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Summary

The geomagnetic main field is vital for live on Earth, as it shields our habitat against the
solar wind and cosmic rays. It is generated by the geodynamo in the Earth’s outer core
andhasa richdynamiconvarious timescales. Globalmodelsof thefieldareused to study
the interaction of the field and incoming charged particles, but also to infer core dynam-
ics and to feednumerical simulations of the geodynamo. Modern satellitemissions, such
as the SWARM or the CHAMP mission, support high resolution reconstructions of the
global field. From the 19th century on, a global network of magnetic observatories has
been established. It is growing ever since and globalmodels can be constructed from the
data it provides. Geomagnetic fieldmodels that extend further back in time rely on indi-
rect observations of the field, i.e. thermoremanent records such as burnt clay or volcanic
rocks and sediment records from lakes and seas. These indirect records comewith (par-
tially very large) uncertainties, introduced by the complex measurement methods and
the dating procedure.

Focusing on thermoremanent records only, the aim of this thesis is the development
of a newmodeling strategy for the global geomagnetic field during the Holocene, which
takes the uncertainties into account and produces realistic estimates of the reliability
of the model. This aim is approached by first considering snapshot models, in order to
address the irregular spatial distributionof the records and thenon-linear relationof the
indirect observations to thefield itself. In aBayesian setting, amodelingalgorithmbased
on Gaussian process regression is developed and applied to binned data. The modeling
algorithm is then extended to the temporal domain and expanded to incorporate dating
uncertainties. Finally, the algorithm is sequentialized to deal with numerical challenges
arising from the size of the Holocene dataset.

The central result of this thesis, including all of the aspectsmentioned, is a new global
geomagnetic field model. It covers the whole Holocene, back until 12000 BCE, and we
call it ArchKalmag14k. When considering the uncertainties that are produced together
with the model, it is evident that before 6000 BCE the thermoremanent database is not
sufficient to support global models. For times more recent, ArchKalmag14k can be used
to analyze features of the field under consideration of posterior uncertainties. The algo-
rithm for generatingArchKalmag14k canbe applied to different datasets and is provided
to the community as an open source python package.
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Zusammenfassung
Das geomagnetische Hauptfeld ist essenziell für das Leben auf der Erde, da es unseren
Lebensraum gegen den Sonnenwind und kosmische Strahlung abschirmt. Es wird vom
GeodynamoimErdkernerzeugtundzeigt einekomplexeDynamikaufunterschiedlichen
Zeitskalen. Globale Modelle des Magnetfelds werden zur Studie der Wechselwirkung
von einströmenden geladenen Teilchen genutzt, aber auch um Kerndynamiken zu un-
tersuchenundumsie innumerischeSimulationendesGeodynamos einzuspeisen. Mod-
erneSatellitenmissionen,wieSWARMundCHAMP,stützenhochauflösendeRekonstruk-
tionendesglobalenFelds. Seitdem19. JahrhundertwirdeinglobalesNetzwerkvonmag-
netischen Observatorien aufgebaut. Es wächst stetig und globale Modelle können aus
denDaten, die es liefert, konstruiertwerden. GeomagnetischeFeldmodelle, dieweiter in
der Zeit zurückreichen, basieren auf indirekten Beobachtungen des Felds, d.h. auf ther-
moremanentenDaten,wiegebranntenTonenodervulkanischenGesteinen, undaufSedi-
mentdatenausSeenundMeeren. Diese indirektenBeobachtungenwerdenmit (teilweise
sehr hohen) Unsicherheiten geliefert, die aus den komplexen Datierungs- undMessme-
thoden resultieren.

ZieldieserArbeit istdieEntwicklungeinerneuenModellierungsmethode fürdasglob-
ale geomagnetische Feld während des Holozäns, welche die Unsicherheiten berücksich-
tigt und realistische Schätzungen für die Verlässlichkeit des Modells liefert. Dabei wer-
den lediglich thermoremanente Daten betrachtet. Diesem Ziel wird sich zunächst ge-
nähert, indemeinSchnappschuss-Modellkonstruiertwird, umdieunregelmäßigeräum-
liche Verteilung der Daten und die nichtlineare Beziehung zwischen Daten und Mag-
netfeld zu untersuchen. In einemBayesianischen Rahmenwird ein auf Gaussprozessen
basierender Algorithmus entwickelt und zunächst auf diskretisierte Daten angewendet.
Dieser Algorithmuswird dann um eine zeitabhängige Komponente ergänzt und erweit-
ert, umDatierungsfehler zu berücksichtigen. Zuletzt wird der Algorithmus sequenzial-
isiert, ummitnumerischenHerausforderungenumzugehen, die aufgrundderGrößedes
Holozän-Datensatzes bestehen.

Das zentrale Ergebnis dieser Arbeit, welches alle genannten Aspekte beinhaltet, ist
ein neues globales geomagnetisches Feldmodell. Es deckt das gesamte Holozän ab, bis
ins Jahr 12000 BCE, und wir nennen es ArchKalmag14k. Bei Betrachtung der Unsicher-
heiten, die gemeinsam mit dem Modell ermittelt werden, wird deutlich, dass die ther-
moremanente Datenbasis nicht ausreicht, um globale Modelle vor dem Jahr 6000 BCE
zu stützen. Für jüngere Zeiträume kannArchKalmag14k genutztwerden, umMerkmale
des Erdmagnetfelds unter Berücksichtigung der a posteriori Unsicherheiten zu analy-
sieren. Der Algorithmus, mit demArchKalmag14k erzeugt wurde, kann auf weitere Da-
tensätze angewendet werden undwird als quelloffenes python-Paket zur Verfügung ge-
stellt.
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Overview

Thework presented in this thesis is closely tied to DFG project 388291411. The aim of the
project was the development of a novel correlation based modeling strategy, applicable
to paleomagnetic data from the Holocene. Related research tasks include

• the assessment of reliable uncertainty estimates, that represent both themodeling
process and uncertainties in the data, especially due to the datingmethods

• the estimation of the temporal model resolution

• the extraction and study of model features under consideration of the estimated
model uncertainties

These tasks are mainly motivated by studies of geomagnetism and a brief overview of
global geomagneticmodeling is given in Chapter 1. To fill themore technical work in the
rest of this thesis with some life, Chapter 2 describes themeasurement process for pale-
omagnetic data of archaeological and volcanic origin. Themodeling procedure is devel-
oped within the rich mathematical framework of Gaussian process regression. Chapter
3 provides some insight into more mathematical aspects that are missing in Part II. The
foundation in this regard is presented in Holschneider et al. (2016). The publications in-
cluded in Part II extend and apply the fundamental concepts ofHolschneider et al. (2016)
to paleomagnetism. Chapter 4 approaches the general model by first considering snap-
shots and focusing on the linearization of the paleomagnetic observation functionals
and the estimation of model parameters and uncertainties from themagnetic measure-
ments. Chapter 5 builds on this by introducing temporal correlations and considering
uncertainties from the dating process. In Chapter 6 a new global geomagneticmodel for
the Holocene is proposed, that is constructed by sequentializing the developed method
in order tomake it suitable for larger datasets. Part III completes this thesis and includes
overall conclusions in Chapter 7 as well as an outlook to following work in Chapter 8.

vii





Part I

Introduction
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1 Modeling the global geomagnetic field

This sectionmainly follows Chapter 1 ofMerrill, McElhinny, andMcFadden (1996).

Magnetismhas fascinatedhumans for thousands of years. Already in thefirst century
CE, theChineseusedmagnetic compasses. About a thousandyears later, the compass ar-
rived in Europe andwas extensively studied. Independently of the Chinese, who discov-
ered magnetic declination around eight hundred years earlier, the magnetic directions
where discovered in Europe in the 16th century. Resting on almost three hundred years
ofmagnetic studies,WilliamGilbertproposed inhis 1600CEpublicationDeMagnete, that
the Earth itself is a giant magnet.

Another two hundred years later, Carl Friedrich Gauss was the first to represent the
global geomagnetic field mathematically, in form of spherical harmonics (SH). He used
sheets of magnetic declination, inclination and intensity, most of which were prepared
during ship cruises. Although the inversionmethods changed, the SH representation is
still themost common form for global geomagnetic fieldmodels today.

With the dawn of archaeo- and paleomagnetism in the beginning of the 20th century,
findings about the dynamics of the global geomagnetic field where applied to geological
questions and among other things contributed to the theory of continental drift and the
nature of the Earth’s core. The latter is still a major application of modern paleomag-
netic models, although nowadays complex geodynamo simulations are considered, and
applications also include the study of shielding against cosmic rays, isotope production
rates, paleomagnetic dating and investigations of the relation of the paleomagnetic field
and paleoclimate.

Modern global geomagnetic field models are built from databases of paleomagnetic
observations, most commonly via regularized least squares inversion. Even though so-
phisticated techniques foraccessing informationaboutpaleomagneticdirectionsand in-
tensities fromspecimenhavebeendeveloped (see also chapter 2), observations still come
in a wide range of quality and often together with large uncertainties, both of the mag-
netic elements themselves and of the corresponding ages. To represent these uncertain-
ties in models built from least squares inversion, bootstrapping or sampling techniques
are employed. In order to represent the uncertainties more accurately, recent models
rely on statistical techniques. This chapter will introduce both approaches.
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1 Modeling the global geomagnetic field

1.1 Brief magnetic field theory

Assuming the origin of the Earth’s magnetic field to be in a constrained region of its in-
terior and the mantle to be insulating, the geomagnetic field can be represented as the
gradient of a scalar field outside of a sphere of radius R confining the source region.

B(x, t) = –∇Φ(x, t) (1.1)

This is a direct consequence of Maxwell’s equations and Stoke’s theorem. The geomag-
netic potential fulfills the Laplace equation

ΔΦ(x, t) = 0 (1.2)

and therefore can be represented in terms of spherical harmonics (SH):

Φ(x, t) = R
L∑
ℓ=1

(
R
|x|

)ℓ+1 ∑
–ℓ≤m≤ℓ

gmℓ (t) Ym
ℓ (x̂) . (1.3)

x̂ is the unit vector x/|x| and Ym
ℓ refers to the real valued and Schmidt semi-normalized

SHof degree ℓ andordermwith relatedGauss coefficient gmℓ . Often the timedependence
of the Gauss coefficients gmℓ (t) is expressed in form of a B-spline model (Bloxham and
Jackson, 1992)

gmℓ (t) =
N∑
n=1

gmℓ,nMn(t) , (1.4)

with cubic spline basis functions Mn(t) defined at N knot points tn. This way, a global
geomagnetic field model is specified by the set of P = N · L · (L + 2) coefficients

{
gmℓ,n

}
.

Combining the temporal and spacial basis functions into one function qmℓ,n, the geomag-
netic field can be expressed as

B(x, t) = –∇Φ =
∑
n,ℓ,m

–∇qmℓ,n(x, t)g
m
ℓ,n = Q(x, t) ·m , (1.5)

with the matrix Q relating the model coefficients m =
(
gmℓ,n

)
to the magnetic field B at

locations and times (x, t). For models differing from the B-spline approach, such as the
one proposed by Hellio and Gillet (2018), the qmℓ,n will be different.

Paleomagneticobservationsof themagneticfieldaregivenbya functionalH[B],where
H is either declination, inclination or intensity (see also equation 4.44).
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1.2 Regularized least squares inversion

1.2 Regularized least squares inversion

A prominent way of inferring magnetic field model coefficients m̂ from observations is
via regularized least squares inversion (e.g. Jackson, Jonkers, and Walker, 2000). From
observations o(x, t), the coefficients are determined by

m̂ = argmin
m∈RP

[(
o(x, t) – H

[
Q(x, t) ·m

])>Σ–1
o
(
o(x, t) – H

[
Q(x, t) ·m

])
+m>C–1

mm
]
. (1.6)

ThesmoothingmatrixCm is calculated fromtworestrictions (BloxhamandJackson, 1992).
The solution is sought to minimize the Ohmic heat dissipation, which gives a spacial
norm:

m>S–1m = 4π
te – ts

∫ te

ts
F (B) dt (1.7)

with

F (B) =
L∑
ℓ=1

(ℓ + 1)(2ℓ + 1)(2ℓ + 3)
ℓ

(
REarth

R

)2ℓ+4 ∑
–ℓ≤m≤ℓ

(
gmℓ
)2

The temporal norm gives a smoothness condition for the radial component of the mag-
netic field Br:

m>T–1m = 1
te – ts

∫ te

ts

∮
CMB

(
∂2t Br

)2
dΩdt (1.8)

Cm is then constructed by weighing the two regularizingmatrices

Cm = λSS + λTT . (1.9)

One motivation for applying regularization to the least squares scheme is the conver-
gence of the solution to (1.6): The solution is insensitive to the cutoff degrees L and N, if
they are chosen appropriately large (Bloxham and Jackson, 1992). Theminimizing solu-
tion m̂ is then either determined iteratively or via linearizing the observation functional
H (c.f. equations (4.48)-(4.50)).

Accurate assessment of uncertainty in the solutionhas beendiscussed already in early
papers on the regularized least-squaresmethod (Bloxham and Jackson, 1992). However,
later works did not pursue analytical approaches and relied on ensemble techniques in-
stead (e.g. Korte, Donadini, and Constable, 2009).
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1 Modeling the global geomagnetic field

1.3 Statistical models
In order to accurately assessmodel uncertainties and their characteristics, stochastic in-
version techniques for magnetic field data are studied (e.g. Gubbins and Bloxham, 1985;
Hellio and Gillet, 2018; Nilsson and Suttie, 2021). Instead of a set of coefficients, proba-
bilisticmodelsaregiven in formofdistributions (or theirparameters),mostprominently
via Bayesian posteriors

p(m|o) ∝ p(o|m) · p(m) .

Somemethods, for example the ones presented in Chapters 4 and 5,model themagnetic
field directly

p(B|o) ∝ p(o|B) · p(B) .

Non-linearity of the observation functionals, the amount of data and the complexity of
the model itself often lead to the complication, that the distribution is not accessible in
closed form. Recent models rely on Markov Chain Monte-Carlo (MCMC) sampling or
on analytical approximations, in order to construct a proxy distribution, which is then
reportedas anequivalent to the solution to (1.6). This thesis is concernedwithdeveloping
aGaussian process basedmodel and providing the analytical approximations necessary
to access the posterior.
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2 Paleomagnetic measurements

This chapter mainly follows Chapter 9 of Tauxe et al. (2018).

Acquiring high quality paleomagnetic data is a challenge on its own (e.g. Tauxe et al.,
2018, Section 9.1). To illustrate some of the obstacles and shine light on possible sources
of uncertainty in the data, we briefly introduce paleomagneticmeasurementmethods in
this chapter.

Paleomagnetic observations come froma variety of sources, that can roughly be sepa-
rated into specimenwith thermoremanentmagnetization, such as volcanic rocks or lava
flows and archaeological artifacts like burnt clay, and sediments from marine or lacus-
trine drill cores. In all cases, a challenge in taking samples lies in the precise determina-
tion and preservation of the orientation of the sample. Furthermore, in addition to the
paleomagnetic main field that is of interest, samples often carry additional fields. Elab-
orate techniques exist, in order to remove these remanent fields from the specimen and
isolate themain field of interest.

2.1 Directional measurements

Directional information is inferred from specimen by sequentially demagnetizing the
probe andmeasuring themagnetic vector between the demagnetization steps, either via
a spinnermagnetometerorvia a superconductingquantuminterferencedevice (SQUID).
Via orthogonal projections or (more prominently) via principle component analysis, the
strongest component of remanent magnetization is inferred. This is assumed to be the
direction of the paleomagnetic field direction. Often multiple specimen are taken from
the samesite andFisher-statistics are applied to several directions, in order todetermine
declination and inclination from the location parameter. The concentration parameter
is reported in order to quantify the uncertainty of the analysis.

7



2 Paleomagnetic measurements

2.2 Intensity measurements

Inferring the intensity of the paleomagnetic field from specimen is more complicated
than the directions, as the field imprinted on the specimen points in the same direction,
but the information about the intensity is only indirectly preserved. While other meth-
ods exists (Tauxe and Yamazaki, 2015), we focus here on the commonly usedmethod in-
troducedbyThellier andThellier (1959) and later refinedbyothers (e.g. Nagata, Arai, and
Momose, 1963; Coe, 1967). The idea is that the remament magnetization is proportional
to the intensity of the paleomagnetic field, and that an inducedmagnetizationwill share
the same proportionality to the inducing field. The measurement procedure is then as
follows

1. The specimen is heated to temperature T and left to cool down in zero field.

2. ThemagnetizationMN ismeasured. In this step, the specimen only contains a (de-
creasing) part of the remanentmagnetization with intensity Fpaleo.

3. The specimen is heated to temperature T again and left to cool down in a reference
field of intensity Fref.

4. ThemagnetizationMN is measured. In this step, the specimen contains the rema-
nentmagnetization as well as magnetization due to the reference field.

5. Increase T and repeat until the remanent magnetization left in the probe is zero
(resp. the Curie-temperature is reached).

From the two measurements in each cycle of heating, the ratio of remanent to im-
printed magnetization can be measured. The key assumption that the mechanism in
which the reference field is imprinted is similar to the one that magnetized the speci-
men in the first place leads to a linear relationship between the two and the constant of
proportionality relates to the ratio of paleomagnetic and reference field Fpaleo/Fref (Na-
gata, Arai, and Momose, 1963). This procedure is also repeated for multiple specimen
from the same site and the sample set mean and standard deviation are reported.

2.3 Dating

A final relevant information for paleomagnetic data is the age of the specimen. To ob-
tain this information, either radiometric or archaeological methods are employed. In
radiometric methods, decaying elements (often 14C or 40K) are studied. By analyzing
the decay the age can either be estimated directly or the amount of radioactive material

8



2.3 Dating

canbe compared to a referencemodel (in case of 14C, this is amodel for the carbondistri-
bution in the atmosphere) and the age estimated from the comparison. Archaeological
methods rely on secondary knowledge about the specimen, e.g. about the site on which
the specimen was acquired. The age is then estimated from archaeological knowledge
about the site. Bothmethods rely on the precision on reference knowledge and can lead
to large uncertainties in the age determination. In case of radiometric dating, modern
techniques exist to estimate the distribution of the age, while in archaeological dating
often only upper and lower bounds for the age are available.

9





3 Mathematical framework

The publications in Part II are addressed at the geomagnetism community and therefore
do not focus on the mathematical details of the material that is presented in this thesis.
To work out some of these, and especially to highlight differences to existing modeling
methods, this chapter concentrates on the framework into which the developedmethod
is embedded.

3.1 Gaussian processes

Gaussian process

Definition 3.1 A continuous stochastic process f (x), x ∈ X is called Gaussian
process (GP), if and only if for every finite set x1, . . . xk in X, the vector

f =


f1
...
fk

 =


f (x1)
...

f (xk)


is a multivariate Gaussian random variable.

In Chapter 1, we outlined different approaches to modeling the Earth’s magnetic field
(EMF). The modeling method we adopt and extend in Part II is based on Gaussian pro-
cesses and falls into the class of Bayesian statistical models (c.f. Section 1.3). A key part
is thus the definition of a prior distribution and a likelihood function, which together
determine the posterior distribution that represents the model. We construct the prior
as a Gaussian process (GP), while the non-linear likelihood is fixed by the observation
functional. AGPprior is defined on a space of functions. Wewill consider the functional
analytic implications of this in the next section. If the likelihood is Gaussian, the poste-
rior is aGPaswell. If not, theposterior is oftennot accessibledirectly andapproximation
techniques have to be employed.
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3 Mathematical framework

AGP can be considered the infinite dimensional generalization of amultivariate nor-
mal distribution. Similar to the finite dimensional case, a GP is fully characterized by a
mean and a covariance function (e.g. Rasmussen andWilliams, 2006). In the presented
studies, the specific choice of these functions is motivated by existing (outside) knowl-
edge about theEMF (details canbe foundChapter 4, aswell as Sections 5.2.1 andSections
6.2.3). In order to illustrate some properties of GPs, we consider a one-dimensional ex-
ample in the following.

3.1.1 Gaussian process regression in one dimension

Consider as a prior the GP fwithmean function f̄ and covariance function K

f ∼ GP
(̄
f, K

)
. (3.10)

Given linear observations
o(y) = f (y) + ε , (3.11)

with ε ∼ N
(
0, Σ

)
, mean and covariance of the posteriorGP are given by (e.g. Rasmussen

andWilliams, 2006, Equations (2.23) and (2.34))

E
[
f (x)| o

]
= f̄ (x) + K(x, y)

(
K(y, y) + Σ

)–1(o – f̄ (y)
)

(3.12)

Cov
[
f (x), f (x′)| o

]
= K(x, x′) – K(x, y)

(
K(y, y) + Σ

)–1K(y, x′) (3.13)

Evidently, the posterior covariance does not depend on the observations o but only on
the locations of observation y and the error covariance Σ. Figure 3.1 illustrates one di-
mensional regression with a squared exponential kernel. In the vicinity of the data, the
posterior variance is reduced wrt. the prior (left side of the right panel). Away from the
data, the prior is reproduced (right side of the right panel).

3.2 Reproducing kernel Hilbert spaces

In the previous sectionwementioned that aGaussian process prior is defined on a space
of functions. In this section we investigate this space. The right toolbox is provided by
the theory of reproducing kernelHilbert spaces (e.g. Berlinet andThomas-Agnan, 2004).
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3.2 Reproducing kernel Hilbert spaces
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Figure 3.1: One dimensional GP regression with a squared exponential kernel. The left
panel shows the prior mean as a thick black line, the shaded areas cover 0.5, 1
and 2 standard deviations respectively. Blue lines show samples drawn from
the prior. The right panel shows artificial data in orange, together with the
generating function as a black dashed line. The solid black line and shaded
area are as on the left, blue lines show samples from the posterior process.

Reproducing kernel Hilbert space

Definition 3.2 LetH be a real Hilbert space of real valued functions on some set
X. The evaluation functional overH is a linear functional

Lx : H → R

f 7→ f(x)

H is called a reproducing kernel Hilbert space (RKHS), if for all x ∈ X, Lx is con-
tinuous (or equivalently, bounded).

FromRiesz’ Lemma it follows, that ifH is an RKHS,

∀x ∃Kx ∈ H : f(x) = Lx(f) = 〈Kx, f〉H ∀f ∈ H .

Kx is said to have the reproducing property.

13



3 Mathematical framework

Reproducing kernel

Definition 3.3 The function K

K : X× X → R

K(x, y) 7→ Lx(Ky) = 〈Kx, Ky〉H

is called reproducing kernel ofH.

The Moore-Aronszjain theorem (e.g. Theorem 3 in Berlinet and Thomas-Agnan, 2004)
states, that every symmetric, positive definite kernel on a set Xhas an associated, unique
RKHS forwhich it is the reproducing kernel. EveryGaussian process is uniquely defined
by amean function f̄ and a positive definite, symmetric covariance function K. Thus ev-
eryGPhas aRKHS associated to it, namely theRKHSwith reproducing kernel K. In fact,
this RKHS is isometrically isomorphic to theHilbert space spanned by the randomvari-
ables f (t) with Cov

[
f (t), f (s)

]
= K(t, s) (Wahba, 1990, Section 1.4). The random variables

f (t) can be one-to-one related to the kernel functions K(·, t). From this it is clear that the
RKHS is spanned by the kernel functions and thus every element in it is a (possibly in-
finite) linear combination of kernel functions (Wahba, 1990, Section 1.4). Therefore the
elements in the RKHS share the smoothness properties of the reproducing kernel. The
imprinting of kernel smoothness onto the functions in theRKHS can also be understood
from looking at the scalar product in the RKHS, if the kernel is known and fulfills some
mild conditions (see also Berlinet and Thomas-Agnan, 2004, Section 3.3). Let H be a
RKHSwithkernelKand

∫
K(x, x) dμ(x) < ∞ for somefinitemeasure μ. Thenall elements

inH are in L2(μ). FromMercer’s theorem (e.g. Rasmussen andWilliams, 2006, Theorem
4.2) it follows, that K can be expanded into a sequence of orthonormal eigenfunctions φi
with corresponding eigenvalues λi

K(x, y) =
∞∑
i=1

λiφi(x)φi(y) . (3.14)

Further, K has an associated integral operator T

T : H → L2(μ) T f(x) =
∫

K(x, y)f (y) dμ(y) (3.15)

with square root (e.g Berlinet and Thomas-Agnan, 2004, Section 3.3)

T1/2 : H → L2(μ) T1/2 f =
∞∑
i=1

√
λi
∫

φi(y)f(y) dμ(y)φi . (3.16)
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3.2 Reproducing kernel Hilbert spaces

With fi =
∫
f (x)φi(x) dμ(x) we have (Wahba, 1990, Lemma 1.1.1): f is an element of H if

and only if

∞∑
i=1

f2i
λi

< ∞ (3.17)

On the other hand, we have

∞∑
i=1

f2i
λi

=
∞∑
i=1

(∫
f (x)φi(x) dμ(x)√

λi

)2

=
∥∥∥T–1/2f ∥∥∥2

L2
, (3.18)

where T–1/2 is the pseudo inverse of T1/2. From (3.18), the smoothness condition can be
formulated as: every function inH is square integrable over μ against the pseudo inverse
of the kernel’s root. Similar to (3.18), the scalar product in the RKHSH can be related to
the scalar product in L2(μ) via

〈f, g〉H =
∞∑
i=1

figi
λi

=< T–1/2f, T–1/2g >L2 . (3.19)

Figure 3.2 shows elements from three different RKHS to illustrate different smooth-
ness properties. In GP regression the covariance function of the prior defines the prop-
erties of possible models and the posterior mean lies in the RKHS, as can be seen from
Equation (3.12) (see also the representer theorem, e.g. Rasmussen and Williams, 2006,
Equation (2.27)).

3.2.1 RKHS and regularized least squares inversion

Manyexistingmodels of theEMFare constructed via regularized least squares inversion
(see also Section 1.2). In the context of RKHS, the regularization conditions (1.7) and (1.8)
define a norm, that clearly satisfies the parallelogram law and thus can be used to define
an inner product via the polarization identity. (1.6) can then be alternatively formulated
as aminimization problem over the associated RKHS:

m̂(t) = argmin
m(t)∈H

[(
o(x, t) – H

[
Q(x) ·m(t)

])>Σ–1
o
(
o(x, t) – H

[
Q(x) ·m(t)

])
+ ||m||2H

]
(3.20)

Since the regularization conditions penalize derivatives, the solution consists of piece-
wise polynomials (Murphy, 2012, Section 15.4.6). For computational reasons, Bloxham
and Jackson (1992) resort to a finite basis of B-splines to approximate this function. This
finite basis also spans anRKHS,where the kernel can straight-forwardly be constructed
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Figure 3.2: Elements (black) of different RKHS and samples (blue) from the associated
zero mean GP. The elements are given by linear combinations of the kernel
functions and thus share the kernels smoothness properties.

left Ornstein-Uhlenbeck kernel
K(x, x′) = σ2/(2θ)

(
exp
(
–θ|x – x′|

)
– exp

(
–θ|x + x′|

))
center Matérn-3/2 kernel

K(x, x′) = (1 +
√
3|x – x′|/ℓ) exp

(
–
√
3|x – x′|/ℓ

)
right scalar-product kernel

K(x, x′) = x · x′

from a combination of orthonormal basis functions. The inversion scheme proposed in
Part II differs from regularized least squares in geomagnetism. However, there are some
parallels. Instead of Equations (1.7) and (1.8), the regularization in GP regression is given
by the choice of a particular kernel, which then defines a norm via the associated scalar
product. The posterior mean, given by Equation (3.12), is then the solution to the equiv-
alent of Equation (3.20) (Kanagawa et al., 2018, Section 3.3).

3.3 Model representation and uncertainty estimates

Representer Theorem

Theorem 3.1 Any solution to (the equivalent of) Equation (3.20) admits a repre-
sentation of the form

E
[
f (x)| o

]
= f̄ (x) +

n∑
k=1

αkK(x, yk) . (3.21)
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3.4 Estimating Gaussian process kernel parameters

Models in geomagnetism are traditionally given by B-spline approximations to the so-
lution of Equation (1.6) and are parametrized by a fixed number of coefficients (see Sec-
tion 1.1). In contrast, the true solution is an element of the corresponding RKHS and is
parametrized by one coefficient per observation, as evident from the representer theo-
rem (and Equation (3.12)). The result of GP regression is the posterior distribution. The re-
sult of the least squares inversion can be identifiedwith themaximumaposteriori prob-
ability estimator (MAP) of the posterior (a function as well). This view further relates
both approaches. A central reason for employing statistical modeling techniques is the
quantificationofuncertainties. With theposteriordistribution, anotionofmodeluncer-
tainties is naturally at hand and with the posterior being a GP, the posterior covariance
is directly accessible (Equation (3.13)). Reporting the model in terms of a distribution
may be interpreted as stating that all realizations of the GP are possible descriptions of
reality. Which one is the ground truth can not be inferred, only statements about model
probabilities are possible. With a GP, the mean (3.13) has the highest posterior density
and is often considered when features and evolution of themodel are discussed.

The posterior mean is an element of the RKHS associated to the GP, while every re-
alization almost surely is not (Kanagawa et al., 2018, Section 4). Samples from the GP
are less smooth than elements of the RKHS, as evident from Figure 3.2. This can be in-
tuitively understood from the sample generation procedure: The Cholesky decomposi-
tion of the kernel matrix is used, which heuristically can be seen as the root of the kernel
(GP sampling algorithms are prominent in the literature, e.g. Rasmussen andWilliams,
2006, AppendixA.3). SeeKanagawa et al. (2018) for further analysis of theGaussian pro-
cess sample space. Theposterior standarddeviation, that is oftenreportedalongwith the
mean to capture uncertainties, gives ameasure of the spread of samples and can be used
to estimate the regime in which possible realities most probably lie.

3.4 Estimating Gaussian process kernel parameters

In a linear setting, the predictive performance of GPs depends exclusively on the suit-
ability of the kernel (Murphy, 2012, Section 15.2.3). The general form of the kernels we
employ in Part II is motivated by (external) knowledge about the EMF. However, the ex-
act form still depends on a number of parameters. These parameters influence the ker-
nel, and therefore its suitability formodeling the archeomagnetic field. Choosing a set of
parameters will also fix the RKHS of possible solutions. One way of fixing these param-
eters is to use existing models from other datasets (e.g. Hellio and Gillet, 2018; Nilsson
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3 Mathematical framework

and Suttie, 2021). A different way is to estimate the kernel parameters from the data via
maximummarginal likelihood estimation (e.g. Rasmussen andWilliams, 2006, Section
5.4). We follow this approach inPart II and illustrate theprocedure for aonedimensional
example in the following.

Consider the posterior of a GP fwith kernel Kθ , that depends on a (set of) parameters
θ:

p(f |o; θ) = p(o|f; θ) · p(f; θ)
p(o|θ)

(3.22)

Equation (3.22) gives the posterior distribution for f, given observations o and kernel pa-
rameters θ. Instead, we are interested in ameasure for how appropriate a set of param-
eters is for the data o, without focusing on the distribution of f itself. This is provided by
thedenominatorp(o|θ),where the functions f havebeenmarginalized (integratedout). For
this reason p(o|θ) is called themarginal likelihood. In the Bayesian hierarchy, themarginal
likelihood is one level above the posterior distribution. It discriminates between differ-
ent sets of parameters that in term define different kernels (and thus different RKHSs).
Due to the higher level, the kernel parameters are also referred to as hyperparameters. For
the linear GP fromSection 3.1.1, the logarithmof themarginal likelihood is given by (e.g.
Rasmussen andWilliams, 2006, Equation (2.30))

ln p(o|θ) = – 1
2
(
o – f̄ (y)

)>(Kθ(y, y) + Σ
)–1(o – f̄ (y)

)
– 1
2
ln |Kθ(y, y) + Σ| + const. . (3.23)

The first term describes the goodness of fit to the data while the second term (involv-
ing the determinant of the kernel) is a measure of model complexity. The maximum
marginal likelihood estimate balances the two terms. This is illustrated for the length
scale estimation of a squared exponential kernel in Figure 3.3.

Depending on the formof the kernels Kθ , the parameter(s) θ thatmaximize (3.23)may
be available analytically or have to be determined via numerical methods. Since every
evaluation of ln p(o|θ) involves inverting the kernel matrix, the latter will become com-
putationally impossible when the number of records grows large. This is especially true
if multiple parameters are optimized and the marginal likelihood contains many local
optima.

3.5 Linear approximation for non-Gaussian likelihoods

In the previous sectionswe illustratedGP regression on the example of one dimensional
linear data. In thenatural sciences however, observations are oftennon-linear andmulti
dimensional. The one dimensional regression straight forwardly generalizes to vector
data, however, if non-linear observations are addressed, the likelihoodwill no longer be
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3.5 Linear approximation for non-Gaussian likelihoods
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Figure 3.3: Estimation of the characteristic length scale for a squared exponential kernel
in onedimension. The leftpanel shows the two terms in the logmarginal like-
lihood individually. As the maximum of the marginal likelihood is sought,
low values are penalized. The goodness of fit increases with smaller length,
while model complexity grows. With bigger length scales, the model com-
plexity decreases while the goodness of fit declines. The right panel shows
the marginal likelihood, which balances both terms. The artificial data was
generated from a kernel with characteristic length of 2.3.

Gaussianand the simpleequations (3.12) and (3.13) breakdown. Sophisticated techniques
exist to approximate the posterior distribution in this case. On the probabilistic side,
sampling strategies such as MCMC are employed (e.g. Titsias, Rattray, and Lawrence,
2011; Hellio et al., 2014; Nilsson and Suttie, 2021). Deterministic approachesmostly rely
on finding a Gaussian approximation to the likelihood analytically (e.g. Opper and Ar-
chambeau, 2009). More advanced strategies combine multiple Gaussian approxima-
tions (e.g. Rue, Martino, and Chopin, 2009; Minka, 2013). In Part II we implement a lin-
ear approximation to the non-linear observation functionals. This has the advantage of
low computational overhead and good scaling properties (in terms of observations). The
downside is that the linearized distribution depends on the point of expansion (see also
Figure 4.4 below) andmay strongly deviate from the actual one, especially if the variance
is large. The main reason why we resort to a linearization based approach is computa-
tional cost. As argued in the previous section, finding the optimal set of hyperparame-
ters based on marginal likelihood maximization requires performing many inversions
and therefore renders more complex approaches likeMCMC unfeasible.
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3 Mathematical framework

3.6 Numerical aspects of Gaussian process regression
The main numerical workload in GP regression comes from inverting the covariance,
which requires O(n3) operations. For stability reasons, one often resorts to calculating
the Cholesky decomposition first and then inverting the matrix by solving a triangu-
lar linear system (e.g. Rasmussen and Williams, 2006, Algorithm 2.1). Besides compu-
tational costs, the memory required to store the covariance matrix is O(n2). Both cost
in computational power and memory are the reason that standard GP regression does
not scale well for large datasets. To tackle this, various approaches exist. These include
sparse approximations (e.g. Smola andBartlett, 2000) and the implementation of highly
parallelized, approximate Cholesky factorizations (Gardner et al., 2018). In Chapter 6,
we implement a Kalman-filter (Kalman, 1960) and smoother to tackle the memory de-
mand. The downside is that the posterior covariance is not fully available, as cross cor-
relations are not calculated explicitly. Therefore, posterior samples are not easily avail-
able. They can be generated from the forwardmodel by requiring the ensemble to share
the same statistics as the smoothed model (Baerenzung and Holschneider, in prepara-
tion).
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Abstract
For the time stationary global geomagnetic field, a newmodelling concept is presented.
A Bayesian non-parametric approach provides realistic location dependent uncertainty
estimates. Modelling related variabilities are dealt with systematically by making little
subjective a priori assumptions. Rather than parameterizing themodel by Gauss coeffi-
cients, a functional analytic approach is applied. The geomagnetic potential is assumed
a Gaussian process to describe a distribution over functions. A priori correlations are
givenby an explicit kernel functionwithnon-informative dipole contribution. A refined
modelling strategy is proposed that accommodates non-linearities of archeomagnetic
observables: First, a rough field estimate is obtained considering only sites that provide
full field vector records. Subsequently, this estimate supports the linearisation that in-
corporates the remaining incomplete records. The comparison of results for the archeo-
magnetic field over the past 1000 years is in general agreement with previous models
while improvedmodel uncertainty estimates are provided.
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4.1 Introduction

Global geomagnetic field reconstructions of the past millennia are useful to investigate
the geodynamo process or the complex interaction of the field with solar wind particles
and cosmic rays, and theyfindapplication in archeomagnetic andpaleomagnetic dating.
Reconstructions are typically built fromvolcanic and archeomagnetic samples collected
at the Earth’s surface providing records of the ancient EMF. Unfortunately, on a global
scale records are clustered, unevenly distributed towards the Western Eurasian region
and corrupted by various uncertaintes. This considerably complicates the reconstruc-
tion of the ancient EMF.

Datingback to 1985,GubbinsandBloxhamwereamongst thefirst toproposeaBayesian
inference for modelling the EMF, already discussing non-linear observables and model
uncertainties. Theirparametrized implementationofa truncatedSHrepresentationwith
normoptimizationhasbecomeawidelyusedmodelling scheme. Themajorityofhistori-
cal and archeomagnetic fieldmodels published over the past years essentially rely upon
the same inverse strategy. Early models such as Jackson, Jonkers, and Walker (2000),
Constable, Johnson, and Lund (2000), andKorte andConstable (2003) provide estimates
without quantifying uncertainties. More recent attempts – e.g. Korte, Donadini, and
Constable (2009), Licht et al. (2013), Hellio and Gillet (2018), and Senftleben (2019) – de-
scribe variabilities by deriving ensembles of equivalent solutions. Roughly speaking,
those models differ in two aspects: On the one hand, the error handling, data selec-
tion and outlier detection have been refined over the years (Licht et al., 2013). On the
otherhand, different strategies are used to incorporate a priori knowledge. Earlymodels
are typically starting off from an axial dipole and are regularized by a physically moti-
vated norm. Since regularized fieldmodels are known to underestimate uncertainties at
small length scales (Gillet, 2019), more elaborate modelling concepts are under investi-
gation. Recent attempts deduce a priory information including temporal dynamics from
the statistics of satellite eramodels (e.g. Hellio andGillet, 2018) or fromgeodynamo sim-
ulations (e.g. Sanchez et al., 2016). Existing models, however, have in common that un-
certainties related to modelling, in particular due to model parameters and the uneven
data distribution, are not dealt with systematically.

The present paper introduces an advanced concept to model snapshots of the EMF.
This work should be considered as a fist step towards a new inverse strategy in which
the notion of modelling related uncertainties is well defined. Therefore, we adapt the
correlation based inversion developed by Holschneider et al. (2016) that is known from
modelling observatory and satellite data. Several modifications are required to adjust
the concept to archeo- and paleomagnetic data.
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4.1 Introduction

We pursue a fully Bayesian approach that determines the EMF’s posterior distribu-
tion which simultaneously encodes themost probable fieldmodel and its uncertainties.
To obtain the posterior distribution we use a functional analytic approach where infer-
ence takes place directly in the space of functions. Observables and quantities of interest
are expressed in terms of functionals that act on the geomagnetic potential. Rather than
using amodel that is parametrized by a finite SH basis, the geomagnetic potential is as-
sumed a GP. The GP in use is non-parametric in the sense that it is a distribution over
functions and is specified by a two-point covariance function.

From a parametric point of view, GPs have been used for a long time inmodelling the
EMF (e.g. Bouligand et al., 2005; Khokhlov, Hulot, and Bouligand, 2006), known under
the term Giant Gaussian Process (GGP). That term was coined by Constable and Parker
(1988) who proposed a GP basedmodel focusing on the estimation ofmodel parameters.
Our approachmay be seen as the functional analytic extension of the GGPmodel.

Oura prioridistributionof thegeomagneticpotential is characterizedby itsmeanpower
spectral behaviour, which is represented by an explicit correlation function that takes
all SH degrees into account. If a SH truncationwas desired, transdimensionalmodelling
(Livermore et al., 2018) may be applied to also infer the cut-off degree. Using an explicit
kernel function – not truncated at a certain SH degree – circumvents that problem. This
does not necessarilymean that our approach reaches a higher resolution at a global scale
but, improves treatment of the uneven data coverage and allows the exploitation of the
records to their fullest. In addition, a low SH degree truncationmay lead to spurious os-
cillations and ringings if the data include pronounced local anomalies. We try to be the
least subjective and specify the a priori field model using uninformative distributions,
when possible. Our a priori model depends only on a single parameter that controls the
a priori power spectral behaviour.

In the case of satellite and observatory data, EMF full vector components are observed
directly and observables are linearly related to the geomagnetic potential. Thus the pos-
terior distribution for the GP is explicit and may be computed using ordinary linear al-
gebra. Archeomagnetic data, however, call for a refined modelling strategy that takes
the non-linearity of declination, inclination and intensity into account. The majority
of sites only have incomplete vector information so that a direct linearisation of each
record is not possible. Therefore, we propose a two step Bayesian update system: First,
a rough field estimate is obtained considering only sites that provide complete field vec-
tor records. Subsequently, this estimate supports the linearisation that incorporates the
remaining incomplete records.
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To demonstrate the potential of our modelling strategy we present a case study us-
ing archeomagnetic and volcanic data of the past 1000 years. Joint maps of best pre-
diction and point-wise uncertainty are presented, which allow an improved interpreta-
tion of the spatial field structure. Although our modelling is not based upon a SH basis,
we predict Gauss coefficients and quantify their uncertainties. In addition, we calculate
the posteriormean of the spatial power spectrum and estimate error bounds. Finally we
present the posterior probability density function (PDF) for the dipole strength and the
location of the geomagnetic north pole. The latter results are obtained for records of the
past millennium, coarsely sorted into 100 year bins and arranged into a discrete time-
series.

The structure of the document is as follows: Section 4.2 gives an overview of themod-
elling theory, which closely follows Holschneider et al. (2016). First, we introduce the
general construction of our dipole and non-dipole priors and correlations kernels (Sec-
tion 4.2.1). We describe the link between observations andmodel, and how to obtain the
posterior distribution from linear observations (Section4.2.2), and thendiscuss theneed
for linearisation of archeomagnetic observables (Section 4.2.3). The treatment of data
uncertainties is laid out in Section 4.2.4. The following two Sections, 4.3 and 4.4, give
details about the necessary adjustments tomodel archeo- and paleomagnetic data. Sec-
tion 4.3 focuses on the two step strategy used to handle the non-linearities, formulated
as a Bayesian update system and includes synthetic tests. Section 4.4 covers the transla-
tion of a priori uncertainties in the model parameters to the posterior. Finally, Section
4.5 provides the case study. We close the document by drawing conclusions and showing
future perspectives in Section 4.6.

4.2 Modelling Concept

In this section we review the non-parametric and correlation-based modelling strat-
egy (Holschneider et al., 2016) that underlies our Bayesian approach formodelling time-
stationary snapshots of the EMF. We lay out our field model together with our a priori
assumptions and establish the nomenclature that we adopt throughout this paper. We
point out difficulties arising whenworkingwith non-linear observables such as archeo-
and paleomagnetic records and discuss the general treatment of data uncertainties.
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4.2 Modelling Concept

4.2.1 Magnetic Field Model

When modelling the geomagnetic core field on archeo- to paleomagnetic time scales,
furthercontributions to thegeomagneticfield– thecrust, ionosphereandmagnetosphere
– are neglected since archeo- and paleomagneticmeasurement errors are assumed to be
significantly larger than the respective field contributions (Constable and Korte, 2015).

Close to the surface – far frommagnetic sources – the EMF,B, can be approximated by
the gradient of a scalar potential satisfying Laplace’s equation

B = –∇Φ , ∇2Φ = 0 , (4.24)

whereΦ is referred to as the geomagnetic potential (Backus, Parker, andConstable, 1996,
Chp. 4). In contrast to themagnetic field, the potential is not directly observable. For an
internal source andwith respect to some reference sphere of radius R, the potential Φ at
location x, |x| > R, can be expanded in SHs

Φ(x) = R
∑
ℓ

(
R
|x|

)ℓ+1∑
–ℓ≤m≤ℓ

gmℓ Ym
ℓ (x̂) (4.25)

where Ym
ℓ refers to the real valued and Schmidt semi-normalized SH of degree l and or-

der m with related Gauss coefficient gmℓ . The dependence of gmℓ on a reference radius R
is not explicitly typed.

We use a spherical coordinate systemwith BN pointing to geographic north, BE to the
east and BZ vertically downward. The components of the magnetic field vector B at a
location of radius r, co-latitude θ and longitude φ, are

BN = –1
r
∂Φ
∂θ

, BE = 1
r sin

(
θ
) ∂Φ
∂φ

, BZ = –∂Φ
∂r

. (4.26)

The ellipticity of the Earth is neglected and geocentric coordinates are treated as if they
were geodetic.

Motivatedbymagneticfield theory,weexpressour lackofknowledgebymakinga priori
assumptions about all Gauss coefficients. Considering Holocene time-scales, the dipole
partof thefielddoesnothave thesamestatisticaldistributionas thenon-dipolepart (Con-
stable and Parker, 1988). Thus, our model of choice is dipole dominated with additional
randomfield contributions.

The dipole part is specified by the Gauss coefficients of degree ℓ = 1. A priori the coef-
ficients are assumed normal

g1 ∼ N
(
ḡ1, Σ1

)
, (4.27)

27



withmean vector ḡ1 and covariancematrix Σ1, ninemodel parameters to be determined
(three for themean and six for the covariance). The subscript is hinting at the SH degree
and is going to be generalized. The dipole potential is a GP with mean and covariance
function

E
[
ΦDP

]
= Y>1g1 , V

[
ΦDP

]
= Y>1Σ1Y1 (4.28)

where Y1 refers to the SH basis of degree ℓ = 1 i.e.

Y1(x)T = R
(
Y0
1 (x), Y

1
1(x), Y

–1
1 (x)

)(
R
|x|

)2
. (4.29)

Section 4.4.1 deals with choosing a priori dipole parameters. The correlation pattern for
independentand identicallydistributed (IID)Dipolecoefficients is shownin the leftpanel
of Figure 4.1.

Our model of the non-dipole part is similar to the one proposed by Constable and
Parker (1988) but within a Bayesian setting. The non-dipole potential is assumed a GP
of zeromean. Rather than truncating the SHbasis at a certain degree, a covariance func-
tion of closed form is used. Therefore, we adopt the kernel construction method from
Holschneider et al. (2016, Sec. 4). With respect to a reference sphere, thepotential is char-
acterized by its mean power spectral behaviour (see Sec. 4.5.6). That reference sphere
maybe seen as a virtual source region and the reference radiushasnoparticular physical
significance (Constable and Parker, 1988). Except for the dipole, at the reference radius
Gauss coefficients are assumed IID normal random variables. The according Legendre
type kernel is of the form

KL(x, y) = λ2R2
∞∑
ℓ=2

(
R2

|x||y|

)ℓ+1∑
–l≤m≤l

Ym
ℓ (x̂)Ym

ℓ (ŷ) (4.30)

where we introduced λ, a scaling factor that controls the amount of the non-dipole con-
tribution and its dimension. Dipole and non-dipole parts are assumed statistically in-
dependent. According toHolschneider et al. (2016, Eq. 54), KL can be expressed in closed
form. We choose this kernel as it is computationally simple and depends only on two
parameters, R and λ. The right panel of Figure 4.1 depicts an a priori correlation pattern
for the non-dipole potential.

In principle an SH decomposition is possible but computationally limited. To cover
highly localized modelling errors, the covariance has to map the characteristic length
scales present in the data. Small scale correlations among records are a valuable source
of information that should enter the model. In case of an expansion, the highest SH de-
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4.2 Modelling Concept

Figure 4.1: Visualization of dipole (left) and non-dipole (right) correlation structures at
the Earth’s surface. The reference location is indicated by the blue dot. The
dipole pattern corresponds to IID dipole coefficients. The apparent correla-
tion of antipodal points stems from the fact that this kernel describes thefluc-
tuations around the removed dipole, which is dominated by the quadrupole
contributions. Overall cross correlations result from superimposing dipole
and non-dipole parts. Correlations are normalized and a diverging colormap
is used, ranging from –1 (blue) to 1 (red).

gree must be chosen such that the smallest spatial wavelength coincides with distances
between sites. If some siteswere clusteredwith distances of about 100 km, an expansion
up to degree ℓ ≤ 175 would be needed. Since high degree expansions are demanding,
using an explicit kernel function is computationally beneficial and makes it feasible to
adopt a global point of viewwhile preserving the accuracy of local length scales.

The reference radiusR controls the predominant slope of the a priori power spectrum.
The smaller R, the smoother the a priori field at the surface. The scaling factor λ causes a
shift along the axis of ordinates. Similar to Constable and Parker (1988), the power spec-
trum is used to tune the reference radius. R is chosen such that the prior mean power
spectrumroughlyconformswith the InternationalGeomagneticReferenceField (IGRF) (Thébault
et al., 2015) time average from 1900 to 2020. Figure 4.2 depicts the alignment, carried
out by visual inspection. Throughout we are going to use the fixed value R = 2800km.
In contrast, as λ is highly uncertain, it receives special treatment in Section 4.4.2. A ref-
erence radius below the core-mantle boundary (CMB) implies a non-erratic covariance
structure at the CMB. A virtual source regionwithin the outer coremay seemunconven-
tional but is becomingmore popular. To give an example, Sanchez et al. (2016) are using
complex correlation patterns at the CMB obtained from dynamo simulations as prior
information.

The EMF is modelled as the negative gradient of the potential (Eq. 4.24). Differenti-
ation is a linear operation and thus the field model is a GP as well. The a priori mean
reads

B̄(x) = –∇Y>1 (x)ḡ1 = –
∑

–1≤m≤1
∇Ym

1 (x)ḡm1 (4.31)
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Figure 4.2: The mean power spectral behaviour chosen a priori is indicated by red dots.
As a reference, the power spectra of the IGRF from 1900 to 2020 are drawn in
grey. For comparison, the solid black line refers to the mean spectrum sug-
gested by Constable and Parker (1988).

and the correlation kernel is composed of dipole and non-dipole covariance functions

KB(x, y) = KB,DP + KB,ND = ∇Y>1 (x)Σ1Y1(y)∇† +∇KL(x, y)∇† (4.32)

where the right-hand gradient acts on the left at the second argument.

4.2.2 Inference

In contrast to existing archeomagnetic field models we pursue a functional analytic ap-
proach and perform a regression directly in the space of functions. The corner stone of
ourmodelling strategy is formed by a GP regression. GP regression is also known in the
field of geostatistics as Kriging (seeRasmussen andWilliams, 2006, Sec. 2.2 and 2.8). For
linearB-field observations this strategy has already been adopted byHolschneider et al.
(2016). We briefly recall the overall modelling concept before we introduce non-linear
observations.

Suppose we observe the components BN, BE and BZ of the EMF. Measurements are
denoted by

o =
{
oi =

(
BN(zi), BE(zi), BZ(zi)

)>}
i=1,...,n

, (4.33)

recorded at locations zi. Observations are corrupted by additive noise Ei and the data
model reads

O = {B(zi) + Ei}i=1,...,n . (4.34)
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4.2 Modelling Concept

The error model is assumed normal of zero mean and covariance ΣE. Recorded values o
are assumed a realization ofO. Thedata’s a priorimeanvector and covariancematrix are

Ō =
{
B̄(zi)

}
i=1,...,n (4.35)

ΣO =
{
KB(zi, zj)

}
i,j=1,...,n

+ ΣE (4.36)

with typically diagonal error-covariancematrix ΣE.

To obtain information about the EMF, we need to compute B’s posterior distribution.
If we assume theB-field andmeasurement errors are independent, the cross covariance
matrix follows to read

ΣB(x)O = Cov
[
B(x), O

]
=
{
KB(x, zi)

}
i=1,...,n (4.37)

for any design point x outside the reference sphere. Since O and B are jointly Gaussian,
the posterior distribution is normal as well. It is fully determined by the conditional
mean and conditional covariance

E
[
B(x)|o

]
= B̄(x) + ΣBOΣ–1

O
(
o – Ō

)
(4.38)

Cov
[
B(x),B(y)|o

]
= KB(x, y) – ΣBOΣ–1

O Σ>BO . (4.39)

Gauss coefficients are modelled analogously. Magnetic potential and Gauss coeffi-
cients are related through

gmℓ = 2ℓ + 1
4πR

∫∫
Ym
ℓ (x)Φ(x) d2x , (4.40)

where integration is carried out over the sphere of radius R. The collection of Gauss co-
efficients up to SH degree ℓ is denoted by gℓ. Accordingly, Σℓ refers to the prior covari-
ance matrix of Gauss coefficients up to degree ℓ. Except for the dipole and according to
Eq. 4.30, the a priori covariance Σℓ is diagonal. At the reference radius the a priori vari-
ance is λ2. The cross covariancematrix between gℓ and the observations reads

ΣℓO = Cov
[
gℓ, O

]
=
{
–Σℓ∇Yℓ(zi)

}
i=1,...,n (4.41)
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and Yℓ refers to the SH basis up to degree ℓ. Since Gauss coefficients and potential are
linearly related, the posterior distribution is normal aswell and, again, fully determined
by the conditional mean and covariance

E
[
gℓ|o

]
= ḡℓ + ΣℓOΣ–1

O
(
o – Ō

)
(4.42)

V
[
gℓ|o

]
= Σℓ – ΣℓOΣ–1

O Σ>ℓO . (4.43)

It is worthmentioning that Bouligand et al. (2005) used geodynamo simulations to con-
clude that there are significant cross-correlations among the Gauss coefficients. Our
statistical model places no restrictions on the posterior cross-correlations although the
a priori assumptions are based on IID Gauss coefficients.

These are the formulae we are going to build our modelling strategy upon. However,
they require an extension since archeomagnetic records and the magnetic potential are
non-linearly related. Before elaborating our approach to this problem, let us first recall
the observational functionals in question.

4.2.3 Observational functionals & Linearisation

Archeomagnetic data is not provided in the form of Cartesian field vector components.
The quantities that are determined in laboratory experiments are the two angles, decli-
nation (D) and inclination (I), and intensity (F), acquired at locations z. These quantities
and thevector components arenon-linearly related. The corresponding functionals read

H : B →

D
I
F

 =


arctan

(
BE
BN

)
arctan

(
BZ
FH

)√
B2
N + B2

E + B2
Z

 (4.44)

where the horizontal intensity
FH =

√
B2
N + B2

E (4.45)

is introduced as an auxiliary variable (Backus, Parker, and Constable, 1996, Eq. 1.2.1 –
1.2.4). The components of H are referred to as observation functionals and are denoted
by Hi[B] for i = D, I, F. The inversemap tomagnetic field vector components reads

H–1 :

D
I
F

→ B = F

cos
(
I
)
cos
(
D
)

cos
(
I
)
sin
(
D
)

sin
(
I
)

 . (4.46)
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4.2 Modelling Concept

The inversemap is only unique if all three observables are at hand, i.e. three vector com-
ponents relate uniquely to three observables and vice versa.

As alreadypointed out in the previous Section, the vital prerequisite for themodelling
strategy is joint normality of observations and EMF. Certainly, the functionals D, I and F
do not preserve B’s normality, nor are themeasurement errors Gaussian.

To adopt themodelling concept by Holschneider et al. (2016) we approximate D, I and
F by a 1st order Taylor expansion

Hi[B] ≈ Hi[B̃] +∇Hi[B̃]>
(
B – B̃

)
, (4.47)

where B̃ refers toanarbitrarypointof expansion (POE).This is thenon-parametric coun-
terpart compared with the approach presented by Gubbins and Bloxham (1985, Eq. 10).
The functionals approximating D, I and F arise to

D ≈ D̃ + 1

F̃2H

–B̃E
B̃N
0


>

B , (4.48)

I ≈ Ĩ + 1
F̃H


00
1

 – B̃Z
F̃

B̃
F̃


>

B , (4.49)

F ≈ B̃>

F̃
B (4.50)

where D̃, Ĩ and F̃ are referring to the 0th order terms. From those equations it is obvious
that performing an expansion about zero is not going towork. Existingmodels (e.g. Licht
et al., 2013; Hellio and Gillet, 2018) typically use an axial dipole as initial POE. Since a
Taylor expansion performs better the less B deviates from the POE, we propose not to
use an axial dipole. Section 4.3 is dedicated to which point to linearise about.

Since B is assumed a GP and due to linearity, the approximating observational func-
tionals are normally distributed. However, to actually achieve joint normality amongst
observations and B-field, measurement errors need a Gaussian proxy as well.
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4.2.4 Measurement Errors

Although the observational functionals were linearised, the data model is still not nor-
mal sincemeasurement errors are not necessarily Gaussian. It is common to character-
ize the uncertainty of archeomagnetic directions (D and I) using the von Mises-Fisher
(vMF) distribution and the variability of intensity using the normal distribution (Love
and Constable, 2003). As long as intensity records report the standard error, linearising
F provides a normal proxy model which we are going to use for inference. However, we
lack a Gaussian proxy for directional errors.

The commonly used approach is to calculate directional errors individually. The vMF
distribution is parametrized by a concentration factor and a location parameter. The
larger thevalueof the concentration factor, themore thedistribution tends towards con-
centratingaround the locationparameter. Provideda large concentration factor and that
the location parameter is not pointing towards high latitudes, the marginal probability
densities for D and I are approximatelyGaussian. Proxy errors for declination and incli-
nation are assumed independent, of zeromean and standard deviation

σI =
57.3◦

140
α95 and σD = 1

cos oI
σI (4.51)

(Suttie and Nilsson, 2019). Typically directional records report the 95% confidence cone
α95 of the vMF distribution. This is a pragmatic approach that does not necessarily re-
flect theGaussianmomentmatching proxy, since correlations are dropped and – in gen-
eral – the mean of a vMF distribution does not coincide with the location parameter. In
case of isolated declinations this approach does not work and such records are rejected.
Another drawback of a Gaussian proxy error model is the intolerance against outliers.
In the context of optimization theory there exist more robust approaches e.g. Farquhar-
son and Oldenburg (1998), Walker and Jackson (2008), and Hellio et al. (2014). For the
vastmajority of non-Gaussian likelihoods, however, no explicit solution to the Bayesian
inverse problem is known.

Two philosophies have been used in previousworkwhenmodelling archeo- and pale-
omagnetic data. Either very strict selection criteria are applied and these often contain
tests that hadnot been applied in data published a fewdecades ago. As the absence of the
test does not necessarily mean a result would not have passed the test, the other philos-
ophy is to include as much data as possible without applying very strict criteria, aiming
to increase the signal to noise ratio. However, it is likely that the reportedmeasurement
errors in several cases underestimate the true data uncertainties, which might contain
systematic biases if corrections for, e.g., cooling rate or anisotropy have not been per-
formed.
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4.2 Modelling Concept

For practical reasons, we adopt the second philosophy. To compensate possibly non-
conforming error estimates we introduce a scaling parameter ε. Then, the individual
proxy uncertainties are given by

Ei → εEi ∼ N
(
0, ε2σ2

i

)
(4.52)

and ε is regarded as a model parameter. Although we do not know the specific value for
ε, its order of magnitude is assumed to be one.

In addition, we introduce a residual termP that compensatesmodelling related errors
and accounts for observational biases. Amongst others, effects that our model does not
include are temporal correlations, dating errors and crustal field anomalies. Therefore,
we assume P ∼ N

(
0, I
)
, i.e. uncorrelated standard normal at every pair of distinct sites.

Our final datamodel becomes

oi = Hi[Bi + ρPi] + εEi (4.53)

and the magnitude of the residual is controlled by ρ, another not yet known model pa-
rameter. The residual term can be thought of as an error term that describes the simpli-
fication of the underlying physics statistically. In other words, those real world contri-
butions that are not covered by ourmodel are treated as if they were random errors.

Because we focus on time stationary snapshots of the EMF, dating uncertainties are
displaced into the residual term. Nonetheless, these errors are of importance if the tem-
poral behaviour of the EMF is reconstructed. There already exist several approaches to
accommodate dating errors e.g. Jack-knife (Korte, Donadini, and Constable, 2009; Licht
et al., 2013), MCMC sampling (Hellio et al., 2014) or transdimensionalmodelling (Liver-
more et al., 2018).

To proceed with the modelling concept outlined in Section 4.2.2, we combine the lin-
earisation and theGaussian proxy for the directional errors. However, a POE for the lin-
earisation is stillmissing. The subsequent section covers this problemand also discusses
the concrete incorporation of the error term and the residual. As the final ingredient of
ourmodelling concept, the treatment of model parameters is subject of Section 4.4.
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4.3 Bayesian Update System

The need for linearisation described in Section 4.2.3 requires a suitable POE. The lineari-
sation as a Taylor expansion performs better the less the POE deviates from the truth.
Archeo- andpaleomagnetic directional and intensitydata aredetermined fromdifferent
laboratory experiments, and themajority of records report either one or two field com-
ponents (incomplete records). The complete vector information (D, I, F) is only available
in rare cases. Noting that it is easier to determine a POE from full vector records, we in-
troduce aBayesianupdate system to treat complete and incomplete records successively.

Theposteriordistribution is computedbya twostep strategyonly consideringa subset
of observations at a time. Records are partitioned into two disjoint groups oI and oC
where subscripts are referring to incomplete and complete measurements. Making use
of the conditional probability rule – i.e. p(X|Y)p(Y) = p(X, Y) – and according toBayes’ law
the posterior B-field factorizes

p(B|o) = p(B|oC , oI ) =
p(oI |B, oC )
p(oI |oC )

p(B|oC ) , (4.54)

i.e. theposteriorEMFbasedonthecompleteobservationsoC servesasprior for theBayesian
posterior based on oI . Not to incorporate the data all at once appears to be a promising
strategy due to strongmagnetic field correlations.

The complexity of the developed algorithm is growing through this and the following
section. Figure 4.3 provides a schematic illustration so as not to loose the overview. The
two step strategy is shown in the top panel of Figure 4.3.

4.3.1 Complete records

In the initial step only complete records are taken into account. Triplets of declination,
inclination and intensity are forming the set of complete records

oC =
{
oi = (D(zi), I(zi), F(zi)

)>}
i=1,...,nC

. (4.55)

Inorder to apply the linearisation, aPOE ismissing. The special case of knowingall three
components allows the calculation of the inversemap (Eq. 4.46)

B̃C =
{
H–1[oi]

}
i=1,...,nC

(4.56)
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4.3 Bayesian Update System

which will serve as the point to linearise about. That point is reasonable as long as the
prior B-field variance is large in comparison with the measurement errors. If measure-
ment errors were not negligible w.r.t. the a priori distribution, then the POE is no longer
known with confidence and we have to propagate uncertainties. To ensure this, Sec-
tion 4.4 is devoted to choosing an uninformative a priori field. A Gaussian approxima-
tion in this way is also known as Laplace’s method (Murphy, 2012, Sec. 8.4.1).

In order to apply the modelling scheme introduced in Section 4.2.2 we use the Gaus-
sian proxy errormodel. The diagonal error covariancematrix is denoted by

ΣE,C = diag
(
σ2
1 , . . . , σ

2
nC

)
, (4.57)

where σi refers to individual standard errors w.r.t. D, I and F. The linearised observation
functionals translate between (D, I, F) and B. To keep equations concise, the dipole basis
and the Jacobi matrices are collected in bigmatrices

Ý1,C =
{
∇Y1(zi)

}
i=1,...,nC (3nC × 3) (4.58)

H́C =
{
δij∇H[B̃i]

}
i,j=1,...,nC

(3nC × 3nC ) (4.59)

where δij refers to the Kronecker delta and H́C is 3 × 3 block-diagonal. For oC , the ap-
proximative prior mean vector is given by

ŌC ≈ oC + H́>C
(
–Ý1,C ḡ1 – B̃C

)
(4.60)

where BC means evaluated at all the locations of observation. Due to assumed indepen-
dence of error model and EMF, the linearised covariance matrix for complete records
reads

ΣC = V
[
OC
]
≈ H́>C

(
V
[
BC
]
+ ρ21

)
H́C + ε2ΣE,C , (4.61)

where V
[
BC
]
is constructed from the kernel (Eq. 4.32) at any two locations of observa-

tion. Due to bi-linearity of the covariance H́C is factored out and all constant terms are
stripped off. For arbitrary design points, the linearised cross covariance amongst EMF
andmeasurements is given by

ΣBC = Cov
[
B, OC

]
≈ Cov

[
B,BC

]
H́C . (4.62)

According to Equations 4.38 and 4.39, a Gaussian proxy of B’s posterior distribution is
determined through the conditionalmeanE

[
B|oC

]
and conditional co-varianceV

[
B|oC

]
.

This first step of ourmodelling scheme is illustrated in the top left panel of Figure 4.3.
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Analogous to Eq. 4.41, the linearised cross covariance amongst Gauss coefficients and
observations is given by

ΣℓC = Cov
[
gℓ, OC

]
≈ Cov

[
gℓ,BC

]
H́C = –ΣℓÝℓ,CH́C . (4.63)

where Ýℓ,C extends Eq. 4.58 up to SH degree ℓ. The approximations of the conditional
mean E

[
gℓ|oC

]
and conditional co-variance V

[
gℓ|oC

]
are given through Equations 4.42

and 4.43.

Although the subset of complete records is comparatively small, as a first guess, we an-
ticipate a reconstruction of the EMF’s dominating features due to strong magnetic field
correlations.

4.3.2 Incomplete records

Inference with the incomplete records only implicitly depends on the a priori mean and
covariance function through the first step. The distribution of the EMF posterior to oC
maybe understood as the prior to incorporate the remainingmeasurements oI . To carry
out the linearisation, themean conditional on oC will serve as POE

B̃|C = E
[
B|oC

]
. (4.64)

From a theoretical point of view this is a function that is going to be evaluated by the ob-
servational functionals. We expect those points to bewell suited, as in a Gaussianmodel
the mean is the most likely solution. However, this is an arbitrary choice and does not
necessary imply any optimality.

Because the EMF’s proxy posterior to oC is normal we are going to use the samemod-
elling concept as we have already done (Sec. 4.2.2). To facilitate the second step it is nec-
essarynot only topredict ondesignpoints but also on auxiliaryquantities in thefirst step.

Incomplete records are treated individually even though a certain locationmay report
more than one observable. The approximativemean is given by

ŌI |C ≈
{
Hi
[
B̃|C
]}

i=1,...,nI
(4.65)

and we use the subscript i to indicate both the location zi and the type of record in Hi,
either D, I or F. If we collect all gradients within one bigmatrix

H́I |C =
{
δij∇Hi[B̃|C ]

}
ij=1,...,nI

, (4.66)
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4.3 Bayesian Update System

then the covariancematrix for incomplete records reads

ΣI |C ≈ H́>I |C
(
V
[
BI |oC

]
+ ρ21

)
H́I |C + ε2ΣE,I . (4.67)

The error covariancematrix is analogous to Eq. 4.57. The auxiliary quantities we have to
carry along are conditional mean vector and covariancematrix at points of observation.

Tomodel the posteriorB-field we again have to calculate linearised cross correlations
amongst B|oC and OI . If we store the matrix Cov

[
B,BI |oC

]
within the first step, lin-

earised cross correlations amongst design points and incomplete records are given by

ΣBI |C = Cov
[
B, OI |oC

]
≈ Cov

[
B,BI |oC

]
H́I . (4.68)

The Gaussian proxy for the EMF’s posterior distribution is again determined through
Equations 4.38 and 4.39. Conditional mean and co-variance read

E
[
B|o
]
= E
[
B|oC

]
+ ΣBI |CΣ–1

I |C (oI – ŌI |C ) (4.69)

V
[
B|o
]
= V
[
B|oC

]
– ΣBI |CΣ–1

I |CΣ
>
BI |C . (4.70)

The top panel of Figure 4.3 illustrates how the posterior EMF is built within two steps.
Gausscoefficientsareestimatedanalogously. Ifwestore thematrixCov

[
gℓ,BI |C

]
while

performing the first step, then, the linearised cross correlations are given by

ΣℓI |C = Cov
[
gℓ, OI |oC

]
≈ Cov

[
gℓ,BI

∣∣oC] H́I |C . (4.71)

Approximationsof conditionalmeanandco-variance translateaccording toEquations4.42
and 4.43.

Unfortunately, we cannot yet directly apply that algorithm since we do not know spe-
cific values for the model parameters ḡ1, Σ1, λ, ρ and ε. Before we deal with abandoning
these parameters (see Sec. 4.4) we carry out tests with synthetic data to validate the pro-
posed framework.

4.3.3 Tests

The current IGRFcoefficients areusedas a realistic referencefield. Synthetic data is gen-
erated from the referencefield and is corruptedby artificial noise. A gammadistribution
is used to corrupt intensity records whereas directional data is randomly drawn from a
vMF distribution. To check for robustness, the measurement errors are chosen on pur-
pose not to coincide with the proposed Gaussian proxy errormodel. For the tests we use
several datasets that differ in the error level, the complete/incomplete ratio and the spa-
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V
[
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]

σI oI
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ρ∼Uni
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∫∫∫
dλdρdε p(λ, ε, ρ) p(oC |λ, ε, ρ) p(oI |oC , λ, ε, ρ) p(B|o, λ, ε, ρ) p(B|o)

marginalization of model parameters

Figure 4.3: Illustration of how the two-step strategy and amarginalization intertwine to
compute the posterior compound distribution. Invariants – such as observa-
tions – are shaded in grey. The upper part refers to the update system where
model parameters are highlighted in red. Top left panel shows the initial step
(Sec. 4.3.1) whereas top right illustrates the update (Sec. 4.3.2). Themarginal-
ization is highlighted in green (Sec. 4.4.2). Arrows indicate how information
is passed.

tial distribution. Since the reference model is known, we use the mean absolute error
(MAE)

MAE = 1
n

n∑
j

∥∥B(zj) – E
[
B(zj)|o

] ∥∥
1 (4.72)

as a test characteristic. Reconstruction and reference field are compared at the Earth’s
surface, sampledata rate thataccounts for the lengthscalespresent in thereferencefield.
Ourmodelling strategy is able to recover the reference field for all datasets considered.

Furthermore the influence of the POE on the linearisation is examined. We compare
theproposedstrategy to linearisationaboutanaxialdipoleofg01 = –23 μT. Foralldatasets
under consideration, the MAE of our modelling strategy falls below linearisation about
the axial dipole. Especially if the datasetmimics reality, the proposed strategy performs
better.

Tomakesure thatg01 = –23 μT isnotacoincidence,wealsovary theaxialdipole strength.
For the synthetic data that mimic reality, Figure 4.4 compares theMAE of the proposed
strategy with linearising about a range of axial dipoles. Even the axial dipole featuring
the smallestMAEhas avalue that is still above theproposedPOEbuilt fromthe complete
data. Throughout the synthetic datasets considered, the proposed strategy outperforms
the linearisation about the best suited axial dipole. Adetailed description and the full test
results are available togetherwith the source code by Schanner andMauerberger (2019).
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Figure 4.4: Linearisation about an axial dipole compared to the strategy proposed. The
horizontal red line indicates theMAE of our approach whereas the blue dots
refer to the MAE by varying the axial dipole strength. The shaded areas ex-
tend from the 25% to the 75%quantile to illustrates the spread of absolute er-
rors. The dashed vertical line refers to the axial dipole of the reference field.

4.4 Model Parameters
Before applying the outlined modelling strategy we need to address several model pa-
rameters. As the posterior EMFmust not depend on a certain choice of model parame-
ters, the a priorimean ḡ1 and covariance Σ1 of the dipole and the scaling factors λ, ρ and ε
are considered so-called nuisance parameters, i.e. parameters that are not of primary in-
terest. Toabandon thosequantities fromtheEMF’sposteriordistributionwearegoing to
use two different techniques: Section 4.4.1 analytically eliminates ḡ1 and Σ1 by exploring
the limit of a flat dipole prior. Section 4.4.2 addresses a hierarchical Bayesian approach
tomarginalize the scaling factors λ, ρ and ε.

4.4.1 Uninformative Dipole

Tomake as few assumptions as possible we aim to explore the limit of an uninformative
prior dipole. This approach is beneficial in two different ways: 1) It prevents us from
accidentally choosing an overly confident prior. 2) We abandon all of the nine dipole-
parameters. We expect the data to be strong enough to estimate g1 with confidence.

Loosely speaking, a flat prior may be understood as the limit of a Gaussian with vari-
ance sent to infinity. Since an unbounded covariance is not well defined the standard
approach is to express formulaew.r.t. the precision and explore the limiting case of van-
ishing dipole precision i.e. Σ–1

1 → 0. In the following, we closely follow Rasmussen and
Williams (2006, Sec. 2.7), additionally taking our update system and the linearisation
into account.
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Even though the prior dipole precision is sent to zero, the posterior distribution re-
mains normal. The second step in our update system depends only implicitly on the
a priori assumptionsmade, thus, only thefirst stepneedsmodifications. Thismeans that
theoverallmodelling conceptpersists, althoughwehave tomodify the conditionalmean
and covariance (Eqs. 4.38 and 4.39).

First of all, we have to partition the covariancematrix into dipole and non-dipole con-
tributions

ΣC = ΣC,DP + ΣC,ND = H́CÝ1,CΣ1Ý
>
1,CH́

>
C + ΣC,ND (4.73)

whereΣC,ND is constructed fromKB,ND also containingmeasurement errors and residu-
als. To keep equations concise, it is beneficial to predict the dipole coefficientsfirst. Mak-
ing use of the matrix inversion lemma Rasmussen andWilliams, 2006, A.9, conditional
mean and inverse of the covariance result in

V
[
g1|oC

]–1 = Σ–1
1 + Ý>1,CH́

>
CΣ–1

C,NDH́CÝ1,C (4.74)

E
[
g1|oC

]
= V
[
g1|oC

]–1 (Σ–1
1 ḡ1 – Ý>1,CH́

>
CΣ–1

C,NDH́CB̃C
)

(4.75)

and the data oC enters through the POE (see Eq. 4.60). Considering the limit of the unin-
formative dipole yields

Σ–1
1|C := lim

Σ–1
1 →0

V
[
g1|oC

]–1 = Ý>1,CH́
>
CΣ–1

C,NDH́CÝ1,C (4.76)

ḡ1|C := lim
Σ–1
1 →0

E
[
g1|oC

]
= –Σ–1

1|CÝ
>
1,CH́

>
CΣ–1

C,NDH́CB̃C . (4.77)

Interestingly, g1|oC does not depend on ḡ1, rendering the dipole’s prior mean irrelevant.

PredictingGausscoefficientsofhigherSHdegree is straightforwardsincea prioridipole
and non-dipole contributions are assumed independent. For ℓ > 1 cross correlations are
ofno concernas theydonotdependong1. Analogous toEquation4.63, conditionalmean
and covariance result in

E
[
g2:ℓ|oC

]
= – Σ2:ℓÝ

>
2:l,CH́

>
CΩCH́CB̃C (4.78)

V
[
g2:ℓ|oC

]
= Σ2:ℓ – Σ2:ℓÝ

>
2:l,CH́

>
CΩCH́CÝ2:l,CΣ2:ℓ (4.79)

where ΩC refers to the limiting precisionmatrix

ΩC = Σ–1
C,ND – Σ–1

C,NDH́CÝ1,CΣ1|CÝ
>
1,CH́

>
CΣ–1

C,ND (4.80)
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4.4 Model Parameters

and we again made use of the matrix inversion lemma. To perform the second step, the
whole posterior covariancematrix is necessary. However, the posterior cross covariance
amongst dipole and non-dipole coefficients is missing. The difficulty is to find the lim-
iting case. According to Equation 4.43 we have

Cov
[
g1, g2:ℓ|oC

]
= –Cov

[
g1, OC

]
Σ–1
C Cov

[
OC, g2:ℓ

]
(4.81)

since a priori dipole and non-dipole are assumed independent. Plugging in the lineari-
sation we end upwith

Cov
[
g1, g2:ℓ|oC

]
= –Σ1|CÝ1,CH́CΣ–1

C,NDH́
>
CÝ

>
2:l,CΣ2:ℓ , (4.82)

whichno longerdependsonΣ1. To see this, use thematrix inversion lemmatoexpress the
precisionmatrix, factor in the left hand side and expand by Σ–1

1|CΣ1|C . Using Equation 4.74
and rearranging terms yields Equation 4.82.

To predict on the EMF,we divide the cross covariance into dipole and non-dipole con-
tributions. Since a priori the dipole term is assumed independent of the non-dipole con-
tribution we have

ΣBC = ΣBC,DP + ΣBC,ND = Ý>1Σ1Ý1,CH́C + ΣBC,ND (4.83)

and ΣBC,ND is constructed fromKB,ND. Using the same strategy aswe didwith theGauss
coefficients, the posterior mean and covariance arise to

E
[
B|oC

]
= –Ý>1 ḡ1|C + ΣBC,NDΣ–1

C,ND
(
B̃C – Ý>1,C ḡ1|C

)
(4.84)

V
[
B|oC

]
= Ý>1Σ1|CÝ1 + KB,ND – ΣBC,NDΩCΣ>BC,ND . (4.85)

Fromthoseequationswecanobtainall quantitiesneeded toproceedwith the secondstep
incorporating incomplete records.

The importance in the result is that conditionalmeanandcovarianceno longerdepend
on the choice of the a priori dipole, since we assumed zero precision.

4.4.2 Compound Distribution

Although we are not particularly interested in reconstructing the probability distribu-
tion of ϑ = (λ, ρ, ε), their variabilities must be taken into account. The final result of the
proceeding is the EMF’s compound distribution

p(B|o) =
∫

p(B|o, ϑ) p(ϑ|o)dϑ (4.86)
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which results from marginalizing the scaling factors. Figure 4.3 illustrates the interac-
tion of the two-step strategy and the compound distribution, with the marginalization
being depicted in the bottompart. This approachmakes it possible to escape fromGaus-
sianity. The integral will not be tractable analytically andmust be evaluated by numeri-
cal methods.

Let us inspect the two PDFswewant to integrate over. For a certain choice of parame-
ters, p(B|o, ϑ) is calculated according to our two step strategy. To keep track of the scaling
factor’s posterior p(ϑ|o) we add a hierarchical stage. Applying Bayes’ law, the posterior
density is given by

p(ϑ|o) ∝ p(o|ϑ)p(ϑ) (4.87)

where we neglected the normalizing constant. To suitably normalize we have to carry
out anotherquadrature sincep(o) =

∫
p(o|ϑ)p(ϑ)dϑ is unknown. Becauseof theflatdipole

prior, calculating p(o|ϑ) needs special attention. Not to distract from our endeavour, this
is the focus of Section 4.4.3.

A priori, all three parameters are assumed statistically independent. Both, residual
and error level are considered uniformly distributed. As we are roughly aware of mag-
nitudes, the chosen range is well-spaced (weakly informative). On the contrary, λ is a
scale parameter bearing across orders ofmagnitude. The according uninformative prior
– representing the state of no prior information – is Jeffrey’s prior

p(λ) ∝ 1
λ
[nT] (4.88)

i.e. values ten times larger are just as likely as values ten times smaller (Murphy, 2012,
Sec. 5.4.2). However, there is a subtlety arising for the compound prior PDFs. The hi-
erarchical approach has an impact because the a priori B-field depends on λ. The scale
invariance is passed on rendering the compound prior distributions improper, i.e. the
density can not be normalized. As an example, the compound PDF for the a priori non-
dipole Gauss coefficients reads

p(gmℓ ) = 1√
2π

∞∫
0

1
λ2

exp

{
– 1
2
(gmℓ )2

λ2

}
dλ ∝ 1

|gmℓ |
. (4.89)

That density remains centred at zero whereas the variance does not exist. Nevertheless,
the compound posterior PDFs are normalizable and well defined. Marginalizing λ re-
sults in an extremely weak a priori assumption.
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4.4 Model Parameters

Althoughthecompounddistribution isnotnormal, calculatinghigher-ordermoments
is one of its potentials. Posterior mean and covariance are given by

E
[
B|o
]
=
∫

p(ϑ|o) E
[
B|o, ϑ

]
dϑ (4.90)

V
[
B|o
]
=
∫

p(ϑ|o)
(
E
[
B|o, ϑ

]2 + V
[
B|o, ϑ

] )
dϑ –

–E
[
B|o
]2 (4.91)

and themeanand co-varianceweare integrating over are explicitly given. Formodelling
Gauss coefficients the above formulae translate analogously.

An actual implementation requires to perform three numeric integrations, in total.
Since numeric quadrature in three dimensions is feasible, both the fully Bayesian poste-
rior density and also the Gaussianmomentmatching proxy are right at hand.

4.4.3 Marginal Likelihood

Wepostponed the calculation of themarginal likelihood until here. The termsmarginal and
likelihood refer to themarginalization over the EMF as a function in ϑ. To actually discre-
tise and integrate the compound distribution, p(o|ϑ) is still missing. We again separate
into complete and incomplete records. Themarginal likelihood factorizes

p(o|ϑ) = p(oI |oC , ϑ)p(oC |ϑ) (4.92)

where we used the conditional probability rule. The major benefit is that we already
knowthequantitiesneeded toevaluate thePDFsontherighthandsideofEq.4.92 through
our two step strategy. Figure 4.3 illustrates where Eq. 4.92 enters the modelling scheme
and how quantities are passed betweenmarginalization and two-step strategy.

For the sake of simplicity we analyse incomplete records, first. For a certain choice of
parameters, B|oC , ϑ and OI |ϑ are jointly normal due to linearisation and error approx-
imation. By taking advantage of the joint normality, we can directly observe the prior
predictive distribution of the incomplete records. The PDF follows to read

p(oI |oC , ϑ) =
exp
{
– 1
2 (oI – ŌI |C )>Σ–1

I |C (oI – ŌI |C )
}

√
(2π)nI |ΣI |C |

(4.93)

and the mean and covariance are given by Eqs. 4.65 and 4.67, implicitly depending on
λ, ρ and ε through the first step in our update system. Regarded as a function in ϑ, the
marginal likelihood is certainly not normal.
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Because of the flat dipole prior, the marginal likelihood for complete records needs
special attention. We proceed analogously to the incomplete data, however, having to
bear the limiting case

p(oC |ϑ) = lim
Σ–1
1 →0

exp
{
– 1
2 (oC – ŌC )>Σ–1

C (oC – ŌC )
}

√
(2π)nC |ΣC |

. (4.94)

We closely follow Rasmussen and Williams (2006, Sec. 2.7) and again split into dipole
and non-dipole contributions. As already mentioned in Section 4.4.1, in the limit ḡ1 is
irrelevant and we set ŌC = oC – H́CB̃C (see Eq. 4.60). The limiting precision matrix is of
no concern and given by Equation 4.80. The big concern, however, is the determinant
as the dipole variance tends to infinity. According to Rasmussen and Williams (2006,
Eq. 2.45), themarginal likelihood for the complete records results in

p(oC |ϑ) =
exp
{
– 1
2 B̃

>
CH́

>
CΩCH́CB̃C

}
√

(2π)nC–3|ΣC,ND| |Σ–1
1|C |

(4.95)

and we already computed all relevant quantities in the first step of our update system.
Although not explicitly indicated, the non-dipole covariance, the limiting precision and
the dipole covariance depend on ϑ.

4.5 Application

Asapractical proofof conceptweapply the suggestedmethod to thearcheomagnetic and
volcanic data offered by the GEOMAGIA50.v3 database (Brown et al., 2015). We used all
directional and intensity records between 753ADand 1950AD thatwere included inGE-
OMAGIA50 version 3.3 in November 2019. To simplify matters, the Earth is assumed a
sphereof radiusRE = 6 371.2 kmandcoordinates are treatedas if theywere spherical. We
estimate the committed error to be less than 1

2 μTwhich is small compared tomodelling
uncertainties.

We use the individual, originally reported error estimates. If uncertainties are not
available (ca. 8.4% of the data), we assign α95 = 4.5◦ as directional errors and σF =
8.25 μT as intensity errors Licht et al., 2013, Sec. 2.2. Single unpaired declination records
are not used.
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4.5 Application
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Figure 4.5: Number of data per 100 years bin (D, I and F counts are without complete
records). For comparability each complete record is counted as three data
points. The bin that we use as example in the discussion is shaded in grey.
The horizontal line refers to the criterion of how the window length is cho-
sen.

As ourmodel does not yet account for timedependencewe group the data into disjoint
bins of 100 years. The decisive factor for the window length is the number of complete
records per bin. Our two step strategy and the linearisation are the basic rationale be-
hind. The number of complete records has to determine a reasonable POE for incorpo-
rating the incomplete records. Let us assume that at the surface the EMF is dipole dom-
inated (about 90%) for the timespan under consideration. As a rule of thumb, a Taylor
expansion performs reasonably well when deviating less than 10% from the truth. Hav-
ing a parametric view back in mind, the field’s dominating features may be described
by only nine parameters (g1 and Σ1). With a minimum of ten complete records per bin
we anticipate a coarse field estimate suited as POE. This consideration leads to awindow
length of 100 years. Figure 4.5 shows the temporal data distribution.

To demonstrate the potential of our modelling strategy in recovering the stationary
field we use the interval [1650, 1750] as an example. In total, this bin summarizes 744
observations acquired at 480 sites. Figure 4.6 depicts the highly irregular data coverage
which is dominated by the northern hemisphere.

We are going to compare our findings to three previous, continuous magnetic field
models. ThemodelsARCH10k.1 (Constable,Korte, andPanovska, 2016), arhimag1k (Senft-
leben, 2019) andCOV-ARCH (Hellio andGillet, 2018) are considered eligible competitors
as they stem from a similar data basis, although arhimag1k additionally includes direct
historical observations. All threemodels reportGauss coefficientsup toSHdegree ℓ = 10.
ARCH10k.1 and arhimag1k are continuous in time, but donot reportmodelling errors. In
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Figure 4.6: Illustration of the very irregular data coverage for the 1700 epoch. The left
panel shows complete records whereas the right panel illustrates combina-
tions of D, I and Fmeasurements.
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Figure 4.7: Discretisation of the parameter space for the epoch 1700. The accurately

sampled marginal densities for the integration phase (white framed box) are
drawn atop of the coarse exploratory grid.

contrast, COV-ARCH provides an ensemble of 50 realizations but uses the same coarse
time steps as we do. To compare with COV-ARCH’s ensemble we calculate samplemean
and sample variance. Histograms are computed according to Scott’s rule of thumb (Scott,
1979).

4.5.1 Numeric Integration

To evaluate the compound distribution p(B|o) we discretise the integral in Equation 4.86.
The posterior PDF is approximated by a simple Riemann sum

p(B|o) ≈
∑
i

p(B|o, ϑi) p(ϑi|o)Δϑi . (4.96)

Although not highly accurate, we favour using a Riemann sum because of its simplic-
ity. Since by construction the mixture components p(B|o, ϑi) are normally distributed,
the r.h.s. of Equation 4.96 gives a (finite) Gaussian mixture distribution (Murphy, 2012,
Sec. 11.2.1), forwhichmomentsare readilyavailableby translatingEquations4.90and4.91
accordingly.
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4.5 Application

To actually discretise the parameter space, we use a regular and equally spaced grid.
Thus we have the posterior

p(B|o) ≈
N∑

i,j,k=0
p(B|o, λi, εj, ρk) p(λi, εj, ρk|o) · ΔλΔεΔρ , (4.97)

whereN3 is the number of grid points for the Riemann sum, Δλ is the stepwidth, λ0 and
λN specify theboundsof the intervalwe integrateover and λi = λ0+iΔλ (Similar for ε and
ρ). As mentioned above, we carry out a second quadrature to normalize the parameter
posterior p(λi, εj, ρk|o). This also serves the purpose of having a well defined Gaussian
mixture density. We normalize it with respect to the Riemann sum, i.e. such that

N∑
i,j,k=0

p(λi, εj, ρk|o)ΔλΔεΔρ = 1 . (4.98)

Under these considerations Equation 4.97 can be seen as the discrete version of Equa-
tion 4.86, where all terms are replaced by their respective discrete equivalent.

We consider the approximation (Eq. 4.96) reasonable, since we found the probability
mass of the parameter posterior p(ϑ|o) to be unimodal and localized in a finite region.
Thus to calculate the Gaussian mixture proxy (Eq. 4.97) for the compound distribution,
we perform two steps:

Exploration of the parameter space We need to identify the region in which the
parameter posterior is localized. Hence we span a coarse grid over all values we believe
to be (physically) reasonable and calculate the posterior p(ϑ|o) on this grid. We choose
N = 25 grid points along each of the three dimensions and choose the bounds as

λ0 = 100 nT λN = 150000 nT

ε0 = 10% εN = 350% (4.99)

ρ0 = 1000 nT ρN = 6500 nT .

Although in principle a wider extent of the grid may be “physically reasonable”, by trial
and error we found these bounds to be sufficient (i.e. outside of the bounds the proba-
bility mass was approximately zero for all considered cases). Finally, from the posterior
we calculate the marginal distribution for each parameter λ, ε, ρ via another Riemann
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sum. We then calculate each (empirical) mean and standard deviation from these coarse
marginals. Theregionwhere theprobabilitymass is located is thencoveredby thecuboid
centred at the empirical mean with edge-lengths given by two empirical standard devi-
ations.

Calculation The actual numerical integrationonly takes placewithin the cuboid that
is derived in the exploration step. Inside that cuboid a refinedgrid is spannedwithN = 15
nodes per dimension. By calculatingnot only the posterior on this newgrid, but running
for each grid point an inversion for the EMF, the Gauss coefficients and other quantities
of interest, we can calculate a proxy for the full compound posterior for each of these
quantities, using Equation 4.97. This proxy, which is a Gaussianmixture distribution, is
the final result of ourmodelling strategy.

For all epochs the parameter posterior is of good-nature only featuring a singlemode.
For epoch 1700, Figure 4.7 depicts the posterior parameter PDF. Presented are all com-
binations of 2D marginal parameter posterior at the coarse and refined grid. The white
rectangle refers to the edges of the refined grid that is used for numeric integration. The
maximum of the error level ε is slightly above 100% at a rather small spread. Taking the
approximations into account, a shift toward higher values seems reasonable. The resid-
ual term ρ has its maximum at about 4 μT and is also relatively sharp. It is interesting
to note that the residual is of the same order of magnitude as the equatorial dipole. This
neednot onlybedue tounexplained sources, it canalsobe aneffect of the linearisationor
not taking time dependencies into account. The scaling parameter λ features the widest
distribution. In comparison with the IGRF, the magnitude and range appear reason-
able. However, the posterior PDF of themodel parameters is not sharp enough to justify
a point estimate. Therefore we integrate out model parameters and thus the uncertain-
ties from the parameter posteriors are translated into the posterior of the quantities of
interest. This way the posterior variance, which is easily available due to the Gaussian
mixture structure, does not only reflect uncertainties arising from the data, but also re-
produces themodel uncertainties.

4.5.2 Vector field predictions

The discretised versions ofB’s posteriormean and variance translate according to Equa-
tions 4.90 and 4.91 and are given by

E
[
B|o
]
=
∑

p(ϑi|o)E
[
B|o, ϑi

]
Δϑ (4.100)

V
[
B|o
]
=
∑

p(ϑi|o)
(
E
[
B|o, ϑi

]2 + V
[
B|o, ϑi

])
Δϑ – E

[
B|o
]2 . (4.101)

50



4.5 Application

The pointwise posterior standard deviation serves for realistic location dependent un-
certainty estimates. Again, B-field predictions are non-parametric and do not depend
on Gauss coefficients.

The top row of Figure 4.8 depicts both posterior mean and standard deviation of the
down component at the Earth’s surface. The field is evaluated at 2000 design points,
equally distributed over the sphere (Deserno, 2004). We are able to quantify what pre-
vious studies are suggesting: The EMF is reconstructed with confidence within areas of
densedata coverage, e.g. inEurope. Structuresof largeparts of the southernhemisphere,
however, remain vague. We see quite similar patterns across all epochs under investiga-
tion.

−50 0 50 0 2 4

40 50 60 70 0 2 4

mean standard deviation

Z

[μT]

F

[μT]

Figure 4.8: Posterior mean (left) and standard deviation (right) of the EMF at the Earth’s
surface for the 1700 epoch. The top row shows the down component BZ.
The locations at which we perform normality tests are indicated in red (see
Tab. 4.1). The bottom row shows the field intensity F. Blue dots refer to the
underlying data sites.
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4.5.3 Declination, Inclination and Intensity

Because the EMF shares a non-linear relation with declination, inclination and inten-
sitywe do not see the possibility of analytically deriving properties such as the posterior
mean for D, I and F. For amoderate number of design points we can obtain the distribu-
tion by sampling strategies. However, trying to draw from a high dimensional normal
mixture distribution appears absurd. For the 2000 design points we are interested in,
storing all the covariance matrices of the entire parameter grid is hardly possible, let
alone drawing samples from the resultingmixture.

The idea behinduncovering the posteriormean andvariance ofD, I andF is oncemore
a linearisation. To do so the same strategy as pointed out in Section 4.2.3 is used. The
linearisation of D, I and F are given by Equations 4.48, 4.49 and 4.50. We build upon the
EMF estimate from the previous section and the posterior mean E

[
B|o
]
serves as POE.

Because of the linearisation approximations for mean and (co)-variance are explicit.

To provide an example we consider the intensity, only. Utilizing Equation 4.50, the
approximate posterior mean and variance are given by

E
[
F|o
]
≈ ‖E

[
B|o
]
‖ (4.102)

V
[
F|o
]
≈

E
[
B|o
]>V

[
B|o
]
E
[
B|o
]

‖E
[
B|o
]
‖2

. (4.103)

We pursue a non-parametric approach but the concept is similar to that of Hellio et al.
(2014, Appendix A). For the 1700 epoch, the bottom row of Figure 4.8 depicts mean and
standarddeviationof the intensity at theEarth’s surface. Althoughnot directly observed
byasingle record, theevolvingareaofweakfieldknownas theSouthAtlanticAnomaly (e.g.,
Mandea et al., 2007; HartmannandPacca, 2009) is certainly significantwithin one stan-
dard deviation. Looking at the other epochs, the westward drift is also visible. This fea-
ture is constrained here by only a few points around the actual anomaly, which shows
thatourmodellingapproach is capableofuncovering features that areknownfrommod-
els with stronger data basis. This ability stems from long ranging spatial correlations of
the kernel and is controlled by the reference radius R (see Figure 4.1).

When comparing epoch 800 with figure 11(a) in Hellio and Gillet (2018) two things
stand out. The magnitudes are similar but a low intensity patch is found in the Pacific
rather than the Atlantic. In the standard deviation we also see a rather sharp transition
between north and south. Since this is a proof of concept a detailed comparison or even
an interpretation would be premature.
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4.5 Application

Since ourposterior distributions are certainlynotnormal it is questionable if the stan-
dard deviation is adequate to describe uncertainties. If the posterior is highly skewed or
evenmultimodal, the standard deviationwould not bewell suited to quantifymodelling
errors. Onewould preferably use percentiles which, however, cannot be derived analyt-
ically. As long as the number of design points is moderate, one brute-force method is to
calculate percentiles by sampling. This works well for percentiles that are not far from
the bulk of the probability mass.

A simplistic approach to obtain samples from a mixture distribution is the following
algorithm. First, by chance the kth random variable is selected from the mixing distri-
bution p(ϑk|o) (categorical). Then the value of the selected random variable p(B|o, ϑk) is
realized (multivariate normal). Repeat until the desired amount of samples is achieved.

Althoughwe have to radically reduce the number of design points we can gain insight
into how strong the proxy standard deviation and percentiles deviate. We compare 16-
and 84-percentiles tomean± standard deviation via

Δ16 = 1 – μ – α16
σ

and Δ84 = 1 – α84 – μ
σ

(4.104)

where α refers to percentiles, μ and σ indicate mean and standard deviation. The in-
terpretation of Δ is as follows: If Δ is larger (smaller) than zero, the standard deviation
overestimates (underestimates) the uncertainty given by the percentile, by |Δ| standard
deviations. Note, that to keep this interpretation consistent for bothΔ16 andΔ84 the sign
of the second term in (4.104) changes.

At 5 randomly selected locations we apply this check to the down component BZ and
to the three commonlyused archeomagnetic observablesD, I andF. As canbe seen inTa-
ble 4.1, at all locations the deviation is well below 10%. Thus we believe the proxy stan-
dard deviation is qualified to describe uncertainties. Furthermore, the proxy standard
deviation obtained by linearisation is computationally feasible and easy to visualize and
interpret.

4.5.4 Predictions at the core-mantle boundary

Until herepredictionswere carriedout at theEarth’s surface. It is straightforward topre-
dict the EMFat arbitrarily chosen design points outside of the reference sphere of radius
R. Figure 4.9 presents mean and standard deviation of the down component BZ at the
CMB. We again use 2000 equidistributed design points but at radius RCMB = 3480 km.
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Lat -26◦ 45◦ 71◦ 39◦ -26◦
Lon -88◦ 0◦ 9◦ 131◦ 159◦

D Δ16 2.5 0.7 0.3 -0.2 1.5
Δ84 -0.3 2.9 3.9 1.8 0.4

I Δ16 3.6 -0.3 -0.4 -1.5 3.8
Δ84 -3.0 1.0 3.0 6.7 -2.3

F Δ16 4.6 -2.4 0.7 1.5 7.1
Δ84 -1.7 0.5 -0.1 -0.3 0.6

Z Δ16 2.9 -2.6 -1.1 -0.4 1.2
Δ84 1.6 0.1 0.6 0.6 1.9

Table 4.1: Estimation of the quality of the proxy standard deviation as ameasure of error,
compared to the 16-/84-percentiles. If Δ is larger (smaller) than0, the standard
deviationoverestimates (underestimates) the error. Values are given inpercent
of one standard deviation.

One observes that uncertainties are greater than at the Earth’s surface. Roughly speak-
ing, the standard deviation is about 40%compared to themean,while at the Earth’s sur-
face relativeerrorsonlyamountup to 10%(see right columnofFigure4.8). Themodelling
error strongly depends on how far design points are from the reference sphere.

–500 –250 0 250 500 0 50 100 150

mean standard deviation

Z

[μT]

Figure 4.9: Posterior mean (left) and standard deviation (right) of the EMF down com-
ponent BZ at the CMB for the 1700 epoch. Blue dots refer to the sites where
records are acquired.

This behaviour is best understood thinking in terms of Gauss coefficients. In Equa-
tion 4.25 the term that is raised to the power of ℓ+1 causes this effect. Since design points
lie outside the reference sphere, the ratio R

|x| is smaller than one. Thus, Gauss coefficients
are more penalized the larger the SH degree, and the ratio R

|x| determines the rate of de-
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4.5 Application

cline. In turn, the closer to the reference radius themore impact higher SHdegrees have.
Related to smaller structures, the higher the SH degree the less certain we are. When
scaling down – e.g. to the CMB – higher SH degrees increase and so do the respective
uncertainties. This idea translates to our non-parametric model.

Compared towhatHellioandGillet (2018,figure8c) found, our reconstructionofepoch
1400 looksvery similar. Becauseof the largevariabilities, adetailed comparisondoesnot
makemuch sense.

4.5.5 Gauss Coefficients

Wewant to stress again that our model is inherently non-parametric. The fundamental
quantity of the inference is the geomagnetic potential. Nevertheless, our approach al-
lows to infer Gauss coefficients since geomagnetic potential and Gauss coefficients are
linearly related (see Eq. 4.40). The procedure is similar to inferring the EMF. The discre-
tised versions of the compoundmean (Eq. 4.90) and (co)-variance (Eq. 4.91) for theGauss
coefficients gmℓ read

E
[
gmℓ |o

]
=
∑

p(ϑi|o)E
[
gmℓ |o, ϑi

]
Δϑ (4.105)

V
[
gmℓ |o

]
=
∑

p(ϑi|o)
(
E
[
gmℓ |o, ϑi

]2 + V
[
gmℓ |o, ϑi

])
Δϑ – E

[
gmℓ |o

]2 . (4.106)

In principlewe can predict up to arbitrary SHdegree. However, storing the component’s
mean and covariances for the whole parameter grid becomesmemory intense. If we re-
strict our selves to a moderate SH degree – e.g. ℓ ≤ 10 – we are able to calculate the full
mixture PDF, sample from the posterior and calculate percentiles.

Although not explicitly indicated, Gauss coefficients depend on the reference radius
R. Given the gmℓ at the reference radius, we can scale them to a radius R̃ > R by

g̃mℓ = gmℓ

(
R
R̃

)ℓ+2
. (4.107)

Mean and co-variances translate accordingly.
For comparison, we scale Gauss coefficients with respect to the Earth’s surface. The

mixture PDFs for the dipole coefficients are shown in Figure 4.10. As can be seen, the
mixture isquite close to themomentmatchingnormalproxy. Acrossall epochs thedipole
coefficientsareclose tobeingnormallydistributed, except for thebin [850, 950], forwhich
the mixture distribution deviates slightly from the normal proxy. However, the higher
theSHdegree the lessnormal theposterior is and themore thescale invariantpriordom-
inates (seeEq.4.89). Wefurther see that for theepochunderconsideration, thehistogram
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Figure 4.10: Distribution of the dipole coefficients at the Earth’s surface for epoch 1700.
The resulting mixture PDF is indicated by the solid black lines whereas the,
nearly identical, dashed lines refers to themomentmatchingGaussianprox-
ies. The green histograms illustrates the COV-ARCH ensemble coefficients.
The blue vertical lines refer to arhimag1k and the red ones to ARCH10k.1 .

built fromtheCOV-ARCHensemble is in goodagreementwith themixture and themean
aligns with the ARCH10k.1 estimate. It is not too much of a surprise that the arhimag1k
prediction deviates since it additionally incorporates historical records, which are not
included in our dataset.

Although well suited to compare with existing models, care has to be taken when in-
terpretingGauss coefficients. Afinite set ofGauss coefficients does not represent the full
information contained in our non-parametric modelling approach. Areas of dense data
coverage may feature a resolution than can not be captured by an expansion e.g. until
degree 10. However, this is less relevant in the context of geomagentic core field mod-
elling, where SH degrees larger than around 14 are dominated by lithospheric field sig-
nals, which cannot be resolved by a sparse data distribution. Figure 4.11 compares the
predicted Gauss coefficients to the selected referencemodels until SH degree 5, which is
considered the approximate global resolution of the spherical harmonics based models
(Korte, Donadini, and Constable, 2009; Licht et al., 2013; Sanchez et al., 2016; Constable,
Korte, and Panovska, 2016; Hellio and Gillet, 2018). With few exceptions, our findings
are on a par with existingmodels within one standard deviation.

4.5.6 Spatial Power Spectrum

It is hard to digest all the information contained in a collection of Gauss coefficients.
Therefore, it has become common to consider the geomagnetic power spectrumBackus,
Parker, andConstable, 1996, Sec. 4.4.2, that reflects the contributions of different spatial
wavelengths in the SHs. For degree ℓ the corresponding wavelength is λℓ ≈ 4πR

2ℓ+1 Langel

56



4.5 Application

–2
0
2
4

ℓ
=
2

ARCH10k
arhimag

COV-ARCH

0
1

2

ℓ
=
3

–1

0

1

ℓ
=
4

–5 –4 –3 –2 –1 0 1 2 3 4 5

–0.5

0

m

ℓ
=
5

Figure 4.11: Comparison of Gauss coefficients for SH degrees 2 to 5 at Earth’s surface for
epoch 1700. Results from this study are shown in black. Error bars indicate
one standard deviation.

and Hinze, 1998, Sec 4.3.5. The EMF is apportioned such that

B =
∑
ℓ

Bℓ = –∇
∑
ℓ

Φℓ (4.108)

where

Φℓ(x) = R
(

R
|x|

)ℓ+1 ∑
–ℓ≤m≤ℓ

gmℓ Ym
ℓ (x̂) . (4.109)

The components Φℓ are certainly orthogonal, since SHs form an orthogonal system. A
characteristic that describesBℓ’s variations is the so-called average square value. SinceB is
divergence free, the net total flux through a closed surface is zero. Thus, the average over
the sphere vanishes

〈Bℓ〉R = 0 , (4.110)

where the angle brackets are an abbreviation for the surface integral (see Eq. 4.40). The
definition of the average can be extended to the (centred) average square value〈

(Bℓ – 〈Bℓ〉R)2
〉
R
=
〈
B2
ℓ

〉
R

. (4.111)
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Figure 4.12: Power spectrum at the Earth’ surface for epoch 1700. Themean of the poste-
rior power spectrum is indicated by the dashed line. The top and bottom of
the error bars refer to 16 and 84 percentiles, respectively. Except for a con-
stant offset, the grey shaded area indicates the slope of the a priori power
spectrum.

Due to Parseval’s Theorem Backus, Parker, and Constable, 1996, Eq. 4.4.21, the average
square can be expressed in terms of Gauss coefficients. Regarded as a function in ℓ, the
quantity

rℓ :=
〈
B2
ℓ

〉
R
= (ℓ + 1)

∑
–ℓ≤m≤ℓ

(gmℓ )2 (4.112)

is called the geomagneticpower spectrum (Lowes, 1974). Again,Gausscoefficientsgmℓ depend
on the reference radius and so does rℓ.

Within the setting of statistical inversions, calculating the power spectrum requires
special attention since uncertainties have an appreciable effect. Squaring and summing
normal distributed Gauss coefficients gives a random variable (RV) that is distributed as
the sum of weighted non-central χ2 RVs. Unfortunately, for the PDF of a linear combi-
nation of non-central chi-square RVs no closed, analytic expression is known (Bausch,
2013). Nonetheless, using the algebraic formula for the variance E

[
XY
]
= Cov

[
X, Y

]
+

E
[
X
]
E
[
Y
]
we obtain an expression for the expectation of the power spectrum

E
[
rℓ|o
]
= (ℓ + 1)

∑
m

(
E
[
gmℓ |o

]2 + V
[
gmℓ |o

])
(4.113)

and it is obvious that variances play an important role. In other words, the larger the
uncertainties the bigger the impact on the spectrum’smean.

58



4.5 Application

Although the secondmomentmaybeaccessible, the standarddeviation isnot suited to
quantify errors. Roughly speaking, if standard deviations of the gmℓ s dominate over the
mean, the PDF of rℓ is highly skewedwithwide tails. In turn, amomentmatchingGaus-
sian proxywould violate the positivity constraint of rℓ. For an increasing SH degree this
is certainly the case. Percentiles are better suited to estimate the error level, but impossi-
ble to access analytically. Weagain calculate the distribution andpercentiles empirically
by brute-force sampling Gauss coefficients from the posterior. In Section 4.5.3 the sam-
pling strategy is described.

For epoch 1700 the resulting power spectrum is shown in Figure 4.12. Within the error
marginsourfindingsand theCOV-ARCHmodel are ingoodagreement. Differencesarise
comparing with ARCH10k.1 and arhimag1k. Both models report less power at degree
ℓ = 3 and feature a rapid loss for degrees ℓ ≥ 8. While the degree 3 deviation might be
due to differences in the underlying data basis, the latter likely is caused by the influence
of the global regularization in the spherical harmonic models. Nonetheless, for ℓ ≤ 8
ARCH10k.1 and arhimag1k are potential realizations fromwhat we find.

4.5.7 Dipole Moment

To a first approximation, the EMF is dipolar. This is, its shape is similar to that of a hy-
pothetical bar magnet placed at the centre of the Earth. With respect to a Cartesian co-
ordinate frame, the corresponding vector dipole moment is given by

m =
4πR3

E
μ0

(g11x̂ + g–11 ŷ + g01 ẑ) , (4.114)

where μ0 ≈ 4π · 10–7 [Tm/A] refers to the permeability of free space (Backus, Parker, and
Constable, 1996, Eq. 4.4.17). Vector components are indicated by subscripts x, y and z,
e.g. mx ∝ g11. Considering the discretisation, the vector dipole momentm is a Gaussian
mixture borrowing its statistical properties from the dipole coefficients. The dipole’s
magnitude can be computed directly via

τ = ‖m‖ =
4πR3

E
μ0

√
(g11)

2 + (g–11 )2 + (g01 )
2 (4.115)

and is proportional to the square root of the power r1. We are interested in statistical
properties of τ. Because of the square root, we are not able to derive an analytic expres-
sion for E

[
τ|o
]
. Nonetheless, if we knewE

[
τ|o
]
, the variance is right at hand

V
[
τ|o
]
= E
[
τ2|o
]
– E
[
τ|o
]2 , (4.116)
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sinceE
[
τ2
]
∝ E

[
r1
]
, which is given by Eq. 4.113. To obtain a proxy ofE

[
τ|o
]
and to calcu-

late the empiric distribution we again use sampling. An ordinary Gaussian kernel den-
sity estimate is used to smoothen the histogram Murphy, 2012, Sec. 14.7.2. The band-
width is selected by Scott’s rule of thumbwhich – due to its simplicity – strongly influences
the estimate.

For the epoch of choice, Figure 4.13 compares the density estimate, the according his-
togram and the Gaussian proxy. The density estimate looks rather normal and is ap-
proximated well by the moment matching Gaussian. This is also the case for all other
epochs in our study. At least for the epoch 1700 our findings agree with ARCH10k.1 and
COV-ARCH. Presumably, due to its stronger data basis arhimag1k deviates. However,
the agreement varies through epochs.
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Figure 4.13: Distribution of the dipole moment for epoch 1700 based on 10000 drawn
samples. The kernel density estimate is indicatedby the reddashed line, that
is nearly identical to the Gaussian proxy (black line).

As the dipole moment is known to change with time, Figure 4.14 displays the time se-
riesofall epochsunderconsideration. Compared toCOV-ARCH,ARCH10k.1 andarhimag1k,
we find a similar temporal evolution of the dipolemoment. Presumably themost recent
epoch deviates from the other models, since we do not include historical information in
our model. Especially for the earlier epochs we see slightly higher intensities than re-
ported by existing models. The strong deviation of epochs 1100 and 1500may be caused
by outliers, which we did not test for so far, but it is also possible that the variations
are real and earlier models underestimate strong variations due to the treatment of dat-
ing uncertainties and temporal regularization. It is beyond the scope of our proof-of-
concept model to resolve this question. For both epochs the deviation is caused by g01 .
The parameter distributions p(ϑ|o) for these epochs do not show any noticeable prob-
lems. However, epoch 1500 features a rather weak data basis.
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Figure 4.14: Temporal variation of the dipolemomentmagnitude based on 10000 drawn
samples. The posterior means are connected by black lines and the error
bars indicate one standard deviation. The gray shaded background refers to
thekernel density estimate. Results frommodelsCOV-ARCH,ARCH10kand
arhimag are shown for comparison.

Weare further interested in thedistributionof thedipole’s northpole a.k.a. geomagnetic
north. The geomagnetic north pole is given as the antipode of the projection of the vector
dipolemoment onto the sphere. In other words, the intersection of the axis of the hypo-
thetical bar magnet with the Earth’s surface. The location w.r.t. spherical coordinates is
given by

θm = arccos
(
–mz

τ

)
, φm = arctan

(–my
–mx

)
(4.117)

where θ refers to co-latitude and φ to longitude. We proceed with a similar approach as
presented in Khokhlov, Hulot, and Bouligand, 2006 and translate the dipole’s PDF that
is interpreted w.r.t. a Cartesian reference frame into spherical coordinates. The PDF of
the vector dipole moment transformed to spherical coordinates is given by

p

 τ
θm
φm

∣∣∣∣∣∣∣o
 = p

mx = sin θm cosφm
my = sin θm sinφm
mz = cos θm

∣∣∣∣∣∣∣o
 τ2 sin θm , (4.118)
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wherewemadeuse of the changeof variables theorem (Murphy, 2012, Sec. 2.6). Toobtain
the distribution of the location we have to marginalize the magnitude from themixture
distribution

p

(
θm
φm

∣∣∣∣∣o
)

=
∑
i

p(ϑi|o)
∞∫
0

p

 τ
θm
φm

∣∣∣∣∣∣∣o, ϑi
dτ . (4.119)

Since individual dipole coefficients are normally distributed, we can analytically solve
the integral. Todo so, factor outm, complete the square andmarginalize via the standard
Gaussian integral equations (Owen, 1980, Eqs. 10, 11 and 12). We deliberately skip the
resulting expression as it is lengthy and of no particular interest.

However, tovisualize thewanderof geomagneticnorth it is useful tonumerically eval-
uate the resulting PDF. As can be seen in Figure 4.15 the general movement is similar to
the models we are comparing with. Again the 1500 epoch deviates and is ahead of the
comparison path, whichmay be caused by outliers as stated previously. For comparison
we only show COV-ARCH’s sample mean because a scatter plot of the complete ensem-
ble leads toanoverstuffedpicture. Theensemble covariance features similarmagnitudes
compared to what we find.

4.6 Conclusions and Perspectives

The extensive theory of Sections 4.2, 4.3 and 4.4 build the foundation of a newmodelling
strategy for archeo- and paleomagnetic field models. The key advantage of this proba-
bilistic approach is that realistic modelling uncertainty estimates are obtained, e.g., via
the standard deviation. The a priori distributions we choose have pros and cons. Tak-
ing the least subjective choice is an advantage aswe a priori do not specify any preferred
direction and, thus, our method is even well suited for time periods featuring reversals.
However, a shortcoming – in particular concerning the prior dipole – is that we could
not visualize a comparison of prior and posterior uncertainties.

Besides the a priori covariance structure and the weakly informative parameter pri-
ors, our modelling strategy depends only on a single parameter, the reference radius R.
Conceptually, it is no problem to also integrate out this remaining parameter. Only a
technicality arises if we want to integrate out R, Gauss coefficients require scaling to a
common radius – e.g. the Earth’s surface – as they depend on R. The limiting factor is a
four dimensional parameter space with excessive computational demands.
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Figure 4.15: Wanderof thegeomagneticnorthpole. For eachepoch in the study, theprob-
ability distribution of the location is shown with the mean marked by dots
and one sigmamarked by an ellipse. The colour varies according to time. For
comparison, wander paths for the referencemodels are shown, without un-
certainties in order not to clutter the figure.
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Tosave theeffort of implementing theexhaustive theory, a ready-to-use software suite
calledCORBASS (Schanner andMauerberger, 2019)was developed as part of the project.
CORBASS is written in python and licensed under the GPLv3. A public GIT repository
serves for development, maintenance and support. To facilitate first steps we provide
usage examples in the formof aweb based interactive environment (Jupyter notebooks),
that further illustrate the modelling concept and the algorithm. To lighten system re-
quirements wemake use of the package and environmentmanager conda.

Wecarriedoutacase study todemonstrate thepotentialofour statisticalmodel. All re-
sults presented inSection4.5 are producedusingCORBASS. Even thoughweuse a rather
small data set, computational costs are not negligible. At the time of writing, processing
all epochs under consideration took about 30 hours on an ordinary workstation. The
computational complexity is set by the number of observations and the parameter grid
chosen. For a certain choice of model parameters, the computational complexity of GP
regression is cubic w.r.t. number of observations. Performing a Riemann sum along one
dimension scales quadratically according to the number of collocation points. Thus the
complexityof thequadrature schemeforall threemodelparametersgrowswith the sixth
power. Although numeric integration offers room for optimizations, the computational
complexity cannot be lightened.

Although a proof of concept rather than a fully featured EMF model, our case study
already supports the findings of existing studies. In comparison withmodels using tra-
ditional methods this is useful since it is another source that quantifies what was de-
scribed qualitatively. As an example, early studies questioned the reconstruction of the
EMF in the southern hemisphere from archeomagnetic and volcanic data only due to
poor data coverage e.g. Korte, Donadini, and Constable (2009) and Constable and Ko-
rte (2015). That statement is quantified by our findings: The EMF’s posterior standard
deviation is small in areas of good data coverage, such as Europe, while uncertainties
are large on the southern hemisphere (see top panel of Fig. 4.8). Even though our unin-
formative prior assumptions are significantly weaker, we find uncertainties similar to
e.g. Licht et al. (2013), while noting that bootstrap ensemble methods tend to underesti-
mate uncertainties in regions where there are no data to draw from. Surprisingly, our
uncertainty estimates are on a par with more elaborate modelling concepts (e.g. Hellio
and Gillet, 2018) whereas our approach does not yet account for the temporal evolution.
Future work will show if this is a coincidence, and if taking temporal dynamics into ac-
count yields different results.
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4.6 Conclusions and Perspectives

In a general context, caution is advised when performing any further processing with
posteriorGausscoefficients. Wheneverpossible, use theposteriorEMFinstead. Atdensely
covered regions a vast amount ofGauss coefficients are necessary to represent all the in-
formation that is contained in the posterior EMF at the surface. However, this is irrele-
vant when studying the core field which cannot be retrieved beyond degrees around 14
anyway, due to the distance from the source and dominance of the lithospheric field at
higher degrees.

The spatial correlation structure we employ makes truncating the SH decomposition
obsolete and the model resolves according to the availability of data. This raises the ob-
vious question of how our global, non-parametric model compares to higher resolving
studies. To investigate this question onewould have to include other sources of data such
as historical logs and observatory data for recent times. Although the modelling strat-
egy inherently works with magnetic field components BN, BE and BZ we deliberately
left out recent observatory data to put attention on non-linear observables. If we focus
on areas of smallmodelling errors, precise locationsmust not be neglected. Considering
elevation and the coordinate conversion from geodetic to geocentric is straightforward.
The difficulty with historical logs is that the direction of travel is affected by large inac-
curacies (Jackson, Jonkers, and Walker, 2000; Jonkers, Jackson, and Murray, 2003). To
account for location uncertainties, our data model requires an extension. Another dif-
ficulty is computational costs related to the large amount of historical and observatory
data. Therefore one has to introduce a data selection and reduction process as the inter-
est is in time spans of years but not days or less. Furthermore, our proxy Gaussian error
model is intolerant of outliers. With only a few records that strongly deviate, the Gaus-
sian error model causes a highly distorted reconstruction. Therefore it is important to
perform outlier analysis and select data with care. The work by Khokhlov, Hulot, and
Bouligand (2006) appears to be well suited to discriminate data that are incompatible
with ourmodelling approach.

For the time increments of interest – Δt ≥ 1 yr – we know with confidence when ob-
servatory data and historical records were acquired. For volcanic and archeomagnetic
records, the average dating uncertainties amount to about a hundred years Licht et al.,
2013, Sec. 2.2, and they tend to increase further back in time. For the present study, we
assume that our rather long bin width of 100 years balances temporal errors, although
it results in poor temporal resolution. Arguably, our model is still overly confident as
we did not consider dating errors. In order to apply our method more generally and to
longer times the inclusionof sediment recordshas to be implemented. Sediment records
are affected by large dating uncertainties which require a data model that also accounts
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for temporal errors and preserves the stratification (e.g., Nilsson et al., 2014). Moreover,
a strategy to deal with the scaling or relative intensity has to be developed and our two-
step approach might become a challenge if the number of available full vector records
with absolute intensity information is small.

Nonetheless, the presented snapshotmodel should be considered a first step in the di-
rectionof a timecontinuous correlationbasedHolocenemagneticfieldmodel, and,more
generally, a new modelling method for the paleomagnetic field on various time-scales.
We regard the time stationary binning an interim solution as it does not capture the dy-
namics of the EMFwell. In our opinion a temporally continuousmodel also considering
dating errors is needed to fulfil the needs of paleomagnetic field modelling. For the ex-
tension of our modelling concept we are currently working on an empirical continuous
time correlation kernel, similar to Bouligand et al. (2016) and Hellio and Gillet (2018).
Combining a temporal and a spatial kernel to a space-time kernel willmake any binning
obsolete. Within this space-time GP setting, existing techniquesmay be used to address
dating uncertainties (McHutchon and Rasmussen, 2011).

We conclude by emphasizing again that this is initial work towards a new paleomag-
netic field modelling strategy and an improved full Holocene model, and that it is des-
tined to receive many improvements in the future. The open source modelling concept
offers vast flexibility and a allows for a variety of refinements.
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Abstract
In a previous study, a new snapshot modeling concept for the archeomagnetic field was
introduced (Mauerberger et al., 2020). By assuming a Gaussian process for the geomag-
neticpotential, a correlationbasedalgorithmwaspresented,which incorporatesaclosed
form spatial correlation function. This work extends the suggestedmodeling strategy to
the temporal domain. A space-time correlation kernel is constructed from the tensor
product of the closed form spatial correlation kernel with a squared exponential kernel
in time. Dating uncertainties are incorporated into the modeling concept using a noisy
input Gaussian process. All but onemodeling hyperparameters aremarginalized, to re-
duce their influence on the outcome and to translate their variability to the posterior
variance. The resulting distribution incorporates uncertainties related to dating, mea-
surement andmodeling process. Results from application to archeomagnetic data show
less variation in the dipole than comparable models, but are in general agreement with
previous findings.
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5.1 Introduction

Existingmodels of the EMF for the pastmillennia showavariety of time-dependent fea-
tures: The evolution of the South Atlantic Anomaly, the observed dipole decay in recent
centuries and the movement of flux patches all take place on timescales of several hun-
dred years (see e.g. Hartmann and Pacca, 2009; Jackson and Finlay, 2015). To accurately
describe and study these features, time resolved models are necessary. Usually these
models are inferred from two classes of data: Data frommaterialswith thermoremanent
magnetisation, such as volcanic rocks, bricks or burnt clay fragments from archeologic
sites, and data frommarine or lacustrine sediments with embeddedmagnetic particles.
In this paper we focus on the former class and loosely refer to it as archeomagnetic data.
Existing models differ in the approach to global modeling, but are usually constructed
using inversion for SH coefficients, truncated at a certain degree. Most models, such as
Jackson, Jonkers, andWalker (2000), Korte, Donadini, and Constable (2009) and Senft-
leben (2019), implement spline interpolation in the temporal domain, while some alter-
native approaches exist (Constable and Parker, 1988; Bouligand et al., 2005; Hellio et al.,
2014; Hellio and Gillet, 2018).

By regularizing the SHmodel in both space and time, global features can be extracted
from the sparse and clustered database. However, this way also local variations might
be wrongly explained by the dynamics of the large scale coefficients. Regions of good
data coverage may thus imprint a fast, well supported local dynamic into the dynamic
of global coefficients such as the di- and quadrupole. To avoid such variations in the low
degrees, and to exploit the data to its fullest, we suggest a Bayesian modeling approach
based on GPs, both in space and time. With this already in mind, we implemented a
closed form covariance function for the spatial domain in a previous study (Mauerber-
ger et al., 2020, hereafter referred to as MSKH20). The present work extends this study
to the temporal domain. Weagain employ the closed formcorrelationkernel, introduced
by Holschneider et al. (2016), and extend it to a space-time kernel using a squared expo-
nential (SQE) kernel. Knowing that such a kernel is unphysical, we abstain fromsuggest-
ing a new geomagnetic fieldmodel. Instead, the aim of thiswork is to show the potential
of the proposed modeling approach and to lay out the modeling strategy and its impli-
cations in detail.

The application of a spatio-temporal GP in a Bayesian framework includes the natural
availability of well quantified uncertainties via the posterior standard deviation. While
earlymodels (Jackson, Jonkers, andWalker, 2000; Constable, Johnson, and Lund, 2000;
Korte andConstable, 2003)donotprovideuncertainty estimates,more recentfieldmod-
els use ensemble techniques to quantify (modeling related) errors (Korte, Donadini, and
Constable, 2009; Licht et al., 2013; Pavón-Carrasco et al., 2014; Hellio and Gillet, 2018;
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Senftleben, 2019). Within the space-time correlation framework thatwe suggest, uncer-
tainties arising from the uneven data distribution, from inaccurate dating and from the
modeling itself can be accounted for in a well defined, statistically sound manner (Ras-
mussen and Williams, 2006; McHutchon and Rasmussen, 2011). The inversion scheme
is embedded in a functional analytic frame of non-parametric modeling. The result is a
distribution over functions, in this case in both space and time. This distribution is char-
acterized by a mean function, which gives the most likely field model, and a two-point
covariance function, describing the variability of the field.

This article is structured as follows: The rest of this section covers some basic intro-
duction into magnetic field theory and GP inversion. We use those paragraphs mainly
to introduce our notation. In Section 5.2we discuss our prior assumptions, construct the
correlation kernel and describe the full modeling algorithm. Section 5.3 contains a brief
validation section, using synthetic data, as well as a case study to showcase the capabili-
ties of ourmethod. We concludewith a discussion in Section 5.4. The appendix provides
further insight into themathematical footing of the introducedmethods.

5.1.1 Magnetic Field Theory

Assuming an insulating mantle, outside of the conducting core, the EMF B can be ap-
proximated by the gradient of the geomagnetic potential Φ (Backus, Parker, and Consta-
ble, 1996):

B = –∇Φ

Φ is a scalar potential, satisfying Laplace’s equation ∇2Φ = 0. Assuming the sources
of the potential lie at some reference sphere with radius R, at locations x outside of this
sphere |x| > R the field can be represented using spherical harmonics (SH)

Φ(x) = R
∑
ℓ

(
R
|x|

)ℓ+1 ∑
–ℓ≤m≤ℓ

gmℓ (t) Ym
ℓ (x̂) . (5.120)

x̂ is the unit vector x/|x| and Ym
ℓ refers to the real valued and Schmidt semi-normalized

SH of degree ℓ and order m with related Gauss coefficient gmℓ . Similar to MSKH20, we
do not consider the Earth’s ellipticity. The dependence of gmℓ on a reference radius R is
not explicitly expressed. The time dependence of the field is typically encoded in the
Gauss coefficients gmℓ (t). Weuse upright lettersx = (x, t) to distinguish space-time inputs
frompurely spatial inputs. Often theGauss coefficients are expressed in formof a spline
model (Bloxham and Jackson, 1992)
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gmℓ (t) =
∑
n

gmℓ,nMn(t) , (5.121)

whereMn(t) are typically cubic B-spline basis functions and themodel is defined by the
set of Gauss coefficients {gmℓ,n} at knot times tn.

The field vector components are given in a spherical coordinate system, consisting of
north BN, east BE and down BZ components

BN = 1
r
∂Φ
∂θ

, BE = – 1
r sin

(
θ
) ∂Φ
∂φ

, BZ = ∂Φ
∂r

, (5.122)

where θ,φ and r are colatitude, longitude and radius of a field location x.

Paleomagnetic records of the EMF are provided as declination D, inclination I and in-
tensity F, which relate to the field vector in a non-linear fashion:

H : B →

D
I
F

 =


arctan

(
BE
BN

)
arctan

(
BZ
FH

)√
B2
N + B2

E + B2
Z

 (5.123)

The horizontal intensity FH =
√

B2
N + B2

E is an auxiliary quantity. H is called observation
functional.

5.1.2 Gaussian Process regression

In the eighties Constable and Parker (1988) already proposed using GPs to model the
EMF. A GP is a stochastic process, characterized by a mean function B̄ and a covariance
function KB

B ∼ GP
(
B̄, KB

)
. (5.124)

Given observations o(y) of B at locations and times y = (y, s) with Gaussian measure-
ment errors, characterized by a covariancematrix Σo, the posterior ofB is again aGP. Its
(conditional) mean and covariance functions read (Rasmussen andWilliams, 2006)

E
[
B(x)|O

]
=B̄(x) + KB(x, y)

(
KB(y, y) + Σo

)–1(o(y) – B̄(y)
)

(5.125)

Cov
[
B(x),B(x′)|O

]
=KB(x, x′) – KB(x, y)

(
KB(y, y) + Σo

)–1KB(y, x′) . (5.126)
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x = (x, t) refers to location and time of interest. Note, that herein already a difference to
previousGPbasedmodels is visible: The covariance function is definedboth in space and
time. While in principle the truncated spherical harmonics and the B-spline basis may
also be used to construct a covariance function, the language and formalism of GP re-
gression have so far only been applied to either temporal correlations (Gillet et al., 2013;
Hellio and Gillet, 2018) or spatial correlations (Sanchez et al., 2016; Mauerberger et al.,
2020).

5.2 Modeling concept

We propose a fully Bayesian modeling concept, embedded in a functional analytic set-
ting. Therefore, GP based techniques are employed. One key ingredient toGP regression
is the a priori covariance function, also called the (correlation) kernel. In this section we
formulate the covariance function we employ, based on our a priori assumptions. Addi-
tionally, we formulate the paleomagnetic data model and discuss approximations that
are necessary to apply the GP regression scheme.

5.2.1 A priori process

Translating theuninformativedipoleprior fromMSKH20toa time-dynamicrealmpresents
a challenge, as temporal correlations vanish in the limit of zero a priori precision and
thus cannot easily be recovered in the posterior. Instead, the a priori mean function of
the EMF is assumed to be constant in time, with only axial dipole contribution:

B̄(x) = –∇
(
γ01 · Y0

1 (x̂) ·
R3

|x|2
)

(5.127)

The strength γ01 of the a priori dipole is a free parameter, that will later bemarginalized.
We suggest building the space-time covariance using a sum of tensor products. The

proposed closed form covariance function for the spatial correlations of the non-dipole
partKΦ,S,ND includes all SHdegrees. Holschneider et al. (2016) describehow to construct
thiskernel, and inMSKH20wedescribe indetailhowtoadapt it forpaleomagnetic appli-
cations. In 5.5.1 we lay out this procedure. The strategy is to translate an idea about cor-
relations amongst Gauss coefficients to the potential, using the SH representation. The
field covariance function then follows from the gradient. Our main a priori assumption
for the covariance is that at some reference sphere, close to where the core field is gen-
erated, the geomagnetic Gauss coefficients are uncorrelated. Assuming a flat spectrum
at this reference sphere’s radius R, it is possible to derive a closed form for the potential
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covariance function. This closed form is called Legendre kernel and reads (Holschneider
et al., 2016, Eq. 53)

KL(x, x′) =
1√

1 – 2b + a2
, (5.128)

where b = x · x′/R2 and a = |x||x′|/R2.
Temporal correlations are incorporated by a tensor product of this spatial kernel with

a squared exponential (SQE) kernel:

KΦ,T(t, t′) = KSQE(t, t′) = exp
(

– (t – t′)2

τ2

)
(5.129)

τ is the a priori correlation time, that gives an idea about the timescale on which the dy-
namics of the process happen. Note that the posterior curve may be smoother or more
detailed than this scale, depending on the data. Similar to MSKH20, we split the kernel
into dipole and non-dipole part, as the statistical properties of the dipole are known to
differ from the higher field degrees (Constable and Parker, 1988). Each part is coupled to
its own temporal correlation kernel and thus has its own correlation time:

KΦ(x, x′) =α2DPKDP,S(x, x′) · exp
(

– (t – t′)2

τ2DP

)
+ α2NDKND,S(x, x′) · exp

(
– (t – t′)2

τ2ND

) (5.130)

The index S stands for spatial and α• are the a priori variances of the dipole and non-
dipole part. They can be interpreted as the expected standard deviation in the dipole
(gm1 ) and non-dipole coefficients. See 5.5.1 for the explicit forms and further details. The
kernel implements a single, constant correlation time τND for all degrees ℓ ≥ 2. We are
aware, that previouswork indicates different behavior (Bouligand et al., 2016). However,
implementing the SQE kernel as suggested is straightforward and sufficient for the con-
ceptual work we present here. The field’s covariance function reads

KB(x, x′) = ∇x∇x′KΦ(x, x′) . (5.131)

5.2.2 Linearization

Paleomagnetic observations are reported as declination, inclination and intensity. With
measurement errors E, the datamodel reads

o(x) = H
(
B(x, t)

)
+ E . (5.132)
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5.2 Modeling concept

Clearly, the relationship to the field vector is non-linear (Eq. 5.123). Handling non-linear
transformations in the framework of GP regression is technically demanding and of-
ten analytically impossible, as the transformed random variables are no longer Gaus-
sian. While more sophisticated methods exist (e.g. Snelson, Rasmussen, and Ghahra-
mani, 2003), the standard approach is to linearize the observation functional by means
of a Taylor approximation of 1st order. For declination, inclination and intensity, the
approximate, linear functionals read

D ≈ D̃ + 1

F̃2H

–B̃E
B̃N
0


>

B , (5.133)

I ≈ Ĩ + 1
F̃H


00
1

 – B̃Z
F̃

B̃
F̃


>

B , (5.134)

F ≈ B̃>

F̃
B . (5.135)

Here, D̃, Ĩ, F̃ and B̃ indicate the POE.We implement this approximate transformation, to
have a linear relation between the observations and themodeled quantity. Linear trans-
formations preserve normality and thus the standard GP formalism is applicable. The
proxy datamodel reads

o(x) ≈ Hlin.B(x, t) + E . (5.136)

Hlin. refers to the linearized observation functionals Eqs. 5.133-5.135.
Previousworks implementedanaxialdipoleasPOE(e.g.HellioandGillet, 2018). MSKH20

shows that the performance of inversion for the POE can be enhanced if we separate the
data into two disjoint groups. One group consists of recordswith full vector information
(complete) and the other of records with at least one component missing (incomplete).
In a first step, only complete records are considered and the posterior distribution for
these records is calculated. This first step posterior then serves as the prior and POE for
the second step, where the remaining, incomplete records are treated.

5.2.3 Measurement errors

In order to apply the GP regression formalism (Eq. 5.124), the full data model has to be
Gaussian. Therefore, linearizing the observation functional as described in the previous
section isnot sufficient, but anormalproxyerrormodelhas tobe constructedaswell. In-
tensity records often provide the error as standard deviations of a normal distribution,
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and thus linearizing the observation functional is sufficient for the intensities. Records
of the archeomagnetic directions (declination and inclination) on the other hand are re-
ported together with the 95% confidence cone (α95) of a von Mises-Fisher distribution.
Thus for the archeomagnetic directions,we construct aGaussianproxy, using (Suttie and
Nilsson, 2019)

σI =
57.3◦

140
α95 and σD = 1

cos oI
σI . (5.137)

Additionally, similar toMSKH20, we implement a scaling factor ε to compensate possi-
ble false error estimates, and a residual termPwith scaling factor ρ, to addressmodeling
related errors (e.g. observational bias due to crustal field contributions). This way, the
datamodel reads

o(x) ≈ Hlin.
(
B(x, t) + ρP

)
+ εEprox. , (5.138)

where Eprox. are the approximate errors, constructed from Eq. 5.137.

5.2.4 Dating uncertainties

To a large amount, archeomagnetic specimen are dated using either radiocarbon dating
or archeologic age estimation. Bothmethods suffer fromuncertainties, as the formerde-
pends on carbon models of the atmosphere and the latter on contextual knowledge. To
incorporate these uncertainties, and to represent them in the resultingmodels, previous
studies mostly relied on sampling strategies (e.g. Korte, Donadini, and Constable, 2009;
Hellio and Gillet, 2018; Senftleben, 2019). Hellio et al. (2014) used a normal error model
for the dates, and applied MCMC methods to estimate the posterior distribution. We
pursue a similar, hierarchical approach, but instead ofMCMCmethods, we perform an-
alytic approximations. The dating uncertainties are translated to measurement errors,
as presented below, by weighing themwith the temporal derivatives of the kernel. This
is related, but not equal, to the idea of using the secular variation to estimate the contri-
bution of dating uncertainties (see e.g. Korte et al., 2005). Due to the GP structure of the
proposed model, the covariance structure for the secular variation is available a priori.
This covariancemediates the dating uncertainties to themeasurement errors.

Summarizing the errors from the previous section as ε for readability, the datamodel
is

o(x) ≈ Hlin.B(x, t) + ε . (5.139)
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5.2 Modeling concept

However, one does not know the precise time t at which the specimen received its mag-
netization, but a corrupted date

to = t + et , where et ∼ N (0, σ2
t ) (5.140)

is a normal error. Plugging this into the datamodel gives

o(x) = Hlin.B(x, to – et) + ε . (5.141)

This is known as the noisy input Gaussian process (NIGP) (McHutchon and Rasmussen,
2011). Due to the random variable et appearing at the inputs of the GPB, this datamodel
is non-Gaussianagain. To tackle it,McHutchonandRasmussen (2011) suggest oncemore
a linearization. This gives

o(x) ≈ Hlin.
(
B(x, to) – e>t ∂tB(x, t)|to

)
+ ε . (5.142)

The first term is normal and the second term allows for easy construction of a moment
matching proxy. With this modifications, Eq. 5.142 can be used for GP regression in the
usual way. Since the error et is centered, the a priori mean is not affected by the dating
uncertainties. However, the covariance gets an additional term

Σtt′ ◦ ∂t∂t′KB(x, x′)|to . (5.143)

Here Σtt′ is the dating error covariance matrix and ◦ is the Hadamard product, i.e. el-
ement wise multiplication along the t direction. To this end, KB(x, x′) is considered as
a matrix consisting of 3 × 3 blocks. The effect of the NIGP model is thus the inclusion
of dating errors as contributions to the data covariance, similar to measurement errors.
The translation is realized byweighing the datinguncertainties by the secondorder time
derivative of the kernel.

In Figure 5.1 we present a synthetic, one dimensional example, to compare the pro-
posed NIGP strategy to the standard GP inversion and inference via MCMC. Data was
generated from a one dimensional SQE kernel and assigned large input uncertainties
and small errors, to mimic the situation of large dating uncertainties. The standard GP
regression shows the typical constrictions at the input points, while the NIGP shows a
larger standard deviation, especially at the input points. We believe that an MCMC ap-
proach gives a better estimate of the actual posterior, though in a realistic setting this is
computationally unfeasible. However, as can be seen from the bottom panel of Figure
5.1, the NIGP gives a reasonable proxy to the MCMC result at immensely reduced com-
putational cost.
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Figure 5.1: Different inversion strategies for a synthetic onedimensionalmodel. The ver-
tical uncertainty is deliberately chosen smaller than the horizontal one, to
highlight the effect of the different strategies. The shaded area and dashed
lines present one standard deviation. In the top panel, the standardGP inver-
sion, which can not incorporate input uncertainty, is compared to the noisy
input Gaussian process (NIGP) approach. The NIGP approach translates un-
certainties in the inputs to uncertainties in the posterior, in stark contrast to
the standard GP regression, which shows the typical constrictions at the in-
puts. In the bottompanel, anMCMCbased approach is compared to theNIGP.
One can see, that the NIGP gives a reasonable proxy to the MCMC posterior,
which we believe to be a good estimate for the actual posterior. For this small
dataset, the runtime for the MCMC was 43s, in distinction to 0.3ms for the
NIGP. This factor of roughly 104 makes using MCMC infeasible for the later
steps of our proposedmodeling procedure.

5.2.5 Hyperparameters

Themodelwe constructed throughout this section consists of several parameters, which
are a priori unknown. Most obvious are the a priori dipole strength γ01 , the variances αDP
and αND and the correlation times τDP and τND. Additionally, there are the two scalings,
ε and ρ, for the measurement errors and the residual, respectively. The least obvious is
the kernel’s reference radius R. R basically controls the slope of the prior power spec-
trum. As suggested in our MSKH20 (Fig. 2), we take R = 2800km, which gives a slope
similar to the IGRF power spectra (Thébault et al., 2015). Note, that R gives the radius
of a sphere of “virtual” sources and has no direct physical meaning. The other param-
eters are marginalized, so that the outcome of the modeling procedure is a compound
distribution

p(B|o) =
∫

p(B|o, η) · p(η|o) dη. (5.144)
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Hereη is thesetofhyperparameters {γ01 , αDP, αND, τDP, τND, ε, ρ} andp(η|o) is themarginal
posterior. See 5.5.2 andMSKH20 for further details.

The compound distribution is no longer Gaussian and includes modeling uncertain-
ties, resulting from the a priori lack of knowledge about the hyperparameters, but does
not depend on these parameters. This distribution is the central result of the suggested
modeling strategy. It includes amost probable fieldmodel, themean of the distribution,
as well as uncertainty estimates, resulting both from modeling and measurement pro-
cess. Similar distributions can be obtained for other quantities of interest, such as the
Gauss coefficients. To actually evaluate these expressions, numerical approximations
have to be employed, as described in the following section. The integral is approximated
by a sum, which results in a Gaussian mixture distribution. Moments for this mixture
are easily obtained.

5.3 Application

In this section we demonstrate the potential of the suggested modeling scheme, by first
applying it to synthetic test data and finally conducting a case study based on actual
archeomagnetic records. The major task to this end is the implementation of the co-
variance matrices from the kernel, the linearization and the two step strategy. As this
process is described in detail in MSKH20, we outsource it to 5.5.2. However, two points
are to be discussed here. One is the explicit second derivative of the temporal kernel, ap-
pearing in Eq. 5.143. In this study the correlation kernels for dipole and non-dipole con-
tributions are each considered tensor product kernels, so that the time derivative only
affects the temporal part. The full derivative of each contribution is then given by the
product of the respective spatial part and the second order derivative of the SQE-kernel.
For the SQE-kernel, the derivative is straightforward to calculate and reads

∂t∂t′KSQE(t, t′) =
(

2
τ2

– 4
τ4

(t – t′)2
)
· KSQE(t, t′) . (5.145)

When using a more realistic kernel, especially one with different correlation times for
different degrees ℓ, the kernel can no longer be constructed as a tensor product, and cal-
culating this derivatives analytically may pose a challenge, so that numerical methods
have to be employed. This is one reason why in this conceptual study we chose the SQE
kernel over amore realistic one e.g. the one proposed by Gillet et al. (2013).
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Figure 5.2: Illustration of the CCD integration in two dimensions. Integration over the
actual distribution (grey in the background) is performed by calculating the
MAP (white) and constructing a proxy multivariate Gaussian (orange), using
the inverse Hessian at theMAP. The dots indicate the integration points. The
blackdots are called star pointsandareplacedalong the transformedmainaxis
(the arrows). The grey points are added to the CCD to better capture the co-
variance structure. In higher dimensions they are not symmetric. See also
Rue, Martino, and Chopin (2009, Sec. 6.5) and Sanchez and Sanchez (2005).

The second point is the marginalization integral in Eq. 5.144. As the proposed model
contains seven parameters and as the data is incorporated all at once, instead of in bins
as in MSKH20, the brute-force parameter space exploration and integration suggested
in MSKH20 are now computationally unfeasible. This is due to the cost for fixed point
integration growing exponentially with the number of dimensions and the high cost of
matrix inversion (O(n3

Data)).

Instead, we perform numerical integration similar to the strategy suggested by Rue,
Martino, and Chopin (2009, Sec. 6.5). The idea is to center the integration around the
maximum aposteriori probability estimator (MAP) of the marginal posterior. Colloca-
tionpointsareaddedaccording tocentral compositedesign (CCD) (SanchezandSanchez,
2005), in order to capture the bulk of the uncertainties in the hyperparameters (see Fig-
ure 5.2). In seven dimensions, the integration is approximated by a sum over 79 colloca-
tion points. To find the MAP of the marginal posterior, we use the LIPO-TR global op-
timization algorithm (King, 2009; King, 2017). The parameters are assigned box priors,
as is required by most global optimization algorithms. We choose as upper and lower
bonds for the hyperparameters

–10000 μT ≤ γ01 ≤ –1 μT 1 μT ≤ α• ≤ 10000 μT

10% ≤ ε ≤ 350% 10 yrs. ≤ τ• ≤ 10000 yrs.

0.2 μT ≤ ρ ≤ 10 μT
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Within the box, all parameters except for ε are additionally assigned Jeffrey’s priors, for
scale independence inside of said box.

p(γ01 ) ∝
1
γ01

, p(α•) ∝
1
α•

, p(τ•) ∝
1
τ•

and p(ρ) ∝ 1
ρ
, (5.146)

where • stands for DP and ND. The poles induced by Jeffery’s priors do not cause trou-
ble, as the box constraints are far enough from zero. By numerically approximating the
integral in Eq. 5.144, the compound distribution is approximated by aGaussianmixture.
Details can again be found in 5.5.2.

5.3.1 Synthetic Tests

To validate the proposed algorithm, we test it on synthetic data. As inputs we choose
datesand locations fromthearcheomagneticandvolcanicdata inGEOMAGIAv3.3 (Brown
et al., 2015) for the interval from 800 to 2000 (cf. Fig. 5.5). At these locationswe generate
data from theARCH10k.1model (Constable, Korte, andPanovska, 2016) and corrupt it by
artificial noise. For the directionswe use a vonMises-Fisher distribution. Intensities are
corrupted by gamma distributed noise and the dates by normal noise. The error levels
are taken from GEOMAGIA as well. Additionally, to simulate effects of other magnetic
field sources and from the measurement process, we add random contributions with a
constant standard deviation of 2.5 μT to the generated data.

The resultingMAP for the hyperparameters is

γ̂01 = –396.641 μT α̂DP = 19.314 μT τ̂DP = 318.454 yrs.

ε̂ = 101.656% α̂ND = 40.4634 μT τ̂ND = 339.471 yrs.

ρ̂ = 2.59371 μT

Note that γ̂01 , α̂D and α̂ND aregivenw.r.t. the referenceradius, i.e. at theEarth’s surface the
axial dipole and both variances aremuch smaller. To transform γ01 and αD to the Earth’s
surface, they have to be multiplied by a factor of (R/REarth)3 ≈ 0.08. Scaling the non-
dipole variance αND is not possible, due to the degree dependent scaling and the closed
form kernel. The error level scalings are as expected. As the reported error levels have
been used to corrupt the data, they are accurate (ε ≈ 100%). The residual term reflects
the random contributions that have been added.

In Figure 5.3 we compare the dipole of the reference model to our findings from run-
ning themodel on the synthetic data. One can see that only the long-termbehavior of the
referencemodel can be recovered. Nonetheless, we believe that the results aremeaning-
ful and related to the data distribution. To illustrate this, we present a simplified exam-
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Figure 5.3: Comparison of the reference model to the one recovered from synthetic test
data. The shaded area represents one standard deviation. The long-term be-
havior could be recovered, while data is too sparsely distributed and uncer-
tainties are too large to recover the short timescale features. See the text for
additional discussion.

ple. Consider a one-dimensional time series that we want to model by a Gaussian pro-
cess. We generate data from some referencemodel (here we chose the axial dipole of the
ARCH10k.1 model) and corrupt it with artificial noise. For simplicity and to emphasize
the effect, we neglect dating uncertainties. We synthesize two datasets, one with many
observations and small uncertainties and one with few observations and large errors.
The “data poor” situation was designed to mimic the actual situation, based on findings
inMSKH20: Every one hundred years an observation was generated and the error level
chosen to agree with the one found inMSKH20.

Then for both datasets, a separate correlation time is estimated by maximizing the
marginal posterior. In the situationwithmany observations, the proposedmodeling al-
gorithmgives a correlation time corresponding to the short termvariability of the refer-
encemodel and the referencemodel is recoveredwell anddetailed (Figure 5.4, leftpanel).
In the situationwith fewobservationshowever, one canonly recover the long-termvari-
ability of the referencemodel (Figure 5.4, right panel). The actual situation ismore com-
plicated, but we believe that the large correlation times and smooth curves come from a
similarmechanism. While locally, the data distribution ismuch denser than in the “data
poor” case, global information (e.g. about the axial dipole) is sparse andunreliable, as can
be seen from the results of MSKH20. We performed a similar experiment for synthetic
fielddata and foundsimilar results, i.e. only the long-term informationcanbe recovered.
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Figure 5.4: Synthetic one-dimensional example illustrating how the lack of data influ-
ences the information one can recover from the referencemodel. The shaded
area represents one standard deviation. In the data rich situation on the left,
the reference model can be recovered quite well and posterior uncertainties
are so small, they are barely visible. In the data poor situation on the right
only the long-term behavior can be recovered.

5.3.2 Case study

Herewepresent theresults fromapplying theproposedmodelingstrategy toactualarcheo-
magnetic data, taken from GEOMAGIA v3.3 (Brown et al., 2015). The data covers the
interval [800, 2000] AD and consists of 7801 records, of which 3.9 percent are complete
vector triples. Figure 5.5 shows the spatial and temporal distribution of the data. Simi-
lar toMSKH20, we do not consider the Earth’s ellipticity. We use the originally reported
error estimates and assign α95 = 4.5◦ as directional errors and σF = 8.25 μT as intensity
errors to the 8.4 percent of data, where no error is reported. As described above, the dat-
inguncertainties are considered as standarddeviations of independent normal distribu-
tions. Whendifferent values for upper and lower temporal error are reported,weuse the
bigger value. The 0.7 percent of data for which no dating uncertainty is reported are as-
signed a standard deviation σt = 100 yrs. Note that for the recent times fewer records are
available from the archeomagnetic dataset. This results in bigger uncertainties towards
recent times, as can be seen for example in the inclination series in Figure 5.8.

We compare our findings to two existing magnetic field models as well as to the re-
sults of MSKH20. The models are ARCH10k.1 (Constable, Korte, and Panovska, 2016)
and COV-ARCH (Hellio and Gillet, 2018). They are considered reasonably comparable,
as they are based on similar data compilations. Both models report Gauss coefficients
up to SH degree ℓ = 10, while the actual spatial resolution is determined by regulariza-
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Figure 5.5: Spatial and temporal distribution of the data. We separate the data only into
complete and incomplete without indicating declination, inclination and in-
tensity separately, to avoid overloading the plots. The turquoise dots indicate
the locations at which we present the time series (Paris, Fig. 5.8 and pacific,
Fig. 5.9).

tion in ARCH10k.1 and by cross-covariances based on prior assumptions in COV-ARCH
and lies around ℓ = 5 in both cases. ARCH10k.1 doesnot report uncertainties,whileCOV-
ARCH provides an ensemble of 50 models from which uncertainties are constructed by
calculating sample mean and sample standard deviation. In contrast to the results pre-
sented by Hellio and Gillet (2018), the publicly available model1 is not time continuous
but reports coarsely binned coefficients for every hundred years in the interval.

Wewant to stress again, that the presented results stem from a conceptual design. Es-
pecially the common temporal correlation time for all degrees ℓ ≥ 2 should be reconsid-
ered, when building an actual model from the proposed strategy. The hyperparameter-
MAP for the actual data is quite similar to the one in the synthetic data test (see sec-
tion 5.3.1):

γ̂01 = –425.242 μT α̂DP = 13.6831 μT τ̂DP = 348.555 yrs.

ε̂ = 135.781 % α̂ND = 39.4199 μT τ̂ND = 293.025 yrs.

ρ̂ = 3.82749 μT

1https://geodyn.univ-grenoble-alpes.fr/
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5.3 Application

Again, γ̂01 , α̂D and α̂ND are given w.r.t. the reference radius and are lower at the Earth’s
surface. At the Earth’s surface, γ̂01 ≈ –36.09 μT. All values are in a reasonable order of
magnitude. Surprisingly theresidual scalingdidnotdecrease incomparison toMSKH20.
Theproximityofbothcorrelation timesmaybeexplainedbythedominanceof thequadru-
pole over the larger degrees. For further insight, we provide profiled distributions to-
gether with themodeling software (Schanner andMauerberger, 2020).

Field predictions

Predicting on the EMF’s vector components is straightforward and given by wrapping
equations 5.125 and 5.126, into themarginalization procedure described in the appendix.
However, to get a reasonable spatial resolution too many design points have to be in-
cluded to store the covariance matrices for all integration points, which is necessary to
calculate themixture distribution. Instead, similar toMSKH20, we resort to calculating
the moment matching Gaussian proxy. The top row of Figure 5.6 showsmean and stan-
dard deviation for the down component of the EMF for the epoch 1700. Similarly, pre-
dictions at the CMB can be performed, by translating the design points accordingly. The
results for the down component are shown for the epoch 1700 in Figure 5.7. Inferring the
observables (declination, inclination and intensity) is hindered by the non-linear rela-
tion to thefield. Utilizing again a linearization,mean and covariance canbe constructed,
similar to MSKH20 and Hellio et al. (2014, appendix A). The bottom row of Figure 5.6
shows a prediction of the EMF’s intensity for the epoch 1700.

Compared to MSKH20 for snapshots in time, the new results show a slightly lower
strength of the down component and lower field intensity. Moreover, the new results
have a reduced standard deviation,which can be attributed to additional constraints due
to the temporal correlations. The overall field structure is similar, showing features such
as the South Atlantic Anomaly. The reconstruction at the CMB (Figure 5.7) reveals a re-
gion of lower field strength at the southern tip of Africa, which is at the limit of signifi-
cance, but was not present in the snapshot model.

Similar to themap, predictions at a specific location can be obtained for various times
and time series of the observables can be constructed. Moment matching proxies have
to be employed, as the number of parameters to infer is again too big when considering
a reasonable temporal resolution. Figures 5.8 and 5.9 show time series at two distinct
locations. Figure 5.8 presents time series for Paris, together with comparison models
and data, while the series in Figure 5.9 are for a location in the Pacific, where no data is
present in the surroundings. The data in Figure 5.8 stem from a surrounding of 250 km.
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Figure 5.6: Maps of the EMFs down component (top) and intensity (bottom), together
with standard deviations for the epoch 1700.
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Figure 5.7: Map of the down component of the EMF at the CMB, together with standard
deviation for the epoch 1700.

Inclinations and intensities are translated to the coordinates of Paris along the cor-
responding axial dipoles (Merrill, McElhinny, and McFadden, 1996). Declinations are
taken as reported. For Paris, the different models mostly agree, with larger deviations
towards the recent epoch, where the database is thinning out. Our inferred series shows
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less variation than comparable models, which probably can be attributed to our some-
what unrealistic temporal kernel with equal correlation time for all spatial wavelengths
from ℓ=2 on. As expected, the uncertainties are bigger for the location in the Pacific, and
the comparingmodel series show larger deviations.
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Figure 5.8: Data (grey dots) and model time series of the observables at Paris. Horizon-
tal and vertical grey bars indicate the one sigma temporal and field compo-
nent data uncertainties, respectively. The shaded area and vertical bars on
the models also represent one sigma. For the MSKH20 snapshot model and
COV-ARCH, which is reported in 100 year intervals, dots for the epochs are
linearly connected by coloured lines.

Gauss coefficients

Although the proposedmodel is inherently non-parametric in both space and time, pre-
dictions onGauss coefficients can be performed. As they are linearly related to the field,
the procedure is straightforward (see Eq. 21 in Holschneider et al. (2016)). When pre-
dicting coefficients for a specific epoch, the fullmixture distribution is accessible. When
predicting on coefficient time series however, the number of parameters one has to in-
clude in the prediction to get a reasonable temporal resolution is toomemory intense to
store the covariancematrices of every individual collocationpoint. This is similar topre-
dictions of the field inMSKH20. Therefore, the time series shown in Figure 5.10 present
themomentmatchingGaussianproxy to theactualmixture. Thedipole coefficients from
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Figure 5.9: Model time series of the observables for a location in the Pacific (–48.18◦,
–128.03◦, see also Fig. 5.5) as in Fig. 5.8. The shaded area and vertical bars
on the models represent one sigma. Uncertainties are higher than for Paris
(Figure 5.8) due to the lack of data in the surrounding.

thenewmodeling strategy showa similar dynamic as those of the othermodels,with the
“outliers” from MSKH20 disappearing. The series of the quadrupole coefficients show
different behavior, with an interval of lower axial quadrupole strength around 1200 AD.
Differences toARCH10k.1 andCOV-ARCHmight partly be due to somedifferences in the
underlying data compilation.

Spectra

Power spectra are considered to condense the information contained in the Gauss co-
efficients (e.g. Backus, Parker, and Constable, 1996). Using sampling techniques, mean
and percentiles of the geomagnetic power spectrum distribution are available (for fur-
ther details consider MSKH20, Section 5.6). Figure 5.11 shows the geomagnetic power
spectrum for the epoch 1700, together with 16- and 84-percentiles. Within the reported
uncertainties, the power in dipole and quadrupole agrees to the comparisonmodels. For
ℓ = 3 the reconstruction reports less power than COV-ARCH and MSKH20. Notewor-
thy is the faster power decay for degrees ℓ = 4 . . . 7 when compared to MSKH20, which
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Figure 5.10: Gauss coefficient time series for degrees ℓ = 1 and ℓ = 2, together with com-
parable models. One sigma uncertainties are given by the shaded area for
our model and by vertical bars where available. MSKH20 and COV-ARCH,
which are available in 100 year steps are shown by coloured dots linked lin-
early by solid lines.

also indicates larger deviations from the prior. Thismay be due to temporal correlations
increasing the information or the long correlation time damping small scale structures.
Implementing a separate correlation time for each coefficient may provide further in-
sight.

Similar to the geomagnetic power spectrum, the spectrumof the secular variation can
be calculated (Alldredge, 1984). Therefore one has to predict on the derivatives of Gauss
coefficients, also called the secular variations. As the derivative is a linear operator, this
is straightforward. To explain the basic concept, consider the simplified example of di-
rect observations of the EMF:

E
[
ġ(t)|O

]
=∂tE

[
g(t)|O

]
=∂tḡ(t) + ∂tKg,B(t, y)

(
KB(y, y) + Σo

)–1(o(y) – B̄(y)
) (5.147)
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Figure 5.11: Comparison of the spatial power spectra at the Earth’s surface for the epoch
1700AD. The errorbars represent 16- and 84-percentiles. Thus the error cov-
ers an area of 68%,which corresponds to one standarddeviation in theGaus-
sian case.

Since the a priori mean in our model is constant, the first term vanishes. Thus, to pre-
dict on the secular variations one only has to calculate the derivative of the correlation
between coefficients and observations, which in the suggestedmodel reduces to the first
derivative of the SQE kernel:

∂tKSQE(t, t′) = – 2
τ2

(t – t′)KSQE(t, t′) (5.148)

All other quantities are known from inferring the Gauss coefficients themselves. The
covariance of the secular variation translates analogously. Mean and percentiles of the
secular variation spectrum are then again available via sampling.

As MSKH20 consists of snapshot models, the respective secular variation spectrum
is not accessible. Similarly, as the publicly available version of COV-ARCH only reports
valuesevery 100years, nosecularvariationcanbecalculatedandthespectrumismissing
in Figure 5.12. Note, that we choose an earlier epoch for the secular variation spectrum,
asARCH10k.1 is constrained to gufm1 (Jackson, Jonkers, andWalker, 2000) for the recent
times and therefore showshigher than average secular variation for these centuries. The
secular variation spectra for the two models are fairly similar, with a very good agree-
ment for the dipole and slightly higher values for the higher degrees in our newmodel.
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Figure 5.12: Secular variation spectra at the Earth’s surface for 1400 AD. The errorbars
represent 16- and 84-percentiles. Thus the error covers an area of 68%,
which corresponds to one standard deviation in the Gaussian case.

Dipole

Finally we present the dynamics of the EMFs dipole. Figure 5.13 shows time series of the
dipolemomentmagnitude. Themagnitude is higher than the ones reported by compar-
isonmodels, while the “outliers” fromMSKH20 are not present in the new results. From
1840 on ARCH10k.1 is constrained by the gufm1 model, which in turn is constrained by
a large amount of direct observations and can be considered to represent the dipolemo-
ment quite reliably from that time on. The deviation of ourmodel fromARCH10k.1 dur-
ing the last century is likely caused by a lack of archeomagnetic data for these epochs.

Figure 5.14 shows the movement of the geomagnetic north pole. The mean curve of
our model (black line) is calculated via sampling. For a given epoch the full density is
available analytically (c.f. Mauerberger et al., 2020, Eq. 96). To not overload the plot, we
only show mean and one-sigma ellipses every century. The stereographic projection is
responsible for the crescent-shaped distortion of the ellipses. The rapid movement of
the dipole for earlier epochs suggested by other models is not found by our new recon-
struction and for more recent times, the path lies further to the west. Deviance for the
most recent epochs is again caused by a lack of data.
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Figure 5.13: Time series of the dipole moment magnitude, together with comparison
models. One sigma uncertainties are given by the shaded area for ourmodel
and by vertical bars where available. The MSKH20 snapshot model and
COV-ARCH,which are available in 100 year steps, are shown by colored dots
linked linearly by solid lines.

5.4 Conclusions

Thepresentedworkextends theBayesian strategy for correlation-basedmodellingof the
archeomagnetic field introduced inMSKH20 to the temporal domain. In Section 5.2, all
necessary modifications are discussed, together with a novel approach to include dat-
ing uncertainties. In contrast to previous works (Hellio et al., 2014; Hellio and Gillet,
2018; Korte, Donadini, and Constable, 2009; Licht et al., 2013; Hellio and Gillet, 2018;
Senftleben, 2019), using a NIGP (McHutchon and Rasmussen, 2011) to incorporate dat-
ing uncertainties does not rely on sampling techniques. The a priori model is again con-
structed with the aim of being as objective as possible. The uninformative dipole prior
fromMSKH20 cannot easily be translated to the time-dynamic realm, as temporal cor-
relations vanish in the limit of zero a priori precision and thus cannot easily be recov-
ered in the posterior. Instead, we assume apriori a constant axial dipole with the dipole
strength being a free parameter. Together with all but one other model parameters, the
dipole strength is marginalized so that themodel does not depend on the specific value.
This marginalization presents another challenge, as numerical integration in a seven
dimensional space has to be performed. The Riemann sum approach from MSKH20 is
not applicable, due to the curse of dimensionality (i.e. unfeasible computation time). As
a practicable alternative to the brute force integration we implement a CCD (Sanchez
and Sanchez, 2005) based integration, as proposed by Rue,Martino, and Chopin (2009).
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Figure 5.14: Movement of the geomagnetic north pole. Every one hundred years mean
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curve gives the mean pole track from our model. The grey curves give the
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The major challenge in implementing this strategy consists of finding the MAP of the
marginal posterior. Running the LIPO-TRalgorithm (King, 2009; King, 2017) for the val-
idationandcase studydatasets tookaround25hourseachonaregularworkstation. Once
theMAP is found, the set of integration points consists of 79 hyperparameter combina-
tions and the marginalization takes between half an hour and five hours, depending on
the quantity one predicts on, as some quantities require sampling, which is more com-
putationally demanding. With themarginalization performed, themodel depends only
on the a priori choice of the Gauss coefficients covariance structure at the reference ra-
dius, the value of the reference radius and the temporal covariance structure. For the
conceptual work presented, we chose an unphysical SQE kernel. This has the advantage
of being easy to implement, but themain point whywe use this kernel instead of amore
reasonable one is the necessity to calculate temporal derivatives to implement theNIGP.
For the SQE kernel this is straightforward. We have shown bymeans of a synthetic test
and a case study on real data from 800AD to 2000AD that evenwith the simplified ker-
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nel the results compare well with previous models. Notably the “outliers” for the years
1100 and 1300, present in MSKH20, do not appear in the present work. This may be ex-
plained by the new model considering temporal errors, and thus covering a false bin-
ning, or by the smoothness imposed by the SQE-kernel, which suppresses the influence
of single records. The results of the case study show smoother curves than the models
we compare to, in particular for the axial dipole contribution. While partly this can be
attributed to the SQE-kernel, the proposedmethod is able to resolve faster variations lo-
cally, if the data supports these variations. Due to the closed form, such variations can
be reflected by higher order coefficients and do not introduce global variations.

Implementing a more realistic kernel, such as the one proposed by Gillet et al. (2013),
will be the direction of future work. Together with a Bayesian framework for data se-
lection this will allow the construction and proposition of a new correlation based field
model. In MSKH20, the expansion of the database by records from ship logs was dis-
cussed. Incorporating uncertainties arising from imprecise locationsmay be performed
by the use of the proposed NIGP. Instead of temporal derivatives, the spatial gradients
of the kernel are used to translate the input uncertainties to contributions to the mea-
surement errors. The challenges to scale relative intensities and preserve stratification
(Nilsson et al., 2014) persist, so that sediment records require a different approach than
the application of the NIGP proposed here.

We again developed a python framework to save the effort of implementing the pro-
posed algorithm (Schanner andMauerberger, 2020). Togetherwith extensive documen-
tation, the software source code provides further insight into themodeling algorithm. It
is available at https://sec23.git-pages.gfz-potsdam.de/korte/corbam/.

5.5 Appendix

5.5.1 Constructing the spatial covariance kernel

The Lagrange kernel (Eq. 5.128) is constructed from the Gauss coefficient correlations as
follows:

Consider the covariance of the magnetic potential in SH decomposition. Then, for a
potential of internal origin

Cov
[
Φ(x), Φ(x′)

]
= R2∑

ℓ,m

∑
ℓ′,m′

(
R2

|x||x′|

)ℓ+1
Ym
ℓ (x̂)Ym′

ℓ′ (x̂′)Cov
[
gmℓ , gm

′
ℓ′

]
. (5.149)
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Assuming that at some reference sphere the Gauss coefficients are uncorrelated with a
flat spectrum, i.e.

Cov
[
gmℓ , gm

′
ℓ′

]
= δℓ,ℓ′δm,m′ , (5.150)

where δij refers to the Kronecker delta. This gives

Cov
[
Φ(x), Φ(x′)

]
= R2

∞∑
ℓ=0

(
R2

|x||x′|

)ℓ+1∑
m

Ym
ℓ (x̂)Ym

ℓ (x̂′) . (5.151)

Following Holschneider et al. (2016), evaluating the sums gives the kernel

KL(x, x′) =
1√

1 – 2b + a2
, (5.128)

where b = x · x′/R2 and a = |x||x′|/R2. The dipole kernel can be extracted by setting ℓ = 1.
This yields

KDP,S(x, x′) =
b
a3

. (5.152)

Thus the non-dipole kernel reads

KND,S(x, x′) = KL(x, x′) – KDP,S(x, x′) –
1
a
, (5.153)

where the last term excludes themonopole (ℓ = 0).

5.5.2 Detailed modeling algorithm

Themodeling algorithm consists of two stages. The first one deals with finding theMAP
of the hyperparameters. The MAP then serves as a center point for marginalizing the
hyperparameters in the second step. We begin this section by laying out the inversion
process. From quantities that are calculated along the way, the marginal posterior can
be constructed. Using both procedures, the full algorithm can presented in a compact
way.

Inversion

The inversion closely follows the modeling concept described in MSKH20. To provide
insight into themathematical background of the inversion, we lay out the full inversion
process for thefieldB at locations of interesty. Inverting for other quantities, such as the
Gauss coefficients or the field’s intensity, is straightforward.

To keep the equations concise, we use the following notation formatrices:

B̄(x) is the a priori (mean) field at locations x.
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∇H|B̃(x) refers to the gradient of the observation functionals (c.f. Eqs. 5.133-5.135), eval-
uated at the POE B̃ at locations x.

H̄(x) refers to the linearized, transformed prior field at locations x

H̄(x) = H
(
B̃(x)

)
+∇H|B̃(x)

(
B̃(x) – B̄(x)

)
(5.154)

The transformed prior field serves as amean proxy to observations at locations x.

Σyy refers to the a priori covariance of the field at locations y. This is

Σyy = KB(y, y) (5.155)

This is a matrix, composed of 3× 3 blocks, containing correlations at each point.

B̄|o(y) is short hand for the posteriormean of the field at locations y, given observations
o, i.e.

B̄|o(y) = E
[
B(y)|o

]
(5.156)

H̄|o(x) is similar to H̄(x) and refers to the linearized transformed mean at locations x,
posterior to observations o.

Σyy|o is short hand for the posterior covariance of the field, i.e.

Σyy|o = Cov
[
B(y),B(y)|o

]
(5.157)

Σyo refers to cross-covariance between the field at points of interest y and observations
of the field o. As these are linearized, thematrices involve a gradient

Σyo = KB(y, xo)∇H|B̃(xo) . (5.158)

xo are the locationsof theobservationso. Thedotproduct is takenpointwise, i.e. for
every observation xo.

Σoo refers to the covariance amongst observations:

Σoo = ∇H|>B̃(xo)
(
KB(xo, xo) + ΣT + ρΣp

)
∇H|B̃(xo) + εΣe (5.159)
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The residual Σp is an identity matrix of the dimension of number of observations
and Σe is the (typically diagonal) matrix of approximate measurement errors, see
Section 5.2.3. ΣT is the correction term for dating uncertainties, see Section 5.2.4:

ΣT = Σtt′ ◦ ∂t∂t′KB(t, t′)|to

As the linearization is tackled bymeans of a two-step strategy, at first the data is par-
titioned into complete c and incomplete i records:

o = {c, i} (5.160)

The first step in the two-step strategy only deals with complete records. However, as the
posterior mean from the first step serves as the point of expansion (POE) in the second
step, predictions at locations of incomplete records xi have to be included as well. The
posterior mean and covariance from the first step read

E
[
B(y)|c

]
=B̄(y) + Σyc · Σ–1

cc ·
(
c – H̄(xc)

)
(5.161)

Cov
[
B(y),B(y)|c

]
=Σyy – Σyc · Σ–1

cc · Σ>yc (5.162)

Posterior correlations for the incomplete records are given by

Σyi|c =Σyi – Σyc · Σ–1
cc · Σ>ic (5.163)

Σii|c =Σii – Σic · Σ–1
cc · Σ>ic (5.164)

To calculate the relevant linearized quantities, the POE is calculated as the inverse ob-
servation functional, i.e. in the first step

B̃(xc) = H–1(c) (5.165)

with

H–1 :

D
I
F

→ B = F

cos
(
I
)
cos
(
D
)

cos
(
I
)
sin
(
D
)

sin
(
I
)

 . (5.166)

In the second step, the posterior mean of the first step is used as POE:

B̃(xi) = B̄|c(xi) (5.167)
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The remaining records are incorporated and give a posterior with

E
[
B(y)|c, i

]
=B̄|c(y) + Σyi|c · Σ–1

ii|c ·
(
i – H̄|c(xi)

)
(5.168)

Cov
[
B(y),B(y)|c, i

]
=Σyy|c – Σyi|c · Σ–1

ii|c · Σ
>
yi|c (5.169)

During the illustratedprocedure, thehyperparameters are assumed tobeknown. As this
is a priori not the case, we next illustrate how tomarginalize them.

Marginal posterior

The density
p(o|η) =

∫
p(o|B)p(B|η) dB (5.170)

is called marginal likelihood where the term marginal refers to the integration over the
EMF. p(o|η) is a function in the hyperparameters η, given the data o. For a certain choice
of hyperparameters, p(o|η) describes how likely the observations are. In our case, η con-
sists of the a priori dipole strength andvariances, the correlation times and the error and
residual scalings, η = {γ01 , αDP, αND, τDP, τND, ε, ρ}, see also Section 5.2.5. Building the
compound distribution for the EMF (Eq. 5.144) requires calculating the marginal likeli-
hood. Fortunately, this can be done using expressions from the previous section. In the
same language as before, themarginal likelihood is also given by a two-step formula

p(o = {c, i}|η) = p(i|η, c)p(c|η) . (5.171)

The conditional in p(i|η, c) refers again to the POE in calculating the gradients for lin-
earization. With the matrix notation from before, one has (Rasmussen and Williams,
2006)

p(c|η) =
exp

(
– 1

2
(
c – H̄(xc)

)TΣ–1
cc
(
c – H̄(xc)

))√
(2π)3nc |Σcc|

(5.172)

p(i|c, η) =
exp

(
– 1

2
(
i – H̄|c(xi)

)TΣ–1
ii|c
(
i – H̄|c(xi)

))√
(2π)ni |Σii|c|

. (5.173)

Here nc and ni refer to the numbers of complete and incomplete records respectively.
Multiplying the marginal likelihood with a prior over the hyperparameters gives the
marginal posterior, up to a normalization constant:

p(η|o) ∝ p(o|η)p(η) (5.174)
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5.5 Appendix

For numerical reasons, one often uses the logmarginal posterior

ln p(η|o) = ln p(o|η) + ln p(η) + const. . (5.175)

Exploration and integration

With the details outlined in the previous sections, we can now describe the main two
stages of themodeling algorithm:

Exploration The first stage consists of finding the maximum aposteriori probability
estimator (MAP) η̂ of themarginal posterior. Therefore, the logmarginal posterior
is optimized using global optimization techniques.

Integration With the MAP as center, a set of integration points Sη is constructed as
described by Rue, Martino, and Chopin (2009) and Sanchez and Sanchez (2005).
With weights Δη, the integral for the compound distribution Eq. 5.144 is approxi-
mated by a sum ∫

p(B|o, η) · p(η|o) dη ≈
∑
η∈Sη

p(B|o, η) · p(η|o) Δη . (5.176)

Thisway the compound distribution is approximated by aGaussianmixture. Sim-
ilar expressions exist for the compound distributions of all quantities of interest,
such as Gauss coefficients or observables like the linearized intensity F.
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Abstract
Wepropose a global geomagnetic fieldmodel for the last fourteen thousand years, based
on thermoremanent records. Wecall themodelArchKalmag14k. ArchKalmag14k is con-
structed bymodifying recently proposed algorithms, based on space-time correlations.
Due to the amount of data and complexity of the model, the full Bayesian posterior is
numerically intractable. To tackle this, we sequentialize the inversion by implement-
ing a Kalman-filter with a fixed time step. Every step consists of a prediction, based on
a degree dependent temporal covariance, and a correction via Gaussian process regres-
sion. Dating errors are treated via a noisy input formulation. Cross-correlations are re-
introduced by a smoothing algorithm andmodel parameters are inferred from the data.
Due to the specific statistical nature of the proposed algorithms, the model comes with
space and time dependent uncertainty estimates.

The new model ArchKalmag14k shows less variation in the large scale degrees than
comparablemodels. Localpredictionsrepresent theunderlyingdataandagreewithcom-
parablemodels, if the location is sampledwell. Uncertainties are bigger for earlier times
and in regions of sparse data coverage. We also use ArchKalmag14k to analyze the ap-
pearance and evolution of the SouthAtlantic anomaly togetherwith reversefluxpatches
at the core mantle boundary, considering the model uncertainties. While we find good
agreementwith earliermodels for recent times, ourmodel suggests a different evolution
of intensity minima prior to 1650 CE. In general, our results suggest that prior to 6000
BCE the data is not sufficient to support global models.
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6.1 Introduction

Global field reconstructions of the past are a key tool for understanding the dynamics of
the Earth’s magnetic field and the underlying processes in the Earth’s core (e.g. Consta-
ble andKorte, 2015). This includes studying the evolution of field features, such as dipole
decay, the South Atlantic Anomaly (SAA) and flux patches (Hartmann and Pacca, 2009;
Jackson and Finlay, 2015). In the past, several techniques for constructing global field
models have been developed and employed. Truncated SH in the spatial domain com-
bined with spline interpolation in time are widely used (Jackson, Jonkers, and Walker,
2000;Korte,Donadini, andConstable, 2009). In theeighties,ConstableandParker (1988)
first proposed using Gaussian processes to model the field dynamics, but until recently,
the techniquehadnot beenapplied to globalfieldmodeling. Only in the last years, statis-
tical methods implementing this approach have been suggested (Hellio and Gillet, 2018;
Nilsson and Suttie, 2021).

Even thoughBloxhamand Jackson (1992) alreadydiscussed the accurate assessment of
uncertainties,most followingstudiesdidnotpursue thesuggestedanalytical approaches,
and either did not report uncertainties at all (Jackson, Jonkers, and Walker, 2000; Con-
stable, Johnson, and Lund, 2000; Korte andConstable, 2003) or relied on ensemble tech-
niques toquantify (modeling related) errors (Korte,Donadini, andConstable, 2009; Licht
et al., 2013; Pavón-Carrascoet al., 2014;Hellio andGillet, 2018; Senftleben, 2019). In con-
trast, Nilsson and Suttie (2021) (and earlier Hellio et al. (2014) for local fieldmodels) used
a Bayesian formulation of the proposedGP approach, to estimate uncertainties based on
the posterior distribution.

Holschneider et al. (2016) extended the GP approach to the spatial domain, to also re-
flect uncertainties resulting from the data distribution, and in two recent studies this
method was adapted to paleomagnetic records (Mauerberger et al., 2020; Schanner et
al., 2021). Themajor challenge with themodeling strategies proposed there is related to
the inversion of large scale matrices, and the methods were found computationally un-
feasible for the number of records available for the Holocene. In the area of modeling
the recent field, this challenge was overcome by applying sequentialization bymeans of
a Kalman-filter (Kalman, 1960) to the inversion problem (Baerenzung et al., 2020; Ropp
et al., 2020). This way, models from a way higher number of satellite observations have
been constructed, while retaining the strategies proposed by Holschneider et al. (2016).
In this study we apply sequentialization to the earlier developed strategy (Schanner et
al., 2021, in the following referred to as SMKH21) and propose a new global geomagnetic
fieldmodel for the Holocene.
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6.2 Method andData

Globalgeomagneticfieldmodelsonarchaeological scalesare inferred fromtwoclasses
ofdata: Data frommaterialswith thermoremanentmagnetisation, suchasvolcanic rocks,
bricks or burnt clay fragments from archaeologic sites, and data from marine or lacus-
trine sedimentswith embeddedmagnetic particles. As in earlier studies, we focus on the
former class and loosely refer to it as archeomagnetic data in this paper. The extension
to sediments poses several additional challenges, some of which are addressed and dis-
cussed by Nilsson and Suttie (2021). The a priori model that results from the sequential-
ization of SMKH21 is similar to the one proposed by Nilsson and Suttie (2021). Besides a
focus on a different and smaller dataset, the main difference lies in the inversion proce-
dure: While Nilsson and Suttie (2021) employ a probabilistic MCMC based strategy, we
rely on a deterministic inversion based on Kalman-filtering.

The rest of this article is structured as follows: In Section 6.2we discuss prior assump-
tions, showcase the modeling method and introduce the dataset. Section 6.3 contains a
brief validation section, using synthetic data, but mainly focuses on the description of
features of the new model, which are discussed in section 6.4. We conclude in Section
6.5 by reconsidering possible extensions and shortcomings of the method, as well as an
outlook to future work.

6.2 Method and Data

6.2.1 Gaussian process based modeling

In the eighties Constable and Parker (1988) proposed using GPs to model the EMF. The
technique was later applied by Gillet et al. (2013) and extended by Holschneider et al.
(2016). A GP is a stochastic process that is uniquely characterized by a mean function
B̄ and a covariance function KB

B ∼ GP
(
B̄, KB

)
. (6.177)

Gaussian process based modeling is a Bayesian approach, where a GP is used as a prior
and an update is given by some normal likelihood. The posterior is then a GP as well, so
that themodel is also uniquely characterized by amean function and a covariance func-
tion (Rasmussen and Williams, 2006). The main difficulty in applying this technique
to paleomagnetic records lies in constructing the normal likelihood, as archeomagnetic
observations are non-linearly related to themagnetic field.
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6.2.2 Data model

To applyGP basedmodeling, one has to construct a normal likelihood, relating observa-
tions to model predictions of the magnetic field. In paleomagnetism, the observations
are the field directions (declination D and inclination I) and intensity F. At locations x
and times t, the datamodel can then be formulated as

o(x, t) = H(B(x, t)) + E , (6.178)

where the observation functional H = (D, I, F) contains the usual expressions for dec-
lination, inclination and intensity and E are the observation errors. This data model is
not Gaussian, asH is non-linear. We linearize the observation functional, to construct a
normal proxy for the datamodel (6.178):

D ≈ D̃ + 1

F̃2H

–B̃E
B̃N
0


>

B , (6.179)

I ≈ Ĩ + 1
F̃H


00
1

 – B̃Z
F̃

B̃
F̃


>

B , (6.180)

F ≈ B̃>

F̃
B . (6.181)

D̃, Ĩ, F̃ and B̃ indicate the POE andwe summarize the linearized expressions asHlin.. The
observationerrorsEarealsonon-Gaussian, as thedirectional errorsaregivenbyaFisher-
von Mises distribution. We approximate this two dimensional distribution with 95%
confidence cone (α95) by two centered normal distributions with standard deviations
(Piper, 1989; Suttie and Nilsson, 2019)

σI =
57.3◦

140
α95 and σD = 1

cos oI
σI . (6.182)

We label these approximate errorsEprox.. Next, we consider dating uncertainties as sug-
gested in SMKH21. The precise times t at which the archeomagnetic specimen received
their magnetization are unknown. Instead, a corrupted date to = t + et is reported, and
we consider et to be a centered normal error, even though dating errors for archaeolog-
ical artifacts may have a non-Gaussian distribution. This error in the inputs is handled
by another linearization, as proposed by McHutchon and Rasmussen (2011, the NIGP).
As the errors are centered, the a priori mean is not affected by this procedure. However,
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6.2 Method andData

via linearization the dating uncertainties are translated into observation uncertainties,
and the covariance gets an additional term

Σtt′ ◦ ∂t∂t′KB(x, t; x′, t′)|to . (6.183)

Σtt′ is the covariancematrix of the dating errors and ◦ is the Hadamard product (see also
Schanner et al., 2021, Sec. 2.4). The effect of the NIGP model is thus the inclusion of
dating errors as contributions to the data covariance, similar tomeasurement errors. To
realize this, dating errors are weighed by the second order time derivative of the kernel.
The idea is related, but not equal, to the approach of estimating the contribution of dat-
ing uncertainties by using the secular variation (see e.g. Korte et al., 2005). Due to the
GP structure of the proposed model, the covariance structure for the secular variation
is available a priori. Finally, a residual term ξP is added to cover any effects that are not
modeled, like crustal field or ellipticity of the Earth (see also Mauerberger et al., 2020;
Schanner et al., 2021). This way, the datamodel reads

o(x, t) ≈ Hlin.
(
B(x, to) – e>t ∂tB(x, t)|to + ξP

)
+ Eprox. . (6.184)

6.2.3 A priori process

We consider the common spherical harmonics (SH) expansion of the geomagnetic po-
tential Φ, which is valid outside of the Earth’s conducting core, assuming an insulating
mantle:

Φ(x, t) = R
∑
ℓ

(
R
|x|

)ℓ+1 ∑
–ℓ≤m≤ℓ

gmℓ (t) Ym
ℓ (x̂) . (6.185)

x̂ is the unit vector x/|x| and Ym
ℓ refers to the real valued and Schmidt semi-normalized

SHofdegree ℓ andordermwith relatedGauss coefficient gmℓ . Fromthis, theEarth’smag-
netic field is given as the gradient

B = –∇Φ , (6.186)

and mean and covariance function of the EMF can be derived from assumptions about
correlations of the Gauss coefficients. A priori we assume all Gauss coefficients except
for the axial dipole to be of zeromean. Themean function for the axial dipole is assumed
constant, with value γ01 . We assume all coefficients to be uncorrelated and identically
distributed at a reference radius R = 2800 km (within the Earth’s core). This is the “vir-
tual” source regionwhere the spectrum is flat and the field has no direct physical mean-
ing. The magnetic field given by this assumption is only a valid representation of the
actual field above the CMB. Inside of the core it can be seen as an artificial connection
of the physical field at the CMB to the virtual sources inside of the core. We assume two
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different a priori variances, one for the dipole coefficients αDP and one for all higher de-
grees αND. For eachcoefficientweassumea temporal correlation in the formofanAR(2)-
process, as proposed byGillet et al. (2013) and employed also by others (Hellio andGillet,
2018; Baerenzung et al., 2020; Ropp et al., 2020; Nilsson and Suttie, 2021). This way, the
temporal correlation of each coefficient is given by

ρℓ(t – t′) =
(
1 + |t – t′|

τℓ

)
exp

(
–|t – t′|

τℓ

)
. (6.187)

Similar to Baerenzung et al. (2020), we assume one correlation time τDP for the dipole
and a relation for all higher degrees ℓ ≥ 2

τℓ =
τND
ℓ

. (6.188)

Theposteriormaybe smoother ormoredetailed than these timescales, dependingon the
data.

6.2.4 Sequentialization

In previous studies (Mauerberger et al., 2020; Schanner et al., 2021) we aimed at per-
forming standard GP regression in the introduced setting. However, as determining the
hyperparameters of themodel requires this regression to be performedmany times, this
proved to be computationally unfeasible. To overcome this, we performa sequentialized
inversion, in form of a Kalman filter (Kalman, 1960; Baerenzung et al., 2020). Starting
at an initial time, the Kalman filter consists of a series of steps, each consisting of a pre-
diction based on the current model and a correction, which updates the model if data is
available. In contrast to the previous study SMKH21, this requires us to define a cutoff
degree ℓmax, so that the model can be characterized by a finite vector of coefficients and
their derivatives z = (gmℓ , ġmℓ ). The prediction equations from step i to i + 1 are given by

E
[
zi+1|i

]
= FiE

[
zi
]

(6.189)

Cov
[
zi+1|i, zi+1|i

]
= FiCov

[
zi, zi

]
F>i + Σ̃ , (6.190)

where

Fi(ℓ, Δt = ti+1 – ti) =

(
1 + |Δt|/τℓ Δt
–Δt/τ2ℓ 1 – |Δt|/τℓ

)
exp

(
–|Δt|

τℓ

)
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6.2 Method andData

is the forward operator of the AR(2)-process and Σ̃ = Σ – FΣF> with the a priori corre-
lations Σ. The correction step consists of a Bayesian GP inversion, as described in detail
in SMKH21. The linearization is performed around the current model, beginning with
the prior. We run the Kalman filter “backwards”, i.e. from modern times to the past, as
the data distribution is sparser towards earlier years. We expect the bigger amount of
data in the beginning of the filtering to constrain the model and improve the POE for
earlier times. We choose a cutoff degree of ℓmax = 20 and a step size of Δt = 10 years.
Both choices are believed to allow for a way higher resolution than present in the data,
so that every dynamic present in the data can be captured by the model. After running
the Kalman-filter we run a smoothing algorithm, following the formulation of Rauch,
Tung, and Striebel (1965) (see also Baerenzung et al. (2020)). This way, cross correlations
that are not present in the Kalman-filter are re-introduced to the posterior.

We store a set of coefficients every 50 years, so that the output of a sequentialized in-
version consists of 281 sets of 440 main field coefficients, 440 secular variation coeffi-
cients and the respective covariances.

6.2.5 Hyperparameters

The a priori model depends on several parameters, that have to be inferred before the
actual inversion can be performed. One approach (e.g. Hellio and Gillet, 2018; Nilsson
and Suttie, 2021) is to infer these parameters from outside knowledge, for example from
models based on observatory and satellite data. We followed this approach in select-
ing the reference radius R, which effectively controls the slope of the a priori spectrum,
by comparison to the IGRF models. For the other parameters we suggest a more self-
consistent strategy and estimate them based on a maximum likelihood procedure. This
strategy didnotwork for the reference radius,most likely because the sparse data in ear-
lier years do not constrain it well enough.

Consider the forward log-marginal likelihood

Lfwd. =
N∑
i=1

[
– ln |Σo,i| –

1
2
(
oi – Hlin.B(zi)

)>Σ–1
o,i
(
oi – Hlin.B(zi)

)]
(6.191)

with observations in the i-th step oi and their observation covariance Σo,i. N refers to
the number of steps in the Kalman filter. The forward likelihood depends on the hy-
perparameters and is considered a measure for how good a choice of hyperparameters
describes the data. Wemaximize this expression using LIPO-TR (King, 2009; King, 2017)
and use the maximum estimator for the parameters in the inference. The search region
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is specified by lower and upper bounds for the hyperparameters, these are as follows:

–100 μT ≤ γ01 ≤ –10 μT 1 μT ≤ α• ≤ 1000 μT

10 yrs. ≤ τ• ≤ 2000 yrs. 0.01 μT ≤ ξ ≤ 5 μT

where • stands for DP and ND. Note that γ01 and the α• are given at the reference radius
R = 2800km.

6.2.6 Dataset

Thedataset isa slightvariationofall records fromthearchaeological andvolcanicdatabase
from GEOMAGIA v3.4 (Brown et al., 2015) with ages between 12000 BCE and 2000 CE.
Part of the records from Mexico contain wrong age and dating uncertainty estimates
(Mahgoub, pers. comm.). Some of them are too old by several thousand years and have
been removed, while for others updated 14C ages have been published for the lava flows
that they originate from. These updates have been used (see Table 6.4) and will be in-
cluded in GEOMAGIA in the future. To identify other records that deviate from the rest,
we use a Naive Bayes classifier (e.g. Berrar, 2018). This procedure is integrated into the
Kalman-filter as follows:

When a step i + 1 contains new data, we evaluate the probability of every record to ei-
ther come fromanormal distributionwith standard deviation of the size of the reported
error or from a flat distribution of larger variance ((100◦)2 for declination, (50◦)2 for in-
clination and (100μT)2 for intensities). Records that aremore likely to stem from the flat
distribution are considered outliers. In comparison to the standard approach of reject-
ing all data that deviates by a specific amount from the model, this procedure is more
flexible and allows larger deviations, especially if the currentmodel reports high uncer-
tainties. By this procedure 276 records are identified and removed from the dataset. The
final dataset contains 18735 records from 11637 locations. It consists of 5611 declinations,
7028 inclinations and 6096 intensities.

In the geomagnetic community, it is common to use L1 or Huber norms and employ
reweighing techniques to address outliers (Walker and Jackson, 2000;Olsen, 2002). Hel-
lio et al. (2014) andNilsson and Suttie (2021) implement longer tailed error distributions
and include all records in their models. In contrast to these approaches, we resort to
outlier rejection for two practical reasons: First, the precise influence of the error distri-
bution on themodel is a question that is yet to be addressed by the community. Records
which are accepted by the naive Bayes classifier are likely to be describedwell by aGaus-
sian error model, and by rejecting the rest we postpone a detailed analysis. Second, by
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6.3 Results

considering a Gaussian error model only, the inversion is feasible analytically and can
be addressed by numerical linear algebra, without resorting to sampling techniques. We
acknowledge that the errormodel is a point that could be addressedmore thoroughly in
the future.
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Figure 6.1: Spatial and temporal distribution of the data. Every declination, inclination
and intensity is counted as one record and represented by one dot. Note the
logarithmic scale (left) on the histogram. To emphasize the inhomogeneity
in the temporal distribution, the normalized cumulative sum of the data is
shown in orange (right scale).

6.3 Results

6.3.1 Validation

In order to validate the proposed modeling method, we performed a test inversion on
synthetic data. We therefore set upamodelwithfixedhyperparameters and sampled co-
efficients from the prior distribution, which serve as reference. From these coefficients
we generated data at the same input locations and times as the ones in the dataset de-
scribed in section 6.2.6. The data was then corrupted by artificial noise from a Gamma
distribution for the intensity and a vonMises-Fisher distribution for the directions and
by normal noise in the ages. The error levels reported in the database were used. Table
6.1 shows the fixed hyperparameters and the inferred ones. Apart from one parameter
they agree reasonablywell. The deviance in the non-dipole correlation time is likely due
to the data distribution. We believe that the variations that are present in the data can
be resolvedwith the larger a priori correlation time and shorter variations can not be re-
covered. No additional contributions (white noise) were added to the synthetic dataset
and the algorithm chooses the lowest possible value for the residual scaling accordingly.
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Figure 6.2 shows generated and inferred axial dipole and quadrupole. Especially in
earlier times, the quadrupole is better resolved than the axial dipole. This may be due to
the data distribution, as indicated by Figure 6.3. We there show the relative covariance
gain (the diagonal of the last term on the right hand side of Eq. (7) in Schanner et al.
(2021), relative to the prior covariance) per coefficient for a stationary inversion. This
quantity only depends on the data distribution. With the actual distribution, the gain is
stronger in thequadrupole. Witha symmetrizeddataset, large scale degrees are resolved
more evenly. A similar behavior is also visible in the power spectra of the test inversion,
which are provided with the supplementary material (Figure 6.13). In general, Figure
6.2 shows a promising agreement, although some variation in the dipole, prominently
between 10000 and 8000 BCE, is not present in the inferred model. This already hints
at the data not containing enough information to recover global features during early
times. Further figures from the validation process, showing the other dipole and some
higher order coefficients, are available with the supplementarymaterial (Fig. 6.12).

Table 6.1: Hyperparameters thathavebeenused to generate synthetic data for the valida-
tion (“fixed”) and the ones inferred using the proposed method. γ01 is the con-
stant a priori axial dipole, αDP and αND give the a priori scaling of the dipole
and non-dipole covariance kernel respectively. τDP and τND give the corre-
sponding a priori correlation times. ξ is the scaling factor of the residual term.
Note that γ01 and α• are given at the reference radius.

Model γ01 [μT] αDP [μT] τDP [yrs.] αND [μT] τND [yrs.] ξ [μT]
Fixed -412.3 13.8 250 39.4 393 -
Inferred -408.55 9.87 302.48 30.70 724.76 0.01

6.3.2 ArchKalmag14k

In the following we propose and describe a new global geomagnetic field model, based
on archeomagnetic records. It covers the last 14000 years andwe call it ArchKalmag14k,
as it is based on methods similar to the Kalmag model by Baerenzung et al. (2020). The
hyperparameters that maximize the marginal likelihood and define the prior used for
constructing themodel aregiven inTable6.2. WecompareArchKalmag14k to themodels
ARCH10k.1 (Constable, Korte, and Panovska, 2016) and SHA.DIF.14k (Pavón-Carrasco et
al., 2014), as both rest on a similar database and cover a similar timespan.

Running the inversion as described in Section 6.2 gives 281 sets of 440main field and
440 secular variation coefficients together with the respective covariances, one set ev-
ery 50 years. A comparison of the model coefficients to the prior is given with the sup-
plementarymaterial (Figure 6.14). Figure 6.4 shows the dipole and axial quadrupole and
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Figure 6.2: Axial dipole (top) and quadrupole (bottom) of the synthetic model, together
with the corresponding inferred ones from the proposed inversion. The
inferred (blue) and reference curves (red) agree within the pointwise 95%-
regions shown in light blue. Some variations, most prominently in the axial
dipole between 10000 and 8000 BCE, can not be resolved.
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Figure 6.3: Relative covariance gain per degree for a stationary inversion. The blue dots
refer to the actual dataset, while orange ones refer to a symmetrized version.
The bottom row of the horizontal axis refers to the coefficient order.

Table 6.2: Prior hyperparameters for ArchKalmag14k. Note that γ01 and α• are given at
the reference radius. At the Earth’s surface, γ01 ≈ –36.19 μT.

γ01 [μT] αDP [μT] τDP [yrs.] αND [μT] τND [yrs.] ξ [μT]
-426.33 28.66 183.22 111.63 316.00 3.35

octopole coefficients togetherwith 95%-uncertainties and comparisonmodels. Thepro-
posedmodelArchKalmag14k shows less variation in thedipoledegrees thancomparable
models, especially during earlier timeswhen data is sparse. More variation is present in
the quadrupole and octopole, with variation decreasing towards earlier times.
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This behavior is also reflected in the power spectra. Figure 6.5 shows the spatial (top
row) and secular variation (bottom row) spectra for two selected epochs, one with dense
(1000 CE) and onewith sparse (6000 BCE) data coverage. The blue lines show the power
spectrum as a random variable (i.e. a quantity non-linearly derived from the posterior
GP), together with the corresponding prior as a light blue dashed line. These curves
represent the non-linear transformations of the prior and posterior distribution. We
also plot the power spectrum of the mean model (grey lines), i.e. the power spectrum
directly inferred from the mean coefficients. The random variable gives higher values
than themeanandcomparisonmodels, as it also includes thevarianceof the coefficients.
The random variable can be compared to the prior, to determine the model resolution,
while the power spectrum of the mean is better suited for comparison to existing mod-
els. For the recent epoch, the spectrum lies between the one for ARCH10k.1 (orange) and
SHA.DIF.14k (green). For the earlier epoch,more power is present in degrees 2 and 3 and
a more rapid decrease in power is observed for the higher degrees, than in the compar-
ison models. For the secular variation the prior is reproduced from degree 3 on at both
epochs. For the earlier epoch, the dipole secular variation power is also close to the prior.
Themeanmodel shows less secular variation in the dipole than the comparisonmodels,
with more power in degrees 2 to 4. For the recent epoch, more variation is observed in
the higher degrees with a more rapid decrease in power for the earlier epoch, similar to
the spatial spectrum.

Figures 6.6 and 6.7 show local curves for Paris and Hawaii respectively. Data from a
surrounding of 250km around the respective location is included with the prediction.
Inclination and intensity are translated along the corresponding axial dipoles (Merrill,
McElhinny, andMcFadden, 1996). Declinations are taken as reported. The two locations
were chosen because they have very different data coverage: Paris is coveredwell during
recent times with a decrease in data from 1000 BCE on and virtually no data for epochs
earlier than 6000 BCE. This is reflected in the prediction curves, which show less vari-
ation and increasing uncertainties for times with low data coverage. Hawaii is not as
densely covered during recent times, but due to the volcanic area, records are available
over the whole timespan of the model. Consequently, the predictions show variations
during earlier times and the reported uncertainties are smaller. The comparisonmodels
agree within the reported 95%-intervals for both locations. For Paris, the SHA.DIF.14k
model showsmore variation during times earlier than 5000 BCE andmost prominently
from 12000 to 8000 BCE. For Hawaii, all models show a similar amount of variation,
with SHA.DIF.14k varying slightly more and ARCH10k.1 slightly less, especially in the
intensity. Two additional local predictions, for the Indian ocean and New Zealand, are
provided with the supplementarymaterial (Figures 6.15 and 6.16).
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Figure 6.4: Gauss coefficients of the dipole and the axial quadru- and octopole. ArchKal-
mag14k is shown in blue. The shaded area covers the pointwise 95%-region.
ARCH10k.1 is shown in orange and SHA.DIF.14k in green.

We investigate the misfit of the model in table 6.3. The sum of residuals squared, di-
vided by the variance is a χ2-distributed random variable:

T =
N∑
i=1

(
oi(x, t) – Hi[B(x, t)]

)2
σ2
o,i + σ2

t,i + σ2
B,i

∼ χ2N (6.192)

σo,i is the observation error, σt,i the weighed dating uncertainty as given by Eq. (6.183)
and σB,i is the posterior standard deviation. N refers to the number of records. The nor-
malizedmisfit can be calculated from T as

M =
√

T
N

. (6.193)

It is evident, that T lies below the 95% confidence interval of the corresponding χ2 dis-
tribution in almost all cases. AlsoM is below 1 for all subsets. Both results might indi-
cate, that the model is overfitting the data, but when looking at the relatively big MAE,
this does not seem to be the case. Instead, we think the reason for the low misfit and T
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Figure 6.5: Geomagneticmainfield (top) and secular variation spectra (bottom) atEarth’s
surface for two selected epochs. The random variable power spectrum
for ArchKalmag14k is shown in blue. The errorbars report 2.5- and 97.5-
percentiles, covering 95%. For comparison, the spectra of the mean model
are shown in grey. The prior spectrum is shown as a light blue dashed line.
ARCH10k.1 is shown in orange and SHA.DIF.14k in green. See the text for ad-
ditional discussion.

values lies in the large contributions from the dating uncertainties. These may be over-
estimated, as we use the reported uncertainties as standard deviations for normal error
distributions. If in fact they come from a different distribution, for example a uniform
one, this procedure gives errors that are too large. The large errors also result in a low
impact of such records on the model. The large MAEmay be caused by those records as
well. As discussed above, a more thorough treatment of the error model (and with this
also the dating uncertainties) in general may be necessary to address this.
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Figure 6.6: Local predictions of intensity F, declinationDand inclination I for Paris. Note
thedifferent timescales in the leftand right parts of the bottompanels! Arch-
Kalmag14k is shown in blue. The shaded area covers 95%. ARCH10k.1 is
shown in orange and SHA.DIF.14k in green. In the top row, the spatial and
temporal distribution of the surrounding are shown. Data in the orange el-
lipse (250kmradius) are translated (Merrill,McElhinny, andMcFadden, 1996)
to the location of prediction (orange dot) and shown as gray dots. Horizon-
tal and vertical gray bars indicate the two sigma temporal and field compo-
nent data uncertainties, respectively. The temporal distribution (top right)
includes all data visible in the top left plot.
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Figure 6.7: Local predictions of intensity F, declination D and inclination I for Hawaii.
Note the different timescales in the left and right parts of the bottom panels!
ArchKalmag14k is shown in blue. The shaded area covers 95%. ARCH10k.1
is shown in orange and SHA.DIF.14k in green. In the top row, the spatial and
temporal distribution of the surrounding are shown. Data in the orange el-
lipse (250kmradius) are translated (Merrill,McElhinny, andMcFadden, 1996)
to the location of prediction (orange dot) and shown as gray dots. Horizon-
tal and vertical gray bars indicate the two sigma temporal and field compo-
nent data uncertainties, respectively. The temporal distribution (top right)
includes all data visible in the top left plot.
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Table 6.3: Data misfit for several data subsets. N refers to the number of records in the
data subset. T gives the sumof the residuals squared, divided by the variances.
This is a χ2-distributed random variable and we give the 95%-intervals of the
corresponding distribution as CIχ2 . M is the normalized misfit, i.e.

√
T /N.

MAE refers to themean absolute error. The early subset consists of all records
before -6000 BCE, themiddle subset covers -6000 BCE to 0 CE and the recent
subset includes all records after 0 CE. A map of the localized subsets is given
with the supplementarymaterial (Fig. 6.17).

Name Type N T CIχ2 M MAE
Early D 119 19.0 [90.7, 151.1] 0.40 9.9◦

I 132 13.6 [102.1, 165.7] 0.32 7.1◦
F 155 39.6 [122.4, 191.4] 0.51 8.7 μT

Middle D 1307 489.0 [1208.7, 1409.1] 0.61 7.3◦
I 1372 461.2 [1271.2, 1476.6] 0.58 4.1◦
F 3010 1984.7 [2859.8, 3164.0] 0.81 7.1 μT

Recent D 4208 2494.5 [4030.1, 4389.7] 0.77 5.1◦
I 5552 5346.2 [5347.4, 5760.4] 0.98 3.4◦
F 2958 1829.7 [2809.2, 3110.6] 0.79 6.0 μT

Europe D 3434 1802.3 [3273.5, 3598.3] 0.72 5.8◦
I 3952 2916.1 [3779.7, 4128.1] 0.86 3.0◦
F 2546 1987.3 [2408.0, 2687.7] 0.88 6.3 μT

North America D 943 515.0 [859.8, 1030.0] 0.74 5.4◦
I 945 703.2 [861.7, 1032.1] 0.86 4.3◦
F 488 370.4 [428.7, 551.1] 0.87 8.0 μT

East Asia D 349 214.1 [299.1, 402.6] 0.78 5.6◦
I 412 365.9 [357.7, 470.1] 0.94 4.2◦
F 601 331.0 [535.0, 670.8] 0.74 7.2 μT

South Pacific D 0 - - - -
I 0 - - - -
F 28 11.8 [15.3, 44.5] 0.65 5.2 μT

6.3.3 Dipole moment and location

During the Holocene, the geomagnetic field is dipole dominated. Therefore it is of spe-
cial interest to infer the dynamics of the dipole. Figure 6.8 shows the evolution of the
dipole moment. To access the dipole moment mean and standard deviation, sampling
techniques are employed. The proposedmodel ArchKalmag14k shows significantly less
variation in the dipolemoment than comparablemodels. We observe some rapid varia-
tions from 1000 BCE to today, but for earlier times no rapid variations are found. Inter-
estinglyweobserve ahigherdipolemoment than the comparisonmodels for the interval
6000 to 2000 BCE and also from 12000 to 8000 BCE.
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Figure 6.8: Dipole moment of the geomagnetic field. ArchKalmag14k is shown in blue.
The shaded area covers 95%. ARCH10k.1 is shown in orange and SHA.DIF.14k
in green. Mean and standard deviation of ArchKalmag14k are inferred from
sampling. This sampling is the reason for the small scale noise in the blue
curve and area.

Figure 6.9 shows the latitude and longitude of the dipole location, together with the
angular standard deviation (Butler, 2004). The latter is inferred via sampling. In earlier
studies (Mauerberger et al., 2020; Schanner et al., 2021) we analyzed the statistics of the
dipole axis coordinates directly. Here we analyze the projection of the dipole onto the
sphere instead. The corresponding distribution is approximated by a von Mises-Fisher
distribution and we report the latitude and longitude of its location parameter, instead
of themean of themarginal distributions. The advantage of performing statistics on the
sphere instead of considering the marginal distribution is that there is no critical point
(resp.meridian). The disadvantage is that the distribution is not available in closed form
and that uncertainties can not easily be translated to latitude and longitude, as approx-
imations become unreliable when close to the pole (singularity in Eq. 6.182). Similar to
the dipole moment, the proposed model shows less variation during earlier times. The
dipole latitude showsa trendopposite to theSHA.DIF.14kmodel for the interval 12000 to
6000BCE,with thegeomagneticpolebeingveryclose to thegeographicone in thebegin-
ning and a decrease in latitude towards recent times, in contrast to an increase present
in the SHA.DIF.14k model. The angular standard deviation (Figure 6.9, bottom row) in-
creases towards earlier times, as is expected from the thinning data distribution.
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Figure 6.9: Latitude (top) and longitude (middle) of the geomagnetic dipole axis. Arch-
Kalmag14k is shown in blue. ARCH10k.1 is shown in orange and SHA.DIF.14k
in green. The bottom plot shows the angular standard deviation δ (Butler,
2004) for ArchKalmag14k, which is inferred from sampling. This sampling
is the reason for the small scale noise in earlier times.

6.3.4 South Atlantic anomaly

To conclude the results, we present investigations of the South Atlantic Anomaly (SAA).
The SAA is a region of low field intensity, that has been linked to reverse flux patches at
the CMB during recent times (e.g. Terra-Nova et al., 2017). We compare the appearance
and evolution of the SAA as predicted by ArchKalmag14k to other studies (Hartmann
and Pacca, 2009; Campuzano et al., 2019). We do not follow the kernel-based approach
of Terra-Nova et al. (2017), but investigatemaps of themagnetic fields radial component
at theCMB. In general, due to the projection into theEarth’s interior, uncertainties at the
CMB are so large that reverse flux in the mean model is not resolved reliably and more
data and futurework are required to confirm thesefindings. We consider the projections
qualitatively nevertheless.

We find a region of field intensity lower than 32 μT emerging close to the tip of Brazil
at 1200CE (bottomright in Figure 6.11). Reverseflux is present to thenorth and apatch of
reverse flux is located directly south of the region. Together with this patch, the region
of low intensity rapidly moves south-eastward to the coast of today’s Namibia, where
it is located in 1300 CE (Fig. 6.10, b)). This contrasts the findings of Campuzano et al.

117



F BZ@CMB

24 35 46 57 68 79 90
−9
00

−6
00

−3
00 0

30
0

60
0

90
0

0 2.5 5 7.5 10 12.5 15 260 285 310 335 360 385 410

[μT]

[μT]

a)

F BZ@CMB

24 33 42 51 60 69 78

−1
20
0

−8
00

−4
00 0

40
0

80
0

120
0

0 1.5 3 4.5 6 7.5 9 220 250 280 310 340 370 400

[μT]

[μT]

b)

Figure 6.10: The South Atlantic Anomaly (SAA). The top rows show the field intensity at
the Earth’s surface and the magnetic field radial component (downwards).
The bottom rows show the respective standard deviation. a) is for the year
1500 BCE and b) for 1300 CE. The yellow triangles indicate the location of
lowest field intensity. The yellow contour line corresponds to a field value of
32 μT. For reference, both location of lowest intensity and contour are also
shown in the CMB plots in blue.
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(2019), where the low intensity region emerges approximately 100 years earlier close to
Madagascar, althoughanearlier emergence iswithin theuncertainties of ourmodel. The
SAA then extends to theWest and slightly to the East, with the center driftingwestward
until 1500 CE, back to the origin of the region. From there it moves East and constricts
at the coast of today’s Namibia, almost disappearing at 1650 CE. This dynamic is also
not present in SHA.WQ.2k by Campuzano et al. (2019), where the SAA persists at the
coast of Namibia and does not decrease in size. The described evolution precedes the
dynamics found by Hartmann and Pacca (2009). The subsequent westward drift of the
low intensity region generally agreeswith their findings and thefindings of Campuzano
et al. (2019) within the uncertainties.

Further, we find a low field intensity region emerging in 250 BCEwest of today’s Peru
(bottom left in Figure 6.11). It drifts south-eastward and in 500 CEmerges with a second
low field intensity region that emerges around 400 CE North-East of Madagascar. Both
anomalies are accompanied by reverse flux in the Southern hemisphere. The joint low
intensity region continues to drift eastward and shrinks, persisting until 900 CE. Cam-
puzano et al. (2019) find a low intensity field region emerging at the coast of Namibia
at 175 CE. In their findings the earlier anomaly is static and grows until 500 CE. It then
shrinks and disappears at 700 CE, earlier than in our findings.

Low intensity regions around the equator are present from the beginning of themodel
timespan on, but uncertainties are too large to reliably interpret their appearance. First
reliable hints on a low intensity field region in the Indian ocean are present around 3000
BCE,with the region drifting eastward (top left in Figure 6.11) and a second low intensity
region appearing over theNorthern part of SouthAmerica at 2600BCE (top right in Fig-
ure 6.11). The anomaly in the Indian ocean disappears at 2200 BCE. The one above South
America is accompanied by pronounced reverse flux, although during these epochs un-
certainties at the CMB are even higher than during recent times and caution has to be
taken when interpreting the results. The anomaly persists over South America, extends
until 1500 BCE (Fig. 6.10, a)) and vanishes in 1200 BCE.

Overall the model shows low field intensity anomalies, accompanied by reverse flux,
emerging and vanishing regularly, with a cycle in the order of 1000 years. An anima-
tion of the field at the Earth’s surface and the CMB can be foundwith the supplementary
material.
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Figure 6.11: Paths of theminima of low intensity field regions described in the text. Dots
are drawn every hundred years. The locations of the minima have been ob-
tained using grid search, which leads to several discrete jumps in the curves.

6.4 Discussion

In the preceding section we proposed the new global geomagnetic field model ArchKal-
mag14k and presented its features. The local predictions give a reasonable representa-
tion of the underlying archeomagnetic data and agree with comparison models within
theuncertainties. If nodata is present, local curves showsignificantly less variation than
the compared models. Low order, global scale degrees are only resolved if a sufficient
amount of data is present. In this case, local predictions for remote locations also show
rapid variations and uncertainties are relatively small (see the local predictions for the
Indian ocean in the supplementary material (Figure S3)). If the data cannot resolve the
global scales, the prior is reproduced, which is evident from local curves with no data
coverage (Fig. 6.6) and the analysis of the dipole itself (Figs. 6.8 and 6.9). For times ear-
lier than 6000 BCE, the axial dipole varies only slightly around the prior mean value of
approx. –36.19 μT (Fig. 6.4, top row; see also Figure 6.14 in the supplementarymaterial).
Nevertheless, local variations are resolved, if supported by the data (Fig. 6.7, especially
the dip in declination at 11000 BCE). Spatial power spectra provide insight on the reso-
lution of the model on global scales. From a comparison of the spectra to the respective
prior it is evident, that for recent times information up to degree 6 is obtained, while for
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the earlier times the prior is reproduced already at degree 3 (Fig. 6.5, top row). An in-
vestigation of low intensity field regions reproduces the emergence and evolution of the
South Atlantic Anomaly (SAA) in recent times (from 1600 CE on), while the preceding
dynamics differ fromother studies (Campuzano et al., 2019). Low intensity field regions
can be resolved from 3000 BCE on. Although uncertainties at the CMB are large, hints
for reverse flux patches associatedwith these field anomalies are found. A detailed eval-
uation relating these patches to the anomalies, e.g. based on kernels (Terra-Nova et al.,
2017) remains to be done andmore data are needed to reduce the uncertainties.

In contrast to other recently proposed Bayesian models (Hellio and Gillet, 2018; Nils-
son and Suttie, 2021), most prior parameters of ArchKalmag14k are inferred from the
data via maximization of the log marginal likelihood. As the marginal likelihood drops
off quickly around the maximum, we did not perform an integration as proposed in the
last study (Schanner et al., 2021). The a priori assumption of a constant axial dipolemay
lead to an underestimation of uncertainties in the dipole degrees, moment and location,
as the prior mean is constrained well by data from recent times and variations during
earlier times are considered around this fixed, constant value. Using only part of the re-
cent records to create a dataset that ismore homogeneous in timemay improve this, but
leads to other complications as hyperparameters become less constrained and harder to
determine, when fewer records are available. Artificially increasing the a priori dipole
variance leads tomore variation around the constantmeanduring earlier times, but also
to higher posterior uncertainties and the model we propose lies well within these. Two
scenarios are reasonable, to explain the absence of variations during earlier times in our
model. Either the statistical properties (and thus the underlying processes) of the EMF
changed during theHolocene, some time around 3000BCE. This is supported by a visual
inspection of the top row in Figure 6.4 and Figure 6.8. Or the data do not contain enough
information to recover the global dynamics of the field, which is supported by the find-
ings of the validation section. Additional data, e.g. from sediments may help recovering
the actual field dynamics, but require significant adaptation of themodelingmethod.

6.5 Conclusions

This study proposes a new global geomagnetic model for the Holocene, called ArchKal-
mag14k. We modified the algorithms suggested in earlier works (Mauerberger et al.,
2020; Schanner et al., 2021) to be applicable to the archeomagnetic database. The in-
version is sequentialized bymeans of a Kalman-filter (Kalman, 1960; Baerenzung et al.,
2020). The resulting model consists of sets of Gauss coefficients, secular variations and
covariances, stored every 50 years. Themodel can be reproduced by code that is publicly
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available (https://sec23.git-pages.gfz-potsdam.de/korte/paleokalmag/) or ispro-
videduponrequest. ArchKalmag14kcanbe importedbypymagglobal (Schanner,Mauer-
berger, and Korte, 2020), so that feature analysis is straight-forward. Together with the
software,we provide a Jupyter notebook, that illustrates how to reproduceArchKalmag-
14k. Themodel is alsoavailablevia awebsite: https://ionocovar.agnld.uni-potsdam.
de/Kalmag/Archeo/

The central result of this study is that for times earlier than 6000 BCE the current
database of thermoremanent records alonedoesnot contain enough information to con-
struct global models. For times earlier than 6000 BCE, ArchKalmag14k reproduces the
prior on a global scale and only local variations are resolved. Existing models may fur-
ther overconfidently report variations during times later than 6000 BCE, as local vari-
ations that are resolved by higher degrees in ArchKalmag14k result in variations of the
large scale dipole in existingmodels.

The next step is to extend and adapt themodeling framework to incorporate sediment
records. As the recent studyby (Nilsson andSuttie, 2021) shows, this requires significant
modifications due to aspects of the sedimentation process and the respective statistical
implications.

6.6 Supplementary material
Introduction

This supplementary material provides validation plots for additional coefficients in
Figure 6.12 and spectra of the synthetic inversion in Figure 6.13. A comparison of the
model coefficients with the prior is given in Figure 6.14 and local field predictions at two
additional locations in Figures 6.15 and6.16. Figure 6.17 shows the local data subsets used
for misfit evaluation. Table 6.4 contains a list of changes made to the GEOMAGIA v.3.4
dataset (Brown et al., 2015). A separately availableMovie shows the evolution of the geo-
magnetic field intensity at the Earth’s surface and of the radial component (downwards)
at the core-mantle boundary, together with respective uncertainties.
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Figure 6.12: Additional dipole and higher order coefficients of the synthetic model, to-
gether with the corresponding inferred ones from the proposed inversion.
The inferred (blue) and reference curves (red) agree within the pointwise
95%-regions shown in light blue.

Table 6.4: Updates to the GEOMAGIA dataset (Brown et al., 2015) used to assem-
ble the database for ArchKalMag14k. GEOMAGIA provides a unique ID
for every record, that we use to identify the records from Mexico that we
changed, as they have wrong age and dating uncertainty estimates (Mahgoub,
pers. comm.). Recordswith IDs 11237, 2773, 6891 and 13149 have been removed
from the dataset as no updated information is available.

UID Updated age [yrs.] Updated standard deviation [yrs.]
13153 -7550 422
2768 -8523 800
2769 -7450 270
11967 -10000 338
6893 -10000 338
11966 -5707 184
2770 1250 5
6892 1250 5
13086 8 62
13118 8 62
11992 1545 94
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Figure 6.13: Geomagnetic main field (top) and secular variation spectra (bottom) at
Earth’s surface for two selected epochs of the synthetic test case. The ran-
dom variable power spectrum is shown in blue. The errorbars report 2.5-
and 97.5-percentiles, covering 95%. For comparison, the spectra of themean
model are shown in grey. The prior spectrum is shown as a light blue dashed
line. Themainfield spectrumof the referencemodel is shown in red, the sec-
ular variation spectrum of the referencemodel is not available.
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and dashed lines indicate the pointwise 95%-regions.
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Figure 6.15: Local predictions of intensityF, declinationDand inclination I for the Indian
Ocean. Note the different timescales in the left and right parts of the bot-
tom panels! ArchKalmag14k is shown in blue. The shaded area covers 95%.
ARCH10k.1 is shown in orange and SHA.DIF.14k in green. In the top row,
the spatial and temporal distribution of the surrounding are shown. In con-
trast to the other local predictions (Fig. 6.6, 6.7 and 6.16) no data is present in
the lower plots, as no data is available in the region. Horizontal and vertical
gray bars indicate the one sigma temporal and field component data uncer-
tainties, respectively. The temporal distribution (top right) includes all data
visible in the top left plot.
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Figure 6.16: Local predictions of intensity F, declination D and inclination I for New
Zealand. Note the different timescales in the left and right parts of the bot-
tom panels! ArchKalmag14k is shown in blue. The shaded area covers 95%.
ARCH10k.1 is shown in orange and SHA.DIF.14k in green. In the top row, the
spatial and temporal distribution of the surrounding are shown. Data in the
orange ellipse (250km radius) are translated (Merrill, McElhinny, and Mc-
Fadden, 1996) to the location of prediction (orange dot) and shown as gray
dots. Horizontal and vertical gray bars indicate the one sigma temporal and
field component data uncertainties, respectively. The temporal distribution
(top right) includes all data visible in the top left plot.
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Figure 6.17: Spatial subsets considered for themisfit in Table 6.3.
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7 Conclusions and scientific contribution

The culminating result of this thesis is the global geomagnetic fieldmodel ArchKalmag-
14k, presented in Chapter 6. Resting on thework of the other two publications, included
in Chapters 4 and 5, ArchKalmag14k provides new insights on global geomagneticmod-
eling. A central conclusion is that the current archaeo- and volcanic database before
6000 BCE is not sufficient to support global models. For times more recent, ArchKal-
mag14k allows feature analysis under consideration of uncertainties arising frommod-
eling, magnetic measurements and dating procedure. Together with the mean model,
which has the highest posterior density and is therefore considered for feature analy-
sis, theprovided standarddeviation allows todiscriminate between reliable features and
features that are not supported well by data. I carried out an exemplary analysis for the
South Atlantic Anomaly (SAA) in Section 6.3.4. Together with the model itself comes a
novel modeling method. Due to its nature, the resolution of the model is governed by
the data distribution and varies over time. This flexibility allows exploiting the data to
its fullest anddoesnot introducevariationson theglobal scale, if theyareonly supported
locally. Onamoregeneral level, inChapter6 I adapted the sequentializedmodeling tech-
nique, proposed by Baerenzung et al. (2020), to the paleomagnetic setting. The work of
Chapters 4 and 5 is applied in the correction step of the Kalman-filter (Kalman, 1960),
that is utilized for sequentialization.

Initial work, presented in Chapter 4, was conducted in close collaborationwith Stefan
Mauerberger. The focus of this work was the modification of the kernel based model-
ing technique for the global geomagnetic field, presented inHolschneider et al. (2016), to
make it applicable to paleomagnetic data. Care was taken to be as objective as possible
about the prior parameters and our contribution in this regard is the implementation
of a non-informative prior for the axial dipole. A major difficulty in comparison to the
work of Holschneider et al. (2016) is the non-linear relation of paleomagnetic observa-
tions to themagnetic field vector. To tackle this, we linearize the observation functional.
This is a common approach (e.g. Hellio et al., 2014), but requires fixing a point to lin-
earize about. In this aspect our work presented in Chapter 4 contains another novelty.
The data where full vector information is available is separated from the rest. From this
reduced dataset, a first model is built and then serves as a linearization point for the re-
maining observations in aBayesianupdate system (Section4.3). Figure 4.4 indicates that
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7 Conclusions and scientific contribution

this approach to linearization performs better than linearization about any axial dipole,
even theaxial dipoleused forgenerating the synthetic testdataset. Due to the sequential-
ized approach used for constructing ArchKalmag14k, neither the non-informative prior
nor the Bayesian update system were directly applied in full time-dynamic modeling.
However, the idea of updating the linearization point is also found in the adaption of
the Kalman-filter, where in every correction step the current model serves as point of
expansion.

The static approachofChapter4alreadyprovidedfirst results on theassessmentof re-
alisticuncertainties, especiallydue to themarginalizationofmodelparametersbymeans
of a Riemann sum. However, an important source of uncertainty is the dating of mag-
netic specimen that only comes into play when time dynamic models are considered.
I extended the static approach to the temporal domain conceptually by an unphysical
squared exponential kernel in Chapter 5. This comes with several difficulties. The non-
informative prior is not applicable in this setting, as temporal correlations of the dipole
are sent to zero and cannot be recovered in the posterior. Instead, a constant axial dipole
is included as an additional prior parameter. Together with the temporal correlation
times, the parameter space becomes too large to apply the Riemann sum approach. To
tackle the high dimensional integration, I implemented recently proposed numerical
integration strategies based on central composite design (Sanchez and Sanchez, 2005;
Rue, Martino, and Chopin, 2009). Beyond the translation of concepts from Chapter 4,
my key contribution in Chapter 5 is the consideration of dating errors by means of the
noisy input Gaussian process approach (McHutchon and Rasmussen, 2011). This ap-
proach strictly differs from existing studies, as it does not rely on sampling techniques.

In recent years, several statistical approaches to geomagnetic field modeling on dif-
ferent scales have been proposed (e.g. Hellio et al., 2014; Hellio and Gillet, 2018; Nilsson
and Suttie, 2021). All of these rely on sampling, either directly because the posterior is
approximatedviaMCMCor indirectly to incorporatedatinguncertainties viabootstrap-
ping methods. In this regard, the technique we developed throughout this thesis is dif-
ferent. Sampling is only employed for posterior quantities that do non-linearly relate to
the field vector (for example the power spectrum). Instead of sampling, an approxima-
tion to the posterior distribution is constructed analytically, by two linearizations and
the sequentialization of the inversion. The linearization approach embeds the proposed
formalism in the rich theory of RKHS, as the proxy posterior defines a subspace of the
RKHS associated to the prior. The prior proposed by Nilsson and Suttie (2021) is almost
identical to the one used for ArchKalmag14k, however their approach is aimed towards
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sediment records, a class of data excluded completely here. Another central difference to
existing models is the determination of model parameters. Throughout Part II, param-
eters are estimated from the data and marginalized if possible. Most existing strategies
rely on estimating themodel parameters frommodels built on satellite data.

Besides theappliedmathematics andgeoscientificaspects of thepresented formalism,
a third fragment of the work lies in the software implementation of the algorithms. For
every chapter in Part II there is a repository, through which the proposed methods are
available to the public. Together with the model ArchKalmag14k I developed a python
package, called paleokalmag, that allows easy reproduction of the results of Chapter 6,
as well as application of the formalism to other paleomagnetic datasets. A side product
of the work in this thesis is the python package pymagglobal (Schanner, Mauerberger,
and Korte, 2020), that provides access to existing global field models to the public and
replaces some Fortran scripts that were circulating in the geomagnetism community. It
is possible to access ArchKalmag14k via pymagglobal as well, so that a unified interface
for global fieldmodels is provided.
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8 Outlook

The presented work can be extended in several directions. The most obvious one is the
inclusion of a larger dataset, which is provided bymarine and lacustrine drill cores and
the corresponding sediment records. Sediment records go further back in time andmay
fill thegap indatabefore6000BCE, thereforeprovidingaccess tofieldmodelsdating far-
ther back in time. However, sediment records come with several additional challenges,
that require further extension and adaption of the currentmethod (see also Nilsson and
Suttie, 2021). First, only relative variations of paleomagnetic intensity and declination
are available from sediments. This requires external calibration, which possibly can be
addressed by another two step strategy, where a first model is constructed from archae-
ological and volcanic data, such as ArchKalmag14k. Second, data along a single core
can not be considered independent. Representing this in themodelingmethod requires
significant adaption, especially when it comes to representing the dating uncertainties.
Third, sediment records inherently present a smoothed version of magnetic field vari-
ations. The amount of smoothing depends on the sedimentation rate and experimental
methods and varies from core to core.

Another dataset is given in form of historical data, especially from ship logs and land
surveys fromthesixteenth tonineteenthcentury. Thisdatamaybe fed into thealgorithm
directly in principle, however the database is too large to be handled with the proposed
strategy. If an effective and accurate reduction scheme is developed, the application of
themethod in Chapter 6 is straight forward.

A different direction considers the approximation of the non-linear likelihood. Either
higher order approximations or more sophisticated algorithms may be considered. Es-
pecially theexpectationpropagationalgorithmproposedbyMinka (2013) appearspromis-
ing in this regard. Theproblemofhigh costswhenestimatinghyperparameters remains,
but itmay be possible to estimate these froma simplified, linearized procedure and then
use amore sophisticated approximation for the actual model building.

A third direction is the embedding of the proposed strategy into modern GP frame-
works, e.g. the one by Gardner et al. (2018). This would allow the access of the full pos-
terior covariance, in other words the direct application of the algorithm of Chapter 5 to
large datasets. This is possible due to an efficient, parallelized implementation of ap-
proximate Cholesky factorization, which allows the inversion to be performed onGPUs.
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8 Outlook

The main difficulty here is of technical nature. Existing libraries (gpytorch (Gardner et
al., 2018) and KeOps (Charlier et al., 2021)) currently either do not support the update
strategy required for effective linearization or the multi-dimensional covariance struc-
ture necessary for themodeling of vector data.
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Acronyms

CCD central composite design. 78, 90

CMB core-mantle boundary. 29, 53, 54, 55, 83, 84, 103, 117, 118, 119, 121

EMF Earth’s magnetic field. 11, 12, 15, 17, 24, 25, 26, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39,
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101, 103, 121

GGP Giant Gaussian Process. 25

GP Gaussian process. 11, 12, 13, 14, 15, 16, 17, 18, 20, 25, 28, 29, 30, 33, 64, 68, 69, 70, 71,
73, 74, 75, 76, 100, 101, 102, 103, 104, 105, 110, 135

IGRF International Geomagnetic Reference Field. 29, 30, 39, 50

IID independent and identically distributed. 28, 29

MAE mean absolute error. 40, 41, 111, 112, 115

MAP maximum aposteriori probability estimator. 17, 78, 79, 82, 91, 93, 97

MCMC Markov ChainMonte-Carlo. 6, 19, 74, 75, 76, 101, 132

NIGP noisy input Gaussian process. 75, 76, 90, 91, 92, 102, 103

PDF probability density function. 26, 44, 45, 48, 50, 55, 56, 58, 59, 61, 62

POE point of expansion. 33, 35, 36, 37, 38, 40, 42, 47, 52, 73, 94, 95, 96, 102, 105

RKHS reproducing kernel Hilbert space. 13, 14, 15, 17, 18, 132

RV random variable. 58

SAA South Atlantic Anomaly. 100, 117, 118, 119, 121, 131

SH spherical harmonics. 3, 4, 24, 25, 26, 27, 28, 31, 32, 38, 42, 47, 54, 55, 56, 57, 59, 65,
68, 69, 71, 81, 92, 100, 103
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Acronyms

SQE squared exponential. 68, 72, 75, 77, 88, 91, 92

vMF vonMises-Fisher. 34, 39
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