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Mathematical models have become an important tool for understanding the control of eye movements
during reading. Main goals of the development of the SWIFT model (Engbert, Longtin, & Kliegl, 2002)
were to investigate the possibility of spatially distributed processing and to implement a general mecha-
nism for all types of eye movements we observe in reading experiments. Here, we present an advanced
version of SWIFT which integrates properties of the oculomotor system and effects of word recognition
to explain many of the experimental phenomena faced in reading research. We propose new procedures
for the estimation of model parameters and for the test of the model’'s performance. A mathematical
analysis of the dynamics of the SWIFT model is presented. Finally, within this framework, we present
an analysis of the transition from parallel to serial processing.
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In modern society, reading is a central skilhn refixation behavior). In perspective, computa-
which demonstrates how efficiently a range of difional models can be approximated with analyti-
ferent cognitive processes (e.g., visual informati@al means to check the numerically obtained results
processing, word recognition, attention, oculomand to derive the foundations of a rigorous theory
tor control) can work together in order to performf eye-movement control during reading (e.g., En-
a complex everyday task. Consequently, a full agbert & Kliegl, 2003a).
count of how we read is among the crucial prob- The main goal of this article is to propose a
lems of cognitive research. Here, we focus on theathematical model for the control of eye move-
fact that eye movements in reading represent mments during reading, which is both psychologi-
important example for a coupled cognitive-motarally and neurophysiologically plausible and ac-
system. Therefore, a detailed analysis of the inteeunts for most of the known experimental find-
face between high-level cognition (word recognings. The model presented here is an advanced
tion) and eye-movement control (saccade geneaad substantially extended version of the SWHFT
tion) is essential to contribute to our knowledge ohodel proposed earlier (Engbert, Longtin, &
reading. Kliegl, 2002). The model is motivated by many dif-

The measurement, analysis and modeling of efgzent experimental results, which we will discuss
movements is one of the most powerful approachiesdetail. The model incorporates neurophysiolog-
to study the way visual information is (1) processedal properties of the oculomotor system. Further-
by the human mind and is (2) used to guide our amore, the SWIFT model is compatible with a gen-
tions (Findlay & Gilchrist, 2003). Measurementeral framework of the generation of saccades de-
of fixation durations on words or on regions of texteloped by Findlay and Walker (1999) and shares
are central for investigating cognitive processesncepts with the dynamic field theory of move-
underlying reading (Rayner, 1998; Liversedge &ent preparation by Erlhagen and 8okr (2002).
Findlay, 2000). Therefore, it is of central imporAs our cognitive systems have never been under
tance to develop a detailed understanding of h@wolutionary pressure to optimize reading abilities,
the experimental observables are related to the uB- there has been no special adaptation of humans
derlying cognitive systems. for reading, plausible models of eye movements in

Over the last decades, there has been a consaiding must have potential for generalization to
erable increase of knowledge about eye movemetatisk manipulations (e.g., reading with a scotoma)
and visual information processing (e.g., Raynemd non-reading tasks (e.g., visual search). We will
1998; Radach, Kennedy, & Rayner, 2004;dd§, discuss the aspect of generalizability later in this
Radach, & Deubel, 2003). The question of hoarticle.
the contributing cognitive subsystems for a specific The model which we develop here is a minimal
task like reading are coordinated is a research probedel, which is related to two aspects of model de-
lem representative for questions which we belieggn. First, the model is based on only a few core
cannot be investigated without fully quantitativerinciples. This is a challenging problem, because
mathematical models. While it is still possible teven when reading relatively simple sentences, pat-
investigate aspects of eye-movement control (e.getns of eye movements turn out to be very com-
word skipping or programming of refixations) irplex. As an example, we observe several different
a non-mathematical way, a fully quantitative apypes of saccades including word skipping (no fix-
proach, in which most of the experimental phenoration on the skipped word), refixations (more than
ena are integrated, is necessary to test the interac-
tion of_different theoretical a_ssumptions (e.g., _the L(Autonomous) Saccade-generatiohVith Inhibition by
potential impact of a mechanism for word skippingovealTargets.
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one fixation on the same word) and even inter-wo(g8002), we use the concept of an activation field al-
regressions (backward saccades landing on a pesdy developed in the first version of the SWIFT
viously fixated region of text). The formulatiormodel (Engbertet al., 2002). It is important to
of separate assumptions for these different typeste, however, that the assumption of an activa-
of eye movements would violate the principle dion field already has strong implications. A the-
minimal modeling. Therefore, we aim at a gerery built around the core assumption of a dynami-
eral mechanism underlying all types of saccadeslly changing activation field necessarily involves
— the fundamental principle of our model. Secspatially-distributed processing. In reading, words
ond, the core assumptions of our model are ideake the elementary targets for the saccadic system.
izations, which will be formulated mathematicallyfo build up an activation field, several words must
in a parsimonious way, i.e. with as few parametelog activated in parallel. This parallel processing,
as possible. Minimal modeling is also related teowever, is not necessarily related to word recog-
generalizability, because, with an increasing numition, but could be limited to early stages of word
ber of assumptions specific to reading, the modmocessing. We will discuss this important aspect
would be more and more inflexible to explain eyef our model later and derive different types of par-
movements in different tasks. How we control eyalel processing of words.
movements in visual search should be in agreementThe first version of our model of eye movement
with the main control principles guiding the eyesontrol in reading (Engbertet al., 2002) was de-
during reading. veloped as a viable alternative to the models based
A theoretical framework for the dynamics obn sequential shifts of attention, a principle which
movement preparation with a very general claimotivated the development of the currently most
is the dynamic field theory (Erlhagen & Sifer, advanced model called E-Z Reader (Reichle, Pol-
2002). In this theory, a field of activation — thdatsek, Fisher, & Rayner, 1998; Reichle, Rayner,
mathematical term for a function of spamedtime & Pollatsek, 1999; Reichle, Rayner, & Pollatsek,
— is spatially distributed over a number of po2003; see also Engbert & Kliegl, 2001). Due to the
tential movement targets. Using concepts frosuccess of the E-Z Reader model, which is based
the theory of nonlinear dynamical systems, lavam strictly sequential processing, some researchers
governing the temporal evolution of such activapeculated that an alternative model based on paral-
tion fields are proposed by the dynamic field théel processing of words could not perform similarly
ory. In the dynamic field theory there is continuousell. For example, Starr and Rayner (2001, p. 162)
crosstalk between different cognitive subsysternsncluded that
(e.g., memory system, perceptual input, movement
planning). This continuous interaction of cognition
and motor control makes the theory highly relevant
to eye-movement control during reading, since the
selection of words as saccade targets must be per-
formed on the basis of partial knowledge, because
saccade latency requires an early start of the next
saccade program during fixation. Thus, a tempo-
rally continuous interaction between processes @fom this perspective, the development of the first
word recognition and saccade generation is esseersion SWIFT-l was important in order to keep the
tial in a plausible model of eye-movement contret—; - , _ ,
. . . . We will refer to the first version as SWIFT-I. For direct
during reading. While we will not refer to the ex-

- ) comparisons the current version of our model will be labeled
plicit formalism proposed by Erlhagen and 8der as swiFT-I1.

. such a model seems rather compli-
cated and would be difficult to implement

in a computational model. Thus, a chal-
lenge for proponents of a parallel mecha-
nism of attention during reading is to de-

lineate the parameters of such a frame-
work.”
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scientific debate open and to demonstrate a viabdproduce some of the basic patterns of eye move-
alternative to E-Z Reader and/or the principle of sarents. For example, Reilly and O’Regan (1998)
guential attention shifts. assumed that the eye is directed to the longest
Once we have developed a mathematical moaedrd in the area of about 20 characters to the right
based on parallel processing of words, we can iof fixation and that oculomotor errors (e.g., over-
vestigate the problem of serial versus parallel prehoot or undershoot of the center of a target word)
cessing by computational means. We will sholead to properties of within-word corrections nec-
later in this article that it is possible to introducessary for word recognition (see also O'Regan &
a continuous spectrum from strictly serial to fulli.évy-Schoen, 1987; O’Regan, 1990, 1992). Mc-
parallel models by a parametrization of the type @onkie, Kerr, and Dyre (1994) developed a two-
processing. Thus, we will show how a computatate model, which provided a good account of
tional model might contribute to this long-standingithin-word landing positions (McConkie, Kerr,
research problem. In perspective, we hope to stiReddix, & Zola, 1988). It is important to note that
ulate new experimental and theoretical work meffects of lexical processing on eye-movement con-
tivated by the results obtained from the SWIFT-trol are not completely excluded in POC, however,
model. it is assumed that these higher-level influences only
Before we present our model and its mathematirodulate a control strategy that is primarily based
cal analysis, we briefly review three theoretical apn low-level visual information.
proaches to the control of eye movements in read- To give new insights into the debate about cog-
ing, formulate the goals for our modeling approagtitive versus POC models, it is necessary to de-
and present the core theoretical assumptions agetop a detailed model of eye-movement control,
basis for the SWIFT-1l model. which integrates experimentally observed phenom-
ena from both approaches. As an example, such a
model should reproduce effects of word difficulty
(e.g., measured by printed word frequency) as well
During reading, saccadic eye movements are n@g-oculomotor effects (e.g., systematic errors in ini-
essary to move words to the center of the visu#l landing positions).
field, i.e. the fovea, where high visual acuity en- Following the terminology we proposed earlier
ables efficient word recognition. Thus, readingpe€ Engberét al., 2002), cognitive models may be
may be looked upon as a case studyagtive vi- further divided into sub-classes according to their
sion (Findlay & Gilchrist, 2003), the notion thatPrinciples of allocation of visual attention. Two im-
eye movements are essential for almost all visu#@rtant concepts are control bgquential attention
perception. shifts(SAS) andguidance by attentional gradients
Given the complexity of eye movement patterf{§&AG).
and the considerable amount of variance in fixa- SAS models are generally based on Morrison’s
tion durations, it is unclear whether eye movemer{ft984) proposal that covert shifts of attention are
are directly guided by high-level language pra@enerically performed during fixation. Based on
cesses. With respect to model categorization, Wese attentional shifts, saccadic eye movements
are interested in the problem of whettwagnitive are prepared (Kowler, Anderson, Dosher, & Blaser,
models mainly driven by |anguage-re|ated pr0p1995; Deubel & Schneider, 1996; Kustov & Robin-
erties of words (e.g., word recognition), are mo&9n, 1996). At the same time, parafoveal informa-
adequate thaprimary oculomotor contro(POC) tion is used to start word recognition. The mecha-
models. Models which fall into the latter categorfiism of SAS provided a straightforward account of
exploit low-level information (e.g., word length) taselective skipping of short high-frequency words.

Models of eye-movement control in reading
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The E-Z Reader model (Reichlg al., 1998) processing. Processing difficulty, however, can in-
represents the most advanced attempt to buildhilit the oculomotor system from initiating a sac-
theory of eye-movement control based on SA8ade program.

The development of this model was motivated by In SWIFT-I (Engbert, Longtin, & Kliegl, 2002),
two important findings incompatible with Morri-we proposed that four words are processed in paral-
son’s model. Firstpreview benefit, the shortening lel. Processing rate is highest for the foveal word,
of processing time on subsequent words originatecreases to the parafoveal words to the left and
ing from time spent on the foveal word, is modto the right of the fixated word, and there is still
ulated by foveal processing load (Henderson €ome parafoveal processing on the second word to
Ferreira, 1990; Kennison & Clifton, 1995). Secthe right. While this assumption was rather simpli-
ond, one often observes “spillover” effects due fed without word lengths taken into account, this
word frequency (Rayner & Duffy, 1986), i.e. lowermodel turned out as a viable alternative to models
frequency words induce longer fixation durationsased on the SAS principle. To extend the range of
not only locally, but also lengthen the fixation duphenomena explained by SWIFT-1I and to investi-
ration on the succeeding word. Recent further dgate the question of serial versus parallel process-
velopments of E-Z Reader include landing site disig of words, we develop an advanced version of
tributions (Reichle, Rayner, & Pollatsek, 1999) arWIFT in this article. Before we start to explain
improved refixation behavior (Reichle, Rayner, &e core principles of our new model, it is neces-
Pollatsek, 2003), thus extending the model to reary to clarify the goals of our attempt to model the
produce effects generated by oculomotor contrabntrol of eye movements during reading.
principles in addition to effects of lexical process-

ing. The interface between cognition and eye-

movement control in E-Z Reader was re-evaluatModeyng goals

recently (Pollatsek, Reichle, & Rayner, 2005). In

a variant of an SAS model, Engbert and Kliegihe reduction of a real-world problem to a num-
(2001) showed that it is possible to relax the strofgr of simple rules is among the key principles of
assumption of lexically driven saccade prograriathematical modeling. The level of detail may
ming. Therefore, the SAS framework is compatiary across model components. As noted in a re-
ble with the assumption of autonomously generaté@nt viewpoint article by May (2004, p. 793) an
saccades, i.e. saccades, which are not induced ®paroach which includes as many as possible ex-
lexical control loop. perimentally observed details represents an abuse

In models based on attentional gradiened mathematical modeling, because many of the
(GAG), there is a continuous distribution of lexiknown details of a problem may turn out to be ir-
cal processing rate over the fixated region of texglevant to the model, while some important ingre-
Legge, Klitz, and Tjan (1997) proposed a gradierfients might be missing:
type model with a saccade-targeting mechanism
that minimizes the uncertainty about the current “Perhaps most common among abuses,
word, called the ideal-observer model of reading and not always easy to recognize, are sit-

(see also Legge, Hooven, Klitz, Mansfield, & Tjan,  uations where mathematical models are
2002). Another recent primary oculomotor model  constructed with an excruciating abun-
was suggested by Yang and McConkie (2001, dance of detail in some aspects, whilst
2004). The key assumption of their competition-  other important facets of the problem are
interaction theory is that the temporal aspect of sac- misty or a vital parameter is uncertain to

cade planning is basically independent of lexical within, at best, an order of magnitude.”
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As stated above, the main objective in our modsed in computing the next saccade length (e.g.,
eling approach is the interface of visual processi@Regan, 1979; Rayner, 1979; Morris, Rayner &
of words and eye-movement control. In mathemaollatsek, 1990). From these considerations, word
ical models developed over the last years, it turnégquency, word predictability and word lengths
out that the control of eye movements in readingill serve as independent variables for the analysis
can be captured by a theoretical model without inf dependent measures discussed in this section.
tegrating an advanced model of language process-Among the quantitative measures for the control
ing (see Reichle, Rayner, & Pollatsek, 2003). Mosf eye movements in reading are temporal variables
of the variance in eye-movement patterns and maffixation durations), spatial variables (probabili-
of the experimental phenomena can be explaingeks for different types of saccades) and a number
by models on the basis of rather simplified rulef experimentally observed effects, which mainly
for word recognition and mechanisms for saccadepresent conditional variables, i.e. more compli-
programming. Thus, while language comprehecated combinations of spatial and temporal mea-
sion is the function of reading, many higher-levaures such as fixation durations conditional on the
linguistic processes essential to language compfi@ation location within a word.
hension typically have a rather small impact on Fixation durations Inspection times are cen-
the details of eye-movement control during reattal for evaluating visual information processing in
ing. To make our modeling approach more transeading. An important measure for word difficulty
parent, we briefly discuss the experimentally ols gaze duration (e.g., Rayner, 1998), i.e. the sum
served phenomena which we attempt to reproduafethe first fixation and all immediate refixation
with our model and how to evaluate the model@urations. Because of the large number of ways,
performance. in which fixations sum up to gaze duration, gaze
duration is an average measure over many differ-
ent patterns of fixations such as whether two suc-
cessive fixations in a word occur in a forward or
The performance of computational models can b@ckward sequence. For a more detailed look into
evaluated by quantitative and qualitative measurée model's dynamics, we aim at a representation
Eye movement patterns clearly depend on prop@f-the experimental data by non-overlapping mea-
ties of lexical difficulty, which is most commonlysures® Therefore, we separately calculatimgle
characterized by printed word frequency and wofgation durationfor all cases in which words re-
predictability, i.e. the probability of guessing &eive one fixation. For the evaluation of refixations,
word from the sequence of previous words d&fe usefirst fixation duratioft andsecond fixation
the sentence (e.g., Kliegl, Grabner, Rolfs, & Efluration These measures are limited to first-pass
gbert, 2004; see Rayner, 1998, for a reviewgading, i.e. fixations after regressions to previous
While printed word frequency can be computedords do not contribute — irrespective of whether
from large text corpora and independent of contefis word had been skipped or fixated initially. Fi-
word predictability incorporates many aspects offlly, we calculateotal reading time the sum of
reader’'s knowledge of language, depends strongly
on context, and must therefore be estimated from3nevertheless, we will use gaze duration as a derived mea-
experiments, obtained from incremental readirsgre in Appendix D.
tasks, for each word of a given sentence. An im- *In the following, we compute first fixation durations as an

. . . verage of all cases with a second (or more) fixations, i.e. ex-
portant physical word parameter influencing ey%luding single-fixation cases. Traditionally, however, first

movement control is word length. For exampl@yation durations include single-fixation cases (e.g., Rayner,
word-length information acquired parafoveally i$998).

Quantitative measures for goodness-of-fit
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all fixations regardless of the eye’s trajectory whiadlandom errors, which occur in all motor systems,
generates these fixatiops. we observe a systematic component (McCorekie
Fixation probabilities The four measuresal., 1988). As a consequence, {hreferred viewing
of fixation durations are complemented by foubcation (Rayner, 1979) is a point left of the center
measures of fixation probabilities. The fixatiomf a word.
probability measures characterize the spatial as-Effect of inverted optimal viewing position of
pect of eye-movement patterns. Based on fir§ikation durations (IOVPR) As visual acuity de-
pass reading, we calculatkipping probabilitythe creases from the maximum in the center of the
probability for two fixationsand theprobability for visual field (the fovea) to the parafovea and pe-
three or more fixation§ Since our model inher-riphery, word recognition is fastest when fixating
ently produces inter-word regressions, we also cah isolated word in the center (O’Reganéuy-
culate theregression probabilityr, more precisely, Schoen, Pynte, & Brugaillere, 1984; O’'Regan &
the probability that a word is the target of an intetzévy-Schoen, 1987; O’Regan & Jacobs, 1992).
word regression. Contrary to this finding in isolated word recogni-
Effects of word length versus word frequenction, Vitu, McConkie, Kerr and O’Regan (2001;
Means of the above eight measures of fixation dsee also Nuthmann, Engbert, & Kliegl, in press)
rations and fixation probabilities broken down byeported for continuous reading that first and sin-
logarithmic word-frequency classes have achievgtk fixation durations are longer for fixation posi-
the status of benchmark data for the first cohdions in the word center than for fixation positions
of computational models of eye-movement contrakar word boundaries. Without further theoretical
in reading (e.g., Reichlet al., 1998; Engbert & specification, this effect is opposite to predictions
Kliegl, 2001; Engbertt al., 2002). These summaryof cognitive models, which assume word recogni-
statistics proved also useful for estimating modgbn to be fastest (rather than slowest) near word
parameters. As effects of word length and woknters.
frequency are potentially variables of equal impor- In addition to the well-established phenomena
tance, however, we will compute model fits on th@escribed above, we will also investigate model
basis of individual words in this article. Thus, eacberformance in relation to recent, still somewhat
word contributes a “data point” to the dependerbntroversial issues, because one major motivation
variables. This opens the possibility for a detailddr building mathematical models is to generate
inspection of the model’'s performance on singfaedictions for future research directions.
sentences. Furthermore, by averaging over classeg-ixation duration before word skippingFixa-
of word length and frequency, we can easily detdion durations before skipped words provide a fin-
mine effects of word length and frequency based gerprint for sequential allocation of attention, pos-
the summary statistics of the earlier studies. tulated in SAS models. The assumption that the
Within-word landing positions An important default target of an automatically started saccade
impact of the oculomotor system on reading behgwrogram is the next word implies that word skip-
ior arises from oculomotor errors. In addition tping involves the cancelation of this saccade pro-
5This category is necessary to collect all possible fixatio%ram and a restart of a new saccade program to the
sequences in a “rest’ category. word beyond the next one. Such saccade cance-
®By definition, the probability for a single fixation can bdation increases fixation durations before skipped
calculated by one minus the sum of the probability for skigvords, i.e. it leads to skipping costs. In a recently
ping and the prolbabilities.for two and three pr morg ﬁxationf)ublished analysis, this theoretical prediction was
In the following, we will use the expressieegression for . . .
Jiot consistently supported with experimental data

inter-word regressions exclusively, while refixations orient - . .
to the left will be calledregressive refixations. from continuous reading (Kliegl & Engbert, 2005).
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Therefore, we will investigate fixation durationsery general model for the generation of saccades
before word skipping as a model test. has been proposed by Findlay and Walker (1999);
Lag and successor effectg-ixation durations this model is built on the assumption of two sep-
on a given word depend not only on the lengthyate pathways concerned with the spatial and the
frequency and predictability of the fixated wordemporal programming of eye movements. From
but also on these properties of the previous (i.éhjs perspective, reading might be looked upon as
lag) and the next (i.e., successor) words (Klie@, case study for the control of eye movements in
Nuthmann, & Engbert, 2005). Indeed, lag ef well-structured environment. Therefore, we re-
fects are of similar strength to the effects of fixguire that modeling assumptions should be special
ated word properties, inducing a longer average fizases of the general principles proposed by Findlay
ation duration on words following low-frequencyand Walker.
low-predictable, or long words. One of sev- Closely related to this point is model generaliz-
eral possible interpretations of this phenomenaibility. In reading, eye movements are effectively
is that processing time spills over from wqrd one-dimensional along the horizontal axis (except
to word, (e.g., Rayner & Duffy, 1986). Analo-for return sweeps to the next line of text). Here
gously, we can study successor effects of wierd we can ask whether and how the model’s control
on fixation durations of worgd a subset of which principles can be extended to two-dimensional tra-
are called parafoveal-on-foveal effects (Kennedgctories, e.g. in visual search. Ideally, a model for
2000a, 2000b; Kennedy & Pynte, 2004). Meché#he control of eye movements in reading should be
nisms that reproduce these experimental obserganeralizable to and theoretically enrich the analy-
tions might lead to qualitative differences betweesis of eye movements in visual search.
different models.

Core concepts of our model

Qualitative aspects of model fitting . .
Before we present the detailed mathematical for-

Several of the dependent variables mentionatilation, we summarize the core principles of the
above represent qualitative measures of model p8W/IFT-11 model in brief statements (Table 1). The
formance. For example, models may differ in (grinciples will be elaborated and discussed in detalil
whether or not they account for regressions, (ln)the next section.
whether or not they reproduce the IOVP effect, Spatially distributed processing of an activa-
(c) whether or not they exhibit costs for (or berton field (Principle ). In our dynamic-field ap-
efits from) word skipping, and (d) whether or ngtroach (e.g., Erlhagen & Soher, 2002), all types
they reproduce patterns of lag and successor efsaccades are generated inherently to the model,
fects. Such qualitative aspects of model fitting asince target selection is due to a competition among
very important to test whether a model's mechavords with different activations. The parallel build-
nism for reproducing an experimentally observag of activations over several words implies that
effect is correct, whether it is the only possible eyprocessing is distributed across several words at a
planation, and whether it is possible to develop dlme.
ternative mechanisms. Separate pathways for saccade timing and sac-
Given the substantial amount of knowledgeade target selection (Principle 1l). Motivated by
about the neural foundation of saccade generatioeurophysiological findings, temporal and spatial
the neurophysiological plausibility of models o&spects of saccade generation are controlled on dif-
eye movement control is a further qualitative crferent pathways (Findlay & Walker, 1999). There-
terion for the evaluation of theoretical models. Aore, the problems of when to start the next saccade
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Table 1: Core principles of the SWIFT model.

| Spatially distributed processing of an activation field.

Il Separate pathways for saccade timing and saccade target selection.
Il Random saccade generation with time-delayed foveal inhibition.

IV Two-stage saccade programming with labile and non-labile stages.
V  Systematic and random errors in saccade lengths.

VI  Error correction of mislocated fixations.
VIl Modulation of saccade latency by saccade length.

program and where to go next, are decoupled. are observed. Misguided saccades may also lead to
Autonomous saccade generation with time- fixations on unintended words (mislocated fixation,
delayed foveal inhibition (Principle Ill). Saccade see below).
programs are generated autonomously, so that fix- Error correction of mislocated fixations (Princi-
ation durations are basically realizations of a rapte VI). Experimental data suggest and our simula-
dom variable. This stochastic process is modulatéoins show that saccades frequently land on unin-
by a foveal inhibition process to extend the inspetended words, which leads to mislocated fixations
tion times for difficult words. Since this inhibitory(Nuthmannet al., in press; see also Rayner, War-
process is based on a slower word recognition cien, Juhasz & Liversedge, 2004). In this case, we
cuit (compared to the short brainstem saccade gassume that a new saccade program starts immedi-
erator, e.g. Carpenter, 2000), the inhibitory proceately, i.e. the autonomous timer is overruled. The
includes a time-delay. target of this saccade will be determined at the end
Two-stage saccade programming with labile of the labile saccade stage according to the general
and non-Ilabile levels (Principle 1V). Programming rule (Principle 1V). This error-correcting mecha-
of saccades is a two-stage process, motivatedrigm can explain the IOVP effect on fixation du-
results from the double-step paradigm (Becker &tions.
Jurgens, 1979). During the labile stage, the oculo- Modulation of saccade latency by intended sac-
motor system is prepared for the next saccade peade amplitude (Principle VII). As a final princi-
gram. A new initiation of a saccade program duple, we assume that saccade latency is modulated
ing the labile stage leads to a cancelation of the fitst the amplitude of the intended saccade. Since in
saccade program and starts a new saccade progi@m.model saccade target selection is performed at
At the end of the labile stage, the target is selectdte end of the labile stage of the saccade program,
from the field of activations, a point-of-no-return ise. the intended saccade amplitude is computed at
passed, and the saccade can no longer be cancelerlend of the labile stage, only the non-labile stage
Systematic and random errors in saccade can be influenced by the intended saccade ampli-
lengths (Principle V). The oculomotor system intude. We will show that this principle, which is mo-
herently produces saccadic errors, which can be tieated by basic oculomotor research (e.g., Wyman
composed into systematic and random componeé&tS$teinman, 1973), contributes to the explanation
(McConkieet al,, 1988). As a consequence, in adsf the IOVP effect in fixation durations.
dition to random variability in fixation positions, Given the core principles, there is no unigue
systematic shifts in within-word landing positiorway for a translation into mathematics, of course.
distributions as a function of launch-site distancCenherefore, we will discuss the specific choice of
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mathematical equations in the next section. Onitdnerently exhibits historicity, i.e. a strong depen-
formulated mathematically, we can implement thdence on the previous sequence of fixations. His-
model on a computer to generate artificial dattmricity is a key property of nonlinear dynamical
which can be analyzed using the same algorithmgstems. Formulated from a general mathemati-
as applied for the analysis of experimental dateal viewpoint, nonlinearity of the underlying equa-
Moreover, semi-analytical techniques may add tions in SWIFT adds a new source of complexity in
our understanding of the control principles undeeye movements to the stochastic origins in previous
lying eye movements in reading (e.g., Engbert &odels (Engbert, Kliegl, & Longtin, 2004).

Kliegl, 2003a).

Word difficulty

Mathematical formulation of the modgle assumption of an activation field still leaves

. o open how lexical difficulty of words is represented.
Dynamic field of activations Here we assume that the maximum activatign
of word, is related to the word’s processing diffi-

Our model is a cognitive model with word recog- v, O h o thi blem is based
nition driving eye movements. In SWIFT, a one2!'ty: Our approach to this problem Is based on a

dimensional field of activation§a,,(¢)} for words proposal by Reichle_:t al. (1998) that word diffi- )
n = 1.2.3. .. N, at time ¢ functions as aculty depends on printed word frequency (per mil-

saliency map, from which potential saccade targéi&n words) and predictability. Previous theoretical
are computed (Principle I). It is no limitation of th

emodels were based on a multiplicative interaction
formalism that the number of wordal,,, in a given of word frequency and predictab_ility (Reichdeal.,
sentence is unknown when reading the first woragg& 1999, 2003; Engbert & Kliegl, 2001, 2003b;

of the sentence, since the number of words could %@gbertet al., 2002, 2004).

specified later in the reading process. Furthermore,Recently’ Rayn_er, Ashby, Pollaj[sek, and Re-
it will turn out that word with indexj > n + 4 ichle (2004) published an experimental study

typically has close to zero activation during ﬁxagemonsctiraftmg that f'(;(j‘_t'_on duragpns_onlyfmlldhc/i
tion on word,. Thus, there is a limited “horizon” eparted from an additive combination of wor

of saccade targets constrained by target seIectiB%quenCy and predictability: - Predictability .ef-
probabilities at any timé. tects were larger for low-frequency than for high-

The activation field{a,(¢)} changes over timef_requen(_:y WS_?S' Addrqonal nfurEerlcal smuéa—
due to word recognition. Activation is built up inons lu_S":jg ' grehnt Var'anJZ_Q the EIZ I?ea Zr
a preprocessing stage and decreases during a ﬁ'{gge Indicated t a_t an a |'t|ve modet ot wor
lexical completion process. The relative amouﬂfquency a”‘?' preo_hctablllty fitted better than the
of activation will determine the probability that fre\éfus mlljltlpllcatlve orr:e. r‘l]'hus, R_?ynetrai;s .
word is selected as a saccade target. Itis import&% ) ) resu ts suggest that the specific m-at ef‘?a“'
to note the dynamical nature of the interplay &2 interaction of word frequency and predictability

tween lexical processing and eye-movement cdp.2dditive (or a mixture of additive and multiplica-

trol. Fixation position has a strong impact on worti€) "ather than strictly multiplicative.

recognition time, which determines the temporal Here, we propose an alternative view on the in-

evolution of the activation field. Since the actit—er"’lctIon of word frequency and predictability. The

vation field determines saccade targets, our mo&grnbination of yvord frequencﬂn ._and predictabi!—
ity p, of word, in a single equation for word dif-

8Note that this horizon is the results of the model’s dynarhiCUlty might be problematic because of the tem-
ics, not an ad-hoc choice in building the model. poral characteristics inherent in the two variables.
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While word frequency information unfolds duringhumber of all characters, spaces and punctuations
the word recognition process, word predictabilityf the sentencé Motivated by the well-known bias

is by definition independent of visual input. Thu)f processing in the direction of reading, fixations
we suggest different processes of how the two vaoin the spaces between words are counted as fixa-
ables generate certain modulations of processtimns on the words to the right of the spaces. The
times. First, we assume that word difficulty — agrocessing rate of words a function of processing

a variable in our model — can be estimated fronates of all letterg = 1, 2, 3, ..., M,,, whereM,,

word frequency alone, i.e. is the number of letters of woyd We assume that
processing speed is mainly limited by visual acuity,
L, =a <1 e log f”> ’ (1) Wwhich is a function of the distance from the center
F of the visual field, i.e. the fovea. The distance of

wherea is the intercept value of the lexical acced§t€rJ Of word, from the current fixation position
time, which is modulated by the (natural) logarithrt§ 9iven by the eccentricity
of word frequencyy,, with slope parametet. The
constantF = 11 is used to scale the values of enj(t) = xnj — k(1) , 2)
log f,, to a range in the intervgD; 1), so that the . N
coefficient3 is dimensionless and characterizes tNé1erez,; is the position of lettey of word,. Lex-
strength of the frequency effect. ical processing rate is a function of eccentricity,
Second, we assume that word predictability = A(€). The size of the perceptual span de-
modulates processing rates. As a consequence,H§&2Ses from at least 10 letters in central vision to
impact of predictabilityp, on the time-course of 1.7 letters at an eccentricity of 15L.egge, Mans-
processing of worg might be earlier than the im-field, & Chung, 2001). This decrease is related
pact of word frequency. The mathematical impld @ corresponding reduction of reading rate. Be-
mentation of these processes is described belovFft!Se of the asymmetry of the perceptual span (Mc-
the section on the equation of motion of our modétonkie & Rayner, 1976; Rayner, Well, & Pollat-
We speculate that such a process dissociation §8K: 1980), we assume an asymmetric Gaussian
derlying effects of word frequency and predictabif“nCtion as t_he mathematical reIg’Fion_ between lex-
ity will yield neither a strictly additive nor a strictly ical processing rate and eccentricity, i.e.
multiplicative interaction, which could be compat-

ible to the above experimental results by Rayerer Ae) = Moexp | — 6722
al. (2004). 20
. c=o0p, if e<0
Lexical processing rate with { oc=or, if e>0 "~ 3)

For spatially distributed processing, we assumetha}t1 h teri h tensi £ h
lexical processing rate, denoted By > 0, is a " ceoL characterizes the extension ot the pro-

function of the distance (eccentricity) of a word t8ess!ng rate to the left a_nﬂR applies to the_pro_—
the current fixation position. This distance mu$ESSNY of .Ietters to the right of _the _current fixation
be a function of the eccentricities of all letters cﬁosmon (Flgure 1. The normallzayon constagt
the word. We will show later that this assumptioﬂf the lexical processing rate f“”C“O’?’ EQ' (3), can
has strong implications for spatial aspects of Iexic%‘?‘s'ly be calculated from the normalization condi-

processmg. . . . . ®In the first version of our model (Engbettal., 2002), we
The fixation position at time is denoted by neglected word length and fixation positibmas the index of
k(t), where the range of can be from 1 to the the fixated word.
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tion processing rate of a word can be calculated from
oo 0 5 the set of processing rates of all its letters. Two
1= / Ae)de = / o exp(—%)de special cases for word-based processing rates can
—o0 22% be distinguished: The lexical processing rate of a
oo € word is (1) the sum of the rates of all its letters or
+ /0 Ao exp(= Jde, (4) (2) the mean of all of its letters. In the first case, ev-
ery additional letter would be a processing advan-
which yields the relatiot tage, since it can potentially help to enhance word
recognition. In the second case, however, every ad-
Ao = \F L (5) ditional letter leads to processing costs. Because of
TOR+OL these very different views, we use a parametrized

Using the normalization, total lexical processinf nction, which includes both (1) and (2) as special

rate is fixed at a constant value of one. This value485€S:

the theoretical maximum of lexical processing rate, M,

which can be reached, if letters are arranged along An(t) = (My)™" Z Aenj(t)) , (6)
the horizontal axis from-oo to +00. In a realis- j=1

tic situation this will never occur, of course. Thu§N
the total lexical processing rate will effectively b
bounded between zero and one.

5 2
OR

here forn = 0 the processing rate of the word is
fhe sum of the rates of all letters and fpe= 1itis
the mean of the rates of all letters. Using numeri-
cal simulations, we will show below that — under
R the assumptions made here — the actual valuge of
gtzcessmg is an intermediate value between the two extreme
cases.
The asymmetry of the distribution of lexical
processing rate, Eq. (3) farg # o, leads to
a shift of the maximum of lexical rate to the left
(Figure 2). This result is qualitatively in agree-
ment with experimental observations: First, the
o | o preferred viewing locatiorfRayner, 1979) is indi-
cated by the maximum of the distribution of initial
fixations on a word, which shows a shift to the left
> from the word center. Second, thptimal viewing
position(OVP) is determined as the position of the
minimum of recognition time (for studies of iso-
Figure 1: Lexical processing rate is assumed to fohted word recognition see O’'Regaréy-Schoen,
low an asymmetric Gaussian distribution with difeynte, & Brugaillere, 1984; O’Regan & Levy-
ferent parameters;, andog, to the left and to the Schoen, 1987; O’Regan & Jacobs, 1992) and/or
right of the fixation point, respectively. the position of the minimum of refixation proba-
bility. In our data, this minimum turned out to be
Given our assumption on lexical processing ragéose to the word center with a leftward bias, too
for letters, Eq. (3), we now have to specify how th@uthmanret al., in press):! The interesting ques-

0 Horizontal position

Here we use the normalizg;\tion formula of the Gaussian**McConkie, Kerr, Reddix, Zola, and Jacobs (1989), how-
distributionfj;’oo L exp(—goz)dr = 1. ever, reported a small rightward bias.

2mo
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tion is whether this leftward tendency is functional e w gives the strength of the global decay pro-
or whether it is related to systematic errors of the cess.
oculomotor system. As illustrated in Figure 2, our

assumptions on word processing yield a maximulbw we will discuss these three processes in more
of the processing rate shifted to the left from worgletail. The decay process is introduced as a global
center. Thus, our concept of how lexical processipgrameter, which induces a slow decrease of acti-
rates of words are calculated from rates of lettersvations of all words with a constant rate and may
highly compatible with the experimental observase interpreted as a memory leakage, which prevents
tions of a leftward shift of the preferred viewinghe exact tracking of processing states for all words.
location. The preprocessing factadf,,(¢) introduces an
asymmetry between preprocessing and lexical
completion, which is additionally modulated by
predictability. First, during preprocessing, prelim-
In our model, the activation field can be interpretédary information on a specific word will be ac-
as a map of visual salience (e.g., Findlay & Walketumulated for potential target selection. The pre-
1999). Before processing, the word is unknowgrocessing factor introduces an asymmetry with a
and after processing the word is completely préast increase and a slower decrease of activation.
cessed, which is in both cases related to an actifde question of how much lexical (orthographic
tion of zero. During preprocessing, activatiofn(t) or semantic) information can be accessed using
of word,, increases to its maximum valug,. The parafoveal information is an open research prob-
time to reach the maximum is denoted hyn). lem and clearly beyond the scope of the current ar-
Preprocessing is defined as the first stage of ptizle (see Rayner & Juhasz, 2004, for a recent re-
cessing in our modéf In a second stage callediiew). We will return to this problem below. We
lexical completion, the activation tends to zero untiould like to comment here that preprocessing of
it is completely processed. An additional processword is a rather preliminary stage of processing
is decay of activation, assuming a non-idealizéa our model, which mainly adds the word to the
memory with leakage. set of possible saccade targets, i.e. all words with
The temporal evolution of activations during,,(¢) > 0.
reading of a sentence consisting 8f, words is Second, as noted above in the section on word
governed by a system d¥,, coupled ordinary dif- difficulty, we assume that the predictabilipy, of

Temporal evolution: Equation of motion

ferential equations (ODES), word,, modulates the processing rate. We assume
that for high-predictable words, i.g, close to one,
dan(t) = Fpy()An(t) — w, @) processing rate is d_ecreas_ed during_preproces_sing
dt as long as the word is not fixated. This assumption
where is motivated by the fact that for a high-predictable

word there is a high probability that the word can

e F,(t) is a preprocessing factor, modulated guessed without (or with _min_imal) visual input.
predictability, S a consequence, the activation of a parafoveal

high-predictable word should build up more slowly

e A,(t) is a stochastic variable for processingyan the activation of a parafoveal low-predictable
rate, and word. Since activations represent a measure for tar-

2Note that the distinction between preprocessing and Ie%?t selection probability in our model, there will be

cal completion does not refer to parafoveal versus foveal p-higher skipping probability for high-predictable
cessing. words. Because word recognition will be faster
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Figure 2: Lexical processing rate as a function of word length and fixation position relative to word
center. The within-word maxima are shifted to the left with increasing word lengthy Fob.5, lexical
processing rate shows an absolute maximurknef0.32 at relative fixation positiok = —1.37 for word
length 7. In this example, the parameters of the asymmetric Gaussian are chesgr=a3.6 letters
ando;, = 1.4 letters. The bold line correspond to within-word fixation positions, while the dashed line
indicated fixation positions beyond the word edges.

for high-predictable words than for low-predictablee assume that the lexical processing raté) of
words, however, we assume that processing ratewerd,, fluctuates around its mean with a standard
creases with predictability once the word is in thaéeviation proportional to its mean,

lexical completion state, i.e. the state with decreas-

ing activation. Mathematically we formulate these Ap(t) = Ma(t) (1 + &), 9)

mechanisms as _ _ _
where¢; represents Gaussian noise with zero mean

f(1—0p,) ift<ty(n)andk <n and a standard dewauo_n of one. quse samples are
Ft)={ +f if + < t,(n) andk > n L’Jncqrrelat(_ed between integration time steps. For
_ ; all simulations presented here, we chgse= 2,
(1+0py) if t > tp(n) ; .
which produces a reasonable amount of stochastic-

where f > 1 indicates that preprocessing is fastd® in word recognition. An example for the re-
than lexical completion and the factofs = 0p,) sulting stochastic activation process is illustrated in
n

generate the proposed modulations by predictafiil9ure 33
ity.

Finally, lexical completion is implemented as &accade target selection
memory retrieval process, which is known to be in-
herently stochastic (e.g., Ratcliff, 1978). As a cor%
sequence, we explicitly simulate a random-walk f6
the temporal evolution of activations, i.e. for both 3o 5 study of the role of noise in a model of eye-
preprocessing and lexical completion. Thereforapvement control see Engbert and Kliegl (2003b).

iven the principles for the temporal evolution of
e set of lexical activationga, (t)}, assumptions
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is given by its relative lexical activation,

preprocessing lexical access ~ (t)
< > m(n,t) =

(10)

a
Ny ’

where the exponentis a measure for the stochas-
ticity in the target selection process. We can con-
sider two special or extreme cases of how target
words are selected,

Activation a,(f)

e v = 0: Target selection probability for all
words with non-zero lexical activation is equal
(random target selection), and

Time t . S
e 7 — oo: Target selection is deterministic; the

Figure 3: lllustration of the time-evolution of word with highest activation is the next sac-
stochastic activation by the equations of motion, cade target (“winner-takes-all”).

Egs. (7-9). The activation is a random-walk model, _ . _
which accounts for the inherent stochasticity in tfe’€vious simulations have shown that= 1 gives

memory retrieval process underlying word identif2€St fits. In this case, target selection probability
cation. is proportional to relative lexical activation, which

is known as Luce’s (unbiased) choice rule (Luce,
1959).

on saccade target selection are straightforwardey o1 of fixation duration by foveal inhibi-
Saccade target selection is a competitive process,

among all activated words, i.e. among all words

with a,,(t) > 0. As a consequence, if words aréccording to Principle Ill, saccade timing is a

activated in parallel substantialf; the model can stochastic process, which is modulated by the

potentially generate all types of saccades obsenasdount of foveal activation. We assume that the

in experiments (e.g., word skipping, refixations). time interval between two commands to initiate a
In mathematical terms, we assume that targitccade program is purely stochastic with a prede-

selection is a stochastic process. The probabilfiped meart,,., which derives from a reader’s in-

7(n, ) to select worg as a saccade target at tihedividual reading rate. The inhibitory modulation of
this random process will be derived in two steps.

First, the fixation duration on woydis modu-
lated by the amount of foveal activation. Let us
“While the lexical processing assumption had to be mogénote the time .Of initiation of the saccade pro-
ified strongly because of letter-based metrics of words in t8§am for saccadeé by ¢;. The next command for
new version of our model, the mechanism of saccade targéarting a new saccade progrant 1 will happen
selection is effectively the same as in the first version of odfter a stochastic intervakt; . ; with mean value

model (Engberet al., 2002). .. . .
BThe degree of parallel activation is not only a question 3?“"" This interval will, however, be procrastinated

the model architecture. It will depend on the values of mod@y @n inhibitory top-down signal from the lexical
parameters. processing module. The next command for starting
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saccade progran+- 1 is generated, if Saccade programming

t >t + Atiy1 + hag(l) (11) Programming of saccades is a two-stage process in-

whereh gives the strength of the foveal inhibitiory!Ving & labile and a non-labile stage. First, after
process. It is important to note that the prolong&t@rting a saccade program, a labile stage with an
tion is limited even for arbitrarily high values of2verage duratiom,, is entered. If there is another
the constant. Using an analytical approximatiorﬁaccade command in this pen_od 'of time, the labile
(Kliegl & Engbert, 2003), we have shown that thatage can be canceled. In principle, saccade can-

maximum inhibition timeT is given by celat_ion can happen successively. Using numeri-
cal simulations of our model, we found that 90.0%

= m hoop % , (12) of all saccades are not canceled during the labile
stage, 8.6% are canceled once, and 1.1% are can-
where\(0) is the foveal processing rate defined igeled twice (all other cases are negligible).
SWIFT-I (Engbertet al., 2002). Second, the non-labile stage with average dura-
Second, processes of word recognition afign r,, is entered after the labile stage terminates.
much slower than the fast brainstem saccade gq#e transition from labile to non-labile stage trig-
erator (e.g., Sparks, 2002). Therefore, word recqgkrs the target selection process, Eq. (10). The two-
nition can impact the saccadic system only withgage organization is illustrated in Figure 4. The
time-delay This assumption is motivated by th@accade execution is included in the model with av-
plausibility argument that the module for Iexicaérage duration,,.
processing performing word recognition is physi- puring saccades, sensitivity to visual input is
ologically separated from the oculomotor nuclei geduced — an effect calleshccadic suppression
the brainstem, which will produce a time-delay f(XfMatirL 1974). Because visual input stops during
the impact of processing difficulty on the contradaccades, preprocessing is paused in SWIFT. Due
of fixation durations. To suppress noise, we intrgy an eye-to-brain lag of approximately 50 ms (e.g.,
duce an additional integral average over the internyaxe & Simpson, 2001; see also Reichieal.,
from¢—7 to 0 for the inhibition process and replace03), preprocessing is interrupted for the dura-
equation (11) by tion of the saccade with a temporal delay of 50 ms
t> ti+ At + b [agls | (13) (for both onset and offset of the saccatfeSince
lexical completion should not depend critically on

where 1 0 new visual input, we assume that lexical comple-
[ak]r = —/ ak(t,)dt’ : (14) tion continues during saccades.
T Jt—T ;
In the context of programming of saccades dur-

Thus, the average delay#g2. Animportant prop- jnq reading, the assumption of two stages was first
erty of this implementation is that for a time-delay, .o quced by Reichlet al.(1998; see also Engbert

of the order of the average fixation time, the eval%ZKIiegI, 2001) and later used in SWIFT-I (Engbert
ated activation in Eq. (14) refers to a previous fix; al., 2002). The main motivation for the assump-
ation, which frequently occurred on the previoug,,, derives from the double-step paradigm in sac-
word. Thus, the concept of time-delayed foveal iR qe generation (Becker &idyens, 1979), which
hibition can potentially explain lag effects of prog,s ysed to demonstrate that presentation of a sec-
cessing'® ond target earlier than approximately 250 ms after

18A simpler, but both psychologically and neurophysiolog-
ically less plausible generalization of foveal inhibition would ’Using numerical simulations, we found no significant im-
have been to add a new terhiar—1(¢) to the right-hand pact of the eye-to-brain lag on our results. We kept this as-
side of Eq. (11). sumption, however, for physiological plausibility.
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amplitude, i.e. the distance to the optimal viewing
position of the next target word, b§. The realized

lexical labile non-labile saccade
processing  program program execution saccade lengthis given by the sum of the intended
{a(t), k(t)} saccade amplitudd and two error terms,
e l=A+lspp+la (15)
Tiab wherelggg is called thesaccade range error (Sys-
0 v tematic error) andg is Gaussian-distributed ran-
= I dom error with zero mean.
- The systematic deviation of the saccade length
} (when?)  (where?) e I from the intended saccade amplitudecan be
update k(t) interpreted as a limited adaptivity of the oculomo-

_ tor system to arbitrary saccade lengths. If the in-
Figure 4: Temporal scheme of saccade prografanded saccade amplitude differs from an opti-
ming. After the start of the saccade program, a lgra| saccade amplitudé,, we observe undershoot
bile stage is entered, which signals the engagemgiit 4 ~ 4, and overshoot forl < A4,. In a lin-

of the oculomotor system. At the end of the Igsar approximation of this effect, we can write the
bile stage, the saccade target is determined anddBgcade range error as

saccade can no longer be canceled during the non-
labile stage. Finally, the saccade is executed and lsre = dsrE(Ao — |A]) , (16)
the fixation position shifts to a new position.
wheredsr g gives the strength of the saccade range

, . _ error.
the first could induce a cancelation of the saccade 1,4 oculomotor noise is a Gaussian-distributed

to the first target. A later presentation, however, I‘?gndom component of the saccadic errors with zero

to fixations of both targets in a sequence. This gl Generally, we observe an increase in random
fect is captured by passing a “point-of-no-retur

- k ! "errors with movement amplitude in almost all pro-
at the transition from labile to non-labile stages of,c<as of motor control (Poulton, 1981). For sim-
saccade programming in our model. plicity, we assume, again in a linear approximation,

that the standard deviation of the random error can

Oculomotor errors in saccade generation be approximated by the linear relation

Our assumptions on saccadic errors inherent to the og =00+ 61|A|. (17)
oculomotor system are based on results by Mc-

Conkie and co-workers (McConkiet al., 1988). From the perspective of minimal modeling, we

The theoretical assumption underlying their anaim at a model with as few parameters as possi-
yses was that saccades are directed toward the dda- Fortunately, oculomotor errors do not add free
ter of a target word. These saccades, however, pegameters to the model, since all parameters in
modified by random as well as systematic err&gs. (16, 17) can be estimated directly from exper-
components, so that, on average, a small deviatiorental data (McConkiest al, 1988). The four
of the initial landing position from the word cenparametersisrg, Ao, do, andd;), however, may
ter is observed. The systematic error componentiave different values for forward saccades, refixa-
known as the range effect (see also Kapoula, 1986ns, and regressions. Using the data obtained on
Poulton, 1981). Let us denote theended saccade the Potsdam Sentence Corpus (Klieghl., 2005),
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we estimated the parameters of the saccade |

error separately for these three types of sacc launch _---=~._ undershoot
and used the same value in the case of the site el

dom error component (Table 2). The result ir /\ "

cates that the parameters are very similar for [1]2]3]4]5]0]1]2]3]0[1]2]3]4]5]
ward saccades and refixatiolfsFor regression, w (@) word,, 4 word,, word,,, 4
observe a much smaller coefficielitr ¢, which is (target)

in agreement with Radach and McConkie’s (1€ overshoot

obervation of a negligible saccade range errol /-
inter-word regressions. "
[112[3]4]5]0[1]2]|3[0[1]2]3]4]5]
Mislocated fixations and error correction word,_4 word, word,,, 4
(b) (target)

In the previous section, we discussed oculom )
errors in saccade generation with systematic Figure 5: Saccadic undershoot and overshoot can

random components. While even small errors wigsultin fixations on unintended words (mislocated
influence processing rates due to our assumptiBfftions). (a) Unintended forward saccade due to
of a processing gradient, which is limited by viundershoot. (b) Unintended skipping due to over-
sual acuity, saccadic undershoot and overshoot Shot.

lead to fixations on unintended words (Figure 5).

ThesTmlsIocateddflﬁanondar(_a most Ilrfely to hgp— a target word for each saccade and (ii) include ocu-
pen close to words boundaries ('\'F“ rr_mmal., N |omotor errors (see Nuthmarw al., in press, for
press). We assume that these misguided sacca&jﬁgns)

are immediately corrected by starting a new sac- What are potential mechanisms for the imme-

cade program, gthe_r e1s currently no labile S_acc,""g?ate start of an error-correcting saccade program?
program ac_tlvé. To !mplement this assumpnpn Nt is commonly accepted that saccade amplitudes
Fhe S|mulat|on_algor|thm, we introduce avamshmgre determined by population-coded activations in
Inter-saccade interval, l.e. the superior colliculus (e.g., Sparks, 2002, for a re-
Agmisloe — (18) cent review). Accordingly, a single saccade is con-
trolled by an efference copy of the motor signal to
for mislocated fixations. Thus, the mean intervéie eye muscles (Wurtz, 1996; Carpenter, 2000).
between two saccade program initiations;, will  Thus, errors are monitored during saccades. Re-
be shortened by this mechanism. cently, the idea that activation in the superior col-
On average, the shortening of the inter-saccalifsilus represents saccade vectors was challenged
interval will induce a decreased fixation duratioby Bergeron, Matsuo and Guitton (2003), who
close to word boundaries, i.e. at beginnings adémonstrated that collicular activation is related to
ends of words, which was observed in the 10V@aze error in multi-step gaze shifts. Regardless of
effect of fixation duration by Vituet al. (2001). whether saccade steps during reading are best de-
Generally, such a mechanism is compatible with &ribed as single movements or multi-step vectors
models of eye-movement control which (i) specifisee also Krauzlis & Carello, 2003), the bottomline
'®The negative sign of the facték r e is due to the defini- from our (.:urrent knowledge on the function of mo-
tion of the saccade range error in Eq. (16). tor maps in the superior colliculi is that gaze errors

"If there is already an active saccade program, the procé$& monitored continuo.usly, which potentially pro-
of (potential) error-correction can not be accelerated. vides a very fast detection of saccade errors. Thus,
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Table 2: Parameter values for oculomotor error relations.

Error Type Parameter Forward Forward Regressive Regression Reference
Saccade Refixation Refixation

Saccade O0SRE 0.41 0.49 -0.5 -0.15 Eqg. (16)

Range Error Ao 5.4 5.7 4.3 10.0 Eqg. (16)

Gaussian o 0.87 Eq. (17)

Random Error o1 0.084 Eqg. (17)

neurophysiological findings support the fast erroguired. For simplicity, we assume that the non-
caorrection mechanism assumed in our model. labile saccade stage,;, is affected by the intended
saccade amplituded, i.e. the modulation occurs
after target selection.

The impact of a dependencg; = 7,;(A)
The error correction mechanism in case of mislen reading behavior depends on the range of the
cated fixations discussed in the previous sectitieénded saccade amplitudé considered. For
will lead to decreased fixation durations near wogdort amplitudesA < 4, the saccades are mainly
boundaries. This effect, however, will turn out to biitra-word movements, while for longer ampli-
more pronounced in experimental data comparedtsgles,A = 6 most saccades are inter-word move-
model simulations for first fixations. Assuming thanents to the right. Therefore, for short saccades
the center of the word is the unique saccade targ&g functional relationr,,;(A) will modulate the
the programming of a refixation with a first fixationOVP effect, while for longer saccades the relation
placed very close to the word center is a very sp&ill affect successor effects, because a decreasing
cial situation, in which the intended saccade amp$iaccade latency with increasing intended saccade
tude is rather small (i.e., one to two letters). Thugmplitude will produce shorter fixation durations
if we assume an increased saccade programmitgjore long parafoveal words compared to short
time for small intended saccade amplitudes, we ca@rafoveal words. Consequently, it will be very
explain the pronounced peak in first fixation durglifficult to disentangle latency modulation from ef-
tions. A basic dependence of saccade latency onf@écts of lexical processing experimentedfy.
tended amplitude has been demonstrated in severafFor simplicity, we assume that the average dura-
studies (Wyman & Steinman, 1973; Kalesnykas 80on of the non-labile saccade stage is a Gaussian-
Hallett, 1993; Adams, Wood, & Carpenter, 20008ype function of the intended saccade amplitude
It seems appropriate to remark, however, that sue
an effect will be very difficult to test experimentally
in continuous reading. Tt (A) = 75 + Ko exp (—/ﬁAQ) ; (19)

From these considerations, we introduce a mod-
ulation of saccade programming time by intende#here the parametet), is the average asymptotic
saccade amplitude. In principle, such a modulgon-labile saccade programming time, repre-
tion could occur at all stages of saccade genef@nts the strength of the modulation, andde-
tion, i.e. at the level of inter-saccade-intervals or th@rmines the width of the modulation by the in-
labile and non-labile program stages. In SWIFI’ZONote, however. that with our choice of, — 0.1 in

the most likely saccade target can be read off fragg, (19), latency modulation will be predominantly affect
the activation fields any time this information is reoVP effects in our model.

Saccade latency modulation
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tended saccade amplitude. In all simulations pre-
sented here we fix; at a value of 0.1. _ _ _
Numerical simulations and model

Stochasticity in saccade programming parameters

After the non-labile stage of saccade programming

terminates, the saccade will be executed. We @used on the Principles | to VII of the model (Ta-
sumed that the mean saccade execution timepjg 1), we discussed the precise mathematical for-
Tex = 25 ms. For the simulation of noise in botfmulation and some motivations for the underlyling
saccade programming and saccade execution, ys8umptions in the last section. Next, we carry out
use a gamma distribution with a relation betwegfumerical simulations to fit the model’s parame-
standard deviation and mean of 1/3, i.e. a gammgs and to compare the model's performance with

distribution of 8" order. experimental daf8. Compared to the first ver-
sion SWIFT-1 (Engberet al., 2002), we completely
Model overview re-designed the numerical and statistical proce-

dures and propose a new and more detailed test of

In this section, we briefly summarize how the dlféomputational models of eye-movement control in

ferent subsystems of our model are orchestrali%%ding.

(Flg_ure 6), before we address the ’,‘%‘me_”‘?a' Sim- First, we used a recently published experimental
ulations of the model. Word recognition is 'mpleétudy with the Potsdam Sentence Corpus (for de-
mented as a spatially distributed process (Pri”CiQLﬁB on the sentence corpus see Kliegal, 2004),

[). A set of lexical activations keeps track of th?neanwhile extended from 65 to 222 participants
actual state of word processing and controls SE{F('IiegI et al, 2005). With this amount of exper-
cade target selection (‘where”) and saccade tiri]ilﬁental data, we were able to analyze all of the
ing (*when’) via foveal inhibition using two S€P-giscussed phenomeia the same data seSince

arate pathways (Principle I). The lexical decisiorq]any effects are produced by highly nonlinear in-

circuit, which is a cortical long-loop control SYSteractions, deviations in one empirical observable

tem compared to the brainstem saccade generaigy, potentially produce considerable deviations in

can influence saccade timing by foveal inhibiﬁOBther measures. Therefore, a strong test of model
only with a time-delayr (Principle Ill). Saccade

- T \)oerformance must be based on a single complete
programming is a two-stage process (Principle | a ta sef3
After a labile stage, a point-of-no-return is passeéleeCO'nd’ we computed all experimental mea-
and the non-labile stage is entered. Target selectjscmes for each word. The Potsdam Sentence Cor-
occurs at the transition from labile to non-IabiIBus consists of 113'8 words from 144 sentences

1 .
stage? For statistical analyses, we currently exclude the
first and last words from each sentence from our

analysis. Therefore, we obtained a maximum of 8

22The implementation of SWIFT-Il used in this
article is available via the internet at address
http://www.psych.uni-potsdam.de/SWIFT/

ZThis principle was not implemented in tests of the E-Z
2principles V to VII (see Table 1) are related to saccadReader model. As an example, McConkietsal. (1988) re-
errors and saccade program latencies; we did not include thesks on initial landing positions were combined with statis-
principles in the schematic diagram of SWIFT organization tics of fixation durations obtained by Schilling, Rayner, and

Figure 6. Chumbley (1998).
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Figure 6: Model overview. A basic principle of SWIFT is that spatial (“where”) and temporal (“when”)
pathways of saccade programming are separated.

measures (4 fixation durations and 4 fixation probiore, we investigated effects of word frequency,

abilities, defined on page 5) for each of 850 wordgtedictability, and word length by averaging word-

yielding a total of 6800 data points for model fitbased measures over classes. Finally, we tested

ting. This procedure is a major advantage comore specific effects (e.g., IOVP, lag effects) based

pared to the parameter fitting procedures used for thesame simulated data-set.

SWIFT-l1and E-Z Reader 1-7. In these analyses, for

only 6 measures (3 fixation durations and 3 fixation

probabilities), statistical averages were calculatdglmerical simulations

based on 5 classes of word frequency, yielding an

empirical basis of 30 data points. The possibfs model input, for all words of the Potsdam Sen-

range of data patterns, which could be explainéghce Corpus, word length, word frequency, and

by those models, was very limited due to nonlirpredictability were available (Kliegkt al, 2005).

ear interactions of parameters. Therefore, while wée temporal evolution of our model is based on

still believe that the previous method produced rgn equation of motion, which is generated as a cou-

liable results, we clearly suggest that the procedyred system ofV,, ordinary differential equations

proposed here should be used in future modelit@DEs), Eq. (7), wheréV,, is the number of words

studies. in a given sentence. The coupling of the ODEs
Third, given the word-based nature of the meé given by the saccade dynamics, mainly driven

sures, we computeg’-type statistics to evaluateby target selection, Eq. (10), and change of lexical

the model (see Appendix A for details). Furtheprocessing rates by updating eccentricity after sac-

cades, Eq. (2). The ODEs are discretized using the
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Euler method?, weighty = 1 was motivated by Luce’s choice rule
(Luce, 1959) and was tested in SWIFT-I (Engbert
an(t + 0t) = an(t) + (Fu(t)An(t) —w)dt, (20) ¢f 41, 2002). The parameter; = 0.1, Eq. (19),
which represents the range of the latency modula-

where the integration step sizeds = 2 ms. Itis i fived at bl | in advas
important to note that the noise level of the proces‘%?n’was Ixed at a reasonable valles In adverce.

ing rate, Eq. (9), depends ai, since a different e tested a few combinations of fixed values for

realization for the processing rate is chosen in eatéF se parameters in advance, to check the stability

. of our simulations.
time stepot. . .
P Based on the finding that the model is in
agreement with experimental data within a cer-
Model parameters

tain range of parameter errors, we assume that
The estimation of model parameters was perform8ts error is a plausible value for the simulation
using word-based measures for of inter-individual variance of parameters. In
each run, parameter errors were used to simulate
e 4 measures of fixation durations (first fixatiofhter-individual differences. This approach is self-
duration, second fixation duration, single fixaonsistent, because parameter uncertainties repre-
ation duration, and total reading time), sent error ranges for parameters, for which the
model’s dynamics are stable. During the procedure

ping probability, probability for two fixations, of parameter estimation, the parameter errors con-
probability for three or more fixations, and re\_/erged and settled to specific values indicating the

gression probability); additionally we used sensitivities of parameters (see also Appendix A).
The introduction of parameter errors turns out as a

e the distributions of the 4 measures of fixatiomiable solution to the general problem that model
durations and results typically show less variance than experi-

) o ) mental data.
e the relations between fixation duration and

within-word fixation position (IOVP effects)
for first and single fixation durations. Simulation results

e 4 measures of fixation probabilities (skip

The details of the fitting procedure are presented\}\?

Appendix A. The performance of the model is de e start the discussion of modeling results with

, . an example for a single eye-movement trajectory
fined as a sum of mean squared normalized errors

of fixation durations and fixation probabilities pegenerated by the model. This example already

S . .demonstrates the general mechanism of saccade
word. An optimization procedure was applied to : LT .
target selection from the activation field underlying

find a set of parameters, which yielded estlmateseaf types of sagcades, i.e. forward saccades, word

parameters énd emors (Taote 3 skipping, refixations, and regressions. Next, we
To keep the number of free model parameters pping, ' 9 : ,

as small as possible, we fixed some of the parang)resent examples for word-based measures (4 fix-

. . ) ?.?ibn durations and 4 fixation probabilities), which
ters. The noise level of lexical processing was esli-

mated from experimentally observed distribution&' computed from 200 runs of the model. These

: .word-based measures were averaged over classes
¢ = 2 yielded comparable results. Target selectio

oq word frequency and word length in subsequent
2Because the temporal evolution of the ODE system is lin-
ear during fixations, it is not necessary to apply a more ad-*The value of1/v/2k; ~ 2.2 represents the range of
vanced numerical integration method (e.g"-érder Runge- intended saccade length, where the latency modulation is
Kutta). strongest, since; derives from a Gaussian-type formula.
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Table 3: Model parameters.

Parameter Symbol Value Error Min Max Reference
Lexical frequency, intercept e 63.5 2.0 10 150 Eq. (1)
parameters frequency, slope I} -0.20 0.03 -05 0 Eq. (1)
predictability 6 0.11 0.09 0 1 Eq. (8)
Visual visual span, right OR 3.74 0.08 1 7 Eq. (3)
processing visual span, left oL 2.41 0.15 0 5 Eg. (3)
word length exponent n 0.448 0.035 0 1 Eq. (6)
preprocessing factor f 70.2 20.6 1 200 Eqg. (7)
global decay w 0.01 — — — Eq. (7)
processing noise % 2 — — — Eq. (9)
Saccade random timing [ms] tsac 179.0 3.6 100 250 Eqg. 13
timing inhibition factor h 262 0.15 0 10 Eq. 13
time delay [ms] T 375.7 30.0 0 600 Eg. 13
target selection weight ~ ~ 1 — — — Eq. (10)
Saccade labile stage [ms] Tlab 108.0 15 50 150 Fig. 4
programming non-labile stage 70 6.1 2.7 5 50 Eqg. (19)
latency modulation Ko 105.2 2.7 0 200 Eq.(19)
latency modulation K1 0.1 — — — Eqg. (19)

analyses to evaluate related effects statistically. =~ Word skippingoccurs for word and for word
After these basic comparisons, we investigaie first-pass reading. The mechanism for word
the model’s performance on more specific effectskipping can be seen clearly in both examples,
we discuss distributions of initial landing positionssince we observe parallel activation of several
refixation probabilities as a function of landing powords. Word skipping is the result of competing
sition, the effect of inverted optimal viewing poactivation for target selection. Thus, in our model,
sition of fixation durations and lag and successaords need not to be fully identified in order to be
effects, and whether our model produces costs &kipped. Refixationsare likely in difficult and/or
skipping. long words. In the example shown here, the refix-
ation on wordg is the result of a first fixation on
the space before wagdwhich is counted as a fix-
ation on the word. As a consequence of this fix-
A typical numerical output of the SWIFT-Il modelation far from the word’s center, the activation is
is visualized in Figure 7 by plotting the time evostill very high, when the next saccade target is com-
lution of the set of activation$a,, ()} and the fix- puted. As a result of the saccade range error and
ation positionk(t) along the vertical axis. The sesaccadic noise, the second fixation occurs on the

Simulation example

guence of words fixated in this example is last letter of worg. Since the realized trajectory in
Figure 7 is the results of both target selection and
{1,2,3,5,4,5,6,6, 8,9} . oculomotor processes, it cannot be decided from

the plot, whether this refixation was “intended” by
We briefly explain some of the phenomena olfhe model, but, of course, we can tell by looking
served in this example.
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“inside” the model. In the framework of SWIFT, ecorrectly. Results on gaze durations are addition-
regressioncan occur due to unfinished lexical acally reported in Appendix D.
cess before the corresponding region of text is left. Next, we compared the distributions of fixa-
In the example shown here, waqrdias skipped in tion durations in model simulations with the cor-
first-pass and later fixated with a regression, besponding distributions observed in experiments.
cause parafoveal processing did not lead to full leikrom the agreement between simulated and ex-
ical access. Unlike in real data, within the confingmerimental data (Fig. 10), we concluded that the
of our model we are always in a perfect state eindom-walk process assumption for word pro-
knowledge about the causes and consequencessesking generates a reasonable amount of variabil-
specific reading patterns. ity to reproduce the observed distributions of fixa-
tion durations.

Word-based measures

As the next step towards the statistical evaluation of

our model’'s performance, we analyzed average fix-

ation durations and fixation probabilities for each

word. We used 200 runs of the model and cakffects of word length and word frequency
culated averages for 4 measures of fixation dura-

tion and 4 measures of fixation probabilities as dig- ye|l-known problem in assessing the indepen-
cussed beforé” Model simulations were in goodgent contributions of word length and word fre-
agreement with experimental data. Main patterggency to visual and lexical processes is the large
of fixation durations and fixation probabilities werggrelation between the two variables (.62 for
reproduced at the level of individual words as ithe 850 corpus words used in our simulations,
lustrated in Figure 8. Deviations for first and laste excluding the first and last words of each sen-
words are due to their exclusion from parameter fisnce). To investigate effects of word length and

ting. word frequency, every sentence of the Potsdam
Sentence Corpus contains a target word. These
Summary statistics target words are uncorrelated in length and fre-

i - f fword f c >ﬁuency (correlation between word length and log
To investigate effects of word frequency (CELE equency—0.004) and constitute an orthogonal

Frequency Norms; Baayen, Piepenbrock, & Vafi, 4 jength (3)x word frequency (2) design with

Rijn, 1999) and word length, we averaged wWordy qsiin each cell. Figure 11 displays the results
based measures over classes of word frequerp&;/two duration measures from the word-based
(class 1: 1-10, class 2: 11-100, class 3: 101'1’0%Q|mmary statistics (Fig. 9), now restricted to target
c!ass 4 1'991'10’000’ class 510,000; frequen- words. For experimental as well as simulated data,
cies per million words) and word_ length (class g, quration measure exhibits both a word length
to 11: 2 to 11, class 12>12). Figure 9 shows and a frequency effect. For simulated data, how-

the results for model simulations with the resultaler’ the frequency effect with longer durations for

obtained from experiments. The patterns of flX?‘(Sw—frequency words is considerably smaller than

tion durations and fixation probabilities are in goo]q)r experimental data. This problem probably re-
a?freemeptt,) mhpartlc;llar, OL;:’ moddel reé)rfoduces tﬁ@cts the fact that with printed frequency only one
effects of both word length and word frequency many other possible lexical variables (such as

These measure were already used in the parameter d3gighborhood frequency) is explicitly specified in
mation procedure. the model.




24 The SWIFT model

5 6
Manchnal sagen Cpfer vor Gericht nicht d|eVOIIeVHhrhe|t

o P L

400+
600 j;7 S
800

1000F _I_

1200+ L

Time t[ms]

1400r ] L

1600" /j
1800t ‘ ‘ ‘ A

0 10 20 30 40 50
Letter position K(t)

Figure 7: Example for the numerical simulation of the SWIFT model. Time evolves along the vertical
axis. The fixation positiork(t) is indicated by the black line in units of letters. Activationgt) are
given by the dark grey areas, while saccades are indicated by the horizontal line in light grey.
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Figure 8: Example for the simulation results on the level of mean values over 200 runs of the model for
4 different measures of fixation durations (a,b) and 4 measures of fixation probabilities per word (c,d).

Es sollte mehr  Strom mit Solarenergie erzeugt werden.
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Figure 9: Summary statistics of different eye-movement measures by word frequency classes and by
word length classes for model simulations and experimental data. (a) Mean durations for first, second
and single fixation durations and total reading time as a function of word frequency class. Results for
model simulations are given by the solid line, while results obtained for experimental data are dotted. (b)
Probabilities for skipping, two fixations, three or more fixations and the probability that a given word is
the target of a regression as a function of word frequency class. (c) Mean duration for the same measure
as in (a) as a function of word length class. (d) Probabilities as a function of word length class.

Initial landing positions ment with experimental data. Second, our model
simulations reproduced the effects that (1) the stan-

Given the general agreement between measureg&fd deviations of distributions of initial landing
fixation durations and measures of fixation probgositions increase with both word length and mod-
bilities at the level of single words and at the IeVQ,“LIS of launch site distance and (2) the maxima of
of summary statistics for classes of word length afi§e distributions are shifted to the end of the words
word frequency, we now compare more detailed ggr short saccades (launch sitd) and are shifted
pects related to the oculomotor assumptions in agrthe beginning of words for long saccade (launch
model. Distributions of initial fixations in wordssjtes—5 and —7). Thus, the effects of the imple-
show a rich pattern of variation. Following Mcmented saccade range error were clearly visible in
Conkieet al.’s (1988) study, it is important to an-the model simulations.
alyze corresponding distributions as a function of
word length and launch site distance (Fig. 12).

First, model simulations were in good agree-
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Figure 10: Distributions of fixation durations. (a) Distributions of first fixation durations for experimental
data and model simulations. (b) Second fixation durations. (c) Single fixation durations. (d) Total reading
time.

Refixation probability ancy will be explored in future model variants.

It is straightforward to formulate a hypothesis
Refixations indicate the optimal viewing positiofor the function of refixations in long words, since
in reading, since the minimum of the probabilityisual acuity decreases strongly from the center
for performing a refixation — as a function of thef the visual field. Refixations enable readers to
initial landing position — indicates the best fixatioprocess long words using two (or more) fixations
position for processing a word. First, our modély bringing different parts of a word close to the
includes assumptions on oculomotor control basgflea. This interpretation is suggested by experi-
on McConkieet al.’s (1988) work to produce a re-mental data, since we observe the tendency for two
alistic variance in initial landing positions. Secondixations at the beginning and end of a word (or vice
the assumption of a processing gradient turns outiersa).
be strong enough to reproduce the U-shaped formFor short words, i.e. word length less than 5,
of the within-word refixation probability (Fig. 13),the function of refixations is less obvious. In our
however, there was a tendency to a more asymmedel, we added a new hypothesis to explain refix-

ric form in the simulations, i.e. there are more rextions independent of effects of word length, be-
gressive refixations in experiments. This discrep-
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Figure 11: Effects of word length and word frequency in target words. Summary statistics for target
words: Mean single fixation duration and total reading time for target words of different lengths (3—4,
5-7, 8-9) and frequency (high vs. low).

cause the autonomous saccade generator candata and model simulations supports the hypothe-
duce the start of a new saccade program in the abs that incomplete word recognition is a powerful
sence of lexical processing demands. mechanism to explain the pattern of regressions, in
particular for effects of word length (see also Vitu
& McConkie, 2000). The fact that regression prob-
ability is slightly overestimated in our simulation
The results on the probability for inter-word regregndicates that more constraints are needed to esti-
sions are of special interest in SWIFT because @@te regression probabilities.

our hypothesis that regressions can be triggered by

incomplete word _re_cognition. We expected thati%verted optimal viewing position

would be rather difficult to reproduce pattern of re-

gressions, if this hypothesis were inadequate. Having identified the optimal viewing position in
the summary statistics (Fig. 9), we computed theading, we would expect a minimum of lexical
probability for a word to become the target of processing time for fixations close to the optimal
regression. If our hypothesis of incomplete lexdewing position. An analysis of three large cor-
ical access as a cause of regressions is correara by Vituet al. (2001) demonstrated that this is
we would expect a greater regression probabilityt the case: Fixation durations are longest, rather
for words which were skipped in first-pass readhan shortest, when the fixation position is at the
ing. A corresponding analysis for both experimemrenter of a word. Consequently, this phenomenon
tal data and model simulations demonstrates theds called thénverted optimal viewing positiosf-
regression probability is higher for skipped word®ct of fixation durations (IOVP). A corresponding
(Fig. 14). More importantly, the basic pattern odinalysis of data obtained for the Potsdam Sentence
the experimental data are reproduced by our simierpus supported the effect (Nuthmaemal., in
lations. Thus, the agreement between experimergetss; see also Kliegtk al., 2005).

Regression probability
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Figure 12: Distributions of initial landing positions by word length and launch site. The horizontal
column of panels show distributions for word lengths 4, 6, and 8, while the vertical arrangement of
panels accounts for launch sites, —3, —5, and-7 for saccades.
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Figure 13: Probability distributions for refixations as a function of the initial landing position. (a) Exper-
imental data show a U-shaped curve without systematic influence of word length. (b) In model simula-
tions, the results are reproduced qualitatively.
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to specify the target of the upcoming new sac-
= after skip cade, since saccade target selection is performed
o after non—skip by computing probabilities from the activation field
Z;:;ilr?r?%?n 1 — according to the general rule for all saccades,
Eqg. (10). A fixed-target saccade, which needs to
be implemented necessarily in E-Z Reader, may be
too hard-wired, since saccade targeting is based on
partial knowledge and many saccades may turn out
to be no longer required when they start. In the case
of mislocated fixations, the intended word may be
processed from the parafovea as well and, conse-
0 s A ; 5 ; 5 guently, an error-correcting saccade is no longer
Word Length necessary. Therefore, the flexible mechanism in

Figure 14: Statistics of inter-word regressions. E)s(gccade target selection turns out to be an archi-

. . tectural advantage of our model.
perimental data demonstrate that regression prob- . . .

. . For a precise understanding of the mechanism
ability decreases with word length. Moreover

rearession orobability is much hiaher for WorCIgroducing the IOVP effect on fixation durations
9 P y g ih the model, we performed a detailed analysis of

Whlc.h were skipped in first-pass reading. Wh”e. thr%islocated fixations (Nuthmanet al., in press).
qualitative pattern are reproduced by model S|mx—

. . e . s shown above, our model reproduced the distri-
lations, regression probability is generally higherin™ . - . . .
. . : . utions of initial landing positions very precisely.
simulations than in experimental data.

Assuming that the landing distributions (Fig. 16a)
can be extrapolated smoothly, we can estimate the

The IOVP effect for single fixation durations igrobability for mislocated fixations. First, we fit-
reproduced by our model (Fig. 15) by implemented normal distributions to the simulated data. Sec-
ing Principle VI: Error correction of misguided sacond, we estimated the overlap of these distributions
cades. Near word boundaries, i.e. for fixation pt® neighboring words to obtain the relative frac-
sition on the first or last letter of words, the probdion, i.e. the probability, for mislocated fixations as
bility for mislocated fixation is higher than close t@ function of word length (Fig. 16b). For details
word centers. If a misguided saccade leads to a ff-the algorithms see Nuthmarn al. (in press).
ation on an unintended word, we implemented tfée estimated curves obtained from experimental
immediate start of a new saccade program, whiggta (dotted lines) and exact results for the model
is potentially error correcting. This mechanism irsimulations (solid lines) are in good agreement,
duces the decrease of mean fixation durations nedxich demonstrates that the hypothesis of overlap-
word boundaries, which can explain the I0VP eping distributions of initial landing positions serves
fect. The model reproduced the inverted patte@s a useful explanation of the IOVP effect in single
Thus, from performance on single fixation durdixations?’

tions, we conclude that the proposed error correc- Next, we investigated the IOVP effects in two-
tion mechanism for mislocated fixations is a potefixation cases. The IOVP effect has not been found

tial explanation of the IOVP effect. for gaze durations as a function of initial fixation
While the basic mechanism seems compati@sition, since we observe a trade-off in durations
with other models of eye-movement control (e.g-, Z’Note that we validated our algorithm for the estimation of

E-Z Reader), we would like to discuss an advage percentage of mislocated fixation from empirical data by
tage of the SWIFT model here: There is no neetk simulations of our model.

0.1

0.08r

0.061

0.04r

Regression Probability

0.02r




30 The SWIFT model
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Figure 15: Effect of inverted optimal viewing position (IOVP) for single fixation durations as a function
of initial fixation position.
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Figure 16: Analysis of mislocated fixations from overlapping initial landing positions. (a) Relative
frequency of initial landing positions for different word lengths. (b) The probability for mislocated
fixations as a function of letter position for different word length. The estimated curves are calculated
from extrapolations of the distributions in (a), while the exact results are directly computed from model
simulations.
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for first and second fixation durations (Fig. 17)nodulation specifically contributes to explain the
so that effects in first and second fixation durd®VP effect in first fixation cases, while for sin-
tions cancel each othéf. While the IOVP effect gle fixation durations, the error correction mecha-
is qualitatively the same for first fixation durationsism alone is sufficient to reproduce the inverted
as for single fixation durations (Fig. 15), averadd-shape of the curve.

second fixation durations show a U-shaped patternFinally, we investigated the influence of word
when plotted as a function of the position of thisequency on the IOVP effect. Our analysis is based
first fixation. This finding suggests that the amouonh corpus target words (see above in section “Ef-
of processing time spent on the word during tHects of word length and word frequency”). Figure
first fixation is saved during the following fixations18 displays results for mean single fixation dura-
Therefore, second fixation durations are shorteigtins on target words of different lengths and fre-
near word centers. As an alternative explanatiaqyency (high: > 50 per million vs. low: 1 to 4
Vitu et al. (2001) argued that the fixation-duratioper million) as a function of the landing zone ini-
trade-off effect in two-fixation cases results frortially fixated. Words of all lengths were divided
the fact that the IOVP effect is found for both firsinto five zones (cf., Vitwet al., 2001), and data for
and second fixation durations, combined with tleach zone were averaged across word lengths and
statistical fact that initial fixations near the centeubjects. The empirical data show a frequency ef-
of a word (which tend to be longer) are more likelfect on fixation durations that was independent of
to be followed by a fixation toward one end (whictanding zone (Nuthmanat al., in press; see also
tend to be shorter), and vice versa. Rayner, Sereno, & Raney, 1996; Vitual., 2001).

To explain the complicated interaction of firsThe simulated data reproduce this frequency effect
and second fixation durations, we implementedgaalitatively. The effects of word frequency, how-
new mechanism of modulation of saccade latencieger, turned out to be smaller in simulations than in
as a function of intended saccade lengths (Prinekperimental data.
ple VII) in addition to the principle of error cor-

rection of mislocated fixations (Principle VI). For e .
two-fixation cases, error-correction could not ex- Model pred|ct|ons on current topics

plam_the_strength_of the |r_1verted U-shape of MEYWnile the guantitative fits to data are related to
first fixation durations. Since the saccade follows | _astaplished experimental findings, we now
ng theh f”ﬂ flxe:Llon na tWO'f'ﬁt'on calseb_lhas Bresent model predictions on more recently inves-
very short fength on average, the non-1ablle Sgfsaieq phenomena. First, we investigate whether

(‘Tade' latency Increases strongly ‘?'“e _to our assurgly mogel generates costs for skipping and, second,

fuon in Eq. .(19). This assumption is physmlog\;ve analyze lag and successor effects.

ically plausible, because the production of a sac-

cade with very small amplitude is a difficult prob- ..

lem for the oculomotor system (Wyman & SteinCOStS for skipping

man, 1973; Kalesnykas & Hallett, 1993; Adaets The analysis of average fixation durations before

al., 2000), since an extremely short neuronal pulsRipped words is an interesting test of models of

must be produced by the brainstem saccade gege-movement control. In general, there are two

erator (e.g., Sparks, 2002). An additional analgifferent processes which potentially contribute to

sis presented in Appendix B shows that the latengytreased fixation durations before skipped words
20’Regan and Evy-Schoen (1987), first reporting atradel—n_ the_oretlcal models of eye-moyement ,Contrc_)l'

off effect, postulated that a constant amount of time is requird"St, in models based on sequential attention shifts

for processing a word. (SAS), word, 1 is the default saccade target during
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Figure 17: Effects of optimal viewing position on fixation durations of two-fixation cases. (a) Experimen-
tal data. There is a clear trade-off effect between first and second fixation durations, with a pronounced
U-shaped curve for second fixation durations as a function of the position of the first fixation. (b) Results
from numerical simulations. The model reproduced the U-shape curve for second fixation durations,
while the IOVP effect for first fixation duration was less pronounced than in experimental data.
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Figure 18: IOVP curves as a function of word frequency, for experimental data (first row) and model
simulations (second row). Displayed are mean single fixation durations on target words of different
lengths (a & d: 3and 4, b & e: 5-7, ¢ & f: 8 and 9) and frequency (high vs. low) as a function of the
landing zone initially fixated. Words of all lengths were divided into five zones, and data for each zone
were averaged across word lengths and subjects.



Engbert et al. 33

fixation of word,. As a consequence, word skipgbert (2005) using a statistical analysis which in-
ping can only occur after a saccade cancelationwaflved pattern matching and a Monte-Carlo type
the default saccade to woyd; and the program- of re-sampling procedure.
ming of a new saccade to woyth. Because of In a first step, Kliegl and Engbert (2005) se-
the saccade latency and the fact that the cancelatiected three-word segments (triplets) that were read
can happen only later than the default saccadewith one fixation per word in forward direction
word, . 1, there are increased fixation durations bé-igure 19, top panel: non-skip). For the subse-
fore skipped words. Thus, SAS models genericalipient statistical analysis, four-word segments were
predict skipping costs. The amount of skippiniglentified which differed from the triplets only
costs, however, might be reduced by the additiortal skipping worg ,; (Figure 19, bottom panel:
assumption of autonomous saccade programs (Before-skip). Additionally, it was checked that
gbert & Kliegl, 2001). In SWIFT, word skippingsword, was never the target of a regression. To ex-
are not causally linked to saccade cancelations lokide potential influences from within-word fixa-
cause of the general principle of activation-bas&idn position, fixation sequences were matched on
saccade target selectin word,, and fixation zone within word To test the
Second, word processing based on attentionifferences of fixation durations on worthetween
gradients (GAG) will allow parallel processing opatterns a three-step procedure was applied using
words, which implies a longer accumulation af00 Monte-Carlo samplings (see Kliegl & Engbert,
parafoveal information. As a consequence, tR€05, for details).
probability of skipping worg.,; will increase if
the fixation duration on wordincreases. Thus, i

GAG models, long fixation durations are a cau non-skip

not a consequence, of skipping. In these m N NN N\
els, however, the link between fixation duratic [r2 | |[nt f [ o | [ ]| [ ]
and subsequent skipping is much less tight beci before-skip

there is no strict assumption about default sacc NN T
targets as in SAS models. Moreover, in the SWI o2 | Lt L o [ Lot o] 2 |

model, saccades are generated autonomously

only a limited modulatory influence from time Figure 19: Pattern selection for the analysis of skip-
delayed foveal inhibition, i.e. without triggering t ping costs. To compare fixation durations matched
word recognition. In summary, an analysis of sk fixation sequences for non-skip (top panel) and
ping costs in SWIFT seems impossible without ¢ before-skip cases (bottom panel) were selected.
rying out numerical simulations.

Experimentally, there have been rather con  The main results obtained from this analysis are
dictory results on the difference between aver that there were strong effects of word frequency
fixation durations before skipped and non-skippeghd word length on skipping costs. First, in model
words ranging from—26 ms (Radach & Heller, simulations (Figure 20a), there were global skip-
2000; Table 2) to+84 ms (Pynte, Kennedy & ping costs, i.e. average fixation duration was in-
Ducrot, 2004; Table 3). A solution to this concreased before word skipping compared to non-
troversy was proposed recently by Kliegl and ERkip cases. The difference curve indicates a lin-

23accade cancelations can occur in SWIFT during the e?r relation between the mcre-ase " flxatlon.dura_
bile stage of saccade programming, however, these cancﬁl%n and the Ien.gth of the skipped V\_Iord (Figure
tions do not represent the driving mechanism for word skigOP). For experimental data, the main results are
pings. plotted in Figure 20(c,d). Fixation durations be-
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fore short words were shorter, when subsequélt ms in average single fixation duration) is pro-
words were skipped compared to when they wedeced by the last word’s length, which is even
fixated. With increasing word length, this effecstronger than the effect induced by the current
is reversed to produce longer fixations before lomgprd’s length (Figure 21, bottom panels). In the
words. Thus, different from model simulationsSWIFT-II model, there are two mechanisms which
there were benefits from skipping short words amde responsible for this lag effect. First, a fixation
costs from skipping long words. As in the modain word,_; will generate lesgreview on word,,
simulations, however, the differences between nomhen worg,_; is longer. As a consequence, the
skip and before-skip cases turned out to be rougliilyation on worg, will last longer on average, if
linearly increasing with word length (see Kliegl &vord,_; was a long word. The same argument also
Engbert, 2005). applies to the lag effect for the word frequency plot

In summary, the SWIFT-Il model generate@igure 21, top panels), because of the correlation
global skipping costs, which is in contradiction tbetween word length and word frequency.
our own results from experimental data (Kliegl & Second, we implemented a time-delay in the
Engbert, 2005). Although there are diverging réeveal inhibtion process, Eq. (13), to account for
sults from different experiments, this might indithe neurophysiological fact that the word recogni-
cate that in the current version of our model, the dfen loop will operate much slower than the fast
fects of preview as a consequence of long fixatitmainstem saccade generator. The numerical value
durations are a dominant process, which caus#ghe time-delay was estimated as= 375.7 ms
word skipping. Therefore, it is an open problerfTab. 3). Given an average single fixation dura-
whether the model can be modified to generate ten of 200 ms, the current word’s fixation duration
duced fixations durations before skippings as weis. effectively controlled by inhibition from the last
word. Thus, the time-delayed foveal inhibition will
produce spillover effects.

Successor effects. The performance of our
A key assumption for eye-movement research niodel with respect to successor effects, i.e. effects
that properties of the fixated word are the don®f the features of the successor worg on fixa-
nant variables modulating fixation duration. Thi#on durations of worg, is rather interesting, be-
immediacy-of-processing assumption (see Rayner, cause there are no explicit mechanisms for modu-
1998, for a review) is a platform for much of psylations of foveal processing by processing of words
cholinguistic research. Using a detailed analysis ifthe right of the currently fixated word. As a con-
a large data basis from continuous reading, we g&quence, all effects in Figure 21 are effects due to
cently showed that there are multiple non-local egpatial selections in the perceptual span. A note of
fects of word difficulty (Klieglet al., 2005). caution: Successor effects are small compared to

In a sequence of three firstpass single fixatioBe lag effects in both experimental and simulated
we computed fixation duration on wordthe cen- data (Klieglet al., 2005). Thus, future model mod-
ter word) as a function of frequencies, predictabilifications might change the data pattern on succes-
ties, and lengths of woyd 1, word,, and worg,,; SOr effects more strongly than other effects. We re-
(Figure 21). A first glance at Figure 21 shows th&ort the predictions about successor effects to stim-
there are strong effects in both experimental date future research.
and model simulations. Most importantly, how-
ever, simulation results generally show the same
trend as the experimental data.

Lag effects. The strongest effect (more than

Lag and successor effects
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Figure 20: Analysis of costs for word skipping from statistical analysis. (a,b) Model simulations. (a)
Fixation durations increase with word length (of the skipped word) before a skip and slightly decrease
with word length before a non-skip. There are global costs. (b) The differences between cases of skips
and non-skips increases approximately linearly with word length. (c,d) Experimental data. (c) There are
reduced fixation durations before short skipped words and costs before longer skipped words compared
to non-skipped cases. (d) The difference increases linearly with the length of the skipped word.

Is word processing parallel or serialdan & Glass, 1995), we can show that dynamics of
SWIFT can be approximated by a two-dimensional

In the SWIFT model, all words are processed ftPspace embedded in M,-dimensional state
parallel due to the assumption of a processing giace (Appendix C). Therefore, the potential num-
dient. The processing rate, however, decrea of dynamical degrees-of-freedom are reduced

very rapidly with increasing eccentricity. Thus, thBY the estimated model parameters values in a psy-

number of words with effectively changing activaSelogically plausible way, so that only a few acti-

tions is much smaller than the number of wordéated words determine SWIFT’s behavior at atime.
N, in a sentence. A dynamical analysis shows The two alternative theoretical concepts of se-
w . b

that SWIFT's behavior can be investigated qudid! (SAS; €.g., Reichlest al., 2003; Engbert &

itatively by the activations of only three words/</€gl; 2001) versus parallel (SWIFT) processing

ar(t), ars1(t), arso(t), during fixation of worg. of words are asymmetri.call'y related' to ea(;h other
In terms of dynamical systems theory (e.g., Ké{ylth respect to generalization. While serial pro-
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Figure 21: Analysis of lag and successor effects. Top panels: Average single fixation durations as a
function of word length of the last word (woyd,, left), the current word (worg middle), and the next
word (word, 1, right). Bottom panels: Corresponding plots as a function of word frequency class.

cessing may be looked upon as a special caseatd two different versions of the serial model: (A)
a model of parallel processing, new assumptiofdobal processing (preprocessing and lexical com-
must be made in a serial model to extend the moghétion) is serial, and (B) lexical completion is se-
to parallel processing. Based on these consideral, while preprocessing is parallel.
tions, we introduce a parametrization for a contin- For both versions (A) and (B) of serial versus
uous tuning of the SWIFT model from strictly separallel processing, we can define a parametriza-
rial to parallel processing. Thus, the distinction béion, which introduces a continuous transition be-
tween serial and parallel processing is not necesdareen serial and parallel processing by tuning a
ily dichotomous and we can study both processisingle parametes$. The basic assumption is that
types within the same model. processing is modulated by the number of words
Given the gradient-type assumption of paralllith non-vanishing activation to the left of the word
processing of words, we can add restrictions amder consideration, because any word with non-
parallel processing to include serial processing asro activation signals that the corresponding word
a special case in SWIFT’s behavior. Since woid not completely identified. To formulate this ap-
recognition is a two-stage process in SWIFT, thepeoach mathematically, we replace the processing
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rate )\, (¢) of word,, Eq. (6), by with ¢ = ¢4 and (B) with¢ = ¢p and compute
5 the resulting fractiond ; (Figure 22). The SWIFT
A (t) = (1) An(t) (21) model is retained fop = 0, but our simulations

P(t) show that the model’'s behavior will be rather sta-

where P(t) is the number of words with non—zercpIe up tog ~ 01 »
activationa,(f) > 0 at timet, from word, up If processing rates are modified by Eq. (21) for

to word, (i.e., withm < n). As a Consequenceboth preprocessing and lexical completion (A), we

the processing rate’ () of word, is decreased forobserved a sharp transition from parallel to serial
increasing numbers of words to the left of wgrd plrocesswl%,oz}/hlch Is |1nd|cated hby tEe (rjl_se M
More importantly, both serial and parallel proces§.°5€ © 6ab ~ 10 (note that the direction

ing are included in Eq. (21), if we consider the tw8f the abscissa is inverted, i.6. incregses from
limiting cases right to left in Figure 22a). If we restrict the lex-

ical completion stage of word processing only (B),
¢ — 0: parallel processing the distribution of activations changes less drasti-
cally (Figure 22b). Interestingly, the fraction of
time with one activated word);, decreases with
Obviously, for¢p — oo, processing of worglis pre- increasingy. Therefore, if lexical completion be-
vented ifP(t) > 0. comes more serial, the distribution of activation
To implement the two different versions (A) anavill be broader. This effect is caused by the fact
(B) of serial processing introduced above, we apgiyat there are no restrictions on preprocessing: Sev-
Eq. (21) to preprocessing and lexical completicral words are preprocessed at a time, but the model
(A), i.e. processing of words is controlled by panust wait for starting lexical completion, until all
rameterp = ¢4, or to the lexical completion pro-words to the left of the word under consideration
cess only (B). In the latter case, preprocessing wélte completely identified.
lead to a parallel activation of words, while the de- Since we demonstrated that the SWIFT model
crease of activations during lexical completion wittan be used as a framework to study the transition
vary between parallel and serial processing depeffiddm parallel to serial processing, it may be an im-
ing on parametep = ¢p. portant tool to generate predictions on a number of
Next, we demonstrate by numerical simulationgenomena, which are currently investigated to de-
that variation of parameter can induce the transi-termine experimental boundary conditions on the
tion from parallel to serial processing. Using 10possibility of parallel processing and on the lim-
runs of the model, we computed the fraction of timigations of serial processing. In this respect, two
A; (from total simulation time), wherg words candidate phenomena are the analysis of skipping
have non-zero activation. In a strictly serial modetpsts and lag and successor effects discussed in the
the fractionA; must be zero foj > 2, i.e. there is previous section.
maximally one activated word at a tim.It turns
out that in SWIFTA; = 19%, Ay = 32%, and
A~o = 48%. Thus, there are more than two words
with non-vanishing activation for nearly 50% of the
time. Keeping all parameters of the SWIFT model
fixed, we vary parametes for both versions (A)

¢ — oo: serial processing

30For an efficient model, we would additionally require that
Ao is close to zero, since during the time interval with vanish-
ing activation for all words nothing is processed.
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Figure 22: The transition from parallel to serial processing in the SWIFT model. (a) If the processing
rate is controlled by parameterfor both preprocessing and lexical completion, then we observe a sharp
transition to serial processiny; ~ 100% for ¢ ~ 10. (b) When lexical completion is modulated by

¢ with preprocessing fully parallel, the distribution of activation over words is even broader than in the

SWIFT model.

General Discussion

field theory of movement preparation (Erlhagen &
Schbner, 2002), we implemented SWIFT as a com-

In this article, we developed an advanced and suiitational model for saccade generation based on a
stantially extended SWIFT-Il model based on trgpatially-distributed activation field. There is sim-
first version SWIFT-I (Engberet al., 2002). An ilarity of the SWIFT model with the dynamic field
incremental study of the effect of adding the vagoncept, however, we did not refer to the formal
ious mechanisms to the basic framework is cdheory of Erlhagen and Soher (2002). The main
ried out in Appendix B. We showed that the nefigason was that saccade generation in reading is not
model can reproduce and explain many experimeily a problem of movement planning, but also a
tally observed phenomena of eye movements d@roblem of word processing, so that many prop-
ing reading. While the model’s intended level ogrties related to word processing had to be com-
mathematical detail with respect to word procesBined with ideas proposed in the dynamic field the-
ing and saccade programming agrees with the EOB. Thus, the dynamic field concept motivated our
Reader framework (Reichlg al., 1998, 2003), the model, but the formal framework was simplified in
core assumption of spatially-distributed processiggder to focus on aspects of word recognition in
in SWIFT turned out as a viable alternative to therder to reproduce effects of word difficulty in eye-
strictly serial allocation of attention assumed in Enovement data. In perspective, we believe, how-

Z Reader.

ever, that the general concept of interactions be-

Motivated by recent advances in the dynamtg/een local excitation and global inhibition in the



Engbert et al. 39

dynamic field theory is a potentially very usefubf competitive interaction operate within a salience
framework for a coherent explanation of eye moveiap (their level 2) to compute a unique saccade
ments during reading. goal.

Inthe SWIFT model, we adopted the fundamen-
tal separation between “where” and “when” path-
ways as a key principle of model design. As a
The investigation of the brainstem circuitry of saconsequence, we implemented temporal and spatial
cade generation has been an active field of reseagehtrol of saccades with as little interaction as pos-
for many years resulting in a very detailed level &fible. It turned out in the development of SWIFT-
understanding of the immediate presaccadic piotEngbertet al., 2002) that foveal inhibition of
cesses (Moschovakis, Scudder & Highstein, 199 autonomous random timer is a minimal model
Sparks, 2002). One of the key results is that thes¢ the control processes necessary to adjust fixa-
exist both omnipause and burst cells in the braitien durations. Here, we included a time-delay for
stem. While omnipause cells fire during fixationge inhibition process to separate the slower word
and cease activation during saccades, the burst cedlsognition system from the fast brainstem saccade
show the opposite activity pattern, i.e. burst celifenerator. Given the neurophysiological organiza-
fire at a high rate for the duration of a saccade. Bgon of the contributing neural systems, the time-
cause omnipause cells show no specifity, but bugstle separation is very plausible. The competi-
cells code the spatial metrics of saccade, there @ith between alternative saccade targets is a pow-
at least two descending pathways in the neurophgsful mechanism for generating all types of sac-
iology of the oculomotor system. One carries spaades (forward saccade, word skipping, refixations,
tial information (“where”), while the other servesegressions) from a single underlying mechanism.
as a trigger and is involved in temporal aspects Dherefore, the neurophysiological foundations of
saccades (“when’§! The competing processes besaccade generation in reading are compatible with
tween fixation and saccade generation have begi mathematical model.
further investigated by Munoz and Wurtz in a se-

ries of publications (Munoz & Wurtz, 1993a,b duced IFT
1995a,b; Wurtz, 1996). Their work has focused Jrhenomena reproduced by SW.

the superior colliculus, which carries a represent@yyrd-based measures. Using experimental data
tion of the fovea of the visual field. The superiogptained for the Potsdam Sentence Corpus (Kliegl|
colliculus shows distributed coding as an importagt ,; 2005) we fitted word-based fixation dura-
property (Mcliwain, 1991). Visual cells turned oufions and probabilities. For all of the 850 words
to have unexpectedly large receptive fields. Thust, the corpus (all words of the corpus excluding
a cell in the collicular map can be activated fromst and last words of the sentences) the model re-
a rather wide range of visual space. Motivatggtoduced averages of first, second, single and to-
by these neurophysiological results, Findlay ang| fixation durations as well as probabilities for
Walker (1999) proposed a general model for thgijpping, two fixations, three fixations and regres-
control of eye movements. The model is orgajons. Word-based fitting is a major advantage
nized into 5 different levels, all of which are sepcompared to fitting averages representing classes of
arated into “where” and “when” pathways. Morepord frequency as in previous studies (Reickle
over, Findlay and Walker suggested that processgs 1998, 2003: Engbert & Kliegl, 2001; Engbert

%1The concept of separate “where” and “when” pathwayest al., 2002), since word-based analyses provide a

was first introduced by oculomotor physiologists (Van GisbeR€W level of detail for analyses of model perfor-
gen, Gielen, Cox, Bruijns, & Kleine Schaars, 1981). mance.

Neurophysiological background
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Effects of length and frequency. The obtained (1998), 10 to 15% of all saccades are regressive. As
word-based measures are the basis for additioaatonsequence, for a typical sentence of 8 words,
analyses of effects of both word length and wottie probability for a regression is about 2/3 (rang-
frequency by averaging dependent variables oveg from 0.57 to 0.73¥2 In SWIFT, regressions
classes of length and frequency respectively. Thige triggered by incomplete word recognition. This
analysis demonstrated that SWIFT accurately cap-a simple and psychologically plausible explana-
tures effects of both word length and word freion, which is supported by our analysis of patterns
guency. Thus, SWIFT is the first computationaf words which were targeted by a regression after
model which reproduces effects of word length arsfipping during first-pass reading.
word frequency to a comparable level of accuracy. Initial landing positions. Following the hypoth-

Distributions of fixation durations. Fixation du- esis first proposed by McConkig al. (1988) that
rations in reading are highly variable and shoaculomotor errors can be divided into systematic
broad distribution. Therefore, it is important thaand random components, we included these two
computational models reproduce these distribiypes of saccadic errors in our model. Our simula-
tions. There are two main sources of variability fdrons show that the distributions of experimentally
fixation durations in SWIFT. First, the standard debserved initial landing positions are reproduced
viations of fixations durations are modulated by th®y the model. This is a non-trivial result, since it
stochastic assumptions on the random-walk pnaroves that the assumptions on oculomotor control
cess for word recognition. This simple assumptionade in SWIFT are compatible with the error pat-
can be replaced in a future version of our modedrn found by McConkiet al.
without changing the model’s architecture. Fur- IOVP effects and mislocated fixations. The
thermore, foveal inhibition can influence the varpresence of oculomotor errors induce mislocated
ability of fixation durations in a more complicatedixations (Nuthmanret al., in press). It is likely
way (compared to the random-walk process). As #rat the cognitive control system responds to these
example, a broad distribution of fixation durationsrrors with some correction mechanism. Such a
will induce a broader distribution of the variabilitynechanism represents a coupling of word process-
created by foveal inhibition and, hence, amplify theg and oculomotor systems. Computational mod-
noise. Such complicated interactions of stochastgls are ideal tools to test the hypothesis on the con-
ity and nonlinearity typically occur in nonlinear dysequences of mislocated fixations. In SWIFT, we
namical systems (e.g. Moss & McClintock, 1989mplemented an error correction program as a re-
Millonas, 1996). sponse to mislocated fixations, as proposed earlier

Refixations. The within-word position of the by Nuthmanret al. (in press). Since mislocated fix-
minimum of the probability for refixating a wordations are more frequent near word boundaries, the
defines the optimal viewing position. In SWIFTimmediate triggering of a new sacccade program
refixations on short words occur as a consequemeduced fixation duration at word edges. There-
of autonomous saccade timing. For longer wordsye, our model can explain inverted optimal view-
refixations are necessary because of visual acuity position effects (IOVP). An additional modula-
limitations, which are incorporated in SWIFT bytion of saccade program duration by intended sac-
the assumption of the processing gradient. cade length was used to reproduce IOVP for the

Regressions. Liversedge and Findlay (2000) pufirst of two fixations.
the mechanisms underlying regressive saccades orCosts for skipping. The SWIFT model repro-
the list of outstanding problems in eye movement
research. In normal readmg, regress!ons are [heZSentences with regressions are regularly excluded from
rule rather than the exception. Following Rayn@fodeling in E-Z Reader.
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duces the main features of data pattern in skigaism to introduce a time delay for the control of
ping costs. From a careful analysis of experimenfiation durations by word recognition processes.
Kliegl and Engbert (in press) reported skippinloreover, this modification of the model did not
benefits for short and skipping costs for long wordlsterfere with other successful simulation results
respectively, i.e. fixations prior to skipped worddespite the nonlinearities in the model. The bottom
were shorter for short or high-frequency words artiche is that obviously the model can still be falsi-
longer for long or low-frequency words comparefied by experimental data, probably in many ways.
to non-skipped controls. These results were nand, of course, we will look for modifications that
reproduced by our simulations, which indicateccommodate these results without compromising
global skipping costs, however, the model could riie core set of theoretical principles.

produce a linear increase of skipping costs with the

length of the skipped word, which was found in e
perimental data.

Lag effects. Non-local effects of word prop-in SWIFT, several words are active at a time and
erties (e.g., word length and word frequency) aréxical completion of words is not strictly tied to
not surprising in a model of spatially-distributegheir serial order in the sentences. This is some-
processing. We checked two effects to investigaifes advanced as an argument against parallel
whether SWIFT makes realistic predictions abomiodels, since in SAS models, words become avail-
these effects. The lag effect, i.e. the influence gble in the order of appearance in the text, just like
word length and word frequency of the previouslhy, spoken language. Of course, we could simply
fixated word on the currently fixated word are redelegate” the task of serialization in SWIFT to
produced qualitatively by two underlying mechanigher order structures such as Baddeley’s (2000)
nisms in SWIFT. First, when the previous word igpisodic buffer or Ericsson and Kintsch's (1995)
a long word, there has been less preview on tigg-term working memory. Indeed, experimen-
current word than in the case of a short successar results about failures to notice missing func-
word, which will lead to an increase in fixation dutions words or to overlook their repetition suggest
ration. Second, foveal inhibition is time-delayedhat reading may not be as strictly serial as envi-
so that the word recognition loop can modulate fixioned by SAS proponents. Koriat, Greenberg and
ation duration only with a time delay. Kreiner (2002) argue that, for example, function

Further problems. There were and still are nuwords such as “the” become available earlier and
merous data patterns hidden in the Potsdam Segrve to generate a sentence structure into which
tence Corpus which challenged the model and wileanings of content words are then integrated (see
continue to do so. For example, in its current vesiso Kennedy, 2000b, for a collection of arguments
sion the model still tends to overestimate the effeghy reading is not like listening; Deubel, O’Regan,
of word length and to underestimate the effect @ Radach, 2000; Inhoff, Radach, Starr, & Green-
word frequency (see Figs. 11 and 18). We also hpdrg, 2000). The failures associated with function
considered it as plausible that lag effects shoulbrds mentioned above are assumed to arise from
be found in SWIFT simulations once we had dig faster decay of activation compared to content
covered the pattern in the experimental data. URords (conceptually compatible with SWIFT).
fortunately, this what not the case for the simu- There is good evidence that silent reading ac-
lation results. The solution was to delay the inivates phonological representations (e.g., Pollat-
hibition of saccade programs by foveal activatiogek, Lesch, Morris, & Rayner, 1992; Van Orden,
(see Eqg. 13). Itis a physiologically highly plau1987). At first glance this may even appear to sup-
sible generalization of our foveal inhibition mechport the assumption of sequential lexical access, as

From parallel to serial processing of words
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enforced, for example, in E-Z Reader. We notgally. A signature of strictly serial processing was
however, that oral reading is characterized bytlaat there is only one word activated at a time. In
strikingly unserial sequence of fixations, with ththe second version based on the relaxed assumption
eye running ahead of the voice, but also frequenrt serial processing that preprocessing is still par-
regressions to briefly synchronize voice and ewdlel, but lexical completion is serial, we showed
(Buswell, 1920). Oral reading behavior appears tioat the distribution of activations over words was
be in better agreement with SWIFT’s assumptionsven broader than in the original model. Thus, the
Modeling such dynamics of eye and voice will proSWIFT model may prove to be very useful to fur-
vide new constraints for the coupling between other explore the transition from serial to parallel
ular and attentional movements; it certainly reprerocessing in future research.

sents a challenge of generalizability for computa-

tional models of silent reading such as SWIFT a
E-Z Reader.

Finally, at the other end of conscious contrgl possible classification of models of eye-
during reading, mindless reading constitutes evhovement control in reading categorizes the ap-
denceprima facie for a loose coupling between ocproaches intgrimary oculomotor models (POC),
ular and attentional control (Vitu, O’'Regan, Inhoffinodels based on the principle ghidance by at-

& Topolski, 1995; Rayner & Fischer, 1996). Waentional gradients (GAG), and models driven by
frequently find ourselves at a location in the teXbquential attention shifts (SAS). Several computa-
without any awareness about how we got there @gnal models have been developed in each of the
any awareness about what we just read. Clearlytitee categories. Since most models focus only
this situation our thoughts had strayed off the tegh a very special aspect of eye-movement control
and accessed “meanings” different from the on@sg., oculomotor theories do not account for ef-
written about in the text. We think this situatiofects of word frequency) or have not been imple-
is analogous to our experience of walking whilgented on a computer to generate data for quan-
carrying out an intensive conversation. Our movgtative evaluation, we will compare the SWIFT-
ments are clearly guided by environmental cues huinodel as a viable implementation of GAG with
there is little awareness of this behavior. The twae E-Z Reader model in its latest version (Reichle
systems must be coupled at some level, but, in Qiral,, 2003) as the most advanced model of SAS.
opinion, a strict coupling is not very plausible.  Both SWIFT and E-Z Reader reproduce a com-

A conceptual advantage of SWIFT as a parallghrable number of experimentally observed phe-
model of word processing is that we can includgomena, but are based on very different principles,
serial processing as a special case. Furthermqle, parallel word processing in SWIFT and serial
by implementing a tuning parameter, we showegbrd processing in E-Z Reader. We point out,
that the dichotomy of serial versus parallel prgrowever, that we adopted a few of E-Z Reader’s
cessing can be replaced by a continuum of mogkinciples, e.g. that lexical difficulty is related to
els. There are two different versions of the restrigrord frequency and predictability, the concept of
tion to serial processing. In the first version, wgvo-stage lexical processing, and the two-level pro-
restricted all processing (i.e. preprocessing and Igffamming of saccades. Moreover, both models
ical completion), whereas in the second version, wgopted the concept of systematic and random er-
restricted lexical completion only (i.e. preprocesgors of saccades (McConkie al., 1988).
ing is still fully parallel). For the first version, we  The evaluation of different theoretical explana-
were able to demonstrate by numerical simulatiofisns is among the central problems of research, in
that SWIFT can be restricted to process words Sgarticular in mathematical modeling of experimen-

né/jomparison to the E-Z Reader model
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tal data (e.g., Myung, Forster, & Browne, 2000Rayner, 2005). According to these arguments, vi-
To guide the evaluation and comparison of diffesual processing is not sufficient for word identifi-
ent models, a number of criteria were proposed bgtion, but additionally requires attention to be fo-
Jacobs and Grainger (1994). Here we discuss thesed on the word. This hypothesis is based on
following criteria: (a) plausibility, (b) interpretabil-findings that attention is essential for “binding” to-
ity, (c) generalizability, and (d) complexity. Notegether features of visual objects for encoding sin-
that the relative importance of these criteria miglte, unified representations (Treisman & Gelade,
depend strongly on the types of models discussE@B0; Treisman & Souther, 1986; Wheeler & Treis-
and the research field. man, 2002; Wolfe, 1994; Wolfe & Bennett, 1996).
(a) Plausibility and explanatory adequacy. To From this line of evidence, Reichlg al. (2005)
check the plausibility and explanatory adequacy fafrther argue that attention must be allocated to
the models, we ask whether the theoretical explamagch word “object” so that it can be identified. Ob-
tion the models offer are biologically and psychasously, the role of these processes for word recog-
logically plausible and consistent with the knowlrition in a continuous task like reading, in particu-
edge in the corresponding field of research. lar with respect to the time lines involved for atten-
The E-Z Reader model is motivated by sequetien shifts, remains an open research problem.
tial attention shifts (SAS) driving eye movements The separation into “where” and “when” path-
in reading®® The mechanism of SAS was introways for spatial and temporal control of saccade
duced first by Morrison (1984), motivated by thprograms respectively is one of the key findings in
attentional “spotlight” metaphor from attentionabasic research about the oculomotor system (e.g.,
cuing experiments (Posner, 1980). Basic reseaktfurtz, 1996). The SWIFT model is built around
on the relation between attention shifts and saccdalis principle, requiring a dynamically changing
programming resulted in the observation that aetivation field for saccade target selection (dy-
tentional shifts precede saccades obligatorily (e.gamic field theory, Erlhagen & Soher, 2002, see
Kowler et al., 1995; Deubel & Schneider, 1996). Irbelow). Using this concept, the allocation of visual
the E-Z Reader model, however, the basic medittention is specified by a gradient function in the
anism for starting a saccade program is a prelinBWIFT model. Furthermore, there is no direct cou-
nary stage of word processing called the familiariggling between attentional and oculomotor systems,
check. Thus, the attentional shift occurser the since attention is not necessarily word-based in
start of the eye movement program. In an anal@WIFT. Thus, the time-course of attentional shifts
sis of the E-Z Reader model, Deulmlal. (2000, in E-Z Reader is in contrast with the less explicit
p. 357) argue that “the assumption that saccadeaussian-distributed attention in SWIFT.
can be programmed without an obligatory, preced- (b) Interpretability. =~ Both SWIFT and E-Z
ing shift of attention is certainly in conflict withReader have a number of parameters which can
most of the more recent investigations on the relbe interpreted psychologically and/or neurophysio-
tion of attention and saccade control.” From the$sgically. As a consequence, these models are ideal
considerations, one of the basic assumptions of thels for testing alternative assumptions through
E-Z Reader model seem questionable. the evaluation of obtained parameter values. As an
An alternative view on the role of attentiorexample, we fitted the labile and non-labile saccade
shifts for eye-movement control during readin@tency parameters to check whether the numerical
has been discussed recently (Reichle, Pollatseky&ues obtained by parameter estimation are plausi-
ble. It turned out that the corresponding values are

%The relationship between attention and eye movemef'lti‘sgOOd agreement with results from basic oculo-
was first noted by Rayner, McConkie, and Ehrlich (1978). motor research. We suspect that such a test would
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be very interesting for the E-Z Reader model, sintlee underlying principles of the models, is seems
the SAS mechanisms might exert strong constraictarently not appropriate to compare models quan-
on the durations of saccade program stages. titatively using concepts of complexity.

(c) Generalizability. When we consider visual The SWIFT model generates all types of sac-
tasks different from reading, many of the involvedades within a coherent framework, the dynamic
cognitive and oculomotor subsystems overlap beld theory of movement preparation (Erlhagen &
are even the same. While the tremendous vaBehiner, 2002). Thus, we proposed a single mech-
ability of stimuli in general scene perception cuanism for forward saccades, word skippings, refix-
rently precludes a fully quantitative approach fations, and regressions, whereas in the E-Z Reader
models of eye-movement control, visual searchodel, forward saccades and word skippings are
tasks which include eye movements (e.g., Hoogeraturally explained by the SAS mechanism. The
Erkelens, 1998; Gilchrist & Harvey, 2000) are googeneration of refixations is added to the model
candidate paradigms for extending and/or generlilr assuming an additional refixation program to
izing mathematical models. each of the model’s internal state, which increases

The most important complication is that in a vithe number of states from 8 to 14 (Reicleleal.,
sual search task, eye movements must be controll€98)3°
in two dimensions. Reading, however, is effec- The number of model parameters is compara-
tively a one-dimensional task, since return sweebke between SWIFT and E-Z Reader. While for
from one line of text to the next are not dominating-Z Reader, dependent measures were averaged
the reading process. Using the concept of an evobxer classes of word frequency, the fitting proce-
ing activation field in combination with Gaussiandure proposed here is word-based. As a conse-
distributed attention, it is straightforward to gerguence, the relation of number of free parameters to
eralize the SWIFT model to two-dimensional tasksumber of data points is much smaller for SWIFT.
(for avisual search task see Trukenbrod & Engbefterefore, besides offering a viable alternative to
in prep.). In E-Z Reader, attention must be directélde highly successful E-Z Reader model, we pro-
to the next item by a random process, since simulf@esed a new approach for model fitting, which per-
neous preprocessing of several items is prohibitedts the analysis of computational models to much
in the SAS framework. While we speculate thareater detail — and more reliably.
there might be an advantage for the SWIFT model,
the details of how computa_tion_al models of ey%ummary
movement control perform in visual search tasks
involving eye movements must be worked out ihhe control of eye movements during reading re-
future research, of course. guires the coordination of information processing

(d) Complexity. A general principle in the de-and action selection on many different cognitive
sign of mathematical models is to keep the modelgvels. The SWIFT model represents a psycholog-
complexity low. There is, however, no general thésally and neurophysiologically plausible compu-
ory of complexity or even of model complexityational model of how this coordination could be
(see Badii & Politi, 1997§* While an analysis of achieved in a unifying framework for almost all

model complexity might unveil new insights intdypes of eye movements observed in reading ex-
periments, i.e. forward saccades, refixations, word
%A quantitative approach to estimate model complexity hakippings, and regressions. The model can repro-
been developed recently based on the concept of minimum de-
scription length (Pittet al., 2002). This approach, however, *°In E-Z Reader 7, the internal states of the model are no
was applied to simple models rather than to more complicatedger described, but we speculate that the number is much
computational models like SWIFT and E-Z Reader. greater than 14.




Engbert et al. 45

duce a number of well-established measures of &gpenter, R.H.S. (2000). The neural control of
movement control during reading, average fixation looking. Current Biology, 10, R291-R293.

durations and fixation probabilities, distributionspéubel, H., & Schneider, W.X. (1996). Saccade tar-
within-word landing positions, inter-word regres-  get selection and object recognition: Evidence

sions. Fina”y, the SWIFT model can eXplain the for a common attentional mechanisi¥ision
inverted optimal viewing position effect of fixation  Research, 36, 1827-1837.

durations based on error-correction of miSIOCE\ffe%bel H., O'Regan, J.K., & Radach, R. (2000)

fixations. Attention, information processing, and eye
movement control. In A. Kennedy, R. Radach,
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A. Fitting model parameters  pants)x10° generations in the genetic algorithm,
which gives the order of0'" iterations. Numeri-

For the estimation of model parameters, we used# simulations were run on a cluster of 12 Apple
genetic algorithms approach. This method turneb (Dual processor) computers, which performed
out to be very efficient for the type of optimizathese computations in less than 48 hours.
tion problems we face here. The method was devel- The performance of the model is defined as
oped and successfully applied to SWIFT-I (Engbatiean squared normalized errors of fixation dura-
et al., 2002) and to a three-state SAS model (Engons and fixation probabilities per word. Fixation
bert & Kliegl, 2001). For each sentence, 200 modglirations obtained from model simulations are de-
realizations were run with a new set of pseudaoted by77, where the subscript denotes the word
random numbers. For all 850 words, 8 statistical = 1, 2, 3, ...,850) and the superscript indi-
measures were computed from these runs. cates the type of measure, i.e. first fixation duration
(j = 1), second fixation durationj(= 2), single
fixation duration { = 3), and total reading time
(j = 4).37 Next, we compute the deviation from
For the genetic algorithm (Holland, 1975; Goldthe experimentally observed vall@,
berg, 1989; Spall, 2004), we started with a pop-

Genetic algorithm procedure

ulation of 50 combinations (chromosomes) of pa- 4 850 T]z _ :F,g ?
rameter values, which were chosen randomly from Ar=>"%" o) ) (22)
the specified range for each parameter (Table 3). j=lk=1\ 7%

The individual ranges of parameters were chosen in

advance according to mathematical or plausibiliy"€rec(7j.) denotes the standard deviation of the
g}nulated fixation durations.

considerations. As an example, the predictabili ) o
P P The four different measures of fixation proba-

coefficientd in Eq. (1) is naturally restricted to the j
interval between 0 and 1. For parameters defln%t'esp , Skipping probability § = 1), probabil-
for two fixations (j = 2), probability for three

on an unlimited range, we chose a plausible ran
more fixations { = 3), and regression probabil-

of values (e.g., a range from 100 ms to 300 ms fi f
the random timer). ity (7 = 4) were evaluated in analogy to measures

Using selection, mutation and recomblnatlo?lf fixation durations,

(crossover) for the temporal evolution of the pop- 4 850 A
ulation of genes, we iterated the population for Ap = ZZ — b : (23)
several 1000 generations. A reduction of the pa- =1 k=1 (PJ)

rameter variance over the best 50 chromosomes of

the population indicated convergence of the estirherea(P,g) represent the standard deviations of
mates of model parameters. Additionally, we calhe probabilities.

culated errors of the parameter estimates from theseln order to fit the distributions of fixation du-
50 chromosomes (Tab. 3. The number of it- rations, we computed the deviation of the simu-
erations of Eq. (20), necessary for this procedueted distribution of fixation durations from the cor-
of parameter fitting, can be estimated 18 iter- responding distributions obtained from experimen-
ations x 10 sentences<10? runs (virtual partici- tal data. Distributions of average fixation durations

were calculated separately for the four measures of

36To further check the reliability of the optimization proce-
dure, several runs of the GA procedure were carried out, which®If one of the measures was not computable (e.g., for a
reproduced the results within the errorbars obtained from omerd never fixated or never fixated more than once), we ex-
simulation. cluded the specific word from this analysis.
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fixation durations from 500 bins ranging from 0 t@arameter sensitivity and model stability

500 ms in steps of 1 ms. The corresponding values. . .

were denoted byD;, with the subscript indicating Using the genetic algonthm procedure, we were
the bin ¢ = 1,2, 3, ....500) and the superscriptable to analyze_ the _evolutlon of p_aramet_ers and
indicating the fixation duration measure (aslf,jn errors over the iteration of generations (Fig. 23).

see above). Thus, we obtain a third measure of &:ér—St’ the compllcateq t|m_e—c_ourse of the best pa-
viation rameter values over time indicated the presence of

nonlinear correlations between model parameters.
4 500 CTi\ 2 Second, the noise level seen in parameter uncer-
D] — D/
(220)"

Ap = Z Z tainty decreased over the evolution of the popula-
G=1k=1 tion of chromosomes. The relative strength of pa-
rameter errors varied considerably across parame-
where V7, is the total number of fixations in eactiers. We used the errors of parameters to simulate
measure. inter-individual differences (see section on model
To fit the IOVP effects for first and single fixaparameters).
tion durations, we included an additional deviation
measure. Let us denote the average first and sin-
gle fixation duration on a word of lengthwith a
fixation position on lettef asZ!(j) andI?(j) re-
spective?y. To reduce noise iﬁ(tr)le emSiSic)al data, B. Incremental test of model
we considered only words of lengths 4 to 8, i.e. improvement

D] +1

8 k V(A TU( 2
Ary=1000> > <M> ., (25) A direct comparison of SWIFT-II with the orig-
k=4 j=0 inally proposed model SWIFT-I (Engbeet al.,
2002) is not useful due to the larger number of

wherev = 1,2 represents first and single flXafqualitative improvements introduced in SWIFT-II.

tion durations respectively. Because single fixg; s in SWIFT-1 we mainly wanted to test the as-
tions represent the majority of all fixations, we dou, i ytion of parallel processing as an alternative to
bled the weight for 7,2, i.€. SAS models. The model did not include a phys-
ical representation of space, so that words were
idealized as equally extended objects on a discrete
chain. Since a more realistic attentional gradient

Finally, we combined the above four mealy@s precluded by this approach, we used a discrete

squared error measures in a single deviation m&ur-word processing window consisting of the fix-
ated word, the two words to the right and the word

to the left of the fixated word, i.e. an asymmet-
ric perceptual span. As a consequence, SWIFT-I
Because all realizations of the model simulatiomd not account for effects of word length, varia-
are stochastic, the deviation measures, Eq. (2fons of within-word viewing positions, and oculo-
fluctuate as well. Five runs of the model (usingnotor errors. Second, the model was implemented
200 virtual participants) resulted in the followingising an English text corpus by Schilling, Rayner,
numerical valuesA = 6921 + 47, whereAr = and Chumbley (1998) with a rather limited data ba-
4223+52, Ap = 1744+27, Ap = 390+ 13, and sis (average fixation durations and fixation proba-
Ay = 565+ 27. bilities for classes of word frequency). Taken to-

A= Al,l + 2A[’2 . (26)

A=Ar+Ap+Ap+Ar. (27)
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Figure 23: Evolution of parameter values in the optimization procedure by the genetic algorithm. The
best value in each generation is indicated by the bold line, where errors are represented by the shaded
areas. The shrinkage of errors indicated the convergence of parameter values in population of chromo-
somes.
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gether, a comparison of SWIFT-II and its predecesf error correction of mislocated fixations (Prin-
sor SWIFT-1 is neither useful nor achievable in aiple VI) in Model B can explain the inverted U-
straightforward way. shape in the IOVP effect for single fixation dura-
To demonstrate the power of some of ouions (Fig. 24a). Thus, these simulations illustrate
model’s principles, however, we perform an increhat the additional value of the latency modulation
mental model comparison using two simplified ve(Principle VII) in the full model, SWIFT-II, isto re-
sions of SWIFT-II. In Model A, we did not includeproduce the IOVP effect for first fixation durations
principles VI (error correction of mislocated fixa{Fig. 24b).
tions) and VIl (saccade latency modulation), while In summary, our simulations of the SWIFT
in Model B we only removed the saccade lateneyodel suggest that the inverted optimal viewing
modulation (Principle VII). Both model versiongosition effect of single fixation durations is gen-
A and B were fitted to experimental data by therated by a mechanism of error correction of mis-
same techniques as SWIFT-II, described in Appcated fixations (Principle V1), while for first fix-
pendix AS38 ation durations it seems necessary to include a la-
Using the optimal sets of parameters for aléncy modulation of saccade programming (Prin-
three models, we performed a separate run to geiple VII) to reproduce the IOVP effect. These
erate data for an analysis of goodness-of-fit dimdings can also explain the discrepancies between
measures for fixation durations and fixation prolexperimental data and simulation results obtained
abilities (see Appendix A). Goodness-of-fit dedfrom a “toy” model (based on Principle VI) of the
creases (i.eAr andAp increase) in the reducedOVP effect discussed in a recent paper (Nuthmann
Models A and B (Table 4). Generally, we expectett al., in press).
costs (in terms of a poorer fit), if we implemented
mechanisms for the explanation of IOVP effects,
which were not compatible with implicit pattern
in the experimental data. Since goodness-of-fit in-
creased both with respect to fixation duratiofis,,
and with respect to fixation probabilities p, the
additional Principles VI and VII are compatible
with experimental data.
Next, we investigated the performance of each
of the models on the IOVP effect qualitatively. To
determine the form of the curves for average fixa-
tion durations as a function of within-word fixation
positions, we estimated coefficients for a second-
order polynomial for a plot of IOVP effects for both
first and single fixation durations (e.g., Figure 15).
The resulting polynomial fits are plotted in Figure
24. While Model A fails to reproduce any of the in-
verted U-shaped curves, the additional mechanism

%8Because the inverted optimal viewing position effect can-
not be explained by Models A and B, however, the deviation
measures for the IOVP effects of first and single fixation dura-
tion were not included in the parameter estimation procedure
(Appendix A, Eq. (27)).
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Table 4: Incremental test of model improvement.

Error statistic Model A Model B SWIFT-II
Fixation durations AT 5218 4457 4130
Fixation probabilities Ap 2894 2291 1937
IOVP (first fixations) — — +
IOVP (single fixations) — + +

C. Dynamical analysis of SWIFT (and additional oculomotor noise). During fixa-
tions, the temporal evolution of the set of acti-
The SWIFT model is a (stochastic) nonlinear dymations, Eq. (7), is a system of ordinary differ-
namical system with time-delay, a class of mo@ntial equations, which will generatéterminis-
els which can generate very rich behavior (Glagg behavior, although this system is perturbed by
& Mackey, 1988). While the complexity of behavnoise, since word processing is implemented as a
ior generated by our model is qualitatively as ri%ndom-wajk_ Because SWIFT combines proper-
as the experimentally observed eye movements, {R& of stochastic and deterministic dynamical sys-
mathematical analysis of model simulations prgems, we investigate the degree of determinism of
vides new insight into the underlying principles ohe dynamics.
eye-movement control. Our analysis is based on|p the first step of our ana|ysi37 we compare sev-
concepts developed in the theory of dynamical s¥sral runs of the model in the same plot of the set of
tems (Guckenheimer & Holmes, 1983; Kaplan &ctivations{a,,(t)} over timet (Figure 25). While
Glass, 1995; Strogatz, 1994). the time evolutions of activations are rather similar
The SWIFT model is based on the set®f, across runs for the first words of the sentence, the
lexical activations{a,(t)}, whereN,, is the num- piot indicates that there is a fast divergence of the
ber of words in a given sentence. Thus, the ditajectories between different model runs towards
namical behavior can be representated inNa+  the end of the sentence. Thus, we cannot directly
dimensional state spaé& Here, we show that thecompute the variance of trajectories from a simple
dynamical behavior can actually be approximatefiot of activations over time.
by a simpler system in two dimensions during each One solution to this problem is to trace the time-
fixation. Analyses of this type may prove very useswolution of deterministic dynamical systems in a
ful for comparing computational models of eyeyector space, called thghase space. The phase
movement control in reading with respect to undespace is important for uniquely defining the dy-
lying model complexity. namical state of the model, which permits (short-
The two main sources oftochasticity are re- term) predictions of its future temporal evolution.
lated to saccade timing and saccade target selgCSWIFT, the change of activation during fixation
tion, since the temporal control of fixation duracan be visualized in a vector space with as many
tion is performed by an autonomous saccade gefimensions as there are words in a given sentence,
erator, which produces stochastic intervals, and & the phase spacel§,-dimensional. During fix-
spatial control of fixation position is performed bwtion of word,, however, the activations for most of
a stochastic target selection mechanism, Ed. (1ffe words is close to zero (see Figure 25). This is
%9For the representation of a dynamical system, we use ﬁ?eﬂeCted by the observation that the most frequent
more rigorous concept of thehase space as described below. Saccades are (one-word) forward saccadd$],
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Figure 24: Average IOVP curves in different model versions. (a) Results for single fixation durations.
The I0OVP effect is generated by SWIFT and Model B (without latency modulation), while Model A
(without error correction of mislocated fixations) cannot reproduce the inverted form of the curve. (b)
Results for first fixation durations. The inverted form of the fixation duration as a function of within-
word fixation position is reproduced by SWIFT, while the reduced Models A and B fail to explain the
IOVP effect.

word skippings (two-words forward,9%) and re- the left triangle of the panels. A glance at the plot
fixations (16%). Thus, activations.,(t), a,+1(t) in Figure 26a shows that the trajectories are rather
and a,;2(t) capture the dynamics iR9% of all erratic.
saccades. Therefore, we introduce tbeally re- To extract thephase flow generated by the
duced phase space for fixation on wgyds the vec- SWIFT model, we compute average directional
tor spac€a,(t), anti(t), anta(t)). vectors from many runs of the model in a coarse-
A further reduction of the dimension of thegrained version of the locally reduced phase space
locally reduced phase space is obtained by tRe(Kaplan & Glass, 1992)° The phase spac®
mapping from activationga,(¢t)} to probabilities is coarse-grained into a 220 grid. Each pask
{mn(t)}, Eq. (10). The fact that saccades targetf a trajectory through box generates a vector of
ing wordsn, n + 1, andn + 2 represent89% unit length, called the trajectory vectoy;. After
of all saccades is reflected by the observation trsitnulation of 200 trajectories, we calculate the re-
7o (t)+ 741 (t)+mr12(t) =~ 1forall t. As aconse- sultant vector from the vector addition of all passes
qguence, we can eliminatg, (t) as dynamical vari- through the box,
able, i.e. the dimension is further reduced by one.
Therefore, we use the two-dimensional locally re-
duced phase spa@®, = (m,+1(t), mni2(t)) (dur-
ing fixation of word,) for the analysis of SWIFT
(Figure 26a). For each run of the model we olheren; is the number of passes through bpx

tain atrajectory in phase_spage. Sinag, 11(t) + “0This method was originally proposed for the analysis of
mnt2(t) < 1 for all ¢, trajectories are bounded tQyperimental data.
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Figure 25: Temporal evolution of activatiofs,,(¢)} for N = 20 runs of the SWIFT model using sen-
tence 17 of the Potsdam Sentence Corpus. The temporal evolution of the model induces a fast separation
of activations between different runs.

The result is a coarse-grained estimate of the vecdbath word, 1 and worg, ., » will be completely pro-
field of the model (Figure 26b). cessed, i.e. the origin of the planeg®bally ab-

To describe the time evolution qualitatively, weorbing.
use the illustration in Figure 27. Trajectories enter The qualitative analysis demonstrates that the
the plane, when fixation on wogdstarts, i.ea, (t) time-evolution of the set of lexical activations
dominates the set of activations. Therefore, trahows clear properties of a deterministic dynami-
jectories start with small values,,.; > m,y2, cal system. This is a qualitative difference to SAS
since word ; typically received more previewmodels, which are based on stochastic transition
than worg, 2. Because lexical processing rate willules for a finite number of internal states (Reichle
be higher for worg,; than for word, o, the tra- etal., 1998; Engbert & Kliegl, 2001). Furthermore,
jectory will show a slope< 1 initially. When- the dynamics are low-dimensional and can be de-
ever pointF' is reached, a forward saccade wiblicribed by the two variables,; andn, 2. The
occur with probability one, since,; = 1 and N,-dimensional phase space collapses onto a two-
mh+2 = 0. Alternatively, the skipping pointS dimensional subspace, where the dynamical behav-
can be reached by the trajectory, which resultsior of the model unfolds. Thus, while the SWIFT
a skipping, because,,; = 0 andm,.o = 1. model can potentially generate high-dimensional
For infinitely long fixation durations on woggd behavior, i.e. parallel processing of many words,
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Figure 26: Visualization of SWIFT’s temporal evolution in reduced phase space. (a) Plot of probabilities
Tnt2(t) versusr,1(t) during fixation of worgl for 20 runs of the model. (b) Phase flow estimated by
average directional vectors in a coarse-grained version of the locally reduced phas® $paoe200

runs.
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Figure 28: Results on gaze duration and traditionally defined first fixation duration. (a) Fixation duration
as a function of word frequency class. (b) Fixation duration as a function of word length.

D. Results on gaze duration

An important measure of eye-movement behavior
skipping during reading is gaze duration, which is defined
point 5 1 as the sum of the duration of the first fixation and
the durations of all direct refixations. We argued
that gaze duration might be not a good measure of
fixation duration for model fitting, because it repre-
7, (D) sents a processing measure from a variety of differ-

ent eye trajectories. For the same reason, we used
> an alternative definition of first fixation duration,
i.e. first fixation duration is the average of the dura-
tions of all first fixations, which are followed by at
least a second fixations. This definition explicitly
excludes cases of single fixations.
To complement the simulation results, however,

Figure 27: Schematic illustration of the phase flowe present the results on gaze duration and on the

in locally reduced phase spafeduring fixation of traditional measure of first fixation duration (in-

word,,. cluding single fixations) in Figure 28.

Finally, we would like to note that there is no

. o , , .. single measure of fixation duration which give a

the_ d)lllnarrr\ucal behaV|or. IS Iow-d|m_en5|ona| WIt%omprehensive characterization of processing time.

typically three words activated at a time. This fact is adequately reflected in Rayner’s (1998,
p. 377) statement: “It thus appears that any single
measure oprocessing time per word is a pale re-
flection of the reality of cognitive processing.”

>

absorbing (1) forward
point A saccade F
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