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DISCREPANCY PRINCIPLE FOR STATISTICAL INVERSE
PROBLEMS WITH APPLICATION TO CONJUGATE

GRADIENT ITERATION

G. BLANCHARD AND P. MATHÉ

Dedicated to Ulrich Tautenhahn, a friend and co-author,
who passed away too early at the age of 60.

Abstract. The authors discuss the use of the discrepancy principle for statis-
tical inverse problems, when the underlying operator is of trace class. Under
this assumption the discrepancy principle is well-defined, however a plain use of
it may occasionally fail and it will yield sub-optimal rates. Therefore, a modi-
fication of the discrepancy is introduced, which takes into account both of the
above deficiencies. For a variety of linear regularization schemes as well as for
conjugate gradient iteration it is shown to yield order optimal a priori error
bounds under general smoothness assumptions. A posteriori error control is
also possible, however at a sub-optimal rate, in general. This study uses and
complements previous results for bounded deterministic noise.

1. Setting and notation

We consider the following inverse problem:

(1) yσ = Tx† + σξ ,

for some bounded operator T : X → Y between Hilbert spaces, and noisy data yσ

with a Gaussian white noise ξ with noise level (standard deviation) σ > 0 . The
goal is to recover x† as accurately as possible from the observation of yσ. Note
that equation (1) is actually abusive, since a Gaussian white noise ξ cannot be
represented as a random element of Y if the latter space is infinite-dimensional.
The formal meaning of (1) is the following: we observe a Gaussian random field
yσ over the Hilbert space Y such that for any w ∈ Y ,

yσ(w) = 〈Tx†, w〉+ σξ(w) ,

and having covariance structure Cov [yσ(w), yσ(w′)] = σ2E [ξ(w)ξ(w′)] = σ2〈w,w′〉.

Remark 1. Such statistical inverse problems often arise in practical applications;
the seminal study on optimal errors for regression (when T is the identity) in the
present context is [12]. The analysis extends to inverse problems under Gaussian
white noise, since then (1) is equivalent to a sequence model

yσj = sjx
†
j + σξj, j = 1, 2, . . . ,

1



2 G. BLANCHARD AND P. MATHÉ

with sj being the singular numbers of T . Optimal recovery rates for such statistical
inverse problems are known for many cases, starting from [12], and we refer to [5]
for a recent survey. We will recall some of these results below.

In general the solution of statistical inverse problems uses discretization, in many
cases as described in Remark 1. However, if we turn to the “normal equations”
associated to (1) by formally multiplying (1) by T ∗ on the left side,

(2) zσ := T ∗yσ = T ∗Tx† + σT ∗ξ := Ax† + σζ,

then the Gaussian noise ζ := T ∗ξ has the covariance structure E [ζ(w), ζ(w′)] =
〈w,Aw′〉. Here we introduced the non-negative self-adjoint operator A := T ∗T .
This will be our main model from now on.

We will make the following assumption throughout the paper:

Assumption 1. The operator A has a finite trace Tr [A] <∞.

Remark 2. This assumption is similar to the assumptions considered in [1]. If the
underlying operator does not have a finite trace then discretization is required to
find a solution to the inverse problem (1). This approach has been studied in [10]
for Tikhonov regularization based on discrete random data.

Under Assumption 1 the operator A maps weakly random elements to random
elements, i.e., we can then represent the noise ζ = T ∗ξ as a Gaussian random
variable taking values in X, and we have that

(3) E
[
‖ζ‖2

]
= Tr [A] .

In particular, the discrepancy ‖Ax − zσ‖ is almost surely well defined for any
x ∈ X, so one might wish to use the discrepancy principle for this class of statistical
inverse problems. In this study we analyze several regularization schemes, both
linear regularization as well as conjugate gradient (hereafter cg ) iteration to obtain
sequences of approximate (candidate) solutions.

We first briefly indicate a priori error bounds, Theorem 1, which may serve as
benchmark error bounds in the later analysis. This already highlights the role of
the effective dimension, which takes into account the assumption of the statistical
noise.

Then we turn to studying a posteriori error bounds by using the discrepancy.
We propose a modification of the discrepancy principle, suited for statistical noise.
The main result is a general theoretical error bound, given in Theorem 2, for
both classes of regularization schemes. As corollaries, we derive a posteriori error
bounds, but we also show that the modified discrepancy principle will give order
optimal a priori error bounds provided the solution smoothness is known to us.
The argument for proving Theorem 2 is essentially a reduction to a deterministic
case through a concentration bound. The key observation is to use the discrepancy
principle not in the original norm as stated above, but to apply it when the size
of the residual is measured in some weighted norm, as presented in Definition 7.
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Accordingly, the theoretical analysis is based on previous work on regularization
under large (deterministic) noise, as carried out by the present authors in [2],
and by P. Mathé, U. Tautenhahn in [11]. The same arguments can also be used
for proving that the plain (unweighted) discrepancy principle can be applied, and
that convergence holds with high probability. However, the obtained rates are
sub-optimal in this case, which justifies the introduction of the proposed modifi-
cation. Additionally, a complementary condition called “emergency stopping” is
introduced to account for the small probability situation where the noise is not
controlled through the concentration bound.

As far as we know this is the first rigorous study for using the discrepancy
principle under statistical noise assumptions.

2. Regularization schemes

2.1. General linear regularization. We recall the notion of linear regulariza-
tion, see e.g. [7], in a slightly modified version.

Definition 1 (cf. [7, Def. 2.2]). A family of functions gα(0, ‖A‖) 7→ R, 0 < α <∞,
of bounded measurable functions is called regularization if they are piece-wise
continuous in α and the following properties hold, where rα(t) := 1− tgα(t), 0 <
t ≤ ‖A‖, denotes the residual function.

(1) For each 0 < t ≤ ‖A‖ there is convergence |rα(t)| → 0 as α→ 0.
(2) There is a constant γ1 such that |rα(t)| ≤ γ1 for all 0 < α < ∞ and all

t ∈ (0, ‖A‖].
(3) There is a constant γ∗ ≥ 1

2
such that sup0<α<∞ sup0<t≤‖A‖ α |gα(t)| ≤ γ∗.

Remark 3. First, we emphasize that item (3) is stronger than the assumption which
is usually made. However, all relevant regularization schemes fulfill this stronger
assumption. Such stronger condition is typical when applying linear regularization
to general noise assumptions. Items (3) and (2) taken together also imply that
there exists a numerical constant C1/2 such that |gα(t)|

√
t ≤ C1/2/

√
α. Without

loss of generality, we shall henceforth assume that γ∗ is chosen with γ∗ ≥ C1/2.
Secondly, we assumed that gα is defined for all 0 < α <∞. Most of the classical

schemes are given in this way. If a scheme is initially defined for 0 < α ≤ ᾱ for
some ᾱ > 0 then it can be extended by letting gα(t) = 1/α, α > ᾱ, 0 < t ≤ ‖A‖.
If this ᾱ ≥ ‖A‖ then item (2) still holds provided that γ1 ≥ 1. Moreover, the
qualification, see Definition 4, below, is not affected in this case.

Given a regularization gα we assign the approximate solution

(4) xσα := gα(A)T ∗yσ, α > 0,

and for technical reasons, given y = Tx, the (unknown)

(5) xα := gα(A)T ∗y, α > 0.
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Conditions (1) and (2) in Definition 1 ensure that for each x ∈ X the family xα
converges to the true solution x as α↘ 0.

2.2. Conjugate gradient iteration. As a possible alternative to linear regular-
ization, we also consider applying the standard cg iterations, defined as

(6) ‖zσ − Axσk‖ = min {‖zσ − Ax‖, x ∈ Kk(zσ, A)} ,

where the Krylov subspace Kk(zσ, A) consists of all elements x ∈ X of the form

x =
∑k−1

j=0 cjA
jzσ.

Remark 4. Much more properties of the iterates xσk are known. In particular there
is a strong connection to the theory of orthogonal polynomials. Our subsequent
analysis will not use those intrinsic techniques, since we will rely on a previous
study [2] by the present authors, where the analysis for bounded deterministic
noise was carried out.

The regularizing properties of cg are achieved by a stopping criterion, and we
shall use (a version of the) discrepancy principle, below.

3. A priori error bounds for linear regularization

We shall present some general error bound which will later be used to discuss a
posteriori parameter choice methods.

3.1. Bias-variance decomposition. Under statistical noise we have a natural
bias-variance decomposition, which we are going to discuss next. Since the noise
ζ is centered, so is the random element gα(T ∗T )ζ, which yields

(7) E
[
‖x− xσα‖2

]
= ‖x− xα‖2 + E

[
‖xα − xσα‖2

]
,

since the (squared) bias is deterministic, and it allows for a bound as usual, pro-
vided that x obeys some source condition, and that the regularization has the
appropriate qualification.

We turn to bounding the variance. Tight bounds are crucial for order optimal
reconstruction. Plainly, we have the representation

(8) E
[
‖xα − xσα‖2

]
= σ2Tr

[
g2
α(T ∗T )T ∗T

]
= σ2Tr

[
g2
α(A)A

]
.

However, in order to treat this we shall use the effective dimension.

Definition 2 (effective dimension, see [3, 13]). The function N (λ) as

(9) N (λ) := Tr
[
(A+ λI)−1A

]
, λ > 0

is called effective dimension of the operator A under white noise.
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Under Assumption 1 the operator A has a finite trace, and the operator (A +
λI)−1 is bounded, thus the function N is finite. We shall provide further details
below. By using the function N (λ) we can bound the trace in (8) as

Tr
[
g2
α(A)A

]
= Tr

[
g2
α(A)(αI + A) (αI + A)−1A

]
≤ ‖g2

α(A)(αI + A)‖N (α),

and we shall further bound the norm on the right.

Lemma 3.1. Let gα be any linear regularization. Then we have

‖g2
α(A)(αI + A)‖ ≤ 2

γ2
∗
α
.

Proof. This is a simple consequence of Definition 1. Indeed, we estimate

‖g2
α(A)(αI + A)‖ ≤ α‖g2

α(A)‖ + ‖g2
α(A)A‖ ≤ α‖g2

α(A)‖ + ‖gα(A)A1/2‖2.

An application of item (3) in Definition 1, taking into account Remark 3, allows
to complete the proof. �

Summarizing the above discussion we have the following.

Proposition 1. Under Assumption 1, and for any linear regularization gα we have
the error bound

E
[
‖x− xσα‖2

]1/2 ≤ ‖x− xα‖ +
√

2γ∗σ

√
N (α)

α
, α > 0.

The above variance bound is explicit, and it is known to yield the optimal order
in many cases. This is possible by using the effective dimension from Definition 2.
We will see later in this study that it naturally appears in error estimates.

Remark 5. The authors in [1] went another way, and run into additional assump-
tions, which are required to derive order optimal bounds. We briefly sketch a
variation of that approach. The above way to describe the spectral distribution
of the operator A through the effective dimension from (9) seems to be related to
Tikhonov regularization which is given by the function gα(A) := (A+ αI)−1 , α >
0, see the formal introduction of regularization schemes in Definition 1. If we re-
place this by spectral cut-off with gα(λ) := χ[α,∞)(λ) 1

λ
, α > 0, then we obtain a

different function

(10) NSC(λ) := Tr
[
χ[λ,∞)(A)

]
, λ > 0.

This can be rewritten as NSC(λ) := # {j, sj ≥ λ}, if sj denote the singular num-
bers of A. As was discussed in [1, Rem. 1 & § 4.1], for our setup this just coincides
with the function R(λ), ibid.

The functionNSC enjoys similar properties asN , it is finite under Assumption 1,
non-increasing, and N (λ)↗∞ as λ→ 0, if the operator has infinite-dimensional

range. In particular limλ→0
Tr[A]
NSC(λ)

= 0.
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This function also allows for a bound of the variance, since we have

Tr
[
g2
α(A)A

]
= Tr

[
g2
α(A)Aχ[α,∞)(A)

]
+ Tr

[
g2
α(A)Aχ(0,α)(A)

]
≤ γ2

∗
α

(NSC(α) + Tr [A])

=
γ2
∗
α
NSC(α) (1 + o(1)) , as α→ 0.

Therefore, the assertion of Proposition 1 extends by replacing the function N by
the function NSC . Since we have that NSC(λ) ≤ 2N (λ), because χ[λ,∞)(t) ≤
2 t
λ+t

, the latter bound is (formally) sharper, although for typical decay rate of the
singular numbers of A the growth rates coincide.

3.2. A priori error bound. It will be convenient to introduce the function

(11) %N (t) :=
1√

2tN (t)
, t > 0.

We agree to assign to each function f : (0,∞)→ (0,∞) the function

(12) Θf (t) := tf(t), t > 0,

in particular we consider the function Θ%N , which is a bijection from [0,∞) onto
itself. With this function at hand we have

√
2

√
N (α)

α
=

√
2αN (α)

α2
=

1

α%N (α)
=

1

Θ%N (α)
, α > 0.

Next, we introduce solution smoothness in terms of general source conditions.

Definition 3. We call a function ψ : [0,∞)→ [0,∞) an index function if ψ is an
non-decreasing, continuous, positive function on (0,∞) such that ψ(0) = 0.

Assumption 2 (general source condition, see e.g. [7]). There is an index function
ψ with ψ(t) = ‖A‖ for all t ≥ ‖A‖ , and such that

x ∈ Aψ := {ψ(A)v, ‖v‖ ≤ 1} .
Remark 6. Definition 3 of an index function modifies previous definitions, see
e.g. [7] by formally extending the domain of definition to all of R+ instead of just
[0, ‖A‖] . In Assumption 2 it is also assumed that ψ(t) is constant for t ≥ ‖A‖ ,
implying in particular that ψ(t) ≤ ψ(‖A‖) for all t ≥ 0 . The reason for this is
merely to avoid technical problems, as it allows to define an inverse defined on
the whole positive real line to the related functions Θ%Nψ. Obviously, this has no
impact on the strength of the source condition, which only depends on the value
of ψ on [0, ‖A‖]. Furthermore, the convergence rates (as σ → 0) only depend on
the behavior of ψ near zero.

Finally, in order for the chosen regularization to take the given smoothness
into account, we need the classical assumption that it has sufficient qualification,
defined as follows:
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Definition 4. Let ϕ be an index function. The linear regularization gα is said to
have qualification ϕ if there is a constant γ > 0 for which

(13) sup
0<t≤‖A‖

|rα(t)|ϕ(t) ≤ γϕ(α), α > 0.

We are now in a position to formulate and prove the a priori error bound.

Theorem 1. Suppose that assumptions 1 and 2 hold, and that the regularization gα
has qualification ψ. Then

E
[
‖x− xσα‖2

]1/2 ≤ γψ(α) + γ∗
σ

Θ%N (α)
, α > 0.

Given σ > 0, let α∗ be the a priori parameter choice from

(14) Θ%Nψ(α∗) = σ.

This choice satisfies

E
[
‖x− xσα∗‖

2
]1/2 ≤ (γ + γ∗)ψ(Θ−1

%Nψ
(σ)).

Proof. The error decomposition is a reformulation of the estimate in Proposition 1.
The second assertion follows from balancing both summands in that bound. �

Remark 7. In view of Remark 5 the bound in Theorem 1 remains true by replacing
the effective dimension N , used in %N , by the variation NSC from (10).

In contrast to the deterministic noise setting, the obtained rate thus also depends
on the spectral decay properties of the operator A through the effective dimension
functionN . In specific cases, the bound from Theorem 1 is known to be of optimal
order, and we exhibit this.

Example 1 (moderately ill-posed problem). Suppose that the operator T has
singular numbers sj(T ) � j−r for some r > 0. Then the singular numbers sj(A)
obey sj(A) � j−2r. In order for A to be a trace class operator we need that
r > 1/2. We assign s := 1/(2r) ∈ (0, 1). Then we get the following asymptotics:
N (t) � t−s, see [4]. Notice that the modified function NSC exhibits the same
asymptotics.

Suppose that smoothness is given by ψ(t) = tν/(2r) = tsν . It is easy to see that
Θ%N (t) � tsν+1/2+s/2, so that

ψ
(
Θ−1
%Nψ

(δ)
)
� δ

sν
sν+1/2+s/2 = δ

ν
ν+1/(2s)+1/2 = δ

ν
ν+r+1/2 , as δ → 0.

This is of optimal order (for ν ≤ 2r) under Gaussian white noise, as was e.g.
shown in [10], but this also is known to hold for general ν > 0, and this follows as
in [12, 5].

Example 2 (severely ill-posed problem). If sj(A) � exp(−cj), then N (t) �
NSC(t) � 1

c
log(1/t) in a neighborhood of the origin. Hence, for smoothness

ψ(t) � log−s 1/t we obtain that ψ
(
Θ−1
%Nψ

(δ)
)
� log−s 1/δ, which is the same rate
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as for severely ill-posed problems under bounded deterministic noise, known to be
the optimal order of reconstruction.

4. Discrepancy principle

4.1. Discrepancy principle under bounded deterministic noise. Our anal-
ysis of the discrepancy principle for random noise will rely heavily on existing
results for the discrepancy principle in the classical (deterministic) setup, albeit
under general noise assumptions. These results are quite recent, and for the con-
venience of the reader we state those. For the duration of this section, we assume
that the noise is deterministic. We therefore consider the following deterministic
counterparts of (1) and (2):

yδ = Tx† + η ,(15)

zδ = T ∗yδ = T ∗Tx† + T ∗η = Ax† + ε .(16)

In this display, η and ε play the role of σξ and σζ in (1) and(2). The notation
change is to emphasize that ε, η are deterministic. Similarly to the random setting,
we will mainly focus on the formulation (16) of the problem (normal equations).

The reason to recall here known facts on deterministic noise regularization is
that we will apply these in the random setting when ε is a fixed realization of the
random noise σζ. Correspondingly, results available in the deterministic setting
will hold in the random setting with high probability, namely on the event that
the noise realization has controlled amplitude.

In the deterministic setting, we assume the following control of the noise ampli-
tude is known:

Assumption 3. There is a non-negative non-increasing function % such that the
function t 7→ t%(t) is (strictly) increasing from 0 to ∞, and for which

‖%(A)ε‖ ≤ δ.

Remark 8. First, the limiting cases for such function % are %(t) ≡ 1, which corre-
sponds to large noise, and the function %(t) = 1/t, in which case the problem is
well-posed.

Assumption 3 as formulated here is taken from [2]. Regularization under general
noise was also treated in [11], where a different scaling was taken. Here we control
the noise ε, whereas in that study the assumption was imposed on η . Of course,
both scalings can be aligned through an appropriate choice of the function %, and
we shall hence constrain ourselves to the one made above. Below, we will further
specify the weights, parametrized by a parameter λ > 0 as

(17) %λ(t) :=
1√
t+ λ

, t, λ > 0.

We recall the discrepancy principle (DP) as this was used in the above studies [2]
and [11]. Let (xδk := φk(z

δ))k≥0, a sequence of reconstructions, where φk is a fixed
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sequence of reconstruction functions.The discrepancy principle in its generic form
is given as follows.

Definition 5 (discrepancy principle (DP)). Let % be an index function and δ > 0.
Given τ > 1 we let kDP (τ, %, δ) be the first k ≥ 0 for which

‖%(A)(zδ − Axδk)‖ ≤ τδ,

The control of the residual zδ −Axδk as expressed above can be reformulated in
terms of the original residual yδ − Txδk, since

‖%(A)(zδ − Axδk)‖ = ‖%(A)T ∗(yδ − Txδk)‖ = ‖(TT ∗)1/2%(TT ∗)(yδ − Txδk)‖.
Thus, the above definition is equivalent to a bound for the original residual yδ−Txδk
using the corresponding weight function %̃(t) :=

√
t%(t) and operator B := TT ∗.

The above discrepancy principle is instantiated as follows in the two regulariza-
tion schemes we are interested here. For linear regularization, the regularization
parameter α is discretized geometrically by defining αk := α0p

k (where p < 1 is
a user-determined constant) and posing xδk := xδαk (with a slight overloading of

notation). For cg iterations, xδk is unambiguously the output of the k-th itera-
tion (with the convention xδ0 := 0) . For the statements below we also need in
this case to assign to each step k ≥ 1 of cg the formal regularization parameter
αk := |r′k(0)|−1, where rk denotes the kth degree polynomials rk, corresponding to
the minimization as given in (6). The role of the sequence |r′k(0)| is discussed in [2]
in more detail. Here we only mention that it is increasing, and the corresponding
decreasing sequence of αk for cg plays (to some extent) a role comparable to that
of the regularization parameter for linear regularization. We refer to [6, 2] for de-
tails. We emphasize that for cg , since the polynomials rk depend on the data, so
does the sequence (αk); it is therefore itself random. Moreover we cannot control
the rate of decay of the αk as k increases: this makes the analysis more involved.

In order to give a single point of view over these two cases we introduce the
following definition.

Definition 6. Let (φk)k≥0 be a sequence of reconstruction functions. Let (xδk :=
φk(z

δ)) the associated reconstruction sequence, (αk) the associated non-increasing
sequence of regularization parameters (defined by the regularization method used
and possibly depending on the observed data zδ), and τ a fixed constant. We say
that the discrepancy principle stopping rule kDP (τ, ., .) is ψ-optimal and regular
for this regularization scheme if there exist numbers C, c1, c2, δ̄ such that, for all
x† ∈ Aψ, all 0 < δ ≤ δ̄, and any function % such that Assumption 3 is satisfied,
the following inequalities hold for kDP := kDP (τ, %, δ):

(18) ‖x† − xδkDP ‖ ≤ Cψ(Θ−1
%ψ (δ)) (optimality),

and, if kDP ≥ 1 (no immediate stop) then

(19) αkDP ≥ c1Θ−1
%ψ (c2δ) (regularity).
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Remark 9. The property in bound (18) is called optimality, because it is known
from [2, 11] that the right hand side reflects the optimal order of reconstruction
under x† ∈ Aψ. The regularity property from (19) recourses to the known fact
that stopping under the discrepancy principle yields lower bounds for the chosen
regularization parameter; a fact which is important to control the noise propaga-
tion.

For general linear regularization the following result was proved in [11, Thm. 5].

Fact 1. Let gα be a linear regularization from Definition 1 which has qualification
Θ%ψ, and τ > γ1. Let αk := α0p

k, for some α0 ≥ 2γ∗‖A‖ and p ∈ (0, 1), and
xδk := xδαk . Then the discrepancy stopping rule kDP (τ, ., .) is ψ-optimal and regular.
The constant C in (18) depends on the parameters (γ, γ1, γ∗, τ, α0, p) only. Also
we have the explicit expressions c1 = c1(p) = p and c2 = c2(τ, γ, γ1) = (τ − γ1)/γ.

We emphasize that higher qualification (Θ%ψ) is required, compared to the a pri-
ori bound as established in 1 (qualification ψ). This is in agreement with known
results for the classical results for bounded deterministic noise (% ≡ 1). For con-
jugate gradient regularization the following is proved in [2, Main result].

Fact 2. Suppose that ψ is an index function majorized by a power µ > 0, that
is, such that t 7→ ψ(t)/tµ is non-increasing for t > 0. Let (xδk)k≥1 be the output
of cg iterations, and τ > 2. Then the discrepancy stopping rule kDP (τ, ., .) is
ψ-optimal and regular. The constants C, c1, c2 in (18) depend on the parameters
(µ, τ) only.

Remark 10. We comment on both facts. A frequent issue for the analysis of the
discrepancy principle is immediate stopping, i.e, when the criterion (DP) is fulfilled
for xδ0. For iterative regularization as cg , which starts at zero this amounts to the
analysis of small data, ‖%(A)zδ‖ ≤ τδ, and it was shown in [2, Lem. 4.6] that order
optimal reconstruction is achieved by this. For linear regularization the situation
is different, and the authors in [11] treat only the case that there is no immediate
stop at α0. Immediate stop may occur for two reasons. First, criterion (DP)
is fulfilled no matter what α0 is. Then, if α0 may tend to infinity, and because
limα→∞ x

δ
α = 0 (see Definition 1(3)), this is again covered by the small data case,

provided we consider xδ0 = 0 as solution. Secondly, we are faced with the case
that α0 is chosen too small from the very beginning. Then nothing can be said
about optimality of the reconstruction. One safeguard instruction is given by the
following observation.

Proposition 2. Let γ1, γ∗ be as in Definition 1, and assume α0 ≥ 2γ∗‖A‖. Sup-
pose that the solution satisfies Assumption 2 with function ψ, and let δ̄ := Θ%ψ(α0).
If kDP = 0 (immediate stop) then

‖x− xδα0
‖ ≤ (2γ1(1 + 2τ) + γ∗)ψ

(
Θ−1
%ψ (δ)

)
, 0 < δ ≤ δ̄.
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Proof. We first establish that the operator rα0(A) : ker⊥(A) → X has a bounded
inverse, specifically that we have

(20) ‖rα0(A)−1 : ker⊥(A)→ X‖ ≤ 2.

Indeed, we use the properties of the regularization as captured in Definition 1 to
argue that for 0 < t ≤ ‖A‖ we have

|rα0(t)| ≥ 1− t |gα0(t)| ≥ 1− γ∗
t

α0

≥ 1− 1

2

t

‖A‖
≥ 1

2
.

This yields (20). With the above value for α0, and at immediate stop we find that

‖%(A)zδ‖ = ‖rα0(A)−1%(A)rα0(A)zδ‖ ≤ 2τδ,

and we are in the position of having small data. Applying [2, Lem. 4.6] we infer
that the solution x then obeys ‖x‖ ≤ 2(1+2τ)ψ

(
Θ−1
%ψ (δ)

)
, and we get the following

bound for the bias

‖x− xα0‖ = ‖rα0(A)x‖ ≤ γ1‖x‖ ≤ 2γ1(1 + 2τ)ψ
(
Θ−1
%ψ (δ)

)
.

We turn to bounding the noise term under the model (16) as

‖xα0 − xδα0
‖ = ‖gα0(A)ε‖ = ‖gα0(A)%(A)−1%(A)ε‖ ≤ ‖gα0(A)%(A)−1‖δ.

Under Assumption 3 the above norm bound can be estimated by

‖gα0(A)%(A)−1‖ ≤ γ∗
α0%(‖A‖)

≤ γ∗
Θ%(α0)

,

using that γ∗ ≥ 1
2

( see Definition 1), and therefore α0 ≥ ‖A‖. Overall this results
in

‖x− xδα0
‖ ≤ ‖x− xα0‖ + ‖xα0 − xδα0

‖ ≤ 2γ1(1 + 2τ)ψ
(
Θ−1
%ψ (δ)

)
+

γ∗
Θ%(α0)

δ.

The right hand side can further be estimated as

2γ1(1 + 2τ)ψ
(
Θ−1
%ψ (δ)

)
+

γ∗
Θ%(α0)

δ

= ψ
(
Θ−1
%ψ (δ)

)(
2γ1(1 + 2τ) +

γ∗
Θ%(α0)

δ

ψ
(
Θ−1
%ψ (δ)

))

= ψ
(
Θ−1
%ψ (δ)

)(
2γ1(1 + 2τ) +

γ∗
Θ%(α0)

Θ%

(
Θ−1
%ψ (δ)

))
≤ ψ

(
Θ−1
%ψ (δ)

)
(2γ1(1 + 2τ) + γ∗) , 0 < δ ≤ δ̄

because the function t 7→ Θ%

(
Θ−1
%ψ (t)

)
is non-decreasing, and by the choice of δ̄.

The proof is complete. �
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4.2. Modified discrepancy principle for statistical inverse problems. We
now turn back to statistical inverse problems and discuss how to use two modi-
fications of the discrepancy principle in order to deal with the random nature of
the noise. Suppose that we agreed upon a regularization scheme resulting in a
sequence of approximations xσk . A plain use of the discrepancy principle would
suggest monitoring ‖zσ − Axσk‖ ≤ τσ, since this norm is almost surely finite by
Assumption 1. As already mentioned in the introduction, this plain use of the DP
is possible, however this usually will result in sub-optimal rates of approximation
(this case will be discussed more precisely at the end of Section 5). Instead, it is
favorable to use the discrepancy principle in some weighted norm. For any weight
%λ of the form (17) we have, cf. Definition 2, that

(21) E [‖%λ(A)ζ‖] ≤ E
[
‖%λ(A)ζ‖2

]1/2
=
(
Tr
[
(λI + A)−1A

])1/2
=
√
N (λ) .

Such a bound holds only on average, but entails that, with high probability, a
control of the form ‖%λ(A) (zσ − Axσk) ‖ ≤ (1 + κ)σ

√
N (λ) holds. Nevertheless,

the parameter choice must still take into account those realizations for which such
a bound fails to hold. We therefore impose an additional emergency stop. From
the definition, whenever the discrepancy principle is optimal and regular, there is a
(scheme dependent) lower bound for the parameter αkDP , provided the noise norm
bound of Assumption 3 holds. For realizations of the noise where this norm bound
fails to hold (which is an event of small probability), we impose some default lower
bound on αkMDP

, which is chosen such that it does not interfere with the original
parameter αkDP on the “good” realizations of the noise. This lower bound on
αkMDP

will ensure that the contribution of the “bad cases” to the overall averaged
error does not become too large.

Definition 7 (Modified discrepancy principle (MDP)). Given positive constants
τ, η, λ, κ, the modified discrepancy parameter choice kMDP (τ, η, λ, σ, κ) is the small-
est k ≥ 0 for which either of the following conditions is satisfied:

‖%λ(A)(zσ − Axσk)‖ ≤ τ(1 + κ)σ
√
N (λ), (regular stop);(22)

or Θ%λ(αk+1) < η(1 + κ)σ
√
N (λ), (emergency stop).(23)

(Note that the parametrization of kMDP is deliberately redundant in order to
ease the reading further on.)

The following lemma confirms the intuition that if the usual DP is optimal
and regular for the considered reconstruction sequence, then (23) is indeed an
emergency stop, that is, the modified DP coincides with the usual DP (given by
condition (22) alone) whenever the noise realization has a controlled norm and the
noise amplitude σ is small enough.

Lemma 4.1. Let (xδk) be a reconstruction sequence. Fix 0 < λ ≤ ‖A‖ and τ >
1, η, σ, κ positive constants. Let kMDP := kMDP (τ, η, λ, σ, κ) be obtained from the
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modified discrepancy principle. Then

(24)
η(1 + κ)σ

√
N (λ)

Θ%λ(αkMDP
)
≤ 1.

Assume that the (usual) discrepancy principle stopping rule kDP (τ, ., .) is ψ-optimal
and regular for the considered regularization method, and that η ≤ c1c2 where c1, c2

are given by (19). Let ζ be a realization of the noise for which Assumption 3 holds

with parameters ε := σζ, % := %λ, and δ := (1 + κ)σ
√
N (λ). Assume furthermore

that the following inequality is satisfied:

(25) ψ
(

Θ−1
%λψ

(c2(1 + κ)σ
√
N (λ))

)
≤ 1.

Then kMDP (τ, η, λ, σ, κ) = kDP (τ, %λ, δ).

Remark 11. Because the function ψ ◦ Θ−1
%λψ

is is continuously decreasing to zero
as σ ↘ 0, for each index function ψ there exists σ̄(ψ, λ, κ, c2) > 0 such that for
all σ ∈ [0, σ̄], condition (25) is satisfied. Hence, when the parameters (λ, κ) of the
procedure are fixed independently of σ, condition (25) is satisfied for small enough
noise level. Below (in Sections 5.2 and 5.3), we will also consider cases where λ or
κ depend on the noise level σ; some extra care will then be required to check that
condition (25) is also satisfied for small enough σ in those situations.

5. Error bounds for the modified discrepancy principle

5.1. Main error bound. We now study the modified discrepancy principle (MDP)
for some fixed λ > 0. The rate which we can actually establish will be be a max-
imum of two rates with equality, if λ is chosen ’optimally’. More precisely, we
introduce the following rate function:

(26) Fψ(t) := max
{
ψ
(

Θ−1
ψ (
√
λt)
)
, ψ
(
Θ−1
%0ψ

(t)
)}

,

Observe that Fψ depends on λ, although this is not explicitly indicated in the
notation. For the understanding of this rate function, we present the following
result, with proof postponed to § 7.1.

Lemma 5.1. Let N be as in (9) with corresponding weight function %N from (11),
and let λ > 0 be arbitrary.

(1) We have

ψ
(

Θ−1
%λψ

(
σ
√
N (λ)

))
≤ Fψ

(
σ
√

2N (λ)
)
.

(2) We have that

ψ
(

Θ−1
%0ψ

(σ
√

2N (λ))
)
≤ ψ

(
Θ−1
ψ (σ

√
2λN (λ))

)
,

exactly if Θ%Nψ(λ) ≥ σ.
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(3) If we define

(27) λ∗ := Θ−1
%Nψ

(σ) ,

we have

Fψ(σ
√

2N (λ∗)) = ψ
(

Θ−1
ψ (σ

√
2λ∗N (λ∗))

)
= ψ

(
Θ−1
%Nψ

(σ)
)
.

(4) The following identity holds:

(28) Θ%λψ(λ) = Θ%Nψ(λ)
√
N (λ), λ > 0 .

To give some interpretation of the above rates, let us compare them to known
convergence rates in the deterministic case. Remember from Section 4.1 that,
under the deterministic noise model (15)–(16), and when the deterministic noise
ε is controlled as in Assumption 3, that is, ‖%(A)ε‖ ≤ δ , then the worst-case
convergence rate of an optimal procedure is of order ψ(Θ−1

%ψ (δ)) .
In the random noise case, we will obtain a control of this form, wherein we take

% := %λ and δ := σ
√
N (λ) (where λ > 0 is a parameter of the procedure which

can be freely chosen). Point (1) of the above Lemma relates the resulting rate to
more familiar ones through the function Fψ, which involves two different rates.

The first rate, g(1)(δ) := ψ
(

Θ−1
ψ (
√

2λδ)
)

, is the optimal rate under bounded

deterministic noise ε with noise level given by ‖ε‖ �
√
λδ (large noise). The second

rate, g(2)(δ) := ψ
(
Θ−1
%0ψ

(δ)
)
, is the optimal rate under bounded deterministic noise

satisfying ‖η‖ = ‖A− 1
2 ε‖ � δ (small noise). For large values of λ, the term

g(1)(
√

2N (λ)σ) will be the dominant one, while for small values of λ, the second

rate g(2)(
√

2N (λ)σ) will be the largest.
A balance between these two rates is obtained exactly if λ∗ is chosen according

to (27), and yields the rate expressed in point (3) of the Lemma, thus recovering
the same rate as stated in Theorem 1 for a priori rules for linear regularization,
see discussion and examples there about optimality properties.

We now turn to the statement of the fundamental error estimate, for arbitrary
fixed λ > 0 , as follows. We explicitly highlight the specific assumptions for either
linear regularization scheme or cg .

linear regularization: The family gα is a linear regularization from Defi-
nition 1, and xσk := xσαk where αk := α0p

k for some α0 > 2γ∗‖A‖ and
p ∈ (0, 1). It is assumed to have qualification Θ%ψ. The constants c1, c2 are
given from from Fact 1. It is assumed τ > γ1, η ≤ c1c2, and α0 ≥ 2γ∗‖A‖.

cg iteration: It is assumed τ > 2 and η ≤ c1c2, where the constants are
from from Fact 2. The function ψ is majorized by a power µ > 0, that is,
the function λ 7→ ψ(λ)/λµ is non-increasing on (0,∞).

Theorem 2. Consider the statistical inverse problem model from (2) with noise
level σ > 0. Suppose Assumptions 1 and 2 hold. Let xσk denote the reconstruction
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sequence obtained either through linear regularization of cg iteration, as described
just above. Fix parameters λ > 0 and κ > 0. For τ, η satisfying the conditions
described above, let kMDP := kMDP (τ, η, λ, κ, σ) be obtained from the modified
discrepancy principle. Assume the following is satisfied:

(29) ψ
(

Θ−1
%λψ

(c2(1 + κ)σ
√
N (λ))

)
≤ 1.

Let q > 1 be a positive number; then the following bound holds for any x† ∈ Aψ:

(30) E
[
‖x† − xσkMDP

‖q
] 1
q ≤ C max {(1 + κ), ψ(‖A‖)}

×
(
Fψ(σ

√
2N (λ)) + exp

(
−κ

2N (λ)

4q

))
.

The factor C in (30) depends on the parameters (γ, γ1, γ∗, p, τ, η, q), for linear
regularization. For cg the factor C in (30) depends on the parameters (µ, τ, η, q),
only.

By virtue of Remark 11 condition (29) will be satisfied for 0 < σ ≤ σ̄(ψ, λ, κ, c2).
Thus in the asymptotic setting, when (λ, κ) are fixed independently of σ, and
σ → 0, the bound given in (30) will hold. Next, we address the cases where λ or
κ may depend on σ.

5.2. Optimizing the parameter λ. We can optimize the rate given in Theorem 2
by a an appropriate choice of λ (depending on σ and on the underlying smoothness
ψ), see Lemma 5.1.

Corollary 1. Consider the same conditions as in Theorem 2. There exists
σ̄(ψ, κ, c2) > 0 such that for all σ ∈ [0, σ̄] , λ := λ∗ satisfies (29). Assume σ
satisfies this condition, and consider xσk obtained from the linear regularization or
cg iterations; let kMDP := kMDP (τ, η, λ∗, σ, κ) be picked by (MDP). For any q ≥ 1
the following inequality holds:

(31) E
[
‖x† − xσk∗MDP

‖q
] 1
q ≤ C max {(1 + κ), ψ(‖A‖)}

×

(
ψ
(
Θ−1
%Nψ

(σ)
)

+ exp

(
−
κ2N (Θ−1

%Nψ
(σ))

4q

))
,

where the factor C depends on the same parameters as those stated in Theorem 2.
If the functions ψ and N furthermore satisfy

(32) ψ(t) ≥ e−C̃N (t), as t→ 0,

for some C̃ > κ2/(4q), then

E
[
‖x† − xσkDP ‖

q
] 1
q ≤ C ′

(
ψ
(
Θ−1
%Nψ

(σ)
))
,
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where the factor C ′ depends on the same parameters as earlier, and additionally

on (κ, C̃, ‖A‖).

Proof. First we use equation (28), leading to

σ
√
N (λ∗) = Θ%λψ(λ∗) ;

since ψ ◦ Θ−1
%λψ

is majorized by the power 1 (see Lemma 7.2), we can bound the
LHS of (29) as follows:

ψ
(

Θ−1
%λψ

(c2(1 + κ)σ
√
N (λ∗))

)
≤ c2(1 + κ)ψ(λ∗) ;

finally, since λ∗ ↘ 0 as σ ↘ 0, we deduce that there exists σ̄(ψ, κ, c2) > 0 such that
for all σ ∈ [0, σ̄] , the RHS of the last display is bounded by 1. In this case, we can
apply Theorem 2; plugging in (30) the definition of λ∗ as well as identity (28), we
obtain (31). The last statement of the corollary is straightforward: condition (32)
ensures that the first term in the RHS of (31) is dominant as σ ↘ 0 . �

Examples. Corollary 1 applies to the examples considered in Section 3.2. If the
decay rate of the singular numbers and the smoothness are both power functions,
condition (32) holds and we recover the rates exhibited in Example 1.

In the severely ill-posed case of Example 2, condition 32 holds for any smoothness
ψ(t) � log−s 1/t. Even for monomial smoothness ψ(t) � ts, corresponding in this
setting to a “supersmooth” signal, condition 32 holds as long as s < κ2/(4q).

5.3. The modified discrepancy principle as a posteriori parameter choice.
Another consequence of Theorem 2 is the convergence of linear regularization or
cg for any fixed parameter λ > 0 , however at a sub-optimal rate.

Corollary 2. Consider the same conditions as in Theorem 2, but fix

κ∗ := 2

√
q

N (λ)

√
log 1/(1 ∧ σ

√
2N (λ)).

Then there exists σ̄(ψ, ‖A‖, λ, c2, q) ∈ (0, 1) such that (29) (with κ = κ∗) is satisfied
for all σ ∈ [0, σ̄]. Assume σ satisfies this condition, consider xσk obtained from the
linear regularization or cg iterations; let kMDP := kMDP (τ, η, λ, σ, κ∗) be picked by
(MDP). Then for any q ≥ 1 the following inequality holds:

E
[
‖x† − xσkMDP

‖q
] 1
q ≤ CFψ(σ)

√
log 1/σ,

where the factor C depends on the same parameters as those stated in Theorem 2
and additionally on λ , ψ and ‖A‖.

Proof. By plugging in κ := κ∗ , we see that the LHS of (29) is a continuous function
of σ that vanishes when σ ↘ 0 (all other parameters (ψ, λ, c2, q) being held fixed).
This justifies the existence of σ̄ as stated. Moreover, by taking σ̄ small enough we
can also ensure that σ̄ ≤

√
2N (λ) ; and that for 0 < σ ≤ σ̄ it holds κ∗ ≥ 1 and

ψ(‖A‖) ≤ 1 + κ∗.
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For σ ∈ [0, σ̄] , we have

exp

(
−κ

2
∗N (λ)

4q

)
≤ σ

√
2N (λ) ≤ σ̄

Fψ(σ̄)

√
2N (λ)Fψ(σ) ,

since the function Fψ is majorized by the power 1, as a maximum of two functions
which are majorized by the power 1 (see Section 7.2.2 for more details). We
therefore deduce from Theorem 2 and the requirement (1 + κ∗) ≥ ψ(‖A‖) that

E
[
‖x† − xσkMDP

‖q
] 1
q ≤ 2C(1 + κ∗)

√
2N (λ)Fψ(σ) ,

where the factor C depends on the parameters stated in Theorem 2 and addition-
ally on λ , ψ and ‖A‖. Taking into account the requirements put above for σ̄, we
have that

(1 + κ∗)
√

2N (λ) ≤ 2κ∗
√

2N (λ) ≤ 8
√
q
√

log 1/σ ,

from which the proof can easily be completed. �

Remark 12 (Comparison with unweighted DP). We briefly compare the rates de-
rived in Corollaries 1 and 2 to rates that can be obtained from similar argumenta-
tion when using the unweighted (modified) DP, that is, using a weighting function
% ≡ 1 instead of %λ. In this case, the reasoning in expectation (21) indicates
we should replace N (λ) by Tr [A]. Modifying accordingly the stopping criterion
by performing the above replacements (%λ → 1 and N (λ) → Tr [A]) in (22) and

(23), the MDP then dictates to stop when either ‖zσ − Axσk‖ ≤ τσ
√

Tr [A] or

αk+1 < η(1 + κ)σ
√

Tr [A]. (This corresponds, informally, to taking λ → ∞ in
the original Definition 7.) In this situation, the arguments of the proof of The-
orem 2 go through with the above replacements. Namely, in the deterministic
setting Facts 1 and 2 hold for the choice % ≡ 1; also, the concentration bound in
Lemma 7.5 holds with those changes. Finally, analogously to Corollary 2, we get
under the condition that κ �

√
log 1/σ the bound

E
[
‖x† − xσkMDP

‖q
] 1
q ≤ Cψ(Θ−1

ψ (σ
√

Tr [A]))
√

log 1/σ,

where C depends on many parameters but not on σ. Once again, this corresponds
informally to taking λ → ∞ in Corollary 2. The above rate, which is the rate
within the deterministic noise model ‖ε‖ ≤

√
Tr [A] with ε as in (16), is suboptimal

in the random noise case; this justifies the interest of introducing the additional
weighting through %λ.

Example 3. If the operator A is of finite rank, then N (t) is bounded near the
origin and Corollary 1 will not give an explicit rate. However, we can apply
Corollary 2 with λ = 0. Then if 0 < σ ≤ σ̄ , by virtue of Lemma 5.1 we obtain
that

E
[
‖x† − xσkMDP

‖q
] 1
q ≤ Cψ(Θ−1

%0ψ
(σ))

√
log 1/σ, as σ → 0.

This covers the deterministic case, as established in [2, Cor. 1], and it is known to
be (up to the logarithmic factor) best possible, since here Θ%0ψ(t) =

√
tψ(t).
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To conclude this section, we discuss without entering into formal details a further
application of Theorem 2, namely if we keep κ constant and let λ go slowly to zero
as a function of σ. Assume that the singular numbers sj(T ) ≥ cj−r, j = 1, 2, . . . for
some r > 1/2 (the lower bound because of Assumption 1), and that the smoothness
function ψ is an index function majorized by a power µ > 0, that is t 7→ ψ(t)/tµ

is non-increasing for t > 0 (where µ does not have to be known). Fix κ > 0 and
put λ(σ) := (log 1/σ)−t, whith t > 1/(2r), e.g. t = 1. It is easily checked that
condition (29) is satisfied for σ small enough, and we can apply Theorem 2 in
this setting. It can be seen readily that the remainder exponential term in the
main bound (30) decreases faster to zero than any fixed power of σ. Since the
other terms in the bound converge to zero at most at some monomial rate, the
remainder term is then negligible. Observe that λ∗(σ) as given by (27) decreases
to zero at least as some power of σ. For σ small enough, it will therefore hold that
λ(σ) ≥ λ∗(σ) and, by point (2) of Lemma 5.1, we have

Fψ(σ
√

2N (λ)) = ψ(Θ−1
ψ (σ

√
2λN (λ))) = O(ψ(Θ−1

ψ (σ))).

Hence without a priori knowledge of the smoothness function, this ensures that
the convergence rate, though not optimal in the white noise setting, is at least
asymptotically as good as the (optimal) deterministic rate. If the smoothness
function ψ is a power function, the rate function Fψ is upper bounded by some
monomial and the above O(.) is actually an o(.); that is, we are ensured to get a
convergence rate strictly better than the deterministic rate.

6. Extension to colored noise

The analysis extends to colored noise, i.e., when the covariance structure is given
by some non-negative self-adjoint operatorK : Y → Y , in which case E [ξ(w)ξ(w′)] =
〈Kw,w′〉, w, w′ ∈ Y . We may and do restrict this to operators K with norm
bound ‖K‖ ≤ 1, since the level is measured by the additional parameter σ. Next,
we highlight the modification of the effective dimension for correlated noise.

In principle, one can reduce the case of correlated noise, say with covariance
operator K : Y → Y , to the uncorrelated one by pre-whitening. Here we mean
that we ’formally’ apply the operator K−1/2 to the equation (1), which leads to an
equation with operator S := K−1/2T under white noise. Then the corresponding
effective dimension should be

Tr
[
(S∗S + λI)−1S∗S

]
, λ > 0.

We provide a more intuitive representation by using the principle of related oper-
ators : Suppose that S0 : Y → Y admits a factorization S0 = S1S2 with S1 : Z →
Y, S2 : Y → Z. If S0 = S1S2 has finite trace then so has S2S1 and Tr [S1S2] =
Tr [S2S1].
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Lemma 6.1. Suppose that the operator S = K−1/2T obeys Assumption 1. Then
we have

Tr
[
(S∗S + λI)−1S∗S

]
= Tr

[
(TT ∗ + λK)−1 TT ∗

]
, λ > 0.

Proof. First, we let B := TT ∗ : Y → Y . Notice that then SS∗ = K−1/2BK−1/2,
and this operator has a finite trace by Assumption 1; consequently, the left hand
side above is finite. We use the principle of related operators to infer that

Tr
[
(B + λK)−1B

]
= Tr

[(
K1/2

(
K−1/2BK−1/2 + λI

)
K1/2

)−1
B
]

= Tr
[
K−1/2

(
K−1/2BK−1/2 + λI

)−1
K−1/2B

]
= Tr

[
(SS∗ + λI)−1SS∗

]
= Tr

[
(S∗S + λI)−1S∗S

]
,

the latter from functional calculus. This completes the proof. �

Therefore the effective dimension under colored noise is introduced as follows.

Definition 8. Let K : Y → Y be the covariance operator for the noise ξ in equa-
tion (1). If the mapping K−1/2T has a finite trace then the effective dimension is
given as

NK(λ) := Tr
[
(TT ∗ + λK)−1 TT ∗

]
, λ > 0.

Remark 13. It is worth-wile to notice that the assumption on K−1/2T requires a
“minimum distance” between the decay rate of the singular numbers of A and the
ones of K. This will be more intuitive in the example, given below.

Furthermore, for white noise K = I we have thatNI(λ) = N (λ), λ > 0. Indeed,
by using that (TT ∗ + λI)−1 T = T (T ∗T + λI)−1 , λ > 0, we deduce that

NI(λ) = Tr
[
(TT ∗ + λI)−1 TT ∗

]
= Tr

[
T ∗ (TT ∗ + λI)−1 T

]
= Tr

[
T ∗T (T ∗T + λI)−1] = N (λ), λ > 0.

Therefore, the above definition for the effective dimension under colored noise is
consistent with the one given in Definition 2 in the white noise case.

Example 4. We shall indicate that in ’typical’ cases one can obtain optimal rates
under colored noise by using the corresponding effective dimension NK . Indeed,
assume that sj(A) � j−2r, and sj(K) � j−2µ for some r, µ > 0, and that both oper-
ators A and K commute. The assumption in Lemma 6.1 requires that r > µ+1/2,
which means that the distance is at least 1/2. An easy calculation shows that then
the weight function %NK obeys %NK (t) � t(1/2+(µ−r))/(2r−2µ). Hence, Proposition 1
holds with function N replaced by NK . However, we have to recalculate the
smoothness, previously given in terms of the operator A, say ψ(t) = tν/(2r) for

some ν > 0, to the new smoothness, say ψ̃ with respect to the operator S∗S. This
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gives ψ̃(t) = tν/(2r−2µ). Putting things together we infer an a priori rate, according
to Theorem 1, as

(33) E
[
‖x− xσα‖2

]1/2 ≤ Cψ̃(Θ−1

%NK ψ̃
(δ)) � δ

ν
ν+r+1/2−µ , as δ → 0.

This is known to be optimal for µ < 1/2, as shows a comparison with results
given in [10, Thm. 4]. The decay rate sj(K) � j−2µ gives that Assumption 1 in
[10] holds with p = 1/(1 − 2µ) for µ < 1/2. Then the optimal rate behaves like
δν/(ν+r+1/(2p)), which coincides with the one from (33).

7. Proofs

7.1. Proof of lemmata 4.1 and 5.1. Lemma 4.1 is a consequence of the following
simple result:

Lemma 7.1. Let c1 ∈ (0, 1], λ ∈ (0, ‖A‖] and t satisfying

(34) 0 < t ≤ Θ%λψ(‖A‖) and ψ
(
Θ−1
%λψ

(t)
)
≤ 1.

If the parameter α > 0 obeys

(35) α ≥ c1Θ−1
%λψ

(t),

then
Θ%λ(α) ≥ c1t.

Proof. Under the condition (34) on t, we have that Θ−1
%λψ

(t) is well-defined and lies
in (0, ‖A‖]. Furthermore, we have

t = Θ%λψ

(
Θ−1
%λψ

(t)
)

= Θ%λ

(
Θ−1
%λψ

(t)
)
ψ
(
Θ−1
%λψ

(t)
)
≤ Θ%λ

(
Θ−1
%λψ

(t)
)
,

using (34) in the last inequality. Therefore Θ−1
%λ

(t) ≤ Θ−1
%λψ

(t). Finally, we recall

that for 0 < c ≤ 1 we have Θ−1
%λ

(ct) ≤ cΘ−1
%λ

(t), which allows us deduce from (35)
that

α ≥ c1Θ−1
%λψ

(t) ≥ c1Θ−1
%λ

(t) ≥ Θ−1
%λ

(c1t).

�

Proof of Lemma 4.1. Condition (23) in the definition of the MDP ensures that
inequality (24) is satisfied in all cases at step kMDP := kMDP (τ, η, λ, σ, κ).

For the second part of the claim, we only have to check that under the pos-
tulated bound on the noise norm, the usual discrepancy stopping step kDP :=
kDP (τ, %λ, δ) , wherein δ := (1 + κ)σ

√
N (λ) , violates (23). Since the sequence

of regularization parameters (αk) is non-increasing, this will imply that condi-
tion (22) is first satisfied before condition (23) is, namely at iteration kDP , so that
kMDP = kDP .

Let ζ be a realization of the noise such that Assumption 3 holds with the stated
parameters, that is:

‖%λ(A)σζ‖ ≤ (1 + κ)σ
√
N (λ).
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Since kDP (τ, ., .) is assumed ψ-optimal and regular, we conclude from (19) that

αkDP ≥ c1Θ−1
%λψ

(
c2(1 + κ)σ

√
N (λ)

)
.

This together with inequality (25) implies that Lemma 7.1 applies to t := c2(1 +

κ)σ
√
N (λ) and yields that αkDP violates (23), since η ≤ c1c2. Thus kDP =

kMDP . �

Proof of Lemma 5.1. To prove the first assertion we start from (λ+t) min {λ−1, t−1} ≤
2, t > 0, which is easily checked. Therefore, %λ(t) ≥ 2−1/2 min

{
λ−1/2, t−1/2

}
, and

a fortiori

Θ%λψ(t) ≥ 1√
2

min
{

Θ%0ψ(t), λ−1/2Θψ(t)
}
.

This yields

ψ
(

Θ−1
%λψ

(u)
)
≤ max

{
ψ
(

Θ−1
%0ψ

(
√

2u)
)
, ψ
(

Θ−1
ψ (
√

2λu)
)}

Letting u := σ
√
N (λ) we obtain the bound as stated. The proof of the second

assertion is along the following chain of equivalent reformulations, with u as before.

Θ%Nψ(λ) ≥ σ(36)

Θψ(λ) = λψ(λ) ≥ σ
√

2λN (λ) =
√
λu(37) (

Θ−1
ψ

(√
λu
))1/2

≤
√
λ(38)

u ≤
√
λu(

Θ−1
ψ

(√
λu
))1/2

= Θ%0ψ

(
Θ−1
ψ

(√
λu
))

(39)

Θ−1
%0ψ

(u) ≤
(

Θ−1
ψ

(√
λu
))

,(40)

from which the assertion is an immediate consequence. The last two assertions
can easily be checked by straightforward calculations. �

7.2. Proof of Theorem 2. As already mentioned earlier, one specific feature of
statistical inverse problems is the following: There is no uniform noise bound, and
hence our approach will distinguish between the ’good cases’, which shall take
place in the majority of cases and the ’bad cases’ which happen only rarely. For
the a priori bound from Theorem 1 the parameter choice did not depend on the
realizations zσ, and such distinction was not necessary there. Therefore we shall
need a point-wise error bound, regardless of the size of the noise ζ.

7.2.1. Point-wise error decomposition. From Assumption 1 we know that almost
surely the norm ‖%λ(A)ζ‖ is finite, and the corresponding noise level is σ‖%λ(A)ζ‖.
For both linear regularization and cg error decompositions under bounded deter-
ministic noise are known.
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Fact 3. Assume that x is any element which obeys Assumption 2, and that xσαk is

any reconstruction, based on data zσ. We denote δ̃ := σ‖%λ(A)ζ‖.
(1) If xσαk is obtained from linear regularization gα which has qualification ψ,

cf. (13) then

‖x− xσαk‖ ≤ γψ(αk) +
max {γ∗, 1 + γ1}

Θ%λ(αk)
δ̃.

(2) If xσαk is obtained from cg then

‖x− xσαk‖ ≤ C(µ)ψ
(

Θ−1
%λ,ψ

(
δ̃ + (2µ+ 1)µ+1 Θ%λψ(αk)

))
+

3

Θ%λ(αk)
δ̃.

Remark 14. We comment on the above assertions. Item (2) is obtained from [2,
Prop. 4.3], after using [2, lem. 4.1].. The decomposition from Item (1) is based on

‖x− xσαk‖ ≤ ‖x− xαk‖ + ‖xαk − xσαk‖ ≤ γψ(αk) + ‖xαk − xσαk‖,
where xαk is as in (5). The latter norm difference was bounded in [11, Prop. 2]

by max {γ∗, γ0} δ̃
Θ%λ (αk)

, where we mention that γ0 := sup0<t≤‖A‖ t |gα(t)| ≤ 1 + γ1,

and the function %λ in which the noise is controlled corresponds to ψ(t)/
√
t, ibid.

7.2.2. Auxiliary results on functions majorized by the power 1. We recall the fol-
lowing notion as used in [2, Def. 1.4]. If f, g are two positive functions defined on
(0,∞), we say that the function f is majorized by the function g, denoted f ≺ g,
if the function g/f is non-decreasing. If g(x) = xµ, we say that f is majorized by
the power µ. (This definition was used in Fact 2.)

We gather here a couple of somewhat general lemmata concerning functions
bounded by the power 1.

Lemma 7.2. Let % : (0, ‖A‖] → R+ be a function such that v−1 ≺ %(v) ≺ 1, and
ψ an increasing function. Then ψ ◦Θ−1

%ψ is majorized by the power 1.

Proof. Minor variation on [2, Section 3.1]. Taking v = Θ%ψ(s), we have

v

ψ
(
Θ−1
%ψ (v)

) =
Θ%ψ(s)

ψ(s)
= s%(s),

which is a non-decreasing function of v. �

Functions which are majorized by the power 1 enjoy many properties of moduli
of continuity, in particular they are sub-additive and can be upper bounded by a
concave increasing function up to a factor of 2, see [8, Chapt. 6].

Lemma 7.3. A function F majorized by the power 1 is sub-additive.

Proof. Assume x, y > 0. Then

F (x+ y) = x
F (x+ y)

x+ y
+ y

F (x+ y)

x+ y
≤ x

F (x)

x
+ y

F (y)

y
= F (x) + F (y).
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If x or y or both are equal to zero then the assertion is trivial. �

Lemma 7.4 (Jensen replacement). Let F be a non-negative, non-decreasing func-
tion majorized by the power 1, and X be a non-negative variable. Then for any

p > 0, denoting ‖Z‖p = E [Zp]
1
p , one has

‖F (X)‖p ≤ 2
1
pF (‖X‖p) .

Proof. If ‖X‖p = 0 we have X = 0 a.s. and the result is trivial. Otherwise
‖X‖p > 0 and

F p(X) ≤ F p(‖X‖p)1{X ≤ ‖X‖p}+ F p(X)1{X > ‖X‖p}

≤ F p(‖X‖p) +
Xp

‖X‖pp
F p(‖X‖p) ,

taking expectations we obtain the desired inequality. �

7.2.3. Proof of the main error bound. In order to prove our main theorem we
shall establish some auxiliary technical results. The main decomposition between
“good” and “bad” realizations of the noise is given next:

Proposition 3. Let Z ⊂ X be any Borel set and let xσk be a of reconstruction,
based on data zσ, i.e., xσk = xσk(zσ) with noise ζ ∈ Z. For every x ∈ X we have
that

(41) (E [‖x− xσk(zσ)‖q])1/q

≤ sup
ζ∈Z
‖x− xσk(zσ)‖ +

(
E
[
‖x− xσk(zσ)‖2q

])1/2q
(Pzσ [Zc])1/2q .

Proof. The proof is straightforward. We insert the characteristic function 1Z of
the set Z and bound

E
[
‖x† − xσk‖q

] 1
q ≤ E

[
‖x† − xσk‖q1Z

] 1
q + E

[
‖x† − xσk‖q1Zc

] 1
q

≤ E
[
‖x† − xσk‖q1Z

] 1
q + E

[
‖x† − xσk‖2q

] 1
2q (Pzσ [Zc])

1
2q .

Finally, the first summand above can be bounded by the worst performance of xσk
on the set ζ ∈ Z, which gives the desired bound. �

We shall next identify a family of Borel sets Z ⊂ X for which Proposition 3
can be applied fruitfully: they have large measure and allow for a (order optimal)
bound uniformly for zσ ∈ Z. Let κ > 0 be a tuning parameter. We denote

(42) Zκ :=
{
ζ, ‖%λ(A)ζ‖ ≤ (1 + κ)

√
N (λ)

}
.

Lemma 7.5. For any fixed λ > 0 and α > 0, the following holds:

(43) P
[
‖%λ(A)ζ‖ >

√
N (λ) +

√
2 logα−1

]
≤ α.
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Consequently,

(44) P
[
ZC
κ

]
≤ exp

(
−κ

2N (λ)

2

)
.

Proof. For any Gaussian random variable X taking values in Y , the following
inequality holds:

P [‖X‖ > E [‖X‖] + x] ≤ exp

(
− x2

2v2

)
,

where v2 = sup‖w‖=1 E [〈w,X〉2], see [9, Lemma 3.1], and the discussion around

(3.2), ibid. We apply this to X = %λ(A)ζ , so that E [〈w,X〉2] = 〈w,A%λ(A)2w〉 ≤
1. Furthermore, we use (21) to complete the proof of the first assertion. For the

second one we set α = α(κ, λ) := exp
(
−κ2N (λ)

2

)
. �

A look at (41) shows that it remains to provide a bound for(
E
[
‖x− xσαkMDP

(zσ)‖2q
])1/2q

,

and we shall use the point wise error bound from Fact 3 together with bound (24))
of Lemma 4.1. Before turning to such bound we recall the following well-known
fact. Recall that δ̃ = σ‖%λ(A)ζ‖ the (random) noise level measured in %λ-norm.
The following is a consequence of the equivalence of all moments of a Gaussian
variable in a Banach space, see e.g., [9, Cor. 3.2].

Lemma 7.6. There is a constant C(q) such that

E
[
δ̃2q
] 1

2q ≤ C(q)E
[
δ̃2
] 1

2
= C(q)σ

√
N (λ).

Lemma 7.7. Let xσk be obtained from either cg or linear regularization. If αkMDP

is obtained from the modified discrepancy principle, and if x obeys Assumption 2
then there is a constant C, not depending on σ, κ or λ for which(

E
[
‖x− xσαkMDP

(zσ)‖2q
])1/2q

≤ C + C(q)Fψ(σ
√
N (λ)).

(In case of cg iteration we additionally require that ψ is majorized by the power µ
(ψ ≺ tµ), and in this case C(q) = C(µ, q).)

Proof. We start with linear regularization, and use Fact 3. This gives

E
[
‖x− xσαkMDP

‖2q
]1/2q

≤ γψ(αkMDP
) +

max {γ∗, 1 + γ1}
Θ%λ(αkMDP

)

(
E
[
δ̃2q
])1/2q

≤ γψ(‖A‖) + C(q) max {γ∗, 1 + γ1}
1

η (1 + κ)

≤ max(ψ(‖A‖), 1)C(γ, γ1, γ∗, η, q).
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by virtue of Lemma 7.6 and the bound (24) of Lemma 4.1. The second summand
is missing in this case.

We turn to proving a bound for cg iteration. The proof is similar, although more
involved. Again, we start from Fact 3. The function F := ψ ◦Θ−1

%λψ
is majorized by

the power 1, see Lemma 7.2, and hence sub-additive, see Lemma 7.3. Therefore,
we deduce from Fact 3, item 2 that

‖x− xσαkMDP
‖ ≤ C(µ)F

(
δ̃
)

+ C(µ)F
(
(2µ+ 1)µ+1 Θ%λψ(αkMDP

)
)

+
3

Θ%λ(αkMDP
)
δ̃

≤ C(µ)F
(
δ̃
)

+ C(µ) (2µ+ 1)µ+1 F (Θ%λψ(αkMDP
)) +

3

Θ%λ(αk)
δ̃

≤ C(µ)F
(
δ̃
)

+ C(µ) (2µ+ 1)µ+1 ψ(αkMDP
) +

3

Θ%λ(αk)
δ̃.

The same reasoning as before allows to complete the proof in the cg case, where
we notice that by Lemma 7.4 we can bound(

E
[
F 2q

(
δ̃
)])1/2q

≤ C(q)F (σ
√
N (λ)) ≤ C(q)Fψ(σ

√
N (λ)),

by Item (1) of Lemma 5.1. �

Remark 15. The explicit form of the constant shows that it involves, aside from
q, ψ(‖A‖) only scheme dependent constants. In case of cg iteration the required
majorization power µ appears, and the bounds become worse with increasing µ.

We are now in the position to prove Theorem 2.

Proof of Theorem 2. We start with Proposition 3 using the set Z := Zκ from (42).
The probability of its complement was bounded in Lemma 7.5. On the set Zκ we
have that kMDP = kDP by the second part of of Lemma 4.1, wherein condition (25)
holds by assumption of the Theorem. Therefore, at k = kMDP the uniform error
bound over ζ ∈ Zκ is given in Facts 1 and 2, respectively for linear regularization
or cg iteration with δ := σ

√
N (λ). We notice that for any λ the bounds given

there are further bounded by Fψ(σ
√
N (λ)), by virtue of Lemma 5.1. The term

with the 2qth absolute moment in (41) is bounded in Lemma 7.7. Overall this
gives the bound as stated in Theorem 2, and the proof is complete. �
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