Theorem 5.1 also has implications for the rate of con-
vergence in Cramér’s theorem in the theory of large deviations. Fix some non-
trivial probability 𝑝 and let (𝑋𝑖)𝑖 be a sequence of independent and identically
distributed (i.i.d.) Bernoulli variables2 with success probability 𝑝 . Define

Λ∗(𝑥) = sup
𝑡 ∈ℝ

(
𝑡𝑥 − ln

(
E
[
𝑒𝑡𝑋1

] ))
as the Legendre transform of the cumulant-generating function of 𝑋1. Cramér’s
theorem [Cra38; DS89] states that the transform observes the following conver-
gence for all 𝑥 with 𝑝 < 𝑥 < 1,

lim
𝑛→∞

1
𝑛

ln
(

P
[ 𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝑥𝑛

] )
= −Λ∗(𝑥) .

Let D𝑒 (𝑥 ∥ 𝑦) = ln(2) · D(𝑥 ∥ 𝑦) = −𝑥 ln
( 𝑦
𝑥

)
− (1 − 𝑥) ln

(
1−𝑦
1−𝑥

)
denote the nat-

ural (base-𝑒) Kullback–Leibler divergence. It is easy to verify from E
[
𝑒𝑡𝑋1

]
=

1 − 𝑝 + 𝑝 𝑒𝑡 that Cramér’s function Λ∗(𝑥) = D𝑒 (𝑥 ∥ 𝑝) is in fact the natural
divergence. This shows that the original Chernoff–Hoeffding inequality with
2−D(𝑥 ∥ 𝑝 )𝑛 = 𝑒−D𝑒 (𝑥 ∥ 𝑝 )𝑛 is asymptotically tight up to sublinear terms in the ex-
ponent. However, the rate of convergence of the above limit is subject of ongoing
research [DS89; DZ10; Fil83]. Theorem 5.1 implies the following corollary.

▶ Corollary 5.10. Let 0 < 𝑝 < 1 be a non-trivial probability and (𝑋𝑖)𝑖 a
sequence of i.i.d. Bernoulli variables with parameter 𝑝 . Then, for any 𝑥 with
𝑝 < 𝑥 < 1, it holds that

1
𝑛

ln
(
P
[ 𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝑥𝑛

])
= −D𝑒 (𝑥 ∥ 𝑝) −

1
2

ln𝑛
𝑛
− ln(𝑥 − 𝑝)

𝑛
− 1

2
ln(1 − 𝑥)

𝑛
±O

(
1
𝑛

)
.

◀

2 Cramér’s theorem holds more generally for any i.i.d. sequence (𝑋𝑖 )𝑖 such that the cumulant-
generating function of 𝑋1 is finite everywhere [DS89].
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6 The Minimization of
Random Hypergraphs

We use the Chernoff-Hoeffding theorem to give tight bounds for the expected number
of minimal edges of a maximum-entropy random hypergraph. Our results reveal a
phase transition in the minimization depending on the number of sampled edges.

6.1 Introduction

We now return to our main topic with an average-case analysis of random
hypergraphs. A plethora of work has been dedicated to random graphs, the
bibliographies in [Bol01; Hof16] give an overview; hypergraphs, however, re-
ceived much less attention. For many types of data, they provide a much more
natural model. This is especially true if the data has a hierarchical structure or
reflects interactions between groups of entities. In non-uniform1 hypergraphs,
where edges can have different numbers of vertices, a phenomenon occurs that
is unknown to graphs: an edge may be contained in another, and multiple edges
may even form chains of inclusion. We are often only interested in the endpoints
of those chains, the collections of inclusion-wise minimal or maximal edges,
known as the minimization or maximization [Ber89], respectively.
We investigate the maximum-entropy model for random multi-hypergraphs

with 𝑛 vertices and𝑚 edges and expected edge size 𝑝𝑛 for a constant sampling
probability 𝑝 , which we denote by B𝑛,𝑚,𝑝 . In other words, out of all probability
distributions on hypergraphs that result in an expected edge size of 𝑝𝑛, B𝑛,𝑚,𝑝 is
the one of maximum entropy. The notation B𝑛,𝑚,𝑝 is mnemonic of the binomial
distribution emerging in the sampling. We are interested in the expected size
of the minimization/maximization this hypergraph. Our results are phrased in
terms of the minimization, but replacing the probability 𝑝 with 1−𝑝 immediately
transfers them to the maximization. We show that the size of the minimization
undergoes a phase transition with respect to the number of edges𝑚 with the

1 A non-uniform hypergraph is one whose edges may have different cardinalities, see Section 2.2.
This should not be confused with a hypergraph sampled from a non-uniform distribution.
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point of transition at𝑚∗ = 1/(1 − 𝑝) (1−𝑝 )𝑛 . While the number of edges is still
small, a constant fraction of them is minimal and the minimization grows linearly
in the total sample sizes. For𝑚 > 𝑚∗, the size of the minimization is instead
governed by the entropy function of the exponent 𝛼 such that𝑚 = 1/(1 − 𝑝)𝛼𝑛
(see Theorem 6.2 for a precise statement). We show that the ratio of minimal
edges decreases exponentially as 𝑚 increases. This seems counter-intuitive
at first as it decouples the behavior of the minimization from the growth of
the underlying hypergraph. We show that the maximum expected number of
minimal edges over all𝑚 is of order Θ((1+𝑝)𝑛/

√
𝑛), attained at𝑚 = 1/(1−𝑝)

𝑛
1+𝑝 .

Our results establish a close connection between the size of the minimization
and the binomial distribution. Theorem 6.1 (see below) characterizes the number
of minimal edges in terms of the total number of edges𝑚 and the likelihood
that a binomial variable deviates from its expectation. The main tool in our
analysis is the Chernoff–Hoeffding theorem bounding the tail of the distribution
function via the Kullback–Leibler divergence from information theory. In the
previous chapter, we gave bounds that are tight up to a constant factor, this in
turn enables a tight analysis of the minimization.

Our structural insights also have algorithmic implications for the task of actu-
ally computing the minimization min(H) of an input hypergraphH . We give
two examples from fine-grained complexity as well as data profiling. There
is reason to believe that there exists no minimization algorithm running in
time O(𝑚2−𝜀) · polypoly(𝑛) for any 𝜀 > 0 on 𝑚-edge, 𝑛-vertex hypergraphs. The
argument uses the Sperner Family problem, which is to decide whether H
contains two edges such that one is contained in the other, that is, whether
|min(H)| < |H |. Sperner Family is equivalent to the, arguably more promi-
nent, Orthogonal Vectors problem [BCH16] (see also Section 2.4.3). A truly
subquadratic algorithm for the minimization would thus falsify the Orthogonal
Vectors conjecture (Hypothesis 2.5) and in turn the Strong Exponential Time
Hypothesis (Hypothesis 2.3), which would mark a major breakthrough.
On the other hand, partitioning the edges of the hypergraph H by their

cardinality and processing them in increasing order solves the problem in time
O(𝑚𝑛 |min(H)|), that is, O(𝑚2𝑛) in the worst case. When looking at the average-
case complexity for the B𝑛,𝑚,𝑝 distribution, we get O(𝑚𝑛E

[
|min(B𝑛,𝑚,𝑝) |

]
). Our

results therefore show that the algorithm is subquadratic on average for all𝑚
beyond the phase transition; it is even linear for𝑚 larger than 1/(1 − 𝑝)𝑛 .
There is also a connection to the profiling of relational databases. In the
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previous chapters, we have discussed extensively the duality between unique
column combinations/functional dependencies and difference sets, ones are the
hitting sets of the others. Computing the difference sets one by one generates
an incoming stream of seemingly random subsets. Filtering the inclusion-wise
minimal ones from the stream does not affect the solution, but can greatly re-
duce the number of sets and the complexity of the resulting hitting set instance.
Minimizing the input is therefore a standard preprocessing technique in data
profiling. In real-world databases, there are often fewer minimal difference sets
than rows in the database, let alone pairs thereof. Therefore, the space needed
to store the sets usually makes up only a small fraction of the original input size.
The upper bounds given in Theorem 6.2 provide a theoretical explanation for
this observation. We show that only a few difference sets can be expected to be
minimal and their number even shrinks as the database grows larger. Conversely,
the difference sets and the corresponding multi-column dependencies are mutu-
ally dual, which allows to recover the minimized input from the the collection
of all solutions. In this sense, the matching lower bounds in Theorem 6.2 can be
seen as the smallest amount of data any enumeration algorithm needs to process
in order to correctly discover all dependencies.

Related Work. The analysis of random graphs has a long tradition, Erdős–
Rényi graphs G𝑛,𝑚 [ER59] and Gilbert graphs G𝑛,𝑝 [Gil59] are arguably the most
discussed random graph models in the literature. We refer the reader to the
monograph by Bollobás [Bol01] for an overview. A majority of the work on these
models concentrates on various phase transitions with respect to the number
of edges𝑚 or the sample probability 𝑝 , respectively. This intensive treatment
is fueled by the appealing property that Erdős–Rényi graphs are “maximally
random” in that they do not assume anything but the number of vertices and
edges. Among all probability distributions on graphs with 𝑛 vertices and𝑚 edges,
G𝑛,𝑚 is the unique distribution of maximum entropy. The same holds for G𝑛,𝑝
under the constraint that the expected number of edges is 𝑝

(
𝑛
2
)
, see [AB09a].

The intuition of being maximally random is captured by the Shannon entropy,
which is the central concept in information theory [CT06; Sha48]. A discrete
stochastic system described by the probability distribution ®𝑝 = (𝑝𝑖)𝑖∈N has
a (binary) entropy of 𝐻 ((𝑝𝑖)𝑖∈N) = −

∑
𝑖∈N 𝑝𝑖 ld𝑝𝑖 . The self-information of

a single state with probability 𝑝 is − ld𝑝 . The entropy is then the expected
information of the whole system. It is a measure of surprisal or how “spread
out” the distribution is. Originally stemming from thermodynamics [LY99], the
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versatility of this definition is key to the successful application of information
theory to fields as diverse as cryptography [BF04], machine learning [GB06],
quantum computing [NC10], and of course network analysis [New10]. Jaynes’
principle of maximum entropy states that out of an ensemble of probability
distributions that all describe the observed phenomena equally well, the one of
maximum entropy is to be preferred in order tominimize any outside bias [Jay57a;
Jay57b; Kes09]. Properties of the maximum-entropy model then pertain to the
average system matching the observations. In the context of random graphs, it
is used to define so-called null models [Zwe14]. After certain graph statistics
observed in real-world networks are fixed, one chooses the maximum-entropy
distribution that meets these constraints. By comparing the original network
with a “typical” graph drawn from the null model, one can infer whether other
properties are correlated with the constraints. This method was made rigorous
by Park and Newman [PN04] building on earlier work in general statistics.
Prescribing the exact or expected number of edges leads to the G𝑛,𝑚 or G𝑛,𝑝
distributions, respectively. The configuration model fixes the whole degree
sequence of the graph [Bol80] and the soft configuration model relaxes these
constraints to hold in expectation [Bia07; GL08].
Many early attempts to transfer the concept of null models to hypergraphs

have been only indirect in that they have studied hypergraphs via their clique
expansion [New01] or as bipartite graphs [Sar+15]. This is unsatisfactory since
the projections alter relevant observables, like node degrees or the number
of triangles. Only recently, Chodrow generalized the configuration model di-
rectly to multi-hypergraphs [Cho20], which has subsequently been refined by
Arafat et al. [Ara+20]. There also seems to be not much work on hypergraph
models that can be cast into the maximum-entropy framework without being in-
tentionally designed as such. A notable exception is the work by Schmidt-Pruzan
and Shamir [SS85]. They fix the exact (respectively, expected) edge sequence
such that the largest edge has cardinality O(log𝑛) and show a “double jump”
phase transition in the size of the largest connected component. Most of the
recent literature on random hypergraphs concentrates on the 𝑘-uniform model
where every edge has exactly 𝑘 vertices [BCK10; BCK14; KŁ02] or, equivalently,
on random binary matrices with 𝑘 1s per column [CFP19]. Our model neither
prescribes the exact cardinalities of the edges nor a bound on their maximum
size, instead it only requires that the expected edge size is 𝑝𝑛.
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Closest to ourwork is a string of articles byDemetrovics et al. [Dem+98] aswell
as Katona [Kat12; Kat13]. They investigate random databases and connect the
Rényi entropy2 of order 2 of the logarithmic number of rows with the probability
that certain unique column combinations or functional dependencies hold. In
contrast, we connect the Shannon entropy of the logarithmic number of pairs
of rows (the quantity 𝛼 , see Section 6.2) with the expected number of minimal
difference sets. Note that the Shannon entropy is the Rényi entropy of order 1.
In this sense, we complement the result by Demetrovics et al. and show that
the duality between UCCs/FDs and difference sets also pertains to the order
of entropy. Furthermore, we have observed that in practice the collection of
minimal difference sets of real-world databases is much smaller than the original
instance. Our findings provide a theoretical explanation for this phenomenon.
The minimization of hypergraphs also occurs in fine-grained complexity

in form of the Sperner Family problem. It is subquadratically equivalent to
the Orthogonal Vectors problem [BCH16; Gao+18], which in turn admits a
fine-grained reduction from CNF-Satisfiability [Wil05]. Any truly subquadratic
algorithm for computing the minimization of a hypergraph in the worst case
would mark a major breakthrough in satisfiability. Very recently, ideas from fine-
grained complexity have been extended to to the average case [Bal+17; DLV20;
KW18]. We show that a simple algorithm for Sperner Family is subquadratic
on average on hypergraphs with expected edge size 𝑝𝑛.

6.2 Model and Main Results

Fix a probability 𝑝 and positive integers 𝑛 and𝑚. The random multi-hypergraph
B𝑛,𝑚,𝑝 is generated by independently sampling𝑚 (not necessarily distinct) sub-
sets of [𝑛]. Each set contains any vertex 𝑣 ∈ [𝑛] with probability 𝑝 independently
of all other choices.3 We quickly argue that it is indeed the maximum-entropy
model. Besides the size of the universe 𝑛 and the number of edges𝑚, the only
constraint is the expected edge size 𝑝𝑛. The independence bound on the en-
tropy reads as follows: Let 𝑋1 to 𝑋𝑚 be random variables with joint distribution
P𝑋1,...,𝑋𝑚

and marginals P𝑋 𝑗
. Their entropies satisfy 𝐻 (P𝑋1,...,𝑋𝑚

) ≤ ∑𝑚
𝑗=1 𝐻 (P𝑋 𝑗

),
with equality holding if and only if the 𝑋 𝑗 are independent [CT06].

2 Let ®𝑝 be a probability distribution and 𝛼 ≥ 0, 𝛼 ≠ 1, a real number. The binary Rényi entropy of
®𝑝 of order 𝛼 is 1

1−𝛼 ld
(∑𝑛

𝑖=1 𝑝
𝛼
𝑖

)
. For 𝛼 → 1, it converges to the Shannon entropy, see [CT06].

3 In the context of Boolean functions, this is called the 𝑝-biased distribution [ODo14].
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This implies that the edges need to be sampled independently in order to
maximize the entropy, and the same is true for the vertices inside one edge.
Finally, the fact that setting the sampling probability of the vertices to be all
equal indeed yields the maximum entropy under a given mean set size was
proven by Harremoës [Har01].

We are interested in the expected number of inclusion-wise minimal edges in
B𝑛,𝑚,𝑝 , denoted by E

[
|min(B𝑛,𝑚,𝑝) |

]
. We describe the asymptotic behavior of

this expectationwith respect to𝑛. That is, we view the number of edges𝑚 =𝑚(𝑛)
as a function of 𝑛 and bound the univariate asymptotics of E

[
|min(B𝑛,𝑚,𝑝) |

]
in 𝑛

for any choice of𝑚. The probability 𝑝 is considered to be a constant throughout.
We show first that the expected size of the minimization can be described

precisely in terms of 𝑚 and the binomial distribution Bin(𝑛, 𝑝). To state our
result in full detail, we define

𝛼 = log 1
(1−𝑝 )𝑛

𝑚 = −
log1−𝑝𝑚

𝑛
.

The quantity 𝛼 is a non-negative function of 𝑝 , 𝑛, and𝑚, it is well-defined for all
0 < 𝑝 < 1 and 𝑛, 𝑚 ≥ 1. Asymptotically in 𝑛, it is of order Θ((log𝑚)/𝑛). If 𝑝
and 𝑛 are fixed, choosing a value for 𝛼 determines𝑚 as we have𝑚 = 1/(1−𝑝)𝛼𝑛 .

▶ Theorem 6.1. Let 𝑛, 𝑚 be positive integers and 𝑝 a probability. If 𝑝 = 0
or 𝑝 = 1, then |min(B𝑛,𝑚,𝑝) | = 1 holds deterministically. For 0 < 𝑝 < 1, let
𝑋 ∼ Bin(𝑛, 𝑝) be a binomially distributed random variable.

(𝑖) For any constant 𝜀 > 0 and all𝑚 ≤ 1/(1 − 𝑝) (1−𝜀 )𝑛 , i.e., all 0 ≤ 𝛼 ≤ 1 − 𝜀,
we have E

[
|min(B𝑛,𝑚,𝑝) |

]
= Θ(𝑚) · P[𝑋 ≤ (1 − 𝛼)𝑛].

(𝑖𝑖) There exists a constant 𝑐 > 0 such that for all𝑚 ≥ 1/(1− 𝑝)𝑛+𝑐 ln𝑛 , i.e., all
𝛼 ≥ 1 + 𝑐 ln𝑛

𝑛
, we have 1 ≤ E

[
|min(B𝑛,𝑚,𝑝) |

]
= 1 + o(1). ◀

The asymptotic estimate in the first statement is tight up to constants, the second
statement is even tight up to lower-order terms. The constants hidden in the
big-O notation are universal in the sense that they do not depend on𝑚 or 𝑛,
but also not on 𝛼 , which describes the relation between the former two. We
note that the constants may depend on 𝑝 and 𝜀. There is a gap in the theorem at
𝑚 = 1/(1−𝑝)𝑛 , which can, however, be made arbitrarily small. Let𝐶 = 1/(1−𝑝),
then Statement (𝑖) holds if𝑚 ≤ (𝐶−𝛿)𝑛 for any constant 𝛿 > 0 and Statement (𝑖𝑖)
takes over at𝑚 ≥ (𝐶+o(1))𝑛 . Unlike what onemight expect, the characterization
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(a) The expected size of the minimization as
a function of 𝑚 for 𝑛 = 10 and 𝑝 = 0.6 in the
information-theoretic regime. The vertical line
at 𝑚 = 1/(1 − 𝑝)

𝑛
1+𝑝 indicates the maximum

(Lemma 6.12). For𝑚 > 1/(1− 𝑝)𝑛 , the size goes
to 1. The linear bound for𝑚 ≤ 1/(1 − 𝑝) (1−𝑝 )𝑛
is not shown as it is too close to 0.
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(b) The expected size of the minimization as a
function of 𝛼 for 𝑝 = 0.6. The plot is indepen-
dent of 𝑛. The vertical line at 𝛼 = 1−𝑝 indicates
the phase transition between the linear and the
information-theoretic regime. The respective
bounds are continued as dashed lines into the
other regime. The vertical line at 𝛼 = 1/(1 + 𝑝)
indicates the maximum (Lemma 6.12).

Figure 6.1: Illustration of Theorem 6.2 showing the expected size of the minimization
of a random hypergraph depending (a) on the number of edges𝑚 and (b) on 𝛼 . As 𝛼 is
logarithmic in𝑚, (b) is the same plot as (a), but with both axes being logarithmic.

in terms of the binomial distribution in Theorem 6.1 (𝑖) cannot be extended to
the case in which 𝛼 converges to 1. We prove this in Lemma 6.11.

Theorem 6.1 allows us to express the size of the minimization in information-
theoretic terms, namely, in terms of the Shannon entropy of 𝛼 . This reveals a
phase transition at𝑚∗ = 1/(1−𝑝) (1−𝑝 )𝑛 , i.e., for 𝛼 = 1−𝑝 . Recall from Section 2.5
that H(𝑥) = −𝑥 ld𝑥 − (1− 𝑥) ld(1− 𝑥) is the (binary Shannon) entropy function.

▶ Theorem 6.2. Let 𝑛,𝑚 be positive integers and 0 < 𝑝 < 1 a probability.

(𝑖) If𝑚 ≤ 1/(1 − 𝑝) (1−𝑝 )𝑛 , that is 𝛼 ≤ 1 − 𝑝 , then E
[
|min(B𝑛,𝑚,𝑝) |

]
= Θ(𝑚).

(𝑖𝑖) Let 𝜀 > 0 be any constant. If𝑚 is between 1/(1−𝑝) (1−𝑝 )𝑛 and 1/(1−𝑝) (1−𝜀 )𝑛 ,
that is, 1 − 𝑝 ≤ 𝛼 ≤ 1 − 𝜀, then E

[
|min(B𝑛,𝑚,𝑝) |

]
is of order

Θ(1) ·min
(
1, 1
(𝛼 − (1 − 𝑝))

√︁
(1−𝛼)𝑛

)
· 2(H(𝛼 )+(1−𝛼 ) log2 𝑝 ) 𝑛

113



Chapter 6 The Minimization of Random Hypergraphs

= Θ(1) ·min
(
1, 1
(𝛼 − (1 − 𝑝))

√︁
(1−𝛼)𝑛

)
·
(

𝑝1−𝛼

(1 − 𝛼)1−𝛼 𝛼𝛼

)𝑛
. ◀

The leading constant in Statement (𝑖𝑖) may depend on 𝜀. We derive Theorem 6.2
from Theorem 6.1 by applying the tightened variant of the Chernoff–Hoeffding
theorem, Theorem 5.1, which we proved in the previous chapter.

The bounds in the two cases are very different. They are visualized in Figure 6.1
showing the expected size of the minimization as a function of the number of
edges𝑚 and of the exponent 𝛼 , respectively. To distinguish the cases also in
writing, we use the term linear regime if𝑚 is between 1 and 1/(1 − 𝑝) (1−𝑝 )𝑛 ,
corresponding to 0 ≤ 𝛼 ≤ 1−𝑝 . The number of minimal edges is proportional to
the total number of edges in that regime. Likewise, we refer to𝑚 being between
1/(1 − 𝑝) (1−𝑝 )𝑛 and 1/(1 − 𝑝)𝑛 , i.e., 1 − 𝑝 ≤ 𝛼 ≤ 1, as the information-theoretic
regime. There, the size of minimization can be described using the entropy of 𝛼 . It
first increases to its maximum and afterwards decays rapidly. In particular, larger
hypergraphs have fewer minimal edges. This is in line with our observations
regarding hypergraphs from real-world databases, see Chapter 4.

6.3 Distinct Sets and Minimality

We want to determine the expected number of minimal edges in the maximum-
entropy multi-hypergraph B𝑛,𝑚,𝑝 . The vertex sampling probabilities 𝑝 = 0 or
𝑝 = 1 result in trivial hypergraphs containing 𝑚 copies of the edge ∅ or [𝑛],
respectively. The minimization then consist of a single edge. In the remainder
of this chapter, we thus assume 0 < 𝑝 < 1. Also, 𝑛 and𝑚 always denote positive
integers and 𝑋 ∼ Bin(𝑛, 𝑝) a binomial variable. As the sampling probability 𝑝 is
non-trivial, every subset of [𝑛] then has a non-vanishing chance to be sampled.
A set is minimal for B𝑛,𝑚,𝑝 if and only if it is generated in one of the trials and
no proper subset ever occurs. Both aspects influence the chance of minimality,
but their impact varies depending on the cardinality of the sampled sets.

The number of vertices per edge is heavily concentrated around the mean 𝑝𝑛

and the more vertices there are in an edge, the less likely it is minimal. Intuitively,
almost no sets with very low cardinalities are sampled, but if so, they are very
likely included in the minimization. There are plenty of edges with a medium
number of vertices and there is still a good chance they are minimal. Sets of high
cardinality rarely occur and usually they are dominated by smaller edges. This
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disparity is exacerbated by a large number of trials. Boosting𝑚 increases the
probability that also sets of cardinality a bit further away from 𝑝𝑛 are sampled, at
the same time the process now generates more duplicate sets that do not count
towards the minimization. More importantly though, the likelihood of a larger
set being minimal is much smaller with many trials. Eventually, the last effect
outweighs all others, in the extreme case the only minimal edge is empty.

Wemake this intuition rigorous in this section. We give preliminary bounds on
the number of minimal edges as a first step towards Theorem 6.1. The estimates
are already tight up to constants but are rather unwieldy. They will serve as
the basis for our further analysis. In order to prove the bounds, we prepare the
following technical lemma on independent repetitions of random experiments.

▶ Lemma 6.3. Consider a random experiment with outcomes 𝐴, 𝐵, and 𝐶 ,
where P[𝐵] > 0. In𝑚 independent and identically distributed trials, let 𝐴 𝑗 be
the event that the outcome of the 𝑗-th trial is 𝐴, same with 𝐵. It holds that

P
[
∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗

�� ∃𝑘 ≤ 𝑚 : 𝐵𝑘
]
≤ P

[
∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗

�� 𝐵𝑚 ]
= P

[
∀𝑗 < 𝑚 : ¬𝐴 𝑗

]
◀

Proof. The equality is immediate from the independence of the trials and 𝐵𝑚
implying ¬𝐴𝑚 . We only have to prove the inequality. There, the case P[𝐵] = 1
is trivial, thus assume 0 < P[𝐵] < 1 in the following. We first show that the
inequality is equivalent to

P
[
∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗

�� ¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )
]
≤ P

[
∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗

�� 𝐵𝑚 ]
. (6.1)

Event [∃𝑘 ≤ 𝑚 : 𝐵𝑘 ] can be partitioned into [¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )] and [𝐵𝑚].

P
[
∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗

�� ∃𝑘 ≤ 𝑚 : 𝐵𝑘
]
=

P
[
(∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗 ) ∧ (∃𝑘 ≤ 𝑚 : 𝐵𝑘 )

]
P[∃𝑘 ≤ 𝑚 : 𝐵𝑘 ]

=
P
[
(∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗 ) ∧ ¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )

]
+ P

[
(∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗 ) ∧ 𝐵𝑚

]
P[¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )] + P[𝐵𝑚]

.

Observe that for any four reals 𝑥 , 𝑦, 𝑧,𝑤 such that 𝑦,𝑤, and 𝑦 +𝑤 are non-zero,
𝑥+𝑧
𝑦+𝑤 ≤

𝑧
𝑤
holds if and only if 𝑥

𝑦
≤ 𝑧

𝑤
does. Applying this to the real numbers

𝑥 = P
[
(∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗 ) ∧ ¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )

]
, 𝑦 = P[¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )],

𝑧 = P
[
(∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗 ) ∧ 𝐵𝑚

]
, and 𝑤 = P[𝐵𝑚] gives the equivalence.
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The actual lemma is proven by induction over𝑚. The case𝑚 = 1 is trivial.
Suppose that P

[
∀𝑗 < 𝑚 : ¬𝐴 𝑗

�� ∃𝑘 < 𝑚 : 𝐵𝑘
]
≤ P

[
∀𝑗 < 𝑚 : ¬𝐴 𝑗

�� 𝐵𝑚−1
]
holds.

It is now sufficient to conclude Inequality (6.1). The independence of the trials
implies that the probability P

[
∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗

�� ¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )
]
is equal to

P
[
(∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗 ) ∧ ¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )

]
P[¬𝐵𝑚 ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )]

=
P[¬𝐴𝑚 ∧ ¬𝐵𝑚] · P

[
(∀𝑗 < 𝑚 : ¬𝐴 𝑗 ) ∧ (∃𝑘 < 𝑚 : 𝐵𝑘 )

]
P[¬𝐵𝑚] · P[∃𝑘 < 𝑚 : 𝐵𝑘 ]

= P[¬𝐴𝑚 | ¬𝐵𝑚] · P
[
∀𝑗 < 𝑚 : ¬𝐴 𝑗

�� ∃𝑘 < 𝑚 : 𝐵𝑘
]
.

By induction, the latter is at most P[¬𝐴𝑚 | ¬𝐵𝑚 ] · P
[
∀𝑗 < 𝑚 : ¬𝐴 𝑗

�� 𝐵𝑚−1
]
. The

probabilities of the outcomes do not change over the trials, and also event 𝐵𝑚
implies ¬𝐴𝑚 . Therefore, P[¬𝐴𝑚 | ¬𝐵𝑚 ] · P

[
∀𝑗 < 𝑚 : ¬𝐴 𝑗

�� 𝐵𝑚−1
]
equals

1 − P[𝐴𝑚] − P[𝐵𝑚]
1 − P[𝐵𝑚]

(1 − P[𝐴𝑚])𝑚−2 · P[𝐵𝑚−1]
P[𝐵𝑚−1]

=

(
1 − P[𝐴𝑚]

1 − P[𝐵𝑚]

)
·
(
1 − P[𝐴𝑚]

)𝑚−2
≤

(
1 − P[𝐴𝑚]

)𝑚−1

= P
[
∀𝑗 ≤ 𝑚 : ¬𝐴 𝑗

�� 𝐵𝑚 ]
. ■

We now prove the preliminary estimates for E
[
|min(B𝑛,𝑚,𝑝) |

]
. They are

binomial sums of polynomials of probabilities. Depending on which factors we
include in the sum, we get an upper or lower bound. Let D𝑛,𝑝 be the maximum-
entropy distribution on the power set P([𝑛]) with E𝑆∼D𝑛,𝑝

[|𝑆 |] = 𝑝𝑛, namely,
each vertex is included independently with probability 𝑝 . Let 𝑆 𝑗 ∼ D𝑛,𝑝 be the
𝑗-th sampled edge. Define the function

𝑠𝑛,𝑝 (𝑖,𝑚) = P
[
∃ 𝑗 ≤ 𝑚 : 𝑆 𝑗 = [𝑖]

]
= 1 − (1 − 𝑝𝑖 (1 − 𝑝)𝑛−𝑖)𝑚

as the probability that the set [𝑖] (in fact, any set of cardinality 𝑖) is generated.
For the closed forms of 𝑠𝑛,𝑝 (𝑖,𝑚), observe that the random set 𝑆 𝑗 differs from [𝑖]
with probability 1 − 𝑝𝑖 (1 − 𝑝)𝑛−𝑖 . In the same fashion, let

𝑤𝑛,𝑝 (𝑖,𝑚) = P
[
∀𝑗 ≤ 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖])

]
= (1 − (1 − 𝑝)𝑛−𝑖 (1 − 𝑝𝑖))𝑚
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be the probability that no trial results in a proper subset of [𝑖].4 The expression
for 𝑤𝑛,𝑝 (𝑖,𝑚) follows from the fact that 𝑆 𝑗 is a subset of [𝑖] if it does not contain
an element of [𝑛]\[𝑖], which has probability (1 − 𝑝)𝑛−𝑖 . Conditioned on being
any subset, 𝑆 𝑗 is a proper subset if it is missing at least one element of [𝑖].

▶ Lemma 6.4. The following statements holds for the minimization B𝑛,𝑚,𝑝 .

(𝑖) E
[
|min(B𝑛,𝑚,𝑝) |

]
≥ ∑𝑛

𝑖=0
(
𝑛
𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) ·𝑤𝑛,𝑝 (𝑖,𝑚).

(𝑖𝑖) E
[
|min(B𝑛,𝑚,𝑝) |

]
≤ ∑𝑛

𝑖=0
(
𝑛
𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) ·𝑤𝑛,𝑝 (𝑖,𝑚 − 1).

(𝑖𝑖𝑖) E
[
|min(B𝑛,𝑚,𝑝) |

]
≤ 1 + 1

𝑝

∑𝑛
𝑖=0

(
𝑛
𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) ·𝑤𝑛,𝑝 (𝑖,𝑚). ◀

Proof. Some fixed set 𝑆 ⊆ [𝑛] is in min(B𝑛,𝑚,𝑝) if and only if it is sampled in one
of the𝑚 trials and no proper subset is sampled. The probability for both events
depends only on |𝑆 | as all sets with the same cardinality are equally likely.

E
[
|min(B𝑛,𝑚,𝑝) |

]
=

∑︁
𝑆⊆[𝑛]

P
[
(∃𝑘 ≤ 𝑚 : 𝑆𝑘 = 𝑆) ∧ (∀𝑗 ≤ 𝑚 : ¬(𝑆 𝑗 ⊊ 𝑆))

]
=

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
· P[∃𝑘 ≤ 𝑚 : 𝑆𝑘 = [𝑖]] · P

[
∀𝑗 ≤ 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖]) | ∃𝑘 ≤ 𝑚 : 𝑆𝑘 = [𝑖]

]
=

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) · P

[
∀𝑗 ≤ 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖]) | ∃𝑘 ≤ 𝑚 : 𝑆𝑘 = [𝑖]

]
.

The last factor is the likelihood that any set with 𝑖 elements is minimal, if it is
sampled at all. The bounds differ only in the way this factor is estimated. We
claim it is at least 𝑤𝑛,𝑝 (𝑖,𝑚) = P

[
∀𝑗 ≤ 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖])

]
(without the condition)

and also at most 𝑤𝑛,𝑝 (𝑖,𝑚 − 1) = P
[
∀𝑗 < 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖])

]
(with one fewer trial).

The first inequality is obvious because conditioning on some trial producing [𝑖]
itself only increases the chances of never sampling a proper subset. For the second
inequality, we apply Lemma 6.3 to the events 𝐴 𝑗 = [𝑆 𝑗 ⊊ [𝑖] ] and 𝐵 𝑗 = [𝑆 𝑗 =
[𝑖] ], showing that P

[
∀𝑗 ≤ 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖])

�� ∃𝑘 ≤ 𝑚 : 𝑆𝑘 = [𝑖]
]
is indeed upper-

bounded by P
[
∀𝑗 ≤ 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖]) | 𝑆𝑚 = [𝑖]

]
= P

[
∀𝑗 < 𝑚 : ¬(𝑆 𝑗 ⊊ [𝑖])

]
. This

completes the proof of Statements (𝑖) and (𝑖𝑖).
For Statement (𝑖𝑖𝑖), note that the 𝑖-th term of the respective sums in the first

two statements have ratio 𝑤𝑛,𝑝 (𝑖,𝑚)/𝑤𝑛,𝑝 (𝑖,𝑚−1). Due to the independence,

4 The notation 𝑠𝑛,𝑝 refers to the set being sampled, these probabilities are then weighted by 𝑤𝑛,𝑝 .
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this is equal to 𝑤𝑛,𝑝 (𝑖, 1), the probability to not sample a strict subset of [𝑖] in
a single trial. For 𝑖 < 𝑛, it is easy to see that 𝑤𝑛,𝑝 (𝑖, 1) ≥ 𝑝 . If 𝑖 = 𝑛, we have
𝑤𝑛,𝑝 (𝑛, 1) = 𝑝𝑛 which converges to 0. However, the statement follows anyway
as the contribution of the last term to the whole sum is at most 1. ■

The part that all three bounds of Lemma 6.4 have in common describes the
expected number of distinct sets in B𝑛,𝑚,𝑝 . Recall that we use ∥H ∥ to denote the
number of distinct sets of some multi-hypergraphH . That means, we have

E
[
∥B𝑛,𝑚,𝑝 ∥

]
=

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) =

𝑛∑︁
𝑖=0

(
𝑛

𝑖

) (
1 − (1 − 𝑝𝑖 (1 − 𝑝)𝑛−𝑖)𝑚

)
.

We weight the terms by 𝑤𝑛,𝑝 (𝑖,𝑚) or 𝑤𝑛,𝑝 (𝑖,𝑚−1) to estimate the size of the
minimization. We analyze the two parts separately, starting with function 𝑤𝑛,𝑝 .

The behavior of the weighting factors 𝑤𝑛,𝑝 may have applications besides our
study of random hypergraphs. Consider𝑚 trials according to the maximum-
entropy distribution D𝑛,𝑝 on subsets of [𝑛]. Then, 𝑤𝑛,𝑝 (𝑖,𝑚) is by definition the
probability that any fixed subset of cardinality 𝑖 survives as minimal after𝑚
trials, equivalently, any proper subset is sampled with probability 1 −𝑤𝑛,𝑝 (𝑖,𝑚).
It is easy to see that weighting factors are non-increasing in both 𝑖 and𝑚. We
prove next that the weighting factors are in fact threshold functions falling
abruptly from almost 1 to almost 0 as 𝑖 increases from 0 to 𝑛, the position of the
transition depends on 𝑛,𝑚, and 𝑝 . Recall that 𝛼 = −(log1−𝑝𝑚)/𝑛. Lemma 6.5
below establishes a sharp threshold behavior of 𝑤𝑛,𝑝 (𝑖,𝑚) at

𝑖∗ = 𝑛 + log1−𝑝𝑚 = (1 − 𝛼)𝑛.

Note that 𝑖∗ is always at most 𝑛 since log1−𝑝𝑚 is non-positive. The definition is
such that it ensures the equality𝑚 = 1/(1− 𝑝)𝛼𝑛 = 1/(1− 𝑝)𝑛−𝑖∗ . For increasing
𝑚, the threshold gets smaller relative to 𝑛. Once𝑚 grows beyond 1/(1− 𝑝)𝑛 , i.e.,
𝛼 > 1, the quantity 𝑖∗ can no longer be interpreted as a cardinality as it becomes
negative. Later, in Lemma 6.10, we will see that 𝑚 being this large is in fact
irrelevant for the analysis of the minimization.

118



Distinct Sets and Minimality Section 6.3

▶ Lemma 6.5. It holds that 𝑤𝑛,𝑝 (0,𝑚) = 1 and 𝑤𝑛,𝑝 (𝑛,𝑚) = 𝑝𝑛𝑚.
Now suppose 𝑖 = 𝑖 (𝑛) takes integer values strictly between 0 and 𝑛.

(𝑖) The factor 𝑤𝑛,𝑝 (𝑖,𝑚) is at least exp(−𝑚 (1 − 𝑝)𝑛−𝑖) · (1 −𝑚 (1 − 𝑝)2(𝑛−𝑖 ) )
and at most exp(−𝑚 (1 − 𝑝)𝑛−𝑖+1).

In particular, the following statements hold.5

(𝑖𝑖) If 𝑖 = 𝑛 + log1−𝑝𝑚 + 𝜔 (1), then lim𝑛→∞𝑤𝑛,𝑝 (𝑖,𝑚) = 0.

(𝑖𝑖𝑖) If 𝑖 = 𝑛 + log1−𝑝𝑚 − 𝜔 (1), then lim𝑛→∞𝑤𝑛,𝑝 (𝑖,𝑚) = 1.

(𝑖𝑣) If 𝑖 = 𝑛 + log1−𝑝𝑚 ± Θ(1), then 𝑤𝑛,𝑝 (𝑖,𝑚) = Θ(1). ◀

Proof. The corner cases for 𝑖 = 0 and 𝑖 = 𝑛 are elementary. Assume 0 < 𝑖 < 𝑛

for the rest of the proof. We use Corollary 2.11 to derive both the upper and the
lower bound for 𝑤𝑛,𝑝 (𝑖,𝑚). On the one hand, it yields

𝑤𝑛,𝑝 (𝑖,𝑚) = (1 − (1 − 𝑝)𝑛−𝑖 (1 − 𝑝𝑖))𝑚 ≤ (1 − (1 − 𝑝)𝑛−𝑖 (1 − 𝑝))𝑚

≤ exp
(
−𝑚 (1 − 𝑝)𝑛−𝑖 · (1 − 𝑝)

)
.

On the other hand, we have 1 − 𝑝𝑖 ≤ 1 and get that

𝑤𝑛,𝑝 (𝑖,𝑚) ≥ (1 − (1 − 𝑝)𝑛−𝑖)𝑚 ≥ exp
(
−𝑚 (1 − 𝑝)𝑛−𝑖

)
· (1 −𝑚 (1 − 𝑝)2(𝑛−𝑖 ) ) .

The above shows that the limiting behavior of 𝑤𝑛,𝑝 (𝑖,𝑚) as 𝑛 grows large is
entirely determined by the product𝑚(1 − 𝑝)𝑛−𝑖 . If 𝑖 = 𝑛 + log1−𝑝𝑚 +𝜔 (1), then

𝑚(1 − 𝑝)𝑛−𝑖 =𝑚(1 − 𝑝)−(log1−𝑝 𝑚)−𝜔 (1) = (1 − 𝑝)−𝜔 (1)

diverges and 𝑤𝑛,𝑝 (𝑖,𝑚) thus converges to 0. If 𝑖 = 𝑛 + log1−𝑝𝑚 − 𝜔 (1), both
𝑚(1 − 𝑝)𝑛−𝑖 = (1 − 𝑝)𝜔 (1) and

𝑚(1 − 𝑝)2(𝑛−𝑖 ) =𝑚(1 − 𝑝)−2(log1−𝑝 𝑚)+𝜔 (1) =
(1 − 𝑝)𝜔 (1)

𝑚

tend to 0, implying lim𝑛→∞𝑤𝑛,𝑝 (𝑖,𝑚) = 1.

5 We understand 𝜔 (1) as the class of all non-negative unbounded functions of 𝑛. In particular,
the classes 𝑛 + log1−𝑝𝑚 + 𝜔 (1) and 𝑛 + log1−𝑝𝑚 − 𝜔 (1) are disjoint.
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Finally, if the cardinality 𝑖 is close to the threshold 𝑖∗ = 𝑛 + log1−𝑝𝑚, the limit
may not exist. We show that 𝑤𝑛,𝑝 (𝑖,𝑚) is still bounded away from 0 for all 𝑛.
Suppose 𝑖 = 𝑛 + log1−𝑝𝑚 ± Θ(1). In particular, this means that the difference
𝑖∗ − 𝑖 is bounded. If 𝑚 = 𝑚(𝑛) is (at most) a constant, the same holds for
𝑤𝑛,𝑝 (𝑖,𝑚) ≥ (1 − (1 − 𝑝)𝑛−𝑖)𝑚 ≥ 𝑝𝑚 . Here, we used the assumption 𝑖 < 𝑛. If𝑚
diverges instead, then 𝑛 − 𝑖 = log1−𝑝𝑚 ∓ Θ(1) = 𝜔 (1) diverges with it and thus

𝑤𝑛,𝑝 (𝑖,𝑚) ≥ exp
(
−𝑚 (1 − 𝑝)𝑛−𝑖

)
(1 −𝑚 (1 − 𝑝)2(𝑛−𝑖 ) )

= exp
(
− (1 − 𝑝)𝑖∗−𝑖

)
· (1 − (1 − 𝑝) (𝑖∗−𝑖 )+(𝑛−𝑖 ) ) = Ω(1) . ■

We will later need the following stronger form of Statement (𝑖𝑣).

▶ Corollary 6.6. Let 𝑖 = ⌊𝑛 + log1−𝑝𝑚⌋. There exists a constant 𝛿 > 0 such
that for all𝑚 with 1 < 𝑚 ≤ 1/(1 − 𝑝)𝑛 , we have 𝑤𝑛,𝑝 (𝑖,𝑚) ≥ 𝛿 . ◀

Proof. The assumption on 𝑚 is to ensure that 0 ≤ 𝑖 < 𝑛. If 𝑖 = 0, we have
𝑤𝑛,𝑝 (𝑖,𝑚) = 1. Therefore, the minimum of 𝑤𝑛,𝑝 (𝑖,𝑚) over all 𝑛 and every choice
of function𝑚 =𝑚(𝑛) is attained at a position where 𝑖 > 0. It holds that

𝑤𝑛,𝑝 (𝑖,𝑚) ≥ exp
(
−𝑚 (1 − 𝑝)𝑛−𝑖

)
· (1 −𝑚 (1 − 𝑝)2(𝑛−𝑖 ) )

= exp
(
−𝑚 (1 − 𝑝)𝑛−⌊𝑛+log1−𝑝 𝑚⌋

)
·
(
1 −𝑚 (1 − 𝑝)2(𝑛−⌊𝑛+log1−𝑝 𝑚⌋ )

)
≥ exp(−1) ·

(
1 − 1

𝑚

)
≥ 1

2𝑒 . ■

We have demonstrated a sharp threshold for the weighting factors. We now
move our attention to the number of distinct sets ∥B𝑛,𝑚,𝑝 ∥. A trivial cap for that
is the total number of edges𝑚. When starting the sampling, many different sets
are generated and ∥B𝑛,𝑚,𝑝 ∥ is close to𝑚. With more and more trials though,
duplicates occur in the sample and the two quantities grow apart. To discuss this
in more detail, we introduce some notation. For integers ℓ, 𝑢 with 0 ≤ ℓ ≤ 𝑢 ≤ 𝑛,
let ∥B𝑛,𝑚,𝑝 (ℓ,𝑢)∥ denote the number of distinct samples whose cardinality is
between ℓ and 𝑢, including. This number is of course at most as large as the total
number of samples in that range. It thus makes sense to expect an upper bound
closely related to the binomial distribution. We confirm this intuition below and
also prove a lower bound for ∥B𝑛,𝑚,𝑝 (ℓ,𝑢)∥ of the same flavor.
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Recall, that 𝑋 ∼ Bin(𝑛, 𝑝) denotes a binomial random variable. To state the
lemma, we further define p = p(ℓ,𝑢) = maxℓ≤𝑖≤𝑢 {𝑝𝑖 (1 − 𝑝)𝑛−𝑖 }. It holds that

p =


𝑝ℓ (1 − 𝑝)𝑛−ℓ , if 𝑝 < 1/2;
1/2𝑛, if 𝑝 = 1/2;
𝑝𝑢 (1 − 𝑝)𝑛−𝑢, otherwise.

The closed form for p follows from the equality 𝑝𝑖 (1−𝑝)𝑛−𝑖 = (𝑝/(1−𝑝))𝑖 ·(1−𝑝)𝑛
since the odds 𝑝/(1 − 𝑝) are strictly smaller than 1 iff 𝑝 < 1/2.

▶ Lemma 6.7. Let ℓ, 𝑢 be integers such that 0 ≤ ℓ ≤ 𝑢 ≤ 𝑛. The expected
number of distinct sets in B𝑛,𝑚,𝑝 satisfies

𝑚

1 +𝑚p
· P[ℓ ≤ 𝑋 ≤ 𝑢] ≤ E

[
∥B𝑛,𝑚,𝑝 (ℓ,𝑢)∥

]
≤ 𝑚 · P[ℓ ≤ 𝑋 ≤ 𝑢] . ◀

Proof. We apply Proposition 2.12 to prove both the upper and the lower bound.

E
[
∥B𝑛,𝑚,𝑝 (ℓ,𝑢)∥

]
=

𝑢∑︁
𝑖=ℓ

(
𝑛

𝑖

)
(1− (1− 𝑝𝑖 (1− 𝑝)𝑛−𝑖)𝑚) ≤ 𝑚 ·

𝑢∑︁
𝑖=ℓ

(
𝑛

𝑖

)
𝑝𝑖 (1− 𝑝)𝑛−𝑖 .

E
[
∥B𝑛,𝑚,𝑝 (ℓ,𝑢)∥

]
≥

𝑢∑︁
𝑖=ℓ

(
𝑛

𝑖

)
𝑚𝑝𝑖 (1 − 𝑝)𝑛−𝑖

1 +𝑚𝑝𝑖 (1 − 𝑝)𝑛−𝑖 ≥
𝑚

1 +𝑚p
·

𝑢∑︁
𝑖=ℓ

(
𝑛

𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖 .

■

6.4 The Size of the Minimization

We now prove the main results about the number of minimal edges of B𝑛,𝑚,𝑝 .
The key observation is that the minimization is dominated by the sets whose
cardinality is at the threshold 𝑖∗ = 𝑛 + log1−𝑝𝑚 = (1 − 𝛼)𝑛.

6.4.1 Binomial Characterization

Theorem 6.1 establishes a close connection between the expected size of the
minimization and the binomial distribution. We divide its proof into three
lemmas corresponding, in that order, to the lower bound in the first statement
of the theorem, the tight upper bound, and the second statement.
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Note that the following lemma is slightly more general than what is claimed
in Theorem 6.1 (𝑖). It pertains to all𝑚 ≤ 1/(1 − 𝑝)𝑛 , in other words, it does not
require 𝛼 = 𝛼 (𝑚,𝑛) to be bounded away from 1.

▶ Lemma 6.8 (lower bound of Theorem 6.1 (𝒊)). For all𝑚 ≤ 1/(1− 𝑝)𝑛 , that
is, all 0 ≤ 𝛼 ≤ 1, it holds that E

[
|min(B𝑛,𝑚,𝑝) |

]
= Ω(𝑚) · P[𝑋 ≤ 𝑖∗]. ◀

Proof. If𝑚 = 1, then 𝑖∗ =𝑛 and |min(B𝑛,𝑚,𝑝) | = 1=𝑚 ·P[𝑋 ≤ 𝑖∗] holds determinis-
tically. Hence, we assume𝑚 > 1. The sought expectation is at least as large as the
number of distinct minimal sets up to some cardinality 𝑖 , for an arbitrary choice
of 𝑖 ≤ 𝑛. As an ansatz, we set it equal to the threshold 𝑖∗ = 𝑛+log1−𝑝𝑚 = (1−𝛼)𝑛.
Without loosing generality, 𝑖∗ is an integer; otherwise, we take ⌊𝑖∗⌋. By the as-
sumption𝑚 ≤ 1/(1 − 𝑝)𝑛 , we have 𝑖∗ ≥ 0. Let p = max0≤𝑖≤𝑖∗{𝑝𝑖 (1 − 𝑝)𝑛−𝑖 }.
Lemma 6.4 (𝑖) and 6.7 imply that E

[
|min(B𝑛,𝑚,𝑝) |

]
is lower-bounded by

𝑖∗∑︁
𝑖=0

(
𝑛

𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) ·𝑤𝑛,𝑝 (𝑖,𝑚) ≥

𝑖∗∑︁
𝑖=0

(
𝑛

𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) ·𝑤𝑛,𝑝 (𝑖∗,𝑚)

= E
[
∥B𝑛,𝑚,𝑝 (0, 𝑖∗)∥

]
·𝑤𝑛,𝑝 (𝑖∗,𝑚) ≥

1
1 +𝑚p

·𝑤𝑛,𝑝 (𝑖∗,𝑚) ·𝑚 · P[𝑋 ≤ 𝑖∗] .

To complete the proof, we verify that neither 1/(1 + 𝑚p) nor 𝑤𝑛,𝑝 (𝑖∗,𝑚)
vanish for any 𝑚 ≤ 1/(1 − 𝑝)𝑛 . For the first factor, this is immediate from
the closed form for p (see the paragraph preceding Lemma 6.7). It implies
𝑚p = max0≤𝑖≤𝑖∗{𝑚𝑝𝑖 (1 − 𝑝)𝑛−𝑖 } ≤ max{1, 𝑝𝑖∗} = 1. Corollary 6.6 shows that
𝑤𝑛,𝑝 (𝑖∗,𝑚) is bounded away from 0 universally for all 1 < 𝑚 ≤ 1/(1 − 𝑝)𝑛 . ■

▶ Lemma 6.9 (upper bound of Theorem 6.1 (𝒊)). For any constant 𝜀 > 0 and
all𝑚 ≤ 1/(1−𝑝) (1−𝜀 )𝑛 , that is, all 0 ≤ 𝛼 ≤ 1−𝜀, it holds that E

[
|min(B𝑛,𝑚,𝑝) |

]
=

O(𝑚) · P[𝑋 ≤ 𝑖∗ ]. The leading constant may depend on 𝜀. ◀

Proof. By Lemma 6.4, we know that

E
[
|min(B𝑛,𝑚,𝑝) |

]
≤

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) ·𝑤𝑛,𝑝 (𝑖,𝑚 − 1)

We split the sum at the threshold 𝑖∗ = (1−𝛼)𝑛 and handle the two parts separately.

122



The Size of the Minimization Section 6.4

Regarding the first part with indices up to 𝑖∗, Lemma 6.7 implies

𝑖∗∑︁
𝑖=0

(
𝑛

𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚) ·𝑤𝑛,𝑝 (𝑖,𝑚 − 1) ≤

𝑖∗∑︁
𝑖=0

(
𝑛

𝑖

)
𝑠𝑛,𝑝 (𝑖,𝑚)

= E
[
∥B𝑛,𝑚,𝑝 (0, 𝑖∗)∥

]
≤ 𝑚 · P[𝑋 ≤ 𝑖∗ ] .

For larger indices, we can no longer ignore the influence of the weighting
factors. We show that the whole second part of the sum is only a constant factor
larger than𝑚P[𝑋 = 𝑖∗] (and therefore in O(𝑚)P[𝑋 ≤ 𝑖∗]). Let ℓ ≤ 𝑛 − 𝑖∗ be a
positive integer and consider the (𝑖∗+ ℓ)-th term of the sum

𝑡𝑛,𝑚,𝑝 (𝑖∗+ ℓ) =
(

𝑛

𝑖∗+ ℓ

)
𝑠𝑛,𝑝 (𝑖∗+ ℓ,𝑚) ·𝑤𝑛,𝑝 (𝑖∗+ ℓ,𝑚 − 1) .

If ℓ = 𝑛 − 𝑖∗ the term contributes at most 1. For the remainder, assume ℓ < 𝑛 − 𝑖∗.
Using Proposition 2.12 the same way as in the proof of Lemma 6.7 shows that
𝑡𝑛,𝑚,𝑝 (𝑖∗+ ℓ) ≤ 𝑚P[𝑋 = 𝑖∗+ ℓ] ·𝑤𝑛,𝑝 (𝑖∗+ ℓ,𝑚 − 1). For the ratio between the term
and𝑚P[𝑋 = 𝑖∗] we thus get

𝑟 (ℓ) =
𝑡𝑛,𝑚,𝑝 (𝑖∗+ ℓ)
𝑚P[𝑋 = 𝑖∗] ≤

𝑚P[𝑋 = 𝑖∗+ ℓ]
𝑚P[𝑋 = 𝑖∗] ·𝑤𝑛,𝑝 (𝑖∗+ ℓ,𝑚 − 1)

=

(
𝑛

𝑖∗+ ℓ
)(

𝑛
𝑖∗
) (

𝑝

1 − 𝑝

) ℓ
𝑤𝑛,𝑝 (𝑖∗+ ℓ,𝑚 − 1) .

We show that the first factor is bounded using that 𝛼 ≤ 1 − 𝜀.(
𝑛

𝑖∗+ ℓ
)(

𝑛
𝑖∗
) =

ℓ∏
𝑗=1

𝑛 − 𝑖∗ − 𝑗 + 1
𝑖∗ + 𝑗 ≤

(
𝑛 − 𝑖∗
𝑖∗

) ℓ
=

( 𝛼

1 − 𝛼

) ℓ
≤ 1

𝜀ℓ
.

The assumption ℓ < 𝑛 − 𝑖∗ ensures that the ratio between subsequent weight-
ing factors is a constant. In more detail, we have proven in Lemma 6.4 (𝑖𝑖𝑖)
that 𝑤𝑛,𝑝 (𝑖∗+ ℓ,𝑚 − 1)/𝑤𝑛,𝑝 (𝑖∗+ ℓ,𝑚) ≤ 1/𝑝 . The same assumption also makes
Lemma 6.5 (𝑖) applicable. Combining the two facts gives the following.
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𝑤𝑛,𝑝 (𝑖∗+ ℓ,𝑚 − 1) =
𝑤𝑛,𝑝 (𝑖∗ + ℓ,𝑚 − 1)
𝑤𝑛,𝑝 (𝑖∗ + ℓ,𝑚)

·𝑤𝑛,𝑝 (𝑖∗ + ℓ,𝑚)

≤ 1
𝑝

exp(−𝑚 (1 − 𝑝)𝑛−𝑖∗−ℓ+1) = 1
𝑝

exp(−(1 − 𝑝)−ℓ+1).

Define 𝑎 = 𝑝/𝜀 (1 − 𝑝) and 𝑏 = 1/(1 − 𝑝). So far, we have established that the
ratio between the (𝑖∗+ ℓ)-th term and𝑚P[𝑋 = 𝑖∗] is at most

𝑟 (ℓ) ≤ 1
𝑝

𝑎ℓ

exp(𝑏ℓ−1) .

The bound on 𝑟 itself is already free of any dependence on 𝑛,𝑚, or 𝛼 . However,
in order to prove our claim, we need to bound the sum 1 + ∑𝑛−𝑖∗−1

ℓ=1 𝑟 (ℓ). A
fortiori, we show that the series

∑∞
ℓ=1 𝑟 (ℓ) is summable. To this end, consider

the sequence 𝑞(ℓ) = 𝑟 (ℓ) · 2ℓ . Its logarithm ln𝑞 = ℓ ln(2𝑎) − ln𝑝 − 𝑏ℓ−1 diverges
to −∞ as ℓ increases, implying 𝑞 → 0. This means, there exists an ℓ0 such that
𝑟 (ℓ) ≤ 2−ℓ for all ℓ ≥ ℓ0.

∞∑︁
ℓ=1

𝑟 (ℓ) ≤
ℓ0∑︁
ℓ=1

𝑎ℓ

𝑝 · exp(𝑏ℓ−1) +
∞∑︁

ℓ=ℓ0+1

1
2ℓ ≤

ℓ0∑︁
ℓ=1

𝑎ℓ

𝑝 · exp(𝑏ℓ−1) + 2 = O(1). ■

We have characterized E
[
|min(B𝑛,𝑚,𝑝) |

]
in terms of the binomial distribution

as long as𝑚 ≤ 1/(1 − 𝑝) (1−𝜀 )𝑛 . Also, |min(B𝑛,𝑚,𝑝) | always contains at least one
edge by definition. We now prove that once𝑚 is a polynomial factor (in 𝑛) larger
than 1/(1 − 𝑝)𝑛 this trivial lower bound is tight up to lower order terms.

▶ Lemma 6.10 (Theorem 6.1 (𝒊 𝒊)). There is a constant 𝑐 > 0 such that for all
𝑚 ≥ 1/(1−𝑝)𝑛+𝑐 ln𝑛 , i.e., 𝛼 ≥ 1+ 𝑐 ln𝑛

𝑛
, we have E

[
|min(B𝑛,𝑚,𝑝) |

]
= 1+o(1). ◀

Proof. Let 𝑚 = 1/(1 − 𝑝)𝑛+𝑓 for some non-negative function 𝑓 = 𝑓 (𝑛). As
soon as the empty set is sampled in one of the 𝑚 trials, the minimization of
B𝑛,𝑚,𝑝 comprises only a single set; otherwise, we fall back to the trivial estimate
|min(B𝑛,𝑚,𝑝) | ≤ 𝑚. Let 𝐴 denote the event [∅ ∈ B𝑛,𝑚,𝑝]. The law of total
expectation together with Corollary 2.11 implies

E
[
|min(B𝑛,𝑚,𝑝) |

]
= E

[
|min(B𝑛,𝑚,𝑝) |

�� 𝐴 ]
P[𝐴] + E

[
|min(B𝑛,𝑚,𝑝) |

�� ¬𝐴 ]
P[¬𝐴]
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≤ P[𝐴] +𝑚 · (1 − (1 − 𝑝)𝑛)𝑚

≤ 1 + exp(ln𝑚 −𝑚 (1 − 𝑝)𝑛) = 1 + exp
(
ln𝑚 − (1 − 𝑝)−𝑓

)
.

Wehave ln𝑚 = − ln(1−𝑝) (𝑛+𝑓 ). Note that− ln(1−𝑝) is a constant strictly larger
than 1. Requiring 𝑓 ≥ (𝑐′ ln𝑛)/(− ln(1 − 𝑝)) for an arbitrary constant 𝑐′ > 1
ensures that ln𝑚 is negligible compared to (1 − 𝑝)−𝑓 , whence the expression
above converges to 1. Setting 𝑐 = −𝑐′/ln(1 − 𝑝) gives the lemma. ■

6.4.2 The Case 𝒎 = 1/(1 − 𝒑)𝒏

There is a mismatch between the upper and lower bounds above in the range
of parameters for which they hold. The lower bound has been proven for all
𝑚 ≤ 1/(1 − 𝑝)𝑛 . In particular, this includes the case where 𝛼 = 𝛼 (𝑛) converges
to 1 from below. Consider any 𝛼 with 1 − 1/𝑛 < 𝛼 ≤ 1. This means that
P[𝑋 ≤ (1 − 𝛼)𝑛] = P[𝑋 = 0] = (1 − 𝑝)𝑛 and 1/(1 − 𝑝)𝑛−1 < 𝑚 ≤ 1/(1 − 𝑝)𝑛 .
Inserting this in Lemma 6.8 gives E

[
|min(B𝑛,𝑚,𝑝) |

]
= Ω(𝑚) · P[𝑋 ≤ (1−𝛼)𝑛] =

Ω(1) · (1−𝑝) = Ω(1). This is not surprising as we always have |min(B𝑛,𝑚,𝑝) | ≥ 1.
On the other hand, the upper bound in Lemma 6.9 has been proven only for

𝛼 ≤ 1−𝜀 for any constant 𝜀 > 0. If we still were to insert some 1−1/𝑛 < 𝛼 ≤ 1, we
would get E

[
|min(B𝑛,𝑚,𝑝) |

]
= O(1). We refute this estimate below. Contrarily,

we prove a lower bound for the case 𝛼 > 1− 1/𝑛 that is polynomially larger than
the one inherited from Lemma 6.8. This shows that the binomial characterization
of Theorem 6.1 breaks down if 𝛼 converges to 1 (sufficiently fast).

▶ Lemma 6.11. If 1− 1/𝑛 ≤ 𝛼 ≤ 1, that is 1/(1− 𝑝)𝑛−1 ≤ 𝑚 ≤ 1/(1− 𝑝)𝑛 , then
we have E

[
|min(B𝑛,𝑚,𝑝) |

]
= Ω(𝑛). ◀

Proof. We extend the proof idea of Lemma 6.10. If none of the𝑚 trials generates
the empty set, then all distinct sampled singletons are minimal.

E
[
|min(B𝑛,𝑚,𝑝) |

]
≥ E

[
∥B𝑛,𝑚,𝑝 (1, 1)∥

]
· P

[
∅ ∉ B𝑛,𝑚,𝑝

]
= 𝑛 · 𝑠𝑛,𝑝 (1,𝑚) · (1 − 𝑠𝑛,𝑝 (0,𝑚)) .

We show that the product 𝑠𝑛,𝑝 (1,𝑚) (1 − 𝑠𝑛,𝑝 (0,𝑚)) is bounded away from 0 for
all 𝑛 using Proposition 2.12 and our assumption on the range of𝑚.
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𝑠𝑛,𝑝 (1,𝑚) = 1 − (1 − 𝑝 (1 − 𝑝)𝑛−1)𝑚

≥ 𝑚𝑝 (1 − 𝑝)𝑛−1

1 +𝑚𝑝 (1 − 𝑝)𝑛−1 ≥
𝑝

1 + 𝑝/(1 − 𝑝) = 𝑝 (1 − 𝑝) .

For the second factor, we use Corollary 2.11.

1 − 𝑠𝑛,𝑝 (0,𝑚) = (1 − (1 − 𝑝)𝑛)𝑚 ≥ exp(−𝑚 (1 − 𝑝)𝑛) · (1 −𝑚 (1 − 𝑝)2𝑛)

≥ exp(−1) · (1 − (1 − 𝑝)𝑛) ≥ 𝑝

𝑒
. ■

Comparing the Lemmas 6.10 and 6.11 shows that a slight polynomial increase
(in 𝑛) of the number of trials beyond 1/(1 − 𝑝)𝑛 is enough to push the size of
the minimization from Ω(𝑛) to 1 + o(1). We leave it as an open problem to give
exact bounds for this collapse around𝑚 ≈ 1/(1 − 𝑝)𝑛 , that is, 𝛼 ≈ 1.

Observe that in our illustration above the choice of 𝛼 is tight in the sense that
for 𝛼 = 1− 1/𝑛, we have P[𝑋 ≤ (1−𝛼)𝑛] = P[𝑋 ≤ 1] = (1−𝑝)𝑛 +𝑛𝑝 (1−𝑝)𝑛−1.
For the corresponding𝑚 = 1/(1− 𝑝)𝑛−1, Lemma 6.8 implies E

[
|min(B𝑛,𝑚,𝑝) |

]
=

O(𝑛) and Lemma 6.11 proves a matching lower bound. The difference stems
from the fact that the binomial variable 𝑋 is discrete and thus P[𝑋 ≤ (1 − 𝛼)𝑛]
as a function of 𝑛 introduces some quantization error. However, we do not know
whether this is the only obstacle for extending Theorem 6.1.

6.4.3 Phase Transition at 𝒎∗ = 1/(1 − 𝒑) (1−𝒑)𝒏

We now discuss the behavior of min(B𝑛,𝑚,𝑝) at𝑚∗ = 1/(1 − 𝑝) (1−𝑝 )𝑛 . We show
that the size of the minimization undergoes a phase transition there. This is made
explicit in Theorem 6.2 (restated below) and illustrated in Figure 6.1. Intuitively,
for a small number of edges, the ratio of minimal edges among all edges is
constant and thus |min(B𝑛,𝑚,𝑝) | scales linearly with𝑚. At the transition point,
both the size of the multi-hypergraph as well as its minimization are of order
𝑚∗ = 1/(1 − 𝑝) (1−𝑝 )𝑛 = 2(H(1−𝑝 )+𝑝 ld𝑝 ) 𝑛 . Here, H again denotes the binary
entropy function. This overlap is indicated in Figure 6.1 (b) by dashed lines.
Beyond that, in the information-theoretic regime, the size of the minimization
is instead given by the perplexity of 𝛼 , and follows 2(H(𝛼 )+(1−𝛼 ) ld𝑝 ) 𝑛 up to
polynomial factors. This means that the growth of the minimization continues at
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first, but is now only sublinear. Its size peaks at a certain𝑚, which we compute
exactly in Lemma 6.12. For an even larger number of trials, the number of
minimal edges begin to fall, even exponentially. Once𝑚 exceeds 1/(1 − 𝑝)𝑛 ,
the minimization collapses under the sheer likelihood of the empty set being
sampled, see Lemma 6.10.

To gauge the phase transitionmore accurately, we reuse the correction factor𝜑
from Chapter 5. Recall that we defined 𝜑 (𝑛, 𝑝, 𝑝) = 1 and, for all reals 𝑥 ∈ [0, 𝑝),

𝜑 (𝑛, 𝑝, 𝑥) = min
(
1, 1
(𝑝 − 𝑥)

√
𝑥𝑛

)
.

Let again D denote the (binary Kullback–Leibler) divergence between Bernoulli
distributions. We proved in Theorem 5.1 that

P[𝑋 ≤ (1−𝛼)𝑛] = Θ(1) · 𝜑 (𝑛, 𝑝, 1−𝛼) · 2−D(1−𝛼 ∥ 𝑝 )𝑛 .

Close to the transition point 𝛼 ≈ 1− 𝑝 , we have 𝜑 ≈ 1. As 𝛼 moves further away,
𝜑 is shrinking. Once there is a constant additive gap between 𝛼 and 1 − 𝑝 the
correction factor is of order Θ(1/

√
𝑛 ).

▶ Theorem 6.2 (restated).

(𝑖) If𝑚 ≤ 1/(1 − 𝑝) (1−𝑝 )𝑛 , that is 𝛼 ≤ 1 − 𝑝 , then E
[
|min(B𝑛,𝑚,𝑝) |

]
= Θ(𝑚).

(𝑖𝑖) Let 𝜀 > 0 be any constant. If 𝑚 is between 1/(1 − 𝑝) (1−𝑝 )𝑛 and 1/(1 −
𝑝) (1−𝜀 )𝑛 , that is, 1 − 𝑝 ≤ 𝛼 ≤ 1 − 𝜀, then E

[
|min(B𝑛,𝑚,𝑝) |

]
is of order

Θ(1) · 𝜑 (𝑛, 𝑝, 1−𝛼) · 2(H(𝛼 )+(1−𝛼 ) log2 𝑝 ) 𝑛

= Θ(1) ·min
(
1, 1
(𝛼 − (1 − 𝑝))

√︁
(1−𝛼)𝑛

)
·
(

𝑝1−𝛼

(1 − 𝛼)1−𝛼 𝛼𝛼

)𝑛
. ◀

Proof. The first statement covers the linear regime of𝑚 ≤ 1/(1 − 𝑝) (1−𝑝 )𝑛 . By
the binomial characterization in Theorem 6.1, we have E

[
|min(B𝑛,𝑚,𝑝) |

]
=

Θ(𝑚) · P[𝑋 ≤ (1 − 𝛼)𝑛], with 𝑋 ∼ Bin(𝑛, 𝑝). It is thus enough to verify that the
probability does not converge to 0. This follows easily from 𝛼 ≤ 1 − 𝑝 and 𝑝𝑛
being the median of the binomial distribution.

In the remainder, we treat the information-theoretic regime of all𝑚 such that
1/(1−𝑝) (1−𝑝 ) ≤ 𝑚 ≤ 1/(1−𝑝) (1−𝜀 )𝑛 for some fixed 𝜀 > 0. In particular, (1−𝛼)𝑛
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is now smaller than the mean E[𝑋 ]. Our improved Chernoff–Hoeffding bound in
Theorem 5.1 yields E

[
|min(B𝑛,𝑚,𝑝) |

]
= Θ(𝑚) · 𝜑 (𝑛, 𝑝, 1 − 𝛼) · 2−D(1−𝛼 ∥ 𝑝 ) 𝑛 . We

express the divergence power in terms of the perplexity and use the equalities
𝑚 = 1/(1 − 𝑝)𝛼𝑛 as well as H(1 − 𝛼) = H(𝛼) to obtain

𝑚 · 2−D(1−𝛼 ∥ 𝑝 ) 𝑛 =
1

(1 − 𝑝)𝛼𝑛 · 2
H(1−𝛼 )𝑛 𝑝 (1−𝛼 )𝑛 (1 − 𝑝)𝛼𝑛

= 2H(1−𝛼 )𝑛 𝑝 (1−𝛼 )𝑛 = 2(H(𝛼 )+(1−𝛼 ) ld𝑝 ) 𝑛 . ■

The behavior of the minimization for increasing𝑚 suggests that there is a
sweet spot in the information-theoretic regime where the expected number of
minimal edges is maximum. We apply Theorem 6.2 to calculate this maximum.

▶ Lemma 6.12. Let 0 < 𝑝 < 1. The maximum expected size of the minimiza-
tion over all𝑚 is max𝑚 E

[
|min(B𝑛,𝑚,𝑝) |

]
= Θ

(
(1 + 𝑝)𝑛/

√
𝑛
)
. The maximum is

attained at𝑚 = 1/(1 − 𝑝)
𝑛

1+𝑝 , that is, 𝛼 = 1/(1 + 𝑝). ◀

Proof. We first verify that that the maximum indeed sits in the information-
theoretic regime. We use the fact that 1/(1−𝑝)1−𝑝 < 1+𝑝 holds for all 0 < 𝑝 < 1.
This can be seen from 1/(1 − 𝑝)1−𝑝 being strictly concave on the open unit
interval and 1 + 𝑝 being its tangent line at position 𝑝 = 0.
Since |min(B𝑛,𝑚,𝑝) | ≤ 𝑚, the sample size𝑚 ≤ 1/(1 − 𝑝) (1−𝑝 )𝑛 in the linear

regime is too small to lead to the claimed bound of order (1 + 𝑝)𝑛/polypoly(𝑛).
Regarding the information-theoretic regime, observe that 𝑓𝑝 (𝛼) = 2H(𝛼 )+(1−𝛼 ) ld𝑝

is continuous and concave. It converges to 2H(1−𝑝 )+𝑝 ld𝑝 = 1/(1 − 𝑝) (1−𝑝 ) as
𝛼 ↘ 1 − 𝑝 (for any fixed 𝑝). Hence, there exists some 𝛽 > 0 small enough such
that 𝑓𝑝 (1 − 𝑝 + 𝛽) < 1 + 𝑝 . Conversely, 𝑓𝑝 (𝛼) tends to 1 as 𝛼 ↗ 1. Let 𝛾 > 0 be
such that 𝑓𝑝 (1−𝛾) < 1+𝑝 . In other words, any bound that is exponential in 1+𝑝
must come from 𝛼 ∈ [1−𝑝 + 𝛽, 1−𝛾]. We are in the setting of Theorem 6.2 (𝑖𝑖).
Let 𝜑 abbreviate 𝜑 (𝑛, 𝑝, 1 − 𝛼). There are constants 𝐶,𝐶′ > 0 such that

𝐶 · 𝜑 · 2(H(𝛼 )+(1−𝛼 ) ld𝑝 ) 𝑛 ≤ E
[
|min(B𝑛,𝑚,𝑝) |

]
≤ 𝐶′ · 𝜑 · 2(H(𝛼 )+(1−𝛼 ) ld𝑝 ) 𝑛 .

As 𝛼 is bounded away from both 1 − 𝑝 and 1, we have 𝜑 = Θ(1/√𝑛) and the
hidden constants are independent of 𝛼 (but possibly depending on 𝑝 , 𝛽 , and
𝛾 ). We are thus left to determine the extremum of the exponential part. Let
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𝑔𝑝 = log(2𝑛 ) 𝑓𝑝 = (ld 𝑓𝑝)/𝑛 be the exponent of 𝑓𝑝 , meaning

𝑔𝑝 (𝛼) = H(𝛼) + (1 − 𝛼) ld𝑝 = −𝛼 ld𝛼 − (1 − 𝛼) ld(1 − 𝛼) + (1 − 𝛼) ld𝑝

Its derivative
d

d𝛼 𝑔𝑝 (𝛼) = ld
(
1 − 𝛼
𝛼

)
− ld𝑝

has a single zero in the interval [1 − 𝑝 + 𝛽, 1 − 𝛾] at 𝛼∗ = 1/(1 + 𝑝), resulting in
an exponent of

𝑔𝑝 (𝛼∗) = −
1

1 + 𝑝 ld
(

1
1 + 𝑝

)
− 𝑝

1 + 𝑝 ld
(

𝑝

1 + 𝑝

)
+ 𝑝

1 + 𝑝 ld𝑝 = ld(1 + 𝑝) . ■

6.5 Conclusion

We gave tight bounds on the expected number of minimal edges of maximum-
entropy 𝑛-vertex,𝑚-edge multi-hypergraphs with expected edge size 𝑝𝑛. We
discovered a phase transition with respect to the total number of edges. As long
as 𝑚 is at most 𝑚∗ = 1/(1 − 𝑝) (1−𝑝 )𝑛 , the expected size of the minimization
is linear in𝑚. Once the sample size increases beyond𝑚∗, the minimization is
instead governed by the entropy of the exponent 𝛼 such that𝑚 = 1/(1 − 𝑝)𝛼𝑛 .
The minimization continues to grow sublinearly until𝑚 reaches 1/(1 − 𝑝)

𝑛
1+𝑝 ,

from there on, it decays rapidly. Raising𝑚 above 1/(1 − 𝑝)𝑛 finally results in
only the empty edge being minimal.
This is a first step to understand why large real-world databases regularly

produce small hypergraphs of minimal difference sets. Of course, fixing the
expected size of a difference set as the only constraint is not yet an accurate
model for the instances arising in data profiling. A promising direction is to
allow different sample probabilities per vertex as well as dependencies between
the elements. We feel that additional dependencies, that is, more redundancy in
the sampled edges, exacerbates the trend towards small minimizations that we
already saw in the independent model. However, proving this would require an
extension of the maximum-entropy model to incorporate additional constraints.
The ultimate goal would be to lift the modeling from the level of hypergraphs to
that of the databases themselves.

Arguably a more accessible next step for future work is to improve our theo-
retical understanding of B𝑛,𝑚,𝑝 . Theorem 6.1 still needs to be generalized to also
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cover the case where 𝛼 converges to 1. Also, it seems possible to strengthen our
results to hold not only in expectation but asymptotically almost surely, meaning
with probability to 1− o(1). It is also interesting to investigate hypergraphs for
which the sampling probability 𝑝 is not constant, but tends to 0. This would
bring the study of random hypergraphs closer to that of sparse random graphs.
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7 Hitting Set Enumeration
with Partial Information

We devise a novel kind of algorithm for the discovery of unique column combinations
based on partial hypergraphs. It utilizes the fast enumeration times in practice
in order to speed up the search for the relevant difference sets. An experimental
evaluation shows that our method outperforms the current state of the art.

7.1 Introduction

Keys are among the most fundamental type of constraint in relational database
theory. A key is a set of attributes whose values uniquely identify every record in
a given relational instance. This uniqueness property is necessary to determine
entities in the data. Keys serve to query, link, and merge entities. A unique
column combination is the observation that in a given relational instance a certain
set of attributes 𝑆 does not contain any duplicate entries. In other words, UCCs
describe attribute sets that fulfill the necessary properties of a key, whereby null
values require special consideration, hence UCCs are natural key candidates. In
practice, key discovery is a recurring activity as keys are oftenmissing for various
reasons: on freshly recorded data, keys may have never been defined, on archived
and transmitted data, keys sometimes are lost due to format restrictions, on
evolving data, keys may be outdated if constraint enforcement is lacking, and on
fused and integrated data, keys often invalidate in the presence of key collisions.
Because UCCs are also important for many data management tasks other than
key discovery, such as anomaly detection, data integration, data modeling, query
optimization, and indexing, the ability to discover them efficiently is crucial.

Data profiling algorithms automatically discover metadata, like unique column
combinations, from raw data and provide this metadata to any downstream data
management task. Research in this area has led to various UCC discovery algo-
rithms, such as GORDIAN [Sis+06], HCA [AN11], DUCC [Hei+13], Swan [AQN14],
and HyUCC [PN17]. Out of these algorithms, only HyUCC can process datasets of
multiple gigabytes in size in reasonable time, because it combines the strengths
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of all previous algorithms (lattice search, candidate inference, and paralleliza-
tion). At some point, however, even HyUCC fails to process certain datasets,
because the approach needs to maintain an exponentially growing search space
in main memory, which eventually either exhausts the available memory or, due
to search space maintenance, the execution time.
In this thesis, we have discussed extensively the connection between UCC

discovery and the transversal hypergraph problem. Hitting set-based techniques
were among the first tried for discovery [DT87; MR87] and still play a role
today in the form of row-based algorithms. In Chapter 3, we argued that this is
inevitable–in a sense–as the two problems are equivalent under parsimonious
reductions. When utilizing hitting sets directly, we have to extract the informa-
tion about the difference sets of the database. While the asymptotic running time
of the preprocessing is only quadratic in the number of records, we saw that this
is prohibitive in practice. Our experiments in Chapter 4 have also verified that
the actual enumeration succeeds rather quickly.

We propose a novel approach that automatically discovers all unique column
combinations of a given relational dataset. The algorithm is based on the con-
nection to hitting set enumeration. The key insight we use to improve over
the method in Chapter 4 is that most of the information in the record pairs is
redundant. The following strategy finds the relevant information much more
efficiently. We start the discovery with knowing only a few row pairs in the
database (in the extreme case, we ignore the input alltogether at first). Due to
this lack of information, the resulting solution candidates might not actually
be UCCs. A validation procedure must therefore check whether the hitting
set is a true UCC. If not, the validation additionally provides a reason for its
incorrectness, pointing directly to the part of the database that the enumeration
subroutine needs to include in order to avoid the mistake. Moreover, if we
perform the enumeration in a careful manner, we can prove that all previous
decisions of the algorithm would have been made exactly the same, even if it
had full information about all row pairs of the database upfront. This way, our
approach can include the new information on the fly and simply resume the
discovery where it was before. Instead of providing full and probably redundant
information about the database to the subroutine, the enumeration decides for
itself which information is necessary to make the right decisions. Additionally,
we speed up the computation by employing the fastest hitting set enumeration
algorithm in paractice, namely, MMCS by Murakami and Uno [MU14].
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Alluding to its hitting set nature, we named our algorithmHitting set enumera-
tion with Partial Information and Validation, HPIValid for short. Our approach
adopts techniques from both data profiling and hitting set enumeration bringing
together the two research communities. We make the following contributions.

(1) UCC discovery. We present HPIValid, a novel UCC discovery algorithm
based on the hitting set perspective on data profiling.

(2) Hitting set enumeration with partial information. We prove that
the enumeration algorithm MMCS remains correct when run on a partial
hypergraph, provided that there is a validation procedure for candidate
solutions. We believe that this insight can help to also solve more general
tasks like the discovery of functional dependencies or denial constraints.

(3) Subset closedness. We introduce the concept of subset closedness of
hitting set enumeration algorithms, and prove it to be sufficient for enu-
meration with partial information to succeed. This makes it easy to replace
MMCS with a different subset-closed enumeration procedure if needed.

(4) Sampling. We propose a robust strategy how to extract the relevant
information from the database efficiently in the presence of redundancies.

(5) Exhaustive evaluation. We evaluate HPIValid on dozens of real-world
datasets and compare it to the state of the art in UCC discovery HyUCC.

We show that HPIValid solves instances previously out of reach for UCC dis-
covery. It is also up to three orders of magnitude faster than a non-parallel
implementation of HyUCC and has a smaller memory footprint. This stems from
HPIValid’s tree search with validation, while HyUCC traverses the power set of
all column combinations and stores the previous solutions. The requirement of
subset closedness, however, makes HPIValid harder to parallelize, but it results
in a much more resource and environmentally friendly run time profile.

Related Work. Due to the importance of keys in the relational data model,
much research has been conducted on finding keys in a given relational instance.
Early research on key discovery, for example by Fadous and Forsyth [FF75],
is in fact almost as old as the relational model itself. Beeri et al. [Bee+84]
have shown that deciding whether there exists a key of cardinality less than
a given value in a given relational instance is an NPNP-complete problem, and
we showed that it is likely not fixed-parameter tractable but WW[2]-complete
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when parameterized by the size (Theorem 3.1). Finding all keys or unique
column combinations is computationally even harder. For this reason, only few
automatic data profiling algorithms exist that can discover all unique column
combinations. The Discover Minimal UCCs is equivalent to the Transversal
Hypergraph problem (Theorem 3.3 and [EG95]) and therefore also to frequent
itemset mining, or monotone dualization, see [EMG08]. Many data profiling
algorithms, including the first UCC discovery algorithms, rely on the hitting sets
of certain hypergraphs; the process of deriving complete hypergraphs, however,
is a bottleneck in the computation (see Chapter 4 or [MR94].

In modern data profiling, there are two types of algorithms: row and column-
based approaches. For a comprehensive overview and detailed discussions of the
different approaches, we refer to [Abe+18] and [Man16]. Row-based algorithms,
such as GORDIAN [Sis+06], advance the initial hitting set idea. They compare all
records in the input dataset pair-wise to derive all valid, minimal UCCs. Column-
based algorithms, such as HCA [AN11], DUCC [Hei+13], and Swan [AQN14], in
contrast, systematically enumerate and test individual UCC candidates while
using intermediate results to prune the search space. The algorithms vary mostly
in their traversal strategies, which are breadth-first bottom-up for HCA and a
depth-first random walk for DUCC. Both row and column-based approaches have
their strengths: record comparisons scale well with the number of attributes,
and systematic candidate tests scale well with the number of records. Hybrid
algorithms aim to combine both sides. The one proposed in [KLZ16] (for more
general uniqueness constraints) also exploits the duality between difference sets
and UCCs to mutually grow the available information about the search and
solution space. HyUCC [PN17] switches between column and row-based parts
heuristically whenever the progress of the current part is low. Hyb [WLL19] is a
hybrid algorithm for the discovery of so-called embedded uniqueness constraints
(eUCs), an extension of UCCs to incomplete data. It proposes special ideas
tailored to incomplete data, but is based on the same discovery approach as
HyUCC. All three algorithms share the caveat of a large memory footprint, HyUCC
and Hyb need to store all discovered UCCs or eUCs during computation, the one
in [KLZ16] additionally tracks their minimal hitting sets.
Our approach HPIValid also implements a hybrid strategy, but instead of

switching in level transitions, the column-based part of the algorithm enumerates
preliminary solutions on partial information. The validation of those solution
candidates then points to areas of the database where focused sampling can
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reveal new information. We show that this partial information approach succeeds
to find all UCCs as if the row-based approach had been applied exhaustively.
Similar to [KLZ16], the duality with the hitting sets problem is employed to find
new relevant difference sets. However, the tree search with validation allows us
to compute them without the need of holding all previous solutions in memory.
In principle, every unique column combination is also a functional depen-

dency that determines all other attributes. For this reason, existing algorithms
for FD discovery, like TANE [Huh+99], FastFDs [WGR01], HyFD [PN16], or
SmartFD [Zhu+19] as well as their scalable implementations [SGI19], also sup-
port key discovery. However, FD discovery is more involved and, therefore,
slower than finding UCCs. Inferring UCCs from FDs is also non-trivial [Abe+18].
It is therefore important to be able to discover UCCs with a specialized algorithm.

Regarding the transversal hypergraph problem, out of the three independent
articles raising that problem [DT87; MR87; Rei87], the first two posed the task
in the context of databases as they employed hitting sets in the discovery of
multi-column dependencies between attributes. It was shown much later that
also every hitting set problem can be translated into the discovery of UCCs in
certain dataset, making the two problems equivalent. Hypergraphs stemming
from real-world databases are known to be particularly suitable for enumeration.
The applications of minimal hitting sets have grown far beyond data profiling to
domains such as data mining, bioinformatics and AI. We refer the reader to the
surveys [EMG08; GV17] for an overview. MMCS [MU14] is currently the fastest
hitting set enumeration algorithm on real-world instances, see [GV17].

7.2 Sample and (Don’t) Restart

The folklore Observation 2.2 implies a two-step approach for the enumeration of
unique column combinations. First, compute the difference sets of all record pairs,
and then apply one of the known algorithms for hitting set enumeration. From
a worst-case perspective this approach cannot be improved as the transversal
hypergraph problem and UCC enumeration are equivalent under parsimonious
reductions (Chapter 3). However, the hypergraphs generated from real-world
databases are usually well-behaved and allow for efficient enumeration. In fact,
to compute all difference sets is the actual bottleneck. This observation contrasts
sharply with the theoretical running time bounds, which are exponential for the
hitting sets [Fom+08], but polynomial for the generation of difference sets.
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The core idea to avoid the first step is the following. We first sample a few
record pairs and compute their difference sets. This gives a partial hypergraph,
which might be missing some edges. Nevertheless, we pretend for now that we
already have the correct hypergraph and start the hitting set enumeration. Due to
the partial information, the candidate solutions we find are no longer guaranteed
to be UCCs. Thus, whenever we find a hitting set, we use validation to check
whether it is a UCC of the original database. If this check fails, we know that the
partial hypergraph is in fact incomplete. In this case, the validation procedure
itself provides new row pairs whose difference sets yield a yet unknown edge. In
a first–oversimplified–approach, we include the new information and restart the
enumeration with the updated hypergraph. This is repeated until the validation
certifies that every hitting set we find is indeed a UCC. To prove that this idea
can be successful, one needs to show that we obtain the true hypergraph until
the algorithm terminates. Intuitively, this follows from the fact that missing
edges in the partial hypergraph make the instance less constraint, meaning that
the lack of information might lead to some unnecessary hitting sets, which are
rejected by the validation, but the true UCCs are already present.

In the remainder of this section, we actually show themuch stronger statement
that we can even eliminate the need of restarts. The crucial concept in the proofs
is minimality: a hitting set is minimal, if no proper subset intersects all edges; a
UCC is minimal if it contains no strictly smaller valid UCC. First, we show the
correctness of our algorithm. If the validation procedure asserts that a minimal
hitting set of the partial hypergraph is a UCC, then it must also be a minimal
UCC. Even though we cannot be sure that we have all relevant information
yet, we can already start returning the found solution to the user. Secondly, we
show completeness, meaning that we found all minimal UCCs once the algorithm
terminates. Thirdly, we define what it means for an enumeration algorithm
to be subset closed. We then show that subset-closed algorithms do not need
to be restarted on a failed validation. Instead, they can simply resume the
enumeration with an updated partial hypergraph. Finally, we note that the
MMCS [MU14] algorithm we use to enumerate hitting sets is indeed subset closed.
A detailed description of HPIValid’s implementation follows in Section 7.3.

7.2.1 Correctness and Completeness

We start by proving that the restart approach enumerates all minimal UCCs of
a given database. To do so, we need two things: first, an effective validation
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whether a minimal hitting set for the partial hypergraph is also a minimal UCC,
and, secondly, the assertion that once the enumeration does not produce any
more new edges, we have indeed found all UCCs. We obtain both as corollaries
from a structural result about hypergraphs and their transversals.

LetH and G be two hypergraphs. Recall from Section 2.2 that we useH ≼ G
to indicate that every edge ofH contains an edge of G. As usual, Tr(H) denotes
the Sperner hypergraph of all minimal hitting sets ofH and min(H) its minimal
edges. For anyH , we have Tr(Tr(H)) = min(H). The following lemma states
that the preorder ≼ completely captures the duality between hypergraphs and
their transverals. This connection may be of independent interest beyond the
correctness of our enumeration algorithm.

▶ Lemma 7.1. H ≼ G holds if and only if Tr(H) ≽ Tr(G) does. ◀

Proof. We show first thatH ≼ G implies Tr(H) ≽ Tr(G). Let 𝑇 ∈ Tr(G) be a
minimal hitting set for G. As every edge ofH contains some edge of G, the set
𝑇 is also a hitting set forH . 𝑇 may not be minimal in that regard, but it contains
some minimal transversal from Tr(H). Tr(H) ≽ Tr(G) follows from here.

For the other direction, the very same argument proves that Tr(H) ≽ Tr(G)
implies Tr(Tr(H)) ≼ Tr(Tr(G)), this is the same as min(H) ≼ min(G). The
proof is completed by applying the transitivity of the preorder ≼ and the two
simple factsH ≼ min(H) and min(G) ≼ G. ■

For the following discussion, we fix an (arbitrary) input database 𝔯. Let D be
the hypergraph of the minimal difference sets of pairs of records, then Tr(D)
are the minimal UCCs. Let P be the current partial hypergraph consisting of the
difference sets sampled so far. It may contain difference sets that are not globally
minimal (or not even minimal in P), whence we may have P ⊈ D. Nevertheless,
P ≼ D holds regardless because the difference set of any pair of rows contains
a minimal difference set from D. Suppose we have an enumeration algorithm
for Tr(P), the minimal hitting sets of the partial hypergraph. Those are the
candidates for our validation procedure.

▶ Corollary 7.2. An edge of Tr(P) is a minimal UCC iff it is any UCC. ◀

Proof. The implication from minimal UCC to any UCC is trivial. For the opposite
direction, let𝑇 ∈ Tr(P) be a hitting set for the partial hypergraph such that𝑇 is
a UCC of the database. 𝑇 thus contains some minimal UCC 𝑇 ′ ∈ Tr(D). From

137



Chapter 7 Hitting Set Enumeration with Partial Information

P ≼ D and Lemma 7.1, we get Tr(D) ≼ Tr(P). There exists some hitting set
𝐸 ∈ Tr(P) such that 𝐸 ⊆ 𝑇 ′. As Tr(P) is a Sperner hypergraph, we must have
𝑇 = 𝐸 ⊆ 𝑇 ′ ⊆ 𝑇 . All three sets are the same, 𝑇 itself is the minimal UCC. ■

▶ Corollary 7.3. If the enumeration of Tr(P) does not produce a new edge,
we have found all minimal UCCs of 𝔯. ◀

Proof. If no call to the validation procedure reveals a new unhit edge, we know
that Tr(P) ⊆ Tr(D). We show that Tr(P) = Tr(D) follows from this. The
preorder ≼ generalizes set inclusion, whence Tr(P) ⊆ Tr(D) implies Tr(P) ≼
Tr(D). Also, P ≼ D gives Tr(P) ≽ Tr(D) via Lemma 7.1. Now Tr(P) = Tr(D)
holds due to the antisymmetry of ≼ on Sperner hypergraphs. ■

7.2.2 Forgoing Restarts

Restarting the enumeration every time we discover a new unhit edge is obviously
not ideal. The information we currently have about the input has changed and we
must either recheck the previously found solutions all over again or keep them
in memory over the different runs, which is highly impractical [PN17]. The main
obstacle to simply resuming the work with the updated hypergraph is the risk
of overlooking solutions that are minimal UCCs of the database but not minimal
hitting sets of the partial hypergraph. An enumeration algorithm may base the
decision on how to traverse the search space of column combination solely on
the current input, which does not reflect the whole information of the database.
Past decisions may therefore lock the algorithm out of regions in which the
new update reveals undiscovered solutions. Next, we give a sufficient condition
for overcoming these obstacles. Any algorithm that meets the condition can be
combined with our sampling scheme to discover UCCs without any restarts.
A hitting set enumeration method can be seen as a means to decide, at least

implicitly, for vertex sets whether they are minimal hitting sets or not. We call
an algorithm subset-closed if this decision is never made for a set before it is
made for all of its subsets. Note that this does not mean that the algorithm needs
to check every subset explicitly. For example, certifying some minimal solution
implicitly also decides the minimality of all its sub- and supersets.

▶ Lemma 7.4. Any subset-closed enumeration algorithm combined with a
sampling scheme and validation discovers all minimal UCCswithout restarts. ◀
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Proof. We claim that a subset-closed algorithm does not overlook any minimal
UCC, even if it is only revealed by some later update of P. The minimal UCCs
are exactly the edges of Tr(D). To reach a contradiction, assume that the claim
is false and let solution 𝑇 ∈ Tr(D)\Tr(P) be such that 𝑇 corresponds to a node
in the power set lattice that was discarded in a previous computation step. By
construction, P ≼ D holds and Lemma 7.1 implies Tr(P) ≽ Tr(D). In other
words, there exists a hitting set 𝑆 ∈ Tr(P) such that 𝑆 ⊊ 𝑇 . The algorithm is
subset-closed, thus 𝑆 was previously found and validated. This is a contradiction
to 𝑇 being a minimal UCC. ■

There are many algorithms known to enumerate minimal hitting sets [GV17],
see also Chapter 4. Currently the fastest algorithm in practice is the Minimal-
To-Maximal Conversion Search (MMCS) by Murakami and Uno [MU14]. It is
based on the simple observation that a minimal hitting set 𝑇 ∈ Tr(H) must
be irredundant1 in the sense that each 𝑣 ∈ 𝑇 must have a private edge2 𝐸 ∈ H
such that 𝑇 ∩ 𝐸 = {𝑣}. In fact, the minimal hitting sets are maximal among the
irredundant sets (but not all maximal irredundant sets are hitting sets). MMCS
generates a search tree of candidate solutions in a depth-first manner by adding
vertices one by one as long as the set is irredundant. An example computation
can be found in Section 7.3.3. All checks of candidate sets are purely local and
the traversal order ensures that prior to any check, all subsets of the current
candidate have been tested. One can verify that MMCS is indeed a subset-closed
algorithm, we can thus apply it in the partial information setting.

7.3 Algorithm Description

We first give a high-level overview of our algorithm Hitting Set Enumeration
with Partial Information and Validation (HPIValid) illustrated in Figure 7.1. The
different components are subsequently explained in detail. The execution of
HPIValid is split into four major phases. During preprocessing, the input table
is read and brought into a form that is suitable for the later enumeration. The
algorithm then starts with building a partial hypergraph by computing difference
sets of sampled row pairs. For this partial hypergraph, the minimal hitting sets
are enumerated using the tree search of MMCS. Whenever the search finds a new

1 Irredundant sets are also said to satisfy the minimality condition [MU14].
2 Private edges are called critical in [MU14].
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Figure 7.1: Overview of HPIValid. During preprocessing, the table is read and the
preliminary cluster structure is extracted. The PLIs are created by copying and the
memory is subsequently freed. Sampling generates a partial hypergraph of difference
sets for the tree search to find new candidate solutions to validate.

candidate solution, the validation checks whether the candidate is indeed a UCC.
If so, it is a minimal UCC and HPIValid outputs it. If the validation shows that a
column combination is not unique, we get an explicit list of yet indistinguishable
records as a by-product. Every such pair gives a difference set that is not yet
contained in the partial hypergraph. We resort again to sampling, focused on
those pairs, to manage the influx of new sets. The tree search then resumes with
the updated hypergraph from where it was paused.

7.3.1 Preprocessing

The only information from the database that is relevant for the enumeration of
its UCCs is the grouping of rows with same value in every column. HPIValid
uses a data structure called position list indices3 (PLI) to hold this information, as
is standard in the literature [AN11; CKS86; Hei+13; Huh+99; PN16; PN17]. Each
row is identified by some record ID. The PLI of an attribute 𝑎 is an array of sets
of record IDs. It has one set for each distinct value in 𝑎 and the IDs in any set
correspond to exactly those rows that have this value. The sets are called clusters

3 Position list indices are also called stripped partitions [Huh+99].
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and labeled by their cluster ID. We say a cluster is trivial if it has only a single
row; they are not needed for the further computation. A PLI is thus a way to
represent the cluster structure both of single attributes and column combinations.
The top part of Figure 7.1 shows an example. There are three records with

IDs 0, 1, and 2. The values in attribute FirstFirst are �John� for record 0 and 1, and
�Jane� for record 2. The PLI of FirstFirst thus has two clusters. The cluster with ID 0
contains the record IDs 0 and 1. The cluster 1 is trivial and holds only record 2.
The preprocessing has three steps. HPIValid first reads the table and, for

each column, creates a preliminary hash map from the values to their respective
clusters. In the second step, we extract the PLIs from the map. Same values do
not necessarily appear in consecutive rows of the input, therefore the memory
layout of the clusters is quite ragged after the initial read. To make the later
computations more cache efficient, we create the actual PLIs by copying the data
from the preliminary map into consecutive memory. Besides the PLIs themselves,
we also compute the inverse mappings from record IDs to cluster IDs as in [PN16],
see Figure 7.1. This is used in the validation of UCC candidates to efficiently
intersect the PLI of a column combination with the PLI of a single attribute;
hence, inverse mappings are needed only for single columns.
Finally, we free up the memory occupied by the preliminary data structure.

Due to the ragged memory layout, this can take a material amount of time, which
we report separately in the evaluation. This step could be avoided trading a
higher memory footprint for a slightly smaller run time.

The copying leaves behind some unused memory, neither the mapping from
values to clusters nor the initial cluster layout is needed anymore. We are
committed to transfer the space efficiency of the hitting set approach into practice
as much as possible. Therefore, we free up the memory explicitly at the end of
the preprocessing. If one is willing to trade the space reduction for an improved
run time, this step can be skipped. For transparency, we report the time to free
the memory separately in the evaluation (Section 7.4).

7.3.2 Sampling

Sampling with respect to an attribute 𝑎 means to draw record pairs coinciding
on 𝑎 uniformly at random (u.a.r.). The PLI of 𝑎 is a set of clusters 𝐶1,𝐶2, . . . ,𝐶𝑛

where each 𝐶𝑖 contains records with equal values in 𝑎. There are 𝑃 =
∑𝑛

𝑖=1
( |𝐶𝑖 |

2
)
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indistinguishable pairs.4 As 𝑃 grows quadratically in the cluster size, it is infea-
sible to compare all pairs by brute force. Instead, we fix some real number 𝑥
between 0 and 1 as the sampling exponent and sample 𝑃𝑥 record pairs. As long as
there is sampling budget left, we select a cluster 𝑖 with probability proportional
to

( |𝐶𝑖 |
2

)
and then sample two rows from the cluster u.a.r. without replacement.

The sampling exponent 𝑥 gives us control over the number of pairs and thus
the time needed for the sampling. HPIValid allows the user to choose the
sampling exponent. Our experiments suggest that 𝑥 = 0.3 is a robust choice, see
Section 7.4.1 for a detailed discussion. Comparing the sampled pairs gives the
partial hypergraph of difference sets. We need only its inclusion-wise minimal
edges for the UCC discovery. We minimize it to save memory.

In the beginning, we sample once with respect to each attribute. The resulting
hypergraph P is potentially missing some edges and we have to resample later.
This is done such that every newly sampled record pair is guaranteed to yield an
edge not yet included in P. We achieve this by letting the tree search (described
in the next section) enumerate minimal hitting sets of P. If the validation
concludes that some 𝑆 ∈ Tr(P) is not actually a UCC, then there must be a yet
unsampled record pair in the database that coincides on 𝑆 . Thus, the PLI of 𝑆
has non-trivial clusters and we sample with respect to 𝑆 , that is, from all record
pairs that are in that cluster. Every difference set found in this way is a witness
for the fact that 𝑆 is not a hitting set of the true hypergraph.
The example in Figure 7.1 has three records. Suppose the initial sampling

returns only the pairs (0, 1) and (0, 2) but not (1, 2), that is, P is missing an
edge (grayed out). The tree search will later find the hitting set 𝑆 = {A}. The
validation concludes that 𝑆 is not a UCC and resampling with respect to 𝑆 yields
the missing record pair. The tree search continues with an updated hypergraph.

Our sampling differs from the one of HyUCC in that we draw uniformly from
a cluster without a pair-picking heuristic like pre-sorting or windowing. A
heuristic would have less impact on our algorithm, as we selectively choose only
few record pairs from specific clusters, any time we sample.

7.3.3 Tree Search

As mentioned above, we employ MMCS [MU14] to enumerate hitting sets of the
current partial hypergraph. We can use it almost as a black box, except that we

4 Trivial clusters do not contribute to 𝑝 since
(1
2
)
= 0.
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integrated the validation directly into the search tree to save computation time.
We thus briefly discuss the algorithm to an extent necessary for understanding
the validation. MMCS on the partial hypergraph P constructs a search tree of par-
tial solutions. Every node of the tree maintains a set 𝑆 of vertices (corresponding
to attributes in the database) and the collection of those edges 𝐸 ∈ P that are not
yet hit by 𝑆 . Based on a heuristic, MMCS then chooses an unhit edge 𝐸∗. By the
nature of hitting sets, they contain at least one vertex of 𝐸∗ and MMCS branches
on the decision which 𝑣 ∈ 𝐸∗ to add to 𝑆 . After branching, the search continues
in a child node with the new set 𝑆 ∪ {𝑣}. If there is no unhit edge left, we have
found a hitting set. Beyond the basic branching, further pruning is applied to
decrease the search space. A branch is aborted if adding 𝑣 leads to some vertex of
𝑆 ∪ {𝑣} not having a private edge anymore. Also MMCS ensures that no duplicate
sets are considered during the enumeration. In particular, before checking some
set, all of its subsets must have been checked before.
In Figure 7.1, the partial hypergraph P consists of two unhit edges. MMCS

chooses the smaller {𝐴,𝐶} for branching. It selects𝐶 in one branch and 𝐴 in the
other. With𝐶 selected, {𝐴, 𝐵, 𝐷} is still unhit and the algorithm decides whether
to include 𝐷 , 𝐵, or 𝐴. The branches with 𝐷 and 𝐵 yield minimal hitting sets.
MMCS recognizes 𝑆 = {𝐶,𝐴} in the last branch as redundant and prunes.

7.3.4 Validation

As mentioned above, we adapt MMCS to directly integrate the validation. The tree
search makes sure that we find the minimal hitting sets of the partial hypergraph.
We additionally have to verify that this set is a UCC of the database 𝔯 (see
Corollary 7.2). A set 𝑆 ∪ {𝑣} of attributes is a UCC if it partitions its subtuples
𝑟 [𝑆 ∪ {𝑣}], for all records 𝑟 ∈ 𝔯, into only trivial clusters. Thus the position list
index of 𝑆 ∪ {𝑣} is enough to check whether it is a UCC. We obtain this PLI
from the one for 𝑆 and the single column 𝑣 via PLI intersection, see [Huh+99],
where we use the inverse PLIs for optimization as in [PN16]. Suppose that we
know the clusters 𝐶1, . . . ,𝐶𝑛 of set 𝑆 , with trivial clusters already stripped. By
intersecting the PLI of 𝑆 with that of 𝑣, the𝐶𝑖 are subdivided into smaller groups
corresponding to the same values in column 𝑣. For the single-column PLI of
𝑣 we know the inverse mapping, so for each cluster ID 𝑖 and every record ID
identifying some 𝑟 [𝑆] ∈ 𝐶𝑖 , we look up in which cluster of 𝑣 this record lies. This
gives us a new PLI now representing the cluster structure of 𝑆 ∪ {𝑣}. Subdivided
clusters that became trivial can again be stripped from the partition. Building
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these mappings scales with the total number of rows in the 𝐶𝑖 . If some set is
found to be a hitting set of the partial hypergraph and its cluster structure is
empty (contains only trivial clusters), we output it as a minimal UCC; otherwise,
there are non-trivial clusters left and we sample new difference sets from these
clusters as described in Section 7.3.2.
As some branches of the search tree do not produce hitting sets that have to

be validated, it is not necessary to compute the PLIs for every node of the tree.
Instead, we intersect the PLIs lazily only along branches that find a solution.
To further support the validation, we also extend the branching heuristic of
MMCS. Recall that the number 𝑝 counts the indistinguishable pairs in the cluster
structure for some column. We transfer this notion to hyperedges by taking the
maximum over the values of 𝑝 for all vertices in the edge. Whenever there are
multiple edges of minimum cardinality available, we select 𝐸∗ among them using
the lowest 𝑝-maximum as tiebreaker. The idea is that branching on columns
with small clusters early reduces the validation cost for all nodes down the path.

7.4 Evaluation

We evaluate the HPIValid algorithm with respect to four main aspects.
(1) Parameter choice. How should one choose the sampling exponent 𝑥? Is

there a single universally good choice, independent of the dataset? How
robust is the algorithm against small changes in the parameter?

(2) Performance. What is HPIValid’s run time and memory consumption?
How does it compare to the stat-of-the-art solution HyUCC?

(3) Scaling. How does HPIValid scale with the number of rows and columns?
(4) Reasoning. Which optimizations contribute to HPIValid’s performance?

Experimental setup. HPIValid was implemented in C++ and compiled
with GCC 10.1.0. We tested it on 54 datasets. Some databases already appeared
in Chapter 4 (albeit occasionally with a slightly different number of rows and
columns), but most of them are new. The source code and testing data are
publicly available.5 All experiments were run on an Intel® Core™ i7-8700K
3.70 GHz CPU with 32 GB RAM main memory. This is not the same setup as in
Section 4.5.1, the CPU is 1.42 times faster but we use 8 times less memory. We

5 hpi.de/friedrich/research/enumdat.html#HPIValid
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Read Table Build PLIs Free Memory

Sampling Validation Tree Search

Preprocessing

Enumeration

Figure 7.2: Color coding of the run time breakdown.

will see in the evaluation that the speedups in run time cannot be explained by
these hardware changes alone. Unless otherwise stated, we used a time limit
of 1 h (3600 s). HyUCC, implemented in Java, was run with OpenJDK 13 and a
heap memory limit of 25 GB. For both, HPIValid and HyUCC, run times were
measured by the algorithms themselves, excluding, e.g., the JVM startup time.
Memory consumption was measured using the time -f `%M' command. The
full results can be found in Tables 7.1 to 7.3, ordered by increasing run time.

Comparability. Run time measurements always also evaluate the implemen-
tation. The differences between HPIValid and HyUCC we observe with respect
to run time (Section 7.4.2) and scaling (Section 7.4.3) are beyond what can be
explained with implementation details or the difference between C++ and Java.
We take the following additional measures to negate the differences. We exclude
datasets with very low execution times and use the -server flag to optimize Java
code more aggressively at run time. We run the compiler and garbage collector
in parallel with 4 threads each (-XX+UseParallelGC -XX:ConcGCThreads=4

-XX:CICompilerCount=4). Finally, we log the time the Java execution is sus-
pended at safepoints and report the total execution time minus the suspension.
Run time breakdown. We break down the run time of HPIValid into the

times for specific subtasks. Read table is the time to read and parse the input, build
PLIs refers to the construction of the data structures for the clusters and inverse
mapping. The preprocessing is completed by freeing memory not needed for the
enumeration. See Section 7.3.1 for details. The enumeration phase consists of
three tasks that occur interleavingly. Sampling and validation respectively refer
to the time spent to generate new difference sets (Section 7.3.2) and to validate
candidate solutions (Section 7.3.4). Everything else is referred to as tree search,
which is the time required by MMCS without the UCC-specific extensions. In the
plots below, we associate specific colors with these subtasks, see Figure 7.2 for a
legend. (The same colors have already been used in Figure 7.1.)
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Figure 7.3: Run time scaling of HPIValid with respect to the sample exponent 𝑥 in
a log-plot. The time is shown without preprocessing, it is broken down into sampling
time and the remaining enumeration. Data points correspond to medians of five runs.

7.4.1 Parameter Choice

An algorithm is only of limited practical value if it requires the user to have
prior knowledge which parameter settings work well on their datasets. In our
case, we cannot expect the user to know an appropriate value for the sampling
exponent 𝑥 . It is thus crucial that there is either a default setting that works
well on many databases or that we can automatically determine a good value
for 𝑥 from the input. Recall that every time we encounter row pairs that are
yet indistinguishable with respect to some candidate selection of columns, we
compute the number 𝑃 of such pairs and randomly sample 𝑃𝑥 of them for an
exponent 0 ≤ 𝑥 ≤ 1. Since 𝑃 can be quadratic in the number of rows, it makes
sense to choose 𝑥 ≤ 0.5. Larger values would yield a superlinear running time,
which is prohibitively expensive.

In general, a smaller exponent 𝑥 leads to fewer sampled row pairs, which
should be beneficial for the run time. On the other hand, sampling fewer pairs
leads to more inaccuracies in the partial hypergraph. It can be assumed that this
lack of information misleads the algorithm in the enumeration phase, leading
to higher run times. Our experiments confirm this intuition. Figure 7.3 shows
run times on three datasets depending on 𝑥 , divided into sampling time and
enumeration time (tree search and validation). As a general trend, the sampling
time increases with 𝑥 , while the time for the remaining enumeration decreases.

In more detail, the sampling time resembles a straight line in the logarithmic
plot for larger values of 𝑥 . This corresponds to an exponential growth in 𝑥 ,
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Chapter 7 Hitting Set Enumeration with Partial Information

which is to be expected since we sample 𝑃𝑥 pairs. The constant or even slightly
decreasing sampling time for very small values of 𝑥 (e.g., between 0 and 0.1
for census and ncvoter_allc in Figure 7.3) is explained by the fact that we
have to sample at least as many difference sets as there are edges in the correct
hypergraph. Thus, if we sample fewer pairs, we have to sample more often. The
enumeration time (excluding sampling) has a moderate downward trend. Also,
for small values of 𝑥 it is order of magnitudes higher than the sampling time
and thus dominates the run time. The situation is reversed for larger values of 𝑥 .
There, the enumeration time decreases only slowly, while the sampling time
goes up exponentially, making sampling the dominant factor.

As a result, there is a large range between 0 and 0.4 where the total run time
varies only slightly before the sampling time takes over. The minimum appears
to be around 0.3. Preliminary experiments confirmed the same effect on other
datasets. We conclude that 𝑥 = 0.3 is a good choice for many datasets. Moreover,
the fact that 0.3 lies in a wide valley of very similar run times makes it a robust
choice. All other experiments in this chapter were done with this setting.

7.4.2 Performance

To evaluate the performance of HPIValid and to compare it to HyUCC, we ran
experiments on 62 datasets of different sizes from various domains. Additionally,
we considered truncated variants for some datasets, mainly for consistency with
related work [PN17], and to increase the comparability in cases where HyUCC
exceeded the time limit. Table 7.1 shows the results sorted by run time, excluding
thirteen datasets where HPIValid took less than 1 ms. For these instances, the
speedup factor of HPIValid was between 74 and 640.
Run time performance. HPIValid solved all but two instances within the

time limit of 1 h. The exceptions are isolet, and uniprot truncated at 1 k rows
(but with the full 223 columns). Compared to the other instances, these datasets
seem rather special as they have a huge number of UCCs. After 1 h, HPIValid
enumerated for isolet and uniprotmore than 153 M and 1743 M UCCs, which
corresponds to 42 k and 484 k per second, respectively. To prevent I/O from
obfuscating the actual run time, we do not output the UCCs. Instead, we merely
count the total number of solutions.
Besides the two special cases, only tpch_denormalized came close to the

time limit with its processing taking 2291 s. All other instances were solved in
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less than 3 min. Moreover, the breakdown of the run times in Table 7.1 into the
different subtasks (see also Figure 7.2) shows that preprocessing usually makes
upmore than half of the total run time. The overall performance therefore cannot
be significantly improved without improving the preprocessing. There are some
interesting exceptions to this trend: On the instances lineitem, ncvoter_allc
and tpch_denormalized, HPIValid spent the majority of the execution on
the validation. We discuss this effect further in the scaling experiments in
Section 7.4.3. For the mentioned instances isolet and uniprot truncated at
1 k rows, the algorithm spent by far the most time with the tree search. The
same holds true for these datasets respectively truncated at 200 and 120 columns.
Improving upon these run times requires to improve MMCS, the state-of-the-art
in enumerating minimal hitting sets [GV17; MU14].
Memory consumption. Concerning the consumption of main memory,

HPIValid tops out at 13 GB, with only three of the datasets requiring more than
10 GB. For those three, already the input size is rather large: the ncvoter_allc
dataset has 7.5 M rows, VTTS has 13 M, and iloa 20 M rows. Nine datasets
required between 1 GB and 10 GB, and all remaining datasets took less memory.
usually significantly so.
Memory consumption compared to HyUCC.When comparing HPIValid

and HyUCC, one striking difference is the fact that HyUCC has to keep its search
front of column combinations in memory. In particular, the front includes all min-
imal UCCs found so far, while HPIValid only needs to store the current branch
of the search. It has thus a significantly larger memory footprint, especially on
instances with many solutions. In fact, this makes it infeasible to process the
two extreme datasets isolet and uniprot truncated at 1 k rows with HyUCC.
The variants in which the number of columns are cut at 200 for isolet and
120 for uniprot can still be solved. However, on the former, HPIValid is more
memory efficient than HyUCC by an order of magnitude. On uniprot with 200
columns and 1 k rows, it is by almost three orders of magnitude: HyUCC requires
8 GB, HPIValid 12 MB.
It is interesting to see that the full uniprot dataset with 539 k rows is much

more well-behaved than the one truncated at 1 k rows. One could expect that
larger databases lead to higher run times, and indeed this is the case for most
databases, see Section 7.4.3. However, the uniprot dataset is special in that the
extended instance has only 826 UCCs and HPIValid can solve it in under 20 s
using 2.7 GB. We have verified earlier in Chapter 6 that, at least in a random
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Chapter 7 Hitting Set Enumeration with Partial Information

model, a larger number of rows and therefore more difference sets can indeed
result in hypergraphs with fewer and smaller minimal edges. HyUCC on the other
hand cannot solve the full uniprot instance due to memory overflow. Thus, the
fact that uniprot includes a hard subinstance seems to throw off HyUCC even
though the full instance contains only few UCCs. On all remaining instances,
HPIValid is also more memory efficient.
Run time compared to HyUCC. HPIValid outperformed HyUCC on every

instance with only one exception. On some instances with very few UCCs,
HyUCC achieves comparable run times. On many other instances HPIValid
was significantly faster than HyUCC. The highest speedup achieved on instances
that HyUCC finished was for the census dataset, HPIValid was 800 times faster.
On the ncvoter_allc dataset truncated at 1.5 M rows, we ran it with an 8 h
timeout, which was exceeded by HyUCC, while HPIValid solved it in below 20 s,
a speedup of at least three orders of magnitude.

7.4.3 Scaling

We now evaluate how HPIValid scales with respect to the number of rows and
columns. To provide some context, we preface our experiments with a short
discussion on worst-case run times from a slightly more theoretical perspective.

Regarding the column scaling, the bottleneck is the actual enumeration (tree
search and validation). As there can be exponentially many minimal hitting sets
and as many UCCs, the worst-case running time must be exponential [BI95].
However, even if the number of solutions is small, there is no subexponential
upper bound known for the MMCS algorithm, which is the core of HPIValid. We
thus have to assume that HPIValid scales exponentially with the number of
columns, even if the output is small. It is a major open question whether an
output-polynomial algorithm exists for the hitting set enumeration problem,
see [EMG08]. Concerning the number of rows, in principle, we have to compute
the difference set of every record pair, which scales quadratically in the number
of rows. Moreover, when building the hypergraph of difference sets, we only
keep edges that are minimal, without affecting the solutions. For each new
edge we sample, this takes time linear in the number of edges currently in the
hypergraph. This means a quadratic run time in the number of difference sets.
Thus, the best worst-case upper bound for the run time in terms of the number of
rows 𝑛 is 𝑂 (𝑛4). Moreover, there are lower bounds known for the minimization
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step based on the Strong Exponential Time Hypothesis (Hypothesis 2.3) implying
that there is likely no algorithm with subquadratic running time in 𝑛, see the
discussion in Section 6.1 of this thesis as well as [BCH16; Gao+18].
Although these worst-case bounds seem to prohibit the solution of large

instances, HPIValid performs well on practical datasets. The reason for this
lies in the fact that these databases behave very differently from worst-case
instances. Real-world instances have only comparatively few minimal difference
sets [BKN17]. We also observed this in our own experiments in Section 4.5.
Indeed, HPIValid finds the small difference sets by a focused sampling approach
involving only a few record pairs. Similarly, the tree search algorithm MMCS has
been observed to be fast on hypergraphs arising in practice [GV17; MU14], and
the instances emerging from the UCC enumeration problem are no exception
to this. The only outliers in our experiments in that regard are isolet and
uniprot truncated at 1 k rows, where the hitting set enumeration is slow, which
is not surprising due to their large output size.
Consequently, the goal of our experiments is the gathering of insights into

the behavior of HPIValid on typical datasets rather than worst-case instances.
The emphasis of our scaling experiments is on databases other than isolet.
Nonetheless, we have a short section discussing the column scaling for this aswell
since isolet has by far themost columns among all the tested datasets, and it has
been considered before for scaling experiments [PN17]. Although experiments
on isoletmay not reflect the typical scaling, we can still make some interesting
observations, in particular on the differences between HPIValid and HyUCC.
Scaling on the isolet dataset. We used the first 40 to 280 columns of

isolet, stride 40, and ran HPIValid and HyUCC on the resulting instances.
Since the run times for isolet are fairly concentrated over the different runs,
we used the median of three. We also ran HPIValid with a timeout of 15 min
for number of columns beyond 280. The results are shown in Figure 7.4.
The run time of HPIValid resembles a straight line in the plot with a loga-

rithmic time-axis, meaning an exponential scaling. As discussed before, this is
to be expected on certain classes of inputs. In contrast, it is interesting to see
that the run time of HyUCC as well as the number of UCCs (second plot) seems
to scale subexponentially. A possible explanation is that HPIValid uses the
branching technique of MMCS, which potentially scales exponentially, regardless
of the output. HyUCC on the other hand explores the search space of all column
combinations starting with the smaller subsets. Given that the solutions for
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Figure 7.4: Column scaling of HPIValid and HyUCC on the isolet dataset. Shown are
the run times, the memory consumption, the number of solutions (log-plots), and the
average delay between outputs. Data points correspond to the median of three runs.
Dashed lines show runs of HPIValid with 15 min timeout.

isolet are essentially all column combinations of size 3, then HyUCC’s run time
is dominated by the output size, which grows cubically here.

Another indicator that the run time of HPIValid scales worse than the number
of UCCs is the uptick for the time per UCC in the bottom plot of Figure 7.4. The
last experiments with timeout effectively provide a snapshot of the first 15 min of
execution with many columns. There the trend in the time per UCC is reversed.
Although the average delay over the entire run goes up, it is decreasing at the
start. This is helpful if one is interested in getting only a few UCCs.

The memory consumption of HPIValid on isolet shows a similar behavior
to the one already discussed in the beginning of Section 7.4.2.

Column scaling on typical instances. We chose two datasets to investigate
typical column scaling. The uniprot dataset (with all rows) is an obvious choice
with its 223 columns. The other dataset, ncvoter_allc, is one of the hardest
instances for HPIValid with a run time of 125 s, and it has enough columns
(94) to enable meaningful scaling experiments. Also, HPIValid running on
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ncvoter_allc spends a substantial amount of time on the enumeration rather
than the preprocessing, making this an interesting case study. For additional
comparison with HyUCC, we also ran experiments on ncvoter_allc truncated
at 100 k rows. The results are shown in Figure 7.5. We discuss them instance by
instance from left to right. For the color coding of the run time, recall Figure 7.2.
Truncating ncvoter_allc at 100 k rows makes it small enough so that the

preprocessing dominates the run time of HPIValid. It stands out that the run
time appears to scale sublinearly with respect to the number of columns. In
theory, this cannot happen for an algorithm that processes the whole input at
least once. The reason for the observed behavior is that the later columns in the
table have fewer different values and more empty cells. This makes reading the
table faster as the hash map matching string values to arrays of record IDs needs
to cover a smaller domain during dictionary encoding in the preprocessing.
The actual enumeration times are very low with a slight uptick after 50

columns. This is due to the fact that the nature of the instance changes markedly
here. The output size increases from a single minimal UCC for the first 50
columns to 4 k solutions at 60 columns. The further increase to 8 k minimal
UCCs for 70 columns is not reflected in the enumeration time, starting at 60
columns. Instead, the enumeration time scales linearly in this experiment. The
later segment, where the scaling is independent of the output size, shows the
more realistic behavior of HPIValid on this dataset. The faster run times on
the instances with only a few columns are mere incarnations of the general
observation that instances with a single minimal UCC are particularly easy to
solve. Every time HPIValid finds a candidate solution for the partial hypergraph,
the validation with subsequent sampling produces a new, inclusion-wise smaller
difference set, the minimization then effectively replaces the old hypergraph
completely. This repeats until there is only a single edge with exactly one vertex
left, marking a trivial instance.

The bottom plot shows the scaling behavior of HyUCC in comparison. HyUCC
also performs well on instances with a single solution. However, the scaling of
HyUCC beyond that point (60+ columns) does not seem to be linear in the number
of columns but rather follows the number of UCCs.
The middle column of Figure 7.5 shows the ncvoter_allc dataset with all

7.5 M rows. The output size is also small in the beginning, but there is always
more than one solution. The overall column scaling is roughly linear. However,
the box plots show that the run time has a high variance, which mainly comes
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from the validation. A possible explanation is as follows. Recall that every node
in the MMCS search tree corresponds to a set of columns that was selected to
be part of the solution. The core operation of the validation is the intersection
of the PLI of this subset with the PLI of a single column. The time required
for the intersection is linear in the number of rows that are not already unique
with respect to the selected columns. If the search happens to select columns
high up in the tree that make many rows unique, all intersections in the lower
subtrees are sped up. Whether this occurs in any given run of the algorithm
heavily depends on the difference sets present in the partial hypergraph when
starting the enumeration. As the initial partial hypergraph is random to some
extent, the run times vary strongly. The run time breakdowns in the top row
of Figure 7.5 show average values and thus give an estimation of the expected
running time of our randomized algorithm (in addition to the median values of
the runs shown in the box plots).

The comparison with HyUCC on ncvoter_allc with full rows is difficult due
to the large run times. The measurements for HyUCC in the bottom plot are thus
restricted to inputs with up to 40 columns. The scaling of HyUCC is clearly worse,
although there are only few solutions in that range (403 UCCs at 40 columns).

Finally, the right column of Figure 7.5 shows that the run time of HPIValid on
uniprot is again dominated by the preprocessing. The enumeration part in turn
consists mainly of sampling new difference sets rather than the validation, as
for ncvoter_allc. This makes sense in the light of the results in Section 7.4.2.
Truncating the dataset at 1 k rows gives a hard subinstance with billions of
minimal solutions. It thus cannot suffice to sample only a few record pairs
and hope to come close to the correct hypergraph. In other words, redundant
information seems to be not as prevalent in uniprot as in other databases. This
transfers to the full instance and explains why the algorithm spends much time
with computing difference sets. The number of minimal UCCs in the full dataset
grows linearly with the number of columns, in contrast to the sudden jump for
ncvoter_allc. Possibly the columns of ncvoter_allc represent attributes
with distinct characteristics, while those of uniprot seem to be more uniform.

The bottom plot shows that the scaling of HyUCC is superlinear in the number
of columns. As observed before, HyUCC appears to have difficulties with uniprot
due its hard subinstance. In Section 7.4.2, this became apparent with respect to
the memory consumption. Here, it also pertains to the run time. Thus, even with
hypothetically unbounded memory, the run time of HyUCC is infeasibly high.
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Row scaling on typical instances. For the row scaling experiments, we
chose the datasets VTTS, lineitem, and ncvoter_allc. There, HPIValid had
the highest run time (apart from tpch_denormalized). They have 13 M, 6 M,
and 7.5 M rows, respectively. The results are shown in Figure 7.6. We note that
many aspects discussed above for the column scaling apply here as well. We
thus focus on the specifics of the row scaling.
VTTS is the largest of the selected datasets, but HPIValid has the lowest run

time there. The database carries only two minimal UCCs independently of the
number of rows, making the linear preprocessing dominant.
The number of solutions for lineitem is also rather steady but on a higher

level. It ranges from 300 to 400 suggesting that also the correct hypergraphs of
difference sets vary not too much for the different numbers of rows, given that
a critical minimum value is exceeded. This gives a clean straight line for the
average run time and most of this time is spent on the validation. For the same
reasons already discussed in the context of column scaling above, the validation
time has a comparatively high variance as indicated by the box plots.

The output size varies heavily for ncvoter_allc, in stark contrast to the other
two datasets. From 500 k to 3 M rows, the number of solutions ranges from 91 k
to 335 k; from 3 M to around 4 M rows, there is a jump to 1.8 M minimal UCCs.
After this, the output size remains high until it goes down to 1.2 M at 7 M rows.
Thus, the hypergraph of difference sets also changes significantly when adding
more and more rows. This is reflected in the trend of the average run time being
not as clean as the one for lineitem, although for both datasets the execution
of HPIValid is dominated by the validation. Additionally, the run time has high
variance again, the effect is even more prominent here due to the higher number
of columns (lineitem has 16, while there are 94 in ncvoter_allc).

When comparing the row scaling of HPIValid with that of HyUCC, VTTS and
lineitem are quite similar. Both algorithms seem to scale linearly, but with
HyUCC having a steeper slope. For ncvoter_allc, the scaling is very different
(note the different abscissa). HPIValid scales slightly superlinear, while HyUCC
shows a sudden jump on instances truncated at more than 1 M. Further scaling
experiments became infeasible even with an extended time limit of 8 h

7.4.4 Reasons for Efficiency

There are two crucial factors for the efficiency of HPIValid. First, the number
of record pairs for which we compute the difference sets, and secondly, the
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Figure 7.7: Run times with and without tiebreaking heuristic (H) and PLI copying (C)
for the datasets ncvoter, tpch_denormalized (reduced to 500 k rows), and lineitem.
Each column is based on 25 runs.

size of the search tree. Concerning the number of difference sets, we initially
sample 𝑃0.3 record pairs where 𝑃 is the total number of available pairs. This is
sublinear in the number of records and thus always fast. However, the resulting
hypergraph can be incomplete, which forces us to resample additional pairs later
on. We measure this using the relative resampling rate, which is the number
of difference sets computed after the initial sampling divided by the number
of difference sets computed in the initial sampling. Excluding two outliers, all
instances considered in Section 7.4.2 have a relative resampling rate below 0.36,
with a median of 0.00038 and a mean of 0.041. The outliers are the two isolet
instances with different numbers of columns. They had rates of 15.1 and 10.0.
Concerning the search tree, the number of leaves is at least the number of

solutions. In the best case, the tree consists of just the root together with one
child per solution. To measure the efficiency of the tree search, we consider the
solution overhead, that is, the number of non-root nodes per solution. For all
instances with at least two solutions, the maximum overhead was 4.5, with a
median of 1.4 and mean 1.7. This shows that the MMCS tree search enumerates
hitting sets very efficiently even when working with partial information. On
instances with only a single solution, we got a maximum overhead of 54, with
a median of 5.0 and mean 10.5. Although these numbers are higher, they still
indicate small search trees. Note that, due to having only a single solution, the
numbers here actually represent the absolute tree sizes.
The efficiency of HPIValid is mainly due to the aspects discussed above.

Beyond that, we have two minor optimizations that slightly improve the run
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time. First, to make the validation more cache efficient, we copy the PLIs such
that each PLI lies in a consecutive memory block. Secondly, whenever MMCS
has multiple edges of minimum cardinality to branch on, we use a tiebreaker
that aims at speeding up the validation by making the clusters in the resulting
PLIs small. For this, we rank the columns by uniqueness, with a lower number
of indistinguishable record pairs with respect to that column meaning higher
uniqueness. Among the edges with minimum cardinality, we choose the one
where the least unique column is most unique.

On instances where the preprocessing dominates the run time–see the break-
down in Table 7.1–the effect of these two optimizations is negligible. However,
one can see in Figure 7.7 that both optimizations improve the validation time
with the caveat that the PLI copying slightly increases the preprocessing time.

7.5 Conclusion

We proposed a novel approach for the discovery of unique column combinations.
It is based on new insights into the hitting set enumeration problem with partial
information, where the lack of relevant edges is compensated by a validation
procedure. Our evaluation showed that the resulting HPIValid algorithm out-
performs the current state of the art. On most instances, the enumeration times
are so small that they are dominated by the preprocessing. This indicates that the
room for further improvements is somewhat limited. We believe that it is much
more promising to study how our new techniques can be used to solve other
problems. Embedded uniqueness constraints, for example, are a generalization
of UCCs to incomplete datasets with a similar discovery process [WLL19]. Also
closely related are functional dependencies: one can transform their discovery
into a hitting set problem as well, only with more and slightly different hyper-
graphs, see Theorem 3.3. Same as for UCCs, the direct translation is infeasible
in practice due to the quadratic number of record pairs, but it seems that some
hybrid discovery algorithms for FDs and eUCs [PN16; WLL19] could be accel-
erated by enumeration with partial information. Our approach may even be
able to tackle the much more complex discovery problem for denial constraints,
which are a broad generalization of functional dependencies [BKN17; Liv+20].
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8 Conclusion & Outlook

Although the relation between data profiling and the enumeration of hitting sets
has been known since its inception, we showed here that this perspective still
offers an avenue for significant progress. In the complexity-theoretic part of this
work, we proved that the two areas are even more intricately connected than
previously thought. The discovery problems for several types of multi-column
depedencies have equivalent formulations as hitting set problems or, in the case
of inclusion dependencies, as maximal non-hitting sets. This approach further
allowed us to give an enumeration algorithm that is particularly efficient when
applied to instances arising in data profiling. Namely, whenever the solution size
is bounded, our method has a polynomial worst-case delay that is much smaller
than the total running time. Due to its generality, the algorithm may also be
useful in other areas where Transversal Hypergraph appears as a subproblem,
like artificial intelligence and bioinfomatics. The particular challenge in data pro-
filing was the slow (albeit polynomial) translation of databases to hypergraphs,
compared to the fast (but potentially exponential) enumeration. We solved this
by moving the two parts even closer together so that they eventually formed
interleaving phases of the same algorithm. The result, HPIValid, is currently
the most efficient discovery method for unique column combinations.

We had to leave some questions in this thesis unanswered. It would yield new
insights in enumeration complexity if the Discover Minimal FDs problem, or
equivalently Transversal Hypergraph Union, were to admit a parsimonious
reduction to Discover Minimal UCCs/Transversal Hypergraph; the insights
would be even greater if one could provably rule out such a reduction. Similarly,
extending Theorem 6.2 about the minimization of random hypergraphs to the
case of vanishing sampling probabilities 𝑝 → 0 would likely reveal more struc-
tural results for sparse hypergraphs. However, we believe that there are much
more urgent open problems. Namely, those whose solution further broadens
the applicability of data profiling methods and those that bring us closer to
resolving the most important question in enumeration: whether Transversal
Hypergraph has an output-polynomial algorithm.
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HPIValid may have a role to play for both aspects. From an engineering
standpoint, it is interesting to see whether it can be adapted to also discover
other types of multi-column dependencies efficiently. The hope would be that a
small modification allows us to find functional dependencies faster than merely
rerunning the current algorithm on a slightly different hitting set problem for
each possible right-hand side. It may even be able to discover more general denial
constraints, see [BKN17; Liv+20]. As an illustrating example, imagine a database
that lists regular customers as well as staff members that are entitled to employee
discounts. Functional dependencies can ensure that there are no two entries
with the same Name and Entry Date, but different Account Status. Denial
constraints, on the other hand, canmodel complex requirements like records with
a later Entry Date having a higher Customer ID unless the Account Status

of the one entry is �customer� and the other is �employee�.
On the theoretical side, HPIValid could also help to chart the border of

tractability for the Transversal Hypergraph problem. Notably, the algorithm
currently comes without any performance guarantees, the same holds for the
pure tree search in form of MMCS. We cannot exclude the possibility that both
methods are indeed output-polynomial. Admittedly more plausible, however, is
the existence of a family of instances on which the overhead of the tree search
is super-polynomial. In fact, our empirical analysis showed that HPIValid
performs poorly on the isolet dataset. A more thorough investigation of its
structure may lead to a lower bound on the running time and, at the same time,
point us to new ways to improve the current state of hitting set enumeration.
While also revealing faster algorithms, the main benefit of viewing data

profiling from a hitting set perspective is that it provides techniques to make
the space consumption of dependency discovery independent of the output size.
Previously, this was a major issue when handling large datasets with many
solutions. An enumeration routine that uses only linear space in the input
was a key ingredient both in our algorithmic study in Chapter 4 as well as our
engineering work in Chapter 7. This was the central improvement over previous
work by Eiter and Gottlob [EG95] as well as Papenbrock and Naumann [PN17],
respectively. In general, algorithms designed using the hitting set paradigm are
better equipped for taking up the challenges in the age of big data.
The logical next step would be to bring the space reduction also to other

parts of data profiling. This requires a careful review of the typical applications
of multi-column dependencies and the existing processes and infrastructure.
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If, for example, the discovered unique column combinations are handed down
one-by-one in a profiling pipeline, then memory usage is not the main issue. One
would rather minimize the delay of solutions in that case. However, there might
be applications, especially in database query optimization, where the knowledge
of all minimal UCCs is appreciated, but not all results are used at the same time.
There, one may wish for the ability to look up, say, the UCCs containing a certain
attribute while the current request is processed.
This is the prime use case of a data structure. Instead of producing all UCCs

up front, a new kind of profiling algorithm could preprocess a structure that
then provides fast access to the desired dependencies at query time. In data
structure design, the trade-offs between preprocessing time, query time, and
space are highly non-trivial, but also more relevant than for classical data profil-
ing. Recently, the author took an interest in fault-tolerant data structures for
graph problems that report the correct answer even if a few specified links in the
underlying networked fail, see [Ahm+20; GV20; Hen+17; WY13]. We expect it to
be very fruitful to transfer techniques from that area to enumeration. Conversely,
ideas from enumeration may also be helpful to develop new data structures. At
last, such a structure is but a succinct representation of all query results.
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