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Summary 

Plankton food webs are the basis of marine and limnetic ecosystems. 

Especially aquatic ecosystems of high biodiversity provide important 

ecosystem services for humankind as providers of food, coastal protection, 

climate regulation, and tourism. Understanding the dynamics of biomass 

and coexistence in these food webs is a first step to understanding the 

ecosystems. It also lays the foundation for the development of management 

strategies for the maintenance of the marine and freshwater biodiversity 

despite anthropogenic influences. 

Natural food webs are highly complex, and thus often equally complex 

methods are needed to analyse and understand them well. Models can help 

to do so as they depict simplified parts of reality. In the attempt to get a 

broader understanding of the complex food webs, diverse methods are used 

to investigate different questions. 

In my first project, we compared the energetics of a food chain in two 

versions of an allometric trophic network model. In particular, we solved 

the problem of unrealistically high trophic transfer efficiencies (up to 70%) 

by accounting for both basal respiration and activity respiration, which 

decreased the trophic transfer efficiency to realistic values of ≤30%. Next in 

my second project I turned to plankton food webs and especially 

phytoplankton traits. Investigating a long-term data set from Lake 

Constance we found evidence for a trade-off between defence and growth 

rate in this natural phytoplankton community. I continued working with 

this data set in my third project focusing on ciliates, the main grazer of 

phytoplankton in spring. Boosted regression trees revealed that 

temperature and predators have the highest influence on net growth rates 

of ciliates. We finally investigated in my fourth project a food web model 

inspired by ciliates to explore the coexistence of plastic competitors and to 

study the new concept of maladaptive switching, which revealed some 

drawbacks of plasticity: faster adaptation led to higher maladaptive 

switching towards undefended phenotypes which reduced autotroph 

biomass and coexistence and increased consumer biomass. 

It became obvious that even well-established models should be critically 

questioned as it is important not to forget reality on the way to a simplistic 
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model. The results showed furthermore that long-term data sets are 

necessary as they can help to disentangle complex natural processes. Last, 

one should keep in mind that the interplay between models and 

experiments/ field data can deliver fruitful insights about our complex 

world.  
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Zusammenfassung 

Plankton-Nahrungsnetze sind die Grundlage mariner und limnischer 

Ökosysteme. Besonders die aquatischen Ökosysteme mit hoher 

Biodiversität erbringen wichtige Ökosystemdienstleistungen für uns 

Menschen wie beispielsweise die Bereitstellung von Nahrung, 

Küstenschutz, Klimaregulation sowie Tourismus. Die Dynamiken und die 

Koexistenz der Arten in diesen Ökosystemen zu verstehen, ist ein erster 

Schritt für die Entwicklung von Möglichkeiten zum Schutz ihrer 

Biodiversität. 

Aufgrund der hohen Komplexität natürlicher Nahrungsnetze braucht es 

oft ebenso komplexe Methoden um sie zu analysieren und zu verstehen. 

Modelle können dabei unterstützen, da sie Teile der Realität vereinfacht 

abbilden. In meiner Dissertation arbeitete ich mit verschiedenen 

Nahrungsnetzmodellen, um die Dynamiken in Nahrungsnetzen zu 

verstehen. 

In meinem ersten Projekt haben wir die Energieflüsse einer 

Nahrungskette in zwei Versionen eines allometrisch skalierten 

Nahrungsnetzmodells untersucht. Wenn nur die klassische basale 

Respiration einbezogen wird, steigt die trophische Transfereffizienz auf bis 

zu unrealistische 70 %. Durch die Einbeziehung der aktivitätsbezogenen 

Respiration sank die trophische Transfereffizienz auf realistische Werte 

von maximal 30 %. Danach wandte ich mich in meinem zweiten Projekt 

Plankton-Nahrungsnetzen und den Eigenschaften des Phytoplanktons zu. 

Bei der Untersuchung eines Langzeitdatensatzes von 21 Jahren aus dem 

Bodensee fanden wir einen Beweis für einen Trade-off zwischen 

Verteidigung und Wachstumsrate in einer natürlichen Phytoplankton-

gemeinschaft. In diesem Datensatz konzentrierte ich mich anschließend in 

meinem dritten Projket auf Ciliaten, welche die wichtigsten Fraßfeinde 

von Phytoplankton im Frühjahr darstellen. Die Methode der boosted 

regression trees zeigte, dass Temperatur und Räuber den größten Einfluss 

auf die Nettowachstumsraten der Ciliaten haben. Schließlich nutzten wir 

in meinem vierten Projekt ein von Ciliaten inspiriertes 

Nahrungsnetzmodell, um die Koexistenz von Konkurrenten mit 

veränderlichen Eigenschaften und das neue Konzept des maladaptive 

switching zu untersuchen, welches Nachteile der Plastizität zeigt: höhere 
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Wechselraten zwischen den Phänotypen führten zu höherem maladaptive 

switching in Richtung der unverteidigten Phänotypen, was die Biomasse 

und Koexistenz der Autotrophen reduziert und die Biomasse des 

Konsumenten erhöht. 

Es wurde offensichtlich, dass auch etablierte Modelle kritisch hinterfragt 

werden müssen, da es wichtig ist, die Realität auf dem Weg zu einem 

einfachen Modell nicht zu vergessen. Meine Ergebnisse zeigten des 

Weiteren, wie wichtig Langzeitdatensätze sind, da sie helfen können, 

komplexe natürliche Prozesse zu beleuchten. Dieses Wechselspiel zwischen 

Modellen und Daten aus Experimenten oder Felduntersuchungen kann 

fruchtbare Ergebnisse liefern und zu einem größeren Verständnis unserer 

komplexen Welt beitragen. 
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1. Introduction 

An ecosystem is defined as a biological community together with the 

abiotic environment it is surrounded by (Begon et al., 2011). Ecosystems 

can differ in size and complexity: their size ranges from the gut biome of a 

fly to a whole tropical rainforest. They can be characterized by different 

characteristics such as production, nutrient cycling or biodiversity which 

depend on the environment, the species living in this ecosystem and their 

interactions. The net primary production for example varies a lot across 

ecosystems: 130 g m-2 yr-1 for a desert grassland, 270 m-2 yr-1 for lakes, and 

between 1500 and 3000 m-2 yr-1 for tropical grasslands and marshes 

(Woodwell and Whittaker, 1968 and literature cited therein; Lewis Jr., 

2011). Another example is the percentage of net primary production 

allocated to roots which varies from 50% in deserts to only 20% in 

temperate forests where light competition plays a larger role for the plants 

(Cain et al., 2011). 

Ecosystems often change due to succession, seasonal variability or 

disturbances. Succession alters habitats over years to centuries, e.g. from 

open habitats on bare soil on dunes or lava flows into shrublands and 

forests or after abandonment of agricultural fields (Kamijo et al., 2002; 

Wang, 2002). The first colonizers on lava flow on the volcanic island 

Miyake-Jima in Japan changed the soil conditions, including nutrient 

enrichment, to be beneficial for other plants which then outcompete these 

first colonizers (Kamijo et al., 2002). Seasonal variability changes the 

abiotic and biotic conditions in temperate lakes: temperature, the amount 

of nutrients, and grazing pressure vary a lot during the year (Sommer et 

al., 2012). Disturbances are either short-term (pulse perturbations) such as 

a forest fire, a nutrient pulse or removal of seedlings due to heavy rainfall; 

or they are long-term or permanent (press perturbations) such as climate 

change consequences, e.g. increasing temperature or a decreased amount of 

precipitation (Wojcik et al., 2021). These disturbances can have multiple 

consequences: local extinction of species and changed production were 

found in a marine phytoplankton community (Bestion et al., 2020 and 

literature cited therein). Increasing temperature is an important part of 

the current climate change and will change ecosystems and the food webs 

they contain. Temperature increase can change the diet breadth and 
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increase the bacterial–grazer biomass flux within the microbial food web 

(Petchey et al., 2010; Sarmento et al., 2010). To better understand changes 

like this, we will thus take a closer look at food webs. 

1.1. Food webs 

Food webs connect species according to their trophic interactions, depicted 

by energy fluxes. Energy enters a species as ingestion, which is partly 

respired and partly assimilated. The assimilated energy is partly put into 

production of new biomass (either somatic or reproductive growth) and 

partly excreted; the last contributes to the detritus pool (see Fig. 2.1 in 

chapter 2). 

The species in food webs can be assigned to trophic levels starting from 1 

for plants and detritus. The trophic level of its prey plus one is the trophic 

level of each consumer, resulting in 2 for direct consumers as herbivores 

and detritivores and 3 or more for carnivores. The trophic position of an 

omnivore consuming prey of different trophic levels can be a decimal 

number, e.g. on owl consuming mostly herbivorous mice but also some 

insectivorous shrews. When the biomasses of all organisms in a food web 

are grouped according to their trophic level, biomass pyramids can be 

drawn revealing the biomass distribution. 

Most food webs are located within one ecosystem, e.g. in a gall on 

saltbushes, or a plankton community (Polis, 1991; Boit et al., 2012). They 

can also reach across ecosystems such as a food web on Bear Island in the 

Arctic Ocean connecting the marine, the terrestrial and the freshwater 

realm (Pimm and Lawton, 1980). Sea birds eat marine animals and polar 

bears hunt seals, while several birds eat invertebrates from the freshwater 

habitats. These connections between ecosystems can increase the food web 

complexity. 

Food webs can be top-down regulated or bottom-up regulated due to for 

example predation pressure or nutrient limitations, respectively. It is 

nowadays accepted that both processes contribute to the regulation of food 

webs (Wang et al., 2020). Different factors can change these relative 

contributions. In pitcher plants high temperature led to higher top down 

control (Hoekman, 2010) and in boreal streams top down control was 

highest at intermediate temperatures (Kishi et al., 2005). In studies on 
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habitat fragmentation and predator diet breadth, both processes played a 

role (Jiang and Morin, 2005; Wang et al., 2020). Data on Daphnia suggest 

that its reproduction and population growth rates are bottom-up 

controlled, while their biomasses are top-down controlled (Maciej Gliwicz, 

2002).  

Trophic cascades arise from the interaction between two trophic levels 

resulting in a change in species abundance or composition at other trophic 

levels: a famous study describes how sea otters by feeding on urchins 

release the kelps from urchin predation (Simenstad et al., 1978). A second 

example is the overfishing of pelagic predatory fish in the Black Sea 

leading to an increase in planktivorous fish and phytoplankton and a 

decrease in zooplankton (Daskalov, 2002). Terrestrial examples are much 

rarer. In experiments in the tropical rainforest understorey, in absence of 

carnivorous beetles the number of ants on piper plants increased, reducing 

the amount of herbivory and increasing the leaf area of the piper plants 

(Dyer and Letourneau, 1999).  

The ratio of production between two adjacent trophic levels is the trophic 

transfer efficiency (Kath et al., 2018). It depends on the food and 

metabolism of the organisms, e.g. it is usually larger for carnivores and 

invertebrates than for herbivores and vertebrates, such as carnivorous 

beetles or spiders, should have high trophic transfer efficiencies. As trophic 

cascades change the biomass on different trophic levels, the trophic 

transfer efficiency is usually affected as well (see chapter 2).  

Food webs or parts of them that are well known can be used as model 

communities to gain knowledge for specific groups or patterns as plankton 

food webs or intra-guild predation (Diehl and Feissel, 2001; Boit et al., 

2012). Phytoplankton and ciliates in aquatic food webs are often used as 

model communities as they have short generation times due to their small 

size, they are very diverse and differ in size, defence and thus have a high 

functional diversity and they are embedded in a large, complex food web 

(see chapter 3 and 4). Modelling only a part of a food web allows us to 

understand the species interactions in detail. We can move afterwards to 

more complex and realistic food webs where we have plenty of interactions. 
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1.2 Species interactions 

Species interactions are diverse and can be categorized e.g. by the impact 

of one species on the other species. Predation and parasitism are trophic 

interactions which are beneficial for one of the partners and detrimental to 

the other partner. Predation is the key interaction in food webs and leads 

usually to the death of the prey. Parasites usually do not kill their prey 

(immediately) and the size ratio is different: while predators are usually at 

least the same size as their prey, parasites are often smaller than their 

prey. Predation can be counteracted by defences and avoidance strategies, 

which can be pre- and post-attack (Ehrlich and Gaedke, 2018). Pre-attack 

defence means to avoid the attack. One way is vertical dial migration, e.g 

cyclopods migrating to deeper water layers and back to avoid being 

consumed by backswimmers during the day (Gilbert and Hampton, 2001). 

Other pre-attack defences are camouflage in toad-headed lizards and 

inactivity to reduce the chance for predator contact in black-bellied 

salamanders (Dempsey et al., 2021; Wan et al., 2021). Possible post-attack 

defences are e.g. toxins in cyanobacteria, size in phytoplankton or spines in 

rotifers (Jang et al., 2003; Gilbert, 2012; Marañón, 2015). 

Non-trophic interactions can be positive for both partners: these 

mutualisms include e.g. pollination where both partners benefit. It is 

estimated that 88% of all plant species rely on animals as pollinators 

which makes pollination an important interaction also in food webs 

(Ollerton et al., 2011; Hale et al., 2020). 

Facilitation is an interaction which is beneficial for one partner and 

beneficial to neutral to the other one. One example for indirect facilitation 

are two plants in salt marshes, saltmarsh rush and high-tide bush. The 

high-tide bush had a lower growth rate when the saltmarsh rush was 

experimentally removed, probably due to changed abiotic conditions such 

as more salt and less oxygen, but the saltmarsh rush was not affected by 

the removal of the high-tide bush (Hacker and Bertness, 1996). Additional 

complexity was given by aphids feeding on the high-tide bush which also 

benefitted from the presence of saltmarsh rush. Thus for the high-tide 

bush, the effects of the saltmarsh rush were mixed, but the positive ones 

prevailed (Hacker and Bertness, 1996). Another example for indirect 

effects could be found in a food web in shallow ponds in America: the 
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marbled salamander larvae consumed zooplankton and spotted 

salamander larvae which also fed on zooplankton. Experiments have 

shown that the indirect effect via selection on spotted salamander was 

larger than the direct feeding link between the marbled salamander and 

zooplankton: Locally adapted spotted salamander larvae exacerbated the 

biomass decline in zooplankton, but dampened the negative effect on 

zooplankton diversity (Urban, 2013). 

Competition is an interaction which is negative for both partners. Arctic 

foxes and snowy owls competing for lemmings represent an example for a 

trophic and exploitative competition as they compete for the same food 

resource, despite other interactions connecting both (Duchesne et al., 

2021). Barnacles and mussels competing for space at the shore represent 

an example for a non-trophic competition. Interference competition is 

defined as two species actively interfering with each other to exclude the 

other one from the shared habitat or a resource, e.g. house wrens 

destroying nest sites and removing eggs of other birds (Kennedy and 

White, 1996). 

1.3 Traits and trade-offs 

All species interactions are influenced by the species’ traits, properties 

related to their fitness, for example the success of a predator depends on 

the prey defence. Other traits are growth rate, clutch size, and light or 

nutrient affinity. These traits are not independent, but are constrained by 

trade-offs due to energy limitation. Several trade-offs have been found: one 

between growth and defence in a phytoplankton freshwater community 

(Ehrlich et al., 2020, see chapter 3), between resistance against a phage 

and competitive ability in a bacterium (Meaden et al., 2015), between 

defence against a gape-limited and a gape unconstrained predator in 

salamanders (Urban, 2008) and a three-way trade-off between cell size and 

the competitive abilities for nitrogen and phosphorus in phytoplankton 

(Edwards et al., 2011). 

While traits can be genetically fixed, some species have plastic traits, so 

they can adapt to their variable environment. Plants can adapt their leaves 

to different amounts of light and increase their root biomass in nutrient-

poor soils (Sultan, 2000). Another example are inducible defences which 
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are only expressed when predation pressure is high, whereby costs are 

saved when predation pressure is low: rotifers and daphnids form spines, 

Hokkaido frog tadpoles will be bulgy and red algae release toxins when 

their predators are present (Kishida and Nishimura, 2004; Boeing et al., 

2005; Aránguiz-Acuña et al., 2010; Nylund et al., 2013). A food web of two 

plastic species experiencing a trade-off between defence and growth rate is 

investigated in chapter 5. In this chapter, also one drawback of plasticity is 

studied: maladaptive switching is switching from a higher-fitness 

phenotype to a lower-fitness one due to the wrong perceptions of 

kairomones or stochasticity. 

Traits, trade-offs and their shape determine how many species can coexist 

(Ehrlich et al., 2017, 2020, see chapter 3). Traits affect also biomass 

dynamics, e.g. in a system of green sunfish hunting both salamander 

larvae and freshwater isopods (Huang and Sih, 1990). Both the isopods and 

the salamander reduced their activity as a defence and stayed in refuges, 

but while the isopods always did so, the salamander only showed this 

behaviour when fish were more active due to isopod presence. Thus the 

isopod presence increased the survival of salamanders. The salamanders in 

turn drove the isopods out of their refuges exposing them to a higher 

predation pressure, thus decreasing the isopod survival. This showed how 

defence behaviour influences the biomass dynamics which we want to take 

a closer look at. 

1.4 Biomass dynamics and consequences on food webs 

There are in principle four types of biomass dynamics: a stable 

equilibrium, stable oscillations such as found in the shots of red grouse 

(Martínez-Padilla et al., 2014), unstable oscillations, e.g. in moths or 

beetles (Hassell et al., 1976 and literature cited therein), and chaotic 

dynamics which were found e.g. in experiments with flour beetles (Cushing 

et al., 2001). In complex natural systems, we found often oscillations. There 

are several types of cycles, two are (regular) predator-prey cycles where the 

predator biomass follows with a quarter lag behind the prey biomass and 

antiphase cycles where the maxima of two species are half a cycle apart. 

Both types have been found in several lab experiments, e.g. for amoebae 

eating bacteria and rotifers consuming algae (Fussmann et al., 2000; 

Hiltunen et al., 2014 and literature cited therein). Antiphase cycles results 
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from eco-evolutionary dynamics or plasticity (Yoshida et al., 2003; 

Yamamichi et al., 2019, see chapter 5). There are also reversed cycles 

where the predator peaks are followed by the prey peaks (Cortez and 

Weitz, 2014; van Velzen and Gaedke, 2018) and intermittent cycles “which 

are characterized by interruptions where predator-prey cycles are strongly 

dampened or disappear entirely, after which they re-establish themselves” 

(van Velzen et al., 2022) found in voles, snowshoe hares and chemostat 

runs (Krebs et al., 2013; Ecke et al., 2017; Blasius et al., 2020). To 

differentiate between types of biomass dynamics can help to detect for 

example trait changes when looking at biomass time series from 

experiments or field measurements. 

1.5 Thesis overview 

The broad range of topics led to a high range of methods in my thesis (Fig. 

1.1). 

For large food webs, usually simple models are used to minimize the 

amount of parameters that have to be measured or estimated. Allometric 

trophic network models (ATN) simulate the energy flux in a trophic 

network assuming allometric relationships for species and their biological 

rates, i.e. larger species having slower rates. These models are very flexible 

and are often used to model food webs and study their dynamics, stability, 

biodiversity and coexistence (Brose et al., 2006; Brose, 2008; Berlow et al., 

2009; Heckmann et al., 2012; Schneider et al., 2012, 2016; Kath et al., 

2018). In my second chapter, I compared the energetics of the original ATN 

model and an extended version and found that additionally accounting for 

the activity respiration decreased the trophic transfer efficiency to realistic 

values ≤30%. This extended version reflects the energetics of organisms 

much better and is thus a good basis to further investigate food webs 

models, e.g. combined with pollination (Hale et al., 2020). 
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Fig. 1.1: Overview of the topics covered in the chapters 2 to 5 (bright cyan = 2, red = 3, 

yellow = 4, dark cyan = 5). 

After examining the energetics of a food chain, I wanted to explore the 

species coexistence on one trophic level, so I switched to work on a 

plankton food web. Long-term, high frequency data sets are laborious to 

collect, but they can be used to test ecological theories, to parameterize 

models and to understand and quantify complex ecosystem processes 

(Lindenmayer et al., 2012). Trade-offs were assumed in many models 

(Yoshiyama et al., 2009; Kenitz et al., 2017; van Velzen and Gaedke, 2017) 

but so far have been found mostly in lab experiments (Tessier et al., 2000; 

Meaden et al., 2015; Burson et al., 2018; but see Edwards et al., 2011). 

With the trade-off between defence and growth rate in a natural 

phytoplankton system we provide the first empirical proof from the field 

within this theory and I showed with the trait-based approach how the 

coevolved phytoplankton community reacts to different environmental 

conditions based on their traits (see chapter 3). 

While the processes ruling phytoplankton dynamics are studied a lot, the 

influences of top-down and bottom-up processes on zooplankton are not 

that well studied: ciliates are the most important grazers of phytoplankton 

in spring in some lakes and they closely interact with phytoplankton due to 

trait changes in that time (Tirok and Gaedke, 2007), but what rules their 
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dynamics is still quite unclear. Ciliates are a very diverse group regarding 

size, feeding behaviour and mobility making it hard to understand all 

relevant ecological processes. Simple statistical methods might fail in 

explaining their dynamics as they cannot take both top-down and bottom-

up factors into account. Machine learning techniques can do so and thus 

process highly complex data sets (Elith et al., 2006; Baltensperger et al., 

2020; Pomati et al., 2020). Boosted regression trees aggregate weak 

predictions from a series of decision trees to generate a stronger prediction 

model capable to analyse high-dimensional data. In chapter 4, I used 

boosted regression trees to reveal the importance of environmental 

predictors in ciliates’ net growth rates. 

While ciliate dynamics have not been understood in every detail yet, they 

still inspired models and promoted theory development (Kerimoglu et al., 

2014; Våge et al., 2018). Experiments with plastic ciliates feeding on 

phytoplankton and being consumed by another predatory ciliate have led 

to the idea to model plasticity. In chapter 5 I used a set of ordinary 

differential equations to model a food web with one consumer and two 

plastic, competing prey species to investigate the new concept of 

maladaptive switching. Additionally, I explored which trade-off parameters 

matter for the two competing species to coexist or outcompete the other 

one. These are then worth to be investigated with experiments to close the 

circle between experiments and models (Flynn, 2005; Heuschele et al., 

2017). 
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Abstract 

Allometric trophic network (ATN) models offer high flexibility and 

scalability while minimizing the number of parameters, and have been 

successfully applied to investigate complex food web dynamics and their 

influence on food web diversity and stability. However, the realism of ATN 

model energetics has never been assessed in detail, despite their critical 

influence on dynamic biomass and production patterns. Here, we compare 

the energetics of the currently established original ATN model, considering 

only biomass-dependent basal respiration, to an extended ATN model 

version, considering both basal and assimilation-dependent activity 

respiration. The latter is crucial in particular for unicellular and 

invertebrate organisms which dominate the metabolism of pelagic and soil 

food webs. Based on metabolic scaling laws, we show that the extended 

ATN version reflects the energy transfer through a chain of four trophic 

levels of unicellular and invertebrate organisms more realistically than the 

original ATN version. Depending on the strength of top-down control, the 

original ATN model yields trophic transfer efficiencies up to 71% at either 

the third or the fourth trophic level, which considerably exceeds any 

realistic values. In contrast, the extended ATN version yields realistic 

trophic transfer efficiencies ≤ 30% at all trophic levels, in accordance with 

both physiological considerations and empirical evidence from pelagic 
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systems. Our results imply that accounting for activity respiration is 

essential for consistently implementing the metabolic theory of ecology in 

ATN models and for improving their quantitative predictions, which makes 

them more powerful tools for investigating the dynamics of complex 

natural communities. 

 

Key words: food web, trophic transfer efficiency, allometric trophic network 

model, allometry, energy transfer, activity respiration  

 

Introduction 

The metabolic theory of ecology relates biological rates to body size, and 

serves to predict metabolic activity from the individual to the community 

level (Brown et al. 2004). Allometrically scaled trophic network (ATN) 

models implement this theory in a food web context by linking consumers 

to their resources in food webs. Yodzis and Innes (1992) parameterized the 

first ATN model which is the theoretical basis of a fruitful series of ATN 

modelling studies for ecological theory building, e.g. contributing to the 

diversity-stability debate (Benoît and Rochet 2004; Brose et al. 2006; 

Heckmann et al. 2012), coexistence theory (Brose 2008), hypotheses on 

biodiversity-ecosystem functioning (Schneider et al. 2016) and for 

investigating biodiversity loss (Berlow et al. 2009; Schneider et al. 2012). 

The main advantage of ATN models is their scalability from small modules 

to large and complex food webs in a widely applicable approach with only 

few assumptions. 

The ATN approach builds upon the fact that material ingested by a 

consumer is either excreted or allocated to respiration or production (Fig. 

2.1). The assimilation efficiency differs for carnivores and herbivores 

because of the respective food’s quality and stoichiometry. Regarding losses 

to respiration, all previous studies with ATN models except for Boit et al. 

(2012) and Kuparinen et al. (2016) considered only respiration proportional 

to biomass, here called basal respiration, whereas respiratory losses due to 

activity, hereafter called activity respiration, were not specifically 

accounted for. This approximation may apply to 27urcate27yte27c 
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mammals and birds with high maintenance costs. However, it appears less 

suitable for modelling pelagic and soil food webs, which mostly consist of 

unicellular and invertebrate organisms with low basal respiration, but 

high activity respiration, which is proportional to food uptake (Anderson 

1992). The study by Boit et al. (2012) on the seasonal plankton succession 

in Lake Constance already indicated that the ATN model successfully 

reproduced general community patterns only if the important physiological 

process of activity respiration was accounted for. In contrast, the original 

ATN model considerably overestimated heterotrophic production if activity 

respiration was ignored (Boit et al. 2012). Kuparinen et al. (2016) used the 

ATN model as extended by Boit et al. (2012) to successfully model the 

effects of fishing on a food web and the fish life-history traits. These two 

studies called for the in-depth evaluation of ATN model energetics which 

we present in this work. To differentiate between the two model versions, 

we employ the terms “original” (Yodzis and Innes 1992) and “extended” 

ATN model (Boit et al. 2012). 

 

Fig. 2.1: The carbon (surrogate for energy) flow scheme implemented in the ATN model 

approach. The original version by Yodzis & Innes (1992) does not separate activity from 

basal respiration, but assumes that all respiration is proportional to biomass. The 

missing part of activity respiration proportional to assimilation (box) is added to the 

original ATN model in this study. Model parameters are e: assimilation efficiency, fa: 

factor accounting for activity respiration, fm: factor accounting for basal respiration, x: 

metabolic rate; B: biomass and I ingestion (for details see Tab. 2.1 and Methods) 
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To quantify and evaluate model energetics, we determine the trophic 

transfer efficiency (TTE) between four ascending trophic levels 

(autotrophs, herbivores, carnivores, and top predators) for both the original 

and the extended ATN version. We find that only by accounting for activity 

respiration, the ATN model achieves realistic TTE towards the higher 

trophic levels. To explain this model 29urcate29y, we additionally 

compared biomasses, respiration and production of both model versions for 

different levels of top predator mortality. The latter elucidates the 

influence of top-down vs. bottom-up control on the TTE and the formation 

of trophic cascades. We discuss our findings in the context of previous 

modelling studies and observations from pelagic systems to promote the 

inclusion of activity respiration in future ATN models. Achieving more 

realistic energetics and improving quantitative predictions will make ATN 

models more powerful tools to investigate complex natural food webs in 

order to better serve their purpose in ecological theory building. 

Methods 

Allometric trophic network (ATN) models represent consumer-resource 

relationships based on allometric scaling of key physiological rates (e.g. 

ingestion) with individual body mass, which achieves minimum data 

necessity for model parameterization (Yodzis & Innes 1992). Ingested 

carbon serves as surrogate for energy and is allocated to either excretion, 

respiration, or production (Fig. 2.1, Begon et al. 2006). The original ATN 

model formulation does not differentiate between basal respiration 

proportional to the biomass, and activity respiration proportional to the 

amount of assimilated food (Fig 2.1). 

General ATN model equations and parameters 

We applied the ATN model equations to a linear chain of 4 trophic levels 

from autotrophs (A) and herbivores (H) to carnivores (C) and top predators 

(T). In order to facilitate comparability between studies, our notation and 

parameterization closely follows that of previous ATN modelling studies 

(Brose et al. 2006; Boit et al. 2012). Growth of the autotrophs is modelled 

by a logistic function (Eq. 2.1), and consumption by all consumers is 

described by a Holling type II functional response (Eq. 2.1-2.4, Holling 

1959) . Together, the rates of change of the biomasses Bi (i = A, H, C, T) at 
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the four trophic levels are given by the following ordinary differential 

equations: 

𝑑𝐵𝐴

𝑑𝑡
= 𝑟𝐵𝐴 (1 −

𝐵𝐴

𝐾
) − 𝑦𝑥𝐻

𝐵𝐴

𝐵0 + 𝐵𝐴

𝐵𝐻      (2.1) 

𝑑𝐵𝐻

𝑑𝑡
= 𝑓𝑎𝑒ℎ𝑦𝑥𝐻

𝐵𝐴

𝐵0 + 𝐵𝐴

𝐵𝐻 − 𝑦𝑥𝐶  
𝐵𝐻

𝐵0 + 𝐵𝐻

𝐵𝐶 −  𝑓𝑚𝑥𝐻𝐵𝐻     (2.2) 

𝑑𝐵𝐶

𝑑𝑡
= 𝑓𝑎𝑒𝑐𝑦𝑥𝐶

𝐵𝐻

𝐵0 + 𝐵𝐻

𝐵𝐶 −  𝑦𝑥𝑇

𝐵𝐶

𝐵0 + 𝐵𝐶

𝐵𝑇 −  𝑓𝑚𝑥𝐶𝐵𝐶      (2.3) 

𝑑𝐵𝑇

𝑑𝑡
= 𝑓𝑎𝑒𝑐𝑦𝑥𝑇

𝐵𝐶

𝐵0 + 𝐵𝐶

𝐵𝑇 −  𝑓𝑚𝑥𝑇𝐵𝑇 − 𝑑𝐵𝑇
2.     (2.4) 

The maximum growth rate of the autotrophs is described by r and their 

carrying capacity by K. The functional responses for consumption are 

expressed by the metabolic rate of the respective consumer, xH, xC, xT, the 

maximum ingestion rate y normalized by the respective metabolic rate, 

and the half-saturation constant B0. The assimilation efficiency for 

herbivores is denoted as eh, the one for carnivorous predators as ec, the 

fraction of assimilated carbon not respired is defined by fa, i.e. (1- fa) is the 

fraction of carbon lost by activity respiration, and the fraction of 

maintenance respiration linked to biomass is fm. The metabolic rates xi 

scale allometrically with body mass mi with an allometric exponent of -0.25 

(Yodzis and Innes 1992). The autotrophs’ body mass is set to 1 and the 

consumer-resource body-mass ratio is 1000 for all trophic levels. The 

standard values of all parameters are given in Tab. 2.1. The death rate 

constant of the top predator is given by d (Eq. 2.4, Tab. 2.1) and it was 

varied between 0 and 0.05 in steps of 0.0001. The term dBT represents the 

top predator’s per capita death rate. The case d = 0 represents an extreme 

case as it leads to a massive accumulation of top predator biomass which in 

nature would attract pathogens, parasites, or another carnivore, which all 

induce mortality. 
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Table 2.1: Parameter values. If the original and extended ATN version are differently 

parameterized, their values are 31urcate31 with orig and ext, respectively. Dimensionless 

units are 31urcate31 as [-]. 

Parameter name Abbreviation Value [dimension] Literature 

Mass-specific maximum 

growth rate of the autotrophs 
r 1 [

1

𝑡𝑖𝑚𝑒
] 

(Brose et al. 

2006) 

Carrying capacity K 1 [
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
] 

(Brose et al. 

2006) 

Metabolic rate xi 0.314 massi
-0.25 [

1

𝑡𝑖𝑚𝑒
] 

(Brose et al. 

2006) 

Maximum ingestion rate 

relative to metabolic rate 
y 8 [-] 

(Brose et al. 

2006) 

Half – saturation constant B0 0.5 [
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
] 

(Brose et al. 

2006) 

Fraction of assimilated 

carbon used for production 
fa 1 orig / 0.4 ext [-] 

(Boit et al. 

2012) 

Factor for maintenance 

respiration 
fm 1 orig / 0.1 ext [-] 

Boit et al. 

2012) 

Assimilation efficiency for 

herbivorous species 
eh 0.45 [-] 

(Yodzis and 

Innes 1992) 

Assimilation efficiency for 

carnivorous species 
ec 0.85 [-] 

(Yodzis and 

Innes 1992) 

Death rate constant of top 

predator 
d [0, 0.05] [

𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑖𝑚𝑒 𝑚𝑎𝑠𝑠
] 

varied in this 

study 

 

Calculation of central rates 

All central rates, i.e. ingestion, excretion, basal and activity respiration, 

and production have the same dimension mass ∙ volume-1 ∙ time-1. The total 

ingestion rate Ii of the consumer species on trophic level i with biomass Bi 

is given by 

𝐼𝑖 =  𝑦𝑥𝑖

𝐵𝑖−1

𝐵0 + 𝐵𝑖−1

𝐵𝑖    (2.5). 

Multiplied with the assimilation constant ei and the activity respiration 

factor fa, the term Ii constitutes the first term in Eq. 2.2-2.4. The total 

excretion rate Ei of trophic level i is proportional to its ingestion rate and is 

given by 



32 

 

𝐸𝑖 = (1 − 𝑒𝑖)𝐼𝑖 =  (1 − 𝑒𝑖)𝑦𝑥𝑖

𝐵𝑖−1

𝐵0 + 𝐵𝑖−1

𝐵𝑖    (2.6). 

The assimilation efficiency ei describes the fraction of the ingested material 

that is assimilated and not lost by excretion. It is higher for carnivores 

than for herbivores (Tab. 2.1) since the former consume high-quality food of 

similar biochemical composition as themselves, whereas plants often 

contain nutrient-poor material which is hard to digest. 

Basal respiration is the energy lost due to maintenance processes. It is 

analog to the basal metabolic rate defined for homoiotherms (Gessaman 

1973) as measured in the thermoneutral zone where homoiotherms have 

very low costs for thermoregulation and are most similar to ectotherms in 

this regard. Basal respiration Rb,i is defined as  

𝑅𝑏,𝑖 =  𝑓𝑚𝑥𝑖𝐵𝑖    (2.7) 

and is therefore proportional to the standing stock biomass. Activity 

respiration is the energy spent for processes related to the production of 

new biomass (including locomotion, foraging, food handling and digestion, 

ontogenetic processes and reproduction). We call fa the fraction of energy 

not lost due to activity processes. Following Boit et al. (2012), the activity 

respiration Ra,i is calculated as 

 𝑅𝑎,𝑖 = (1 − 𝑓𝑎) 𝑒𝑖  𝐼𝑖 = (1 − 𝑓𝑎)𝑒𝑖𝑦𝑥𝑖

𝐵𝑖−1

𝐵0 + 𝐵𝑖−1

𝐵𝑖    (2.8). 

This part is neglected in the original ATN model, i.e. fa = 1. 

The production summarizes all processes that lead to creation of new 

biomass (somatic and reproductive growth). On average, the production at 

trophic level i compensates for losses by predation, i.e. the ingestion by 

trophic level i+1. If we neglect non-grazing mortality, which typically plays 

a minor role in pelagic systems (Gaedke et al. 2002), the production Pi can 

either be calculated as ingestion of the next higher trophic level Ii+1 or as 

ingestion at trophic level i minus excretion Ei and total respiration Ri = Ra,i 

+ Rb,i,  

𝑃𝑖 = 𝐼𝑖+1 = 𝐼𝑖 −  𝐸𝑖 − 𝑅𝑎,𝑖 − 𝑅𝑏,𝑖    (2.9). 
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For the top predator, the ingestion by a higher trophic level is replaced by 

its death rate dBT
2 (Eq. 2.4). These different ways to calculate the 

production (Eq. 2.9) enable us to infer the trophic transfer efficiencies. 

Trophic transfer efficiency 

The trophic transfer efficiency (TTE) is defined as the ratio of the 

production of two adjacent trophic levels and is therefore dimensionless. It 

is used to quantify the fraction of energy passed on to the next trophic 

level. To calculate the maximum TTE, it is crucial to remember that 

ingested carbon can only be excreted, respired or invested into new 

production (Fig. 2.1). When one of the first two rates increases, the 

production decreases. Following Yodzis and Innes (1992), carnivores are 

assumed to have an assimilation efficiency of 85% and herbivores of 45% 

(Tab. 2.1). From physiological considerations based on a comprehensive 

data set across different taxonomic groups (Humphreys 1979; Hendriks 

1999) it can be estimated that at most half of the assimilated carbon can be 

allocated to production (Fig. 2.1), which yields an upper limit to the 

maximum feasible TTEi between trophic level i and i+1: 

Maximum feasible TTE 𝑖→𝑖+1 ≤ 0.5 
𝑒𝑖+1 𝐼𝑖+1

𝑃𝑖

   (2.10). 

This results in a maximum feasible TTE of at most 42.5% of the ingested 

carbon for carnivores and of 22.5% for herbivores (cf. Tab. 2.2). Note that 

this is a very conservative estimation. Most taxa have considerably higher 

respiratory losses and thus lower production to assimilation ratios, 

resulting in a lower maximum feasible TTE. 

 

One way to calculate the TTE to the next trophic level in the model is 

𝑇𝑇𝐸𝑖→𝑖+1 =
𝑃𝑖+1

𝑃𝑖

=
𝑒𝑖+1𝐼𝑖+1 −  (𝑅𝑎,𝑖+1 +  𝑅𝑏,𝑖+1)

𝐼𝑖+1

=
𝑓𝑎𝑒𝑖+1𝑦

𝐵𝑖

𝐵ℎ + 𝐵𝑖
−  𝑓𝑚

𝑦
𝐵𝑖

𝐵ℎ + 𝐵𝑖

   (2.11). 

This expression has an upper limit that is reached for unlimited food 

supply Bi → ∞. For this limit, the rightmost part of Eq. 2.11 can be 

simplified to 
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𝑇𝑇𝐸𝑖→𝑖+1 <
𝑓𝑎𝑒𝑖+1𝑦 −  𝑓𝑚

𝑦
   (2.12) 

as an expression for the upper bound of the TTE inherent in the ATN 

model (Eq. 2.1-2.4). When calculating this model inherent maximum TTE 

from the first to the second trophic level, the autotrophs’ maximum 

biomass is their capacity K and not infinity, and Eq. 2.11 is used for the 

calculation instead of Eq. 2.12. 

To differentiate the inherent TTE (upper bound of the TTE in the ATN 

model) from the actually obtained TTE during the dynamic simulations, 

the latter will thereafter be called obtained TTE. 

Simulations 

Biomasses and resulting values are mean values of the last 50,000 time 

steps of a 100,000 step time series. All calculations and figures were made 

using Python 2.7.6. For integration of the ordinary differential equations, 

the adaptive step-size lsoda solver was used with absolute and relative 

error tolerances εabs = εrel = 10-13. 

Results 

We first evaluated the maximum inherent trophic transfer efficiency (TTE) 

assuming unlimited food supply. We found a value of 32.5% for the 

herbivores and 72.5% for the carnivores and top predators in the original 

ATN model, which exceeds by far the maximum feasible TTE of 22.5% for 

herbivores and 42.5% for carnivores and top predators (Eq. 2.10, 2.12, Tab. 

2.2). In the extended ATN version, the maximum inherent TTE was 16.1% 

for the herbivores and 32.8% for the carnivores and top predators (Eq. 2.12, 

Tab. 2.2). The maximum inherent TTE was smaller in the extended version 

as more carbon is respired instead of transported through the food chain to 

the upper trophic levels. 
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Tab. 2.2: Three trophic transfer efficiencies (TTE) are given, the maximum feasible TTE 

according to the given assimilation efficiencies (Tab. 2.1) and assuming that production 

equals respiration (Humphreys, 1979) (Eq. 2.10), the maximum inherent TTE assuming 

maximum food concentration (Eq. 2.12), and the maximum TTE obtained from the 

simulations for both the original and the extended ATN version for the three trophic 

levels in %.  

 Max. feasible TTE 

Max. inherent TTE Max. obtained TTE 

Original Extended Original Extended 

TTE3


4 42.5 72.5 32.8 50.5 30.1 

TTE2


3 42.5 72.5 32.8 44.5 30.2 

TTE1


2 22.5 26.3 16.1 14.1 13.2 

 

As a second and more practical step, we investigated the TTE obtained in 

dynamic simulations of a four trophic level food chain using both the 

original and extended ATN version over a gradient of the top predator’s 

death rate constant d. In the extended ATN version, which accounts for 

activity and basal respiration separately, the maximum obtained TTE at 

trophic level 3 and 4 never exceeded the maximum feasible TTE (Fig. 2.2, 

Tab. 2.2, Eq. 2.10). In contrast, in the original ATN model the obtained 

TTE at trophic level 4 exceeded the maximum feasible TTE of 42.5% for d > 

0.0029 (Fig. 2.2, maximum observed value 50.5%). At trophic level 3, the 

TTE of the carnivores in the original ATN model exceeded the maximum 

feasible TTE for small values of d (d < 0.0006, Fig. 2.2). The consistently 

lower obtained TTE in the extended ATN version indicates that this model 

version represents the energy transfer towards the higher trophic level 

more realistically than the original ATN model. 

With an increasing death rate constant d of the top predator, its own as 

well as the herbivore’s obtained TTE increased, whereas the carnivore’s 

obtained TTE decreased (Fig. 2.2). This alternating pattern of increasing 

and decreasing obtained TTE with increasing d resulted from a trophic 

cascade: Higher values of d lowered the top predator’s biomass, which in 

turn lowered its total ingestion. Released from top-down control, the 

carnivore’s biomass and thus its ingestion increased. This pattern 
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propagated down to the herbivores and autotrophs. Since the TTE is a 

monotonously increasing function of the biomass on the respective lower 

trophic level (Eq. 2.11, Appendix A, Fig. A3), this alternating pattern of 

decreasing and increasing biomasses translates directly to the TTEs on the 

different trophic levels. 

 

Fig. 2.2: Trophic transfer efficiency (TTE) obtained in simulations (in percent, defined as 

the production ratio of upper vs. lower trophic level) of the top predator (top panel), 

carnivore (center) and herbivore (bottom) in the original (dashed lines) and extended 

(solid lines) ATN version for different top predator’s death rate constants d. Grey vertical 

lines indicate the position of the biomass pyramids provided in Fig. 2.3. The horizontal 

lines indicate the maximum feasible TTE (see Methods ‘Trophic transfer efficiency’, Tab. 

2.2) 
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The herbivore’s obtained TTE remained below the maximum feasible TTE 

of 22.5% (Eq. 2.10) in both model versions (Fig. 2.2). The reason is the 

nonlinear dependence of the autotroph’s production on its carrying capacity 

and its interaction with the nonlinear grazing function of the herbivore. 

When assuming a chain of three trophic levels where the carnivore as the 

highest trophic level experiences a quadratic death term, the herbivore was 

under strong top-down control and exceeded its maximum feasible TTE by 

up to a factor of 1.1 (Appendix A, Fig. A1, A2). 

 

Fig. 2.3: Comparison of the mean biomasses (bold numbers) within the food chain of the 

extended ATN version including activity respiration (a-c) and the original ATN model (d-

f), for different top predator’s death rate constants d = 0.0003 (a, d), d = 0.003 (b, e), and 

d = 0.03 (c, f). Arrows indicate production rates. Their width is scaled to autotroph’s 

production as 100%. Box widths are scaled with the species’ biomasses 
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Depending on the top predator’s death rate, the models exhibited different 

trophic cascade patterns. For small d (0.0003), the herbivore and the top 

predator accumulated high biomasses resulting in a top-heavy trophic 

cascade (Fig. 2.3a, d). For larger d (0.0030), the biomasses resembled 

roughly a column (Fig. 2.3b, e) and for higher d, a bottom-heavy trophic 

cascade occurred (Fig. 2.3c, f). 

 

Fig. 2.4: Comparison of the energy transfer within the food chain of the extended ATN 

version including activity respiration (a), and the original ATN model (b). The biomass 

pyramids are based on the same data as Fig. 2.3c and 2.3f, i.e. d= 0.03. Included values 

are basal and activity respiration (numbers on the left, activity above basal respiration), 

production (numbers in the middle to the left of the upward arrows), trophic transfer 

efficiency (bold large numbers), and excretion (numbers above the right arrows). All 

fluxes are standardized to autotroph’s production as 100%, so that wider arrows indicate 

larger values.  Box widths are scaled with the species’ biomasses. Red values point out 

inconsistencies with the physiological considerations that respiration is equal to or less 

than production (Humphreys 1979) 

To further elucidate the reason for the inconsistencies between the 

obtained TTE of the original ATN model and physiological considerations 

and realistic estimates, we 38urcate38 the carbon fluxes in the bottom-

heavy trophic cascade (Fig. 2.3c, f) in more detail (Fig. 2.4, Tab. 2.3). The 

alternating biomasses indicate where the inconsistencies are most obvious. 

In the original ATN model, the top predator’s respiration was small 

compared to its ingestion, resulting in a large production per ingested unit 

of carbon (Tab. 2.3). This led to a production being 33% higher than the 
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respiration (Fig. 2.4b) and an obtained TTE of 50% (Fig. 2.4b, Tab. 2.3). In 

contrast, in the extended ATN version the respiration per ingested unit of 

carbon was higher due to the activity respiration, which resulted in a lower 

production and an obtained TTE of 30% (Fig. 2.4a). 

In the original ATN model, respiration per ingestion and production per 

ingestion varied considerably more between trophic levels than in the 

extended ATN version. This was due to the overemphasis of basal 

respiration and neglecting of the activity respiration: Only a high biomass 

(here, of the carnivore) resulted in respiration losses of substantially more 

than 50% of the assimilation and thus, a realistic TTE in the original ATN 

model. In the extended ATN version, respiration per ingestion and 

production per ingestion did not vary that much across trophic levels even 

in the presence of a strong trophic cascade because respiration is not solely 

coupled to the standing biomass stock, but also to the assimilation. As low 

biomasses are connected with high per capita rates in the ATN models, a 

low biomass-related basal respiration is counteracted by high activity 

respiration and vice versa. 

Tab. 2.3: Respiration to ingestion ratio (R/I) and production to ingestion ratio (P/I ≜ 

obtained TTE since non-grazing mortality was not included in the ATN model for the 1st 

– 3rd trophic level, thus the production of the trophic level below is ingested entirely, see 

‘ATN model equations’) for both the original (orig.) and extended (ext.) ATN version with 

the top predator’s death rate constant d = 0.03. Autotrophic respiration is already 

included in the growth rate and therefore not listed here. Values were calculated from 

the biomass, respiration and production values shown in Fig 2.3f and Fig. 2.4b for the 

original ATN model, and in Fig. 2.3c and Fig. 2.4a for the extended ATN version, 

respectively. 

 

R/I P/I ≜ TTE 

orig ext orig ext 

Top 

predator 
35% 55% 50% 30% 

Carnivore 79% 72% 6% 12% 

Herbivore 31% 32% 14% 13% 
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Discussion 

Allometric trophic network models (ATN) are an important tool to 40urcate 

dynamics of food webs (Boit et al. 2012; Hudson and Reuman 2013; 

Schuwirth and Reichert 2013; Kuparinen et al. 2016) and their diversity 

and stability (Brose et al. 2006; Rall et al. 2008; Berlow et al. 2009; 

Heckmann et al. 2012). Despite their frequent use, the ATN’s energetics 

were not yet explicitly addressed, though they decisively influence dynamic 

patterns of the model (Boit et al. 2012). Here, we compared the energetics 

of the original ATN model (Yodzis and Innes 1992; Brose et al. 2006) which 

considers only basal respiration, and an extended ATN version (Boit et al. 

2012) including both basal and activity respiration. We found that the 

trophic transfer efficiency (TTE) could become unrealistically high in the 

original ATN model in both static calculations and dynamic simulations, 

whereas it always fell into a physiologically and ecologically realistic range 

in the extended ATN version. The reason for the more realistic energy 

transfer is the inclusion of the activity respiration that depends on the 

amount of assimilated carbon in the extended ATN version.  

The threshold above which we consider a TTE unrealistically high was set 

very conservatively and follows from the assumption that the energy 

allocated to production can at most be equal to respiration (Humphreys 

1979). This yields a maximum feasible TTE of 22.5% for herbivores and 

42.5% for carnivores (Eq. 2.10). These upper theoretical limits are usually 

not reached in natural communities even when dominated by unicellular 

organisms or invertebrates, except when a trophic level is under high 

predation pressure. Empirically established maximum TTE range between 

13% and around 30% for both herbivores and carnivores from pelagic 

systems and including small to large fish (Straile 1997; Jennings et al. 

2002; Barnes et al. 2010). The extended ATN version reflects these natural 

energetic constraints well by keeping the obtained TTE in a realistic range 

up to 30% (cf. Fig. 2.2). In contrast, the original ATN model led to an 

obtained TTE up to 51% (cf. Fig 2.2) which overestimates the empirical 

values of at most 30% by a factor of 1.7. 

The metabolic theory of ecology does not differentiate between basal 

respiration proportional to the standing biomass stock and activity 

respiration (Brown et al. 2004). Brown et al. (2004) stated that the 
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metabolic rate generally depends only on biomass and that the field 

metabolic rate, analog to our activity respiration, is a “fairly constant 

multiple of the basal rate” and therefore also depends only on the biomass. 

A similar assumption also served as basis for the ATN models accounting 

only for basal respiration proportional to the biomass. This assumption is 

reasonable if resource levels are fairly constant, however, biomasses and 

ingestion rates vary in nature and dynamic models and so does, ultimately, 

also the TTE (Appendix A, Fig. A3).  

The different patterns of trophic cascades illustrate the problematic 

consequences of linking respiration only to biomass. The amount of top-

down control exerted by the top predator or the carnivore and thus the 

strength of the trophic cascade were modulated by the death rate constant 

d. For small d, the top predator had a high biomass and controlled the 

carnivore. The carnivore’s obtained TTE then became unrealistically high 

in the original ATN model, and the food web became (too) top heavy. The 

link between a high TTE and top heavy food webs is also described in a 

review of 23 food webs (McCauley et al. 2018). For intermediate d, the 

biomasses were approximately equally distributed across different trophic 

levels which is in line with the flat biomass distribution established for 

pelagic systems (Gaedke 1992). For higher d, the top predator was top-

down controlled by its death rate and released the carnivore from grazing 

pressure, but in this case the top predator’s obtained TTE became 

unrealistically high. In any case, the obtained TTE was too high at one 

particular trophic level within a pronounced trophic cascade because the 

top-down controlled trophic levels had a low biomass and thus a low basal 

respiration. Thus, the assumption of Brown et al. (2004) that activity 

respiration and field metabolic rate are proportional to a standing biomass 

stock only holds for equally distributed biomasses, but not for unequally 

distributed biomasses in trophic cascades. 

The link between activity respiration and ingestion as we introduced it 

here to the ATN model allows for a more flexible reaction to dynamic 

instead of constant biomasses. This is important when modelling large food 

webs with rapidly changing dynamics such as pelagic systems. ATN and 

other food web models are known to form trophic cascades (Carpenter et al. 

2016) which are observed in many ecosystems (Carpenter et al. 1985; Pace 
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et al. 1999; Shurin et al. 2002) and, as we showed here, strongly affects the 

TTE. Other ATN models dampened the trophic cascades with mechanism 

such as predator interference or type III functional response which 

obfuscates this underlying energetic problem to some extent (Rall et al. 

2008). However, they do not solve it, as the model inherent TTE is 

independent of these mechanisms. The ATN approach has also been used 

to parameterize large-scale ecosystem models such as the Madingley model 

(Harfoot et al. 2014). In this model, neglecting activity respiration seems to 

have contributed to unrealistically top heavy biomass distributions as well, 

underlining the importance of more accurate assumptions regarding basic 

energetic processes than the original ATN provides. The pronounced 

trophic cascades as seen in our study are due to the structurally simplistic 

food chain and would be dampened in natural systems, e.g. by a higher 

trophic connectance via omnivory. 

Other models, like Rosenzweig-MacArthur-type predator-prey-models 

(Rosenzweig and MacArthur 1963; Weitz and Levin 2006) incorporate 

respiration losses only by a constant factor named conversion efficiency 

related to ingestion and production, thus this type of model only accounts 

for (what we call here) activity respiration. Basal respiration may be 

implicitly considered in a death rate proportional to the biomass. Anderson 

(1992) pointed out the difference between basal and activity respiration 

especially for unicellular organisms and invertebrates whose activity 

respiration exceeds the basal respiration as they are poikilotherms with 

low maintenance costs when inactive. In our extended ATN version, we 

combined both respiration rates and implemented these ideas by 

introducing the factor fa in the formulation of assimilation (cf. Eq. 2.8, 

Methods, Fig. 2.1), thereby making activity respiration proportional to the 

amount of assimilated carbon.  

Following Boit et al. (2012), we set the parameter fa = 0.4 for all consumers 

assuming that respiration is slightly larger than production (Humphreys 

1979). Although this conservative estimate satisfies fundamental energetic 

constraints, a more differentiated picture may emerge when defining a 

more empirically grounded value range for fa for different taxa. In the same 

way, the parameter fm = 0.1 (following Boit et al. (2012)) may be adapted to 

fit different taxa. As a recent meta-analysis reveals that the differences in 
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respiration rates between taxonomic groups are not only due to consumer 

type (e.g. herbivore or carnivore) (Lang et al. 2017), future research could 

aim to entangle the influences of taxonomic group, activity, and food 

availability on respiration rates. Until then due to the scarcity of 

experimental data on activity vs. basal respiration rates of invertebrates, 

the parameterization of fa and fm in a specific food web context remains a 

challenge for future modelling studies with ATNs. 

The complexity of the model did not increase from a mathematical point of 

view even though we introduced two additional parameters (fa and fm) in 

the extended ATN version. The number of effective parameters that 

independently determine model dynamics is the same in the original and 

the extended ATN version. This becomes obvious when we introduce new 

parameters for the extended ATN model: eprod,i = eifa as the production 

efficiency (equivalent to ei in the original model) and xb,i = fmxi (equivalent 

to xi in the original model) as the per capita basal metabolic rate. When 

aiming for a concise mathematical description of the model, we recommend 

to use these effective parameters. Here, however, we chose not to do so in 

order to emphasize the underlying biological processes. In the same vein, 

we argue that we do not merely propose to use different values for some 

parameters of the ATN model, but stress the conceptual advancement of 

the ATN model by clearly distinguishing between basal and activity 

respiration, which is essential for improving quantitative predictions about 

ecosystem energetics. 

To conclude, basal and activity respiration depend on different processes 

and should both be considered explicitly in models covering metabolic 

processes. Including activity respiration in the ATN model lowers the 

obtained TTE to realistic values in comparison to empirically derived 

values. Especially for food webs mainly based on unicellular organisms and 

invertebrates or modelling ecosystems prone to trophic cascading, we 

recommend using the extended ATN version to achieve more realistic 

energetics. Far more than a mere modelling fix, reflecting the energy flux 

through food webs in a realistic way is indispensable for upscaling and 

integrating smaller modules to larger community networks or even large-

scale ecosystem models. ATN models will then be ready for quantitatively 
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linking trophic interactions in biodiverse communities to ecosystem-level 

biomass dynamics and biogeochemical cycling. 
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Abstract 

Theory predicts that trade-offs, quantifying costs of functional trait 

adjustments, crucially affect community trait adaption to altered 

environmental conditions, but empirical verification is scarce. We 

evaluated trait dynamics (anti-predator defense, maximum growth rate 

and phosphate affinity) of a lake phytoplankton community in a seasonally 

changing environment, using literature trait data and 21 years of species-

resolved high-frequency biomass measurements. The trait data indicated a 

concave defense-growth trade-off, promoting fast-growing species with 

intermediate defense. With seasonally increasing grazing pressure, the 

community shifted towards higher defense levels at the cost of lower 

growth rates along the trade-off curve, while phosphate affinity explained 

some deviations from it. We discuss how low fitness differences of species, 

inferred from model simulations, in concert with stabilizing mechanisms, 

e.g. arising from further trait dimensions, may lead to the observed 

phytoplankton diversity. In conclusion, quantifying trade-offs is key for 

predictions of community trait adaptation and biodiversity under 

environmental change. 
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Introduction 

Identifying trade-offs between functional traits of species is central to 

ecology because it provides a fundamental basis to understand species 

coexistence and the trait composition of natural communities(1). Trade-offs 

emerge through physiological, energetic, behavioural, genetic or resource 

allocation constraints(2) and can be detected within one species(3,4) as well 

as on the community level among different species sharing similar 

individual-level constraints(5,6). Such interspecific trade-offs promote 

species diversity and guide the way of community trait changes under 

altered environmental conditions(7,8). 

Box 3.1: Theory on trade-off curves, fitness landscapes, survival of species and trait 

dynamics. 

The survival of species and the trait dynamics within a community depend 

on the species trade-offs between functional traits, quantifying the costs of 

trait adjustments, and the environmental conditions that determine the 

fitness landscape. The trade-off curve is defined as the boundary of the set 

of feasible trait combinations, representing all possible phenotypes of 

species (Fig. 3.1)(60). The trade-off curve is fixed by individual-level 

constraints (e.g. energetic or physiological constraints) and may have 

different shapes (e.g. concave or convex, Fig. 3.1), reflecting different costs 

of trait adjustments.  

Species fitness is defined as the net per capita growth rate(61). The fitness 

landscape within a two-dimensional trait space can be represented by 

fitness isoclines (Fig. 3.1)(62), connecting trait combinations of equal fitness. 

The slope of these fitness isoclines depends on the abiotic and biotic 

environmental conditions (e.g. grazing pressure, Fig. 3.1). Trait 

combinations along the trade-off curve reaching the highest fitness value 

represent fitness maxima (Fig. 3.1). Species with these trait combinations 

are positively selected and survive in the long term. Species itself can 

change the fitness landscape in a way favourable for species with other 

strategies/niches (a stabilizing mechanism), e.g. high densities of fast-

growing, undefended species lead to increased predator abundance 

favouring defended species (and vice versa). In the sense of Chesson’s 

coexistence theory(36), such stabilizing mechanisms may level out fitness 

differences between species and allow for their stable coexistence. 
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Given linear fitness isoclines, implying linear trait-fitness relationships(14), 

theory predicts that concave trade-offs favour species with intermediate 

trait combinations (Fig. 3.1a-c), while convex trade-offs promote species 

with extreme trait combinations (Fig. 3.1d-f). Under directionally changing 

environmental conditions, the fitness maximum moves continuously along 

a concave trade-off curve driving continued sorting of many different 

species, which results in changes of the community trait composition. For 

example, an increasing grazing pressure (e.g. due to a lower mortality of 

grazers) promotes species with higher defense values at the cost of a 

decreasing maximum growth rate (Fig. 3.1a-c). In contrast, for convex 

trade-off curves, fitness is always maximal for only one or two of the 

extreme trait combinations depending on the environmental conditions 

(Fig. 3.1d-f). 

 

Theory indicates that it is the shape of the trade-off curve between two 

traits, reflecting costs of trait adjustments, which determines species 

coexistence and how trait values change in response to environmental 

forcing(9–11). We summarize the theory and specify predictions in Box 3.1 

and Fig. 3.1. While theory revealing the importance of the shape of the 

trade-off curve for coexistence and trait dynamics is well developed(12–14), 

its empirical verification has been left far behind. Two studies successfully 

tested the theory in small-scale lab experiments assembling different 

bacterial strains(15,16). However, respective approaches from the field are 

lacking, leaving open the question how the trade-off shape affects the trait 

composition of natural communities. In this article, we combine theory and 

long-term field data to provide evidence for the frequently postulated 

defense-growth trade-off and to show how its shape affects seasonal trait 

dynamics of phytoplankton in a large European lake. 
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Fig. 3.1: The shape of the trade-off curve in concert with the environment determines the 

strategies of maximal fitness in a community. Our example considers a trade-off between 

defense and maximum growth rate (d-1) in a prey community with grazing pressure as a 

biotic environmental factor. The trade-off curve (thick solid line) represents the 

boundary of the set of feasible trait combinations (grey area) and may be, for example, 

(a-c) concave or (d-f) convex. The fitness landscape is shaped by the grazing pressure 

(low, intermediate or high), resulting in different slopes of the fitness isoclines (dashed 

lines). The trait combinations reaching the highest fitness isocline are fitness maxima 

(dots) and are positively selected. If two or more trait combinations are of maximal 

fitness in the long term, the respective species with these trait combinations coexist I, 

otherwise only one species survives (a-d, f). 

Phytoplankton communities are well-suited for addressing this issue as 

important functional traits of phytoplankton have been measured in the 

lab revealing key trade-offs(17,18). Phytoplankton communities are 

extremely diverse spanning a large trait space(19,20) indicating that trade-

offs play a decisive role in maintaining their biodiversity, although the 

number of limiting factors allowing for niche differentiation seem to be low 

compared to the high number of coexisting species (known as Hutchinson’s 

‘Paradox of the Plankton’(21)). Furthermore, phytoplankton species have 

short generation times allowing for pronounced seasonal succession(22). 
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This offers the opportunity to observe species sorting in response to 

recurrently changing environmental conditions driving community trait 

dynamics. 

 

Fig. 3.2: Seasonal dynamics of a) abiotic factors, b) total biomasses of phytoplankton 

(Phy) and herbivorous zooplankton comprising ciliates, rotifers and herbivorous 

crustaceans (Zoo), and c, d) phytoplankton community average trait values (maximum 

growth rate 𝑟̅, defense 𝛿̅ and phosphate affinity 𝑃̅) in a standardized year. A) The vertical 

mixing intensity quantifies the relative amount of phytoplankton exported from the 

euphotic zone (0-20 m) to larger depths (20-100 m). The carbon to phosphorous (mass) 

ratio of phytoplankton, C:P Phy, indicates the degree of nutrient depletion (dashed line 

marks the Redfield ratio). B-d) Interannual medians (lines) and interquartile ranges 

(shaded areas) are shown for the biomasses and the community average trait values. 

CWP denotes the clear-water phase. For methodical details see the methods and 

Appendix B1. 
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Previous trait-based studies on phytoplankton communities already 

quantified trade-offs among different resource utilization traits(5) and 

revealed how the trait composition of phytoplankton communities in 

different lakes and a marine system depended on light and nutrient 

conditions(23–26). However, phytoplankton can also be strongly affected by 

herbivory selecting for phytoplankton defense, which was not considered in 

these studies but is likely to have a crucial effect on their seasonal trait 

dynamics(22). Defense against predation often comes at a physiological 

cost(18), like a lower maximum growth rate(27,28) or a lower competitive 

ability(3). Competitive ability is used here in the sense of Tilman(6): a high 

competitive ability refers to a low equilibrium resource concentration in 

monoculture (R*), where growth equals mortality. Hence, the competitive 

ability of a species is defined by its resource uptake affinity, but may also 

depend on its maximum growth rate, especially at high rates of 

background mortality. Trade-offs between defense and competitive ability 

or maximum growth rate can mediate antagonistic effects of top-down and 

bottom-up control on the trait composition. A large body of theory assumes 

such trade-offs between defense and maximum growth rate(29,30) or between 

defense and competitive ability(31,32). However, there is no study that 

empirically quantifies the shape of these trade-offs and uses this 

information in combination with theoretical insights on trade-off curves 

(see Box 3.1 and Fig. 3.1) to explain how predation and abiotic conditions 

drive the trait dynamics and variation of natural communities. 

Here, we use 21 years of high-frequency density measurements of a 

natural lake phytoplankton community (large, deep, mesotrophic Lake 

Constance) and literature trait data (defense against predation, maximum 

growth rate and phosphate affinity) in order to identify how potential 

interspecific trade-offs govern the community trait dynamics under 

seasonally changing environmental conditions. In the studied lake, 

zooplankton grazing, vertical mixing and phosphate depletion are 

important limiting factors of phytoplankton(33,34), which all undergo a 

highly repetitive seasonal succession (Fig. 3.2a,b). As for the 

environmental factors, we found distinct seasonal dynamics in the 

community average values of defense and maximum growth rate, but not 

for phosphate affinity (Fig. 3.2c,d). The phytoplankton trait values were 
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taken from Bruggeman, who obtained the trait values from a statistical 

model fed with lab trait measurements, phylogenetic and allometric 

relationships(35). From this data set, we could infer a distinct concave 

trade-off between defense and maximum growth rate for the Lake 

Constance phytoplankton community. Phosphate affinity showed no strong 

relationships to these traits, but we found slight evidence for a 

multidimensional trade-off. We parameterized a phytoplankton model with 

the observed concave defense-growth trade-off, which reproduces the 

seasonal shift in the biomass-trait distribution within the trait space. For 

comparison, we parameterized the model also with a hypothetical convex 

trade-off, which fails in reproducing the observed pattern. This reveals the 

importance of knowing the exact trade-off shape for understanding trait 

dynamics. Furthermore, in reference to modern coexistence theory(36), we 

discuss how low fitness differences of species found along the trade-off 

curve can promote the maintenance of the large diversity in this 

community, when taking into account stabilizing mechanisms arising from 

further trait dimensions and environmental fluctuations. 

Material and methods 

Study site and sampling 

Upper Lake Constance (Bodensee) is a large (472 km²), deep (mean depth = 

101 m), warm-monomictic, mesotrophic lake bordered by Germany, 

Switzerland and Austria. It has a well-mixed epilimnion and a large 

pelagic zone(37). Lake Constance underwent re-oligotrophication during 

which the total phosphorous concentration declined 4-fold from 1979 to 

1996 leading to an annual phytoplankton biomass and production decline 

by 50% and 25 %, respectively(34). The re-oligotrophication did not 

qualitatively affect the biomass-trait distribution in respect to defense and 

maximum growth rate (Fig. B5, Appendix B3) and had little impact on 

phosphate affinity (Fig. 3.2d, Fig. B6). Thus, it is not further considered. 

Plankton sampling was conducted weekly during the growing season and 

approximately fortnightly in winter, culminating in a time series of 853 

phytoplankton biomass measurements from 1979 to 1999 (for details see 

Appendix B1 and https://fred.igb-berlin.de/Lakebase). Phytoplankton 

counts and cell volume estimates were obtained using Utermöhl(38) 
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inverted microscopy and were converted into biomass based on a specific 

carbon to volume relationship(39). Measurements were taken from the 

uppermost water layer between 0 and 20 m depth, which roughly 

corresponds to the epilimnion and the euphotic zone. We aggregated 

almost all species into 36 morphotypes of phytoplankton comprising 

individual species or higher taxonomic units that are functionally identical 

or very similar under the functional classification employed here. This 

guaranteed a consistent resolution of phytoplankton counts across years 

and neglects species which were very irregularly encountered. The 

morphotypes constitute a mean value of 92% and a median value of 96% of 

total phytoplankton biomass on annual average, with particularly high 

values from spring to summer. Most of the neglected biomass originates 

from heterotrophs as Gymnodinium spp. And Ochromonas spp. Not 

belonging to the phytoplankton sensu strictu. Zooplankton was sampled 

with the same frequency as phytoplankton. Data for all major herbivorous 

zooplankton groups (ciliates, rotifers, cladocerans and calanoid copepods) 

were simultaneously available from 1987 to 1996. 

Seasonal patterns 

We subdivided the year into seven consecutive phases: late winter, early 

spring, late spring, clear-water phase (CWP), summer, autumn and early 

winter. Each phase was characterized by a well-defined combination of 

abiotic and biotic factors driving the phytoplankton community (Fig. 3.2): 

Strong vertical mixing implying a high phytoplankton net export from the 

euphotic zone (0-20 m) to deep water layers (20-100 m) occurred during 

winter and partly early spring (Appendix B1). Grazing pressure was most 

important during the CWP and summer, and declined towards autumn. 

Nutrient depletion was most relevant in summer and autumn when 

vertical mixing, supplying nutrients from larger depths, was absent. 

Trait data and trade-offs 

All trait values were consistently taken from Bruggeman(35). He compiled 

lab-measurements of traits from the literature for numerous taxa and 

derived from allometric and phylogenetic relationships a statistical model 

comprising trait values for these and other taxa. For consistency, we used 

only the values of this model. We defined defense δ as 1 – edibility. 
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Bruggeman(35) defined edibility as the rate of prey consumption relative to 

the rate at which the most commonly reported prey, Rhodomonas minuta, 

was consumed by Daphnia, which were both dominant prey and grazers in 

Lake Constance. Daphnia dominated the herbivorous crustaceans from the 

CWP until autumn(40), and its feeding preferences largely overlap with the 

other herbivorous groups: The highly diverse ciliate and rotifer 

communities mainly graze on small, undefended algae, but some 

specialized species consume also larger morphotypes, which were classified 

as more defended by Bruggeman(41,42). The only calanoid copepod, 

Eudiaptomus, shows also large overlap with the prey spectrum of 

Daphnia(43). Regarding the phytoplankton taxa considered in our study, 

93% of the edibility measurements originated from lab cultures of 

phytoplankton strains from Lake Constance sampled during the first part 

of our study period(44). Thus, we consider the edibility values of 

Bruggeman(35) to be fairly representative for the grazer community in Lake 

Constance. Phosphate affinity was defined as maximum growth rate 

divided by the half-saturation coefficient for phosphate, standardized to 

continuous illumination and a temperature of 20°C. All morphotypes, their 

assigned trait data and taxonomy are listed in Tab. B1. To detect a 

potential trade-off, we tested the relationship between traits using the 

Spearman rank correlation coefficients (not biomass weighted). 

Model 

We developed a simple food web model to show which phytoplankton trait 

combinations are favored under low (e.g., during early spring) and high 

grazing pressure (e.g., during summer). The model included 𝑁 

phytoplankton species, which face a defense-growth trade-off, and one 

zooplankton group: 

𝑑𝑃𝑖

𝑑𝑡
= (𝑟𝑖

𝑅

𝐾+𝑅
−

𝐺 (1−𝛿𝑖) 𝑍

𝐻+ ∑ 𝑃𝑖
𝑁
𝑖=1

− 𝑚𝑃) 𝑃𝑖   (3.1) 

𝑑𝑍

𝑑𝑡
= (𝜀 

𝐺 ∑ [(1 − 𝛿𝑖)𝑃𝑖]𝑁
𝑖=1  

𝐻 +  ∑ 𝑃𝑖
𝑁
𝑖=1

− 𝑚𝑧) 𝑍                             

where 𝑃𝑖 represents the biomass of phytoplankton species 𝑖, 𝑍 the 

zooplankton biomass and 𝑅 the nutrient concentration limiting 

phytoplankton growth. Assuming a fixed nutrient pool 𝑅𝑚𝑎𝑥, the available 
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nutrient concentration can be written as 𝑅 = 𝑅𝑚𝑎𝑥 − ∑ 𝑃𝑖
𝑁
𝑖=1 −

1

𝜀
𝑍, i.e. the 

total amount of nutrients minus the nutrients fixed in biomass of 

phytoplankton and zooplankton(45). Note that the nutrients are in units of 

phytoplankton biomass. 𝑟𝑖 denotes the maximum growth rate of 

phytoplankton species 𝑖, 𝛿𝑖 its defense against zooplankton, 𝐾 the half-

saturation constant for nutrient uptake (determined by its nutrient 

affinity), and 𝑚𝑃 the natural mortality of phytoplankton. The latter two are 

assumed to be equal for all phytoplankton species. 𝐺 represents the 

maximum grazing rate of zooplankton, 𝐻 the half-saturation constant of 

zooplankton for phytoplankton ingestion, 𝜀 the conversion efficiency of 

phytoplankton biomass into zooplankton biomass and 𝑚𝑧 the mortality of 

zooplankton (for a detailed parameter description see Appendix B4). By 

changing 𝑚𝑧, we vary the importance of grazing pressure on 

phytoplankton. We run simulations for two different scenarios with 

constant conditions, i.e. without periodical forcing: 1. 𝑚𝑧 is high, and 2. 𝑚𝑧 

is low, mimicking distinct seasonal phases of low (1.) and high grazing 

pressure (2.). From these simulations, we obtain the dominant trait 

combinations for each phase and the time to extinction of inferior species 

as a fitness estimate. We assume a concave trade-off curve between 𝑟𝑖 and 

𝛿𝑖, similar to the one found in the empirical data (Fig. 3.3), and considered 

199 different phytoplankton species with trait values spanning the whole 

feasible trait space. For details on the justification, parametrization, 

initialization and numerical integration of the model see Appendix B4. 

Results 

The results section is divided into four parts: First, we present insights 

into seasonal dynamics of abiotic conditions, total phyto- and zooplankton 

biomasses and phytoplankton community average trait values, defined as 

the biomass-weighted mean of the trait values of all morphotypes. For 

these total biomasses and community average trait values, we show the 

interannual medians and the corresponding interquartile ranges at each 

standardized sampling date in order to provide information on interannual 

variability. Secondly, we reveal insights on the trade-offs obtained from 

trait data for the phytoplankton morphotypes encountered in Lake 

Constance and the mean annual biomass-trait distribution. Thirdly, we 

show how the biomass-trait distribution changes seasonally in response to 
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altered environmental conditions. Finally, we compare the observed 

patterns with our model predictions. 

Seasonal dynamics 

Abiotic factors and phyto- and zooplankton biomasses showed seasonal 

patterns typical for a temperate, monomictic lake with winter mixing and 

phytoplankton spring and summer blooms, the latter under nutrient 

depletion, and in between the clear-water phase (CWP) when zooplankton 

biomass comprising ciliates, rotifers, cladocerans and calanoid copepods 

was maximal (Fig. 3.2a,b). Also the phytoplankton community average 

values of defense 𝛿̅ and maximum growth rate 𝑟̅ exhibited a distinct 

seasonality (Fig. 3.2c). 𝛿̅ was low in late winter and spring with relatively 

large differences among years. At the end of the CWP, it increased sharply, 

reached its maximum in summer and declined slowly thereafter. The low 

interannual variation during this period suggests a high selection pressure 

on this trait. 𝑟̅ exhibited the opposite seasonal trend. It was high in late 

winter and spring and declined sharply during the CWP with a low 

interannual variability (Fig. 3.2c). In summer, 𝑟̅ was low and more variable 

among years and re-increased thereafter. In contrast, the community 

average phosphate affinity 𝑃̅ did not show such a clear and recurrent 

seasonal pattern (Fig. 3.2d). The fluctuations of 𝑃̅ were small compared to 

the large trait range (3 -1600 𝑑−1µ𝑚𝑜𝑙−1𝐿). 

Trade-offs  

The 36 dominant morphotypes co-occurring in large, deep Lake Constance 

covered a large range of values in defense δ and maximum growth rate r 

(Fig. 3.3a). In general, a low value in δ was accompanied by a high value in 

r, and vice versa (Spearman rank correlation coefficient ρ = -0.61, p = 10⁻4). 

We found no morphotype that maximizes both δ and r simultaneously, 

suggesting a physiological or energetic constraint. Morphotypes with low 

values in both traits, resulting in low fitness, were not found either, 

indicating past competitive exclusion. Many morphotypes had an 

intermediate δ and high r or vice versa implying a concave trade-off curve. 

At distinct defense levels, diatoms and chlorophytes had generally higher 

maximum growth rates than the other morphotypes suggesting that other 

trait dimensions may play a role as well. 
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Fig. 3.3: Defense 𝛿 and maximum growth rate r (𝑑−1) of the 36 most abundant 

phytoplankton morphotypes in Lake Constance. (a) Numbers specifiy the morphotypes 

(see Tab. B1 for further details). The dashed line represents the modelled trade-off curve, 

used for the numerical simulations presented in Fig. 3.5a, b. Colors indicate different 

taxonomic groups, i.e., 58urcate58yte, cryptomonads, chrysophytes, haptophytes, 

cyanobacteria, diatoms and dinophytes. (b) Colors indicate a third trait dimension, 

phosphate affinity (𝑑−1µ𝑚𝑜𝑙−1𝐿), and the area of the circles is scaled by the mean annual 

relative biomass of the morphotypes.  

Mean annual biomass-trait distribution 

The mean annual biomass distribution in the δ-r trait space is obtained by 

weighting the morphotypes with their relative contribution to the total 

annual phytoplankton biomass (Fig. 3.3b). As expected by theory, the 
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biomass was concentrated along the trade-off curve (i.e. for a given value of 

δ, morphotypes with a higher r dominated over those with lower r) and at 

intermediate δ and rather high r with some remarkable exceptions. A 

morphotype at one end of the trade-off curve, exhibiting the lowest δ, 

Rhodomonas ssp. (#29, cf. Fig 3.3a and Tab. B1), constituted the highest 

annual share of biomass of an individual morphotype and occurred in 

almost every sample although its r did not exceed the values of some more 

defended morphotypes. Among others (for more details, see discussion), its 

success may be attributable to its very favourable value along a third trait 

dimension, phosphate affinity (Fig. 3.3b). We found also substantial 

biomass at the other end of the δ-r trade-off curve mostly due to a strongly 

defended morphotype with a very low growth rate, Ceratium hirundinella 

(#4), which had the highest phosphate affinity of all morphotypes. This 

pattern can be generalized, as mostly morphotypes with trait combinations 

further away from the trade-off curve showed higher values in phosphate 

affinity indicating that fitness losses due to lower δ or r may be 

counteracted by higher phosphate affinity (Fig. 3.3b). For example, a group 

of diatoms (Asterionella 59urcate (#2), Fragilaria crotonensis (#18), 

Stephanodiscus neoastreae (#33), Stephanodiscus ssp. (#34)) and the 

chlorophyte Cyclotella ssp. (#12), forming the upper part of the concave δ-r 

trade-off curve, grew fast relative to their rather high level of δ, but had 

only low to intermediate phosphate affinity. An exception to that was 

Cryptomonas ssp. (#11) which had intermediate values for all traits but 

the second highest mean annual relative biomass of all morphotypes (for 

further trait dimensions, see discussion). Overall, the δ-r trade-off was 

much more clearly expressed than the relationship between P and δ or r, 

respectively (Fig. B2), but we found some indication for a three-way trade-

off among δ, r and P, whereby the trade-off between δ and r dominated 

(Online Movie). 

Seasonal dynamics of the biomass-trait distribution 

The biomass distribution within the δ–r trait space varied systematically 

during the season (Fig. 3.4, Fig. B4) in line with pronounced changes of the 

major forcing factors of phytoplankton development (Fig. 3.2). For example, 

in early spring, intensive vertical mixing (resulting in a high export of 

phytoplankton from the euphotic zone to larger depth) was a dominant 
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driver of the phytoplankton community in deep Lake Constance, while 

grazing pressure and nutrient depletion were very low (Fig. 3.2a,b). 

Accordingly, morphotypes with high r being able to compensate for high 

losses and to exploit the high nutrient concentrations dominated, whereas 

morphotypes with low r and high 𝛿 were almost absent (Fig. 3.4a). This is 

reflected in the seasonal phase means of the community average trait 

values, 𝛿̅ = 0.52 and 𝑟̅ = 1.57 𝑑−1. In contrast during summer stratification, 

nutrient depletion and grazing pressure were the dominant drivers of 

phytoplankton (Fig. 3.2a,b) and the biomass-trait distribution shifted 

towards morphotypes with intermediate or high δ and accordingly lower r 

(Fig. 3.4b, 𝛿̅ = 0.69, 𝑟̅ = 1.18 𝑑−1) (for other seasonal phases see Fig. B4).  

 

Fig. 3.4: Positions in the trait space of defense 𝛿 and maximum growth rate r (𝑑−1) of the 

36 most abundant phytoplankton morphotypes in Lake Constance for a) early spring and 

b) summer. Colors indicate the morphotypes’ phosphate affinity (𝑑−1µ𝑚𝑜𝑙−1𝐿) and the 

area of the circles the mean relative biomasses. The bars display the relative biomass 

distribution along the two trait axes in each phase. The red lines in the bar plots mark 

the phase mean of the community average trait values and the black lines display the 

annual mean of the community average trait values as a reference (𝛿̅ = 0.61, 𝑟̅ = 1.33). 

The icons represent the dominant drivers of the phytoplankton community (vertical 

mixing, phosphate depletion, grazing by herbivores) and their size indicates their 

relative importance for phytoplankton net growth in each phase.  
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Model results 

A phytoplankton species model, parametrized with the empircally 

established concave trade-off (Fig. 3.3a, dashed line), reproduced the 

general pattern in the data, that is, the favorable trait combinations shift 

from early spring (low grazing pressure) to summer (high grazing pressure) 

towards higher 𝛿𝑖 at the cost of a lower 𝑟𝑖 (Fig. 3.4; 3.5a,b). For the given 

concave trade-off curve and set of trait combinations, the model predicted 

that two very similar species with intermediate 𝛿𝑖 but high 𝑟𝑖 coexist in the 

long-term under low grazing pressure (Fig. 3.5a). Under high grazing 

pressure, the long-term outcome of the model was the survival of one 

species with a high 𝛿𝑖 but intermediate 𝑟𝑖 (Fig. 3.5b, for biomass dynamics 

see Fig. B7). When considering the short-term results of the model being 

more in line with the time scale relevant for the data of the different 

seasons, we found that many species survived along the concave trade-off 

curve (especially close to the fitness maximum) the first 50 to 100 days 

(Fig. 3.5a,b), in accordance with the observations (Fig. 3.4). This holds in 

particular under low grazing pressure (Fig. 3.5a). Overall, the time until 

extinction was shorter under high grazing pressure due to the high 

mortality caused by abundant grazers (Fig. 3.5a,b). In general, the rate of 

extinction increased (i. e. fitness decreased) towards the unfavourable edge 

of the trait space (low 𝛿𝑖, low 𝑟𝑖), where the slope of the fitness isoclines 

depended on the degree of grazing pressure (cf. Fig. 3.1, Fig. 3.5a,b). Under 

high grazing pressure, fitness increased more strongly in the direction of 

the defense axis than under low grazing pressure (cf. Fig. 3.1, see color 

gradient in Fig. 3.5a,b). 
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Fig. 3.5: Model predictions for (a, b) a concave or (c, d) a convex trade-off curve between 

defense 𝛿𝑖  and maximum growth rate 𝑟𝑖 (black line) in the scenario of low grazing 

pressure on phytoplankton (𝑚𝑍 = 0.14 𝑑−1) mimicking conditions in early spring (a, c), 

and the scenario of high grazing pressure (𝑚𝑧 = 0.04 𝑑−1) during summer (b, d). The 

black dots denote the trait combinations of phytoplankton species which survive in the 

long term (i.e. the fitness maxima), their size marks the mean relative biomass 

contribution between day 9000 and 10000 averaged among 50 simulations with 

randomized, different initial conditions (see Appendix B4). The colour grid displays the 

average time until extinction of the different trait combinations in the short term, that 

is, within the first 100 days of the simulations. 

For a convex trade-off, the model predicted a qualitatively different pattern 

(Fig. 3.5c,d). Under low grazing pressure, only the undefended species with 

the highest 𝑟𝑖 survived in the long term (Fig. 3.5c). Under high grazing 

pressure, the undefended prey coexisted with the defended species with a 

very low 𝑟𝑖, where the biomass of the defended species exceeded the 

biomass of the undefended species (Fig. 3.5d, for biomass dynamics see Fig. 

B8). In general, the rate of extinction of inferior species was higher 

compared to the concave case (Fig. 3.5). 
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Discussion 

The 36 dominating phytoplankton morphotypes in Lake Constance faced a 

concave trade-off between defense and maximum growth rate. We found 

that the community average values of defense and maximum growth rate 

showed opposed seasonal dynamics. We did not observe distinct seasonal 

dynamics in the community average phosphate affinity, but morphotypes 

with a rather low growth rate relative to their defense level often had a 

relatively high phosphate affinity. Theory predicts that concave trade-off 

curves promote species with intermediate strategies (Box 3.1 and Fig. 3.1). 

Our data support this prediction as intermediately defended morphotypes 

with intermediate to high maximum growth rates constituted the largest 

proportion of total annual phytoplankton biomass. Trait shifts in the 

phytoplankton community along the concave trade-off curve were exactly 

in line with seasonal changes of the environmental conditions. The model 

predicted a shift towards higher defense levels at the cost of lower 

maximum growth rates with increasing grazing pressure from spring to 

summer, as found in the data, and revealed low fitness differences of 

persisting species along the trade-off curve. Assuming a hypothetical 

convex trade-off in the model, for comparison, produced biomass-trait 

distributions qualitatively different from the observations. Hence, our 

model results highlight the importance of quantitative knowledge on the 

shape of the trade-off. 

The quantification of the trade-off was based on trait data provided by 

Bruggeman(35). He obtained phytoplankton trait values from a statistical 

model, fed with a great quantity of lab trait measurements and 

phylogenetic relationships. He provided also quantitative information on 

model uncertainties, i.e. the standard errors of the trait estimates(35). We 

consider these uncertainties to be minor compared to the measured trait 

range, not questioning the general pattern of a concave trade-off (Fig. B1b). 

The defense (edibility) values, used in Bruggeman’s statistical model(35), 

were almost entirely based on measurements of Lake Constance 

phytoplankton strains, sampled during the first part of our study period(44), 

and were tested for daphnids, the dominant herbivorous crustaceans in 

Lake Constance, which have a similar food spectrum as most of the other 

herbivores (see Methods). Hence, we argue that the concave trade-off 
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between defense and maximum growth rate obtained from these trait data 

is adequate for the considered phytoplankton community in Lake 

Constance. Wirtz and Eckhardt(46) suggested a linear defense-growth trade-

off for the same phytoplankton community, but they considered only 7 

species, missing several dominant ones. They were able to predict the 

seasonal dynamics of total phyto- and zooplankton biomass and of the 

community average trait values(46). However, they did not consider the 

biomass distribution in the trait space and thus could not provide 

predictions on which species/trait combinations may dominate or co-occur. 

To adequately predict this biomass-trait distribution, the trade-off shape is 

important. By including trait data on many more than 7 species, we found 

that the trade-off was concave and hence favoured species with different 

intermediate defense levels, as observed.  

Bruggeman(35) included also data on cell sizes. We found that defense 

correlated positively and maximum growth rate negatively with cell size 

(Fig. B3, Appendix B3), providing a potential mechanistic explanation for 

the existence of the defense-growth trade-off(47,48). However, other cell size-

independent defense strategies are relevant as well, e.g. cell wall 

thickness, colony formation, toxicity and cell shapes, which introduce 

substantial scatter into the relationship between defense and size. 

Our model showed that, for a concave trade-off curve, two very similar 

species can stably coexist (Fig. 3.5a, Fig. B7). This is in contradiction with 

theory predicting the survival of only one species (see Box 3.1 and Fig. 

3.1a-c). The two species have intermediate strategies close to the fitness 

maximum and coexist based on stabilizing mechanisms arising from their 

slight difference in defense and growth(36). However, this community is not 

evolutionary stable(49). Given gradual evolution, we expect that one species 

would reach the exact fitness optimum via trait adaptation and outcompete 

the others for a concave trade-off curve(10,12). Even without evolution, such 

a coexistence would not last if a species exactly at the fitness maximum is 

initially present in the community. In line with our model results, 

Leibold(50) predicted a similar coexistence pattern based on a graphical 

approach, although his focus was not on the trade-off structure: Two very 

similar prey species coexisted in a food web with different prey species 

sharing one resource and one predator and a continuous transition 



65 

 

occurred in the set of prey species persisting under gradually changing 

environmental conditions. With increasing system productivity, species 

with a higher defense level persisted(50), similar to the pattern in our study 

when increasing the grazing pressure. This indicates that he implicitly 

assumed a trade-off structure equivalent to the concave trade-off in our 

study. We argue that the behavior of communities in respect to coexistence 

(e.g. coexistence of similar intermediate strategies vs. different extreme 

strategies) and species replacement under environmental change may 

allow conclusions on the underlying trade-off structure. 

The low trait variation maintained in the long-term model simulations is 

in contradiction with the empirical data showing a large trait variation, 

including species having intermediate strategies as well as specialized 

species (highly defended or fast growing). The high number of species in 

such phytoplankton communities, exceeding the number of limiting factors 

(i. e. potential niches), is well known as the ‘Paradox of the Plankton’(21). In 

the absence of stabilizing mechanisms arising from variation of interacting 

populations or environments in space or time(36), the number of coexisting 

species cannot exceed the number of limiting factors(51). In line with that, 

our simple model, including only two niche dimensions (i.e. being defended 

or fast-growing), generated coexistence of maximal two species. 

Nevertheless, low fitness differences allowed for short-term co-occurrence 

of species in the model along and slightly below the concave trade-off curve 

(see green/orange region in Fig. 3.5a,b), a similar trait space where species 

persisted in the natural community (Fig. 3.3b). In contrast, feasible trait 

combinations well apart from the trade-off curve (low defense and low 

maximum growth rate) went quickly extinct in the model, implying a high 

fitness disadvantage. This provides an explanation for their absence in 

Lake Constance and in the whole data set of Bruggeman(35) (Fig. B1a). 

According to modern coexistence theory(36), low fitness differences (as found 

along the trade-off curve) can form a fundamental basis for long-term 

maintenance of biodiversity: as then even slight stabilizing mechanisms 

(i.e. mechanisms slightly increasing negative intraspecific interactions 

relative to negative interspecific interactions) can lead to stable coexistence 

of many species. Fitness differences can be very low along a trade-off curve, 

if its shape is very similar to the shape of fitness isoclines(14,52), e.g. for a 
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nearly linear trade-off given linear fitness isoclines (Fig. 3.1). Stabilizing 

mechanisms, which overcome fitness differences and may help to explain 

the high trait variation observed along the trade-off curve, can be divided 

into: 1. Niche differentiation along further trait axes, and 2. Fluctuation-

dependent mechanisms, like relative non-linearity in competition and the 

storage effect(36).  

Several trait dimensions, not considered in our model, may contribute to 

the biodiversity in the phytoplankton community, by further reducing 

fitness differences or by enabling niche differentiation. For instance, a high 

phosphate affinity is beneficial under strong nutrient depletion during 

summer and autumn. Although we found no clear increase of this trait on 

the community level during summer, it may explain the success of certain 

morphotypes. For example, the defended dinophytes (like Ceratium 

hirundinella and Peridinium sp., taxon number #4 and #27 in Fig. 3.3a) 

have very high phosphate affinities and constitute substantial biomass, 

despite their very high defense costs regarding the maximum growth rate 

(Fig. 3.3b). The undefended Rhodomonas ssp. (#29) also had a high 

phosphate affinity (Fig. 3.3a,b), which sheds light on its observed high 

biomasses and very regular occurrence in spite of its maximum growth rate 

not exceeding the one of intermediately defended morphotypes. In fact, we 

found a weak three-dimensional trade-off among defense, growth rate and 

phosphate affinity (Online Movie), though the negative correlation between 

the former two was the most striking pattern in the trait data (Fig. B2, 

Appendix B3).  

Different light spectra and phytoplankton photopigmentation represent 

another important source for niche differentiation(17,25). For example, 

Rhodomonas spp. (#29) is able to use additional light spectra, based on the 

red accessory photopigment phycoerythrin allowing photosynthesis at 

greater depths, which is relevant year round due to vertical mixing and 

self-shading. The same holds for Cryptomonas spp. (#11) which also 

reached high biomasses irrespectively of its rather low maximum growth 

rate relative to its defense level (Fig. 3.3a,b). The cyanobacteria (Anabaena 

spp. And Oscillatoria spp., #1 and #24) also produce additional 

photopigments, which may compensate for their relative low maximum 

growth rates (Fig. 3.3a,b). Motility, in terms of swimming/floating towards 



67 

 

light, can increase the performance with respect to light harvesting(17), 

which is relevant for e.g. the cyanobacteria showing buoyance regulation. 

Furthermore, vertical migration of some phytoplankton morphotypes, like 

Ceratium hirundinella (#4), enable exploiting additional nutrient sources 

from deeper water layers, when the water column is stratified during 

summer. Mixotrophy represents another possibility to obtain additional 

phosphate, which is relevant in Lake Constance(53). The low phosphate 

affinities of bacterivorous mixotrophs as Dinobryon ssp. (#15) may partly 

explain the seasonally and interannually invariant signal in the 

community average phosphate affinity (Fig. 3.2d, Fig. B6) as they 

predominantly occur during summer and in later years. Diatoms seem to 

have maximal fitness regarding their defense and maximum growth rate, 

and are indeed present at high biomasses (Fig. 3.3a,b). However, they face 

disadvantages due to the production of shells, implying an additional silica 

demand and causing high sedimentation rates during stratified conditions, 

which leads to lower net growth rates than expected from their maximum 

growth rate. This helps to explain their success during early spring (Fig. 

3.4a).  

Relative non-linearity in competition and the storage effect represent 

further stabilizing mechanisms, which may be relevant for our system and 

both depend on fluctuations in populations or environmental conditions 

(e.g. nutrient concentrations)(36). Abrams(11) showed for a competition model 

that stable coexistence of two specialists using two different resources and 

one generalist is possible under asynchronous resource fluctuations. The 

species coexisted based on the relative non-linearity in their resource 

uptake functions(51). Such relative non-linearity enabling stable coexistence 

has not been found for the type of predator-prey model considered here, but 

may be relevant when including additional resources (e.g. silica, light) with 

seasonally fluctuations. This can lead to coexistence of a high number of 

phytoplankton species, exceeding the number of limiting resources under 

non-equilibrium conditions(54,55). However, we did not include such seasonal 

forcing in our model simulations, but run different scenarios with constant 

environmental conditions mimicking distinct seasonal phases. Based on 

that, we obtained insights on the fitness landscape, that is, which trait 

combination would be favored during a certain seasonal phase and which 
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species would be of low fitness (i.e. go quickly extinct in the simulation). 

The model purpose was not to reproduce the dynamics and the stable 

coexistence of many species across years in a distinct lake. This would 

demand a more complex modelling approach implementing, among others, 

periodical forcing of the abiotic environment (light, vertical mixing 

intensity, nutrient availability) and details like the overwintering 

strategies of phytoplankton, which goes beyond the scope of this article. 

Lake Constance exhibits a pronounced seasonality (Fig. 3.2a,b). Our data 

demonstrate that the instantaneous fitness maximum gradually moves 

along the trade-off curve from fast growing, intermediately defended 

species in early spring to slowly growing but more defended species in 

summer and then back in winter (Fig. B4, Appendix B3). Thus, different 

species along the trade-off curve have maximal fitness at different times of 

the year. This pattern of gradually moving fitness maxima is specific to 

concave trade-off curves (Fig. 3.1a-c) and is not expected for convex ones 

(Fig. 3.1d-f). Phytoplankton species form resting stages under unfavorable 

conditions, which buffers population losses(56). This gives rise to storage 

effects(36), contributing to the maintenance of numerous phytoplankton 

species along the trade-off curve. 

Lake Constance has successfully served as a model system for large open 

water bodies including marine ones(57). It exhibits a typical seasonal 

plankton succession, driven by vertical mixing, grazing and nutrient 

limitation(22). These environmental factors are also main drivers of marine 

phytoplankton, which is ecologically similar to freshwater phytoplankton 

and may face similar trade-offs(58). Trade-offs between defense and growth 

are also relevant in terrestrial plant communities, for example 

grasslands(59). Thus, our findings are likely relevant for numerous 

ecosystems. Furthermore, our results show that the information on trade-

off shapes allows for an understanding of ongoing trait changes directly 

under field conditions. 

Overall, the identification of the major trade-off and its shape provided a 

remarkable key to understand trait shifts and altering species composition 

in the phytoplankton community under seasonally changing environmental 

conditions. Although multiple trait dimensions likely play a role, our 
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results showed that defense and maximum growth rate represent key 

traits in phytoplankton of Lake Constance, where grazers are known to 

strongly impact phytoplankton net growth(37). A high maximum growth 

rate is beneficial at high resource concentrations, but also at low 

concentrations, when not coming at substantial costs of a lower nutrient 

uptake affinity. The maintenance of trait variation was likely promoted by 

low fitness differences along the concave trade-off curve. Low fitness 

differences allow coexistence by even slight stabilizing mechanisms arising 

from niche differentiation along multiple trait axes and fluctuations in 

environmental conditions, continuously moving favorable trait 

combinations along the concave trade-off curve. Our study successfully 

explained major trait dynamics based on a simple model, including only 

the interspecific defense-growth trade-off, and allowed to verify the theory 

on trade-off shapes in the field. In conclusion, quantifying trade-off shapes 

enhances our understanding of trait dynamics and variation in natural 

communities. 
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Chapter 4 

 

Mysterious ciliates: 

seasonally recurrent and yet hard to predict 

 

Nadja J. Kath, Mridul K. Thomas, Ursula Gaedke 

 

Abstract 

Ciliates represent a crucial link between phytoplankton and bacteria and 

mesozooplankton in pelagic food webs, but little is known about the 

processes influencing the dynamics of individual species. Using long-term, 

high frequency observations, we compared the diversity and the temporal 

variability in biomass and species composition of the ciliate community in 

large, deep, mesotrophic Lake Constance to that of the phytoplankton and 

rotifer communities in the same lake. Furthermore, we used boosted 

regression trees to evaluate possible environmental predictors 

(temperature, three prey groups, three predator/competitor groups) 

influencing ciliate net growth. The biomass of all ciliate species showed a 

common, recurrent seasonal pattern, often with peaks in spring and 

summer. The ciliate community was more diverse than the rotifer 

community, exhibited highly synchronous dynamics and its species were 

regularly encountered during the season. The top-down control by copepods 

likely contributes to the ciliates’ synchronized decline prior to the clear 

water phase when food concentration is still high. The high temporal 

autocorrelation of the ciliate biomasses together with the inter-annual 

recurrent seasonal patterns and the low explanatory power of the 

environmental predictors suggest that the dynamics of individual ciliate 

species are strictly controlled, yet it remains difficult to determine the 

responsible factors. 

Key words: boosted regression trees, long-term time series, community 

composition, synchrony 
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Introduction 

Ciliates are an important component in freshwater plankton (Müller et al., 1991; 

Löder et al., 2012; Lischke et al., 2016). They represent a crucial link between 

small producers, such as phytoplankton and bacteria, and mesozooplankton and 

are thus highly relevant for the transfer of matter and energy along the size 

gradient to large organisms such as fish. Ciliates usually contribute only a 

moderate fraction to the overall plankton biomass as they are small and often 

top-down controlled by their predators (Wickham, 1998; Lischke et al., 2016). 

Nevertheless, they often consume high amounts of the primary production and 

thus have a large influence on the food web as they are significant grazers of 

bacteria and small phytoplankton (Gaedke et al., 2002; Sommer et al., 2012). 

Reasons for this are their high weight-specific grazing rates (Hansen et al., 1997) 

and their very short life cycles which enables them to react quickly to changes in 

prey biomass and composition (Tirok and Gaedke, 2007). This may render them 

the most important grazers in spring (Weisse et al., 1990; Gaedke and Straile, 

1994; Gaedke et al., 2002), when the metazoan activity is still hampered by low 

temperatures (Johansson et al., 2004; Tirok and Gaedke, 2006, 2007). In turn, 

ciliates are a substantial food source for large zooplankton (Adrian and 

Schneider-Olt, 1999; Kunzmann et al., 2019). 

Freshwater ciliates are a species-rich and ubiquitous group spanning three 

orders of magnitude in volume, suggesting high functional diversity 

(Müller, 1991). Due to their differences in size, modes of feeding and 

locomotion, and defence, a broad range of prey organisms and potential 

predators exists. Disentangling the complex trophic interactions around 

the ciliate community remains a crucial challenge in understanding their 

population dynamics and roles in the plankton food web. A number of 

feeding trials have been done in the lab, mostly with one prey at a time 

and for a limited number of ciliate species (e.g. Müller and Schlegel, 1999; 

Weisse et al., 2001; Chen et al., 2020). Experiments addressing the role of 

potential predators of ciliates are even more limited, revealing that rotifers 

may be intra-guild predators on small ciliates (Weisse and Frahm, 2002). 

Microcosm experiments demonstrated negative effects of copepods and 

cladocerans on ciliates due to competition and predation (Wickham, 1998; 

Burns and Schallenberg, 2001; Kunzmann et al., 2019) as they are a 

preferred food item of copepods (Paffenhöfer et al., 2005; Vargas et al., 

2006; Kunzmann et al., 2019). However, trophic relationships expected 
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from single feeding trials in the lab may not even hold in more species rich 

microcosms (Flöder et al., 2018), which hampers extrapolation to field 

conditions. Thus, a number of studies used field data to infer feeding 

relationships of ciliates (Cleven, 2004; Posch et al., 2015) or the potential 

impact of ciliate predators or competitors (Wickham, 1998). However, 

studies integrating simultaneously potential bottom-up and top-down 

effects from field data are still lacking. 

To address this question, we used here temporally highly resolved data 

from deep, large, monomictic, mesotrophic Lake Constance. The dataset 

comprises twelve years of taxonomically resolved ciliate measurements, all 

potential food, predator and competitor groups, and abiotic environmental 

conditions. The phytoplankton data are taxonomically-resolved which 

enabled aggregating them into groups according to their presumed 

edibility for ciliates. Additionally, bacteria and autotrophic picoplankton 

were investigated as a possible food source. The species-resolved 

crustacean data enabled a differentiated analysis of their potential role as 

predators and/or competitors.  

In Lake Constance, ciliates contributed about 17% to the total zooplankton 

biomass (Boit and Gaedke, 2014), and consumed around 50% of the primary 

production on annual average underlining their high functional importance 

(Gaedke et al., 2002). The overall ciliate biomass followed a bimodal pattern of a 

spring and summer bloom interrupted by lower biomass around the clear water 

phase. The dominant ciliate morphotypes in spring, e.g. Balanion planctonicum, 

Urotricha 77urcate, and Rimostrobilidium lacustris, reacted immediately to the 

onset of the phytoplankton spring bloom which was then dominated by suitable 

food such as phytoflagellates and Stephanodiscus (Müller, 1991; Müller et al., 

1991). Most ciliates declined earlier than phytoplankton prior to the clear water 

phase suggesting that predation by copepods rather than food shortage is the 

main reason (Ehrlich and Gaedke, 2020). The dynamics in summer are not that 

easy to explain, but predation and competition seems to be equally or more 

important than the bottom-up control: Very small and large ciliates correlated 

negatively with daphnid biomass during summer, and total ciliate biomass and 

species composition did not respond to the decrease in total phosphorous 

concentration during winter mixing from 58 to 17 µg P/l during the study period 

(Gaedke and Wickham, 2004), despite changes in phytoplankton biomass and 

composition (Gaedke 1998, Kümmerlin 1998).  
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Ciliate populations were highly synchronized throughout the season 

compared to the other plankton groups and their temporal variability was 

typically low according to autoregressive models and spectral time series 

analysis (Huber and Gaedke, 2006; Vasseur and Gaedke, 2007). 

Considering only the spring bloom, compensatory dynamics between 

different functional ciliate groups were found reducing the temporal 

variability of total ciliate biomass during this period (Tirok and Gaedke, 

2007, 2010).  

We approached the challenge of disentangling complex trophic interactions 

for numerous ciliates from observational data using boosted regression 

trees (BRTs). This machine learning tool uses boosting to aggregate weak 

predictions from a series of decision trees to generate a stronger prediction 

model capable of analysing high-dimensional data. Machine learning tools 

as BRTs may be effective tools to describe and predict the complexity of 

ecological systems (Elith et al., 2006; Baltensperger et al., 2020; Pomati et 

al., 2020). They do not require strong assumptions which renders them 

particularly useful for the intended study given the scarcity of reliable 

information on the ciliates’ trophic interactions under natural conditions. 

Nevertheless, they allow adding information (weak constraints on the 

model) about the direction of a predictor’s effect. They can reveal the 

relative importance of potentially influential predictors.  

Our goal was to better understand the processes driving ciliate 

morphotypes’ dynamics and their role in the plankton food web. Thus, we 

characterised ciliates in comparison to the equally species rich, fast 

growing phytoplankton and rotifer communities in respect to the temporal 

intra- and interannual variability of their individual morphotype 

biomasses and their regularity of occurrence, their diversity and turn-over 

in morphotype composition. Furthermore, we investigated in concert the 

top-down and bottom-up forcing on ciliate morphotypes to infer the most 

relevant predictors influencing their seasonal occurrence using BRTs 

revealing the effect of environmental predictors on the net growth rate of 

17 ciliate morphotypes. The BRTs suggest that temperature, likely 

representing different seasonal effects, was overall the most important 

predictor, followed by Cyclops as the most important predator for many 

ciliate morphotypes, whereas relationships to algal groups were weaker. 
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The lack of strong relationships between ciliate morphotypes and the 

environment reveal the difficulty to disentangle causal relationships in 

natural, complex, highly diverse and presumably highly adaptive food webs 

even based on 12 years of comprehensive ecosystem data and sophisticated 

data analysis techniques. 

Methods 

Overview of approach 

We characterized the ciliate community in Lake Constance by comparing 

its variability, synchrony, diversity, and evenness with that of the 

phytoplankton and rotifer community. We give an overview of the seasonal 

dynamics of the ciliate morphotypes and of the environmental predictors 

influencing them, i.e. their food, predators and competitors, and 

temperature. We finally use boosted regression trees to evaluate the 

possible role of seven predictors on ciliate growth: temperature as main 

abiotic factor, three possible food sources, bacteria plus autotrophic 

picoplankton and two algae groups (MEA = most edible algae, mainly 

phytoflagellates, and WEA = well edible algae, including small centric 

diatoms), and three predators groups: herbivorous cladocerans comprising 

daphnids and Bosmina, the calanoid copepod Eudiaptomus and cyclopoid 

copepods. 

Sampling  

Upper Lake Constance is a large (volume ca. 50 km3), deep (mean depth 

101 m, maximum depth 252 m), warm-monomictic lake north of the 

European Alps which was mesotrophic during the study period. Owing to 

its size (476 km2), steep shores and a less pronounced stratification than 

typically found in smaller lakes, Lake Constance has a large pelagic zone 

and a relatively deep, well-mixed epilimnion.  

Plankton sampling was conducted from 1987 to 1998 (bacteria and 

autotrophic picoplankton sampling until 1997, for details see 

https://fred.igb-berlin.de/Lakebase). All plankton was sampled weekly 

during the growing season and approximately every 2 weeks in winter by a 

large team of scientists. Depth-resolved samples were collected at a central 

sampling site of 147 m depth, in the north-western part of Upper Lake 
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Constance (Überlinger See). We use here mean concentrations within the 

uppermost 0-20 m depth, roughly reflecting the epilimnion and euphotic 

depth. The abundance of all planktonic organisms was assessed using 

advanced microscopic techniques.  

Ciliates were fixed with Lugol’s solution and counted in 56 categories 

which were grouped into 24 morphotypes (Tab. 4.1, Appendix Tab. C1) 

following Müller (1989), Müller et al. (1991) and Weisse & Müller (1998). 

They represent either individual species or higher taxonomic units that 

could be identified by light microscopy. We did not include unidentified 

ciliates in our analysis. Their relative share was generally small (mean 2.2 

%, median 0.9%, 90th percentile 5.1%, max. 44%) of total ciliate biomass. In 

0.2% of the sampling dates, it was higher than 25% which were excluded 

from further consideration. Ciliate cell volume was established by 

measuring cell dimensions. It was converted to units of carbon assuming a 

carbon to fresh-weight ratio of 15.4% (Weisse & Müller 1998).  

Phytoplankton counts and cell volume estimates were converted into biomass 

based on a specific carbon to volume relationship (Menden-Deuer and Lessard, 

2000). Phytoplankton was classified into different edibility groups based on lab 

studies performed with crustaceans (e.g. Knisely and Geller, 1986) and ciliates 

(Müller and Schlegel, 1999) from Lake Constance. We distinguished two groups 

of phytoplankton edible for ciliates. One comprised small individual algal cells, 

mostly phytoflagellates (MEA = most edible algae, 25-2100 µm³) and the other 

group consists of small centric diatoms such as Stephanodiscus hantzschii and 

Cyclotella spp. And small green algae such as Chlorella spp. (WEA = well edible 

algae, 5-650 µm³) which are presumably mostly edible for many ciliates. All other 

phytoplankton species were considered to be less edible and not considered in 

further analysis.  

Bacterioplankton and autotrophic picoplankton (APP) densities were converted to 

biomass as described by (Weisse, 1991 and literature cited therein, 

https://fred.igb-berlin.de/Lakebase). The bacterioplankton and APP biomass was 

summed up. 

Crustaceans potentially interacting with ciliates comprised: Cyclopoid 

copepods, the calanoid copepod Eudiaptomus gracile and Daphnia 

longispina (formerly D. 80urcate), D. galeata, Bosmina sp. which we 

combined to ‘Daphnia’ in our analysis due to their similar feeding range 
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and Bosmina being quantitatively less important. Biomass was calculated 

from length–dry weight relationships established for Lake Constance and 

assuming a carbon content of 50% of dry weight (Straile and Geller, 1998). 

Water temperature was mostly measured automatically with high spatio-

temporal resolution. For the few periods were such data were not available 

estimates were obtained from the air temperature. 

Tab. 4.1: Characterization of the ciliate morphotypes including their names, abbreviation 

of the name, cell volume [µm³], longest linear dimension (LLD, [µm]) taken as a measure 

how edible they are for crustaceans (Some ciliate morphotypes comprise different 

counting categories, thus there are up to 3 measurements for cell volume and longest 

linear dimension for one ciliate morphotype.“-“ indicates no measurements for the 

counting category/morphotype), their feeding type (Gaedke and Wickham 2004), their 

mean biomass when encountered in a sample [mg C / m²], and the coefficient of variation 

(CV) of their biomass across the twelve years of sampling when encountered in a sample, 

the number of net growth rate I measurements and the R² for the full net growth rate r 

model [%] (r and 7 environmental predictors). Abbreviations for the feeding type are 

picoplankton p, nanoplankton n, microplankton m, interception feeders I and filter 

feeders F. 

 

Name Abb. 
Cell 

volume 
LLD 

Feeding 

type 

Mean 

biomass 
CV 

# r 

measure-

ments 

R² for 

net 

growth 

rate  

model 

Askenasia 

sp. 
A 

7,200 / 

37,000 

25.5 / 

43.6 
n & I 17 1.26 417 4 

Balanion 

planctonicum 
Bp 1,300 14.6 n & I 18 2.10 429 3 

Histioba-

lantium 

bodanicum 

Hb 
34,000 / 

68,000 

45.5 / 

73.6 
p, n & I 74 1.25 401 3 

Limno- and 

Pelago-

strombidium 

sp. 

LP 
32,000 / 

77,000 

45.5 / 

57.3 
n & F 48 1.65 404 6 

Monodinium 

/ Didinium 
MD 

38,000 / 

70,000 / 

116,000 

44.8 

/- /- 
n,m & I 9 2.35 141 4 
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Peritrichs on 

Anabaena 
Pa 16,000 35.2 p & F 24 1.52 102 8 

Peritrichs on 

diatoms 
Pd 

10,000 / 

37,000 

30 / 

43.3 
p & F 17 1.86 344 6 

Pelagohal-

teria viridis 
Pv 6,500 - p & F 10 1.54 116 8 

Rimostrom-

bidium 

lacustris 

Rl 119,000 68.6 n & F 49 2.37 342 3 

Sessile 

suctoria 
ses 

7,000 / 

30,000 / 

40,000 

- 
n, m & 

I 
10 2.40 174 1 

Small 

oligotrichs 
sO 

2,700 / 

6,500 

17.8 / 

25.5 

p, n & 

F 
45 1.32 433 6 

Small 

suctico-

ciliates 

suc 1,300 21.5 p & F 3 3.09 259 7 

Tintinnids T 24,000 
46.7 / 

53.3 
n & F 33 1.89 338 5 

Urotricha 

furcata 
Uf 1,700 17.4 n & I 6 2.07 423 4 

Urotricha sp. 

2 
U2 9,500 29.3 n & I 7 1.31 292 3 

Urotricha sp. 

3 
U3 

24,000 / 

81,000 / 

500,000 

39.6 

/- /- 
n & I 14 1.81 231 4 

Vaginicola 

sp. 
V 3,500 24.5 p & F 2 2.21 108 8 

 

Standardization and smoothing 

To reduce variability due to different winter weather conditions we 

standardized the sampling dates within each year by centring them to the 

begin of the clear-water phase (CWP) which is defined as week 0 (Ehrlich 

et al 2020 ISME, Ehrlich and Gaedke 2020).  

Net growth rates of ciliates, r, were calculated as the differences in log10-

transformed biomass between two adjacent sampling dates divided by the 

number of days, which were typically 7 (5-21) days apart. In weeks with 

more than one sample, the date nearest to the sample routine was picked 
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and the other date(s) omitted. Only the 17 ciliate morphotypes with more 

than 100 growth rate estimates in all 12 years were taken into account.  

Before fitting the boosted regression trees, we smoothed the measured 

biomass to remove outliers of ecologically unrealistic high growth rates 

using the function gam of the R package mgcv (smoothing parameter 0.01 

and method “REML”, Appendix Fig. C1). As the number of measurements 

where individual ciliate morphotypes were encountered varied, we chose 

the dimension of the basis used to represent the smooth term as 66% of the 

samples based on a visual comparison of different amounts of smoothing. 

The smoothing did not change the results meaningfully (data not shown). 

Diversity index and frequency distributions 

Diversity and evenness were calculated using the Simpson indices D = 1-

∑ 𝑝𝑖
2𝑁

𝑖  and E = 
𝐷

1−1 𝑁⁄
 with pi being the relative biomass of morphotypes i and 

N being the number of morphotypes. Temporal changes in community 

composition were quantified using the Pinkham and Pearsson’s similarity 

index. It was calculated as ∑
𝑚𝑖𝑛(𝑝𝑖𝑎,𝑝𝑖𝑏)

𝑚𝑎𝑥(𝑝𝑖𝑎,𝑝𝑖𝑏)

1

𝑁
 with pia (pib) being the relative 

biomass of morphotypes i on sampling dates a and b. 

We grouped the ciliate net growth rates into 15 equidistant classes to 

explore their frequency distributions. To compare the distributions among 

ciliate morphotypes, we calculated the mean 𝑥̅, variance v, skewness S, and 

kurtosis K.  

Boosted regression tree models 

For each ciliate morphotype boosted regression tree (BRT) models were 

calculated to understand the influence of 7 environmental predictors on 

either their biomasses or net growth rates. Additionally, the influence of 

biomass respective net growth rate one time step before was analyzed as a 

measure for autocorrelation. We found a high positive first order 

autocorrelation for biomass and a negative first order autocorrelation for 

net growth rate (Appendix Tab. C3). The R² for all models can be found in 

the Appendix (Tab. C3). We concentrated on the ciliate net growth rate 

models to understand their seasonal dynamics. 
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We used 10-fold cross-validation to estimate the optimal BRT model 

parameters. For each ciliate morphotype, the data set was divided into ten 

equal consecutive subsamples of time. At every step, nine subsamples were 

used to fit the model and to predict r for data in the tenth subsample. This 

was repeated with all ten subsamples and the mean prediction error for 

each parameter combination was calculated.  

Additional information on single predictors can improve model 

performance. Therefore we enforced a monotonic increasing relationship to 

the food predictor most edible algae which can be consumed by all ciliates, 

a monotonic decreasing relationship to the predator Cyclops which can 

consume all ciliates, and no relationships to all predictors which may have 

a negative or positive impact (temperature, bacteria plus APP, well edible 

algae, Daphnia, Eudiaptomus). All analyses were done using R (version 

4.0.0) and the packages lubridate, mgcv, tidyverse, tictoc, gbm and tseries,  

(R Core Team, 2020; Grolemund and Wickham, 2011; Wood, 2011; 

Wickham et al., 2019; Izrailev, 2014; Greenwell et al., 2019; Trapletti and 

Hornik, 2021). The BRTs were done with the function gbm of the package 

gbm. 

Optimization 

The growth rate model was optimized trying different values for four 

parameters. We did a stepwise optimization, calculating BRTs in a nested 

loop for three to five values for every of the four parameters and ten 

subsamples of the data and choosing the combination with the lowest 

median across the RMSE of all ciliates and refine these values stepwise, 

until there the improvement in RMSE was below 1%. We chose 1000 (100 – 

10,000 tested) trees to fit, a shrinkage rate of 0.001 (0.000275 – 0.2) 

applied to each tree in the expansion, also known as the learning rate or 

step-size reduction, an interaction depth of 4 (2-4) implying a model with 

up to 2-way interactions, and a bag fraction of 0.3 (0.3-0.5) for our final 

model. 

We also used 10-fold cross-validation to quantify the importance of all 

predictors. We created set of submodels containing all but one of the 

predictors in the full model. Using the optimal model parameters of the full 

model, we quantified the mean predictor error for the full model and all 
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submodels. The change in prediction error, i.e. the difference in prediction 

error between the full model and a sub-model excluding one distinct 

predictor, is a measure of the information contributed by the omitted 

predictor to the full model. This metric allowed us to compare the 

importance of all predictors in the full model.  

Partial dependence 

As measurements for the prediction error R² and RMSE were used. R² is 

calculated as the explained variance divided by the overall variance: 

𝑅² = 1 −
𝑚𝑒𝑎𝑛((𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎)2)

𝑣𝑎𝑟(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎)
. RMSE is the square root of the 

mean standard error: 𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛((𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎)2). 

Partial dependence plots were generated by estimating the effect of each 

predictor on the target variable net growth rate in the model, after setting 

other predictors to levels suitable for ciliate growth: high food 

concentrations, low predator and competitor biomasses and an 

intermediate temperature. 

Results 

We first characterize the ciliate community in Lake Constance by 

comparing its temporal variability and synchronization of the individual 

morphotypes and the diversity and evenness with that of the 

phytoplankton and rotifer community. We then give an overview of the 

seasonal dynamics of the ciliate morphotypes and of environmental 

predictors potentially influencing them, i.e. their food, predators and 

competitors, and temperature. We finally use boosted regression trees to 

evaluate the possible role of these abiotic and biotic predictors on ciliate 

net growth. 
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Community characterization: variability, synchrony, biodiversity 

 

Fig. 4.1: Time series of the 10 quantitatively most important morphotypes (according to 

their mean biomass) of a) ciliates, b) phytoplankton and c) rotifers. The log10 

transformed weekly averages across all years were standardized by subtracting their 

long-term mean and centred to the beginning of the CWP. Their contribution to total 

biomass decreases in the given order in the legend (cf. Fig. 4.2). Morphotype numbers 

and ciliate abbreviations are explained in App. Tab. C1. 

The ciliate morphotypes exhibited a high degree of synchrony throughout 

the annual cycle, except for Histiobalantium bodamicum (Hb in Fig 4.1a) 

during the first half of the year. In contrast, phytoplankton morphotypes 



87 

 

typically reached high values either prior or after the clear-water phase 

(Fig. 4.1b) implying relatively strong compensatory dynamics between the 

two groups. Biomasses of rotifer morphotypes were consistently below their 

annual mean during January to April and varied more independently 

afterwards (Fig. 4.1c). Thus, similar factors seem to promote and hamper 

the individual ciliate morphotype growth leading to stronger 

synchronization than found in the other species-rich plankton 

communities. 

The seasonal amplitude in biomass of ciliate morphotypes was typically 

lower than for the other plankton groups: In ciliates, maximum values 

exceeded the long-term mean by a factor of 4 to 8 whereas phytoplankton 

and rotifer morphotypes exceeded theirs by factors of 4 to 36 (Fig. 4.1). The 

long-term morphotype variability described by their coefficient of variation 

varied between 93% and 322% for ciliates, and 69% to 409% for rotifers. 

These values were significantly lower than for phytoplankton (122-445 %, p 

= 0.006, Appendix Fig. C2) suggesting that ciliate morphotype balance 

growth and loss processes relatively strongly throughout the annual cycle 

and thus rather independently from environmental predictors.  

Numerous ciliate morphotypes occurred regularly throughout the year and 

the whole sampling period of twelve years and contributed moderately to 

total ciliate biomass. Ten out of 24 ciliate morphotypes but only eight out of 

36 phytoplankton morphotypes and only five out of 20 rotifer morphotypes 

were encountered on ≥75% of all sampling dates, i.e. the 25% quantiles of 

their relative contribution to the total biomass were above the detection 

level (Fig. 4.2). For the nine most frequent ciliate morphotypes, the median 

of the relative biomass contribution to the overall ciliate biomass did not 

exceed 20% but remained consistently above 1%. The contribution of lower 

ranked morphotypes was temporally more variable and they were 

increasingly lacking on individual sampling dates (Fig. 4.2a). This suggests 

that many ciliate morphotypes have broad ecological niches allowing them 

to thrive under different circumstances but with no morphotype being 

superior for extended periods of time. 
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Fig. 4.2: Changes in community composition within a) ciliates, b) phytoplankton and c) 

rotifers. The relative biomass contributions to total biomass of the 20 most important 

individual morphotypes of each community are displayed in descending order of their 

median or 0.75 or 0.9 quantile for ties in the median. Boxes comprise the range from the 

25 –75 % quantile. Horizontal bars within boxes represent the median. The whiskers are 

drawn from the box to the most extreme point within 1.5 interquartile ranges, i. e. the 

distance between the 25th and the 75th sample quantile. Any value more extreme than 

this is marked with a dot. If a morphotype was not found in a sample, its relative 

biomass was set to 10-4 which was used as zero replacement value. The box includes this 

value if a morphotype was not encountered in ≥25 % of the samples. In some instances, 

morphotypes were not encountered in ≥50 % of the samples which implies that the 

median is at the bottom line. Morphotype abbreviations and numbers are explained in 

App. Tab. C1. 
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An objective way to rate the short- and long-term variability in ciliate 

composition as high or low is to compare it with the other species-rich 

plankton communities which have similar generation times and 

experienced similar forcing by abiotic and biotic processes in the same 

habitat. In phytoplankton, two very frequent morphotypes occurred in 

almost every sample and each contributed more than 10 % to the total 

phytoplankton biomass on more than half of the sampling dates (Fig. 4.2b). 

As a consequence, the relative share of the subsequent morphotypes 

declined more rapidly than in ciliates: Only six morphotypes had a median 

above 1 %, showing a lower evenness within phytoplankton. Individual 

rotifer morphotypes exhibited the greatest monopolization of biomass of 

the three plankton communities considered (Fig. 4.2c). Three morphotypes 

contributed between 10 % and 30 % each to total biomass during at least 

50 % of all sampling dates (i.e. had a median higher than 10 %). The 

majority of the morphotypes were absent in ≥50-75 % of the samples but 

several of them nevertheless contributed 10 % of the total biomass at other 

times (see upper whiskers in Fig. 4.2c). This shows that the rotifer 

community composition changed pronouncedly during at least part of the 

year (cf. Fig. 4.1). Overall, temporal coherence and regularity of occurrence 

were higher in ciliates than in phytoplankton and rotifers. 

The diversity and evenness in ciliates were significantly higher than in 

rotifers (Simpson D = 0.75, p < 2.2*10-16, Simpson E = 0.71, p < 2.2*10-16) 

and the temporal similarity in morphotype composition (Pinkham and 

Pearsson P = 0.26) was significantly higher for ciliates than for 

phytoplankton (P = 0.23, p < 9.1*10-7) and rotifers (P = 0.20, p < 2.6*10-16) 

(App. Fig. C4, Fig. C5). These findings suggest that ciliate morphotypes are 

less specialized on distinct growth conditions and almost balance growth 

and losses under different environmental conditions. The facts that many 

ciliate morphotypes were regularly found throughout the season and across 

years with relatively low temporal variability, and that their biomass was 

relatively evenly shared by many ciliate morphotypes underpinned this as 

well. 
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Seasonal occurrence and inter-annual variability 

 

Fig. 4.3: Seasonal course of all ciliate morphotypes and the environmental predictors 

(three possible food sources MEA = most edible algae, WEA = well edible algae, BA = 

bacteria plus autotrophic picoplankton, four competitors/predators C = Cyclops, D = 

daphnids, E = Eudiaptomus, Cil = sum of all ciliates). Ciliate morphotypes are arranged 

to be easy distinguishable, see Appendix Tab. C1 for their full names. Data were 

obtained by taking the mean and standard deviation (plotted only when ≥5 values 

available) per blocks of two CWP-centred weeks across all years. The y axes always span 

4.5 orders of magnitude (except temperature) enabling to compare the inter-annual 

range among ciliate morphotypes and predictors. 

All plankton groups exhibited recurrent seasonal patterns (Fig. 4.3). After 

a spring bloom, total ciliate and then edible algae biomass declined during 

the so-called clear-water phase, CWP, a period of algal suppression by 
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herbivores starting typically between the end of May and the middle of 

June in Lake Constance. Total ciliate biomass quickly recovered during 

early summer to a level similar to that in spring until the autumnal 

decline. It is important to note that ciliate morphotypes started to loose 

biomass when Cyclops and Eudiaptomus were at their maximum biomass, 

while both edible algal groups had still high biomasses (Fig. 4.3a, b). 

Almost all ciliate morphotypes reached their minimum biomass at the 

beginning of the CWP and already increased in biomass again when 

daphnids still had high biomasses (cf. Fig. 4.1, Fig. 4.3). Some ciliate 

morphotypes reached their maximum biomass in spring (e.g. Balanion 

planctonicum and Rimostrombidium lacustris), some during summer (e.g. 

Histiobalantium bodamicum) or only showed up in summer (e.g. Vaginicola 

and sessile suctoria), whereas others had equal biomasses in both seasons 

(small oligotrichs and peritrichs on diatoms). The ciliate morphotypes 

which have measurable biomasses only in summer had a higher inter-

annual variability than the other ciliate morphotypes (Fig. 4.3c, e-h). 

Variability of ciliate net growth rates 

The observed net growth rates between adjacent sampling dates r of most 

ciliate morphotypes were small (Appendix Tab. C2) compared to their high 

potential growth rates. 66% of the r values of all ciliate morphotypes fell in 

the range of -0.128 and 0.137 per day, implying a change in biomass 

between -12% and +15% per day resp. between -59% and +161% over the 

typical sampling interval of 7 days. No ciliate morphotype showed a 

skewed distribution of r, while many were more peaked (leptokurtic) than 

the normal distribution (e.g. Askenasia in Fig. 4.4, cf. Appendix Tab. C2, 

Appendix Fig. C3). Differences in the shapes of the distributions of r may 

indicate that different ciliate morphotypes follow either a gleaner (peaky 

distribution) or opportunist strategy (broad distribution with many 

extreme values or skewed distribution with some extreme positive values); 

however, we did not find clear differences between morphotype’ growth 

rate distributions. 
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Fig. 4.4: Distribution of the observed net growth rates r of Askenasia which is 

representative for many ciliate morphotypes. 

Influence of environmental predictors 

We ran boosted regression trees (BRTs) on the smoothed biomasses and 

net growth rates r of individual ciliate morphotypes to determine their 

dependence on 7 environmental predictors: three possible food sources: 

most edible algae MEA, well edible algae WEA, and the sum of bacteria 

and autotrophic picoplankton (for brevity bacteria), three potential 

predators/competitors Cyclops, the calanoid copepod Eudiaptomus gracilis, 

and predominantly herbivorous cladocerans dominated by Daphnia and 

including Bosmina, and temperature. 

In the models predicting ciliate biomass the ambient growth conditions 

typically explained only a small amount of the variance (-19% to 35%, 

mean 6%, App. Tab. C3; values below zero indicate that the prediction is 

worse than the mean value). In contrast, the biomass of the previous time 

step accounted on average for 42% of the variance (6-68%, App. Tab. C3). 

This reveals a high first order positive autocorrelation and suggests that 

ambient growth conditions had a relatively weak effect on biomass at the 

time scale of our dataset (App. Fig. C7). 

Models predicting the ciliate net growth rate r revealed a weak negative 

first order autocorrelation (accounting for 2-15%, mean 7% of the variance, 
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App. Tab. C3, App. Fig. C8) and also a low dependence on environmental 

conditions explaining on average 5% of the variance (1-8%, App. Tab. C3). 

Less frequently encountered ciliate morphotypes had usually values below 

average. One to five predictors were important in influencing the r of all 

ciliate morphotypes, with temperature, Cyclops and bacteria being the 

most important predictors followed by Daphnia and the well edible algae 

(Fig. 4.5). 

 

Fig. 4.5: Importance of the predictors based on the R² for the r model. Predictors are 

temperature, bacteria plus autotrophic picoplankton (bacteria), Cyclops, Daphnia, 

Eudiaptomus, the well edible algae (WEA) and the most edible algae (MEA). Ciliate 

morphotype abbreviations are explained in Tab. 4.1. Red colours depict higher 

importance than green ones (scale different for each morphotype). 

We present the relationship between r and the environmental predictors in 

groups and in order of decreasing importance in partial dependence plots. 

They show for each ciliate morphotype the model-estimated response of r to 
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one predictor at a time assuming favourable conditions for all other 

predictors, i.e. high food concentrations, low predator biomasses and an 

intermediate temperature. 

Influence of temperature 

 

Fig. 4.6: Partial dependence plot for temperature for suitable environmental conditions 

(high food concentrations and low predator and competitor biomasses). Thicker line 

widths indicate that temperature is an important predictor for this morphotype (cf. Fig. 

4.5). The histogram in the middle provides the number of sampling dates with the 

respective temperature at which at least one ciliate morphotype was found to inform 

about the temperature range where reliable predictions are possible. Ranges with low 

frequencies are presented in lighter shades to indicate the much greater uncertainty in 

these regions of parameter space. 

The models suggested that temperature had the highest importance for 

most ciliate morphotypes and, counterintuitively, had a negative impact on 

r (Fig. 4.6). Some ciliate morphotypes had their biomass peak in spring, 

e.g. Askenasia and Urotricha 94urcate, and they responded all similarly 

with a sharp decrease in r when the temperature increased to about 8°, 

and remained at this low level. A decrease in r at higher temperatures of 

about 15° was common for other ciliate morphotypes as Urotricha 3, which 



95 

 

had their biomass peak in summer. Only the small sucticociliates having 

their biomass peak in summer were estimated to respond positively to an 

increasing temperature. Hence, if ciliate morphotypes exhibited a distinct 

relationship to temperature it was clearly related to their seasonal 

occurrence. 

Influence of potential food  

Bacterial biomass (including autotrophic picoplankton) had the highest 

importance of the three possible food sources (Fig. 4.5). Its seasonal 

variability was smaller than for the other predictors, changing only by a 

factor of approximately ten during the season (cf. Fig. 4.3). We found no 

response at very low biomasses which is in line with expectations. But 

unexpectedly, despite some ciliate morphotypes feeding on particles in the 

picoplankton size range, all ciliate morphotypes were negatively associated 

with high bacterial biomass values, above 1000 mg C/m² (Fig. 4.7a). The 

negative response did not depend on the feeding size range of the ciliate 

morphotypes: e.g. picophagous peritrichs on Anabaena and nanophagous 

Rimostrombidium lacustris both were predicted to respond negatively to 

increasing bacterial biomass. 

We classified algae as well edible, WEA, which were in the nanoplankton 

size range (e.g. small Stephanodiscus and Cyclotella spp., cf. App. Tab. C1) 

and can be efficiently used as food by some ciliate morphotypes such as 

Balanion planctonicum and Rimostrombidium lacustris, whereas others 

may not digest them (Müller and Schlegel 1999). Some ciliate morphotype 

such as Rimostrombidium lacustris and peritrichs on diatoms responded 

positively, others such as Balanion planctonicum responded negatively to 

increasing WEA biomass with no systematic differences between the 

feeding size ranges (Fig. 4.7b).  

Algae of good food quality with a longest linear dimension of 7 – 25 µm (e.g. 

Rhodomonas minuta, cf. App. Tab. C1) were defined as most edible algae, 

MEA, which makes them presumably suitable for all ciliates. Hence, we 

assumed a positive relationship between r and MEA biomass in our model. 

The sigmoidal shape of the response curve of some ciliate morphotype is 

perfectly in line with expectations from theoretical considerations: a first 

algal biomass increase at very low levels is still insufficient to promote r 
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and a further increase at already high concentrations suggesting food 

satiation can hardly further enhance r (Fig. 4.7c). While the r of some 

ciliate morphotypes such as the nanophagous tintinnids and the 

picophagous peritrichs on Anabaena responded clearly to the increasing 

MEA biomass, many other nanophagous ciliate morphotypes did not 

respond. 

 

Fig. 4.7: Partial dependence plot for three possible food sources a) bacteria, b) well edible 

algae and c) most edible algae for suitable environmental conditions (high food 

concentrations, low predator and competitor biomasses and an intermediate 

temperature). Thicker line widths indicate that the predictor is important (cf. Fig. 4.5). 

The histograms below provide the number of sampling dates with the respective biomass 

to inform about the range where reliable predictions are possible. Ranges with low 

frequencies are presented in lighter shades to indicate the much greater uncertainty in 

these regions of parameter space. 
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Influence of predators and competitors 

 

Fig. 4.8: Partial dependence plots for the predators/competitors a) Cyclops, b) Daphnia, 

c) Eudiaptomus for suitable environmental conditions (high food concentrations, low 

predator and competitor biomasses and an intermediate temperature). Thicker line 

widths indicate that the predictor is important (cf. Fig. 4.5). The histograms below 

provide the number of sampling dates with the respective biomass to inform about the 

range where reliable predictions are possible. Ranges with low frequencies are presented 

in lighter shades to indicate the much greater uncertainty in these regions of parameter 

space. 

The cyclopoid copepod Cyclops spp. Has a prey range of approximately 2-

600 µm which includes all ciliate morphotypes. Therefore, we constrained 

our model to force a negative association between Cyclops biomass and r. 

Cyclops was the most important predator (Fig. 4.5). The BRTs suggest a 

direct negative effect of Cyclops spp. On numerous ciliate morphotypes if 

its biomass exceeded ca. 100 mg C/m² (Fig. 4.8a). The few ciliate 
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morphotypes which did not respond mostly had their biomass peak in 

summer when most Cyclops species turned into diapause in the sediment 

to escape their predators (cf. Fig. 4.3). In line with the estimated prey size 

range of Cyclops, we did not find a size-dependent pattern in the responses 

of the ciliates, ciliate morphotypes of all size classes responded to an 

increasing Cyclops biomass (e.g. Urotricha 98urcate (17µm) and peritrichs 

on diatoms (43 µm), Fig. 4.8a).  

The filter-feeding cladocerans dominated by Daphnia are omnivorous with 

a prey size range up to ca. 35 µm. Using similar food items as ciliates, they 

are more likely competitors than predators for most ciliates. Competition is 

an indirect effect and was accounted for in the model by including edible 

algae as predictors. In line, only few ciliate morphotypes responded to 

Daphnia, most of them negatively, including the two ciliate morphotypes 

feeding on nano- to microplankton, Monodinium/Didinium and sessile 

suctoria (Fig. 4.8b). This is in line with a competition effect as 

microphytoplankton was not included in the model. 

Eudiaptomus is an omnivorous calanoid copepod with a prey range up to 

60 µm which suggests that it can function as a predator and a competitor 

to the ciliates. Most ciliate morphotypes hardly responded to increasing 

Eudiaptomus biomass (Fig. 4.8c). The overall response was weaker than 

for Cyclops. We found no association with ciliate size or feeding behaviour. 

Discussion 

The biomass of ciliate morphotypes showed a recurrent seasonal pattern, 

often with peaks in spring and summer separated by a decrease around the 

CWP. Many ciliate morphotypes exhibited a high synchrony and a low 

seasonal and inter-annual variability in their biomass compared to 

phytoplankton and rotifers. The ciliate community had a high diversity, 

high evenness and numerous morphotypes were regularly encountered 

during the season revealing a relative constancy in morphotype 

composition. The high temporal autocorrelation in the biomass together 

with the inter-annually recurrent seasonal patterns suggest that their 

dynamics are strictly controlled, yet it remains difficult to determine the 

factors responsible for it given the low explanatory power of the 

environmental predictors for both the biomass and net growth rates. 
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Factors influencing community-level variability and synchrony 

Several processes may contribute to the remarkably low variability and 

high synchrony of the ciliate morphotypes’ dynamics. One is the rather 

similar predation pressure for most ciliates in spring. Furthermore, ciliate 

species are often widely distributed, not specialized to distinct abiotic 

conditions, and hibernate more often in the plankton (Finlay et al., 1996). 

In Lake Constance, they did not respond to the re-oligotrophication during 

the study period in contrast to phytoplankton (Gaedke 1998, Gaedke and 

Wickham, 2004). A low responsiveness of protozoans to external forcing 

was also observed in marine systems (Dolan and Gallegos, 2001) and in 

experiments with epibenthic ciliates (Wickham et al., 2004). Ciliate species 

may comprise a high diversity of functionally different clones which may 

buffer their response to environmental changes (Weisse et al., 2001; 

Krenek et al., 2012).  

Synchronization of the ciliate morphotypes’ biomasses may partly originate 

from the seasonal changes in food supply and the susceptibility to copepod 

predation in late spring. This yields the bimodal seasonal pattern typical 

for mesotrophic lakes like Lake Constance with high biomasses in spring 

and summer and low biomasses in winter and around the clear-water 

phase (cf. Fig. 4.3, Ehrlich and Gaedke, 2020). Ciliate morphotypes’ 

dynamics were more synchronized than in phytoplankton and rotifers (cf. 

Vasseur and Gaedke 2007) yielding higher pair-wise correlation coefficients 

among ciliate than phytoplankton morphotypes (Huber and Gaedke, 2006, 

cf. Fig. 4.3). In Lake Constance, phytoplankton morphotypes exhibit a 

trade-off in respect to growth rates, susceptibility to grazing by various 

grazers and competitive abilities for the most limiting nutrient 

phosphorous (Ehrlich et al., 2020). This trade-off promotes compensatory 

dynamics between edible algae (i.e. WEA and MEA) and other algae which 

are inedible for ciliates and less edible for crustaceans during summer 

(Vasseur et al., 2005, cf. Appendix Tab. C1). Hence, ciliates may be 

functionally less diverse than phytoplankton in respect to grazing resistance 

providing less potential for asynchronous dynamics. 
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Weak environmental dependence of ciliate growth rates 

To investigate the specific role of top-down and bottom-up processes for the 

ciliate morphotypes’ dynamics, we used a series of boosted regression tree 

models fitted separately to each ciliate morphotype. There are some 

caveats for boosted regression tree models: first, limited and low-frequency 

data can be a problem and second, environmental correlations make it 

hard to disentangle the individual effects properly. This might contribute 

to the fact that, despite their flexibility and the inclusion of constraints 

based on mechanistic understanding, these models explained only a small 

fraction of the variability in net growth rates. 

The net growth rate r was positive for all ciliate morphotypes at very low 

temperatures under otherwise suitable growth conditions. In line, unlike 

the crustaceans, some ciliate morphotypes showed substantial growth 

below 6° C, e.g. Limno-/Pelagostrombidium, Rimostrombidium lacustris 

and Balanion planctonicum (cf. Fig. 4.3). This may indicate that ciliates 

are less temperature-sensitive than their crustacean predators and 

therefore have a relative advantage in spring. The patterns in temperature 

response clearly reflect differences in seasonal occurrence of the ciliate 

morphotypes. As temperature reflects the annual cycle most pronouncedly 

in our model, temperature may be a surrogate for other seasonal effects 

which may explain why it was ranked as most important predictor (cf Fig. 

4.5).  

Potential food sources: We investigated the association between ciliate r 

and bacterial biomass and autotrophic picoplankton. Some of the ciliate 

morphotypes are presumably able to feed on picoplankton (cf. Tab. 4.1), but 

unexpectedly, all ciliate morphotypes showed a negative rather than a 

positive relationship when the picoplankton biomass surpassed 1000 mg 

C/m². Similar results were obtained when assuming other conditions in the 

model such as high predator densities or low algal concentrations. A 

possible explanation for the negative response is a high context 

dependency, e.g. picoplankton food supply is high around the CWP when 

the ciliates decline due to the high predation pressure. This prevents them 

from translating the available food into positive net growth (cf. Fig. 4.3). 
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As expected, the phytoplankton species considered as most edible for 

ciliates, MEA, had a distinct positive effect on the r of numerous ciliate 

morphotypes including those considered as solely picoplankton feeders, but 

the feeding range of the ciliate morphotypes did not play a role. The 

responses were largely independent of assuming other environmental 

conditions, but dampened for high predation pressure. Unexpectedly, MEA 

were overall the least important predictor in the models. 

The response of r to biomass increases of the well edible algal group, WEA, 

comprising phytoplankton species considered as potentially usable by 

numerous but not all of our ciliate morphotypes (Skogstad et al., 1987; 

Müller and Schlegel, 1999; Hamels et al., 2004) was often less pronounced 

which is in line with expectations. However, it should be acknowledged 

that the maximum biomasses of WEA were more than an order of 

magnitude lower than that of MEA and in a range where we observed that 

a further increase in MEA still enhanced r. The low predictive power of 

both algal groups may indicate that these two categories are too coarse to 

reflect the presumably rather species-specific but understudied food 

spectra of the individual ciliate morphotypes. 

Potential predators: Our results suggest that the cyclopoid copepod Cyclops 

spp. Was the most important predator on numerous ciliate morphotypes 

when its biomass surpassed ca. 100 mg C/m² (cf. Fig. 4.5). This is in line 

with experimental studies (Wiackowski et al., 1994; Wickham, 1998; 

Adrian and Schneider-Olt, 1999). Its larger copepodite stages and the 

adults are considered as omnivorous/carnivorous and all ciliate 

morphotypes studied here fall into their prey size range. The general 

results concerning all predators were independent of the other 

environmental conditions assumed in the model such as low food 

concentrations or high abundances of the other predators/competitors. 

The r of most ciliate morphotypes was unrelated to the highly variable 

cladoceran biomass which included the smaller Bosmina but was 

dominated by the two daphnid species Daphnia longispina and D. galeata 

reaching a length of ca. 2.5 mm. This may appear unexpected, as daphnids 

were often held responsible for the decline of ciliates towards the CWP 

directly or indirectly via food competition  (Müller et al., 1991; Gaedke and 
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Straile, 1998). However, at least in Lake Constance the decline of ciliates 

starts already prior to the onset of the CWP and mass development of 

daphnids (Fig. 4.3, Tirok and Gaedke, 2006, 2007; Ehrlich and Gaedke, 

2020). An inter-annual comparison of daphnid biomasses in Lake 

Constance during summer with that of ciliates of different size classes 

revealed a size-dependent positive or negative effect (Gaedke and 

Wickham, 2004). This was not supported by our model, presumably 

because it accounts separately for the prey biomasses and thus the indirect 

effects of competition. Thus, our results suggest that the daphnids do not 

exert a strong predation pressure in contrast to Cyclops.  

The calanoid copepod Eudiaptomus had little effect on the r of most ciliate 

morphotypes. Its functional role in plankton food webs has been debated 

for a long time. It has been considered as more algivorous than Cyclops but 

there is also evidence for carnivory (Kunzmann et al., 2019) which we 

cannot support given the variable and weak response of r to the biomass of 

Eudiaptomus. When comparing its impact with Cyclops it should be noted 

that its maximum biomasses remained a factor of 3 lower than that of 

Cyclops in Lake Constance. 

Overall, the changes in r with increasing food concentration or predator 

biomasses were of similar magnitude. This suggests that ciliate 

morphotypes are typically affected by both, bottom-up and top-down 

effects. 

Model and sampling uncertainties 

The ciliate morphotypes differ in feeding modes and food particle size 

ranges and each ciliate morphotype consumes only a small part of the 

plankton resulting in reduced competition and a complex food web with 

many weak interactions. Weak interactions stabilize food web dynamics, 

especially when omnivores are involved (McCann et al., 1998; Emmerson 

and Yearsley, 2004; Li et al., 2021). The resulting high number of mutually 

entwined interactions bears a high potential to adjust to altered conditions 

(Tirok and Gaedke, 2007). One mechanism may be fast predator-prey 

interactions between individual ciliate morphotypes and their specific prey 

species during extended spring peaks when ciliates are the dominant 

herbivores (Tirok and Gaedke, 2007). These weak interactions may be a 
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reason for our low model predictability and may also explain why we found 

using simpler approaches no significant relationships between e.g. the 

biomass of ciliates grouped according to their feeding type or size and the 

biomass of their presumed prey or predators, the predator – prey weight 

ratio or between biomass and size in ciliates (data not shown). 

Another factor that needs to be acknowledged are limitations in the data 

such as the number of data points (102 – 429 for our data set), sampling 

frequency relative to the short generation time of ciliates, and 

measurement precision and accuracy (Elith et al., 2008). Furthermore, 

next to the usual patchiness in plankton biomass internal seiches occur 

during thermal stratification at the sampling site with a period of 4-6 days. 

The seiches change the thickness of the warm epilimnion and, thus, also 

the areal abundance of planktonic organisms we measured in a fix water 

depth of 20 m (Gaedke and Schimmele, 1991). This process may alter the 

ciliate biomass by a factor of up to circa 2 within 2 days imposing noise on 

the biological processes. In line, we found a negative first order 

autocorrelation of r (App. Fig. C8) and average values of r were higher 

when the sampling interval was shorter than a week (data not shown and 

used). Our data set with almost weekly sampling at 2-4 depth intervals for 

12 consecutive years is at the upper limit of what is operationally feasible 

using manually sampling and microscope counting which delivers a 

taxonomically detailed picture of the community. Higher spatio-temporal 

resolution requires automatic probing and image analysis systems which 

are increasingly becoming available (Thomas et al., 2018) but at least so 

far at the cost of taxonomical resolution as far as ciliates are concerned.. 

Conclusions 

The total ciliate biomass and individual ciliate morphotypes exhibited 

relatively recurrent seasonal patterns with low inter-annual variability. 

Many ciliate morphotypes occurred during extended periods of the year 

under different growth conditions and had a low temporal variability, i.e. 

the net growth rates were low compared to the maximum growth rates 

observed in the lab. This leads to the conclusion that ciliate dynamics are 

very well controlled: the clear and pronounced response to the onset of the 

phytoplankton spring bloom and their decline prior to the CWP, i.e. before 
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their dominant prey substantially declines, probably due to top-down 

control by copepods, but not daphnids which have lower biomasses, but 

afterwards they are only moderately related to distinct environmental 

conditions. 

Despite using twelve years of high frequency sampling and a model 

approach considering all known processes simultaneously, we could only 

explain a limited amount of the observed variability. Potential reasons 

include many weak interactions influencing ciliate dynamics which would 

call for more species-specific predictors. Furthermore, the impact of 

regulating factors may be highly context dependent and that even 

moderate noise in the net growth rate may overlay small signals. The 

ciliate dynamics point to a consistently tight balance between growth and 

losses but the multifactorial regulating processes are far from being 

understood under natural conditions. 
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Chapter 5 

 

The double-edged sword of inducible defences: 

costs and benefits of maladaptive switching  

from the individual to the community level 

 

Nadja J. Kath, Ursula Gaedke, Ellen van Velzen 

 

Abstract 

Phenotypic plasticity can increase individual fitness when environmental 

conditions change over time. Inducible defences are a striking example, 

allowing species to react to fluctuating predation pressure by only 

expressing their costly defended phenotype under high predation risk. 

Previous theoretical investigations have focused on how this affects 

predator-prey dynamics, but the impact on competitive outcomes and 

broader community dynamics has received less attention. Here we use a 

small food web model, consisting of two competing plastic autotrophic 

species exploited by a shared consumer, to study how the speed of inducible 

defences across three trade-off constellations affect autotroph coexistence, 

biomasses across trophic levels, and temporal variability. Contrary to the 

intuitive idea that faster adaptation increases autotroph fitness, we found 

that higher switching rates reduced individual fitness as it consistently 

provoked more maladaptive switching towards undefended phenotypes 

under high predation pressure. This had an unexpected positive impact on 

the consumer, increasing consumer biomass and lowering total autotroph 

biomass. Additionally, maladaptive switching strongly reduced autotroph 

coexistence through an emerging source-sink dynamic between defended 

and undefended phenotypes. The striking impact of maladaptive switching 

on species and food web dynamics indicates that this mechanism may be of 

more critical importance than previously recognized. 
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Introduction 

Under variable environments, species with fixed trait values cannot always 

be well-adapted, since traits that are adaptive in certain environmental 

conditions are likely maladaptive in other conditions. Many species can 

overcome this problem by phenotypic plasticity, which allows them to 

adapt their trait values by behavioural, morphological or biochemical 

changes to different environmental conditions. This optimization of their 

trait values can increase the species’ fitness1,2 and stabilize their 

population dynamics which decreases their risk of extinction3–5. 

Inducible defences are a striking example of phenotypic plasticity. They 

allow species to react to a changing predation pressure by only expressing 

the defended phenotype when predation pressure is high6,7. Inducible 

defences can be behavioural, e.g. vertical migration in zooplankton8,9, 

morphological, e.g. algae growing spines or tadpoles enlarging their body 

size10,11, or biochemical mechanisms, e.g. toxin production12. As defence 

mechanisms incur costs depending on the extent and type of the defence13–

15, inducible defences economize these defence costs by allowing individuals 

to express the phenotype that is most suited to the current environmental 

conditions (undefended and fast-growing when predators are scarce, and 

well-defended when predators are abundant), thereby increasing the 

species’ fitness7.  

However, there may be costs associated with plasticity which can arise in 

different ways. Plasticity costs are a reduction in a fitness-related trait, e.g. 

growth rate, for both the undefended and the defended phenotype of a 

species due to a high plasticity in expressing a range of defence, e.g. 

genetic information for toxicity that has to be carried along whether the 

phenotype produces the toxins or not16 (Fig. 5.1a). But while it makes 

sense to assume such costs, they were rarely found even in studies that 

specifically looked for them17. A less obvious type of cost is the possibility of 

maladaptive phenotype expression or maladaptive switching. Species with 

inducible defences need the information of the surrounding predation risk 



111 

 

or type of predator from their environment to judge whether and which 

defence they need to express18,19. Different cues such as kairomones can be 

used for this decision20. Maladaptive switching is the risk of individuals 

switching from a higher-fitness phenotype to a lower-fitness one. This can 

happen if the cues are misinterpreted, e.g. if they are hampered by 

environmental influences such as CO2
21, by lag times between the 

recognition of cues and the realization of the defence22, or through simple 

stochasticity. This may mean that individuals fail to accurately estimate 

current predator density, and thus make the wrong choice on whether they 

should display defence. As maladaptive switching is typically neglected in 

theoretical investigations of the consequences of inducible defences, we aim 

to investigate under which circumstances maladaptive switching arises, 

and what its consequences are for the species itself and for the other 

species in the food web. 

 

Fig. 5.1: Growth rate – defence trade-off, food web structure, and exchange rates. (a) 

Trait space of defence and growth rate including the plasticity costs pci and defence costs 

dci for a hypothetical species. White squares denote the undefended phenotypes, black 

squares the defended phenotypes of the same species. Solid lines link phenotypes of the 

same species. (b) Food web of two plastic, autotrophic species A and B sharing a carrying 

capacity K and a consumer C. Both autotrophic species have an undefended, u, and a 

defended, d, phenotype. Solid arrows represent biomass fluxes and their width indicates 

their relative importance. Dotted arrows indicate plastic exchange between phenotypes. 

(c) Exchange rate χ between both phenotypes and its dependence on the consumer 

biomass (see eqs. 5.9 and 5.10 in the Methods). 

A critical component of inducible defences is the speed of adaptation, which 

can vary depending on their defence mechanism. Behavioural strategies 
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can be very fast, while morphological defences are rather slow, and 

chemical defences are somewhere in between. Differences in speed of 

adaptation of the prey can make the difference between the predator going 

extinct or not, and between stasis or oscillations2. A higher speed of 

adaptation is commonly seen as positive for the plastic organism, as either 

the defence is reached fast or the costs of the defence can be reduced 

quickly; but this depends on the assumption that switching is always 

adaptive, i.e. that low-fitness phenotypes switch to high-fitness 

phenotypes. If this assumption does not hold, faster switching may indeed 

be detrimental to plastic organisms implying that individuals switch more 

often from high to low fitness. This indicates the importance of studying 

whether, and under what conditions, maladaptive switching occurs. 

The possibility of maladaptive switching may have consequences beyond 

directly lowering the fitness of the plastic species: it may impact the 

growth of their consumers, or lower their competitive ability compared to 

other prey species. Most studies take only one plastic species into 

account12,21 and therefore lack the possibility to investigate the effect of 

switching speed on competition between two plastic species. Here we 

investigate the effects of phenotypic plasticity from a community 

perspective, considering a small food web of two plastic autotroph species A 

and B having each a defended and an undefended phenotype with a joint 

consumer C and a shared carrying capacity (Fig. 5.1b). As species cannot 

optimize all their traits, i.e. defence and growth rate, simultaneously, both 

autotrophs face a growth-defence trade-off (Fig. 5.1a, see Methods for 

details). Plasticity is modelled as a switching function23 connecting both 

phenotypes of a species with an exchange rate χj, which depends on the 

consumer biomass to represent grazing pressure (Fig. 5.1c, see Methods for 

details). While individuals will mostly express their defended phenotype 

when consumer biomass is high, and their undefended phenotype when 

consumer biomass is low, there is a risk of maladaptive switching23. We 

indeed found a substantial amount of maladaptive switching towards 

undefended phenotypes, resulting in a source-sink dynamic between 

phenotypes which reduced autotroph coexistence. These patterns were 

exacerbated by higher switching rates, which consistently provoked more 

maladaptive switching. Thus, counterintuitively, a higher speed of 
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adaptation typically reduced individual fitness, lowering total autotroph 

biomass and increasing consumer biomass. 

Results 

In our simulations for the autotrophs, we varied two of the three trade-off 

properties (level of defence, defence costs and plasticity costs; see Fig. 5.1a) 

at a time and kept the third one constant, leading to three constellations 

which are named parallel, crossing, and angle according to their trade-off 

lines (Tab. 5.1). In all three, the autotrophic species B spanned the entire 

defence range, i.e. it had a completely undefended phenotype Bu and a 

maximally defended phenotype Bd. A either had a more limited defence 

range (in constellations parallel and angle) or spanned the entire range as 

well (in constellation crossing), representing three distinct ways that the 

trade-off between defence, growth rate, and plasticity range may play out. 

For each constellation, to investigate the effect of plasticity we varied the 

maximum switching rate χmax over 5 orders of magnitude (Tab. 5.1, middle 

row). These results were also compared with a non-plastic baseline 

scenario where χmax = 0 (Tab. 5.1, upper row), as well as a rigid scenario 

where the species have only a single phenotype (Tab. 5.1, bottom row). All 

parameters and their values can be found in Appendix Tab. D1. 

In the following, we give a detailed description of the results for 

constellation parallel, where the autotroph species A and B have the same 

defence costs resulting in parallel trade-off lines between defence and 

growth rate, while varying the level of defence for A and varying the 

plasticity costs for B (Tab. 5.1, left column). We start with examining 

patterns for the phenotype biomasses, coexistence and community stability 

in the non-plastic baseline scenario “parallel 0”, and then compare the 

corresponding scenarios with a low exchange rate (“parallel 0.01”) and a 

high exchange rate (“parallel 1”). We next discuss the other two 

constellations (crossing and angle, Tab. 5.1) more briefly. Finally, we 

generalize across all scenarios and focus on the coexistence, the degree of 

maladaptive switching, and the consumer and total autotroph biomasses. 
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Non-plastic baseline dynamics: scenario parallel 0 

Tab. 5.1: Description of the three constellations parallel, crossing, and angle defining the 

position of the four phenotypes in the trait space of defence and growth rate. The defence 

and growth rate resp. the properties they depend on are listed for all autotrophs. 

Autotrophs are denoted by symbols (open triangle undefended phenotype of species A, 

Au, filled triangle defended phenotype of species A, Ad, open circle undefended phenotype 

of species B, Bu, filled circle defended phenotype of species B, Bd, shaded triangle rigid A, 

shaded circle rigid B), the arrows describe the properties being varied in the simulations 

and the lines connect both phenotypes of a species, whereby only solid lines express 

actual switching between phenotypes. 

 Parallel crossing angle 

Property kept 

constant 

defence costs (slope 

of trade-off): 0.3 

defence levels: 0 for 

Au / Bu and 

 0.9 for Ad / Bd 

plasticity costs 

(overall growth 

reduction): 0 

Non-plastic, i.e. no 

plasticity but four 

single phenotypes 

(“0”) 

   

Exchange rate χmax 

between 10-4 and 

101 enabling 

plasticity 

   

Rigid: one 

phenotype per 

species, with mean 

trait values of its  

two phenotypes 

(“*”) 
   

 

In this scenario, four single phenotypes unconnected by exchange compete 

with each other. Thus, species coexistence here depends entirely on 

phenotype coexistence: the trade-offs have to be such that for each species, 

at least one phenotype is a good enough competitor to survive. Which 
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phenotypes survive depend on the two trade-off parameters, defence of the 

defended phenotype of species A (dAu) and plasticity costs for species B 

(pcB), which thus determine whether coexistence is possible. 

The defence costs were kept constant at an intermediate value of -0.3 for 

both species, resulting in parallel trade-off lines (Tab. 5.1, scenario 

“parallel 0”). The undefended phenotype of A, Au, is a growth-specialist 

with the highest growth rate of all phenotypes. The defended phenotype of 

the same species, Ad, has a defence between 0 and 0.9 and a relatively high 

growth rate, and can be viewed as a generalist. Species B has variable 

plasticity costs which lower the growth rate of both phenotypes. The 

defended phenotype of species B, Bd, has the lowest growth rate of all 

phenotypes but is very well-defended, and thus a defence-specialist. Its 

undefended phenotype, Bu, is as undefended as Au but has a lower growth 

rate; it is thus always an inferior competitor and inevitably goes extinct 

(Fig. 5.2c).  

As Bu never survives, coexistence of the autotroph species requires the 

survival of defence-specialist Bd. Bd can only survive if Ad is not too 

defended, because Ad has a higher growth rate than Bd and will outcompete 

Bd in the “defended” niche otherwise (region Ib; Fig. 5.2d, h). A second 

criterion is that the plasticity costs for B must not be too high, because 

then the benefits of the defence of Bd no longer outweigh the costs, and it 

will go extinct even if there are no other highly defended phenotypes 

around (region Ia; Fig. 5.2d, g). In the regions where Bd goes extinct, 

species coexistence is not possible (Fig. 5.2e). The generalist Ad either 

survives by itself (region Ia in Fig. 5.2b, g) if its defence is low to 

intermediate, or together with the growth-specialist Au if its defence is 

high (region Ib in Fig. 5.2a, b, h). In the regions II and III where Bd 

survives, it never survives on its own, but always together with one of the 

phenotypes of A. It coexists with the growth-specialist Au if the plasticity 

costs are very low (region II in Fig. 5.2), and together with Ad if they are 

low to intermediate (region III in Fig. 5.2). These two regions do support 

species coexistence (Fig. 5.2e). 
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Fig. 5.2: Biomasses, coexistence and trait space for scenario parallel 0. Biomasses of the 

four autotrophic phenotypes (a-d), their coexistence patterns I, the consumer biomass (f) 

and the autotrophs’ trait values (g-j) for scenario “parallel 0” (higher biomasses are 

shown by darker colours). Lines in a-f separate the regions I-III of different coexistence 

patterns. An exemplary trait combination for every region is shown in g-j; larger symbols 

indicate the surviving phenotypes. Shaded areas in e depict oscillating systems (quarter-

lag predator-prey cycles in dense shading, antiphase cycles in loose shading). 

In three of the four regions (Ib, II and III in Fig. 5.2f), consumer biomass is 

low, because the final community always contains a well-defended 

phenotype (Ad in region Ib, and Bd in regions II and III); the overall level of 

defence of the community is relatively high in these regions (Appendix 

D1a). Conversely, consumer biomass is relatively high in region Ia, because 

the only surviving autotroph phenotype is relatively fast-growing and 

fairly undefended (Fig. 5.2f). The regions where a well-defended phenotype 

survives often show antiphase cycles (Ib, II and III in Fig. 5.2e). These 

cycles do not occur in the region where only Ad survives (Ia in Fig. 5.2e); 

but regular quarter-lag predator-prey cycles can be found here if Ad is 

almost entirely undefended. 

While the community defence (i.e. mean defence of the autotroph 

community) depends strongly on the coexisting phenotypes, the community 

growth rate is roughly constant because over the entire trait space, at least 

one phenotype with a high growth rate always survives (Appendix Fig. D1). 



117 

 

The standing variance of the community defence was high when two 

phenotypes coexist as they occupy different niches along the defence axis 

(Fig. 5.2h-j). In contrast, the variance of the community growth rate was 

very low and almost constant across all regions. 

Effect of phenotypic plasticity 

Even a little bit of plasticity in the scenario parallel 0.01 (χmax = 0.01) can 

change the above patterns for coexistence, stability, and average consumer 

biomass (Fig. 5.3a-h). While the autotrophs are intuitively expected to 

benefit from being plastic, the effect of plasticity on consumer biomass 

always turned out to be positive (Fig. 5.3h). This may be explained by the 

fact that switching was always, on average, maladaptive (Fig. 5.3e, f): the 

adaptation index φ determining whether the net effect of switching is 

adaptive or maladaptive (see eq. 5.11-5.13 in the Methods) can approach 

zero, but is always negative at equilibrium (see Appendix D2), indicating 

maladaptive switching. 

The most striking effect of plasticity was on coexistence, which was 

affected both positively and negatively by plasticity in different regions of 

the parameter space (Fig. 5.3a-d,g). A negative effect on coexistence is seen 

in region II, where the autotroph species previously coexisted (Fig. 5.2e), 

while with plasticity, B outcompeted A (Fig. 5.3g). Without plasticity, 

coexistence was possible in this region because Au and Bd survived; 

importantly, Au outcompeted Bu due to its higher growth rate, even though 

the difference between their growth rates is very small in this region (Fig. 

5.2i). Plasticity reverses the competitive exclusion pattern between the two 

undefended phenotypes: Bu receives a constant flow of biomass from the 

well-defended Bd, which compensates for its slightly lower growth rate and 

allows it to outcompete Au. Thus, coexistence is reduced as a direct 

consequence of maladaptive switching.   
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Fig. 5.3: Biomasses and coexistence for the scenarios parallel 0.01 (a-h) and parallel 1 (i-

p). Biomasses of the four autotrophic phenotypes (a-d, i-l), the autotrophs’ maladaptive 

switching of A (e, m) and B (f, n), the autotroph coexistence patterns (g, o) and the 

consumer biomass (h, p). Higher biomasses or higher maladaptive switching are shown 

by darker colours. Lines separate the regions I-III of different autotroph coexistence. 

Grey areas in e, f, m, n depict areas where the species was extinct. Shaded areas in g and 

o depict oscillating systems (quarter-lag predator-prey cycles in dense shading, 

antiphase cycles in loose shading). 

Plasticity can also promote coexistence, as the coexistence region now 

extends into former region Ib where the generalist Ad is highly defended 

(Fig. 5.2b, Fig. 5.3b). This is also an effect of maladaptive switching, 

though in this case the effect is indirect, mediated through the effect of 
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plasticity on consumer biomass. Without plasticity, coexistence was 

impossible in region Ib because Bd was always outcompeted by Ad: even 

though the latter had a slightly lower level of defence, this was outweighed 

by its higher growth rate, making Ad the superior competitor over Bd. 

However, plasticity changes this because maladaptive switching increases 

the consumer biomass, which in turn alters the cost/ benefit balance of 

defence: Bd derives a stronger benefit from its high level of defence, which 

now outweighs the cost and allows it to survive. Coexistence through this 

mechanism is not possible when the plasticity costs for B are too high or 

when Ad is too well-defended, explaining the narrowing of the coexistence 

“tail” for high defence of Ad (Fig. 5.3g). 

While the patterns of coexistence changed when allowing for plasticity, the 

patterns in the trait values were nearly indistinguishable from the 

previous scenario (Appendix Fig. D1, D2). Finally, plasticity had a strong 

impact on the community dynamics, as most of the antiphase cycles were 

stabilized (Ib, II, III in Fig. 5.3g). Their area decreased sharply as these 

cycles were characterized by asynchronous dynamics between the two prey 

phenotypes, which were reduced by plasticity. In contrast, the area of the 

quarter-lag predator-prey cycles remained unaffected by plasticity. 

All the above patterns were found to a far stronger degree with a higher 

amount of plasticity (χmax = 1; Fig. 5.3i-p). Consumer biomass increased 

strongly everywhere (cf. Fig. 5.3h, p), reflecting the strong increase in the 

degree of maladaptive switching (cf. Fig. 5.3e, f, m, n). The higher exchange 

rates led to more synchronization between the phenotypes, extinguishing 

the antiphase cycles completely (Fig. 5.3p). It also decreased the biomass of 

both defended phenotypes (cf. Fig. 5.3b, d, j, l). This in turn led to a lower 

community defence and a higher community growth rate (Appendix Fig. 

D3) both contributing to a higher consumer biomass. Finally, there was a 

sharp decrease in the coexistence region for high plasticity (Fig. 5.3o). 

Region II, where B outcompetes A through maladaptive switching, doubled 

in size due to the much higher degree of maladaptive switching (Fig. 5.3m, 

n). Region I, where A outcompetes B, now also increased, when the level of 

defence of Ad is relatively low (Fig. 5.3o). This is again an indirect effect of 

maladaptive switching causing a strong increase in consumer biomass, 

affecting the cost/ benefit balance of defence: while Bd derives a strong 
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benefit from its high level of defence, Bu is completely undefended, and is 

at an extra disadvantage because of its low growth rate. Thus, while Bd 

would have been able to survive by itself, the high exchange rate causes a 

strong source-sink dynamic which drives B extinct. 

Effect of plasticity in constellations crossing and angle 

In constellation crossing the trade-off lines of both species cross in the trait 

space, as the level of defence is the same for both defended phenotypes; 

species B has a lower growth rate for its undefended phenotype than 

species A due to plasticity costs, while its defence costs are low and thus 

the growth rate of its defended phenotype is higher than for species A (Tab. 

5.1, Appendix Fig. D4). Without plasticity the crossing trade-off lines lead 

to coexistence of both species in all simulations as Au and Bd were always 

the only survivors, mostly showing antiphase oscillations (Appendix Fig. 

D4). 

Allowing for phenotypic plasticity has the same results as were observed 

for constellation parallel: consumer biomass sharply increases (Fig. 5.4a, 

e); antiphase cycles are dampened or absent; and the area of coexistence 

decreases (Fig. 5.4b, f). All these changes are more pronounced for higher 

exchange rates (cf. Fig. 5.4a, b, e, f). Again, the biomass of the defended 

phenotypes decreased for high exchange rates (Appendix Fig. D5). 

Switching was always maladaptive for high exchange rates (Fig. 5.4g, h), 

and mostly maladaptive for low exchange rates (Fig. 5.4c, d). As was seen 

for constellation parallel, maladaptive switching was the reason for the 

decrease in coexistence. B can outcompete A when B has low plasticity 

costs. Bd has a much higher growth rate than Ad, while the undefended 

phenotypes have similar growth rates. The direction of competitive 

exclusion between Au and Bu is thus easily reversed by Bd donating 

biomass to the sink Bu, allowing B to occupy both niches and outcompete A 

(region II in Fig. 5.4b, f). The same mechanism happens in reverse for high 

plasticity and defence costs of B: the differences in growth rate for the 

undefended phenotypes are high, while the defended phenotypes have very 

similar growth rates. Au can support Ad, and A outcompetes B (region III in 

Fig. 5.4b, f). 
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Fig. 5.4: Coexistence and maladaptive switching for scenario crossing 0.01 (a-d) and 

crossing 1 (e-h). Consumer biomass (a, e), the autotroph coexistence patterns (b, f), and 

the autotrophs’ maladaptive switching (c, d, g, h) (higher biomasses or more intensive 

maladaptive switching are shown by darker colours). Lines separate the regions I-III of 

different autotroph coexistence. Shaded areas in b depict antiphase cycles. Grey areas in 

c, d, g, h depict areas where the species was extinct. Shaded grey areas depict areas 

without simulations (cf. methods). Note that c, d, g, h have each a different colour scale. 

In constellation angle there are no plasticity costs, and thus the 

undefended phenotypes Au and Bu have identical growth rates. The 

defended phenotypes take the same places in trait space as in the parallel 

constellation: Ad is a generalist, with a lower level of defence and a 

relatively high growth rate due to low defence costs, whereas Bd is a 

defence-specialist with a high level of defence but a low growth rate. This 

leads to the trade-off lines forming an angle (see Tab. 5.1). Without 

phenotypic plasticity, the coexistence patterns are the same as in 

constellation parallel, except that no competitive exclusion occurs between 

the undefended phenotypes; instead, they neutrally coexist in regions Ib, II 

and III (Appendix Fig. D6; cf. Fig. 5.2). 

With plasticity, neutral coexistence vanished: the defended phenotype that 

survived (Ad in region Ib, Bd in region III) could support the undefended 

phenotype of its own species, driving the other species extinct (Fig. 5.5b, f). 

As in the other constellations, the area of coexistence and the biomasses of 

the defended phenotypes decreased and antiphase cycles vanished with 
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increasing χmax (Fig. 5.5b, f, Appendix Fig. D7), while maladaptive 

switching and the consumer biomass increased (Fig. 5.5). 

 

Fig. 5.5: Coexistence and maladaptive switching for scenario angle 0.01 (a-d) and angle 1 

(e-h). Consumer biomass (a, e), the autotroph coexistence patterns (b, f), and the 

autotrophs’ maladaptive switching (c, d, g, h) (higher biomasses or more intensive 

maladaptive switching are shown by darker colours). Lines separate the regions I-III of 

different autotroph coexistence. Shaded areas in b depict antiphase cycles. Grey areas in 

c, d, g, h depict areas where the species was extinct. Note that c, d, g, h have each a 

different colour scale. 

General results 

As plasticity had very similar effects across all three constellations, we 

here generalize our results: we compare the three constellations for 

exchange rates over 5 orders of magnitude, as well as the non-plastic 

scenario and the rigid scenario (Tab. 5.1).  

For all constellations, the fraction of simulation runs in the trait space 

leading to coexistence was highest in the non-plastic scenario and 

decreased with increasing χmax (Fig. 5.6a-c). In constellation parallel the 

share of coexistence for increasing χmax continuously decreased from 51% to 

3% (Fig. 5.6a). In crossing, the share decreased from full to no coexistence 

(Fig. 5.6b). In angle, the share of coexistence was 88% in the non-plastic 

scenario when taking also neutral coexistence into account (Fig. 5.6c). Its 
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share decreased to 9% for a χmax of 10 and increased again to 25% for the 

rigid scenario. Maladaptive switching increased for both species and all 

constellations for increasing χmax (Fig. 5.6d-f). The increased plasticity led 

to a lower total autotroph biomass and a lower share of defended 

phenotypes (Fig. 5.6g-i), which resulted in higher consumer biomass (Fig. 

5.6g-i). 

 

Fig. 5.6: General patterns for coexistence, maladapative switching and biomasses. Share 

of surviving species in percent (A, B, coexistence or neutral coexistence) (a-c), median 

absolute value of maladaptive switching φ (d-f) and median of total autotroph biomass (A 

+ B), median consumer biomass and share of defended phenotypes ((Ad+Bd)/(A+B)) (g-i) 

for the three constellations and increasing maximum exchange rates χmax. χmax = 0 

denotes the non-plastic scenario; * denotes the rigid scenarios. Maladaptive switching 

and the share of defended phenotypes do not apply for the rigid scenarios. 

Interestingly, and counterintuitively, the above patterns show that 

increasing the speed of plasticity (by increasing χmax) makes the system 

behave more like the rigid system. The coexistence patterns in scenarios 

with high χmax approach those of the rigid scenarios in two of the 
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constellations (Fig. 5.6a, b). Similarly, the total autotroph and consumer 

biomasses approach the ones in the rigid scenarios (Fig. 5.6g-i). Thus, we 

found the higher χmax make the autotrophs not more adaptive, but behave 

more like non-adaptive species. 

Discussion 

To understand the consequences of phenotypic plasticity, including the 

consequences of maladaptive switching, we investigated three trade-off 

constellations in a small food web of two plastic autotrophs and a shared 

consumer across different levels of plasticity. All constellations showed 

very consistent patterns: a higher speed of adaptation stabilized the 

dynamics, decreased the area of autotroph coexistence, increased the 

degree of maladaptive switching, and thus lowered total autotroph biomass 

and increased consumer biomass. It is well established that plasticity leads 

to stabilization2–5,24, but the other patterns are more surprising. Most 

importantly, contrary to the intuitive expectation that plasticity in the 

defence of its prey is disadvantageous for a predator, as the prey can 

switch between undefended and defended phenotypes, we find it is 

beneficial for the predator as maladaptive switching enhances the biomass 

of its undefended prey.  

Most of the patterns we found depend strongly on the result that, in the 

long term, plasticity results in maladaptive switching between phenotypes. 

To explain why this is such a common result, we started by considering a 

simplified non-plastic scenario: one autotroph with an undefended and 

defended phenotype Au and Ad and one consumer. In this case, eventually 

Au and Ad may settle at an equilibrium state where they have equal 

fitness25 (provided that the balance between costs and benefits of defence 

enables their stable coexistence). At e.g. low defence costs, the equilibrium 

biomass of the defended phenotypes will be high while those of the 

undefended phenotypes and the consumer will be low. But if the 

autotrophs can switch, this picture changes: due to the low predation 

pressure, the switching rate from the defended towards the undefended 

phenotypes χd is high (cf. Fig. 5.1). Together with the higher biomass of Ad 

this results in a net biomass flow towards the undefended phenotypes. This 

pushes the phenotypes off their original equilibrium biomasses: Au 

increases and Ad decreases, which in turn results in an increased consumer 
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biomass. This increases the benefit of defence for Ad, causing selection to 

push for an increase in the relative share of Ad while plastic switching 

continues to push in the opposite direction. Eventually Au and Ad reach a 

new equilibrium where selection and switching balance each other out. 

Since selection is always adaptive (i.e. increasing the frequency of the high-

fitness phenotype), and switching always acts to oppose selection at this 

equilibrium, switching is maladaptive (see Appendix D2). Higher switching 

rates exacerbate this process, and the phenotypes are pushed further away 

from their original equilibrium leading to a higher degree of maladaptive 

switching. As the switching rates increase, the shares of defended and 

undefended phenotypes approach 50:50 (Fig. 5.6g-i), and the system 

behaves more and more like the “rigid” baseline where each species has 

only a single phenotype and thus cannot adapt at all. Thus, 

counterintuitively, high switching rates appear to make the autotrophs 

less adaptive rather than more adaptive, resulting in a higher biomass for 

undefended phenotypes and thus a higher consumer biomass.  

Plasticity also has consequences for competition, and thereby for 

coexistence of the two autotroph species. Without plasticity, species 

coexistence is determined by which phenotypes can coexist, which is 

determined by their locations in trait space25 (see Appendix Fig. D8). 

Plasticity can change these coexistence patterns, allowing phenotypes to 

survive where they would have gone extinct without plasticity, or vice 

versa. A clear example is the survival of Au and the extinction of Bu 

without plasticity (region II in Fig. 5.2), a pattern which was reversed by 

even a small amount of plasticity (region II in Fig. 5.3) through the source-

sink dynamics generated by maladaptive switching. Such effects on 

survival are particularly likely to happen when the fitness difference 

between two competing phenotypes is small, as was the case between Au 

and Bu in region II (Fig. 5.2I). Without plasticity Au could always 

outcompete Bu, but because its growth rate was only slightly higher than 

that of Bu and Bd is a good competitor with high defence and only low 

plasticity costs, the biomass flow caused by plasticity could easily 

overwhelm this and allow Bu to survive instead. This allows one of the 

autotroph species to completely outcompete the other one under conditions 

when two non-plastic species coexisted. This result is very similar to the 
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effect of dispersal in metacommunities, where source-sink dynamics 

between patches can change coexistence and lead to the extinction of the 

locally superior competitor26,27. 

Plasticity can also affect coexistence indirectly: it causes an increase in 

consumer biomass, which affects the fitness of all phenotypes (increasing 

the fitness of well-defended ones and decreasing the fitness of undefended 

ones), which can in turn alter coexistence, sometimes increasing the 

coexistence range (Fig. 5.3g vs. Fig. 5.2e), but more often decreasing it (Fig. 

5.3o vs. Fig. 5.2e). Thus, the combined effect of inducible defences on 

coexistence is highly complex, but overall it reduces the potential for 

competitive coexistence, and more strongly so for faster switching. While 

the notion that phenotypic plasticity may hinder coexistence is quite well 

established28, current theory focuses on traits that are directly involved in 

competition and resource uptake, whereas in our system the effects of 

phenotypic plasticity are also mediated through the interaction between 

autotrophs and their consumer. Despite this difference, our conclusions are 

largely the same: inducible defences impact coexistence through their effect 

on niche differences and fitness differences28. Niche differences are reduced 

because the species can occupy broader niches through switching, while 

fitness differences are affected (sometimes increased and sometimes 

decreased) by maladaptive switching, as well as by the impact on consumer 

biomass. In addition, the source-sink dynamic arising from maladaptive 

switching equalizes phenotype biomasses at high switching rates, similar 

to how dispersal in metacommunities decreases inter-patch diversity due 

to homogenization29, which reduces niche differences between the 

competing species further and further until their coexistence becomes 

impossible. 

To represent inducible defences in our model, we used switching functions, 

which are commonly used for binary defence mechanisms where 

individuals can switch between discrete undefended and defended 

phenotypes23. Alternatively inducible defences can be modelled using the 

fitness gradient approach or the optimal gradient approach. Since the 

dynamical consequences of inducible defences can depend on the approach 

used23, the impact on maladaptive switching, consumer biomass and 

coexistence may depend on the modelling approach as well. However, 
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directly measuring maladaptive switching as a consequence of plasticity is 

only possible with the switching function approach, since only this 

approach explicitly incorporates individual switching decisions. In 

contrast, the fitness gradient and optimal trait are phenomenological 

approaches, which consider the average trait in the population instead of 

modelling individual behaviour, thus making it impossible to measure 

maladaptive switching. The commonness of these approaches23, and their 

underlying assumption that plastic decisions increase fitness, may have 

contributed to the way that maladaptive switching has long been unnoticed 

in theoretical studies on the ecological consequences of inducible defences. 

Although our results show that switching is almost always maladaptive in 

the long run, it is important to note that plastic species most likely still 

have an advantage in the short term: as long as the environment is still 

variable, they can quickly defend against predators when predation 

pressure is high and save these costs for their defence when predation 

pressure is low. On the long term, however, plasticity stabilizes the 

predator-prey dynamics2,24, and thus plastic species remove their own 

advantage of a variable environment in which they have a competitive 

advantage2. As natural food web dynamics are complex and include many 

species and are subject to temporal variation in abiotic conditions, the 

stabilizing impact of plasticity may be less strong under natural conditions. 

Although predator oscillations have been shown to be dampened by 

inducible defences3, they may not disappear entirely, and the degree of 

maladaptive switching may therefore be less severe in nature than found 

in our model. 

Overall, our results show very consistent patterns: a higher switching rate 

stabilized the dynamics, decreased the area of coexistence for both 

autotrophic species and increased the degree of maladaptive switching and 

the consumer biomass. Thus, we conclude that inducible defences can be a 

double-edged sword: a plastic species may outcompete its competitors via 

source-sink dynamics, but the negative impact of maladaptive switching 

can also lower its biomass or even drive it extinct. Plasticity can also have 

both negative and positive impacts on the food web level: when species are 

outcompeted, the food web diversity decreases; but the system is stabilized 

which may prevent further species loss due to strong oscillations. 
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Moreover, energy transfer to higher trophic levels is enhanced as more 

undefended prey are available to the consumer due to maladaptive 

switching. Maladaptive switching may also prevent plastic species from 

becoming Darwinian Demons counteracting the extinction of other species. 

Finally, maladaptive switching may also contribute to the fact that 

plasticity is not universal, despite its seemingly obvious advantages in 

rapidly changing environments prevailing almost everywhere. Overall, the 

striking impact of maladaptive switching on species and food web 

dynamics indicates that this mechanism may be of critical importance for 

large-scale effects of inducible defences. To what extent these effects can be 

generalized to more trophic levels and larger food webs under externally 

forced environmental conditions will be an important subject for future 

investigations.  

Methods 

Food web structure 

We consider a food web with two plastic autotroph species A and B, having 

each an undefended (Au resp. Bu) and a defended (Ad resp. Bd) phenotype. 

The autotrophs compete for the same resources (modelled as a shared 

carrying capacity) and are predated on by a joint consumer C (Fig. 5.1b). 

Phenotype j of autotroph species i grows logistically with a growth rate rij 

and a carrying capacity Kij (equations 5.1-5.4). It is grazed by the consumer 

following a Holling type II functional response with attack rate aij and 

handling time h. Switching between two phenotypes of the same species is 

represented by the exchange rates χj. The consumer C converts the 

captured biomass with a conversion efficiency ε into own biomass, and dies 

with a death rate δ (equation 5.5). 

Defence is modelled as a binary trait: a species expresses either an 

undefended or a defended phenotype, e.g. either it grows spines or does 

not. A second parameter is the defence value, analogous to the spine length 

of an algal species protecting algae less or more against their predators. 

The undefended phenotypes have a defence value of 0, (i.e. no defence), 

while the defended ones have a defence value dij between 0.01 and 0.9, 

meaning 1 to 90% of the biomass cannot be consumed by the consumer. 
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Defence is modelled as a pre-attack defence against the consumer as it 

scales the maximum attack rate a30 (Equation 5.7). 

            per capita growth                     mortality             exchange  

Ȧ𝑢 =  𝑟𝐴𝑢 (1 −
𝐴𝑢 + 𝐴𝑑 + 𝐵𝑢 + 𝐵𝑑

 𝐾𝐴𝑢

) 𝐴𝑢

−
𝑎𝐴𝑢𝐴𝑢𝐶

1 + ℎ(𝑎𝐴𝑢𝐴𝑢 + 𝑎𝐴𝐷𝐴𝑑 + 𝑎𝐵𝑢𝐵𝑢 + 𝑎𝐵𝑑𝐵𝑑)
− 𝜒𝑢𝐴𝑢 + 𝜒𝑑𝐴𝑑 

(5.1) 

Ȧ𝑑 =  𝑟𝐴𝑑 (1 −
𝐴𝑢 + 𝐴𝑑 + 𝐵𝑢 + 𝐵𝑑

 𝐾𝐴𝑑

) 𝐴𝑑

−
𝑎𝐴𝑑𝐴𝑑𝐶

1 + ℎ(𝑎𝐴𝑢𝐴𝑢 + 𝑎𝐴𝐷𝐴𝑑 + 𝑎𝐵𝑢𝐵𝑢 + 𝑎𝐵𝑑𝐵𝑑)
+ 𝜒𝑢𝐴𝑢 − 𝜒𝑑𝐴𝑑 

(5.2) 

Ḃ𝑢 =  𝑟𝐵𝑢 (1 −
𝐴𝑢 + 𝐴𝑑 + 𝐵𝑢 + 𝐵𝑑

 𝐾𝐵𝑢

) 𝐵𝑢

−
𝑎𝐵𝑢𝐵𝑢𝐶

1 + ℎ(𝑎𝐴𝑢𝐴𝑢 + 𝑎𝐴𝐷𝐴𝑑 + 𝑎𝐵𝑢𝐵𝑢 + 𝑎𝐵𝑑𝐵𝑑)
− 𝜒𝑢𝐵𝑢 + 𝜒𝑑𝐵𝑑 

(5.3) 

Ḃ𝑑 =  𝑟𝐵𝑑 (1 −
𝐴𝑢 + 𝐴𝑑 + 𝐵𝑢 + 𝐵𝑑

 𝐾𝐵𝑑

) 𝐵𝑑

−
𝑎𝐵𝑑𝐵𝑑𝐶

1 + ℎ(𝑎𝐴𝑢𝐴𝑢 + 𝑎𝐴𝐷𝐴𝑑 + 𝑎𝐵𝑢𝐵𝑢 + 𝑎𝐵𝑑𝐵𝑑)
+ 𝜒𝑢𝐵𝑢 − 𝜒𝑑𝐵𝑑 

(5.4) 

𝐶́ = (
𝜀(𝑎𝐴𝑢𝐴𝑢 + 𝑎𝐴𝐷𝐴𝑑 + 𝑎𝐵𝑢𝐵𝑢 + 𝑎𝐵𝑑𝐵𝑑)

1 + ℎ(𝑎𝐴𝑢𝐴𝑢 + 𝑎𝐴𝐷𝐴𝑑 + 𝑎𝐵𝑢𝐵𝑢 + 𝑎𝐵𝑑𝐵𝑑)
− 𝛿) 𝐶 (5.5) 

𝑟𝑖𝑗 = 𝑟 (1 − 𝑝𝑐𝑖 − 𝑑𝑐𝑖  𝑑𝑖𝑗), 𝑖 ⋲  {𝐴, 𝐵}, 𝑗 ⋲  {𝑢, 𝑑} (5.6) 

𝑎𝑖𝑗 = 𝑎 (1 − 𝑑𝑖𝑗), 𝑖 ⋲  {𝐴, 𝐵}, 𝑗 ⋲  {𝑢, 𝑑} (5.7) 

𝐾𝑖𝑗 = 𝐾 (1 − 0.1𝑝𝑐𝑖 − 0.1𝑑𝑐𝑖  𝑑𝑖𝑗), 𝑖 ⋲  {𝐴, 𝐵}, 𝑗 ⋲  {𝑢, 𝑑} (5.8) 

𝜒𝑢 =  
𝜒𝑚𝑎𝑥

1 + 𝑒𝑏(𝐶∗−𝐶)
 

(5.9) 

 

𝜒𝑑 =  𝜒𝑚𝑎𝑥(1 −
1

1 + 𝑒𝑏(𝐶∗−𝐶)
) 

(5.10) 

 

Trade-offs 

Trade-offs define the possible combinations of trait values a species can 

have under the given biological and energetic constraints, i.e. a species 

cannot optimize all its traits (defence dij and maximum growth rate rij) 

simultaneously. An illustration of the possible trait combinations is shown 

in Fig. 5.1a. The phenotypes’ positions in the trait space of rij and dij are 

defined by three trade-off properties, their defence dij, defence costs dci and 

plasticity costs pci. These define the phenotypes’ location along the growth 
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rate axis and multiplied with the maximum growth rate r they define the 

growth rate rij (equation 5.6). 

We assume that defended phenotypes always have a lower growth rate 

than their undefended counterparts of the same species due to resources 

needed to express the defence. The defence costs dci define the slope of the 

trade-off line between the growth rate rij and the defence dij, (Fig. 5.1a, 

equation 5.6). The plasticity costs are a reduction in growth rate for both 

phenotypes of a species, due to a high plasticity in expressing a range of 

defence, e.g. genetic information to sense predator abundance and put the 

defence into praxis that has to be carried along whether the phenotype 

produces the toxins or not (Fig. 5.1a, equation 5.6). As plasticity costs are 

only rarely found in experiments, we model also one constellation without 

plasticity costs (see Tab. 5.1). 

The autotrophs face an additional trade-off between di and the capacity Kij 

(equation 5.8). This trade-off is implemented in the same way as the one 

between dij and rij, but with only 10% of the strength. This second trade-off 

represents the costs of defence that manifest when resources are scarce 

(see e.g. 14,31–33), e.g. a thick cell wall as defence which reduces the nutrient 

uptake, while the trade-off between rij and dij is the dominant one under 

rich resource conditions. 

Exchange rates 

Inducible defences with binary traits are well represented by switching 

functions23 defining the exchange rate χj between the two phenotypes, 

which depends on the consumer biomass to represent grazing pressure. 

The exchange rate χu defines the switching from the undefended to the 

defended phenotypes, which increases with increasing consumer biomass 

as the defence is needed, while the exchange rate towards the undefended 

phenotype χd decreases with consumer biomass (Equations 5.9 – 5.10, Fig. 

5.1c). The maximum exchange rate χmax scales the exchange rates, and the 

steepness of the switching function is determined by b. The inflection point 

C* denotes the point at which both exchange rates are equal (Fig. 5.1c). To 

ensure the inflection point has an ecologically reasonable value, we set it to 

half of the maximum consumer density in a simulation in which b is set to 



131 

 

zero, thus having a constant exchange rate of χmax/2. Other model 

parameters can be found in Appendix Tab. D1. 

Scenarios 

Varying two of the three trade-off properties (defence, defence costs and 

plasticity costs) and keeping the third one constant leads to three 

constellations parallel, crossing, and angle (Tab. 5.1). In all three, the 

autotrophic species B spans the entire defence range, i.e. it has a 

completely undefended phenotype Bu and a maximally defended phenotype 

Bd. Species A either has a more limited defence range (in constellations 

parallel and angle) or spans the entire range as well (in constellation 

crossing), representing three distinct ways that the trade-off between 

defence and growth may play out. 

In constellation parallel both species have the same defence costs leading 

to parallel trade-off lines between defence and growth rate; A has a higher 

growth rate, but a lower plasticity range, whereas B has a lower growth 

rate due to plasticity costs, but a highly defended phenotype (Tab. 5.1, left 

column). Such a constellation was observed for Daphnia pulex clones34 and 

for Brachionus species35.  

In constellation crossing the level of defence is the same for both defended 

phenotypes. The growth rate of Bu is lower than that of Au due to plasticity 

costs, while the defence costs of B are low and thus the growth rate of Bd is 

relatively high. In contrast, A has a fast-growing undefended phenotype 

and high defence costs leading to a slow-growing defended phenotype. The 

trade-off lines of both species thus cross in the trait space (Tab. 5.1, middle 

column).  

In constellation angle there are no plasticity costs17, and thus the 

undefended phenotypes have identical growth rates. Ad has a high growth 

rate due to low defence costs but a smaller plasticity range, whereas B has 

high defence costs for its highly defended phenotype leading to a slow-

growing but well defended phenotype. Due to the identical growth rate of 

the undefended phenotypes, both trade-off lines form an angle (Tab. 5.1, 

right column). 
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To investigate the effect of the speed of adaptation, we varied the 

maximum exchange rate χmax between 10-4 and 101 in 6 logarithmic steps. 

These simulations were also compared to a non-plastic baseline scenario 

where the exchange rates were set to zero, as well as to a completely non-

adaptive scenario where each autotrophic species had only one 

intermediate phenotype (Tab. 5.1). This yielded 24 scenarios (three 

constellations parallel, crossing, angle with eight levels of adaptiveness 

For each simulation run, the traits of all phenotypes were fixed. 

Phenotypic plasticity via the exchange rate was thus the only possibility 

for the species to adapt. For each constellation, two of the three properties 

were varied in 89 or 99 steps leading to 7921 or 8811 simulation runs per 

scenario to ensure a wide trait range being simulated. In constellation 

crossing, the combination of high plasticity and defence costs for B reduces 

the growth rate of its defended phenotype below zero; these simulations 

were excluded from the analysis (shaded grey areas in Fig. 5.4). 

Modelling details and analysis 

Each simulation was run for 100,000 time steps. The time series of the last 

10,000 time steps were used for all calculations. For each simulation, we 

calculated the mean biomasses of each autotrophic phenotype and the 

consumer, their extinction status (a phenotype was regarded as extinct if 

its mean biomass was below 10-6), autotroph coexistence, and the stability 

of community dynamics. The two autotrophs coexist if at least one 

phenotype of each species persists at the end of the simulation. The system 

was regarded as stable if the coefficient of variation, calculated for the 

always persistent consumer, was below 0.1. In addition to regular quarter-

lag predator-prey cycles, we also found antiphase cycles32,36 due to 

phenotype sorting. R (version 4.0.0) and the package deSolve was used for 

all simulations and the analysis.  

Maladaptive switching 

Whether switching is adaptive or maladaptive at any given point in time 

depends on whether more individuals switch from the lower-fitness 

phenotype to the higher-fitness phenotype (adaptive) or the reverse 

(maladaptive). A measure for adaptiveness or maladaptiveness in 
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switching thus needs to contain two elements: the net flow between the 

phenotypes, and the fitness difference between them. The relative net flow 

can, exemplary here for species A, be defined as: 

∆𝜒𝐴
=

𝐴𝑢𝜒𝑢 − 𝐴𝑑𝜒𝑑

𝐴𝑢 + 𝐴𝑑

 
(5.11) 

Note that ∆𝜒𝐴 measures the fraction of the autotroph species A that 

switches from the undefended to the defended state. When the undefended 

phenotype is dominant (and χu is not too low due to very low consumer 

biomasses), ∆𝜒𝐴 is positive and there is a relative net flow to the defended 

phenotype. In contrast, when the defended phenotype dominates (and χd is 

not too low due to very high consumer biomasses), ∆𝜒𝐴 is negative resulting 

in a relative net flow to the undefended phenotype. 

The fitness difference is defined as:  

∆𝐹𝐴
= 𝐹𝐴𝑑 − 𝐹𝐴𝑢, (5.12) 

where FAu and FAd represent the per capita net growth rates of the 

undefended and defended phenotypes, respectively (that is, the difference 

between their per capita growth and mortality terms; see equations 5.1-

5.4). 

If ∆𝜒𝐴
 and ∆𝐹𝐴

 are both positive, there is net flow from undefended to 

defended phenotypes and defended phenotypes have higher fitness; 

switching is thus adaptive. The same is true if both terms are negative. On 

the other hand, if one of these two terms is positive and the other is 

negative, however, there is maladaptive switching: more individuals switch 

from the higher-fitness phenotype to the lower-fitness one than vice versa. 

Thus measuring adaptiveness can be done by multiplying these two terms 

together:  

𝜑𝐴 = ∆𝜒𝐴
∙ ∆𝐹𝐴

 (5.13) 

The interpretation of this measure is straightforward: switching is 

adaptive when φ > 0 and maladaptive when φ < 0, and more strongly so for 

larger absolute values of φ. 
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6. Discussion 

The previous four chapters each presented a research project on food webs 

and, with the exception of chapter 2, the way traits influence the species 

within. Different aspects of this topic were covered using a large variety of 

methods. First I modelled a food chain without traits investigating the 

impacts of respiration on the trophic transfer efficiency in the food chain. 

Then I analysed a long-term phytoplankton data set to validate the 

assumption of interspecific defence - growth trade-offs in natural systems. 

I moved on to a ciliate data set from the same lake to investigate which 

factors affect their net growth rate. Finally I studied the defence - growth 

trade-off in a small food web model investigating the influence of 

maladaptive switching on the coexistence of two competitors. I now link 

these chapters closer to build a more complete picture, starting with the 

food web theme they all belong to. 

6.1 Planktonic food webs 

I showed in my second chapter the importance of including both biomass-

dependent basal respiration and assimilation-dependent activity 

respiration in allometric trophic network (ATN) models for depicting 

realistic trophic transfer efficiencies within a food chain. This is especially 

important for unicellular organisms and invertebrates which have partly 

low activity respiration (Simon, 1987) and are thus not well represented in 

the original ATN model compared to the extended model (Kath et al., 

2018). Food webs comprising many unicellular and invertebrate organisms 

are most affected, these are for example aquatic and soil food webs (de 

Ruiter et al., 1998; Kalinkat et al., 2013). There are several reasons why 

pelagic food webs are a good example for the food web modelled with the 

updated ATN model in chapter 2. First, several lower trophic levels in 

aquatic food webs consist mostly of unicellular organisms and 

invertebrates for which the extended version of ATN model including 

activity respiration makes a huge difference (Schuwirth and Reichert, 

2013; Boit and Gaedke, 2014; Kath et al., 2018). Second, four trophic levels 

are often reached in pelagic food webs which fits to the food chain 

presented in chapter 2 (Gaedke and Kamjunke, 2006; Boit and Gaedke, 

2014; Kammerlander et al., 2016). Third, the lower trophic levels in pelagic 

food webs usually consist of small, fast-growing organisms which 
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experience high amplitudes in their food concentrations, e.g. due to 

seasonal fluctuations. The organisms are adapted to these fluctuations and 

especially in starvation periods when the food concentration is low, basal 

respiration is important to describe their metabolism. Finally, as pelagic 

food webs are located in a three-dimensional habitat, the predators have no 

possibility to put down their captured prey, but have to swallow it 

immediately. This leads to a gape limitation as the largest prey an animal 

can hunt is one that fits into its mouth. As a consequence, organisms at 

higher trophic levels are larger than organisms at the lower trophic levels, 

fitting very well with the allometric parameterisation of ATN models. The 

high number of small invertebrates in pelagic food webs with their short 

generation times, and thus many generations within one season, makes 

pelagic food webs also a good system to study biomass-trait feedbacks 

theoretically and in natural systems. We want to take a closer look at the 

food web in Lake Constance. 

6.2 Lake Constance 

The datasets for chapter 3 and 4 originated from Lake Constance. Lake 

Constance is a large, monomictic, mesoeutrophic, deep lake in the North of 

the Alps. Because of its size of 472 km² and a mean depth of 101 m, some 

insights into processes in this lake might be also relevant for marine 

systems, e.g. vertical mixing into deeper water layers is a problem for 

phytoplankton being removed from the euphotic zone (Ehrlich et al., 2020). 

The long-term data sets contain (bi-) weekly measurements for 

phytoplankton (1979-1999) and ciliates (1987-1998) as well as other 

zooplankton (rotifers 1987-1992, 1995-1996, daphnids and copepods 1979-

1998), bacteria and autotrophic picoplankton (1987-1997), nutrients (1989-

1997) and temperature (1979-1999). The data set stimulated a huge 

amount of research investigating e.g. the seasonal dynamics and 

variability of phytoplankton and ciliates, predator-prey relationships for 

ciliates and the calanoid copepod Eudiaptomus, the interplay of functional 

traits between phytoplankton and ciliates in spring, the carbon flow within 

the food web and seasonal changes of C:P ratios (Müller et al., 1991; 

Gaedke, 1992; Gaedke et al., 1996; Müller and Schlegel, 1999; Hochstädter, 

2000; Tirok and Gaedke, 2007; Kunzmann et al., 2019). Both the 

phytoplankton and the ciliate community are diverse and consist of small 
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organisms with short generation times and a high functional diversity. 

Phytoplankton is a well-studied group: a lot of research has been done on 

the relationship to their resources (Litchman and Klausmeier, 2001; 

Yoshiyama et al., 2009; Schwaderer et al., 2011; Burson et al., 2018) and 

their predators, either the whole zooplankton community or the different 

effects of ciliates, rotifers, and daphnids (Knisely and Geller, 1986; 

Sommer et al., 2003; Huber and Gaedke, 2006; Pomati et al., 2020). This 

knowledge helped us to explain the defence-growth trade-off we found in 

Lake Constance: in spring, when losses due to mixing are high, fast-

growing species dominate, while in summer grazing pressure is dominating 

and thus defended species gain in biomass (chapter 3). Phosphate affinity 

as a third trait is one factor explaining the differences between species 

with similar defence: species with high phosphate affinity such as 

Rhodomonas can have lower maximum growth rates and still high 

biomasses due to their advantage under nutrient-limited conditions in 

summer. Ciliates on the other hand are less studied and the few studies 

mainly investigated the ingestion rates and diet preferences or the 

potential predators of single species (Müller and Schlegel, 1999; 

Kunzmann et al., 2019), so there is less knowledge about the ciliate 

community. Therefore, in chapter 4 we concentrated on the effects of both 

top-down and bottom-up processes on their net growth rates to know more 

about their role in the food web. While predation and competition seemed 

to be more important than food (Fig. 4.5 in chapter 4), temperature was the 

most important predictor of ciliate net growth rate, implying seasonal 

effects which calls for further investigations of the processes that change 

during the season next to temperature. 

6.3 Methodical diversity 

My chapters show a high methodical diversity: I used data analysis to 

prove the defence – growth rate trade-off in a phytoplankton community in 

chapter 3 and three different types of models in the chapters 2, 4 and 5. By 

choosing a model, modellers themselves experience a trade-off: models 

cannot maximise three traits simultaneously: realism, precision, and 

generality (Gross, 2013). Realism assumes that all model parameters and 

variables can be estimated from observations (Fig. 6.1). Precision means 
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that the model gives quantitative, accurate descriptions of the system. 

Generality means that the model can be applied to different systems. 

 

Fig. 6.1: Trait-offs for models and the position of the models from chapter 2, 4 and 5 

within this model trait frame. 

The allometric trophic network model from chapter 2 combined a high 

generality with an intermediate realism (Fig. 6.1). It can be parameterised 

with measurements e.g. for the conversion efficiency between trophic levels 

and many different food web processes can be investigated with these 

models because they are not tailored to a specific system, but rather 

general: allometric trophic network models were used to study theoretical 

coexistence, specific recent and Pleistocene food webs and pollination 

(Brose, 2008; Boit et al., 2012; Di Giacomo and Fariña, 2017; Hale et al., 

2020). No precise predictions can be made with this model though, e.g. the 

specific production of a top predator barn owl depends on many factors and 

could thus not be well predicted with a general allometric trophic network 

model. 

The boosted regression trees in chapter 4 combine an intermediate 

precision and realism (Fig. 6.1). They predict the net growth rates of ciliate 

morphotypes depending on environmental conditions as specific food 

concentrations, predator and competitor biomasses and temperature. As 

they are lined with observational data, they are tailored to a specific 

system, the ciliate morphotypes in Lake Constance. On the other hand, the 

predictions cannot be transferred easily to other conditions, e.g. 

zooplankton species in a tropical lake.  
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The small food web model on plasticity from chapter 5 has a high realism 

and an intermediate generality (Fig. 6.1). The parameters are based on an 

aquatic system and the concept of maladaptive switching could be 

investigated in detail and its general implications can be transferred to 

other systems, but no precise predictions, e.g. the biomass of an 

undefended alga in a lake can be made. 

6.4 Trade-off details determine coexistence of two plastic species 

Chapter 3 showed the first evidence for the defence-growth trade-off in a 

natural community and highlights the importance of the shape of the 

trade-off. When we developed the food web of two coexisting plastic 

autotrophs experiencing a defence-growth rate trade-off for chapter 5, we 

thought about the shape of this trade-off. Due to the lack of experimental 

data on this trade-off between plastic species, we decided for the simplest 

trade-off curve, a linear line. While we focused on the mechanisms for 

coexistence of the two plastic species as the maladaptive switching, a 

broader picture of the role of the trade-off properties is missing. 

When we look at the difference between the defence values of the defended 

phenotypes of species A and B (for details concerning the food web and 

traits, see chapter 5), we can see differences between the simulations 

depending on which species are surviving (Fig. 6.2a). Species A won most 

often if its defence was only a little lower than the one of species B. Species 

B won most often if its defence was a lot higher than species A. When the 

difference of their defence values was intermediate both species most often 

coexisted. 

When we look at the difference of defence costs between the species A and 

B, the pattern looks different (Fig. 6.2b). Species A won most often if its 

defence costs are lower than the defence costs of species B. Species B only 

won if the defence costs were close to equal, while both species coexist if 

species A had the higher defence costs. 

When we look at the differences in plasticity costs between the species A 

and B, species B always have lower frequencies than survival of species A 

or coexistence (Fig. 6.2c). Both species coexisted if the plasticity costs of 

species B were a lot higher or very similar to the ones of species A. If the 

difference was intermediate, species A mostly won. 
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Fig. 6.2: Frequency distributions comprising all scenarios (non-plastic and plastic, not 

rigid one) depending on the difference in a) defence values of defended phenotypes, b) of 

absolute values of defence costs, c) plasticity costs between species A and B. A denotes 

simulations runs in which only phenotype(s) of species A  survive(s), B denotes 

simulation runs in which only phenotype(s) of species B  survive(s) and points denote 

simulation runs in which phenotypes of both species coexist. Constellation crossing is not 

included in panel a, parallel is not included in panel b, angle is not included in panel c as 

the respective property is the same for both species. 
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6.5 Comparison plasticity model with experimental data 

The idea for the model on maladaptive switching in chapter 5 came from 

an experimental system with the autotroph algae Chlorogonium spec., the 

ciliate Euplotes feeding on the algae and the predatory flatworm 

Stenostomum feeding on Euplotes. Euplotes shows inducible defences, they 

can skip cell division and instead grow lateral wings (Trogant, personal 

communication). 

Combining both experimental and model data in one project could lead to a 

better understanding of the system and higher citations, but it is not 

always possible due to delays in experiments or model setup, different 

communication styles, or time constraints especially for younger scientists 

(Heuschele et al., 2017). I now compare the defence, growth and the trade-

off between them between experimental data from the system mentioned 

above and our model from chapter 5 to link both. To focus on the 

interaction between the plastic prey and the non-plastic consumer, we 

modelled a food web with two trophic levels in which the plastic autotroph 

growth relies on a carrying capacity instead of explicitly modelled 

nutrients. 

The growth rate of our modelled consumer is 0.21 per day (equal to its 

death rate). This is between the measured values for Euplotes and 

Stenostomum (Fig. 6.5a). As we explored different trade-off scenarios, our 

growth rates for the plastic autotrophs vary largely between 0.01 and 1 per 

day depending on the scenario (see chapter 5 for details). 

The defence of Euplotes is measured as width [µm] standardised to the 

whole range of measured widths for all Euplotes cells. The mean defence 

averaged across all clones is similar for the undefended and the defended 

Euplotes indicating that the differences between clones are higher than the 

difference between defended and undefended phenotypes (Fig. 6.3b). In our 

model, we set the defence of our undefended autotrophs always to 0, while 

we vary the defence of the defended autotrophs between 0.01 and 1 in 

different scenarios (Fig. 6.3b). For both the experiments and the model, 

defence is a binary trait, so either the phenotypes express their defence or 

not. While in the experiments, all Euplotes express their defences as soon 

as they sense the predator-released kairomone in the water, the probability 
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to change to the defended phenotype is a smooth transition depending on 

the consumer biomass in the model (see chapter 5, Fig. 5.1). While we have 

modelled a pre-attack defence, the experiments seem to hint towards a 

post-attack defence (Trogant, personal communication). 

 

Figure 6.3: Growth rate, defence and trade-off between them for an experimental system 

(Trogant, personal communication) and model (chapter 5). For experiments, the 

standard error is plotted as lines/boxes, colours depict different clones. Abbreviations are 

A algae, E Euplotes, S Stenostomum, MA modelled algae, MC modelled consumer. 

The trade-off lines between growth rate and defence form one of three 

clearly distinct constellations in our model, they are either parallel, 

crossing or form an angle. In contrast, the trade-off lines of the different 
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Euplotes clones overlap and do not show a clear pattern in the experiments 

(Fig. 6.3c). 

The comparison of our model and the underlying experiments show that a 

model has to be adapted very closely to the data to deliver comparable 

results. We decided instead to explore the maladaptive switching which 

cannot be easily measured in experiments. Therefore we changed some 

properties of our model. 

6.6. Perspective 

The interplay between models and experiments is important for new ideas 

and theory building. Models can stimulate new ideas for experiments and 

field research (Fussmann et al., 2000; van der Stap et al., 2009), test ideas 

stimulated by experiments or field data (Ehrlich et al., 2020) and build up 

new theories (Yamamichi et al., 2019) and most of them rely on 

experimental data for their parameterisation or ideas for hypotheses to 

test. 

It would be interesting to adapt the plasticity model from chapter 5 to an 

experimental system to test if the results on competition can be confirmed 

in experiments. To display some of the trade-off constellations of the two 

plastic species, very variable organisms would be needed. Different clones 

of small organisms as the ciliate Euplotes could be taken for that. Adding 

one consumer feeding on the Euplotes results in a small food web similar to 

the model. It would be interesting to test if the same trait combinations of 

the plastic species results in coexistence or competitive exclusion, 

respectively. 

I would also like to try to better predict the ciliates’ net growth rate from 

the Lake Constance data set from chapter 4. Probably more specific 

predictors have to be taken into account, e.g. different phytoplankton 

species for each ciliate. As it remained still unclear for many freshwater 

ciliates which phytoplankton species they consume, I would start with the 

few species for which some feeding links are known due to lab experiments 

as Balanion planctonicum (Müller, 1991; Müller and Schlegel, 1999; 

Weisse and Frahm, 2002). Additional feeding experiments with a variety of 

phytoplankton offered as food and a variety of zooplankton as possible 

predators for few ciliates which are important for the dynamics in Lake 
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Constance could help to understand food preferences and thus the tropic 

links around these ciliates. 

The trade-off found in chapter 3 was already a basis for another paper 

(Ehrlich and Gaedke, 2020). I would like to investigate if this or other 

trade-offs can be found also in other lake communities. Next to defence and 

growth rate, nutrient and light traits would be interesting, as trade-offs 

between these are known (Litchman et al., 2007; Edwards et al., 2013) and 

we could also prove phosphate affinity played a role as a third trade-off 

axis (Ehrlich et al., 2020). 
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Appendix A: Supplementary information for chapter 2 

 

Manuscript is available at http://link.springer.com/article/10.1007/s12080-018-0378-z. 

 

We also modelled a three trophic level food chain in which the carnivore 

has a density dependent death rate equivalent to the top predator in the 

chain of four trophic level (Eq. 2.4). With this model setup, we examined 

the herbivore’s obtained TTE when being released from top-down control 

due to increasing the carnivore’s death rate. 

 

Fig. A1: Trophic transfer efficiency (obtained TTE, defined as the production ratio of 

upper vs. lower trophic level) of the carnivore (upper panel) and herbivore (bottom) in 

the original (dashed lines) and extended (solid lines) ATN version for different 

carnivore’s death rate constants d. For one parameter value (vertical line), the biomass 

pyramids are provided in Fig. A2. The horizontal lines indicate the maximum feasible 

TTE (Eq. 2.10, Tab. 2.2) 
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Fig. A2: Comparison of the energy transfer within a three trophic level food chain of the 

extended ATN version including activity respiration (a), and the original ATN model (b). 

The biomass pyramids are based on the parameter indicated in Fig. A1, i.e. d= 0.03. 

Included values are basal and activity respiration (numbers on the left, activity above 

basal respiration), production (numbers in the middle to the left of the upward arrows), 

trophic transfer efficiency (bold large numbers), and excretion (numbers above the right 

arrows). All fluxes are standardized to autotroph’s production as 100%, so that wider 

arrows indicate larger values.  Box widths are scaled with the species’ biomasses. Red 

values point out inconsistencies with the physiological considerations that respiration is 

equal to or less than production (Humphreys 1979) 
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Fig. A3: Trophic transfer efficiency (obtained TTE in %, defined as the production ratio of 

upper vs. lower trophic level) of a trophic level i+1 (here parameterized for both the 

carnivore and the top predator as they have the same assimilation efficiency) in the 

original (dashed line) and extended (solid line) ATN version for different food quantities 

(biomass of the lower trophic level i). The horizontal line indicates the maximum feasible 

TTE (Eq. 2.10, Tab. 2.2) 
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Appendix B: Supplementary information for chapter 3 

 

The manuscript is available at https://www.nature.com/articles/s41396-020-0619-1. 

The supplement includes five appendices. The first appendix contains 

information about sampling and data processing. The second appendix 

provides details on the trait data. The third appendix describes supporting 

results (trait correlations with phosphate affinity and size, and re-

oligotrophication patterns). The fourth and fifth appendix include model 

details and results. 

Appendix B1: Methodical details  

Classification of seasonal phases 

We subdivided the year into 7 consecutive phases to minimize inter-annual 

variability due to different climatic conditions. These phases are late 

winter, early spring, late spring, clear water phase, summer, autumn and 

early winter (Fig. 3.2). The start and end of each phase was mostly not a 

fixed calendar date but was determined for each year based upon threshold 

values of independent physical (vertical mixing, temperature, water 

transparency), chemical (soluble reactive phosphorous concentration) 

and/or biological parameters (phytoplankton and zooplankton biomass, 

chlorophyll concentration and species composition)(1–3). For example, early 

spring is defined to start when the chlorophyll concentration and algal 

biomass start to increase, and the clear-water phase when the chlorophyll 

concentration and algal biovolume fall below a certain value and the Secchi 

depth surpasses a distinct level. 

Each period is associated with a different well-defined forcing regime. (i) 

First, during late winter deep mixing and low irradiance lead to a decrease 

of plankton biomass to the annual minimum level. (ii) Early spring is 

characterized by unstable stratification, variable underwater light climate, 

low grazing pressure and high, non-limiting nutrient concentrations, which 

enables the first growth of algae and some grazers interrupted by mixing 

events. (iii) During late spring algal biomass further increases with the 

onset of thermal stratification which reduces nutrient concentrations. The 

high biomass of mostly small, edible algae promotes growth of different 
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groups of micro- and meso-zooplankton. Grazing pressure mostly by 

ciliates increases. (iv) As a consequence, phytoplankton biomass strongly 

declines, resulting in the clear water phase, which is characterized by the 

strongest grazing pressure throughout the year, mainly caused by meso-

zooplankton as daphnids. Nutrient concentrations re-increase during the 

clear water phase due to remineralization and with decreased grazing 

pressure, the summer phytoplankton bloom starts. (v) Summer is marked 

by severe nutrient depletion leading to strong competition within the 

phytoplankton community, and the relevance of different zooplankton 

groups (ciliates, rotifers, cladocerans and copepods) with different feeding 

strategies and grazing on different groups of phytoplankton. (vi) An 

increase of the mixing depth as autumn begins leads to a minor reduction 

of algal biomass and replenishing of nutrients from deeper water. The 

increase in nutrients may give rise to an autumn phytoplankton and 

crustacean maximum, paralleled by shifts in algal species composition. (vii) 

Early winter starts in mid of November and is characterized by an 

increasing intensity of deep mixing and low irradiance. 

Standardized time 

The duration of the seasonal phases varied among years. To account for 

this meteorological year-to-year variation, we aligned the sampling dates 

to a standardized time axis. First, each sampling date (e.g., day 25 in 

phase 2 in 1986) was scaled relative to the duration of the respective phase 

in that year (e.g. phase 2 lasts 50 days in 1986) resulting in the relative 

sampling day (e.g. 25/50). Multiplying the relative sampling day with the 

inter-annual mean duration of the respective phase (e.g. 46 days) yields the 

standardized day number of that sampling date (e.g. 25/50*46=23). Based 

on this method each sampling date can be assigned to a certain week in a 

standardized year (data see 

https://doi.org/10.6084/m9.figshare.11830464.v1). To display the seasonal 

biomass dynamics (shown in Fig. 3.2), we took the inter-annual median 

and quartiles of the biomass data for every standardized week and then 

smoothed the data by averaging the medians/quartiles of two adjacent 

weeks (moving average). 

Aggregation of species into morphotypes 
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We used an intermediate level of taxonomic resolution distinguishing 36 

morphotypes to achieve taxonomic consistency across the long sampling 

period. Each of these morphotypes contributed at least 5% to the biovolume 

of total phytoplankton at an individual sampling date during 1979-1982, 

i.e. the information about rare species got lost for the years 1979-1982. 

Considering the years 1979-1999, these 36 morphotypes comprise about 

92% of total phytoplankton biomass. We omitted counts of morphotypes 

which could either not be identified, were very rare or encountered only 

during individual sampling events or short periods. Given its improved 

reliability for long-term studies we used this dataset in previous studies as 

well(1,4–6). Details can also be found in LakeBase (https://fred.igb-

berlin.de/Lakebase). 

Mean relative biomasses 

To evaluate the relative importance of a phytoplankton morphotype over 

the 21 years of sampling, we derived its mean annual relative biomass as 

follows: First, we calculated the relative biomass of each morphotype for 

every sampling date. Second, we averaged these relative biomasses among 

all dates within each year which yields the corresponding annual relative 

biomass of each morphotype. Finally, we derived the mean of these annual 

relative biomasses across years. This procedure reduces the influence of 

outliers at single dates, and gives equal weight to all sampling dates per 

year and all years, which partly differed in their total biomass and 

sampling resolution. The relative importance of each morphotype during 

distinct seasonal phases (e.g., early spring) were computed accordingly by 

considering only the relative biomasses of the dates within that phase 

(data see https://doi.org/10.6084/m9.figshare.11830464.v1). The calculated 

mean relative biomasses allowed to infer the respective biomass-trait 

distributions since each morphotype represented a specific trait 

combination. 

C:P ratio 

We used the cellular carbon to phosphate mass ratio of phytoplankton 

(C:P) as an indicator for nutrient depletion which was measured at the 

standard sampling site in 1995 (data see 

https://doi.org/10.6084/m9.figshare.11830464.v1)(7). The cellular C:P is 
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more informative than the ambient phosphorous concentration in the 

water as phytoplankton can store phosphorous. Furthermore, most 

phytoplankton species can take up substantial amounts of phosphorous 

even at concentrations below the detection limit as they prevail in Lake 

Constance throughout summer.   

Vertical mixing intensity 

Given the large depth of the lake, most biological activity and thus 

sampling effort was concentrated on the upper 0-20 m depth. Thus, we 

report here the mean biomasses averaged across this water layer. As the 

surface phytoplankton concentration is usually much higher than in deep 

strata, deep vertical mixing (i.e. down to 60 or 100m depth) implies a net 

export from the surface to larger depths. To quantify this phytoplankton 

export, the vertical mixing intensity was inferred from a one-dimensional 

hydrodynamic K - ε turbulent exchange model(8,9) and expressed as net 

exchange rate from the uppermost layer (0-8 m) to the deepest layer (20-

100 m). Its temporal dynamics is closely related to the net exchange rate 

from 0-20 m to 20-100 m and to the observed phytoplankton net growth 

during spring (data see https://doi.org/10.6084/m9.figshare.11830464.v1). 

Appendix B2: Trait data 

Tab. B1: Morphotype number and name, its assigned trait values of defense δ, maximum 

growth rate r (𝑑−1) and phosphate affinity (𝑑−1µ𝑚𝑜𝑙−1𝐿)  according to Bruggeman(10) and 

the taxonomic group of all 36 dominant phytoplankton morphotypes in Lake Constance. 

Bruggeman established a statistical model based on measured trait data and known 

phylogenetic relationships and trait correlations. We throughout used the values of the 

statistical model for consistency, although measurements for a few taxa deviated from 

them. Two morphotypes (Navicula spp. and Cymbella ventricosa & C. prostrata) were 

not listed by Bruggeman(10). Hence, we used trait values of the nearest genus for them 

(Nitzschia ssp. for both) having a similar longest linear dimension, cell volume and 

colony formation.  

Morphotype 

number 
Morphotype name Defense r 

Phosphate 

affinity 

Cell 

volume 

Taxonomic 

group 

1 Anabaena spp. 0.66 0.88 94 170 cyanobacteria 

2 Asterionella formosa 0.79 1.6 56 810 diatoms 

3 Aulacoseira spp. 0.77 1.5 18 870 diatoms 

4 
Ceratium 

hirundinella 
0.89 0.24 1600 40,000 dinophytes 
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5 Chlamydomonas spp. 0.38 1.8 170 210 chlorophyta 

6 Chlorella spp 0.69 1.7 45 28 chlorophyta 

7 
Chrysochromulina 

parva 
0.73 1.0 160 250 haptophytes 

8 Cosmarium spp. 0.84 0.95 72 5,700 chlorophyta 

9 
Cryptomonas 

marssonii 
0.49 1.1 190 1,800 cryptomonads 

10 
Cryptomonas 

rostratiformis 
0.5 1.1 200 3,200 cryptomonads 

11 Cryptomonas spp. 0.45 1.2 140 1,700 cryptomonads 

12 Cyclotella spp. 0.77 1.6 3.6 420 diatoms 

13 
Cymbella ventricosa 

& C. prostrata 
0.54 1.8 150 320 diatoms 

14 Diatoma spp. 0.76 1.4 210 1,400 diatoms 

15 Dinobryon spp. 0.85 0.74 110 360 chrysophytes 

16 
Erkenia 

subaequiciliata 
0.47 1.7 220 100 chrysophytes 

17 Eudorina elegans 0.78 1.1 32 1,300 chlorophyta 

18 
Fragilaria 

crotonensis 
0.84 1.3 50 1,200 diatoms 

19 Mallomonas spp. 0.8 0.5 340 2,700 chrysophytes 

20 Mougeotia spp. 0.77 1.5 87 1,200 chlorophyta 

21 Navicula spp. 0.54 1.8 150 320 diatoms 

22 Nitzschia spp. 0.54 1.8 150 320 diatoms 

23 Oocystis spp. 0.6 1.5 190 510 chlorophyta 

24 Oscillatoria spp. 0.53 1.0 99 23 cyanobacteria 

25 Pandorina morum 0.82 0.92 46 2,300 chlorophyta 

26 Pediastrum spp. 0.69 1.3 310 790 chlorophyta 

27 Peridinium spp. 0.912 0.24 130 15,000 dinophytes 

28 Phacotus spp. 0.34 1.6 430 400 chlorophyta 

29 Rhodomonas spp. 0.1 1.7 550 250 cryptomonads 

30 Scenedesmus spp. 0.63 2.1 45 160 chlorophyta 

31 
Sphaerocystis 

schroeteri 
0.83 1.1 57 720 chlorophyta 

32 Staurastrum spp. 0.85 0.84 150 12,000 chlorophyta 

33 
Stephanodiscus 

neoastraea 
0.66 1.7 22 1,500 diatoms 

34 Stephanodiscus spp. 0.64 1.8 13 580 diatoms 

35 Synedra spp. 0.66 1.7 420 1,300 diatoms 

36 Tabellaria fenestrata 0.8 1.2 210 2,700 diatoms 
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The concave trade-off between δ and r can be also found when including all 

trait data from Bruggeman(10) (Fig. B1a) or when the standard errors for 

the 36 morphotyptes are included (Fig. B1b).  

 

Fig. B1: Defense 𝛿 and maximum growth rate r (𝑑−1) of the 36 most abundant 

phytoplankton morphotypes in Lake Constance (colored dots). Colors indicate different 

taxonomic groups, i.e., chlorophyta, cryptomonads, chrysophytes, haptophytes, 

cyanobacteria, diatoms and dinophytes.  (a) Including all other phytoplankton 

morphotypes/species available in Bruggeman(10) (grey dots). The numbers refer to the 

morphotype names listed in Table B1. Larger dots indicate that two or more 

morphotypes share the same trait combination. (b) The bars indicate the standard error 

of the derived trait values of the 36 morphotypes according to Bruggeman(10).  
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Appendix B3: Supporting results 

We describe supporting results here, (1) the trade-offs between phosphate 

affinity P and defence δ resp. maximum growth rate r, (2) the relationship 

of all three traits to cell volume, (3) the seasonal trait distribution 

considering all seven phases, the influence of re-oligotrophication on (4) the 

seasonal δ-r trait distribution and (5) the phosphate affinity. 

(1) A concave trade-off curve was most obvious for the trade-off between δ 

and r (Fig. 3.3). In the trait space of δ and P, a similar pattern might be 

seen albeit with more scatter and one exception, Ceratium hirundinella 

being very defended and highly phosphate affine (Fig. B2a, ρ = -0.28, p = 

0.09, Spearman rank correlation coefficient never biomass-weighted). The 

pattern for P and r is even more scattered (Fig. B2b, ρ = -0.12, p = 0.5).  

 

Fig. B2: Trait space of the 36 most abundant phytoplankton morphotypes in Lake 

Constance. Colors indicate third trait dimension. The area of the circles is scaled by the 

mean annual relative biomass of the morphotypes. (a) Defense 𝛿 and phosphate affinity 

(𝑑−1µ𝑚𝑜𝑙−1𝐿), color represents maximum growth rate r (𝑑−1). (b) Phosphate affinity 

(𝑑−1µ𝑚𝑜𝑙−1𝐿)  and maximum growth rate r (𝑑−1), color represents defense 𝛿. 
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(2) The correlation between each trait and cell volume as a master trait 

was tested (Fig. B3). Maximum growth rate r was negatively correlated to 

cell volume (ρ = -0.59, p = 10⁻4), defense was positively correlated to cell 

volume (ρ = 0.49, p = 10⁻3), while we found no correlation for phosphate 

affinity (ρ = 0.22, p = 0.19). Thus, the trade-off between δ and r may 

partially arise from the weak correlations of both traits with cell size. 

However, the large scatter in the relationship between δ and cell size (Fig. 

B3b) shows that other defense mechanism are important as well, e.g. cell 

shape, formation of filaments. Hence we used trait data instead of the 

approximation cell size.  

Furthermore, cell size as a functional trait is harder to link directly to a 

certain environmental driver being sensitive to multiple factors as a 

‘master trait’, compared to, e.g. defense being selected by high grazing 

pressure, or phosphate affinity being selected by phosphate depletion. 

Therefore, we do not include cell size in our main consideration of how the 

community trait composition responds to seasonal environmental changes, 

but we use cell size more as a ‘master trait’ providing to some extent a 

potential mechanism for the observed trade-off between defense and 

maximum growth rate. 



160 

 

 

Fig. B3: Relationship between cell volume (µm³) and a) maximum growth rate r (𝑑−1), b) 

defense δ and c) phosphate affinity (𝑑−1µ𝑚𝑜𝑙−1𝐿) for the 36 most abundant 

phytoplankton morphotypes in Lake Constance (colored circles). Colors indicate different 

taxonomic groups, i.e., chlorophyta, chrysophytes, cryptomonads, cyanobacteria, 

diatoms, dinophytes, and haptophytes and the area of the circles scales with mean 

annual relative biomasses. 
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(3) The biomass distribution in the δ-r trait space responded to the 

seasonally changing environment in a remarkably gradual and consistent 

way (Fig. 3.2). In late winter and early spring, vertical mixing and the 

resulting high export of phytoplankton from the euphotic zone to deep 

water layers was a dominant driver of the phytoplankton community in 

deep Lake Constance while grazing pressure and nutrient depletion were 

very low. Morphotypes with high r being able to compensate for high losses 

and to exploit the high nutrient concentrations dominated, whereas 

morphotypes with low r and high 𝛿 were almost absent (Fig. B4a, b). This 

is reflected in the community average trait values (late winter: 𝛿̅ = 0.51, 𝑟̅ 

= 1.56 𝑑−1; early spring: 𝛿̅  = 0.52, 𝑟̅ = 1.57 𝑑−1). Morphotypes with low or 

high phosphate affinities had high biomasses, indicating the absence of a 

selection pressure on this trait. During late spring, grazing pressure 

increased mostly by ciliates (Fig. 3.2) but did not initiate a shift of the 

overall biomass distribution towards higher 𝛿 (𝛿̅ = 0.48, 𝑟̅ = 1.55 𝑑−1) (Fig. 

B4c). During the clear-water phase (CWP), the grazing pressure was at its 

annual maximum (Fig. 3.2). The community average maximum growth 

rate decreased slightly (𝑟̅  = 1.35 𝑑−1) while the mean defense level did not 

change (𝛿̅  = 0.48) despite the high grazing pressure (Fig. B4d), probably 

due to a delayed numerical response of highly defended but slowly growing 

morphotypes. In summer, nutrient depletion and grazing pressure were 

the dominant drivers of phytoplankton (Fig. 3.2). The biomass shifted 

towards morphotypes with intermediate or high 𝛿 and accordingly low r 

(Fig B4e, 𝛿̅ = 0.69, 𝑟̅  = 1.18 𝑑−1). Morphotypes with intermediate to high 

phosphate affinities gained in importance in line with nutrient depletion. 

In autumn, nutrient depletion and grazing were still mainly driving the 

phytoplankton community but declined compared to summer (Fig. 3.2). 

This resulted in a slight increase of morphotypes with lower 𝛿 and higher r 

(𝛿̅ = 0.62, 𝑟̅ = 1.28 𝑑−1) (Fig. B4f). In early winter, vertical mixing again 

represented the most important driver and nutrient concentrations were 

high. Morphotypes with high r, intermediate 𝛿 and no clear signal in 

phosphate affinity contributed again a high share to the total 

phytoplankton biomass (Fig. B4g, 𝛿̅ = 0.56, 𝑟̅ = 1.40 𝑑−1).  
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Fig. B4: Positions of the 36 most abundant phytoplankton morphotypes in Lake 

Constance in the trait space of defense 𝛿 and maximum growth rate r (𝑑−1) for seven 

seasonal phases. Colors indicate the morphotypes’ phosphate affinity and the area of the 

circles the mean relative biomasses of each phase. The bars display the relative biomass 

distribution along the two trait axes in each phase. The red lines in the bar plots mark 

the phase means of the community average trait values and the black lines display the 

annual means of the community average trait values as a reference (𝛿̅ = 0.61, 𝑟̅ = 1.33). 

The icons represent the dominant drivers of the phytoplankton community (vertical 

mixing, phosphate depletion, grazing by herbivores) and their size indicates their 

relative importance for phytoplankton net growth in each phase.  
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(4) Concurrent to the re-oligotrophication of the lake during the study 

period, the pattern of the seasonal biomass-trait distribution only 

marginally changed (Fig. B5). In early spring in 1979 – 1988, the 

morphotypes were on average slightly less defended than on average in 

1989-1999 due to Rhodomonas spp. being more abundant, while 

intermediately defended diatoms were less common. These changes did not 

alter the average maximum growth rate. In summer in 1979-1988, the 

average maximum growth rate was higher than in 1989-1999, e.g. due to a 

higher share of the relative fast- growing Fragilaria crotonensis, whereas 

in 1989-1999 slow-growing Ceratium hirundinella was relatively more 

abundant. These changes did not affect the average level of defense. To 

conclude, the changes in the species composition observed during the re-

oligotrophication did not change the overall seasonal pattern with a 

dominance of fast growing, undefended morphotypes in early spring and of 

slow growing, highly defended morphotypes in summer. 

Our explanation for the lack of a clear responsiveness of the defence-

growth rate trait distribution is that the grazing pressure likely changed 

little during most of the investigation period lasting from 1979-1999. We 

know that from 1987-1998 neither total ciliate biomass nor species 

composition changed significantly(11). The crustaceans, i.e. the other 

important group of herbivores, had lower abundances in 1997-1998 than in 

1979-1996 during July to September. These fairly constant biomasses of 

herbivores fit with the measurements of 14C primary production from 

1980-1996. During this time primary production declined (only) during 

summer by only 25%(12). We presume that potential effects on the trait 

distribution are too small to be clearly visible. On the other hand, the 

persistence of the trait distribution and its seasonal dynamics suggest that 

trophic interactions played a major role in this lake during the whole study 

period, as supported by numerous other studies(13). 
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Fig. B5: Positions in the trait space of defense 𝛿 and maximum growth rate r (𝑑−1) and 

mean relative biomasses (scaling the area of the circles) of the 36 most abundant 

phytoplankton morphotypes in Lake Constance for two seasonal phases (early spring 

and summer) in 1979-1988 (a,b) and 1989-1999 (c,d). Colors indicate the morphotypes’ 

phosphate affinity. The icons represent the dominant drivers of the phytoplankton 

community (vertical mixing, phosphate depletion, grazing by herbivores) and their size 

indicates their relative importance for phytoplankton net growth in each phase. The bars 

display the relative biomass distribution along the two trait axes in each phase. The red 

lines in the bar plots mark the phase mean of thecommunity average trait values and 

the black lines display the annual means of the community average trait values as a 

reference. 
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(5) In summer, SRP dropped always below 2 µg P/l in the surface layer and 

we measured a strong increase in the cellular phytoplankton C:P ratio in 

summer 1995. Nevertheless we found no distinct seasonal pattern in 

community average phosphate affinity when considering all years together 

or the years 1979-1988 (Fig. B6a,b). For the years 1989-1999 we see a 

slight increase in phosphate affinity during the season, which results in 

somewhat higher values in summer and autumn compared to 1979-1988. 

The overall changes of the community average trait values are small 

relative to the entire trait range (3 -1600 𝑑−1µ𝑚𝑜𝑙−1𝐿). 

 

Fig. B6: Seasonal dynamics of the interannual median (black lines) and quartiles 

(shaded areas) of the phytoplankton community average phosphate affinity 𝑃̅ in a 

standardized year of a) all years, b) 1979-1988 and c)1989-1999. CWP denotes the clear-

water phase. The dashed line represents maximum of the upper quartile for all years. 
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Appendix B4: Model description 

The model 

The following model equations describe the biomass dynamics of 𝑁 

phytoplankton species 𝑃𝑖 and one zooplankton group 𝑍: 

𝑑𝑃𝑖

𝑑𝑡
= (𝑟𝑖

𝑅

𝐾+𝑅
−

𝐺 (1−𝛿𝑖) 𝑍

𝐻+ ∑ 𝑃𝑖
𝑁
𝑖=1

− 𝑚𝑃) 𝑃𝑖   (3.1) 

𝑑𝑍

𝑑𝑡
= (𝜀 

𝐺 ∑ [(1 − 𝛿𝑖)𝑃𝑖]𝑁
𝑖=1  

𝐻 +  ∑ 𝑃𝑖
𝑁
𝑖=1

− 𝑚𝑧) 𝑍                                        

The phytoplankton growth is limited by nutrients, described by a Monod 

term. By assuming a fixed pool of nutrients, we can write the available 

(dissolved) nutrient concentration as 𝑅 = 𝑅𝑚𝑎𝑥 − ∑ 𝑃𝑖
𝑁
𝑖=1 −

1

𝜀
𝑍, that is, the 

total amount of nutrients 𝑅𝑚𝑎𝑥 subtracted by the nutrients fixed in biomass 

of phytoplankton and zooplankton(14). The nutrient concentration is written 

in units of phytoplankton biomass, i.e. 𝑅𝑚𝑎𝑥 represents the maximum 

phytoplankton biomass obtainable from the nutrient pool in the absence of 

mortality. The phytoplankton species differ in their maximum growth rates 

𝑟𝑖, but share the same half-saturation constant for nutrient uptake 𝐾 (in 

units of phytoplankton biomass, see above) and natural mortality 𝑚𝑃. 

Hence, the species with the highest 𝑟𝑖, performing well at high resource 

availability, is also the superior competitor under strong resource depletion 

(i.e. it has the lowest 𝑅∗) in the model. The grazing of zooplankton on 

phytoplankton is described by a Holling type II function with the 

maximum grazing rate 𝐺 and the half-saturation constant 𝐻. 

Phytoplankton species have different values of defense 𝛿𝑖 against 

zooplankton. We assume that defended phytoplankton cells also demand 

handling time of the predator equal to that of undefended phytoplankton 

but without energy gain because unselective feeders, which dominate in 

Lake Constance, are probably not able to discriminate between them and 

attack both(15). Accordingly, 𝛿𝑖 gives the probability of not being consumed 

(i.e., not ingested or digested) and surviving when attacked with values 

ranging between 0 (undefended) and 1 (completely defended). The 

probability of being consumed is then given by 1 − 𝛿𝑖, which scales the 

maximum grazing rate (see Eq. 3.1) and corresponds to the ‘edibility’, 

typically used in a limnetic context(10). The conversion efficiency of 
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consumed phytoplankton into zooplankton biomass 𝜀 is assumed to be 

equal among the phytoplankton species. 𝑚𝑧 represents the zooplankton 

mortality. 

Trade-off curve  

The trade-off curve between defense and maximum growth rate is given by 

the function 

𝑟𝑖 = 𝑏 (0.9 − 𝛿𝑖)𝑎 + 𝑐    (3.2) 

where 𝑎 denotes the shape parameter, 𝑏 the slope parameter and 𝑐 the 

maximum growth rate of a most defended species (𝛿𝑖 = 0.9). If 𝑎 < 1, the 

trade-off curve is concave. 𝑎 > 1 gives a convex trade-off curve and 𝑎 = 1 a 

linear one. We assume a concave trade-off curve with 𝑎 = 0.2, 𝑏 = 1.6 𝑑−1  

and 𝑐 = 0.5 𝑑−1 approximately reflecting the trade-off curve found in the 

trait data (Fig. 3.3a). For comparison, we consider also a convex trade-off 

curve with 𝑎 = 2, 𝑏 = 1.92 𝑑−1  and 𝑐 = 0.5 𝑑−1, that crosses the concave 

trade-off curve at minimal and maximal defense levels (i.e. shares the 

same endpoints). 

Parametrization and initialization 

We considered different phytoplankton species with trait values spanning 

the whole feasible trait space. We determined the species trait values 

according to the following procedure: First, we defined a 15x15 grid of trait 

combinations covering the whole trait space (𝛿𝑖 between 0 and 0.9, 𝑟𝑖 

between 0.0 and 2.1 𝑑−1). Second, we extracted only the feasible trait 

combinations below the trade-off curve. Third, we added 15 trait 

combinations exactly on the trade-off curve, equally spaced along the whole 

defense axis, which resulted in a total number of 199 trait combinations 

representing different phytoplankton species (𝑁 = 199). 

Based on measurements conducted at Lake Constance(13,16,17), we 

parametrized the model as follows:  

𝑅𝑚𝑎𝑥 = 500 𝑚𝑔 𝐶 𝑚−3, 𝐾 = 50 𝑚𝑔 𝐶 𝑚−3, 𝐺 = 1.3 𝑑−1, 𝐻 = 80 𝑚𝑔 𝐶 𝑚−3, 

𝜀 = 0.3, 𝑚𝑃 = 0.2 𝑑−1, and 𝑚𝑍 = 0.14 𝑑−1 (spring scenario, low grazing 

pressure) or 𝑚𝑍 = 0.04 𝑑−1 (summer scenario, high grazing pressure). We 

initialized the model with random values from a uniform distribution 
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between 0.1 and 4 𝑚𝑔 𝐶 𝑚−3 for each 𝑃𝑖 and between 1 and 20 𝑚𝑔 𝐶 𝑚−3 for 

𝑍.   

Numerical integration 

The numerical integrations of the model were done with the ode45 solver of 

the deSolve package in R(18). We run the simulations for 10,000 days and 

calculated the mean biomasses of the last 1000 days to detect the 

phytoplankton species dominating in the long term. Furthermore, we 

checked which species survive in the short term, that is, within the first 

100 days. The extinction threshold was set to 10−4 𝑚𝑔 𝐶 𝑚−3. We performed 

50 simulations with different random initial conditions and averaged the 

mean biomasses and the time until extinction among all simulations. 

 

Appendix B5: Phytoplankton biomass dynamics 

 

 

Fig. B7: Simulated long-term biomass dynamics for a concave trade-off curve under (a) 

low and (b) high grazing pressure (one sample of randomized initial conditions). Grey 

and green lines represent phytoplankton species with different trait combinations, where 

the green line marks the most dominant one. The red line corresponds to herbivorous 

zooplankton. (a) At low grazing pressure, two phytoplankton species with slightly 

different intermediate defense levels coexist. Their biomasses and the biomass of the 

herbivorous zooplankton reach a steady-state. (b) At high grazing pressure, only one 

species, with a higher defense level compared to the species coexisting in (a), survives in 

the phytoplankton. Its biomass and the biomass of the zooplankton are again in 

equilibrium. 
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Fig. B8: Biomass dynamics in the first 1000 days of the simulation for a convex trade-off 

curve under (a) low and (b) high grazing pressure (one sample of randomized initial 

conditions). Grey and green lines represent phytoplankton species with different trait 

combinations, where the green line marks the most dominant one. The red line 

corresponds to herbivorous zooplankton. (a) At low grazing pressure, only a completely 

undefended phytoplankton species survives and the biomasses of that species and the 

zooplankton cycle. (b) At high grazing pressure, a completely undefended and a 

completely defended phytoplankton species (i.e. both extremes) coexist. Their biomasses 

and the biomass of the predator cycle.  
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Appendix C: Supplementary information for chapter 4 

 

Morphotypes 

The morphotype numbers, names and abbreviations for the ciliate, 

phytoplankton and rotifer community sampled in the Lake Constance data 

set can be found in Tab. C1. 

Tab. C1: Ciliate, phytoplankton and rotifer morphotype numbers, names, abbreviations 

(for ciliates) and edibility (for phytoplankton). Classification for edibility is based on 

literature (Vasseur et al., 2005; Boit and Gaedke, 2014; Ehrlich and Gaedke, 2020). 

Morphotypes are classified as most edible algae (MEA), well edible algae (WEA) or less 

edible algae (LE, not included in our analysis, as ciliates cannot consume these algae).  

Ciliate community Phytoplankton community Rotifer community 

Abbrevi-

ation 
Name Number Name 

Edi-

bilit

y 

Number Name 

A Askenasia sp. 1 
Rhodomonas 

spp. 

ME

A 
2 

Ascomorpha 

ovalis 

Bp 
Balanion 

planctonicum 
3 

Cryptomonas 

spp. 

ME

A 
3 

Ascomorpha 

spp. 

D Dileptus sp. 4 
Cryptomonas 

marssonii 

ME

A 
4 

Asplanchna 

priodonta 

Er 
Epistilis 

rotans 
5 

Cryptomonas 

rostratiformis 
LE 12 

Collotheca 

spp. 

Hb 
Histiobalantiu

m bodamicum 
6 Dinobryon spp. LE 13 

Conochilus 

hippocrepis 

L Lagynophrya 7 
Stephanodiscus 

spp. 

WE

A 
14 

Conochilus 

unicornis 

Lac 
Lacrymaria 

sp. 
8 

Stephanodiscus 

neoastraea 
LE 16 Filinia spp. 

LP 

Limno- / 

Pelago-

strombidium 

spp. 

10 
Asterionella 

formosa 
LE 17 

Gastropus 

ssp. 

MD 

Monodinium 

/Didinium 

spp. 

11 
Fragilaria 

crotonensis 
LE 18 

Kellicottia 

longispina 

P 
Paradileptus 

sp. 
12 Synedra spp. LE 19 

Keratella 

cochlearis 
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Pa 
Peritrichs on 

Anabaena 
13 

Ceratium 

hirundinella 
LE 20 

Keratella 

hiemalis 

Pd 
Peritrichs on 

diatoms 
14 Peridinium spp. LE 21 

Keratella 

quadrata 

Ph 
Pelagohalteri

a viridis 
15 

Pandorina 

morum 
LE 22 

Lecane 

spp. 

Rl 
Rimostrombid

ium lacustris 
16 

Staurastrum 

spp. 
LE 24 

Lepadella 

spp. 

S Stentor sp. 18 Diatoma spp. LE 26 
Notholca 

spp. 

ses 
Sessile 

suctoria 
19 Phacotus spp. 

ME

A 
34 

Polyarthra 

spp. 

sO 
Oligotrichs < 

35µm 
20 Oocystis spp. LE 35 

Pompholyx 

sulcata 

St 
Staurophyra 

sp. 
21 Mougeotia spp. LE 41 

Synchaeta 

spp. 

Suc 
Small 

sucticociliates 
24 Anabaena spp. LE 46 

Trichocerca 

spp. 

T Tintinnids 29 
Chrysochromulin

a parva 

ME

A 
54 

Brachionus 

spp. 

U2 
Urotricha sp. 

2 
30 

Chlamydomonas 

spp. 

ME

A 

 

U3 
Urotricha sp. 

3 
31 

Chlorella and 

Microcystis spp. 

WE

A 

Uf 
Urotricha 

furcata 
36 Mallomonas spp. LE 

V 
Vaginicola 

spp. 
37 Pediastrum spp. LE 

 

38 
Scenedesmus 

spp. 

ME

A 

41 Cosmarium spp. LE 

43 Nitzschia spp. LE 

51 Navicula spp. LE 

55 
Tabellaria 

fenestrata 
LE 

56 
Sphaerocystis 

schroeteri 
LE 

58 
Eudorina 

elegans 
LE 

59 Aulacoseira spp. LE 

75 Cymbella LE 
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ventricosa and 

C. prostrata 

77 
Erkenia 

subaequiciliata 

ME

A 

78 Oscillatoria spp. LE 

138 Cyclotella spp. 
WE

A 

 

  



175 

 

Time series and temporal variability of biomasses and net growth rates 

 

Fig. C1: Time series of log10 biomass and net growth rate, here of Askenasia. The red line 

shows the smoothed log10 biomass used for boosted regression trees. 
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The net growth rate of Askenasia is shown as an example time series for 

original and smoothed data (used for the boosted regression trees) (Fig. 

C1). The coefficient of variation is smaller within the ciliate community 

than in the phytoplankton community (Fig. C2).  

 

Fig. C2: Coefficient of variation of ciliate, phytoplankton and rotifer morphotypes. The 

coefficient of variation of the ciliate community is significantly smaller than of the 

phytoplankton community (p = 0.0058). n is the number of morphotypes in that 

community. 

The mean, variance, skewness, and kurtosis of the ciliate morphotype net 

growth rate distributions are provided in Tab. C2.  

Tab. C2: Net growth rates r and their distributions of ciliate morphotypes including the 

number of measurements for r, the mean, variance, skewness and kurtosis [>3 = 

leptokurtic = peaky].  

Name 

Number of 

r measure-

ments 

Mean r 
Variance 

of r 

Skewness 

of r 

Kurtosis 

of r 

Askenasia sp. 417 0.005 0.020 -0.13 4.5 

Monodinium/Didinium 141 -0.008 0.031 -0.20 4.1 

Histiobalantium bodamicum 401 0.003 0.017 0.02 4.0 

Small oligotrichs 433 0.001 0.014 -0.06 4.0 

Pelagohalteria viridis 116 0.000 0.038 -0.17 3.4 

Balanion planctonium 429 0.000 0.033 -0.25 5.1 

Rimostrombidium lacustris 342 0.004 0.032 -0.29 3.6 

Small sucticociliates 259 0.000 0.024 0.41 5.3 

Limno- and 404 0.001 0.028 -0.29 5.4 
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Pelagostrombidium sp. 

Sessile suctoria 174 0.003 0.024 0.40 3.7 

Tintinnids 338 0.005 0.029 -0.05 5.3 

Urotricha furcata 423 0.004 0.022 0.02 5.6 

Urotricha 2 292 0.005 0.028 0.15 4.8 

Urotricha 3 231 0.014 0.040 0.34 3.5 

Peritrichs on Anabaena 102 0.009 0.049 0.16 3.7 

Vaginicola 108 0.009 0.034 -0.32 3.3 

Peritrichs on diatoms 344 0.006 0.032 0.26 3.9 
 

Using 15 equidistant classes of the observed ciliate net growth rates, we 

calculated three indices describing their distribution beyond the skewness 

S and the kurtosis K (Gaedke and Klauschies, 2017). C1 = S² + ((K-3)/2)² 

determines whether the distribution differs from a normal distribution 

which holds for values C1 > 0.36. C2 = S² - (K-3) determines whether the 

distribution is bimodal which holds for values C2 > 1.2, C3 = (S²+1)²/K 

determines whether the deviation from normality is due to skewness (C3 > 

0.62) or because the distribution is substantially more peaked than the 

normal distribution (C3 < 0.62). The classification of the ciliate net growth 

rate distributions according to skewness and kurtosis show that most of 

them are peaked and not bimodal or skewed (Fig. C3). 
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Fig. C3: Characterization of the distributions of ciliate net growth rates r according to 

their skewness and kurtosis. The outer black line includes the mathematically feasible 

range of S–K values, the inner red circle the range for normal distributions following the 

index C1, S–K combinations more extreme than the brown line are classified as bimodal 

(index C2) and values falling within the inner orange line as peaked (index C3). S–K 

combinations falling between the C2 (brown) and C3 (orange) isoclines are considered as 

skewed. Ciliates abbreviations can be found in Tab. C1. 
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Diversity and similarity 

 

 

Fig. C4: Diversity (on the left) and evenness (on the right) according to Simpson for 

ciliates, phytoplankton, rotifers. Simpson diversity D = 1-∑ 𝑝𝑖
2𝑁

𝑖 , Simpson evenness E = 
𝐷

1−1 𝑁⁄
,. 

The ciliate and phytoplankton community has a higher diversity and 

evenness than the rotifer community (Fig. C4). The similarity of the ciliate 

community is highest, followed by the phytoplankton community (Fig. C5). 
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Fig. C5: Time series of the similarity index B ∑
𝑚𝑖𝑛 (𝑝𝑖𝑎,𝑝𝑖𝑏)

𝑚𝑎𝑥 (𝑝𝑖𝑎,𝑝𝑖𝑏)
𝑁
𝑖

1

𝑁
 (morphotype i, number of 

morphoptyes N, a and b consecutive days; Pinkham and Pearsson) for the relative 

morphotype composition of ciliates, phytoplankton, rotifers. 

Comparison of different machine learning models 

Correlations of predictors used in the BRT model (Fig. C6) can help us to 

understand how reliable the estimated ciliate responses are likely to be, 

and whether correlations between predictors may lead to erroneous 

inferences. In general, it appears that multicollinearity is not a large 

problem in our dataset. Temperature is perhaps most susceptible to 

misleading inferences because of the magnitude of its correlations with 



181 

 

multiple other predictors, especially Daphnia. This is unfortunately 

inescapable, as it essentially captures seasonality. 

 

Fig. C6: Correlation matrix of all predictors (only significant correlations are shown 

using a threshold of 1/420 according to Bonferroni. The size of the circles corresponds to 

the correlation coefficient. 

Different BRTs are provided predicting either the biomass or the net 

growth rate r (Tab. C3). For both types, four models were calculated by 

accounting for first only for the environmental predictors (E), second only 

auto-correlation, i.e. only for the biomass/ net growth rate one sampling 

date before (Bio-1/ r -1), third both the environmental predictors and the 

biomass/ net growth rate one time step before (Bio-1 + E / r -1 + E) and 

fourth the environmental predictors and the biomass/ net growth rate one 

and two time steps before (Bio-1 + Bio-2 + E / r -1 + r -2 + E). 
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Tab. C3: For all ciliate morphotypes the number of their r measurements and the R² [%] 

for the BRTs is shown. BRTs predicting either the biomass (bio) or the net growth rate 

(r) and taking into account either the environmental predictors (E), the biomass/ net 

growth rate one time step before (Bio-1/ r-1), both the environmental predictors and the 

biomass/ net growth rate one time step before (Bio-1 + E / r-1 + E) or the environmental 

predictors and the biomass/ net growth rate one and two time steps before (Bio-1 + Bio-2 + 

E / r-1 + r-2 + E). The highest R² per ciliate morphotype and model type (bio and r) is 

marked in bold. 

Name # r 

R² 

Models predicting bio Models predicting r 

E Bio-1 
Bio-1 

+ E 

Bio-1 

+ Bio-

2 + E 

E r -1 
r -1 + 

E 

r -1 + 

r -2 + 

E 

Askenasia sp. 417 35 62 62 63 4 6 9 7 

Balanion 

planctonium 
429 -19 51 50 50 3 4 9 14 

Histiobalantium 

bodamicum 
401 22 64 64 64 3 6 3 3 

Limno- and 

Pelagostrom-

bidium sp. 

404 16 49 49 50 6 9 13 14 

Monodinium/ 

Didinium 
141 -9 11 13 12 4 9 3 5 

Peritrichs on 

Anabaena 
102 -5 19 13 12 8 15 13 12 

Peritrichs on 

diatoms 
344 16 48 46 47 6 6 6 9 

Pelagohalteria 

viridis 
116 -3 18 15 14 8 10 10 9 

Rimostrombi-

dium lacustris 
342 7 47 49 49 3 11 11 12 

Sessile suctoria 174 -11 20 20 19 1 2 1 1 

Small 

oligotrichs 
433 28 68 67 68 6 3 9 8 

Small 

sucticociliates 
259 11 53 53 53 7 3 7 8 

Tintinnids 338 -4 54 54 54 5 3 7 7 

Urotricha 

furcate 
423 12 40 39 39 4 4 7 7 

Urotricha 2 292 -6 48 46 46 3 11 13 15 
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Urotricha 3 231 18 59 58 58 4 4 7 9 

Vaginicola sp. 108 0 7 3 4 8 7 10 9 

Median 338 7 49 49 49 4 6 9 9 

Mean 291 6 42 41 41 5 7 8 9 
 

We found a high positive first order auto-correlation for the biomasses (Fig. 

C7) and a negative first order auto-correlation for the net growth rates of 

the ciliates (Fig. C8). 

 

Fig. C7: Partial dependence plot for biomass of the previous time step. 
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Fig. C8: Partial dependence plot for net growth rate of the previous time step. 
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Appendix D: Supplementary information for chapter 5 

 

Appendix D1: supporting table and figures 

Parameter 

Tab. D1: Model parameters. Standard parameters in the model, their abbreviation, unit, 

value, and reference. 

Name Unit Range Meaning 

r [
1

𝑑
] 1 Maximum growth rate of autotrophs 

pci [-] 0.01-1 Plasticity costs 

K [ 
𝑚𝑔 𝐶

𝑙 
] 1 Maximum carrying capacity 

dci [-] 0.01-1 Defence costs 

a [
1

𝑑

𝑙

𝑚𝑔 𝐶
] 6 Maximum attack rate 

dij [-] 0-0.9 Defence, i.e. reduction of attack rate of consumer on Aij 

h [d] 1 Handling time 

𝜒𝑚𝑎𝑥 [
1

𝑑
] 

0-10 

across 5 

orders of 

magnitude 

Maximum exchange rate between undefended and 

defended phenotype of a species 

b [
𝑙

𝑚𝑔 𝐶
] 10 Shape parameter for the exchange function 

C* [ 
𝑚𝑔 𝐶

𝑙
] 0.251 Half of maximum consumer density when b=0 

𝜀 [-] 0.3 Conversion efficiency 

δ [
1

𝑑
] 0.21 Consumer death rate 
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Traits 

We measured the community traits by calculating the weighted mean and 

weighted variance of the growth rate and the defence. The mean 

community trait 𝜏̅ was defined as the biomass weighted mean of the trait 

values of the individual phenotypes 𝜏𝑖𝑗: 𝜏̅ =
1

(𝐴𝑢+𝐴𝑑+𝐵𝑢+𝐵𝑑)
(𝐴𝑢𝜏𝐴𝑢 + 𝐴𝑑𝜏𝐴𝑑 +

𝐵𝑢𝜏𝐵𝑢 + 𝐵𝑑𝜏𝐵𝑑). The community variance was defined as weighted variance 

𝑣𝑎𝑟(𝜏) =
1

3(𝐴𝑢+𝐴𝑑+𝐵𝑢+𝐵𝑑)
(𝐴𝑢(τ𝐴𝑢 − 𝜏̅)2 + 𝐴𝑑(τ𝐴𝑑 − 𝜏̅)2 + 𝐵𝑢(τ𝐵𝑢 − 𝜏̅)2 +

𝐵𝑑(τ𝐵𝑑 − 𝜏̅)2). 

 

Fig. D1: Trait values of the autotroph community for scenario parallel 0. Community 

mean defence (a), variance of the defence (b), community mean growth rate (c) and 

variance of the growth rate (d). Lines separate the regions I-III of different autotroph 

coexistence. 
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Fig. D2: Trait values of the autotroph community for scenario parallel 0.01. Community 

mean defence (a), variance of the defence (b), community mean growth rate (c) and 

variance of the growth rate (d). Lines separate the regions I-III of different autotroph 

coexistence. 
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Fig. D3: Trait values of the autotroph community for scenario parallel 1. Community 

mean defence (a), variance of the defence (b), community mean growth rate (c) and 

variance of the growth rate (d). Lines in separate the regions I-III of different autotroph 

coexistence. 
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Constellation crossing 

 

Fig. D4: Biomasses and coexistence for scenario crossing 0. Biomasses of the four 

autotrophic phenotypes (a-d), their coexistence patterns (e), the consumer biomass (f) 

and an exemplary of the autotrophs’ trait values (g) (higher biomasses are shown by 

darker colours). Larger symbols in g indicate the surviving phenotypes. Shaded areas in 

e depict oscillating systems (antiphase cycles in loose shading).  

 

Fig. D5: Biomasses for scenario crossing 0.01 and crossing 1. Biomasses of the four 

autotrophic phenotypes for scenarios crossing 0.01 (a-d) and crossing 1 (e-h) (higher 

biomasses are shown by darker colours). Lines separate the regions I-III of different 

autotroph coexistence. 
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Constellation angle 

 

Fig. D6: Biomasses and coexistence for angle 0. Biomasses of the four autotrophic 

phenotypes (a-d), their coexistence patterns (e), the consumer biomass (f) and the 

autotrophs’ trait values (g-j) (higher biomasses are shown by darker colours). Lines in a-f 

separate the regions I-III of different autotroph coexistence. An exemplary trait 

combination for every region is shown in g-j; larger symbols indicate the surviving 

phenotypes. Shaded areas in e depict antiphase cycles. 
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Fig. D7: Biomasses for scenario angle 0.01 and angle 1. Biomasses of the four 

autotrophic phenotypes for scenarios angle 0.01 (a-d) and angle 1 (e-h) (higher biomasses 

are shown by darker colours). Lines separate the regions I-III of different autotroph 

coexistence. 
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Impact of the shape of trade-off lines on coexistence 

 

Fig. D8: Concave (a) and convex (b) trade-off curves and the resulting surviving 

phenotypes. The trade-off curve (solid line) represents the boundary of the set of feasible 

trait combinations (gray area). The trait combinations with the highest fitness survive. If 

two or more trait combinations are of maximal fitness in the long term, the respective 

species with these trait combinations coexist (b), otherwise only one species survives (a). 

The shown trait combinations are examples, symbols denote different phenotypes. They 

are based on the scenario parallel 0, but with these parameters: defence of Ad = 0.4, 

defence costs dcA = -0.25 for the concave and dcA = -1.25 for the convex trade-off line, dcB 

= -0.44, plasticity costs pcB = 0.4.  
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Appendix D2: Derivation of maladaptive switching 

Our results show that, in the long run, phenotypically plastic switching 

between phenotypes is nearly always maladaptive. In this appendix we 

show why this result must hold true if the system is at a stable 

equilibrium: if there is any switching at this equilibrium, this is always 

maladaptive, resulting in a source-sink dynamic between the two 

phenotypes. If there are ongoing oscillations, on the other hand, switching 

can in the long run still be adaptive (cf. Fig. 5.7C); however, given the 

strongly stabilizing effect of inducible defences, we rarely found this as a 

long-term outcome. 

To explain why maladaptive switching inevitably arises at a stable 

equilibrium, we use here a simplified version of the model, with only a 

single autotroph A, which can express an undefended phenotype Au and a 

defended phenotype Ad. In the two-autotroph food web we use in the main 

text, the mechanism underlying maladaptive switching is the same. We 

start by showing the equilibrium conditions in a model without switching, 

and then show how this is modified by phenotypic plasticity. 

Single-autotroph model without switching 

Without specifying the exact details of growth and consumption terms, a 

model with two autotroph phenotypes Au and Ad and a single consumer C 

can be represented as follows:  

u
u u

d
d d

c

dA
F A

dt

dA
F A

dt

dC
F C

dt

 

 

 
    (D1) 

where Fu, Fd and Fc represent the fitness (i.e. the net per capita growth 

rate) of the undefended autotrophs Au, defended autotrophs Ad, and 

consumers C, respectively. This system is at an equilibrium when all three 

equations are zero; if both autotroph phenotypes and the consumer all 

survive, this implies that Fu = Fd = Fc = 0. 
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To understand the effect of switching in the next section, it is helpful to 

rewrite the first two equations to represent the change in total autotroph 

biomass (A = Au+Ad) and the change in the frequency of the undefended 

phenotype (f = Au/(Au+Ad)):  

  

   

1

1

u d

u d

c

dA
f F f F A

dt

df
f f F F

dt

dC
F

dt
C

    

    

 
    (D2) 

In equation (D2), the meaning of Fu, Fd and Fc is the same as in the 

original equation (D1). f is the frequency of undefended phenotypes in the 

autotroph population, and (1 – f) is the frequency of defended phenotypes. 

The second equation of D2 shows how fitness differences between the 

phenotypes will translate into changes in the frequency f: if Fu > Fd, 

undefended phenotypes grow and reproduce faster than defended ones, and 

the share of undefended phenotypes will increase (df/dt > 0). Conversely, if 

Fd > Fu, selection favours defended phenotypes, which will then increase in 

frequency (i.e. df/dt < 0). 

The above equations are mathematically completely equivalent to those in 

equation (D1), and a stable equilibrium is again found when all equations 

are zero. From the second equation, we can see that coexistence of the two 

phenotypes (i.e. f ≠ 0 and f ≠ 1) implies that, at equilibrium, Fu = Fd (i.e. the 

two phenotypes must have equal fitness); combined with the first equation, 

this implies that Fu = Fd  = 0.  

Single-autotroph model with switching 

When we include the switching rates χu (switching from undefended to 

defended) and χd (from defended to undefended) in the model, the 

equations in (D2) now become: 

  

     

1

1 1

u d

u ud d

switchingselection

dA
f F f F A

dt

df
f f F F f f

dt
 

    

         

  (D3) 
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(The equation for the consumer C does not change, and is not included 

from this point.) 

It can be seen that the switching rates do not directly affect the change in 

the total autotroph biomass A, since undefended and defended individuals 

are counted there as a single population. Instead, they affect the 

frequencies: χu lowers the frequency of undefended phenotypes f (since it 

represents the switching from undefended to defended phenotypes), while 

χd increases f (since it represents switching from defended to undefended 

phenotypes). 

In the above equations (D3), just as before, the system is at a stable 

equilibrium when all equations are zero. Without switching, this always 

means that Fu = Fd = 0 (see previous section); but here, this is modified by 

the switching rates to: 

     1 1u ud d

switchingselection

f f F F f f         

   (D4) 

In more intuitive terms: the frequency of undefended phenotypes (second 

line in equation (D3)) does not change when the effects of selection and of 

switching balance each other out. 

By definition, selection is always adaptive, i.e. it results in an increase in 

the frequency of whichever phenotype has a higher fitness; this must be 

true, since selection directly responds to the fitness differences between the 

phenotypes (equation (D2-D4)). Equation (D4) therefore implies that, in 

equilibrium, switching must always be maladaptive, since it acts in the 

opposite direction to selection. In other words, if undefended phenotypes 

have a higher fitness (Fu > Fd), selection will “push” for an increase in the 

frequency of undefended phenotypes. Hence, for the equilibrium to remain 

stable, there must be net switching from undefended to defended 

phenotypes (i.e. from the high-fitness to the low-fitness phenotype) to 

maintain a stable frequency. Thus, if any switching is occurring at a stable 

equilibrium, it will always be maladaptive. 

The only possibility for no maladaptive switching is no switching at 

equilibrium at all. In this case, the “selection” and “switching” parts of 

equation (D3-D4) are both zero. While this is not strictly impossible, it is 
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very unlikely, and in our simulations, we always found a net flow between 

the phenotypes at equilibrium (Appendix Fig. D4-D6, left panels). 

The above derivation shows that, when the system is at a stable 

equilibrium, any switching must always be maladaptive. When there are 

ongoing oscillations, this does not apply, and in this case switching can on 

average still be adaptive in the long run (cf. Fig. 5.7C). 
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