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Abstract

Text is a ubiquitous entity in our world and daily life. We encounter it nearly
everywhere in shops, on the street, or in our flats. Nowadays, more and
more text is contained in digital images. These images are either taken using
cameras, e.g., smartphone cameras, or taken using scanning devices such
as document scanners. The sheer amount of available data, e.g., millions of
images taken by Google Streetview, prohibits manual analysis and metadata
extraction. Although much progress was made in the area of optical character
recognition (OCR) for printed text in documents, broad areas of OCR are still
not fully explored and hold many research challenges. With the mainstream
usage of machine learning and especially deep learning, one of the most
pressing problems is the availability and acquisition of annotated ground
truth for the training of machine learning models because obtaining annotated
training data using manual annotation mechanisms is time-consuming and
costly.

In this thesis, we address of how we can reduce the costs of acquiring ground
truth annotations for the application of state-of-the-art machine learning
methods to optical character recognition pipelines. To this end, we investigate
how we can reduce the annotation cost by using only a fraction of the typically
required ground truth annotations, e.g., for scene text recognition systems. We
also investigate how we can use synthetic data to reduce the need of manual
annotation work, e.g., in the area of document analysis for archival material.

In the area of scene text recognition, we have developed a novel end-to-end
scene text recognition system that can be trained using inexact supervision
and shows competitive/state-of-the-art performance on standard benchmark
datasets for scene text recognition. Our method consists of two independent
neural networks, combined using spatial transformer networks. Both networks
learn together to perform text localization and text recognition at the same time
while only using annotations for the recognition task. We apply our model
to end-to-end scene text recognition (meaning localization and recognition of
words) and pure scene text recognition without any changes in the network
architecture.

In the second part of this thesis, we introduce novel approaches for using
and generating synthetic data to analyze handwriting in archival data. First,
we propose a novel preprocessing method to determine whether a given
document page contains any handwriting. We propose a novel data synthe-
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sis strategy to train a classification model and show that our data synthesis
strategy is viable by evaluating the trained model on real images from an
archive. Second, we introduce the new analysis task of handwriting classi-
fication. Handwriting classification entails classifying a given handwritten
word image into classes such as date, word, or number. Such an analysis
step allows us to select the best fitting recognition model for subsequent text
recognition; it also allows us to reason about the semantic content of a given
document page without the need for fine-grained text recognition and further
analysis steps, such as Named Entity Recognition. We show that our proposed
approaches work well when trained on synthetic data. Further, we propose a
flexible metric learning approach to allow zero-shot classification of classes
unseen during the network’s training. Last, we propose a novel data synthesis
algorithm to train off-the-shelf pixel-wise semantic segmentation networks
for documents. Our data synthesis pipeline is based on the famous Style-
GAN architecture and can synthesize realistic document images with their
corresponding segmentation annotation without the need for any annotated
data!
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Zusammenfassung

Text umgibt uns überall. Wir finden Text in allen Lebenslagen, z.B. in einem
Geschäft, an Gebäuden, oder in unserer Wohnung. Viele dieser Textentitäten
können heutzutage auch in digitalen Bildern gefunden werden, welche auf
verschiedene Art und Weise erstellt werden können, z.B. mittels einer Kamera
in einem Smartphone oder durch einen Dokumentenscanner. Die Anzahl
verfügbarer digitaler Bilder, z.B. Millionen – wenn nicht Milliarden von Bil-
dern – in Google Streetview, macht eine manuelle Analyse der Bilddaten
unmöglich. Obwohl es im Gebiet der Optical Character Recognition (OCR)
in den letzten Jahren viel Fortschritt gab, gibt es doch noch viele Bereiche,
die noch nicht vollständig erforscht worden sind. Der immer zunehmende
Einsatz von Methoden des maschinellen Lernens, insbesondere der Einsatz
von Deep Learning Technologien, im Bereich der OCR, führt zu dem großen
Problem der Verfügbarkeit von annotierten Trainingsdaten. Die Beschaffung
annotierter Daten mittels manueller Annotation ist zeitintensiv und sehr teuer.

In dieser Arbeit zeigen wir neue Wege und Verfahren auf, wie das Problem
der Beschaffung annotierter Daten für die Anwendung von modernsten Deep
Learning Verfahren im Bereich der OCR gelöst werden könnte. Hierbei zeigen
wir neue Verfahren in zwei Unterbereichen der OCR. Einerseits untersuchen
wir, wie wir die Annotationskosten reduzieren könnten, indem wir inexakte
Annotationen benutzen um z.B. die Kosten der Annotation von echten Daten
im Bereich der Texterkennung aus natürlichen Bildern zu reduzieren. Dieses
System wird mittels weak supervision trainiert und erreicht Ergebnisse, die auf
dem Stand der Technik bzw. darüber liegen. Unsere Methode basiert auf zwei
unabhängigen neuronalen Netzwerken, die mittels eines Spatial Transformers
verbunden werden. Beide Netzwerke werden zusammen trainiert und lernen
zusammen, wie Text gefunden und gelesen werden kann. Dabei nutzen wir
aber nur Annotationen und Supervision für das Lesen (recognition) des
Textes, nicht für die Textfindung. Wir zeigen weiterhin, dass unser System für
eine Mehrzahl von Aufgaben im Bereich der Texterkennung aus natürlichen
Bildern genutzt werden kann, ohne Veränderungen im Netzwerk vornehmen
zu müssen.

Andererseits untersuchen wir, wie wir Verfahren zur Erstellung von syn-
thetischen Daten benutzen können, um die Kosten und den Aufwand der
manuellen Annotation zu verringern und zeigen Ergebnisse aus dem Bereich
der Analyse von Handschrift in historischen Archivdokumenten. Zuerst prä-
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sentieren wir ein System zur Erkennung, ob ein Bild überhaupt Handschrift
enthält. Hier schlagen wir eine neue Datengenerierungsmethode vor. Die ge-
nerierten Daten werden zum Training eines Klassifizierungsmodells genutzt.
Unsere experimentellen Ergebnisse belegen, dass unsere Idee auch auf echten
Daten aus einem Archiv eingesetzt werden kann. Als Zweites führen wir
einen neuen Schritt in einer Dokumentenanalyseplattform ein: Handschrift-
klassifizierung. Hier ordnen wir Bilder einzelner handgeschriebener Wörter
anhand ihrer visuellen Struktur in Klassen, wie Zahlen, Datumsangaben oder
Wörter ein. Die Einführung dieses Analyseschrittes erlaubt es uns den besten
Algorithmus für den nächsten Schritt, die eigentliche Handschrifterkennung,
zu finden. Der Analyseschritt erlaubt es uns auch, bereits Aussagen über
den semantischen Inhalt eines Dokumentes zu treffen, ohne weitere Analyse-
schritte, wie Named Entity Recognition, durchführen zu müssen. Wir zeigen,
dass unser Ansatz sehr gut funktioniert, wenn er auf synthetischen Daten
trainiert wird; wir zeigen weiterhin, dass unser Ansatz auch für zero-shot
Klassifikation eingesetzt werden kann. Zum Schluss präsentieren wir ein
neues Verfahren zur Generierung von Trainingsdaten für die pixelgenaue
semantische Segmentierung in Bildern von Dokumenten. Unser Verfahren
basiert auf der bekannten StyleGAN Architektur und ist in der Lage Bilder
mit entsprechender Annotation automatisch zu generieren. Hierbei werden
keine echten annotierten Daten benötigt und das Verfahren kann auf jeder
Form von Dokumenten eingesetzt werden.
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GRU gated recurrent unit

HOG histogram of oriented gradient

IAMDB IAM Handwriting Database
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IOU intersection over union
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MSER maximally stable extremal region

NER named entity recognition

OCR optical character recognition

ReLU rectified linear unit
RNN recurrent neural network

SGD stochastic gradient descent
SVHN StreetView House Number
SVM support vector machine
SVT Street View Text
SVTP Steet View Text Perspective
SWT stroke width transform
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Glossary

accuracy The accuracy is an evaluation metric that denotes the amount of
correctly classified samples compared to the total amount of samples. The
accuracy is calculated as: true positive+true negative

true positive+true negative+false positive+false negative .
AdaIN Adaptive Instance Normalization, a normalization method originally

developed by Huang and Belongie [104] for arbitrary style transfer.

F1-Score The F1-Score is an evaluation metric that measures the harmonic
mean of precision and recall, it is calculated as 2 × precision×recall

precision+recall .

GPU Graphics Processing Unit - an electronic circuit specifically designed
to accelerate creation and processing of images. Machine learning benefits
from the possibility to execute computations of dot products and matrix
multiplications in a massive-parallel way.

Intersection over Union (IOU) The intersection over union is a metric
to measure the similarity and diversity of sample sets. In computer vision
it is mostly used to measure the matching ratio of bounding boxes or
contours. The IOU of two bounding boxes 𝐴 and 𝐵 is calculated as IOU =
intersection(𝐴,𝐵)

union(𝐴,𝐵) .

Multilayer Perception A Neural Network consisting of at least one hid-
den layer.

Named Entity Recognition Named Entity Recognition is a procedure to
locate and classify named entities, e.g., names, brands, etc. in unstructured
texts.

Natural Language Processing A field of artificial intelligence that deals
with the analysis of interactions between humans and computers in the
field of language.

PCA Principal Component Analysis, a dimensionality reduction algorithm
that makes it, e.g., possible to visualize high-dimensional vectors in 2D or
3D.

precision The Precision is an evaluation metric that denotes the amount of
positive classifications, i.e., the true positives that were correct. It is defined
as: true positives

false positives+true positives .
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Glossary

recall The Recall is an evaluation metric that measures the ratio of positive
samples that were identified by the classifier.
It is definded as: true positives

true positives+false negatives .
ResNet Residual Neural Network. A convolutional neural network archi-

tecture that allows the training of very deep neural networks, which was
introduced by He et al. [94].

Wildenstein Plattner Institute A private foundation dedicated to the
compilation of digital catalogue raisonnés and archives.
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1 Introduction

In this thesis, we present possible approaches to lower the costs of acquiring
ground truth annotations for the application of state-of-the-art machine learn-
ing methods to optical character recognition pipelines as the central topic.
Thus, main contributions revolve around the development of mechanisms
to solve one of the most pressing problems in deep learning: the availability
and cost of annotated training data. In this chapter, we will provide a short
introduction into the research domain of optical character recognition (OCR)
and the specific sub-tasks we deal with and provide solutions for. Further-
more, we will summarize our contributions and conclude the chapter with a
structural overview of the thesis.

1.1 Motivation and Scope

Being able to read is one of the most important cultural achievements of
humankind. The ability to read and understand information allows the passing
of information through centuries and even millennia. Reading is a seemingly
simple task for a human. Once trained to understand the basic shapes of a
simple alphabet, such as the Latin alphabet, a child can learn to read in the
first year of school or even before. When looking at the reading capabilities
of machines and computers, we quickly see that the process of reading does
not seem to be that simple. An image containing text is merely a matrix of
numerical values with no semantic information to a modern computer. Thus,
algorithms to extract semantic information from a given image need to be
developed.

In the past decades, much research effort was put into the recognition of
printed text, which led to the development of commercial and open-source
OCR tools, such as ABBYY FineReader1 or Tesseract OCR [214]. Later, the
analysis of handwriting, especially in the online case was in the focus of re-
search [54, 155, 156]. Following online handwriting recognition, the community
tended to the more complicated tasks of offline handwriting recognition [122,
241] and scene text recognition [114, 141, 150].

With the upcoming and successes of deep learning in many computer vision
related tasks, such as image classification [94, 136], object detection [194, 195],

1https://pdf.abbyy.com/ (last accessed August 31, 2021).
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1 Introduction

or image captioning [230, 247] the research focus in the area of OCR shifted
more and more to the usage of deep learning methods [112, 208, 242]. The
usage of deep learning has clear benefits over the usage of traditional manually
engineered feature approaches, such as stroke width transform (SWT) [75],
or maximally stable extremal regions (MSERs) [179]. Methods based on deep
learning can automatically learn which features need to be extracted to fulfill
the task. Learning which features to extract is one factor why methods based
on deep learning tend to generalize to unseen data. Another factor is the usage
of large-scale training datasets that could easily contain millions of documents,
which contrasts earlier training datasets that commonly contained not more
than a few hundred or thousand examples for training.

The main challenge in using large-scale training datasets is the acquisition
of such training data. Clean images that fit the task at hand need to be gathered
and manually annotated. Manual annotation is a costly and time-consuming
process, e.g., the annotation of ImageNet [71] took ca. 3 years using 49 000
workers on Amazon mechanical turk.2 Drawing from these observations,
we argue that there is a great need for other methods to acquire training
data and the necessary annotations. One solution is to stop relying on fully
supervised machine learning and instead develop methods that can work with
incomplete knowledge in weakly-supervised settings. The benefit of using
weak supervision is that, e.g., a system to classify and localize objects does
not need annotations for classification and localization but only annotations
for classification. Only requiring classification annotations is of great benefit
because it is much cheaper to obtain classification labels than to obtain precise
localization annotations. Another solution is to use and develop algorithms
to generate synthetic data. The benefit of synthetic data is the possibility for
the user to precisely control the content of the generated content.

In this thesis, we focus on methods to reduce the costs related to the
creation of ground truth annotations for the training of deep neural networks.
Specifically, we focus on two use cases from the area of optical character
recognition systems. We propose a novel approach for weakly-supervised
end-to-end scene text recognition and novel approaches using synthetic data
to analyze historical documents in archives.

1.1.1 Weak Supervision for Scene Text Recognition

Scene text recognition deals with the task of identifying and recognizing
text in images containing uncontrolled natural scenes. Such images could,
for instance, be produced by an individual with a smartphone. The analysis

2https://www.cs.princeton.edu/courses/archive/spr18/cos598B/slides/cos598b_
7feb18_imagenet.pdf slide 12 (last accessed August 31, 2021)
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of scene images is challenging because of their wild nature, meaning that
lighting conditions, camera movement, and image content can not be known
beforehand. Thus, it is necessary to create robust recognition systems. Here,
methods based on deep learning can show their potential because deep models
can take various degrading conditions into account if they were trained with
sufficiently diverse data. However, here the problem of annotation costs arises.

The field of scene text recognition began to benefit from synthetic data very
early. Especially methods that provide solutions for the isolated task of text
recognition could easily benefit from synthetic recognition data produced by
text rendering and distortion algorithms [112]. Later, the first synthetic data
approaches for synthesizing full-scene text images were proposed [90].

However, the synthesis of realistic scene text images is still a complex
problem and might not be applicable to all kinds of text. Related work shows
that integrating examples of real text into the training with synthetic data
boosts the performance of proposed methods significantly [140]. In the field of
end-to-end scene text recognition, methods exist that do not need information
about the locations of text to localize and read text in a given image. However,
these methods are not able to report the location of the read text. Thus, we
argue that it is necessary to develop methods that use less supervision and thus
require less annotation effort, are able to report localization and recognition
results, and achieve results similar to results reported in related work, even if
it is possible to synthesize large amounts of data.

1.1.2 Synthetic Data for Archive Analysis

Archives contain wisdom, knowledge, and information gathered over decades
or centuries. Thanks to digitization, it is possible to preserve archival material
and also, in the long run, perform automated analysis supporting historical
research. To this end, besides preservation, digitization alone does not add
much value to the data. Further analysis of the raw scanned documents is
necessary to extract their content, thus enabling further computerized analysis
capabilities.

Especially in the field of archive analysis, accurate and extensive ground
truth annotations are of utmost importance. However, the acquisition of accu-
rate ground truth annotations is very costly and might even be to expensive
and laborous for many archives because required experts might not be avail-
able. Thus, machine learning methods in the field of archive analysis can
highly benefit from the availability usage of synthetic training data.

Another crucial observation is that a model trained on a set of historical
documents might not be applicable to other historical documents because
historical documents are heterogeneous, i.e., western European documents

3
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from the 15th century are incredibly different from documents of the same
time from the east Asian regions, this is also true when comparing documents
from the early 19th and 20th century to documents from the 15th century. Thus,
we argue that methods that can synthesize novel ground truth annotations
could be a viable way to enable a fast and reliable analysis of archival data.
Only recently new methods to synthesize large amounts of historical data
emerged [51, 126, 231]. However, recent methods require a large amount
of manual preparations, e.g., design of realistic document templates [231].
We focus on the development of mechanisms to produce and use synthetic
training data with as little manual intervention as possible to enable the
application and adaption of our proposed methods to a multitude of archives.

The development of our technologies for the analysis of historical docu-
ment data is done in conjunction with and support of the Wildenstein Plattner
Institute (WPI).3 The WPI is a non-profit foundation that is dedicated to
supporting research in the field of art history by compiling digitial catalog
raisonnés and archives. The WPI has an archive consisting of more than 10
million document pages that are now entirely digitized. To enable further
research, ease the exploration, and search for information, we develop and
apply methods to extract handwritten information from the archive. Hand-
written information is of particular interest to the researchers of the WPI
because handwriting might contain valuable information about works of art
that has been noted down at auctions or during talks with artists themselves,
i.e., information about the provenance of a work of art.

1.2 Contributions and Publications

In this thesis, we address the problem of obtaining annotated training data
for the application of OCR methods on use cases in the areas of scene text
recognition and archive analysis. First, we address the research question of
how we can lower the annotation cost by using only a fraction of the typically
required ground truth annotations, by introducing a novel method for end-to-
end scene text recognition. Second, we address the research question of how
we can use synthetic data to reduce the need of manual annotation work, e.g.,
in the area of document analysis for archival material. The major contributions
of this thesis can be summarized as follows:

Scene Text Recognition Our first use case to use less annotations is
rooted in the field of scene text recognition. Here, we propose a new weakly
supervised end-to-end method for scene text localization and recognition.
Our method only requires textual annotations for the recognition task to

3https://wpi.art/ (last accessed August 31, 2021).
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simultaneously learn to detect and recognize text. Our method consists of
a two-stage deep neural network. The first stage is a localization network
that predicts a set of transformation parameters. These transformation pa-
rameters describe the location of the text, i.e., words or characters. We use
the transformation parameters in a differentiable sampler [113] to extract
the words or characters and forward them through our second network,
the recognition network. We perform experiments on a range of standard
scene text detection and recognition benchmarks showing that our method
can learn to localize text regions in a weakly supervised manner. Similar
to related work [215, 243] our method can be applied on training images
without location annotations but in contrast to related work our method
does not only extract the textual content of words in the images but also
the location of the words in the image. Furthermore, our model achieves
competitive and state-of-the-art results on several scene text recognition
benchmark datasets while showing exceptional performance on irregular
scene text recognition benchmark datasets. (related publications: [22, 31, 32,
249])

Archive Analysis Our second use case is the synthesis and application
of synthetic training data for the training of machine learning systems for
document analysis systems. Here, we show examples from the field of
archive analysis where we propose several data synthesis strategies and
new methods to ease and enable the large-scale analysis of handwriting
data in historical archives. First, we propose a handcrafted data synthesis
strategy to synthesize patches of documents. We use these patches to train
a classification model to determine whether patches of a document image
contain handwriting. Using the prediction for each patch of a page, we can
determine whether a full page contains any handwriting at all. Our system
stands in contrast to related work, e.g., [62] because we solely use synthetic
data for the training of our classification model. In our experiments on data
extracted from a diverse set of documents from the archive of the WPI, we
are able to achieve an F1-Score of 0.98 showing that our method reliably
detects the presence of handwriting on a given page. (related publication:
[29])
Second, we propose a new analysis step for a document analysis pipeline.
This analysis step is located close to the end of a document analysis pipeline
and is used to categorize already cropped word images into classes such
as date, number, or word based only on their visual appearance, which
we denote as handwriting classification. Such a classification task can be
of benefit in two ways. On the one hand, we can use the classification
results to identify the best fitting recognition model. On the other hand,
more importantly, we can reason about the content of a document without
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the need to precisely read the content, which is especially helpful if no
recognition model for the document’s language or the writer, in the case
of handwritten data, is available. To this end, we propose two methods;
one method based on a simple, fixed softmax classifier and another more
flexible method based on metric learning. We also propose well-suited
data synthesis methods for the task of handwriting classification. In our
experiments, we validate our assumptions and show the capabilities of our
models. We find that the softmax classifier is the best performing model.
However, we also validate that our approach based on metric learning is very
flexible as it can perform zero-shot classification by correctly identifying
samples of a class unknown at training time when confronted with them at
test time. (related publication: [27])
Last, we propose a novel data synthesis method using the inner knowledge
of a generative adversarial network (GAN) to synthesize a large-scale fully-
annotated pixel-wise semantic segmentation dataset to segment historical
documents. Here, we investigate the capabilities of StyleGAN [129, 130]
and find that it is possible to not only synthesize RGB images but also
corresponding segmentation annotation images at the same time. We devise
an algorithm to extract the information from StyleGAN during the synthesis
of data. Using our approach, it is possible to quickly synthesize millions
of training samples for a pixel-wise semantic segmentation network. In
contrast to related work [126, 231], our method does not need manually
designed document templates for the generation of document-like data,
our proposed approach directly learns the document structure from the
available raw scanned images. While the approach is still under active
research, we show in a qualitative evaluation that it is viable. The main
benefit of our proposed approach is that it is possible to directly learn a
model that is fitted to the raw data while no annotations for each image are
necessary. However, our current approach still requires human annotation
effort, although we could reduce the necessary effort to a minimum. (related
publication: [28])

Earlier versions of several parts of this thesis and work that did not di-
rectly lead to this thesis but might be related to it have been published and
presented at international scientific conferences and workshops. In addition,
the proposed system for handwriting determination (see section 4.3) is to be
integrated into the document analysis pipeline of the WPI (ongoing effort).
The list of publications to this thesis includes the following:
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Conferences
• Haojin Yang, Cheng Wang, Christian Bartz, and Christoph Meinel. “SceneTex-

tReg: A Real-Time Video OCR System”. In: Proceedings of the 24th ACM Inter-

national Conference on Multimedia. MM ’16. New York, NY, USA: Association
for Computing Machinery, Oct. 2016, pages 698–700. isbn: 978-1-4503-3603-1.
doi: 10.1145/2964284.2973811

• Christian Bartz, Haojin Yang, and Christoph Meinel. “SEE: Towards Semi-
Supervised End-to-End Scene Text Recognition”. In: Thirty-Second AAAI Con-

ference on Artificial Intelligence. Apr. 2018
• Christian Bartz, Laurenz Seidel, Duy-Hung Nguyen, Joseph Bethge, Haojin

Yang, and Christoph Meinel. “Synthetic Data for the Analysis of Archival
Documents: Handwriting Determination”. In: 2020 Digital Image Computing:

Techniques and Applications (DICTA). Nov. 2020, pages 1–8. doi: 10.1109/
DICTA51227.2020.9363410

Workshops
• Christian Bartz, Haojin Yang, Joseph Bethge, and Christoph Meinel. “LoANs:

Weakly Supervised Object Detection with Localizer Assessor Networks”.
In: Computer Vision – ACCV 2018 Workshops. Edited by Gustavo Carneiro and
Shaodi You. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2019, pages 341–356. isbn: 978-3-030-21074-8. doi: 10.1007/978-
3-030-21074-8_29

• Christian Bartz, Hendrik Rätz, and Christoph Meinel. “Handwriting Classifi-
cation for the Analysis of Art-Historical Documents”. In: Pattern Recognition.

ICPR International Workshops and Challenges. Edited by Alberto Del Bimbo, Rita
Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini,
Hugo Jair Escalante, and Roberto Vezzani. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2021, pages 562–576. isbn:
978-3-030-68796-0. doi: 10.1007/978-3-030-68796-0_40

Technical Reports
• Christian Bartz, Haojin Yang, and Christoph Meinel. “STN-OCR: A Single

Neural Network for Text Detection and Text Recognition”. In: arXiv:1707.08831

[cs] (July 2017). arXiv: 1707.08831 [cs]
• Christian Bartz, Joseph Bethge, Haojin Yang, and Christoph Meinel. “KISS:

Keeping It Simple for Scene Text Recognition”. In: arXiv:1911. 08400 [cs] (Nov.
2019). arXiv: 1911.08400

• Christian Bartz, Hendrik Rätz, Haojin Yang, Joseph Bethge, and Christoph
Meinel. “Synthesis in Style: Semantic Segmentation of Historical Documents
Using Synthetic Data”. In: arXiv:2107.06777 [cs] (July 2021). arXiv: 2107.06777
[cs]
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Besides the publications that directly led to this thesis, we also published
further work. We provide the complete list of all publications in the appendix
(chapter 7).

1.3 Outline of the Thesis

We organize this thesis in the following manner:
After the introduction, presented in this chapter, we provide an introduction

into the field of OCR and deep learning concepts used in this work in chapter 2.
Here, we first introduce the task of OCR. Following the OCR introduction,
we provide an overview and explanation of the machine learning concepts
used in this work in section 2.2.

In chapter 3 we show our solution for the use case of weakly supervised end-
to-end scene text recognition. There, we first provide a review of related work
in the field of scene text detection and recognition in section 3.3. Following
the related work, we introduce the datasets we use and also our data synthesis
strategy to enhance the existing datasets in section 3.4 and section 3.5. In the
last two sections of this chapter, we introduce our proposed methodology
(section 3.6) and show the results of our extensive experiments (section 3.7)
to validate our proposed method.

In chapter 4, we present our solutions utilizing synthetic data for the
analysis of historical documents. First, we review related work in the area of
historical document analysis (see section 4.2). In section 4.3 we introduce our
solution for determining whether a page contains handwriting and validate
our proposed method in experiments on a diverse dataset containing real data
sampled from the archive of the WPI. Following our solution on handwriting
determination, we introduce our approach to handwriting classification in
section 4.4. Here, we first introduce the data synthesis methods we propose
for this task, followed by our proposed methods for handwriting classification.
Our experiments show the suitability of our proposed models and discuss
usage scenarios for each proposed model. In section 4.5 we show our data
synthesis approach that directly operates on raw scanned images to produce
pixel-wise semantic segmentation ground truth data for the training of off-
the-shelf semantic segmentation networks.

Last, in chapter 5, we conclude and summarize the achievements presented
in this thesis. Further, we provide a brief outlook into possible future work,
followed by references.
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2 Foundations of Optical Character
Recognition

Text is ubiquitous in our modern world. We can find it nearly everywhere, e.g.,
in newspapers, books, documents, on billboards, signs, or the packaging of
products. It is not feasible to use humans to analyze the available amount of
textual content in scans, photos, or videos because human labor is expensive
and slow compared to the computing speed of computers. An excellent
example of this is the analysis of the Jeremy Bentham Collection in the
“Transcribe Bentham” project, where crowdsourcing is used to recognize
the handwritten text found in 95 000 scanned pages. The project started in
2010. The researchers expect the earliest date of complete transcription to
be in 2025 [56]. A well-defined and working algorithm running on powerful
computing hardware could be able to transcribe all pages in less than two days.1
However, such algorithms are not available yet. Thus, further development
of automated approaches for OCR is necessary. In this chapter, we shortly
introduce the task and history of OCR, including typical components of OCR
systems and research frontiers. Following the introduction of OCR, we further
introduce basic concepts of modern computer vision technologies that we use
in our work.

2.1 Optical Character Recognition

In ancient times it was only possible to transfer knowledge via verbal com-
munication. Using only verbal communication and relying on the recipient’s
memory has the disadvantage of not remembering all details correctly. Writing
and reading is a cultural accomplishment that allows transferring knowledge
without the need to fear losing information if the recipient does not correctly
remember all details of the information. Nowadays, text is ubiquitous in every
modern society. We read books, newspapers, or magazines. We can also find
text on any product packaging or signs. Reading texts is a seemingly simple
task for a human. However, for a machine, it is a difficult task that is researched
for more than a century. One of the first devices designed to read printed texts

1We, for instance, performed print OCR in a massively parallel way on a 1000 core computing
cluster for more than 700 000 pages from the archive of the WPI in less than two days.
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Figure 2.1: Standardized font faces for early OCR of printed text. (left) OCR-A,2
(right) OCR-B2

was the Optophone by Dr. Edmund Fournier d’Albe in 1913 [70]. The device
used photosensors to detect black print and converted the found black parts
into characteristic sounds for each character, thus enabling a blind person to
read a text.

In 1928, Emanuel Goldberg filed a patent for a machine that helped users to
find specific content in microfilmed documents [217]. With the development
of digital computers and first scanning devices, it was possible to process
more and more data. Especially finance and bank-oriented use cases called
for methods to automatically recognize printed text from letters, cheques,
or forms. To enable early optical character recognition, specific fonts have
been standardized.3 These fonts had a specific and straightforward design that
allowed the programming of machines to recognize text automatically. We
provide examples of such fonts in figure 2.1.

However, already in 1970, the Scan-Data Corporation produced one of the
first OCR machines that were able to recognize texts set in various fonts [174].
Throughout time software and digital imaging superseded hardware-based
machines for optical character recognition, which led to the release of mature

2“OCR-A S” and “OCR-B S” (https://commons.wikimedia.org/wiki/File:OCR-A_SP.svg,
https://commons.wikimedia.org/wiki/File:OCR-B_SP.svg) by GJo. CC BY 3.0 (https:
//creativecommons.org/licenses/by-sa/3.0/legalcode)

3ISO 1073-1:1976 (https://www.iso.org/cms/render/live/en/sites/isoorg/contents/
data/standard/00/55/5567.html) and ISO 1073-2:1976 (https://www.iso.org/cms/
render/live/en/sites/isoorg/contents/data/standard/00/55/5568.html) (last ac-
cessed August 31, 2021)
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products such as “ABBYY FineReader”4 or Tesseract [214]. Such software
performs very well when recognizing printed text from a cleanly scanned
page, i.e., a binarized page where each pixel corresponding to printed text is
black, and all other pixels are white. However, such software does not perform
well on text found in natural scenes (scene text), i.e., captured with the camera
of a mobile phone or handwritten texts. These limitations call for further
research.

2.1.1 Components of OCR Systems

An OCR system consists of multiple analysis stages until the user receives the
recognition result. The work presented in this thesis contributes to different
stages of a typical OCR pipeline [187]. In the following, we present typical
components of an OCR pipeline and highlight the contributions of this thesis.

Optical Scanning The first step of an OCR system is optical scanning. Here,
the document is converted into a digital format by using optical document
scanners or cameras. In the case of OCR for printed or handwritten text,
documents are mostly digitized using optical document scanners. In the case
of scene text recognition, mostly digital cameras such as digital single-lens
reflex cameras (DSLRs), digital camcorders, or smartphones can be used to
capture images that might contain text.

Binarization and Segmentation State-of-the-art print OCR tools, i.e., Tesser-
act [214], require the document images to be supplied in binarized form. Here,
binarized refers to a document where each pixel representing text is black,
and any other pixel is white. Such a binarization is necessary for these print
OCR tools to find individual words on the scanned page correctly. While it
might be a simple task to binarize modern office documents, it is challenging
to binarize historical documents, typically found in archives (see figure 4.19
and figure 4.20 for some examples of challenging historical documents). Doc-
uments contained in archives do not only consist of challenging multi-colored
backgrounds; they might also contain handwritten information that can not
be recognized by a print OCR tool and hence leads to wrong recognition
results. Thus, it is crucial to remove any content that is not printed text.

Localization Following the binarization step, regions that contain text are
extracted. In the case of a document analysis pipeline, this step is also known
as page segmentation. In page segmentation, components that belong together
are identified, and either individual lines or words of these components are

4https://www.abbyy.com (last accessed August 31, 2021).
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extracted. In scene text recognition, text localization plays a pivotal role, as
the text is embedded into natural scenes.

Preprocessing In the next step, the identified text areas are preprocessed.
The aim of preprocessing is to remove noise and also to transform the input
into a normalized form. Such a normalized form makes it simpler for the
underlying recognition model to produce the correct output. Normalization,
in this case, includes rotation of rotated text, slant removal, and resizing to a
fixed input size.

Feature Extraction The prepared image containing a full line of text, a
group of words, or only a single word is used as input to a feature extraction
algorithm. This step can be seen as one of the most challenging steps in OCR.
The aim of feature extraction in OCR is to capture the representative traits of
characters. The robustness of the feature extraction step thereby determines
the overall performance of the OCR system and is therefore crucial. Such
feature extraction can be performed by handcrafted algorithms or data-driven
algorithms, such as neural networks.

Recognition Following the feature extraction step, the actual recognition
takes place. Here, the system assigns the extracted features to a task-specific
class, e.g., the most probable character class for each identified character in a
word image.

Post Processing The last step aims at the improvement of recognition results.
On the one hand, individually recognized characters could be grouped into
words or lines. On the other hand, we can use post-processing to correct
recognition errors by correcting the recognized words using a dictionary and
a spell checker.

In this Thesis In this thesis, we show contributions to the following OCR
components:

Binarization Here, we propose a novel segmentation method (see sec-
tion 4.5) for documents that are directly fitted to the available data without
the need for a large-scale annotated training dataset.

Localization We propose a novel weakly supervised algorithm for simul-
taneous localization and recognition of scene text in chapter 3.

Preprocessing In section 4.3 we propose a method to determine whether a
given document page contains handwriting. If the page contains handwrit-
ing, we also provide a rough location of the handwriting. Such information
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can be beneficial when choosing the correct analysis algorithms for a given
document scan.

Recognition In section 4.4, we propose a novel analysis step before the
actual text recognition step that classifies a given word image based on
its visual structure. Such a classification allows choosing the best fitting
recognition model and allows the analysis of the content of documents
without the need for perfect recognition results. In section 3.6, we propose
a novel scene text recognition model that achieves state-of-the-art results
on a range of open benchmark datasets.

2.1.2 Going Beyond Print OCR Systems

The components introduced in the last section are typical building blocks
of a system such as Tesseract [214]. While state-of-the-art OCR systems
report recognition accuracies of more than 99 %,5 these accuracies can only be
achieved on optimal scans of documents.

Tesseract, for instance, is optimized to recognize text from documents that
consist of black text on a white background, use standard fonts, and adhere
to a simple layout with one or two columns. Tesseract cannot handle any
handwritten text as it does not contain a module to recognize or localize
handwritten text. Most documents found in archives do not adhere to modern
document layouts, as they are heterogeneous in layout and content, show
different signs of degradation, or contain mixtures of handwritten and printed
text. Furthermore, print OCR systems fail in the task of recognizing text
contained in natural scenes [125]. Thus, there is a need to develop novel
approaches for text recognition in historical documents and text in natural
scenes (scene text); see also figure 2.2 for a comparison of the text types
mentioned here.

2.2 Neural Networks

While traditional OCR systems relied on the extraction of handcrafted features,
e.g., SIFT [159], SURF [33], as well as machine learning methods such as
support vector machines (SVMs) [66], nowadays approaches based on neural
networks are the dominant approaches in the area of computer vision. Neural
networks became increasingly more popular thanks to the increase in available
parallel computation power of modern GPUs and the availability of large-scale
annotated datasets, such as the ImageNet dataset [71].

5https://paperlessocr.com/resources/flexicapture/flexicapture-faqs (last accessed
August 31, 2021).
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Figure 2.2: Different types of documents. The left image depicts a printed
document that can easily be analyzed using standard OCR tools such as
Tesseract [214]. The image in the middle displays a typical scene text image
containing text as found in the real world, while the image on the right depicts
an example archival image that contains a mixture of printed and handwritten
text on a more challenging background.

The fact that neural networks became the dominant approach in the last few
years is quite surprising because the computational model of a neural network
is already known since the 1940s [168]. However, many complex problems led
to several so-called AI winters. Neurons, for instance, are only able to compute
linear functions. Furthermore, neural networks require a large amount of
memory and computational resources. With the upcoming of general-purpose
GPUs, the availability of large annotated datasets and the development of
algorithms for the training of the first deep neural networks [34, 200] neural
networks became an integral part of modern computer vision approaches.

In this section, we will shortly introduce the concept of neural networks, and
we will specifically focus on the types of neural networks used throughout
this thesis.

2.2.1 Basic Building Blocks of a Neural Network

Neural networks are loosely inspired by the inner workings of neurons in
the mammalian brain [168]. A neural network consists of several building
blocks, with the smallest unit being a single neuron. Multiple neurons that
work together are called a neural network.
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2.2 Neural Networks

2.2.1.1 Neurons and Fully Connected Layers
As already stated above, the atomic unit of a neural network is a single neuron.
A neural network consists of multiple neurons, where each neuron computes
a weighted sum:

𝑓 (𝑥, 𝑤, 𝑏) = 𝑤𝑇𝑥 + 𝑏. (2.1)

Where 𝑥 ∈ R𝑛 is an input vector consisting of 𝑛 inputs, 𝑤 ∈ R𝑛 is a vector of
𝑛 learnable weights, and 𝑏 ∈ R is a scalar bias that is added to the computed
output of the weighted sum. Multiple neurons can be grouped into a single
layer. If all neurons in a layer receive the same input, such a layer is called
fully connected layer, and the weight vector 𝑤 can be written as a weight matrix
𝑤 ∈ R𝑛×𝑚 , where 𝑚 denotes the number of neurons in the layer. The bias 𝑏 is
then similarly written as a vector with 𝑚 dimensions as 𝑏𝑚 .

Fully connected layers can further be stacked on top of each other and
making it possible to compute a more complex function. Each layer of the
network that is not directly involved in data input or output is called a hidden
layer. Theoretically, an unlimited number of hidden layers may be used. A
network consisting of at least one hidden layer is also called a multilayer

perceptron (MLP). Please refer to figure 2.3 for a structural overview of a MLP.
It was shown that MLPs with only one hidden layer are able to approx-

imate any function mapping from one finite-dimensional space to another
finite-dimensional space, with the desired accuracy if the number of hidden
neurons is large enough [69, 101]. However, using only one hidden layer in
a neural network makes it difficult to capture multiple inputs because the
representations that can be learned with one hidden layer are only local. Thus,
only a large amount of neurons, i.e., a large number of dimensions, can capture
all components. Hinton et al. [80] showed that stacking multiple hidden layers
on top of each other enables the learning of more compact representations,
allowing the network to learn representations of objects at different abstraction
layers while keeping the overall amount of neurons low. We refer to such a
network with multiple hidden layers as a deep neural network.

2.2.1.2 Training of a Neural Network
A neural network consists of learnable weights and biases, as indicated in
the last section. A neural network is initialized with random values for its
learnable weights and biases, thus computing a random function. The function
the neural network shall compute is not explicitly known. It is rather defined
via the input data and an error measure, a so-called loss function. A neural
network is trained on the input data to find the desired function. The result of
the training is a set of weights and biases that are a best-effort approximation
of the desired function.
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Input
Layer

Hidden
Layer

Output
Layer

Figure 2.3: Depiction of a neural network with one hidden layer. Each of the
three input neurons is connected to each neuron of the four neurons in the
hidden layer, which are connected to each of the two output neurons in the
output layer. Each edge between two neurons represents a single learnable
weight 𝑤. The bias 𝑏 is integrated into each neuron. Such a neural network
could be used to discriminate between two classes based on three input
features.

Since neurons compute a differentiable function, the back-propagation
algorithm [198] is used to adjust weights and biases of the network in an
iterative fashion. To use the back-propagation algorithm, we need to measure
the quality of the output predictions of the network based on the current
input data. Loss functions are used to measure the error of the neural network
and are the entry point of the back-propagation algorithm that propagates
the computed error measure to all neurons in the network, which are then
updated using a weight update algorithm. In this thesis, we use different loss
functions, including mean squared error (MSE) and softmax cross-entropy
loss.

MSE is an error measure that measures the difference of a computed value
to the expected value. It is mostly used for regression tasks, i.e., prediction of
text locations, where a specific value has to be computed. This loss function
computes the mean of the squared difference of the predicted vector 𝑦 ∈ R𝑛
and the target vector �̂� ∈ R𝑛 :

MSE(𝑦, �̂�) = 1
𝑛

𝑛∑
𝑖=1

(𝑦 − �̂�)2. (2.2)
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We use the softmax cross-entropy loss function for classification tasks, i.e.,
recognizing characters in a word image. The softmax cross-entropy loss is
based on the softmax function:

softmax(𝑦𝑖) =
𝑒𝑦𝑖∑𝑁
𝑗=1 𝑒

𝑦𝑗
. (2.3)

The softmax function transforms a vector 𝑦 ∈ R𝑛 into a vector 𝑧 ∈ R𝑛 that has
the following properties: the value of each element of 𝑧 lies in the interval
[0, 1], while the sum of all values of 𝑧 is exactly 1. Thus, the output of the
softmax function can be interpreted as a probability distribution (𝑃model(𝑦))
over the components of the output vector 𝑦. The softmax cross-entropy loss
(ℒ) is computed using the negative log probability of the desired output
distribution �̂�:

ℒ(𝑦, �̂�) = −log𝑃model(�̂� |𝑦). (2.4)

After calculating the error measure, the derivative of the loss function with
respect to the input is calculated, and the resulting gradient is propagated
through the entire neural network using the back-propagation algorithm. The
resulting gradients for weights and biases of each neuron denote the direction
and strength of each desired parameter change to get a better approximation
of the implicitly defined function the network shall learn. The update of each
parameter is handled by the gradient descent algorithm [55]:

𝑤𝑛+1 = 𝑤𝑛 − 𝛾∇𝑁(𝑤𝑛). (2.5)

With 𝑤 being a specific weight of a neuron 𝑁 at timestep 𝑛. 𝛾 denotes the
global learning rate, i.e., the rate at which the value of each weight is allowed to
change per update step. Examples of the whole dataset have to be forwarded
through the network to get a good measure of the update step. Following
the forward step, gradients for each example must be computed before one
update step can be performed. Since the datasets used for training a modern
neural network contain many examples, it is computationally infeasible to
compute each example’s derivatives before taking one update step. Instead,
examples are put through a network in batches. After each batch, gradients
are computed, and the parameters are updated. This update algorithm is
referred to as mini-batch stochastic gradient descent (SGD).

SGD is a widely used algorithm for weight updates. However, over the
course of years multiple extensions to SGD have been proposed [132, 147,
251]. In this thesis we mainly make use of Adam [132] and its extension
RAdam [147].

Adam is an extension of SGD, which combines the advantages of multiple
extensions of SGD. On the one hand, Adam maintains a per-parameter
learning rate. These per-parameter learning rates are adapted based on average
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magnitudes of recently observed gradients. RAdam extends Adam by adding
a default warmup phase where the learning rate of each parameter is increased
until a specified amount of update steps is reached. Furthermore, RAdam
introduces a term to rectify the variance of the adaptive per-parameter learning
rates.

2.2.1.3 Types of Supervision
As stated above, a machine learning model is trained using an error measure,
usually defined by a loss function. To obtain a meaningful error measure
supervision is required. In this thesis, we make use of several kinds of super-
vision. We further mention different kinds of supervision for the training of
deep neural models. Thus, we provide a common basis for such terms.

Full Supervision Deep learning owes its great success in recent years to
three main factors. First, although the basic algorithms, e.g., neural networks as
such [168] or the backpropagation algorithm [198], used for deep learning have
been available for many years, developments to train deeper networks [34,
200] enabled further research in this area. Second, the development and
availability of general-purpose graphics processing units allowed the wide
adoption of deep learning because of their extreme parallel and efficient
computing power [136]. The last and most important factor is the availability
of large-scale annotated datasets for the training of deep neural networks [71].

The great successes of deep learning are thus mainly based on the fully
supervised training of deep networks in a fully supervised way. We refer to
training under full supervision if each input sample has an associated ground
truth annotation. One of the most pressing problems while training under full
supervision is the costs in time and money of obtaining error-free annotations.

Unsupervised Training Other approaches for the training of machine learn-
ing models with varying amounts of supervision exist. First, we wish to
mention approaches that do not rely on any human supervision at all. Such
approaches are denoted as unsupervised learning [98]. Neural networks
trained under an unsupervised learning regime are trained to identify and
extract structures and underlying information from the available data. Thus,
transforming the available raw data to another representation that might be
simpler to analyze [98]. Close to unsupervised learning is the field of self-
supervised learning. Here, a machine learning model is also entirely trained
on the available data itself, e.g., by predicting purposely hidden words in the
area of Natural Language Processing [170, 186] or by solving computer vision
tasks, such as structure estimation or image colorization [181, 254]. Here, the
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task is not to find any structure in the available data but to directly solve
specific tasks such as image colorization.

Weak Supervision The next type of supervision that we want to introduce is
the large field of weak supervision. According to Zhou [257], weak supervision
can be categorized into three types. The first type is incomplete supervision

where only a subset of the available data is annotated, the rest of the available
data is unannotated. The second type is inexact supervision where only coarse
annotations are provided to the learning algorithm. The third type is inaccurate

supervision where the given labels are not clean.
Incomplete supervision can then be further categorized into active learn-

ing [205] and semi-supervised learning [58]. Active learning describes a
learning method where initially no or only very few annotated examples exist.
Additionally, the learning algorithm is allowed to ask some form of an oracle,
mostly a human annotator, for information on samples where it does not know
how to classify them in the case of a classification algorithm. Semi-supervised
learning describes a similar learning setup. However, the algorithm always
has access to annotated data and a set of unannotated data, but there is no
oracle to aid the learning algorithm.

Inexact supervision describes tasks where only some parts of the possible
annotations are available. In contrast to incomplete supervision, every input
has an annotation but the provided annotation might not be as fine-grained
as desired. Consider, for instance, the problem of object detection. Here the
task is to localize and recognize objects in a given image. Currently, the best
methods rely on supervision of the locations of the objects and the class of
each object [93, 233]. The task could be trained under inexact supervision if,
during training, only the class information for each object in the image was
available but not the location information. In our work that we present in
chapter 3, we propose a novel model for end-to-end scene text recognition
trained under the setting of inexact supervision.

Models trained under inaccurate supervision have to deal with noisy an-
notations. In contrast to the aforementioned types of supervision, here the
model always has access to input with an associated full annotation. However,
the annotation is not guaranteed to be correct, e.g., because the given images
were not correctly annotated.

2.2.1.4 Activation Functions
The weighted sum computed by a single neuron introduced in equation 2.1
is a linear function. If we were to stack multiple layers of neurons on top
of each other, the resulting function that can be represented is still only a
linear function. However, the world is not linear; thus, a method is required to
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allow the computation of non-linear functions. The solution to this problem
is simple, as a single non-linear function on top of a neuron can be used to
transform the result of the linear function to a non-linear result. Depending
on the use case, we use a multitude of activation functions.

An example of such an activation function is the sigmoid function:

sigmoid(𝑥) = 1
1 + 𝑒−𝑥 . (2.6)

The sigmoid function is a good choice as non-linearity in a neural network
because the function’s gradient is well-defined and straightforward. However,
the maximum value of the gradient of the sigmoid function is 0.5. Using the
sigmoid function in very deep neural networks leads to the vanishing gradient
problem, where early layers of the network do not learn. The tanh function
can be used to mitigate the vanishing gradient problem. However, current
state-of-the-art methods mainly rely on rectified linear units (ReLUs) [176] as
activation function. The function computed by a ReLU is a piecewise linear
function with a stable gradient of 1 if the output of the neuron is > 0, else the
gradient is 0:

ReLU(𝑥) = max(0, 𝑥). (2.7)

Because the ReLU function has a stable gradient of 1, it is a perfect choice
for the training of deep neural networks. Although ReLU is already an
activation function that allows stable learning, several flavors of ReLU have
been proposed. These flavours handle negative values differently. The Leaky

ReLU function [163] for instance does not set all negative values to 0, instead
values smaller than 0 are multiplied with the constant factor 0.01:

LeakyReLU(𝑥) =
{
𝑥 if𝑥 > 0,
0.01𝑥 otherwise.

(2.8)

2.2.1.5 Normalization
Neural networks learn to approximate functions based on input data and a loss
function. Optimizing the function approximation based on the loss function
is a non-convex process. The optimization also has to overcome flat regions,
or sharp minima [138], which makes optimization with algorithms based on
SGD unstable, e.g., due to the sensitivity to the choice of hyperparameters.
Optimization is complicated in a deep neural network that consists of multiple
non-linear functions, which depend on the output of earlier functions.

Batch normalization (BatchNorm) [109] is a method that allows training
deep neural networks successfully. While it was initially believed that Batch-
Norm helps to reduce the changes of distributions of inputs to individual
layers while a network learns (internal covariate shift), it was found that
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BatchNorm helps to create a smoother optimization landscape [202]. Such
a smoother optimization landscape mitigates flat regions, or sharp minima
typically found in deep neural networks [138] and reduces the sensitivity of
SGD based optimization methods to hyperparameters. We make frequent use
of BatchNorm in nearly all deep neural networks trained by us in our work.

The idea behind BatchNorm is that the inputs are normalized by subtract-
ing their mean and dividing by their standard deviation. Both are estimated
based on the current batch. Next, a learnable scale coefficient and offset are
applied to the normalized inputs:

batchnorm(𝑥) = 𝛾 ⊙ 𝑥 − �𝐵
𝛿𝐵

+ 𝛽. (2.9)

Here, 𝑥 is the input batch, while �𝐵, 𝛿𝐵, 𝛾, and 𝛽 denote the mean of the batch,
the standard deviation of the batch, the learnable scale coefficient, and the
learnable offset, respectively.

While BatchNorm is an effective method to train deep neural networks,
it suffers from its dependence on the size of a batch during training. Batch-
Norm is only effective if a network is trained with a large batch size. However,
large neural networks and limited available memory render it challenging to
use BatchNorm in every case. Group normalization (GroupNorm) [245]
mitigates the dependence on the batch size while still allowing the same
benefits of BatchNorm. GroupNorm not based on the size of the batch,
but rather on the number of channels of a tensor. For normalization, Group-
Norm divides the channels of a tensor into groups and computes the mean
and variance for normalization within each group. In section 3.6.2 we make
use of GroupNorm to train our models for the recognition of scene text.

Although BatchNorm and its variants perform very well, recent work
argues that a reparameterization of the weights could already be enough
to achieve the benefits of normalization layers for the training of very deep
neural networks [47].

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are one of the most used kinds
of deep neural networks in the area of computer vision. They have been
proven to be very effective in a multitude of application scenarios; by showing
impressive performance in the recognition of handwritten digits [68], image
classification [94, 136, 252], object detection [93, 194, 195], and OCR [111, 112,
114, 141]. A CNN is a hierarchical, multi-layer neural network characterized
by three essential factors: local connectivity, weight sharing, and pooling. In
the following, we introduce each of the essential factors of CNNs. We provide
a structural overview of a CNN in figure 2.4.
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Figure 2.4: Illustration of a CNN, which is based on the AlexNet architec-
ture [136]. It consumes an RGB image and runs the image and extracted
features through multiple convolution and pooling operations followed by
two fully connected layers. Each label denotes the name of the layer and the
size of the feature map, e.g., number of channels × height × width. The 9 neurons
of the last layer can be interpreted as a classification result. In this example,
the neural network could be used for the classification of documents.

Local Connectivity When dealing with high-dimensional inputs, such as
images, a MLP would need to optimize millions of parameters, e.g., a network
that analyzes images of size 256 × 256, containing one hidden layer with 1000
neurons, and an output layer with two neurons, consists of 256× 256× 1000+
1000+ 1000× 2+ 2 = 65, 539, 002 parameters, which might be very difficult to
optimize. In a CNN, each neuron is only connected to a small neighboring
sub-region of the input, which reduces the number of parameters to optimize.
Such a connection is accomplished by learning a small kernel of weights. The
size of the kernel is also referred to as the receptive field and is mostly small,
e.g., 3 × 3 for convolutions in the famous ResNet [94] architecture. In a CNN
the local neighborhood of an input is convolved with the learnable kernel. In
the case of applying a CNN to a two-dimensional image at location 𝑥, 𝑦 this
can be written as:

conv(𝑥, 𝑦, 𝐾, 𝐼) = (𝐾 ∗ 𝐼)(𝑥, 𝑦) =
∑
𝑚

∑
𝑛

𝐼(𝑥 − 𝑚, 𝑦 − 𝑛)𝐾(𝑚, 𝑛). (2.10)

Where ∗ denotes the convolution operation between the input image 𝐼 and the
kernel 𝐾; 𝑚 and 𝑛 denote the kernel width and height, respectively. When
applied in a neural network the result of the convolution operation for each
channel 𝑖 of the input is summed and shifted by a learnable bias 𝑏, thus the
resulting feature map 𝑜 at location 𝑥, 𝑦 of a convolutional layer for kernel 𝑗 is
defined as:

𝑜(𝑥, 𝑦)𝑗 =
∑
𝑖

conv(𝑥, 𝑦, 𝐾 𝑗𝑖 , 𝐼𝑖) + 𝑏 𝑗 . (2.11)
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Figure 2.5: Pooling is an essential operation in CNNs. Here, we depict the
result of max pooling and average pooling on two tensors, both using a 2 × 2
pooling width. On the one hand, we can observe that max-pooling only keeps
the strongest responses of the feature map. Further, max-pooling makes the
response translation-invariant to a certain extent, as we can observe in the
feature map on the right side, a right-shifted version of the feature map on
the left.

The learnable kernel 𝐾 and the bias 𝑏 form the learnable parameters of a CNN
and are denoted as filter.

Weight Sharing Another feature of a CNN is that the weights of a learnable
kernel are shared across the entire input. Weight sharing stands in contrast
to MLPs where each weight is used only once. Each filter is replicated
across all image subregions, forcing the network to learn generalized data
representations. Furthermore, this allows a CNN to be position-independent.

Pooling The third factor is pooling, which may follow after a convolutional
layer. Pooling is an operation that summarizes the output of several neigh-
boring neurons. The benefits of using pooling are twofold: On the one hand,
pooling reduces the dimensionality of feature maps, reducing the number of
required operations in later layers and allows efficient use of memory. On the
other hand, pooling helps to make learned representations invariant to small
input translations. A widely used pooling operation in CNNs is max pooling,
which we also showcase in figure 2.5. Max pooling only keeps the activation
value of the neuron in the neighborhood with the maximum value. Another
widely used pooling method is average pooling, where the operation’s output
is the average of the activations of all neurons in the neighborhood.

We can now see that all properties of a CNN help us to reduce the number of
learnable parameters. Following our example from above we see that a CNN
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with two layers would consist of 3×3×1000+1000+3×3×1000×2+2 = 28, 002
parameters, which are much less parameters compared to a similar MLP.

2.2.3 Spatial Transformer

In the following, we introduce other advanced concepts used in deep neural
networks that we use throughout our work. In this section, we introduce
the concept of spatial transformers [113], a method we rely on in our work
presented in chapter 3.

A spatial transformer is a differentiable image transformation method. It
can be used for rectification or the modeling of attention. A spatial transformer
is a module of a deep neural network and should not be confused with a
Transformer that we introduce in section 2.2.5. A spatial transformer is a
combination of three parts. First, a deep neural network, denoted here as
localization network, predicts parameters of a spatial transformation that is
to be applied to the input features. The second part uses these parameters to
create a regular grid of sampling coordinates. Last, the predicted sampling
coordinates are used by a differentiable sampling method to rectify the input
features based on the predicted sampling coordinates. In the following, we
introduce each of these components.

2.2.3.1 Localization Network
The first component takes the input features 𝐼 ∈ R𝐶×𝐻×𝑊 , with 𝐶 channels,
height 𝐻, and width 𝑊 . It regresses the parameters � of a transformation
that is to be applied to the input features. The localization network, denoted
as 𝑓loc, may be an arbitrary neural network. The amount of parameters in �
depend on the type of the transformation to be applied to the input features
𝐼. One example of a transformation could be an affine transformation. An
affine transformation consists of six parameters, thus the localization network
regresses the 6 parameters of an affine transformation matrix 𝐴�:

𝐴� =

[
�1 �2 �3
�4 �5 �6

]
. (2.12)

The transformations may have any form as long as the applied transformation
is differentiable with respect to its parameters. Calculating the gradients
with respect to the transformation parameters allows gradients to flow to
the localization network, enabling the network to learn to predict the correct
transformation parameters.

2.2.3.2 Grid Generator
A successful transformation of the input features requires each pixel of the
feature to be mapped to a location in the output feature. A parameterized
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I O I O

Figure 2.6: Two example applications of sampling grids to an input image
𝐼 and the resulting output 𝑂. The sampling grid on the left represents an
identity transform, while the sampling grid on the right represents a warping
operation with an affine transformation. The solid colored dots represent
matching corners. Image reproduced and adapted from [113].

sampling grid is created in the grid generator to map the input to the output.
Here, we apply the predicted transformation of the last step to a regularly
spaced grid 𝐺 ∈ R𝐻𝑜×𝑊𝑜 . 𝐻𝑜 and𝑊𝑜 denote the number of sampling locations
in height and width, respectively. All in all, the grid contains 𝐻𝑜 and 𝑊𝑜

evenly spaced numbers over the interval [−1, 1]. The regular sampling grid is
now multiplied with the predicted transformation matrix resulting in the new
sampling grid 𝐺sample, which is a set of two-dimensional sampling locations
(𝑢𝑖 , 𝑣 𝑗) with 𝑖 ∈ [0, . . . ,𝑊𝑜] and 𝑗 ∈ [0, . . . , 𝐻𝑜]. Let us assume that our
localization network predicts an affine transformation matrix 𝐴� as shown in
equation 2.12. Let us further assume that the components of 𝐺 are denoted as
(𝑥𝑖 , 𝑦𝑗), then we can determine our sampling locations 𝑢𝑖 , 𝑣 𝑗 as:(

𝑢𝑖
𝑣𝑖

)
= 𝐴�

©«
𝑥𝑖
𝑦 𝑗
1

ª®¬ =
[
�1 �2 �3
�4 �5 �6

] ©«
𝑥𝑖
𝑦 𝑗
1

ª®¬ . (2.13)

We display the effect of the described transformation in figure 2.6.

2.2.3.3 Image Sampler
The last component of a spatial transformer is the image sampler. The image
sampler takes a set of sampling coordinates as described above and applies
a differentiable sampling mechanism on the input features 𝐼 to generate the
output features 𝑂.

To obtain the output feature, we now apply a generic sampling kernel
function 𝑘, e.g., bilinear sampling, at each location (𝑢𝑖 , 𝑣 𝑗) of the input feature
map 𝐼. Please note that this sampling is applied identically to all channels to
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preserve spatial consistency between channels. If we assume that we use bilin-
ear interpolation as our kernel function 𝑘, our differentiable image sampling
procedure to determine the pixels of the output features 𝑂 ∈ R𝐶×𝐻𝑜×𝑊𝑜 can
be defined as:

𝑂ij =

𝐻∑
ℎ

𝑊∑
𝑤

𝐼hwmax(0, 1 − |𝑢𝑖 − ℎ |)max(0, 1 − |𝑣 𝑗 − 𝑤 |). (2.14)

This formulation of sampling is differentiable with respect to the sampling
coordinates 𝑢𝑖 and 𝑣 𝑗 , as well as the input features 𝐼; hence it is possible to use
spatial transformers at arbitrary locations of a deep neural network.

2.2.4 Recurrent Neural Networks

The next concept we wish to introduce are recurrent neural networks (RNNs).
RNNs can be thought of as neural networks with a loop. Naturally, they are
very well suited for the modeling of sequences of arbitrary length. In our
work, we make use of RNNs for the modeling of input and output sequences.
RNNs are beneficial for the task of text recognition. In the following, we are
going to introduce the main ideas and concepts of RNNs and the specific
kind of RNN that we use in our experiments.

2.2.4.1 Vanilla RNNs
As already stated above, RNNs are neural networks with a loop. This loop
makes it possible to run a function with the same parameters an arbitrary
amount of times. A recurrent layer consists of an input 𝑖𝑡 at time step 𝑡, a
connection from its own computed output to itself (the hidden state) ℎ𝑡 and
an output 𝑜𝑡 . The output 𝑜𝑡 at time step 𝑡 directly depends on the output of
the last output, i.e., the hidden state ℎ𝑡 , the input 𝑖𝑡 and the parameters of the
RNN:

𝑜𝑡 = 𝜎(𝑊outputℎ𝑡 + 𝑏output),with (2.15)
ℎ𝑡 = 𝜎(rnn(𝑖𝑡 , ℎ𝑡−1)), and (2.16)

rnn(𝑖 , ℎ) =𝑊hiddenℎ +𝑊input𝑖 + 𝑏hidden. (2.17)

The parameters of the RNN consist of three learnable weight matrices
(𝑊output ,𝑊hidden ,𝑊input) and two bias terms (𝑏output , 𝑏hidden). 𝜎 denotes a non-
linear activation function, e.g., tanh.

We can apply this function an arbitrary amount of times on the same or
different inputs 𝑥. However, applying the function an arbitrary amount of time
leads to a problem with the backpropagation algorithm. Backpropagation
requires the computational graph created by the application of individual
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Figure 2.7: The computational graph of a RNN is a directed cyclic graph
(left side). The loop needs to be unrolled (right side) to enable usage of the
backpropagation algorithm. The unrolled graph also clearly shows that the
involved learnable weights 𝑤input, 𝑤hidden and 𝑤output are reused at each time
step of the RNN. The colors correspond to the weight matrices, as indicated
in the legend.

functions to be directed and acyclic. A directed acyclic graph is required
because otherwise the calculation of gradients would be ambiguous, i.e., the
output of a function would not be well defined because it would not be clear
how often we ran through the loop. The computational graph created by a
RNN is cyclic; thus, a trick is necessary to use an RNN when training with
backpropagation. The trick is to unfold the cyclic graph into an acyclic graph.
We can unfold the computational graph since we can directly quantify the
number of times we looped through a part of the network. We provide a
graphical representation of this process in figure 2.7.

2.2.4.2 Long Short-Term Memory
RNNs are powerful models for learning to process sequences of data. However,
when modeling long sequences, they heavily suffer from the vanishing or
exploding gradient problem [100]. In a vanilla RNN gradients vanish or
explode because elements of the weight matrices are reused and multiplied
with the hidden state repeatedly. If a value of the weight matrix is lower than
|1.0|, the gradients will start to vanish as they get smaller with every time step.
If a value is larger than |1.0|, the gradients will explode as their magnitude
increases with each time step.

Possible mitigation strategies for the vanishing gradient problem can be to
add shortcut connections to earlier time steps [146]. Another approach is to
use a different RNN design that allows free flow of the gradients from one
time step to another. The long short-term memory (LSTM) model [99] enables
such a free flow of gradients. In a LSTM, an extra hidden state is added.
This extra state, called the cell state 𝑐, is not multiplied with any learnable
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and reused weights. Thus, the gradients can not vanish anymore. A LSTM
further consists of extra learnable connections, the so called gates. The gates
control whether parts of the internal state of the LSTM shall be forgotten, the
influence of the current input and hidden state on the new cell state, and how
much information of the cell state is used for the new hidden state, which is
also the output of a LSTM. We provide a schematic overview of a LSTM unit
in figure 2.8.

The first gate, the forget gate, takes the concatenation of hidden state and
input vector as input and puts it through a fully connected layer with sigmoid
( 𝑓𝑡)activation. This gate aims to determine the parts of the cell state that are
not necessary for further processing and can thus be forgotten. The second
gate, the input gate, consists of two parts. Here the concatenation of input and
hidden state is routed through two fully connected layers, activated with the
sigmoid (𝑖𝑡) and tanh (𝑐𝑡) functions, respectively. The sigmoid activated layer
is used to decide which parts of the input vector are to be stored in the cell
state, while the tanh activated layer shifts the input to the domain of the cell
state. The result of both layers is multiplied elementwise and added to the cell
state. The last gate, the output gate, is used to filter the content of the current
cell state. Here, we use a fully connected layer with sigmoid (𝑜𝑡) activation to
decide what parts of the cell state are used as the output of our LSTM at the
current time step. More formally, we can write:

𝑥𝑡 = concatenate(ℎ𝑡−1 , 𝑥𝑡), (2.18)
𝑓𝑡 = 𝜎(𝑊𝑓 · 𝑥𝑡 + 𝑏 𝑓 ), (2.19)
𝑖𝑡 = 𝜎(𝑊𝑖 · 𝑥𝑡 + 𝑏𝑖), (2.20)
𝑐𝑡 = tanh(𝑊𝑐 · 𝑥𝑡 + 𝑏𝑐), (2.21)
𝑜𝑡 = 𝜎(𝑊𝑜 · 𝑥𝑡 + 𝑏𝑜), (2.22)
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡 , (2.23)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡). (2.24)

Here, concatenate denotes the concatenation operation of the input vector 𝑥 at
timestep 𝑡 with the hidden state ℎ at time step 𝑡 − 1. 𝑐 denotes the cell state at
the corresponding time steps, 𝜎 denotes the sigmoid activation function, and
⊙ denotes an elementwise multiplication.

We can see that the cell state is only updated through addition and ele-
mentwise multiplication with the outputs of fully connected layers. Thus, no
learnable weights are involved in updating the cell state, which allows gradient
information to flow with only minor changes down to the first timestep.
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Figure 2.8: A LSTM unit consists of multiple gates. Each gate controls changes
to the inner cell state 𝑐 and the hidden state ℎ, which is also the output of
a LSTM. The layer on the left is the forget gate that controls which parts of
the cell state shall be reset. The subsequent two gates form the input gate,
determining what information will be stored in the cell state. The last gate, the
output gate, determines the output of the LSTM. It is visible that the cell state
𝑐 is not directly involved in any neural computations. Thus, the vanishing
gradient problem is mitigated.

2.2.5 Transformer

RNNs and especially improvements of the original RNN model, e.g., LSTMs
are well established models for a range of approaches in sequence modeling,
such as machine translation [219], speech recognition [86], or image caption-
ing [230]. Although RNNs are very successful, certain design aspects of a
RNN lead to degraded performance. On the one hand, it is not possible to
parallelize the execution of a RNN because each state ℎ𝑡 depends on the last
state ℎ𝑡−1. Thus, it is not possible to compute the state ℎ𝑡+1 at the same time
as computing the state ℎ𝑡 . The missing ability to parallelize execution leads
to slow execution of RNNs for long sequences, where the available memory
limits the usage of these models. The sequential nature of RNNs also makes
it difficult for the model to learn learn dependencies between distant input
positions [133].

A solution to these problems is the transformer model [229]. A transformer
models sequences in parallel and is entirely based on attention mechanisms.
In the following, we are going to investigate the transformer architecture in
more detail.

The transformer is an encoder-decoder model where the encoder maps
a sequence of input representations 𝑥 ∈ R𝑛 to a sequence of intermediate
representations 𝑧 ∈ R𝑛 . Based on 𝑧, the decoder produces a sequence of
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Figure 2.9: The architecture of a transformer model. The encoder consists
of 𝑁 encoding blocks (left side). Each encoding block consists of a multi-
head self-attention layer and a MLP on top. The decoder also consists of
𝑁 decoding blocks (right side). Each decoding block consists of a masked
multi-head self-attention layer that only takes past timesteps into account. The
masked self-attention layer is followed by a multi-head attention layer that
takes the output of the encoder as input. The decoder guides the attention
of the multi-head attention layer. Last, a MLP produces the output of the
decoder, and this output is then transformed into a probability distribution
using a fully connected layer with softmax activation. Adapted from [229].
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outputs 𝑦 ∈ R𝑚 . Encoder and decoder may contain multiple stacks of encoder
or decoder blocks, as shown in figure 2.9.

Encoder and decoder model dependencies between distant input positions
by employing self attention. Self attention allows the neural network to decide
which parts of the input depend on each other. Thus, the transformer can
easily access information from previous and future parts of the sequence
without any barriers.

Attention in a transformer is modeled as multi-head scaled dot-product
attention. Scaled dot-product attention refers to an attention model that
computes an attention map, i.e., a matrix where the value of each element
indicates the importance of the feature map. The attention map is computed
by multiplying a query 𝑄, i.e., the volitional cue with a set of keys 𝐾, i.e., non-
volitional cues, followed by a scaling operation and application of a softmax
activation. The computed attention map is applied on the feature map, by
performing a weighted sum of the elements of the attention map with the
elements of the feature map:

Attention(𝑄, 𝐾,𝑉) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉. (2.25)

Here, 𝑉 denotes the feature map we want to attend to, and
√
𝑑𝑘 is the scaling

factor, with 𝑑𝑘 denoting the dimensionality of queries and keys. Both encoder
and decoder use scaled-dot product attention. However, the self-attention
layer in the decoder uses a masked version of this attention. The masked
version of scaled dot-product attention prevents the decoder from attending
to future elements of the sequence.

Multi-head attention refers to applying multiple different attention heads on
the same attention inputs (𝑄, 𝐾,𝑉). The authors of [229] found it beneficial to
project the inputs of the attention layer with multiple independent linear layers
and perform scaled dot-product attention on each of these projected versions.
The results of each application of attention are concatenated and projected to
a resulting feature map. The usage of multi-head attention allows the model
to attend to multiple representations of the same input simultaneously.

Following multi-head attention, layer normalization [15], another form
of normalization, which is similar to batch normalization (section 2.2.1.5)
and a residual connection [94], enabling faster and more stable learning are
employed. At the end of each block, the transformer employs a fully connected
linear projection of the attended feature maps.

The inputs to a transformer need to be embedded. Inputs could be embed-
ded using a CNN or a learned word/character embedding, such as GloVe
embeddings [185]. Additionally to the embedding of each input of the se-
quence, the position of each sequence item needs to be known. To achieve this,
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Figure 2.10: Depiction of the general structure of a GAN. A generator generates
an image based on a randomized latent input vector. The generator is trained
by a discriminator, who tries to determine whether a given input image is a
real image or if the generator generated it.

a positional encoding (𝑃𝐸) based on sine and cosine functions of different
frequencies is employed:

PE(pos,2𝑖) = sin(
pos

100002𝑖/𝑑model
), (2.26)

PE(pos,2𝑖+1) = cos(
pos

100002𝑖/𝑑model
). (2.27)

Here, pos denotes the position of an item in the sequence, and 𝑖 denotes
the dimension of the embedded input. This embedding function was chosen
in [229] because it might allow the model to learn to attend by relative positions
and because it might allow the model to extrapolate to sequence lengths not
encountered during training.

In our work, we make use of the transformer model for the recognition of
text in chapter 3. There, we also show that a transformer can be trained to
propose regions of interest in an image in a weakly supervised way.

2.2.6 Generative Adversarial Networks

In the previous sections, we introduced a range of building blocks and concepts
of deep neural networks. These concepts are mainly used in a discriminative
manner, i.e., mapping an input to a class label. In the following, we will
introduce a different kind of neural network model: generative adversarial
networks (GANs). GANs are a class of deep generative models whose ob-
jective is not the discrimination of values but rather the synthesis of new
data. Learning to synthesize new data could be an excellent alternative to
reduce the manual labeling burden while creating new training datasets for
supervised machine learning methods. Hence we make heavy use of GANs
in section 4.4 and section 4.5.
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GANs were introduced by Goodfellow et al. [84] and describe a deep
generative model based on two deep neural networks that are trained using
the backpropagation algorithm. The two neural networks involved in a GAN
behave as adversaries. The first model, the generator, tries to synthesize data
as close as possible to real data. More formally, we could say that the generator
tries to learn the distribution 𝑝data over the real data items 𝑥. The generator
models the distribution 𝑝generator by training a deep neural network 𝐺 to
perform a mapping from a vector of latent noise 𝑧 to the space of the real data.
The latent noise vector 𝑧 is typically drawn from a well-defined probability
distribution 𝑝𝑧 , e.g., a normal distribution with mean 0 and fixed variance for
each model. The objective of the generator is to synthesize samples whose
distribution 𝑝generator is as close as possible to the real distribution 𝑝data. The
second model, the discriminator, tries to discriminate whether a given sample
belongs to the real data distribution 𝑝data, or whether it was generated by
the trained generator 𝐺. The discriminator is also defined as a deep neural
network 𝐷 that produces a single scalar value. During training, both models
constantly compete against each other. While the discriminator improves
in discriminating where a given sample belongs, the generator uses the
knowledge of the discriminator to fool the discriminator, which forces the
discriminator to improve again. We could also say that 𝐷 and 𝐺 play an
adversarial minimax game with the following value function:

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = E𝑥∼𝑝data[log(𝐷(𝑥))] + E𝑧∼𝑝𝑧 [log(1 − 𝐷(𝐺(𝑧)))]. (2.28)

In the end, the training objective of the discriminator is to produce a maximum
output if the input belongs to the data distribution 𝑝data and to produce a
minimal output if the input belongs to the learned distribution 𝑝generator of the
generator. At the same time, the generator tries to generate samples that fool
the discriminator, i.e., maximize the output of the discriminator. Under the
assumption that the discriminator 𝐷 is a perfect discriminator, the generator
will eventually converge to the real data distribution, so that 𝑝generator = 𝑝data.
Then the discriminator will not be able to discriminate between the output
of the generator and the real samples, i.e., 𝐷(𝑥) = 1

2 . The neural networks
involved in this adversarial game can be of arbitrary type; we provide a
structural overview of a GAN in figure 2.10.

This formulation of an adversarial training shows great potential for image
synthesis. Based on this inital formulation a wealth of other work has been pro-
posed [11, 46, 110, 129, 171]. However, GANs suffer from a range of problems.
Training of a GAN can be highly unstable. The gradient obtained when using
the backpropagation algorithm on the formulation in equation 2.28 leads to
unstable training [12], which can be mitigated by using different objective
functions [11] that provide meaningful gradient information everywhere.
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Another problem is the problem of mode collapse. If a generator experiences
mode collapse, the samples generated by a GAN only fall into a single or
a set of a few possible modes, i.e., the generated samples are not diverse.
Possible mitigation strategies are the addition of extra guidance networks that
take the same input as the discriminator does and provide guidance on a
manifold level [21], by making the generation of images class conditional and
adding a classifier [201]. Furthermore, utilizing normalization methods found
in the area of neural style transfer [74, 129] help to mitigate the mode collapse
problem.

The initial formulation of GANs only allowed the generation of low-
resolution images. With advances solving the problems mentioned above,
new training mechanisms and network architectures emerged that allow the
generation of high-resolution images of high perceptual quality [46, 127, 129].
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Detection and Recognition

In this chapter, we examine a possible strategy to lower the annotation cost
for machine learning by using only a fraction of the typically required ground
truth annotations while examing a use case of weak supervision and data
synthesis in the field of scene text detection and recognition. In this chaper,
we introduce our approach for data synthesis for the training of high-accuracy
scene text recognition models. We also introduce a weakly supervised ap-
proach for end-to-end scene text recognition. Our approach simultaneously
detects and recognizes scene text and is based on inexact weakly supervised
learning because only textual labels are supplied but no annotations for the
location of text. Parts of this chapter have been elaborated in the following
publications: [22, 31, 32, 249].

3.1 Motivation

The term scene text describes text that we can find on, e.g., photos, or videos
of natural scenes. Thanks to the widespread adoption of smartphones, the
usage of 360-degree cameras, or the mapping of the world in projects such as
Google Streetview,1 nowadays billions of images with the potential to contain
scene text are available. The vast amount of available images forbids manual
examination by humans. On the one hand, a manual examination would be
very costly, while on the other hand, it would take a significant amount of
time. Hence, automated methods to analyze text in scene images are necessary.
The automated analysis of scene text allows for a range of applications, e.g.,
support of navigational systems, content-based image retrieval, image-based
machine translation, or as support for visually impaired people.

The development of accurate and robust scene text detection and recogni-
tion systems has been a widely researched challenge over several years [114,
178, 179, 206, 209, 211]. However, the development of accurate and robust
localization and recognition of scene text is still a challenging task.

Looking at examples of scene text shown in figure 3.1, we can see why
accurate and robust localization and recognition of scene text is a challenging

1https://www.google.com/streetview/ (last accessed August 31, 2021).
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Figure 3.1: Depiction of typical examples of scene text found in real-world
images. The text is embedded into the natural scene, inhibiting challenging
properties such as challenging scene layouts (left and right), as well as curved
text instances (middle).

task. Scene text appears in various forms. Scene text can be written in a
multitude of fonts and languages. Scene text can be heavily distorted; such
distortions include geometric distortions due to a manifold of view angles,
blurred text due to camera movements, or prolonged exposure times, and
reflections due to uncontrollable lighting conditions. Furthermore, as scene
text occurs in natural scenes, backgrounds can be challenging, making it
difficult to localize and recognize text. The challenging properties of scene
text forbid the use of methods for the analysis of printed text as already
discussed in section 2.1.2. Hence, novel approaches need to be developed.
While in the “early” days methods based on handcrafted features, such as
stroke width transforms (SWTs) [75], or histogram of oriented gradients
(HOGs) together with support vector machine (SVM) classifiers [172, 250]
were dominant, nowadays methods based on deep learning dominate the
field of scene text detection and localization. Especially advances in the field
of attention modelling [17], semantic segmentation [93] and the synthesis of
training data [112] pushed the state-of-the-art significantly. Based on early
results in the synthesis of training data, we developed a data synthesis pipeline
for the training of our first scene text recognition models (see section 3.5)
Nowadays, the usage of synthetic training data for the recognition of scene text
is standard practice. However, although synthetic data sets for the localization
of scene text are available [90], challenging datasets without localization
annotations, but annotations for the recognition of textual content are available,
e.g., [215]. In this chapter, we introduce an end-to-end scene text recognition
method that provides the textual content of a given scene image and the
location of the text in the image simultaneously. So far, related work focused
on either solving one or both scene text recognition tasks using fully annotated
training data. Our method stands in contrast to related work because it is able
to deliver not only the recognition result but also the location of individual
words or characters without the need for any annotations of word locations.
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Figure 3.2: Our proposed pipeline can be used for two scene text related tasks.
On the one hand, we can use our proposed pipeline for end-to-end scene
text recognition (top). On the other hand, we can use our proposed pipeline
for the task of scene text recognition on cropped word images (bottom). No
changes in the network architecture are necessary for the change from one
task to another.

Thus, our proposed method allows to reduce the amount of manual work
required to annotate the training data for scene text recognition models. Please
refer to figure 3.2 for a brief visual introduction of our proposed method.

Our model performs both tasks simultaneously and is trained solely under
the supervision of the recognition part. The localization part is trained in a
weakly supervised fashion, enabling us to learn to localize text without the
need for localization annotations. Our proposed model can also be used for
a multitude of scene text-related tasks, not only for end-to-end scene text
detection and recognition. The model also shows highly accurate and robust
results when used only for scene text recognition.
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Figure 3.3: Depiction of examples of scene text found in real-world images.
(Top) Three examples of full images containing scene text. Such images are
used as input to a scene text detection network. The example images contain
a wide variety of scene text. The image on the right contains an example
of axis-aligned scene text. The image in the middle contains an example of
curved scene text that is annotated using a polygon. The image on the left side
contains a wide variety of challenging scene text examples. (Bottom) Examples
of cropped word images that are used as input for the task of scene text
recognition.

3.2 Scene Text Detection vs. Scene Text Recognition

Scene text detection describes the task of detecting or localizing text in a given
image, while scene text recognition only describes the task of recognizing the
textual content of already localized text regions, see figure 3.3 for a visual
comparison. Localization is essential because it is necessary first to determine
whether an image contains any text before further costly analysis steps are
performed. Localized text regions can be represented in a multitude of ways. In
its most simple form, a text region is represented as a 4-tuple, a bounding box,
stating the 𝑥 and 𝑦 coordinates of the left upper corner and the width 𝑤 and
height ℎ of a box that fully encloses the text: (𝑥, 𝑦, 𝑤, ℎ). Such an axis-aligned
box can be used to represent text regions in a given image. However, as soon
as the text itself is not axis aligned anymore, e.g., rotated or sheared, an axis-
aligned bounding box is not the best representational choice anymore because
the text region might contain too much background, which distracts the text
recognition algorithm. Here, a bounding box could be represented by a set of
four 2-tuples, each 2-tuple representing the 𝑥 and 𝑦 coordinate of a corner of
the box, e.g., [(𝑥left , 𝑦top), (𝑥right , 𝑦top), (𝑥right , 𝑦bottom), (𝑥left , 𝑦bottom)]. If the text
is written in a format that can not directly be approximated by a bounding box,
pixel-wise segmentation can be used to get a good approximation of the texts’
shape. Such a pixel-wise segmentation may be represented as a pixel-wise
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mask of boolean values, where True indicates a text region and False indicates
background.

Scene text recognition directly operates on the image content of the localized
text regions. Therefore, scene text recognition depends on the task of scene
text detection. However, both tasks can be handled individually in evaluation
and development since they do not share many properties. While scene
text detection deals with the localization of text regions in a large image,
scene text recognition deals only with recognizing textual content. No further
localization is necessary. Even our proposed method for end-to-end scene text
detection and recognition relies on solving both tasks individually. However,
we use the knowledge and requirements of the recognition stage of our model
to train the localization and recognition stage jointly.

3.3 Related Work

The field of scene text detection and recognition has been researched for many
years [160]. During this time, many approaches were introduced and advanced
the state-of-the-art further and further. While, in the beginning, classical
computer vision methods based on handcrafted features dominated [75, 235],
nowadays methods based on deep neural networks dominate the research
in the areas of scene text detection and recognition [141, 253]. In this section,
we introduce and discuss related work in scene text detection and scene text
recognition. While we introduce early approaches using handcrafted features,
our primary focus lies on related work using deep neural networks as we use
in our work. First, we examine related work in the area of scene text detection,
then we examine the area of scene text recognition, and last, we provide an
overview of related end-to-end systems.

3.3.1 Scene Text Detection

Early scene text detection methods based the overall approach of text local-
ization on well-known steps of existing approaches employed for printed text
localization and recognition. In [59], for instance, Chen and Yuille used a set of
derivative features and an ensemble of classifiers to localize possible regions
of text. These regions were then binarized and fed to an off-the-shelf optical
character recognition (OCR) tool for the recognition of printed text. Other
methods extract connected components, which represent individual charac-
ters, using methods such as maximally stable extremal regions (MSERs) [179],
or stroke width transforms [75] to predict a range of text region candidates.
In a subsequent step, these text region candidates are filtered by classifiers
and grouped into words. Further methods rely on multi-scale sliding window
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classifiers that identify possible text regions [234]. Early methods rely on the
researchers’ observations and manual fine-tuning of a range of hyperparame-
ters for each involved benchmark dataset. The required fine-tuning made it
challenging to adapt the approaches to other datasets, and manual feature
extraction became more complicated.

With the breakthrough of Krizhevsky et al. [136] in Imagenet classification,
research in the area of scene text adopted deep learning techniques more and
more.

Jaderberg et al. [114] build on the ideas of [239] by using a deeper convo-
lutional neural network (CNN) with maxout [85] activations for localization
of individual characters. They form lines using thresholding on an image of
the detector response. Regions are connected by keeping all regions where
characters are close to each other. Individual words are formed by using
thresholding on the extracted text line images. Connected components that
are close enough to each other are grouped into words. In [111] Jaderberg et al.
propose to use region proposal methods, as used in object detection [259]. The
proposed regions are filtered, and then a bounding box regression CNN is
used to adjust the proposed bounding boxes for individual words. Although
the described methods make use of deep learning, their overall procedure is
still quite complex and makes heavy use of carefully tuned approaches.

This changed with [90], where Gupta et al. introduced the first large-scale
synthetic dataset for the training of scene text detection models. To show
the suitability of their proposed dataset, they proposed a novel scene text
detection model based on the YOLO [194] object detector that directly predicts
bounding boxes of individual words and can be trained end-to-end on input
images with the corresponding word bounding boxes. From then on further
approaches consisting of only a single neural network for prediction of text
regions emerged [118, 224].

Following this, attention of research shifted to examining more complicated
forms of scene text, mainly oriented scene text, where words are not axis
aligned anymore, but rather rotated in arbitrary ways [142, 144, 151, 152,
153, 162, 206, 256]. Here, the basic idea of the approaches stayed the same:
using a single neural network to predict text regions directly. However, these
approaches predict oriented bounding boxes, as indicated in section 3.2
instead of axis-aligned bounding boxes. The used network architectures are
based on state-of-the-art object detection networks [149, 194, 195] and contain
text specific enhancements that compensate the differences between arbitrary
object detection and text detection.

The most current approaches for scene text detection focus on curved text
examples. Such curved text regions can not be approximated by a single
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rectangle, thus the approaches shifted to the prediction of polygons [141, 240]
and semantic segmentation maps [16, 61].

All of the current approaches are trained in a fully supervised fashion.
Groundtruth for axis-aligned bounding boxes and oriented bounding boxes is
obtained by human annotations or synthetic data [90]. However, the ground
truth for approaches based on polygons and semantic segmentation maps
is always annotated by humans, making these approaches very costly. The
objective of our work is to find a way to circumvent the necessity of human-
annotated text locations in images. Although our proposed approach is not
directly comparable and able to compete with state-of-the-art text detection
methods directly, we show that approaches similar to ours are viable and
might alleviate the need for human annotations in the future for further
applications on data not represented by the available data.

3.3.2 Scene Text Recognition

The field of scene text recognition followed a similar development path as
the field of scene text detection. Early approaches based on the extraction of
handcrafted features proposed a system for scene text detection and recog-
nition most of the time. With the rise of deep learning, researchers began to
concentrate on each task individually. Early approaches recognized the textual
content of found words by recognizing each character individually. In [235]
Wang et al. propose a method that uses HOG features for localization and
recognition of individual characters. Neuman and Matas [179] localize single
characters using MSERs. Characters are recognized using a SVM on direc-
tional features. Mishra et al. [172] recognize individual characters using sliding
window character detectors and a recognition model based on a conditional
random field (CRF) and dictionary post-processing. Wang et al. [238] use a
sliding window detector together with a random fern classifier. Yao et al. [250]
propose to learn to extract strokes of individual characters. The extracted
strokes are then used as features for character classification with 62 individual
SVMs. These approaches use handcrafted features and complex pre- and
post-processing techniques to recognize individual characters. Furthermore,
many parameters have to be tuned by hand, and these proposed methods
tend not to generalize well.

Bissacco et al. [41] propose one of a set of scene text recognition approaches
that lie on the edge of using handcrafted features and deep features. They make
use of handcrafted features, e.g., HOG features, to segment identified text lines
into single characters. They then recognize each character individually using a
multilayer perceptron (MLP). Wang et al. [238] use a CNN for the recognition
of single centered characters, which were found before by using sliding a
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CNN character detector over the entire image. Jaderberg et al. [114] propose to
use a deeper CNN for character recognition. These approaches only work on
individual characters and highly depend on the accurate localization of a single
character because they are not robust enough to correctly deal with misaligned
character predictions. In our experiments on scene text recognition, our model
also tries to extract single characters. However, these extracted characters do
not need to be centered, making our model very robust.

Later Goodfellow et al. [83] proposed a CNN that takes a cropped house
number image as input and directly predicts the textual content without
further segmentation into individual characters. Their proposed CNN consists
of five classifiers, where the first four classifiers predict single digits and the
last classifier predicts the number of digits in the input image. Jaderberg et

al. [112] extended this to unconstrained text recognition, by using 23 individual
classifiers. Furthermore, Jaderberg et al. proposed a network with a classifier
with more than 90 000 classes, i.e., all words found in a dictionary, that directly
predicts the word in the image. Based on these ideas further approaches by
He et al. [95] and Shi et al. [207] propose to use a recurrent neural network on
top of the CNN to predict the textual content of the word image. In our work,
we also use a CNN with a sequence model to predict the textual content of a
word image. However, we propose to use a transformer instead of recurrent
models such as long short-term memorys (LSTMs).

The overall idea of a CNN based feature extractor with a sequence model
for recognition has since then been extended by various other methods [140,
141, 143, 150, 208, 209, 237, 253]. Further developments mainly concentrate on
integrating attention mechanisms or mechanisms to rectify the given word
crops to enable better recognition accuracy.

In [150] Liu et al. propose a network architecture that includes a spatial
transformer, which is used to find and rectify individual characters. This work
is similar to ours. However, we do not use the spatial transformer only for rec-
tification, but rather in various ways, i.e., text detection or character cropping.
Further methods utilize a spatial transformer network for rectification [208,
209, 253]. All of these methods first rectify the word image using a predicted
thin-plate spline transformation. In [253], Zhan et al. apply multiple thin-plate
spline transformations before the rectified result image is passed to the actual
recognition part of the network. Shi et al. [208, 209] further utilize an attention
guided recurrent neural network for the prediction of character classes. Our
work is inspired by [208]. However, we go a step further and utilize the spatial
transformer in multiple ways for multiple tasks with a single and simple
network architecture. Another approach that tries to rectify the word image
was introduced by Luo et al. [161]. They do not use a spatial transformer for
rectification. Instead, they predict an offset map applied to each pixel, thus

42



3.3 Related Work

rectifying the word image. Cheng et al. [60] propose a network architecture
that deals with arbitrary rotated text lines. Another approach using attention
without explicit rectification was proposed by Liao et al. [141]. They propose to
use an attention-guided recurrent neural network on two-dimensional feature
maps.

Other approaches require information about the location of each character
in the word image during training. Wang et al. [237] propose to use to use
a convolutional LSTM [211] with attention as recurrent network for char-
acter prediction. The proposed attention mechanism is guided by location
predictions of the center of each character, which are learned in a supervised
way. Lia et al. [143] cast the problem of text recognition as a semantic seg-
mentation problem. They predict the location and class of each character.
Both approaches require annotated character bounding boxes during training.
Annotations for each character are simple to obtain when using synthetic data
but very costly when training on real data or adapting the approach to real
data.

The work that is closest to ours in the area of pure scene text recognition is
the work of Wang et al. [236]. They use a single convolutional feature extractor
and the decoder part of a transformer (see section 2.2.5) to predict the textual
content of a word image. We extend this idea and produce better-focused
inputs to the transformer using a spatial transformer (see section 2.2.3).

3.3.3 End-to-End Systems

Until now, we presented systems for scene text recognition that solve each
of the two tasks (scene text detection and scene text recognition) using two
distinct approaches. Here, we focus on systems that consist of a single neural
network to perform end-to-end scene text recognition. Smith et al. [215] propose
a single neural network for the recognition of text on street signs. They use
a convolutional feature extractor together with a stack of LSTMs for the
extraction of textual content from individual text lines. Wojna et al. [244]
propose another single neural network for the recognition of text on street
signs. Their network utilizes a convolutional feature extractor and produces
character outputs using a spatial attention mechanism. Both approaches can
transcribe the textual content of a given scene text image. However, they can
only produce the textual content, not the location of the text in the image.

A system for the prediction of textual content and the location of words
was introduced by Li et al. [139]. The system first extracts features using
a convolutional feature extractor. Based on the features, text proposals are
generated. The text proposals are used by a text detection network that
also refines the text proposals, which are then pooled and used as input to
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the text recognition sub-network. The whole system is trained end-to-end
using annotations for the textual content and bounding boxes of the text. A
similar system was proposed by Liu et al. [151]. Their system also consists
of a single neural network that predicts the location and content of words
in an input image. The network consists of a convolutional feature extractor
whose extracted features are first fed to a text detection branch to predict text
locations. Second, the predicted location information is used to crop and rectify
identified text locations, which are then recognized using a text recognition
network. This system is also trained using annotations of text locations and
textual content, which stands in contrast to our proposed method, where
we only use textual annotations to train our model to predict locations and
content of words.

3.4 Datasets for Scene Text Recognition

Annotated data is of utmost importance for research in the area of scene
text detection and recognition. As annotated data for training is a scarce
resource, most researchers use synthetic data to train their proposed systems.
At the same time, proposed systems are evaluated on annotated real-world
benchmark datasets. In this section, we briefly introduce commonly used
training datasets and all benchmark datasets that we evaluate our proposed
model.

3.4.1 Training Datasets

The first large-scale synthetic training dataset is called MJSynth and was
introduced by Jaderberg et al. [112]. The dataset consists of 9 000 000 images
containing 90 000 words drawn from a dictionary. The images are rendered
using 1400 different fonts. Furthermore, they are placed on different natural
background images and distorted. All images have a fixed height of 32 pixels
but variable width to account for varying aspect ratios. We also follow the
approach of Jaderberg et al. and synthesize another 8 000 000 samples using
our data synthesis tool described in section 3.5 and use this data for some of
our experiments. We provide some examples from these datasets in figure 3.4.

Another synthetic dataset that we use for the training of our proposed
method is the SynthText dataset by Gupta et al. [90]. This dataset consists of
800 000 images containing 8 000 000 words. The words are placed in plausible
locations with visually correct orientations and matching illumination prop-
erties on real scene images. Following related work, we extend the SynthText

dataset with 1 600 000 images from the SynthAdd dataset [140], which were
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Figure 3.4: Examples taken from the synthetic MJSynth [112] and the SynthText
dataset [90]. The top three rows show examples from the MJSynth dataset.
The MJSynth dataset contains only grayscale images rendered on several
backgrounds. The two bottom-most rows contain samples from the SynthText
dataset. The images are colorful and more challenging than the MJSynth
samples. However, only using all available training datasets leads to state-of-
the-art performance.

generated with the same generation tool as the images of the SynthText dataset.
We provide an example from the SynthText dataset in figure 3.4.

For our experiments on end-to-end scene text recognition, we utilize two
different datasets. On the one hand, we experiment on synthetic toy datasets
to illustrate the feasibility of our proposed approach. Our toy datasets are
based on the StreetView House Number (SVHN) [177]. Here, we create two
datasets. On the one hand, we create a regular dataset, where we place four
digits in a regular grid (see figure 3.5). On the other hand, we randomly
place individual house number images on a background (see figure 3.5). We
synthesize 110 000 images and split them into 100 000 images for training and
10 000 images for evaluation for each dataset, respectively.

Besides running experiments on synthetic toy datasets, we also train and
evaluate our model on the French Street Name Signs (FSNS) [215]. The FSNS
dataset contains images of street name signs from France. They were captured
from Google StreetView images. One sample contains up to four different
views of the same street name sign (see figure 3.6).

Each image is only annotated with the textual content of the street name
sign, namely the name of the street depicted in the image. The location of
each word is not annotated, making this dataset a perfect dataset for our
proposed method. All in all, the dataset consists of 1 081 422 images, which
are divided into 1 044 868 images for training, 16 150 images for validation
and 20 404 images for testing.
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Figure 3.5: Examples taken from our toy datasets. The first two images are
taken from the regular grid dataset and show how we placed house numbers
in a regular grid. The last two images are taken from the randomly placed
dataset. Here, we randomly placed house numbers on a single image with a
plain background.

Figure 3.6: Example images taken from the FSNS dataset. Each input image
consists of up to four views of the street sign. If four different views are not
available, the remaining views are filled with random noise (top-right image).
Many images contain blurred text (middle-left and bottom-left image), distractors
(middle-right image), or even street name signs displaying a different name
(bottom-right image).

3.4.2 Benchmark Datasets

In the following, we shortly introduce all benchmark datasets we use through-
out the experiments presented in this chapter.

For evaluation of our models for end-to-end scene text recognition, we use
the aforementioned FSNS dataset. For evaluation of our scene text recognition
models, we use a range of standard benchmark datasets. These benchmark
datasets were introduced throughout the years for several scene text recogni-
tion challenges.

The first dataset, we evaluate our proposed method on is the ICDAR 2013
(IC13) dataset [125]. The IC13 dataset consists of 1095 cropped word images
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of focused scene text. The images were captured using an ordinary digital
camera. For a fair comparison with other approaches, we remove all images
with non-alphanumeric characters, which leaves us with 1015 images. We
also use other datasets containing focused scene text for the evaluation of our
models. On the one hand, we use the IIIT5K-Words (IIIT5K) dataset [172],
which contains 3000 cropped word images that mostly contain horizontal
words images. However, some images also contain challenging curved text
examples. On the other hand, we use the Street View Text (SVT) dataset [239]
that consists of 647 cropped word images. These images contain horizontal
text lines. However, the quality of many images is severely degraded.

We also evaluate our models on more challenging datasets. The ICDAR
2015 (IC15) dataset [124] is a dataset that contains 2077 cropped word images
of incidentally captured scene text. Here, the text was captured using Google
Glass2 without the intent to capture text, hence the notion of incidental. Most
images are severely distorted or blurred. For a fair comparison, we evaluate
on the entire dataset, but also on the smaller ICDAR 2015-1811 (IC15-1811)
subset that only contains words with alphanumeric characters.

The last two datasets contain mostly perspectively distorted or curved text
samples. The Steet View Text Perspective (SVTP) dataset [191] contains 645
cropped word images. The images were collected from Google StreetView
and mostly contain word images with a high rate of distortions. The CUTE80
(CUTE) dataset [196] contains 288 cropped word images. The images are of
high visual quality. However, the dataset contains a large number of curved
text instances.

In figure 3.7 we provide examples for typical samples from each of the
introduced benchmark datasets.

3.5 Synthetic Data for Scene Text Detection and
Recognition

The training of a deep neural network requires a large amount of training
data since deep neural networks learn the function that they are supposed
to compute based on the available data. For image classification algorithms,
a general rule of thumb is that a supervised deep-learning algorithm will
achieve acceptable performance when trained from scratch with around 1000
labeled samples per category and even human-level performance with a
dataset having at least 100 000 labeled examples per category.3 If we were
to consider the task of scene text recognition as an image classification task

2https://www.google.com/glass/start/ (last accessed August 31, 2021).
3https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-
neural-network/ (last accessed August 31, 2021).
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Figure 3.7: Each row depicts typical samples from one of our benchmark
datasets for scene text recognition. The ordering of the datasets is as follows:
CUTE, ICDAR 2013, ICDAR 2015, IIIT5k Words, Street View Text, and Street
View Text Perspective.

with 95 categories, including the Latin alphabet in upper and lower case,
numbers, as well as a set of special characters, we would end with a total
required number of at least 95 × 5000 = 475000 samples to achieve acceptable
performance.

Most of the benchmark datasets for text recognition that we introduced
in section 3.4 include a set of images that can be used for the training of a
model. However, the size of these sets is limited, i.e., 229 training images in
the IC13 dataset, or 2000 training images in the IIIT5K dataset. The manual
annotation of additional images would be very costly. Therefore, Jaderberg et

al. [112] introduced the idea of an image synthesis pipeline to generate massive
amounts of synthetic training data. Although the dataset by Jaderberg et al.
already contains 9 000 000 images, the dataset does not include samples with
blurred text, reflections, and lighting artifacts, or special characters, such as
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Figure 3.8: Our proposed data synthesis pipeline consists of multiple steps.
First, we use a wordlist to determine the word to render. We render the selected
word using a randomly sampled font. We also randomly add a shadow to
the rendered word. We apply random distortions, such as gaussian blur,
perspective transformations, or rotations to the word image following the
rendering process. Last, we blend a random excerpt of a random background
image and randomly add reflection effects. In the end, we save the generated
sample.

exclamation marks, colons, etc. This is why we decided to follow the approach
of Jaderberg et al. and implement a data synthesis tool that can produce
samples, which include the missing properties of the samples provided by
Jaderberg et al. In the following, we will introduce our data generation pipeline
in more detail.

Our proposed data synthesis tool is implemented as a Python program. It
can produce samples using an arbitrary amount of fonts, an arbitrary amount
of backgrounds ranging from single color backgrounds to natural image
backgrounds, and various forms of image distortions or blur effects. The
generation process of a single image incorporates a set of operations. Please
see figure 3.8 for a graphical overview of our data synthesis pipeline.
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Before any sample is generated, the user specifies all fonts that shall be used
for the generation. Google4 offers a large set of different fonts that are well
suited for the generation of artificial scene text samples. The user may specify
a wordlist that is used to draw words to be created from. Our data generator
randomly adds special characters to a specified fraction of words to allow
special characters to appear in the generated images.

After generating a word, selecting the font, font size, and background of the
current sample, the generator selects a text color. The text color is constrained
to have a minimum contrast compared to the background color to ensure the
readability of the text. Next, the text is rendered using the specified font and
font size. Randomly, we also render the text a second time with a different
color to add an outline to the text or add a shadow effect, which can also be
found on real-world images.

Following the rendering of the text, we apply a set of image transformations
to each sample. We mimic fast camera movements or unsteady photographs by
applying a random gaussian blur to the rendered text and background images.
We also distort the rendered text using random perspective transformations.
These perspective transformations skew the text, thus providing it with visual
properties of incidental scene text. Following perspective transformations, we
also apply random rotations. Besides randomly rotated text, we also render a
certain amount of text images not as straight lines but rather as curved text, as
found on many billboards. For rendering curved text, we place the characters
on a sin or cos curve of differing lengths. Text found in scene images often
contains reflections of sunlight or other artificial light sources. We also add
such reflections to our samples using two different approaches. On the one
hand, we use predefined reflection overlays to blend with the generated image
to simulate a white glare on the image. On the other hand, we make use of
metaballs [42] to model small reflections on images. The rendered text image
is blended with the background image in the last step, thus producing our
final sample.

In figure 3.9 we provide some examples generated by our pipeline and
compare them to samples taken from the dataset of Jaderberg et al. We argue
that our samples look similar to real-world samples and the samples of
Jaderberg et al. However, our samples also include blurred content, a set of
distortions, and lighting effects missing in the samples of Jaderberg et al.

4https://fonts.google.com/ (last accessed August 31, 2021).
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Figure 3.9: Comparison of samples generated by the data synthesis pipeline
of Jaderberg et al. [114] and samples generated by our proposed data synthesis
pipeline. The top three rows show samples from the MJSynth dataset of
Jaderberg et al. The bottom three rows show samples generated using our
proposed data synthesis tool. The data synthesized by our pipeline looks
more realistic and challenging. Thus, we are confident that our data is a good
enhancement of already existing training data.

3.6 A Weakly Supervised Neural Network for
End-to-End Scene Text Recognition

When reading a text, a human does so in a sequential manner. The first action
is to put attention on a line of text. The second action is to read each character
of this line of text sequentially and then attend to the following line of text.
Most proposed systems for end-to-end scene text recognition do not behave in
this way. Previous work instead solves the problem by analyzing all available
information at once. Analyzing all available information at once might be
more efficient but is also more difficult. Following the example of a human
reader, we see that the task of reading text on an image is decomposed into
several subtasks. First, the text is localized line by line or word by word,
and then each word is read character by character. Although related work
divides between detection and recognition, scene text detection and scene text
recognition are often handled by individually designed solutions.

In this section, we propose a novel method that can perform scene text
recognition and localize and recognize text in an end-to-end fashion. To
switch between both tasks, our proposed method does not need to be adapted,
and it can be trained using only the annotated textual content of the image.
No annotations for the locations of single characters or words are necessary.
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Figure 3.10: Our localization network consumes the input image with text and
produces a set of sampling grids later used to crop individual text regions. We
train the localization network to predict regions containing entire words for
our experiments on end-to-end scene text recognition. For our experiments
on scene text recognition, we train the network to predict regions that contain
characters or parts of characters.

Our network is designed so that it can only correctly recognize the textual
content if it can also correctly localize the text.

Our proposed network consists of two parts. We call the first part the
localization network and the second part the recognition network. Both networks
utilize a ResNet [94] based feature extractor. The localization network produces
regions of interest using a recurrent spatial transformer network, while the
recognition network recognizes the textual content of all extracted regions of
interest using a transformer [229] (see also section 2.2.5).

3.6.1 Recurrent Spatial Transformers for Text Detection

Our localization network has the task of, depending on the task, predicting
regions that either contain an entire word or a single character. The localization
network itself is trained in an unsupervised fashion by the recognition network.
Our network consists of a convolutional feature extractor and a recurrent
spatial transformer. We provide a structural overview of our proposed network
architecture in figure 3.10.

In the following, we describe the convolutional feature extractor and the
concept of a recurrent spatial transformer.

Feature Extractor In our network, we use a deep convolutional feature
extractor based on the ResNet [94] architecture. We chose to use ResNet over
other well-known network architectures because ResNet does not suffer as
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much from the vanishing gradient problem as other network architectures,
such as VGG [213] or Inception [220] do. The feature extractor computes a
function 𝑓 conv

loc and takes an input image Image ∈ R𝐶×𝐻×𝑊 with 𝐶 channels,
height 𝐻 and width𝑊 as input and predicts a feature vector 𝑉 . This feature
vector is used as input to a recurrent network, which is the first part of our
recurrent spatial transformer.

Recurrent Spatial Transformer Following the convolutional feature extrac-
tor, we propose to use a recurrent spatial transformer. A recurrent spatial
transformer is an extension of the spatial transformer [113] introduced by
Jaderberg et al. (see also section 2.2.3). Our recurrent spatial transformer uti-
lizes a recurrent neural network (RNN) to predict a set of 𝑁 parameters �
that are used to crop regions of interest from the input image. Thus, we extend
the original spatial transformer to apply multiple transformations at the same
time. The RNN itself computes a function 𝑓 rnn

loc , which takes the feature vector
𝑉 of the convolutional feature extractor and the hidden state of the last time
step as input. The output of the function is a set of affine transformation
parameters �𝑛 with 𝑛 ∈ {0, . . . , 𝑁 − 1} for each time step ℎ the RNN is run.
Thus, the recurrent spatial transformer computes the following function:

𝑉 = 𝑓 conv
loc (Image), (3.1)

𝐴𝑛� = 𝑓 rnn
loc (𝑉, ℎ𝑛−1). (3.2)

With 𝐴𝑛� being an affine transformation matrix, as shown in equation 2.12.
The following building blocks of a spatial transformer, as introduced in

section 2.2.3 remain the same, with the exception that we consistently produce
𝑁 outputs for each of the remaining steps.

3.6.2 Text Recognition Network

Following the localization network, we employ a text recognition network.
The image sampler of the recurrent spatial transformer in the localization
network produces a set of 𝑁 image crops. These image crops are used as
independent inputs to the recognition network. Depending on the task at
hand, each extracted image crop contains textual data at a different level of
granularity. If we train our model for end-to-end scene text recognition, each
image crop is supposed to contain an entire word, which is then recognized by
the recognition network. If we train our model only on scene text recognition,
each image crop should contain at most one full character. The recognition
network then combines the recognition results of all characters.

The recognition network extracts features using a deep convolutional feature
extractor. We also chose to use a ResNet-based feature extractor because a
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Figure 3.11: Our recognition network consumes text regions and predicts
the textual content of each consumed text region. Our model consumes an
entire word image for end-to-end scene text recognition and predicts all
characters in each word image using a LSTM or bidirectional long short-term
memory (BLSTM). We provide our model with cropped characters of parts of
characters for our experiments on plain text recognition. We extract features
and put the extracted features into the encoder of a transformer. Then, the
decoder of the transformer predicts the textual content of the full sequence of
character images.

residual network maintains a strong gradient to the first layer of a neural
network. We argue that maintaining a stable gradient is even more critical in
the recognition network. The gradient also has to be strong and informative
when flowing through the recurrent spatial transformer into the localization
network, which is solely trained by the gradient information obtained by the
recognition network.

Following the convolutional feature extractor, we utilize a set of sequence
recognition networks. On the one hand, we utilize a recurrent neural network
similar to [207]. On the other hand, we propose to use a sequence generation
network employing a transformer [229] (see also section 2.2.5).

Depending on the task at hand, the recognition network either produces
a set of probability distributions for each character of each identified word
region (end-to-end recognition) or a probability distribution for each identified
text region that represents at most one character (text recognition only). In the
end, the text recognition network predicts a probability distribution 𝑦 for each
character. The distribution 𝑦 is defined over the possible label space 𝐿𝜖, where
𝐿𝜖 = 𝐿∪{𝜖}, with 𝐿 being the set of characters to recognize and 𝜖 representing
the blank label. We provide a structural overview of the recognition network
in figure 3.11
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without rotation dropout with rotation dropout

Figure 3.12: Rotation dropout helps the network to predict reasonable rotation
angles, helping the network to converge faster and better. The image on the left-
hand side shows the localization result of a network trained without rotation
dropout. On the right-hand side, we provide the result of a network trained
with rotation dropout. In both cases, the recognition network can produce the
correct text transcription. However, the recognition network performs worse
in the model without rotation dropout.

3.6.3 Model Training

Our training set consists of a set of images and their corresponding text labels.
Please note that we do not use any annotations for the location of words or
characters different from related approaches. Both networks, localization and
recognition, are trained using the recognition loss solely. We use softmax cross-
entropy loss (see equation 2.4) between the predicted probability distribution
𝑦 and the label distribution �̂� for each character in the input image.

However, we observed that our proposed model does not converge if we do
not add additional regularization terms to the training objective. On the one
hand, we found that we need to constrain the prediction of rotation angles
(see figure 3.12 for a graphical explanation).

On the other hand, we found it crucial to add further localization-specific
regularization terms that directly operate on the predicted affine transforma-
tion matrices. In the following, we will explain all of our added regularization
methods in more detail.

Rotation Dropout As mentioned earlier and visualized in figure 3.12, we
found that the localization network tends to predict transformation parame-
ters that include excessive rotations early on. Once the localization network
predicts such excessive rotations, it never returns to predicting transformation
matrices without excessive rotations. We argue that the network is stuck in
a local minimum that it can not leave anymore. To mitigate such a behav-
ior, we propose a mechanism to encourage less excessive rotations inspired
by dropout [216]. We call our proposed method rotation dropout. Rotation
dropout randomly drops the parameters of the affine transformation ma-
trix, which are responsible for rotation, i.e., �2 and �4. Randomly dropping

55



3 Weak Supervision for Scene Text Detection and Recognition

these parameters prevents the localization network from predicting excessive
rotations while still allowing the network to learn to predict rotations.

Preventing Mirrored Sampling Grids Since we allow the prediction of
arbitrary affine transformation matrices, the predicted sampling locations
might sample the image at the correct location, i.e., a location that contains
text, but the sampled pixels might contain content mirrored on one or both
coordinate axes. Such behavior is not desired for our use-case and hinders the
convergence of our network. Thus, we propose to add a regularization term
to the coordinates of the sampling grid. Given a sampling grid with sampling
locations ((𝑢0 , . . . , 𝑢𝑊𝑜 ), (𝑣0 , . . . , 𝑣𝐻𝑜 )) with 𝑢, 𝑣 ∈ [−1, 1], we first extract the
x-positions of the top-side of the sampling grid, i.e., 𝑢0 and 𝑢𝑊𝑜 , as well as
the y-positions of the left-side of the sampling grid, i.e., 𝑣0 and 𝑣𝐻𝑜 . We then
calculate regularization terms for sampling grids mirrored along the y-axis
and x-axis respectively as:

ℒup_down(𝑉) = max(𝑣0 − 𝑣𝐻𝑜 , 0), (3.3)
ℒleft_right(𝑈) = max(𝑢0 − 𝑢𝑊𝑜 , 0), (3.4)

ℒmirror(𝐺sample) = ℒup_down(𝑉) + ℒleft_right(𝑈). (3.5)

Here, 𝑈,𝑉 denote the vector of sampling locations on the x-axis and y-axis,
respectively. The resulting regularizer penalizes grids based on their mirrored
size. Thus, the larger the mirrored grid, the larger the regularization term.

Preventing Sampling Outside of the Input Image Related work [208, 209,
253] proposes to initialize the fully connected parameter predictor for the affine
transformation matrices 𝐴𝑛� so that all weights are initialized to 0, and the bias
is used to predict transformation parameters that lead to a sampling grid that
spans most of the input image. In [208] Shi et al. argue that random initialization
of the parameter predictor leads to failure of convergence during training. We,
on the contrary, argue that random initialization of the parameter predictor
does not lead to failure of convergence if extra regularization is employed. We
even found that random initialization leads to faster convergence. To allow
the network to converge when using random initialization, we propose to
add an extra regularization term that penalizes sampling grids that would
sample image locations outside of the input image. It is vital to prevent the
network from sampling outside image locations because locations outside the
image contain only zeros. Thus, the gradient obtained from sampling outside
the image is zero, keeping the network from converging. To encourage the
network not to predict transformation parameters that lead to sampling at
locations outside of the input image, we propose an out-of-image regularizer,
which we directly apply on the predicted sampling grid.
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We know that each element 𝑢, 𝑣 of the sampling grid has to be in the interval
[−1, 1] to be inside of the image. Thus we penalize any value of the sampling
grid that is outside of this interval using the following regularizer:

ℒout_of_image(𝑐) = |min(𝑐 + 1, 0)| + max(𝑐 − 1, 0). (3.6)

With 𝑐 being any value 𝑢 or 𝑣 from the sampling grid.

Learning Objective Using the described loss function and the introduced
regularization terms, we can formulate our entire learning objective. The full
objective consists of the cross-entropy loss ℒ and all regularization terms can
then be defined as:

ℒnetwork = ℒ + ℒregularizers ,with (3.7)

ℒregularizers = ℒmirror(𝐺sample) +
∑
𝑖

ℒout_of_image(𝑢𝑖) +
∑
𝑗

ℒout_of_image(𝑣 𝑗).

(3.8)

In figure 3.13 we show our full proposed pipeline that we use in our
experiments.

3.7 Experiments

In this section, we evaluate our presented network architecture on a range of
different tasks. We show that our proposed model is able to reach competitive
and state-of-the-art performance on a range of standard benchmark datasets.
Further, and most importantly, we show that our proposed network architec-
ture can achieve excellent results when used for different tasks without any
changes in the overall network structure. Our experiments are organized in the
following way. First, we provide experimental results answering the question,
whether our proposed concept is indeed able to learn to detect text in a weakly
supervised manner. Second, we apply our proposed model for end-to-end
scene text recognition on the FSNS dataset [215] (see also section 3.4.1). Last,
we apply our model for the task of scene text recognition on all standard
benchmark datasets introduced in section 3.4.2.

We begin this section by first introducing our experimental setup used
throughout our experiments; we then show and explain the results of each of
our experiments in detail.
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Figure 3.13: We train both parts of our proposed model together. We combine
both models using the differentiable image sampling mechanism of spatial
transformers. Although our model learns to extract the location of found text
regions, we do not use any specific supervision for this part of our network. The
character annotations of each image entirely supervise our network. Although
we only show the case of end-to-end scene text recognition, the process is the
same for plain text recognition.

3.7.1 Experimental Setup

We now describe our experimental setup, which includes used software,
chosen network architectures for our experiments, and optimizers and hyper-
parameters.

Localization Network The localization network we use in every experiment
is based on the ResNet architecture by He et al. [94]. The input to the localization
network is the image where either single words or single characters shall be
localized. The input image may be input as an RGB image or a grayscale
image.

For our experiments on the SVHN-like datasets and the FSNS dataset,
we use the following network structure: We set the input size to 200 × 200
or 150 × 150 for our experiments on the SVHN toy datasets and the FSNS
dataset, respectively. Before the first residual block, we use a 3×3 convolution,
followed by a 2 × 2 average pooling layer with stride 2. After these initial
layers, three residual blocks with two 3 × 3 convolutions, each followed
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by batch normalization (BatchNorm) [109] (see also section 2.2.1.5), are
used. The number of convolutional filters is 32, 48 and 48, respectively. Each
convolutional layer is activated using the rectified linear unit (ReLU) activation
function. We use 2×2 max-pooling with stride 1 following the second residual
block. The last residual block is followed by a 5×5 average pooling layer and a
BLSTM with 256 hidden units. After the BLSTM a fully connected layer with
6 neurons produces the affine transformation matrix that is used to generate
the sampling grid for the following bilinear interpolation.

For our experiments on pure scene text recognition, we use a slightly
different network. However, the overall architecture is the same. In this case,
the input to the localization network is an image with a size of 200 × 64 pixels.
As network architecture for our feature extractor, we use a standard ResNet-18
network, but we use group normalization (GroupNorm) [245] (see also
section 2.2.1.5) instead of BatchNorm as normalization layer. Here, we also
use a BLSTM with a 6-neuron fully connected layer to produce the affine
transformation matrices to crop each character individually.

Following the prediction of the affine transformation matrices, we, in both
cases, use rotation dropout and our localization-specific regularizers as de-
scribed in section 3.6.3.

Recognition Network The inputs to the recognition network are 𝑁 crops
from the original input image that represent the text regions found by the
localization network. The crops have different sizes, depending on the task at
hand. During our SVHN toy dataset experiments, we set the input size of the
recognition network to 50 × 50 pixels. For our FSNS experiments, we set the
input size to 75×50 pixels. We set the size to 50×64 pixels for our experiments
on pure text recognition. Here, the overall network structure is similar to the
structure of the localization network. The network used in our experiments
on the SVHN toy datasets has the same structure as the localization network.
However, the number of learnable convolutional filters is higher. The number
of convolutional filters if 32, 64 and 128, respectively. In our experiments on the
FSNS dataset and our pure text recognition experiments, we use ResNet-18 as
a feature extractor. In our experiments on the SVHN toy datasets, we follow
Jaderberg et al. [112] and use an ensemble of𝑁 independent softmax classifiers
to generate the character predictions. During our FSNS and text recognition
experiments, we utilize a transformer to generate predictions, as described in
section 3.6.2.

Alignment of Groundtruth Since we do not have any information about
the locations of text regions, we assume that all given ground truth labels
are sorted according to the western reading direction. Thus, we require the
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ground truth texts to be annotated in the following order: (1) from top to
bottom, and (2) from left to right. We want to point out that it is vital to have
this consistent ordering of ground truth labels. If the labels are in random
order, the network would not learn to find text regions sequentially.

Implementation We implement all of our experiments using the open source
deep learning framework Chainer [225] and provide our code and models
to the community, for further experimentation.5 Our experiments can be run
on an NVIDIA GPU with at least 8GB of available video memory. We mainly
used NVIDIA 1080Ti GPUs.

Optimizer and Hyperparameters For the optimization of our networks, we
use different optimizers. For our experiments on the SVHN toy datasets, we
use stochastic gradient descent (SGD) with momentum, set the learning rate
to 0.00001, and multiply the learning rate by 0.1 every 5 epochs. We train our
model for 10 epochs. For our experiments on the FSNS and text recognition
datasets, we use RAdam [147]. Here, we set the learning rate to 0.0001, employ
gradient clipping in the localizer and shift the learning rate by 0.1 every
epoch. For our experiments on the FSNS dataset, we also employ curriculum
learning [35], starting the training with simple samples containing at max 1
word and gradually increase the difficulty once the model converges. For our
experiments on pure scene text recognition, we train the model to convergence.
The model converges after roughly 3 epochs. However, this depends on the
used training dataset.

We set the batch size to 128, 128 and 32 for our experiments on SVHN,
FSNS and text recognition, respectively.

Data Augmentation During training, we utilize data augmentation and
augment 40 % of the input images by randomly resizing them, applying blur,
or extra perspective distortions.

3.7.2 Experiments on SVHN

The first experiments we perform are meant to show that the overall idea
of our network architecture is feasible. To show this, we experiment on two
synthetic datasets. Both datasets are based on the SVHN dataset. On the

5Our source code can be found in the following locations:

• Code for SVHN and FSNS experiments: https://github.com/Bartzi/see (last accessed
August 31, 2021).

• Code for our text recognition experiments: https://github.com/Bartzi/kiss (last accessed
August 31, 2021).
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one hand, we created a dataset where four house numbers are arranged in a
regular grid (as shown in figure 3.5 (left)). On the other hand, we randomly
placed a maximum of two house numbers on a plain background (as shown
in figure 3.5(right)).

First, we experiment on the dataset with regularly placed house numbers.
In these experiments, we find that our idea indeed works. In the end, we are
able to reach recognition accuracies of 99.5 % on our validation dataset. We
note that the dataset itself is simple, which is why such accuracy is possible at
all. However, during training, we make an important observation relevant to
the following experiments. We observe that our model stops to improve the
accuracy of the localization predictions after some time, while the recognition
accuracy of the network is already good. We argue that this is because the
recognition network has already converged and does not provide strong
gradient information for the localization network to improve. We provide the
result of training on our grid dataset showing this behavior in figure 3.14.
We found a simple solution to this problem. Since we hypothesize that the
recognition network already converged because the localization predictions
are good enough, we restarted the model’s training. During the restarted train
run, we initialize the localization network using the weights of the previous
run, while we initialize the weights of the recognition network randomly.
Using this strategy (see figure 3.14 for the result), the predictions of the
localization network improve, and thus the overall accuracy of the network
improves significantly.

Following our experiments on the grid dataset, we experiment on the dataset
with randomly placed house numbers. Here, we quickly observe that it is not
possible to directly train a model to localize two house numbers simultaneously
from scratch. Hence, we resort to the application of a curriculum learning
strategy [35]. Our curriculum learning strategy is as follows: First, we train
our model on images containing only a single randomly placed house number.
Once our model converged, we use the pre-trained model to initialize the
model we train on the dataset with two house numbers. Using this approach
and our previously described restarting approach, we can train models that
are able to localize and recognize randomly placed house numbers with a
validation accuracy of 68.3 %. We do not use any annotations for the location
of the house numbers. The network is forced to learn to localize the house
numbers to succeed in recognizing them correctly. In figure 3.15, we provide
visualizations of the train progress. We note that the necessity to train the
model step by step is a weakness of our approach. However, we further note
that our model learns to localize text in a weakly supervised way. Hence, we
expect it to be challenging to train such models. Nevertheless, we show that
using a clever training strategy it is still possible to train such a model.
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Figure 3.14: Our experiments showed that restarting the training with a pre-
trained localization network but a randomly initialized recognition network
is essential for good localization results. The top image shows the localization
results of our network when trained completely from scratch. The left-most
patch shows the entire input image, including the predicted bounding boxes
of text locations. The four images beside the left-most patch show the content
of each of the extracted text regions. Here, we can see that the text is not
accurately localized. The image on the bottom shows the same views, but
this time produced by a model trained using our restart mechanism; the
localizations are more accurate, and the network’s overall accuracy is better.

Figure 3.15: We found that the localization of multiple randomly placed SVHN
house numbers is only possible if the model is trained under a curriculum
learning strategy. First, we train with all images where we only placed a single
house number on a random location (left). Second, we add images with two
house numbers and train on them (middle). We can repeat this step until we
trained our model with the required number of house numbers per image. In
the end, we can use the restart approach again and improve the quality of the
localization predictions (right).
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3.7.3 Experiments on the French Street Name Dataset

Following our experiments on the dataset with randomly placed house num-
bers on a plain background, we experiment with a real-world dataset. The
real-world dataset we experiment with, is the FSNS dataset [215] (see also sec-
tion 3.4.1). The FSNS dataset consists of more than 1 million images of street
name signs extracted from Google Streetview. The images are only annotated
with their textual content, making this dataset perfect for our proposed model.
The dataset is challenging because it contains multiple lines of text with up
to 6 words per image. To recognize each possible character, the alphabet
of our text recognizer contains 133 different character classes and one class
representing a “blank character.” In contrast to our previous experiments,
each street name sign is embedded in natural scenes, including distracting
backgrounds. Furthermore, the dataset contains many images where the text
is occluded, incorrect, or nearly unreadable for humans.

We found that our model does not converge when trained directly on
the supplied ground truth during our experiments with the dataset. The
annotations of the FSNS dataset are provided as single lines of text. Our
proposed model is not able to learn to localize entire lines of text. Instead,
we extracted single words from the annotations and trained our model to
localize and recognize individual words. During the training of our model, we
encounter similar convergence problems as described before. Thus, we also
resort to a curriculum learning approach and train our full model in multiple
stages. First, we train the model only on images with one word. Once this
model converges, we reuse the trained model and train using all images with
less than three words. We repeat these steps until all images are included in
the training.

In table 3.1 we provide the experimental results of our model compared
to other models. The evaluation metric used for the evaluation of the FSNS
dataset is the sequence accuracy. Sequence accuracy measures the number of
full-text lines correctly transcribed in relation to the overall amount of text
lines.

The results show that our model can achieve competitive performance. We
are not able to supersede the results by Wojna et al. However, our model
is competitive, and our model can provide each word’s location, which is
a property none of the existing works have. In figure 3.16 we show some
qualitative results of our FSNS model. Our qualitative results show that our
model can reliably localize words and can handle distracting views.
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Table 3.1: Recognition accuracies on the FSNS benchmark dataset in compari-
son to other state-of-the-art methods. The columns localization and recognition

denote whether the approach delivers results for the localization task or
the recognition task, respectively. Our model is, in contrast to related work,
able to produce results for the task of scene text localization and scene text
recognition.

Method Accuracy (%) Localization Recognition

Smith et al. 2016 [215] 72.5 × ✓
Wojna et al. 2017 [244] 84.2 × ✓

Ours 2018 78 ✓ ✓

Figure 3.16: The samples taken from the FSNS dataset are diverse and chal-
lenging. However, our proposed approach can correctly recognize most of the
given images, even if the input images contain a wealth of distractors. Our
results show that our model can learn to localize text without any available
localization information at training time. In the bottom-right image, we show
a failure case of our model. Here, our model mixes the information of one
view containing an incorrect street name sign into the information extracted
from the other views containing the correct street name sign.
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3.7.4 Experiments on Scene Text Recognition Benchmarks

In our last series of experiments, we apply our proposed model without any
changes on the task of scene text recognition. Here, the task is to recognize the
text in an already cropped word image directly. As indicated in section 3.3.2,
early work on scene text recognition relied on first localizing single characters
and then formulating the full word prediction based on the predictions of each
character. Such an approach is a good choice because the task is broken down
into several more straightforward sub-tasks to solve. We hypothesize that our
proposed model can be used to recognize single characters, which are then
grouped into single words. We are confident that our model achieves excellent
performance because the model itself supervises the localization of individual
characters. There is no need for us to formulate any post-processing methods
for character proposals as done in related work [114, 238]. Furthermore, we
hypothesize that our model does not need to learn to perfectly localize each
character since we are using a sequence to sequence model at the end of the
recognition model that allows us to relax the constraint that each extracted
text region needs to contain a perfectly centered character.

Other than in our previously described experiments, we can train a single
model directly from scratch without the need to use our retraining or curricu-
lum learning approaches. In the following, we provide results of our model
compared to state-of-the-art models and provide a detailed ablation study
showing the influence of a range of design decisions on the performance of
our model.

However, before we investigate results on specific datasets, we want to
discuss the exciting learning process of our model. In figure 3.17, we show
the learning process of our proposed model by providing a graphical repre-
sentation of the model at several training iterations. In this image, we show
that our model learns to localize characters/character regions without the
need for further annotations. We can also see that both models can learn
simultaneously. Another interesting observation is that our model learns to
read the text from the back to the front.

3.7.4.1 Comparison to State-of-the-art Models
We compare our best model with several other methods on the datasets
introduced in section 3.4.2. We train our best-performing model using the
networks described in section 3.7.1. We set the dropout rate for rotation
dropout to 0.95. We use an alphabet consisting of 95 different characters for
the training of our model. This alphabet includes digits, case-sensitive letters
from a to z, 32 symbols, and a blank character. For a fair comparison, we only
train our model on publicly available synthetic scene text datasets. We also
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Figure 3.17: The learning process of our proposed text recognition model. Here,
we show how our model learns to simultaneously localize and recognize text
when trained on text recognition. The first row shows the predictions of the
model at iteration zero. We show the input image with all predicted text
regions (colorful boxes) on the left. In the following columns, we show the
content of the first four predicted text regions. In the bottom right corner, we
show the textual prediction of the network. The subsequent rows show the
predictions of the network at the last step +1000 iterations. We can see that
our model quickly learns to find the text. An interesting observation is that
the model reads the text from back to front! We think this happens because
reading from the back to the front makes it easier to decode the transformer’s
predictions in the recognition model. Best viewed digitally and in color.
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Figure 3.18: The qualitative evaluation of our proposed scene text recognition
approach shows that our model learned to follow the slope of words, even if
they are curved. The top two rows show some correct results of our proposed
model. The last row shows three typical failure cases of our model. We are
certain that these failure cases can be alleviated by using more training samples
with curved and severely degraded text instances.

only report those results of related work that were obtained when training
solely on synthetic data. During evaluation, we follow [236] and perform data
augmentation. We rotate each input image by ±5 degrees if the width is 1.3
times larger than the height; otherwise, we rotate the image by ±90 degrees.
We then feed all rotated images and the original image to the trained network
and use the prediction with the highest average score for each character as
the output of our network.

We provide our results in table 3.2. Our quantitative results show that our
model sets new state-of-the-art results, especially on irregular datasets. We
note that our model is not able to correctly identify about 1.8 % of the word
images in the IC15 dataset because these words contain characters not present
in our alphabet. In figure 3.18, we show qualitative results of our approach.
These results confirm that our model works well on distorted and heavily
blurred text. The failure cases show that our model is not able to handle
excessively curved text and exotic fonts. Both failure cases are most likely
rooted in the lack of training data for such kinds of textual data.
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3.7.4.2 Ablation Study
To find the parts that add the most value to our proposed text recognition
pipeline, we perform an ablation study, where we change several parts of our
pipeline. We only change a single aspect for each experiment, which could
either be a building block of the pipeline or changes to the training mechanism
we apply. We show the quantitative results of our ablation experiments in
table 3.3. All in all, we performed the following ablation experiments:

Changes to the Training Data In the first three experiments, we investigate
the influence of the used training data on the performance of our model. In
the first experiment, we used only the SynthText Dataset by Gupta et al. [90],
which accounts for 41 % of the overall training images. The result (SynthText

Only) shows that reducing the number of training images and also the variety
of available images decreases the performance of our model by a large margin.
A fascinating observation is that the performance decreases most on datasets
containing mostly irregular scene text examples, i.e., the CUTE or SVTP
datasets. This result indicates that the SynthText dataset includes mainly data
that is well suited to recognize regular text.

Our second experiment investigates whether the result of the SynthText only
experiment is only rooted in the lower number of available training data. Thus,
we shrink and balance each dataset and keep a maximum of 200 000 samples
per word length in each dataset. In the end, we are left with about 60 % of
the overall training images. The results for this experiment (Balanced Dataset)
indicate that using a lesser number of samples does not drastically decrease
the performance of the model. Thus, we conclude that a well-balanced range
of examples showing many kinds of scene text are essential for a deep model
to be applied to a wide range of text recognition tasks.

In our third experiment, we complement the training data with data gen-
erated by our data generator. The results of this experiment (All Data + Our

Data) clearly show that extra training data is beneficial for the performance
of the network. Nevertheless, we also see that we can increase performance
only on some datasets, not on all. The reason for these results is because our
data synthesis tool only synthesizes data that is close to the data found in the
IC13, IC15, and IIIT5K datasets, meaning that our synthetic data mainly con-
tains regular words that are also highly distorted and blurred. Our synthetic
training data misses rotated and curved samples. We are sure that additional
rotated and curved samples would enable us to increase the performance of
our model even further.

Changes to the Network Architecture In the next series of experiments, we
determine the impact of several design decisions on the proposed method’s
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overall performance. First, we exchange the LSTM that we use in the local-
ization network with a transformer. This experiment is meant to answer two
questions: (1) Is it possible to train a transformer without providing labels
in the forward pass? (2) Does the usage of a localization network based on
a transformer increase the performance of our proposed model? The results
(Transformer Localizer) show that it is indeed possible to train a transformer
without the need to provide labels in the forward pass. However, the training
takes significantly more time because the sequence has to be rolled out repeat-
edly until the network predicted all locations. Furthermore, we can see that
using a transformer in the localization network does not improve the overall
results of our network.

In our second experiment of this series, we use a softmax classifier, as
used in [112], instead of a transformer in the recognition network. The result
(Softmax Recognizer) shows that using a sequence to sequence model, in our
case a transformer, is one of the most crucial building blocks of our proposed
model. We think that the softmax recognizer does not work very well because
it highly depends on the accurate localization of individual characters. At the
same time, our sequence to sequence model does not require such accurate
localization because it can accumulate feature information over several time
steps and can attend to all input features regardless of the character position.

In the next experiment, we increase the number of times we stack trans-
former layers in the recognition network. According to related work [229], a
stack of multiple transformer models leads to the best performance on Nat-
ural Language Processing tasks. However, our results (transformer2) show
that using multiple transformer layers (we used two) does not increase the
performance for our task. Hence, we conclude that it is sufficient to stay with
the most straightforward transformer architecture, which also needs fewer
computations and has fewer parameters to optimize.

In our last experiment, we propose not to use the localization network at all.
Instead, we use a regular sliding window and only use the recognition network
on the regularly applied sliding window crops. The results (Recognition Network

Only) indicate that our proposed localization network is crucial for the correct
recognition of curved and irregular text instances because we can observe that
the performance on all irregular datasets drops by a large margin. This further
confirms observations made in related work [207, 209, 253] where the authors
argue that rectification is of high benefit for the task of scene text recognition.

Changes to the Training Method In our last series of experiments, we ex-
periment with different changes to the overall training method. First, we train
a model without using any data augmentation. Using no data augmentation
(experiment Without Agumentation) leads to overall degraded performance.
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While the performance decreases on some datasets by a large margin (IC15-
1811, SVTP), it does not decrease as much on other datasets (CUTE, IC13).
These results show that using data augmentation is vital on several datasets,
hinting that the available datasets do not cover all necessary modes.

In the last experiment, we added another optimizer to the recognition
network that is only trained on regular crops obtained by using a sliding
window approach (similar to Recognition Network Only). The rationale behind
this experiment is that the extra training might help the recognition network
perform better, as it sees more diverse input data and also can learn faster since
the input contains well-cropped regions from the beginning of the training.
The results (Recognizer Optimizer) show that using this extra optimizer does
not improve the results. However, using the extra optimizer also does not
decrease them by a large margin, which indicates that such an extra optimizer
could be beneficial if the input obtained from both input sources, i.e., predicted
crops of the localization network and crops obtained from the sliding window,
matches well.

3.8 Discussion

The results of our experiments show that our proposed approach is a valuable
addition to the landscape of scene text recognition approaches. We hypothesize
that building on our proposed approach could lead to end-to-end scene text
recognition systems that only need textual annotations instead of location
annotations and annotations representing textual content at the same time.
However, our experiments also showed that creating such a system on more
challenging scene text datasets might not be that simple. In section 3.7.2 we
already discovered that the system does not converge if we directly train
on multiple words. A system applied end-to-end on more complex scene
text datasets, e.g., the SynthText dataset [90], needs to be trained under a
sophisticated training curriculum.

In further work [30], we show that a similar architecture consisting of a
localization network and an evaluation network can reliably detect objects
in an image when trained under weak supervision. However, further exper-
iments with the introduced approach for scene text detection proved to fail.
We hypothesize that the guidance obtained from the recognition or evalua-
tion network is not strong enough to be propagated through the 6 output
parameters of the localization network.

All in all, we are sure that further research in this area should prove
fruitful if it is possible to overcome the problem of missing guidance while
backpropagating errors through the differentiable sampling mechanism.
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3.9 Summary

In this chapter, we examined the question how we can lower the annotation cost
by using only a fraction of the typically required ground truth annotations,
by showing an example from the area of scene text recognition systems.
We presented a novel weakly-supervised method, which can localize and
recognize textual content from scene images. In contrast to existing previous
work, our method is trained only using textual annotations; we do not require
any location annotations for scene text localization. Not requiring ground
truth annotations of text locations should make it possible to use such systems
for new applications that do not have much annotated data available since
annotating only the textual content is cheaper than annotating text locations.
To this end, we propose to build a system consisting of a localization network
with a recurrent spatial transformer and a recognition network using either
individual softmax classifiers or a transformer for the generation of textual
content. Both networks are jointly optimized. The localization network receives
its gradient information from the recognition network. Our experimental
results on end-to-end scene text recognition and explicit scene text recognition
show that our model is applicable to multiple areas of scene text recognition
without adaptation. Our results also show competitive and state-of-the-art
performance on several public benchmark datasets. Our method is also the
first method that is able to deliver information about the location of texts
without being explicitly trained or supervised to do so. However, although
our proposed method is promising and shows good results on real-world
data, we argue that scaling to more complex scene text datasets is challenging.
In the future, a thorough examination of the learning challenges and design
of a clever curriculum learning strategy should be performed to reach our
goal of learning to detect and recognize text without having to specify the
locations of the text.
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4 Synthetic Data for Handwriting
Analysis in Archives

In this chapter, we examine further strategies to lower the cost and burden
of obtaining ground truth annotations and show solutions for the use case
of handwriting analysis in historical archives. Here, we examine the value
and applicability of synthetic data to develop computer vision methods for
pre-processing methods of an optical character recognition pipeline. To this
end, we propose novel data synthesis mechanisms. We further introduce
novel challenging analysis tasks that have, to best of our knowledge, not
yet been in the focus of research. In particular, we propose solutions to the
following analysis tasks: (1) A data synthesis tool to use for the training of
a classification model to determine whether a scanned page or region of a
scanned page contains any handwriting at all. (2) A novel approach to classify
what kind of content a cropped handwritten or printed word contains, i.e.,
is it a number, a date, or an alpha-numeric string. (3) A novel data synthesis
system to synthesize training data for the training of pixel-wise semantic
segmentation systems for document analysis. Parts of this chapter have been
elaborated in the following publications: [27, 28, 29].

4.1 Motivation

Archives contain the knowledge and wisdom of generations of scholars. Most
of the information in an archive is contained in documents in written form,
either written by hand or printed. Although measures are taken to prevent the
quality of documents from degrading, the digitization of archives is necessary
to preserve the content for generations to come. However, digitization does
not only allow the conservation of documents; it also opens the door for
computerized analysis. Modern computer vision algorithms enable us to
automatically read and understand the content of millions scanned pages [40,
214, 242]. Following the extraction of the textual content of scanned pages,
further analysis steps that help to find connections between documents, such
as named entity recognition [116] or knowledge graph construction [115] can
be employed.

Together, the extraction of textual content from raw document scans and
further analysis of the extracted texts form a document analysis pipeline where
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Figure 4.1: Schematic overview of a document analysis pipeline including
several analysis steps that increase the value of the data for art-historical
research. In this thesis, we are mainly concerned with the tasks of text and
handwriting recognition. All analysis steps that follow directly after the
digitization are analysis steps that apply computer vision on scanned pages.
Following analysis steps use the semantic metadata extracted via computer
vision methods for further information retrieval.

each step adds more value to the research of historians. See also figure 4.1
for a quick overview of possible analysis steps. The value for the research of
historians is added by allowing researchers to query and find the information
they are searching for effortlessly. Tools for automated analysis might even
help to highlight interesting information that leads to further discoveries.
Such an entire archive analysis pipeline can be arbitrarily complex. The focus
of our work lies in the identification and extraction of textual content from raw
scans of documents. Here, we are focusing on the development of analysis
approaches of the extensive digitized art-historical archive of the Wildenstein
Plattner Institute (WPI).1 The WPI provided excerpts of their digitized art-
historical archive to us to extract textual data from the scanned images. At a first
glance the task seems to be simple to perform because there is much related
work in the area of handwriting analysis, e.g., [44, 131, 164, 175, 182, 190, 212,
242], as well as mature solutions for the analysis of printed text, see section 2.1.
However, most of the existing approaches are not directly applicable to the raw
data extracted from a large archive such as the archive of the WPI due to the
following reasons: (1) Most of the proposed approaches are only focused on
solving a task where the input data adheres to well-defined constraints, such
as documents containing solely handwriting, documents that only contain
images, etc. The data found in a large archive that spans over centuries is
very diverse. Thus, pre-processing methods need to be developed that can

1https://wpi.art/ (last accessed August 31, 2021).
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filter the data based on the requirements of existing approaches, making it
possible to apply existing solutions. (2) Recent proposed solutions, such as
[44, 175, 182, 242], use deep learning for the analysis of cultural heritage
data. However, using deep learning requires the availability of annotated
training data. Most archives do not contain any annotated data. Hence, it is
impossible to directly apply previously developed solutions based on deep
learning without the means to obtain annotated data. One possible solution
to obtain a large amount of the required annotated training data is to use
manual annotation, possibly supported by the crowd. One example of this
approach is the transcription of the Jeremy Bentham Collection, where manual
transcription on 95 000 scanned pages is performed. Starting in 2010 the project
is expected to finish earliest in 2025 [56]. Looking at millions of pages alone in
the archive of the WPI, it is not possible to perform such a full transcription
by hand. Even a transcription of only parts is not feasible because it would
be very costly. Automated synthesis of training data or the development of
unsupervised/weakly-supervised approaches would be of great benefit for
the analysis of such archives. If we were able to develop an analysis method
that directly learns on the available unannotated data of one archive, we could
adapt the method to other archives and perform analysis there without the
need to perform costly and time-consuming manual annotations!

Thus, the work presented in this thesis focuses on developing pre-processing
methods that help transform or filter the available data into the input for-
mats required by already existing related work. While developing such pre-
processing methods, we use synthetic data in each step, as we do not have
access to any annotated data for the training of our deep neural networks.

The data we want to analyze consists of a mixture of documents containing
only printed text, only handwritten text, mixed printed and handwritten text,
and images. See figure 4.19 and figure 4.20 for some typical examples of
the documents we want to analyze. To identify the correct analysis method,
we first develop an approach for determining whether a provided scanned
page contains any handwriting at all. We base our approach on a deep neural
network solely trained using artificial data. See section 4.3 for a full description
of our developed system. Since there are no handwriting recognition tools
available that can be applied to handwritten data of several writers, we further
focus on developing tools to aid handwriting recognition. On the one hand,
we propose a novel pre-processing step that operates directly on extracted
handwritten words. Based on the visual structure of the image containing
handwriting, we classify whether the image contains a date, a number, an
alpha-numeric string, or a word. Such a pre-processing step can help to identify
the best fitting specialized handwriting recognition model. Furthermore, such
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a classification could already be of use for researchers interested in finding
all pages containing a specific kind of content. Thus, our proposed approach
could be seen as a vision-based named entity recognition (NER) approach.
We provide more details on our proposed approach in section 4.4.

Last, we investigate the field of semantic segmentation of document images.
Specifically, we are interested in developing a method to distinguish between
pixels that belong to printed text and pixels that belong to handwritten text.
To this end, we propose a novel data synthesis method that directly operates
on the available but unannotated data and is able to synthesize training data
for the training of an off-the-shelf segmentation model. More details on our
proposed data synthesis method for segmentation can be found in section 4.5.
Before we explain our contributions to several parts of an analysis pipeline
for historical documents, we introduce related work in the field.

4.2 Related Work

The first approaches for optical character recognition (OCR) were developed
for the analysis of post or office documents, as indicated in section 2.1. It
was until the early years of 2000 that OCR for analysis of digitized historical
documents, e.g., found in libraries and archives [1], came into the focus of
research. With the digitization of archives all over the world, the automated
analysis of historical documents got more and more critical. Research in
the field of historical document analysis focuses on all parts of a traditional
document analysis pipeline (see section 2.1.1). First, documents are digitized
and roughly categorized. Then, preprocessing is performed, the textual content
is recognized, and finally post-processing is applied. While research mainly
focused on recognizing printed and handwritten text in the early days, research
now also incorporates the automated analysis of the age or direct classification
of the document class, i.e., letters, book pages, etc. In the following, we examine
related work found in each part of a historical image analysis pipeline that we
contribute to.

4.2.1 Categorization

After digitization, documents are stored in a digital archive. To the computer,
a raw digitized document is a collection of numbers without any meaning.
Semantic analysis is necessary to index and use the digitized data in a proper
way. Before a document can be analyzed, some information about that doc-
ument should be obtained. Such information allows to assign the necessary
analysis steps and helps to process the various possible document types ef-
ficiently. Here, research focuses on the identification of writers [5, 62, 119],
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the automatic prediction of manuscript dates [45, 52, 91, 92, 96, 97], or the
classification of the page content [4, 6, 7, 13, 19, 20, 57, 67].

While early work uses handcrafted features [5, 45, 52], all later approaches
make use of deep neural networks. Here, various approaches are used and
applied, ranging from deep neural networks initially designed for image
classification [6], composite systems including object detection and image
classification [62], to systems applying OCR and image classification [13]
(although in this case, we might not be able to refer to the method as a
preprocessing step anymore). One common property of all of the proposed
models is that they are trained using manually annotated training data, which
is costly to obtain. Furthermore, each proposed approach targets a specific
kind of documents, i.e., Bengali documents in [5], medieval scripts in [92], or
contemporary documents in [6].

While there is a wealth of work for the categorization of documents available,
the task of determining whether a scanned page contains handwriting has,
to the best of our knowledge, not been tackled yet. Besides introducing a
new preprocessing step for a document analysis pipeline, we also investigate
the possibilities of using synthetic data. Here, we draw inspiration from
related work in the field of scene text detection and recognition [90, 112] and
propose a synthetic data pipeline for our task. We are confident that similar
data synthesis approaches can be applied to related work at this stage of
a document analysis pipeline to improve the scalability and adaptability of
proposed approaches to novel and unseen data.

4.2.2 Segmentation

Another part of a document analysis pipeline that we contribute to is layout
analysis and segmentation. Layout analysis deals with the localization and
classification of the organization of a given document. Layout analysis includes
the segmentation of full pages [218] localization and recognition of tables [64],
the segmentation of individual text lines [44, 131, 182], or baseline detection [53,
76, 89, 169].

All recent work is based on the application of deep neural networks to the
task at hand. For the segmentation of entire pages, Stewart and Barret [218] in-
troduce a fully convolutional neural network for the segmentation of marriage
certificates and birth records. They train their model on a single manually
annotated training image to segment handwriting, stamps, or printed text
from the background. Their proposed model shows promising performance
on homogeneous data such as marriage certificates from a defined region and
time. However, such an approach does not scale to an archive consisting of
millions of heterogeneous documents.
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Oliveira et al. [182] introduce a layout analysis system based on a ResNet-
50 [94] feature extractor that borrows elements from the popular U-Net [197]
architecture. Their system can be applied for page detection, page segmenta-
tion, and text line/baseline extraction. Kiessling [131] introduces a pixel-wise
segmentation network for the extraction of text lines. Another recent work
by Boillet et al. [44] introduces a simpler segmentation network, compared to
the network introduced in [182], which they pre-train on multiple datasets,
followed by fine-tuning for the dataset the model is to be applied on. Different
approaches apply layout analysis and pixel-level segmentation on images of
historical Vietnamese steles [204] or using siamese networks on historical
Arabic manuscripts [8]. These approaches return a pixel-level segmentation
of the entire input image. The pixel-level segmentation can then be used
for further analysis steps, such as word and line segmentation. Further ap-
proaches that are closely related to pixel-level segmentation approaches, are
approaches binarizing challenging documents [123, 134, 173]. Here, the task
is to distinguish text pixels from background pixels. Approaches for pixel-
level segmentation, binarization or text line segmentation, use variants of
the U-Net [197] architecture. The U-Net architecture is mostly adapted by
using different network backbones [182], adding dilated convolutions [44], or
cascades of U-Net networks [123].

However, all these approaches rely on manually annotated data, which
is costly to obtain. Especially for segmentation, it is crucial to have enough
annotated training data available because the network needs to be adjusted to
the data distribution of the data it is to be applied on. Our contribution in this
field is a novel method for synthesizing training data, which can then be used
to train already proposed document segmentation or binarization methods.

4.2.3 Recognition

The main objective of many research endeavors in historical document analysis
is the recognition of the textual content of a document. After the segmentation
of a document, including the identification of text regions, the next step in
a document analysis pipeline is the recognition of the text. To this end, we
distinguish between the recognition of printed text and handwritten text. One
could say that recognizing printed text is solved, at least for documents with
printed text from the last centuries. Modern print OCR solutions such as
Tesseract [214] can read a wealth of documents written in a multitude of fonts.
However, the recognition of older printed text still poses a challenge [63]. In
our work, we are mainly interested in the analysis of handwriting. Thus, we
further focus on the analysis of handwriting.
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Over the years, a wealth of systems for the recognition of handwriting have
been proposed [72, 73, 137, 166, 175, 190, 242, 246]. While early methods
used handcrafted features [165, 166], later systems quickly adopted multi-
dimensional recurrent neural networks [72, 73, 87], which are now mostly
superseded by the usage of convolutional neural networks with sequence to
sequence encoders and decoders [190, 246]. Nowadays, offline handwriting
recognition systems [246] reach word error rates of as low as 8.6 %, or 7.5 %
on the standard offline handwriting recognition benchmark datasets IAM
DB [165] and RIMES [14], respectively.

Although handwriting recognition systems already achieve promising per-
formance, several challenges relating to analyzing historical documents and
documents in archives remain. Especially the recognition of old scripts holds
its challenges. Historical handwritten Japanese characters, for instance, pose
a challenge to offline handwriting recognition systems. On the one hand,
it is challenging to segment individual words or characters from text lines.
Thus, approaches based on object detection try to cast the text recognition
problem as an object detection problem [222]. On the other hand, not much
annotated training data for the recognition of old scripts is available, which
makes it necessary to use artificial methods to synthesize annotated training
data [137]. The Transkribus project [175] provides a platform for the creation
and usage of handwriting recognition models for several kinds of handwrit-
ing data from different centuries. However, the Transkribus project relies on
manual annotations, proposing to obtain annotations of at least 5000 words
before a handwriting recognition model with reasonable accuracy can be
trained. Access to methods that automatically generate annotations based on
the available unannotated data would be of high benefit for projects, such as
the Transkribus project.

Another problem that has not yet been addressed is how to handle various
kinds of handwritten text, e.g., numbers, words, dates, or price labelings. A
further problem that has not yet been addressed is the analysis of a corpus
consisting of documents in multiple languages. As long as not enough training
data for a specific language is available, it would be good to reason about the
possible content of a word image without the need to recognize it entirely.
Few related works dealt with directly classifying a word image solely based
on its visual structure. Mandal et al. [164] proposed a system to identify and
locate dates in documents. While they focus on finding date tokens, they first
recognize the text of individual text lines before the identification of dates.
Ingle et al. [108] propose to use a deep neural network to directly predict the
style, i.e., handwriting or printed text and script, i.e., Latin of a given word or
text line image. So far, no approach to directly propose the class of a word has
been proposed.
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4.2.4 Synthesis of Documents

The availability of annotated data is a massive problem for the analysis of
documents, especially historical documents. When using modern data-driven
approaches, the only chance to create a well-performing model is to use a large
amount of training data. However, as already stated before, the acquisition of
annotated training data is costly, especially if the data has to be annotated by
hand, especially if the data can only be annotated by domain experts. If we
look into other areas of text analysis, especially the area of scene text detection
and recognition [90, 114], we can see that a viable solution to the training data
problem is the synthesis of training data.

The usage of synthetic data is also a reoccurring pattern in the area of
document analysis. Tools for semi-automatic creation of annotated training
data are available [120]. However, such tools require a large amount of manual
work to synthesize a large-scale training dataset. Other approaches utilize
data augmentation techniques to augment already existing data with new
content [126], or image degradation techniques [79, 137]. However, a vast
archive containing documents from multiple centuries contains a diverse set
of document types. Even if we were to annotate documents of each type,
the whole process would still be very costly and might not be applicable to
documents of other archives. Hence, we strive to find data synthesis methods
applicable to any data without much human intervention. The application of
image degradation techniques also relies on the capabilities of the researchers
to correctly identify degradations in real-world data. Following such an ap-
proach is similar to the handcrafting of features, which the application of
deep learning has superseded because methods on deep learning can better
capture the subtle structures and distributions of the underlying data than
their handcrafted counterparts.

Recently, novel methods based on the application of generative adversarial
networks (GANs) for data synthesis have been proposed. The proposed
methods can be classified based on their granularity level. On the granularity
level of entire pages, a range of approaches are utilizing the image-to-image
translation capabilities of CycleGAN [258]. The goal of these approaches is
to synthesize realistically looking training data based on simple computer-
generated documents. Bui et al. [51] utilize CycleGAN and MUNIT [105],
another image-to-image translation GAN, for the transformation of computer
generated receipt images to more realistic looking receipt images. Another
work by Tensmeyer et al. [223] uses CycleGAN for the synthesis of document
patches with their corresponding binarization ground truth. Tensmeyer et al.
also first synthesized the ground truth using manual methods, then they use
CycleGAN to refine the synthetic image and create a more convincing and
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domain-adapted version of the training image. Pondenkandath et al. [189] go
even a step further and use CycleGAN to transform entire documents from the
domain of modern printed documents to historical handwritten documents.
Their method first requires synthesizing printed documents with the correct
layout, e.g., using LATEX. Then, they use CycleGAN to transform the printed
documents into handwritten documents. These approaches first require the
production of synthetic documents using handcrafted algorithms, followed
by a refinement or adaption step to transform the synthetic data to the target
data domain. Vögtlin et al. [231] improve on the idea by Pondenkandath et al.
by adding text recognition losses to encourage the model to produce content
closer to the original data domain and keep the semantic content of the
synthesized document. We also utilize handcrafted algorithms in our work.
However, we propose a novel approach that does not require any handcrafted
algorithms to obtain the ground truth; we directly extract the ground truth
from the trained network. Hence, our proposed system is able to work directly
on the target data domain without the need for domain transformation.

The usage of CycleGAN also plays a role in the granularity level of single
words or text lines. Rusakov et al. [199] use CycleGAN for the synthesis of
more realistic cruneiform signs compared to simple rendered cruneiform signs.
They also follow the approach of first rendering the plain cruneiform signs
and then transferring them to the target domain using CycleGAN. Alonso et

al. [9] utilize a conditional GAN for the synthesis of handwritten words.
They condition their GAN on the word to be written. Besides a discriminator
to encourage the trained model to synthesize realistic images, they propose
to use a text recognition network to guide the network in the synthesis
of readable handwriting. Building on the handwriting synthesis system by
Alonso et al., Kang et al. [121] propose a handwriting synthesis network that
can produce even more realistic handwriting. The model of Kang et al. is
furthermore versatile compared to the model of Alonso et al. because it can
additionally be conditioned on a particular style of handwriting. In our work
on handwriting classification, we use the model by Kang et al. to synthesize
realistic handwriting.

4.3 Determining Pages that Contain Handwriting

Handwriting is a ubiquitous entity in historical documents. Thus, methods to
analyze handwritten content need to be developed. However, as stated before,
it is costly and complicated to obtain the necessary annotations to use state-of-
the-art methods. In the following, we examine our contributions to historical
document analysis pipelines with a particular focus on the usage of artificial
data. In this section, we introduce our approach for the pre-processing task

83



4 Synthetic Data for Handwriting Analysis in Archives

of determining whether a page contains handwriting. The work presented in
this section has also been evaluated in [29].

4.3.1 Motivation

In our work, we collaborate with art-historians from the WPI. The WPI
possesses a large digitized archive containing more than 10 million scanned
pages. The scanned documents found in the archive of the WPI include scans
of auction catalogs, correspondences of art dealers, etc. Handwriting is of
particular interest to the researchers of the WPI because it might contain
valuable information about the provenance of works of art, prices at auctions,
or hints about the author of a specific work of art. The automatic extraction of
handwritten information from the archive would help the researchers in their
daily research work.

As a pre-processing step, we propose an analysis step that has not been
used in related work before. We propose to add a new step to a document
analysis pipeline that examines each page whether it contains handwriting.
The benefits of adding such an analysis step are manifold. First, performing
such an analysis on the entire archive provides researchers with information
about possibly interesting pages. Second, whether a document contains hand-
writing or not can be used to determine which parts of the analysis pipeline
need to be run; this should help conserve processing time and keep false
analysis results to a minimum. Third, we found that using our developed
handwriting determination approach is helpful for the development of ap-
proaches to solve problems further up in the pipeline. We use our developed
handwriting determination approach, for instance, to balance our training
data for our semantic segmentation approach presented in section 4.5.

To this end, we propose a data synthesis pipeline that synthesizes patches
of documents. Then, we use the synthetic data to train a classification model
that is applied on patches of the original documents. The classification model
classifies whether a given patch contains handwriting. In our experiments on
a diverse dataset containing real data from the WPI, we found that our model
generalizes well to real data with a F1-Score of 0.97. All code and models that
were used to achieve the results presented for this approach can be found
online.2

4.3.2 Determining Handwritten Pages with Synthetic Data

Raw digitized archival data does not necessarily contain any information about
the content of a document. However, the organization of the data in a datastore

2https://github.com/Bartzi/handwriting-determination (last accessed August 31, 2021).
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might contain information about the category or topic of the document. Names
of directories or files could be used to gather coarse information about the
document at hand, but this high-level information is not sufficient to find the
required data in a fast and straightforward way. This is why the extraction of
semantic metadata, preferably using automated methods, is necessary. Now,
we introduce our first contribution to aid the automated analysis of historical
documents. We propose a novel analysis step to determine whether a given
page of a document contains handwriting. We train a deep neural network to
classify whether an extracted patch of a document contains handwriting. We
utilize synthetic data that we synthesize using our proposed data synthesis
tool to train our deep neural network.

We train our proposed model on patches of scanned pages. The decision
to use patches of documents instead of full documents is rooted in two
observations. First, we found that it is not easy to automatically synthesize full
document images that are diverse, with a clear visual structure. Second, since
the goal of digitization is the preservation of historical material, the digitized
material is saved with the highest possible quality and resolution. We would
soon run out of memory if we were to use deep neural networks on such high-
resolution data without any pre-processing. Hence, it is necessary to reduce
the resolution of the input images. Resizing a high-resolution image to an
image with a considerably smaller size could lead to considerable detail and
information loss. Tiny handwritten annotations might not be visible anymore.
Therefore, we decided to split each input image into patches. Splitting an
image into patches allows us to keep the original resolution of the input image
in each patch; it also allows us to provide the user with a rough location of
handwriting regions. First, we introduce our data synthesis method. Second,
we explain the deep neural model for classifying whether a scanned page
contains handwriting.

4.3.2.1 Data Synthesis
At the heart of our approach is a data synthesis tool. Following related work
(see section 4.2.4), we create a data synthesis tool that is based on observations
on the structure of the data. Our tool synthesizes data similar to real data and
provides us with a training image with the corresponding annotation to train
our classifier.

It is challenging to synthesize an entire document page since it is nearly
impossible to anticipate all possible layout combinations, create a convincing
intra-document hierarchy, and keep the synthesized document consistent,
especially when working with documents from archives containing documents
from several centuries. Thus, instead of whole pages, we synthesize patches.
Synthesizing patches is more straightforward because we do not need to
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printed text printed graphics scanning artifacts handwriting

Figure 4.2: Examples of properties rendered on patches. A final patch consists
of multiple properties rendered on a patch. Here, we show each property
isolated to make the differences between them visible.

account for the composition and layout of multiple components of a single
document while still synthesizing a diverse set of layout combinations, as
they occur in real data. In short, we can say that we chose patches because
we are confident that patches allow us to model the data distribution more
simply. Each of the patches we synthesize contains several properties we
identified as integral parts of real scanned pages. Our data synthesis result
is a binarized image that contains one or more of our identified properties.
Synthesizing binarized images allows us to assemble document parts from
multiple sources into a single image without adjusting the background to
receive uniform-looking samples. In the following, we describe the properties
we identified and how we synthesize our patches.

Properties of Patches We found that pages of scanned documents exhibit
one or more of the following properties: (1) Printed text in the form of multiple
columns, with many words, as well as single printed words. (2) Graphics, i.e.,
reproductions of works of art, or sketches. (3) Scanning artifacts, i.e., a black
border around the image, scanning noise, etc. (4) Handwritten texts or single
words. In the following, we perform a closer examination of these properties
showing how we model them with our data synthesis tool. In figure 4.2, we
depict some examples of the properties found in our synthetic dataset.

Printed Text Over time, a wealth of printed text has been produced by
many people in various countries around the earth. These printed texts
appear in various layouts, using different fonts and writing styles. To account
for a large variety and cover a wide range of eras, we included texts from the
German Bundestag3 and the archive of the US government.4 The archives
contain documents from the years 1949 to 2021 and 1793 to 2021, respectively.
Besides extracting printed text from these documents, we also add printed

3https://dip.bundestag.de/ (last accessed August 31, 2021).
4https://www.govinfo.gov/app/search (last accessed August 31, 2021).
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words to our synthetic data. We add printed words because isolated words
might appear on postage stamps or labels contained in a scanned document.
We synthesize printed words using a tool for the synthesis of training data
for the recognition of printed text.5 Before we render printed text on a patch,
we binarize the used text portion using Otsu thresholding [183] to mitigate
problems with different background colors when assembling our synthetic
patches.

Graphics Documents from an archive might contain documents with graph-
ical elements such as pictures or sketches. Graphics contain organic-looking
structures, especially after binarization, which might confuse our model
because these structures are very similar to handwriting. To mitigate false-
positive predictions of graphical elements, we add photos from the valida-
tion dataset of the COCO 2017 Object Detection validation dataset [145].
On the one hand, we transform them to grayscale and add them directly
to the patches. On the other hand, we binarize the images using adaptive
gaussian thresholding.

Scanning Artifacts The scanning of a document produces a range of
visual artifacts. A common artifact is the area around the actual document
produced by the used scanning device and can be found in many scans.
We include such artifacts by adding binarized excerpts of scanning borders
to the produced patches. We also simulate other artifacts such as noise by
applying pepper noise to some of our synthesized patches.

Handwriting The last property is handwritten information. An archive
might contain documents with different amounts of handwriting. An
archive might either contain documents entirely written by hand, e.g.,
letters, documents with a mixture of printed and handwritten text, e.g.,
handwritten notes in auction catalogs, or a mixture of handwritten text and
graphics. In the case of entirely handwritten documents, the document’s
structure is similar to a document containing only printed text, as they
often contain multiple lines and blocks of text. To mimic such data, we
included parts of real handwritten documents. Here, we used images from
the Folger Shakespeare Library.6 Besides handwritten passages, archival
documents might also include short annotations. To mimic such data, we
include data from the IAM offline handwriting recognition dataset [167],
which contains a wide variety of handwriting styles and words. We binarize
all handwriting using Otsu thresholding before rendering it onto a patch.

5https://github.com/Belval/TextRecognitionDataGenerator (last accessed August 31,
2021).

6https://luna.folger.edu/luna/servlet/FOLGERCM1~6~6 (last accessed August 31, 2021).
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Synthesis Process During data synthesis, we combine the properties de-
scribed above and produce our synthetic training samples. Our synthesis
process includes the following steps:

Property Selection In the first step, we decide which properties shall
be used in the patch to synthesize. We randomly select 0 to 𝑛 properties,
with 𝑛 being the number of all properties minus handwriting. If a patch
should be a positive patch, i.e., contain handwriting, we also either select a
handwritten document or a handwritten word from the IAM dataset to be
included in the patch.

Fragment Synthesis After selecting properties, we create an empty image
serving as a canvas. As already stated above, we produce binarized im-
ages to avoid problems with different stages of background degradation,
which would destroy the uniform look of our synthesized data and provide
unwanted visual cues for the classification network. First, we select each de-
scribed property and binarize the selected property using the binarization
approach described in the description of each property. Following binariza-
tion, we apply a range of 0 to 𝑚 random transformations, such as scaling,
rotating, dilating, or eroding the property. Here, 𝑚 denotes the number
of available transformations. Applying these transformations allows us to
add more variety to our data and model the data distribution more closely.
Finally, each property image is added to the canvas and passed to the next
step.

Fragment Evaluation After synthesizing a fragment, we perform a qual-
ity assurance step if the patch is supposed to contain handwriting. In this
quality assurance step, we count the number of black pixels containing
handwriting visible on the synthesized patch. Counting the number of
black pixels that belong to handwriting is simple because we know where
we pasted handwriting and can use this information to count all black pixels
of our binarized image. This check is necessary because the documents we
use as handwriting sources contain regions with little or no handwriting.
Our quality assurance step allows us to discard all fragments that do not
contain “enough” handwriting. During synthesis, we require that at least
5 % of the pixels of each patch with handwriting contain black handwriting
pixels.

In figure 4.3, we provide a schematic overview of the proposed data syn-
thesis pipeline, including examples of synthesized patches.
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Figure 4.3: Illustration of our data synthesis pipeline, which consists of several
steps. First, we select several properties from our pool of available properties.
Then, we binarize the image of each selected property. Following the bina-
rization, we assemble multiple properties into a negative or positive patch. A
positive patch contains handwriting, and a negative patch does not. Following
patch creation, we perform a patch evaluation step. The evaluation step is
only necessary if we create a positive patch because we want to ensure that
the fragment contains enough handwriting. This evaluation step helps us to
provide only reasonable input to the classifier during training. In the end, we
save the patch.

4.3.2.2 System design
After synthesizing our training data, we use the data to train a deep neural net-
work on handwriting determination. We propose to use a deep convolutional
feature extractor with a two-class classifier. For the extraction of features, we
resort to a feature extractor based on the ResNet-18 [94] architecture, where we
use group normalization (GroupNorm) [245] instead of batch normalization
(BatchNorm) [109] (see also section 2.2.1.5). Thanks to the large amount of
data we synthesize, we can train our model directly from scratch without the
need to fine-tune a model initialized on the ImageNet dataset [71]. We train
our model using stochastic gradient descent and utilize softmax cross-entropy
as the loss function.

The input to our network is a single patch with fixed input size. The output
is the classification result, whether the analyzed patch contains handwriting.
During test time, patches are created by splitting the scanned page into patches
of the same size, with the least possible overlap. We decide whether a scanned
page contains handwriting by examining the classification result of each patch.
If any patch is classified to contain handwriting, we decide that the entire
page contains handwriting. This approach opens up the possibility of a higher
number of false positives if the classifier is noisy. We think that such problems
could be mitigated by allowing a higher overlap between fragments and
performing local voting involving the classification result of multiple patches
in the neighborhood. We leave the exploration of such post-processing for
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Figure 4.4: A depiction of our full handwriting determination system. We
fragment the input image into several patches. Each patch is put into a ResNet-
18 based binary classifier. The classifier categorizes each sample whether it
contains handwriting or not. An orange border indicates patches containing
handwriting, whereas a green border indicates patches without handwriting.
Based on the classification result of all patches, we decide whether the docu-
ment contains handwriting. We deem a document to contain handwriting if
there is at least one patch classified as a patch containing handwriting. The
division of the input image into several patches also allows getting the rough
location of handwriting on each page.

future work, as our system already achieves promising performance, as we
show in section 4.3.3. We provide a visual explanation and overview of our
proposed analysis pipeline in figure 4.4

4.3.3 Experiments

Following the description of our proposed system, we now present the evalu-
ation results on a real-world dataset. We gathered a real-world dataset from
the archive of the art-historical archive of the WPI and manually labeled the
data for evaluation. In the following, we introduce our experimental setup,
present our achieved results and discuss them.

4.3.3.1 Experimental Setup
We implement our proposed system using the deep learning framework
Chainer [225]. We set the input size of our deep neural network to 224 × 224
pixels and train the network only using synthetic data generated by our
data synthesis tool. For training, we synthesized 1 million patches containing
handwriting and another 1 million patches without handwriting, resulting
in two million samples. We split the dataset in a train set with 1.98 million
samples and a validation set with 20 000 samples. For optimization, we use
Adam [132] as optimizer. We set the initial learning rate to 10−4, train our
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network for 200 epochs, with a batch size of 64, and shift the learning rate by a
factor of 0.1 every 10 epochs. We perform all of our experiments on a machine
equipped with an Nvidia RTX 2080Ti GPU.

Our manually labeled evaluation set consists of 1773 scanned document
pages from the art-historical archive of the WPI. The scans in our evaluation
dataset are very diverse. The dataset includes scans of book pages, auction
catalogs, pages containing images, book covers, letters, and scans of modern
documents with and without handwritten annotations. After annotation, we
ended up with 1396 (roughly 78 %) pages containing handwriting and 377
(roughly 22 %) pages that do not contain handwriting. Before creating patches
of size 224 × 224, we resize the largest side of the document scan to a size of
2000 pixels. We choose 2000 pixels as maximum side length to make sure that
we can fit all patches into the memory of one of our GPUs at the same time.
We note that sticking to such a constraint is not required, as it is also possible
to examine each patch individually, using much less memory on the GPU.
After we resize the input image, we create the patches in a sliding window
fashion, as shown in figure 4.3. Each patch is used as input to the classification
network. Based on the classification result of each patch, we decide whether a
page contains handwriting, as described in section 4.3.2.2.

4.3.3.2 Experimental Results
To validate that our data synthesis approach is viable and that models trained
with our synthetic data are applicable to real-world data, we perform three
experiments on our test set. The experiments differ in the pre-processing
method used for the input images. On the one hand, we evaluate how the
model behaves when supplied with input binarized using two different bina-
rization strategies. On the other hand, we evaluate the model’s performance
when using grayscale versions of the scanned pages as input. We assume that
the model performs best when supplied with binarized images. We argue that
our assumption should hold because the model has been trained on binarized
images only. Hence, it should perform worse on grayscale input because the
data distribution is different. For binarization, we make use of Otsu thresh-
olding [183] and also adaptive gaussian thresholding. In table 4.1 we report
precision, recall, F1-Score, as well as, false negative and false positive rate for
each experiment.

The experimental results verify that our data synthesis process is effective
for the application to heterogeneous document data. However, we can also
see that our model is more likely to produce false-positive than false-negative
predictions. This behavior is not ideal, but we argue that a model that is more
likely to produce a false-positive result is better than a model that might miss
an important document. The impact of missing a document is much higher
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Table 4.1: Experimental results of our three experiments on the dataset with
data from the art-historical database of the WPI. Results in bold represent
the best result. FNR and FPR dennote false negative rate and false positive rate,
respectively.

Metric Otsu Threshold Adaptive Gaussian Threshold Grayscale

Precision 0.96 0.96 0.97
Recall 0.97 0.97 0.98
F1-Score 0.97 0.97 0.98
FNR 0.03 0.02 0.02
FPR 0.14 0.13 0.10

than the impact of a document wrongly predicted to be positive because it
is easier to dismiss a false positive than to find a false negative. However, as
already stated above, we might be able to mitigate this by improving the post-
processing and decision-making of our approach, which is an idea that should
be explored in future versions of our proposed approach. Another interesting
observation from our experimental results is that our model performs best
on grayscale input images. The result contradicts our assumption that the
model should work better on binarized images, as we trained only on binarized
images. We argue that our model shows this behavior because the binarization
of complex structures, such as images, introduces artifacts that we can not
model perfectly with our synthetic data. Using grayscale images as input does
not produce such isolated artifacts. Hence, the model is not confused when
presented with such data.

Besides the quantitative results in table 4.1, we also provide qualitative
results of our model on patches of the data from the WPI in figure 4.5. In
this figure, we present patches that have correctly been classified as con-
taining handwriting, correctly classified as not containing handwriting, and
patches that have falsely been classified as containing handwriting. We pro-
vide 4 patches for each category. We can observe that our model can handle
complicated backgrounds and various kinds of handwriting well, even if
handwritten words are not completely visible in a patch. Furthermore, our
model can correctly classify empty patches, although we never synthesize any
fragments without any text or image properties. A further examination of
the false-positive predictions reveals that our model cannot handle complex
backgrounds without any handwriting, e.g., in the upper-right image. The
model might show this behavior because we did not correctly mimic organic
structures of such complicated backgrounds in our synthetic training data. In
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true positive false positive true negative

Figure 4.5: Qualitative results of our model on several real-world fragments
taken from documents of the archive of the WPI. We show true positive, false

positive, and true negative results. We can see that our model successfully
operates on grayscale images, although it was only trained on binarized
images. However, our model struggles with complex structure and artifacts
that exhibit properties of handwriting, i.e., curved lines, as shown in the false

positive column.

the future, we think that we might be able to improve the results by, on the
one hand, adding more such structures to the data synthesis tool. On the other
hand, we think that we can use the samples synthesized by the generative
model we use in section 4.5 to synthesize a training set for our handwriting
determination model.

Besides the experiments to validate the applicability of our proposed
pipeline, we also used the proposed model for handwriting determination to
balance the dataset for the training of our generative model (see section 4.5.5).
Thanks to the balancing of the training set, we were able to train a generative
model that produces more diverse samples containing both printed and hand-
written text than the model trained on the unbalanced dataset. If we were
to use the data synthesized by our generative model whose training data we
balanced using the model introduced in this section, we would literally pull
ourselves up by our bootstraps to train a better model for handwriting deter-
mination. We think this is an exciting observation that shows the possibilities
and hints at possible problems using synthetic data in deep learning. One of
the most severe problems could be that the models adjust only to the data
distribution and domain of the synthetic data and not to the domain of the
real data, which would render all of our efforts useless. On the other side, the
possibilities are endless and would enable us to apply deep learning to more
and more problems that were out of reach before.
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4.3.4 Summary

In this section, we introduced a method for automatically determining whether
a page’s scan contains handwriting. Our method is designed to be a pre-
processing step for document analysis pipelines in the domain of historical
and archival data. Determining whether a page contains handwriting is
especially helpful when analyzing diverse documents in content and might
not contain handwriting on each page of the document. Thus, determining
whether a page contains handwriting is a meaningful method to determine
which further analysis steps for a given document need to be performed. A
huge problem when dealing with historical or archival data is the availability
of annotated training data. We overcome this problem by introducing a
data synthesis method that can be used to train a deep neural network for
handwriting determination successfully. In our experiments, we validate that
our proposed data synthesis algorithm is viable. We show that a model trained
on our synthetic data can successfully determine whether the scan of a page
from the archive of the WPI contains handwriting. Thanks to our patch-
based approach for handwriting determination, our model can also provide
the rough handwriting location on a page. Furthermore, we found that our
proposed model can also balance the training data for the training of other
models further up in a document analysis pipeline.

Following the determination of whether a page contains handwriting, fur-
ther analysis steps need to be employed. In the following sections, we present
two further approaches that we developed. Both approaches are also based
on the use of synthetic data.

4.4 Handwriting Classification

Following our first contribution to a historical document analysis pipeline, we
now tackle another, later, part of the pipeline. In this section, we introduce a
novel pre-processing step before the actual handwriting recognition step. We
propose classifying a handwritten word based on its visual appearance into
categories such as date, number, alpha-numeric, etc. The work presented in
this section has also been discussed in [27] and was produced in collaboration
with Hendrik Rätz, see chapter 6 for more information about the collaboration.

4.4.1 Introduction

A pipeline for OCR consists of multiple pre-processing steps before the actual
text recognition stage is performed (see section 2.1.1). These pre-processing
steps are necessary because the actual automatic recognition of textual content
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is a complex problem. To further simplify text recognition, especially for
handwriting, we propose another pre-processing step in this section. Our
novel pre-processing step is located right before the recognition step. Based
on an image containing a cropped word, we extract semantic information about
the word without reading it letter by letter. Instead, we train a deep neural
network to classify the content of the word image. Possible categories include,
but are not limited to: dates, numbers, or alphanumeric strings. Classifying
words based on their visual appearance has several advantages. First, it enables
us to select the best recognition algorithm for each word instance, possibly
increasing recognition accuracies. Second, the classification of handwriting
allows us to provide researchers who search for specific semantic entities,
e.g., dates, with results, although we did not read the text in its entirety.
Having such an option can be of high benefit because we can also provide
semantic information found in documents written in languages where not
much training data is available, but the visual structure of particular entities
is similar. Thus, documents already analyzed with handwriting classification
can help researchers to identify and filter documents and pages quickly by
specifying the type of information they are looking for.

In this section, we introduce and evaluate several possible approaches for
handwriting classification (see section 4.4.3). On the one hand, we propose
to train a softmax classifier with a fixed number of classes. On the other
hand, we propose to learn a more flexible model that uses metric learning
to embed images of handwritten words. The objective of the model trained
using metric learning is to embed images that have a similar structure close to
each other while positioning images with a differing structure far from each
other. Here, we also use methods for the synthesis of training data because
already available datasets, such as the IAM database [167] do not contain
many instances of handwritten numbers and no dates at all (see section 4.4.2).
In our experiments, we show that our proposed models are well suited for
handwriting classification. We also verify that our approach based on metric
learning is flexible and even allows to distinguish classes it has never seen
during training (see section 4.4.4). The contributions we present in this section
can be summarized as follows: (1) We introduce methods for the successful
synthesis of handwritten dates, numbers, etc. (2) We perform an in-depth anal-
ysis of the capabilities and drawbacks of several deep learning architectures
for handwriting classification. Code and models are freely available for the
community7 to facilitate further experimentation.

7https://github.com/hendraet/handwriting-classification (last accessed August 31,
2021).
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4.4.2 Synthesizing Realistic Handwriting

Existing handwriting databases, e.g., the IAM Handwriting Database (IAMDB) [167],
IAM Historical Handwriting Database (IAM-HistDB) [77, 78] or the RIMES
dataset [14], contain a large amount of handwritten text but hardly any
numbers, dates, or alphanumeric strings. The largest of the IAM databases
(IAMDB), for instance, contains 115 320 word images but only 454 of those
word images contain numbers. For the classification of handwritten word
images, we need annotated datasets that also contain a fair amount of num-
bers for the training of our models. Besides numbers, we might also need
words following a specific structure if we want to be able to, e.g., categorize
alphanumeric identifiers or price tags. Datasets that are entirely synthetic
exist, e.g., the IIIT-HWS dataset [135]. However, even these datasets do not
contain many samples that are not words. Thus, we resort to the synthesis of
training data for our use case.

To overcome the problem of missing handwritten numbers and dates, we
use two data synthesis methods. First, we use the stroke information taken
from the IAM Online Handwriting Database (IAMONDB) [154] to synthesize
the first naive samples containing numbers that we use to balance the training
data for the second synthesis method. Second, we adapt the GANWriting

model proposed by Kang et al. [121] to synthesize a large number of realistic
handwriting samples.

4.4.2.1 Synthesizing Crude Data using Recorded Strokes
As already stated above, we do not have access to a sufficiently large amount
of handwritten numbers and dates. To overcome this problem, we make use of
online handwriting data. Online handwriting data contains the information
on how the pen moved while a test subject wrote words. Such data is captured
using specific hardware for the capture of pen movements during writing. The
IAMONDB [154] is a dataset that contains online handwriting information
of 86 272 words obtained from 221 writers. Out of these samples, we identify
all words containing numbers and manually extract the strokes necessary to
create each digit. We also identify and extract stroke information of characters
such as dots and dashes to synthesize dates.

Once we gather all stroke information, we concatenate the stroke informa-
tion to new strings that resemble numbers and dates and render them on a
white canvas. Since the stroke information does not include any hint about
stroke thickness and color, we randomly select a stroke thickness and color
for each synthesized sample to increase the variety of synthesized samples.
We note that we do not mix stroke information of different writers to keep
the writing style consistent, as we need it to be consistent when applying the
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IAMonDB Figure 4.6: Samples synthesized using the stroke information from several
writers contained in the IAMONDB. We depict samples that display numbers
and dates.

GANWriting model by Kang et al. All in all, we can use stroke information
from 111 writers of the IAMONDB, leaving us with a variety of writing styles.
In figure 4.6, we show examples of the samples synthesized using the online
handwriting synthesis approach.

4.4.2.2 Synthesizing Handwriting using the GANWriting Model
Following the synthesis of handwritten digits and dates, we apply another
synthesis model to synthesize a broader range of handwriting data. To this
end, we adapt the GANWriting model by Kang et al. [121], which is a generative
model based on a conditional GAN architecture. The GANWriting model can
produce word images containing realistic readable handwriting while being
conditioned on the content and the handwriting style. A vital characteristic
of the model is that it can synthesize words or character combinations that
have not been part of the training set, which drastically increases the synthesis
possibilities for our training data, compared to the synthesis using only online
handwriting data.

In the following, we introduce the GANWriting model in more detail.
Compared to a vanilla GAN (see section 2.2.6), the GANWriting model is
more sophisticated. Besides the generator and discriminator, the GANWriting
model also contains a recognition model and a writer classifier model. The two
extra models are used to guide the generator to synthesize not only images
that resemble handwriting (the task of the discriminator) but also images that
contain readable handwriting (the task of the recognition model) and text that
is written in the correct style (writer classifier). We provide an overview of
the model in figure 4.7.

Generator The generator of the GANWriting model takes two inputs. First,
multiple images depicting handwritten words of one author are passed to
the style encoder of the generator. The task of the style encoder is to extract
the stylistic features that it needs to synthesize handwriting in the same style.
The sylistic features are extracted using a modified VGG-19 [213] that uses
instance normalization [227] instead of BatchNorm.
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Figure 4.7: Structural overview of the GANWriting model. The model consists
of a generator that receives the text that is to be generated and a set of K

images that define the desired rendering style. The quality and readability of
the synthesized images are assessed by three models: a discriminator, a writer
classifier, and a word recognizer.

The second input to the GANWriting generator is a vector with a one-hot
encoded representation of the input characters the generator shall render in
the resulting output image. First, each character is embedded using a character
embedding layer that converts the one-hot representation to a vector of 64
dimensions. Following the character embedding, two encoders are used.

First, the character-wise encoder encodes the embedded characters and
brings them to the same dimensionality as stylistic features. The output of the
character-wise encoder is then concatenated with the stylistic features. The
resulting character and style vector is subsequently used to steer the synthesis
of the word in the correct style with the correct input. The original model for-
mulation of Kang et al. only allowed the synthesis of words with a word length
of up to 7 characters. Since date strings are longer than seven characters, we
adapted the padding strategy of the model, effectively allowing the synthesis
of words up to a maximum of 25 characters. Originally padding in the GAN-
Writing model works by repeating each character until the string reaches a
length of 27 including a start and end of sequence token. The maximum length
is set to 27 because the output of the character-wise encoder is concatenated
with the output of the style encoder. Requiring the same amount of repeats
for each character limits the maximum length of words to be generated by the
model severely. Thus, we introduced a new empty string token 𝜖. The empty
string token is added to the end of the string. It does not include any new infor-
mation and is solely used to fit the size of the character-wise encoder output
to the output of the style encoder. For the word "ExampleTwo" and a (hypo-
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thetical) maximum string length of 11, the process would be the following:
1. Pad string: ExampleTwo𝜖
2. Start and end token: <S>ExampleTwo<E>𝜖
3. Repeat sequence: <S><S>EExxaammpplleeTTwwoo<E><E>𝜖𝜖
4. Add extra padding: <S><S>EExxaammpplleeTTwwoo<E><E>𝜖𝜖𝜖.
The second encoder that follows the embedding layer is the global string

encoder. The global string encoder produces a more general representation
of the character string. The character string is represented as a set of multiple
mean and variance vectors that are used to guide the Adaptive Instance
Normalization (AdaIN) layers of the decoder.

The decoder is the actual generation part of the generator. The architecture
of the decoder is based on the MUNIT architecture by Huang et al. [105]. The
decoder uses residual blocks and AdaIN [104]. The input to the decoder is
the feature map obtained by concatenating the style features with the output
of the character-wise encoder. The output of the global string encoder is used
to drive the AdaIN layers. In the end, the decoder produces an image of size
216 × 64 (width × height).

Discriminators The GANWriting model consists of multiple discriminators,
a discriminator, a word recognizer, and a writer classifier.

The first model is a discriminator that tries to determine whether the
given input image is real or if the generator generated it. The architecture of
the discriminator is based on the ResNet architecture, activated with leaky
rectified linear unit (ReLU) [163]. The discriminator is trained using binary
cross entropy (BCE). Thus, the loss ℒDis of the discriminator is calculated as:

ℒDis = BCE = −(𝑦log(�̂�) + (1 − 𝑦)log(1 − �̂�)). (4.1)

With 𝑦 denoting the real label, either 0 (fake) or 1 (real) and �̂� denoting the
output of the discriminator.

The text recognizer is a text recognition network for the recognition of
handwriting. It is a sequence to sequence model proposed by Kang et al. [122]
that consists of a VGG-19 and bidirectional gated recurrent units (GRUs) to
encode image features. The output of the text recognizer is generated by an
attention-guided bi-directional GRU decoder. Following standard practice,
for text recognition, the model is trained using softmax cross-entropy loss for
each character, which we denote as ℒRec.

The writer classifier is a simple residual network that predicts the author
the generated image was conditioned on. This model is also trained using
softmax cross-entropy, which we denote as ℒCla.

Training of the Model The model is trained following standard training
practices for GANs (see section 2.2.6). The only difference in the GANWriting
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Figure 4.8: Our proposed models for handwriting classification consist of
the same neural architecture for feature extraction. However, they handle
extracted features differently. Our model based on a softmax classifier directly
applies the softmax function on top of the classification layer. Our models
based on embeddings learn these embeddings using triplet loss and reach their
classification decision using one of two classification algorithms, k-nearest
neighbors (kNN) or log-likelihood ratios (llrs).

model is that the loss of the discriminator update consists of multiple loss
terms:

ℒ = ℒDis + ℒRec + ℒCla. (4.2)

The loss term ℒ is only used to update the generator. During the update of
the discriminator, each model is updated individually.

4.4.3 Classification of Handwritten Words

In the following, we introduce our general approach and the two classification
approaches we propose for handwriting classification. On the one hand, we
propose the usage of a simple softmax-based classifier. On the other hand,
we propose to use a distance-based embedding model. Here, classification
is achieved by measuring the Euclidean distance of embedded samples and
deciding on a class based on several methods. The primary motivation behind
introducing the distance-based approach is its increased flexibility regarding
the classification of samples from classes unseen during training. In figure 4.8,
we provide a visual explanation of our proposed approach including inputs
and all classification methods.
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4.4.3.1 Softmax Classifier
Our first model is a deep neural network with a feature extractor based on
the ResNet-18 [94] architecture. On top of the feature extractor, we employ a
softmax classifier with a fixed number of classes. We train the model using
softmax cross-entropy as our loss function. Classifiers trained using softmax
cross entropy are very strong classifiers, e.g., image classification on ImageNet
surpasses human performance using softmax based classification [94, 221].

However, softmax models are pretty inflexible. It is, for instance, not possible
to add a new class to the classifier without retraining the whole network. In
an actual use case, a researcher might want to find documents containing
a specific kind of handwriting without the need for a long-running model
adjustment and data synthesis. We propose another approach that could be
used in such a case and counter the inflexibility of the softmax approach.

4.4.3.2 Distance Based Model
Besides the inflexible softmax classification model, we propose a distance-
based model. Our distance-based model consists of a convolutional feature
extractor and an embedding layer. As a convolutional feature extractor, we
build on a ResNet-18 model. Following the feature extractor, we add a fully
connected layer that transforms the feature map to a vector of 512 dimensions.
The input to our feature extractor is an image of a cropped handwritten word.
We train our model to produce embeddings close to each other (in terms
of euclidean distance) if the input images depict the same type of content,
e.g., words, dates, numbers, etc. To learn the embedding, we train our model
with the triplet loss function [203]. Once we obtain a trained model, we
categorize images based on two different classification schemes. On the one
hand, we experiment with categorization based on k-means [157] for clustering
and kNN [10] for classification. On the other hand, we experiment with a
distance-based thresholding approach utilizing llrs [49]. In the following,
we first introduce triplet loss, followed by an introduction of our classification
approaches.

Triplet Loss Schroff et al. originally developed the triplet loss function
for the training of face recognition models [203]. The idea of triplet loss is
an advancement of the well-known siamese network training scheme [48]
where two networks share weights, and the similarity between two inputs is
measured and used for classification or verification decisions. Instead of two
inputs to measure similarity, a triplet network uses three inputs, as the name
already indicates. The three inputs to a triplet network are denoted as anchor,
positive, and negative. Anchor and positive belong to the same class, whereas
negative belongs to a different class. A set of three deep neural networks that
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Figure 4.9: Triplet loss encourages a deep neural network to place samples
of the same class to each other. Three samples are used to achieve a close
placement. Two samples of the same class (anchor and positive) and one sample
of another class (negative).

share weights transform the input images to their corresponding embeddings.
The loss ℒtriplet is then computed using the following formula:

ℒtriplet = max(0, 𝑑(𝑎, 𝑝) − 𝑑(𝑎, 𝑛) + 𝛼). (4.3)

With 𝑎, 𝑝, 𝑛 denoting anchor, positive and negative sample, respectively. The
hyperparameter 𝛼 represents the margin, i.e., the minimum distance that is
enforced between positive and negative samples. The function 𝑑 denotes the
euclidean distance between two embeddings of dimensionality 𝑛:

𝑑(𝑝, 𝑞) =

√√
𝑛∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2. (4.4)

The triplet network tries to minimize the distance of the embeddings of the
anchor and positive sample while simultaneously maximizing the distance
of the embeddings of the anchor and the negative sample. We could also say
that the triplet loss trains the network to embed images representing the same
class close to each other. We provide a visualization of the idea of triplet loss
in figure 4.9.

We chose triplet loss as our loss function because related work [192] showed
that a model that learned a clustering based on triplet loss could handle
samples from previously unseen classes allowing us to gain the flexibility we
wish for our network.
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Classification using k-means and kNN To determine the class of a given
word image, we need to categorize the extracted embedding. One possible
approach is to automatically find clusters in the embeddings of the test
data using k-means, where k denotes the number of classes that are to be
distinguished. The result of k-means are k cluster centroids. Once we extracted
the clusters’ centroids, we use our trained model to embed a set of support
samples, i.e., samples where the class is known. We then use kNN to label the
cluster centroids. In the final step, we assign labels to each sample of our test
set by assigning it the class of nearest centroid. In our experiments, we denote
this approach as the “naive” approach.

Classification using log-likelihood Ratios Another approach for classifying
embeddings of word images is to classify embeddings based on a distance
threshold, where we do not need to find centroids of embeddings. Related
work proposes to use several different thresholding methods. Schroff et al. [203]
propose to use a hard and fixed threshold. Such a threshold needs to be tuned
manually to get the best classification result. In another work, Rantzsch et

al. [192] propose to use a more flexible distance-based thresholding for their
work on signature verification using triplet learning.

Rantzsch et al. propose to use the concept of log-likelihood ratios (llrs) [49].
Llrs produce soft decisions where it is not necessary to tune a distance
threshold for each class manually. The soft decisions produced by llrs
provide a relative score that reflects the confidence of a classification decision.
The ratio is formally defined as:

llr(𝑑) = log
𝑃(𝑑 |target trial)

𝑃(𝑑 |non-target trial) . (4.5)

The rationale behind the function is to determine it is how likely it is that the
calculated distance 𝑑 is observed for a sample of class A (denoted as target

trial) or class B (denoted as non-target trial). To enable such computation at test
time, we need a support set of which each sample is embedded. Based on the
embeddings of all samples, we can calculate the distance distributions that
are necessary for the calculation of the llr.

The formulation of llrs that we present here can not directly be used for
multi-class classification. To use llrs for multi-class classification, we evaluate
the embedding of a handwritten word image in a one-vs-all approach. In this
setting, the llr for each class versus all other known classes is computed.
Since an llr represents confidence, we assign the embedding to the class with
the highest confidence value.

103



4 Synthetic Data for Handwriting Analysis in Archives

4.4.4 Experiments

To validate our assumptions and show the feasibility of our proposed ap-
proach, we now perform a series of experiments on multiple datasets. In our
experiments, we show that our proposed models can be used for applica-
tion on the problem of handwriting classification. We further validate our
hypothesis that our model based on distance embeddings is flexible and can
be used with classes not seen during training. We begin by introducing our
experimental setup, followed by all datasets we use in our experiments. Last,
we present our experimental results on all datasets.

4.4.4.1 Experimental Setup
We base our implementation of the GANWriting model on the PyTorch [184]
implementation8 by the original author of the GANWriting paper [121]. We
train the GANWriting model in two rounds (we restart the training after
the first round with the fully trained generator but randomly initialized
discriminators) of 3000 and 6000 epochs, respectively. For training, we use a
batch size of 16, a GPU with a total of 12 GB of RAM, and we use Adam [132]
as optimizer, setting the learning rates to 10−4 for discriminator and generator
and to 10−5 for writer classifier and text recognizer.

We implement our classification models using the deep learning framework
Chainer [225]. For training, we also use a GPU with a total of 12 GB of RAM,
Adam with a learning rate of 10−4, and a batch size of 128. We train our
classification models for 20 epochs.

We evaluate our models using accuracy, recall, precision and F1-Score.

4.4.4.2 Datasets
We perform our experiments on multiple datasets. On the one hand, we use
two different synthetic datasets for training and evaluation of the feasibility
of our approaches. On the other hand, we gather a dataset containing real
samples from the archive of the WPI for evaluation purposes only. We provide
some samples from each dataset for reference in figure 4.10. In the following,
we introduce each dataset in more detail.

Synthetic Datasets As already mentioned in section 4.4.2, getting access to
a large-scale annotated training dataset with various types of handwritten
content is complex and, in some cases, even impossible. Hence, we use the data
synthesis methods we introduced in section 4.4.2 to synthesize a sufficient
amount of training data for the training of our proposed models. All in all, we
synthesize and assemble two datasets. The first dataset consists of samples

8https://github.com/omni-us/research-GANwriting (last accessed August 31, 2021).
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Figure 4.10: Depiction of samples from all datasets we use for our experiments
on handwriting classification. In the first row, we show samples from the
GANWriting dataset. The second row depicts some printed samples that are
added to the samples of the GANWriting dataset to form the Five Classes
Handwritten and Printed Text (5CHPT) dataset. The last row shows some
samples from the WPI dataset, which solely consists of real images from
archival documents and is used for evaluation only.

synthesized by our adaption of the GANWriting model (see section 4.4.2.2).
The dataset consists of handwriting samples from three classes, i.e., words,
numbers, and dates, totaling in 7920 samples equally distributed over the
three classes. We split the dataset into train and test set using a 9 : 1 ratio.
The purpose of this dataset is to quickly perform experiments to validate the
applicability of our proposed models to the task of handwriting classification.
For the remainder of this section, we refer to this dataset as the GANWriting
dataset.

For the second dataset, we added two additional classes and also a different
text modality. We add alphanumeric strings and five-digit numbers resembling
zip codes as additional classes. We added alphanumeric strings because we
want to investigate the capabilities of our proposed models when confronted
with a mixture of digits and letters. Such mixtures are especially interesting
for the use case of researchers if they are, for instance, searching for specific
alphanumeric identifiers. On the other hand, we add zip codes because we
want to investigate the counting capabilities of our models. Besides the two
extra classes, we also add samples that are not handwritten but are instances
of printed text. We also decided to add printed text because the usage of
printed text allows us to scale the amount of available training data by a large
margin and adds a great variety of visual appearances in our samples, making
the task even more complicated for our models. Since the dataset consists of
five classes containing handwritten and printed text, we refer to the dataset as
the Five Classes Handwritten and Printed Text (5CHPT) dataset. In total, the
dataset consists of 26 400 samples, equally distributed over the five classes.
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Table 4.2: Evaluation results for our different handwriting classification models
on the GANWriting dataset. Results in bold font indicate the best performance.

Experiment Accuracy (%) Precision (%) Recall (%) F1 Score

Naive 99.62 99.62 99.62 0.9962
LLR 99.24 99.25 99.24 0.9924

Softmax 99.62 99.62 99.62 0.9962

WPI Dataset Besides our synthetic datasets, we also gathered a test dataset
from the archive of the WPI. This dataset consists of 272 cropped word images
of handwritten text, showing numbers (112 samples), words (108 samples),
alphanumeric strings (31 samples), and dates (21 samples). These samples
are very different from the samples we use for the training of our models, as
can be seen in the last row of figure 4.10. As we will see in our experimental
results, these differences lead to a degradation in the performance of our
model. However, we are still confident that our model can be used on original
WPI data if we can synthesize data close enough to the real data. For now, we
could not do this because not enough samples from a similar data distribution
of the WPI samples are available. In section 4.5 we provide an approach that
could be helpful to gather other samples that we can use to improve the results
of our handwriting classification approaches later.

4.4.4.3 Results on the GANWriting dataset
In our first set of experiments, we assess whether our idea of handwriting
classification and whether our proposed models are feasible. To test the
feasibility, we train our models on the GANWriting dataset. The results, see
table 4.2, show that all of our three approaches can correctly classify samples
from the GANWriting dataset. To further understand the reasons of the
performance of our distance based embedding methods naive and llr, we
visualize the predicted clusters for each sample in figure 4.11. We obtain the
cluster visualization by applying PCA [102] to the embeddings.

The visualization shows that our embedding model can produce three nearly
perfectly distinct clusters. Hence, our classification methods on the distance-
based embeddings produce near-perfect results. From the visualization, we
can also see that the model seems to focus on the text structure in the word
image because the cluster of dates is positioned far away from the other two
clusters.

4.4.4.4 Results on the 5CHPT Dataset
Following our encouraging results on the GANWriting dataset, we experiment
with the samples from the 5CHPT dataset. Here, we examine whether our
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Figure 4.11: PCA of samples from the GANWriting dataset

Figure 4.12: PCA of samples from the 5CHPT dataset
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Table 4.3: Evaluation results for our different handwriting classification models
on the 5CHPT dataset. Results in bold font indicate the best performance.

Model Accuracy (%) Precision (%) Recall (%) F1 Score

Naive 74.32 76.31 74.32 0.7456
LLR 79.89 80.19 79.89 0.7999

Softmax 90.00 90.62 90.00 0.9004

Table 4.4: Detailed evaluation results for our different handwriting classifi-
cation models on the 5CHPT dataset. Results in bold font indicate the best
performance.

Class Model Precision (%) Recall (%) F1 Score

Alphanumeric
Naive 90.19 62.69 0.7397
LLR 84.51 81.63 0.8304

Softmax 85.19 91.48 0.8822

Date
Naive 97.12 95.64 0.9637
LLR 99.01 94.70 0.9681

Softmax 99.80 96.02 0.9788

Number
Naive 48.78 49.24 0.4901
LLR 64.96 62.50 0.6371

Softmax 91.40 82.58 0.8677

Zip Code
Naive 60.14 79.17 0.6836
LLR 65.97 71.97 0.6884

Softmax 81.25 96.02 0.8802

Word
Naive 85.33 84.85 0.8509
LLR 86.51 88.64 0.8756

Softmax 95.47 83.90 0.8931

Average
Naive 76.31 74.32 0.7456
LLR 80.19 79.89 0.7999

Softmax 90.62 90.00 0.9004

108



4.4 Handwriting Classification

Table 4.5: Evaluation results for our different handwriting classification models
that were trained on the 5CHPT dataset on samples of the WPI dataset.
Results in bold font indicate the best performance.

Model Accuracy (%) Precision (%) Recall (%) F1 Score

Naive 58.33 49.82 58.33 0.5263
LLR 25.76 32.96 25.76 0.2771

Softmax 37.50 60.61 37.50 0.4086

models can handle a wider variety of classes more similar to each other than
the classes from the last experiment. We also explore how well we can find
and extract specific classes of interest that are not much different from other
classes, such as zip codes, a subclass of the number class. We present the
results of our experiments on the 5CHPT dataset in table 4.3 and table 4.4.
The results show that the dataset is far more challenging for our proposed
models. We can also observe that the softmax model performs best. This
observation is not surprising because the softmax model does not rely on
distances for the setting of its classification barrier. However, the results show
that our embedding-based models also work well in this case. We can also see
that the naive classification approach is outperformed by the approach based
on llrs.

A visualization of the clusters found by our embedding model (see fig-
ure 4.12) shows that it is more difficult for the model to distinguish between
zip codes and numbers, as the clusters are highly overlapping. We can also
see that the structure of the embedding space seems to be semantically struc-
tured because the embeddings of the alphanumeric are between numbers and
words. All in all, we can conclude that our distance-based approach works
best if the visual structure of the words to classify is different, as it is with
dates and words or numbers. However, the results still show that the usage of
a distance-based model is feasible.

If we examine table 4.4, which shows more detailed results for each class,
we can confirm the observations made by examining the clustering evaluation.
We can see that the models have no problems with distinguishing the date
class from other classes. The most problematic classes for all classification
approaches are the zip code and number classes, as we would expect.

4.4.4.5 Results on the WPI Dataset
Following our experiments on the synthetic datasets, we evaluate the models
trained on the 5CHPT dataset on the dataset that contains real images from
the archive of the WPI. The results (see table 4.5) show a severe degradation
in performance if we directly apply a model trained on the 5CHPT dataset
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Figure 4.13: PCA of samples from the WPI dataset

on the samples of the WPI. An interesting first observation is that our naive
model seems to outperform all other methods, which is an interesting result.

On closer examination of the classification decisions of each model, we are
able to determine that the naive classifier performes better only on paper. To
evaluate the classification decisions, we again plot a PCA of the embeddings in
figure 4.13, provide classification results for each individual class in table 4.6,
and also provide a confusion matrix for each classifier in figure 4.14. The reason
for the excellent performance of the naive classifier becomes apparent quickly,
as we can see that the naive classifier is not able to identify alphanumeric and
date strings at all, as the F1-Score is 0 for both classes! The visualization of the
clusters shows the reason for this result. The clustering models are not able
to extract distinct clusters for each class. Since no clear clusters are visible,
we argue that the k-Means algorithm can only find two cluster centroids,
one for words and one for numbers. This leads to superior accuracy because
the dataset is imbalanced, and the two classes that the naive classifier can
identify contains the majority of the samples. In this setting, the llr classifier
shows its strengths because it is still able to identify samples from each class
correctly. It also shows the most balanced misclassifications, mainly due to
the poor clustering performance of the underlying embedding model. Finally,
the softmax classifier incorrectly identifies many samples as alphanumeric
strings (as does the llr classifier), which is technically correct because these
are a superclass of words, numbers, and dates.
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(b) llr classifier
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(c) softmax classifier

Figure 4.14: Confusion matrices for our different classifiers on the WPI dataset.
Rows refer to the actual class, whereas columns refer to the predicted class.
The confusion matrix of the softmax model also includes the zip code class
because it was trained on the 5CHPT dataset and is therefore restricted to
classifying exactly five classes.

Table 4.6: Detailed evaluation results for our different handwriting classifi-
cation models on the WPI dataset. Results in bold font indicate the best
performance.

Class Model Precision (%) Recall (%) F1 Score

Alphanumeric
Naive 0.00 0.00 0.0000
LLR 7.92 26.67 0.1221

Softmax 17.86 83.33 0.2941

Date
Naive 0.00 0.00 0.0000
LLR 20.00 5.26 0.0833

Softmax 66.67 21.05 0.3200

Number
Naive 62.22 78.50 0.6942
LLR 42.47 28.97 0.3444

Softmax 72.09 28.97 0.4133

Word
Naive 55.04 65.74 0.5992
LLR 41.18 32.41 0.3627

Softmax 60.00 36.11 0.4509

Average
Naive 49.82 58.33 0.5263
LLR 32.96 25.76 0.2771

Softmax 60.61 37.50 0.4086
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Table 4.7: Evaluation results for our proposed models when adding a new
and unseen class to the classification task. The first row shows the results of
our models on the training set with only two classes, while the second row
shows the classification result of our models when adding a third, unseen
class to the classification task.

Experiment Model Accuracy (%) Precision (%) Recall (%) F1 Score

Two Class Naive 98.48 98.49 98.48 0.9848
LLR 93.75 94.32 93.75 0.9373

Three Class Naive 65.66 49.33 65.66 0.5472
LLR 79.63 76.37 75.63 0.7520

All in all, the results show that the softmax model can generalize best
on unseen data from a different data distribution. Our distance embedding
approaches fail in this scenario because the embedding model cannot embed
the new images so that distinct clusters could reliably be identified and
classified. Although the llr model shows the worst performance in our
evaluation metrics, we conclude that it performs better than the naive approach
that entirely misses two classes.

The llr and naive approach might perform better under different circum-
stances. The most crucial aspect is the availability of a suitable embedding.
Further, the different data distributions of training data and evaluation data
hinder all approaches from reaching good evaluation results. One example is
the right-most sample of the WPI dataset that we display in the last row of
figure 4.10. The sample shows a date. Instead of an entirely numeric date, it
contains a month word, totally different from all samples we provided during
training. We are confident that we can improve the results if we incorporate
such images into our training dataset. Further, we wish to mention that the
distance-embedding classification approaches rely on support samples of
which the class is known. In our experiments on the WPI dataset, we only
used samples from the 5CHPT dataset as support because here we have
access to a training split that may be used for this purpose. We argue that our
results could be improved if we had access to more labeled data of the WPI,
which we try to achieve with the work presented in section 4.5 and further
future work.

4.4.4.6 Classification of an Additional Unseen Class
In section 4.4.3.2 we argued that our embedding models are superior to
the softmax model because they allow flexible adjustment of the classes to
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distinguish. A model based on softmax classification cannot do so without
retraining because the classification layer needs to be retrained for each new
class individually. A model based on embeddings can distinguish newly
introduced classes if the feature extractor can extract meaningful features for
the new class. In this case, only a tiny support set of annotated samples is
necessary to adjust the classifier to the new class. To verify this, we performed
an additional experiment.

In table 4.7, we provide the results of an experiment, where we first trained
our classifiers on a subset of the GANWriting dataset that included the date

and number class. After the training is finished, we add the word class by
embedding some support samples and adjusting the classifiers. The results in
table 4.7 show that our classifiers are now indeed able to distinguish between
all three classes. The scores are not as good as the scores when directly trained
on the full dataset. However, the results show that our assumption holds. We
argue that using a robust embedding model handwriting classification could
be a great addition to a researcher’s workflow.

4.4.5 Summary and Discussion

In this section, we presented a novel pre-processing step that is to be included
in a handwriting analysis pipeline. Our novel pre-processing step is located
directly before the actual recognition of text. Our proposed step classifies
the content of handwritten words. Thus, we can contribute to handwriting
analysis in multiple ways. On the one hand, such a classification enables us to
select the best recognition model for a particular class of content. On the other
hand, we can use the classification result to provide researchers with hints
about the content of documents without the need to read the entire document
and perform subsequent analysis steps, such as NER.

To this end, we proposed a set of classification methods that we validated
in extensive experiments. To train our models, we proposed to use methods of
data synthesis. On the one hand, we proposed to use a softmax-based classifier.
On the other hand, we proposed using an embedding model that embeds
samples of the same class close to each other while embedding samples of
different classes far from each other. On top of the embedding model, we
propose two different classification approaches. While the softmax classifier
reaches the best results on all experiments, we argue that the usage of the
softmax classifier should only be considered in specific usage scenarios. One
of these scenarios would be handwriting classification in a given corpus,
primarily if this classification should be performed to provide samples to
specialized recognition models. Our classification approaches on top of the
embedding model do not reach the same performance level as the softmax
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classifier. However, we have shown that these models are very flexible and
can be adjusted to work with new classes without retraining the entire model.
Only some support samples are necessary to adjust the models to a new class.
The usage scenario for such a classification model is an exploratory search of
a corpus where a researcher wishes to find all handwriting occurrences with
a specific structure. To offer such functionality to researchers, further research
and data synthesis are necessary.

4.5 Segmentation of Printed and Handwritten Text

In this section, we introduce our most advanced approach for the synthesis of
training data. In all earlier sections and chapters, we focused on synthesizing
training data and possible applications of such synthetic data. While we
concentrated on handcrafted algorithms for data synthesis in section 3.5 and
section 4.3, in section 4.4 we made use of a combination of manual synthesis
algorithms and neural networks. In this section, we propose a novel approach
for the synthesis of training data by utilizing the inner knowledge of a GAN
for the synthesis of data. The approach itself is still under active research.
Hence, here we introduce the main idea of our approach and also provide the
first results. Our approach focuses explicitly on data synthesis for pixel-wise
semantic segmentation of historical documents. Our approach enables us to
use raw image scans without any annotation to create a custom-fit pixel-wise
semantic segmentation model for document images. We believe that our idea
is applicable to document analysis and other domains where it is difficult
and costly to obtain annotated training data, such as the analysis of medical
images where experts are necessary for annotation, and privacy concerns make
data collection and annotation difficult. We also believe that using generative
approaches based on GANs for the synthesis of large-scale training data or
even for the annotation of real images is one of the most promising ways to
solve the problem of the availability of annotated training data. The findings
presented in this section have also been discussed in [28].

4.5.1 Synthesis in Style

An essential step in processing a document in a document analysis pipeline
is the binarization of the document. Binarization is essential to remove any
background noise that might confuse the recognition algorithm. Especially
open source OCR implementations such as Tesseract require a cleanly bina-
rized image for their best performance. The archive of the WPI consists of
a multitude of document types. In our analysis, we are primarily interested
in the analysis of documents containing handwriting and printed text. We
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propose using pixel-wise semantic segmentation to obtain a cleanly binarized
document where we can decide which regions of a scanned page contain
handwriting and which regions contain printed text.

Semantic segmentation as such is a task that is in focus of computer vision
research since quite some time [93, 148, 197]. Semantic segmentation is also
researched in the area of historical document analysis (see section 4.2.2).
However, so far, pixel-wise segmentation of document images has not been
focused on in many research endeavors. One of the reasons why pixel-wise
semantic segmentation has not been in broader focus is the non-availability
of annotated datasets and the high burden for creating annotated datasets,
especially the costs associated with the manual annotation of large-scale
datasets. To alleviate the costs of manual annotation and also allow the
flexible adjustment of a model to a given data distribution, we propose to
use synthetic data synthesized by a GAN that was trained to generate data
unconditionally.

To this end, we propose a novel semi-automatic data synthesis pipeline that
can be used to synthesize large-scale custom-fit training data for the analysis
of data from a given archive. Our proposed pipeline consists of the following
steps: First, we train a GAN directly on raw scanned images obtained from an
archive. The task of the GAN is to synthesize images that are indistinguishable
from real images for the discriminator of the model (see also section 2.2.6). The
twist of our proposed pipeline is the fact that we do not only use the trained
GAN for the synthesis of realistic-looking samples, we also use the GAN to
synthesize a corresponding label image that can be used for the training of a
semantic segmentation network. Specifically, we propose to use the generative
capabilities of StyleGAN [129, 130] to train an unconditional generative model
on a given set of real-data from an archive. We further make use of the
observation that intermediate layers of a generative model, such as StyleGAN,
might encode semantic information [65]. We use this information during
the synthesis process of StyleGAN to create a color image and a semantic
segmentation label image simultaneously. To define the semantic class of
pixels in the intermediate layers of StyleGAN, we use a semi-automated
approach. First, we use an unsupervised clustering approach and assign
feature values to these clusters. Then, we require human intervention to classify
the found clusters. To simplify the annotation process, we provide a simple
annotation tool. Following the cluster classification, human intervention is
also required to define steps of an algorithm to combine the information of
several intermediate layers of the trained StyleGAN model. Although manual
intervention is required, the time necessary to perform these analysis tasks
can be performed in roughly 1 h per StyleGAN model. Following the manual
adaption of the synthesis process, we can synthesize an arbitrary amount of
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annotated training data, which can be used to train an off-the-shelf semantic
segmentation model. We provide a more detailed description of our proposed
approach in section 4.5.3. We note that concurrently to our work, another work
by Zhang et al. [255] has been proposed that uses similar ideas to perform
pixel-wise semantic segmentation on images of, e.g., cars or faces.

In section 4.5.5, we apply our proposed data synthesis model on the data
of the archive of the WPI and show in qualitative results that our approach is
viable and already shows promising results in its initial state.

In summary, the contributions we make in this section are as follows: (1) We
propose a novel approach for the semi-automatic synthesis of custom-made
training data for semantic segmentation of document images. (2) We evaluate
our approach in depth and show that our idea is viable and could prove
fruitful for future dataset-specific semantic analysis of documents. (3) We
provide our code and models to the community9 for further experimentation.

4.5.2 The StyleGAN Architecture

Before introducing our proposed approach in detail, we introduce the Style-
GAN model, which is at the heart of our proposed approach. The StyleGAN
architecture was first proposed by Karras et al. [129] and later improved by
Karras et al. [130] to provide even better generation results. We will refer to the
improved version of StyleGAN as StyleGAN 2. Generative models based on
the StyleGAN architecture currently set the state of the art in unconditional
high-resolution image generation. In figure 4.15, we show the structure of a
GAN based on the StyleGAN architecture.

The StyleGAN architecture is based on the idea of progressive growing
for GANs [127], which was also introduced by Karras et al. Overall, the
architecture of StyleGAN is different from the architecture of other GANs. A
StyleGAN generator consists of three main components. The synthesis network
is the first component. The task of the synthesis network is the synthesis of the
image. The architecture of the synthesis network is inspired by progressive
growing GANs. However, in contrast to previous work, the latent vector,
generally provided to the synthesis as the input layer to a feed-forward deep
neural network, is not provided to the synthesis network. Instead, a constant
feature vector is provided. During generation, the synthesis network starts
with the synthesis of an image of size 4 × 4; subsequent synthesis blocks
double the size of the generated image until a maximum size of 1024 × 1024
is reached.

The latent vector that controls the content of the synthesized image is
provided to the second principal component, the mapping network. The

9https://github.com/Bartzi/synthesis-in-style (last accessed August 31, 2021).
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Figure 4.15: StyleGAN consists of three main components. First, the map-
ping network transforms a latent vector 𝑧 to another latent vector 𝑤. The
transformed latent code is then used to guide the generation of the image
in the synthesis network. The synthesis network consists of multiple Style-
GAN blocks whose size grows progressively. Stochastic noise inputs are the
third component; they add stochastic variations, such as hair strains. Image
reproduced and adapted with permission from [129].
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mapping network is a deep multilayer perceptron (MLP) with leaky-ReLU
non-linearities [163], which usually consists of 8 fully connected layers. The
mapping network warps the representation of the latent vector 𝑧 ∈ 𝒵 with
𝒵 ∈ R𝑛 to another latent vector 𝑤 ∈ 𝒲 with 𝒲 ∈ R𝑛 . The latent vector
𝑤 is then transformed by learned affine transformations to the inputs of the
synthesis network, which are used as styles to drive AdaIN [104] in StyleGAN
1 and as weight modulators in StyleGAN 2. The intuition behind the mapping
network is to enable StyleGAN to provide a disentangled latent representation
in the latent vector 𝑤. A disentangled representation allows the latent space to
consist of linear subspaces where each of these subspaces controls one factor
of variation, e.g., gender, age, or skin color, to synthesize face images. The
latent space 𝒲 is disentangled because sampling from 𝒲 does not depend
on the training data, which might not have the required data density and
distribution at each space. Sampling from 𝒲 depends on a smooth piecewise
linear learned mapping from the entangled input feature space 𝒵 to the
intermediate feature space 𝒲.

Stochastic noise inputs are the third principal component of StyleGAN. The
stochastic noise is added to the feature maps in each synthesis block of the
synthesis network. The noise inputs are single-channel images consisting of
uncorrelated Gaussian noise. Before being fed to each layer of the synthesis
network, the noise images are scaled using learned per-feature scaling factors.
The effect of the stochastic noise is the addition of stochastic details, such as
freckles, beard stubble, or locations of single hairs to the synthesized images.

4.5.3 A Novel Pipeline for the Synthesis of Segmentation Data

In contrast to recent methods, we focus on training a model entirely on
synthetic data, which is directly based on the real data. In other words,
we synthesize data that is custom-fit as much as possible to the data we
want to analyze. Using such synthetic data allows us to use well-established
supervised learning methods for the semantic segmentation of documents.
Since we synthesize training data, whose data distribution is very close to the
real data distribution, we can create models that can be directly used on the
target data distribution, although no annotations of the real data are available.
In this section, we introduce our proposed data synthesis pipeline in detail.

Our proposed data synthesis pipeline consists of the following four steps:
First, we gather a dataset of documents where we want to perform pixel-wise
semantic segmentation. We do not need any annotations to apply our method
to this dataset; the raw scans suffice. Second, we train a StyleGAN model on
the gathered dataset to perform unconditional data synthesis. We choose to
use StyleGAN because, on the one hand, StyleGAN reaches state-of-the-art
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performance for unconditional image generation, while on the other hand,
StyleGAN inhibits many interesting properties that allow us to control the
image generation [2, 3, 23, 65, 180, 188, 226]. Third, we analyze the trained
StyleGAN model by making use of the observation that generative models and
StyleGAN, in particular, encode semantic information about the class of each
pixel in the intermediate layers of their synthesis networks [65]. Based on this
observation, we create an algorithm that uses the information contained in
intermediate layers to synthesize label images together with the corresponding
color images. In the last step, we use our trained StyleGAN model and our
devised segmentation algorithm to synthesize an arbitrary amount of training
samples to form a large-scale, fully annotated dataset to train an off-the-shelf
document segmentation network. In the following, we explain our pipeline
using the example application of segmenting and classifying printed and
handwritten text in documents images. We also provide an overview of each
step in figure 4.16.

4.5.3.1 Training of StyleGAN
The first step after the gathering of a dataset is to train a StyleGAN model [129,
130] on patches of the original document images or the entire document
images. We choose to train StyleGAN to generate only patches of the original
images because of the same reasons we already used patches for our work
presented in section 4.3. The main reason to use patches is that it is simpler
to create a patch resembling real data than creating an entire document that
faithfully represents the real data distribution. The usage of patches also
allows us to analyze documents at a high resolution without compromises
in the granularity of the results. Furthermore, patches allow the generator to
concentrate on specific properties found in each document, such as areas with
printed and handwritten text, images, text decorations, or scanning margins
because a patch can not contain many of these properties at the same time.
However, patches increase the number of computations necessary to analyze
a given document scan. The usage of patches might also add inconsistencies
at overlapping borders when assembling predictions.

4.5.3.2 Analysis of a Trained StyleGAN Model
After we obtain a trained StyleGAN model, we want to use it to synthesize
an annotated training data set to train a pixel-wise semantic segmentation
network. StyleGAN is designed to produce realistic RGB images with high
quality and fidelity. Thus, at first glance, using a trained StyleGAN model to
synthesize an annotated dataset for pixel-wise semantic segmentation seems
not to be possible. However, it is possible to deduce the class information of
pixels from the feature maps of the synthesis network. During the generation
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Figure 4.16: Our proposed pipeline for the synthesis of training data for pixel-
wise semantic segmentation of historical document images. Our pipeline
consists of 7 steps, most of which can run without manual intervention. 1.
We gather scans of documents. 2. We train a StyleGAN model to generate
document patches that look as similar as possible to real patches extracted
from our document corpus. 3. We use an unsupervised clustering algorithm
on the intermediate outputs of the synthesis network of our trained StyleGAN
model. 4. Found clusters need to be annotated manually. 5. We use the
StyleGAN model from step 2 and information about the classified clusters to
synthesize a training dataset. 6. We use the synthesized training data to train
an off-the-shelf segmentation network on patches of documents. 7. We apply
the trained segmentation network on the real document images and obtain a
segmented image.
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Figure 4.17: Clusters were found by applying spherical k-Means to predict
20 clusters on the activations of intermediate synthesis network layers. The
left-most column shows the RGB image generated by the model. The other
columns show intermediate feature maps of different sizes. The number on top
of each column represents the spatial size of the feature map. The right-most
column is the last feature map before the output of the RGB image. It is visible
that the intermediate activations correspond to specific classes in the output
image (best viewed digitally in color). Feature maps of smaller spatial sizes
tend to encode the semantic class of pixels, whereas feature maps of greater
spatial size tend to encode textures.

of a sample, StyleGAN encodes the semantic class of pixels in the intermediate
layers of the synthesis network. This behavior was first described in [65] where
Collins et al. used this insight to perform semantically meaningful local edits on
faces. We go a step beyond their findings in our work and use the information
encoded in StyleGAN to produce a fully annotated dataset. To do this, we
apply an unsupervised clustering algorithm, such as spherical k-Means [50]
to the activations of each StyleGAN block in the synthesis network.

When following this approach and training a StyleGAN on patches of
document images that contain handwritten and printed text (see step 2 in
figure 4.16), we can get the clustering result that we depict in figure 4.17.
The provided samples show that specific activations of StyleGAN blocks

in the synthesis network seem to encode the semantic class of printed or
handwritten text. However, we can not directly use the clusters for semantic
segmentation and classification simultaneously for several reasons. On the
one hand, multiple clusters belong to the same class. On the other hand, it
is not possible to use only one layer of the intermediate activations because
the resolution/accuracy of the identified text regions could be very low if we
use the intermediate output of an early layer in the synthesis network. We can
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also not always rely on the classes predicted in a single layer. Thus, we have to
take the output of multiple layers into account when creating our annotation
image.

To remedy these problems, we propose two steps that require human
intervention. Although we require human intervention, a human annotator’s
amount of time and work required to be performed is minimal. First, we
require a human annotator to examine the clusters found by the clustering
algorithm and categorize them. We could theoretically label all clusters by
examining only one image since we determine the clusters for each StyleGAN
block individually based on the activations over 100 images. However, no
individual image contains enough information to annotate the found clusters
reliably. Instead, we found that examining around 100 images suffices to
determine the classes of clusters accurately. To speed up the annotation
process, we provide a web-based annotation user interface (UI). Our web-
based UI provides the annotator with the synthesized RGB image and all
clustered StyleGAN block outputs. There, the user can label individual clusters
by clicking them. If the user labels a cluster of one StyleGAN block found
in one RGB image, he also labels the same cluster for all other images of the
same StyleGAN block. Thus, over time, the user receives a more and more
annotated view of new images and can then verify whether the annotation
decisions are correct, simplifying the annotation process.

The second step we require a human annotator to perform is the formu-
lation/adaption of an algorithm that decides which pixel of the resulting
label image belongs to which class. This algorithm is required because it
does not always suffice to take the information in the outputs of a single
StyleGAN block. After all, we can not control what and how the underlying
StyleGAN model learns and which clusters we find. Instead, in many cases,
the information from several blocks need to be combined. The combination of
information is essential to obtain fine-grained segmentation results. However,
the design of the algorithm can also be simplified because the combination
of multiple layers follows reoccurring patterns. In the following, we explain
how we design an algorithm based on some exemplary classified intermediate
outputs that we also show in figure 4.18. The process mainly consists of two
steps. First, all StyleGAN blocks that can be used to determine the semantic
class of pixels need to be determined and correctly combined. Second, we
need to determine all StyleGAN blocks that can be used to produce the most
fine-grained segmentation possible.

Determining StyleGAN Blocks that Contain Semantic Information First,
we identify the StyleGAN blocks of the synthesis network that hold infor-
mation about the semantic class. We identified that usually, the StyleGAN
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RGB 64x64 128x128 256x256 256x256 Result

Figure 4.18: Classified clusters produced by intermediate layers. The clusters
were produced by applying k-Means on the activations of the synthesis
network of a trained StyleGAN model (see figure 4.17). The numbers on the
top indicate the spatial size of the intermediate feature maps of the synthesis
network in pixels. The left-most column shows the RGB images generated by
the trained StyleGAN model. Blue color highlights pixels classified as printed
text, orange pixels represent the handwritten text class, and white pixels depict
background pixels. The clusters appear to be noisy. However, by applying a
well-designed algorithm to the given feature maps, we can reduce the number
of false labels by a large margin. The resulting segmentation images are shown
in the right-most column.
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blocks creating an intermediate activation image with spatial sizes of 64 × 64
and 128 × 128 contain information about the semantic class of a pixel. We can
also observe this behavior when inspecting the corresponding columns in
figure 4.17 and figure 4.18. In the case of our example depicted in figure 4.18,
we distinguish between the two classes printed text (orange color) and hand-
written text (light blue color). The columns of the respective spatial sizes show
that we can easily distinguish between printed and handwritten text in these
layers. However, we can also observe some problems. The predictions for
handwritten text at the spatial size of 64 × 64 are noisy (see the first and last
row), but we can correct most of these noisy predictions by keeping only the
areas of the same class from both feature maps that have an intersection over
union (IOU) greater than 0. Utilizing this metric, we can also drop the noisy
predictions shown in the second row of the second column. The model we are
analyzing here always predicts a handwriting region directly right of printed
text regions, which is a problem. We could mitigate this problem by setting
the number of clusters the k-Means algorithm should find to another value
of k (in our example, it is set to 20), but since this behavior can be observed
in every row of printed text, we can convert every occurrence of handwritten
text directly right of printed text to printed text.

Obtaining Fine-Grained Segmentation Annotations The extracted seman-
tic text regions are very coarse. In the next step, we also incorporate the results
of the layers with the highest native spatial size (in our case, 256 × 256). Close
examination of the columns in figure 4.17 and figure 4.18 shows that we can
not use the two intermediate layers of spatial size 256 × 256 to determine
semantic classes. When comparing the results of these layers with the gen-
erated RGB image, we can see that the responses we can use for labeling
regions as text mostly corresponds to darker image areas. We think this is
because the model only focuses on the texture, not the shape, at this network
stage. This behavior is commonly found in neural networks and learning
theory [82], which also explains why we cannot directly distinguish between
printed and handwritten text at this stage. Nevertheless, we already know the
semantic classes of text regions. Thus, we can now use the information about
semantic classes in conjunction with the fine-grained information to create a
fine-grained annotation image. Here, we use the activations from the Style-
GAN blocks of spatial size 256 × 256 and classify each text region using the
already found semantic regions from the previous step to create a fine-grained
annotation image, which is shown in the result column of figure 4.18.
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4.5.3.3 Synthesis of a Large Scale Dataset
Once we adapted our labeling algorithm for a specific StyleGAN model, we
can synthesize our dataset. The synthesis of our model is a simple process.
First, we draw a random vector 𝑧 from the input distribution 𝒵 run this vector
through the mapping network of StyleGAN, obtaining 𝑤 ∈ 𝒲. Then we run
everything through the synthesis network and obtain the activations of each
StyleGAN block in the synthesis network and the corresponding RGB image.
We then use the already obtained cluster centers to determine the cluster
each pixel of each activation belongs to. Following the cluster assignment, we
use our adapted classification algorithm to annotate each pixel and obtain an
annotation image. The resulting dataset might be imbalanced, meaning that
many samples of one class are present. We can mitigate any imbalances by
balancing the dataset in a post-processing step since it is simple to determine
the classes contained in each synthesized image because we now have access
to a fine-grained annotation image where each color encodes the class of a
pixel.

4.5.4 Pixel-wise Segmentation System

Following the creation of an annotated dataset, we can now use the dataset
and train a semantic segmentation model using off-the-shelf semantic seg-
mentation networks (step 6 in figure 4.16). We also propose a post-processing
method to reassemble or stitch the predicted patches to obtain a fully seg-
mented document image.

Semantic Segmentation Network Thanks to the availability of a large-scale
synthetic dataset, we can use any segmentation network. A natural choice
would be to use a segmentation network based on the U-Net architecture [197].
In document analysis, two recently introduced network architectures obtained
promising results on line segmentation, which is a task close to our task. On
the one hand, dhSegment by Oliveira et al. [182] is a U-Net-like network for
documents. On the other hand, Boillet et al. [44] introduced a lightweight
network for line segmentation that is also based on U-Net but utilizes dilated
convolutions to save computations. For our experiments, we adopt the model
of Boillet et al. and extend their architecture by removing the dropout layers
and using pixel shuffle [210] instead of deconvolution layers in the decoding
path of the network.

Stitching of Patches When applying our trained semantic segmentation
network on real data, we need to pre-process the input image and post-
process the network’s outputs. In the pre-processing step, we extract patches
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from the input image. The size of the patch is the same size we trained our
segmentation network on. To obtain the best result, we overlap patches by a
large margin to ensure each pixel is contained in at least three patches. We then
perform a forward pass with each patch through our segmentation network
and obtain a segmented patch. Following the forward pass, we stitch the
image by performing a majority voting of the three most confident predictions
for each pixel.

4.5.5 Experiments

The idea behind our proposed system is to apply semantic segmentation on
new unlabeled datasets without the need for much manual and costly anno-
tation effort. In our experiments, we apply our entire proposed segmentation
pipeline on data from the archive of the WPI. The data is not annotated at
all. Thus, we are only able to report qualitative results. In the following, we
introduce the dataset of the WPI; we then provide detailed information about
our experimental setup. We finish by reporting and discussing the results on
some representative examples of the dataset by the WPI.

4.5.5.1 The WPI Dataset
There are, to the best of our knowledge, no public datasets for pixel-wise
semantic segmentation available that include a large training dataset, as well
as an evaluation dataset. Some large-scale datasets are available for the task of
line segmentation [43, 88]. The HORAE dataset [43] even has a large amount
of unannotated data available for training, but the ground-truth annotation of
these evaluation datasets is too coarse for our task and our model. Thus, we
evaluate our proposed model on data that we obtained from the WPI. The
vast majority of the data used by us for our experiments is available online
on the web pages of the WPI.10 For now, only the raw document scans are
available. In the future, we wish to provide an annotated evaluation dataset
based on a subset of the data of the WPI.

For the training of our StyleGAN model that we use to create our dataset
for the training of the segmentation model, we used pages from over 11 000
sales catalogs totaling in 722 094 scanned pages. The scanned catalogs come
from a considerable period starting in the 17th century and ending in 1959.
The data is available on the WPI website.11

For the qualitative evaluation, we used several auction catalogues containing
handwritten annotations, as well as the very diverse (in terms of document
genres) Paul Ferdinand Gachet and Paul Louis Gachet Papers [106] dating from

10https://digitalprojects.wpi.art (last accessed August 31, 2021).
11https://digitalprojects.wpi.art/auctions (last accessed August 31, 2021).
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1816 to 1962, as well as the Stock Books and Inventories of the Ambroise Vollard
Records [107] dating from 1899 to 1938.

4.5.5.2 Experimental Setup
In the following, we introduce our experimental setup. We describe all prepro-
cessing steps, our hardware setup, and hyperparameters and steps applied
during inference.

We preprocess our training data by resizing all images so that the largest
side has a size of 2000 pixels. Then, we split the resized pages into patches of
256 × 256 pixels and stop creating further patches after obtaining 5.2 million
patches. As a further preprocessing, we apply our handwriting determination
model introduced in section 4.3 to balance the dataset leaving us with roughly
the same amount of patches that include handwriting and patches that do
not contain handwriting. After balancing, we obtain 1 036 778 samples for
the training of our StyleGAN model. Currently, we do not use the entire
available dataset. However, future experiments could also be performed with
a balanced version of the entire dataset.

In principle, all experiments can be performed on a system with a GPU
that has at least 11 GB of RAM, e.g., an NVIDIA Gefore 1080Ti, when using
a patch size of 256 × 256. However, we use a range of different machines for
our experiments. We train our StyleGAN model on a DGX-1 with 8 NVIDIA
V100 GPUs. We follow the hyperparameters for the training of a StyleGAN
2 model by Karras et al. [130]. Nevertheless, we adjust the hyperparameters
as follows: We set the initial learning rate to 0.001, the number of iterations
to 100 000, the batch size to 16, and we use cosine annealing [158] for the
learning rate updates. Following the training of StyleGAN, we analyze the
StyleGAN model as described in section 4.5.3.2 using 100 samples synthesized
by the trained StyleGAN model. Following our analysis and adaption of the
segmentation algorithm, we synthesize 400 000 samples for the training of the
segmentation network. For segmentation, we use Doc-UFCN as proposed by
Boillet et al. [44], where we apply small changes to the network architecture.
In our model, we do not use dropout, and we do not use deconvolutional
layers for upscaling but use Pixelshuffle [210] for the upscaling of feature
maps. For the training of Doc-UFCN, we set the initial learning rate to 0.005,
the batch size to 16 and train the model for 50 epochs. Here, we also use cosine
annealing to update the learning rate during training.

During inference, we perform the following steps: First, we resize the input
image so that the largest side has a size of 2000 pixels while keeping the
aspect ratio. Then, we split the image into patches that have an overlap of
50 % each. Following the split, we feed each image as input to the trained
Doc-UFCN model obtaining the segmentation result for each patch. During
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post-processing, we assemble individual patches by taking, for each pixel,
the class that was predicted most often. We can use such a voting procedure
because the patches overlap, with an overlap ratio of 50 %, we have a maximum
of 4 overlapping patches that we analyze using a majority voting setting.
Following the voting, we save the resulting segmentation image.

4.5.5.3 Qualitative Results
Since no annotated evaluation dataset is available, we resort to a preliminary
qualitative evaluation of the performance of our model. In Figures 4.19 and
4.20, we provide samples and the corresponding prediction of our model. We
show results where our model shows promising performance on a range of
challenging document images in figure 4.19 while we also provide failure
cases of our model that show typical problems with the current state of our
proposed model in figure 4.20. In the following, we discuss the provided
results.

Success Cases In figure 4.19, we provide four typical examples of documents
that can be found in the archive of the WPI. First, we can find scanned pages
that only contain printed text in the first row. The results show that we can
reliably segment the printed text on the page and classify it correctly. We can
further see that our model is not distracted by the colorful book cover seen
in some parts of the scan. The example in the second row shows a document
entirely written by hand. This document is challenging because of the ink
bleeding on both sides of the page. We can see that our model successfully
segmented only the text regions that belong to the handwritten text on the
page, showing high accuracy. The example in the third row is a document
that contains a mixture of printed and handwritten text, making it one of the
documents we are most interested in. We can see that our model successfully
correctly segments most parts of the image and also classifies handwritten and
printed text correctly. The example in the last row shows another challenging
document. Here, we have a document with many lines and also an image.
Printed text is below the image. Our segmentation model can correctly ignore
everything that is not printed text showing that our model can learn to ignore
images and figures. The results show that our proposed method is viable and
can create a segmentation model directly on unannotated data.

Failure Cases Although the success cases already show good performance,
we can also identify samples where our current model fails. Here, we identify
typical problem cases that arise from our current system design. In figure 4.20,
we provide some samples that show such problems. In the first row, we provide
a sample from an inventory of the Ambroise Vollard Records. At first glance,
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good

Figure 4.19: Success cases of our proposed model. We show samples illustrating
all different use cases, documents with printed text only, documents with
handwriting only, documents containing a mixture of handwritten and printed
text, and documents with distractors. We always depict the input image on
the left, while on the right, we depict the segmentation result. Blue and orange
denote printed text and handwritten text, respectively.
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bad

Figure 4.20: Although our model performs well, certain problems persist.
Here, we depict images that show typical problems of our current model.
Again, blue and orange denote printed and handwritten text, respectively.
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the entire document seems to be written by hand. However, the regularity
of writing might also indicate printed text. As we can see, the model is not
able to correctly distinguish between printed and handwritten text. Although
the segmentation picks up nearly every part of the text, the classification is
not always correct and indecisive. We argue that the classification accuracy
is not very good because no such documents have been in the training data
(recall that we trained the segmentation model only on auction catalogs). In
this sample, we can also see another problem. The recall of our model is not
always perfect; this is primarily due to the background class predictions being
too confident. We can solve such problems using more training data (which
we have available) and changes in the network architecture and patch voting,
as currently, margins of patches mostly show bad segmentation results. The
image in the second row is an image taken from an auction catalog. Although
our model can ignore the images on the page successfully, it predicts the round
border of the top image as handwriting. Such a prediction shows us that the
model learned that handwriting consists of round shapes. We are confident
that we can overcome such failure cases by incorporating more training data,
including round images. We further think that it might be helpful to create
several models specialized to specific periods. In the third sample, we show
another sample of the Ambroise Vollard Records. Here, we can see that our
model picks up handwritten text very well. However, it misses all rotated
handwritten text because we did not have any training data with rotated text.
We plan to overcome such issues by adding more data augmentation.

4.5.6 Discussion

Our experimental results demonstrate that our proposed method is viable. We
further show that it is indeed possible to create deep learning models directly
using unannotated data and a small amount of manual annotation work.
While our success cases show that the model entirely trained on synthetic data
works in many use cases, the failure cases show that most problems are related
to the training data. The most severe problem with our approach is that we
can not directly control the training data synthesized by our model. Instead,
we can control the input to the StyleGAN model we train, which provides us
much flexibility. However, this also means that the current approach involves
trial and error procedures to get a well-performing generative model. We
plan to incorporate new research results in the area of unconditional image
generation [81, 128] to allow the creation of even better generative models.

Our fragmentation of the input images into patches proves fruitful but also
disadvantageous at the same time. On the one hand, we can analyze images
of any size without compromises in resolution. Further, we can balance our
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training data for all models using our model introduced in section 4.3. On
the other hand, we observe that especially text at the margins of patches is
wrongly classified with strong confidence. To mitigate such issues, we need
to improve our patch analysis and overlapping strategy further.

Our current evaluation is only based on qualitative measures but no objective
quantitative measures. While quantitative measures are out of the scope of
this thesis, we will add quantitative measures in future work. We plan to
do this by semi-automatically annotating a set of images from the publicly
available archives of the WPI.

4.5.7 Summary

In this section, we proposed a novel approach to synthesize large-scale train-
ing datasets for pixel-wise semantic segmentation of historical document
images. Our approach can directly be applied to raw image scans without any
annotations of individual document images. We make use of the generative
power of modern unconditional GANs and especially StyleGAN to synthesize
patches of document images together with their corresponding annotation
for pixel-wise semantic segmentation. We then use the synthesized data to
train off-the-shelf semantic segmentation networks. We perform a qualitative
analysis of our trained segmentation models on real-world document images
from the archive of the WPI. Our results show that our approach is viable
and can be applied to real-world data but our approach still needs fine-tuning.
We also need to develop an evaluation dataset to quantitatively evaluate our
models, which is out of the scope of this thesis.

4.6 Chapter Summary

In this chapter, we presented a range of methods for the analysis of historical
document images. Our solutions focus on one of the most pressing problems in
historical document analysis: the availability of annotated training data. To this
end, we proposed three methods to aid the analysis of historical documents
that are entirely based on the usage of synthetic data to train our deep machine
learning models. First, we proposed to use patches with synthetic printed
and handwritten text training a model to determine whether a given scanned
page contains any handwriting. Second, we used synthetic data generated
by a generative model to synthesize handwriting images for the training of
several models for the classification of handwriting. Here, we proposed using
a fixed softmax classifier and a more flexible classification model based on
metric learning to semantically classify the content of a handwritten word
image into categories such as date, number, alpha-numeric, etc. Third, we
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proposed a novel approach for the synthesis of ground-truth data for pixel-
wise semantic segmentation. Our proposed model directly operates on the
available unannotated document images and uses generative properties of
GANs such as StyleGAN.

Our proposed models are independent of manual per-image annotations
and scale well with the available data. Our models are flexible, which is an
essential factor in historical document analysis because the manual annotation
of data is costly and time-intensive. The costs of manual annotation in historical
document analysis are especially severe because, for most annotation work, it
is necessary to involve experts, which are not always available. We note that
our current work can only be the “tip of the iceberg” and much more research
on the application and how to obtain synthetic training data for the analysis
of archives is necessary for future work.
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In this thesis, we researched and introduced several approaches with the
objective to reduce the costs of acquiring ground truth annotations for the
application of state-of-the-art machine learning methods to optical character
recognition pipelines. First, we investigated how we can reduce the annotation
cost by using only a fraction of the typically required ground truth annotations
for the use case of end-to-end scene text recognition. Second, we investigated
how we can use synthetic data to reduce the amount of manual annotation
work for the use case of document analysis for archival material. In the
following, we summarize our conclusions and contributions presented in this
work. Following our conclusions, we propose directions for future research.

5.1 Conclusion

Deep learning has become the de-facto method for OCR in the past few years.
Methods based on deep learning are robust and highly accurate. However,
robustness and accuracy come with a price. On the one hand, the training
of deep neural models requires the usage of high-performance compute
accelerators, such as modern GPUs. It is, on the other hand, expensive to
obtain training data that can be used to fit and build neural networks for a
specific application, such as OCR.

In this thesis, we presented solutions to alleviate the costs of obtaining
annotated training data. Specifically, we can summarize the main achievements
of this work as follows:

In chapter 3, we introduce a novel weakly supervised approach for the
recognition of scene text. We train our proposed approach on publicly available
synthetic data and also synthetic data that we generated ourselves. Our
proposed approach consists of two neural networks that work together. The
first network is tasked with the localization of text areas, such as words or
individual characters. The task of the second network is the recognition of
the textual content in the localized text areas. Both networks are trained
together under the supervision of textual annotation only! We do not need
any annotation for the location of words or individual characters, making
our approach weakly supervised. Our proposed approach can be used for a
multitude of tasks. First, we can use our proposed approach for end-to-end
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scene text recognition, where the task is to extract the textual content of all
words in an image. Second, we can use our approach directly for the task of
scene text recognition. Here, the task is to recognize the textual content of the
given word image. In our experiments, we show that our proposed approach
can reach competitive results for the task of end-to-end scene text recognition
of the French Street Name Signs (FSNS) dataset. In contrast to related work,
our model is able to provide users with information about the locations of
words and the textual content not only the textual content of individual words.
We further show that our model applied for text recognition only is able to
achieve state-of-the-art, as well as competitive results on several scene text
recognition benchmark datasets, such as ICDAR 2015-1811 (IC15-1811), IIIT5K-
Words (IIIT5K), Steet View Text Perspective (SVTP), and CUTE80 (CUTE).
Here, our model shows especially good performance on irregular scene text
recognition datasets showing the benefit of our combined localization and
recognition approach.

In chapter 4, we introduce a set of analysis steps for OCR of archival data.
One of the most pressing problems in historical document analysis is the
availability of annotated training data. In contrast to tasks such as the clas-
sification of natural images, it is not always possible to use crowdsourcing
to gather large-scale training datasets. One the one hand, the usage crowd-
sourced information is not viable because experts are necessary to produce
correct annotations. On the other hand, institutions might not have the fi-
nancial possibilities to start a large-scale annotation effort using the crowd.
In this line, we present three approaches that use synthetic data to analyze
handwriting in document images. These approaches resemble only parts of an
entire document analysis pipeline, as the development of a whole document
analysis pipeline is out of the scope of this thesis.

First, we introduce a novel preprocessing step (see section 4.3) where we
determine whether a given document page contains any handwriting. To
do this, we propose a data synthesis strategy that allows us to synthesize
training data for a deep neural network. The trained neural network is tasked to
determine whether a given image patch contains handwriting or not. Applying
our trained model on document images lets us determine whether a page
contains handwriting; we also receive the rough location of the handwriting
regions. In our experiments on a real-world dataset with data gathered from
the archive of the WPI, we obtain an F1-Score of 0.98.

Second, we present an analysis task that can be used instead of, or in
conjunction with, a handwriting text recognition model (see section 4.4). We
propose to perform a handwriting classification step as an additional analysis
step before the actual recognition of text. The classification step takes an
image of a cropped handwritten word as input and categorizes the image into
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classes, such as date, number, alphanumeric string, word, or zip code. The
classification is entirely based on the visual structure of the word image and
does not involve any textual annotations; only class annotations are required.
Here, we also use synthetic data to train our models. We synthesize our data
using online handwriting information, as well as generative neural networks.
We train multiple models and evaluate them thoroughly, investigating their
accuracy, flexibility, and generalizability. We find that a simple softmax-based
classification model reaches the best accuracy. However, we also show that
a model based on metric learning and embeddings is very flexible and can
distinguish between previously unseen classes.

Third, we propose a novel data synthesis approach for the generation of
data for pixel-wise semantic segmentation, especially in document images (see
section 4.5). Our synthesis approach uses the inner structure and knowledge
of generative models, such as the StyleGAN architecture. We can train our
model directly on the raw image data obtained from any archive. There is no
need for any previous annotations. We first train a StyleGAN model on the
raw archival images. Later, we use the StyleGAN model to simultaneously
synthesize RGB and annotation images to train a segmentation model. Our
qualitative analysis shows that our proposed approach is viable and can
analyze real data from an archive. However, further research is necessary to
improve the proposed approach and further alleviate manual efforts.

5.2 Future Research Directions

We think reducing the amount of manual annotation work for the application
of deep neural networks will be an essential aspect of future computer vision
research endeavors. Having access to methods that can produce a massive
amount of annotated training data in a relatively short time with low financial
effort will make it possible to build new computer vision applications on data
where it was not possible before. To this end, we proposed methods that can
be used to take some steps in such directions. Besides developing synthetic
data approaches, we think that the development of weakly supervised or
unsupervised methods is also essential because such methods require even
less annotated data. In the following, we provide our thoughts about possible
extensions of our approaches.

5.2.1 Weak Supervision for Scene Text Detection and Recognition

Current scene text recognition approaches achieve encouraging results with
the usage of synthetic data. We have shown that our proposed model can
handle even complex scene text entities very well. However, so far, we were
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only able to perform end-to-end scene text recognition experiments on a rather
“simple” dataset. In the future, a way to simplify the training process of the
weakly supervised text localizer should be researched. We already performed
first research in this direction and published this research in [30]. However, we
think that an auspicious research direction would be the combination of our
results presented in [30] with reinforcement learning to learn text detection
in a weakly supervised manner.

In pure scene text recognition, we think that our proposed model can
further be improved by adding better possibilities to capture rotations. We
might be able to better capture rotations by providing more rotated text in
our synthetic train datasets. We might also capture rotations better if we use
a different strategy to predict the transformation parameters. One possible
solution would be the usage of thin-plate splines because they have more
degrees of freedom. Nevertheless, even when using thin-plate splines, using
more training data is necessary.

5.2.2 Archival Analysis

The methods proposed in this work are only a tiny part of an entire document
analysis pipeline. The most severe problem in deep learning for archive
analysis still exists: the availability of annotated training data. Although we
proposed some approaches that make it simpler to obtain annotated training
data by synthesizing new data, there is still much room for improvement.

In the case of our proposed handwriting classification approach, we think
that it might be worthwhile to examine the applicability of recently proposed
unsupervised classification algorithms [103, 117, 228]. Preliminary experi-
ments show that we can reach an on par classification result on our synthetic
validation dataset compared to the softmax model when using a model trained
using the training scheme introduced in [117]. To successfully apply hand-
writing classification on the archival data of the WPI, it is further necessary
to gather a large-scale unsupervised training set. We hope to gather such a
dataset once we obtain a well-performing semantic segmentation model to
extract single handwritten words directly from the archive. Further appli-
cation areas of our handwriting classification approach could be language
classification to identify the correct recognition model for a given handwritten
word.

We see the need to decrease the manual effort to a minimum for our work
on pixel-wise semantic segmentation. To minimize manual effort, we think
it might be helpful to automate as many parts of the manual clustering
as possible. Here, we could automatically label some clusters that show
the distinctive properties of background clusters, i.e., one cluster fills the
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entire patch. Further, we think that we could simplify the adjustment of
the synthesis algorithm. Either by providing a simple pipeline tool that
allows the combination of several steps or by training a neural network.
Besides such optimizations, it is necessary to gather an evaluation dataset
to obtain quantitative results and not just qualitative results to measure the
improvement and applicability of the presented model. We further think that
it might be possible to mix our results presented in [23] with our semantic
segmentation model to directly segment original images without the need to
train a segmentation model on synthetic data. In this case, we would only
need to train a StyleGAN model and then embed images into this model’s
latent and stochastic noise space and read the semantic information from the
network while it reconstructs the image. We also wish to investigate whether
our proposed approach is also applicable to other semantic segmentation tasks
such as tumor segmentation. Having access to such an approach for medical
data could be of high benefit because no (large-scale) manual annotations
would be necessary, and it would be possible to use synthetic data to train
machine learning models while keeping patient data more private.

In the future, we also plan to investigate further analysis steps besides the
recognition of handwriting information from a cropped word image. We think
that it makes sense to create a document classification system that uses the
raw scanned page as input and classifies whether the image’s content is a
letter, book, image, etc. Such a document classification system could help to
classify document stacks in a fine-grained way. Here, we think that the most
critical problem to solve is the availability of annotated training data. Since it
is challenging to synthesize full document images, we think the best course
of action might be to use unsupervised document classification algorithms.

All in all, we think that the work presented in this thesis can only be a first
step in the usage and creation of synthetic training data for OCR. Therefore,
much research is required to push the knowledge about deep learning and
applications of deep learning and improve the day-to-day research work of,
e.g., historians.
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