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Mathematical models have become an important tool for understanding the control of eye movements
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were to investigate the possibility of spatially distributed processing and to implement a general mecha-
nism for all types of eye movements we observe in reading experiments. Here, we present an advanced
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analysis of the dynamics of the SWIFT model is presented. Finally, within this framework, we present
an analysis of the transition from parallel to serial processing.
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In modern society, reading is a central skill,
which demonstrates how efficiently a range of dif-
ferent cognitive processes (e.g., visual information
processing, word recognition, attention, oculomo-
tor control) can work together in order to perform
a complex everyday task. Consequently, a full ac-
count of how we read is among the crucial prob-
lems of cognitive research. Here, we focus on the
fact that eye movements in reading represent an
important example for a coupled cognitive-motor
system. Therefore, a detailed analysis of the inter-
face between high-level cognition (word recogni-
tion) and eye-movement control (saccade genera-
tion) is essential to contribute to our knowledge of
reading.

The measurement, analysis and modeling of eye
movements is one of the most powerful approaches
to study the way visual information is (1) processed
by the human mind and is (2) used to guide our ac-
tions (Findlay & Gilchrist, 2003). Measurements
of fixation durations on words or on regions of text
are central for investigating cognitive processes
underlying reading (Rayner, 1998; Liversedge &
Findlay, 2000). Therefore, it is of central impor-
tance to develop a detailed understanding of how
the experimental observables are related to the un-
derlying cognitive systems.

Over the last decades, there has been a consid-
erable increase of knowledge about eye movements
and visual information processing (e.g., Rayner,
1998; Radach, Kennedy, & Rayner, 2004; Hyönä,
Radach, & Deubel, 2003). The question of how
the contributing cognitive subsystems for a specific
task like reading are coordinated is a research prob-
lem representative for questions which we believe
cannot be investigated without fully quantitative
mathematical models. While it is still possible to
investigate aspects of eye-movement control (e.g.,
word skipping or programming of refixations) in
a non-mathematical way, a fully quantitative ap-
proach, in which most of the experimental phenom-
ena are integrated, is necessary to test the interac-
tion of different theoretical assumptions (e.g., the
potential impact of a mechanism for word skipping

on refixation behavior). In perspective, computa-
tional models can be approximated with analyti-
cal means to check the numerically obtained results
and to derive the foundations of a rigorous theory
of eye-movement control during reading (e.g., En-
gbert & Kliegl, 2003a).

The main goal of this article is to propose a
mathematical model for the control of eye move-
ments during reading, which is both psychologi-
cally and neurophysiologically plausible and ac-
counts for most of the known experimental find-
ings. The model presented here is an advanced
and substantially extended version of the SWIFT1

model proposed earlier (Engbert, Longtin, &
Kliegl, 2002). The model is motivated by many dif-
ferent experimental results, which we will discuss
in detail. The model incorporates neurophysiolog-
ical properties of the oculomotor system. Further-
more, the SWIFT model is compatible with a gen-
eral framework of the generation of saccades de-
veloped by Findlay and Walker (1999) and shares
concepts with the dynamic field theory of move-
ment preparation by Erlhagen and Schöner (2002).
As our cognitive systems have never been under
evolutionary pressure to optimize reading abilities,
i.e. there has been no special adaptation of humans
for reading, plausible models of eye movements in
reading must have potential for generalization to
task manipulations (e.g., reading with a scotoma)
and non-reading tasks (e.g., visual search). We will
discuss the aspect of generalizability later in this
article.

The model which we develop here is a minimal
model, which is related to two aspects of model de-
sign. First, the model is based on only a few core
principles. This is a challenging problem, because
even when reading relatively simple sentences, pat-
terns of eye movements turn out to be very com-
plex. As an example, we observe several different
types of saccades including word skipping (no fix-
ation on the skipped word), refixations (more than

1(Autonomous)Saccade-generationWith Inhibition by
FovealTargets.



2 The SWIFT model

one fixation on the same word) and even inter-word
regressions (backward saccades landing on a pre-
viously fixated region of text). The formulation
of separate assumptions for these different types
of eye movements would violate the principle of
minimal modeling. Therefore, we aim at a gen-
eral mechanism underlying all types of saccades
— the fundamental principle of our model. Sec-
ond, the core assumptions of our model are ideal-
izations, which will be formulated mathematically
in a parsimonious way, i.e. with as few parameters
as possible. Minimal modeling is also related to
generalizability, because, with an increasing num-
ber of assumptions specific to reading, the model
would be more and more inflexible to explain eye
movements in different tasks. How we control eye
movements in visual search should be in agreement
with the main control principles guiding the eyes
during reading.

A theoretical framework for the dynamics of
movement preparation with a very general claim
is the dynamic field theory (Erlhagen & Schöner,
2002). In this theory, a field of activation — the
mathematical term for a function of spaceandtime
— is spatially distributed over a number of po-
tential movement targets. Using concepts from
the theory of nonlinear dynamical systems, laws
governing the temporal evolution of such activa-
tion fields are proposed by the dynamic field the-
ory. In the dynamic field theory there is continuous
crosstalk between different cognitive subsystems
(e.g., memory system, perceptual input, movement
planning). This continuous interaction of cognition
and motor control makes the theory highly relevant
to eye-movement control during reading, since the
selection of words as saccade targets must be per-
formed on the basis of partial knowledge, because
saccade latency requires an early start of the next
saccade program during fixation. Thus, a tempo-
rally continuous interaction between processes of
word recognition and saccade generation is essen-
tial in a plausible model of eye-movement control
during reading. While we will not refer to the ex-
plicit formalism proposed by Erlhagen and Schöner

(2002), we use the concept of an activation field al-
ready developed in the first version of the SWIFT
model (Engbertet al., 2002). It is important to
note, however, that the assumption of an activa-
tion field already has strong implications. A the-
ory built around the core assumption of a dynami-
cally changing activation field necessarily involves
spatially-distributed processing. In reading, words
are the elementary targets for the saccadic system.
To build up an activation field, several words must
be activated in parallel. This parallel processing,
however, is not necessarily related to word recog-
nition, but could be limited to early stages of word
processing. We will discuss this important aspect
of our model later and derive different types of par-
allel processing of words.

The first version of our model of eye movement
control in reading2 (Engbertet al., 2002) was de-
veloped as a viable alternative to the models based
on sequential shifts of attention, a principle which
motivated the development of the currently most
advanced model called E-Z Reader (Reichle, Pol-
latsek, Fisher, & Rayner, 1998; Reichle, Rayner,
& Pollatsek, 1999; Reichle, Rayner, & Pollatsek,
2003; see also Engbert & Kliegl, 2001). Due to the
success of the E-Z Reader model, which is based
on strictly sequential processing, some researchers
speculated that an alternative model based on paral-
lel processing of words could not perform similarly
well. For example, Starr and Rayner (2001, p. 162)
concluded that

”... such a model seems rather compli-
cated and would be difficult to implement
in a computational model. Thus, a chal-
lenge for proponents of a parallel mecha-
nism of attention during reading is to de-
lineate the parameters of such a frame-
work.”

From this perspective, the development of the first
version SWIFT-I was important in order to keep the

2We will refer to the first version as SWIFT-I. For direct
comparisons the current version of our model will be labeled
as SWIFT-II.
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scientific debate open and to demonstrate a viable
alternative to E-Z Reader and/or the principle of se-
quential attention shifts.

Once we have developed a mathematical model
based on parallel processing of words, we can in-
vestigate the problem of serial versus parallel pro-
cessing by computational means. We will show
later in this article that it is possible to introduce
a continuous spectrum from strictly serial to fully
parallel models by a parametrization of the type of
processing. Thus, we will show how a computa-
tional model might contribute to this long-standing
research problem. In perspective, we hope to stim-
ulate new experimental and theoretical work mo-
tivated by the results obtained from the SWIFT-II
model.

Before we present our model and its mathemati-
cal analysis, we briefly review three theoretical ap-
proaches to the control of eye movements in read-
ing, formulate the goals for our modeling approach
and present the core theoretical assumptions as a
basis for the SWIFT-II model.

Models of eye-movement control in reading

During reading, saccadic eye movements are nec-
essary to move words to the center of the visual
field, i.e. the fovea, where high visual acuity en-
ables efficient word recognition. Thus, reading
may be looked upon as a case study inactive vi-
sion (Findlay & Gilchrist, 2003), the notion that
eye movements are essential for almost all visual
perception.

Given the complexity of eye movement patterns
and the considerable amount of variance in fixa-
tion durations, it is unclear whether eye movements
are directly guided by high-level language pro-
cesses. With respect to model categorization, we
are interested in the problem of whethercognitive
models, mainly driven by language-related prop-
erties of words (e.g., word recognition), are more
adequate thanprimary oculomotor control(POC)
models. Models which fall into the latter category
exploit low-level information (e.g., word length) to

reproduce some of the basic patterns of eye move-
ments. For example, Reilly and O’Regan (1998)
assumed that the eye is directed to the longest
word in the area of about 20 characters to the right
of fixation and that oculomotor errors (e.g., over-
shoot or undershoot of the center of a target word)
lead to properties of within-word corrections nec-
essary for word recognition (see also O’Regan &
Lévy-Schoen, 1987; O’Regan, 1990, 1992). Mc-
Conkie, Kerr, and Dyre (1994) developed a two-
state model, which provided a good account of
within-word landing positions (McConkie, Kerr,
Reddix, & Zola, 1988). It is important to note that
effects of lexical processing on eye-movement con-
trol are not completely excluded in POC, however,
it is assumed that these higher-level influences only
modulate a control strategy that is primarily based
on low-level visual information.

To give new insights into the debate about cog-
nitive versus POC models, it is necessary to de-
velop a detailed model of eye-movement control,
which integrates experimentally observed phenom-
ena from both approaches. As an example, such a
model should reproduce effects of word difficulty
(e.g., measured by printed word frequency) as well
as oculomotor effects (e.g., systematic errors in ini-
tial landing positions).

Following the terminology we proposed earlier
(see Engbertet al., 2002), cognitive models may be
further divided into sub-classes according to their
principles of allocation of visual attention. Two im-
portant concepts are control bysequential attention
shifts(SAS) andguidance by attentional gradients
(GAG).

SAS models are generally based on Morrison’s
(1984) proposal that covert shifts of attention are
generically performed during fixation. Based on
these attentional shifts, saccadic eye movements
are prepared (Kowler, Anderson, Dosher, & Blaser,
1995; Deubel & Schneider, 1996; Kustov & Robin-
son, 1996). At the same time, parafoveal informa-
tion is used to start word recognition. The mecha-
nism of SAS provided a straightforward account of
selective skipping of short high-frequency words.
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The E-Z Reader model (Reichleet al., 1998)
represents the most advanced attempt to build a
theory of eye-movement control based on SAS.
The development of this model was motivated by
two important findings incompatible with Morri-
son’s model. First,preview benefit, the shortening
of processing time on subsequent words originat-
ing from time spent on the foveal word, is mod-
ulated by foveal processing load (Henderson &
Ferreira, 1990; Kennison & Clifton, 1995). Sec-
ond, one often observes “spillover” effects due to
word frequency (Rayner & Duffy, 1986), i.e. lower-
frequency words induce longer fixation durations
not only locally, but also lengthen the fixation du-
ration on the succeeding word. Recent further de-
velopments of E-Z Reader include landing site dis-
tributions (Reichle, Rayner, & Pollatsek, 1999) and
improved refixation behavior (Reichle, Rayner, &
Pollatsek, 2003), thus extending the model to re-
produce effects generated by oculomotor control
principles in addition to effects of lexical process-
ing. The interface between cognition and eye-
movement control in E-Z Reader was re-evaluated
recently (Pollatsek, Reichle, & Rayner, 2005). In
a variant of an SAS model, Engbert and Kliegl
(2001) showed that it is possible to relax the strong
assumption of lexically driven saccade program-
ming. Therefore, the SAS framework is compati-
ble with the assumption of autonomously generated
saccades, i.e. saccades, which are not induced by a
lexical control loop.

In models based on attentional gradients
(GAG), there is a continuous distribution of lexi-
cal processing rate over the fixated region of text.
Legge, Klitz, and Tjan (1997) proposed a gradient-
type model with a saccade-targeting mechanism
that minimizes the uncertainty about the current
word, called the ideal-observer model of reading
(see also Legge, Hooven, Klitz, Mansfield, & Tjan,
2002). Another recent primary oculomotor model
was suggested by Yang and McConkie (2001,
2004). The key assumption of their competition-
interaction theory is that the temporal aspect of sac-
cade planning is basically independent of lexical

processing. Processing difficulty, however, can in-
hibit the oculomotor system from initiating a sac-
cade program.

In SWIFT-I (Engbert, Longtin, & Kliegl, 2002),
we proposed that four words are processed in paral-
lel. Processing rate is highest for the foveal word,
decreases to the parafoveal words to the left and
to the right of the fixated word, and there is still
some parafoveal processing on the second word to
the right. While this assumption was rather simpli-
fied without word lengths taken into account, this
model turned out as a viable alternative to models
based on the SAS principle. To extend the range of
phenomena explained by SWIFT-II and to investi-
gate the question of serial versus parallel process-
ing of words, we develop an advanced version of
SWIFT in this article. Before we start to explain
the core principles of our new model, it is neces-
sary to clarify the goals of our attempt to model the
control of eye movements during reading.

Modeling goals

The reduction of a real-world problem to a num-
ber of simple rules is among the key principles of
mathematical modeling. The level of detail may
vary across model components. As noted in a re-
cent viewpoint article by May (2004, p. 793) an
approach which includes as many as possible ex-
perimentally observed details represents an abuse
of mathematical modeling, because many of the
known details of a problem may turn out to be ir-
relevant to the model, while some important ingre-
dients might be missing:

“Perhaps most common among abuses,
and not always easy to recognize, are sit-
uations where mathematical models are
constructed with an excruciating abun-
dance of detail in some aspects, whilst
other important facets of the problem are
misty or a vital parameter is uncertain to
within, at best, an order of magnitude.”
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As stated above, the main objective in our mod-
eling approach is the interface of visual processing
of words and eye-movement control. In mathemat-
ical models developed over the last years, it turned
out that the control of eye movements in reading
can be captured by a theoretical model without in-
tegrating an advanced model of language process-
ing (see Reichle, Rayner, & Pollatsek, 2003). Most
of the variance in eye-movement patterns and many
of the experimental phenomena can be explained
by models on the basis of rather simplified rules
for word recognition and mechanisms for saccade
programming. Thus, while language comprehen-
sion is the function of reading, many higher-level
linguistic processes essential to language compre-
hension typically have a rather small impact on
the details of eye-movement control during read-
ing. To make our modeling approach more trans-
parent, we briefly discuss the experimentally ob-
served phenomena which we attempt to reproduce
with our model and how to evaluate the model’s
performance.

Quantitative measures for goodness-of-fit

The performance of computational models can be
evaluated by quantitative and qualitative measures.
Eye movement patterns clearly depend on proper-
ties of lexical difficulty, which is most commonly
characterized by printed word frequency and word
predictability, i.e. the probability of guessing a
word from the sequence of previous words of
the sentence (e.g., Kliegl, Grabner, Rolfs, & En-
gbert, 2004; see Rayner, 1998, for a review).
While printed word frequency can be computed
from large text corpora and independent of context,
word predictability incorporates many aspects of a
reader’s knowledge of language, depends strongly
on context, and must therefore be estimated from
experiments, obtained from incremental reading
tasks, for each word of a given sentence. An im-
portant physical word parameter influencing eye-
movement control is word length. For example,
word-length information acquired parafoveally is

used in computing the next saccade length (e.g.,
O’Regan, 1979; Rayner, 1979; Morris, Rayner &
Pollatsek, 1990). From these considerations, word
frequency, word predictability and word lengths
will serve as independent variables for the analysis
of dependent measures discussed in this section.

Among the quantitative measures for the control
of eye movements in reading are temporal variables
(fixation durations), spatial variables (probabili-
ties for different types of saccades) and a number
of experimentally observed effects, which mainly
represent conditional variables, i.e. more compli-
cated combinations of spatial and temporal mea-
sures such as fixation durations conditional on the
fixation location within a word.

Fixation durations. Inspection times are cen-
tral for evaluating visual information processing in
reading. An important measure for word difficulty
is gaze duration (e.g., Rayner, 1998), i.e. the sum
of the first fixation and all immediate refixation
durations. Because of the large number of ways,
in which fixations sum up to gaze duration, gaze
duration is an average measure over many differ-
ent patterns of fixations such as whether two suc-
cessive fixations in a word occur in a forward or
backward sequence. For a more detailed look into
the model’s dynamics, we aim at a representation
of the experimental data by non-overlapping mea-
sures.3 Therefore, we separately calculatesingle
fixation durationfor all cases in which words re-
ceive one fixation. For the evaluation of refixations,
we usefirst fixation duration4 andsecond fixation
duration. These measures are limited to first-pass
reading, i.e. fixations after regressions to previous
words do not contribute — irrespective of whether
this word had been skipped or fixated initially. Fi-
nally, we calculatetotal reading time, the sum of

3Nevertheless, we will use gaze duration as a derived mea-
sure in Appendix D.

4In the following, we compute first fixation durations as an
average of all cases with a second (or more) fixations, i.e. ex-
cluding single-fixation cases. Traditionally, however, first
fixation durations include single-fixation cases (e.g., Rayner,
1998).
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all fixations regardless of the eye’s trajectory which
generates these fixations.5

Fixation probabilities. The four measures
of fixation durations are complemented by four
measures of fixation probabilities. The fixation-
probability measures characterize the spatial as-
pect of eye-movement patterns. Based on first-
pass reading, we calculateskipping probability, the
probability for two fixationsand theprobability for
three or more fixations.6 Since our model inher-
ently produces inter-word regressions, we also cal-
culate theregression probabilityor, more precisely,
the probability that a word is the target of an inter-
word regression.7

Effects of word length versus word frequency.
Means of the above eight measures of fixation du-
rations and fixation probabilities broken down by
logarithmic word-frequency classes have achieved
the status of benchmark data for the first cohort
of computational models of eye-movement control
in reading (e.g., Reichleet al., 1998; Engbert &
Kliegl, 2001; Engbertet al., 2002). These summary
statistics proved also useful for estimating model
parameters. As effects of word length and word
frequency are potentially variables of equal impor-
tance, however, we will compute model fits on the
basis of individual words in this article. Thus, each
word contributes a “data point” to the dependent
variables. This opens the possibility for a detailed
inspection of the model’s performance on single
sentences. Furthermore, by averaging over classes
of word length and frequency, we can easily deter-
mine effects of word length and frequency based on
the summary statistics of the earlier studies.

Within-word landing positions. An important
impact of the oculomotor system on reading behav-
ior arises from oculomotor errors. In addition to

5This category is necessary to collect all possible fixation
sequences in a “rest” category.

6By definition, the probability for a single fixation can be
calculated by one minus the sum of the probability for skip-
ping and the probabilities for two and three or more fixations.

7In the following, we will use the expressionregression for
inter-word regressions exclusively, while refixations oriented
to the left will be calledregressive refixations.

random errors, which occur in all motor systems,
we observe a systematic component (McConkieet
al., 1988). As a consequence, thepreferred viewing
location (Rayner, 1979) is a point left of the center
of a word.

Effect of inverted optimal viewing position of
fixation durations (IOVP). As visual acuity de-
creases from the maximum in the center of the
visual field (the fovea) to the parafovea and pe-
riphery, word recognition is fastest when fixating
an isolated word in the center (O’Regan, Lévy-
Schoen, Pynte, & Brugaillere, 1984; O’Regan &
Lévy-Schoen, 1987; O’Regan & Jacobs, 1992).
Contrary to this finding in isolated word recogni-
tion, Vitu, McConkie, Kerr and O’Regan (2001;
see also Nuthmann, Engbert, & Kliegl, in press)
reported for continuous reading that first and sin-
gle fixation durations are longer for fixation posi-
tions in the word center than for fixation positions
near word boundaries. Without further theoretical
specification, this effect is opposite to predictions
of cognitive models, which assume word recogni-
tion to be fastest (rather than slowest) near word
centers.

In addition to the well-established phenomena
described above, we will also investigate model
performance in relation to recent, still somewhat
controversial issues, because one major motivation
for building mathematical models is to generate
predictions for future research directions.

Fixation duration before word skipping. Fixa-
tion durations before skipped words provide a fin-
gerprint for sequential allocation of attention, pos-
tulated in SAS models. The assumption that the
default target of an automatically started saccade
program is the next word implies that word skip-
ping involves the cancelation of this saccade pro-
gram and a restart of a new saccade program to the
word beyond the next one. Such saccade cance-
lation increases fixation durations before skipped
words, i.e. it leads to skipping costs. In a recently
published analysis, this theoretical prediction was
not consistently supported with experimental data
from continuous reading (Kliegl & Engbert, 2005).
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Therefore, we will investigate fixation durations
before word skipping as a model test.

Lag and successor effects. Fixation durations
on a given word depend not only on the length,
frequency and predictability of the fixated word
but also on these properties of the previous (i.e.,
lag) and the next (i.e., successor) words (Kliegl,
Nuthmann, & Engbert, 2005). Indeed, lag ef-
fects are of similar strength to the effects of fix-
ated word properties, inducing a longer average fix-
ation duration on words following low-frequency,
low-predictable, or long words. One of sev-
eral possible interpretations of this phenomenon
is that processing time spills over from wordn−1

to wordn (e.g., Rayner & Duffy, 1986). Analo-
gously, we can study successor effects of wordn+1

on fixation durations of wordn, a subset of which
are called parafoveal-on-foveal effects (Kennedy,
2000a, 2000b; Kennedy & Pynte, 2004). Mecha-
nisms that reproduce these experimental observa-
tions might lead to qualitative differences between
different models.

Qualitative aspects of model fitting

Several of the dependent variables mentioned
above represent qualitative measures of model per-
formance. For example, models may differ in (a)
whether or not they account for regressions, (b)
whether or not they reproduce the IOVP effect,
(c) whether or not they exhibit costs for (or ben-
efits from) word skipping, and (d) whether or not
they reproduce patterns of lag and successor ef-
fects. Such qualitative aspects of model fitting are
very important to test whether a model’s mecha-
nism for reproducing an experimentally observed
effect is correct, whether it is the only possible ex-
planation, and whether it is possible to develop al-
ternative mechanisms.

Given the substantial amount of knowledge
about the neural foundation of saccade generation,
the neurophysiological plausibility of models of
eye movement control is a further qualitative cri-
terion for the evaluation of theoretical models. A

very general model for the generation of saccades
has been proposed by Findlay and Walker (1999);
this model is built on the assumption of two sep-
arate pathways concerned with the spatial and the
temporal programming of eye movements. From
this perspective, reading might be looked upon as
a case study for the control of eye movements in
a well-structured environment. Therefore, we re-
quire that modeling assumptions should be special
cases of the general principles proposed by Findlay
and Walker.

Closely related to this point is model generaliz-
ability. In reading, eye movements are effectively
one-dimensional along the horizontal axis (except
for return sweeps to the next line of text). Here
we can ask whether and how the model’s control
principles can be extended to two-dimensional tra-
jectories, e.g. in visual search. Ideally, a model for
the control of eye movements in reading should be
generalizable to and theoretically enrich the analy-
sis of eye movements in visual search.

Core concepts of our model

Before we present the detailed mathematical for-
mulation, we summarize the core principles of the
SWIFT-II model in brief statements (Table 1). The
principles will be elaborated and discussed in detail
in the next section.

Spatially distributed processing of an activa-
tion field (Principle I). In our dynamic-field ap-
proach (e.g., Erlhagen & Schöner, 2002), all types
of saccades are generated inherently to the model,
since target selection is due to a competition among
words with different activations. The parallel build-
up of activations over several words implies that
processing is distributed across several words at a
time.

Separate pathways for saccade timing and sac-
cade target selection (Principle II). Motivated by
neurophysiological findings, temporal and spatial
aspects of saccade generation are controlled on dif-
ferent pathways (Findlay & Walker, 1999). There-
fore, the problems of when to start the next saccade
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Table 1: Core principles of the SWIFT model.

I Spatially distributed processing of an activation field.
II Separate pathways for saccade timing and saccade target selection.
III Random saccade generation with time-delayed foveal inhibition.
IV Two-stage saccade programming with labile and non-labile stages.
V Systematic and random errors in saccade lengths.
VI Error correction of mislocated fixations.
VII Modulation of saccade latency by saccade length.

program and where to go next, are decoupled.
Autonomous saccade generation with time-

delayed foveal inhibition (Principle III). Saccade
programs are generated autonomously, so that fix-
ation durations are basically realizations of a ran-
dom variable. This stochastic process is modulated
by a foveal inhibition process to extend the inspec-
tion times for difficult words. Since this inhibitory
process is based on a slower word recognition cir-
cuit (compared to the short brainstem saccade gen-
erator, e.g. Carpenter, 2000), the inhibitory process
includes a time-delay.

Two-stage saccade programming with labile
and non-labile levels (Principle IV). Programming
of saccades is a two-stage process, motivated by
results from the double-step paradigm (Becker &
Jürgens, 1979). During the labile stage, the oculo-
motor system is prepared for the next saccade pro-
gram. A new initiation of a saccade program dur-
ing the labile stage leads to a cancelation of the first
saccade program and starts a new saccade program.
At the end of the labile stage, the target is selected
from the field of activations, a point-of-no-return is
passed, and the saccade can no longer be canceled.

Systematic and random errors in saccade
lengths (Principle V). The oculomotor system in-
herently produces saccadic errors, which can be de-
composed into systematic and random components
(McConkieet al., 1988). As a consequence, in ad-
dition to random variability in fixation positions,
systematic shifts in within-word landing position
distributions as a function of launch-site distance

are observed. Misguided saccades may also lead to
fixations on unintended words (mislocated fixation,
see below).

Error correction of mislocated fixations (Princi-
ple VI). Experimental data suggest and our simula-
tions show that saccades frequently land on unin-
tended words, which leads to mislocated fixations
(Nuthmannet al., in press; see also Rayner, War-
ren, Juhasz & Liversedge, 2004). In this case, we
assume that a new saccade program starts immedi-
ately, i.e. the autonomous timer is overruled. The
target of this saccade will be determined at the end
of the labile saccade stage according to the general
rule (Principle IV). This error-correcting mecha-
nism can explain the IOVP effect on fixation du-
rations.

Modulation of saccade latency by intended sac-
cade amplitude (Principle VII). As a final princi-
ple, we assume that saccade latency is modulated
by the amplitude of the intended saccade. Since in
our model saccade target selection is performed at
the end of the labile stage of the saccade program,
i.e. the intended saccade amplitude is computed at
the end of the labile stage, only the non-labile stage
can be influenced by the intended saccade ampli-
tude. We will show that this principle, which is mo-
tivated by basic oculomotor research (e.g., Wyman
& Steinman, 1973), contributes to the explanation
of the IOVP effect in fixation durations.

Given the core principles, there is no unique
way for a translation into mathematics, of course.
Therefore, we will discuss the specific choice of
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mathematical equations in the next section. Once
formulated mathematically, we can implement the
model on a computer to generate artificial data,
which can be analyzed using the same algorithms
as applied for the analysis of experimental data.
Moreover, semi-analytical techniques may add to
our understanding of the control principles under-
lying eye movements in reading (e.g., Engbert &
Kliegl, 2003a).

Mathematical formulation of the model

Dynamic field of activations

Our model is a cognitive model with word recog-
nition driving eye movements. In SWIFT, a one-
dimensional field of activations{an(t)} for words
n = 1, 2, 3, ..., Nw at time t functions as a
saliency map, from which potential saccade targets
are computed (Principle I). It is no limitation of the
formalism that the number of words,Nw, in a given
sentence is unknown when reading the first words
of the sentence, since the number of words could be
specified later in the reading process. Furthermore,
it will turn out that wordj with index j ≥ n + 4
typically has close to zero activation during fixa-
tion on wordn. Thus, there is a limited “horizon”
of saccade targets constrained by target selection
probabilities at any time.8

The activation field{an(t)} changes over time
due to word recognition. Activation is built up in
a preprocessing stage and decreases during a later
lexical completion process. The relative amount
of activation will determine the probability that a
word is selected as a saccade target. It is important
to note the dynamical nature of the interplay be-
tween lexical processing and eye-movement con-
trol. Fixation position has a strong impact on word
recognition time, which determines the temporal
evolution of the activation field. Since the acti-
vation field determines saccade targets, our model

8Note that this horizon is the results of the model’s dynam-
ics, not an ad-hoc choice in building the model.

inherently exhibits historicity, i.e. a strong depen-
dence on the previous sequence of fixations. His-
toricity is a key property of nonlinear dynamical
systems. Formulated from a general mathemati-
cal viewpoint, nonlinearity of the underlying equa-
tions in SWIFT adds a new source of complexity in
eye movements to the stochastic origins in previous
models (Engbert, Kliegl, & Longtin, 2004).

Word difficulty

The assumption of an activation field still leaves
open how lexical difficulty of words is represented.
Here we assume that the maximum activationLn

of wordn is related to the word’s processing diffi-
culty. Our approach to this problem is based on a
proposal by Reichleet al. (1998) that word diffi-
culty depends on printed word frequency (per mil-
lion words) and predictability. Previous theoretical
models were based on a multiplicative interaction
of word frequency and predictability (Reichleet al.,
1998, 1999, 2003; Engbert & Kliegl, 2001, 2003b;
Engbertet al., 2002, 2004).

Recently, Rayner, Ashby, Pollatsek, and Re-
ichle (2004) published an experimental study
demonstrating that fixation durations only mildly
departed from an additive combination of word
frequency and predictability: Predictability ef-
fects were larger for low-frequency than for high-
frequency words. Additional numerical simula-
tions using different variants of the E-Z Reader
model indicated that an additive model of word
frequency and predictability fitted better than the
previous multiplicative one. Thus, Rayneret al.’s
(2004) results suggest that the specific mathemati-
cal interaction of word frequency and predictability
is additive (or a mixture of additive and multiplica-
tive) rather than strictly multiplicative.

Here, we propose an alternative view on the in-
teraction of word frequency and predictability. The
combination of word frequencyfn and predictabil-
ity pn of wordn in a single equation for word dif-
ficulty might be problematic because of the tem-
poral characteristics inherent in the two variables.
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While word frequency information unfolds during
the word recognition process, word predictability
is by definition independent of visual input. Thus,
we suggest different processes of how the two vari-
ables generate certain modulations of processing
times. First, we assume that word difficulty — as
a variable in our model — can be estimated from
word frequency alone, i.e.

Ln = α

(
1− β

log fn

F

)
, (1)

whereα is the intercept value of the lexical access
time, which is modulated by the (natural) logarithm
of word frequency,fn, with slope parameterβ. The
constantF = 11 is used to scale the values of
log fn to a range in the interval[0; 1), so that the
coefficientβ is dimensionless and characterizes the
strength of the frequency effect.

Second, we assume that word predictability
modulates processing rates. As a consequence, the
impact of predictabilitypn on the time-course of
processing of wordn might be earlier than the im-
pact of word frequency. The mathematical imple-
mentation of these processes is described below in
the section on the equation of motion of our model.
We speculate that such a process dissociation un-
derlying effects of word frequency and predictabil-
ity will yield neither a strictly additive nor a strictly
multiplicative interaction, which could be compat-
ible to the above experimental results by Rayneret
al. (2004).

Lexical processing rate

For spatially distributed processing, we assume that
lexical processing rate, denoted byλ > 0, is a
function of the distance (eccentricity) of a word to
the current fixation position. This distance must
be a function of the eccentricities of all letters of
the word. We will show later that this assumption
has strong implications for spatial aspects of lexical
processing.

The fixation position at timet is denoted by
k(t), where the range ofk can be from 1 to the

number of all characters, spaces and punctuations
of the sentence.9 Motivated by the well-known bias
of processing in the direction of reading, fixations
on the spaces between words are counted as fixa-
tions on the words to the right of the spaces. The
processing rate of wordn is a function of processing
rates of all lettersj = 1, 2, 3, ..., Mn, whereMn

is the number of letters of wordn. We assume that
processing speed is mainly limited by visual acuity,
which is a function of the distance from the center
of the visual field, i.e. the fovea. The distance of
letterj of wordn from the current fixation position
is given by the eccentricity

εnj(t) = xnj − k(t) , (2)

wherexnj is the position of letterj of wordn. Lex-
ical processing rate is a function of eccentricity,
λ ≡ λ(ε). The size of the perceptual span de-
creases from at least 10 letters in central vision to
1.7 letters at an eccentricity of 15◦ (Legge, Mans-
field, & Chung, 2001). This decrease is related
to a corresponding reduction of reading rate. Be-
cause of the asymmetry of the perceptual span (Mc-
Conkie & Rayner, 1976; Rayner, Well, & Pollat-
sek, 1980), we assume an asymmetric Gaussian
function as the mathematical relation between lex-
ical processing rate and eccentricity, i.e.

λ(ε) = λ0 exp

(
− ε2

2σ2

)

with

{
σ = σL , if ε < 0
σ = σR , if ε ≥ 0

, (3)

whereσL characterizes the extension of the pro-
cessing rate to the left andσR applies to the pro-
cessing of letters to the right of the current fixation
position (Figure 1). The normalization constantλ0

of the lexical processing rate function, Eq. (3), can
easily be calculated from the normalization condi-

9In the first version of our model (Engbertet al., 2002), we
neglected word length and fixation positionk was the index of
the fixated word.
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tion

1 =
∫ +∞

−∞
λ(ε)dε =

∫ 0

−∞
λ0 exp(− ε2

2σ2
L

)dε

+
∫ +∞

0
λ0 exp(− ε2

2σ2
R

)dε , (4)

which yields the relation10

λ0 =
√

2
π

1
σR + σL

. (5)

Using the normalization, total lexical processing
rate is fixed at a constant value of one. This value is
the theoretical maximum of lexical processing rate,
which can be reached, if letters are arranged along
the horizontal axis from−∞ to +∞. In a realis-
tic situation this will never occur, of course. Thus,
the total lexical processing rate will effectively be
bounded between zero and one.

σRσL

0           Horizontal position

Processing 
rate

Figure 1: Lexical processing rate is assumed to fol-
low an asymmetric Gaussian distribution with dif-
ferent parametersσL andσR, to the left and to the
right of the fixation point, respectively.

Given our assumption on lexical processing rate
for letters, Eq. (3), we now have to specify how the

10Here we use the normalization formula of the Gaussian
distribution

∫ +∞
−∞

1√
2πσ

exp(− x2

2σ2 )dx = 1.

processing rate of a word can be calculated from
the set of processing rates of all its letters. Two
special cases for word-based processing rates can
be distinguished: The lexical processing rate of a
word is (1) the sum of the rates of all its letters or
(2) the mean of all of its letters. In the first case, ev-
ery additional letter would be a processing advan-
tage, since it can potentially help to enhance word
recognition. In the second case, however, every ad-
ditional letter leads to processing costs. Because of
these very different views, we use a parametrized
function, which includes both (1) and (2) as special
cases,

λn(t) = (Mn)−η
Mn∑
j=1

λ(εnj(t)) , (6)

where forη = 0 the processing rate of the word is
the sum of the rates of all letters and forη = 1 it is
the mean of the rates of all letters. Using numeri-
cal simulations, we will show below that — under
the assumptions made here — the actual value ofη
is an intermediate value between the two extreme
cases.

The asymmetry of the distribution of lexical
processing rate, Eq. (3) forσR 6= σL, leads to
a shift of the maximum of lexical rate to the left
(Figure 2). This result is qualitatively in agree-
ment with experimental observations: First, the
preferred viewing location(Rayner, 1979) is indi-
cated by the maximum of the distribution of initial
fixations on a word, which shows a shift to the left
from the word center. Second, theoptimal viewing
position(OVP) is determined as the position of the
minimum of recognition time (for studies of iso-
lated word recognition see O’Regan, Lévy-Schoen,
Pynte, & Brugaillere, 1984; O’Regan & Levy-
Schoen, 1987; O’Regan & Jacobs, 1992) and/or
the position of the minimum of refixation proba-
bility. In our data, this minimum turned out to be
close to the word center with a leftward bias, too
(Nuthmannet al., in press).11 The interesting ques-

11McConkie, Kerr, Reddix, Zola, and Jacobs (1989), how-
ever, reported a small rightward bias.
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tion is whether this leftward tendency is functional
or whether it is related to systematic errors of the
oculomotor system. As illustrated in Figure 2, our
assumptions on word processing yield a maximum
of the processing rate shifted to the left from word
center. Thus, our concept of how lexical processing
rates of words are calculated from rates of letters is
highly compatible with the experimental observa-
tions of a leftward shift of the preferred viewing
location.

Temporal evolution: Equation of motion

In our model, the activation field can be interpreted
as a map of visual salience (e.g., Findlay & Walker,
1999). Before processing, the word is unknown
and after processing the word is completely pro-
cessed, which is in both cases related to an activa-
tion of zero. During preprocessing, activationan(t)
of wordn increases to its maximum valueLn. The
time to reach the maximum is denoted bytp(n).
Preprocessing is defined as the first stage of pro-
cessing in our model.12 In a second stage called
lexical completion, the activation tends to zero until
it is completely processed. An additional process
is decay of activation, assuming a non-idealized
memory with leakage.

The temporal evolution of activations during
reading of a sentence consisting ofNw words is
governed by a system ofNw coupled ordinary dif-
ferential equations (ODEs),

dan(t)
dt

= Fn(t)Λn(t)− ω , (7)

where

• Fn(t) is a preprocessing factor, modulated by
predictability,

• Λn(t) is a stochastic variable for processing
rate, and

12Note that the distinction between preprocessing and lexi-
cal completion does not refer to parafoveal versus foveal pro-
cessing.

• ω gives the strength of the global decay pro-
cess.

Now we will discuss these three processes in more
detail. The decay process is introduced as a global
parameter, which induces a slow decrease of acti-
vations of all words with a constant rate and may
be interpreted as a memory leakage, which prevents
the exact tracking of processing states for all words.

The preprocessing factorFn(t) introduces an
asymmetry between preprocessing and lexical
completion, which is additionally modulated by
predictability. First, during preprocessing, prelim-
inary information on a specific word will be ac-
cumulated for potential target selection. The pre-
processing factor introduces an asymmetry with a
fast increase and a slower decrease of activation.
The question of how much lexical (orthographic
or semantic) information can be accessed using
parafoveal information is an open research prob-
lem and clearly beyond the scope of the current ar-
ticle (see Rayner & Juhasz, 2004, for a recent re-
view). We will return to this problem below. We
would like to comment here that preprocessing of
a word is a rather preliminary stage of processing
in our model, which mainly adds the word to the
set of possible saccade targets, i.e. all words with
an(t) > 0.

Second, as noted above in the section on word
difficulty, we assume that the predictabilitypn of
wordn modulates the processing rate. We assume
that for high-predictable words, i.e.pn close to one,
processing rate is decreased during preprocessing
as long as the word is not fixated. This assumption
is motivated by the fact that for a high-predictable
word there is a high probability that the word can
be guessed without (or with minimal) visual input.
As a consequence, the activation of a parafoveal
high-predictable word should build up more slowly
than the activation of a parafoveal low-predictable
word. Since activations represent a measure for tar-
get selection probability in our model, there will be
a higher skipping probability for high-predictable
words. Because word recognition will be faster
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Figure 2: Lexical processing rate as a function of word length and fixation position relative to word
center. The within-word maxima are shifted to the left with increasing word length. Forη = 0.5, lexical
processing rate shows an absolute maximum ofλ = 0.32 at relative fixation positionk = −1.37 for word
length 7. In this example, the parameters of the asymmetric Gaussian are chosen asσR = 3.6 letters
andσL = 1.4 letters. The bold line correspond to within-word fixation positions, while the dashed line
indicated fixation positions beyond the word edges.

for high-predictable words than for low-predictable
words, however, we assume that processing rate in-
creases with predictability once the word is in the
lexical completion state, i.e. the state with decreas-
ing activation. Mathematically we formulate these
mechanisms as

Fn(t) =


+f(1− θpn) if t < tp(n) andk < n
+f if t < tp(n) andk ≥ n
−(1 + θpn) if t ≥ tp(n)

,

(8)
wheref > 1 indicates that preprocessing is faster
than lexical completion and the factors(1 ± θpn)
generate the proposed modulations by predictabil-
ity.

Finally, lexical completion is implemented as a
memory retrieval process, which is known to be in-
herently stochastic (e.g., Ratcliff, 1978). As a con-
sequence, we explicitly simulate a random-walk for
the temporal evolution of activations, i.e. for both
preprocessing and lexical completion. Therefore,

we assume that the lexical processing rateλn(t) of
wordn fluctuates around its mean with a standard
deviation proportional to its mean,

Λn(t) = λn(t)(1 + ϕξt) , (9)

whereξt represents Gaussian noise with zero mean
and a standard deviation of one. Noise samples are
uncorrelated between integration time steps. For
all simulations presented here, we choseϕ = 2,
which produces a reasonable amount of stochastic-
ity in word recognition. An example for the re-
sulting stochastic activation process is illustrated in
Figure 3.13

Saccade target selection

Given the principles for the temporal evolution of
the set of lexical activations,{an(t)}, assumptions

13For a study of the role of noise in a model of eye-
movement control see Engbert and Kliegl (2003b).
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Figure 3: Illustration of the time-evolution of
stochastic activation by the equations of motion,
Eqs. (7-9). The activation is a random-walk model,
which accounts for the inherent stochasticity in the
memory retrieval process underlying word identifi-
cation.

on saccade target selection are straightforward.14

Saccade target selection is a competitive process
among all activated words, i.e. among all words
with an(t) > 0. As a consequence, if words are
activated in parallel substantially15, the model can
potentially generate all types of saccades observed
in experiments (e.g., word skipping, refixations).

In mathematical terms, we assume that target
selection is a stochastic process. The probability
π(n, t) to select wordn as a saccade target at timet

14While the lexical processing assumption had to be mod-
ified strongly because of letter-based metrics of words in the
new version of our model, the mechanism of saccade target
selection is effectively the same as in the first version of our
model (Engbertet al., 2002).

15The degree of parallel activation is not only a question of
the model architecture. It will depend on the values of model
parameters.

is given by its relative lexical activation,

π(n, t) =
aγ

n(t)
Nw∑
j=1

aγ
j (t)

, (10)

where the exponentγ is a measure for the stochas-
ticity in the target selection process. We can con-
sider two special or extreme cases of how target
words are selected,

• γ = 0: Target selection probability for all
words with non-zero lexical activation is equal
(random target selection), and

• γ → ∞: Target selection is deterministic; the
word with highest activation is the next sac-
cade target (“winner-takes-all”).

Previous simulations have shown thatγ = 1 gives
best fits. In this case, target selection probability
is proportional to relative lexical activation, which
is known as Luce’s (unbiased) choice rule (Luce,
1959).

Control of fixation duration by foveal inhibi-
tion

According to Principle III, saccade timing is a
stochastic process, which is modulated by the
amount of foveal activation. We assume that the
time interval between two commands to initiate a
saccade program is purely stochastic with a prede-
fined meantsac, which derives from a reader’s in-
dividual reading rate. The inhibitory modulation of
this random process will be derived in two steps.

First, the fixation duration on wordn is modu-
lated by the amount of foveal activation. Let us
denote the time of initiation of the saccade pro-
gram for saccadei by ti. The next command for
starting a new saccade programi + 1 will happen
after a stochastic interval∆ti+1 with mean value
tsac. This interval will, however, be procrastinated
by an inhibitory top-down signal from the lexical
processing module. The next command for starting
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saccade programi + 1 is generated, if

t > ti + ∆ti+1 + h ak(t) , (11)

whereh gives the strength of the foveal inhibition
process. It is important to note that the prolonga-
tion is limited even for arbitrarily high values of
the constanth. Using an analytical approximation
(Kliegl & Engbert, 2003), we have shown that the
maximum inhibition timeT is given by

T =
α

λ(0) + 1/h
h→∞−→ α

λ(0)
, (12)

whereλ(0) is the foveal processing rate defined in
SWIFT-I (Engbertet al., 2002).

Second, processes of word recognition are
much slower than the fast brainstem saccade gen-
erator (e.g., Sparks, 2002). Therefore, word recog-
nition can impact the saccadic system only with a
time-delay. This assumption is motivated by the
plausibility argument that the module for lexical
processing performing word recognition is physi-
ologically separated from the oculomotor nuclei of
the brainstem, which will produce a time-delay for
the impact of processing difficulty on the control
of fixation durations. To suppress noise, we intro-
duce an additional integral average over the interval
from t−τ to0 for the inhibition process and replace
equation (11) by

t > ti + ∆ti+1 + h [ak]τ , (13)

where

[ak]τ ≡
1
τ

∫ 0

t−τ
ak(t′)dt′ . (14)

Thus, the average delay isτ/2. An important prop-
erty of this implementation is that for a time-delay
of the order of the average fixation time, the evalu-
ated activation in Eq. (14) refers to a previous fix-
ation, which frequently occurred on the previous
word. Thus, the concept of time-delayed foveal in-
hibition can potentially explain lag effects of pro-
cessing.16

16A simpler, but both psychologically and neurophysiolog-
ically less plausible generalization of foveal inhibition would
have been to add a new term+h1ak−1(t) to the right-hand
side of Eq. (11).

Saccade programming

Programming of saccades is a two-stage process in-
volving a labile and a non-labile stage. First, after
starting a saccade program, a labile stage with an
average durationτlab is entered. If there is another
saccade command in this period of time, the labile
stage can be canceled. In principle, saccade can-
celation can happen successively. Using numeri-
cal simulations of our model, we found that 90.0%
of all saccades are not canceled during the labile
stage, 8.6% are canceled once, and 1.1% are can-
celed twice (all other cases are negligible).

Second, the non-labile stage with average dura-
tion τnl is entered after the labile stage terminates.
The transition from labile to non-labile stage trig-
gers the target selection process, Eq. (10). The two-
stage organization is illustrated in Figure 4. The
saccade execution is included in the model with av-
erage durationτex.

During saccades, sensitivity to visual input is
reduced — an effect calledsaccadic suppression
(Matin, 1974). Because visual input stops during
saccades, preprocessing is paused in SWIFT. Due
to an eye-to-brain lag of approximately 50 ms (e.g.,
Foxe & Simpson, 2001; see also Reichleet al.,
2003), preprocessing is interrupted for the dura-
tion of the saccade with a temporal delay of 50 ms
(for both onset and offset of the saccade).17 Since
lexical completion should not depend critically on
new visual input, we assume that lexical comple-
tion continues during saccades.

In the context of programming of saccades dur-
ing reading, the assumption of two stages was first
introduced by Reichleet al.(1998; see also Engbert
& Kliegl, 2001) and later used in SWIFT-I (Engbert
et al., 2002). The main motivation for the assump-
tion derives from the double-step paradigm in sac-
cade generation (Becker & Jürgens, 1979), which
was used to demonstrate that presentation of a sec-
ond target earlier than approximately 250 ms after

17Using numerical simulations, we found no significant im-
pact of the eye-to-brain lag on our results. We kept this as-
sumption, however, for physiological plausibility.
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Figure 4: Temporal scheme of saccade program-
ming. After the start of the saccade program, a la-
bile stage is entered, which signals the engagement
of the oculomotor system. At the end of the la-
bile stage, the saccade target is determined and the
saccade can no longer be canceled during the non-
labile stage. Finally, the saccade is executed and
the fixation position shifts to a new position.

the first could induce a cancelation of the saccade
to the first target. A later presentation, however, led
to fixations of both targets in a sequence. This ef-
fect is captured by passing a “point-of-no-return”
at the transition from labile to non-labile stages of
saccade programming in our model.

Oculomotor errors in saccade generation

Our assumptions on saccadic errors inherent to the
oculomotor system are based on results by Mc-
Conkie and co-workers (McConkieet al., 1988).
The theoretical assumption underlying their anal-
yses was that saccades are directed toward the cen-
ter of a target word. These saccades, however, are
modified by random as well as systematic error
components, so that, on average, a small deviation
of the initial landing position from the word cen-
ter is observed. The systematic error component is
known as the range effect (see also Kapoula, 1985;
Poulton, 1981). Let us denote theintended saccade

amplitude, i.e. the distance to the optimal viewing
position of the next target word, byA. The realized
saccade lengthl is given by the sum of the intended
saccade amplitudeA and two error terms,

l = A + lSRE + lG , (15)

wherelSRE is called thesaccade range error (sys-
tematic error) andlG is Gaussian-distributed ran-
dom error with zero mean.

The systematic deviation of the saccade length
l from the intended saccade amplitudeA can be
interpreted as a limited adaptivity of the oculomo-
tor system to arbitrary saccade lengths. If the in-
tended saccade amplitudeA differs from an opti-
mal saccade amplitudeA0, we observe undershoot
for A > A0 and overshoot forA < A0. In a lin-
ear approximation of this effect, we can write the
saccade range error as

lSRE = δSRE(A0 − |A|) , (16)

whereδSRE gives the strength of the saccade range
error.

The oculomotor noise is a Gaussian-distributed
random component of the saccadic errors with zero
mean. Generally, we observe an increase in random
errors with movement amplitude in almost all pro-
cesses of motor control (Poulton, 1981). For sim-
plicity, we assume, again in a linear approximation,
that the standard deviation of the random error can
be approximated by the linear relation

σG = δ0 + δ1 |A| . (17)

From the perspective of minimal modeling, we
aim at a model with as few parameters as possi-
ble. Fortunately, oculomotor errors do not add free
parameters to the model, since all parameters in
Eqs. (16, 17) can be estimated directly from exper-
imental data (McConkieet al., 1988). The four
parameters (δSRE , A0, δ0, andδ1), however, may
have different values for forward saccades, refixa-
tions, and regressions. Using the data obtained on
the Potsdam Sentence Corpus (Klieglet al., 2005),
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we estimated the parameters of the saccade range
error separately for these three types of saccades
and used the same value in the case of the ran-
dom error component (Table 2). The result indi-
cates that the parameters are very similar for for-
ward saccades and refixations.18 For regression, we
observe a much smaller coefficientδSRE , which is
in agreement with Radach and McConkie’s (1998)
obervation of a negligible saccade range error for
inter-word regressions.

Mislocated fixations and error correction

In the previous section, we discussed oculomotor
errors in saccade generation with systematic and
random components. While even small errors will
influence processing rates due to our assumption
of a processing gradient, which is limited by vi-
sual acuity, saccadic undershoot and overshoot can
lead to fixations on unintended words (Figure 5).
Thesemislocated fixationsare most likely to hap-
pen close to words boundaries (Nuthmannet al., in
press). We assume that these misguided saccades
are immediately corrected by starting a new sac-
cade program, if there is currently no labile saccade
program active.19 To implement this assumption in
the simulation algorithm, we introduce a vanishing
inter-saccade interval, i.e.

∆tmisloc
i = 0 , (18)

for mislocated fixations. Thus, the mean interval
between two saccade program initiations,∆ti, will
be shortened by this mechanism.

On average, the shortening of the inter-saccade
interval will induce a decreased fixation duration
close to word boundaries, i.e. at beginnings and
ends of words, which was observed in the IOVP
effect of fixation duration by Vituet al. (2001).
Generally, such a mechanism is compatible with all
models of eye-movement control which (i) specify

18The negative sign of the factorδSRE is due to the defini-
tion of the saccade range error in Eq. (16).

19If there is already an active saccade program, the process
of (potential) error-correction can not be accelerated.
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(a)
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Figure 5: Saccadic undershoot and overshoot can
result in fixations on unintended words (mislocated
fixations). (a) Unintended forward saccade due to
undershoot. (b) Unintended skipping due to over-
shoot.

a target word for each saccade and (ii) include ocu-
lomotor errors (see Nuthmannet al., in press, for
details).

What are potential mechanisms for the imme-
diate start of an error-correcting saccade program?
It is commonly accepted that saccade amplitudes
are determined by population-coded activations in
the superior colliculus (e.g., Sparks, 2002, for a re-
cent review). Accordingly, a single saccade is con-
trolled by an efference copy of the motor signal to
the eye muscles (Wurtz, 1996; Carpenter, 2000).
Thus, errors are monitored during saccades. Re-
cently, the idea that activation in the superior col-
liculus represents saccade vectors was challenged
by Bergeron, Matsuo and Guitton (2003), who
demonstrated that collicular activation is related to
gaze error in multi-step gaze shifts. Regardless of
whether saccade steps during reading are best de-
scribed as single movements or multi-step vectors
(see also Krauzlis & Carello, 2003), the bottomline
from our current knowledge on the function of mo-
tor maps in the superior colliculi is that gaze errors
are monitored continuously, which potentially pro-
vides a very fast detection of saccade errors. Thus,
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Table 2: Parameter values for oculomotor error relations.

Error Type Parameter Forward Forward Regressive Regression Reference
Saccade Refixation Refixation

Saccade δSRE 0.41 0.49 -0.5 -0.15 Eq. (16)
Range Error A0 5.4 5.7 4.3 10.0 Eq. (16)
Gaussian δ0 0.87 Eq. (17)
Random Error δ1 0.084 Eq. (17)

neurophysiological findings support the fast error-
correction mechanism assumed in our model.

Saccade latency modulation

The error correction mechanism in case of mislo-
cated fixations discussed in the previous section
will lead to decreased fixation durations near word
boundaries. This effect, however, will turn out to be
more pronounced in experimental data compared to
model simulations for first fixations. Assuming that
the center of the word is the unique saccade target,
the programming of a refixation with a first fixation
placed very close to the word center is a very spe-
cial situation, in which the intended saccade ampli-
tude is rather small (i.e., one to two letters). Thus,
if we assume an increased saccade programming
time for small intended saccade amplitudes, we can
explain the pronounced peak in first fixation dura-
tions. A basic dependence of saccade latency on in-
tended amplitude has been demonstrated in several
studies (Wyman & Steinman, 1973; Kalesnykas &
Hallett, 1993; Adams, Wood, & Carpenter, 2000).
It seems appropriate to remark, however, that such
an effect will be very difficult to test experimentally
in continuous reading.

From these considerations, we introduce a mod-
ulation of saccade programming time by intended
saccade amplitude. In principle, such a modula-
tion could occur at all stages of saccade genera-
tion, i.e. at the level of inter-saccade-intervals or the
labile and non-labile program stages. In SWIFT,
the most likely saccade target can be read off from
the activation fields any time this information is re-

quired. For simplicity, we assume that the non-
labile saccade stage,τnl, is affected by the intended
saccade amplitude,A, i.e. the modulation occurs
after target selection.

The impact of a dependenceτnl = τnl(A)
on reading behavior depends on the range of the
intended saccade amplitudeA considered. For
short amplitudes,A . 4, the saccades are mainly
intra-word movements, while for longer ampli-
tudes,A & 6 most saccades are inter-word move-
ments to the right. Therefore, for short saccades
the functional relationτnl(A) will modulate the
IOVP effect, while for longer saccades the relation
will affect successor effects, because a decreasing
saccade latency with increasing intended saccade
amplitude will produce shorter fixation durations
before long parafoveal words compared to short
parafoveal words. Consequently, it will be very
difficult to disentangle latency modulation from ef-
fects of lexical processing experimentally.20

For simplicity, we assume that the average dura-
tion of the non-labile saccade stage is a Gaussian-
type function of the intended saccade amplitudeA,
i.e.

τnl(A) = τ0
nl + κ0 exp

(
−κ1A

2
)

, (19)

where the parameterτ0
nl is the average asymptotic

non-labile saccade programming time,κ0 repre-
sents the strength of the modulation, andκ1 de-
termines the width of the modulation by the in-

20Note, however, that with our choice ofκ1 = 0.1 in
Eq. (19), latency modulation will be predominantly affect
IOVP effects in our model.
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tended saccade amplitude. In all simulations pre-
sented here we fixκ1 at a value of 0.1.

Stochasticity in saccade programming

After the non-labile stage of saccade programming
terminates, the saccade will be executed. We as-
sumed that the mean saccade execution time is
τex = 25 ms. For the simulation of noise in both
saccade programming and saccade execution, we
use a gamma distribution with a relation between
standard deviation and mean of 1/3, i.e. a gamma
distribution of 8th order.

Model overview

In this section, we briefly summarize how the dif-
ferent subsystems of our model are orchestrated
(Figure 6), before we address the numerical sim-
ulations of the model. Word recognition is imple-
mented as a spatially distributed process (Principle
I). A set of lexical activations keeps track of the
actual state of word processing and controls sac-
cade target selection (“where”) and saccade tim-
ing (“when”) via foveal inhibition using two sep-
arate pathways (Principle II). The lexical decision
circuit, which is a cortical long-loop control sys-
tem compared to the brainstem saccade generator,
can influence saccade timing by foveal inhibition
only with a time-delayτ (Principle III). Saccade
programming is a two-stage process (Principle IV).
After a labile stage, a point-of-no-return is passed
and the non-labile stage is entered. Target selection
occurs at the transition from labile to non-labile
stage.21

21Principles V to VII (see Table 1) are related to saccadic
errors and saccade program latencies; we did not include these
principles in the schematic diagram of SWIFT organization in
Figure 6.

Numerical simulations and model
parameters

Based on the Principles I to VII of the model (Ta-
ble 1), we discussed the precise mathematical for-
mulation and some motivations for the underlyling
assumptions in the last section. Next, we carry out
numerical simulations to fit the model’s parame-
ters and to compare the model’s performance with
experimental data22. Compared to the first ver-
sion SWIFT-I (Engbertet al., 2002), we completely
re-designed the numerical and statistical proce-
dures and propose a new and more detailed test of
computational models of eye-movement control in
reading.

First, we used a recently published experimental
study with the Potsdam Sentence Corpus (for de-
tails on the sentence corpus see Klieglet al., 2004),
meanwhile extended from 65 to 222 participants
(Kliegl et al., 2005). With this amount of exper-
imental data, we were able to analyze all of the
discussed phenomenaon the same data set. Since
many effects are produced by highly nonlinear in-
teractions, deviations in one empirical observable
can potentially produce considerable deviations in
other measures. Therefore, a strong test of model
performance must be based on a single complete
data set.23

Second, we computed all experimental mea-
sures for each word. The Potsdam Sentence Cor-
pus consists of 1138 words from 144 sentences.
For statistical analyses, we currently exclude the
first and last words from each sentence from our
analysis. Therefore, we obtained a maximum of 8

22The implementation of SWIFT-II used in this
article is available via the internet at address
http://www.psych.uni-potsdam.de/SWIFT/

23This principle was not implemented in tests of the E-Z
Reader model. As an example, McConkie’set al. (1988) re-
sults on initial landing positions were combined with statis-
tics of fixation durations obtained by Schilling, Rayner, and
Chumbley (1998).
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Figure 6: Model overview. A basic principle of SWIFT is that spatial (“where”) and temporal (“when”)
pathways of saccade programming are separated.

measures (4 fixation durations and 4 fixation prob-
abilities, defined on page 5) for each of 850 words,
yielding a total of 6800 data points for model fit-
ting. This procedure is a major advantage com-
pared to the parameter fitting procedures used for
SWIFT-I and E-Z Reader 1-7. In these analyses, for
only 6 measures (3 fixation durations and 3 fixation
probabilities), statistical averages were calculated
based on 5 classes of word frequency, yielding an
empirical basis of 30 data points. The possible
range of data patterns, which could be explained
by those models, was very limited due to nonlin-
ear interactions of parameters. Therefore, while we
still believe that the previous method produced re-
liable results, we clearly suggest that the procedure
proposed here should be used in future modeling
studies.

Third, given the word-based nature of the mea-
sures, we computedχ2-type statistics to evaluate
the model (see Appendix A for details). Further-

more, we investigated effects of word frequency,
predictability, and word length by averaging word-
based measures over classes. Finally, we tested
more specific effects (e.g., IOVP, lag effects) based
on thesame simulated data-set.

Numerical simulations

As model input, for all words of the Potsdam Sen-
tence Corpus, word length, word frequency, and
predictability were available (Klieglet al., 2005).
The temporal evolution of our model is based on
an equation of motion, which is generated as a cou-
pled system ofNw ordinary differential equations
(ODEs), Eq. (7), whereNw is the number of words
in a given sentence. The coupling of the ODEs
is given by the saccade dynamics, mainly driven
by target selection, Eq. (10), and change of lexical
processing rates by updating eccentricity after sac-
cades, Eq. (2). The ODEs are discretized using the
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Euler method24,

an(t + δt) ≈ an(t) + (Fn(t)Λn(t)− ω)δt , (20)

where the integration step size isδt = 2 ms. It is
important to note that the noise level of the process-
ing rate, Eq. (9), depends onδt, since a different
realization for the processing rate is chosen in each
time stepδt.

Model parameters

The estimation of model parameters was performed
using word-based measures for

• 4 measures of fixation durations (first fixation
duration, second fixation duration, single fix-
ation duration, and total reading time),

• 4 measures of fixation probabilities (skip-
ping probability, probability for two fixations,
probability for three or more fixations, and re-
gression probability); additionally we used

• the distributions of the 4 measures of fixation
durations and

• the relations between fixation duration and
within-word fixation position (IOVP effects)
for first and single fixation durations.

The details of the fitting procedure are presented in
Appendix A. The performance of the model is de-
fined as a sum of mean squared normalized errors
of fixation durations and fixation probabilities per
word. An optimization procedure was applied to
find a set of parameters, which yielded estimates of
parameters and errors (Table 3).

To keep the number of free model parameters
as small as possible, we fixed some of the parame-
ters. The noise level of lexical processing was esti-
mated from experimentally observed distributions,
ϕ = 2 yielded comparable results. Target selection

24Because the temporal evolution of the ODE system is lin-
ear during fixations, it is not necessary to apply a more ad-
vanced numerical integration method (e.g., 4th-order Runge-
Kutta).

weightγ = 1 was motivated by Luce’s choice rule
(Luce, 1959) and was tested in SWIFT-I (Engbert
et al., 2002). The parameterκ1 = 0.1, Eq. (19),
which represents the range of the latency modula-
tion, was fixed at a reasonable values in advance.25

We tested a few combinations of fixed values for
these parameters in advance, to check the stability
of our simulations.

Based on the finding that the model is in
agreement with experimental data within a cer-
tain range of parameter errors, we assume that
this error is a plausible value for the simulation
of inter-individual variance of parameters. In
each run, parameter errors were used to simulate
inter-individual differences. This approach is self-
consistent, because parameter uncertainties repre-
sent error ranges for parameters, for which the
model’s dynamics are stable. During the procedure
of parameter estimation, the parameter errors con-
verged and settled to specific values indicating the
sensitivities of parameters (see also Appendix A).
The introduction of parameter errors turns out as a
viable solution to the general problem that model
results typically show less variance than experi-
mental data.

Simulation results

We start the discussion of modeling results with
an example for a single eye-movement trajectory
generated by the model. This example already
demonstrates the general mechanism of saccade
target selection from the activation field underlying
all types of saccades, i.e. forward saccades, word
skipping, refixations, and regressions. Next, we
present examples for word-based measures (4 fix-
ation durations and 4 fixation probabilities), which
are computed from 200 runs of the model. These
word-based measures were averaged over classes
of word frequency and word length in subsequent

25The value of1/
√

2κ1 ≈ 2.2 represents the range of
intended saccade length, where the latency modulation is
strongest, sinceκ1 derives from a Gaussian-type formula.
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Table 3: Model parameters.

Parameter Symbol Value Error Min Max Reference
Lexical frequency, intercept α 63.5 2.0 10 150 Eq. (1)
parameters frequency, slope β -0.20 0.03 -0.5 0 Eq. (1)

predictability θ 0.11 0.09 0 1 Eq. (8)
Visual visual span, right σR 3.74 0.08 1 7 Eq. (3)
processing visual span, left σL 2.41 0.15 0 5 Eq. (3)

word length exponent η 0.448 0.035 0 1 Eq. (6)
preprocessing factor f 70.2 20.6 1 200 Eq. (7)
global decay ω 0.01 — — — Eq. (7)
processing noise ϕ 2 — — — Eq. (9)

Saccade random timing [ms] tsac 179.0 3.6 100 250 Eq. 13
timing inhibition factor h 2.62 0.15 0 10 Eq. 13

time delay [ms] τ 375.7 30.0 0 600 Eq. 13
target selection weight γ 1 — — — Eq. (10)

Saccade labile stage [ms] τlab 108.0 1.5 50 150 Fig. 4
programming non-labile stage τ0

nl 6.1 2.7 5 50 Eq. (19)
latency modulation κ0 105.2 2.7 0 200 Eq. (19)
latency modulation κ1 0.1 — — — Eq. (19)

analyses to evaluate related effects statistically.
After these basic comparisons, we investigate

the model’s performance on more specific effects;
we discuss distributions of initial landing positions,
refixation probabilities as a function of landing po-
sition, the effect of inverted optimal viewing po-
sition of fixation durations and lag and successor
effects, and whether our model produces costs for
skipping.

Simulation example

A typical numerical output of the SWIFT-II model
is visualized in Figure 7 by plotting the time evo-
lution of the set of activations{an(t)} and the fix-
ation positionk(t) along the vertical axis. The se-
quence of words fixated in this example is

{1, 2, 3, 5, 4, 5, 6, 6, 8, 9} .

We briefly explain some of the phenomena ob-
served in this example.

Word skippingoccurs for word4 and for word7
in first-pass reading. The mechanism for word
skipping can be seen clearly in both examples,
since we observe parallel activation of several
words. Word skipping is the result of competing
activation for target selection. Thus, in our model,
words need not to be fully identified in order to be
skipped. Refixationsare likely in difficult and/or
long words. In the example shown here, the refix-
ation on word6 is the result of a first fixation on
the space before word6, which is counted as a fix-
ation on the word. As a consequence of this fix-
ation far from the word’s center, the activation is
still very high, when the next saccade target is com-
puted. As a result of the saccade range error and
saccadic noise, the second fixation occurs on the
last letter of word6. Since the realized trajectory in
Figure 7 is the results of both target selection and
oculomotor processes, it cannot be decided from
the plot, whether this refixation was “intended” by
the model, but, of course, we can tell by looking
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“inside” the model. In the framework of SWIFT, a
regressioncan occur due to unfinished lexical ac-
cess before the corresponding region of text is left.
In the example shown here, word4 was skipped in
first-pass and later fixated with a regression, be-
cause parafoveal processing did not lead to full lex-
ical access. Unlike in real data, within the confines
of our model we are always in a perfect state of
knowledge about the causes and consequencess of
specific reading patterns.

Word-based measures

As the next step towards the statistical evaluation of
our model’s performance, we analyzed average fix-
ation durations and fixation probabilities for each
word. We used 200 runs of the model and cal-
culated averages for 4 measures of fixation dura-
tion and 4 measures of fixation probabilities as dis-
cussed before.26 Model simulations were in good
agreement with experimental data. Main patterns
of fixation durations and fixation probabilities were
reproduced at the level of individual words as il-
lustrated in Figure 8. Deviations for first and last
words are due to their exclusion from parameter fit-
ting.

Summary statistics

To investigate effects of word frequency (CELEX
Frequency Norms; Baayen, Piepenbrock, & van
Rijn, 1999) and word length, we averaged word-
based measures over classes of word frequency
(class 1: 1-10, class 2: 11-100, class 3: 101-1,000,
class 4: 1,001-10,000, class 5:>10,000; frequen-
cies per million words) and word length (class 2
to 11: 2 to 11, class 12:≥12). Figure 9 shows
the results for model simulations with the results
obtained from experiments. The patterns of fixa-
tion durations and fixation probabilities are in good
agreement, in particular, our model reproduces the
effects of both word length and word frequency

26These measure were already used in the parameter esti-
mation procedure.

correctly. Results on gaze durations are addition-
ally reported in Appendix D.

Next, we compared the distributions of fixa-
tion durations in model simulations with the cor-
responding distributions observed in experiments.
From the agreement between simulated and ex-
perimental data (Fig. 10), we concluded that the
random-walk process assumption for word pro-
cessing generates a reasonable amount of variabil-
ity to reproduce the observed distributions of fixa-
tion durations.

Effects of word length and word frequency

A well-known problem in assessing the indepen-
dent contributions of word length and word fre-
quency to visual and lexical processes is the large
correlation between the two variables (−0.62 for
the 850 corpus words used in our simulations,
i.e. excluding the first and last words of each sen-
tence). To investigate effects of word length and
word frequency, every sentence of the Potsdam
Sentence Corpus contains a target word. These
target words are uncorrelated in length and fre-
quency (correlation between word length and log
frequency−0.004) and constitute an orthogonal
word length (3)× word frequency (2) design with
24 words in each cell. Figure 11 displays the results
for two duration measures from the word-based
summary statistics (Fig. 9), now restricted to target
words. For experimental as well as simulated data,
each duration measure exhibits both a word length
and a frequency effect. For simulated data, how-
ever, the frequency effect with longer durations for
low-frequency words is considerably smaller than
for experimental data. This problem probably re-
flects the fact that with printed frequency only one
of many other possible lexical variables (such as
neighborhood frequency) is explicitly specified in
the model.
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Figure 9: Summary statistics of different eye-movement measures by word frequency classes and by
word length classes for model simulations and experimental data. (a) Mean durations for first, second
and single fixation durations and total reading time as a function of word frequency class. Results for
model simulations are given by the solid line, while results obtained for experimental data are dotted. (b)
Probabilities for skipping, two fixations, three or more fixations and the probability that a given word is
the target of a regression as a function of word frequency class. (c) Mean duration for the same measure
as in (a) as a function of word length class. (d) Probabilities as a function of word length class.

Initial landing positions

Given the general agreement between measures of
fixation durations and measures of fixation proba-
bilities at the level of single words and at the level
of summary statistics for classes of word length and
word frequency, we now compare more detailed as-
pects related to the oculomotor assumptions in our
model. Distributions of initial fixations in words
show a rich pattern of variation. Following Mc-
Conkieet al. ’s (1988) study, it is important to an-
alyze corresponding distributions as a function of
word length and launch site distance (Fig. 12).

First, model simulations were in good agree-

ment with experimental data. Second, our model
simulations reproduced the effects that (1) the stan-
dard deviations of distributions of initial landing
positions increase with both word length and mod-
ulus of launch site distance and (2) the maxima of
the distributions are shifted to the end of the words
for short saccades (launch site−1) and are shifted
to the beginning of words for long saccade (launch
sites−5 and−7). Thus, the effects of the imple-
mented saccade range error were clearly visible in
the model simulations.
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Figure 10: Distributions of fixation durations. (a) Distributions of first fixation durations for experimental
data and model simulations. (b) Second fixation durations. (c) Single fixation durations. (d) Total reading
time.

Refixation probability

Refixations indicate the optimal viewing position
in reading, since the minimum of the probability
for performing a refixation — as a function of the
initial landing position — indicates the best fixation
position for processing a word. First, our model
includes assumptions on oculomotor control based
on McConkieet al. ’s (1988) work to produce a re-
alistic variance in initial landing positions. Second,
the assumption of a processing gradient turns out to
be strong enough to reproduce the U-shaped form
of the within-word refixation probability (Fig. 13),
however, there was a tendency to a more asymmet-
ric form in the simulations, i.e. there are more re-
gressive refixations in experiments. This discrep-

ancy will be explored in future model variants.
It is straightforward to formulate a hypothesis

for the function of refixations in long words, since
visual acuity decreases strongly from the center
of the visual field. Refixations enable readers to
process long words using two (or more) fixations
by bringing different parts of a word close to the
fovea. This interpretation is suggested by experi-
mental data, since we observe the tendency for two
fixations at the beginning and end of a word (or vice
versa).

For short words, i.e. word length less than 5,
the function of refixations is less obvious. In our
model, we added a new hypothesis to explain refix-
ations independent of effects of word length, be-
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Figure 11: Effects of word length and word frequency in target words. Summary statistics for target
words: Mean single fixation duration and total reading time for target words of different lengths (3–4,
5–7, 8–9) and frequency (high vs. low).

cause the autonomous saccade generator can in-
duce the start of a new saccade program in the ab-
sence of lexical processing demands.

Regression probability

The results on the probability for inter-word regres-
sions are of special interest in SWIFT because of
our hypothesis that regressions can be triggered by
incomplete word recognition. We expected that it
would be rather difficult to reproduce pattern of re-
gressions, if this hypothesis were inadequate. In
the summary statistics (Fig. 9), we computed the
probability for a word to become the target of a
regression. If our hypothesis of incomplete lex-
ical access as a cause of regressions is correct,
we would expect a greater regression probability
for words which were skipped in first-pass read-
ing. A corresponding analysis for both experimen-
tal data and model simulations demonstrates that
regression probability is higher for skipped words
(Fig. 14). More importantly, the basic pattern of
the experimental data are reproduced by our simu-
lations. Thus, the agreement between experimental

data and model simulations supports the hypothe-
sis that incomplete word recognition is a powerful
mechanism to explain the pattern of regressions, in
particular for effects of word length (see also Vitu
& McConkie, 2000). The fact that regression prob-
ability is slightly overestimated in our simulation
indicates that more constraints are needed to esti-
mate regression probabilities.

Inverted optimal viewing position

Having identified the optimal viewing position in
reading, we would expect a minimum of lexical
processing time for fixations close to the optimal
viewing position. An analysis of three large cor-
pora by Vituet al. (2001) demonstrated that this is
not the case: Fixation durations are longest, rather
than shortest, when the fixation position is at the
center of a word. Consequently, this phenomenon
was called theinverted optimal viewing positionef-
fect of fixation durations (IOVP). A corresponding
analysis of data obtained for the Potsdam Sentence
Corpus supported the effect (Nuthmannet al., in
press; see also Klieglet al., 2005).
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lations, regression probability is generally higher in
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The IOVP effect for single fixation durations is
reproduced by our model (Fig. 15) by implement-
ing Principle VI: Error correction of misguided sac-
cades. Near word boundaries, i.e. for fixation po-
sition on the first or last letter of words, the proba-
bility for mislocated fixation is higher than close to
word centers. If a misguided saccade leads to a fix-
ation on an unintended word, we implemented the
immediate start of a new saccade program, which
is potentially error correcting. This mechanism in-
duces the decrease of mean fixation durations near
word boundaries, which can explain the IOVP ef-
fect. The model reproduced the inverted pattern.
Thus, from performance on single fixation dura-
tions, we conclude that the proposed error correc-
tion mechanism for mislocated fixations is a poten-
tial explanation of the IOVP effect.

While the basic mechanism seems compatible
with other models of eye-movement control (e.g.,
E-Z Reader), we would like to discuss an advan-
tage of the SWIFT model here: There is no need

to specify the target of the upcoming new sac-
cade, since saccade target selection is performed
by computing probabilities from the activation field
— according to the general rule for all saccades,
Eq. (10). A fixed-target saccade, which needs to
be implemented necessarily in E-Z Reader, may be
too hard-wired, since saccade targeting is based on
partial knowledge and many saccades may turn out
to be no longer required when they start. In the case
of mislocated fixations, the intended word may be
processed from the parafovea as well and, conse-
quently, an error-correcting saccade is no longer
necessary. Therefore, the flexible mechanism in
saccade target selection turns out to be an archi-
tectural advantage of our model.

For a precise understanding of the mechanism
producing the IOVP effect on fixation durations
in the model, we performed a detailed analysis of
mislocated fixations (Nuthmannet al., in press).
As shown above, our model reproduced the distri-
butions of initial landing positions very precisely.
Assuming that the landing distributions (Fig. 16a)
can be extrapolated smoothly, we can estimate the
probability for mislocated fixations. First, we fit-
ted normal distributions to the simulated data. Sec-
ond, we estimated the overlap of these distributions
to neighboring words to obtain the relative frac-
tion, i.e. the probability, for mislocated fixations as
a function of word length (Fig. 16b). For details
of the algorithms see Nuthmannet al. (in press).
The estimated curves obtained from experimental
data (dotted lines) and exact results for the model
simulations (solid lines) are in good agreement,
which demonstrates that the hypothesis of overlap-
ping distributions of initial landing positions serves
as a useful explanation of the IOVP effect in single
fixations.27

Next, we investigated the IOVP effects in two-
fixation cases. The IOVP effect has not been found
for gaze durations as a function of initial fixation
position, since we observe a trade-off in durations

27Note that we validated our algorithm for the estimation of
the percentage of mislocated fixation from empirical data by
the simulations of our model.
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Figure 15: Effect of inverted optimal viewing position (IOVP) for single fixation durations as a function
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for first and second fixation durations (Fig. 17),
so that effects in first and second fixation dura-
tions cancel each other.28 While the IOVP effect
is qualitatively the same for first fixation durations
as for single fixation durations (Fig. 15), average
second fixation durations show a U-shaped pattern
when plotted as a function of the position of the
first fixation. This finding suggests that the amount
of processing time spent on the word during the
first fixation is saved during the following fixations.
Therefore, second fixation durations are shortest
near word centers. As an alternative explanation,
Vitu et al. (2001) argued that the fixation-duration
trade-off effect in two-fixation cases results from
the fact that the IOVP effect is found for both first
and second fixation durations, combined with the
statistical fact that initial fixations near the center
of a word (which tend to be longer) are more likely
to be followed by a fixation toward one end (which
tend to be shorter), and vice versa.

To explain the complicated interaction of first
and second fixation durations, we implemented a
new mechanism of modulation of saccade latencies
as a function of intended saccade lengths (Princi-
ple VII) in addition to the principle of error cor-
rection of mislocated fixations (Principle VI). For
two-fixation cases, error-correction could not ex-
plain the strength of the inverted U-shape of mean
first fixation durations. Since the saccade follow-
ing the first fixation in a two-fixation case has a
very short length on average, the non-labile sac-
cade latency increases strongly due to our assump-
tion in Eq. (19). This assumption is physiolog-
ically plausible, because the production of a sac-
cade with very small amplitude is a difficult prob-
lem for the oculomotor system (Wyman & Stein-
man, 1973; Kalesnykas & Hallett, 1993; Adamset
al., 2000), since an extremely short neuronal pulse
must be produced by the brainstem saccade gen-
erator (e.g., Sparks, 2002). An additional analy-
sis presented in Appendix B shows that the latency

28O’Regan and Ĺevy-Schoen (1987), first reporting a trade-
off effect, postulated that a constant amount of time is required
for processing a word.

modulation specifically contributes to explain the
IOVP effect in first fixation cases, while for sin-
gle fixation durations, the error correction mecha-
nism alone is sufficient to reproduce the inverted
U-shape of the curve.

Finally, we investigated the influence of word
frequency on the IOVP effect. Our analysis is based
on corpus target words (see above in section “Ef-
fects of word length and word frequency”). Figure
18 displays results for mean single fixation dura-
tions on target words of different lengths and fre-
quency (high:> 50 per million vs. low: 1 to 4
per million) as a function of the landing zone ini-
tially fixated. Words of all lengths were divided
into five zones (cf., Vituet al., 2001), and data for
each zone were averaged across word lengths and
subjects. The empirical data show a frequency ef-
fect on fixation durations that was independent of
landing zone (Nuthmannet al., in press; see also
Rayner, Sereno, & Raney, 1996; Vituet al., 2001).
The simulated data reproduce this frequency effect
qualitatively. The effects of word frequency, how-
ever, turned out to be smaller in simulations than in
experimental data.

Model predictions on current topics

While the quantitative fits to data are related to
well-established experimental findings, we now
present model predictions on more recently inves-
tigated phenomena. First, we investigate whether
our model generates costs for skipping and, second,
we analyze lag and successor effects.

Costs for skipping

The analysis of average fixation durations before
skipped words is an interesting test of models of
eye-movement control. In general, there are two
different processes which potentially contribute to
increased fixation durations before skipped words
in theoretical models of eye-movement control.
First, in models based on sequential attention shifts
(SAS), wordn+1 is the default saccade target during
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fixation of wordn. As a consequence, word skip-
ping can only occur after a saccade cancelation of
the default saccade to wordn+1 and the program-
ming of a new saccade to wordn+2. Because of
the saccade latency and the fact that the cancelation
can happen only later than the default saccade to
wordn+1, there are increased fixation durations be-
fore skipped words. Thus, SAS models generically
predict skipping costs. The amount of skipping
costs, however, might be reduced by the additional
assumption of autonomous saccade programs (En-
gbert & Kliegl, 2001). In SWIFT, word skippings
are not causally linked to saccade cancelations be-
cause of the general principle of activation-based
saccade target selection29.

Second, word processing based on attentional
gradients (GAG) will allow parallel processing of
words, which implies a longer accumulation of
parafoveal information. As a consequence, the
probability of skipping wordn+1 will increase if
the fixation duration on wordn increases. Thus, in
GAG models, long fixation durations are a cause,
not a consequence, of skipping. In these mod-
els, however, the link between fixation durations
and subsequent skipping is much less tight because
there is no strict assumption about default saccade
targets as in SAS models. Moreover, in the SWIFT
model, saccades are generated autonomously with
only a limited modulatory influence from time-
delayed foveal inhibition, i.e. without triggering by
word recognition. In summary, an analysis of skip-
ping costs in SWIFT seems impossible without car-
rying out numerical simulations.

Experimentally, there have been rather contra-
dictory results on the difference between average
fixation durations before skipped and non-skipped
words ranging from−26 ms (Radach & Heller,
2000; Table 2) to+84 ms (Pynte, Kennedy &
Ducrot, 2004; Table 3). A solution to this con-
troversy was proposed recently by Kliegl and En-

29Saccade cancelations can occur in SWIFT during the la-
bile stage of saccade programming, however, these cancela-
tions do not represent the driving mechanism for word skip-
pings.

gbert (2005) using a statistical analysis which in-
volved pattern matching and a Monte-Carlo type
of re-sampling procedure.

In a first step, Kliegl and Engbert (2005) se-
lected three-word segments (triplets) that were read
with one fixation per word in forward direction
(Figure 19, top panel: non-skip). For the subse-
quent statistical analysis, four-word segments were
identified which differed from the triplets only
by skipping wordn+1 (Figure 19, bottom panel:
before-skip). Additionally, it was checked that
wordn was never the target of a regression. To ex-
clude potential influences from within-word fixa-
tion position, fixation sequences were matched on
wordn and fixation zone within wordn. To test the
differences of fixation durations on wordn between
patterns a three-step procedure was applied using
100 Monte-Carlo samplings (see Kliegl & Engbert,
2005, for details).

n−2 n−1 n n+1 n+2

n−2 n−1 n n+1 n+2

non-skip

before-skip

Figure 19: Pattern selection for the analysis of skip-
ping costs. To compare fixation durations matched
fixation sequences for non-skip (top panel) and
before-skip cases (bottom panel) were selected.

The main results obtained from this analysis are
that there were strong effects of word frequency
and word length on skipping costs. First, in model
simulations (Figure 20a), there were global skip-
ping costs, i.e. average fixation duration was in-
creased before word skipping compared to non-
skip cases. The difference curve indicates a lin-
ear relation between the increase in fixation dura-
tion and the length of the skipped word (Figure
20b). For experimental data, the main results are
plotted in Figure 20(c,d). Fixation durations be-
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fore short words were shorter, when subsequent
words were skipped compared to when they were
fixated. With increasing word length, this effect
is reversed to produce longer fixations before long
words. Thus, different from model simulations,
there were benefits from skipping short words and
costs from skipping long words. As in the model
simulations, however, the differences between non-
skip and before-skip cases turned out to be roughly
linearly increasing with word length (see Kliegl &
Engbert, 2005).

In summary, the SWIFT-II model generates
global skipping costs, which is in contradiction to
our own results from experimental data (Kliegl &
Engbert, 2005). Although there are diverging re-
sults from different experiments, this might indi-
cate that in the current version of our model, the ef-
fects of preview as a consequence of long fixation
durations are a dominant process, which causes
word skipping. Therefore, it is an open problem
whether the model can be modified to generate re-
duced fixations durations before skippings as well.

Lag and successor effects

A key assumption for eye-movement research is
that properties of the fixated word are the domi-
nant variables modulating fixation duration. This
immediacy-of-processing assumption (see Rayner,
1998, for a review) is a platform for much of psy-
cholinguistic research. Using a detailed analysis of
a large data basis from continuous reading, we re-
cently showed that there are multiple non-local ef-
fects of word difficulty (Klieglet al., 2005).

In a sequence of three firstpass single fixations,
we computed fixation duration on wordn (the cen-
ter word) as a function of frequencies, predictabili-
ties, and lengths of wordn−1, wordn, and wordn+1

(Figure 21). A first glance at Figure 21 shows that
there are strong effects in both experimental data
and model simulations. Most importantly, how-
ever, simulation results generally show the same
trend as the experimental data.

Lag effects. The strongest effect (more than

40 ms in average single fixation duration) is pro-
duced by the last word’s length, which is even
stronger than the effect induced by the current
word’s length (Figure 21, bottom panels). In the
SWIFT-II model, there are two mechanisms which
are responsible for this lag effect. First, a fixation
on wordn−1 will generate lesspreview on wordn,
when wordn−1 is longer. As a consequence, the
fixation on wordn will last longer on average, if
wordn−1 was a long word. The same argument also
applies to the lag effect for the word frequency plot
(Figure 21, top panels), because of the correlation
between word length and word frequency.

Second, we implemented a time-delay in the
foveal inhibtion process, Eq. (13), to account for
the neurophysiological fact that the word recogni-
tion loop will operate much slower than the fast
brainstem saccade generator. The numerical value
of the time-delay was estimated asτ = 375.7 ms
(Tab. 3). Given an average single fixation dura-
tion of 200 ms, the current word’s fixation duration
is effectively controlled by inhibition from the last
word. Thus, the time-delayed foveal inhibition will
produce spillover effects.

Successor effects. The performance of our
model with respect to successor effects, i.e. effects
of the features of the successor wordn+1 on fixa-
tion durations of wordn, is rather interesting, be-
cause there are no explicit mechanisms for modu-
lations of foveal processing by processing of words
to the right of the currently fixated word. As a con-
sequence, all effects in Figure 21 are effects due to
spatial selections in the perceptual span. A note of
caution: Successor effects are small compared to
the lag effects in both experimental and simulated
data (Klieglet al., 2005). Thus, future model mod-
ifications might change the data pattern on succes-
sor effects more strongly than other effects. We re-
port the predictions about successor effects to stim-
ulate future research.
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Figure 20: Analysis of costs for word skipping from statistical analysis. (a,b) Model simulations. (a)
Fixation durations increase with word length (of the skipped word) before a skip and slightly decrease
with word length before a non-skip. There are global costs. (b) The differences between cases of skips
and non-skips increases approximately linearly with word length. (c,d) Experimental data. (c) There are
reduced fixation durations before short skipped words and costs before longer skipped words compared
to non-skipped cases. (d) The difference increases linearly with the length of the skipped word.

Is word processing parallel or serial?

In the SWIFT model, all words are processed in
parallel due to the assumption of a processing gra-
dient. The processing rate, however, decreases
very rapidly with increasing eccentricity. Thus, the
number of words with effectively changing activa-
tions is much smaller than the number of words
Nw in a sentence. A dynamical analysis shows
that SWIFT’s behavior can be investigated qual-
itatively by the activations of only three words,
ak(t), ak+1(t), ak+2(t), during fixation of wordk.
In terms of dynamical systems theory (e.g., Ka-

plan & Glass, 1995), we can show that dynamics of
SWIFT can be approximated by a two-dimensional
subspace embedded in aNw-dimensional state
space (Appendix C). Therefore, the potential num-
ber of dynamical degrees-of-freedom are reduced
by the estimated model parameters values in a psy-
chologically plausible way, so that only a few acti-
vated words determine SWIFT’s behavior at a time.

The two alternative theoretical concepts of se-
rial (SAS; e.g., Reichleet al., 2003; Engbert &
Kliegl, 2001) versus parallel (SWIFT) processing
of words are asymmetrically related to each other
with respect to generalization. While serial pro-
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Figure 21: Analysis of lag and successor effects. Top panels: Average single fixation durations as a
function of word length of the last word (wordn−1, left), the current word (wordn, middle), and the next
word (wordn+1, right). Bottom panels: Corresponding plots as a function of word frequency class.

cessing may be looked upon as a special case of
a model of parallel processing, new assumptions
must be made in a serial model to extend the model
to parallel processing. Based on these considera-
tions, we introduce a parametrization for a contin-
uous tuning of the SWIFT model from strictly se-
rial to parallel processing. Thus, the distinction be-
tween serial and parallel processing is not necessar-
ily dichotomous and we can study both processing
types within the same model.

Given the gradient-type assumption of parallel
processing of words, we can add restrictions on
parallel processing to include serial processing as
a special case in SWIFT’s behavior. Since word
recognition is a two-stage process in SWIFT, there

are two different versions of the serial model: (A)
Global processing (preprocessing and lexical com-
pletion) is serial, and (B) lexical completion is se-
rial, while preprocessing is parallel.

For both versions (A) and (B) of serial versus
parallel processing, we can define a parametriza-
tion, which introduces a continuous transition be-
tween serial and parallel processing by tuning a
single parameterφ. The basic assumption is that
processing is modulated by the number of words
with non-vanishing activation to the left of the word
under consideration, because any word with non-
zero activation signals that the corresponding word
is not completely identified. To formulate this ap-
proach mathematically, we replace the processing
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rateλn(t) of wordn, Eq. (6), by

λφ
n(t) =

(
1

P (t)

)φ

λn(t) , (21)

whereP (t) is the number of words with non-zero
activationam(t) > 0 at time t, from word1 up
to wordn (i.e., with m ≤ n). As a consequence,
the processing rateλφ

n(t) of wordn is decreased for
increasing numbers of words to the left of wordn.
More importantly, both serial and parallel process-
ing are included in Eq. (21), if we consider the two
limiting cases

φ → 0 : parallel processing,

φ → ∞ : serial processing.

Obviously, forφ →∞, processing of wordn is pre-
vented ifP (t) > 0.

To implement the two different versions (A) and
(B) of serial processing introduced above, we apply
Eq. (21) to preprocessing and lexical completion
(A), i.e. processing of words is controlled by pa-
rameterφ ≡ φA, or to the lexical completion pro-
cess only (B). In the latter case, preprocessing will
lead to a parallel activation of words, while the de-
crease of activations during lexical completion will
vary between parallel and serial processing depend-
ing on parameterφ ≡ φB.

Next, we demonstrate by numerical simulations
that variation of parameterφ can induce the transi-
tion from parallel to serial processing. Using 100
runs of the model, we computed the fraction of time
Λj (from total simulation time), wherej words
have non-zero activation. In a strictly serial model,
the fractionΛj must be zero forj ≥ 2, i.e. there is
maximally one activated word at a time.30 It turns
out that in SWIFTΛ1 = 19%, Λ2 = 32%, and
Λ>2 = 48%. Thus, there are more than two words
with non-vanishing activation for nearly 50% of the
time. Keeping all parameters of the SWIFT model
fixed, we vary parameterφ for both versions (A)

30For an efficient model, we would additionally require that
Λ0 is close to zero, since during the time interval with vanish-
ing activation for all words nothing is processed.

with φ ≡ φA and (B) withφ ≡ φB and compute
the resulting fractionsΛj (Figure 22). The SWIFT
model is retained forφ = 0, but our simulations
show that the model’s behavior will be rather sta-
ble up toφ ≈ 0.1.

If processing rates are modified by Eq. (21) for
both preprocessing and lexical completion (A), we
observed a sharp transition from parallel to serial
processing, which is indicated by the rise ofΛ1

close to 100% atφ ≈ 10 (note that the direction
of the abscissa is inverted, i.e.φ increases from
right to left in Figure 22a). If we restrict the lex-
ical completion stage of word processing only (B),
the distribution of activations changes less drasti-
cally (Figure 22b). Interestingly, the fraction of
time with one activated word,Λ1, decreases with
increasingφ. Therefore, if lexical completion be-
comes more serial, the distribution of activation
will be broader. This effect is caused by the fact
that there are no restrictions on preprocessing: Sev-
eral words are preprocessed at a time, but the model
must wait for starting lexical completion, until all
words to the left of the word under consideration
are completely identified.

Since we demonstrated that the SWIFT model
can be used as a framework to study the transition
from parallel to serial processing, it may be an im-
portant tool to generate predictions on a number of
phenomena, which are currently investigated to de-
termine experimental boundary conditions on the
possibility of parallel processing and on the lim-
itations of serial processing. In this respect, two
candidate phenomena are the analysis of skipping
costs and lag and successor effects discussed in the
previous section.
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Figure 22: The transition from parallel to serial processing in the SWIFT model. (a) If the processing
rate is controlled by parameterφ for both preprocessing and lexical completion, then we observe a sharp
transition to serial processingΛ1 ≈ 100% for φ ≈ 10. (b) When lexical completion is modulated by
φ with preprocessing fully parallel, the distribution of activation over words is even broader than in the
SWIFT model.

General Discussion

In this article, we developed an advanced and sub-
stantially extended SWIFT-II model based on the
first version SWIFT-I (Engbertet al., 2002). An
incremental study of the effect of adding the var-
ious mechanisms to the basic framework is car-
ried out in Appendix B. We showed that the new
model can reproduce and explain many experimen-
tally observed phenomena of eye movements dur-
ing reading. While the model’s intended level of
mathematical detail with respect to word process-
ing and saccade programming agrees with the E-Z
Reader framework (Reichleet al., 1998, 2003), the
core assumption of spatially-distributed processing
in SWIFT turned out as a viable alternative to the
strictly serial allocation of attention assumed in E-
Z Reader.

Motivated by recent advances in the dynamic

field theory of movement preparation (Erlhagen &
Scḧoner, 2002), we implemented SWIFT as a com-
putational model for saccade generation based on a
spatially-distributed activation field. There is sim-
ilarity of the SWIFT model with the dynamic field
concept, however, we did not refer to the formal
theory of Erlhagen and Schöner (2002). The main
reason was that saccade generation in reading is not
only a problem of movement planning, but also a
problem of word processing, so that many prop-
erties related to word processing had to be com-
bined with ideas proposed in the dynamic field the-
ory. Thus, the dynamic field concept motivated our
model, but the formal framework was simplified in
order to focus on aspects of word recognition in
order to reproduce effects of word difficulty in eye-
movement data. In perspective, we believe, how-
ever, that the general concept of interactions be-
tween local excitation and global inhibition in the
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dynamic field theory is a potentially very useful
framework for a coherent explanation of eye move-
ments during reading.

Neurophysiological background

The investigation of the brainstem circuitry of sac-
cade generation has been an active field of research
for many years resulting in a very detailed level of
understanding of the immediate presaccadic pro-
cesses (Moschovakis, Scudder & Highstein, 1996;
Sparks, 2002). One of the key results is that there
exist both omnipause and burst cells in the brain-
stem. While omnipause cells fire during fixations
and cease activation during saccades, the burst cells
show the opposite activity pattern, i.e. burst cells
fire at a high rate for the duration of a saccade. Be-
cause omnipause cells show no specifity, but burst
cells code the spatial metrics of saccade, there are
at least two descending pathways in the neurophys-
iology of the oculomotor system. One carries spa-
tial information (“where”), while the other serves
as a trigger and is involved in temporal aspects of
saccades (“when”).31 The competing processes be-
tween fixation and saccade generation have been
further investigated by Munoz and Wurtz in a se-
ries of publications (Munoz & Wurtz, 1993a,b,
1995a,b; Wurtz, 1996). Their work has focused on
the superior colliculus, which carries a representa-
tion of the fovea of the visual field. The superior
colliculus shows distributed coding as an important
property (McIlwain, 1991). Visual cells turned out
to have unexpectedly large receptive fields. Thus,
a cell in the collicular map can be activated from
a rather wide range of visual space. Motivated
by these neurophysiological results, Findlay and
Walker (1999) proposed a general model for the
control of eye movements. The model is orga-
nized into 5 different levels, all of which are sep-
arated into “where” and “when” pathways. More-
over, Findlay and Walker suggested that processes

31The concept of separate “where” and “when” pathways
was first introduced by oculomotor physiologists (Van Gisber-
gen, Gielen, Cox, Bruijns, & Kleine Schaars, 1981).

of competitive interaction operate within a salience
map (their level 2) to compute a unique saccade
goal.

In the SWIFT model, we adopted the fundamen-
tal separation between “where” and “when” path-
ways as a key principle of model design. As a
consequence, we implemented temporal and spatial
control of saccades with as little interaction as pos-
sible. It turned out in the development of SWIFT-
I (Engbert et al., 2002) that foveal inhibition of
an autonomous random timer is a minimal model
of the control processes necessary to adjust fixa-
tion durations. Here, we included a time-delay for
the inhibition process to separate the slower word
recognition system from the fast brainstem saccade
generator. Given the neurophysiological organiza-
tion of the contributing neural systems, the time-
scale separation is very plausible. The competi-
tion between alternative saccade targets is a pow-
erful mechanism for generating all types of sac-
cades (forward saccade, word skipping, refixations,
regressions) from a single underlying mechanism.
Therefore, the neurophysiological foundations of
saccade generation in reading are compatible with
our mathematical model.

Phenomena reproduced by SWIFT

Word-based measures. Using experimental data
obtained for the Potsdam Sentence Corpus (Kliegl
et al., 2005) we fitted word-based fixation dura-
tions and probabilities. For all of the 850 words
of the corpus (all words of the corpus excluding
first and last words of the sentences) the model re-
produced averages of first, second, single and to-
tal fixation durations as well as probabilities for
skipping, two fixations, three fixations and regres-
sions. Word-based fitting is a major advantage
compared to fitting averages representing classes of
word frequency as in previous studies (Reichleet
al., 1998, 2003; Engbert & Kliegl, 2001; Engbert
et al., 2002), since word-based analyses provide a
new level of detail for analyses of model perfor-
mance.
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Effects of length and frequency. The obtained
word-based measures are the basis for additional
analyses of effects of both word length and word
frequency by averaging dependent variables over
classes of length and frequency respectively. This
analysis demonstrated that SWIFT accurately cap-
tures effects of both word length and word fre-
quency. Thus, SWIFT is the first computational
model which reproduces effects of word length and
word frequency to a comparable level of accuracy.

Distributions of fixation durations. Fixation du-
rations in reading are highly variable and show
broad distribution. Therefore, it is important that
computational models reproduce these distribu-
tions. There are two main sources of variability for
fixation durations in SWIFT. First, the standard de-
viations of fixations durations are modulated by the
stochastic assumptions on the random-walk pro-
cess for word recognition. This simple assumption
can be replaced in a future version of our model
without changing the model’s architecture. Fur-
thermore, foveal inhibition can influence the vari-
ability of fixation durations in a more complicated
way (compared to the random-walk process). As an
example, a broad distribution of fixation durations
will induce a broader distribution of the variability
created by foveal inhibition and, hence, amplify the
noise. Such complicated interactions of stochastic-
ity and nonlinearity typically occur in nonlinear dy-
namical systems (e.g. Moss & McClintock, 1989;
Millonas, 1996).

Refixations. The within-word position of the
minimum of the probability for refixating a word
defines the optimal viewing position. In SWIFT,
refixations on short words occur as a consequence
of autonomous saccade timing. For longer words,
refixations are necessary because of visual acuity
limitations, which are incorporated in SWIFT by
the assumption of the processing gradient.

Regressions. Liversedge and Findlay (2000) put
the mechanisms underlying regressive saccades on
the list of outstanding problems in eye movement
research. In normal reading, regressions are the
rule rather than the exception. Following Rayner

(1998), 10 to 15% of all saccades are regressive. As
a consequence, for a typical sentence of 8 words,
the probability for a regression is about 2/3 (rang-
ing from 0.57 to 0.73).32 In SWIFT, regressions
are triggered by incomplete word recognition. This
is a simple and psychologically plausible explana-
tion, which is supported by our analysis of patterns
of words which were targeted by a regression after
skipping during first-pass reading.

Initial landing positions. Following the hypoth-
esis first proposed by McConkieet al. (1988) that
oculomotor errors can be divided into systematic
and random components, we included these two
types of saccadic errors in our model. Our simula-
tions show that the distributions of experimentally
observed initial landing positions are reproduced
by the model. This is a non-trivial result, since it
proves that the assumptions on oculomotor control
made in SWIFT are compatible with the error pat-
tern found by McConkieet al.

IOVP effects and mislocated fixations. The
presence of oculomotor errors induce mislocated
fixations (Nuthmannet al., in press). It is likely
that the cognitive control system responds to these
errors with some correction mechanism. Such a
mechanism represents a coupling of word process-
ing and oculomotor systems. Computational mod-
els are ideal tools to test the hypothesis on the con-
sequences of mislocated fixations. In SWIFT, we
implemented an error correction program as a re-
sponse to mislocated fixations, as proposed earlier
by Nuthmannet al. (in press). Since mislocated fix-
ations are more frequent near word boundaries, the
immediate triggering of a new sacccade program
reduced fixation duration at word edges. There-
fore, our model can explain inverted optimal view-
ing position effects (IOVP). An additional modula-
tion of saccade program duration by intended sac-
cade length was used to reproduce IOVP for the
first of two fixations.

Costs for skipping. The SWIFT model repro-

32Sentences with regressions are regularly excluded from
modeling in E-Z Reader.
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duces the main features of data pattern in skip-
ping costs. From a careful analysis of experiments,
Kliegl and Engbert (in press) reported skipping
benefits for short and skipping costs for long words
respectively, i.e. fixations prior to skipped words
were shorter for short or high-frequency words and
longer for long or low-frequency words compared
to non-skipped controls. These results were not
reproduced by our simulations, which indicated
global skipping costs, however, the model could re-
produce a linear increase of skipping costs with the
length of the skipped word, which was found in ex-
perimental data.

Lag effects. Non-local effects of word prop-
erties (e.g., word length and word frequency) are
not surprising in a model of spatially-distributed
processing. We checked two effects to investigate
whether SWIFT makes realistic predictions about
these effects. The lag effect, i.e. the influence of
word length and word frequency of the previously
fixated word on the currently fixated word are re-
produced qualitatively by two underlying mecha-
nisms in SWIFT. First, when the previous word is
a long word, there has been less preview on the
current word than in the case of a short successor
word, which will lead to an increase in fixation du-
ration. Second, foveal inhibition is time-delayed,
so that the word recognition loop can modulate fix-
ation duration only with a time delay.

Further problems. There were and still are nu-
merous data patterns hidden in the Potsdam Sen-
tence Corpus which challenged the model and will
continue to do so. For example, in its current ver-
sion the model still tends to overestimate the effect
of word length and to underestimate the effect of
word frequency (see Figs. 11 and 18). We also had
considered it as plausible that lag effects should
be found in SWIFT simulations once we had dis-
covered the pattern in the experimental data. Un-
fortunately, this what not the case for the simu-
lation results. The solution was to delay the in-
hibition of saccade programs by foveal activation
(see Eq. 13). It is a physiologically highly plau-
sible generalization of our foveal inhibition mech-

anism to introduce a time delay for the control of
fixation durations by word recognition processes.
Moreover, this modification of the model did not
interfere with other successful simulation results
despite the nonlinearities in the model. The bottom
line is that obviously the model can still be falsi-
fied by experimental data, probably in many ways.
And, of course, we will look for modifications that
accommodate these results without compromising
the core set of theoretical principles.

From parallel to serial processing of words

In SWIFT, several words are active at a time and
lexical completion of words is not strictly tied to
their serial order in the sentences. This is some-
times advanced as an argument against parallel
models, since in SAS models, words become avail-
able in the order of appearance in the text, just like
in spoken language. Of course, we could simply
“delegate” the task of serialization in SWIFT to
higher order structures such as Baddeley’s (2000)
episodic buffer or Ericsson and Kintsch’s (1995)
long-term working memory. Indeed, experimen-
tal results about failures to notice missing func-
tions words or to overlook their repetition suggest
that reading may not be as strictly serial as envi-
sioned by SAS proponents. Koriat, Greenberg and
Kreiner (2002) argue that, for example, function
words such as “the” become available earlier and
serve to generate a sentence structure into which
meanings of content words are then integrated (see
also Kennedy, 2000b, for a collection of arguments
why reading is not like listening; Deubel, O’Regan,
& Radach, 2000; Inhoff, Radach, Starr, & Green-
berg, 2000). The failures associated with function
words mentioned above are assumed to arise from
a faster decay of activation compared to content
words (conceptually compatible with SWIFT).

There is good evidence that silent reading ac-
tivates phonological representations (e.g., Pollat-
sek, Lesch, Morris, & Rayner, 1992; Van Orden,
1987). At first glance this may even appear to sup-
port the assumption of sequential lexical access, as
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enforced, for example, in E-Z Reader. We note,
however, that oral reading is characterized by a
strikingly unserial sequence of fixations, with the
eye running ahead of the voice, but also frequent
regressions to briefly synchronize voice and eye
(Buswell, 1920). Oral reading behavior appears to
be in better agreement with SWIFT’s assumptions.
Modeling such dynamics of eye and voice will pro-
vide new constraints for the coupling between oc-
ular and attentional movements; it certainly repre-
sents a challenge of generalizability for computa-
tional models of silent reading such as SWIFT and
E-Z Reader.

Finally, at the other end of conscious control
during reading, mindless reading constitutes evi-
denceprima facie for a loose coupling between oc-
ular and attentional control (Vitu, O’Regan, Inhoff,
& Topolski, 1995; Rayner & Fischer, 1996). We
frequently find ourselves at a location in the text
without any awareness about how we got there or
any awareness about what we just read. Clearly, in
this situation our thoughts had strayed off the text
and accessed “meanings” different from the ones
written about in the text. We think this situation
is analogous to our experience of walking while
carrying out an intensive conversation. Our move-
ments are clearly guided by environmental cues but
there is little awareness of this behavior. The two
systems must be coupled at some level, but, in our
opinion, a strict coupling is not very plausible.

A conceptual advantage of SWIFT as a parallel
model of word processing is that we can include
serial processing as a special case. Furthermore,
by implementing a tuning parameter, we showed
that the dichotomy of serial versus parallel pro-
cessing can be replaced by a continuum of mod-
els. There are two different versions of the restric-
tion to serial processing. In the first version, we
restricted all processing (i.e. preprocessing and lex-
ical completion), whereas in the second version, we
restricted lexical completion only (i.e. preprocess-
ing is still fully parallel). For the first version, we
were able to demonstrate by numerical simulations
that SWIFT can be restricted to process words se-

rially. A signature of strictly serial processing was
that there is only one word activated at a time. In
the second version based on the relaxed assumption
on serial processing that preprocessing is still par-
allel, but lexical completion is serial, we showed
that the distribution of activations over words was
even broader than in the original model. Thus, the
SWIFT model may prove to be very useful to fur-
ther explore the transition from serial to parallel
processing in future research.

Comparison to the E-Z Reader model

A possible classification of models of eye-
movement control in reading categorizes the ap-
proaches intoprimary oculomotor models (POC),
models based on the principle ofguidance by at-
tentional gradients (GAG), and models driven by
sequential attention shifts (SAS). Several computa-
tional models have been developed in each of the
three categories. Since most models focus only
on a very special aspect of eye-movement control
(e.g., oculomotor theories do not account for ef-
fects of word frequency) or have not been imple-
mented on a computer to generate data for quan-
titative evaluation, we will compare the SWIFT-
II model as a viable implementation of GAG with
the E-Z Reader model in its latest version (Reichle
et al., 2003) as the most advanced model of SAS.
Both SWIFT and E-Z Reader reproduce a com-
parable number of experimentally observed phe-
nomena, but are based on very different principles,
i.e. parallel word processing in SWIFT and serial
word processing in E-Z Reader. We point out,
however, that we adopted a few of E-Z Reader’s
principles, e.g. that lexical difficulty is related to
word frequency and predictability, the concept of
two-stage lexical processing, and the two-level pro-
gramming of saccades. Moreover, both models
adopted the concept of systematic and random er-
rors of saccades (McConkieet al., 1988).

The evaluation of different theoretical explana-
tions is among the central problems of research, in
particular in mathematical modeling of experimen-
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tal data (e.g., Myung, Forster, & Browne, 2000).
To guide the evaluation and comparison of differ-
ent models, a number of criteria were proposed by
Jacobs and Grainger (1994). Here we discuss the
following criteria: (a) plausibility, (b) interpretabil-
ity, (c) generalizability, and (d) complexity. Note
that the relative importance of these criteria might
depend strongly on the types of models discussed
and the research field.

(a) Plausibility and explanatory adequacy. To
check the plausibility and explanatory adequacy of
the models, we ask whether the theoretical explana-
tion the models offer are biologically and psycho-
logically plausible and consistent with the knowl-
edge in the corresponding field of research.

The E-Z Reader model is motivated by sequen-
tial attention shifts (SAS) driving eye movements
in reading.33 The mechanism of SAS was intro-
duced first by Morrison (1984), motivated by the
attentional “spotlight” metaphor from attentional
cuing experiments (Posner, 1980). Basic research
on the relation between attention shifts and saccade
programming resulted in the observation that at-
tentional shifts precede saccades obligatorily (e.g.,
Kowler et al., 1995; Deubel & Schneider, 1996). In
the E-Z Reader model, however, the basic mech-
anism for starting a saccade program is a prelimi-
nary stage of word processing called the familiarity
check. Thus, the attentional shift occursafter the
start of the eye movement program. In an analy-
sis of the E-Z Reader model, Deubelet al. (2000,
p. 357) argue that “the assumption that saccades
can be programmed without an obligatory, preced-
ing shift of attention is certainly in conflict with
most of the more recent investigations on the rela-
tion of attention and saccade control.” From these
considerations, one of the basic assumptions of the
E-Z Reader model seem questionable.

An alternative view on the role of attention
shifts for eye-movement control during reading
has been discussed recently (Reichle, Pollatsek, &

33The relationship between attention and eye movements
was first noted by Rayner, McConkie, and Ehrlich (1978).

Rayner, 2005). According to these arguments, vi-
sual processing is not sufficient for word identifi-
cation, but additionally requires attention to be fo-
cused on the word. This hypothesis is based on
findings that attention is essential for “binding” to-
gether features of visual objects for encoding sin-
gle, unified representations (Treisman & Gelade,
1980; Treisman & Souther, 1986; Wheeler & Treis-
man, 2002; Wolfe, 1994; Wolfe & Bennett, 1996).
From this line of evidence, Reichleet al. (2005)
further argue that attention must be allocated to
each word “object” so that it can be identified. Ob-
viously, the role of these processes for word recog-
nition in a continuous task like reading, in particu-
lar with respect to the time lines involved for atten-
tion shifts, remains an open research problem.

The separation into “where” and “when” path-
ways for spatial and temporal control of saccade
programs respectively is one of the key findings in
basic research about the oculomotor system (e.g.,
Wurtz, 1996). The SWIFT model is built around
this principle, requiring a dynamically changing
activation field for saccade target selection (dy-
namic field theory, Erlhagen & Schöner, 2002, see
below). Using this concept, the allocation of visual
attention is specified by a gradient function in the
SWIFT model. Furthermore, there is no direct cou-
pling between attentional and oculomotor systems,
since attention is not necessarily word-based in
SWIFT. Thus, the time-course of attentional shifts
in E-Z Reader is in contrast with the less explicit
Gaussian-distributed attention in SWIFT.

(b) Interpretability. Both SWIFT and E-Z
Reader have a number of parameters which can
be interpreted psychologically and/or neurophysio-
logically. As a consequence, these models are ideal
tools for testing alternative assumptions through
the evaluation of obtained parameter values. As an
example, we fitted the labile and non-labile saccade
latency parameters to check whether the numerical
values obtained by parameter estimation are plausi-
ble. It turned out that the corresponding values are
in good agreement with results from basic oculo-
motor research. We suspect that such a test would
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be very interesting for the E-Z Reader model, since
the SAS mechanisms might exert strong constraints
on the durations of saccade program stages.

(c) Generalizability. When we consider visual
tasks different from reading, many of the involved
cognitive and oculomotor subsystems overlap or
are even the same. While the tremendous vari-
ability of stimuli in general scene perception cur-
rently precludes a fully quantitative approach for
models of eye-movement control, visual search
tasks which include eye movements (e.g., Hooge &
Erkelens, 1998; Gilchrist & Harvey, 2000) are good
candidate paradigms for extending and/or general-
izing mathematical models.

The most important complication is that in a vi-
sual search task, eye movements must be controlled
in two dimensions. Reading, however, is effec-
tively a one-dimensional task, since return sweeps
from one line of text to the next are not dominating
the reading process. Using the concept of an evolv-
ing activation field in combination with Gaussian-
distributed attention, it is straightforward to gen-
eralize the SWIFT model to two-dimensional tasks
(for a visual search task see Trukenbrod & Engbert,
in prep.). In E-Z Reader, attention must be directed
to the next item by a random process, since simulta-
neous preprocessing of several items is prohibited
in the SAS framework. While we speculate that
there might be an advantage for the SWIFT model,
the details of how computational models of eye-
movement control perform in visual search tasks
involving eye movements must be worked out in
future research, of course.

(d) Complexity. A general principle in the de-
sign of mathematical models is to keep the model’s
complexity low. There is, however, no general the-
ory of complexity or even of model complexity
(see Badii & Politi, 1997).34 While an analysis of
model complexity might unveil new insights into

34A quantitative approach to estimate model complexity has
been developed recently based on the concept of minimum de-
scription length (Pittet al., 2002). This approach, however,
was applied to simple models rather than to more complicated
computational models like SWIFT and E-Z Reader.

the underlying principles of the models, is seems
currently not appropriate to compare models quan-
titatively using concepts of complexity.

The SWIFT model generates all types of sac-
cades within a coherent framework, the dynamic
field theory of movement preparation (Erlhagen &
Scḧoner, 2002). Thus, we proposed a single mech-
anism for forward saccades, word skippings, refix-
ations, and regressions, whereas in the E-Z Reader
model, forward saccades and word skippings are
naturally explained by the SAS mechanism. The
generation of refixations is added to the model
by assuming an additional refixation program to
each of the model’s internal state, which increases
the number of states from 8 to 14 (Reichleet al.,
1998).35

The number of model parameters is compara-
ble between SWIFT and E-Z Reader. While for
E-Z Reader, dependent measures were averaged
over classes of word frequency, the fitting proce-
dure proposed here is word-based. As a conse-
quence, the relation of number of free parameters to
number of data points is much smaller for SWIFT.
Therefore, besides offering a viable alternative to
the highly successful E-Z Reader model, we pro-
posed a new approach for model fitting, which per-
mits the analysis of computational models to much
greater detail — and more reliably.

Summary

The control of eye movements during reading re-
quires the coordination of information processing
and action selection on many different cognitive
levels. The SWIFT model represents a psycholog-
ically and neurophysiologically plausible compu-
ational model of how this coordination could be
achieved in a unifying framework for almost all
types of eye movements observed in reading ex-
periments, i.e. forward saccades, refixations, word
skippings, and regressions. The model can repro-

35In E-Z Reader 7, the internal states of the model are no
longer described, but we speculate that the number is much
greater than 14.
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duce a number of well-established measures of eye-
movement control during reading, average fixation
durations and fixation probabilities, distributions of
within-word landing positions, inter-word regres-
sions. Finally, the SWIFT model can explain the
inverted optimal viewing position effect of fixation
durations based on error-correction of mislocated
fixations.
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A. Fitting model parameters

For the estimation of model parameters, we used a
genetic algorithms approach. This method turned
out to be very efficient for the type of optimiza-
tion problems we face here. The method was devel-
oped and successfully applied to SWIFT-I (Engbert
et al., 2002) and to a three-state SAS model (Eng-
bert & Kliegl, 2001). For each sentence, 200 model
realizations were run with a new set of pseudo-
random numbers. For all 850 words, 8 statistical
measures were computed from these runs.

Genetic algorithm procedure

For the genetic algorithm (Holland, 1975; Gold-
berg, 1989; Spall, 2004), we started with a pop-
ulation of 50 combinations (chromosomes) of pa-
rameter values, which were chosen randomly from
the specified range for each parameter (Table 3).
The individual ranges of parameters were chosen in
advance according to mathematical or plausibility
considerations. As an example, the predictability
coefficientθ in Eq. (1) is naturally restricted to the
interval between 0 and 1. For parameters defined
on an unlimited range, we chose a plausible range
of values (e.g., a range from 100 ms to 300 ms for
the random timer).

Using selection, mutation and recombination
(crossover) for the temporal evolution of the pop-
ulation of genes, we iterated the population for
several 1000 generations. A reduction of the pa-
rameter variance over the best 50 chromosomes of
the population indicated convergence of the esti-
mates of model parameters. Additionally, we cal-
culated errors of the parameter estimates from these
50 chromosomes (Tab. 3).36 The number of it-
erations of Eq. (20), necessary for this procedure
of parameter fitting, can be estimated as103 iter-
ations×102 sentences×102 runs (virtual partici-

36To further check the reliability of the optimization proce-
dure, several runs of the GA procedure were carried out, which
reproduced the results within the errorbars obtained from one
simulation.

pants)×103 generations in the genetic algorithm,
which gives the order of1010 iterations. Numeri-
cal simulations were run on a cluster of 12 Apple
G5 (Dual processor) computers, which performed
these computations in less than 48 hours.

The performance of the model is defined as
mean squared normalized errors of fixation dura-
tions and fixation probabilities per word. Fixation
durations obtained from model simulations are de-
noted byT j

n, where the subscript denotes the word
(n = 1, 2, 3, ..., 850) and the superscript indi-
cates the type of measure, i.e. first fixation duration
(j = 1), second fixation duration (j = 2), single
fixation duration (j = 3), and total reading time
(j = 4).37 Next, we compute the deviation from
the experimentally observed value,T̄ j

k ,

∆T =
4∑

j=1

850∑
k=1

T j
k − T̄ j

k

σ(T j
k )

2

, (22)

whereσ(T j
k ) denotes the standard deviation of the

simulated fixation durations.
The four different measures of fixation proba-

bilities P j
k , skipping probability (j = 1), probabil-

ity for two fixations (j = 2), probability for three
or more fixations (j = 3), and regression probabil-
ity (j = 4) were evaluated in analogy to measures
of fixation durations,

∆P =
4∑

j=1

850∑
k=1

P j
k − P̄ j

k

σ(P j
k )

2

, (23)

whereσ(P j
k ) represent the standard deviations of

the probabilities.
In order to fit the distributions of fixation du-

rations, we computed the deviation of the simu-
lated distribution of fixation durations from the cor-
responding distributions obtained from experimen-
tal data. Distributions of average fixation durations
were calculated separately for the four measures of

37If one of the measures was not computable (e.g., for a
word never fixated or never fixated more than once), we ex-
cluded the specific word from this analysis.
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fixation durations from 500 bins ranging from 0 to
500 ms in steps of 1 ms. The corresponding values
were denoted byDj

k with the subscript indicating
the bin (k = 1, 2, 3, ..., 500) and the superscript
indicating the fixation duration measure (as forT j

k ,
see above). Thus, we obtain a third measure of de-
viation,

∆D =
4∑

j=1

500∑
k=1

Dj
k − D̄j

k

D̄j
k + 1

2

, (24)

whereN j
F is the total number of fixations in each

measurej.
To fit the IOVP effects for first and single fixa-

tion durations, we included an additional deviation
measure. Let us denote the average first and sin-
gle fixation duration on a word of lengthk with a
fixation position on letterj asI1

k(j) andI2
k(j) re-

spectively. To reduce noise in the empirical data,
we considered only words of lengths 4 to 8, i.e.

∆I,v = 1000
8∑

k=4

k∑
j=0

(
Iv
k (j)− Īv

k (j)
Īv
k (j)

)2

, (25)

wherev = 1, 2 represents first and single fixa-
tion durations respectively. Because single fixa-
tions represent the majority of all fixations, we dou-
bled the weight for∆I,2, i.e.

∆I = ∆I,1 + 2∆I,2 . (26)

Finally, we combined the above four mean
squared error measures in a single deviation mea-
sure,

∆ = ∆T + ∆P + ∆D + ∆I . (27)

Because all realizations of the model simulations
are stochastic, the deviation measures, Eq. (27),
fluctuate as well. Five runs of the model (using
200 virtual participants) resulted in the following
numerical values:∆ = 6921 ± 47, where∆T =
4223± 52, ∆P = 1744± 27, ∆D = 390± 13, and
∆I = 565± 27.

Parameter sensitivity and model stability

Using the genetic algorithm procedure, we were
able to analyze the evolution of parameters and
errors over the iteration of generations (Fig. 23).
First, the complicated time-course of the best pa-
rameter values over time indicated the presence of
nonlinear correlations between model parameters.
Second, the noise level seen in parameter uncer-
tainty decreased over the evolution of the popula-
tion of chromosomes. The relative strength of pa-
rameter errors varied considerably across parame-
ters. We used the errors of parameters to simulate
inter-individual differences (see section on model
parameters).

B. Incremental test of model
improvement

A direct comparison of SWIFT-II with the orig-
inally proposed model SWIFT-I (Engbertet al.,
2002) is not useful due to the larger number of
qualitative improvements introduced in SWIFT-II.
First, in SWIFT-I we mainly wanted to test the as-
sumption of parallel processing as an alternative to
SAS models. The model did not include a phys-
ical representation of space, so that words were
idealized as equally extended objects on a discrete
chain. Since a more realistic attentional gradient
was precluded by this approach, we used a discrete
four-word processing window consisting of the fix-
ated word, the two words to the right and the word
to the left of the fixated word, i.e. an asymmet-
ric perceptual span. As a consequence, SWIFT-I
did not account for effects of word length, varia-
tions of within-word viewing positions, and oculo-
motor errors. Second, the model was implemented
using an English text corpus by Schilling, Rayner,
and Chumbley (1998) with a rather limited data ba-
sis (average fixation durations and fixation proba-
bilities for classes of word frequency). Taken to-
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Figure 23: Evolution of parameter values in the optimization procedure by the genetic algorithm. The
best value in each generation is indicated by the bold line, where errors are represented by the shaded
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somes.
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gether, a comparison of SWIFT-II and its predeces-
sor SWIFT-I is neither useful nor achievable in a
straightforward way.

To demonstrate the power of some of our
model’s principles, however, we perform an incre-
mental model comparison using two simplified ver-
sions of SWIFT-II. In Model A, we did not include
principles VI (error correction of mislocated fixa-
tions) and VII (saccade latency modulation), while
in Model B we only removed the saccade latency
modulation (Principle VII). Both model versions
A and B were fitted to experimental data by the
same techniques as SWIFT-II, described in Ap-
pendix A.38

Using the optimal sets of parameters for all
three models, we performed a separate run to gen-
erate data for an analysis of goodness-of-fit on
measures for fixation durations and fixation prob-
abilities (see Appendix A). Goodness-of-fit de-
creases (i.e.,∆T and∆P increase) in the reduced
Models A and B (Table 4). Generally, we expected
costs (in terms of a poorer fit), if we implemented
mechanisms for the explanation of IOVP effects,
which were not compatible with implicit pattern
in the experimental data. Since goodness-of-fit in-
creased both with respect to fixation durations,∆T ,
and with respect to fixation probabilities,∆P , the
additional Principles VI and VII are compatible
with experimental data.

Next, we investigated the performance of each
of the models on the IOVP effect qualitatively. To
determine the form of the curves for average fixa-
tion durations as a function of within-word fixation
positions, we estimated coefficients for a second-
order polynomial for a plot of IOVP effects for both
first and single fixation durations (e.g., Figure 15).
The resulting polynomial fits are plotted in Figure
24. While Model A fails to reproduce any of the in-
verted U-shaped curves, the additional mechanism

38Because the inverted optimal viewing position effect can-
not be explained by Models A and B, however, the deviation
measures for the IOVP effects of first and single fixation dura-
tion were not included in the parameter estimation procedure
(Appendix A, Eq. (27)).

of error correction of mislocated fixations (Prin-
ciple VI) in Model B can explain the inverted U-
shape in the IOVP effect for single fixation dura-
tions (Fig. 24a). Thus, these simulations illustrate
that the additional value of the latency modulation
(Principle VII) in the full model, SWIFT-II, is to re-
produce the IOVP effect for first fixation durations
(Fig. 24b).

In summary, our simulations of the SWIFT
model suggest that the inverted optimal viewing
position effect of single fixation durations is gen-
erated by a mechanism of error correction of mis-
located fixations (Principle VI), while for first fix-
ation durations it seems necessary to include a la-
tency modulation of saccade programming (Prin-
ciple VII) to reproduce the IOVP effect. These
findings can also explain the discrepancies between
experimental data and simulation results obtained
from a “toy” model (based on Principle VI) of the
IOVP effect discussed in a recent paper (Nuthmann
et al., in press).
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Table 4: Incremental test of model improvement.

Error statistic Model A Model B SWIFT-II
Fixation durations ∆T 5218 4457 4130
Fixation probabilities ∆P 2894 2291 1937
IOVP (first fixations) − − +
IOVP (single fixations) − + +

C. Dynamical analysis of SWIFT

The SWIFT model is a (stochastic) nonlinear dy-
namical system with time-delay, a class of mod-
els which can generate very rich behavior (Glass
& Mackey, 1988). While the complexity of behav-
ior generated by our model is qualitatively as rich
as the experimentally observed eye movements, the
mathematical analysis of model simulations pro-
vides new insight into the underlying principles of
eye-movement control. Our analysis is based on
concepts developed in the theory of dynamical sys-
tems (Guckenheimer & Holmes, 1983; Kaplan &
Glass, 1995; Strogatz, 1994).

The SWIFT model is based on the set ofNw

lexical activations{an(t)}, whereNw is the num-
ber of words in a given sentence. Thus, the dy-
namical behavior can be representated in anNw-
dimensional state space.39 Here, we show that the
dynamical behavior can actually be approximated
by a simpler system in two dimensions during each
fixation. Analyses of this type may prove very use-
ful for comparing computational models of eye-
movement control in reading with respect to under-
lying model complexity.

The two main sources ofstochasticity are re-
lated to saccade timing and saccade target selec-
tion, since the temporal control of fixation dura-
tion is performed by an autonomous saccade gen-
erator, which produces stochastic intervals, and the
spatial control of fixation position is performed by
a stochastic target selection mechanism, Eq. (10),

39For the representation of a dynamical system, we use the
more rigorous concept of thephase space as described below.

(and additional oculomotor noise). During fixa-
tions, the temporal evolution of the set of acti-
vations, Eq. (7), is a system of ordinary differ-
ential equations, which will generatedeterminis-
tic behavior, although this system is perturbed by
noise, since word processing is implemented as a
random-walk. Because SWIFT combines proper-
ties of stochastic and deterministic dynamical sys-
tems, we investigate the degree of determinism of
the dynamics.

In the first step of our analysis, we compare sev-
eral runs of the model in the same plot of the set of
activations{an(t)} over timet (Figure 25). While
the time evolutions of activations are rather similar
across runs for the first words of the sentence, the
plot indicates that there is a fast divergence of the
trajectories between different model runs towards
the end of the sentence. Thus, we cannot directly
compute the variance of trajectories from a simple
plot of activations over time.

One solution to this problem is to trace the time-
evolution of deterministic dynamical systems in a
vector space, called thephase space. The phase
space is important for uniquely defining the dy-
namical state of the model, which permits (short-
term) predictions of its future temporal evolution.
In SWIFT, the change of activation during fixation
can be visualized in a vector space with as many
dimensions as there are words in a given sentence,
i.e. the phase space isNw-dimensional. During fix-
ation of wordn, however, the activations for most of
the words is close to zero (see Figure 25). This is
reflected by the observation that the most frequent
saccades are (one-word) forward saccades (54%),
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Figure 24: Average IOVP curves in different model versions. (a) Results for single fixation durations.
The IOVP effect is generated by SWIFT and Model B (without latency modulation), while Model A
(without error correction of mislocated fixations) cannot reproduce the inverted form of the curve. (b)
Results for first fixation durations. The inverted form of the fixation duration as a function of within-
word fixation position is reproduced by SWIFT, while the reduced Models A and B fail to explain the
IOVP effect.

word skippings (two-words forward,19%) and re-
fixations (16%). Thus, activationsan(t), an+1(t)
and an+2(t) capture the dynamics in89% of all
saccades. Therefore, we introduce thelocally re-
duced phase space for fixation on wordn as the vec-
tor space(an(t), an+1(t), an+2(t)).

A further reduction of the dimension of the
locally reduced phase space is obtained by the
mapping from activations{an(t)} to probabilities
{πn(t)}, Eq. (10). The fact that saccades target-
ing words n, n + 1, and n + 2 represent89%
of all saccades is reflected by the observation that
πn(t)+πn+1(t)+πn+2(t) ≈ 1 for all t. As a conse-
quence, we can eliminateπn(t) as dynamical vari-
able, i.e. the dimension is further reduced by one.
Therefore, we use the two-dimensional locally re-
duced phase spacePn = (πn+1(t), πn+2(t)) (dur-
ing fixation of wordn) for the analysis of SWIFT
(Figure 26a). For each run of the model we ob-
tain a trajectory in phase space. Sinceπn+1(t) +
πn+2(t) ≤ 1 for all t, trajectories are bounded to

the left triangle of the panels. A glance at the plot
in Figure 26a shows that the trajectories are rather
erratic.

To extract thephase flow generated by the
SWIFT model, we compute average directional
vectors from many runs of the model in a coarse-
grained version of the locally reduced phase space
P (Kaplan & Glass, 1992).40 The phase spaceP
is coarse-grained into a 20×20 grid. Each passk
of a trajectory through boxj generates a vector of
unit length, called the trajectory vector~vkj . After
simulation of 200 trajectories, we calculate the re-
sultant vector from the vector addition of all passes
through the box,

~Vj =
1
nj

nj∑
k=1

~vkj , (28)

wherenj is the number of passes through boxj.

40This method was originally proposed for the analysis of
experimental data.
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Figure 25: Temporal evolution of activations{an(t)} for N = 20 runs of the SWIFT model using sen-
tence 17 of the Potsdam Sentence Corpus. The temporal evolution of the model induces a fast separation
of activations between different runs.

The result is a coarse-grained estimate of the vector
field of the model (Figure 26b).

To describe the time evolution qualitatively, we
use the illustration in Figure 27. Trajectories enter
the plane, when fixation on wordn starts, i.e.an(t)
dominates the set of activations. Therefore, tra-
jectories start with small valuesπn+1 > πn+2,
since wordn+1 typically received more preview
than wordn+2. Because lexical processing rate will
be higher for wordn+1 than for wordn+2, the tra-
jectory will show a slope< 1 initially. When-
ever pointF is reached, a forward saccade will
occur with probability one, sinceπn+1 = 1 and
πn+2 = 0. Alternatively, the skipping pointS
can be reached by the trajectory, which results in
a skipping, becauseπn+1 = 0 and πn+2 = 1.
For infinitely long fixation durations on wordn,

both wordn+1 and wordn+2 will be completely pro-
cessed, i.e. the origin of the plane isglobally ab-
sorbing.

The qualitative analysis demonstrates that the
time-evolution of the set of lexical activations
shows clear properties of a deterministic dynami-
cal system. This is a qualitative difference to SAS
models, which are based on stochastic transition
rules for a finite number of internal states (Reichle
et al., 1998; Engbert & Kliegl, 2001). Furthermore,
the dynamics are low-dimensional and can be de-
scribed by the two variablesπn+1 andπn+2. The
Nw-dimensional phase space collapses onto a two-
dimensional subspace, where the dynamical behav-
ior of the model unfolds. Thus, while the SWIFT
model can potentially generate high-dimensional
behavior, i.e. parallel processing of many words,
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Figure 26: Visualization of SWIFT’s temporal evolution in reduced phase space. (a) Plot of probabilities
πn+2(t) versusπn+1(t) during fixation of wordn for 20 runs of the model. (b) Phase flow estimated by
average directional vectors in a coarse-grained version of the locally reduced phase spaceP from 200
runs.
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Figure 28: Results on gaze duration and traditionally defined first fixation duration. (a) Fixation duration
as a function of word frequency class. (b) Fixation duration as a function of word length.
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Figure 27: Schematic illustration of the phase flow
in locally reduced phase spaceP during fixation of
wordn.

the dynamical behavior is low-dimensional with
typically three words activated at a time.

D. Results on gaze duration

An important measure of eye-movement behavior
during reading is gaze duration, which is defined
as the sum of the duration of the first fixation and
the durations of all direct refixations. We argued
that gaze duration might be not a good measure of
fixation duration for model fitting, because it repre-
sents a processing measure from a variety of differ-
ent eye trajectories. For the same reason, we used
an alternative definition of first fixation duration,
i.e. first fixation duration is the average of the dura-
tions of all first fixations, which are followed by at
least a second fixations. This definition explicitly
excludes cases of single fixations.

To complement the simulation results, however,
we present the results on gaze duration and on the
traditional measure of first fixation duration (in-
cluding single fixations) in Figure 28.

Finally, we would like to note that there is no
single measure of fixation duration which give a
comprehensive characterization of processing time.
This fact is adequately reflected in Rayner’s (1998,
p. 377) statement: “It thus appears that any single
measure ofprocessing time per word is a pale re-
flection of the reality of cognitive processing.”
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