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Abstract

It is well-known that individuals with aphasia (IWA) have difficulties understanding

sentences that involve non-adjacent dependencies, such as object relative clauses or

passives (Caplan, Baker, & Dehaut, 1985; Caramazza & Zurif, 1976). A large body

of research supports the view that IWA’s grammatical system is intact, and that

comprehension difficulties in aphasia are caused by a processing deficit, such as a delay

in lexical access and/or in syntactic structure building (e.g., Burkhardt, Piñango, &

Wong, 2003; Caplan, Michaud, & Hufford, 2015; Caplan, Waters, DeDe, Michaud, &

Reddy, 2007; Ferrill, Love, Walenski, & Shapiro, 2012; Hanne, Burchert, De Bleser,

& Vasishth, 2015; Love, Swinney, Walenski, & Zurif, 2008). The main goal of this

dissertation is to computationally investigate the processing sources of comprehension

impairments in sentence processing in aphasia.

In this work, prominent theories of processing deficits coming from the aphasia

literature are implemented within two cognitive models of sentence processing –the

activation-based model (Lewis & Vasishth, 2005) and the direct-access model (McEl-

ree, 2000)–. These models are two different expressions of the cue-based retrieval

theory (Lewis, Vasishth, & Van Dyke, 2006), which posits that sentence processing is

the result of a series of iterative retrievals from memory. These two models have been

widely used to account for sentence processing in unimpaired populations in multiple

languages and linguistic constructions, sometimes interchangeably (Parker, Shvarts-

man, & Van Dyke, 2017). However, Nicenboim and Vasishth (2018) showed that

when both models are implemented in the same framework and fitted to the same

data, the models yield different results, because the models assume different data-

generating processes. Specifically, the models hold different assumptions regarding

the retrieval latencies. The second goal of this dissertation is to compare these two

models of cue-based retrieval, using data from individuals with aphasia and control

participants. We seek to answer the following question: Which retrieval mechanism

is more likely to mediate sentence comprehension?

We model 4 subsets of existing data: Relative clauses in English and German; and

control structures and pronoun resolution in German. The online data come from
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either self-paced listening experiments, or visual-world eye-tracking experiments. The

offline data come from a complementary sentence-picture matching task performed

at the end of the trial in both types of experiments. The two competing models

of retrieval are implemented in the Bayesian framework, following Nicenboim and

Vasishth (2018). In addition, we present a modified version of the direct-acess model

that – we argue – is more suitable for individuals with aphasia.

This dissertation presents a systematic approach to implement and test verbally-

stated theories of comprehension deficits in aphasia within cognitive models of sen-

tence processing. The conclusions drawn from this work are that (a) the original

direct-access model (as implemented here) cannot account for the full pattern of data

from individuals with aphasia because it cannot account for slow misinterpretations;

and (b) an activation-based model of retrieval can account for sentence comprehen-

sion deficits in individuals with aphasia by assuming a delay in syntactic structure

building, and noise in the processing system. The overall pattern of results support an

activation-based mechanism of memory retrieval, in which a combination of process-

ing deficits, namely slow syntax and intermittent deficiencies, cause comprehension

difficulties in individuals with aphasia.
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Chapter 1

Introduction

Sentence processing is a complex task that relies on several cognitive mechanisms. In-

dividuals with an acquired language disorder, such as individuals with aphasia (IWA),

are an interesting case-study for theories of sentence processing. The linguistic per-

formance of IWA offers the possibility to investigate how neurological damage affects

the cognitive resources used in language comprehension. IWA exhibit comprehension

difficulties (e.g., Caplan et al., 2015; Caplan et al., 2007; Caramazza & Zurif, 1976),

which are usually more pronounced in sentences with complex syntactical operations,

such as the examples shown in (1). As IWA were once able to process these complex

sentences, studying the source of the comprehension deficits may yield important in-

sights with respect to which cognitive resources are involved in sentence processing,

and how the language system is organized. This dissertation aims to computationally

investigate which cognitive mechanisms are the source of the sentence comprehension

difficulties that individuals with aphasia experience.

(1) a. Object relative: The boy who the man scratched pushed the girl.

b. Reflexive pronoun: The father of the boy scratched himself.

c. Passive: The man was scratched by the boy.

(Caplan, DeDe, & Michaud, 2006)

Processing a sentence entails resolving relations between words in real time. As the

linguistic input unfolds, listeners have to connect incoming words together and build

up syntactic and semantic dependencies in real time. This is known as dependency

resolution in the sentence processing literature. For instance, verbs have to be linked

with their dependent arguments (e.g., in 1a, the man is the subject of scratched,

and the boy is the object), and pronouns have to be linked to their antecedents (e.g.

himself →the father in example 1b).

1



2 CHAPTER 1. INTRODUCTION

Dependency resolution is commonly assumed to require storing and retrieving

information from working memory (Gibson, 2000; Just & Carpenter, 1992; Lewis,

1999; Lewis et al., 2006; McElree, 2006; Van Dyke & Lewis, 2003). A well-known

theory of sentence processing in unimpaired populations, cue-based retrieval (Engel-

mann, Jäger, & Vasishth, 2019; Lewis & Vasishth, 2005; Lewis et al., 2006; McElree,

2006; McElree, Foraker, & Dyer, 2003; Van Dyke, 2007; Van Dyke & McElree, 2006,

2011; Vasishth, Nicenboim, Engelmann, & Burchert, 2019), posits that sentence rep-

resentations are incrementally built via a series of iterative retrievals from memory.

According to this theory, processed words and phrases – often called chunks – are

stored in memory with their morphosyntactic and semantic features. Chunks are

stored in memory as a bundle of feature-value pairs. For example, in sentence (2),

the first noun phrase (NP1) the boy is represented in memory as an attribute-value

matrix (Pollard & Sag, 1994) with the feature-value pairs shown below.

(2) The boy who greeted the girl plays with the dog.

NP1: The boyá
nominal - yes

animate - yes

subject - yes

singular - yes

ë
Chunks are retrieved from memory on the basis of their syntactic and semantic

features. The features used to search and retrieve a co-dependent in memory are

called retrieval cues. For instance, in a subject relative clause such as (2), the verb

greeted triggers the retrieval of an item in memory whose features match the retrieval

cues [+animate] and [+nominative]. When greeted is read, the only item in memory

that matches these retrieval cues is boy. Consider now the sentence below, which is

an object relative clause.

(3) The boy who the girl greeted plays with the dog.

In (3), when the comprehender reaches the verb greeted, there is one item in

memory that matches all the retrieval cues set by the verb, boy, but there is also

another item that matches some of the retrieval cues, girl ([+animate, -nominative]).

Following Jäger, Engelmann, and Vasishth (2017), the fully-matching item (boy) is

referred to as the retrieval target, and items with partial feature match (girl) are
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distractors. Similarly, in this case, the verb greeted is the retrieval site, i.e., the point

at which the retrieval of the co-dependent is triggered.

Memory retrieval is assumed to be affected by time-based decay (Van Dyke &

Lewis, 2003). Processing difficulty is predicted to arise with increasing distance be-

tween the two co-dependents, because as time goes by, chunks become less available

for retrieval. Another key assumption is that memory retrieval is subject to inter-

ference (Lewis, 1996; Lewis et al., 2006). Processing difficulty is predicted to arise

if multiple chunks in memory match the same retrieval cues set at the retrieval, be-

cause these chunks become difficult to distinguish from each other. This effect is

known as the fan effect in memory research (Anderson et al., 2004). For instance,

the verb greeted should be more difficult to process in (3) than in (2), due to the

distractor (boy) in (2). In cue-based retrieval, this effect is called similarity-based

interference (Van Dyke & Lewis, 2003; Van Dyke & McElree, 2006), and is indexed

by a slow-down at the retrieval site (the verb greeted in 3 and 2) and/or by the occa-

sional misretrieval of a distractor item (boy in 3), which results in misinterpretation.

Similarity-based interference has been attested in multiple linguistic constructions

across different languages (e.g., Dillon, Mishler, Sloggett, & Phillips, 2013; Engel-

mann et al., 2019; Gordon, Hendrick, Johnson, & Lee, 2006; Jäger et al., 2017; Jäger,

Mertzen, Van Dyke, & Vasishth, 2020; A. E. Martin, Nieuwland, & Carreiras, 2012;

Van Dyke, 2007; Van Dyke & Lewis, 2003; Van Dyke & McElree, 2006, 2011; Va-

sishth, Brüssow, Lewis, & Drenhaus, 2008; Vasishth & Engelmann, 2021; Vasishth

et al., 2019).

One important question that arises is, can the cue-based retrieval theory account

for the sentence comprehension deficits in IWA? A large body of research shows

that IWA exhibit sentence comprehension difficulties in sentences that involve long-

distance dependencies, such as wh-questions, object relatives, passives, object-cleft

sentences, and pronoun-antecedent dependencies (e.g., Burkhardt, Avrutin, Piñango,

& Ruigendijk, 2008; Caplan et al., 2006; Caplan et al., 2015; Caramazza & Zurif,

1976; Choy & Thompson, 2010; Dickey, Choy, & Thompson, 2007; Ferrill et al.,

2012; Luzzatti et al., 2001; Meyer, Mack, & Thompson, 2012; Piñango & Burkhardt,

2005; Thompson, Choy, Holland, & Cole, 2010). In the aphasia literature, several

theories have been proposed that aim to explain the source of these comprehension dif-

ficulties. For instance, several theories suggest that the source of IWA’s impairments

is a limitation in processing capacities, such as a lower working memory capacity, a

delay in lexical retrieval, or a delay in syntactic structure building (Burkhardt et al.,

2008; Caplan et al., 2006; Caplan et al., 2015; Caramazza & Zurif, 1976; Piñango &

Burkhardt, 2005). These theories can be straightforwardly integrated in the frame-
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work of cue-based retrieval, because cue-based retrieval theory puts memory and

other elements from the general cognitive domain at the center of the sentence com-

prehension process (Lewis, 1999). In addition, IWA’s comprehension difficulties arise

in long-distance dependencies, which are prone to memory decay and similarity-based

interference in the retrieval process. Therefore, cue-based retrieval theory could ex-

plain IWA’s comprehension difficulties by assuming that IWA’s processing deficits

disrupt the retrieval process.

One advantage of expanding the cue-based retrieval theory to account for sentence

processing in IWA is that existing computational models of retrieval processes can be

used to implement the different processing-based theories of impairments in aphasia

(Mätzig, Vasishth, Engelmann, Caplan, & Burchert, 2018; Patil, Hanne, Burchert,

De Bleser, & Vasishth, 2016). The alternative theories can be evaluated against

experimental data from IWA, and control participants, whose performance is taken

as a baseline. Thus, cue-based retrieval provides a unified architecture for modeling

both unimpaired and impaired sentence comprehension.

Within the cue-based retrieval framework, two different models of retrieval pro-

cesses have been proposed –the activation-based model (Lewis & Vasishth, 2005,

henceforth LV05), and the direct-access model (McElree, 2000)–. The two models

posit that retrieval cues mediate access to items in memory. However, they make

different assumptions regarding the retrieval process. The activation-based model

holds that when retrieving a co-dependent from memory, both the retrieval prob-

ability and the retrieval latency depend on sentence complexity. By contrast, the

direct-access model holds that retrieval latencies are constant and independent from

sentence complexity.

An open question in psycholinguistics concerns how linguistic representations in

memory are stored, searched, and retrieved during sentence comprehension (Parker

et al., 2017). Given that the activation-based and the direct-access model assume two

different underlying mechanisms for retrieval latencies, yet both models can explain

sentence processing in unimpaired populations (e.g., Jäger et al., 2017; A. E. Martin

& McElree, 2008; McElree, 2006; Van Dyke & Johns, 2012; Van Dyke & McElree,

2011; Vasishth & Engelmann, 2021; Vasishth et al., 2019), one key question that arises

is whether one of the two models is better able to model linguistic data from IWA.

Investigating which model of retrieval processes is more likely to mediate sentence

comprehension in IWA could help understanding how linguistic representations are

stored and accessed in IWA, and by extension, in unimpaired populations.
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1.1 Aims and outline

This thesis has two main goals. The first goal is to computationally investigate

the role of different processing deficits in IWA (e.g., delays in lexical access and

in syntactic structure building) under the framework of the cue-based retrieval of

sentence processing. The second goal is to compare two competing models of retrieval

that assume different underlying latent retrieval processes, using data from IWA and

control participants. Two aspects in this dissertation are novel: First, this is the first

work in which competing models of retrieval are evaluated using data from a range

of syntactic constructions in IWA and control participants in English and German.

Second, a systematic approach to computationally investigate deficits in sentence

processing in IWA is developed.

Figure 1.1 shows a schematic representation of the models and theories that are

investigated in this dissertation, and how these are interconnected. The theories of

processing deficits in aphasia are mapped onto the models’ parameters. The estimates

for control participants are taken as a baseline, and the estimates for IWA are used

to test the theories. Thus, we evaluate whether the two models of cue-based retrieval

provide a good fit to experimental data from IWA by assuming a series processing-

based impairments that have been proposed in the aphasia literature. Finally, the

two models of retrieval processes are quantitatively compared against each other, in

order to assess which model provides a better fit.

Figure 1.1: Graphical representation of the theories and models tested in this dissertation.

The structure of the thesis is as follows: Chapter 2 presents a short overview
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on aphasia and details the theories of processing deficits in aphasia that will be

implemented computationally. These include delayed lexical access (Ferrill et al.,

2012), slow syntax (Burkhardt et al., 2003), resource reduction (Caplan, 2012), and

intermittent deficiencies (Caplan et al., 2007). Chapter 3 contains the implementation

details of the computational models. Chapter 4, 5 and 6 constitute the empirical

part of the dissertation, and are dedicated to the evaluation of processing deficits in

aphasia in the framework of two computational models of sentence comprehension:

the activation-based model (Lewis & Vasishth, 2005), and the direct access model

(McElree, 2000).

In Chapter 4, the following question is addressed: Can sentence comprehension

impairments in aphasia be explained by difficulties arising from dependency com-

pletion processes in parsing? The activation-based and the direct-access model are

fitted to listening times coming from an experiment testing the comprehension of

English subject and object relative clauses (Caplan, Michaud, & Hufford, 2013). The

predictive performance of the models is evaluated using k-fold cross-validation. This

chapter shows that for both IWA and controls, the activation-based model furnishes a

slightly better quantitative fit to the data relative to the direct-access model. Yet, the

quantitative difference between the predictive performance of these two models is not

decisive. Model comparisons using Bayes factors show that, assuming an activation-

based model, intermittent deficiencies may be the best explanation for the cause of

impairments in IWA, although slowed syntax and lexical delayed access may also play

a role.

In Chapter 5, a modified version of the original direct-access model is presented. In

the original direct-access model, an initial misretrieval followed by reanalysis leads to

the retrieval of the target from memory. In the modified version, reanalysis can lead

to the retrieval of the target, or to a misretrieval. Self-paced listening data from IWA

and controls participants in German are used to test the comprehension of control

structures (Chomsky, 1981; Müller, 2002). The performance of the augmented model

is compared to the original model. Model comparisons using Bayes factors reveal

that the original and the augmented model provide a comparable fit to the data from

IWA and controls. Despite the inconclusive result, we argue that the modified direct-

access model is better suited to fit data from impaired populations because only the

augmented model can account for slow incorrect responses, which are frequent in the

aphasia literature.

In Chapter 6, the modified direct-access model developed in Chapter 5 and the

activation-based model are compared. This chapter presents the first large-scale com-

putational evaluation of interference effects in two models of sentence processing in
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German in IWA and control participants. The models are tested against two lin-

guistic constructions: Pronoun resolution and relative clauses. The results show that

both control participants and IWA are susceptible to retrieval interference, and that

a combination of theoretical explanations (intermittent deficiency, and slow syntax)

can explain IWA’s deficits in sentence processing. Both models have a similar predic-

tive performance in pronoun resolution, but the activation-based model outperforms

both the original and the direct-access model in relative clauses.

Finally, Chapter 7 summarizes the main conclusions of this dissertation.



Chapter 2

Sentence processing in aphasia

2.1 Introduction

Aphasia is a neurological acquired disease that causes impairments in language pro-

duction and comprehension due to brain damage (Harley, 2013, p. 68). Until the

second half of the 20th century, aphasia was generally studied clinically by physicians

and neurologists (see Eling & Whitaker, 2009, for a review on the history of apha-

sia). Initially, the study of aphasia focused on studying the anatomophysiological

localization of language-related functions in the brain. Broca (1863) was the first

to suggest that the frontal gyrus in the left hemisphere was responsible for speech

comprehension and production. A few years later, Wernicke (1874) drafted a model

that conceived language as a psychological process, in which several components of

the brain played a role. As of today, Broca’s and Wernicke’s aphasia are two of

the prototypical classic clinical syndromes. These syndromes were followed by the

categorization of conduction aphasia, global aphasia, and others (see Alexander &

Hillis, 2008, for a description of the different types of aphasia). Later on, during the

second half of the 20th century, the focus in aphasia research started to shift from the

brain localization to neurolinguistically-motivated models of language production and

comprehension (see Goodglass & Wingfield, 1998). However, there is a great deal of

controversy regarding the use of clinical categories of aphasia in cognitive psychology

(Caramazza, 1984) because such classifications do not take into account the specific

details of the linguistic deficits in IWA (Caplan, 2001). Early studies reporting sen-

tence comprehension deficits in aphasia focused on studying the specific processing

difficulties associated with a given type of aphasia (e.g., Caramazza & Zurif, 1976;

Goodglass et al., 1979; Marin, Saffran, & Schwartz, 1976). For instance, many stud-

ies in the 1980s argue that patients with Broca’s aphasia have a loss in syntactic

knowledge (for an overview see R. C. Martin, 2006). These studies are rooted in the

8
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neurophysiological tradition, in which the anatomical locus of linguistic functions was

a major focus. As individuals with Broca’s aphasia usually displayed syntactic com-

prehension difficulties, and the lesion in Broca’s aphasics is located in the left inferior

frontal cortex, it was inferred that that was the part of the brain responsible for the

so-called syntactic processing module (Berndt & Caramazza, 1980). However, later

studies (e.g., Berndt, Mitchum, & Haendiges, 1996; Caramazza, Capitani, Rey, &

Berndt, 2001) have shown that Broca’s aphasia is not related to a concrete pattern in

sentence comprehension. Instead, patients with Broca’s aphasia show variable com-

prehension patterns. Although Broca’s aphasics usually suffer from agrammatism,

there are Broca’s aphasics that do not suffer from agrammatism, and conversely,

there is agrammatism without Broca’s aphasia (De Bleser, Burchert, Holzinger, &

Weidlich, 2012).

More generally, some studies have shown that performance in sentence compre-

hension does not necessarily correspond to the classical categories of aphasia (Caplan

et al., 1985; Caplan & Hildebrandt, 1988; Dronkers, Wilkins, Van Valin Jr, Redfern,

& Jaeger, 2004). Similarly, Badecker and Caramazza (1986, p.278) claim that clinical

categories do not assure group homogeneity in the performance of aphasics “in terms

of the intact cognitive system that subserves language processing”. In their view,

methodological issues arise when the validation of theories of language processing

relies in the differences between the clinical categories, i.e., when they are syndrome-

based. Due to the diversity in performance across and within different aphasia types,

some researchers (e.g., Badecker & Caramazza, 1985; Caplan et al., 2015), propose

that claims about syntactic disorders in specific aphasia types should be based on ob-

jective measures of performance. That is, in psycholinguistic studies, patients should

not be classified according to their type of aphasia, but rather according to their lin-

guistic performance. We follow the approach in Caplan and colleagues (Caplan et al.,

2015), and throughout this thesis, we will use the term IWA to refer to individuals

with aphasia, irrespective of the aphasia type.

2.1.1 Sentence comprehension deficits in aphasia

An important process in sentence comprehension is to correctly establish who did

what to whom. Failure to do this can lead to misinterpretations or to comprehension

errors. In terms of generative grammar, this is known as theta-role assignment: The

verb determines the so-called thematic roles, i.e., the agent (the doer of the action)

and the patient or theme (the recipient of the action). In a simple, canonical English

sentence, such as in (4a), the verb assigns the thematic roles to its arguments in a

linear order. Canonical sentences are those in which constituents appear in the base
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canonical order of the language (i.e., subject-verb-object in English). By contrast, in

non-canonical sentences, constituents are assumed to undergo movement (Chomsky,

1957, 1981). A constituent is a word or a group of words that functions as a single

unit within the sentence. Movement refers to the displacement of constituents in

a given sentence. The dependency between the original position of the constituent

(known as gap, or trace) and its actual position in the sentence is represented by

co-indexation. In (4), the trace and its co-indexation are represented by t. In non-

canonical sentences, such as in the passive in (4b), the verb assigns the thematic

role to the trace or gap, which then gets passed on to the argument. In English,

examples of non-canonical sentences are passives, object relatives, object-clefts, and

wh-questions.

(4) a. The dog chased the cat.

b. The dogt was chased (t) by the cat.

In the sentences shown in (4), the thematic roles are semantically reversible, i.e.,

semantically, both noun phrases could in principle be the agent and the patient. This

contrasts with the sentences in (5), where the second noun phrase is inanimate, and

therefore cannot be assigned the agent theta-role.

(5) a. The woman found the box.

b. The boxt was found (t) by the woman.

Although IWA’s performance is variable (Berndt et al., 1996), IWA are generally

reported to have more comprehension difficulties in reversible, non-canonical sen-

tences, such as (4b), in contrast to reversible, canonical sentences (Caplan et al.,

2006; Caramazza & Zurif, 1976), such as (4a). This effect is commonly known in the

aphasia literature as the canonicity effect (Caplan & Hildebrandt, 1988).

Besides constructions involving movement and reversible thematic role assignment,

IWA also show difficulties processing binding relations, i.e., pronouns and reflexives

(e.g., Choy & Thompson, 2010; Edwards & Varlokosta, 2007; Engel, Shapiro, & Love,

2018; Thompson & Choy, 2009). Referential expressions such as pronouns and re-

flexives lack meaning on their own, and refer to a noun in the sentential context,

known as antecedent. Therefore, processing structures that contain binding rela-

tions involves resolving the dependency between the antecedent and the referential

expression. In Chomskys’ framework of government and binding (Chomsky, 1981),

binding relations involve a co-indexation between the referential expression and their

antecedent. Chomsky’s binding principles establish that whereas reflexives are bound

in their local domain, pronouns are not. For instance, consider the sentences in (6),
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taken from Edwards and Varlokosta (2007). The co-indexational relation between

the referential expression and their antecedents is shown with subscripts. In sentence

(6a), the antecedent of himself cannot be bound by John, as it is outside of its local

domain. By contrast, in (6b), the pronoun is bound by the subject of the matrix

clause, which is outside of the local domain.

(6) a. Johni thinks that Billj likes himselfj

b. Johni thinks that Billj likes himj

(Edwards & Varlokosta, 2007)

A great deal of (psycho)linguistic theories of impairments in aphasia have been

developed over the last decades. Many of these theories were built on experiments

testing the comprehension of sentences involving movement and binding relations

(e.g. Caplan et al., 2015; Caplan et al., 2007; Choy & Thompson, 2010; Ferrill et al.,

2012; Grodzinsky & Reinhart, 1993; Piñango & Burkhardt, 2005). Broadly speaking,

theories of sentence comprehension in aphasia fall within one of these two categories:

Representational accounts, and processing deficits accounts. Representational ac-

counts assume that the cause of comprehension difficulties in IWA is related to a loss

in grammatical knowledge, i.e., in Chomsky’s framework, in competence rather than

in performance. The most well-known theory within this framework is the Trace Dele-

tion Hypothesis (Grodzinsky, 1995), which claims that IWA cannot represent traces

of syntactic movement. However, there are a number of studies that speak against

representational accounts. One example is that in grammaticality judgments, IWA

have been reported to detect complex grammatical violations, even with structures

involving traces (Zurif, Swinney, Prather, & Love, 1994). Another example comes

from studies testing the same linguistic construction across different tasks. For in-

stance, Caplan et al. (2006) and Caplan et al. (2013) tested constructions involving

movement and binding relations in three tasks, and they found that most compre-

hension deficits arose in only one task, rather than systematically across the tasks.

Moreover, there are cases in which IWA perform better at comprehending syntac-

tically complex structures that involve movement relative to simple sentences (e.g.,

Caplan et al., 2007). These results cannot be accounted for by a theory that posits a

loss of grammatical knowledge. Instead, the breakdown in parsing could be the result

of processing difficulties.

Processing accounts assume that IWA’s grammatical knowledge is intact, and that

the comprehension deficits are caused by limitations in processing capacities, such as

a lower working memory capacity, or a delay in lexical access. Some of the processing

accounts are also somewhat grounded on linguistic theory. For instance, the delayed
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lexical access theory posits that a processing deficit in IWA slows down the formation

of syntactic structure (Burkhardt et al., 2003; Love et al., 2008). Other theories

hinge on the role of more general cognitive processes, such as working memory (e.g.,

Caplan, 2012; Caplan et al., 2006). As of today, there is no consensus on the source

of comprehension deficits in IWA, mainly because a single deficit cannot account for

the range of impairments reported in IWA. Recently, it has been proposed that the

performance of IWA may be better explained by a combination of processing deficits,

rather than by assuming a single source of impairment (Caplan et al., 2015; Mätzig

et al., 2018).

One important methodological question that arises is, assuming that an interplay

of several processing deficits is what causes comprehension difficulties in IWA, how

can we assess the extent to which each of these deficits are responsible for IWA’s

impairments? One way to evaluate the different theories is to implement the different

accounts in a cognitive model, and to test them against experimental data from

IWA. In this dissertation, cue-based retrieval theory, which is designed to explain

dependency completion in sentence processing, is the framework used to implement

and assess the different theories of processing deficits in aphasia. Specifically, it

is proposed that different processing-based deficits hinder retrieval from memory,

which is needed for dependency completion. This leads to (a) more susceptibility

to competing interpretations, and (b) more failures in parsing. The goal of this

dissertation is to computationally investigate the extent to which different processing

deficits play a role in IWA, in the framework of two distinct cognitive models of

cue-based retrieval.

2.2 Theories of sentence processing deficits in aphasia

In this section, the different processing deficit theories that will be computationally

evaluated in this dissertation are presented. These are: slow syntax, delayed lexical

access, intermittent deficiencies, and resource reduction.

2.2.1 Slow syntax

Most of the research that supports the slow syntax theory (Burkhardt et al., 2008;

Burkhardt et al., 2003; Piñango & Burkhardt, 2005) comes from experiments showing

that IWA correctly use grammatical information in real-time sentence comprehen-

sion, but in a delayed manner. The slow syntax theory proposes that IWA do not

have an impairment at the level of syntactic building proper, but that IWA’s syn-

tactic computations are slowed down. As the syntactic formation chain is delayed,
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the upcoming information cannot be parsed, and extra-syntactic heuristics, based

on semantics or on frequency, may arise. Competition between syntactic and extra-

syntactic information can lead to the correct interpretation of the sentence if IWA

establish the dependency using the syntactic structure, or to a misinterpretation if

the dependency completion is based on extra-syntactic heuristics, such as semantic

information. Therefore, the slow syntax account predicts that IWA should exhibit

comprehension deficits in thematic role assignment when a full structural representa-

tion is needed; i.e., when comprehenders cannot rely on extra-syntactic information,

such as in semantically reversible non-canonical sentences.

The first studies testing the slow syntax theory used a cross-modal syntactic prim-

ing (CMSP) paradigm. In this task, participants hear a sentence preamble, and at

a given time point, a letter string (visual probe) is presented in a computer screen.

The visual probe is the continuation of the sentence preamble, and participants have

to decide whether the continuation is acceptable or not by pressing a yes/no button.

For example, Friederici and Kilborn (1989) report two experiments with 5 IWA and

28 controls using a CMSP task. The authors tested sentences such as in (7) in Dutch,

although the examples are shown here in English for the sake of simplicity. The vi-

sual probe for the decision task is shown in bold. The sentence preambles contained

a variety of auxiliaries in Dutch (e.g., passives: is being), and tense (perfect: has, is).

(7) a. The indian is being helped.

b. *The poet is being climbed.

The results in Friederici and Kilborn (1989) yield two main findings: In Experiment

1, IWA exhibited faster decision times in grammatical conditions (7a) relative to

ungrammatical conditions (7b). In Experiment 2, which tested the same items, IWA

exhibited significantly faster decision times when the interstimulus interval was longer

(i.e., when there was more time between the end of the sentence preamble and the

appearance of the visual probe; from 0 ms in Experiment 1, to 200 ms in Experiment

2). On the basis of these results, the authors claim that syntactic knowledge in IWA

is preserved, but critically delayed in comparison with unimpaired controls.

Haarmann and Kolk (1991b) also tested sentences similar to (7) in Dutch in a

CMSP task with 13 IWA and 13 controls, and their items included a greater number

of grammaticality violations (e.g. modal verbs: We can talk/ *nose; preposition: On

the cupboard/ *smoke). In addition, the visual probes for the lexical decision task

were presented at different time intervals after the sentence preamble (300 ms, 700

ms, and 1100 ms). Overall, controls showed syntactic effects of priming (i.e., faster

decision times in grammatical vs. ungrammatical conditions) at the three time points.
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By contrast, IWA only showed significant effects of syntactic priming at the 1100 ms

time point. The authors concluded that the late appearance indicates that IWA’s

syntactic information is activated at a slower-than-normal rate, which is consistent

with the slow syntax theory.

More recent studies investigating the time-course of syntactic information have

used a cross-modal lexical decision (CMLD) paradigm. In this paradigm, subjects

have to simultaneously perform a comprehension task, and a lexical decision task.

Sentences are presented auditorily, and subjects have to ask comprehension questions.

In addition, at some point during the auditory presentation of the sentence, a letter

string is visually presented in the monitor. Subjects decide whether the letter string

is a word or a non-word, by pressing a yes/no button. This method is particularly

designed to investigate the time-course of the activation of a specific element in the

sentence (target word) because the visual probe semantically related or unrelated to

the target word.

For instance, Burkhardt et al. (2003) investigated wh- and NP-movement in En-

glish using the CMLD paradigm. The main goal of the study was to investigate

gap-filling in IWA, i.e., whether IWA could reactivate traces by showing, in real-time

processing, reactivation of the antecedent at the trace (or gap) position. Experiment

1 (3 IWA and 10 controls) targeted the comprehension of object relative clauses, such

as the example sentence (8).

(8) The kid loved the cheesej which j/i the brand new microwave melted ti yester-

day afternoon while the entire family was watching TV.

For the example (8), the corresponding visual probes were cheddar (semantically

related) and album (semantically unrelated). Since priming effects were taken as an

indication for antecedent reactivation, these visual probes were shown at different

time points during the sentence, so as to determine at which particular point the

antecedent was being primed. The results of Experiment 1 show that unimpaired

controls already experience priming effects at 100 ms after the verb, whereas IWA’s

priming effects emerged at 650 ms after the verb.

In Experiment 2 (2 IWA, 23 controls), Burkhardt et al. (2003) tested the com-

prehension of active sentences with unergative (9a) vs. unaccusative verbs (9b).

According to the Split Intransitivity Hypothesis (Burzio, 1986; Perlmutter, 1978),

unergative verbs are assumed to base-generate their argument preverbally, whereas

unaccusative verbs base-generate their argument postverbally. In English, active sen-

tences with unaccusative verbs are therefore assumed to undergo movement from the

postverbal argument trace to the subject position. Crucially, the authors hypothesize
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that in sentences such as (9b), a priming effect would be expected sometime after the

verb, at the trace. By contrast, no priming effect is expected at the same point in

(9b).

(9) a. The graduate with a passion for movies celebrated after the last of the

official ceremonies was over.

b. The butteri in the small white dish melted ti after the boy turned on the

brand new microwave.

In sentences with unaccusative verbs, controls showed activation of the antecedent

at 650 ms after the verb, but, as predicted, not in sentences with unergative verbs.

IWA showed the expected pattern of priming at around 800 ms in sentences with

unaccusative verbs, although this effect did not reach significance. No priming effects

were detected in sentences with unergative verbs.

Considering the results from both experiments, Burkhardt et al. (2003) concluded

that IWA can successfully process movement, but in a protracted manner. That

is, IWA do not reactivate the antecedent at the trace, as controls do, but they do

reactivate the antecedent at a later point in the sentence, as shown in the delayed

priming effects. The authors concluded that syntactic operations involving moment

are critically delayed, both in movement involving wh-traces and object-NP traces.

Finally, the slow syntax theory has been also tested with reflexives and logophors.

Piñango and Burkhardt (2005) and Burkhardt et al. (2008) tested reflexives and lo-

gophors in English (2 IWA, 13 controls) and Dutch (3 IWA, 16 controls), respectively.

Their results show that IWA can resolve reflexive-antecedent dependencies, but in a

protracted manner. Specifically, Burkhardt et al. (2008) propose that the Merge

operation (Chomsky, 1995) is delayed. Merge consists on the combination of two

syntactic elements that form a constituent. The authors argue that a delay in Merge

would have the effect that the arguments of a predicate would become available at

a later-than normal point. In the meantime, competing extra-syntactic sources of

information may appear, leading to possible misinterpretations.

All in all, all the studies testing the slow syntax theory show that syntactic opera-

tions in IWA are delayed. If given enough time, IWA could, in principle, understand

sentences involving movement, as their syntactic knowledge is unimpaired. How-

ever, due to the slower-to-normal formation of syntactic dependencies, non-syntactic

heuristics may kick in, providing two competing interpretation alternatives. This

would explain the comprehension pattern that is reflected in the aphasia literature:

In complex sentences, in some trials, IWA show slow reaction times, and yet correct

comprehension responses. However, in trials in which extra-syntactic heuristics lead
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the processing, slow processing times and incorrect responses are expected. Although

the exact nature of the syntactic parsing operation that is delayed is not clear (e.g.,

general processing slow-down in dependency completion, delay in trace reactivation,

delay in the Merge operation), these studies show that syntactic structure building is

generally delayed in IWA.

2.2.2 Delayed lexical access

The delayed lexical access theory (DLA) posits that a delay in lexical access is the

main cause of comprehension difficulties in IWA. According to this theory, a slower-to-

normal access to lexical items causes breakdowns in the syntactic structure building,

leading to syntactic comprehension difficulties. The DLA theory has been tested with

priming experiments, and mostly in filler-gap dependencies.

The first studies investigating DLA appeared in the 90s. Prather, Zurif, Love,

and Brownell (1997), Prather, Zurif, Stern, and Rosen (1992), and Prather (1994)1

carried out a series of case-studies in which they showed that lexical activation in

IWA is delayed in comparison with language unimpaired populations. These case-

studies analysed the time-course of lexical activation using list priming paradigm

experiments. In this task, participants are shown letter strings on a computer screen,

and they have to perform a lexical decision task as quickly as possible. As soon as the

participant presses the yes/no button, the word disappears from the screen and after

a predetermined time, known as interstimulus interval, the next word is shown. The

list of items contains experimental word pairs (e.g., chair-table) and filler items. The

core idea behind this task is that response times at the lexical decision task should

be faster when the target word is preceded by a prime word semantically associated

with it. So, for instance, participants are expected to have faster RT when table is

preceded by chair. By manipulating the interstimulus interval, this task allows for

the investigation of the time-course of priming, as the shortest and longest intervals at

which priming effects emerge can be determined. Typically, unimpaired elderly and

college-aged adults are known to start showing priming effects at the interstimulus

interval of 500 ms (Stern, Prather, Swinney, & Zurif, 1991). By contrast, the case-

studies by Prather and colleagues revealed that priming in IWA started to emerge

at the 1500 ms interstimulus interval. In these case-studies, Prather and colleagues

discuss that the delay in lexical activation could lead to comprehension difficulties in

sentences involving traces, as it could cause a failure to complete the antecedent-trace

1Prather et al. (1997) tested two individuals with aphasia, one of them had non-fluent Broca’s aphasia, whereas
the other one had Wernicke’s aphasia. Whereas the results for the both patients were different (the idividual with
Broca’s aphasia did not show priming effects until the 1500 ms interval, the individual with Wernicke’s aphasia showed
priming effects from 300 ms to 1100 ms. The early priming effects of the patient with Wernicke’s aphasia emerges as
early as priming emerges in unimpaired control participants.



2.2. THEORIES OF SENTENCE PROCESSING DEFICITS IN APHASIA 17

dependency in time.

Online performance in gap-filling structures in IWA was subsequently assessed in

Swinney, Zurif, Prather, and Love (1996), Zurif, Swinney, Prather, Solomon, and

Bushell (1993), using a CMLP task (see also Zurif et al., 1994, for a review). Zurif

et al. (1993) tested subject relatives, and Swinney et al. (1996) tested object relatives.

Both studies revealed that individuals IWA did not show priming effects at the pre-

gap and at the gap positions.2 These results are compatible with the idea that the

incapacity to reactivate the antecedent is what drives the comprehension problem in

sentences involving movement.

Building on the work by Zurif and colleagues on the use of the CMLP paradigm

to assess filler-gap dependencies in real time processing, Love et al. (2008) claim that

the slower-than-normal speed of lexical activation disrupts syntactic operations, and

specifically, gap-filling. Love et al. (2008) report three experiments; the first two

involve the cross-modal lexical priming paradigm, and the third one is a sentence-

picture matching task.

The first two experiments tested object relative clauses such as in (10). The visual

probes for the lexical decision task were semantically related to the moved constituent

(fighter for example 10) or unrelated (climber for example 10). The visual probe

words from the lexical decision task were presented at different time points during

the auditory presentation of the sentence, in order to investigate at which time-points

the moved constituent primes the visual probe. Priming was measured by comparing

the RT from the lexical decision task in the related vs. unrelated conditions.

(10) The audience liked the wrestler that the parish priest condemned (t) for foul

language.

In Experiment 1 (8 IWA and 4 controls), the sentences were presented auditorily

with a normal speech rate: 4.47 syllables per second. IWA showed a delayed effect

of priming after the antecedent (about 300 ms after) and a delayed effect of priming

approximately 500 ms after the gap (marked as t in exdample 10). Therefore, IWA

showed both delayed lexical activation when encountering the movement element and

also delayed reactivation of the element at the trace.

In Experiment 2 (9 IWA and 6 controls), which tested the same items than Ex-

periment 1, the sentences were presented auditorily at the slowed-down rate of 3.4

syllables per second. In this case, priming in IWA emerged at the gap, and also 500

2Swinney et al. (1996), Zurif et al. (1993) report case studies for Wernicke’s and Broca’s patients and focus in the
differences between the two types of aphasia. As in Prather et al. (1997), the results are slightly different for patients
with different aphasia types. However, as discussed previously, the difference in performance between Broca’s and
Wernicke’s aphasia is beyond the scope of this thesis.
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ms after the gap. In contrast to Experiment 1, IWA did show reactivation at the

gap. The authors take this results as evidence that IWA are able to work out traces

of syntactic movement if given enough time. Controls showed no effect of priming at

the gap, but priming emerged 500 ms after the gap. This suggests that that slower

rate of the speech input disrupts sentence comprehension in controls.

Experiment 3 (8 IWA and 10 controls) consisted of a sentence-picture matching

task that targeted the comprehension of the thematic roles in subject and object

relatives, and active and passive declarative sentences. The sentences were presented

auditorily at a normal speed rate (5.5. syllable per second) and at a slow rate (3.8

syllables per second). For canonical sentences, in conditions with both normal and

slow rates, IWA’s accuracies were around 80%. By contrast, for non-canonical sen-

tences, the mean accuracy in the conditions with a normal speech rate was 61%, and

in conditions with slow speech rate, 71%.

Overall, considering the results from the three experiments, Love et al. (2008)

concluded that with a normal speech rate, IWA show delayed lexical activation when

hearing the moved constituents (antecedents) and delayed reactivation at the gap

site. By contrast, with a slow speech rate, IWA show reactivation at the gap site.

The authors argue that syntactic constructions involving constituent movement are

difficult to process for IWA because because lexical reactivation may be completed

at a slower-than-normal pace. Due to this delay, non-grammatical heuristics may

emerge and provide a conflicting interpretation that does not depend on syntax.

Further evidence for the delayed lexical access hypothesis comes from the study

by Ferrill et al. (2012). As mentioned above, most of the studies testing the delayed

lexical access hypothesis targeted a) lexical delays at the word level in lexical decision

tasks, or b) lexical delays in filler-gap dependencies. Ferrill et al. extend the scope of

the delayed lexical access theory by showing that delays in lexical access can also be

observed in sentence comprehension in simple, non-canonical constructions.

Ferrill et al. (2012) used a cross modal picture priming paradigm, in which partic-

ipants listened to sentences such as in (11). At different time points in the sentences,

black-and-white line drawings (visual probes) were presented on a computer screen,

and participants had to make a binary decision about the drawing: Human (yes)

/ not human (no). The visual probes were either related (they depicted the noun

phrase in the direct object position of the sentence, i.e., golfer in 11) or unrelated to

any of the words in the sentence.

(11) The boxer punched the golfer after the tremendously antagonistic discussion

about the title fight
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Their results revealed that controls showed a significant priming effect at the offset

of the target noun (i.e., golfer), and no significant priming effects later on, which

suggests that the meaning of the noun is activated immediately after encountering it,

and that it decays rapidly. By contrast, IWA showed no priming effect at the offset of

the noun, and a significant effect of priming 400 ms after the noun. Therefore, Ferrill

and colleagues conclude that the lexical delay feeds syntactic structure building too

slowly, causing misinterpretations and failures in parsing in complex structures that

rely on syntactic structure. Essentially, Ferrill et al. (2012) argue that a delay in

lexical access is the source of the syntactical disorders.

Overall, all of the studies testing the delayed lexical access hypothesis show that

lexical access is critically delayed in IWA, and that such a delay impacts real-time

sentence processing. In addition, the work by Ferrill et al. (2012) shows that a theory

such as slow syntax cannot fully explain the full range of sentence comprehension

deficits in aphasia, as it cannot account for delays in simple, declarative canonical

sentences.

2.2.3 Resource reduction

The resource reduction hypothesis was developed by Caplan and colleagues in a series

of studies. The work by the Caplan group is in many aspects novel in comparison

with previous studies in aphasia in several aspects: First, Caplan and colleagues

test a large number of participants (40 to 56 IWA) in several tasks, usually self-

paced listening, picture-sentence matching, grammaticality judgments, and object

manipulation. Second, in each study, Caplan and colleagues investigate a variety of

linguistic structures. These structures are usually tested in sentence pairs that contain

an experimental and a baseline condition, and the results are interpreted in terms of

the differences in processing times and/or accuracies between the two conditions.

Overall, the experiments by the Caplan group have shed important insights on the

variability, the dissociations, and the associations of performance within and between

IWA, and across tasks and sentence types.

The resource reduction hypothesis (Caplan, 2012) claims that the source of impair-

ments in IWA is a reduction in the resources that are necessary for parsing. Processing

resources may be related to language-specific mechanisms, such as slower lexical ac-

cess, or a limitation in a specific verbal processing system, as proposed in Caplan and

Waters (1999); or to general mechanisms in the cognitive architecture (e.g., work-

ing memory capacity, encoding, perception, action planning). Resource demands are

determined by the complexity of a sentence structure and the specific task in which

the structure is being tested. Caplan postulates that more complex sentences (and
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more complex tasks) require the use of more parsing resources. Therefore, sentences

involving movement, such as object relatives, should be more difficult to process

than sentences without movement, because the former require a greater amount of

resources. The resource reduction hypothesis relies on three main components: Sen-

tence demands, task demands, and the resources of the individual.

If the resources of an IWA reach the demands of the sentence and task, the resource

reduction hypothesis predicts normal-like processing. However, if the processing de-

mands of a sentence structure in a given task exceed the available processing resources

of an individual, sentence comprehension is predicted to be impaired. Therefore, IWA

are more likely to experience difficulties in complex sentences because these are more

likely to exceed their resources. In addition, IWA with a higher degree of resource

reduction are assumed to be more affected by sentence complexity.

The resource reduction hypothesis was tested in Caplan et al. (2006) with data

from 42 IWA and 25 unimpaired controls in two tasks: Object manipulation, and

sentence-picture matching. The experimental items contained several complex con-

structions and their corresponding baseline constructions, namely object vs. subject

relative clauses, passives vs. actives, and reflexive-antecedent dependencies. Within

each construction, several sentences were tested: Full and truncated passives, cleft

and center-embedded relative clauses, and reflexives in genitive (the father of the boy

scratched himself ) vs. possessive constructions (the boy’s father scratched himself ).

The aim of the study was to investigate the occurrence of specific syntactic structure

deficits across both tasks. Caplan et al. (2006) evaluated the data from each partic-

ipant at the individual level, so the data from the 42 IWA are presented as 42 case

studies, rather than as a group.

Overall, all IWA showed processing difficulties in more than one structure, but not

in all sentence types. For 31 out of the 42 IWA, most comprehension deficits were

task-specific (i.e., emerged in only one of the two tasks) and construction-specific (i.e.,

the deficit appeared in the two sentences that tested the same syntactic construction,

e.g., truncated and full passives). The work by Caplan et al. (2006) therefore confirms

that processing deficits in aphasia seem to be dependent on an interaction between

the syntactic constructions and the task demands. This pattern of associations and

dissociations in performance of IWA across tasks and across syntactic structures was

later replicated in Caplan et al. (2013), with 61 IWA and 46 controls. Importantly,

Caplan et al. (2013) carried out an extended replication of Caplan et al. (2006).

Instead of testing 10 sentences of each type, Caplan et al. (2006) tested 20. This

replication, with a larger number of participants and experimental items, confirmed

that task-independent structure-independent deficits are almost non-existent in apha-
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sia. The results of both studies speak in favor of a reduction in processing resources

as the main source of comprehension deficits, together with an interaction between

task demands and a reduction in parsing and interpretative abilities. The conclusions

of both studies indicate that IWA may not be able to meet the demands required by

a particular task on top of parsing certain constructions.

One crucial test for the resource reduction hypothesis is that it predicts that cor-

rect trials are the result of unimpaired processing. That is, in correct trials, IWA

are not assumed to resort to guessing, or to require other extra-linguistic strategies.

Therefore, the online data in correct trials should reflect normal-like processing. As

hypothesized, Caplan et al. (2007) found that in self-paced listening times, IWA’s

pattern for correct trials was quantitatively similar to controls’ pattern; whereas the

patterns of both groups differed in incorrect trials. This finding has been replicated in

later studies using the visual-world eye-tracking paradigm (e.g., Choy & Thompson,

2010; Dickey et al., 2007; Dickey & Thompson, 2009; Hanne et al., 2015; Hanne,

Sekerina, Vasishth, Burchert, & De Bleser, 2011; Meyer et al., 2012). Yet, in correct

trials in visual-world studies, IWA generally show delayed fixations to the target, rel-

ative to controls. Several studies (Hanne et al., 2015; Hanne et al., 2011; Meyer et al.,

2012; Pregla, Vasishth, Lissón, Stadie, & Burchert, 2021; Schumacher et al., 2015)

have attributed this pattern to a general processing slowdown. Such a slowdown is

also compatible with the resource reduction hypothesis, as processing speed could be

a reduced resource in IWA (see Pregla, Vasishth, et al., 2021).

The resource reduction also posits that IWA with lower resource capacities should

be more affected by sentence complexity (Caplan et al., 2013; Caplan et al., 2007).

Support for this assumption comes from two-self paced listening experiments, in which

Caplan and colleagues found that IWA who had overall lower accuracies were more

affected by complexity effects (Caplan et al., 2015; Caplan et al., 2007). These

studies found a super-additive interaction between the demand of a specific sentence

type and different groups of IWA, classified according to their accuracy performance:

At chance, above chance but below normal, and within the normal range.

The resource reduction hypothesis has been further investigated by Caplan et al.

(2015). This study reports self-paced listening data from 61 IWA and 46 controls, from

13 sentence types. Examples from the sentences, taken from Caplan et al. (2015), are

shown in (12). The authors compared the residual corrected listening times3 at the

critical word in the experimental sentences to their corresponding baseline sentences.

(12) a. Active: The girl hugged the boy.

3Listening times were corrected (word duration was subtracted) and adjusted for word frequency by regressing
them against word frequency within each participant and calculating the residual of this regression for each word for
each participant.
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b. Passive: The boy was hugged by the girl.

c. Three noun phrases: The niece said that the girl hugged the boy.

d. Pronoun: The niece said that the girl hugged the her.

e. Reflexive: The niece said that the girl hugged the herself.

f. Cleft subject: It was the girl who hugged the boy.

g. Cleft object: It was the boy who the girl hugged.

h. Subject object: The boy who the girl hugged washed the woman.

i. Subject subject: The girl who hugged the boy washed the woman.

j. Subject subject, pronoun: The woman who hugged the girl washed her.

k. Subject object, pronoun: The woman who the girl hugged touched her.

l. Subject subject, reflexive: The woman who hugged the girl washed herself.

m. Subject object, reflexive: The woman who the girl hugged touched herself.

Their analysis of the pooled data4 revealed that object-extracted sentences elicited

higher listening times than subject-extracted sentences for both IWA and controls;

and an indication of higher listening times for pronouns than for three-noun phrase

structures, although this effect did not reach significance. Overall, IWA showed signif-

icantly higher listening times in object-extracted sentences than in any other sentence

type.

Caplan et al. (2015) claim that their data is in line with the resource reduction

hypothesis for several reasons. First, there was a super-additive interaction between

the demand of a specific sentence type and the performance of the different groups

of IWA: IWA at or above chance level had higher listening times than controls in

object relatives, but such difference did not emerge between IWA at normal range

and controls. In addition, no interaction between groups of IWA and controls in

other sentence types was found, which suggests that object-extracted relatives require

a greater resource demand. Second, the difference in listening times between the

experimental and baseline conditions increased as accuracy decreased from the normal

range to above chance to at chance, and overall, the difference was greater in sentences

with lower accuracies. The authors propose that this pattern can be seen as a gradient

of on-line performance that depends on the complexity of the sentence, and the degree

of resource reduction in IWA. Moreover, Caplan et al. (2015) hold that slowed lexical

access and slowed syntax may be the core mechanisms that are affected by resource

reductions. This claim is based on the online data: Residual corrected listening

times at the critical word in correct trials in all experimental sentences correlated

4We use the term pooled data to refer to the data from all IWA and controls in all sentences. Notice that Caplan
et al. (2015) performed a variety of analysis, including analysis that categorized IWA’s performance between at chance,
below chance, and above chance; and an analysis of IWA’s performance at the individual level.
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positively with reation times from a lexical decision task that had been administered

independently from the experiment. In addition, the residual corrected listening times

in non-critical words in the sentence also correlated positively with the listening times

at the critical regions, where the syntactic parsing operations of interest are expected

to happen. These correlations speak in favor of delays in lexical access and in syntactic

structure building.

In German, the resource reduction hypothesis has been investigated recently, with

visual-world data from 21 IWA and 50 controls in Pregla, Vasishth, et al. (2021). In

this study, participants heard a sentence at a normal speech rate (4.79 syllables per

second) while two pictures (target and foil) were displayed in a computer screen, all

through the trial. At the end of the auditory presentation of the sentence, participants

had to choose which picture depicted the meaning of the sentence. Participants were

tested using the same stimuli in two separate sessions (test-retest) with a gap of a

month in between. The experimental sentences included simple declarative sentences

(SVO vs. OVS), relative clauses (subject vs. object relatives), subject and object

control structures, and pronoun resolution. The visual-world data was analysed using

a time bin and time windows analyses. The authors found that, as expected under

the resource reduction hypothesis, processing difficulty is more frequent in complex

sentences relative to simple sentences, and that IWA show a general slowdown in

processing, in all sentence structures. However, in contrast with the predictions of

the resource reduction hypothesis, Pregla and colleagues found some quantitative

differences between IWA and controls in correct trials. While IWA’s gazes reflect

a preference for the target picture across the trial (which confirms that IWA are

not guessing, as predicted by resource reduction), IWA’s maximum target fixations

remained below controls’ maximum target fixations at the picture-selection task. The

authors take this as an indication that IWA show more uncertainty than controls.

Overall, the studies investigating resource reductions show that sentence compre-

hension in IWA is modulated by both sentence complexity and task demands, and

that variability between and within IWA is unsystematic, which speaks in favor of a

random-error generating component in the processing system of IWA. The role of this

component, usually referred to as noise, will be further explored in the intermittent

deficiencies account, which is presented next.

2.2.4 Intermittent deficiencies

The intermittent deficiencies account claims that the source of comprehension difficul-

ties in IWA are intermittent reductions in IWA’s processing capacities. This account,

also developed by Caplan and colleagues, can be seen as a combination of resource
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reduction and noise. Caplan (2012) characterizes resource reduction and noise in the

following way:

The level of random error generation [noise] may be considered one way

to conceive of resource reduction. Since it postulates the fewest possible

constructs, a theory that postulates only demand associated with each

sentence type and task and a random error-generating factor is to be

preferred on metatheoretical grounds, if it is workable. The next most

severely restricted model would be a three-parameter model that recog-

nizes resource demand associated with sentence types and tasks and both

noise and resource reduction in individual patients. Models of this sort

could be explored in many ways. Noise might be held constant and re-

source reduction allowed to vary, or both may vary; if the latter is the

case, the level of noise may be related to the degree of resource reduction

or not [emphasis added]. The important point is that two features of a

model of aphasic deficits in syntactically based comprehension are clearly

necessary: resource demand associated with different sentence types and

variable amounts of noise in different patients. (Caplan, 2012, p.46).

In this thesis, we follow Caplan (2012), and implement resource reductions and in-

termittent deficiencies as two separate sources of comprehension deficits. Specifically,

the intermittent deficiencies theory will be associated to the noise component in our

models.

Most of the findings in the studies previously presented in the resource reductions

section also speak in favor of the intermittent deficiencies theory. But specifically,

the results of two studies (Caplan et al., 2006; Caplan et al., 2007) are directly

interpreted in terms of intermittent deficiencies. These two studies report data from

experimental sentences that included the following contrasts: Actives vs. passives,

subject vs. object extracted relative clauses, and sentences with and without reflexive

pronouns. The comprehension of these sentences was tested in object manipulation,

sentence picture matching, and grammaticality judgments. The latter tasks were

tested in two different modalities: Whole sentence auditory presentation, and self-

paced listening. Accuracies in all tasks, as well as RT for the picture-selection task

and grammaticality judgments were recorded.

The findings of Caplan et al. (2006) have been summarized in the previous section,

in the context of the resource reduction hypothesis. However, one specific aspect of

the data adds support to the claim that there is a random error-generating process

(Caplan et al., 2006, p. 920) in the processing system that can also cause com-

prehension deficits in simpler syntactic structures: In about 5% of the trials, IWA



2.2. THEORIES OF SENTENCE PROCESSING DEFICITS IN APHASIA 25

experienced a reversed-pattern, i.e., abnormal performance in baseline sentences, and

normal-like performance in the related experimental counterpart, in the same task.

The results of Caplan et al. (2007) show that across the three tasks, both online

(self-paced listening) and offline data (accuracies) indicate that object relative clauses

are more difficult to process than subject relatives. The processing cost appears at

the verb of the object relative clauses. Similarly, the online data also indicate that

IWA experience some processing load at the verb of the passives compared to the

actives. In addition, greater effects were found for IWA with lower accuracy. Given

that normal-like online processing was found in correct trials, Caplan et al. (2007)

claim that the source of the failures in parsing are not in the syntactic structure

building proper (as in correct trials the syntactic structure is built correctly), but

that the parsing system fails intermittently, with more frequent failures in complex

sentences, where processing load is higher, and especially when resource availability is

low. Therefore, Caplan et al. (2007) argue that IWA’s performance is affected by the

complexity of the sentence, the task, and stochastic noise inherent to the participant.

Support for the intermittent deficiencies theory in German-speaking IWA comes

from Hanne, Burchert, and Vasishth (2016), who tested subject-extracted and object-

extracted who-questions in German in 8 IWA and 40 controls using the visual-world

paradigm and and sentence-picture matching. Controls showed incremental process-

ing of case-marking cues, and their gaze patterns revealed that they resolve the filler-

gap dependency at the gap position. By contrast, IWA’s online data show that gap-

filling is delayed. The offline results for IWA reveal three different patterns: Similar

comprehension and same impairments for both question types; b) better compre-

hension of subject compared to object who-questions and c) reversed asymmetry,

i.e., better comprehension of object compared to subject questions. The authors at-

tribute the comprehension errors of IWA to intermittent failures in parsing the wh-

dependencies in wh-questions and in integrating / using case cues.

Finally, the work by Pregla, Lissón, Vasishth, Burchert, and Stadie (2021) and

Pregla, Vasishth, et al. (2021) in German also provides some support for intermittent

deficiencies. In both online and offline measures, Pregla and colleagues found unsys-

tematic variability in IWA: Changes in performance between test and retest sessions

were unsystematic between and within IWA, whereas controls showed practise effects

from exposure to more complex sentences (i.e., controls performed better in complex

sentences in the retest session relative to the test session). The authors attribute this

variability to the role of noise in the processing system.
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2.3 Previous modeling of sentence processing deficits in apha-

sia

In this section, we present a short overview on studies that have computationally

investigated the role of the previously presented processing deficits in aphasia.

One of the first computational models of sentence processing in aphasia, SYN-

CHRON (Haarmann & Kolk, 1991a), is a timing-deficit based model. The core as-

sumption in this model is that parsing fails due to an incapacity to maintain syntactic

elements simultaneously co-active. The model builds phrase-structure representations

using a series of retrievals from working memory. The final retrieval, the phrasal cate-

gory, can only happen if all the constituent categories are simultaneously available in

memory. The model assumes that IWA have a time-based impairment, which could

be due to a) a capacity reduction of in syntactic working memory, b) a decrease in the

activation rate of items in memory, or c) an increase in the decay of representational

elements. Such impairment is the source of comprehension difficulties in complex sen-

tences, because it causes a disruption in the simultaneity of the phrasal category. The

model can also account for degrees of severity among different IWA. However, this

model lacks the structure to account for impairments in thematic role assignment,

which is one of the most studied phenomena in comprehension difficulties in aphasia

(Caramazza & Zurif, 1976).

The Capacity Constrained Resourced Deficit (CCRD) model, proposed by Haar-

mann, Just, and Carpenter (1997), is based on the assumption that the source of

impairments in aphasia is a low working memory capacity (see also Just & Carpen-

ter, 1992). Model components include lexical access, parse tree building, and thematic

role assignment. The CCRD model provided a good fit to the accuracy data reported

in Caplan et al. (1985) and in Kolk and Van Grunsven (1985), and could account for

sentence complexity effects by varying the working memory parameter, as more com-

plex sentences are assumed to require higher working memory demands. Other time-

deficit based computational models proposed for aphasia include the HOPE model

(Gigley, 1983, 1988), and the Unification Space model (Kempen & Vosse, 1989). In

general, all of these models assume that successful language comprehension requires

the co-activation of two or more representations, and that IWA experience some sort

of time-based deficit that disrupts such co-activation (Haarmann et al., 1997), such

as faster memory decay, higher fluctuations, lower activation values, and/or slower

times in parsing steps.

The resource reduction hypothesis has been computationally investigated in the

studies by Gutman, DeDe, Michaud, Liu, and Caplan (2010) and Gutman, DeDe,
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Caplan, and Liu (2011), who used the offline data from Caplan et al. (2006) and

implemented (extended) Rasch models to investigate the relationship between task

demands, resource reduction, and syntactic structures. Rasch models compute the

probability of providing a correct response as a linear function of individual capacity

(i.e., degree of impairment of each IWA), and sentence complexity. Different models

with increasing complexity were implemented and compared against each other by

assessing their goodness of fit. IWA’s individual accuracy performance on all sentences

in one or the two tasks (object manipulation and picture-sentence matching) were

taken as an index of IWA’s level of resource reduction (i.e., degree of impairment).

Sentence demands were determined by computing the total correct responses on each

sentence across all IWA in one or the two tasks. The best fitting model included

task and patient groups, but not sentence types. This suggests that overall, sentence

performance in IWA may be explained by the different levels of resource reduction in

IWA and task demands. Moreover, the results in Gutman et al. (2010) speak against

syntactic-based deficits (e.g., the trace deletion hypothesis, Grodzinsky, 1995), as

sentence type was not a determinant factor in the model that provided a better fit

for the data. One caveat of these studies, however, as pointed out in Caplan et al.

(2013), is that the Rasch models may not have had enough power to detect an effect

of sentence type.

Finally, the cue-based retrieval model of Lewis and Vasishth (2005) has been

adapted to model aphasic sentence processing in the studies by Patil et al. (2016)

and Mätzig et al. (2018). Patil et al. (2016) modeled the visual-world data of Hanne

et al. (2011), which tested SVO vs. OVS sentences in a sentence-picture matching

task. Eye movement patterns, accuracy, and response time were considered, and the

data from the 7 IWA was modeled individually. Patil and colleagues developed a

series of models based on the Lewis and Vasishth (2005), in which different theories

of processing difficulties in aphasia were implemented. Specifically, Patil et al. (2016)

implemented a model with slower procedural memory (interpreted as the implemen-

tation of slow syntax and delayed lexical access), a model with extra noise in the

parsing steps (interpreted as the implementation of intermittent deficiencies), and a

model containing both modifications. In addition, Patil et al. also implemented two

LV05-based models that simulated the predicted parsing behavior under two different

versions of the trace-deletion hypothesis (Grodzinsky, 1995). The results show that

IWA’s behavior in sentence processing is better captured by the model that combined

the two processing deficit accounts: Slowed processing and intermittent deficiencies.

Their results also highlight that patients may be affected by these deficits to a different

extent, which suggests the existence of considerable variability among IWA.
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Mätzig et al. (2018) investigated the variability in processing deficits in IWA by

estimating specific parameters of the Lewis and Vasishth (2005) model at the individ-

ual level. Slowed processing (understood as delayed lexical access and sow syntax),

intermittent deficiencies, and resource reduction were mapped onto different param-

eters of the model. Mätzig et al. (2018) fitted their model to the accuracy data from

the subject vs. object relative clauses data reported in Caplan et al. (2015). Overall,

IWA’s range of parameters show great variability, whereas controls’ parameters are

less variable, and closer to the default parameters in the original Lewis and Vasishth

(2005) model. These results confirm the conclusions in Caplan et al. (2015): Sev-

eral processing deficits may be responsible for IWA’s comprehension difficulties, and

deficits may lie on a graded continuum, depending on the degree of impairment of

each individual.

In general, previous studies implementing computational models of sentence pro-

cessing in aphasia have yielded the following insights: First, time-based deficits (either

due to a delay in lexical access or in syntax / parsing operations) are a crucial com-

ponent in sentence comprehension in aphasia. Second, individual IWA may suffer

from several processing deficits, and to different degrees. Models of sentence process-

ing in IWA should account for a range of possible processing deficits in IWA, and

for variability along the continuum of deficits. Third, models of sentence processing

should also account for sentence and task complexity, as well as a possible interaction

between these two factors.

Finally, computational modeling in aphasia has shown that constraining theories

by formalising their principles and assumptions fosters theory development. As an

example, consider the results in Patil et al. (2016) and Gutman et al. (2010), which

indicate that specific syntactic impairments cannot account for the data from IWA.

Instead, they point towards a combination of processing deficits as the source of

comprehension problems in IWA. Moreover, adapting existing models of sentence

comprehension in unimpaired populations to IWA has helped developing a connection

between general processing resources and impairments in aphasia, which, in turn,

allows for a better understanding of comprehension disorders in aphasia (De Bleser

et al., 2012). For instance, both Mätzig et al. (2018) and Patil et al. (2016) have

shown that the Lewis and Vasishth (2005) model of unimpaired sentence processing

can account for IWA’s performance by fine-tuning specific parameters that can be

mapped onto theoretically-informed deficits. This dissertation builds on their work,

and examines the role of processing deficits in the context of two computational

models of sentence processing: The Lewis and Vasishth (2005) model, and McElree’s

direct-accecss model (McElree, 2000).



Chapter 3

Computational models of retrieval

processes

This chapter details the computational implementation of the models of cue-based

retrieval that are evaluated in this dissertation. Section 3.1 is an introduction to the

general computational framework in which the models are implemented. The next

sections present the implementations of the activation-based model (Lewis & Vasishth,

2005) and the direct-access model (McElree, 2000), as well as a modified version the

direct-access model, which has been developed in this dissertation. Finally, the last

part of the chapter is dedicated to model comparisons.

3.1 Bayesian cognitive modeling

The competing models of sentence processing are implemented in the Bayesian prob-

abilistic programming language Stan (Carpenter et al., 2017). The package rstan

(Stan Development Team, 2021a) was used to fit the models through R.

The objective of using Bayesian modeling is to get a posterior distribution of the

parameters of the models, conditional on the data and the model itself. Bayesian

inference uses Baye’s rule to compute the posterior distribution of the parameters,

as shown in Equation (3.1), where p(Θ|y) is the posterior distribution, Θ is a vector

of parameters, y is the data, and p is a probability density function for continuous

variables, or a probability mass function for discrete variables.

p(Θ|y) =
p(y|Θ) · p(Θ)

p(y)
(3.1)

Equation (3.1) is commonly rewritten as Equation (3.2), where the likelihood is the

29



30 CHAPTER 3. COMPUTATIONAL MODELS OF RETRIEVAL PROCESSES

probability density function or probability mass function expressed as a function of Θ.

The prior is the probability distribution that is initially assigned to the parameters;

and the marginal likelihood is a normalizing constant used to standardize the posterior

distribution so that it sums up to 1. The unnormalized posterior distribution is

proportional to the numerator of Equation (3.1), as shown in Equation (3.3).

Posterior distribution =
Likelihood · Prior

Marginal Likelihood
(3.2)

Unnormalized posterior distribution ∝ Likelihood · Prior (3.3)

In complex models, deriving the posterior distribution analytically becomes impos-

sible, because computing the marginal likelihood involves integrating the numerator

in Bayes rule (Equation 3.4), which is often mathematically intractable. As a result,

Bayesian statistics rely on sampling algorithms that draw samples from the unnor-

malized posterior density, as the histogram of these samples approximate the target

posterior distribution. Stan implements a variant of the No-U-Turn sampler (NUTS;

Hoffman & Gelman, 2014), based on advanced Hamiltonian Monte Carlo algorithm

(HMC), which is a type of Markov Chain Monte Carlo method.

p(Θ|y) =
p(y|Θ) · p(Θ)∫

Θ
p(y|Θ) · p(Θ)dΘ

(3.4)

The HMC algorithm uses the shape of the target posterior density, (p(θ|y) to inform

the exploration of the parameter space. The algorithm uses Hamiltonian dynamics

simulation followed by a Metropolis acceptance step (Stan Development Team, 2021b,

chapter 15). Hamiltonian dynamics can be better understood by visualizing a particle

of mass m sliding over a frictionless surface. Important variables to consider are the

position of the particle, the momentum (ρ), the potential energy of the particle (which

is proportional to the height of the surface at its position), and the kinetic energy of

the particle. As explained by Neal (2011):

If it encounters a rising slope, the puck’s [particle’s] momentum allows it

to continue, with its kinetic energy decreasing and its potential energy

increasing, until the kinetic energy (and hence p) is zero, at which point it

will slide back down (with kinetic energy increasing and potential energy

decreasing). (Neal, 2011, p.114)
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In the context of sampling in the Bayesian framework, the position corresponds to

a vector that contains the parameters of interest, Θ, and its potential energy V (Θ),

is defined as the negative logarithm of the unnormalized posterior. The momen-

tum variables are introduced artificially. Specificaly, in Stan, they are drawn from a

multinormal distribution (Stan Development Team, 2021b).

The HMC algorithm work as follows: First, it starts with randomly-generated

initial values for the set of parameters θ. For each iteration, a new state θ∗ is proposed

based on the current position θ and a randomly drawn value of momentum p from a

multinormal distribution. The transition to a new state θ∗ and a new momentum p∗
are calculated using Hamiltonian equations, which are numerically approximated by

discretizing time. Stan uses the leapfrog method to discretize time in L number of

small time steps ε (ε is also known as the step-size parameter). Finally, a Metropolis

acceptance step is performed. If the proposal is not accepted, there is no transition

to the proposed state (θ∗, p∗) and the previous parameter value is used to initialize

the next iteration (see Stan Development Team, 2021b, chapter 15). One problem

with the HMC algorithm is that it is sensitive to two user-specified parameters: The

step size (ε) and the number of leapfrog steps (L). For instance, a large L can lead to

unnecessary computation, while a low L can lead to random-walk behavior (Hoffman

& Gelman, 2014). Stan implements a variant of the NUTS algorithm (Hoffman &

Gelman, 2014), which estimates these two parameters, thus removing the need to

hand-tune HMC’s parameters.1

The Stan syntax is based on C++. Stan models contain several blocks of code. The

mandatory blocks include functions (for user-written functions), data (for declaring

of the known variables, e.g., observations), parameters (for declaring the unknown

variables, i.e., the model parameters), model (for specifying the prior distributions and

the likelihood to define the posterior). The optional blocks include transformed data

(to declare transformed data), transformed parameters (to declare transformed pa-

rameters), and generated quantities (to generate quantities from the estimated

parameters in the model). The expression target+= is used to add terms to the

unnormalized log posterior probablity, which is the same as multiplying a term in

the numerator of the unnormalized posterior, as shown in Equation (3.3). Therefore,

the expression target+= is normally used in the model block, to declare the prior

distributions of the model parameters, as well as the likelihood.

1A detailed explanation of HMC and NUTS are beyond the scope of this dissertation. For the interested reader,
some useful references are Betancourt (2018), Leimkuhler and Reich (2004), Neal (2011).
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3.2 The activation-based model as a race of accumulators

In all the experiments modeled in this thesis, there are two dependent variables:

Accuracy in a sentence-picture matching task, and reaction times or listening times.

The reaction times come from the sentence-picture matching task, while the listening

times come from self-paced listening tasks. The main assumptions linked to these

dependent variables are that the accuracy reflects the interpretation of thematic roles

in the sentence, and that the reaction times/listening times serve as a proxy for

retrieval latencies. Consider sentence (13a), which is a subject relative clause, and

sentence (13b), an object relative clause. These examples are similar to the relative

clause conditions modeled in Chapter 4.

(13) a. The dogNP1 who beat the catNP2 chases the rat.

b. The dogNP1 who the catNP2 beat chases the rat.

According to cue-based retrieval, when encountering the verb beat, comprehenders

start a retrieval process to retrieve the subject of beat. In (13a), the target of the

dependency is the first noun phrase (NP1), whereas in (13b), the target is the second

noun phrase (NP2), and NP1 is a distractor.

The main assumption in the activation-based model as implemented in this disser-

tation is that the process of accumulation of evidence can be equated to the process

of activation accrual in the original Lewis and Vasishth (2005) model of sentence

comprehension. In Lewis and Vasishth (2005), the probability of retrieval of an item

and its retrieval latency are determined by its activation value. The activation of an

item decreases as a function of interference and decay. In sentences with distance or

interference manipulations, such as (13b), the target item would be less likely to be

retrieved, and retrieval latencies would be slower, relative to a sentence like (13b),

in which there is no distractor item. All the items modeled in this dissertation con-

sist of a pair of sentences such as (13a) and (13b), where one sentence contains the

experimental manipulation, and the other one serves as a baseline condition.

In our implementation of Lewis and Vasishth (2005) as a race of accumulators,

which is based on the original implementation by Nicenboim and Vasishth (2018),

there are two accumulators of evidence, each one corresponding to the retrieval of

a noun phrase in a given sentence. One of these noun phrases is the target of the

dependency, and the other one is the distractor. The race process between the two

accumulators consists on sampling finishing times from two distributions with mean

µNP1, and µNP2, respectively; and standard deviation σ. For each trial, the accumu-

lator with the lower finishing time wins the race and its value becomes the estimated
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listening time/reaction time. This is exemplified graphically in Figure 3.1.

Figure 3.1: Graphical representation of the activation-based model as a race of accumulators.

The race process is written in a user-defined function. The function takes as argu-

ments the answer and reaction time (RT) for each trial from the empirical data; as

well as the estimated parameters µNP1, µNP2 and σ. The answer for a given trial cor-

responds to the winner of the trial, i.e., the actual noun phrase that was retrieved. In

the picture-selection task, accuracy selecting the right picture was coded as 1 (correct

picture was selected) or 0 (incorrect picture was selected). Our assumption is that

the picture selection task also reflects the retrieval process. Participants were shown

two pictures. The target picture depicts depicts the meaning of the sentence that

they hear. The foil picture depicts the action expressed by the verb in the sentence,

but with reversed thematic roles. Therefore, if participants chose the target picture,

they retrieved the target noun from memory as the agent of the action depicted in

the picture, because that is what the target picture shows. If the incorrect picture

was chosen, we assume that the distractor was retrieved as the agent of the action

depicted in the picture. For example, in correct trials in object relative clauses, we

assume that the NP2 was retrieved, and in incorrect trials, NP1 was retrieved. The

variable answer maps, by trial, the accuracy with the retrieved noun phrase. This

variable is coded in the data. The race function checks, for each trial, the answer

variable. If the answer corresponds to NP1, the function adds to the log likelihood

the probability that the RTi is drawn from a lognormal distribution with mean µNP1,

for the current parameter values. This is done by using the lognormal_lpdf function

in Stan. The accumulator that does not win in trial i will have a slower (or higher)

finishing time. The probability that the RTi comes from a lognormal distribution

with mean µNP2 is added to the log likelihood using the complementary cumulative

distribution (lognormal_lccdf) in Stan2. In trials in which the answer is NP2, the

probability that the RTi is drawn from a lognormal distribution with mean µNP2 is

2This code builds on the original code from Nicenboim and Vasishth (2018) and from van het Nederend (2018).
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added to the log likelihood using the lognormal probability distribution, and from

µNP1, using the complementary cumulative distribution distribution.

Listing 3.1: Race function

r e a l race ( int answer , r e a l RT, r e a l accum NP1 , r e a l accum NP2 ,

r e a l accum sigma ){

r e a l l o g l i k ;

l o g l i k = 0 ;

i f ( answer==1){
l o g l i k += lognorma l lpd f (RT| accum NP1 , accum sigma ) ;

l o g l i k += logno rma l l c cd f (RT| accum NP2 , accum sigma ) ;

}
else {

l o g l i k += lognorma l lpd f (RT| accum NP2 , accum sigma ) ;

l o g l i k += logno rma l l c cd f (RT| accum NP1 , accum sigma ) ;

}
return ( l o g l i k ) ;

}

The means of the accumulators, µNP1, and µNP2 include the fixed and random

effects relevant for the structure of each experimental data-set. For each data-set,

the specific hierarchical structure will be detailed in their corresponding chapters.

The same number of fixed and random effects are estimated for µNP1 and µNP2.

Listing 3.2 shows the most complex model structure fitted in this dissertation, which

corresponds to the data modeled in Chapter 6. In addition to the main effect of

group and of the linguistic manipulations (rctype and num variables, these will be

explained in Chapter 6), the main effects also include lexical decision times from a

lexical decision task (LDT variable), proportions of gazes to the target picture in a

sentence-picture matching task (fixations), and all relevant interactions between the

different predictors.

Listing 3.2: Example of fixed and random effects added to the accumulators.

model {
for (n in 1 : N obs ) {
r e a l accum NP1 = alpha [ 1 ] + u [ subj [ n ] , 1 ] + w[ item [ n ] , 1 ] +

group [ n ] ∗ ( beta [1 ]+w[ item [ n ] , 3 ] ) +

num[ n ] ∗ ( beta [3 ]+u [ subj [ n ] , 3 ] ) + group [ n ]∗num[ n ]∗ beta [ 5 ] +

LDT[ n ]∗ beta [ 7 ] + group [ n ]∗LDT[ n ]∗ beta [ 9 ] +

LDT[ n ]∗ rc type [ n ]∗ beta [ 1 1 ] +

group [ n ]∗LDT[ n ]∗ rc type [ n ]∗ beta [ 1 3 ] +

f i x [ n ]∗ beta [ 1 5 ] + f i x [ n ]∗ group [ n ]∗ beta [ 1 7 ] +
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f i x [ n ]∗ rc type [ n ]∗ beta [ 1 9 ] +

group [ n ]∗ f i x [ n ]∗ rc type [ n ]∗ beta [ 2 1 ] +

rctype [ n ] ∗ ( beta [23]+u [ subj [ n ] , 5 ] ) +

rctype [ n ]∗ group [ n ]∗ beta [ 2 5 ] + rctype [ n ]∗num[ n ]∗ beta [ 2 7 ] +

rctype [ n ]∗num[ n ]∗ group [ n ]∗ beta [ 2 9 ] ;

r e a l accum NP2 = alpha [ 2 ] + u [ subj [ n ] , 2 ] + w[ item [ n ] , 2 ] +

group [ n ] ∗ ( beta [2 ]+w[ item [ n ] , 4 ] ) +

num[ n ] ∗ ( beta [4 ]+u [ subj [ n ] , 4 ] ) + group [ n ]∗num[ n ]∗ beta [ 6 ] +

LDT[ n ]∗ beta [ 8 ] + group [ n ]∗LDT[ n ]∗ beta [ 1 0 ] +

LDT[ n ]∗ rc type [ n ]∗ beta [ 1 2 ] +

group [ n ]∗LDT[ n ]∗ rc type [ n ]∗ beta [ 1 4 ] +

f i x [ n ]∗ beta [ 1 6 ] + f i x [ n ]∗ group [ n ]∗ beta [ 1 8 ] +

f i x [ n ]∗ rc type [ n ]∗ beta [ 2 0 ] +

group [ n ]∗ f i x [ n ]∗ rc type [ n ]∗ beta [ 2 2 ] +

rctype [ n ] ∗ ( beta [24]+u [ subj [ n ] , 6 ] ) +

rctype [ n ]∗ group [ n ]∗ beta [ 2 6 ] + rctype [ n ]∗num[ n ]∗ beta [ 2 8 ] +

rctype [ n ]∗num[ n ]∗ group [ n ]∗ beta [ 3 0 ] ;

r e a l accum sigma = sigma 0 + group [ n ]∗ beta [ 3 1 ] ;

}
}

The model implements by-subject and by-item correlated varying intercept and

varying slopes in the two accumulators. Given the complexity of the model, non-

centered parametrization with the Cholesky decomposition was used for the random

effects. This is a reparametrization often used in complex hierarchical models in Stan

(e.g., see Nicenboim, Schad, & Vasishth, 2021, chapter 11). Uncorrelated vectors for

subjects (zu) and items (zw) are sampled from a normal distribution with mean 0 and

standard deviation 0.5. These vectors are multiplied by the Cholesky factor (Lu and

Lw, respectively) in the transformed parameter block of code. These multiplications

result in two respective matrices that contain vectors of correlated variables. By

multiplying the matrices by the diagonal matrix τu and τw, respectively, using the

diag_pre_multiply function, the vectors of correlated values are scaled back to

the corresponding standard deviations. In Listing 3.3, nu and nw are arguments

previously declared in the data block, which stand for the number of random effects

for subjects and items, respectively.

Listing 3.3: Non-centered parametrization.

parameters {
vec to r [ 7 ] beta ;

r e a l alpha [ 2 ] ;
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r ea l<lower=fabs ( beta [7 ])> sigma ;

c h o l e s k y f a c t o r c o r r [ n u ] L u ;

c h o l e s k y f a c t o r c o r r [ n w ] L w ;

vector<lower=0>[n u ] tau u ;

vector<lower=0>[n w ] tau w ;

matrix [ n u , N subj ] z u ;

matrix [ n w , N item ] z w ;

}

transformed parameters {
matrix [ N subj , n u ] u ;

matrix [ N item , n w ] w;

u = ( d i ag p r e mu l t i p l y ( tau u , L u ) ∗ z u ) ' ;
w = ( d i ag p r e mu l t i p l y ( tau w , L w) ∗ z w ) ' ;

}

3.2.1 Priors

All the parameters (which are on the log scale because of the lognormal likelihood)

have regularizing priors, shown in Equation (3.5). These priors allow for a wide

range of values and down-weight extreme values. In the context of psycholinguistics,

prior specification in hierarchical models is discussed in Sorensen, Hohenstein, and

Vasishth (2016), Nicenboim and Vasishth (2016), Vasishth, Nicenboim, Beckman, Li,

and Kong (2018), Schad, Betancourt, and Vasishth (2021), and in Chapter 6 from

Nicenboim et al. (2021). The priors are shown graphically in Figure 3.2.

α1,2 ∼ normal(7.5, 0.6)

β1,...,n ∼ normal(0, 0.5)

σ ∼ normal+(0, 0.5)

τu1,...,n ∼ normal+(0, 0.1)

τw1,...,n ∼ normal+(0, 0.1)

Lu ∼ LKJcorr(2)

Lw ∼ LKJcorr(2)

zu ∼ normal(0, 0.5)

zw ∼ normal(0, 0.5)

(3.5)

where the subscript n stands for the number of dimensions of the vector of param-
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eters, the subscript u indexes subjects, and w indexes items. Accordingly, τu and τw

are the sd of the by-subject and by-item random effects, and Lu and Lw stand for the

Cholesky factor of the correlation matrices for the random effects. Finally, zu and zu

are the random uncorrelated variables that are multiplied by the Cholesky factor (Lu

and Lw, respectively) and by the diagonal matrices (τu and τw, respectively) in order

to obtain the vectors of correlated random effects using a non-centered parametriza-

tion. In the prior for the residual sd (σ), the subscript + in the normal distribution

prior stands for a normal distribution truncated at 0 (reflecting the fact that standard

deviations can never be less than 0).
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Figure 3.2: Simulated prior distributions for main parameters in activation-based model.

The prior on the intercepts of the accumulators, α1,2, assumes that a priori, the

intercept is somewhere between exp(7.5− 0.6× 2) = 544 ms and exp(7.5 + 0.6× 2) ≈
6000 ms. The interpretation of the prior for the effect sizes, indexed by β1,...,n, depends

on the intercept α. For instance, for an intercept of 7.5 log ms (≈ 1800 ms), the prior

for β1,...,n would estimate a change in α in the range from exp(7.5)× exp(−1) = 665
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ms, to exp(7.5) × exp(1) = 4914 ms. The effect size strongly changes depending on

the intercept, so the prior allows for a wide range of effect sizes. The same prior was

used for σ. Finally, the LKJ (Lewandowski, Kurowicka, & Joe, 2009) prior was used

for the correlation of the random effects, with parameter 2, which disfavors extreme

correlations like ±1 (Carpenter et al., 2017).

3.2.2 Posterior predictive checks

In order to assess the adequacy of the model, posterior predictive checks are re-

quired. This model check consists on simulating data based on the posterior samples

of the parameters in the model (Gelman et al., 2013). This is achieved by creating a

user-generated function in Stan. Listing 3.4 shows the function corresponding to the

modeling for relative clauses. The function first samples from the two accumulators.

The if else statement works as follows: If the sampled value from accumulator 1 is

lower than the sample from accumulator 2, and the trial corresponds to a subject

relative, generate accuracy 1 (correct), and if the trial corresponds to an object rela-

tive, generate accuracy 0 (incorrect). Else if the sampled value from the accumulator

2 is faster than accumulator 1, generate accuracy 1 if trial corresponds to an ob-

ject relative, and accuracy 0 if trial corresponds to a subject relative. This mapping

works because NP1 is the target in subject relatives, and NP2 is the target in object

relatives. The function outputs a vector which contains the generated RT and the

generated accuracies.

Listing 3.4: Function to generate posterior predictive checks.

vec to r ra c e rng ( r e a l mu 1 , r e a l mu 2 , r e a l sigma , int rc type ){
vec to r [ 2 ] gen ;

r e a l accum NP1 RT = lognormal rng (mu 1 , sigma ) ;

r e a l accum NP2 RT = lognormal rng (mu 2 , sigma ) ;

i f (accum NP1 RT < accum NP2 RT){
gen [ 1 ] = accum NP1 RT ;

i f ( rc type == −1){ //SR −1 in con t r a s t coding

gen [ 2 ] = 1 ;}
else {

gen [ 2 ] = 0 ;}
}
else {

gen [ 1 ] = accum NP2 RT ;

i f ( rc type == 1){ // OR +1 in con t ra s t coding

gen [ 2 ] = 1 ;

}
else {

gen [ 2 ] = 0 ;}
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}
return ( gen ) ; }

}

This function is used to generate simulated data from the posterior of the model

parameters. The function is called in the generated quantities block, and the

parameters accum_NP1, accum_NP2 and sigma are passed as arguments. These pa-

rameters, as shown in Listing 3.2, include the full structure of random and fixed

effects. So the posterior predictive checks are done with simulated data that include

all the estimated parameters in the model.

3.2.3 Parameter recovery

One important test to check the validity of the model is to assess whether the model is

able to recover its own parameters. This procedure involves (a) fitting the activation-

based model to the empirical data, (b) extracting the estimated mean parameter

values from this fit, (c) generating a relatively large amount of simulated data based

on the mean estimated parameter values following the generative process assumed by

the model, (d) fit the activation-based model to the simulated data, (e) check whether

the mean estimated parameter values from the empirical data fall within the range

of parameter values estimated by the model fit to simulated data. This procedure

ensures that the model is working properly and that it can recover its own parameters.

Failure to recover its own parameters could indicate that the model is misspecified.

As this is a custom-built model whose complexity can quickly increase depending

on the number of random and fixed effects, parameter recovery is a necessary step

to ensure the validity of the model estimates. The steps of parameter recovery are

detailed below.

First, a data-set of simulated data is created. In order to do this, a data-frame

that contains the same variables than the empirical data is created in R. Listing 3.5

shows an example of this, corresponding to the data modeled in chapter 6. In order to

ensure that the simulated data has a relatively large sample size, as a rule of thumb,

the simulated data consisted of at least three times the amount of observations in

the empirical data. For instance, in this case, the number of simulated trials, N , was

16,000. The variable LDT stands for lexical decision task. In the empirical data it

corresponds to the mean lexical decision RT from a lexical decision task, averaged by

participant. In order to generate simulated data in the same unit than it appears in

the empirical data, simulated RT are sampled from a normal distribution and then

scaled. There is only one LDT value per participant, so in the simulated data, 100 data
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points are sampled, as we assume that 100 is the number of subjects. Similarly, the

variable fixations, which stands for the proportions of looks to the target picture,

contains scaled simulated data from a uniform distribution with parameters 0 and 1.

The rest of the code creates simulated data that mimics the design in the empirical

data: Two conditions in the relative clause variable (subject vs. object relatives), two

conditions in the number variable (match vs. mismatch), and two groups (controls vs.

IWA). All of these variables are coded with sum contrasts: +1 and −1. The specific

design of the empirical data will be explained in chapter 6. Here it is simply shown

as an example for the recovery of the parameters. Finally, the columns corresponding

to RT and answer are empty, as these will be filled later on with values generated

from the generative process.

Listing 3.5: Simulated data.

N <− 16000

nsubj <− 100

LT LDT <− rnorm( nsubj , 1500 ,500)

LDT <− scale (LT LDT)

ACT. data . sim <− data . frame (

rc type = rep (c ( rep(−1 , 1000) , rep (1 , 1000 ) ) , 8 ) ,

num = rep (c ( rep(−1 , 500) , rep (1 , 500 ) ) , 16 ) ,

item = rep ( 1 : 1 0 , 1600) ,

subj = rep ( 1 : nsubj , each=10, t imes =16) ,

group = rep (c ( rep(−1 , 10) , rep (1 , 10 ) ) , 800) ,

LDT = rep (LDT, each=10, t imes =16) ,

f i x a t i o n s = scale ( runif (N, 0 , 1 ) ) ,

rt = rep (0 , N) ,

answer = rep (0 , N) )

To assess the recovery of the parameter estimates from the random effects, the

estimates are extracted from the model fitted to the empirical data. In the code

below, ACT contains all the parameter values from the model fitted to the empirical

data3. After extracting the estimates for the Cholesky factor Lu, and the diagonal

matrix τu, random uncorrelated variables are generated from a normal distribution

with mean 0 and sd 0.5. The random variables are then multiplied by τu and Lu, which

yields the final matrix of correlated adjustments for subjects. The same procedure is

done for the by-item random adjustments.

Listing 3.6: Code for by-subject random effects.

# random uncor re l a t ed v a r i a b l e s

z u1 <− rnorm(ACT. data . sim . nsubj , 0 , . 5 )

3The code for simulating data builds on the original code from van het Nederend (2018).
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z u2 <− rnorm(ACT. data . sim . nsubj , 0 , . 5 )

z u3 <− rnorm(ACT. data . sim . nsubj , 0 , . 5 )

z u4 <− rnorm(ACT. data . sim . nsubj , 0 , . 5 )

z u <− matrix (c ( z u1 , z u2 , z u3 , z u4 ) ,

ncol = ACT. data . sim . nsubj , byrow = T)

# Cholesky

L u <− matrix (c (

ACT$`L u [ 1 , 1 ] ` ,ACT$`L u [ 2 , 1 ] ` ,ACT$`L u [ 3 , 1 ] ` ,ACT$`L u [ 4 , 1 ] ` ,

0 ,ACT$`L u [ 2 , 2 ] ` ,ACT$`L u [ 3 , 2 ] ` ,ACT$`L u [ 4 , 2 ] ` ,

0 ,0 ,ACT$`L u [ 3 , 3 ] ` ,ACT$`L u [ 4 , 3 ] ` ,

0 , 0 ,0 ,ACT$`L u [ 4 , 4 ] ` ) ,nrow=4,ncol=4)

# Diagonal matrix Tau

Tau u <− matrix (c (ACT$` tau u [ 1 ] ` , 0 , 0 , 0 ,

0 ,ACT$` tau u [ 2 ] ` , 0 , 0 ,

0 ,0 ,ACT$` tau u [ 3 ] ` , 0 ,

0 , 0 ,0 ,ACT$` tau u [ 4 ] ` ) ,nrow=4,ncol=4)

# co r r e l a t e d adjus tments

ACT. u <− Tau u %∗% L u %∗% z u %>% t

Once the random effects have been generated, the next step is to produce simu-

lated data that follows the generative process assumed by the model. This involves

simulating µNP1, µNP2 and σ using the parameter estimates from the model fit to

the real data. Listing 3.7 shows an example of how this is achieved for µNP1. The

same procedure is done for µNP2 and σ. The code below is enclosed in a for loop

with range 1:nrow(ACT.data.sim),which ensures that the data generating process

is done for each simulated trial. Then, one data point is sampled from a lognormal

distribution with location µNP1 and µNP2, respectively, and sd σ. Finally, the vari-

ables answer,RT and accuracy are generated and incorporated to the data-frame of

simulated data as shown in Listing 3.8. The RT from the winner accumulator (i.e.,

the lower RT) becomes the estimated RT for a given trial. If the sampled value of

µNP1 is lower, then 1 is assigned to the variable answer, otherwise 2 is assigned. This

mapping of 1 and 2 follows the same mapping that is coded in the empirical data, 1

corresponds to NP1 and 2 corresponds to NP2.

Listing 3.7: Simulated data for µNP1.

mu NP1 <− ACT$`alpha [1] `+ACT. u [ sub ,1 ]+ACT.w[ item ,1 ]+

grp∗ (ACT$`beta [1] `+ACT.w[ item , 3 ] ) +

num∗ (ACT$`beta [3] `+ACT. u [ sub , 3 ] ) +

grp∗num∗ACT$`beta [5] `+ LDT∗ACT$`beta [ 7 ] ` +

grp∗LDT∗ACT$`beta [ 9 ] ` + LDT∗ rc type∗ACT$`beta [ 1 1 ] ` +
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grp∗LDT∗ rc type∗ACT$`beta [ 1 3 ] ` + f ix∗ACT$`beta [15] `+
grp∗ f ix∗ACT$`beta [17] `+ f ix∗ rc type∗ACT$`beta [ 1 9 ] ` +

grp∗ f ix∗ rc type∗ACT$`beta [ 2 1 ] ` +

rctype∗ (ACT$`beta [23] `+ ACT. u [ sub , 5 ] ) +

grp∗ rc type∗ACT$`beta [ 2 5 ] ` +

rctype∗num∗ACT$`beta [ 2 7 ] ` +

rctype∗num∗grp∗ACT$`beta [ 2 9 ] `

Listing 3.8: Simulated data for the activation-based model.

r t1 <− rlnorm (1 , mu NP1, sigma ) ;

r t2 <− rlnorm (1 , mu NP2, sigma ) ;

ACT. data . sim$answer [ n ] <− i f e l s e ( r t1 < rt2 , 1 , 2)

ACT. data . sim$rt [ n ] <− i f e l s e ( r t1 < rt2 , rt1 , r t2 )

Once the dataframe is complete with the RT and responses simulated using the

estimated parameters form the empirical data and the generative process assumed

by the model, the simulated data is fitted to the model. The estimates of the model

fit with simulated data can be used to check whether the estimates of the model fit

with empirical data can be recovered. This can be done graphically, by plotting the

discrepancies between the posterior means of the model parameters and the values

extracted from the original fit with real data, for those parameters. An example

is shown in Figure 3.34, which corresponds to the model of relative clauses fitted

in Chapter 6. The black dots indicate the difference between the posterior means

and the extracted values from the model fitted to real data. The lines show the

95% credible interval of the difference (i.e., the 2.5th and 97.5th percentiles of the

posterior draws). For the model to correctly recover its parameters, all or nearly all of

the intervals should include zero. Simulated data and parameter recovery were carried

out for each model fitted in this dissertation, in order to check that the models were

adequate. These plots are available at the online repositories linked at the appendix.

3.3 The direct-access model as a mixture process

We implement the direct-access model as a Bayesian two-component mixture model,

following Nicenboim and Vasishth (2018). These are the main assumptions of the

original direct-access model that we implement:

1. Retrieval cues enable direct-access to elements from memory. Retrieval

times µda are assumed to be independent from sentence complexity (i.e.,
4This plot is adapted from the original approach presented in Furr (2017), available here: https://mc-stan.org/

users/documentation/case-studies/rasch and 2pl.html

https://mc-stan.org/users/documentation/case-studies/rasch_and_2pl.html
https://mc-stan.org/users/documentation/case-studies/rasch_and_2pl.html


3.3. THE DIRECT-ACCESS MODEL AS A MIXTURE PROCESS 43

L_w[4,4]
L_w[4,3]
L_w[4,2]
L_w[4,1]
L_w[3,3]
L_w[3,2]
L_w[3,1]
L_w[2,2]
L_w[2,1]
L_w[1,1]
L_u[6,6]
L_u[6,5]
L_u[6,4]
L_u[6,3]
L_u[6,2]
L_u[6,1]
L_u[5,5]
L_u[5,4]
L_u[5,3]
L_u[5,2]
L_u[5,1]
L_u[4,4]
L_u[4,3]
L_u[4,2]
L_u[4,1]
L_u[3,3]
L_u[3,2]
L_u[3,1]
L_u[2,2]
L_u[2,1]
L_u[1,1]
tau_w[4]
tau_w[3]
tau_w[2]
tau_w[1]
tau_u[6]
tau_u[5]
tau_u[4]
tau_u[3]
tau_u[2]
tau_u[1]
beta[31]
beta[30]
beta[29]
beta[28]
beta[27]
beta[26]
beta[25]
beta[24]
beta[23]
beta[22]
beta[21]
beta[20]
beta[19]
beta[18]
beta[17]
beta[16]
beta[15]
beta[14]
beta[13]
beta[12]
beta[11]
beta[10]

beta[9]
beta[8]
beta[7]
beta[6]
beta[5]
beta[4]
beta[3]
beta[2]
beta[1]

sigma_e
alpha[2]
alpha[1]

-1.0 -0.5 0.0 0.5

Discrepancy

Activation-based model, RC conditions

Figure 3.3: Discrepancies RC.

increased distance between the target and the retrieval site, similarity-

based interference).

2. Sentence complexity can lower the availability of the target NP in memory.

Low availability can lead to the retrieval of the distractor, which is known

as a misretrieval. After an initial misretrieval, if a backtracking process is

initiated, the target will be eventually retrieved from memory.

3. Backtracking requires extra processing time that is independent from the

retrieval time µda. The backtracking time (δ) needs to be added to µda in

order to account for the processing time in trials that include backtracking.

In order to implement the assumptions of the direct-access model of memory re-

trieval, we assume that the response selection has a certain probability of retrieval

of the target (θ) which is affected by the probability of backtracking (Pb). The

implementation assumes that responses (accuracy) follow a Bernoulli distribution, in
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which additional probability mass is added to the distribution of the correct responses

if backtracking is performed. The probability of retrieving the target or the distrac-

tor for trial i is shown in Equations (3.6) and (3.7), respectively. In the equations,

target and distractor stand for the selection of the target or the distractor NP from

memory, θ is the probability of initial retrieval of the target; and Pb is the probability

of backtracking.

P (answeri = target|θ, Pb) = θ + (1− θ) · Pb (3.6)

P (answeri = distractor|θ, Pb) = (1− θ) · (1− Pb) (3.7)

Response times are drawn from a lognormal distribution. If the response for trial

i is correct (accuracy = 1), the RT for trial i come from a mixture distribution that

is estimated as shown in Equation (4.6). The mixture distribution reflects the two

processes that can lead to a correct response: Direct access of the target, or initial

misretrieval followed by backtracking.

RTcorrect ∼

{
lognormal(µ, σ), initial retrieval succeeds

lognormal(µ+ δ, σ), initial retrieval fails + backtracking
(3.8)

RTincorrect ∼ lognormal(µ, σ) (3.9)

where RTcorrect stand for the RT in correct trials, µ is the location of the distri-

bution of RT, σ is the standard deviation of the lognormal distribution, and δ is the

processing time needed for backtracking. The RT corresponding to incorrect trials

(RTincorrect) are assumed to come from the same distribution than the correct trials

without backtracking, as detailed in Equation (3.9).

As shown in Equation (3.6), the probability of a correct answer is yielded by

θ + Pb · (1− θ). It follows that:

1. The first component of the mixture model shown in Equation (3.8) cor-

responds to correct answers that come from an initial correct retrieval,

which occur with probability

θ

θ + Pb · (1− θ)
(3.10)
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2. The second component in Equation (3.8) corresponds to correct answers

that come from an initial incorrect retrieval followed by backtracking,

which occur with probability

Pb · (1− θ)
θ + Pb · (1− θ)

(3.11)

3. Finally, the response for trial i is incorrect (accuracy = 0), with probability

(1− θ) · (1− Pb) (3.12)

These probabilities are coded in Stan, in log space, in a user-generated function

that is called in the model block. This function is shown in Listing 3.95. In log

space, the multiplications become sums, the divisions become subtractions, and the

log_sum_exp function is used to add two terms. The second part in the function

implements the mixture model as shown in Equations 3.8 and 3.9.

Listing 3.9: Function defining the likelihood for the direct-access model.

r e a l d i r e c t a c c e s s ( int accuracy , r e a l RT, r e a l theta , r e a l P b ,

r e a l mu, r e a l de l ta , r e a l sigma ){

// Equation 3.7

r e a l l o g p an swe r c o r r e c t = log sum exp ( log ( theta ) , l og (P b ) + log1m ( theta ) ) ;

// Equation 3.11

r e a l l o g p a n sw e r c o r r e c t d i r e c t a c c e s s = log ( theta ) − l o g p an swe r c o r r e c t ;

// Equation 3.12

r e a l l o g p an swe r c o r r e c t ba ck t r a ck = log (P b ) + log1m ( theta )

− l o g p an swe r c o r r e c t ;

// Equation 3.13

r e a l l o g p an swe r i n c o r r e c t = log1m ( theta ) + log1m (P b ) ;

i f ( accuracy==1) {
return ( l o g p an swe r c o r r e c t +

log sum exp (

l o g p a n sw e r c o r r e c t d i r e c t a c c e s s + lognorma l lpd f (RT| mu, sigma ) ,

l o g p an swe r c o r r e c t ba ck t r a ck + lognorma l lpd f (RT| mu + delta , sigma ) ) ) ;

} else {
return ( l o g p an swe r i n c o r r e c t + lognorma l lpd f (RT| mu, sigma ) ) ;

}
}

In order to model the effect of sentence complexity (i.e., similarity-based interfer-

ence, decay) and the differences in performance between the individuals with aphasia

5This code builds on the original code from Nicenboim and Vasishth (2018) and from van het Nederend (2018).
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and control participants, the fixed effects condition, group, and condition × group

were added to the parameters of interest. Below there is a general description of the

main effects that were added to all of the models, based on the assumptions about

sentence processing deficits in aphasia.

• µ only has a main effect of group, as µ is a proxy for retrieval times, and

in the direct-access model, retrieval times are not dependent on sentence

complexity. However, it is assumed that there could be a difference in

retrieval times between the two groups.

• θ has main effects for group, condition, and group × condition. This

parameter stands for the initial probability of correct retrieval, and is

expected to reflect the effects of sentence complexity and group.

• Pb and δ have a main effect of group because IWA are expected to show

an impairment in the process of backtracking.

• σ also has an adjustment by group because the retrieval process is expected

to be noisier for IWA.

The model structure becomes more complex with more conditions (e.g., the four

relative-clauses conditions in Chapter 6) and with more predictors (e.g., fixations and

data from a lexical decision task in 5). In these cases, the adjustments were added to

µ and/or θ, according to the specific theoretical predictions for that model. A more

thorough explanation of the different parameters in relation to the processing deficits

in aphasia will be given when presenting the specific assumptions for each modeled

data-set. As an example, Listing 3.10 shows the structure of fixed and random effects

implemented for the data modeled in Chapter 6.

Listing 3.10: .

r e a l mu = mu 0 + u [ subj [ i ] , 1 ]+ w[ item [ i ] , 1 ] + group [ i ]∗ beta [ 1 ] ;

r e a l theta = i n v l o g i t ( alpha + u [ subj [ i ] , 2 ] + w[ item [ i ] , 2 ] +

LDT[ i ]∗ beta [ 2 ] + group [ i ]∗LDT[ i ]∗ beta [ 3 ] +

group [ i ] ∗ ( beta [ 4 ] + w[ item [ i ] , 3 ] ) +

rctype [ i ] ∗ ( beta [5 ]+ u [ subj [ i ] , 3 ] ) +

rctype [ i ]∗ group [ i ]∗ beta [ 6 ] +

num[ i ] ∗ ( beta [7 ]+ u [ subj [ i ] , 4 ] ) +

num[ i ]∗ group [ i ]∗ beta [ 8 ] +

num[ i ]∗ rc type [ i ]∗ beta [ 9 ] +

num[ i ]∗ rc type [ i ]∗ group [ i ]∗ beta [10]+

f i x [ i ]∗ beta [ 1 1 ] +

f i x [ i ]∗ group [ i ]∗ beta [ 1 2 ] +

f i x [ i ]∗ rc type [ i ]∗ beta [ 1 3 ] +
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f i x [ i ]∗ rc type [ i ]∗ group [ i ]∗ beta [ 1 4 ] ) ;

r e a l P b = i n v l o g i t (gamma + u [ subj [ i ] , 5 ] + group [ i ]∗ beta [ 1 5 ] ) ;

r e a l d e l t a = de l t a 0 + group [ i ]∗ beta [ 1 6 ] ;

r e a l sigma = sigma 0 + group [ i ]∗ beta [ 1 7 ] ;

3.3.1 Priors

In the direct-access model, the same regularizing priors were used for the location

and the sd of the distribution of RT (µ and σ) and for the effect sizes (β1,...,n) as

in the activation-based model. Similarly, the same non-centered parametrization for

the random effects was implemented, and the same priors were used for the random

effects. These have been discussed in Section 3.2.1. The rest of the priors are shown

in Equation 3.13 and can be seen graphically in Figure 3.4.

α ∼ normal(1, 0.5)

β1,...,n ∼ normal(0, 0.5)

µ0 ∼ normal(7.5, 0.6)

γ ∼ normal(−1, 0.5)

δ0 ∼ normal(0, 1)

σ0 ∼ normal(0, 0.5)

(3.13)

The prior for θ and for γ (which is the intercept for Pb) encode some general

information taken from a previous study. Nicenboim and Vasishth (2018), in their

multivariate implementation of the direct-access model, estimated that the proba-

bility of retrieval of the target at the first retrieval attempt (equivalent to θ in the

present model) was around 70% (95% CrI: [60, 75]). Accordingly, our prior assumes

that, a priori, the mean probability of retrieval of the target is ≈ 70%, and that it

varies between 50% to ≈ 90%.6 The estimate for the probability of backtracking in

Nicenboim and Vasishth (2018) was 48% (95% CrI: [40, 55]). Our prior for the inter-

cept of Pb assumes, a priori, that the probability of backtracking is within the range

12% to 50%, with mean ≈ 30%. Our prior covers the estimates in Nicenboim and

Vasishth (2018), but it generally assumes a lower probability of backtracking. The

reason is that while Nicenboim and Vasishth (2018) modeled data from unimpaired

controls, we also model data from IWA, who are assumed to perform reanalysis less

often (e.g. Mack, Wei, Gutierrez, & Thompson, 2016).

6This can be calculated in R by using the following code: mean = plogis(1), lower = plogis(1-1), upper =

plogis(1+1)
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Finally, the effect of δ in ms depends on µ, as this is an multiplicative effect in

log scale. The prior for δ accounts for our uncertainty about this parameter, because

as far as we know, no previous study has measured the cost of backtracking in IWA.

We hypothesize that δ should be higher for IWA than for controls, whose estimate in

Nicenboim and Vasishth (2018) was 120 ms (95% CrI: [30, 55]). However we have no

assumption regarding how much higher. Accordingly, we chose a regularizing prior

that allows for a wide range of parameter values. For instance, with µ = 7 (log ms),

the range of the cost of backtracking in ms would oscillate between exp(7+0.1)−exp(7)

= 115 ms and exp(7 + 2)− exp(7) = 7000 ms.
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Figure 3.4: Simulated prior distributions for main parameters in the direct-access and modified
direct-access model.

3.3.2 Posterior predictive checks

As in the activation-based model, in order to generate simulated data from the model

parameters, a user-defined function was created. The function, shown in Listing 3.11,

takes all the main parameters of the direct-access model as arguments. First, the

initial accuracy is sampled from a Bernoulli distribution with probability θ. If the

initial accuracy is 0 (incorrect), a value is sampled from a Bernoulli distribution with

probability Pb. If backtracking was estimated to happen (i.e., the sampled value was
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1), the estimated accuracy for that trial is 1 (correct), else it is 0. If backtracking =

1, the RT from that trial are sampled from lognormal(µ+δ, σ), otherwise, the RT are

sampled from lognormal(µ, σ). The function is called in the generated quantities

block of code, and outputs a vector of generated accuracies and RT. This vector can

be used to visually inspect the simulated data and assess whether the empirical data

falls under the range of predicted data by the model.

Listing 3.11: Function to generate posterior predictive checks in the direct-access model.

vec to r d i r e c t a c c e s s r n g ( r e a l theta , r e a l P b , r e a l mu,

r e a l de l ta , r e a l sigma ){
int i n i t a c c ;

int backtrack ;

vec to r [ 2 ] gen ;

i n i t a c c = b e r n ou l l i r n g ( theta ) ;

backtrack = 0 ;

i f ( i n i t a c c !=1) backtrack = be r n ou l l i r n g (P b ) ;

// Change the answer to 1 i f b a c k t r a c k ing = 1:

gen [ 2 ] = backtrack ? 1 : i n i t a c c ;

{ r e a l mu rng ; // adds d e l t a i f t h e r e i s back t r a c k ing :

mu rng = mu + ( backtrack ? de l t a : 0 ) ;

gen [ 1 ] = lognormal rng (mu rng , sigma ) ;

}
return ( gen ) ;

}

3.3.3 Parameter recovery

For the assessment of model adequacy, the recovery of the parameters of the model

was carried out in the same fashion than in the activation-based model. That is, (a)

fitting the model with the empirical data, (b) extracting the model parameters and

using them to create simulated data, (c) fitting the model to the simulate data, and (d)

evaluating the discrepancies between the mean parameter values in the model fitted to

the empirical data against the model estimates in the model fitted to simulated data.

Listing 3.12 exemplifies how the parameters are generated using data extracted from

the direct-access model fit to the empirical data. The random effects were simulated

in the exact same way as in the activation-based model. What changes is the way

in which the accuracies and RT are generated, as the direct-access model assumes a

different generative process. The last part of the code shows how the data is sampled

from the parameters. This is analogous to the race_rng function created in Stan to

perform posterior predictive checks.
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Listing 3.12: Function to generate posterior predictive checks in the direct-access model.

mu <− DA$mu 0 + DA. u [ sub , 1 ] + DA.w[ item , 1 ] + grp∗DA$`beta [ 1 ] `

theta <− inv . l o g i t (DA$alpha + DA. u [ sub , 2 ] + DA.w[ item , 2 ] +

LDT∗DA$`beta [ 2 ] ` + grp∗LDT∗DA$`beta [3] `+
grp ∗(DA$`beta [4] `+ DA.w[ item , 3 ] ) +

rctype ∗(DA$`beta [5] `+DA. u [ sub ,3 ] )+

rctype ∗grp∗DA$`beta [6] `+
num∗(DA$`beta [7] `+DA. u [ sub , 4 ] ) +

grp∗num∗DA$`beta [8] `+ grp∗ rc type ∗DA$`beta [9] `+
grp∗num∗ rc type ∗DA$`beta [10] `+
f i x ∗DA$`beta [11] `+ f i x ∗grp∗DA$`beta [ 1 2 ] ` ) ;

P b <− inv . l o g i t (DA$gamma + DA. u [ sub , 5 ] + grp∗DA$`beta [ 1 3 ] ` ) ;
d e l t a <− DA$delta 0 + grp∗DA$`beta [ 1 4 ] ` ;
sigma <− DA$sigma 0 + grp∗DA$`beta [ 1 5 ] ` ;

i n i t a c c <− rbinom (1 ,1 , theta )

i f ( i n i t a c c ){
DA. data . s im$acc [ i ] <− i n i t a c c

DA. data . s im$rt [ i ] <− rlnorm (1 , mu, sigma ) ;

} else {
backtrack <− rbinom (1 ,1 , P b )

DA. data . s im$acc [ i ] <− backtrack

i f ( backtrack ){
DA. data . s im$rt [ i ] <− rlnorm (1 , mu + del ta , sigma ) ;

} else {
DA. data . s im$rt [ i ] <− rlnorm (1 , mu, sigma ) ;

}
}

3.4 The modified direct-access model

The main difference between the direct-access model and our proposed modification

is that in the original model, backtracking always leads to the retrieval of the target,

whereas in the augmented model, backtracking can lead to the retrieval of the target

or to a misretrieval. The rationale for this modification will be explained in Chapter

5. Here we detail the computational details of the implementation of the modified

direct-access model. The probability of retrieving the target or the distractor for trial

i is shown in Equations (3.14) and (3.15), respectively. In these equations, θ is the

probability of retrieval of the target, Pb is the probability of backtracking, and θb is
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the probability of retrieving the target after backtracking.

P (answeri = target|θ, θb, Pb) = θ + [(1− θ) · Pb · θb] (3.14)

P (answeri = distractor|θ, θb, Pb) =[(1− θ) · (1− Pb)]+

[(1− θ) · Pb · (1− θb)]
(3.15)

From these equations, it follows that:

1. Correct responses that come from an initial correct retrieval occur with

probability
θ

θ + (1− θ) · Pb · θb
(3.16)

2. Correct responses that come from an initial incorrect retrieval followed by

backtracking occur with probability

Pb · (1− θ) · θb
θ + (1− θ) · Pb · θb

(3.17)

3. Incorrect responses that come from an initial incorrect retrieval occur with

probability

(1− θ) · (1− Pb)
[(1− θ) · (1− Pb)] + [(1− θ) · (Pb) · (1− θb)]

(3.18)

4. Incorrect responses that come from an initial incorrect retrieval followed

by failed backtracking occur with probability

(1− θ) · Pb · (1− θb)
[(1− θ) · (1− Pb)] + [(1− θ) · (Pb) · (1− θb)]

(3.19)

The function that implements these probabilities in Stan (in log space), is shown

in Listing 3.13.

Listing 3.13: Likelihood for the modified direct-access model

// CORRECT responses

// Equation 3.15

l o g p an swe r c o r r e c t = log sum exp ( log ( theta ) , log1m ( theta ) +

log (P b ) + log ( theta b ) ) ;

// Equation 3.17
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l o g p a n sw e r c o r r e c t d i r e c t a c c e s s = log ( theta ) − l o g p an swe r c o r r e c t ;

// Equation 3.18

l o g p an sw e r c o r r e c t r e a n a l y s i s = log1m ( theta ) + log (P b ) + log ( theta b ) −
l o g p an swe r c o r r e c t ;

// INCORRECT responses

// Equation 3.16

l o g p an swe r i n c o r r e c t = log sum exp ( log1m ( theta ) + log1m (P b ) , log1m ( theta ) +

log (P b ) + log1m ( theta b ) ) ;

// Equation 3.19

l o g p a n sw e r i n c o r r e c t d i r e c t a c c e s s = log1m ( theta ) + log1m (P b ) −
l o g p an swe r i n c o r r e c t ;

// Equation 3.20

l o g p a n sw e r i n c o r r e c t r e a n a l y s i s = log1m ( theta ) + log (P b ) + log1m ( theta b ) −
l o g p an swe r i n c o r r e c t ;

This function is called in the model block (code shown in Listing 3.14), after

generating the model parameters, which as in the direct-access model, include both

fixed and random effects. The extra parameter θb has a varing intercept by subject,

and a main effect of group, as shown in Equation (3.20).

θb = αb + uαb
+ β · group (3.20)

Listing 3.14: Modified-direct access model function in the model block.

for (n in 1 : N obs ) {
t a r g e t += m d i r e c t a c c e s s ( accuracy [ i ] , RT[ i ] , theta ,

P b , theta b , mu, de l ta , s igma e ) ;

}

3.4.1 Priors

The same priors as in the direct-access model were used. The prior for the intercept

(αb) of the extra parameter θb is shown in Equation (3.21). This is a regularizing prior

that assumes that the mean intercept for the retrieval of the target after backtracking

is within the range of 12% to 90%.

αb ∼ normal(0, 1) (3.21)
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3.5 Cross-validation

For model comparisons, k-fold cross-validation is the main method used in this disser-

tation. Cross-validation is a standard procedure in machine learning, and it quantifies

the ability of a given model to predict a set of held-out data, i.e., unseen data, based

on the training set of observed data (Vehtari, Gelman, & Gabry, 2017). In order to

achieve this, a given dataset with N observations is split in a number of (balanced)

k subsets. One of the subsets is held out, and the remaining k − 1 subsets are used

as training set (i.e., the model is fit to these k − 1 subsets). The posterior distribu-

tions of the resulting model are used to compute predictive accuracy on the held-out

subset. This procedure is repeated k times, so that all the subsets have been held-

out. The expected log pointwise predictive density, ‘elpd, is calculated as a measure

of predictive accuracy. ‘elpd is a measure of the deviation between the held-out and

the predicted values. This deviation is summed across the k subsets, so that all the

data from a given dataset is held out. Equation (3.22), taken from Gelman, Hwang,

and Vehtari (2014, p. 1004) shows how to calculate ‘elpd for a given k, where N is

the number of observations, S is the number of posterior draws, and p(yi|θs) is the

probability of obtaining a data point yi given the parameter draws Θs.‘elpd =
N∑
i=1

log

(
1

S

S∑
s=1

p(yi|θS)

)
(3.22)

Models can be compared by computing the difference in ‘elpd, with higher ‘elpd
indicating better predictive fit. Because ‘elpd is an estimate, the standard error of the

difference in ‘elpd can be calculated, as shown in Equation (3.23). The SE has the

standard frequentist interpretation: ÷∆elpd ± 2 × SE gives a 95% confidence interval.

Therefore, if the difference in ‘elpd between the models is larger than 2 × SE, we

conclude that it is decisive.

se(‘elpdM1 −‘elpdM2 =

√
N · V ar(‘elpdM1,i −‘elpdM2,i) (3.23)

where M1 and M2 stand for model 1 and model 2, and N is number of data points;

and‘elpdM1,i and‘elpdM2,i represent a vector that contains the‘elpd for each data point,

for model M1 and M2 respectively.

We set K to 10, which is standardly done (Vehtari et al., 2017). For the im-

plementation of the cross-validation, we followed the approach detailed in Vasishth,

Nicenboim, Chopin, and Ryder (2017). The data are pseudo-randomly partitioned
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in 10 folds in a balanced fashion, i.e., making sure that subjects were similarly rep-

resented within each fold. A list of 10 data-frames is created. In each dataframe, a

new column called heldout is added. Some observations are marked as held-out data

(heldout == 1) and some are marked as training data (heldout == 0). Using a for

loop, the model is be fitted to each one of these 10 data-frames, and the log likeli-

hood of the observations marked as training data is extracted, in order to calculate

the predictive accuracy on the held-out data.

The heldout variable is declared within the data block in the Stan programs. The

following pieces of code are also added: First, in the transformed parameter block,

a vector of length equal to the number of data points is created. The log likelihood

of each data point is then stored in this vector. In the model block, the code shown

in Listing 3.15 is added. This code ensures that only the likelihood corresponding to

the data points selected as training data is evaluated.

Listing 3.15: Code added to all models in the model block for the cross-validation.

for (n in 1 : N obs ) {
i f ( he ldout [ n]==0){ t a r g e t += l o g l i k [ n ] ; }
}

3.6 Summary

In this chapter, the implementation of the activation-based, the direct-access, and

the modified-direct access model of retrieval have been detailed. The next chapter

presents the evaluation of the activation-based model and the direct-access model in

subject and object relative clauses in English.



Chapter 4

Modeling subject and object

relative clauses in English

The contents of this chapter are published in:

Lissón, P., Pregla, D., Nicenboim, B., Paape, D., van het Nederend, M. L., Burchert,

F., . . . Vasishth, S. (2021). A computational evaluation of two models of retrieval

processes in sentence processing in aphasia. Cognitive Science, 45 (4), e12956.

4.1 Introduction

Within the cue-based retrieval framework, two distinct models of sentence processing

have been proposed: The Lewis and Vasishth (2005) model of sentence processing

(LV05), and the direct-access model (DA) developed by McElree (2000). The two

models share the assumption that retrieval is driven by a cue-based mechanism, and

both predict that a distractor disrupts the retrieval of the target when the retrieval

cues match the distractor and the target. Despite these similarities, the two models

assume fundamentally different underlying processes for the access of representations

in memory. In the LV05 model, retrieval time for an item depends on the activation

of the item in memory, with reduced discriminability of an item leading to lower ac-

tivation and therefore longer retrieval times. By contrast, in the direct-access model,

retrieval time is assumed to be constant, and reduced discriminability only affects the

probability of correct retrieval of the target.

Nicenboim and Vasishth (2018) were the first to formally implement these two

competing models and compare their relative predictive performance. Using self-

paced reading data from a number interference experiment in German (Nicenboim,

Vasishth, Engelmann, & Suckow, 2018), Nicenboim and Vasishth implemented the

LV05 and DA models in a Bayesian framework. They showed that (a) the direct-

55
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access model has better predictive performance than the activation-based model, but

(b) the activation-based model yields a comparable performance to the direct-access

model when the variance of the retrieval times is allowed to be different for correct

and incorrect retrievals. The computational implementations of the two competing

models of retrieval make it possible, for the first time, to investigate their relative

performance using a broader range of experimental data.

Both LV05 and DA are meant to account for retrieval processes in sentence com-

prehension in unimpaired populations. An open question is whether these models,

which have until now only been investigated in connection with unimpaired process-

ing, can also characterize retrieval difficulty in impaired populations. That is, can the

models account for impaired processing through parametric variation? And if they

can, what do the changes in the parameters tell us about the impairments? In this

chapter, we focus on an important and under-studied problem, the underlying nature

of retrieval difficulty in individuals with aphasia.

One question we seek to answer is: Given the two competing models of retrieval

processes, which one better characterizes processing difficulty in IWA? As data, we

use the largest dataset currently in existence on sentence comprehension in IWA.

This dataset, reported in Caplan et al. (2015), provides listening times and picture-

selection accuracies from IWA and matched unimpaired controls. The full dataset

involves a range of syntactic constructions and methods, but in this chapter, we focus

on self-paced listening data on the subject vs. object relative clause construction,

which is a very well-studied construction in psycholinguistics.

This chapter is structured as follows. We begin by reviewing prior work on mod-

eling retrieval processes in aphasia. Next, we present the data, our implementation

of the activation-based and the direct-access models, the results of the model com-

parisons, and a Bayes factors analysis.

4.1.1 Modeling retrieval processes in aphasia

There are several theories about why language processing deficits arise in IWA. In this

dissertation we focus on processing deficit theories that can be implemented within

the framework of cue-based theory and that are of relevance for our modeling work.1

These theories were reviewed in Chapter 2, but to remind the reader, we focus on the

following accounts: delayed lexical access (Ferrill et al., 2012), slow syntax (Burkhardt

et al., 2008), resource reduction (Caplan, 2012), and intermittent deficiencies (Caplan

et al., 2015).

1For alternative accounts see, for example, Grodzinsky (1995), Grillo (2009), or Engel et al. (2018). A complete
summary of the theories of processing deficits in aphasia can be found in Caplan et al. (2015).
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The delayed lexical access theory claims that lexical access is delayed in IWA, which

can cause a slowdown in the formation of a syntactic dependency. Evidence support-

ing this theory comes from a series of cross-modal lexical priming studies, which

combine a listening comprehension and a lexical decision task. Love et al. (2008)

and Ferrill et al. (2012) (inter alia) found that IWA showed slower lexical activa-

tion relative to controls. Some cross-modal lexical priming studies have also revealed

that IWA build syntactic dependencies at a slower-than-normal speed. This has been

taken as support for the slow syntax theory (Burkhardt et al., 2008; Burkhardt et

al., 2003), which posits that a slowdown in syntactic structure building can cause a

delayed interpretation or a failure to interpret the sentence. Under this account, the

impairment is at the level of syntactic structure formation.

Caplan et al. (2007) and Caplan et al. (2015) present online and offline data that

support the hypothesis that IWA have a deficit in the resources used in parsing, what

they refer to as resource reduction (Caplan, 2012). Complex sentences demand more

resources, such as a higher memory load or attention, and therefore, IWA are more

likely to misinterpret complex sentences. Finally, Caplan et al. (2013) argue that in

addition to a resource reduction, IWA may exhibit intermittent breakdowns in the

parsing system, a theory known as intermittent deficiencies.

Some of these accounts have been implemented in the framework of LV05. Patil

et al. (2016) developed several LV05-based models that implement theories of process-

ing deficits in aphasia. They found that IWA’s processing was better characterized

by a model that combined the implementation of slowed processing (understood as

a “pathological slowdown in the processing system”) and intermittent deficiencies,

relative to models that included only one of these deficits. Building on the conclu-

sions of Patil et al. (2016), Mätzig et al. (2018) investigated variability among IWA

by implementing slowed processing, intermittent deficiencies, and resource reduction

within the LV05 model. The range of parameters estimated for IWA showed a broad

variability, whereas the parameters for control participants were closer to the default

parameters of the original LV05 model, and displayed a smaller range of variability.

These results imply that IWA are very variable in the extent and nature of their

deficits along these three hypothesized dimensions (slowed processing, intermittent

deficiencies, and resource reduction). The broader conclusion here is that deficits

may lie on a continuum, and along different dimensions.

Although Patil et al. (2016) only modeled data from 7 IWA, and Mätzig et

al. (2018) modeled offline measures (accuracies), both studies showed that LV05 can

account for IWA’s behavior by modifying specific parameters that can be mapped

onto theoretically-informed assumptions. By doing so, they derived quantitative pre-
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dictions under the assumptions of theories of deficits in aphasia. It remains to be

tested whether the LV05 model can account for the different hypothesized deficits in

a larger dataset with online measures.

However, there exists another competing model of retrieval processes, the direct-

access model. The crucial difference between these two models is that they assume

different underlying mechanisms for the access of items in memory. Yet, the relative

predictive performance of the activation model and of the direct-access model has

never been compared using data from both unimpaired and impaired populations. By

comparing these two models’ predictions with data from IWA, we aim to investigate

the following questions:

(a) Can the direct-access mechanism of retrieval also account for sentence

processing in IWA?

(b) How do the different parameters of these two models relate to theories of

processing deficits in IWA?

(c) Which model provides a better fit to data from IWA and controls?

Investigating these questions would provide new insight into the nature of the

dependency completion process in impaired and unimpaired populations. The Caplan

et al. dataset makes such a model comparison possible. Below, we begin by revisiting

the characteristics of the subset of the Caplan et al. dataset that we model in this

chapter.

4.2 The Caplan et al. dataset: Self-paced listening times in

relative clauses

The empirical data we consider here consist of listening times and picture-selection

accuracies from 33 IWA and 46 controls matched by age and years of education.

The original dataset reported in Caplan et al. (2015) included 56 IWA, but we dis-

carded data from 8 IWA because they were in the early post-acute phase (less than

four months post-stroke), and from 15 other individuals who had been classified as

IWA but showed no symptoms of aphasia in the Boston Diagnostic Aphasia Exam

(Goodglass, Kaplan, & Barresi, 2001).

Out of the 11 sentence types in the dataset, we selected the subject relative (SR)

and object relative (OR) constructions (see examples 14a and 14b). This choice was

motivated by the fact that relative clauses (RCs) have been extensively studied in

psycholinguistics, and a great deal is known about relative clause processing. In En-

glish and many other languages, ORs have been uniformly found to be more difficult
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Figure 4.1: Example of the images shown in the picture-selection task. In the subject relative
condition, the picture on the right is the target, whereas the picture on the left is the foil. In the
object relative condition, the picture on the left is the target, and the one on the right is the foil.

to process than SRs (Grodner & Gibson, 2005). Moreover, IWA are known to experi-

ence difficulties in the comprehension of object relative clauses (Caramazza & Zurif,

1976; Hanne et al., 2011), especially when the thematic roles of the nouns can be

reversed, as in the sentences shown below.

(14) a. Subject Relative (SR): The girl who chased the mother hugged the

boy.

b. Object Relative (OR): The girl who the mother chased hugged the boy.

In the experiment reported by Caplan et al. (2015), participants listened to sen-

tences presented word by word, and pressed a computer key whenever they were ready

to hear the next word. This yielded an online measure of comprehension: Listening

times (LT) per segment, in milliseconds. At the end of the sentence, participants had

to choose which of two pictures displayed on the screen matched the meaning of the

sentence they had just heard. This choice yielded accuracy data (correct/incorrect

response). An example of the pictures shown in the picture-selection task is displayed

in Figure 4.1. These pictures correspond to the sentences (14a) and (14b).

Of the twenty items corresponding to the SR and OR conditions in Caplan et

al. (2015), we only used items 11-20 for our data analysis and modeling. The modeling

is limited to these items because it was only in these items that the pictures in the

picture-selection task tested the participant’s understanding of the meaning of the

verb inside the relative clause (e.g., who chased whom in 14a and 14b). For cue-

based retrieval theory, in relative clauses, the retrieval of the agent of the action

expressed by the verb within the relative clause is the first and key retrieval event

(Lewis & Vasishth, 2005).

In English, the verb of the subordinate clause (chased in 14a and 14b) does not

appear in the same position in subject and object relative clauses, and therefore the
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listening times corresponding to the verb region are not directly comparable. To make

the two sentences comparable, we followed the procedure in Traxler, Williams, Blozis,

and Morris (2005) and added up the listening times of the noun phrase (the mother)

and the verb (chased) inside the subject/object relative clause. Trials with listening

times shorter than 200 ms were discarded (around 2% of the data).

In the following section we present descriptive statistics and a Bayesian analysis

of the data used for modeling. We analyze the data using the Bayesian framework

because this allows us to quantify uncertainty about the estimates of interest (e.g., the

difference in listening times for subject and object relative clauses). Our statistical

inferences are based on 95% credible intervals and means of the estimates; the credible

intervals show the range over which plausible values of the parameter lie with 95%

probability, given the data and the model.

4.3 Bayesian analysis of the Caplan et al 2015 relative clause

data

The mean accuracy for controls and IWA across the two conditions are shown in

Figure 4.2. For controls, accuracy is above 90% in both conditions, whereas for IWA

accuracy in SRs is 75%, and 63% in ORs. Figure 4.3 shows the mean listening times

across conditions and groups. IWA are slower than controls in both conditions. For

both IWA and controls, responses in the OR condition are slower relative to responses

in the SR condition.

We fit a Bayesian hierarchical model with a lognormal likelihood to the listening

times and a Bayesian logistic mixed model to the accuracy data. The analyses were

carried out with correct and incorrect trials pooled. We used R (R Core Team, 2020)

and the package brms (Bürkner, 2017), which is a front-end for Stan (Carpenter et

al., 2017). For both models, the factors group (controls/IWA), condition (SR/OR),

and their interaction were fit as fixed effects. These factors were sum-coded (Schad,

Vasishth, Hohenstein, & Kliegl, 2020): SR were coded as -1 and OR as +1; controls

as -1 and IWA as +1. Random intercepts by subjects and items were included, a

slope by item was added to the group effect, and a slope by subject was added to the

effect of condition. The varying intercepts and slopes were allowed to be correlated.

We used so-called regularizing priors, which allow a broad range of parameter

values but disallow implausible (or impossible) values. The priors for the model of

the accuracies, listed in Equation (4.1), are on the logit scale, whereas the priors

for the listening times model, listed in Equation (4.2), are on the log scale. For

the correlation matrix of the random effects, we used the so-called LKJ(2) prior
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Figure 4.2: Mean accuracy across conditions and groups. Error bars show the standard error of the
mean.
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Figure 4.3: Mean listening times across conditions and groups. The listening times correspond to
the sum of the listening times for the verb and noun phrase of the relative clause. Error bars show
the standard error of the mean.



62 CHAPTER 4. MODELING SUBJECT AND OBJECT RELATIVE CLAUSES IN ENGLISH

RC × group

group

RC

−30 −20 −10 0
Effect estimates (%)

A. Accuracy

RC × group

group

RC

0 400 800
Effect estimates (ms)

B. Listening times

Figure 4.4: Posterior probability distributions of the different effect sizes for the effect of group
(controls/IWA), condition (SR/OR), and their interaction. The dot corresponds to the mean of the
distribution, the thick lines are 80% credible intervals, and the thin lines show 95% credible intervals.
The dashed line stands for an effect size of zero.

(Lewandowski et al., 2009). Priors are explained in detail in Chapter 3. The models

were fit with four chains and 2000 iterations, of which 1000 were warm-up iterations.

α ∼ normal(0, 1)

β1,...,3 ∼ normal(0, 0.5)

σ ∼ normal+(0, 0.5)

(4.1)

α ∼ normal(7.5, 0.6)

β1,...,3 ∼ normal(0, 0.5)

σ ∼ normal+(0, 0.5)

(4.2)

Figure 4.4 shows the posterior distributions of the parameters of interest. In a

Bayesian model, the posterior distribution indicates the most likely parameter values

given the data and the model. We report the mean estimate for each effect of interest,

as well as their corresponding 95% credible interval (CrI). This interval represents the

range over which we are 95% certain that the effect lies, given the data and the model.

Figure 4.4A shows the posterior distributions of the fixed effects for the analysis

of the accuracy data. The data show an effect of group and condition: The estimated

effect for group is of -24 % CrI: [-29, -18], indicating that IWA have more incorrect
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responses than controls. The effect of condition, -5 % CrI: [-9, -2] suggests that more

incorrect responses are given in the OR condition. No indication for an interaction is

seen, -1 % CrI: [-5, 3].

In listening times, large effects for group and condition were found: ORs yield

longer listening times (effect of condition: 323 ms CrI: [227, 422]), and IWA are

slower than controls (effect of group: 647 ms CrI: [309, 1003]). The interaction (-85

ms CrI: [-182, 9]) suggests that the effect of condition could be stronger for controls,

but since the CrI overlaps with 0, strong conclusions cannot be drawn from this

estimate.

Having summarized the inferences that can be made from the data, we now turn

to a description of the two models, and the models’ evaluation and comparisons.

4.4 The activation-based model

In cognitive psychology, response selection in simple choices is often modeled using

accumulation of evidence (Heathcote & Love, 2012; Ratcliff, 1978). Evidence ac-

cumulation models assume that when facing a speeded decision, people accumulate

noisy samples of information about the different choices that are available, until they

have enough evidence to choose one of them (Forstmann, Ratcliff, & Wagenmakers,

2016).

Language processing can be seen as a similar process: When listening to a sentence,

the comprehender samples evidence from the linguistic input that unfolds over time.

Once the retrieval site is encountered, comprehenders have to retrieve an item from

memory. Nicenboim and Vasishth (2018) argued that the retrieval process assumed

in LV05 is conceptually similar to a race model (Rouder, Province, Morey, Gomez,

& Heathcote, 2015; Usher & McClelland, 2001), in which each choice is represented

with an accumulator of evidence. The speed of the process of sampling evidence in a

race of accumulators can be equated to the activation in LV05: the item in memory

with the faster rate of accumulation (equivalent to the higher activation in LV05) will

be the item retrieved, and the rate of accumulation will determine the latency of the

retrieval.

In the Caplan et al. (2015) data, the listening times at the relative clause verb

and the second noun phrase serve as a measure of the speed of accumulation of

evidence for the retrieval. Because there are two possible interpretations (subject

or object relative clause), we assume that there are two accumulators racing against

each other. For instance, consider again the object relative clause (14b), repeated

here for convenience as (15):
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(15) The girl who the mother chased hugged the boy.

When the comprehender reaches the verb chased, they need to retrieve a subject

that matches the verb. If the comprehender understands the sentence correctly, they

should have retrieved mother as the subject of the verb. An alternative possibility

is that they accidentally misretrieve girl as the subject of the verb. Under these

assumptions, the model has two accumulators: One accumulates evidence for the

retrieval of the target (which corresponds to the correct OR interpretation in this

example), and the other one accumulates evidence for the retrieval of the distractor

girl (which corresponds to the incorrect SR interpretation in this example). The

accumulator that finishes faster represents the interpretation chosen. We also assume

that, when selecting one of the pictures during the picture-selection task, participants

are choosing the interpretation that corresponds to the chunk retrieved from memory

at chased (i.e., mother or girl in 15).

Implementation of the activation-based model

Following Nicenboim and Vasishth (2018), the activation-based model is implemented

as a Bayesian lognormal race of accumulators. The Bayesian framework was chosen

for two reasons. First, because modern probabilistic programming languages like

Stan (Carpenter et al., 2017) make it possible to flexibly define any assumed gener-

ative process while including taking individual differences into account. Second, the

Bayesian approach to parameter estimation allows the researcher to directly take the

uncertainty of the estimates into account (Lee & Wagenmakers, 2014).

The model was implemented in Stan. For each trial i, the finishing times FT

for the interpretation of a sentence as SR or OR are sampled from two lognormal

distributions with scale σ, see Equation (4.3).2 The noise component (σ) is assumed

to be different for controls and IWA.3 The accumulator with the faster (i.e., lower)

FT will represent the winning interpretation, and its sampled value will become the

estimated listening time for that particular trial i, as shown in Equation (4.4).

2What is meant here by interpretation of a sentence as SR is that the first noun phrase has been retrieved (i.e.,
the first noun phrase is interpreted as the agent) vs. the interpretation of a sentence as OR, where the second noun
phrase is retrieved as the agent.

3We also fit a model with different variances for correct and incorrect responses, as introduced in Nicenboim and
Vasishth (2018). However, the quantitative difference in predictive performance between the model with a single
variance and the model with two variances was negligible. Both models show a comparable quantitative fit to the
data. Here, we report the model with a single variance for correct and incorrect responses.
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SR accumulator

FTSRi
∼ lognormal(µSR, σ)

OR accumulator

FTORi
∼ lognormal(µOR, σ)

(4.3)

LTi = min(FTSRi
, FTORi

) (4.4)

The complete hierarchical model for the two accumulators is presented in Equa-

tion (4.5). The terms u and w are the by-participant and by-item adjustments to

the fixed effects terms; these are the familiar varying intercepts and slopes in linear

mixed models (Bates, Maechler, Bolker, & Walker, 2015, 1). All the parameters had

regularizing priors, detailed in Chapter 3.

The level labeled group had contrast coding −1 for controls, and +1 for IWA; and

the level labeled relative clause type (rctype) was coded such that subject relatives

were represented as −1 and object relatives as +1.

SR accumulator

µSR = α1 + uα1 + wα1+

(β1 + wβ1) · group+ (β3 + uβ3) · rctype+

β5 · group · rctype
OR accumulator

µOR = α2 + uα2 + wα2+

(β2 + wβ2) · group+ (β4 + uβ4) · rctype+

β6 · group · rctype
Noise parameter

σ = σ0 + β7 · group

(4.5)

The fixed effects β have the following interpretations:

• β1, β3, β5 are the effects of group, RC type, and the group × RC type

interaction respectively, in the accumulator for the subject relative inter-

pretation.
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• β2, β4, β6 are the effects of group, RC type, and the group × RC type

interaction, respectively, in the accumulator for the object relative inter-

pretation.

• β7 is the effect of group in the σ parameter.

Of interest in this model are the distributions of finishing times in the SR and OR

accumulators, in the SR and OR conditions, and in the different population groups

(controls vs. IWA). These are generated in ms once the posterior distributions of all

the parameters in the model are estimated. The finishing times for each one of the

accumulators in each condition and for each group are estimated taking into account

the above-mentioned terms β1,...,7 and the adjustments by item and by participant

listed in Equation (4.5).

Predictions

In the activation-based model the parameter σ and the finishing times of the accu-

mulators have a theoretically meaningful interpretation. We expect these parameters

to show different patterns across groups. The different σ reflect the assumption that

for IWA, the rate of accumulation of evidence can be noisier. A larger estimated σ

for IWA would be consistent with the intermittent deficiencies theory (Caplan et al.,

2007), which claims that there are intermittent breakdowns in the parsing system of

IWA. However, the effects of crucial interest are on the finishing times: When the

mean finishing time of the incorrect interpretation is similar to the finishing time of

the correct interpretation, misretrievals become more likely. We therefore expect that

compared to controls, IWA should have more similar mean finishing times in the two

accumulators; controls should have a bigger difference between the mean finishing

times of the two accumulators. We also expect both accumulators to be slower for

IWA than for controls because IWA may need more time than controls to retrieve

items from memory and to build the dependency. Such a slowdown could be due to

a lexical access deficit (Love et al., 2008) and/or to slow syntax (Burkhardt et al.,

2008).

4.5 The direct-access model

The direct-access model (McElree, 2000) assumes that items (i.e., traces of words or

phrases, such as the girl) in memory are accessed via a content-based, direct-access

mechanism. That is, the cues set at the retrieval site enable direct access to matching

items in memory. The retrieval process is subject to interference and decay: Increasing
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distance between the target and the retrieval site, or competing items in the sentence

can lower the quality of the representation of the target item in memory. In the direct-

access model, the probability of retaining a memory representation at the retrieval

site is known as the availability of a given item. Crucially, proponents of the direct-

access model argue that interference and decay have an impact on the availability of

items in memory, but not on retrieval latencies. That is, whereas the probability of

retrieving an item decreases as a function of the complexity of a sentence, complexity

does not affect retrieval times. The direct-access model has been developed and tested

within the speed-accuracy tradeoff paradigm (SAT) by McElree and colleagues (A. E.

Martin & McElree, 2008, 2011; McElree et al., 2003), inter alia. They consistently

found that the asymptote of the SAT function (which assesses successful retrieval of

the target and/or quality of the retrieved representation) decreased as a function of

sentence complexity. By contrast, the intercept and the rate of the SAT function

(which assess processing speed) did not show a significant effect of complexity. Based

on these findings, McElree and colleagues argue that interference and/or decay affect

the probability of retrieving the target, but not the retrieval speed. In addition, it

is assumed that low availability can cause a failure in parsing or the retrieval of a

distractor item. On some trials, this initial failure could be followed by a reanalysis

process (A. E. Martin & McElree, 2008; McElree, 1993; McElree et al., 2003; Van

Dyke & McElree, 2011).

Implementation of the direct-access model

We follow Nicenboim and Vasishth (2018) by implementing the direct-access model as

a two-component Bayesian mixture model. The key assumptions of the direct-access

model are thus that retrieval cues enable direct access to the item’s memory represen-

tation at the retrieval site, and that the retrieval of an item takes an average time tda.

Differences in availability can lead to an initial incorrect retrieval of the distractor

item. McElree and colleagues assume that on a certain proportion of trials, after a

failure in parsing, comprehenders could engage in a “costly reanalysis process” (A. E.

Martin & McElree, 2008). We formalize this assumption with two main parameters:

Pb, which is the probability of backtracking (what McElree and colleagues call re-

analysis), and δ, which is the extra time needed for backtracking. This extra time is

independent of the retrieval time tda. Notice that these two parameters (Pb and δ)

are not part of the SAT paradigm, and constitute an implementation of McElree and

colleagues’ assumption of reanalysis.

The parameter θ is the probability of correctly retrieving an item on the first re-

trieval attempt. This probability is allowed to vary across conditions, as it is assumed
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by McElree and colleagues (McElree et al., 2003) that sentence complexity can have

an impact on the availability of the items, and therefore on their retrieval probability.

If an initial misretrieval or failure in parsing occurs at the retrieval site, a backtracking

process is initiated with probability Pb that, by assumption, always results in correct

retrieval of the target (McElree, 1993).

There are four fixed-effects parameters that have to be estimated in this model.

For the parameter θ we define varying intercepts by participants and by items, and

varying slopes for the effect of relative clause type (by participants) and group type

(by items). The parameter µ represents the estimated log mean listening times at

the critical region. Since the direct-access model assumes that the retrieval time

of an item takes on average tda log ms and is not affected by sentence complexity,

relative clause type was not included as a fixed effect for the parameter µ. However,

we assume that IWA, given their impairment, could have a higher µ compared to

controls and therefore add a main effect of group. That is, we assume that IWA may

differ in the average time they need to process the critical region relative to controls.

Notice that tda is a latent variable that is part of µ, since we cannot directly compute

tda from the observed listening times. The probability of backtracking, Pb is also not

assumed to vary across conditions, and thus only has an adjustment for group and a

varying intercept by-participants because we assume that IWA could have a different

Pb relative to controls. The parameter δ is the cost of backtracking, that is, the time

(in log ms) that the backtracking process takes, and has an adjustment for group.

The standard deviation σ also has a main effect of group.

LT ∼

{
lognormal(µ, σ), retrieval succeeds, probability θ

lognormal(µ+ δ, σ), retrieval fails initially, probability 1− θ
(4.6)

As in the activation-based model, the terms u and w are the by-participant and

by-item adjustments to the fixed effects terms. As with the activation-based model,

all the parameters (which are on the logit scale for probabilities and on the log

scale for listening times) have regularizing priors, detailed in Chapter 3. The level

group had contrast coding −1 for controls, and +1 for IWA; and relative clause type

rctype was coded −1 for subject relative clauses and +1 for object relatives. The

complete hierarchical model for all the parameters is shown in Equations (4.6) and

(4.7). The mixture process is shown in Equation (4.6), and the parameters are defined
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in Equation (4.7).

µ = µ0 + uµ0 + wµ0 + β1 · group

θ = α + uα + wα + (β2 + uβ2) · rctype+

(β3 + wβ3) · group+ β4 · group · rctype
Pb = γ + uγ + β5 · group

δ = δ0 + β6 · group

σ = σ0 + β7 · group

(4.7)

The fixed effects β have the following interpretations:

• β1 is the effect of group on the average time needed to listen to the critical

region;

• β2, β3, β4 are the effects of RC, group, and the group × RC interaction,

respectively, on the probability of a first correct retrieval;

• β5 and β6 are the effect of group on the probability of backtracking and

on the estimated backtracking time, respectively;

• β7 is the effect of group on σ.

Consider the three possible scenarios according to the direct-access model.

Case (i): The target is retrieved through a direct-access mechanism based on

the cues set at the retrieval site, with probability θ. In this case, listening times

are assumed to be drawn from a lognormal distribution with mean µ and standard

deviation σ: LT ∼ lognormal(µ, σ).

Case (ii): The distractor is initially retrieved, but backtracking leads to the target

being retrieved, with probability (1− θ) ·Pb. Once θ (the probability of initial correct

retrieval) has been estimated, (1 − θ) yields the probability of an initial incorrect

retrieval. The probability of backtracking is assumed to be independent of θ. Thus,

multiplying Pb with (1 − θ) yields the probability of correctly retrieving the target

after an initial misretrieval and subsequent backtracking. In this case, the listening

times are drawn from a lognormal distribution with mean µ + δ, which is the cost of

backtracking, and standard deviation σ: LT ∼ lognormal(µ+ δ, σ).
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Case (iii): The distractor is initially retrieved and there is no backtracking, with

probability (1− θ) · (1− Pb). In this case, we multiply the probability that the first

retrieval is incorrect with the probability that there is no backtracking. Here, the

listening times are drawn from a lognormal distribution with mean µ and standard

deviation σ: LT ∼ lognormal(µ, σ), and a misretrieval is predicted.

Notice that incorrect answers without backtracking in case (iii) are expected to

have similar listening times to correct answers without backtracking, case (i), whereas

in case (ii), longer listening times should be observed due to the extra time needed

for backtracking. As such, in this model, the distribution of listening times associ-

ated with correct responses is a mixture of initially retrieved targets (i), and initial

misretrievals plus backtracking (ii).

Predictions

The parameters θ, µ, Pb, δ and σ have a group adjustment because they are expected

to differ between controls and IWA. We present here a short theoretical explanation

of the interpretation of these parameters.

We expect a lower estimate of the probability of correct initial retrieval, θ, for IWA,

in object relative clauses. This would be in line with resource reduction. Complex

sentences are assumed to require more processing resources, because additional lin-

guistic operations need to be carried out and more material has to be kept in working

memory (Caplan, 2012). This suggests that IWA should show a lower probability of

initial correct retrieval in ORs relative to SRs. The different µ for controls and IWA

reflect the assumption that IWA may need more time for parsing. This assumption

can be linked to slowed processing theories, which would explain the slowdown in

terms of lexical access (Love et al., 2008) or syntactic processing (Burkhardt et al.,

2008). We expect IWA to have a lower probability of backtracking: If the model pre-

dicts IWA to backtrack, but not as often as controls, this could also be in line with

the resource reduction hypothesis (Caplan, 2012). In unimpaired sentence compre-

hension, the DA model assumes that backtracking is a mechanism used on a certain

proportion of trials when the initial interpretation of the sentence fails. If IWA show

a lower probability of backtracking, this could mean that even though they can back-

track, they do not do it as often as controls because the mechanism is disrupted.

Alternatively, the Pb parameter could also be linked to intermittent deficiencies, be-

cause the process of backtracking could be intermittently disrupted. In addition, we

expect the cost of backtracking, δ to be higher for IWA. This would reflect delayed

syntactic processing (Burkhardt et al., 2008). Finally, a larger σ would imply more



4.6. RESULTS 71

noise in the retrieval mechanism for IWA. This would be consistent with the inter-

mittent deficiency hypothesis (Caplan et al., 2007) that postulates that IWA suffer

from intermittent reductions in the resources used in parsing.

4.6 Results

4.6.1 Results of the activation-based model

We used the rstan package (Stan Development Team, 2021a) to fit the models, with

three chains, 6000 iterations and a warm-up of 3000.4 The chains were plotted and

visually inspected for convergence. An additional metric of convergence is the so-

called Rhat statistic (the ratio of between-to-within chain variance); when the sampler

has converged, the Rhat statistic is close to 1 (Gelman et al., 2013). We checked that

Rhats were always near 1. Two tuning parameters, delta and the tree depth,5 were

adapted when necessary for achieving convergence. Following Gelman et al. (2013),

we also made sure that the parameters of the model could be recovered using simulated

data (see the online supplementary materials, available at https://osf.io/srfpm/).

The activation-based model assumes that for each trial, listening times are drawn

from the two accumulators, and the accumulator with the fastest listening time wins

the race. The two distributions of finishing times (that is, the finishing time of

each one of the accumulators for each trial) can be plotted against each other, so as

to assess the precise predictions of the model. For example, Figure 4.5 shows the

distribution of finishing times for the correct and the incorrect interpretation for each

of the two groups, and across the two conditions. Figures 4.5a and 4.5b display the

accumulators for controls, while 4.5c and 4.5d stand for IWA’s accumulators.

Figure 4.5a displays the distribution of finishing times associated with the ac-

cumulator for the correct interpretation (SR) in dark gray, and for the incorrect

interpretation (here OR) in light gray, for controls. The distribution for SR is clearly

faster: The mean of the finishing times for the SR accumulator is 1204 ms, whereas

the mean finishing time for the OR accumulator is around 4000ms. In Figure 4.5b,

finishing times for the correct interpretation (OR, in light gray) are faster on average

(1655 ms) than the finishing times for the incorrect interpretation (SR, in dark gray,

4647 ms). Therefore, Figures 4.5a and 4.5b indicate that controls tend to choose the

correct interpretation, since the distributions associated to the correct interpretations

have faster finishing times.

4The code for both the activation-based and the direct-access models is available at https://bit.ly/3lda7Qj
5The adjustment of these tuning parameters (adapt delta, max treedepth) leads to the whole posterior distribution

of the parameters being correctly explored by the Hamiltonian Monte Carlo algorithm used in Stan. See the Stan
manual, or the short guide on warnings for more information (https://mc-stan.org/misc/warnings).

https://osf.io/srfpm/
https://bit.ly/3lda7Qj
https://mc-stan.org/misc/warnings
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Figure 4.5: Accumulators of evidence. The figure presents the distribution of finishing times associ-
ated with each accumulator in the activation-based model, across groups and conditions. The x-axis
stands for finishing times (in ms). The dashed lines represent the mean finishing time for the object
relative clause interpretation (in light grey) and the subject relative clause intepretation (in dark
grey).
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Figure 4.6: Posterior distribution of the σ parameter for both groups, in log scale. The dashed lines
show the mean of the distributions.

Figure 4.5c shows that IWA also tend to choose the right interpretation in SRs.

The mean of the accumulator for SR in the SR condition is 2694 ms, whereas the mean

of the OR accumulator is 4717 ms. However, Figure 4.5d indicates that it is difficult

for IWA to differentiate between the two interpretations in the OR condition (4.5d),

where the two distributions show greater overlap. On average, the accumulator for

the correct interpretation is faster: The estimated mean for the OR accumulator in

the OR condition is 3573 ms, whereas the estimated mean for the SR accumulator in

the OR condition is 4553 ms. But the overlap between the two distributions shows

that the accumulator for the incorrect interpretation is sometimes as fast as the one

for the correct interpretation. Therefore, the model predicts a difficulty for IWA in

distinguishing between the correct and interpretation in ORs.

Figure 4.5 shows that the model exhibits the predicted patterns: The means for

the finishing times across conditions are slower for IWA than for controls. For IWA,

the mean finishing times of the accumulator in the OR condition are more similar

than for controls. We also predicted IWA to have a higher σ because we assumed

that their rate of accumulation could be noisier, and the model estimates reflect this

prediction, as displayed in Figure 4.6.

Posterior predictive checks

In order to evaluate the performance of the model we compared the empirical data

against the posterior predictive distributions estimated by the model (Gelman et al.,

2013), a procedure that is known as posterior predictive checks (PPCs). We present
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Figure 4.7: Violin plots depicting the PPCs for the activation-based model corresponding to the
accuracy responses split by group and condition. The black dots represent the mean proportions
of responses in the data and the corresponding error bars show 95% confidence intervals, and the
violin plots display the posteriors predicted distributions from the model. Note that the controls’
confidence intervals are not visible because variability is low in this group.

the PPCs graphically, with violin plots, where the dots represent the mean of the

empirical data. This is a way to inspect whether the data could have been generated

by the models: If the mean of the empirical data is predicted by the model, that is,

if the dot lies within the violin plots, the model could have generated the data. If the

model is unable to reflect the distribution of the data, that implies a bad fit.

Figure 4.7 shows the PPCs for the activation-based model in the picture-selection

accuracies. In general, the activation-based model predicts the observed accuracies

for both groups and conditions. Figure 4.8 shows the PPCs corresponding to the

listening times. The model can correctly estimate the listening time (LT) distribution

of the data across conditions and groups, although it tends to overestimate the LT

for controls in incorrect responses.

4.6.2 Results of the direct-access model

The direct-access model was fit with three chains and 7000 iterations, and a warm-up

of 3500. The chains were visually inspected, and we verified that all the Rhats were

close to 1. Delta and the tree depth parameters were adapted when necessary and

we made sure that the parameters of the model could be recovered using simulated

data.

The DA model has three critical parameters: The probability of initial correct

retrieval, θ, the probability of backtracking if the initial retrieval is not correct, Pb,
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Figure 4.8: Violin plots depicting the PPCs of the activation-based model for listening times split
by group and condition. The listening times correspond to the sum of the listening times for the
verb of the subordinate clause plus the listening times of the second noun phrase. The horizontal
bars represent the mean of the data and the vertical bars are the standard error of the mean. The
dots represent the mean of the posterior distribution.

and δ, which is the time taken for backtracking. We turn now to assess the posterior

distributions for these parameters across groups and conditions.

The posterior distribution of θ (Figure 4.9a) indicates that in SRs, controls initially

retrieve the target 83% of the time, whereas IWA have a lower probability of initial

correct retrieval, 69%. However, in ORs, the probability of initial correct retrieval is

41% for controls, and 53% for IWA. We discuss this surprising outcome below.

Regarding the probability of backtracking, the posterior distribution of the pa-

rameter Pb (Figure 4.9b) indicates that controls perform backtracking around 82% if

they initially retrieve the distractor, whereas IWA backtrack 21% of the time. Notice

that the parameters θ (Figure 4.9a) and Pb (Figure 4.9b) are interrelated, and should

be interpreted together. The interpretation of both parameters shows that:

a) Controls initially carry out a retrieval that leads to the correct interpreta-

tion most of the time in SRs (83%), and 41% in ORs. If the first retrieval

was incorrect, they backtrack and get the correct interpretation in 82% of

the cases.

b) IWA are estimated to retrieve the correct interpretation without back-

tracking for SRs about 69% of the time and for ORs 53% of the time.
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Figure 4.9: Posterior distribution for the probability of initial correct retrieval and backtracking
in the direct-access model. This figure shows the estimated probability of initial correct retrieval
across groups and conditions in the upper panel, and the estimated probability of backtracking across
groups in the lower panel. The dashed lines stand for the means of their respective distributions.

However, IWA backtrack only 21% after an incorrect first retrieval. There-

fore, misretrievals are more likely for IWA than controls, especially in ORs.

Figure 4.10 shows the estimated time needed for backtracking. The posterior of

δ shows that backtracking takes less time for controls, with a mean centered around

546 ms. By contrast, IWA’s estimate for δ is higher, around 678 ms.

We predicted IWA to have a lower probability of backtracking relative to controls,

and Figure 4.10 shows that the model confirms our prediction. We also predicted

controls to have higher values for µ and σ. The model estimates are in line with

these predictions (see Figure 4.11). However, the model’s estimates contradict our

prediction about θ: We had assumed that due to resource reductions, IWA should

have a lower probability of initial correct retrieval in ORs. This surprising outcome

in the direct-access model is an inherent shortcoming of the model, at least under

the assumptions made here. We discuss alternative explanations in the discussion

section.
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Figure 4.10: Posterior distributions of parameters representing the effect of backtracking (in milisec-
onds). The figure shows the posterior distribution of estimated time needed for backtracking across
groups.
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Figure 4.11: Parameter distributions of for the µ and the σ parameters across groups, on the log
scale. The dashed lines stand for the means of their respective distributions.
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Figure 4.12: Violin plots depicting the PPCs for the DA model corresponding to the accuracy
responses split by group and condition. The black dots represent the mean proportions of responses
in the data, whereas the violin plots display the posteriors estimated by the model.

Posterior predictive checks

As with the activation-based model, we graphically compare the distribution of the

empirical data with the estimated posteriors of the model. Figure 4.12 shows the

PPCs corresponding to the picture-selection accuracies. In general, the model cor-

rectly predicts the qualitative pattern of the observed accuracies. Figure 4.13 shows

that the model estimates the listening times across conditions and groups, but it

tends to underestimate the listening times for incorrect responses, and overestimate

the correct responses in the SRs condition for IWA.

4.7 Quantitative comparison of the activation model and the

direct-access model

Although posterior predictive checks offer a visual way to assess the descriptive ade-

quacy of the models, a more quantitative way of model assessment is required, in order

to measure which model fits the data better. We compared the predictive accuracy of

the models using 10-fold cross-validation (Vehtari et al., 2017). Cross-validation in the

Bayesian framework allows for comparisons of models that assume different generative

processes for the data, such as the two models in this study. 10-fold cross-validation

involves splitting the dataset into 10 subsets of balanced data (balanced here means

that each participant contributes approximately the same amount of data). One of

the subsets is held out, and the model is fit to the nine remaining subsets. The pos-
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Figure 4.13: Violin plots depicting the PPCs of the direct-access model for listening times split by
group and condition. The listening times correspond to the sum of the listening times for the verb
of the subordinate clause plus the listening times of the second noun phrase. The horizontal bars
represent the mean of the data and the vertical bars are the standard error of the mean. The blue
dots represent the mean of the posterior distribution.

terior distributions of the parameters of this model are used to compute predictive

accuracy on the subset of held-out data. This procedure is then repeated 10 times,

one for each subset of held-out data. The difference between predicted and observed

held-out data points is used to compute a measure of predictive accuracy: The ex-

pected log point-wise predictive density, or ‘elpd. When comparing two models, the

model with the higher ‘elpd value is the model that represents a better fit to the data.

The standard deviation of the sampling distribution of (÷∆elpd), the difference in‘elpd,

can also be computed, and has the standard frequentist interpretation: (÷∆elpd) ±
2× SE) can be interpreted as a 95% confidence interval.

The‘elpd values yielded a difference of 115 (SE = 69) in favor of the activation-based

model. This suggests that the activation-based model shows a somewhat better fit for

our data (‘elpdact = -12515, SE = 49 and ‘elpdDA = -12630, SE = 52). However, the

relatively large standard error means that the difference in the predictive performance

of the models is not decisive. Table 4.1 details the difference in ‘elpd by condition and

group, and their corresponding SE. Although the activation-based model consistently

shows an advantage across conditions and groups, the standard errors indicate that

the differences are not decisive.

In this section, the relative performance of the models was assessed. We turn now
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Table 4.1: ÷∆elpd between the
activation-based and the direct-
access model across conditions and
groups. A positive difference
indicates an advantage for the
activation-based model.

(÷∆elpd) SE

SR, Controls 31 37

OR, Controls 42 36

SR, IWA 28 33

OR, IWA 14 33

to assess the relative importance that the individual parameters within each model

have, in terms of explaining the data from IWA.

4.8 Model evaluation using Bayes factors

The estimates from the activation-based and the direct-access models show that IWA

behave differently from controls. As discussed in the previous sections, given our

linking assumptions, the different parameter estimates for the two groups can tell

us whether the deficits that we link to the different parameters can explain IWA’s

data. For instance, the larger σ that IWA have in both models (relative to controls),

indicates that intermittent deficiencies may be one of the causes of IWA’s processing

difficulties.

One question that arises is, to which extent is there evidence that these deficits are

playing a role in IWA’s sentence comprehension? By assumption, both models had

group adjustments in all of the parameters. These adjustments reflect the difference

between IWA and controls. However, if the group adjustment of a given parameter

does not improve the model fit (i.e., the model would perform better if no difference

was assumed between IWA and controls), this could mean that the processing deficit

we are linking to this parameter may not be playing a role in impaired sentence com-

prehension. One way to assess whether the group adjustments improve the models’

fit is to compute a series of Bayes factors.

The Bayes factor (BF) quantifies the evidence against or in favor of a null model

(M0) that does not assume an effect of group (no β adjustment for the group factor),

relative to a model that assumes a group effect (M1). The BF is a ratio of marginal

likelihoods (as shown in Equation 4.8) and it indicates how likely it is that the data
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have been generated by one model relative to the other one. In Equation (4.8), the

subscript in BF10 stands for the order of the models: Evidence of M1 over M0.

BF10 =
P (Data|Model1)

P (Data|Model0)
(4.8)

The interpretation of BF is done in terms of relative odds. For instance, a BF10

of 5 means that the odds are 5 : 1 in favor of M1. A BF closer to 1 is inconclusive,

whereas a BF10 larger than 1 indicates evidence in favor of M1, and BF10 below

1 indicate evidence in favor of M0. The BF has a continuous scale (meaning the

higher the BF10 the stronger the evidence for M1). There is no specific cut-off for the

interpretation of the strength of the evidence in favor of a model over the other one,

but guidelines have been proposed (Jeffreys, 1939/1998). In general, a BF10 larger

than 100 is considered as strong evidence in favor of M1. Conversely, a BF10 of 1/100

or smaller is considered as strong evidence in favor of M0.

BF and cross-validation are two different ways to perform model comparisons.

Cross-validation is well suited for comparing models with different generative pro-

cesses (such as the activation-based vs. the direct-access model), but cross-validation

may be problematic with models that make very similar predictions. In this case,

the estimated standard error might be biased (Sivula, Magnusson, & Vehtari, 2020).

Since our model evaluation at the parameter level involves comparing nested mod-

els that are likely to make similar predictions, in this section we use Bayes factors

instead of cross-validation. In what follows we perform a Bayes factor analysis for

each parameter of the two models that has an adjustment for the group factor. For

instance, for the σ parameter in both models, the M0 (null model) and M1 would be

as shown in Equation (4.9).

M0σ : σ0

M1σ : σ0 + β · group
(4.9)

Because BF is known to be sensitive to the choice of priors (Rouder, Haaf, &

Vandekerckhove, 2018), we ran M1 with three different standard deviations for the

prior of the β of interest (the adjustment for group) in order to show how the BF

changes as a function of the prior standard deviation. The prior was always centered

at 0 and the standard deviations were 0.1, 0.3, and 0.5. In addition, we included the

following constraints:

(i) For the parameter µ in both models, and δ in DA, the group β in M1 was
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constrained to be positive. These parameters reflect the mean listening

times and the time needed for backtracking, respectively. Therefore, ac-

cording to theory, due to slow syntax and/or delayed lexical access, IWA

should be slower than controls. Because the contrast coding is +1 for IWA

and −1 for controls, a positive β would indicate that controls are faster

than IWA, as shown in Equation (4.10).

Controls : Intercept+ (−1) · β = Intercept− β

IWA : Intercept+ (+1) · β = Intercept+ β
(4.10)

(ii) Similarly, for the parameter σ in both models, the group β was also con-

strained to be positive, since according to intermittent deficiencies, IWA

should have more noise in the processing system.

(iii) We assumed that the probability of initial correct retrieval and the proba-

bility of backtracking could be linked to the resource reduction hypothesis.

Therefore, IWA should show a lower θ and Pb estimate, and the group β

was thus constrained to be negative. Since IWA are contrast coded +1, a

negative β would imply a lower estimated probability for IWA.

(iv) In the activation-based model, a condition × group interaction is assumed

on the µ parameter. The priors for the effect of this interaction should

be vague because there is no prediction about the direction of the effect.

One could assume that: a) IWA are more affected by the condition ma-

nipulation than controls, or b) IWA are less affected by the condition

manipulation than controls, because IWA perform poorly in both condi-

tions. Therefore, the β for the interaction did not have any constraint.

And similarly, the β for the interaction in the θ parameter in DA was not

constrained either.

A summary of the models that were run and their corresponding prior SD is shown

in Table 2. All the BF were computed using the bridgesampling R package (Gronau,

Singmann, & Wagenmakers, 2017) after running the models for 40,000 iterations. In

addition, some of the models were run three times in order to confirm that the number

of iterations was high enough to produce stable BF. Notice that for all parameters,

M0 is the model that has no adjustment for the group effect. Three versions of M1

were run, each with a different prior sd for the group adjustment, as shown in Table

2. In the case of parameters with an interaction, nine versions of M1 were run, one

for each possible combination of the prior SD of the two adjustments (the β for the

group effect and the β for the interaction condition × group).
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Table 4.2: Summary of the BF analysis for both models. This table shows the priors used, the
theories that map to each parameter, and the BF results. ACT stands for the activation-based
model, and DLA stands for delayed lexical access theory. The columns “Group SD” and “Inter.
SD” show the different prior SD of the β adjustments to the effect of group and the interaction
group × condition, respectively. In the “Group SD” column, a plus sign indicates that the β for
the group adjustment was constrained to be positive, and a minus sign indicates that the β was
constrained to be negative. No constraints were applied to the β of the interactions. The column
“BF10” summarizes the range of BF results for the priors shown in the table.

Model Param. Group SD Inter. SD Theory BF10

ACT µ 0.1, 0.3, 0.5, + 0.1, 0.3, 0.5 Slow syntax, DLA 1/3 to 1

ACT σ 0.1, 0.3, 0.5, + Intermittent deficiencies > 100

DA µ 0.1, 0.3, 0.5, + Slow syntax, DLA > 100

DA θ 0.1, 0.3, 0.5, − 0.1, 0.3, 0.5 Resource reduction > 100

DA Pb 0.1, 0.3, 0.5, − Resource reduction 2 to > 100

Intermittent deficiencies

DA δ 0.1, 0.3, 0.5, + Slow syntax 1/3 to 1/11

DA σ 0.1, 0.3, 0.5, + Intermittent deficiencies > 100

Results

Activation-based model

In the activation-based model there are two µ parameters, one for each accumulator of

evidence, µSR and µOR. M0µ does not include any adjustment for the effect of group

or the interaction group × condition, for any of the two accumulators. M1µ includes

an adjustment for the effect of group and another adjustment for the interaction, for

both accumulators. This is shown in more detail in in Equation (4.11).

M0µ

µSR = α1 + uα1 + wα1 + (β1 + uβ1) · rctype
µOR = α2 + uα2 + wα2 + (β2 + uβ2) · rctype

M1µ

µSR = α1 + uα1 + wα1 + (β1 + wβ1) · group+

(β3 + uβ3) · rctype + β5 · group · rctype
µOR = α2 + uα2 + wα2 + (β2 + wβ2) · group+

(β4 + uβ4) · rctype + β6 · group · rctype

(4.11)

The BF results are summarized in Table 2. The BF for µ in the activation-based model

are either inconclusive or yield anecdotal evidence in favor the model that does not
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assume a difference between controls and IWA (M0µ).6 In contrast, the BF results

for σ yield strong evidence in favor of M1σ: The model with a group adjustment for σ

provides a better fit. This suggests that the group adjustment in σ could be sufficient

to explain the differences between the two groups. Given our linking assumption, this

means that the activation-based model estimates intermittent deficiencies to be the

main source of processing deficits in IWA.

Direct-access model

In the direct-access model, the θ parameter also has a β for the interaction group ×
condition in addition to the β for the group effect. For the BF analysis, the M0θ does

not have any of these β, whereas the M1θ has both, as shown in Equation (4.12).

M0θ

θ = α + uα + wα + (β2 + uβ2) · rctype
M1θ

θ = α + uα + wα + (β2 + uβ2) · rctype + (β3 + wβ3) · group+ β4 · group · rctype
(4.12)

Nine versions of M1θ models were run (see Table 2), such that all possible combina-

tions of prior SD for both adjustments could be considered. All BF for θ yield strong

evidence in favor of M1, the model that assumes that IWA have a lower probability of

initial correct retrieval relative to controls (due to resource reductions). Irrespective

of the prior SD, the BF for µ and σ yield strong evidence in favor of M1. The BF

for Pb yields anecdotal to strong evidence in favor of M1 depending on the priors. In

general, all of these parameters benefit from a group adjustment.

By contrast, the BF for δ yields some evidence in favor of M0, suggesting that the

group adjustment is not needed. Recall that δ is the time needed for backtracking, and

that estimated listening times for trials with backtracking are drawn from (µ+ δ, σ).

The BF for δ could indicate that the group β is redundant because µ and σ (with their

corresponding group adjustments) already explain the differences between controls

and IWA. This means that IWA may not have an impairment in the mechanism

of backtracking. That is, IWA perform backtracking less often than controls (as

estimated in Pb), but when they do backtrack, the mechanism is not disrupted. These

results suggest that the direct-access model accounts for slow syntax and/or delayed

lexical access in µ (mean listening times), but not in δ (time needed for backtracking).
6A series of tables and plots showing the BF as a function of the priors for all of the parameters in both models is

available in the online supplementary materials.
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In conclusion, the Bayes factor analyses at the individual parameter level revealed

that in the activation-based model, an increased noise value for IWA can explain

the processing differences between IWA and controls, which speaks in favor of the

intermittent deficiencies theory. The model could also be in line with slow syntax

and/or delayed lexical access, but the BF for the parameter linked to these theories

was inconclusive, so the role of these deficits in the activation-based model remains

unclear. By contrast, the direct-access model is in line with a mixture of slow syntax

and/or delayed lexical access; resource reduction, and intermittent deficiencies.

4.9 Discussion

In this study we presented a Bayesian implementation of two models of cue-based

retrieval: The activation-based model, and the direct-access model. We linked the

parameters of these models to major theories of processing deficits in sentence com-

prehension in aphasia, namely slow syntax, delayed lexical access, resource reduction,

and intermittent deficiencies. The predictive performance of the two models was as-

sessed with 10-fold cross-validation, and the quantitative and qualitative predictions

of the models concerning data from IWA and controls has been discussed. A Bayes

factor analysis was performed, in order to quantify the evidence that the models had

with respect to the different processing deficits that were evaluated. In what follows

we discuss some unexpected aspects of the direct-access model, we compare our find-

ings to prior computational modeling work in the field of aphasia, and we point out

some limitations of the present work as well as future directions.

4.9.1 Unexpected behavior of the direct-access model

The direct-access model estimates IWA to have a higher probability of initial correct

retrieval in ORs relative to controls, which is surprising, since ORs are generally more

difficult to process for IWA than for controls (Caramazza & Zurif, 1976). However,

this prediction would be in line with studies showing that unimpaired controls have an

agent-first preference: Unimpaired controls tend to interpret the first NP of a clause

as the agent, which clashes with the actual thematic relations in some constructions

(Hanne et al., 2015; Mack et al., 2016). For instance, in an eye-tracking experiment

involving a sentence-picture matching task with active and passive sentences such

as (16a) and (16b), Mack et al. (2016) found that unimpaired controls showed initial

agent-first processing followed by a thematic reanalysis. That is, in passive sentences,

controls tended to initially look at the image in which the first noun phrase was the

agent. After hearing the region that contained the disambiguating morphological in-
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formation (i.e., the verb: visiting/visited), controls started fixating the target picture.

This implies that controls, after processing the morphological cues, had to reanalyze

the initial agent-first interpretation. By contrast, in the study of Mack et al. (2016),

IWA did not show signs of agent-first processing: They looked at the target and

distractor pictures equally prior to the arrival of the disambiguating information.

(16) a. Active: The man was visiting the woman.

b. Passive: The man was visited by the woman.

Previous studies where controls showed an agent-first bias used eye-tracking and

the visual world paradigm, but our modeling suggests that the agent-first bias could

also be detected in a self-paced listening experiment. In our data, if unimpaired

controls experienced an initial agent-first bias in ORs, they would initially parse the

sentence as an SR. Consider sentence (17). Once they hear the disambiguating region

(e.g., second noun phrase in sentence 17), they would have to backtrack on a high

proportion of trials to end up with the right thematic interpretation. In this regard,

the estimates for controls in ORs would be in line with an initial agent-first strategy.

However, a replication of these estimates would be needed, ideally with visual-world

eye-tracking data, as in Hanne et al. (2015) or Mack et al. (2016).

(17) OR: The girl who the mother chased hugged the boy.

Finally, a major issue for the DA model is the fact that the data show longer

listening times for incorrect responses. This pattern contradicts the core assumptions

of the model, because correct responses are expected, on average, to take longer

due to the cost of backtracking.7 Intuitively, IWA’S incorrect responses may be

associated with longer listening times because after backtracking IWA may not be

able to retain the retrieved representation. The slow syntax and the resource reduction

hypotheses would be compatible with this view. However, the data show that the

incorrect responses of unimpaired controls are also associated with longer listening

times relative to correct responses. Therefore, the assumption that backtracking leads

to the retrieval of the target (McElree, 1993) seems incompatible with our data.

4.9.2 Comparison with previous computational modeling work on apha-

sia

Taken together, the higher ‘elpd value in favor of the activation-based model, plus

the fact that the direct-access model underestimates the listening times for incorrect
7Notice, however, that due to random noise the model estimates slower incorrect responses in some trials, as shown

in the tails of the distribution for incorrect responses in Figure 14.
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responses in ORs, suggest that the activation-based model is better at characteriz-

ing the processing of relative clauses in IWA and controls. The BF analysis for the

activation-based model highlights the role that intermittent deficiencies may be play-

ing in an activation-based mechanism of retrieval, but slow syntax and/or delayed

lexical access should not be ruled out, since the BF for the parameters associated to

these theories were rather inconclusive.

Our results are consistent with previous sentence processing modeling work on

aphasia. For example, Patil et al. (2016) found that the LV05 model that included

slowed processing (understood as a slowdown in the parsing mechanism) and inter-

mittent deficiencies showed the best fit to data from IWA, relative to models that

included only one of these deficits. It is also possible that IWA may exhibit differ-

ent degrees of these deficits, as suggested by Mätzig et al. (2018), who modeled the

accuracies of the Caplan et al. (2013) dataset estimating ACT-R parameters at the

individual level. Interestingly, their modeling also revealed that intermittent deficien-

cies was the deficit that affected most of the IWA. Out of the 56 IWA, 53 showed

a higher noise value (relative to the default noise value in ACT-R) in object relative

clauses. Unfortunately, we do not have enough listening times data to get robust pa-

rameter estimates at the individual level, but our modeling suggests that on average,

IWA are more subject to intermittent deficiencies than to slow syntax and/or delayed

lexical access.

One caveat that applies to Patil et al. (2016), Mätzig et al. (2018), and our own

work, is that the models cannot distinguish between slow syntax and delayed lexical

access. In our implementation of the activation-based and the direct-access models,

one possibility would be to include a shift parameter (Rouder, 2005) that accounts

for lexical access, as implemented in Nicenboim and Vasishth (2018). Ideally, this

parameter should have a group adjustment (to assess whether there is a delay in

lexical access in IWA on average, taking the estimate for controls as reference), and

an individual adjustment, to assess to which extent each individual is affected by this

deficit. Unfortunately, such parameter could not be fit due to data sparsity.

Another issue to consider is that our modeling is limited to sentence comprehen-

sion. There is important modeling work in the aphasia literature that focuses on

lexical processing (Evans, Hula, & Starns, 2019; Mirman, Yee, Blumstein, & Magnu-

son, 2011), the interface between lexical access and word production (Dell, Lawler,

Harris, & Gordon, 2004), and word production (Walker, Hickok, & Fridriksson, 2018),

among others. Ideally, a model of impairments in IWA should account for both apha-

sic comprehension and production, and disentangle the difficulties that arise from

lexical and syntactic processes. However, as we show in this study, there is no single
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parameter that can account for aphasic impairments, and it is very unlikely that a

computational model, even with a larger number of parameters, could account for all

the particularities of aphasic performance, which is variable in nature. Nevertheless,

we believe that more computational modeling is needed in the field of aphasia, in

order to better understand the underlying nature of language impairments in IWA.

Computational models require researchers to formalize hypotheses and assumptions,

which is essential for theory development (Guest & Martin, 2021).

4.9.3 Some limitations of the present work and future directions

An important limitation of the present work is that even though the Caplan et

al. (2015) dataset on IWA and age-matched controls is the largest currently in ex-

istence, the data are still relatively sparse compared to standard datasets used for

similar model comparisons in psycholinguistics, both in terms of the number of of

items (10) and participants (33 IWA and 46 controls). For example, Nicenboim and

Vasishth (2018) compared the predictive performance of the activation-based and

direct-access models from reading time data from some 180 participants. It would be

useful to revisit these model comparisons with larger datasets in the future. Another

important step will be to test the two models against new experimental designs and

with different experimental paradigms. This would allow for a more comprehensive

evaluation of the differences between the models, as well as an assessment of their

predictive ability when modeling interference effects in different tasks, languages, and

conditions. We are currently compiling a comprehensive database containing several

tasks and conditions of data from IWA and unimpaired controls in German (Pregla,

Lissón, et al., 2021). In future work, we intend to use this database to further evaluate

the models discussed here.

4.10 Conclusion

We compared the predictive performance of two competing models of cue-based re-

trieval using data from individuals with aphasia and age-matched controls. We tested

whether the two models—the activation-based model and the direct-access model—

could account for experimental data from both individuals with aphasia and controls.

This is the first study where competing models of cue-based retrieval have been tested

against data from impaired populations. We also investigated the relative importance

of the various parameters in both models using Bayes factors. The Bayes factors anal-

yses show that in the activation-based model, intermittent deficiencies (Caplan et al.,

2015) best explains the behavioral data from IWA, although slow syntax (Burkhardt
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et al., 2008), and delayed lexical access (Ferrill et al., 2012) may also play a role. In

the direct-access model, the behavior of IWA is best explained in terms of a combi-

nation of slow syntax, delayed lexical access, resource reduction (Caplan, 2012), and

intermittent deficiencies. The model comparisons show that both models have a simi-

lar performance for out-of-sample predictions (assessed with 10-fold cross-validation),

with a slight advantage for the activation-based model.

In closing, we have presented the first-ever computational evaluation of different

models of dependency completion, using the largest-available database from individ-

uals with aphasia and unimpaired controls that currently exists. Our work lays out

a systematic workflow that can be used to quantitatively compare the predictions of

competing models of language processing.



Chapter 5

The modified direct-access model

of retrieval

The contents of this chapter are published in:

Lissón, P., Pregla, D., Paape, D., Burchert, F., Stadie, N., & Vasishth, S. (2021). Mod-

eling sentence comprehension deficits in aphasia: A computational evaluation of the

direct-access model of retrieval. In Proceedings of the Workshop on Cognitive Modeling

and Computational Linguistics, NAACL (pp. 177–185). ACL.

5.1 Introduction

Several researchers have argued that sentence comprehension is mediated by a cue-

based, content-addressable retrieval mechanism that allows fast and direct access to

memory items (e.g. McElree, 2000, 2006; McElree et al., 2003; Van Dyke & Johns,

2012; Van Dyke & McElree, 2006, 2011). Cue-based retrieval theory assumes that

word representations are retrieved from working memory via their syntactic and se-

mantic features. One model of cue-based retrieval is the direct-access model developed

by McElree and colleagues (A. E. Martin & McElree, 2008; McElree, 2000; McElree

et al., 2003). The direct-access model assumes that retrieval cues allow parallel access

to candidate items in memory, as opposed to a serial search mechanism. Due to the

parallelism assumption, the speed of retrieval is predicted to be constant across items

(aside from individual differences and stochastic noise in the retrieval process).

Factors such as increased distance between the target and the retrieval point and

the presence of distractor items can lower the probability of retrieving the correct

dependent (also known as availability). Low availability of the target dependent can

lead to failures in parsing or to misretrievals of competitor items. When such errors

occur, a backtracking process can be initiated, which by assumption leads to the

correct retrieval of the target (McElree, 1993). The backtracking process requires

90
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additional time that is independent of the retrieval time. For instance, according to

the direct-access model, in the sentences below, (18a) should have shorter processing

times than (18b) on average, because in (18b) some trials require costly backtracking

due to lower availability of the target item boy.

(18) a. The boy who tickled the girl greeted the teacher.

b. The boy who the girl tickled greeted the teacher.

As shown in Chapter 4, the direct-access model can be adapted to explain impaired

sentence comprehension in IWA. However, there is one crucial aspect of the direct-

access model that is at odds with the aphasia literature, specifically with the finding

that IWA have longer processing times for incorrect than for correct responses (e.g.,

Hanne et al., 2015; Pregla, Lissón, et al., 2021). The direct-access model assumes that

some percentage of correct interpretations are only obtained after costly backtracking,

and thus predicts that the average processing time for incorrect responses should be

faster than for correct responses. To address this issue, we implement a modified

version of the direct-access model that is specifically relevant for sentence processing

in IWA. In this model, backtracking can lead to correct retrieval of the target, as in

the base model, but can also result in misretrieval and parsing failure.

5.1.1 Sentence comprehension in aphasia

In the aphasia literature, there are several theories that aim to explain the source

of these impairments in language comprehension. One possibility is that IWA carry

out syntactic operations at a slower-than-normal pace, which could cause failures in

parsing. This is the slow syntax theory (Burkhardt et al., 2008). By contrast, Ferrill

et al. (2012) claim that the underlying cause of slowed sentence processing in IWA is

delayed lexical access, which cannot keep up with structure building. Another theory,

resource reduction, assumes that IWA experience a reduction in the resources used

for parsing (Caplan, 2012), such as working memory. Finally, Caplan et al. (2013)

claim that IWA suffer from intermittent deficiencies in their parsing system that lead

to parsing failures. The results in Chapter 4 and previous computational modeling

work have shown that these theories may be complementary (Patil et al., 2016), and

that IWA may experience a combination of all of these deficits (Mätzig et al., 2018).

Assuming that a direct-access mechanism of retrieval subserves sentence compre-

hension, this mechanism could interact with one or more of the proposed processing

deficits in IWA. One way to assess whether these deficits are plausible under a direct-

access model is the computational modeling of experimental data. In Chapter 4, the

direct-access model was tested against self-paced listening data from individuals with
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aphasia, and the model was found to be in line with multiple theories of process-

ing deficits in aphasia. Despite this encouraging result, the model could not fit slow

incorrect responses, due to its assumptions about backtracking and its consequences.

In what follows, we present an implementation of the original direct-access model

and the modified version with backtracking failures. We fit the two models to data

from individuals with aphasia and compare their quantitative performances. In order

to assess the role of the different proposed deficits of IWA in sentence comprehension,

we also map the models’ parameters onto theories of processing deficits in aphasia.

5.2 Data

The data that we model come from a self-paced listening task in German (Pregla,

Lissón, et al., 2021). 50 control participants and 21 IWA completed the experiment.

Sentences were presented auditorily, word by word. Participants paced the presen-

tation themselves, choosing to hear the next word by pressing a computer key. The

time between key presses (here called listening time) was recorded. At the end of

the sentence, two images (target and foil) were presented, and participants had to

select which image matched the meaning of the sentence they had just heard. Accura-

cies for the picture-selection task were also recorded. To assess test-retest reliability,

each subject completed the task twice, with a break of two months in between. Our

modeling is based on the pooled data of both sessions.

5.2.1 Items

We investigate interference effects in a linguistic construction that is understudied

in IWA: Control constructions. In control constructions, the subject of an infinitival

clause is not overly specified, but understood to be coreferential with one of the overt

noun phrases in the matrix clause of the same sentence (e.g, Brian promises Martha

to take out the trash → Brian takes out the trash). In linguistic theory, it is assumed

that a a phonologically empty element (PRO) occupies the subject position of take

out (Chomsky, 1981). PRO is co-indexed with a noun phrase in the matrix clause

that acts as its antecedent. The verb in the matrix clause specifies, according to its

semantic and syntactic properties, which noun phrase in the matrix clause triggers

the interpretation of PRO in the subclause.

In sentence (19a) below, the verb verspricht (promises) is lexically specified as

a subject-control verb, and the subject noun phrase of the main clause, Peter, is

chosen as the antecedent of PRO. By contrast, in (19b), the object-control verb

erlaubt (allows) specifies that the object noun phrase of the main clause, Lisa, is the
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antecedent of PRO.

(19) a. Subject control

Peteri verspricht nun Lisaj, PROi das kleine Lamm zu streicheln und zu

kraulen.

‘Peter now promises Lisa to pet and to ruffle the little lamb’

b. Object control

Peteri erlaubt nun Lisaj, PROj das kleine Lamm zu streicheln und zu

kraulen.

‘Peter now allows Lisa to pet and to ruffle the little lamb’

Cue-based retrieval theory assumes that control clauses require completion of the

PRO dependency through memory access to the correct noun phrase. The direct-

access model would predict (19b) to be easier to process than (19a), because the

target (Lisa) is linearly closer to the retrieval site at PRO, and thus more available.

Therefore, at PRO, the probability of retrieval of the target should be higher in (19b)

relative to (19a). In line with this prediction, unimpaired subjects show a processing

advantage for object control over subject control (Kwon & Sturt, 2016). Similarly,

IWA exhibit more difficulties understanding subject control conditions in acting-out

tasks (Caplan & Hildebrandt, 1988; Caplan, Hildebrandt, & Makris, 1996). However,

the object control advantage in IWA has not been previously tested using online

methods.

Our experimental items were 20 sentences (10 per condition) similar to (19a) and

(19b). The corresponding pictures for the picture-selection task are shown in Figure

(5.1). The top picture is the target picture for (19a), whereas the bottom picture is

the target for (19b). We assume that trials where the foil picture has been selected

(i.e., the picture that shows the distractor noun as the agent of the action) correspond

to a misretrieval.

Figure 5.1: Example pictures used in the picture-selection task.
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5.2.2 Dependent variables

The dependent variables used for modeling were the listening times (henceforth, LT)

at the retrieval site (PRO) and the accuracy of the picture-selection task. Given that

PRO is phonologically empty, we assumed that the retrieval process takes place at

some point between the second and the third noun phrase (Lisa and das kleine Lamm

in (19a)). We therefore summed the listening times of these regions within each trial.

In order to evaluate the slowed lexical access hypothesis (Ferrill et al., 2012), we

also used data from an auditory lexical decision task that participants performed in

addition to the experiment. This task was based on LEMO 2.0 (Stadie, Cholewa, &

De Bleser, 2013). Participants had to decide whether an auditorily presented item was

a word or a neologism, and the response times were recorded. For each participant, we

computed the mean response times for correct responses. These were then centered

and scaled within groups and used as continuous predictors in the models. We will

refer to the scaled lexical decision task reaction times as the LDT predictor.

5.3 Direct-access model

The implementation of the direct-access model follows is very similar to the imple-

mentation presented in Chapter 4. The model assumes that listening times for correct

responses come from a mixture distribution, given that there are trials with backtrack-

ing, where an additional processing cost δ is added, and trials without backtracking,

where no such cost is added. By contrast, incorrect responses never involve back-

tracking, and the average listening time should be the same as for correct responses

without backtracking. A graphical representation of the model is displayed in Figure

(5.2). The three possible cases are as follows:

(a) Retrieval of the target succeeds at first attempt, with probability θ:

LT ∼ lognormal(µ, σ)

(b) Retrieval fails at first attempt, backtracking is initiated, with probability

(1− θ) · Pb: LT ∼ lognormal(µ+ δ, σ)

(c) Retrieval fails, no backtracking, and a misretrieval occurs, with probability

(1− θ) · (1− Pb): LT ∼ lognormal(µ, σ)

The model includes both fixed and random effects in order to account for sentence

complexity, group differences, and individual variability. The hierarchical structure is

shown in Equation (5.1). All parameters have an adjustment by group (IWA versus

control), because we expect IWA to have different parameter estimates from control
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participants. Since DA assumes that retrieval times are not affected by sentence com-

plexity, the average listening times (µ) do not have an adjustment for condition. By

contrast, the probability of retrieval of the target, θ, includes a condition adjustment.

This parameter can be thought of as indexing memory availability.

Figure 5.2: Graphical representation of the direct-access model.

The probability of backtracking Pb, the cost of backtracking δ, and σ do not depend

on sentence complexity, but may vary between IWA and controls. The hierarchical

structure is embedded within the parameters when possible (we report the maximal

hierarchical structure that could be fit). In Equation (5.1), the terms u and w are

the by-participant and by-item adjustments to the fixed effects, respectively. These

are assumed to come from two multivariate normal distributions.

The priors used for all model parameters have been detailed in Chapter 6.9. The

model was implemented in the probabilistic programming language Stan (Stan De-

velopment Team, 2021a), and fit via the rstan package (Carpenter et al., 2017) in R

(R Core Team, 2020). The model was fit with 3 chains and 8,000 iterations, half of

which were used as warm-up.
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µ = µ0 + uµ0 + wµ0 + β1 · group

θ = α + uα + wα + β2 · LDT+

β3 · LDT · group+

(β4 + wβ4) · group

(β5 + uβ5) · condition+

β6 · group · condition

Pb = γ + uγ + β7 · group

δ = δ0 + β8 · group

σ = σ0 + β9 · group

(5.1)

5.3.1 Predictions

Based on the theories of processing deficits in aphasia discussed in Section (5.1.1),

and on the findings in Chapter 4, we make the following predictions:

1. IWA’s µ and δ values should be higher than controls’. This would be

in line with slow syntax, assuming that both the initial retrieval and the

backtracked retrieval are accompanied by appropriate structure-building

processes.

2. The probability of initial retrieval of the target θ should be lower for IWA

relative to controls, across conditions.

3. Object control conditions should have a larger θ, relative to subject control.

In addition, IWA should have a bigger interference effect, i.e., the difference

in θ between the two conditions should be larger in IWA than in controls.

This pattern would be expected under the resource reduction theory, which

states that IWA should have greater difficulties in more complex sentences.

4. Slower lexical decision (LDT) should be associated with a decrease in θ

across groups. Strong support for delayed lexical access would come from

an interaction between LDT and group, such that an increase in LDT

predicts a greater decrease in θ for IWA than for controls: Slow lexical

access could cause parsing problems for controls, but if delayed lexical

access is the main cause of difficulty in IWAs, parsing failures should occur
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more often in this group for individuals whose lexical access is particularly

slow.

5. The probability of backtracking should be lower for IWA, which would be

in line with resource reduction.

6. Finally, the dispersion parameter σ of the listening-time distribution should

be larger for IWA, which would indicate that IWA have more noise in their

parsing system. This would be in line with intermittent deficiencies, since

more noise could be due to more breakdowns in parsing.

These predictions build on the previous work by Lissón et al. (2021), but other

options for the mapping between parameters and theories of comprehension deficits

in aphasia are possible, see Mätzig et al. (2018), Patil et al. (2016).

5.3.2 Results

We begin by assessing the posterior distribution of the probability of retrieval of the

target, θ, shown in Figure (5.3).

Controls IWA

50 60 70 80 90 50 60 70 80 90

[%]

Condition

Object

Subject

Posterior distribution of θ

Figure 5.3: Posterior distribution of θ across conditions and groups.

Controls are estimated to retrieve the target at the first retrieval attempt in both

conditions in more than 90% of trials. The mean of the subject-control condition is

slightly lower than the mean for the object-control condition. By contrast, IWA dis-

play a greater effect of interference: In object-control sentences, where the antecedent

is close to PRO, IWA are estimated to correctly retrieve the target at the first attempt

85% of the time, compared to 60% for subject-control. An increase in LDT leads to

a decrease in θ of −6% CrI: [−11%, −2%], but there was no interaction with group



98 CHAPTER 5. THE MODIFIED DIRECT-ACCESS MODEL OF RETRIEVAL

× LDT (−2% CrI: [−6%, 2%]). The credible intervals for the remaining parameters

are shown in Table (5.1).

Table 5.1: Parameter credible intervals, DA model.

Par. Control participants IWA

µ [1668 ms, 1901 ms] [2508 ms, 3073 ms]

δ [1084 ms, 1385 ms] [2897 ms, 6836 ms]

Pb [63%, 78%] [3%, 10%]

σ [0.15, 0.16] [0.27, 0.3]

As expected under the slow syntax theory, IWA’s mean listening times (µ) and

the time needed for backtracking (δ) are higher than controls’. Similarly, σ is also

higher for IWA, as predicted by intermittent deficiencies. Finally, the probability of

backtracking is much lower for IWA than for controls. Assuming that backtracking

uses general parsing resources, this estimate is in line with resource reduction.

5.3.3 Posterior predictive checks

One way to assess the behavior of the model is to check the posterior distribution of

data generated by the model against the empirical data. If the mean of the empirical

data falls within the range of predicted values of the model, the model could have

generated the empirical data. By contrast, if the empirical data are outside of the

range of the generated values, this indicates a suboptimal fit. Figure (5.4) shows

the posterior predictive distributions of the direct-access model across groups and

conditions. Overall, correct responses are modeled reasonably well, except in the

object-control condition for IWA. The model also underestimates the listening times

for incorrect responses, except for IWA in the subject-control condition. In all other

design cells, incorrect responses are slower than correct responses, contrary to the

model’s assumption that slow backtracking responses are always correct.

5.4 Modified direct-access model

Based on the original DA model’s suboptimal fit, we propose a modified version

(MDA). In this version, the distribution of listening times for both correct and in-

correct responses is a mixture of directly accessed and backtracked retrievals. The

MDA model assumes that backtracking can fail. In terms of implementation, the

main difference between the models is a newly-introduced parameter θb, which is the

probability of correct retrieval after backtracking. Figure (5.5) displays a graphical

representation of this new model: After backtracking, the target is retrieved with

probability θb, and a misretrieval occurs with probability 1 − θb. The hierarchical
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Figure 5.4: Posterior predictive checks of the direct-access model split by accuracy, group, and
condition. The violin plots indicate the distribution of listening times generated by the model. The
black stars stand for the mean of the empirical data.

structure is the same as in the DA original model, except for θb, whose adjustments

are shown in Equation (5.2).

θb = αb + uαb
+ β · group (5.2)

The model was run with 10,000 iterations, half of which were used as warm-up.

5.4.1 Predictions

All predictions are carried over from the base DA model. In addition, the probability

of retrieval of the target after backtracking θb should be lower for IWA than for

controls. This would indicate that IWA are more likely to experience parsing failure

or misretrieval even after backtracking.

5.4.2 Results

We begin by assessing the probability of first correct retrieval, θ. The posterior

distribution across groups and conditions is shown in Figure (5.6). The estimates

are quite similar to the ones in the original DA model: Controls have a very high

probability of initial correct retrieval across conditions, and IWA display a greater

interference effect.

As in the base model, IWA have a low probability of backtracking in this model (7%
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Figure 5.5: Graphical representation of the modified direct-access model.
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Figure 5.6: Posterior distribution of θ across conditions and groups.

CrI: [4%, 12%]) relative to controls (80%, CrI: [72%, 86%]). The probability of correct

retrieval after backtracking, θb, determines the amount of slow incorrect responses.

The posterior distribution of θb is shown in Figure (5.7). After backtracking, controls

are estimated to retrieve the target 90% of the time, compared to around 70% for
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Figure 5.7: Posterior distribution of θb across conditions and groups.

The rest of estimates are also similar to the ones in the original DA model: IWA’s

µ is higher than controls’ (2751 ms, CrI: [2477, 3046] versus 1770 ms, CrI: [1654 ms,

1890 ms]). The cost of backtracking, δ, is very high for IWA (6394 ms CrI: [4235,

9468]) relative to controls (1238 ms, CrI: [1103 ms, 1387 ms]). Finally, σ is also higher

for IWA (0.27 CrI: [0.25, 0.28]) than for controls (0.15 CrI: [0.14, 0.15]).

5.4.3 Posterior predictive checks

The posterior predictive checks for the modified direct-access model are shown in

Figure (5.8). Like the base model, the MDA mostly correctly estimates listening

times for correct responses across the board. The fits for incorrect responses seem to

have improved, except for object-control in IWA, where the predicted listening times

are still faster than the observed listening times.

5.5 Model comparisons

In order to quantitatively compare the performance of the models, we computed

Bayes factors. We chose Bayes factors over other alternatives (e.g. cross-validation),

because the two models seem to predict similar distributions, and Bayes factors are

especially suited for nested models, or models that make very similar predictions.

The hypothesis being tested is whether there is a non-zero parameter θb that indexes

the probability of successful backtracking, assumed by the MDA model, or whether

backtracking is always successful, as assumed by the base DA model.
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Figure 5.8: Posterior predictive checks of the modified direct-access model split by accuracy, group,
and condition. The violin plots indicate the distribution of listening times generated by the model.
The black stars stand for the mean of the empirical data.

In order to perform the comparison, the models were run for 40,000 iterations, of

which 3,000 were used for warm-up. Bayes factors were computed using the bridge-

sampling package (Gronau et al., 2017) in R. The Bayes factor of DA over MDA was

estimated to be 2. This result is inconclusive, and indicates that the models provide

similar quantitative fit to the data.

5.6 Discussion and conclusion

In the present paper, we implemented and tested two versions of the direct-access

model of cue-based retrieval and evaluated their predictive performance on data from

individuals with aphasia and control participants. Specifically, we modeled interfer-

ence in an under-studied linguistic construction, namely control structures.

Both the base model and the modified model are in line with a combination of

processing deficits in IWA: slow syntax, resource reduction, and intermittent deficien-

cies. Neither of the two models showed support for delayed lexical access as a source

of retrieval difficulty specifically for IWA. Although a delay in LDT was connected

to a decrease in the probability of correct retrieval, the effect of LDT was similar for

IWA and control participants. In general, our results are consistent with other studies

showing that a combination of processing deficits may be the source of impairments

in sentence comprehension in IWA (Caplan et al., 2015; Mätzig et al., 2018).
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Unlike the base direct-access model, our modified DA model (MDA) assumes that

backtracking can fail, resulting in slow, incorrect retrievals. However, this added

assumption does not result in a decisive advantage in fit for the MDA model, as

shown by the posterior predictive checks and the Bayes factor analysis. This result

is unexpected, and leads us to think that the MDA model may be overparametrized.

In MDA, all of the main parameters include a group adjustment. As a consequence,

for instance, the mean listening times, µ, are estimated to be higher for IWA than

for controls. The cost of backtracking, which is only added to µ if backtracking is

performed, accounts for slower responses. However, because IWA’s µ is estimated to

be higher than controls’ µ, the model may not need to rely on backtracking in order

to account for slow responses in IWA. This could be the reason why the probability of

backtracking for IWA is very low (7%) relative to controls (80%). In addition, IWA’s

θb has to be estimated from the 7% of trials that include backtracking. Given the

size of the IWA group (21 participants), and the small amount of trials that include

backtracking, perhaps the model cannot correctly estimate the θb parameter. This

could be investigated in several ways. One possibility would be to remove the group

adjustments from µ, Pb, δ, and θb one at the time, and see which of these models shows

a better quantitative fit for the data (see Chapter 4). Another possibility would be to

evaluate how these parameters interact with and without group adjustments (e.g., do

Pb and/or δ for IWA increase if there is no group adjustment in µ?). We will address

these questions in future work.

The present chapter contributes to the aphasia literature by proposing a mod-

ification of the direct-access model that can account for incorrect slow responses.

Despite our inconclusive results, we believe that the modified direct-access model

offers a more appropriate set of assumptions for individuals with aphasia than the

direct-access model. The modified-direct access model can account for slow incorrect

responses, which are frequently found in studies on sentence processing in IWA (e.g.,

Hanne et al., 2015; Lissón et al., 2021; Pregla, Lissón, et al., 2021). It remains to be

seen, by testing the new modified direct-access model against more data from indi-

viduals with aphasia, whether there is a difference in predictive performance between

the two models.



Chapter 6

Similarity-based interference in

sentence comprehension in aphasia

The contents of this chapter are submitted for publication to the Journal of Memory

and Language:

Lissón, P., Paape, D., Pregla, D., Burchert, F., Stadie, N., & Vasishth, S. (2021).

Similarity-based interference in sentence comprehension in aphasia: A computational

evaluation of two models of cue-based retrieval. (Submitted to Journal of Memory and

Language.)

6.1 Introduction

Similarity-based interference is a key assumption in the cue-based retrieval theory.

When a retrieval is triggered, processing difficulty is predicted if multiple items in

memory match the same retrieval cues. This phenomenon occurs because the two

items in memory become difficult to distinguish from each other, and this results in a

processing slow-down, or an occasional misretrieval of the distractor item. Similarity-

based interference has been attested in multiple linguistic constructions across dif-

ferent languages (e.g. Engelmann et al., 2019; Jäger et al., 2017; Jäger et al., 2020;

A. E. Martin et al., 2012; Van Dyke, 2007; Van Dyke & Johns, 2012; Van Dyke &

Lewis, 2003; Van Dyke & McElree, 2011; Vasishth et al., 2008; Vasishth & Engelmann,

2021). Both the Lewis and Vasishth (2005) model and McElree’s direct-acccess model

(2002), predict similarity-based interference effects. However, the two models assume

that similarity-based interference has underlying different generative processes.

In LV05, each memory item has a fluctuating activation value that determines

both the probability and the latency of retrieval. When a retrieval is triggered, the

retrieval cues spread activation to all matching items available in memory. Items

with more matches accrue more activation, making them more likely to be retrieved,

104
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and decreasing retrieval speed. If the cued feature is present on multiple items in

memory, the cue’s activation is shared across all items, so that each item receives

comparatively less activation. The consequence of the reduced activation of items in

memory leads to difficulty in retrieving the correct item; this is a key property of

similarity-based interference.

In the direct access-model, it is assumed that the availability of items in memory –

that is, the probability of successful retrieval – decreases as a function of interference,

but that retrieval times remain unaffected. However, low availability can lead to mis-

retrievals and/or a parsing failure. When a misretrieval occurs, in a certain proportion

of trials, a backtracking process is initiated. Backtracking, also known as reanaly-

sis, is implicitly assumed to lead to the retrieval of the target (McElree, 1993), and

requires some extra processing time that is independent of the retrieval time (A. E.

Martin & McElree, 2008). Therefore, in the direct-access model, similarity-based in-

terference can lead to slow, correct responses (due to the cost of backtracking), or to

fast, incorrect responses.

However, as explained in Chapter 5, the assumption that backtracking leads to

the retrieval of the target constrains the DA model: Due to the added backtracking

time in some trials, DA assumes that correct retrievals are, on average, slower than

misretrievals. Yet, it is known from different cognitive tasks that “slow errors” can

occur in addition to “fast errors” (e.g., van Maanen, Katsimpokis, and van Campen,

2019). In addition, the DA model’s assumption that correct retrievals are on average

slower than incorrect retrievals leads to incorrect predictions when modeling data from

individuals with aphasia with the direct-access model, as seen in the previous chapters.

The reason is that individuals with aphasia often have slower latencies in incorrect

trials relative to correct trials (see Adelt, Stadie, Lassotta, Adani, & Burchert, 2017;

Hanne et al., 2015; Pregla, Lissón, et al., 2021). In Chapter 5, we implemented a

modified version of the direct-access model in which backtracking can fail, resulting in

a misretrieval. The modified direct-access model and the original direct-access model

were tested against self-paced listening data from individuals with aphasia (IWA)

and control participants in German (Pregla, Lissón, et al., 2021). The models were

compared using Bayes factors, and the result was inconclusive. We concluded that

more studies testing the modified direct-access model in IWA are needed, in order to

evaluate the fit of the modified-direct access model to data from IWA and controls. In

the present chapter, we implement the same modified direct-access model, in which

backtracking can fail, resulting in slowed reaction times and a misretrieval. In the

modified direct-access model, both correct and incorrect responses are therefore a

mixture of directly-accessed and backtracked retrievals. In the present work we focus
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on evaluating the modified direct-access model, but for the sake of completeness, we

also report model comparisons between the modified and the original direct-access

model, i.e., a model in which backtracking can only lead to the retrieval of the target.

In this chapter, we model interference effects in IWA and control participants using

a subset of the data from Pregla, Vasishth, et al. (2021). We focus on two linguistic

constructions in German: Pronoun resolution and relative clauses. These construc-

tions are well-suited for our modeling goals because IWA have been found to have

comprehension difficulties processing them (Adelt et al., 2017; Burchert, De Bleser,

& Sonntag, 2003; Caplan et al., 2015; Choy & Thompson, 2010; Pregla, Lissón, et al.,

2021). Because we map prominent theories of processing deficits in aphasia to the

different parameters of each model, we expect to gain valuable insights into the nature

of comprehension deficits in IWA by investigating how the two competing models of

retrieval fit these constructions. In addition, we simultaneously model visual-world

eye-tracking data, as well as reaction times and accuracies from a sentence-picture

matching task. This is a novel approach that allows for the simultaneous assessment

of IWA’s online and offline comprehension within the same model. Our study is, to

our knowledge, the first to compare two different models of cue-based retrieval us-

ing the visual-world paradigm and behavioral data from both IWA and unimpaired

controls.1

We seek to answer the following questions: 1) Which model offers a better account

of interference effects in IWA and control participants across these structures? 2)

What do the parameters of each model tell us about the source of processing deficits

and about interference in IWA?

We begin by briefly summarizing the theories of processing deficits in aphasia

that we will evaluate, as well as their proposed connection to the parameters of the

activation-based and modified direct-access models.

6.1.1 Theories of processing deficits in aphasia

Caplan et al. (2015) discuss the different theories that aim to explain why non-

adjacent dependencies are challenging for IWA. For instance, Burkhardt et al. (2003)

and Burkhardt et al. (2008) argue that IWA compute syntactic dependencies at a

slower-than-normal pace, which can lead to comprehension failure. According to this

theory, known as slow syntax, the processing deficit in IWA is specific to syntactic

structure building. By contrast, Ferrill et al. (2012), Love et al. (2008) posit that

delayed lexical access causes the slowdown in the formation of syntactic dependen-

1Patil et al. (2016) modeled visual-world eye-tracking data from 7 IWA and 8 controls with different versions of
the LV05 model, but the (modified) direct-access model has never been tested against visual-world eye-tracking data,
and never with such a relatively large-scale dataset from IWA and controls.
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cies. Love et al. claim that when the sentence requires the reactivation of a lexical

item in order to complete a dependency, the lexical reactivation is too slow, and a

extragrammatical heuristic may be used instead, which can lead to comprehension

errors.

Caplan and colleagues argue that IWA may have an impairment in the resources

needed for parsing, such as memory capacity (Caplan, 2012; Caplan et al., 2007).

Complex sentences create greater processing demands, and therefore IWA have more

difficulties in complex sentences. This account is known as resource reduction.

In addition, Caplan et al. (2013) claim that IWA may also exhibit intermittent

deficiencies in the parsing system that block access to parsing operations such as

relating the surface and base positions of words in the structure. The intermittent

nature of these breakdowns would explain why IWA are able to understand complex

sentences on some but not all trials.

All of these theoretical proposals can be incorporated in computational models

of retrieval. In our modeling, which follows the same mapping as Chapter 4 and

Chapter 5, intermittent deficiencies are implemented as increased stochastic noise in

memory activations/availabilities. A higher noise value in IWA would mean more

mistretrievals and presumably more parsing failures compared to unimpaired indi-

viduals. Delayed lexical access or slow syntax is assumed to delay the retrieval of the

target item from memory, leading to a slowdown at the retrieval site in the activation-

based model, and/or to misretrieval in both the activation-based and the direct-access

model. In the DA model, which assumes backtracking as a key resource in parsing,

resource reductions could disrupt this mechanism and lead to comprehension deficits.

In the current work, we focus on the role of the proposed processing deficits in

the context of the activation-based and the direct-access models of cue-based re-

trieval. We use data from a visual-world experiment that tested the comprehension

of pronouns and relative clauses in German (Pregla, Vasishth, et al., 2021). We now

introduce each linguistic construction in turn.

6.2 Experiment 1: Pronoun resolution

Consider sentence (20a). When the pronoun er (“he”) is encountered, cue-based

retrieval predicts that a search for its antecedent is triggered, using the cues [animate,

masculine, singular]. The experiment makes use of the fact that for some verbs,

the implicit subject of a sentential complement is coreferential with the main clause

subject (subject control) while for others it is coreferential with the main clause

object (object control; e.g., Chomsky, 1981; Comrie, 1985). The verb versprechen
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(“promise”) is lexically specified as a subject control verb (Müller, 2002), so that the

cue [+subj] is set at the pronoun. The item whose features fully match these retrieval

cues is the licensed antecedent, and therefore Peter is the target of the retrieval.

(20) a. Mismatch.

Peter+subj
+masc verspricht nun Lisa−subj

−masc, dass er{subjmasc} das kleine Lamm stre-

ichelt und krault.

Peter promises now Lisa, that he the small lamb pets and ruffles.

‘Peter now promises Lisa that he will pet and ruffle the little lamb.’

b. Match.

Peter+subj
+masc verspricht nun Thomas −subj

+masc, dass er{subjmasc} das kleine Lamm

streichelt und krault.

Peter promises now Thomas, that he the small lamb pets and ruffles.

‘Peter now promises Thomas that he will pet and ruffle the little lamb.’

Across the two sentences, the object nouns, Lisa in (20a) and Thomas in (20b),

partially match the retrieval cues from the pronoun. Both mismatch the [+subj] cue

that the pronoun inherits from the verb, but Thomas matches the gender cue from

the pronoun, which should lead to increased similarity-based interference. We will

refer to sentences like (20a) as mismatch conditions, because the target noun (Peter)

and the distractor noun (Lisa) do not share the same gender, and sentences like (20b),

as match conditions.

A processing advantage in gender mismatch conditions in unimpaired populations

has been observed in English by Badecker and Straub (2002) and Runner and Head

(2014), but not by Chow, Lewis, and Phillips (2014). Laurinavichyute, Jäger, Akin-

ina, Roß, and Dragoy (2017) reported mixed results for German. In the aphasia

literature, Choy and Thompson (2010) and Engel et al. (2018) found that IWA had

difficulties in pronoun resolution, but these studies did not target the gender mis-

match configurations that Pregla, Vasishth, et al. (2021) tested, and that we model

in the present work.

In Experiment 1, we model interference as a function of the gender cue at the

pronoun. Based on cue-based retrieval theory, we predict a processing advantage in

mismatch conditions relative to match conditions, and we aim to (a) compare how the

activation-based and the modified direct-access model fit these data, and (b) evaluate

the theoretical accounts of processing deficits in aphasia from their implementation

in the models.
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6.3 Experiment 2: Relative clauses

Relative clauses have been extensively studied in psycholinguistics. Subject relatives

(SR) have been found to be easier to process than object relatives (OR) in multiple

languages for both unimpaired controls (e.g., Fedorenko, Gibson, & Rohde, 2006;

Gordon et al., 2006; Grodner & Gibson, 2005; Staub, 2010; Staub, Dillon, & Clifton

Jr, 2017) and for IWA (e.g., Burchert et al., 2003; Caplan et al., 2013, 2015; Caplan et

al., 2007; Caramazza & Zurif, 1976; Dickey & Thompson, 2009; Pregla, Lissón, et al.,

2021). The subject-object asymmetry in IWA and controls has been computationally

modeled in the cue-based retrieval framework (Lissón et al., 2021; Mätzig et al., 2018;

Vasishth et al., 2019) using self-paced listening data and offline measures in English.

The present study is the first to model number interference in relative clauses in

German, in individuals with aphasia and unimpaired controls.

Consider the sentences in (21). When the verb badet/baden (bathes/bathe) is

encountered at the end of the sentence, two retrievals are triggered because the agent

and the theme of the action expressed by the verb need to be identified. In (21), the

arrow points towards the target of the retrieval that we model, i.e., the agent. A +

or a − preceding the number cue of the target and distractor indicates a match or a

mismatch with the retrieval cue, which is shown at the retrieval site, the verb.

(21) a. SR, match

Hier ist [der Esel]+singular, der [den Tiger]+singular gerade badet{singular}.
��

Here is the+singular donkey who the+singular tiger now bathessingular.

‘Here is the donkey who bathes the tiger.’

b. OR, match

Hier ist [der Esel]+singular, den [der Tiger]+singular gerade badet{singular}.
��

Here is the+singular donkey who the+singular tiger now bathessingular.

‘Here is the donkey who the tiger bathes.’

c. SR, mismatch

Hier ist [der Esel]+singular, der [die Tiger]+plural gerade badet{singular}.
��

Here is the+singular donkey who the+plural tigers now bathessingular.
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‘Here is the donkey who bathes the tigers.’

d. OR, mismatch

Hier ist [der Esel]+singular, den [die Tiger]+plural gerade baden{plural}.
��

Here is the+singular donkey who the+plural tigers now batheplural.

‘Here is the donkey who the tigers bathe.’

In (21a) and (21b), both noun phrases in the sentence are singular (der Esel,

der/den Tiger). Accordingly, both noun phrases have the retrieval cue [singular];

this is expected to cause similarity-based interference during retrieval. By contrast,

in (21c) and (21d), the second noun phrase is plural (die Tiger), which should result

in easier identification of the correct noun phrase, based on the retrieval cue from

the verb ([singular] or [plural]). We will refer to sentences like (21c) and (21d) as

mismatch conditions, because target and distractor do not share the same number,

and sentences like (21a) and (21b), as match conditions.

According to cue-based retrieval, there should be no processing difference between

subject and object relatives at the final verb in the sentences in (21), because the

subject and object need to be retrieved at the verb in both types of relatives. However,

both types of relative clauses should be easier to process in mismatch configurations

compared to match conditions. Thus, (21c) and (21d) should be easier to process

than (21a) and (21b), respectively.

In German, when the head noun is masculine (such as in our items), the mor-

phological form of the relativizer (der for nominative, den for accusative) provides

disambiguating information. Therefore, in our items, by the time the comprehender

reaches the relativizer, they should be able to identify the agent or the theme of the

relative clause due to the overt case marking. Retrieval should occur at the verb, and

the number cue should facilitate processing in (21c) vs. (21a) and (21d) vs. (21b),

because in (21c) and (21d) only the subject noun phrase matches the number cue at

the verb.

Studies addressing the comprehension of subject vs. object relatives in German

with case-unambiguous relativizers (such as our items) are scarce. Friederici, Stein-

hauer, Mecklinger, and Meyer (1998) tested the comprehension of these sentences in

unimpaired controls using ERP. They found a P600 in ORs relative to SRs at the

relativizer. No significant difference in accuracies between the two conditions was

reported. Studies investigating case-unambiguous subject vs. object relatives in IWA

in German indicate that object relatives are generally more difficult to process for

IWA. For example, Burchert et al. (2003) report that in case-unambiguous relatives
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the accuracies for OR are lower, relative to SR, in 4 out of the 7 IWA tested. Simi-

larly, in a visual-world experiment, Adelt et al. (2017) also tested the comprehension

of case-unambiguous relative clauses in IWA and control participants in German. In

order to compare the accuracy estimates from the present paper with those of Adelt

et al. (2017), we carried out a Bayesian logistic regression analysis of the accuracy

data reported in Adelt et al. (2017). The analysis is available in the online supplemen-

tary materials. In the case-unambiguous relative clauses, IWA have lower accuracies

than controls (-26% credible interval (CrI): [-42%, -13%]) and both groups have lower

accuracies in object relatives (-13 % CrI: [-23%, -4%]). There is no indication of a

group × RC type interaction (3 % CrI: [-5%, 11%]). Although the items in Adelt

et al. (2017) and in Burchert et al. (2003) also included relative clauses with plural

noun phrases, these relative clauses were case ambiguous. Therefore, these studies

did not investigate whether a unique number cue facilitates processing. This is the

empirical question that we address in this experiment.

The main goals in Experiment 2 are to compare the performance of the activation-

based and the modified direct access model by modeling number interference in rel-

ative clauses, and to evaluate the different theories of processing deficits in aphasia

from their implementation in the models.

6.4 Methods

The data that we model come from the experiments carried out by Pregla, Vasishth,

et al. (2021). The participants, procedure, and materials described here summarize

the methods in Pregla, Vasishth, et al. (2021). By contrast, the dependent variables

and contrast coding described here are specific to the present work.

Participants and procedure. Twenty-one IWA (mean age = 60.2 years, SD =

11.4) and fifty control participants (mean age = 47.7 years, SD = 19.6), all native

speakers of German, took part in an auditory sentence-picture matching task com-

bined with visual-world eye-tracking. Individuals with aphasia were in the chronic

phase (at least one year after onset of the aphasia). The procedure was as follows:

At the beginning of the trial, a preview phase of 4000 ms was used to introduce two

pictures to the participants. One of the pictures (target) corresponded to the correct

meaning of the sentence, whereas the other picture (foil) depicted the opposite the-

matic interpretation. After the preview phase, an auditory recording of the sentence

started playing. Sentences were presented at a normal speech rate, and participants

were instructed to select the picture that matched the meaning of the sentence. The

pictures were displayed until participants made a choice, or for a maximum time of
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30 seconds. Once the participant pressed the choice button, the trial ended. During

the trial, eye movements were recorded using a SensoMotoric Instruments eye-tracker

(SMI RED250mobile; binocular tracking, Experiment Center version 3.7, sampling

rate 250 Hz). The proportion of looks to the target picture against looks to the foil

(or no picture) was calculated. The response time and the accuracy of the picture se-

lection were also recorded. Each participant completed the experiments twice, in two

sessions (test and retest), with a gap of approximately two months. Participants also

performed a battery of tests in order to assess auditory and visual comprehension,

morphological discrimination, and lexical decision latency.

Materials. In Experiment 1, 10 items per condition (match versus mismatch)

were included, as in example (20). Example pictures accompanying the pronoun

sentences are shown in Figure (6.1). The pronoun items always used subject-control

verbs, so that the target of the retrieval was always the first noun phrase.2 Control

verbs were selected from the ZAS Database of Clause-Embedding Predicates (Stiebels

et al., 2018).

Figure 6.1: Example pictures used in the picture-selection task in Experiment 1. For the sentences
in example (20) the left picture is the target and the right picture is the foil.

In Experiment 2, 20 items per condition (subject and object relatives) were in-

cluded. The noun phrase of the matrix clause (henceforth NP1) was always singular.

Out of the 20 items, 10 had a singular embedded noun phrase (henceforth NP2),

and 10 had a plural embedded noun phrase. The items were constructed using 10

bisyllabic transitive action verbs, and the noun phrases were always bisyllabic animal

names. Example pictures of the match relative clause conditions are given in Figure

6.2, and of the mismatch relative clause conditions in 6.3.

Dependent variables and contrast coding. To assess participants’ lexical

access speed, which is important for evaluating the delayed lexical access hypothesis

of Love et al. (2008) and Ferrill et al. (2012), we computed their average reaction

times from a lexical decision task, based on LEMO 2.0 (Stadie et al., 2013). This
2The pronoun items that we use here were extracted from a larger experiment that also contained object-control

verbs, and fillers.
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Figure 6.2: Example pictures used in the picture-selection task in Experiment 2 for the match
conditions. The left picture is the target for SR conditions, and the right picture is the target for
OR.

Figure 6.3: Example pictures used in the picture-selection task in Experiment 2 for the mismatch
conditions. The left picture is the target for SR conditions, and the right picture is the target for
OR.

yielded a single measure (lexical decision time, LDT) for each participant that we use

as a continuous predictor in the models. We centered and scaled the LDT predictor

within groups. An LDT × group interaction would thus tell us whether an increase

in LDT leads to a larger increase in RT for IWA compared to controls.

Another predictor in the models is the proportion of fixations on the target picture

(centered and scaled within groups) at the critical sentence region, where a retrieval

is assumed to take place (see below). The remaining predictors used in both models

were sum-coded, with the following contrasts: Group was coded with IWA as +1 and

controls as −1; the high interference conditions (gender match in pronouns, number

match in relative clauses) were coded as +1, and the low interference conditions

(gender mismatch, number mismatch) as −1. In the relative clauses sub-experiment,

the relative clauses were coded as OR +1, and SR −1.

We base our statistical inferences on the posterior distribution of the parameters,

which we summarize with the mean and 95% credible interval (CrI). This is the

convention used to report summaries of parameter values for which there is support
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in the data. When interpreting the estimates, the width of the CrI should be taken

into account, as it shows the range of plausible parameter values that lie with 95%

probability given our model and data.

For each experiment, two different versions of the activation-based model and the

modified direct-access model were implemented.3 The models were implemented in

Stan (Carpenter et al., 2017) and fitted in R (R Core Team, 2020) via the rstan

package (Stan Development Team, 2021a). The packages brms (Bürkner, 2017) and

bayesplot (Gabry, Simpson, Vehtari, Betancourt, & Gelman, 2019, 2) were used for

examining and plotting the posterior distributions of the parameters. For each model,

three chains each, with at least 6,000 iterations each were run. Each chain included

at least 3,000 warm-up iterations. Convergence was assessed by checking that R̂ was

below 1.01 and by visually inspecting the convergence of the chains (Gelman et al.,

2013). We also verified that the models could recover simulated parameter values.

For both models, mildly informative priors were used (Nicenboim et al., 2021; Schad

et al., 2021; Sorensen et al., 2016).

6.4.1 Modeling assumptions

Neither the activation-based model nor the direct-acccess model have a linking func-

tion that maps proportions of looks to a picture to retrieval times and/or retrieval

probabilities of memory chunks. Therefore, we need to specify linking assumptions

between fixations on the target picture, the assumed retrieval processes, and the

reaction times and accuracies in the picture-selection task.

For the two sentence types, we assume two retrieval events. The first retrieval takes

place in the middle of the sentence, at the critical region. In pronoun resolution, the

critical region is the pronoun, and in relatives clauses, it is the relativizer. Our linking

assumption is that proportions of looks to the target at the critical region can be used

as a proxy for retrieval. Therefore, we predict that more looks to the target picture at

the retrieval site correspond to a higher probability that the target has been retrieved

at this point.

The second retrieval event happens at the verb region, that is, at the end of the

sentence. In pronoun resolution, the retrieval target must be re-accessed at this point,

as it is the subject of the verb. In relative clauses, the retrieval target must be re-

accessed too. We assume that the second retrieval is linked to the first, so that more

looks to the target at the critical region (the pronoun/relativizer) go along with higher

activation/availability, resulting in faster and/or more accurate retrieval at the verb

3Initially, we intended to model the pooled data from both experiments. However, the complex structure of
fixed and random effects lead to convergence issues in the modified direct-access model. Therefore, we ended up
implementing two separate versions of each model, one for each experiment.
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region. As the picture-selection task takes place immediately after hearing the verb

region, we assume that accuracies and RT at this task should show the interference

effects predicted by the cue-based retrieval theory.

In what follows, we will present the implementation and the fits of the activation-

based model and the modified direct-access model to the data in turn. We also present

quantitative model comparisons, which allow us to assess the relative goodness of fit

of each model to the data.

6.5 The activation-based model

The activation-based model can be implemented as a lognormal race of accumulators

(Nicenboim & Vasishth, 2018): We assume that there are two accumulators of noisy

evidence that correspond to the retrieval candidates in memory, namely the first and

the second noun phrase (NP1 or NP2, target or distractor). For each trial i, the

finishing times FT for NP1 and NP2 are each sampled from a lognormal distribution

with location µNP1 or µNP2 respectively, and scale σ. The accumulator with the

faster FTi determines both the selected picture (target or foil) and the reaction time

for trial i. This implementation maps straightforwardly onto the notion of memory

chunks with fluctuating activation values, with the chunk with the highest activation

being retrieved on a particular trial.

The hierarchical structure of the model is implemented in the µ of both accumu-

lators, which include fixed and random effects. The fixed effects added to µNP1 and

µNP2 in the model for pronoun resolution are: Group (IWA vs. control), condition

(match vs. mismatch), and the group × condition interaction. We also added the

average reaction time from the lexical decision task (LDT), and the group × LDT in-

teraction. Furthermore, we added the proportion of looks to the target at the critical

region (fixations), the fixations × group interaction, and the three-way interaction

fixations × condition × group. In addition, both µ included by-subject and by-item

varying intercepts; the fixed effect of group included an adjustment by item, and the

fixed effect of condition included an adjustment by subject. The model for relative

clause conditions also included a fixed effect for RC type, an RC type × group and an

RC × condition interaction, and the RC × group × condition three-way interaction.

The predictions of the activation-based model for the two experiments are as follows:

1. Across both constructions, an increase in fixations to the target picture

at the critical region should lead to a decrease in RT for the target accu-

mulator in the picture-selection task, as we assume that the first retrieval

influences the second retrieval. If participants retrieved the target at the
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critical region, re-accessing it at the verb should be faster and more likely.

2. The mean finishing time of the target accumulator should be faster for

the mismatch conditions relative to the match conditions. The mean of

the distractor accumulator should be similar or slower in mismatch condi-

tions relative to match conditions. That is, retrieval should be faster for

mismatch than for match conditions, as interference slows retrieval.

3. IWA should have slower RT relative to controls, so IWA’s µ should be

higher. This would be in line with the slow syntax theory. Similarly, IWA

should have a higher σ, that is, more noisy accrual of evidence, which

would be in line with intermittent deficiencies.

4. If a delay in lexical access is causing processing difficulties in IWA, we

would expect the effect of LDT to lead to a bigger increase in RT for

the target accumulator for IWA relative to controls, as higher RT for the

target accumulator would indicate more difficulty in retrieving the target.

This would be in line with delayed lexical access.

In addition, given earlier results (Adelt et al., 2017; Burchert et al., 2003), in Ex-

periment 2, IWA should have longer mean finishing times for the target accumulator

in OR compared to SR.

6.6 Modified direct-access model

We implement the modified direct-access model as a hierarchical mixture model in the

Bayesian framework, following Lissón, Pregla, et al. (2021). Mixture models integrate

multiple generative processes in one model (see Nicenboim et al., 2021, chapter 20, for

a tutorial on these models in Stan). The implementation of MDA as a mixture model

allows us to take into account the probability of backtracking as a latent variable,

and to fit RT-based measures. We assume that both correct and incorrect responses

can be generated from one of two distributions: Responses without backtracking

are generated from a given distribution with parameters µ and σ; and responses with

backtracking are generated from another distribution with parameters µ? = µ+δ and

σ, where δ is the time needed for backtracking. We begin this section by explaining

the conceptual link between our parameters and the original direct-access model,

which was originally evaluated using the speed-accuracy tradeoff paradigm (McElree,

2000, 2006).

The direct-access model assumes that the availability of items in memory deter-

mines their probability of retrieval. In our implementation, we map availability to the
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parameter θ, which is the probability of retrieval of the target. Memory availability

has been found to decrease as a function of sentence complexity (A. E. Martin &

McElree, 2011; McElree et al., 2003). Given that interference is expected to affect

availability, we add a main effect of condition to θ. Because we expect IWA to have

lower base availability compared to control participants, we also add a main effect

of group. We also add a main effect of fixations, following the same logic as for the

activation-based model: More fixations on the target at the critical region should lead

to a higher probability of retrieval of the target at the verb. In order to evaluate the

delayed lexical access theory, we include LDT as a fixed effect to θ, and the interac-

tion LDT × group. This interaction tests the delayed lexical access theory in IWA: If

longer LDT leads to a larger decrease in θ for IWA, this would suggest that delayed

lexical access lowers the probability of retrieval of the target, causing difficulties in

the retrieval process.

The original direct-access model assumes that low availability can lead to a mis-

retrieval or a failure in parsing. In a certain proportion of trials with a failed initial

retrieval, a process of backtracking (or reanalysis) is triggered, which leads to cor-

rect retrieval of the target. This process requires some extra time (A. E. Martin

& McElree, 2008; McElree et al., 2003). Our modified direct-access model assumes

that backtracking can also fail. This is reflected in the added parameter θb, which

represents the probability of correct retrieval after backtracking. The additional pa-

rameter makes the modified direct-access model more suitable for modeling data from

individuals with aphasia, as it allows for slow, incorrect responses. If IWA show a

lower θb, relative to controls, this could point towards a disruption in the process of

backtracking as a main source of comprehension difficulties in IWA. The parameter

Pb stands for the probability of backtracking and estimates the proportion of trials for

which backtracking is performed after an initial misretrieval. The parameter δ esti-

mates the amount of time (in log ms) that backtracking takes. Main effects of group

are added to the parameters θb, Pb and δ. Pb and θb additionally have by-subject

random intercepts.4

The key difference between the activation-based model and the modified-direct

model is that the latter assumes retrieval times to be unaffected by interference.

Interference can only indirectly affect response times through lower θ and the added

cost of backtracking δ. Therefore, in the µ parameter, which estimates the mean

average RT, we do not include an adjustment by condition, but we do include an

adjustment by group, since retrieval may be slowed in IWA compared to controls.

The noise parameter, σ, also has an adjustment by group, as IWA may have more

4Ideally, δ should also have a by-subject adjustment. However, this is a complex hierarchical model, and a by-
subject intercept on δ led to convergence issues.
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variable retrieval times.

The mixture process for a given trial i works as follows:

(a) if the retrieval of the target succeeds, with probability θ, RTi is drawn

from LogNormal(µ, σ).

(b) if the retrieval of the target fails (1 − θ), backtracking is initiated with

probability Pb. RTi is sampled from LogNormal(µ + δ, σ). After back-

tracking, the target is retrieved with probability θb, and the distractor

with probability 1− θb.

(c) if the retrieval of the target fails and there is no backtracking, a misretrieval

is predicted with probability (1 − θ) · (1 − Pb), and RTi is sampled from

LogNormal(µ, σ).

Notice that the probability of successful retrieval of the target, θ, and the proba-

bility of backtracking, Pb are assumed to be independent.

Correct and incorrect responses following backtracking (b), are expected to be

slower, on average, than correct retrievals (a) and misretrievals without backtracking

(c), due to the cost of backtracking δ. The RT corresponding to an initial successful

retrieval of the target (a) and to misretrievals without backtracking (c) are sampled

from the same distribution.

The predictions of the modified direct-access model for the two experiments are

explained below.

1. Fixations to the target picture at the critical region should lead to an

increase in the probability of retrieval of the target, as we assume that

first retrieval influences the second retrieval. Therefore, the estimate of

the main effect of fixations to the target on the probability of successful

retrieval θ should be positive.

2. The estimate of θ should be higher for non-interference conditions relative

to interference conditions, that is, higher in mismatch vs. match condi-

tions.

3. IWA should have slower RT relative to controls, so IWA’s µ should be

higher. This would be in line with the slow syntax theory. Similarly,

IWA should have a higher σ, which would be in line with intermittent

deficiencies.

4. If IWA’s slower access to items from memory leads to difficulties in the

retrieval, we would expect LDT to lead to a bigger decrease in θ for IWA

relative to controls. This would be in line with delayed lexical access.
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5. We expect IWA to have a lower probability of backtracking, Pb, and a lower

probability of retrieval of the target after backtracking, θb. This would be

in line with the resource reduction theory, assuming that backtracking is

a parsing resource that is impaired in IWA.

6. Similarly, we also expect IWA to have a higher cost of backtracking, δ,

which would be in line with slow syntax.

In addition, given earlier results (Adelt et al., 2017; Burchert et al., 2003) showing

that OR are more difficult to process than SR, for the relative clause construction, θ

should be lower in OR compared to SR.

We now move on to the modeling results, which will be presented separately for

pronoun resolution and relative clauses.

6.7 Modeling Results

6.7.1 Experiment 1

A graphical summary of the data in Experiment 1 is shown in Figure 6.4.

Activation-based model

In the pronoun resolution items, NP1 is always the target of the dependency. There-

fore, µNP1 accumulates evidence for the retrieval of the target, and µNP2 for the

retrieval of the distractor. Figure 6.5 shows the distribution of finishing times for

the two accumulators (NP1 and NP2) across conditions and groups. The results

confirm our predictions: IWA have longer finishing times relative to controls in both

conditions (6.5a vs. 6.5b and 6.5c vs. 6.5d). In controls, the means of the NP1 accu-

mulator in the mismatch and match conditions are quite similar (1391 ms vs. 1465

ms), although responses are faster on average in the mismatch condition, as expected.

IWA show a larger effect of interference: The mean of the NP1 accumulator in the

mismatch condition is 4532 ms, compared to 5735 ms in the match condition. The

interference effect can also be seen in the overlap of the distributions within each plot.

Whereas the distributions lie far apart from each other in controls (6.5a and 6.5c),

in IWA, the distributions overlap, especially in the mismatch condition (6.5d). This

indicates that IWA are more likely to retrieve the distractor than controls, especially

in the interference condition (match). In general, the plots show that IWA experi-

ence a bigger interference effect. This is in line with the estimates for the group ×
condition interaction (µNP1: 199 ms, CrI: [81, 322] ms and µNP2: 1424 ms, CrI: [400,

2720] ms).
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Figure 6.4: Descriptive statistics for the pronoun sub-experiment. The dots stand for the means,
and the error bars show the standard error of the means.
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With regard to the fixed effects on µNP1 and µNP2, due to space limitations, we

will only comment on the estimates that are relevant to the processing theories of

aphasia that we are evaluating. The estimates for all parameters in this model and

their credible intervals are shown in Table 6.1.
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Figure 6.5: Distribution of the accumulators of evidence across groups and conditions for the pronoun
conditions.

The NP1 accumulator showed an indication of an LDT × group interaction (836

ms, CrI: [539, 1152] ms), but no indication of such an interaction was observed for

the NP2 accumulator. This suggests that additional time needed for lexical access

leads to a larger slowdown in IWA in the target accumulator, as predicted by the

delayed lexical access theory. The estimates for fixations and the fixations × group

interaction do not point in the predicted direction: An increase in fixations on the

target picture leads to an increase in RT in both accumulators (NP1: 41 ms, CrI:

[-77, 160] ms; NP2: 518 ms, CrI: [-141, 1212] ms). However, due to large uncertainty

around the estimates, the results are also compatible with no effect of fixations.

Finally, as predicted under the intermittent deficiencies theory, IWA have higher

noise than controls (σIWA: 0.65 log ms, CrI: [0.62,0.69] log ms, σcontrols: 0.28 log ms,

CrI: [0.27,0.29] log ms).

Modified direct-access model

We begin by assessing the posterior distribution of θ, which is the probability of

retrieving the target during the first retrieval attempt. Figure 6.6 shows that the
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Table 6.1: Model estimates for the fixed effects on µNP1 and µNP2 and corresponding credible
intervals, backtransformed to ms.

Parameter Estimate 95% CrI Accumulator (µ)

Group 2006 ms CrI: [1604, 2453] ms NP1

Group -797 ms CrI: [-2459, 629] ms NP2

Condition 310 ms CrI: [193, 433] ms NP1

Condition -1478 ms CrI: [-2820, -431] ms NP2

Condition × group 199 ms CrI: [81, 322] ms NP1

Condition × group 1424 ms CrI: [400, 2720] ms NP2

LDT 836 ms [539, 1152] ms NP1

LDT 588 ms [-621, 1811] ms NP2

LDT × group 671 ms [377, 973] ms NP1

LDT × group 51 ms [-1147, 1243] ms NP2

Fixations 41 ms [-77, 160] ms NP1

Fixations 518 ms [-141, 1212] ms NP2

Fixations × group 96 ms [-23, 219] ms NP1

Fixations × group 251 ms [-430, 949] ms NP2

probability of retrieval of the target is very high for controls: The mean of the dis-

tribution lies above 95% in both conditions (CrI mismatch: [96, 98]%, CrI match:

[98, 99]%). By contrast, IWA show lower retrieval probabilities overall. This can be

also seen in Figure 6.6, where IWA’s mean estimate for mismatch is 55% CrI: [47,

62]%, whereas the estimate for match is 72% CrI: [66, 77]%. The group × condition

interaction is inconclusive (2 CrI: [-1, 5]%).

A unit increase in LDT leads to θ: -5% CrI: [-8, -1]% in θ, and a negative LDT ×
group interaction (-9% CrI: [-12, -7]%) is consistent with the assumption that IWA are

more affected by increased LDT. There was some indication of an effect of fixations

(2% [-1, 5]%), nor of a fixation × group interaction (-2% CrI: [-5, 2]%). This means

that for both groups, there is no indication that an increase in fixations to the target

picture led to an increase in the probability of successful retrieval of the target.

The estimated probability of backtracking for IWA is 22% CrI: [13, 31]% compared

to 66% CrI: [51, 79]% for controls. The distribution of the cost of backtracking, δ,

is centered around 5592 ms, CrI: [3924,7738] ms for IWA, and around 2827 ms, CrI:

[2277,3551] ms for controls. The probability of retrieval of the target after backtrack-

ing, θb, is shown in Figure 6.7. Backtracking leads to the retrieval of the target around

84% of the time for controls (CrI: [70, 94]%), and 58% of the time for IWA (CrI: [42,

73%]). Slower and less successful backtracking is consistent with slow syntax and

resource reduction in IWA.

Finally, IWA’s µ (2376 ms, CrI: [2079,2701] ms) is higher than controls’ µ (1320
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Figure 6.6: Posterior distribution of the probability of initial retrieval of the target, θ for the two
groups, in the pronoun conditions. The vertical lines stand for the means of the distributions, and
the shaded areas indicate the 95% credible interval.

ms, CrI: [1202,1447] ms); and IWA also have a larger estimate of noise (0.46 log ms,

CrI: [0.43,0.5] log ms) relative to controls (0.24 log ms, CrI: [0.23,0.25] log ms), as

predicted under the slow syntax and intermittent deficiencies theories.
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Figure 6.7: Posterior distribution of the probability of retrieval of the target after backtracking,
θb, for the two groups, in the pronoun conditions. The dashed lines stand for the means of the
distributions.
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6.7.2 Experiment 2

A graphical summary of the data in Experiment 2 is provided in Figure 6.8.

Activation-based model.

In the relative-clause items, µNP1 stands for the retrieval of NP1 as the agent of the

action, whereas µNP2 stands for the retrieval of NP2 as the agent. Depending on the

trial, NP1 (in subject relatives) or NP2 (in object relatives) will be the target of the

retrieval.

Figure 6.9 shows the distribution of finishing times of the two accumulators in

subject relative clauses. As expected, IWA have higher finishing times than con-

trols across conditions. The mean of the NP1 accumulator (target) is roughly the

same across conditions, whereas the mean of the NP2 accumulator (distractor) is

slightly higher in mismatch vs. match condition. In general, controls show almost no

overlap between the distributions, which indicates that controls retrieve the target

(NP1) most of the time. By contrast, in IWA, the two distributions partially overlap.

This suggests that in subject relatives, IWA retrieve the target more often than the

distractor; yet IWA retrieve the distractor more often than controls.

Figure 6.10 shows the distribution of finishing times of the two accumulators in ob-

ject relative clauses. IWA have higher finishing times than controls across conditions,

and both groups have slightly lower finishing times in the NP2 accumulator (target)

in mismatch vs. match conditions. Crucially, in the match condition, for IWA (right

upper panel in Figure 6.10, light dashed line) the mean of the NP1 accumulator is

lower than the mean of the NP2 accumulator. Since NP2 is the retrieval target in

object relatives, the pattern indicates that in the match condition, IWA retrieve the

distractor more often than the target. That is, in the match condition, IWA are more

likely to misinterpret the sentence than to interpret it correctly. However, in the

mismatch condition, the mean of the two accumulators overlap, which indicates that

IWA are equally likely to retrieve NP1 or NP2 on average.

Comparisons between Figure 6.9 and Figure 6.10 show that controls perform sim-

ilarly in subject and object relatives, whereas IWA display a subject-object asymme-

try: IWA are estimated to correctly interpret subject relatives most of the time. By

contrast, IWA are estimated to misinterpret object relatives more often, especially in

the match condition.

The model estimates for the fixed effects and interactions on µNP1 and µNP2 are

shown in Table 6.2. No indication of an effect was found for condition or the condition

× group interaction, but there was a RC type × condition interaction on µNP2 (631
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relative clauses. The dashed lines indicate the means of the distributions.
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Figure 6.10: Distribution of the accumulators of evidence across groups and conditions for object
relative clauses. The dashed lines indicate the means of the distributions. Note that in the mismatch
condition, for IWA, the mean of the two distributions overlap.

ms, CrI: [385, 884] ms): Interference (match) in OR lead to higher finishing times for

µNP2 relative to no-interference (mismatch). The three-way interaction RC type ×
group × condition for µNP2 (-249 ms, CrI: [-491, -10] ms) indicates that the effect of
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condition within RC is different for the two groups in the µNP2 accumulator: In the

SR trials, the difference between match and mismatch conditions is bigger for controls.

By contrast, in OR trials, the difference between match and mismatch conditions is

bigger for IWA. Since the NP2 accumulator wins in half of the OR mismatch trials on

average (see Figure 6.10), the number mismatch helps IWA to interpret OR correctly

in about half of the OR mismatch trials.

Table 6.2: Model estimates for the fixed effects on µNP1 and µNP2 and corresponding credible
intervals, backtransformed to ms.

Parameter Estimate 95% CrI Accumulator (µ)

Group 2348 ms [1687, 3055] ms NP1

Group 4057 ms [3279, 4916] ms NP2

RC type 2417 ms [2076, 2807] ms NP1

RC type -1897 ms [-2372, -1459] ms NP2

Condition -68 ms [-262, 122] ms NP1

Condition -228 ms [-506, 40] ms NP2

Condition × group -37 ms [-224, 153] ms NP1

Condition × group 86 ms [-180, 355] ms NP2

RC type × group -1670 ms [-2019, -1366] ms NP1

RC type × group 1847 ms [1443, 2293] ms NP2

Condition × RC type -150 ms [-323, 19] ms NP1

Condition × RC type 631 ms [385, 884] ms NP2

Condition × RC type × group 103 ms [-68, 276] ms NP1

Condition × RC type × group -249 ms [-491, -10] ms NP2

LDT 779 ms [243, 1337] ms NP1

LDT 812 ms [252, 1398] ms NP2

LDT × group -50 ms [-594, 496] ms NP1

LDT × group -460 ms [-1045, 121] ms NP2

LDT × RC type -5 ms [-258, 255] ms NP1

LDT × RC type 19 ms [-347, 385] ms NP2

LDT × RC type × group 5 ms [-251, 262] ms NP1

LDT × RC type × group 291 ms [-72, 677] ms NP2

Fixations -37 ms [-205, 130] ms NP1

Fixations 289 ms [61, 521] ms NP2

Fixations × group -46 ms [-211, 118] ms NP1

Fixations × group 57 ms [-173, 285] ms NP2

Fixations × RC type 69 ms [-97, 235] ms NP1

Fixations × RC type -27 ms [-248, 204] ms NP2

Fixations × RC type × group 75 ms [-96, 244] ms NP1

Fixations × RC type × group -111 ms [-341, 112] ms NP2

There was no indication of an LDT × group interaction, a LDT × condition inter-

action, or a LDT × condition × group interaction. There was an effect of fixations on
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µNP2 (289 ms, CrI: [61, 521] ms). This main effect is uninformative, given that NP2

was the retrieval target in OR but not in SR. There was no indication of a fixations

× condition interaction or a fixations × group × condition interaction, so that the

role of fixations remains inconclusive. Finally, as predicted, IWA have higher noise

than controls (σIWA 0.55 log ms, CrI: [0.53, 0.57 log ms], σcontrols 0.31 log ms, CrI:

[0.3, 0.32 log ms]).

Modified direct-access model

The posterior distributions of θ, the probability of initial retrieval of the target, by

group and condition are displayed in Figure 6.11. While controls have a slightly lower

θ in OR relative to SR in the match conditions, both SR and OR have a similar θ in

mismatch conditions, around 95%. This indicates that the number mismatch facili-

tates the retrieval of the target, especially in OR. The number mismatch also benefits

IWA on average, but IWA exhibit a stronger subject-object asymmetry, irrespective

of the number manipulation, with higher θ in SR relative to OR for both match and

mismatch conditions.

The estimates of the model confirm what Figure 6.11 shows. The effect of condition

(-10% CrI: [-13, -6]%) suggests that match conditions elicit a lower θ across the board,

but a condition × group interaction (7% CrI: [3, 10]%) suggests that the effect of

match is stronger for controls than for IWA. There was no indication of a RC type

× condition interaction (-1% CrI: [-5, 2]%), nor of a RC type × condition × group

interaction (1% CrI: [-3, 4]%). The effect of RC type (-13%, CrI: [-18, -9]%) and

the RC type × group interaction (-7%, CrI: [-12, -3]%) indicate that object relatives

are more difficult to process than subject relatives, and more so for IWA than for

controls.

There was no indication of an effect of LDT on θ (-3%, CrI: [-8, 2]%), nor of a

group × LDT interaction (3%, CrI: [-2, 8]%). A unit increase in fixations led to -2%,

CrI: [-5, 1]%) on θ, and the interaction group × fixations 4%, CrI: [1, 7]%) suggests

that the effect of fixations is different for IWA and control participants: In IWA, an

increase in fixations of looks to the target leads to a higher θ.

The estimated probability of backtracking given an initial incorrect retrieval is 35%

CrI: [20, 50]% for IWA, whereas for controls it is 87% CrI: [83, 91]%. The posterior

distribution of θb is shown in Figure 6.12: After backtracking, IWA retrieve the target

about half of the time. By contrast, controls retrieve the target more than 80% of

the time. In addition, IWA are estimated to need 3457 ms, CrI: [2425,4659] ms for

backtracking, whereas controls need 1829 ms, CrI: [1637,2032] ms.

Finally, as predicted, µ is higher for IWA (3744 ms, CrI: [3304,4234] ms) than for
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Figure 6.11: Posterior distribution of the probability of retrieval of the target (θ) across groups and
conditions in relative clauses. The vertical lines stand for the means of the distributions, and the
shaded areas represent the 95% credible interval.
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Figure 6.12: Posterior distribution of the probability of retrieval of the target after backtracking (θb)
across groups in the relative clauses experiment.
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controls (1613 ms, CrI: [1492,1736] ms), and σ is also higher for IWA (0.41 log ms,

CrI: [0.38 log ms, 0.44 log ms]) than for controls (0.24 log ms, CrI: [0.23 log ms, 0.24

log ms]).

6.8 Discussion

In the two models, the location and scale parameters of the log-normal distribution

from which RT are sampled (µ and σ) were consistently higher for IWA than for

controls. We linked these parameters to the slow syntax and intermittent deficiencies,

respectively. Both models thus seem to be generally in line with these two theories of

processing deficits in aphasia. We will now discuss the implications for the remaining

theories within each model.

We hypothesized that the accumulators in the activation-based model should re-

flect the interference effect predicted by cue-based retrieval theory; namely, lower

mean finishing times for the target accumulator, and/or higher mean finishing time

for the distractor accumulator in the mismatch conditions compared to the match

conditions. The accumulators show this pattern across the two experiments. In ad-

dition, in Experiment 2, the distribution of the accumulators across relative clause

types show that IWA experience a subject-object asymmetry, i.e., IWA have more

difficulties processing object relatives.

The conclusions for the rest of our predictions are more complex, since the results

differ across the two experiments. For instance, a group × LDT interaction was

found for the target accumulator in pronoun resolution. This interaction indicates

that slower lexical access leads to increased processing difficulty for IWA, as predicted

by the ¡delayed lexical access theory. However, there was no indication of such an

interaction in relative clauses. We therefore conclude that more research is needed

in order to establish the role of delayed lexical access in the activation-based model.

Speculatively, it could be that a retrieval triggered by a pronoun is more strongly

affected by delayed lexical access than one triggered by a verb: Our pronouns were

directly coreferential with a previous noun phrase (Peter . . . er), while the association

between a verb and its arguments is more indirect.

The effect of looks to the target at the critical region also remains inconclusive.

No effect of fixations was found in pronoun resolution. In relative clauses, an effect

of fixations was found for the NP2 accumulator, but no indication of an interaction

between fixations and RC type was found. Given that NP2 was the retrieval target

in OR but not in SR, the main effect of fixations is uninformative.
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6.8.1 Modified direct-access model

We expected a lower probability θ of retrieval for the target in the match versus mis-

match conditions. The data from both experiments are in line with this prediction.

In addition, in Experiment 2, IWA show a large effect of relative clause type, irre-

spective of the condition: IWA have more difficulties understanding object relatives

compared to subject relatives. This subject-object asymmetry is broadly in line with

the accuracies in Adelt et al. (2017), although Adelt et al. (2017) found this pattern

in both IWA and controls.

According to the delayed lexical access theory, IWA should be more affected by

delays in lexical access, as measured by a lexical decision task. The observed group

× LDT interaction lends some support to this theory in the pronoun resolution sub-

experiment, but not in relative clauses. Therefore, the effect of delayed lexical access

in DA remains inconclusive. The effect of fixations is also inconclusive: Although in

relative clauses there is some indication that fixations at the critical region may lead

to a increase in the probability of retrieving the target for IWA, no effect of fixations

was found in pronoun resolution.

Finally, the probability of backtracking is consistently lower for IWA than for

controls, as is the probability of retrieval of the target after backtracking (θb). This

pattern is expected under the resource reduction theory. In addition, the average cost

of backtracking, δ, is twice as high for IWA compared to controls in both experiments.

This adds support for the slow syntax theory.

6.9 Model comparisons

The activation-based model and the modified direct-access model make different as-

sumptions about the retrieval mechanism, and thus the generative process behind the

observed data. Within the framework of each model’s assumptions, conclusions can

be drawn about plausible underlying deficits. However, one crucial question remains

open: Which model fits the data better overall? In order to answer this question,

we performed 10-fold cross-validation (Vehtari et al., 2017; see also Nicenboim et al.

(2021), chapter 17, for a tutorial on carrying-out cross-validation for Bayesian models

such as the ones discussed here). This is a standard procedure in machine learning

for quantifying the relative goodness of fit of two or more models. Importantly, cross-

validation can also be applied when the models assume different generative processes,

as is the case with the activation-based and the modified direct-access models.

The procedure for 10-fold cross-validation is as follows: The data are partitioned



132 CHAPTER 6. SIMILARITY-BASED INTERFERENCE IN SENTENCE COMPREHENSION IN APHASIA

Table 6.3: Differences in ‘elpd between the two models and their corresponding SE. Positive differ-
ences indicate an advantage for the activation-based model, whereas negative differences indicate an
advantage for the modified direct-access model.

Model ’δelpd SE

Pronoun resolution -109 133

Relative clauses 403 167

into 10 balanced subsets containing about the same amount of data per subject.5

One of the 10 subsets is held out, and the model is fit to the remaining subsets.

The posterior distributions from the resulting model are used to compute predictive

accuracy on the held-out subset. This is repeated 10 times, so that all subsets are

covered. The expected log pointwise predictive density, ‘elpd, is then calculated as

a measure of predictive accuracy. ‘elpd is the summed log-likelihood of all observed,

held-out data points under each model. Models are compared by computing the

difference in ‘elpd, (÷∆elpd), with higher ‘elpd indicating better predictive fit. Because‘elpd is an estimate, the difference in ‘elpd between two models has an associated

standard error, which has the standard frequentist interpretation: ÷∆elpd ± 2 × SE

gives a 95% confidence interval. If the difference in‘elpd between the models is greater

than 2× SE, we conclude that there are grounds to assume that the model with the

higher ‘elpd provides the better fit for the given data.

The results of the cross-validation are shown in Table 6.3. In pronoun resolution,

the MDA model has a predictive advantage, but since the SE of ÷∆elpd is large, the

result is not conclusive. In relative clauses, the activation-based model has a clear

advantage over MDA. In order to find out which group and/or condition is driving

the advantage, we can compute ÷∆elpd separately for each group and each condition.

The results are shown in Figure 6.13. It appears that the advantage of the activation-

based model over MDA mostly comes from fitting the data of control participants,

especially in the OR, mismatch conditions (÷∆elpd 163, SE 66).

We also evaluated the predictive performance of the original direct-access model,

i.e., a model in which backtracking can only lead to the retrieval of the target. The÷∆elpd between the original direct-access model and the modified direct-access model

is -41, SE 134 for pronoun resolution; and -175, SE 166 for relative clauses. The

negative ÷∆elpd estimates indicate that the modified direct-access model may have a

better predictive performance, but given the large SE, the ÷∆elpd are inconclusive.

When comparing the activation-based model with the original direct-access model,

5Given that our dataset contains data from two experimental sessions (test and retest), an alternative way to
perform cross-validation would be to train the models on the test data and to use the retest data to compute predictive
accuracy. However, we chose to use the pooled data from each of the two experiments, in order to maximize the amount
of data, especially for IWA.
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Figure 6.13: Graphical representation of the ÷∆elpd between the activation-based and the modified

direct-access model across groups and conditions. The dot stands for the÷∆elpd and the bars indicate
to the 95% confidence interval. Positive values indicate an advantage for the activation-based model,
and negative values indicate an advantage for the modified direct-access model.

the difference is not conclusive in the pronoun experiment (÷∆elpd -68, SE 140), but

in relative clauses, the activation-based model performs better (÷∆elpd 578, SE 173).

Thus, in relative clauses, the activation-based model outperforms both the original

and the modified-direct access model.

6.10 General discussion

This is the first-ever computational investigation of competing models of similarity-

based interference in German language comprehension in individuals with aphasia

and unimpaired controls. We investigated interference in two linguistic constructions,

namely pronoun resolution and relative clauses. Two models of cue-based retrieval

were implemented in a Bayesian framework: The activation-based model of Lewis and

Vasishth (2005) and a modified version of the direct-access model of McElree (2000, as

implemented in Nicenboim and Vasishth, 2018). The activation-based model assumes

a direct connection between retrieval latency and retrieval probability for memory

items, whereas the modified direct-access model assumes a constant retrieval latency,

along with a costly backtracking mechanism if retrieval fails. In the original direct-

access model, backtracking leads to the correct retrieval of the target item from

memory (McElree, 1993). In our modified direct-access model, backtracking can

fail, leading to a costly misretrieval. We argue that this is a more suitable model for
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individuals with aphasia, as it can account for slow incorrect responses, a pattern that

is frequently found in the aphasia literature (Adelt et al., 2017; Hanne et al., 2015;

Lissón, Pregla, et al., 2021; Pregla, Lissón, et al., 2021). The predictive performance

of the two models was compared against data from a visual-world experiment (Pregla,

Lissón, et al., 2021), using the reaction time and accuracy in the picture selection task

as dependent variables. Looks to the target at the critical sentence region, where

retrieval is assumed to occur, were used as a predictor, along with the mean reaction

times from a lexical decision task. We linked the parameters of each computational

model to prominent theories of processing deficits in aphasia, aiming to answer two

main questions: (a) Which model is better able to fit the data from IWA and control

participants across the two experiments? and (b) What do the parameters in each

model tell about the processing deficits and about interference in IWA? We will now

discuss the answers to these questions, as well as the relation of our results to prior

work in computational modeling of processing deficits in aphasia.

First, both models of retrieval perform well across the two linguistic constructions

tested. The activation-based model outperforms the modified direct-access model in

the relative clauses experiment, mainly because it provides a better predictive fit for

the data from control participants. However, both models perform similarly at fitting

data from IWA. In pronoun resolution, the two models show similar predictive fit

across groups and across conditions.

Second, with regards to the underlying processing deficits in aphasia, both models

are in line with slow syntax (Burkhardt et al., 2008; Burkhardt et al., 2003) and

intermittent deficiencies (Caplan et al., 2013). Resource reduction (Caplan, 2012;

Caplan et al., 2007), as implemented here, can only be evaluated with respect to the

modified direct-access model, and the results show that the model is in line with this

deficit. There was no strong indication in our data, across the two experiments and for

both both models, that delayed lexical access (Ferrill et al., 2012; Love et al., 2008) is

a source of processing deficits in IWA: The predicted relationship between individual

lexical decision latency and participant group was not found in all conditions. More

experiments are needed in order to explore the role of this deficit.

Regarding the effect of similarity-based interference, based on the results for both

models, we can conclude that in pronoun resolution, IWA are more sensitive to gen-

der interference than control participants. In relative clauses, the effect of number

interference is rather small for both groups. The models suggest that IWA experi-

ence a subject-object asymmetry, whereas control participants do not. Below, we

discuss some possible explanations of the subject-object asymmetry in IWA and the

comparatively small effect of number mismatch in relative clauses.
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6.10.1 Subject-object asymmetry

The subject-object asymmetry in relative clauses in IWA is in line with the canon-

icity effects reported in several German studies with IWA (e.g., Adelt et al., 2017;

Burchert & De Bleser, 2004; Burchert et al., 2003; Hanne et al., 2011; Pregla, Lissón,

et al., 2021). Canonicity effects refer to the fact that sentences with a non-canonical

order (e.g., object-subject-verb in German) are more difficult to process than sen-

tences with a canonical order. Canonicity effects could be orthogonal to the memory

retrieval process, and could be caused by frequency, as canonical sentences are more

frequent than non-canonical ones. However, neither the activation-based model, nor

the (modified) direct-access model can account for frequency effects in sentence struc-

tures. An interesting test for both models would be to implement frequency structure

effects and to test the models’ predictions against data from IWA.

In contrast to English, where subject and object relative clauses are distinguished

by word order, successful comprehension of German case-unambiguous relative clauses

requires comprehenders to use grammatical case as a cue to correctly identify the

agent and the theme of the verb; both in subject and in object relatives. Given that

controls’ performance was at ceiling in both relative clause types (see Figure 6.14),

we conclude that controls were able to use case-marking cues accurately. This is

consistent with the the results in the ERP study by Friederici et al. (1998). Our data

also shows that IWA have difficulties understanding relative clauses, especially object

relatives. These results are in line with previous studies testing the comprehension

of subject vs. object relatives in German in IWA (Adelt et al., 2017; Burchert et al.,

2003). However, cue-based retrieval cannot explain this subject-object asymmetry:

Both in subject and in object relative clauses, the verb is clause-final and two NPs have

to be retrieved, one that is adjacent to the verb and one that is not. Consequently,

cue-based retrieval would predict no processing difference between subject and and

object relatives in German. It is thus not clear why processing object relatives in

German should be more difficult from a purely retrieval-based point of view. One

way to explain the subject-object asymmetry would be to assume that IWA have

difficulties deploying case features in relative clauses.

One possible explanation for the subject-object asymmetry in IWA is that IWA

may be more sensitive to case attraction. Case attraction is based on the well-

known phenomenon of number attraction and the feature percolation account (e.g.,

Eberhard, 1997; Nicol, Forster, & Veres, 1997). In relative clauses, case attraction

posits that processing is facilitated when a pronoun and its antecedent have the same

case (Bader & Meng, 1999). If the head noun and the relativizer mismatch in case, the

case feature of the head noun could percolate down to the head noun, overriding its
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Figure 6.14: Descriptive statistics for the relative clauses experiment. The dots stand for the means,
and the error bars show the standard error of the means.

original case, and creating a misinterpretation. Once the verb is reached, at the end of

the sentence, and the subject needs to be retrieved, the misinterpretation in the case

feature of the relativizer could lead to a costly reanalysis process. Bader and Meng

(1999) and Bader, Meng, and Bayer (2000) claim that case attraction occurs with

dative-marked pronouns. In their account, the feature [+dative] percolates upwards

to the head noun. Czypionka, Dörre, and Bayer (2018) refer to this configuration

as inverse case attraction. Other studies testing unimpaired populations in German

have shown that case attraction can also happen with nominative/accusative cases,

and that feature percolation can also happen downwards, from the head noun to the

relativizer (Logačev and Vasishth, 2012, experiment 2; Schlesewsky, 1996, reported

as experiment 1 in Fanselow, Schlesewsky, Cavar, and Kliegl, 1999). However, these

studies tested complex center-embedded relative clauses that are very different from

our items.

In our data, assuming that IWA have a larger effect of case attraction could explain

the subject-object asymmetry. Consider again sentence (21b), repeated here as (22).

In relative clauses with masculine head nouns, such as in our items, the case attraction

theory would predict that subject relatives are easier to process because both the head

noun and the relativizer have the [+nominative] feature.



6.10. GENERAL DISCUSSION 137

(22) Hier ist [der Esel]+nom+sing ,

+nom

��
den+acc

+sing [der Tiger]+nom+sing gerade badetnomsing .

Here is thenom donkey whoacc thenom tiger now bathes.

‘Here is the donkey who the tiger bathes.’

The first noun phrase, der Esel, has the features [+nominative, +singular]. The

relativizer, den, has the features [+accusative, +singular]. However, due to case at-

traction, the relativizer could end up encoded in memory with features [+nominative,

+singular]. The second noun phrase, der Tiger, also has features [+nominative, +sin-

gular]. At the verb badet (bathes), when the retrieval of the subject is triggered with

cues [nominative, singular], both noun phrases would share the retrieval cues [+nomi-

native, +singular]. In both the activation-based and the modified direct-access model,

this configuration would lead to misretrievals of the distractor. In the modified direct-

access model, after this initial misretrieval, in a certain proportion of the trials, IWA

could initiate a backtracking process, which would fail more than half of the time (as

estimated by θb). Therefore, in combination with a cue-based retrieval mechanism, in

IWA, case attraction would predict more misretrievals and slower processing times in

object relatives compared to subject relatives. Control participants may experience

case attraction less often than IWA, and if an initial misretrieval occurs, they can

backtrack and correctly retrieve the target with a very high probability. Thus, case

attraction could also explain the pattern in the data of control participants, which

show slightly lower accuracies and slightly higher RT in object compared to subject

relatives, as shown in Figure 6.14. The role of feature percolation in the activation-

based model has been recently investigated by Yadav, Smith, and Vasishth (2021).

Their results support the view that in unimpaired populations, feature percolation

feeds retrieval processes, suggesting that a hybrid model may explain similarity-based

interference better. It remains to be seen whether such hybrid model would provide

a better fit for data from individuals with aphasia.

Alternatively, the subject-object asymmetry could also be explained by the noisy

channel or rational inference account of sentence comprehension (Gibson, Bergen,

& Piantadosi, 2013). This account claims that sentence comprehension involves a

Bayesian computation of the probabilities of possible intended sentences given a per-

ceived sentence that may have undergone distortions, for instance because of noise in

the processing system. The impairments in IWA are assumed to increase the likeli-

hood of sentence distortions due to an increased amount of noise (Gibson, Sandberg,

Fedorenko, Bergen, & Kiran, 2016; Warren, Dickey, & Liburd, 2017), which could

lead IWA to rely more on their prior probability of a sentence interpretation. Prior
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sentence expectations are based on construction frequency and world knowledge. Es-

sentially, because the incoming perceptual data are noisy, IWA are predicted to use the

prior to infer that the speaker probably intended the more frequent subject-relative

structure.

6.10.2 Number mismatch

The results of the models show that for IWA, the presence of two candidate NPs

with distinctive number features is of limited use in both subject and object relatives

with regard to successful comprehension (see also the descriptive statistics for relative

clauses, split by condition, in Appendix 6.8). The MDA model estimates no effect

of number mismatch for IWA. Although the activation-based model estimates that

number mismatch between the NPs slightly increases the probability of retrieving the

target in object relatives, the target is only retrieved about half the time in these

conditions. It thus seems that for IWA, the effect of RC type is greater than the

effect of number interference.

One possible explanation for the differential effects of number marking and RC

type is that IWA may not weight case and number cues equally. The cue-weighting

proposal, implemented by Engelmann (2016) in the framework of the LV05 model,

claims that depending on the linguistic structure, some retrieval cues may be weighted

higher than others (see also Engelmann et al., 2019; Vasishth et al., 2019). This

assumption is motivated by research in individual differences in the memory litera-

ture, which has shows that some individuals learn to use certain retrieval cues more

efficiently than others (e.g., Danker, Fincham, & Anderson, 2011). In sentence pro-

cessing, it has been argued that structural and non-structural cues could be weighted

differently (e.g., Cunnings & Sturt, 2014; Dillon et al., 2013; Parker & Phillips, 2017).

Differences in cue weighting could be integrated in both the activation-based and the

direct-access model, as both models rely on retrieval cues. Speculatively, it could be

that IWA weight case and number cues differently, and that the retrieval in relative

clauses is mostly guided by case cues. Studies investigating processing of number and

case in IWA in German provide mixed results. For instance, Hanne et al. (2015) inves-

tigated IWA’s use of case and number cues to interpret semantically reversible SVO

vs. OVS sentences in German. Their data indicate that processing of case marking

may be more impaired than processing of number marking. This contrasts with the

results in Adelt, Burchert, Adani, and Nicole (2020), who tested case-unambiguous

vs. case-ambiguous, number-disambiguated object relatives. The authors found that

IWA have a general processing advantage in the case-unambiguous conditions. The

study of Adelt et al. (2020) supports the idea that IWA may rely more on case cues
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than in number cues in relative clauses. However, neither Adelt et al. (2020), nor

Hanne et al. (2015) included both case and number cues within the same items. By

contrast, our modeling shows that when both case and number cues are needed to

interpret a sentence, in IWA, the effect of case overrides the effect of number.

Recently, a Bayesian version of the Lewis and Vasishth (2005) model has been

developed that includes an estimation of cue-weighting at the individual level (Ya-

dav, Paape, Smith, Dillon, & Vasishth, 2021). An interesting future direction would

be to investigate whether differences in cue-weighting between individual IWA and

control participants could account for our relative clause data. Similarly, it would be

interesting to develop a hybrid model that accounts for both case attraction and cue

weighting, along the lines of the work by Yadav, Smith, and Vasishth (2021).

6.10.3 Comparison with previous work

In Chapter 4, we investigated English relative clause processing in IWA vs controls

using a large-scale dataset from Caplan et al. (2015). We found an agent-first bias

for control participants in English: In non-canonical clauses, such as object relatives,

unimpaired controls tend to initially assign the agent role to the first noun phrase in

the sentence, which is incorrect in object relatives. By contrast, IWA do not show

an agent-first bias. The agent-first bias in unimpaired controls has been attested

in visual-world studies in both English (Mack et al., 2016, passives) and German

(Hanne et al., 2015, OVS sentences; Hanne et al., 2015, object relatives). In these

studies, control participants initially show increased looks to the foil picture in non-

canonical sentences, and as soon as they hear the relevant morphological cues (e.g., the

relativizer in unambiguous German relative clauses), they start looking at the target

picture. In Chapter 4, where self-paced listening data was modeled, this processing

bias was reflected in the estimates for the direct-access model. Controls had a lower

probability of initial correct retrieval than IWA in object relatives (controls 40%,

IWA 50%). That is, controls were estimated to initially retrieve more often the

distractor than the target in object relatives. The model could still account for the

higher accuracy of controls by assuming a high probability of backtracking for controls

(80%) relative to IWA (20%). This pattern supported the notion that controls initially

processed the first noun phrase in object relatives as the agent, until they revised and

corrected their interpretation by backtracking. Surprisingly, in the present modeling

of the German data, we do not see such an agent-first bias. In the present study,

controls did not have a lower θ relative to IWA, and controls’ θ was always above

90% for all conditions. One possibility is that in the data in the present chapter, the

RT at the end of the sentence do not reflect the agent-first bias, given that the initial
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interpretation has already been revised at this point.

With respect to model comparisons, Chapter 4 found that the activation-based

model had a predictive advantage over the original direct-access model, although the

difference was not decisive, given the large SE of the ’δelpd. In the present study, we

show that in relative clauses in German, the activation-based model furnishes a better

fit than both the original and the modified direct-access model. Our results contrast

with Nicenboim and Vasishth (2018), who compared the predictive performance of the

activation-based model and the original direct-access model using self-paced reading

data from unimpaired controls in German (Nicenboim et al., 2018). Nicenboim and

Vasishth (2018) found that the original direct-access model provided a better fit to

their data. However, the data modeled in Nicenboim et al. (2018) differ from our data

in one important aspect: In correct trials (i.e., trials with correct responses to the

comprehension question), RT were on average higher than the RT in incorrect trials.

This pattern in Nicenboim’s data is crucial, because higher RT for correct responses

is what the original direct-access model assumes. Consequently, the advantage in

predictive performance of the original direct-access model vs. the activation-based

model came from the slow, correct responses. By contrast, our data shows the oppo-

site pattern. Correct responses are, on average, slower than incorrect ones, especially

for IWA. Although in the present paper we have implemented a modified direct-access

model that can account for slow incorrect responses, the cross-validation shows that

the activation-based model outperforms both the original and the modified-direct

access model in relative clauses in German.

Overall, our results are in line with previous modeling work in sentence compre-

hension in aphasia using the activation-based model (Lissón et al., 2021; Mätzig et al.,

2018; Patil et al., 2016). If we assume that sentence comprehension is mediated by

an activation-based model of cue-based retrieval, the performance of IWA can be ex-

plained by a combination of processing deficits, namely slow syntax and intermittent

deficiencies.

6.10.4 Limitations and future directions

One important limitation of this work is the amount of data used for computational

modeling. The data that we modeled in this paper (Pregla, Lissón, et al., 2021) is

the largest-ever compilation of online measures for IWA in German. Nevertheless,

the size of the IWA group (21 subjects) remains relatively small when compared to

the number of subjects tested in typical eye-tracking experiments with unimpaired

participants. Unfortunately, collecting online data from impaired populations is ex-

tremely difficult, which is why most studies in the aphasia literature have a smaller
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number of participants. Usually, online experiments have 3 to 12 IWA and 10 to 20

control participants (e.g., Adelt et al., 2017; Burchert & De Bleser, 2004; Burkhardt

et al., 2003; Choy & Thompson, 2010; Dickey & Thompson, 2009; Engel et al., 2018;

Hanne et al., 2015; Hanne et al., 2011; Love et al., 2008; Mack, Ji, & Thompson,

2013; Mack et al., 2016). An exception is the data presented in Caplan et al. (2013,

2015), with more than 50 IWA, although it does not include eye-tracking data.

The activation-based model outperforms the modified direct-access model in rel-

ative clauses, but both models perform similarly in pronoun resolution. We believe

that the inability to find a clear answer in pronoun resolution has to do with the in-

herent limitations of the sample size, both in terms of subjects and items. Crucially,

the relative clause experiment tested 40 items per subject (10 items per condition,

4 conditions), whereas the pronoun resolution tested 20 items per subject (10 items

per condition, 2 conditions). Future work comparing these models will require much

more data in order to distinguish between the models.

We have reported the most complex hierarchical structure that yielded converg-

ing fits, but in order to account for individual differences, an even more complex

hierarchical structure would be necessary. This is especially true for the modified

direct-access model, where an individual adjustment for the effect of δ would help in

understanding the variability in the process of backtracking. The same holds for both

models regarding the effect of fixations. In addition, this work focuses on average,

group-level effects. While the comparisons between groups yield an estimate of the

average performance, it has been shown that IWA have large within and between-

subject variability (Mätzig et al., 2018; Patil et al., 2016; Pregla, Lissón, et al.,

2021). A future direction is to develop an individual-level modeling approach, in

which parameters are estimated for each subject, in a similar vein to the modeling

work in Mätzig et al. (2018) for offline data. Recent modeling work shows that under

the cue-based retrieval, even among unimpaired participants, individual differences

can modulate interference effects (Yadav, Paape, et al., 2021). Therefore, obtaining

individual parameter estimates for IWA would be more informative regarding both

interference effects, and the extent to which each processing deficit plays a role for

each IWA.

A second limitation of this work concerns the implementation of the models. In

order to compare the two competing models in a common architecture, we imple-

mented simplified versions that focus on a single retrieval event. However, in order

to account for sentence processing deficits in IWA across the whole trial, the models

should include a parser. The original Lisp implementation of the activation-based

model in ACT-R (Anderson et al., 2004; Lewis & Vasishth, 2005) includes a left-
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corner parsing algorithm that could conceivably be added to our model. However, as

far as we are aware, there exists no computational implementation of a parser in the

(modified) direct-access model. A future direction would be to incorporate a parser

into the (modified) direct-access model, and to fit Bayesian versions of both models

that account for individual parsing steps. This is especially challenging because it

requires finding a common architecture that supports a parsing algorithm for both

models, so that model comparisons can be performed.

Finally, another limitation concerns the use of looks to the target at the critical

region as an index of retrieval. An analysis of eye fixation patterns across the entire

trial would possibly be more informative regarding the time-course of interference

during sentence processing. This is especially true for relative clauses, where our

results show that higher fixations to the target at the critical region do not lead to

faster reaction times in the picture selection task. Specific modeling techniques for

visual-world-data could be considered, such as growth curve analysis (Mirman, 2017)

or divergence point analysis (Stone, Lago, & Schad, 2020). Integrating these analyses

with our computational modeling approach may be possible, and may yield important

insights into the differences between IWA and controls over the course of the trial.

6.11 Conclusion

We conducted the first large-scale evaluation of two computational models of sen-

tence processing in individuals with aphasia (IWA) in German. Our study tested two

competing models of cue-based retrieval – the activation-based model and a modified

version of the direct-access model – against online and offline data from IWA and con-

trol participants. The data came from a visual-world eye-tracking experiment with a

picture selection task. Similarity-based interference was manipulated in two linguistic

constructions, namely pronoun resolution and relative clauses. Reaction times from

the picture selection task were modeled as a function of interference, group (IWA

versus control), lexical access speed, and fixations to the target picture at the critical

region of the sentence. The results show that in pronoun resolution, IWA experience

greater gender interference effects relative to control participants. In relative clauses,

the data suggests that IWA exhibit a subject-object asymmetry, whereas controls

process subject and object relatives similarly. The effect of number interference in

IWA seems to be overridden by the subject-object asymmetry, suggesting that in

relative clauses, IWA may rely more strongly on case cues compared to number cues.

The parameter estimates from both implemented models are in line with the slow

syntax and the intermittent deficiencies accounts. In addition, the parameters of



6.11. CONCLUSION 143

the modified direct-access model are also in line with the resource reduction theory.

The cross-validation results show that while both models have a similar quantitative

performance for the pronoun structures, the activation-based model outperforms the

modified direct-access model in relative clauses.



Chapter 7

Conclusions

This dissertation had two main goals. The first goal was to computationally inves-

tigate the source of processing deficits in sentence comprehension in aphasia. The

second goal was to compare the performance of two competing models of cue-based

retrieval in impaired and unimpaired sentence comprehension.

Two models of cue-based retrieval have been implemented in the Bayesian frame-

work. These models build on the original implementations by Nicenboim and Vasishth

(2018). A series of prominent theories of processing deficits, from the aphasia litera-

ture, have been mapped onto the different parameters of the models. The theories of

processing deficits that have been investigated here (detailed in Chapter 2), include

delayed lexical access (Ferrill et al., 2012), slow syntax (Burkhardt et al., 2003), re-

source reduction (Caplan, 2012), and intermittent deficiencies (Caplan et al., 2007).

Chapter 4 shows that both models of cue-based retrieval perform similarly at

predicting the performance of IWA and controls in self-paced listening data from

English relative clauses. However, the activation-based model had a slight advantage

in predictive performance, because the direct-access model could not account for

the incorrect, slow responses from IWA. In the activation-based model, the most

likely sources of processing deficits are slow syntax and/or delayed lexical access, and

intermittent deficiencies. In the direct-access model, all of the previous deficits plus

resource reduction could be playing a role. This chapter reveals that both models can

account for data from IWA and control participants, although the direct-access model

has some limitations. This chapter confirms the conclusions in previous computational

work in aphasia: IWA experience a combination of several processing deficits that

cause sentence comprehension difficulties (Mätzig et al., 2018; Patil et al., 2016).

In Chapter 5, a modified version of the direct-access model has been developed.

The implementation of this augmented model addresses the major caveat that Chap-

ter 4 had revealed; namely, that the original direct-access model cannot account for
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slow incorrect trials. The original and the modified models were compared using self-

paced listening data from items testing the comprehension of control structures in

German. Although the generative process of the modified direct-access model allows

for slow incorrect responses, model comparisons using Bayes factors resulted incon-

clusive. Both the original and the modified direct-access model presented a similar

fit to the data tested. The results of both models are in line with delayed lexical ac-

cess, slow syntax, intermittent deficiencies, and resource reduction. In addition, the

results revealed that IWA experience a more pronounced object-subject asymmetry

in control structures, relative to control participants.

Chapter 6 compared the activation-based model against the modified direct-access

model developed in chapter 5. The data modeled in this chapter, which came from

a visual-world experiment, contain two linguistic constructions in German: Pronoun

resolution and relative clauses. Reaction times and accuracies at the picture selection

task were modeled, and the proportions of looks to the target were taken as a predictor

in the models. This chapter shows that the activation-based model outperforms both

the original and the modified direct-access models in relative clauses. In pronoun

resolution, the three models have a similar performance. Importantly, the relative

clauses data modeled in this chapter contain double amount of items (20) compared

to the data modelled in previous chapters. This indicates that data sparsity may be

the reason behind the inconclusive results in the previous chapters.

Taking together the conclusions from the three modeling chapters, our results

suggest that (a) an activation-based mechanism of cue-based retrieval may underlie

sentence comprehension in individuals with aphasia and unimpaired controls; (b)

within this activation-based mechanism, two processing deficits play an important

role: Slow syntax, and intermittent deficiencies. In other words, a generally slower

accrual of activation, and noise in the parsing system are the best way in which an

activation-based model can account for data from IWA. The role of delayed lexical

access remains inconclusive, and more studies are needed in order to understand the

extent to which this deficit may also play a role in an activation-based mechanism of

cue-based retrieval.

With regards to the (modified) direct-access model, more research is needed, es-

pecially with a larger sample size, in order to better understand the behavior of the

model. Our results suggest that the activation-based model outperforms the direct-

access model, but it remains to be seen whether this could change with a larger

sample size. Although model comparisons between the original and the modified

direct-access model are inconclusive, we argue that the modified direct-access model

should be taken as the default model for IWA, based on theoretical grounds. How-



146 CHAPTER 7. CONCLUSIONS

ever, the risk of using this model with sparse data is that the model may end up being

over-parametrized. The modified direct-access model is even more complex than the

direct-access model because it contains one more latent variable (the probability θb),

which may be difficult to estimate with sparse data. Unfortunately, gathering data

from IWA is a time-consuming and extremely difficult task. From the modeling per-

spective, one could, in principle, add as much data as possible within a single model

(e.g., the 13 conditions tested in Caplan et al., 2015 instead of focusing on a single

pair of conditions). However, in practice, this is very difficult to achieve. For example,

in chapter 6 it was initially planned to model pronoun resolution and relative clauses

within the same model. However, more conditions require more fixed and random ef-

fects, which generates a more complex model structure. Unfortunately, such complex

model structures lead to convergence issues with the (modified) direct-access model.

Overall, this work has shown that theory can be advanced by computational mod-

eling. As an example, consider the following. The direct-access model was developed

in the speech accuracy trade-off paradigm, a complex experimental paradigm in which

IWA cannot be tested. By specifying and formalizing the assumptions of the direct-

access model in different experimental paradigms, the present work has shown that

that the original assumptions in the direct-access model are at odds with data from

IWA. A modified version of the direct-access model has been proposed as an alter-

native model, more suitable for IWA’s performance. This theoretical development

had not been possible without computational modeling, which shows that formal

modeling leads to specific and more transparent theorizing (Guest & Martin, 2021).

Similarly, the systematic modeling approach developed here opens the door to testing

more competing theories of processing deficits in aphasia. One obvious caveat of this

systematic modeling approach is that one can only infer theoretically meaningful in-

sights through the lenses of the model. A cognitive model is an oversimplification of

the human cognitive system, and the limits of basing theory development on compu-

tational modeling are in the specific assumptions of the computational model itself.

Yet, computational models are a useful tool to check whether verbally-stated theories

about a theorized system match the realizations of this system, i.e., the experimental

data (Farrell & Lewandowsky, 2018, p.21). We have tried to be explicit regarding

the modeling assumptions in the hope that the direct mapping between theoretical

constructs and model parameters is transparent. Future avenues of research should

broaden the theoretical scope of this work by adding, for example, a joint mechanism

between retrieval interference and encoding interference, as suggested in Chapter 6,

which has never been tested with data from IWA.

In conclusion, the work in this dissertation contributes to the aphasia literature by
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showing that the activation-based model of sentence processing, originally designed

for unimpaired populations, can account for sentence processing in IWA by assuming

a slower accrual of activation, and noise in the processing system. These two deficits,

which we map to the slow syntax and intermittent deficiencies theories in the aphasia

literature, disrupt the retrieval process, causing delays in sentence processing, and

misinterpretations. The results in this dissertation have also shown that the assump-

tions of the original direct-access model are at odds with the general performance of

IWA reported in the sentence processing literature in aphasia. A modified version

of the direct-access model that is theoretically more suitable for modeling sentence

comprehension in aphasia has been developed.
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Appendix

• The code and data for chapter 4 are available at https://osf.io/kdjqz/

• The code and data for chapter 5 are available at https://osf.io/spjer/

• The code and data for chapter 6 are available at https://osf.io/2aetr/
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