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Maximal Subsemigroups containing a particular semigroup

Jorg Koppitz', Tiwadee Musunthiaf

Potsdam University,' Department of Mathematics®
Institute of Mathematics Silpakorn University
Am Neuen Palais, D-14415 Nakorn Pathom, Thailand
Potsdam, Germany 73000
e-mail: koppitzQrz.uni-potsdam.de e-mail: tiwadee_m@hotmail.com
Abstract

We study maximal subsemigroups of the monoid 7T(X) of all full transforma-
tions on the set X = N of natural numbers containing a given subsemigroup W
of T(X) where each element of a given set U is a generator of 7'(X) modulo W.
This note continue the study of maximal subsemigroups on the monoid of all full
transformations on a infinite set.

In this note, we want to continue the study of maximal subsemigroups of the semi-
group T'(X) of all full transformations on an infinite set, in particular, for the case X
is countable. The maximal subsemigroups of 7(X) containing the symmetric group
Sym(X) of all bijective mappings on an infinite set are already known. They were
determined by L. Heindorf (X is countable) and by M. Pinsker (any infinite set X)
characterizing maximal clones ([3],[6]).

The setwise stabilizer of any finite set Y C X under Sym(X) is a subgroup of
Sym(X). In [1], the authors determine the maximal subsemigroups of T'(X) containing
the setwise stabilizer of any finite set Y C X under Sym(X). For a finite partition of X,
one can also consider the (almost) stabilizer. They form subsemigroups of Sym(X) and
in [1], the maximal subsemigroups of 7'(X') containing such a subgroup are determined.
Also in [1], the maximal subsemigroups containing the stabilizer of any uniform ultrafilter
on X, which forms also a group, are determined.

In the present note, we consider a countable infinite set X and characterize for a
given subsemigroup W of T'(X) and a given set U C T'(X), where any element of U is
a generator modulo W (see [4]), the maximal subsemigroups of T'(X) containing W. As
a consequence of this result, we obtain all maximal subsemigroups of 7'(X) containing
T(X)\ S, where S is a given maximal subsemigroup of 7'(X) containing Sym(X).

Notation 1. Let M C P(T(X)) and let J(M) be the set of all A C T(X) with
ACUM :={a|3m e M Na € m},
ANm #0 for allm € M, and
Vo € Adm € M with Anm = {a}.

Definition 2. Let U CT(X) and W < T(X). Then we put
Gen(U) :={A CT(X) | A is finite and (A) NU # 0} and
HUW) ={ACT(X)\W | Ae J(Gen(U))}.



Theorem 3. Let W < S < T(X) and U C T(X) with UNW = () such that (W, a) =
T(X) for all « € U. Then the following statements are equivalent:
(i) S is mazimal.

(11) There is a H € H(U,W) with S =T(X) \ H.

Proof. (i) = (ii): Assume that SN H # ) for all H € H(U,W). Then there is A €
Gen(U) with A € S. Otherwise A £ S, i.e. A\ S # 0, for all A € Gen(U). We consider
the set Gen(U) = {A;li € N}. We put A; = A;\ S for all i € N,

Hy=0and H, = 0;

Hiy = H; if AN H; # 0 or 3j >4+ 1 with Xj \ H; € A;;; then we define

FiJrl Hu

Hipy = Hi U{ai} if A NH;=0and Vj >i+1, A;\ H; € A;;; then we define

Hz—l—l (H @) AH-l) \ {CLH_1} for aZH S Az-l—l \ H

We want to show that A, \ H; # 0 for all i € N. Let us consider i € N. We
know that A; = A; \ S # () by assumption. If H; = 0 then A;;; \ H; # 0. Assume
that H; # (). Then there exists & € N with & < i such that Hy U {ay1} = Hpy1 = H;.
If Ay \ﬁk C Apyi then Hyyy = Hj = H;. This implies that A;.;1 \ H; # 0. Then
A \Hk g Apyi forall j > k+1. Thus A;q \ Hy g A1 and there exists © € A; 1, but
x gé Hjpand x ¢ Ajyq,ie. o € Az+1 but z ¢ Hj U A1 Moreover, we have v € A4,
but ¢ (H,U A1) \ {ari1} = H;. This shows that x € A;;; \ H;. This completes the
proof that A;,; \ H; # (). Moreover, we put H := | J H;.

ieN
We want to show that H := |JH; € J(Gen(U)). First, we will show that H &
i€N
UGen(U) :={a;|3A; € Gen(U) A a; € A;}. By definition of H, we know that Hy = 0,
H;yy = H; or Hiyy = H; U{a;41} for i € N. This shows that H € |JGen(U).

Let ¢ € N. Then we have to show that H N A; # (. If a; € H then all is clear.
Otherwise, assume that a; ¢ H. Then, A; N H;_; # 0 and thus A; N H; # 0 or Ik > i
with Ay \Fi—l - A;. We have to consider A; with k > i. Then ay € H or we have the
same cases as for A;. Since the elements of Gen(U) are finite, this procedure finish. So
we obtain an s = i such that a; € H and it is routine to see that also as; € A;. Thus
HNA; #0.

Let a € H. Then there exists an ¢ € N such that a = a; € A;. We have to show that
for all k € N\ {i}, if ax € H (i.e. ar € Ax) then a; does not belong to A;. We have two
cases:

Case 1: k > i. Then a; does not belong to H; & Hj_; and moreover, it does not
belong to H; - Hyi 1. But A, C H; U H;. So a;, does not belong to A;.

Case 2: k < i. Then ay € H;_; where H; 1 N A; = (), whence a; ¢ A;.

This shows that H € J(Gen(U)). But HN S = () is a contradiction. Then there is
A€ Gen(U) with AC S ie. (AYNU #0. Leta € (A)NU S S. Then T(X) = (W, a) <
S,ie. S =T(X), a contradiction. Hence, there is H € H(U, W) with SN H = 0, i.e.
S CT(X)\ H. We want to show that T'(X) \ H is a semigroup. Let o, 5 € T(X) \ H.
Assume that o € H. Then there is A € Gen(U) with ANH = {a}. Since UN(A) # 0,
Un{A\{af}U{a,}) #0,ie (A\{af})U{a,f} € Gen(U). Since AN H = {af},
(A\{af})U{a, 5} € Gen(U), implies a € H or f € H, a contradiction. Hence T'(X)\ H



is a semigroup. Since S is a maximal subsemigroup of T'(X) and S & T'(X) \ H this
implies S =T(X) \ H.

(i7) = (i): Let H € H(U,W) with S = T(X) \ H. We have shown that T'(X) \ H
is a semigroup. Now, we want to show that it is a maximal subsemigrop of 7'(X).
Let « € H. Then there is A € Gen(U) with AN H = {a} and T(X) = (W, A) €
(T(X)\ H,A) = (T'(X) \ H,a) since (A) NU # 0 and (W,[) = T(X) for all g € U.
So, (T'(X) \ H,«a) = T(X). This shows that T'(X) \ H is a maximal subsemigroup of
T(X). O

If a € T(X) and A € X such that the restriction of o to A is injective and have the
same range as «, then we will refer A as transversal of a (kera denotes the kernel of «).
We will also write A# ker v if A is a transversal of a.

Let D(«) := X \ ima (ima denotes the range of «). The rank «, i.e. the cardinality
of ima, is denoted by rank(«) := |ima|. Then d(«) := |D(«)| is called defect of o and
c(a) == > (lya™t| — 1) is called collapse of a.

yEimao

Moreover, we put K(a) := {z € imal|lra™!| = Ry} and k(a) := |K(«)| is called
infinite contractive index. It is well known that d(af) < d(a)+d(5), k(afB) < k(a)+k(5)
2] and c(afB) < c(a) + ¢(B) [?] for o, € T(X). For more background in the theory of
transformation semigroups see [2] and [5].

Now we want to determine the maximal subsemigroups of 7'(X) containing 7'(X)\ S,
where S is one of the five maximal subsemigroups of 7'(X) containing Sym(X). Let us
introduce the following five sets:

o Inj(X) :={aecT(X)|rank(a) =N, c(a) =0 and d(a) # 0} (the set of injective
but not surjective mappings on X).

o Sur(X) := {a € T(X) | rank(a) = Wo,c(a) # 0 and d(a) = 0} (the set of
surjective but not injective mappings on X).

o C)(X) ={aeT(X)|rank(a) =Ny, k(a) =Ny}
o [F(X):={aeT(X)|rank(a) =Ny, c(a) =Ny and d(a) < Ng}.

o FI(X) ={aeT(X)|rank(a) =Ry, d(a) =¥y and c(a) < Rg}.

In [3], the following proposition was proved. Note that we independently proved this
proposition whilst of the work of L. Heindorf. We thank Martin Goldstern for bringing
these reference to our consideration at the AAAS82 in Potsdam (June 2011). For the sake
of completeness, we include the proof of this proposition.

Proposition 4. The following semigroups of T(X) are maximal:
T(X)\H

for H € {Inj(X), Sur(X),Cy(X),IF(X),FI(X)}.



Proof. 1) Let o, 8 € T(X) \ Inj(X). Assume that aff € Inj(X). Then ¢(a) =0, i.e. «
is injective. Since a ¢ Inj(X), a € Sym(X). But ¢(af) = 0 and a € Sym(X) implies
3 is injective. Since 5 ¢ Inj(X), 8 € Sym(X). So aff € Sym(X), i.e. af is surjective,
contradicts aff € Inj(X). This shows that T(X) \ Inj(X) is a semigroup.

Let a € Inj(X). Then we will show that (T'(X) \ Inj(X),a) = T(X). For this let
B € Inj(X). Let a € imf. Let v € T(X) with 2y = a for x € D(a), and v = za™ '3
for + € ima. Then xay = zaa™ ' = x4 for all x € X. This shows ay = 3, where
v ¢ Inj(X) since D(a) # (. This shows that T'(X) \ Inj(X) is maximal.

2) Let o, 8 € T(X) \ Sur(X). Assume that af € Sur(X). Then d(5) =0, i.e. §is

surjective. Since 5 ¢ Sur(X), g € Sym(X). But d(af) =0 and § € Sym(X) implies «
is surjective. Since o ¢ Sur(X), a € Sym(X). So aff € Sym(X), i.e. af is injective,
contradicts aff € Sur(X). This shows that T'(X) \ Sur(X) is a semigroup.
Let a € Sur(X). Then we will show that (T'(X) \ Sur(X),a) = T(X). For this let g €
Sur(X). For all T € X/kera we fix a T € T. Then we consider the following § € T'(X)
with 76 = (ifa~!)* for all i € X. Hence ida = i3 for all ¢ € X. This shows da = (.
Since imé = {T* | T € X/kera} # X (because « is not injective), § € T'(X) \ Sur(X).
This shows § = da € (T'(X) \ Sur(X), ). Consequently, (T'(X) \ Sur(X),a) = T(X).
This shows that 7'(X) \ Sur(X) is maximal.

3) Let o, 8 € T(X)\ Cp(X). Further, let z € imaf. Then x(af)™! = (z57)a~" and
|(zB~ )™t = Ny if |28~ = Ry or there is a y € 67! Nima with |[ya~'| = N,. This
shows k(af) < k(a) 4+ k(8) < Ry + Xy = Ry. This shows that af € T(X) \ Cp(X).

Let @ € C,(X). Then, we will show that (T'(X)\ C,(X),a) = T(X). For this let
B € Cy(X). Then, there is a bijection

f:X/kerf— {za™! |z € K(a)}.
For each T € X/ ker 3, there is an injective mapping

We take the v € Inj(X) with iy = fz(i) where i € T for T € X/ker 3. For i,j € X,
i = jpB if and only if there is an T € X/ ker § with i,j € 7, i.e. fz(i)a = fz(j)a. But
fz(i)a = fz(j)a is equivalent to iya = jya, consequently, we have iya = jya if and
only if i3 = jB. Further, let § € T'(X) with ¢yad =i for i € X and id = xy (xo is any
fixed element in X) for i € X \ im~vya. Since iya = jya if and only if i = j3, § is well
defined. Moreover, | {7 | T € X/kerd, |T| =Ny} |< 2,1e. 6 € T(X)\ Cp(X). This shows
B =~vad € (T'(X)\ Cp(X), ). Consequently, (T'(X)\ Cp(X),a) = T(X). This shows
that 7'(X) \ Cp(X) is maximal.

4) Let o, p € T(X) \ I[F(X).
If c(a) < Ry and ¢(F) < Ny then c(af) < c(a) + ¢(F) < Ro, i.e. af ¢ [F(X).
If d(a) = Ng and ¢(f) < Ry then [{T € X/ker 8| Z Nima =0} = Ny. This implies
d(af) =Ny, i.e. af ¢ [F(X).
If d(B) = Vg then d(af) > d(5) = Ny, i.e. af ¢ [F(X).
Altogether, this shows that o € T'(X) \ IF(X).
Let o € IF(X). Then we will show that (T'(X)\ IF(X),a) = T(X). For this let
g€ IF(X). Let v € T(X) with kery = ker 8 and im~y# ker a. For each T € X/ ker f3,
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we fix any . Since c(a) = N, d(y) = Ny, i.e. v ¢ [F(X). Further, let § € T'(X) with
ima#t ker § and i6 = (i(ya)™1)*B for i € ima. Since imy# ker a, we have ima = imya
and 0 is well defined. Because of im~y# ker a, ker yao = kery = ker 3, where iyad =
(iya(ya)™')*B = i3 for i € X. Note that from ima#kerd and d(a) < Ny, it follows
c(0) < Ny, ie. 6 ¢ IF(X). This shows 8 = yad € (I'(X) \ IF(X), a). Consequently,
(I'(X)\ IF(X),a) =T(X). This shows that T'(X) \ IF(X) is maximal.

5) Let o, 0 € T(X) \ FI(X).
If e(ar) = Ny then c(af) > c(a) = Vo, ie. af ¢ FI(X).
If d(a) < Ny and ¢(f) = Ny then |{i € ima | 35 € ima \ {i} such that i3 = j5}| = N,.
This implies c¢(af) = Ny, i.e. af ¢ FI(X).
If d(a) < Ng and d(3) < Rg then d(af) < d(a) + d(B) < N, i.e. af ¢ FI(X).
Altogether, this shows that o € T'(X) \ FI(X).
Let a € FI(X). Then, we will show that (I'(X)\ FI(X),«a) = T(X). For this, let
g€ FI(X). Let v € T(X) with kery = ker 8 and im~y# ker a. For each T € X/ ker 3,
we fix any T¥. Since c(a) < Ny, d(vy) < Ny, i.e. v ¢ FI(X). Further, let § € T(X)
with ima#t ker§ and id = (i(ya)™1)*3 for i € ima. Since imy# ker a, ima = imya
and ¢ is well defined, where iyad = (iva(ya)™)*3 = i for i € X. Note that from
ima# kerd and c(a) = R, it follows d(J) = Ny, i.e. § ¢ FI(X). This shows § =
yao € (T(X)\ FI(X),«). Consequently, (T'(X)\ FI(X),«) = T(X). This shows that
T(X)\ FI(X) is maximal. O

First, we characterize the maximal subsemigroups of T'(X) containing Inj(X) and
Sur(X), respectively. Note that we do not need Theorem 3 here. It is well known
that the set F/(X) of all transformation of a finite rank forms an ideal of 7'(X) and

Inf(X) := T(X) \ F(X) generates T(X). The next lemma shows that any maximal
subsemigroup S of T'(X) has the form S = F(X)UT for some T C Inf(X).

Lemma 5. Let S be a mazimal subsemigroup of T(X). Then F(X) C S.

Proof. We have Inf(X) € S (since S # T(X)). Since F(X) forms an ideal of T'(X) and
thus Inf(X) € S implies S C S U F(X) # T(X). Because of the maximality of S, we
have S = SU F(X), ie. F(X)CS. O

Lemma 6. Let Sur(X) C S < T(X) with Inj(X)NS #0 and FI(X)NS # 0. Then

S = T(X).

Proof. We have F'(X) C S by Lemma 5. Hence, we have to consider only the elements of
Inf(X). Let @ € Sym(X). Then thereis a 8 € Inj(X)NS and we take the v € Sur(X)
with iy =i for i € D(f) and iy = ia for i € X. Since imfB = X \ D(), this shows
that 5y = «, and consequently, Sym(X) C S. Let us put

A ={aelnf(X)|da) <N}
B : ={aeInf(X)|da)=2Ny}.



Clearly, Inf(X) = AUB. Let a« € A. If d(8) < ¥y then for each natural number
k > 1, there is a natural number r > 1 such that d(5") > k. Since " € Inj(X) NS,
we can assume that d(5) > d(«). Since d(3) > d(«), there is a v, € Sur(X) such that
7 restricted to img is bijective with ima as range and D(5)y; = D(«). We take the
Yo € Inf(X) with i, is the unique element in iay; 37! for i € X. Since 3 is injective,
we have 75 € Sur(X) U Sym(X). Then we have i3y, = iay; 37167 = ia for i € X.
This shows o = 967, € S, and consequently, A C S.

Let o € B. Moreover, there is a 6 € FI(X) N S. Then there is a n € A with kera =
kern and imn# ker 0. Since d(a) = d(J) = Ny, there is a bijection f : D(§) — D(a). We
take the 73 € Sym(X) defined by iys = f(i) for i € D(6) and iy3 = id 'n~'a for ¢ € imd.
Then for i € X, indys = (indd~'n~')a = i since imn# ker §. This shows o = ndvy; and
consequently, B C S. Altogether, Inf(X) =AU B C S and thus S = T(X). O

Lemma 7. Let Inj(X) C S < T(X) with HNS # 0 for H € {Sur(X),C,(X),IF(X)}.
Then
S =T(X).

Proof. We show that then Sur(X) C S. If we have Sur(X) C S then from Inj(X)NS #
() and FI(X) NS # 0 (because of Inj(X) C S) it follow S = T'(X) by Lemma 6.
Let a € Sur(X). Moreover, there is a 3 € C,(X) N S. Then there is a bijection

f:X/kera — {27! |2 € K(B)}).
For each T € X/ ker «v, there is an injective mapping
We take the v € Inj(X) with iy = fz(i) where i € T for T € X/kera. There are
d € Sur(X)NS and n € IF(X)NS. If ¢(0) < Xy then from ¢(6) > 0, it follows

c(0") > d(n) for some r € N, where ¢" € Sur(X) N S. Hence, we can assume that
¢(6) > d(n) and there is a set A C X with A# ker§ and a bijection

hy:imn— A

and an injective mapping

hy: D(n) — X \ A.

We take the v, € Inj(X) with iy; = hy(i) for i € imn and iy, = he(i) for i € D(n).
Clearly, ny16 € Sur(X) NS with ¢(ny16) = Ry. So, we can assume that ¢(6) = Ny. For
i,j € X,ic = jaif and only if there is an T € X/ ker a withi,j € 7, i.e. fz(i)0 = f=(j)0.
But fz(i)8 = fz(7)0 is equivalent to iy = jy[, consequently, we have iv3 = jv0 if and
only if ia = ja. Further, let B C X with B# ker ¢ and

¢:D(yB) — X\ B

be a injective mapping. Then the transformation ~, on X with ¢y3v, is the unique
element in iad ' N B for i € X and iy, = (i) for i € D(v3) belongs to Inj(X). So, we
have i737v:0 = iad 16 = i for i € X. This shows that 73720 = «, and consequently,
Sur(X) cC S. O



Now we are able to characterize the maximal subsemigroups of 7'(X) containing
Inj(X) and Sur(X), respectively.

Theorem 8. Let Sur(X) C S < T(X). Then S is mazimal iff S = T(X) \ Inj(X) or
S=T(X)\ FI(X).

Proof. By Proposition 4, both T(X) \ Inj(X) and T'(X) \ FI(X) are maximal sub-
semigroups of T'(X). Suppose that S is a maximal subsemigroup of 7'(X). Then
Inj(X)NnS = 0 or FI(X)NS = 0 by Lemma 6, ie. S C T(X)\ Inj(X) or
S CT(X)\ FI(X) and thus S = T(X) \ Inj(X) or S = T(X) \ FI(X) because of
the maximality of S. [

Theorem 9. Let Inj(X) C S < T(X). Then S is mazimal iff S = T(X)\ H for some
H e {Sur(X),C,(X),IF(X)}.

Proof. By Proposition 4, T'(X) \ H (H € {Sur(X),Cy(X),IF(X)}) are maximal sub-
semigroups of 7'(X). If S is a maximal subsemigroup of T(X) then H NS = 0
for some H € {Sur(X),Cy(X),[F(X)} by Lemma 7, ie. S C T(X) \ H for some
H e {Sur(X),Cy(X),IF(X)}. The maximality of S provides the assertion. O

Finally, we want to determine the maximal subsemigroups of T'(X) containing H for
H e {C)(X),IF(X),FI(X)} using Theorem 3. First we state that FI(X) as well as
IF(X) are subsemigroups of T'(X).

Lemma 10. FI(X) is a subsemigroup of T'(X).

Proof. Let o, € FI(X). Then we have c(af) < c(a) + ¢(8) < Rg + Rg = Ry and
Nog = d(f) < d(af). This shows that aff € FI(X). O

Lemma 11. [F(X) is a subsemigroup of T'(X).

Proof. Let a, 8 € IF(X). Then we have d(af) < d(a) + d(5) < Rg + Ny = Ry and
No = ¢(f) < c(af). This shows that aff € [F(X). O

Let us consider the set C,(X) N Sur(X). Then we have:
Lemma 12. We have (FI(X),a) =T(X) for all « € Cp(X) N Sur(X).

Proof. Let aw € Cp(X)NSur(X), B € Inj(X), and A C X be a transversal of a. We put
v € T(X) setting a7y is the unique element in z3a !N A for all z € X. Tt is easy to verify
that imy C A and d(vy) = |X \ imy| > | X \ A| = Ng. Let x,y € X with 2y = yv. This
implies (zBa"' N A)a = (yBa™t N A)a, 28 = yB, and x = y since 8 € Inj(X). Thus
v € Inj(X) and ¢(y) = 0 < Ry. Consequently, v € FI(X). Because of zya = (zfa~' N
A)a = zf for all z € X, we have § = ya € (FI(X),«). This shows that Inj(X) C
(FI(X),a). Moreover, (FI(X),a) N H # 0 for H € {Sur(X),C,(X),IF(X)}. By
Lemma 7, we have (FI(X),a) = T(X). O

Lemma 10, Lemma 12 and Theorem 3 imply:



Proposition 13. Let S < T(X) with FI(X) C S. Then the following statements are
equivalent:
(i) S is mazimal.

(11) S =T(X)\ H for some H € H(C,(X) N Sur(X), FI(X)).

Now, we consider the set FI(X)U Inj(X). Here, we get:
Lemma 14. We have (IF(X),a) =T(X) for all« € FI(X) N Inj(X).
Proof. Let o € FI(X)NInj(X) and B € Inj(X). We put v € T(X) setting

rxay :=zf forx e X
xy = f(z) for z € D(«)

where

f:D(a) — D(B) Uzoc

is a surjective transformation such that |D(«) \ ¥| = R for some transversal > of f
and any fixed zop € X. Such a mapping exists because of d(«) = Ny. Since ¢(f) = Ny,
we have c¢(y) = Ro. Moreover, imy = {zy | x € X} = {ay | v € ima} U {ay | z €
X \ima} =imBU(X \impB)U{zoa} = X. Hence d(y) = 0. This shows that v € IF(X).
By definition, we have § = ay € (IF(X),a). This shows that Inj(X) C (IF(X),q).
Moreover, (IF(X),a) N H # 0 for H € {Sur(X),Cy(X),IF(X)}. By Lemma 7, we
have (IF(X),a) = T(X). O

Lemma 11, Lemma 14 and Theorem 3 imply:

Proposition 15. Let S < T(X) with I[F(X) C S. Then the following statements are
equivalent:
(i) S is mazimal.

(1)) S =T(X)\ H for some H € H(Inj(X)NFI(X),[F(X)).
Lemma 16. (C,(X)) N (Inj(X)NFI(X)) = 0.

Proof. Let o, f € T(X) with ¢(a)) = ¢(8) = Ro. Then 8y = ¢(a) < c(af), i.e. c(af) =
Rg. Since ¢(a) = R for all @ € C,(X), this shows that (C,,(X)) N FI(X) = 0. O

Since we can decompose a countable set into countable many countable sets, it is
routine that each transformation a with 37 € X/kera with |Z| = Ny can be written
as product v of appropriate transformations 3,y € C,(X). Moreover, it is clear that
{a € T(X)|3T € X/kera with [ZT] = Ny} is subsemigroup of T'(X). Hence (C,(X)) =
{a € T(X)|FT € X/kera with |Z| = Ng}.

Lemma 17. We have (Cy(X),a) = T(X) for all o € FI(X) N Inj(X).

Proof. We show that Inj(X) C (C,(X), ). If we have it then from (C,(X),a) N H # ()
for H € {Sur(X),C,(X),IF(X)} it follows (C,,(X), a) = T(X) by Lemma 7. For this let
B € Inj(X). Let « € SN(FI(X)NInj(X)). Further let {I; | k € X} be a decomposition
of D(«) in infinitely many infinite subsets. Then we take v € C,(X) C (C,(X), a) with
Xt/ kery = {[,U{ka} | k € X} and iy = kS for i € [,U{ka} and k € X. This provides
kary = kG for k € X. This shows § = ary € S. Consequently, Inj(X) C (Cp(X),a). O
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Proposition 18. Let S < T(X) with C,(X) C S. Then the following statements are
equivalent:
(i) S is mazimal.

(11) S =T(X)\ H for some H € H(FI(X)NInj(X),(Cy(X))).
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