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Scattering of Autoresonance Trajectories upon

a Separatrix

O. M. Kiselev ∗, N. Tarkhanov †

November 20, 2011

1 Introduction

In this paper we study asymptotic properties of solutions to the primary
resonance equation

ı
dΨ

dt
+ (κ(t)− |Ψ|2)Ψ = f (1.1)

with large amplitude |Ψ| = O(ε−1) on a long time interval t ∈ (ε−2c1, ε
−2c2),

where 0 < ε ≪ 1 and c1, c2 are arbitrary fixed constants satisfying c1 < c2.
By f on the right-hand side is meant any positive constant.

The equations of form (1.1) are said to be primary resonance equations.
They are of great importance in the study of resonance conditions in nonlin-
ear dynamical systems. In the particular case κ(t) ≡ 0 the primary reso-
nance equation was derived in the classical paper of Krylov and Bogolyubov
[1] who investigated resonance conditions for the solution of small amplitude
to a nonlinear equation with cubic singularity. Another form of this equation
with κ(t) ≡ const appears in the study of passing through a resonance in
problems of celestial mechanics [2, 3]. In the most general form equation
(1.1) is found in the study of capture into resonance of a particle in a syn-
chrophasotron [4]. A modern view on autoresonance conditions and their
numerous manifestations in physics can be found in the paper [5].

In general position one can assume that κ(t) ≡ t. For the equation

ı
dΨ

dt
+ (t− |Ψ|2)Ψ = f (1.2)

∗Institute of Mathematics USC RAS (ok@ufanet.ru)
†Institute of Mathematics, University of Potsdam (tarkhanov@math.uni-potsdam.de)

1



1 INTRODUCTION 2

there are known two-parameter families of solutions bounded as t → −∞,
and two two-parameter families of solutions with particular behaviour as
t → +∞. The first of the two consists of solutions bounded as t → −∞,
and the second one consists of solutions which increase like

√
t as t → +∞.

Their properties are discussed e.g. in the survey [6].
In this paper we look for a connection between the parameters of the

solution bounded as t → −∞ and the parameters of the two two-parameter
families of solutions at t = ∞, one consisting of those solutions which are
not captured into resonance and the other consisting of those increasing
solutions which are captured into resonance. We determine the parameters
of the asymptotic solution at t = −∞ in which terms the families of captured
and non-captured solutions are described in a manner regular with respect
to ε.

In this way one has to study the passing through a separatrix for equations
with a slowly varying parameter. Similar problems are intensively studied in
connection with involved dynamics close to separatrices. In particular, for
equation (1.1) with function κ(t) of special form κ

′(t) ∼ ε where 0 ≪ ε≪ 1,
Neishtadt [7] evaluated the probability of capture into a resonance. For a
contemporary view on probability approach to describing solutions in systems
with slowly varying parameters the reader is referred to [8]. The change of
variables ‘action’, ‘phase’ under crossing a separatrix in systems with degree
of freedom 3/2 is studied in [9, 10, 11] up to the first terms of perturbation
theory. A survey of papers devoted to the passing through a separatrix and
autoresonance is given in [12].

In the articles [13, 14, 15] special solutions are analyzed which are related
to the loss of stability of a slowly varying equilibrium position in equations
close to (1.1).

A close in the setting problem on the connection of asymptotics and cap-
ture into resonance was treated in [15] for solutions of small amplitude to the
parametric autoresonance equation. In that paper the sets of captured and
non-captured solutions are determined by means of the problem on connec-
tion of asymptotics of the Painlevé -2 transzendent. In the present paper we
study the structure of the set of solutions which are captured into resonance
for solutions not of small, but of large amplitude, and so the approaches of
[14, 15] and [16] using Painlevé -2 transzendents no longer apply.

In the plane t = 0 the set of initial data of those solutions which are
captured into resonance looks fairly complicated, (see Fig. 1). Numerical
simulations produced for instance in [6] show that the set of initial data in
a neighbourhood of the origin of those solutions which increase as t → ∞
has spiral structure. However, one did not succeed to understand from those
results the structure of the set of initial data of solutions with large initial
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Fig. 1: The domain of initial data Ψ ↾t=0. This is a result of numerical solution
of the Cauchy problem for equation (1.2) by the Runge-Kutta method of the fourth
order for t ∈ [0, 30] with step 0.0001 and for initial data in the disk |Ψ| ↾t=0∈ [0, 5]
with step 0.01 and ArgΨ ↾t=0∈ [0, 2π) with step 2π/2048. The data of solutions
captured into resonance are marked in black, and those of non-captured solutions
are marked in white.

data.
We now dwell on the contents of the paper. The formal setting of the

problem is presented in Section 2. The setting is illustrated by two results
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derived numerically. In Sections 3 and 4 we construct an asymptotic solution
which suits for t ≪ −1. In Section 5 we examine the domain close to t = 1
and construct an asymptotic solution whose principal term is a solution of
the equation of mathematical pendulum with external momentum. Section
8 contains matching of the parameters of constructed asymptotic solutions
away from t = 1 and close to t = 1. In Section 9 we make a comparison of
asymptotic formulas obtained in this way and numerical solutions. In Section
10 we indicate once again how this paper contributes to the knowledge of
primary resonance equations.

2 Setting of the problem and the main result

The purpose of the paper is to find the parameters of asymptotic solution as
t → −∞, in which the sets of solutions bounded as t → ∞, and solutions
increasing as t→ ∞ are described regularly in ε for ε → ∞.

Consider two numerical solution of the Cauchy problem for equation (1.2)
with initial data in close proximity to each other. In Fig. 2 two trajectories
of solutions of the Cauchy problem with near initial data are shown. At the
initial stage these trajectories are close to each other, but at certain moment
a rebuilding occurs after which the trajectories differ essentially. In the first
picture the solution remains still bounded, however, it changes the direction
of revolution and the amplitude of oscillations. In the second picture the
solution oscillates and increases as

√
t for t→ ∞.

Let ε be a small positive number. Then for t < ε−2 the two-parameter
family of asymptotic solutions of large amplitude to equation (1.2) has the
form

Ψ(t, ε) = ε−1(1 + ε3r(ε2t, ε)) exp ı
(

− ε−2t+
t2

2
− 2f

ε
+ ϕ+ ε2a(εt, ε)

)

,

where

r(ε2t, ε) ∼ −
f cos

(

− ε−2t+
t2

2
− 2f

ε
+ ϕ+ ε2a(εt, ε)

)

1− ε2t
,

a(ε2t, ε) ∼ f 2(2ε2t− 1)

(1− ε2t)2
.

The quantities ε and ϕ are parameters of the asymptotic solution. In
terms of parameters ε and ϕ the set of increasing solutions is marked in
black in Fig. 3
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Fig. 2: Captured and nun-captured trajectories. In the first picture a trajectory
segment of the solution of the Cauchy problem for equation (1.2) with initial data
Ψ ↾t=0= 5exp(2ı) is shown. At the initial stage the trajectory is close to the spiral
of radius 5 which twists clockwise. At some moment close to t = 25 a rebuilding
of the trajectory happens, namely one hundred eighty degrees turn and passing to
counter-clockwise revolution over a spiral of less radius. In the second picture a
trajectory segment of the solution to the Cauchy problem for equation (1.2) with
initial data Ψ ↾t=0= 5exp(2.2ı) is given. At the initial stage it is close to the spiral
of radius 5. At some moment close to t = 25 a rebuilding of the trajectory occurs,
namely a turn and passing to bananalike oscillations around a center which moves
away from the origin in the complex plane of the variable Ψ. Both the Cauchy
problems are solved numerically by the Runge-Kutta methods of the fourth order
with step 0.0001.

The width of the domain in the plane of variables ε and ϕ corresponding
to the solutions captured into resonance is given in terms of ϕ by

∆ϕ ∼ 8
√
2f

3
ε5/2.

The set of all bounded solutions for t > ε−2 has the form

Ψ(t, ε+) = ε−1
+ (1 + ε3+r(ε

2
+t, ε+)) exp ı

(

− ε−2
+ t +

t2

2
+ ϕ+ + ε2+a(ε

2
+t, ε+)

)

,
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Fig. 3: The set of parameters ε, ϕ corresponding to those solutions which
are captured into resonance.

where ε+ =
ε

1− ε3/2r+
, with r+ =

1

4
I +O(ε), and

r(ε2+t, ε+) ∼ −
f cos

(

− ε−2
+ t +

t2

2
+ ϕ+ + ε2+a(ε

2
+t, ε+)

)

1− ε2+t
,

a(ε2+t, ε+) ∼ f 2 (2ε2+t− 1)

(1− ε2+t)
2

+ ϕ+,

with

ϕ+ ∼ ϕ+
1

8ε
I2.

Here,

I =

∫

∞

0

( 1
√

8f sin(ᾱ + z/4ε) sin(−z/4ε)+z
− 1√

z

)

dz

and ᾱ is the greatest root of equation 8f sin(ᾱ + z/4ε) sin(z/4ε) = z. Note
that this equation has no roots for z > 0.

3 Construction of outer asymptotic solution

The asymptotic solution of large amplitude is looked for in the form

Ψ(t) = ε−1ψ(s),
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where 0 < ε ≪ 1 and s = ε2t + 1. The primary resonance equation for the
function ψ(s) becomes

ıε4
dψ

ds
+ (s+ 1− |ψ|2)ψ = ε3f. (3.1)

For this equation we will search for solutions bounded for s < 0.
We wish to construct a solution to (3.1) of the form

ψ = (1 + ε3r) exp ı
( s2

2ε4
+ ϕ+ ε2a)

)

,

where r(s, ε) and a(s, ε) are real-valued functions and ε, ϕ the solution pa-
rameters. Substitute the formula for ψ into equation (3.1). Single out the
real and imaginary parts. As a result we derive immediately equations for r
and a

ε4
dr

ds
= −f sin

( s2

2ε4
+ ϕ+ ε2a

)

,

ε3
da

ds
= −

f cos
( s2

2ε4
+ ϕ+ ε2a

)

1 + ε3r
− 2r − ε3r2.

We now construct a formal asymptotic solution of this system. For convenien-
ce we introduce the fast variable

S =
s2

2ε4
+ ϕ.

On assuming that the solution depends on two variables, the fast variable S
and the slow variable s, i.e.

r(s, ε) = r(S, s, ε),
a(s, ε) = a(S, s, ε),

one can rewrite the above equations for r and a as system of partial dif-
ferential equations

s
∂r

∂S
+ ε4

∂r

∂s
= −f sin(S + ε2a),

s
∂a

∂S
+ ε4

∂a

∂s
= −εf cos(S + ε2a)

1 + ε3r
− ε2r − ε4r2.

(3.2)
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One looks for an asymptotic solution to this system by the two-scales
method. More precisely, write

r(S, s, ε) =

∞
∑

k=0

εk rk(S, s),

a(S, s, ε) =

∞
∑

k=0

εk ak(S, s)

(3.3)

with coefficients rk and ak being so far undetermined. To find the coefficients
of (3.3) one substitutes the formal series for r(S, s, ε) and a(S, s, ε) into sys-
tem (3.2). Equate the coefficients of the same powers of ε. As a result one
gets differential equations for finding the dependence of the coefficients rk
and ak upon the fast variable. In particular, equating the coefficients of
ε0 = 1 yields

s
∂r0
∂S

= −f sinS, s
∂a0
∂S

= 0,

and equating the coefficients of ε1 = ε

s
∂r1
∂S

= 0, s
∂a1
∂S

= −f cosS − 2r0.

In the general case, for the coefficients rk and ak with k ≥ 2, one obtains
the system

s
∂rk
∂S

+
∂rk−4

∂s
= −f sin(S)Pk + f cos(S)Qk,

s
∂ak
∂S

+
∂ak−4

∂s
+ 2rk−1 = −

∑

i+j=k−4

rirj + f sin(S)Sk − f cos(S) Tk.

(3.4)

Here, Pk and Qk are polynomials of a0, . . . , ak−2 spanned by the monomials
aα0

0 . . . a
αk−2

k−2 with 2α0+ . . .+ kαk−2 ≤ k. And Sk, Tk are polynomials of both

a0, . . . , ak−2 and r0, . . . , rk−2 spanned by aα0

0 . . . a
αk−2

k−2 r
β0

0 . . . r
βk−2

k−2 , such that
2(α0+β0) + . . .+ k(αk−2+βk−2) ≤ k.

For every k = 0, 1, . . ., the equations of initial system (3.2) split up into
pairs of single equations for ak and rk. In order to construct asymptotics
which suit uniformly in S it suffices to require that the mean values of the
right-hand sides in (3.4) be actually equal to their derivatives in the slow
variable s. This requirement determines the dependence of the coefficients
of asymptotics on s.
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Lemma 3.1. For each k = 0, 1, . . ., equations (3.4) have a two-parameter
family of solutions uniformly bounded in S.

The proof consists in consecutive building of solutions of the system be-
ginning on k = 0. It is easy to see that the system is linear and, given any
fixed k, the equation are decoupled. Write

rk = r′k(S, s) + r̃k(s),
ak = a′k(S, s) + ãk(s).

for the general solution of (3.4). The functions r̃k(s) and ãk(s) are determined
by the requirement of uniform boundedness of solutions in S. This require-
ment gives averaged equations

∂r̃k−4

∂s
= F̃k,

∂ãk−4

∂s
= −2r̃k−1 + G̃k. (3.5)

Here, F̃k and G̃k are averagings in S through the period 2π of the right-hand
sides of equations (3.4), respectively.

We now give the results of computation for the first three amendments.
These are

r0(S, s) = f
cosS

s
, a0(S, s) = ã0(s);

r1(S, s) = 0, a1(S, s) = −f s + 2

s
sinS + ã1(s),

r2(S, s) = −f ã0(s)
sinS

s3
, a2(S, s) = ã2(s).

One has to show that system (3.5) is actually recurrent, i.e., the equations
for diverse amendments can be solved one after another in k. Rewrite system
(3.5) in the form

r̃k−1 =
1

2

(

− ∂ãk−4

∂s
+ G̃k

)

,
∂2ãk−7

∂s2
− ∂G̃k−3

∂s
+ 2F̃k = 0.

The right-hand side of the first equation does not contain amendments r̃j
with j > k − 1 and ãj with j > k − 7. Indeed, by the structure of Sk and
Tk, it suffices to consider only those monomials which include amendments
r̃j with k ≥ j ≥ k − 1 and ãj with k ≥ j ≥ k − 7. The contribution of such
monomials to the averaged right-hand sides F̃k and G̃k−3 proves to be equal
to zero.

The form of ã0(s) is found by equating the coefficients of ε3. At this step
is determined the dependence of the amendments r7(S, s) and r7(S, s) on the
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fast variable S. A cumbersome but very elementary computation with the
help of analytic computation program [17] yields

ã0(s) = f 2 2s+ 1

s2
+ a00 +

r03
2
s,

where a00 and r03 are arbitrary real constants, parameters of the asymptotic
solution.

Lemma 3.2. For s→ 0, the coefficients of expansions (3.3) have singularit-
ies rk(S, s) = O(s−k) and ak(S, s) = O(s−k−2).

Proof. When constructing solutions to equations (3.4), one obtains the
factor s−1 in the formulas for r′k(S, s) and r′k(S, s) at each step k. The
amendments r0(S, s) and a0(S, s) described above have singularities at s = 0,
too. Since the right-hand sides of (3.4) are nonlinear, the order of singularity
at s = 0 becomes greater with number k. This heuristic argument is rigor-
ously proved by induction in k. Let the assertion of the lemma be true for all
k ≤ k0. On using formulas for the right-hand sides of (3.4) one shows that
the assertion holds true for k = k0 + 1. �

Combining Lemmata 3.1 and 3.2 we are in a position to formulate the
main result of this section.

Theorem 3.3. Formal series (3.3) give an asymptotic solution of system
(3.2) uniformly in s for ε−1|s| ≫ 1.

In this way one derives the principal term of asymptotic solution a(S, s, ε),
r(S, s, ε) to the system. This asymptotic solution has two parameters, namely
the arbitrary constants r03 and a00. Without restriction of generality for the
initial problem of finding an asymptotic solution to equation (3.1) one can
assume that both the parameters are zero.

4 Intermediate asymptotic solution

The asymptotic solution for s → 0 constructed above allows one to find
variables for construction of asymptotic solution which suits for ε−1|s| ∼ 1.
It has the form

ψ = (1 + ε2R(σ, ε)) exp ı
(

ε−2σ
2

2
+ A(σ, ε)

)

,
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where εσ = s. For the unknown functions R(σ, ε) and A(σ, ε) we derive the
equations

ε
dA

dσ
= −2R − ε

f cos
(

A+
σ2

2ε2

)

1 + ε2R
− ε2R2,

ε2
dR

dσ
= −f sin

(

A+
σ2

2ε2

)

.

It is convenient to build an asymptotic solution by means of two-scales
method. Rewrite the variable “fast time” in the form S = σ2/(2ε2)+ϕ. The
total derivative in σ is written as sum of partial derivatives in S and σ. As
a result the system takes the form

σ
∂A

∂S
+ ε2

∂A

∂σ
= −ε 2R− ε2

f cos(A+ S)

1 + ε2R
− ε3R2,

σ
∂R

∂S
+ ε2

∂R

∂σ
= −f sin(A + S).

(4.1)

The solution is searched for in the form of asymptotic series

A(S, σ, ε) =

∞
∑

k=0

εkAk(S, σ),

R(S, σ, ε) =

∞
∑

k=0

εkRk(S, σ).

(4.2)

Substitute these formal decompositions into system (4.1) and equate the
coefficients of the same powers of ε. As a result we derive a recurrent system
for defining the coefficients Ak and Rk. In particular, we get

σ
∂A0

∂S
= 0,

σ
∂R0

∂S
= −f sin(S + A0).

These equations determine the dependence of the principal term of asymptot-
ics on the fast variable,

A0(S, σ) = Ã0(σ), R0(S, σ) =
1

σ
cos(S + A0) + R̃0(σ).
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Here, the functions Ã0(σ) and R̃0(σ) are still undefined. The dependence on
the slow variable σ is determined by means of averaging method on taking
into account that the higher amendments should be bounded in the variable
S.

The equations for A1 and R1 are

σ
∂A1

∂S
= 2R0,

σ
∂R1

∂S
+ f cos(S + A0)A1 = 0.

Since we are looking for a solution to the first equation which is bounded in
the fast variable S, it follows that

R̃0(σ) ≡ 0.

The dependence of A1 and R1 on the fast variable is determined by con-
secutive integration of the first and the second equations. As a result we
get

A1(S, σ) = − 2

σ2
sin(S + A0) + Ã1(σ),

R1(S, σ) =
1

σ3
f 2 cos(2S + 2A0)−

1

σ
fÃ1(σ) sin(S + A0) + R̃1(σ),

where Ã1(σ) and R̃1(σ) are determined from the boundedness condition of
higher amendments in S.

The equations for Ak and Rk for k ≥ 2 looks like

σ
∂Ak

∂S
= −2Rk−1−

∑

i+j=k−3

RiRj−f sin(S+A0)Pk+f cos(S+A0)Qk−
∂Ak−2

∂σ
,

σ
∂Rk

∂S
= −f cos(S+A0)Ak+f sin(S+A0)Sk−f cos(S+A0)Tk−

∂Rk−2

∂σ
.

(4.3)

Here, Pk and Qk are polynomials of A1, . . . , Ak−1 spanned by the monomials
Aα1

1 . . . A
αk−1

k−1 with 1α1+ . . .+(k−1)αk−1 = k. And Sk, Tk are polynomials of

both A1, . . . , Ak−1 and R1, . . . , Rl spanned by Aα1

1 . . . A
αk−1

k−1 R
β1

1 . . . Rβl

l , such
that

k−1
∑

j=1

jαj +
l

∑

j=1

jβj = k − 2l,

with l running from 0 to [(k − 1)/3], the integer part of (k − 1)/3.
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The dependence on the slow variable σ is determined by means of averag-
ing the right-hand sides. The average over the period of the fast variable
should vanish. The gives

∂Ãk−2

∂σ
= −2R̃k−1 + F̃k(σ),

∂R̃k−2

∂σ
= G̃k(σ), (4.4)

or

R̃k−1 =
1

2

(∂Ãk−2

∂σ
− F̃k

)

,
∂2Ãk−3

∂σ2
= −2G̃k −

∂F̃k−1

∂σ
,

where F̃k and G̃k are certain functions of the independent variable σ which
are obtained by averaging equations (4.3) over S in the interval [0, 2π). In
particular, for k = 2 the computation yields

A2(S, σ) =
f 2

2σ4
sin 2(S+A0)

− 2f

σ2
cos(S+A0) Ã1

− f

σ
sin(S+A0)

+ Ã2(σ),

R2(S, σ) =
f 3

4σ5

(

cos 3(S+A0)− 5 cos(S+A0)
)

+
f

σ3

(

f sin 2(S+A0) Ã1 + sin(S+A0)
)

− f

σ2

(

f cos 2(S+A0) + cos(S+A0)
∂A0

∂σ

)

− f

σ

(

sin(S+A0) Ã2 + cos(S+A0) Ã
2
1

)

+ R̃2(σ),

R̃1(σ) = −1

2
Ã0(σ).

On using the form of the right-hand sides in (4.3) we deduce the following
result.

Lemma 4.1. For each k ≥ 2, equations (4.3) have a two-parameter family
of solutions uniformly bounded in S.

The principal term of asymptotics is of the form

Ã0(σ) =
1

σ2
f 2 +R0

1 σ + A0
0,

R̃0(σ) =
1

σ
cos(S + A0(σ)),
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where R0
1 and A0

0 are arbitrary constants.
System (4.3) is triangular and recurrent in k. It is integrated in S step by

step, first the first equation in (4.3) and then the second one. The integration
leads to the growth of singularity of higher amendments at the point σ = 0.
We get

Ak = O(σ−2k−2),
Rk = O(σ−2k−1),

as σ → 0. These formulas allow one to describe the domain of validity of the
constructed asymptotics in a neighbourhood of σ = 0. This is ε−1/2|σ| ≫ 1
or |t− 1| ≫ ε−1/2.

5 Inner asymptotic solution

For small s we will construct an asymptotic solution of another form. To
this end we introduce the new fast independent variable

ϑ = σε−3/2.

The function ψ is searched for in the form

ψ =
(

1 + ε3/2ρ(ϑ, ε)
)

eıα(ϑ,ε).

Substitute the new expression for ψ into equation (3.1). Single out equat-
ions for the real and imaginary parts. As a result we get a system of equations
for ρ and α

dα

dϑ
= −2ρ+ εϑ− ε3/2

(

ρ2 +
f cosα

1 + ε3/2ρ

)

,

dρ

dϑ
= −f sinα.

(5.1)

The asymptotic solution of this system is constructed by the method of
perturbation theory in parameter ε

α = α0(ϑ, ε) + ε3/2α1(ϑ, ε), ρ = ρ0(ϑ, ε) + ε3/2ρ1(ϑ, ε).

The principal terms in ε in the formulas for α and ρ satisfy the system of
equations

dα0

dϑ
= −2ρ0 + εϑ,

dρ0
dϑ

= −f sinα0. (5.2)
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System (5.2) is equivalent to the equation of mathematical pendulum with
outer momentum

d2α0

dϑ2
= 2f sinα0 + ε. (5.3)

It follows that (5.2) is integrable by quadratures. The first integral of system
(5.2) has the form

E =
(

ρ0 −
ε

2
ϑ
)2

+ f cosα0 −
ε

2
α0. (5.4)

The simplest solutions of system (5.2) correspond to saddle and centre
points of equation (5.3). In particular, to saddle points there correspond the
solutions

ρ0 =
εϑ

2
,

αs,k = − arcsin
( ε

2f

)

+ 2πk = − ε

2f
+O(ε3) + 2πk

for k = 0,±1, . . .. The value of the first integral at the k -th saddle point just
amounts to

Es,k = f cosαs,k −
εαs,k

2
= −f +

3ε2

8f
− επk +O(ε4).

In the phase portrait of mathematical pendulum with outer momentum to
centre points there correspond the solutions of system (5.2)

ρ0 =
εϑ

2
,

αc,k = arcsin
( ε

2f

)

+ π(2k − 1) =
ε

2f
+O(ε3) + π(2k − 1),

k being an arbitrary integer. The value of the first integral at the k -th centre
point is equal to

Ec,k = f cosαc,k −
εαc,k

2
= f + ε

π

2
− 3ε2

8f
− επk +O(ε4).

Besides of saddle and centre points there is also a family of special solution
to equation (5.2) called separatrices. To each saddle point there correspond
three separatrices. The values of the first integral at the separatrices just
amount to the values of the first integral at the saddle points to each the
separatrix branches tend as ϑ→ ±∞. Among separatrices of (5.2) there are
pairs which correspond to unbounded motions, more precisely, α → ∞, as
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αs,k−1

αc,kα∗

s,k

αs,k

C
C
C
C
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A
A
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T
T
T
T
T
T
Tr�

��rr - α

α′

6

Fig. 4: A schematic sketch of the phase portrait of mathematical pendulum
with outer momentum. Saddle points αs,k and αs,k−1, a center point αc,k,
and the top of separatrix loop α∗

s,k.

ϑ → +∞, and α → αs,k, as ϑ → −∞, and the dual separatrix α → −∞, as
ϑ → +∞, and α→ αs,k, as ϑ→ +∞. There is moreover a loop of separatrix
which goes out of its saddle point α → αs,k, as ϑ → ±∞, and embraces a
neighbouring centre, see Fig. 4.

Denote by α∗

s,k the intersection point of the loop of separatrix going out
of the k -th saddle point, and the line ρ − εϑ/2 = 0. This is actually the
top point of the separatrix loop. Within the loop in the phase plane those
solutions are situated which correspond to oscillations about the k -th centre
point.

Evaluate the asymptotics of α∗

s,k in ε. Let α∗

s,k = αs,k−2π+
√
εα̃s,k. On

substituting this formula into the the first integral at the separatrix we get
readily

Ek = f cos(αs,k − 2π +
√
εα̃s,k)−

ε

2
(αs,k − 2π +

√
εα̃s,k).

By the above, the values Ek and Es,k coincide. Equating these expressions
gives

f cosαs,k

(

cos
√
εα̃s,k − 1

)

− f sinαs,k sin
√
εα̃s,k + πε− ε3/2

2
α̃s,k = 0.

Replacing the trigonometric functions by their Taylor expansions for ε → 0
we obtain as a result

α̃2
s,k =

2π

f
+O(ε3/2)
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whence

α∗

s,k = αs,k − 2π +

√

επ

f
+O(ε).

The gap between the top point of the loop of the separatrix related to the
k -th saddle point and the preceding saddle point is

∆ =

√

επ

f
+O(ε).

For large values of the variable ϑ the solutions of system (5.2) represent
as series in the reciprocal powers of parameter ϑ. Suppose that

α0 =
εϑ2

2
+ α0,1ϑ+ α0,0 +

∞
∑

k=2

α0,−k(S)ϑ
−k,

ρ0 = ρ0,0 +

∞
∑

k=1

ρ0,−k(S) θ
−k,

(5.5)

where S =
εϑ2

2
+ α0,1ϑ+ α0,0.

Substitute the formal asymptotic expansions into system (5.2). Equate
the coefficients of the same powers of the large parameter ϑ. As a result we
arrive at a recurrent system for the undetermined coefficients of expansions
(5.5). In particular, on equating the coefficients of ϑ0 we conclude readily
that

α0,1 = −2 ρ0,0,

ε
dρ0,−1

dS
= −f sinS.

From these relations we get

ρ0,−1(S) = ε−1f cosS + ρ̃0,−1,

where ρ̃0,−1 is a constant to be determined below from the boundedness
condition for higher amendments in the variable S. On equating the coeffic-
ients of ϑ−1 we get

ε
dα0,−2

dS
= −2 ρ0,−1,

ε
dρ0,−2

dS
+ α0,1

dρ0,−1

dS
= 0.
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Substituting the explicit expression for ρ0,−1 and integrating the equations
we derive

α0,−2 = −ε−22f sinS + 2ρ̃0,−1S + α̃0,−2,

ρ0,−2 = −ε−2α0,1f cosS + ρ̃0,−2.

Since the amendment α0,−2 is required to be bounded, we are lead to a
formula for ρ̃0,−1, namely

ρ̃0,−1 = 0.

Equating the coefficients of ϑ−2 yields a system for determining α0,−3 and
ρ0,−3,

ε
dα0,−3

dS
+ α0,1

dα0,−2

dS
= −2ρ0,−2,

ε
dρ0,−3

dS
+ α0,1

dρ0,−2

dS
− ρ0,−1 = −f cosS α0,−2.

On substituting the explicit expressions for ρ0,−2 and α0,−2 we integrate the
equations. The requirement of boundedness of the coefficients in the param-
eter S gives readily

ρ̃0,−2 = 0,

and so

α0,−3 = −ε−38ρ0,0f sinS + α̃0,−3,

ρ0,−3 = ε−3
(

−f 2 cos2 S + 4fρ20,0 cosS + εf sinS − ε2fα̃0,−2 sinS
)

+ ρ̃0,−3.

On equating the coefficients of ϑ−k for arbitrary k ≥ 3 we get in the same
way

ε
dα0,−k−1

dS
+ α0,1

dα0,−k

dS
− (k−1)α0,−k+1 = −2ρ0,−k,

ε
dρ0,−k−1

dS
+ α0,1

dρ0,−k

dS
− (k−1)ρ0,−k+1 = −f cosS α0,−k + Pk,

where Pk = −f sinS α0,−2α0,−k+2 up to a polynomial of degree k − 1 in
α0,−2, . . . , α0,−k+3 with coefficients periodic in S.

The solution of the recurrent system for α0,−k and ρ0,−k has the form

α0,−k(S) = ε−1Fk(S) + α̃0,−k, ρ0,−k(S) = ε−1Gk(S) + ρ̃0,−k,

where Fk(S) and Gk(S) are certain trigonometric polynomials. The formula
for ρ̃0,−k is established when one constructs bounded solutions to the equation
for α0,−k−1. This is

ρ̃0,−k =
1

4π

∫ 2π

0

(

− α0,1
dα0,−k

dS
+ (k−1)α0,−k+1

)

dS.
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The formula for α̃0,−k is established when one constructs bounded solutions
to the equation for ρ0,−k−3. When doing so, one should take into account the
explicit form of α0,−2 on the right-hand side of the equation. As a result we
get

α̃0,−k =
1

ε2fπ

∫ 2π

0

(

−α0,1
dρ0,−k−2

dS
+(k+1)ρ0,−k−1−fα0,−k−2 cosS+Pk+2

)

dS.

We now summarize what has already been proved.

Theorem 5.1. For ϑ → ±∞ there is a formal two-parameter family of
solutions to system (5.2) of the form (5.5).

The parameters of asymptotic solution (5.5) are the constants α0,0 and
ρ0,0. When having granted α0,0 and ρ0,0, one can evaluate the first integral of
system (5.2) at the asymptotic solution (5.5). For this purpose we substitute
the asymptotics just constructed to the expression for the first integral and
pass to the limit as ϑ → −∞. As a result of obvious transformations we
obtain

E = ρ20,0 −
ε

2
α0,0.

Among constructed asymptotic solutions (5.5) there are a countable num-
ber of separatrix solutions. The parameters of these solutions are determined
from the equalities

ρ20,0 −
ε

2
α0,0 = Es,k (5.6)

for k = 0,±1, . . ..
This formula determines two branches of separatrix. On the upper branch

we have α → ∞, as ϑ → −∞, and α → αs,k, as ϑ → +∞, on the lower
branch we have α → αs,k, as ϑ → −∞, and α → ∞, as ϑ → +∞. The
solutions, for which equality (5.6) fails to hold, are such that α′

ϑ → ∞, as
ϑ → −∞, and α′

ϑ → −∞, as ϑ→ +∞.
Each constructed asymptotic has two arbitrary parameters α0,0 and ρ0,0.

For the same solution the parameters of asymptotics for ϑ → −∞ and for
ϑ → +∞ are different in general. In order to distinguish the parameters α0,0

and ρ0,0 of the same solution, we deduce connection formulas. To do this, we
make use of the integrability in squares of equation (5.3). From the formula
for the first integral we get

dα0

dϑ
=

√

4E − 4f cosα0 + 2εα0.
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Denote by α the minimal value of α on the trajectory (turning point). For
given E, the turning point α proves to be the maximal of the solutions of
equation

4E = 4f cos ᾱ− 2εᾱ

with −f sin ᾱ+ε/2 6= 0. The equation determines the turning point while the
inequality guarantees that the turning point is not a saddle point or, what is
the same, the curve E = const with given parameters α0,0 and ρ0,0 fails to be
a separatrix. One can show that if Es,k < E < Es,k+1 then αs,k < ᾱ < α∗

s,k

holds.
We now turn to deriving a connection formula. The implicit formula for

the general solution has the form

∫

dα√
4E − 4f cosα+ 2εα

=

∫

dϑ.

If ϑ→ ±∞ then α → ∞. To get a connection formula write

∫ α0

ᾱ

dx√
4E − 4f cosx+ 2εx

=

∫ α0

ᾱ

( 1√
4E−4f cosx+2εx

− 1
√

2ε(x−ᾱ)

)

dx+

∫ α0

ᾱ

dx
√

2ε(x−ᾱ)

=
(

∫

∞

ᾱ

−
∫

∞

α0

)( 1√
4E−4f cosx+2εx

− 1
√

2ε(x−ᾱ)

)

dx+

√

2

ε

√
α0−ᾱ.

This regularised formula contains the integrals converging in x. This form is
convenient for evaluating the asymptotics of solution as ϑ→ ±∞. The first
integral in the obtained formula can be thought of as constant of integration.
Substituting the regularized integral into the implicit formula for solution
gives

−
∫

∞

α0

( 1√
4E−4f cosx+2εx

− 1
√

2ε(x−ᾱ)

)

dx+

√

2

ε

√
α0−ᾱ = ϑ+ const.

For α0 → +∞ the integral on the left-hand side tends to zero. Hence it
follows that

α0 =
ε

2
(ϑ+ const)2 + ᾱ,

as ϑ→ −∞. On the other, from (5.5) we conclude that

α0 =
ε

2
ϑ2 − 2ρ0,0ϑ+ α0,0,
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as ϑ→ −∞. Comparing these formulas yields

const = −2

ε
ρ0,0, α0,0 = ᾱ +

2

ε
ρ20,0.

For further computations it is convenient to introduce the designation

I(E, ε) =

∫

∞

ᾱ

( 1√
4E−4f cosx+2εx

− 1
√

2ε(x−ᾱ)

)

dx.

The parameter ᾱ is the greatest solution of 4E−4f cos ᾱ+2εᾱ = 0 for given
values E and ε. From the form of the integrand function one sees that the
improper integral I exists for each ε > 0. The change of variables y = x− ᾱ
reduces it to

I(E, ε) =

∫

∞

0

( 1
√

4f cos ᾱ−4f cos(y + ᾱ)+2εy
− 1√

2εy

)

dy.

From the implicit formula for the general solution we deduce as above that
for ϑ → +∞ the equality

2

ε
(α0 − ᾱ) = (ϑ+ const− I(E, ε))2

holds whence

α0 = ᾱ +
ε

2

(

ϑ2 + 2ϑ(const− I(E, ε)) + (const− I(E, ε))2
)

.

Using the known values of parameters for ϑ→ −∞ we derive the parameters
of asymptotics for ϑ→ +∞, namely

α+
0 = α−

0 + 2ρ0,0I(E, ε) +
ε

2
I(E, ε)2,

ρ+0 = ρ−0 +
ε

2
I(E, ε).

(5.7)

Formulas (5.7) demonstrate explicit connections of asymptotics of the
solution to (5.2) for ϑ→ ±∞. Changing the variable in the integral I(E, ε)
by z = 2εy yields I(E, ε) = I/2ε, where

I =

∫

∞

0

( 1
√

8f sin(ᾱ + z/4ε) sin(−z/4ε)+z
− 1√

z

)

dz

which shows that I(E, ε) = O(ε−1) as ε→ 0. It would be desirable to derive
asymptotics of this integral up to O(1) as ε → 0 but we have not been able
to do this.
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6 Connection formulas for perturbed system

We now consider the perturbed system, see (5.1). Our concern will be to
construct a solution to this system for large values of ϑ. Assume that the
parameters α± and ρ± of the solution depend slowly on ϑ. Substitute the
asymptotics of the solution to the perturbed system and average the system
over the fast time ϑ. As a result of integration of the averaged system we
obtain

α± = ε3/2
(

(ρ±0 )
2 ϑ+O(ϑ−1)

)

,

ρ± = ρ±0 + ε3/2O(ϑ−1/2),

where ρ−0 = ρ0,0 for uniformity. These formulas determine the modulation of
parameters of the solution to (5.1) for large values ϑ.

Derive an equation for the evolution of parameter E for the perturbed
system (5.1). To this end we differentiate the expression for E according to
system (5.1). This gives

dE

dϑ
∼ ε3/2

(

fρ2 sinα + f 2 sinα cosα
)

+
ε5/2

2

(

f cosα + ρ2
)

. (6.8)

The derivative of E is small, hence the parameter E changes little when ϑ
runs over a bounded interval. One should study the behaviour of E for large
ϑ, since the changes of E may be essential on a big interval. For large values
of ϑ it is convenient to use the asymptotics of α0 and ρ0 evaluated above.
Substituting the asymptotics into (6.8) and gathering similar terms we arrive
at the equation

dE

dϑ
∼ ε5/2

2

(

f cos(−εϑ
2

2
+ ρ0,0ϑ− α0,0) + ρ20,0

)

for ϑ → −∞. Averaging over the fast variable S = −ε ϑ2/2 + ρ0,0ϑ − α0,0

leads to an equation for the slow modulation Ẽ of the parameter E. More
precisely,

dẼ

dϑ
∼ ε5/2

2

(

ρ20,0 +
f 2

2ε2
1

ϑ2

)

. (6.9)

The change s = ε5/2ϑ reduces this equation to
dẼ

ds
∼ 1

2
ρ20,0 + ε3

f 2

4s2
. Int-

egration gives

Ẽ ∼ const +
ρ20,0
2
s− ε3

f 2

4s
.
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For ϑ→ −∞, we take into account the value ρ0,0 = 0 from the outer asymp-
totic expansion. Adjusting the formulas with each other we get

Ẽ ∼ 1

2
εϕ− ε3

f 2

4s
,

where ϕ is the phase shift to be treated as parameter of the solution.
At the separatrices and saddle points we have E = Ek. Hence it follows

that on a separatrix ϕ satisfies

1

2
εϕk ∼ −f − ε πk,

k being an integer number. Then,

ϕk ∼ −2f

ε
− 2πk

holds on the k -th separatrix.
The constructed outer asymptotics suits if −ε−1/2σ ≫ 1. In terms of

the inner variable ϑ this inequality just amounts to −ϑ ≫ ε−1. Matching of
outer and inner asymptotics leads to the following assertion.

Theorem 6.1. Given any const > 0, assume that ε−3/2|E − Ek| > 0 for
σ → −0. Then the trajectories of solutions to equation (1.2) do not capture
into resonance.

The formula for Ek implies Ek+1−Ek = επ. Hence, within strips of width
επ in parameter E the asymptotic solutions with parameter values in any
strip Ek−1+C1ε

3/2 < E < Ek−C2ε
3/2, where C1 and C2 are arbitrary positive

constants, do not capture into resonance close to centers of nonperturbed
system (5.2).

The domain of validity of inner asymptotics From the view point of per-
turbation theory the solution of system (5.1) can be searched for in the form
of solution to (5.2) with slowly varying parameters. From general consider-
ations of dependence of the solution to (5.2) on the parameter E we derive
the estimate

ε5/2ϑ2 ≪ 1,

or |ϑ| ≪ ε5/4.
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7 Capture into resonance

In this section we carry out analysis of solutions of perturbed system (5.1) in
neighbourhoods of saddle points and show the width of the domain of those
values of E for which the solutions are captured into oscillations about the
center.

The rebuilding of solutions takes place in neighbourhoods of saddle points
of nonperturbed system (5.2). Earlier we obtained an estimate for the domain
of those values of E for which no capture happens. Capture into resonance
for the perturbed system occurs within the domain E − Ek = o(ε3/2). To
describe the capture domain more precisely it is necessary to conduct more
delicate investigations of trajectories of perturbed system (5.1) nearby saddle
points.

Slowly varying equilibrium points For perturbed system (5.1), the slowly
varying solutions are analogues of equilibrium points. We will look for such
solutions of the form of formal series in powers of ε1/2, the so-called Puiseax
series. Substitute such series to system (5.1) rewritten in terms of τ = εϑ.
As a result of the standard procedure of equating the coefficients of the
the same powers of ε1/2 we get a recurrent system of algebraic equations
for determining the coefficients α̃k and ρ̃k of these expansions. Solving the
system yields

α̃k ∼ πk + ε
(−1)k+1

2f
+ ε5/2

(−1)kτ

4f
+ ε3

(−1)k+1

48f 3
,

ρ̃k ∼ τ

2
− ε3/2

(τ 2

8
+

(−1)k

2
+
f

2

)

+ ε3
(τ 3

16
+

(−1)kfτ

2

)

(7.10)

for k = 0, 1, . . .. Asymptotics (7.10) are applicable for τ ≪ ε−3/2.
On introducing the new dependent variables α̃ = α − α̃k and ρ̃ = ρ− ρ̃k

and letting ε→ 0 in such a way that ε |ϑ| = O(1) we obtain

d

dϑ
α̃ ∼ 2ρ̃− ε3/2

(

ρ̃2 + f (cos α̃− 1)
)

− ε5/2
(sin α̃

2
+ ϑρ

)

+
ε3

4

(

4f ρ̃ (cos α̃ + 1) + 2εϑf(cos α̃− 1) + (εϑ)2 ρ̃
)

,

d

dϑ
ρ̃ ∼ −f sin α̃ + ε

cos α̃− 1

2
+ ε2

sin α̃

8
− ε7/2ϑ

cos α̃− 1

4
.

(7.11)

One can show that for k = 2m the slowly varying solutions are saddle points.
A thorough analysis using the WKB method in much the same way as in [15]
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actually shows that the points α̃ = 0, ρ̃ = 0 for k = 2m+ 1 are stable focal
points.

A rough conservation law Expression (5.4) changes little on solutions of
system (5.1) when ϑ → ∞. This follows immediately from (6.9). However,
this expression oscillates rapidly with amplitude of order ε5/2. This is easily
shown by immediate substitution of the constructed asymptotics for ϑ→ ∞.
In order to study solutions in small neighbourhoods of turning points it is
convenient to use a modified form of equation (6.9) which oscillates in ϑ with
amplitude much less than ε5/2 and is valid for |ϑ| ≪ ε−5/2 just as system
(7.11). Set

Ẽ = ρ̃2+f(cos α̃−1)− ε

2
(sin α̃−α̃)+ε3/2(f ρ̃ cosα+ρ̃3−f ρ̃)+ε5/2ϑρ̃

2

2
+ε2

ρ̃2

8f
.

Differentiating in θ according to system (7.11) gives

dẼ

dϑ
∼ ε5/2

2

(

2ρ̃2 cos α̃ + f sin α̃− ρ̃2
)

(7.12)

for |ϑ| ≪ ε−5/2.
Breaking up of separatrix Consider the separatrices arriving at a point

(α2m, ρ2m). To be specific, assume that m = 0. At the saddle point two
separatrices arrive when t → ∞. For both separatrices the limit value of
Ẽ as t → ∞ is equal to επm. However, one of these separatrices loops the
loop about the point (α2m+1, ρ2m+1). From equation (7.12) it follows that the
values of Ẽ on the separatrices on the left of line α̃ = 2πm differ by the value
of Mel’nikov’s integral [18] over the loop ℓ of the separatrix of nonperturbed
system (5.2). Namely,

∆Ẽ ∼ ε5/2

2

∫

ℓ

(

2ρ̃2 cos α̃ + f sin2 α̃− ρ̃2
)

dϑ.

The integral over the loop of separatrix of the equation of mathematical
pendulum with outer momentum ε tends to the sum of two integrals over
the upper and lower separatrices of mathematical pendulum without outer
momentum, when ε → 0. The loop of separatrix for mathematical pendu-
lum with outer momentum begins and ends at the same saddle point. For
mathematical pendulum without outer momentum the upper and lower sep-
aratrices begin and end at different saddle points. Write the integral over
loop of separatrix as the sum of integrals of integrand terms and consider
the integrals obtained in this way separately. When obviously integrated by
parts, the principal term of the first integral transforms to the form

2

∫

ℓ

ρ̃2 cos α̃dϑ ∼ −
∫

ℓ

ρ̃ cos α̃ dα̃ ∼ −
∫

ℓ

sin α̃ dρ̃ ∼ f

∫

ℓ

sin2 α̃ dϑ,
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which is due to (5.2). Hence it follows that the sum of the first and second
integrals amounts to

f

∫

ℓ

sin2 α̃ dϑ ∼ 1

f

∫

ℓ

(dρ̃

dϑ

)2

dϑ

=
2

f

∫

∞

−∞

( d

dϑ

2
√
2f

cosh(
√
2fϑ)

)2

dϑ

=
2

f

∫

∞

−∞

(4f sinh(
√
2fϑ)

cosh2(
√
2fθ)

)2

dϑ

= 16
√

2f

∫ 1

−1

tanh2(
√

2fϑ) d tanh(
√

2fϑ)

=
16
√
2f

3
.

The principal term of the third integral is evaluated explicitly, namely

1

2

∫

ℓ

ρ̃2 dϑ ∼
∫

∞

−∞

4
√
2f

cosh2(
√
2fϑ)

d(
√

2fϑ) = 8
√

2f,

and so the formula for Mel’nikov’s integral takes the form

∆Ẽ ∼ −ε5/2 8
√
2f

3
.

For Ẽ2m < Ẽ < Ẽ2m + ∆Ẽ the trajectories prove to be captured into the
neighbourhood of the focal point α̃ = α − αk, ρ̃ = ρ − ρk with k = 2m + 1,
see Fig. 5.

8 Matching of asymptotics

In this section we match the parameters of asymptotics constructed for the
outer and inner expansions. As a result we derive connection formulas for
noncaptured asymptotic solutions and describe the domain of parameters
containing those asymptotic solutions which are captured into resonance.

The parameters of outer asymptotics are ε and ϕ. Matching of asymp-
totics (3.3) and (4.2) in the domain 1 ≪ ε−1/2s≪ ε−1/2 yields

A0
0 = ϕ, R0

1 = 0.

Matching of asymptotics (4.2) and (5.5) in the domain 1 ≪ −ε−1/2σ ≪ ε−1/2

leads to formulas
α0,0 = ϕ, ρ0,0 = 0,
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Fig. 5: Trajectory scheme of system (5.1).

The expressions for E and Ẽ coincide in the main for |ϑ| ≪ ε−5/2. The
split separatrices differ by the quantity ∆Ẽ ∼ −ε5/28

√
2f , which does not

depend on ϑ. An equivalent shift in the parameter E also causes splitting of
near separatrices.

The separatrices of system (7.11) lie in the domain Ω of parameter ϕ
given by

|ϕ− 2πk +
1√
f
I(Ek/(4f), ε/(4f))| = o(ε1/2)

for k = 0,±1, . . .. For some ϕ1, ϕ2 ∈ Ω, such that ϕ2 − ϕ1 = 2∆Ẽ, the
trajectories with parameter ϕ satisfying ϕ1 < ϕ < ϕ2 are captured into
resonance, i.e. Ψ ∼

√
t as t → ∞. The length of the interval of those ϕ for

which the trajectories are captured into resonance is evaluated by

∆ϕ ∼ 2ε−1∆Ẽ ∼ ε3/2
16
√
2f

3
.

In plane of variable Ψ the area of trajectories which are captured by the
time t = O(ε−2) has the order ∆ϕ ε−2 = O(ε−1/2).

For noncaptured solutions the matching of parameters of asymptotics
after passing the inner domain gives

r03 ∼
1

4
I, ϕ+ ∼ ϕ+

1

8ε
I2.

Without loss of generality one can make the change ε+ = ε− ε3/2 I/4. As a
result we deduce that the new value of the parameter ε in the outer expansion
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for s > 0 is actually O(ε3/2) less than the value of ε before passing the inner
domain.

9 Numerical investigations

To justify the analytical calculations we have conducted numerical simulati-
ons. We study the family of solutions to the Cauchy problem for equation
(1.2) with initial data at t = −ε−2 instead of the problem on connection of
asymptotics for t→ −∞ and t→ ∞.

In such setting there are two essential hindrances in the study of solutions
with small values of parameter ε. First, the interval of numerical integration
is large, L = O(ε−2). Secondly, as asymptotic analysis shows, the solutions
oscillate rapidly with frequency Ω = O(ε−4) far away from the origin. In this
case the familiar error formula for integration by the Runge-Kutta method
of order 4 with step h gives ∆ = O(h4Ω4 L) = O(h4 ε−18).

For computations with floating point and double accuracy the value of h
is chosen to be greater than 10−4, since for smaller steps the discreteness of
the set of double accuracy numbers adversely affect the error. This inequality
and the error formula for the Runge-Kutta method ∆ yield a restriction on
the numerical values of parameter ε. That is, ε > 10−8/9 ∼ 0.1291550 or
R < 108/9 ∼ 7.7426368, where R = ε−1.

On arguing in this way we consider the family of Cauchy problems for
ε ∈ [0.129, 0.3] with step in ε equal 0.001. For these ε we evaluated 2024
solutions on the interval t ∈ [−ε−2, 3/2 ε−2] by the Runge-Kutta method of
order 4 with integration step h = 0.0005.

The initial conditions for the family of Cauchy problems parametrised by
N = 0, . . . , 2023 are chosen according to the constructed asymptotic solution
for t→ −∞. More precisely,

Ψ ↾t0 =
1

ε
R(S, ε) exp ıα(s, ε),

α(s, ε)=S+ε2
(f 2(2s+1)

s2
− ε

f(s+2) sinS

s2

)

,

R(S,ε) = 1+ε3
(f cosS

s
−ε2f

3(2s+1) sinS

s3
+ε3

( f 2

4s2
+
f 2(4−(s+2) cos 2S)

4s3

))

where
s = ε2t0 − 1,

S =
1

ε

s2

2
+ ϕN ,

and ϕN = 2π(ı−N/2)/N − 2f

ε
.
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Fig. 6: The graph of ∆ϕ, the width of the interval of parameters ϕ corre-
sponding to captured solutions, depending on the quantity R = ε−1. The
dotted line corresponds to the constructed asymptotic formula, the contin-
uous line is a piecewise approximation of ∆ϕ obtained numerically by data
handling for the constructed family of numerical solutions to the Cauchy
problems.

In Fig. 3 the domain of parameters R = 1/ε and ϕ is painted which
corresponds to captured solutions of the Cauchy problems discussed above.

In Fig. 6 we demonstrate the graph of dependence on R of the width of
the interval of captured trajectories obtained by the asymptotic formula and
by numerical simulation.

10 Conclusion

In the paper we derive an asymptotic formula for the connection between
the parameters of those solutions which are not captured into autoresonance.
Moreover, we get a formula for the measure of solutions captured into autore-
sonance and an estimate for the parameters before the resonance of those
solutions which may be captured into autoresonance.
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