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0Abstract
Boolean Satisfiability (SAT) is one of the problems at the core of theoretical

computer science. It was the first problem proven to be NP-complete by Cook

and, independently, by Levin. Nowadays it is conjectured that SAT cannot be

solved in sub-exponential time. Thus, it is generally assumed that SAT and its

restricted version 𝑘-SAT are hard to solve. However, state-of-the-art SAT solvers

can solve even huge practical instances of these problems in a reasonable amount

of time.

Why is SAT hard in theory, but easy in practice? One approach to answering

this question is investigating the average runtime of SAT. In order to analyze this

average runtime the random 𝑘-SAT model was introduced. The model generates

all 𝑘-SAT instances with 𝑛 variables and 𝑚 clauses with uniform probability.

Researching random 𝑘-SAT led to a multitude of insights and tools for analyzing

random structures in general. One major observation was the emergence of

the so-called satisfiability threshold: A phase transition point in the number of

clauses at which the generated formulas go from asymptotically almost surely

(a. a. s. ) satisfiable to a. a. s. unsatisfiable. Additionally, instances around the

threshold seem to be particularly hard to solve.

In this thesis we analyze a more general model of random 𝑘-SAT that we

call non-uniform random 𝑘-SAT. In contrast to the classical model each of the

𝑛 Boolean variables now has a distinct probability of being drawn. For each of

the𝑚 clauses we draw 𝑘 variables according to the variable distribution and

choose their signs uniformly at random. Non-uniform random 𝑘-SAT gives us

more control over the distribution of Boolean variables in the resulting formulas.

This allows us to tailor distributions to the ones observed in practice. Notably,

non-uniform random 𝑘-SAT contains the previously proposed models random

𝑘-SAT, power-law random 𝑘-SAT and geometric random 𝑘-SAT as special cases.

We analyze the satisfiability threshold in non-uniform random 𝑘-SAT depend-

ing on the variable probability distribution. Our goal is to derive conditions on

this distribution under which an equivalent of the satisfiability threshold con-

jecture holds. We start with the arguably simpler case of non-uniform random

2-SAT. For this model we show under which conditions a threshold exists, if it is

sharp or coarse, and what the leading constant of the threshold function is. These

are exactly the three ingredients one needs in order to prove or disprove the

satisfiability threshold conjecture. For non-uniform random 𝑘-SAT with 𝑘 ≥ 3

we only prove sufficient conditions under which a threshold exists. We also

show some properties of the variable probabilities under which the threshold

is sharp in this case. These are the first results on the threshold behavior of

non-uniform random 𝑘-SAT.
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0Zusammenfassung

Das Boolesche Erfüllbarkeitsproblem (SAT) ist eines der zentralsten Probleme der

theoretischen Informatik. Es war das erste Problem, dessen NP-Vollständigkeit

nachgewiesen wurde, von Cook und Levin unabhängig voneinander. Heutzutage

wird vermutet, dass SAT nicht in subexponentialler Zeit gelöst werden kann.

Darumwird allgemein angenommen, dass SAT und seine eingeschränkte Version

𝑘-SAT nicht effizient zu lösen sind. Trotzdem können moderne SAT solver sogar

riesige Echtweltinstanzen dieser Probleme in angemessener Zeit lösen.

Warum ist SAT theoretisch schwer, aber einfach in der Praxis? Ein Ansatz

um diese Frage zu beantworten ist die Untersuchung der durchschnittlichen

Laufzeit von SAT. Um diese durchschnittliche oder typische Laufzeit analysieren

zu können, wurde zufälliges 𝑘-SAT eingeführt. Dieses Modell erzeugt all 𝑘-SAT-

Instanzen mit 𝑛 Variablen und𝑚 Klauseln mit gleicher Wahrscheinlichkeit. Die

Untersuchung des Zufallsmodells für 𝑘-SAT führte zu einer Vielzahl von Erkennt-

nissen und Techniken zur Untersuchung zufälliger Strukturen im Allgemeinen.

Eine der größten Entdeckungen in diesem Zusammenhang war das Auftreten

des sogenannten Erfüllbarkeitsschwellwerts: Ein Phasenübergang in der Anzahl

der Klauseln, an dem die generierten Formeln von asymptotisch sicher erfüllbar

zu asymptotisch sicher unerfüllbar wechseln. Zusätzlich scheinen Instanzen, die

um diesen Übergang herum erzeugt werden, besonders schwer zu lösen zu sein.

In dieser Arbeit analysieren wir ein allgemeineres Zufallsmodell für 𝑘-SAT,

das wir nichtuniformes zufälliges k-SAT nennen. Im Gegensatz zum klassischen

Modell, hat jede Boolesche Variable jetzt eine bestimmte Wahrscheinlichkeit

gezogen zu werden. Für jede der 𝑚 Klauseln ziehen wir 𝑘 Variablen entspre-

chend ihrer Wahrscheinlichkeitsverteilung und wählen ihre Vorzeichen uniform

zufällig. Nichtuniformes zufälliges 𝑘-SAT gibt uns mehr Kontrolle über die Vertei-

lung Boolescher Variablen in den resultierenden Formeln. Das erlaubt uns diese

Verteilungen auf die in der Praxis beobachteten zuzuschneiden. Insbesondere

enthält nichtuniformes zufälliges 𝑘-SAT die zuvor vorgestellten Modelle zufälli-

ges 𝑘-SAT, skalenfreies zufälliges 𝑘-SAT und geometrisches zufälliges 𝑘-SAT als

Spezialfälle.

Wir analysieren den Erfüllbarkeitsschwellwert in nichtuniformem zufälli-

gen 𝑘-SAT abhängig von den Wahrscheinlichkeitsverteilungen für Variablen.

Unser Ziel ist es, Bedingungen an diese Verteilungen abzuleiten, unter denen

ein Äquivalent der Erfüllbarkeitsschwellwertsvermutung für zufälliges 𝑘-SAT

gilt. Wir fangen mit dem wahrscheinlich einfacheren Modell nichtuniformem

zufälligen 2-SAT an. Für dieses Modell zeigen wir, unter welchen Bedingungen

ein Schwellwert existiert, ob er steil oder flach ansteigt und was die führende

Konstante der Schwellwertfunktion ist. Das sind genau die Zutaten, die man

v



benötigt um die Erfüllbarkeitsschwellwertsvermutung zu bestätigen oder zu

widerlegen. Für nichtuniformes zufälliges 𝑘-SAT mit 𝑘 ≥ 3 zeigen wir nur

hinreichende Bedingungen, unter denen ein Schwellwert existiert. Wir zeigen

außerdem einige Eigenschaften der Variablenwahrscheinlichkeiten, die dazu

führen, dass der Schwellwert steil ansteigt. Dies sind unseres Wissens nach die

ersten allgemeinen Resultate zum Schwellwertverhalten von nichtuniformem

zufälligen 𝑘-SAT.
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1 Introduction

Boolean Satisfiability (SAT) is one of the problems at the core of theoretical

computer science. It was the first problem proven to be NP-complete by Stephen

A. Cook in 1971 [Coo71] and, independently, by Leonid Levin in 1973 [Lev73].

The notion of NP-hardness gave rise to a whole class of NP-complete problems

via polynomial-time reductions from SAT [GJ79; Kar72]. Answering the question

whether SAT or any other NP-complete problem can be solved in polynomial

time is still one of the most important open questions in theoretical computer

science.

Despite decades of research, no polynomial time algorithm for solving SAT

or its restricted version 𝑘-SAT has been found. In fact, no algorithm has been

found that substantially improves upon a running time of 𝛩 (2𝑛) for SAT or

𝛩 (2𝑐 ·𝑛) for 𝑘-SAT, where 𝑐 > 0 is a small constant. This caused the proposal

of another conjecture called the Exponential Time Hypothesis (ETH) [IP99],

which claims that 3-SAT can only be solved in time 𝛺 (2𝑠3 ·𝑛) for some constant

𝑠3 > 0. A slightly stronger version, the Strong Exponential Time Hypothesis

(SETH) [CIP09], claims that SAT cannot be solved in time O(2𝑠 ·𝑛) for a constant
𝑠 < 1. The assumptions of ETH and SETH, just like assuming P≠ NP, can be used

to derive lower bounds on the time to solve other problems, even such problems

that are solvable in polynomial time [LMS11]. Thus, it is generally assumed that

SAT and 𝑘-SAT are hard to solve. However, state-of-the-art SAT solvers can

solve huge instances with millions of variables that stem from practical problems

(so called industrial instances) in a reasonable amount of time. This begs the

question: Why is SAT hard in theory, but easy in practice?

There are several approaches that try to explain the gap between the theo-

retical and practical hardness of SAT. One possible explanation is that SAT is

generally easy except for a small core of hard-to-solve instances. In order to

see if this can be the case, one can imagine the following experiment: Draw

uniformly at random from all possible 𝑘-SAT instances with 𝑛 variables and𝑚

clauses and see how hard to solve they are on average. If the number of hard-

to-solve instances was sufficiently small, the average hardness of SAT would

still be small as well. This approach of drawing formulas in 𝑘-CNF uniformly

is known as random 𝑘-SAT and has been studied extensively. The analysis of

random 𝑘-SAT resulted in a multitude of insights and new techniques for the

analysis of Boolean Satisfiability and random structures in general.

It was observed that for random 𝑘-SAT there is a phase transition in the

number of clauses 𝑚, where instances transition from being satisfiable with

probability tending to one to being satisfiable with probability tending to zero.

The number of clauses at which this happens is called the satisfiability threshold.

1



Chapter 1 Introduction

Proving the existence, behavior, and exact position of the satisfiability threshold

rigorously turned out to be a challenging task for 𝑘 ≥ 3. It has been and still is

the subject of many theoretical works.

The position and behavior of the satisfiability threshold also seem to have

influence on the running time of SAT solvers. Mitchell et al. [MSL92] found

that the median running time of DPLL scales exponentially for random 𝑘-SAT

instances generated around or slightly above the threshold. As it turned out, this

is due to a deep-seeded connection between the DPLL algorithm and resolution

proofs. The resolution proof system is a refutation technique for propositional

and first-order logic. The technique only uses a single rule to resolve two clauses

into a resolvent clause. If a number of resolution steps on the original or derived

clauses yields a contradiction, the formula is unsatisfiable. The sequence of

clauses in these steps can then be used as a certificate of unsatisfiability. The

minimum number of steps necessary to arrive at a contradiction is called the

resolution size of the formula. The resolution rule was introduced by Davis and

Putnam, who also introduced the DP [DP60] (later DPLL) algorithm for SAT

solving as an application of the resolution proof system. The algorithm was

later extended to the conflict-driven clause learning algorithm (CDCL) [JS97;

SS96], which is the basis for many state-of-the art SAT solvers. Thus, there is a

direct connection between resolution, DPLL, and CDCL. More precisely, it was

shown that DPLL is polynomially equivalent to tree-like resolution [Bee06] and

CDCL with unlimited restarts is polynomially equivalent to resolution [BS14;

PD11]. Therefore, lower bounds on the (treelike) resolution size directly translate

to lower bounds on the running time of (DPLL) CDCL. Due to Chvátal and

Szemerédi [CS88] with probability approaching one the treelike and general

resolution size of random 𝑘-SAT instances generated around the satisfiability

threshold is exponential. Thus, both DPLL and CDCL need exponential time

on random 𝑘-SAT instances generated around the threshold. This means, for

state-of-the-art solvers the average 𝑘-SAT instance is still hard. This indicates

that our assumption that SAT is easy except for a small core of hard-to-solve

instances might be wrong.

Another possible explanation for the observed discrepancy between theory

and practice is that SAT is generally hard, but industrial SAT instances form

a class, whose properties make them easier to solve. Ansótegui et al. [AGL12]

found that industrial SAT instances exhibit unusually high community struc-

ture, i. e. there are variables that tend to appear together in clauses. They also

found [ABL09a; ABL09b; Ans+15] that in some families of industrial instances

the frequencies of variables follow a power law, i. e. the fraction of variables

that appear 𝑖 times is proportional to 𝑖−𝛽 for some constant 𝛽 . It is still an open

question which properties exactly some classes of practical SAT instances have

in common. However, if we assume the ones we know or suspect, we can con-

centrate on instances with those properties. Again, there are several avenues to

pursue this idea. Either we define a class of instances with the suspected proper-

2



Scope of this Thesis Section 1.1

ties or we consider random models generating instances with those properties

to analyze their average-case behavior.

1.1 Scope of this Thesis

In this thesis we want to study random 𝑘-SAT models with given expected

distributions of variable frequencies. We want to analyze how these distribu-

tions influence the satisfiability threshold and the hardness of solving instances.

This would help to answer the question if the efficiency of state-of-the-art SAT

solvers on industrial instances is due to the variable frequency distribution of

those instances only or if it is due to other properties as well. To this end, we

introduce a generalization of the random 𝑘-SAT model with given expected

variable frequencies. We call this model non-uniform random 𝑘-SAT as it draws

the Boolean variables for each clause according to a non-uniform probability

distribution. This probability distribution on the Boolean variables acts as an

expected frequency distribution.

We are going to analyze how the input distribution influences the position

and behavior of the satisfiability threshold. More precisely, we are interested in

the following questions:

1. Is there a threshold? We say that there is a satisfiability threshold, if there is

a function𝑚★
for the number of clauses such that if we draw asymptotically

fewer clauses the probability to generate satisfiable instances tends to one

and if we draw asymptotically more clauses, the probability to generate

satisfiable instances tends to zero. This function𝑚★
can also depend on

the input parameters.

2. Is the threshold sharp? If we already know that there is a threshold at some

function 𝑚★
, we can investigate how steep the probability to generate

satisfiable instances declines in that range. We say that the threshold

is sharp if there is a range asymptotically smaller than𝑚★
in which the

probability drops from tending to one to tending to zero. If this is not the

case, e. g. if the probability slowly decreases as we increase the leading

constant of𝑚★
, we say that the threshold is coarse. More intuitively, a

sharp threshold approaches a step function as we increase the number of

variables 𝑛, while a coarse threshold does not.

3. What is the exact threshold position? If we know that there is a sharp

threshold, we can try and find the leading constant of𝑚★
at which the

probability to generate satisfiable instances declines from tending to one

to tending to zero.

The properties we are interested in were first defined for random 𝑘-SAT. The

satisfiability threshold conjecture makes an assumption on how the threshold of

random 𝑘-SAT behaves. Intuitively, the conjecture states that for every 𝑘 ≥ 2

3



Chapter 1 Introduction

there is a sharp threshold at some𝑚★ = 𝑟★ ·𝑛 and that the leading constant of that
threshold converges to some constant 𝑟𝑘 as the number of variables increases.

We want to see for which input distributions an equivalent of this conjecture

holds for non-uniform random 𝑘-SAT.

1.1.1 State of the Art

There is a large body of work on random 𝑘-SAT, but different random SAT

models have been proposed as well. In regular random 𝑘-SAT [BC16; Bou+05;

CW18; Rat+10] instances are generated so that each variable appears at most

one time more often than any other variable. In (2 + 𝑝)-SAT [Ach+01; Mon+96;

Mon+99; MZ97] instances are generated such that a 𝑝 fraction of clauses contain

3 literals (variables or their negation) while all others contain 2 literals. In random

geometric 𝑘-SAT [BP14] literals are distributed uniformly in the euclidean plane

and a clause is generated for each set of 𝑘 literals with a certain distance to each

other. However, these models are not motivated by modeling the properties of

industrial instances.

So, what are the properties of industrial SAT instances? At least for some fami-

lies of industrial instances their properties include community structure [AGL12],

i. e. certain sets of variables tend to appear together in clauses, and power-law

distributed variable frequencies [ABL09a; ABL09b; Ans+15], i. e. there is a 𝑖−𝛽

fraction of variables that appear 𝑖 times in total. In the following we present

some random SAT models that take these properties into account explicitly.

Giráldez-Cru and Levy [GL15] proposed the Community Attachment Model,

which creates random formulas with clear community structure. This model

has already been studied by Mull et al. [MFS16], who show that unsatisfiable

instances generated by it have exponentially long resolution proofs with high

probability. Thus, instances generated with the model cannot be solved fast

by CDCL- and DPLL-based SAT solvers. Ansótegui et al. [ABL09b] proposed

two models, power-law random 𝑘-SAT, which assumes a power-law distribution,

and geometric random 𝑘-SAT, which assumes a geometric distribution. They

show empirically, that instances of their models generated at the satisfiability

threshold can be solved faster by state-of-the-art solvers than instances of random

𝑘-SAT generated at the satisfiability threshold. However, they do not show any

rigorous results on the satisfiability thresholds of their models or the proof

complexity of unsatisfiable instances generated by them. Recently, Giráldez-

Cru and Levy [GL17] also introduced the popularity-similarity model, which

incorporates both power-law degree distribution and community structure. Like

almost all other models inspired by industrial instances this one lacks theoretical

work regarding the satisfiability threshold.

Our thesis aims at proving properties of the satisfiability threshold for non-

uniform random 𝑘-SAT, a generalization of the power-law random 𝑘-SAT and

geometric random 𝑘-SAT models by Ansótegui et al. [ABL09b]. These properties

and the satisfiability threshold conjecture were originally defined for random

4



Contribution and Outline Section 1.2

𝑘-SAT and there is a large body of work on them. Chvátal and Reed [CR92] and,

independently, Goerdt [Goe96] proved the conjecture for 𝑘 = 2 and showed that

𝑟2 = 1. For larger values of 𝑘 upper and lower bounds have been established,

e. g. , 3.52 ≤ 𝑟3 ≤ 4.4898 [Día+09; HS03; KKL06]. Methods from statistical

mechanics [MPZ02] were used to derive a numerical estimate of 𝑟3 ≈ 4.26. Coja-

Oghlan and Panagiotou [Coj14; CP16] showed a bound (up to lower order terms)

of 𝑟𝑘 = 2
𝑘
log 2− 1

2
(1+ log 2)±𝑜𝑘 (1) for 𝑘 ≥ 3. Finally, Ding et al. [DSS15] proved

the exact position of the threshold for sufficiently large values of 𝑘 . Their results

imply that the satisfiability threshold conjecture holds for these large values.

Still, for 𝑘 between 3 and the values determined by Ding et al. the conjecture

remains open. Except for the special case of random 𝑘-SAT, no rigorous results

on the threshold behavior of non-uniform random 𝑘-SAT were known prior to

our work.

1.2 Contribution and Outline

In this thesis we contribute to the research on random SAT models. We ana-

lyze non-uniform random 𝑘-SAT, a generalization of the seminal random 𝑘-SAT

model. Non-uniform random 𝑘-SAT differs from random 𝑘-SAT by including a

probability distribution over Boolean variables according to which the variables

for each clause are drawn. This input probability distribution acts as an ex-

pected frequency distribution of the Boolean variables that appear in generated

instances. For this model we want to answer two questions: First, how does

the satisfiability threshold behave? Second, how hard is it to solve instances

of the model? Answers to both questions depend on the variable probability

distribution the model gets as input. Our goal is to identify how these distri-

butions influence the behavior of the satisfiability threshold and the resolution

size of generated instances. This will allow us to judge if non-uniform random

𝑘-SAT with "realistic" input distributions can be used to explain the behavior of

state-of-the-art solvers on industrial SAT instances or if a more involved model,

which captures more properties of real-world instances, will be necessary. How-

ever, due to space limitations this thesis only aims to answer the first question

in detail. Results regarding the hardness and resolution size of non-uniform

random 𝑘-SAT will only be discussed briefly in the last chapter.

Some of the chapters of this thesis are based on joint work with other re-

searchers. In this case, we mention and highlight their contributions at the

beginning of a chapter. We now give an overview over the chapters of this thesis

and their contents.

In Chapter 2 we introduce the mathematical background and notation nec-

essary for this work. As our results heavily rely on probability theory, we will

introduce the stochastic tools and knowledge necessary to derive them.

In Chapter 3 we formally introduce the random 𝑘-SAT model and satisfiabil-

ity thresholds. This especially includes the following properties and concepts
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Chapter 1 Introduction

related to satisfiability thresholds: 1. asymptotic thresholds, 2. sharp and coarse

thresholds, and 3. the satisfiability threshold conjecture. Afterward, we formally

introduce non-uniform random 𝑘-SAT and show how to generalize the satisfia-

bility threshold and related concepts to this new model. We conclude the chapter

by presenting some notable special cases of non-uniform random 𝑘-SAT, which

will serve as examples throughout this thesis.

In Chapter 4 we analyze the threshold behavior of non-uniform random 2-SAT.
Random 2-SAT exhibits a similar threshold behavior as random 𝑘-SAT for 𝑘 ≥ 3,

but due to the simpler structure of formulas in 2-CNF this behavior is much

easier to analyze. Chvátal and Reed [CR92] derived the exact threshold position

and the sharpness of the threshold for random 2-SAT. Their results proved the

satisfiability threshold conjecture for 𝑘 = 2. We use techniques similar to those

of Chvátal and Reed to analyze non-uniform random 2-SAT. Depending on the

input probability distribution, we derive the asymptotic threshold position, if

the threshold is coarse or sharp, and, in case of a sharp threshold, the exact

threshold position up to leading constant factors. This completely characterizes

the behavior of the satisfiability threshold for non-uniform random 2-SAT and

generalizes the results of Chvátal and Reed [CR92].

Chapter 5 is dedicated to proving the existence of satisfiability thresholds

in non-uniform random 𝑘-SAT with 𝑘 ≥ 3. Due to the more complex nature

of formulas in 3-CNF compared to those in 2-CNF this requires more involved

tools and techniques. We derive a range of results that allow us to prove the

existence and asymptotic position of satisfiability thresholds in non-uniform

random 𝑘-SAT depending on the input probability distributions.

In Chapter 6 we study the sharpness of the satisfiability threshold in non-

uniform random 𝑘-SAT with 𝑘 ≥ 3. We derive sufficient conditions for the

satisfiability threshold to be sharp depending on both the input probability

distribution and the asymptotic threshold position. The main result of this

chapter generalizes a result from the seminal work of Friedgut [Fri99], who

showed that the satisfiability threshold of random 𝑘-SAT is sharp, even if its

exact position is not known.

Chapter 7 concludes this thesis with a discussion of the results and a compila-

tion of open problems regarding satisfiability thresholds and resolution size of

non-uniform random 𝑘-SAT. It also contains some of our more recent results

that did not make it into the thesis.
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2 Preliminaries

In this chapter we introduce notation, mathematical concepts, and probabilistic

methods used throughout this thesis. We assume that the reader knows the

basics of mathematics and probability theory. Thus, we will only introduce more

advanced concepts.

2.1 Notation

We use blackboard bold letters to denote number sets. N denotes the set of

natural numbers including zero and R denotes the set of real numbers. We let

R+
denote the set of positive real numbers. For any 𝑥,𝑦 ∈ R with 𝑥 ≤ 𝑦 we let

[𝑥,𝑦] = {𝑧 ∈ R | 𝑥 ≤ 𝑧 ≤ 𝑦} denote the closed interval of real numbers from 𝑥

to 𝑦. We denote open intervals with round instead of square brackets. For any

𝑚,𝑛 ∈ N we let [𝑚 . . . 𝑛] = [𝑚,𝑛] ∩ N and [𝑛] = [1 . . . 𝑛]. Also, we let P(·)
denote the power set and let P𝑘 (·) denote the set of cardinality-𝑘 elements of

the power set.

For a real-valued function 𝑓 and 𝑐 ∈ R we let lim𝑥→𝑐 𝑓 (𝑥) denote the limit of

𝑓 as 𝑥 approaches 𝑐 . For a sequence 𝑎1, 𝑎2, . . . of real numbers we let lim𝑛→∞ 𝑎𝑛
denote the limit of 𝑎𝑛 as 𝑛 approaches infinity. It holds that lim𝑛→∞ 𝑎𝑛 = 𝐿 if

and only if for every real number 𝜀 > 0 there is an 𝑛0 ∈ N so that for all 𝑛 > 𝑛0
we have |𝑎𝑛 − 𝐿 | < 𝜀. Furthermore, we will use Landau notation. That means,

for two real-valued functions 𝑓 and 𝑔 defined on the same unbounded subset of

R+
we use the following notation:

• 𝑓 ∈ O(𝑔) ⇔ ∃ 𝜀 > 0 ∃ 𝑛0 ∀ 𝑛 > 𝑛0 : |𝑓 (𝑛) | ≤ 𝜀 · 𝑔(𝑛),

• 𝑓 ∈ 𝛩 (𝑔) ⇔ ∃ 𝜀1 > 0 ∃ 𝜀2 > 0 ∃ 𝑛0 ∀ 𝑛 > 𝑛0 : 𝜀1 · 𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝜀2 · 𝑔(𝑛),

• 𝑓 ∈ 𝛺 (𝑔) ⇔ ∃ 𝜀 > 0 ∃ 𝑛0 ∀ 𝑛 > 𝑛0 : 𝑓 (𝑛) ≥ 𝜀 · 𝑔(𝑛),

• 𝑓 ∈ 𝑜 (𝑔) ⇔ ∀ 𝜀 > 0 ∃ 𝑛0 ∀ 𝑛 > 𝑛0 : |𝑓 (𝑛) | ≤ 𝜀 · 𝑔(𝑛), and

• 𝑓 ∈ 𝜔 (𝑔) ⇔ ∀ 𝜀 > 0 ∃ 𝑛0 ∀ 𝑛 > 𝑛0 : |𝑓 (𝑛) | ≥ 𝜀 · |𝑔(𝑛) |.

The definitions of limits and Landau symbols will be used heavily when dealing

with satisfiability thresholds in this thesis. Thus, it is important to state those

definitions explicitly. Another definition we use to compare functions is the

following. For two functions 𝑓 , 𝑔 : 𝑋 → Rwhich are defined on the same domain

𝑋 we write 𝑓 ≤ 𝑔 iff for all 𝑥 ∈ 𝑋 it holds that 𝑓 (𝑥) ≤ 𝑔(𝑥).

7



Chapter 2 Preliminaries

2.2 Probability Theory

In this section we introduce concepts related to probability theory that we will

use in this thesis. This includes probability spaces, random variables, conditional

probabilities, and expected values. For a more thorough introduction to the topic,

we refer to the text book by Mitzenmacher and Upfal [MU05].

2.2.1 Probability Spaces and Events

A probability space is a triple (𝛺, F , Pr), where the sample space 𝛺 is the set

of all possible outcomes of the random process, the family of sets F ⊆ P(𝛺)
represents all allowable events, and Pr : F → [0, 1] is a probability measure,
assigning probabilities to all events from F . An element of 𝛺 is also called an

elementary event. Throughout this thesis we will mostly omit the probability

space if it is clear from context.

We write Pr[𝐴] to denote the probability of an event 𝐴 and we say that an

event 𝐴 occurs with high probability (w. h. p.) iff Pr[𝐴] ∈ O(1/poly(𝑛)) and
asymptotically almost surely (a. a. s.) iff Pr[𝐴] ∈ 𝑜 (1).
For events 𝐴 and 𝐵 with Pr[𝐵] > 0 the conditional probability that 𝐴 occurs

given that event 𝐵 occurs is Pr[𝐴 | 𝐵] = Pr[𝐴 ∩ 𝐵]/Pr[𝐵]. Essentially, we

define 𝐵 as the new sample space and normalize all probabilities by dividing by

Pr[𝐵]. In this thesis we will make use of the following theorem, which derives

the probability of an event 𝐴 if only conditional probabilities of the event on a

partitioning of the sample space 𝛺 are known.

▶ Theorem 2.1 (Law of Total Probability [MU05, Theorem 1.6]). Let 𝐵1,
𝐵2, . . ., 𝐵𝑛 be mutually disjoint events in the sample space𝛺 , and let

⋃𝑛
𝑖=1 𝐵𝑖 = 𝛺 .

Then

Pr[𝐴] =
𝑛∑︁
𝑖=1

Pr[𝐴 ∩ 𝐵𝑖] =
𝑛∑︁
𝑖=1

Pr[𝐴 | 𝐵𝑖] · Pr[𝐵𝑖] .

◀

2.2.2 Random Variables

In this thesis we will analyze the number of certain sub-structures appearing in

randomly generated discrete structures. In order to do so we use the concept

of random variables. Formally a random variable is any function 𝑋 : 𝛺 → R.

However, we will only consider discrete random variables, i. e. random variables

with a countable range.

Formally for a random variable 𝑋 with range rng(𝑋 ) the probability that 𝑋

takes a value 𝑥 ∈ rng(𝑋 ) is

Pr

[
𝑋−1(𝑥)

]
=

∑︁
𝑠∈𝛺 : 𝑋 (𝑠)=𝑥

Pr[𝑠] .
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We denote this event with {𝑋 = 𝑥} and write Pr[𝑋 = 𝑥] to denote its probability.
Furthermore, we use {𝑋 ≥ 𝑥} to denote the union of all events {𝑋 = 𝑦} with
𝑦 ≥ 𝑥 .

We say that two random variables 𝑋 and 𝑌 are independent iff for all values

𝑥 ∈ rng(𝑋 ) and 𝑦 ∈ rng(𝑌 ) Pr[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)] = Pr[𝑋 = 𝑥] · Pr[𝑌 = 𝑦].
Random variables 𝑋1, 𝑋2, . . ., 𝑋𝑛 are mutually independent iff for any subset

𝐼 ⊆ [𝑛] and any values 𝑥𝑖 ∈ rng(𝑋𝑖), 𝑖 ∈ 𝐼 , Pr[
⋂
𝑖∈𝐼 𝑋𝑖 = 𝑥𝑖] =

∏
𝑖∈𝐼 Pr[𝑋𝑖 = 𝑥𝑖].

2.2.3 Expected Values

One important feature of a random variable that we will use throughout this

thesis is its expected value. Intuitively, this is the average value that a random

variable will take according to its distribution. The expected value of a discrete
random variable 𝑋 , denoted by 𝔼[𝑋 ], is

𝔼[𝑋 ] =
∑︁

𝑥 ∈rng(𝑋 )
𝑥 · Pr[𝑋 = 𝑥] =

∑︁
𝜔 ∈𝛺

𝑋 (𝜔) · Pr[{𝜔}] .

The expected value is finite if

∑
𝑥 ∈rng(𝑋 ) |𝑥 | · Pr[𝑋 = 𝑥] converges, otherwise it

is unbounded. In this thesis we will only consider finite expected values.

The following very useful theorem holds for the expected value of a sum of

random variables.

▶ Theorem 2.2 (Linearity of Expectations [MU05, Theorem 2.1]). For any

finite collection of discrete random variables 𝑋1, 𝑋2, . . ., 𝑋𝑛

𝔼

[
𝑛∑︁
𝑖=1

𝑋𝑖

]
=

𝑛∑︁
𝑖=1

𝔼[𝑋𝑖 ] .

◀

Furthermore, the following simple lemma holds.

▶ Lemma 2.3 ([MU05, Lemma 2.2]). For any constant 𝑐 and discrete random

variable 𝑋 ,

𝔼[ 𝑐 · 𝑋 ] = 𝑐 · 𝔼[𝑋 ] .

◀

2.3 Probabilistic Inequalities

We will make use of several probabilistic inequalities in this thesis. The most

important ones are stated in this section. The following theorem will be used

extensively to derive upper bounds on the probability of a union of events.

Although we usually use this theorem implicitly, we state it here explicitly.

9
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▶ Theorem 2.4 (Union Bound [MU05, Lemma 1.2]). Let 𝐼 ⊆ N and let

{𝐸𝑖}𝑖∈𝐼 be a family of events. Then

Pr

[⋃
𝑖∈𝐼

𝐸𝑖

]
≤

∑︁
𝑖∈𝐼

Pr[𝐸𝑖] .

◀

The next theorem is useful to bound the probability that a non-negative

random valuable reaches a certain value when only its expected value is known.

▶ Theorem 2.5 (Markov’s Inequality [MU05, Theorem 3.1]). Let 𝑋 be a

non-negative random variable. Then, for all 𝑎 > 0 it holds that

Pr[𝑋 ≥ 𝑎 · 𝔼[𝑋 ]] ≤ 1

𝑎
.

◀

We also use the following inequality, which is applicable to sums of indepen-

dent random variables.

▶ Theorem 2.6 (Chernoff’s Inequality [DP09, Theorem 1.1]). Let 𝑋1, 𝑋2,

. . ., 𝑋𝑛 be independent binary random variables and let 𝑋 =
∑𝑛
𝑖=1𝑋𝑖 . Then, for

𝜀 > 0

• Pr[𝑋 > (1 + 𝜀) · 𝔼[𝑋 ]] ≤ exp

(
− 𝜀2

3
· 𝔼[𝑋 ]

)
,

• Pr[𝑋 < (1 − 𝜀) · 𝔼[𝑋 ]] ≤ exp

(
− 𝜀2

2
· 𝔼[𝑋 ]

)
.

◀

The last theorem of this section is used in Chapter 4. It can be used to derive

lower bounds on the probability that a random variable is non-zero.

▶ Theorem 2.7 (Second Moment Method [Jan96]). If 𝑋 is a non-negative

random variable with finite variance, then

Pr[𝑋 > 0] ≥ 𝔼[𝑋 ]2

𝔼[𝑋 2 ] .

◀
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3 Random SAT and Sat-
isfiability Thresholds

Our definition of non-uniform random 𝑘-SAT in this chapter is based on joint
work with Anton Krohmer, Tobias Friedrich, Thomas Sauerwald, and Andrew M.
Sutton [FR18; FR19; Fri+17a; Fri+17b].

This chapter formally introduces Boolean Satisfiability, the random 𝑘-SAT

model, the satisfiability threshold, and concepts related to them. Afterward, we

will formally introduce the non-uniform random 𝑘-SAT model. As the concepts

related to the satisfiability threshold are only defined for random 𝑘-SAT, we

generalize these concepts to our model. Since non-uniform random 𝑘-SAT

generalizes some well-known random SAT models, we will highlight notable

special cases apart from random 𝑘-SAT.

Note that the topics related to SAT are very wide and we only cover a small

range of them that are relevant in this work. For further information we refer to

the "Handbook of Satisfiability" [Bie+09].

3.1 Boolean Satisfiability

This section introduces Boolean Satisfiability (SAT). We assume that the

reader is familiar with basic propositional logic as well as basic logic operators.

We let 𝑋1, 𝑋2, . . . , 𝑋𝑛 denote Boolean variables that can be either true or false.

A literal ℓ is a Boolean variable 𝑋𝑖 or its negation 𝑋𝑖 . For a literal ℓ let |ℓ | denote
the variable of the literal. A clause 𝑐 = (ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑙 ) is a disjunction of

distinct literals. However, to simplify notation, we will also interpret clauses

as sets of literals. We will also call a clause with exactly 𝑙 literals an 𝑙-clause. A
Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses

𝛷 = 𝑐1 ∧ 𝑐2 ∧ . . . ∧ 𝑐𝑚 . A formula is in k-CNF if it is in CNF and each clause

consists of exactly 𝑘 literals. We conveniently interpret Boolean formulas𝛷 in

CNF as sets of clauses. Thus, for a Boolean formula𝛷 in CNF we let |𝛷 | denote
the number of its clauses.

A truth assignment is a vector 𝛼 ∈ {0, 1}𝑛 , which assigns the values true or

false to the Boolean variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 . It assigns true to 𝑋𝑖 iff 𝛼𝑖 = 1. A

clause is satisfied by an assignment 𝛼 if at least one of its literals evaluates to
true, i. e. a non-negated variable is set to true or a negated variable is set to false.

A Boolean formula in CNF is satisfied by an assignment 𝛼 if all of its clauses
are satisfied by 𝛼 . In this case, we call 𝛼 a satisfying assignment of𝛷 . Boolean
Satisfiability (SAT) is the problem of deciding if a given Boolean formula𝛷 in

CNF has a satisfying assignment. 𝑘-Satisfiability (𝑘-SAT) is the problem of

deciding if a given Boolean formula𝛷 in 𝑘-CNF has a satisfying assignment. We

11
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call a formula𝛷 satisfiable if it has at least one satisfying assignment. Otherwise,

we call it unsatisfiable.
SAT was the first problem proven to be NP-complete [Coo71; Lev73]. Thus,

we cannot expect to find an algorithm that solves the problem in polynomial

time. The same holds for 𝑘-SAT with 𝑘 ≥ 3 [Kar72]. However, 1- and 2-SAT

can be solved in time O(𝑛 +𝑚) [APT79]. Despite being NP-complete, there

is a large body of work on exact algorithms for solving SAT and 𝑘-SAT. At

the time of writing this, the best known general algorithm for 3-SAT runs in

time O(1.307𝑛) [Han+19]. Additionally, there are several parameterized algo-

rithms for SAT. These algorithms have a running time of O(𝑓 (𝑘) · poly(𝑛 +𝑚))
for some computable function 𝑓 and some parameter 𝑘 of the input instance.

For example, SAT is fixed-parameter tractable for tree-width, branch-width,

and clique-width [Sze03]. However, to the best of our knowledge there is no

parameter that explains why SAT can be solved fast on industrial instances.

3.1.1 Different definitions for SAT

Throughout the paper we will assume the definitions stated above, since they are

the most commonly used ones. However, note that there are slightly different

definitions, which are widely accepted as well. For example, one could define SAT

as deciding if a Boolean formula in arbitrary form has a satisfying assignment.

In that case, one would refer to our problem definition as the SAT problem for

CNF (CNFSAT). However, any Boolean formula can be transformed to a Boolean

formula in conjunctive normal form [Tse83]. This can be done by introducing

new variables and increasing the total number of literals of the formula only

linearly. Thus, we do not consider it a restriction to assume that input formulas

are in CNF. Another possible difference is if we allow duplicate literals per clause

or duplicate clauses per CNF. We decided to disallow duplicate literals per clause,

but to allow duplicate clauses per CNF. This is in line with many seminal works

on random 𝑘-SAT.

3.2 Random k-SAT

In this section we define the seminal random 𝑘-SAT model and the satisfiability

threshold as well as concepts related to them. These definitions are due to [CR92;

Fri05; Fri99]. Note that the definition of a satisfiability threshold in this section

only applies to random 𝑘-SAT. We will generalize this notion in Section 3.3.1.

Random 𝑘-SAT is a model that takes a number 𝑛 of Boolean variables, a clause

length 𝑘 , and a number𝑚 of clauses as input. It generates a Boolean formula𝛷

in 𝑘-CNF with these parameters uniformly at random. Formally, we define the

model as follows.

▶ Definition 3.1 (Random 𝒌-SAT (drawing)). Let 𝑛, 𝑘,𝑚 be given. The ran-
dom 𝑘-SAT (drawing) model D𝑅 (𝑛, 𝑘,𝑚) constructs a random formula 𝛷 in
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𝑘-CNF by sampling𝑚 clauses independently at random. Each clause is sampled

as follows:

1. Select 𝑘 variables independently and uniformly at random. Repeat until

no variables coincide.

2. Negate each of the 𝑘 variables independently at random with probability

1/2.

Thus, the probability to sample a certain clause is

( (
𝑛
𝑘

)
· 2𝑘

)−1
. ◀

Note that our definition of random 𝑘-SAT allows sampling formulas with

duplicate clauses, but not with duplicate variables per clause, independent of

their signs. However, there is a different definition of random 𝑘-SAT, which is

highly-related to the former one: Imagine, instead of drawing 𝑚 clauses, for

each of the

(
𝑛
𝑘

)
· 2𝑘 possible clauses we flip a coin and add it to the formula with

probability 𝑝 independently at random. Formally, we get the following model.

▶ Definition 3.2 (Random 𝒌-SAT (flipping)). Let𝑛, 𝑘, 𝑝 be given. The random
𝑘-SAT (flipping) model F 𝑅 (𝑛, 𝑘, 𝑝) constructs a random formula𝛷 in 𝑘-CNF by

sampling each of the

(
𝑛
𝑘

)
· 2𝑘 possible clauses 𝑐 independently at random:

1. With probability 𝑝 add 𝑐 to𝛷 .

2. With probability 1 − 𝑝 do not add it.

◀

In the literature, both models are referred to as random 𝑘-SAT and they are

only distinguished by their set of parameters. We choose to call them D𝑅
(for

drawing) and F 𝑅
(for flipping). The difference between the two models is the

same as the difference between a 𝐺 (𝑛,𝑚) and a 𝐺 (𝑛, 𝑝) in graph theory: In D𝑅

we draw (with replacement)𝑚 of the

(
𝑛
𝑘

)
· 2𝑘 clauses, in F 𝑅

we flip a coin for

each of the

(
𝑛
𝑘

)
· 2𝑘 clauses and add it to the formula with a certain probability.

However, if we refer to random 𝑘-SAT, we mean the drawing version D𝑅
. We

will state explicitly if we talk about F 𝑅
.

3.2.1 Satisfiability Threshold

If we fix the number of variables 𝑛 and increase the number of clauses𝑚 the

probability that D𝑅
generates satisfiable instances decreases. This is not surpris-

ing, since each clause is a constraint on the satisfying assignments of a Boolean

formula in 𝑘-CNF. Thus, the more clauses a formula has, the more likely it is that

the formula is not satisfiable. This property of satisfiability is calledmonotonicity.
More formally, if we have a sample space 𝑉 = {0, 1}𝑁 , we call a property 𝑃 ⊆ 𝑉
monotone if

∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑉 : (∀𝑖 ∈ [𝑁 ] : 𝑦𝑖 ≥ 𝑥𝑖) ⇒ 𝑦 ∈ 𝑃 .
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Chapter 3 Random SAT and Satisfiability Thresholds

Intuitively, a property is monotone if adding additional elements to something

with the property cannot violate it. This is true for unsatisfiability of Boolean

formulas: If we have a set of clauses that is unsatisfiable, we cannot make it

satisfiable by adding more clauses to it.

Monotonicity will play a crucial role in the random 𝑘-SAT models we consider.

It implies that the probability for a property to hold increases with the scaling

parameter we consider. This holds for unsatisfiability with regard to parameter

𝑚 of model D𝑅
as we will show in Lemma 3.8. It also holds for unsatisfiability

with regard to parameter 𝑝 of model F 𝑅
as we will show in Lemma 3.9.

However, there is a point at which the probability that random𝑘-SAT generates

unsatisfiable instances suddenly increases from close to zero to close to one.

This point is called the satisfiability threshold. The range of 𝑚 in which the

probability increases from close to zero to close to one is called the threshold
interval. Formally, we define the satisfiability threshold as follows.

▶ Definition 3.3 (Satisfiability Threshold). 𝑚★ =𝑚★(𝑛, 𝑘) is an asymptotic
threshold function for satisfiability if for every𝑚 =𝑚(𝑛, 𝑘)

lim

𝑛→∞
Pr

𝛷∼D𝑅 (𝑛,𝑘,𝑚)
[𝛷 satisfiable ] =

{
1, if𝑚 ∈ 𝑜𝑛 (𝑚★)
0, if𝑚 ∈ 𝜔𝑛 (𝑚★) .

We say that a satisfiability threshold exists if there is an asymptotic threshold

function for satisfiability. ◀

It is important to realize what this definition actually says. For example,

we know that for random 𝑘-SAT with 𝑘 ≥ 2 there is a satisfiability threshold

and the asymptotic threshold function is 𝑚★(𝑛, 𝑘) = 𝑛 [AP04; Kir+98]. This

means, if we draw an instance with𝑚 = 𝑛0.5 ∈ 𝑜 (𝑛) clauses, then the probability

that this instance is satisfiable is close to one. If we draw an instance with

𝑚 = 𝑛1.2 ∈ 𝜔 (𝑛) clauses, then the probability that this instance is satisfiable is

close to zero. However, if we draw an instance with𝑚 = 𝜀 · 𝑛 ± 𝑜 (𝑛) clauses
for any constant 𝜀 > 0, we do not know what happens. This is in line with our

definition of a satisfiability threshold: We do not care what happens at𝑚 ∈ 𝛩 (𝑛),
as long as the probability to generate satisfiable instances is 1−𝑜 (1) for𝑚 ∈ 𝑜 (𝑛)
and 𝑜 (1) for𝑚 ∈ 𝜔 (𝑛). See Figure 3.1 for a visual representation.

But what if we want to know what happens at𝑚 ∈ 𝛩 (𝑛)? There are two ways
that the probability function could behave in the range𝛩 (𝑛). Either, there is a
small interval of size 𝑜 (𝑛), where it suddenly drops from close to one to close

to zero. If this is the case, we call the threshold sharp. This is what we observe
for random 𝑘-SAT. Intuitively, a sharp threshold means that the size of the

threshold interval grows asymptotically slower than the actual threshold. Thus,

the threshold interval seems to vanish in the limit, which makes the probability

function look more and more like a step function. If the threshold is not sharp,

we call it coarse. This could mean that the function decrease more slowly, in an

interval of size𝛩 (𝑛), in which the probability function is bounded away from

14
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Figure 3.1: Visual representation of a satisfiability threshold with asymptotic threshold

function𝑚★
. For all functions𝑚 ∈ 𝑜 (𝑚★) the probability tends to one (green region),

for all functions𝑚 ∈ 𝜔 (𝑚★) the function tends to zero (red region), for all functions

𝑚 ∈ 𝛩 (𝑚★) the function is not restricted (gray region).

zero and one by a constant. However, it could also mean that the limit of the

probability function is not defined in that region. Formally, we define sharp and

coarse thresholds as follows.

▶ Definition 3.4 (Sharpness). Let𝑚★ =𝑚★(𝑛, 𝑘) be an asymptotic threshold

function for satisfiability. We call the threshold sharp if for every constant 𝜀 > 0

lim

𝑛→∞
Pr

𝛷∼D𝑅 (𝑛,𝑘,𝑚)
[𝛷 satisfiable ] =

{
1, if𝑚 = (1 − 𝜀) ·𝑚★

0, if𝑚 = (1 + 𝜀) ·𝑚★.

Otherwise, we call the threshold coarse. ◀

Those two cases are mutually exclusive and one of the two has to hold if an

asymptotic threshold function exists. Thus, if there is a satisfiability threshold,

we can always classify it as either sharp or coarse. See Figure 3.2 for a visual

representation of sharp and coarse thresholds. Friedgut [Fri99] proved that

random 𝑘-SAT with 𝑘 ≥ 2 has a sharp threshold, although he did not determine

the exact threshold function.

So far we know about the existence and sharpness of satisfiability thresholds.

For random 𝑘-SAT there is a sharp satisfiability threshold at𝑚★ ∈ 𝛩 (𝑛). This
has been observed experimentally and proven rigorously. What remains is to

determine where the satisfiability threshold is exactly. For a fixed 𝑘 the position

of the threshold always seems to converge to the same clause-variable ratio

15
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(a) Sharp threshold: 𝑚★
is an asymptotic

threshold function. For any constant 𝜀 > 0

the probability tends to one at 𝑚 = (1 −
𝜀) ·𝑚★

(green region) and to zero at 𝑚 =

(1 + 𝜀) ·𝑚★
(red region). The range where

the function is not restricted (gray region)

is of size 𝑜 (𝑚★).
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(b) Coarse threshold: 𝑚★
is an asymp-

totic threshold function. There is a constant

𝜀 > 0 such that the satisfiability probability

is bounded away from zero and one by a con-

stant for all𝑚 ∈ [(1 − 𝜀) ·𝑚★, (1 + 𝜀) ·𝑚★].

Figure 3.2: Visual representation of a sharp and a coarse satisfiability threshold with

asymptotic threshold function𝑚★
.

𝑚/𝑛 = 𝑟𝑘 . For random 3-SAT this point is at roughly 𝑟𝑘 ≈ 4.26. This lead to the

following conjecture.

▶ Conjecture 3.5 (Satisfiability Threshold Conjecture). For each 𝑘 ≥ 2

there is a constant 𝑟𝑘 , which might depend on 𝑘 , such that for every constant

𝜀 > 0

lim

𝑛→∞
Pr

𝛷∼D𝑅 (𝑛,𝑘,𝑚)
[𝛷 satisfiable ] =

{
1, if𝑚 = (1 − 𝜀) · 𝑟𝑘 · 𝑛
0, if𝑚 = (1 + 𝜀) · 𝑟𝑘 · 𝑛.

◀

The satisfiability threshold conjecture states that there is a sharp threshold

with threshold function𝑚★ = 𝑟𝑘 · 𝑛. Note that this conjecture is not implied by

our definitions of a satisfiability threshold and sharpness alone, even if we know

that there is a sharp threshold at𝑚 ∈ 𝛩 (𝑛). As a counter-example imagine a

sharp threshold function

𝑚★(𝑛) =
{
2 · 𝑛 𝑛 odd

2.1 · 𝑛 𝑛 even

.

It holds that there is a sharp threshold at𝑚★ ∈ 𝛩 (𝑛), but we cannot determine a

single leading constant 𝑟𝑘 such that𝑚★(𝑛) converges to 𝑟𝑘 · 𝑛. At the time of
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writing this thesis the satisfiability threshold conjecture has been proven with

𝑟2 = 1 by Chvátal and Reed [CR92] and with 𝑟𝑘 = 2
𝑘
log 2 − 1

2
(1 + log 2) for very

large values of 𝑘 by Ding et al. [DSS15]. For everything from 𝑘 = 3 to these very

large values, it remains open.

3.3 Non-Uniform Random k-SAT

In this section we introduce a generalization of random 𝑘-SAT, which we call

non-uniform random 𝑘-SAT. The model is inspired by power-law random 𝑘-SAT

and geometric random 𝑘-SAT by Ansótegui et al. [ABL09b]. These two models

are also notable special cases of non-uniform random 𝑘-SAT (cf. Section 3.3.2).

Afterward, we generalize the concepts related to the satisfiability threshold to

our new model.

As in random 𝑘-SAT we draw𝑚 clauses independently at random. However,

the clause probabilities are now non-uniform. More precisely, each Boolean

variable is assigned a probability. Then, 𝑘 Boolean variables are drawn without

replacement according to that probability and then negated independently with

probability 1/2 each. The variable probabilities act as expected frequencies

of those variables in the resulting formula. This allows us to model different

frequency distributions. Formally, we define our model as follows.

▶ Definition 3.6 (Clause-Drawing Non-Uniform Random 𝒌-SAT). Let𝑚,

𝑛, 𝑘 be given, and consider an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N =

(𝑝1 (𝑛) , . . . , 𝑝𝑛 (𝑛) )𝑛∈N, where each distribution ®𝑝 (𝑛)
is defined over 𝑛 Boolean

variables with 𝑝1
(𝑛) , . . . , 𝑝𝑛 (𝑛) > 0 and

∑𝑛
𝑖=1 𝑝𝑖

(𝑛) = 1. The clause-drawing non-
uniform random 𝑘-SAT (non-uniform random 𝑘-SAT) model D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,
𝑚) constructs a random formula𝛷 in k-CNF by sampling𝑚 clauses independently

at random. Each clause is sampled as follows:

1. Select 𝑘 variables independently at random according to the distribution

®𝑝 (𝑛)
. Repeat until no variables coincide.

2. Negate each of the 𝑘 variables independently at random with probability

1/2.

◀

W. l. o. g. we will assume for all 𝑛 ∈ N 𝑝1
(𝑛) ≥ 𝑝2

(𝑛) ≥ . . . 𝑝𝑛
(𝑛)

. To simplify

notation, we denote 𝑝 (𝑛) (𝑋𝑖) := Pr[𝑋 = 𝑋𝑖] = 𝑝𝑖 (𝑛) . Throughout this thesis we
will consider the limit behavior of probabilities in our ensembles. Thus, based

on an ensemble of discrete probability distributions

(
®𝑝 (𝑛) )

𝑛∈N we define for all

𝑖 ∈ N the functions 𝑝𝑖 : N \ [𝑖 − 1] → R+
with 𝑝𝑖 (𝑛) = 𝑝𝑖

(𝑛)
. However, for

the sake of brevity we omit the input parameter 𝑛 of those functions if it is not

necessary, i. e. most of the expressions we derive are actually functions in 𝑛 if

not stated otherwise.
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Chapter 3 Random SAT and Satisfiability Thresholds

The clause-drawing non-uniform random 𝑘-SAT model is equivalent to draw-

ing each clause independently at random from the set of all 𝑘-clauses which

contain no variable more than once. The probability to draw a 𝑘-clause 𝑐 =

(ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑘 ) over 𝑛 variables in this model is

𝑞𝑐 =

∏
ℓ∈𝑐 𝑝 ( |ℓ |)

2
𝑘
∑
𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽 𝑝 𝑗

. (3.1)

The factor 2
𝑘
in the denominator comes from the different possibilities to negate

variables. Note that 𝑘!
∑
𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽 𝑝 𝑗 is the probability of choosing a

𝑘-clause that contains no variable more than once. We define

𝐶 :=
©­«𝑘! ·

∑︁
𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽

𝑝 𝑗
ª®¬
−1

(3.2)

and write

𝑞𝑐 = 𝐶
𝑘!

2
𝑘

∏
ℓ∈𝑐

𝑝 ( |ℓ |) . (3.3)

Remember that both 𝐶 and 𝑞𝑐 are actually functions in 𝑛. The representation of

equation (3.3) makes clause probabilities easier to handle. Since clauses are also

drawn independently, the probability to generate a formula𝛷 with non-uniform

random 𝑘-SAT essentially comes down to a product of variable probabilities for

Boolean variables it contains. This makes the analysis of formulas a lot easier.

We are mainly interested in the clause-drawing version of non-uniform ran-

dom 𝑘-SAT. However, as in the case of random 𝑘-SAT, we can define a clause-

flipping equivalent of this model, in which we flip a coin for each possible clause

𝑐 with probability proportional to 𝑞𝑐 as defined in equation (3.3). We will use

this model and its relation to the clause-drawing version to derive our results on

the sharpness of the satisfiability threshold in Chapter 6. Formally, we define

the clause-flipping version of non-uniform random 𝑘-SAT as follows.

▶ Definition 3.7 (Clause-Flipping Non-Uniform Random 𝒌-SAT). Let 𝑛,
𝑘 be given, and consider an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N =

(𝑝1 (𝑛) , . . . , 𝑝𝑛 (𝑛) )𝑛∈N, where each distribution ®𝑝 (𝑛)
is defined over 𝑛 Boolean

variables with 𝑝1
(𝑛) , . . . , 𝑝𝑛 (𝑛) > 0 and

∑𝑛
𝑖=1 𝑝𝑖

(𝑛) = 1. The clause-flipping
non-uniform random 𝑘-SAT model F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) constructs a random
Boolean formula𝛷 over 𝑛 variables in k-CNF by independently flipping a coin

for each of the

(
𝑛
𝑘

)
2
𝑘
possible 𝑘-clauses. The coin flip for a clause 𝑐 is a success

with probability

𝑞𝑐 (𝑠) = min(𝑠 · 𝑞𝑐 , 1) = min

(
𝑠 ·

∏
ℓ∈𝑐 𝑝 ( |ℓ |)

2
𝑘
∑
𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽 𝑝 𝑗

, 1

)
,
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where 𝑠 ∈ [0, 1/min𝑐∈C (𝑞𝑐)] is a scaling factor. If successful, the clause is added

to the random formula. ◀

In the uniform clause-flipping model F 𝑅
the scaling factor is the uniform

probability 𝑝 ∈ [0, 1] with which a clause is taken into the formula. There are

several ways to generalize this to non-uniform distributions.

If we assume to have a probability vector ®𝑞 = (𝑞𝑐)𝑐∈C , where C is the set of

all 𝑘-clauses over 𝑛 variables, scaling with a factor 𝑠 ∈ [0, 1/min𝑐∈C (𝑞𝑐)] makes

sense. Then, 𝑠 represents the expected number of clauses in the random formula.

Alternatively, we could assume to be given a vector of clause weights ®𝑤 with

®𝑤 = (𝑤𝑐)𝑐∈C and min𝑐∈C (𝑤𝑐) = 1 for all 𝑛 ∈ N. Then, the clause probabilities
would be min(𝑠 ·𝑤𝑐 , 1) with a scaling factor of 𝑠 ∈ [0, 1]. This gives a nicer

scaling and resembles the uniform case, but the scaling factor would not actually

represent clause probabilities properly as it does in the uniform case.

In both cases we get a skewed distribution as soon as the probabilities get

capped at one. We decided for 𝑠 representing the expected number of clauses

for two reasons. First, it makes the two models easily comparable, because the

asymptotic thresholds of D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) and F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) will
be of the same size (c.f. Section 6.1). Second, it makes the notation in some of

the proofs easier.

3.3.1 Satisfiability Threshold

As in the case of random 𝑘-SAT, we want to study the satisfiability threshold as

the number of clauses increases. Thus, we are only interested in satisfiability

thresholds in parameter𝑚 of D𝑁
and in parameter 𝑠 of F 𝑁

. Both parameters

capture the (expected) number of clauses of instances generated by those models.

As such they are a natural choice for scaling parameters in accordance with

random 𝑘-SAT.

As in the case of random 𝑘-SAT, we first want to see if the probability to

generate unsatisfiable instances is non-decreasing in𝑚. The following lemma

establishes that this holds for the probability that any monotone property 𝑃 is

fulfilled in D𝑁
with respect to𝑚.

▶ Lemma 3.8. Fix 𝑛 ∈ N, 𝑘 ∈ N, and a probability ensemble

(
®𝑝 (𝑛) )

𝑛∈N. Let 𝑃
be any monotone property. Then, the probability to generate an instance with

property 𝑃 in D𝑁
(
𝑛, 𝑘,

(
®𝑝 (𝑛) )

𝑛∈N,𝑚
)
is non-decreasing in𝑚. ◀

Proof. Let 𝑛 ∈ N, 𝑘 ∈ N, and

(
®𝑝 (𝑛) )

𝑛∈N be arbitrary, but fixed. Since𝑚 is the

only free parameter, we let D𝑁 (𝑚) denote D𝑁
(
𝑛, 𝑘,

(
®𝑝 (𝑛) )

𝑛∈N,𝑚
)
for the sake

of simplicity. Now choose some𝑚 ∈ N arbitrarily. We are going to show that

Pr

𝛷∼D𝑁 (𝑚+1)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ] .

We interpret each formula𝛷 as a sequence of (not necessarily distinct) clauses

(𝑐1, 𝑐2, . . . , 𝑐𝑚). Since clauses are drawn independently with replacement in D𝑁
,
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for two formulas 𝑥 = (𝑐1, 𝑐2, . . . , 𝑐𝑚) and 𝑦 = (𝑐1, 𝑐2, . . . , 𝑐𝑚, 𝑐𝑚+1) it holds that

Pr

𝛷∼D𝑁 (𝑚+1)
[𝛷 = 𝑦 ] = Pr

𝛷∼D𝑁 (𝑚)
[𝛷 = 𝑥 ] · Pr

𝛷∼D𝑁 (1)
[𝛷 = (𝑐𝑚+1) ] .

Now let 𝑃𝑘,𝑚 denote the set of all formulas with property 𝑃 in 𝑘-CNF with at

most𝑚 clauses and let C denote the set of all possible 𝑘-clauses over 𝑛 variables.

Then,

Pr

𝛷∼D𝑁 (𝑚+1)
[ 𝑃 (𝛷) = 1 ]

=
∑︁

𝑦=(𝑐1,...,𝑐𝑚,𝑐) ∈𝑃𝑘,𝑚+1

Pr

𝛷∼D𝑁 (𝑚+1)
[𝛷 = 𝑦 ]

=
∑︁

𝑥=(𝑐1,...,𝑐𝑚) ∈C𝑚

©­­­« Pr

𝛷∼D𝑁 (𝑚)
[𝛷 = 𝑥 ] ·

∑︁
𝑐∈C :

(𝑐1,...,𝑐𝑚,𝑐) ∈𝑃𝑘,𝑚+1

(
Pr

𝛷∼D𝑁 (1)
[𝛷 = (𝑐) ]

)ª®®®¬
≥

∑︁
𝑥=(𝑐1,...,𝑐𝑚) ∈𝑃𝑘,𝑚

©­­­« Pr

𝛷∼D𝑁 (𝑚)
[𝛷 = 𝑥 ] ·

∑︁
𝑐∈C :

(𝑐1,...,𝑐𝑚,𝑐) ∈𝑃𝑘,𝑚+1

(
Pr

𝛷∼D𝑁 (1)
[𝛷 = (𝑐) ]

)ª®®®¬.
Due to the monotonicity of 𝑃 , if 𝑥 ∈ 𝑃𝑘,𝑚 , then any 𝑦 which extends 𝑥 by one

clause is in 𝑃𝑘,𝑚+1. Thus,

=
∑︁

𝑦=(𝑐1,...,𝑐𝑚,𝑐𝑚+1) ∈𝑃𝑘,𝑚

(
Pr

𝛷∼D𝑁 (𝑚)
[𝛷 = 𝑥 ] ·

∑︁
𝑐∈C

(
Pr

𝛷∼D𝑁 (1)
[𝛷 = (𝑐) ]

))
= Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ],

since ∑︁
𝑐∈C

Pr

𝛷∼D𝑁 (1)
[𝛷 = (𝑐) ] = 1.

This proves that the probability for 𝑃 is non-decreasing inD𝑁
as𝑚 increases. ■

Monotonicity will be crucial for many proofs in this thesis. We will now see

that the probability for a monotone property to hold is also non-decreasing in

F 𝑁
as 𝑠 increases.

▶ Lemma 3.9. Fix 𝑛 ∈ N, 𝑘 ∈ N, and a probability ensemble

(
®𝑝 (𝑛) )

𝑛∈N. Let 𝑃
be any monotone property. Then, the probability to generate an instance with

property 𝑃 in F 𝑁
(
𝑛, 𝑘,

(
®𝑝 (𝑛) )

𝑛∈N, 𝑠
)
is non-decreasing in 𝑠 . ◀

Proof. Again, we fix 𝑛 ∈ N, 𝑘 ∈ N, and a probability ensemble

(
®𝑝 (𝑛) )

𝑛∈N. Since
the only free parameter is 𝑠 we let F 𝑁 (𝑠) denote F 𝑁

(
𝑛, 𝑘,

(
®𝑝 (𝑛) )

𝑛∈N, 𝑠
)
for the

sake of simplicity. Now we choose 𝑠, 𝑠 ′ ∈ 𝑅+ so that 𝑠 ≤ 𝑠 ′. We want to show
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that

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ≤ Pr

𝛷∼F𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ] .

We are going to show something more general, namely that increasing any
clause probability also increases the probability for the monotone property to

hold. Let us assume that the clauses are identified by indices 𝑖 ∈ [𝑁 ], where
𝑁 =

(
𝑛
𝑘

)
·2𝑘 is the total number of different 𝑘-clauses. In this context, we interpret

a formula𝛷 as a subset of those indices. W. l. o. g. we increase the probability of

the first clause 𝑐1 from 𝑠 · 𝑞1 to 𝑠 ′ · 𝑞1. Then,

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ]

= Pr

𝛷∼F𝑁 (𝑠)
[ 𝑐1 ∈ 𝛷 ∧ 𝑃 (𝛷) = 1 ] + Pr

𝛷∼F𝑁 (𝑠)
[ 𝑐1 ∉ 𝛷 ∧ 𝑃 (𝛷) = 1 ] .

Since clauses are incorporated into formulas independently, we can consider the

restriction of F 𝑁 (𝑠) to [2..𝑁 ], i. e. we ignore 𝑐1 and only consider and sample

the remaining clauses. We denote this model as F 𝑁

1

(𝑠). It holds that

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑐1 ∈ 𝛷 ∧ 𝑃 (𝛷) = 1 ] = 𝑠 · 𝑞1 ·

∑︁
𝛷′⊆[2..𝑁 ] : 𝑃 ( {1}∪𝛷′)=1

Pr

𝛷∼F𝑁

1

(𝑠)
[𝛷 = 𝛷 ′ ]

and

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑐1 ∉ 𝛷 ∧ 𝑃 (𝛷) = 1 ] = (1 − 𝑠 · 𝑞1) ·

∑︁
𝛷′⊆[2..𝑁 ] : 𝑃 (𝛷′)=1

Pr

𝛷∼F𝑁

1

(𝑠)
[𝛷 = 𝛷 ′ ] .

However, since 𝑃 is monotone, any𝛷 ′
with 𝑃 (𝛷 ′) = 1 also satisfies 𝑃 ({1}∪𝛷 ′) =

1. Thus, the factors 𝑠 · 𝑞1 and 1− 𝑠 · 𝑞1 for the probabilities of those formulas add

up to one. What remains are formulas𝛷 ′
with 𝑃 (𝛷 ′) = 0 and 𝑃 ({1} ∪𝛷 ′) = 1.

This yields

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑐1 ∈ 𝛷 ∧ 𝑃 (𝛷) = 1 ] + Pr

𝛷∼F𝑁 (𝑠)
[ 𝑐1 ∉ 𝛷 ∧ 𝑃 (𝛷) = 1 ]

=
∑︁

𝛷′⊆[2..𝑁 ] :
𝑃 (𝛷′)=1

(
Pr

𝛷∼F𝑁

1

(𝑠)
[𝛷 = 𝛷 ′ ]

)
+ 𝑠 · 𝑞1 ·

∑︁
𝛷′⊆[2..𝑁 ] :

𝑃 (𝛷′)=0∧𝑃 (𝛷′∪{1})=1

(
Pr

𝛷∼F𝑁

1

(𝑠)
[𝛷 = 𝛷 ′ ]

)

Now it is obvious that increasing the probability of the first clause can only

increase the total probability for 𝑃 to hold. If we assume to be given the new

clause probabilities with probability 𝑠 ′ ·𝑞1 for the first clause, we can now repeat

the same argument when increasing the second clause probability from 𝑠 · 𝑞2 to
𝑠 ′ · 𝑞2. Repeating this step implies the desired result

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ≤ Pr

𝛷∼F𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ] .
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■

If we now want to study the threshold behavior of non-uniform random 𝑘-

SAT, we first have to generalize the concept of satisfiability thresholds to the

non-uniform case. In the uniform case the probability distribution is ®𝑝 (𝑛) =

( 1
𝑛
, 1
𝑛
, . . . , 1

𝑛
) for every 𝑛 ∈ 𝑁 . This ensemble of distributions is stated implicitly

in the model. Since we want to consider different probability distributions and

study the behavior of the probability to sample satisfiable instances as𝑛 increases,

we have to make the ensemble of probability distributions explicit in our model.

Now imagine D𝑁 (𝑛, 2,
(
®𝑝 (𝑛) )

𝑛∈N,𝑚) with the following ensemble of probability

distributions:

®𝑝 (𝑛) =



(
1

𝑛
, 1
𝑛
, . . . , 1

𝑛

)
, 𝑛 even(

1√
𝑛
, 1√
𝑛
, . . . , 1√

𝑛

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶⌊√
(𝑛)/2

⌋
times

,
1−

( ⌊√
(𝑛)/2

⌋ )
/
√
𝑛

𝑛−⌊√𝑛⌋ , . . . ,
1−

( ⌊√
(𝑛)/2

⌋ )
/
√
𝑛

𝑛−⌊√𝑛⌋

)
, 𝑛 odd. (3.4)

How to define the satisfiability threshold for such an ensemble? Can we define

it at all? In this more general setting, consider the satisfiability threshold to be

defined as follows.

▶ Definition 3.10 (Satisfiability Threshold). Let M be a random SAT model

with parameters 𝑛 and 𝑝 . Fix all parameters of the model except for 𝑛 and 𝑝 . Let

𝑝★ and 𝑝 ′ be functions, which may depend on the other parameters of M. 𝑝★

is an asymptotic threshold function for satisfiability of model M with respect to

parameter 𝑝 if for every 𝑝 ′

lim

𝑛→∞
Pr

𝛷∼M(𝑝=𝑝′)
[𝛷 satisfiable ] =

{
1, if 𝑝 ′ ∈ 𝑜𝑛 (𝑝★)
0, if 𝑝 ′ ∈ 𝜔𝑛 (𝑝★) .

We say that a satisfiability threshold with respect to 𝑝 exists if there is an

asymptotic threshold function for satisfiability. ◀

Let us return to our example above (equation (3.4)). We can now see that

definition 3.10 can be applied as follows: We define a threshold function 𝑚★

that is tailored to each probability distribution from the ensemble separately,

in our case to odd 𝑛 and even 𝑛, respectively. For any other function𝑚′
with

𝑚′ ∈ 𝑜 (𝑚★) it has to hold that

lim

𝑛→∞
Pr

𝛷∼D𝑁 (𝑛,2,( ®𝑝 (𝑛) )𝑛∈N,𝑚′)
[𝛷 satisfiable ] = 1.

First, let us make clear what 𝑚′ ∈ 𝑜 (𝑚★) means in this context. Keeping in

mind our definitions of limits and 𝑂-notation,𝑚′ ∈ 𝑜 (𝑚★) means that for any
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constant 𝜀 > 0 there is an 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0

𝑚′(𝑛) < 𝜀 ·𝑚★(𝑛).

This definition also holds if the threshold function is defined for odd and even 𝑛

separately. Thus, we can saywith certainty for which functions𝑚′
the statements

in the threshold definition have to hold. The definition now states something for

the probability to generate satisfiable instances. However, if we plug function

𝑚′
into our model, this probability only depends on 𝑛, since all other parameters

are fixed according to definition 3.10. Therefore, the probability to generate

satisfiable instances is a function only depending on 𝑛. For this function we have

to check if its limit is one, i. e. if for every constant 𝜀 ∈ (0, 1) there is an 𝑛0 ∈ N
such that the value of the function is at least 1− 𝜀 for all 𝑛 ≥ 𝑛0. For𝑚′ ∈ 𝜔 (𝑚★)
the argumentation is equivalent.

Our definition of satisfiability thresholds is very general. One can also imagine

random 𝑘-SAT, where we fix the number of clauses𝑚 (or a function𝑚(𝑛)) and
increase the clause length 𝑘 . This does not seem intuitive, but it actually makes

sense if we remember that a satisfiability threshold is only a phase transition. For

example, water undergoes a phase transition from liquid to gaseous state. If we

fix all environmental parameters and only increase temperature, this transition

happens at some point. Yet, instead of increasing temperature, one can also

decrease atmospheric pressure. This will also lead to the water transitioning

from one phase to the other. However, as we wrote before, in this work we

are only interested in satisfiability thresholds in parameter 𝑚 of D𝑁
and in

parameter 𝑠 of F 𝑁
.

We can now go on and generalize sharpness and coarseness of satisfiability

thresholds similar to definition 3.10.

▶ Definition 3.11 (Sharpness). LetM be a random SAT model with parame-

ters 𝑛 and 𝑝 . Fix all parameters of the model except for 𝑛 and 𝑝 . Let 𝑝★ be an

asymptotic threshold function of M with respect to parameter 𝑝 . We call 𝑝★

sharp if for every function 𝑝 ′ and every constant 𝜀 > 0

lim

𝑛→∞
Pr

𝛷∼M(𝑝=𝑝′)
[𝛷 satisfiable ] =

{
1, if 𝑝 ′ = (1 − 𝜀) · 𝑝★

0, if 𝑝 ′ = (1 + 𝜀) · 𝑝★.

Otherwise we call 𝑝★ coarse. ◀

3.3.2 Notable Special Cases

In this section we introduce notable special cases of non-uniform random 𝑘-

SAT from the literature. These will serve as examples for applying our results

throughout this thesis.
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Random k-SAT

The most prominent special case of non-uniform random 𝑘-SAT is (uniform)

random 𝑘-SAT. In this case the probability ensemble is

∀𝑛 ∈ N : ®𝑝 (𝑛) =

(
1

𝑛
,
1

𝑛
, . . . ,

1

𝑛

)
.

We already presented many results on random 𝑘-SAT, including the behavior

of the satisfiability threshold. Those results can also be derived with the more

general theorems we provide in this thesis. They will serve as some kind of

sanity check and as a baseline for the other distributions.

Power-law Random k-SAT

Power-law random 𝑘-SAT was introduced by Ansótegui et al. [ABL09b] as a

more realistic model for industrial SAT instances. The variable probabilities

in this model follow a discrete power law with power-law exponent 𝛽 > 2.

More precisely for some fixed 𝛽 > 2 and some 𝑛 ∈ N the distribution is ®𝑝 (𝑛) =(
𝑝
(𝑛)
1
, 𝑝

(𝑛)
2

. . . , 𝑝
(𝑛)
𝑛

)
with

𝑝
(𝑛)
𝑖

=
(𝑛/𝑖)

1

𝛽−1∑𝑛
𝑗=1(𝑛/ 𝑗)

1

𝛽−1
.

Ansótegui et al. [ABL09b] claim that instances generated with their model

exhibit a satisfiability threshold. They experimentally determine the threshold

position and examine the running time of state-of-the-art SAT solvers on in-

stances generated at the threshold. They observe that the running time of solvers

can be controlled with the power-law exponent 𝛽 . With increasing exponent

instances get more similar to those generated by random 𝑘-SAT. Thus, solvers

specialized in random instances perform better. With small exponents, the per-

formance of solvers specialized in industrial instances is better. According to

the authors this phenomenon can be used to generate instances on which the

performance of state-of-the-art SAT solvers is comparable to the performance of

those solvers on industrial instances.

However, Ansótegui et al. do not determine the threshold position rigorously.

Furthermore they do not show theoretical bounds on the running times of the

solvers they consider. The results of this thesis complement their work with

regard to the threshold behavior of power-law random 𝑘-SAT. In our continuing

work [Blä+21] we also show some first lower bounds on the resolution size of

this model, which might explain some of the observations of Ansótegui et al. We

mention those results briefly in Chapter 7.

In order to derive the results for power-law random 𝑘-SAT, we need the

following bounds.
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▶ Lemma 3.12. For the discrete power-law distribution ®𝑝 with exponent 𝛽 > 2

it holds that

𝑝𝑖 = (1 + 𝑜 (1)) · 𝛽 − 2

𝛽 − 1

· 𝑛−1 ·
(𝑛
𝑖

)
1/(𝛽−1)

,

𝑛∑︁
𝑖=1

𝑝𝑖
2 =


𝛩

(
𝑛
−2 𝛽−2

𝛽−1
)

for 𝛽 < 3

(1 ± 𝑜 (1)) · 1

4
· ln𝑛
𝑛

for 𝛽 = 3

(1 ± 𝑜 (1)) · (𝛽−2)2
(𝛽−3) · (𝛽−1) · 𝑛

−1
for 𝛽 > 3, and

𝑖∑︁
𝑗=1

𝑝 𝑗 ≤ (1 + 𝑜 (1)) ·
(
𝑖

𝑛

) 𝛽−2
𝛽−1
.

◀

Proof. It holds that

1 +
∫ 𝑛

𝑖=1

(𝑛
𝑖

)
1/(𝛽−1)

𝑑𝑖 ≤
𝑛∑︁
𝑖=1

(𝑛
𝑖

)
1/(𝛽−1)

≤ 𝑛1/(𝛽−1) +
∫ 𝑛

𝑖=1

(𝑛
𝑖

)
1/(𝛽−1)

𝑑𝑖.

Since ∫ 𝑛

𝑖=1

(𝑛
𝑖

)
1/(𝛽−1)

𝑑𝑖 =
𝛽 − 1

𝛽 − 2

·
(
𝑛 − 𝑛1/(𝛽−1)

)
,

for 𝛽 > 2, we have

𝑛∑︁
𝑖=1

(𝑛
𝑖

)
1/(𝛽−1)

= (1 − 𝑜 (1)) · 𝛽 − 1

𝛽 − 2

· 𝑛

and thus

𝑝𝑖 = (1 + 𝑜 (1)) · 𝛽 − 2

𝛽 − 1

· 𝑛−1 ·
(𝑛
𝑖

)
1/(𝛽−1)

.

For 𝛽 = 3 it holds that

𝑛∑︁
𝑖=1

𝑝2𝑖 = (1 + 𝑜 (1)) ·
(
𝛽 − 2

𝛽 − 1

)
2

· 𝑛−1 ·
𝑛∑︁
𝑖=1

1

𝑖
= (1 + 𝑜 (1)) · 1

4

· ln
𝑛
.

Otherwise, we consider the function(
𝛽 − 2

𝛽 − 1

)
2

· 𝑛−2
𝛽−2
𝛽−1 · 𝑖−

2

𝛽−1

and the integral∫ 𝑛

𝑖=1

(
𝛽 − 2

𝛽 − 1

)
2

· 𝑛−2
𝛽−2
𝛽−1 · 𝑖−

2

𝛽−1 𝑑𝑖 =
(𝛽 − 2)2

(𝛽 − 3) · (𝛽 − 1) ·
(
𝑛−1 − 𝑛−2

𝛽−2
𝛽−1

)
.
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Again, we can use the relation of sum and integral to derive

𝑛∑︁
𝑖=1

𝑝2𝑖 = (1 + 𝑜 (1)) · (𝛽 − 2)2
(𝛽 − 3) · (𝛽 − 1) · 𝑛

−1

for 𝛽 > 3 and

𝑛∑︁
𝑖=1

𝑝2𝑖 ∈ 𝛩
(
𝑛
−2 𝛽−2

𝛽−1
)

for 𝛽 < 3 as desired. Although we do not derive the exact leading factor in

the last case, the asymptotic expression is sufficient for our results. The second

statement of the theorem holds since

𝑖∑︁
𝑗=1

𝑝 𝑗 ≤ 𝑝1 +
∫ 𝑖

𝑗=1

𝑝 𝑗 𝑑 𝑗

= (1 + 𝑜 (1)) · ©­«
(
𝛽 − 2

𝛽 − 1

)
· 𝑛−

𝛽−2
𝛽−1 +

(
𝑖

𝑛

) 𝛽−2
𝛽−1

− 𝑛−
𝛽−2
𝛽−1 ª®¬

≤ (1 + 𝑜 (1)) ·
(
𝑖

𝑛

) 𝛽−2
𝛽−1
.

■

Geometric Random k-SAT

Geometric Random 𝑘-SAT was introduced by Ansótegui et al. [ABL09b] as an

alternative to Power-law Random 𝑘-SAT. In this model the variable probabilities

are normalized terms of a geometric series with base 1/𝑏 for some constant

𝑏 > 1. More precisely for some fixed 𝑏 > 1 and some 𝑛 ∈ N the distribution is

®𝑝 (𝑛) =
(
𝑝
(𝑛)
1
, 𝑝

(𝑛)
2

. . . , 𝑝
(𝑛)
𝑛

)
with

𝑝
(𝑛)
𝑖

=
𝑏 · (1 − 𝑏−1/𝑛)

𝑏 − 1

· 𝑏−(𝑖−1)/𝑛 .

Ansótegui et al. [ABL09b] determine the position of the satisfiability threshold

for geometric random 𝑘-SAT experimentally. For base parameter 𝑏 = 1 the model

is equivalent to random 𝑘-SAT. However, the authors observe that instances

get easier as the base parameter 𝑏 increases. As for power-law random 𝑘-SAT

Ansótegui et al. do not provide any rigorous results regarding the satisfiability

threshold. The results of this thesis complement their work in that regard.

We will make use of the following lemma in order to derive our results.

▶ Lemma 3.13. For the discrete geometric distribution ®𝑝 with base 𝑏 > 1 it
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holds that

𝑛∑︁
𝑖=1

𝑝2𝑖 =
𝑏 + 1

𝑏 − 1

· 1 − 𝑏
−1/𝑛

1 + 𝑏−1/𝑛
= (1 ± 𝑜 (1)) · 𝑏 + 1

𝑏 − 1

· ln𝑏
2

· 𝑛−1.

It also holds that

𝑝1 =
𝑏 · (1 − 𝑏−1/𝑛)

𝑏 − 1

= (1 − 𝑜 (1)) · 𝑏 · ln𝑏
𝑏 − 1

· 𝑛−1.

◀

Proof. It holds that

𝑛∑︁
𝑖=1

𝑝2𝑖 =
𝑏2 · (1 − 𝑏−1/𝑛)2

(𝑏 − 1)2 ·
𝑛−1∑︁
𝑖=0

(
1

𝑏2/𝑛

)𝑖
=
𝑏 + 1

𝑏 − 1

· 1 − 𝑏
−1/𝑛

1 + 𝑏−1/𝑛
,

since this is a simple geometric series. We get

𝑛∑︁
𝑖=1

𝑝2𝑖 =
𝑏 + 1

𝑏 − 1

· 1 − 𝑏
−1/𝑛

1 + 𝑏−1/𝑛
=
𝑏 + 1

𝑏 − 1

· 1 − 𝑒
− ln(𝑏)/𝑛

1 + 𝑒− ln(𝑏)/𝑛

≤ 𝑏 + 1

𝑏 − 1

· 1 − (1 − ln(𝑏)/𝑛)
1 + (1 − ln(𝑏)/𝑛)

=

(
1 + ln𝑏

2𝑛 − ln𝑏

)
· 𝑏 + 1

𝑏 − 1

· ln(𝑏)
2𝑛

and

𝑛∑︁
𝑖=1

𝑝2𝑖 =
𝑏 + 1

𝑏 − 1

· 1 − 𝑏
−1/𝑛

1 + 𝑏−1/𝑛
=
𝑏 + 1

𝑏 − 1

· 𝑏
1/𝑛 − 1

𝑏1/𝑛 + 1

=
𝑏 + 1

𝑏 − 1

· 𝑒 ln(𝑏)/𝑛 − 1

(1 + (𝑏 − 1))1/𝑛 + 1

≥ 𝑏 + 1

𝑏 − 1

· (1 + ln(𝑏)/𝑛) − 1

1 + (𝑏 − 1)/𝑛 + 1

=

(
1 − 𝑏 − 1

2𝑛 + 𝑏 − 1

)
· 𝑏 + 1

𝑏 − 1

· ln(𝑏)
2𝑛

,

where we used Bernoulli’s inequality in the denominator of the third line. This

establishes the first statement. For the second statement observe

𝑝1 =
𝑏 · (1 − 𝑏−1/𝑛)

𝑏 − 1

=
𝑏 · (1 − 𝑒− ln(𝑏)/𝑛)

𝑏 − 1

≤ 𝑏 ln(𝑏)
𝑏 − 1

· 𝑛−1

and

𝑝1 =
𝑏 · (1 − 𝑏−1/𝑛)

𝑏 − 1

=
𝑏 · (𝑏1/𝑛 − 1)
(𝑏 − 1) · 𝑏1/𝑛
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=
𝑏 · (𝑒 ln(𝑏)/𝑛 − 1)

(𝑏 − 1) · (1 + (𝑏 − 1))1/𝑛

≥ 𝑏 · ln(𝑏)/𝑛
(𝑏 − 1) · (1 + (𝑏 − 1)/𝑛)

=

(
1 − 𝑏 − 1

𝑛 + 𝑏 − 1

)
· 𝑏 ln(𝑏)
𝑏 − 1

· 𝑛−1.

■
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4 Satisfiability Threshold in
Non-Uniform Random 2-SAT

The content of this chapter is based on the publication [FR19], which is joint work
with Tobias Friedrich, and the publication [Fri+17b], which is joint work with Tobias
Friedrich, Anton Krohmer, and Andrew M. Sutton. [Fri+17b] contains an early
version of the results in Section 4.2 and the experimental results. [FR19] contains
a complete collection of the results this chapter is based on. Here, we adjusted the
proofs a bit to explicitly capture the fourth case, which was not considered in the
conference version. More precisely, we substituted the asymptotic expressions in our
statements by exact lower and upper bounds which imply the same results and also
yield the statement of the last case.

In this chapter we analyze the behavior of the satisfiability threshold in non-

uniform random 2-SAT. Although 2-SAT can be solved in polynomial time

and is therefore not NP-complete, random 2-SAT exhibits a threshold behavior

similar to random 𝑘-SAT for bigger values of 𝑘 . Due to the simpler structure of

Boolean formulas in 2-CNF this threshold behavior is much easier to analyze. The

insights from analyzing non-uniform random 2-SAT will help us to understand

and analyze the satisfiability threshold of non-uniform random 𝑘-SAT for bigger

values of 𝑘 .

Chvátal and Reed [CR92] showed that random 2-SAT has a sharp satisfiability

threshold at𝑚★ = 𝑛, thus confirming the satisfiability threshold conjecture for

𝑘 = 2. We extend and generalize their proof ideas to non-uniform random 2-SAT.

In order to show a lower bound on the threshold, we investigate the existence of

bicycles. Bicycles were introduced by Chvatal and Reed. They are sub-formulas

which appear in every unsatisfiable formula. We can show with a first moment

argument, that these do not appear below a certain number of clauses, thus

making formulas satisfiable.

In order to show an upper bound on the threshold, we investigate the ex-

istence of snakes. Snakes are unsatisfiable sub-formulas and have also been

introduced by Chvatal and Reed. We can show with a second-moment argument

that snakes of certain sizes do appear above a certain number of clauses, thus

making formulas unsatisfiable. Unfortunately, this method does not work if the

two largest variable probabilities are too large asymptotically. In that case we

lower-bound the probability that an unsatisfiable sub-formula containing only

those two variables exists. This can be done with a simple inclusion-exclusion

argument and the resulting lemma also works for 𝑘 ≥ 3.

We will see that the threshold position and its sharpness depend on how the

functions of the two highest variable probabilities 𝑝1 and 𝑝2 behave compared to

the other variable probabilities. Moreover, it depends on the asymptotic behavior
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Chapter 4 Satisfiability Threshold in Non-Uniform Random 2-SAT

of those values. The squares of 𝑝1 and 𝑝2 will be compared to the sum of squares

of the other variable probabilities,

∑𝑛
𝑖=1 𝑝

2

𝑖 and
∑𝑛
𝑖=2 𝑝

2

𝑖 . Note that these sums

of squares are functions in 𝑛 as well. The conditions on those functions can be

checked if we know the ensemble of probability distributions that our model

uses. We are going to show that there are four cases depending on 𝑝1, 𝑝2,
∑𝑛
𝑖=1 𝑝

2

𝑖 ,

and

∑𝑛
𝑖=2 𝑝

2

𝑖 :

1. If 𝑝2
1
∈ 𝑜

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
, then there is a sharp threshold at exactly

𝑚★ =
1∑𝑛
𝑖=1 𝑝

2

𝑖

.

2. If 𝑝2
1
∈ 𝛩

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
and 𝑝2

2
∈ 𝑜

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
, then the asymptotic threshold is

at

𝑚★ ∈ 𝛩
(

1 − ∑𝑛
𝑖=1 𝑝

2

𝑖

𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
1/2

)
and it is coarse. The coarseness stems from the emergence of an unsatis-

fiable sub-formula with 3 variables and 4 clauses. Furthermore, we can

show that there is a range of size𝛩 (𝑚★) around the threshold in which the

probability to generate satisfiable instances is a constant bounded away

from zero and one in the limit.

3. If 𝑝2
1
∈ 𝛩

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
and 𝑝2

2
∈ 𝛩

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
, then we can show that the

asymptotic satisfiability threshold is at

𝑚★ ∈ 𝛩
(
1 − ∑𝑛

𝑖=1 𝑝
2

𝑖

𝑝1 · 𝑝2

)
,

which is proportional to 1/𝑞max, where 𝑞max is the maximum clause prob-

ability. We can also show that this threshold is coarse. This time the

coarseness stems from the emergence of an unsatisfiable sub-formula of

size 4, which contains only the two most probable variables. Again, we can

show that there is a range of size𝛩 (𝑚★) around the threshold in which the

probability to generate satisfiable instances is a constant bounded away

from zero and one in the limit.

4. If none of the above cases apply, there is a threshold at

𝑚★ ∈ 𝛩
(

1 − ∑𝑛
𝑖=1 𝑝

2

𝑖∑𝑛
𝑖=2 𝑝

2

𝑖
+ 𝑝1 ·

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
1/2

)
.

The threshold is again coarse, but this time the probability in the threshold

interval cannot be bounded.

It is important to understand why we want to show that in the second and third

case there is a range of size𝛩 (𝑚★) around the threshold in which the probability
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What we are going to show Section 4.1

to generate satisfiable instances can be bounded away from zero and one by a

constant. This implies that the probability cannot approach zero or one for some

functions𝑚 that are only a constant factor away from the threshold. According

to our definition of sharp thresholds (Definition 3.11), that means in those cases

the threshold cannot be sharp, but must be coarse. We will later see that the

statements for those two cases also imply coarseness of the threshold in the last

case. Moreover, in all four cases the asymptotic threshold is at

𝑚★ ∈ 𝛩
(

1 − ∑𝑛
𝑖=1 𝑝

2

𝑖∑𝑛
𝑖=2 𝑝

2

𝑖
+ 𝑝1 ·

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
1/2

)
.

Together with the conditions on 𝑝2
1
and 𝑝2

2
this threshold function simplifies to

the ones we stated in the first three cases, respectively. The four cases give us a

complete dichotomy of coarseness and sharpness for the satisfiability threshold

of non-uniform random 2-SAT. This result generalizes the seminal works by

Chvátal and Reed [CR92] and by Goerdt [Goe96] to arbitrary ensembles of

variable probability distributions and includes their findings as a special case

(c. f. Section 4.6).

4.1 What we are going to show

First, we are going to discuss which kinds of results we are going to show and

why we do not show something more intuitive. Our results will assume certain

relations between the functions𝑚 and𝑚★
, 𝑝1 and

∑𝑛
𝑖=1 𝑝

2

𝑖 , and 𝑝2 and
∑𝑛
𝑖=2 𝑝

2

𝑖 .

Intuitively, those relations would be in terms of Landau notation as is suggested

by the results we want to show for non-uniform random 2-SAT. However, we are

only going to assume that functions are smaller or bigger than other functions

by some constant factor that is either given or that we can choose. Instead

of assuming 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), we only assume that we can choose a constant

𝜀1 ∈ (0, 1) so that 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . This condition is implied by 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 )
for sufficiently large 𝑛. Instead of assuming 𝑝2

1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), we assume that

there is some constant 𝜀1 ∈ (0, 1) so that 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . Again, this condition is

implied by 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) for sufficiently large 𝑛. Equivalently, we consistently

use the factors 𝜀2 and 𝜀𝑚 to define relationships between 𝑝2 and
∑𝑛
𝑖=2 𝑝

2

𝑖 , and𝑚

and𝑚★
, respectively. Additionally, we will use the placeholder 𝜀 without any

index if we refer to relations from previous results that will only be used in a

very local scope. This is mainly to avoid using the same notation twice.

We choose to use these requirements for our results, because it will allow us

to prove something in absence of asymptotic behavior as well, i. e. in the fourth

case above. Remember what we want to show: If we assume the existence of a
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Chapter 4 Satisfiability Threshold in Non-Uniform Random 2-SAT

satisfiability threshold at some function𝑚★
, then

lim

𝑛→∞
Pr

𝛷∼D𝑁 (𝑛,2,( ®𝑝 (𝑛) )𝑛∈N,𝑚)
[𝛷 satisfiable ] =

{
1, if𝑚 ∈ 𝑜𝑛 (𝑚★)
0, if𝑚 ∈ 𝜔𝑛 (𝑚★) .

Let us concentrate on the case that𝑚 ∈ 𝑜 (𝑚★). Remembering the definition of

limits, we want for any constant 𝜀𝑃 ∈ (0, 1) that there is an 𝑛0 ∈ N so that for

all 𝑛 ≥ 𝑛0 we have

Pr

𝛷∼D𝑁 (𝑛,2,( ®𝑝 (𝑛) )𝑛∈N,𝑚)
[𝛷 satisfiable ] ≥ 𝜀𝑃 .

We will now show the following:

1. Assume we can choose 𝜀1 ∈ (0, 1) with 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . Then for any

given 𝜀𝑚 ∈ (0, 1) with𝑚 ≤ 𝜀𝑚 ·𝑚★
and for any given 𝜀𝑃 ∈ (0, 1), we can

reach a probability of at least 𝜀𝑃 by choosing 𝜀1 small enough.

2. Assume we are given 𝜀1 ∈ (0, 1) with 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and we can choose

𝜀𝑚 ∈ (0, 1) with 𝑚 ≤ 𝜀𝑚 ·𝑚★
. Then, for any given 𝜀𝑃 ∈ (0, 1), we can

choose 𝜀𝑚 small enough to reach a probability of at least 𝜀𝑃 .

Let us now consider what these two results imply. Assume we are given some

𝜀𝑃 ∈ (0, 1) and some 𝑚 ∈ 𝑜 (𝑚★). We have to show that the probability to

generate satisfiable instances at𝑚 is at least 𝜀𝑃 for all sufficiently large 𝑛. First

we note that, if𝑚 ∈ 𝑜 (𝑚★), then for all 𝜀𝑚 ∈ (0, 1) there is some 𝑛0 ∈ N so that

for all 𝑛 ≥ 𝑛0 we have𝑚 ≤ 𝜀𝑚 ·𝑚★
.

If 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), then for every 𝜀1 ∈ (0, 1) there is some 𝑛0 ∈ N so that

𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 holds for all 𝑛 ≥ 𝑛0. Due to the first result we can now simply

choose some 𝜀𝑚 ∈ (0, 1) (for example 𝜀𝑚 = 1

2
) and choose 𝜀1 small enough so

that the resulting probability is at least 𝜀𝑃 . The requirements 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 )
and𝑚 ∈ 𝑜 (𝑚★) guarantee that there is some 𝑛0 ∈ N so that both requirements

hold for all 𝑛 ≥ 𝑛0.
If 𝑝2

1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), then there are 𝜀1 ∈ (0, 1) and 𝑛0 ∈ N so that 𝑝2
1
≥

𝜀1 ·
∑𝑛
𝑖=1 𝑝

2

𝑖 holds for all 𝑛 ≥ 𝑛0. For this value of 𝜀1, we can now simply choose

an 𝜀𝑚 small enough so that the resulting probability is at least 𝜀𝑃 . Again, this

requirement is fulfilled for all sufficiently large 𝑛, since𝑚 ∈ 𝑜 (𝑚★).
The last case is that neither 𝑝2

1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) nor 𝑝21 ∈ 𝛩 (∑𝑛
𝑖=1 𝑝

2

𝑖 ). First, we
assume to be able to choose 𝜀1. Like in the first case, we choose some 𝜀𝑚 ∈ (0, 1)
(e. g. 𝜀𝑚 = 1

2
) and evaluate how small 𝜀1 has to be in order to have a probability

of at least 𝜀𝑃 due to our first result. For sufficiently large 𝑛 the requirement

𝑚 ≤ 𝜀𝑚 ·𝑚★
will be fulfilled. However, 𝑝2

1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 might not. For all values

of 𝑛 that fulfill the requirement, we are done already. Thus, we only have to

consider what happens if 𝑝2
1
> 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . For those values of 𝑛 we can simply

use the second result and evaluate an 𝜀𝑚 ∈ (0, 1) small enough so that we reach
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the given probability 𝜀𝑃 . Again, this requirement is fulfilled for sufficiently large

𝑛 due to𝑚 ∈ 𝑜 (𝑚★).
This was a simplified example of what our results will look like and how we

are going to use them to show the statements in the introduction of this chapter.

We will show our results for slightly different functions𝑚★
. However, these

functions will asymptotically coincide as we will see later.

4.1.1 How we are going to show it

Another note on how we will derive our results might be necessary at this point.

As stated in Section 3.3, the probability to draw a certain clause is proportional

to the product of variable probabilities for Boolean variables it contains. For

example, the probability to draw a clause 𝑐 = (𝑋𝑖 ∨ 𝑋 𝑗 ) is

Pr

[
(𝑋𝑖 ∨ 𝑋 𝑗 )

]
= 𝑞𝑐 =

𝐶

2

· 𝑝𝑖 · 𝑝 𝑗 , (4.1)

where 𝐶 = 1/
(
𝑘! · ∑𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽 𝑝 𝑗

)
is the same for all clauses. However,

for 𝑘 = 2 the factor 𝐶 simplifies to 𝐶 = 1/
(
1 − ∑𝑛

𝑖=1 𝑝
2

𝑖

)
.

Since clauses are also drawn independently, it holds that the probability of

drawing a certain formula in non-uniform random 𝑘-SAT is proportional to the

product of variable probabilities for each appearance of a Boolean variable in it.

For example, the probability of drawing𝛷 = (𝑋𝑖 ∨ 𝑋 𝑗 ) ∧ (𝑋ℎ ∨ 𝑋𝑖) is

Pr

𝛷∼D𝑁 (𝑛,2,( ®𝑝 (𝑛) )𝑛∈N,2)

[
𝛷 = (𝑋𝑖 ∨ 𝑋 𝑗 ) ∧ (𝑋ℎ ∨ 𝑋𝑖)

]
=

(
𝐶

2

)
2

· 𝑝ℎ · 𝑝2𝑖 · 𝑝 𝑗 .

We will use this fact heavily in our analysis. If we want to know the probability

of drawing a formula, we only have to know which Boolean variables it contains

how often. Furthermore, we can also use this fact if we do not know the exact

variables, but only how often they appear. For example, if we are looking for a

formula𝛷 = (ℓ𝑖 ∨ ℓ𝑗 ) ∧ (ℓℎ ∨ ℓ𝑖), where ℓℎ , ℓ𝑖 , and ℓ𝑗 are literals of distinct Boolean
variables, the probability is proportional to

(
𝑛∑︁
ℎ=1

𝑝ℎ

)
·
©­­«
𝑛∑︁
𝑖=1
𝑖≠ℎ

𝑝2𝑖

ª®®¬ ·
©­­­«

𝑛∑︁
𝑗=1

𝑗≠ℎ, 𝑗≠𝑖

𝑝 𝑗

ª®®®¬ ≤
(
𝑛∑︁
ℎ=1

𝑝ℎ

)
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
·
(
𝑛∑︁
𝑗=1

𝑝 𝑗

)
.

The following lemma shows how we can bound expressions of that kind. It

applies to situations where a set of variables all appear the same number of times

and we already accounted for the possible ways to arrange them in clauses. For

example, if we want the probability for a formula𝛷 = (ℓℎ∨ℓ𝑖)∧ (ℓ𝑖∨ℓ𝑗 )∧ (ℓ𝑗 ∨ℓℎ),
where ℓℎ , ℓ𝑖 , and ℓ𝑗 are literals of distinct Boolean variables, the probability is
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proportional to

3! ·
∑︁

𝐴∈P3 ( [𝑛])

∏
𝑎∈𝐴

𝑝2𝑎,

where 3! accounts for the possibilities to interchange the chosen variables.

▶ Lemma 4.1. For every set 𝑆 ⊆ {1, . . . , 𝑛}, every integer 𝑖 ≤ |𝑆 |, and every

integer 𝑙 ≥ 1 it holds that

∑︁
𝐴∈P𝑖 (𝑆)

∏
𝑎∈𝐴

𝑝𝑙𝑎 ≤ 1

𝑖!

(∑︁
𝑠∈𝑆

𝑝𝑙𝑠

)𝑖
.

If

(∑
𝑠∈𝑆 𝑝

𝑙
𝑠

)
≥ (𝑖 − 1) ·max

{
𝑝𝑙𝑠 | 𝑠 ∈ 𝑆

}
, then it also holds that

∑︁
𝐴∈P𝑖 (𝑆)

∏
𝑎∈𝐴

𝑝𝑙𝑎 ≥ 1

𝑖!

((∑︁
𝑠∈𝑆

𝑝𝑙𝑠

)
− (𝑖 − 1) ·max

{
𝑝𝑙𝑠 | 𝑠 ∈ 𝑆

})𝑖
.

◀

Proof. For the first part, notice that each product

∏
𝑎∈𝐴 𝑝

𝑙
𝑎 for some 𝐴 ∈ P𝑖 (𝑆)

appears 𝑖!-times in

(∑
𝑠∈𝑆 𝑝

𝑙
𝑠

)𝑖
. For the second part,

∑
𝐴∈P𝑖 (𝑆)

∏
𝑎∈𝐴 𝑝

𝑙
𝑎 can be

expressed as the following nested sum

∑︁
𝐴∈P𝑖 (𝑆)

∏
𝑎∈𝐴

𝑝𝑙𝑎 =
1

𝑖!
·
∑︁
𝑎1∈𝐴

©­«𝑝𝑙𝑎1 ·
∑︁

𝑎2∈𝐴\{𝑎1 }

©­«𝑝𝑙𝑎2 · . . . ·
∑︁

𝑎𝑖 ∈𝐴\{𝑎0,...,𝑎𝑖−1 }
𝑝𝑙𝑎𝑖

ª®¬ª®¬.
This sum essentially captures the choices of elements we have for each term,

where 𝑎 𝑗 is the 𝑗-th chosen element for 𝑗 = 1, . . . , 𝑖 . Since we only forbid repeti-

tions of elements, the 𝑗-th element can be anything from 𝑆 \
{
𝑎1, 𝑎2, . . . , 𝑎 𝑗−1

}
.

Again, we generate each product 𝑖! times on the right-hand side. If we pessimisti-

cally assume that forbidden elements have the maximum value max

{
𝑝𝑙𝑠 | 𝑠 ∈ 𝑆

}
,

we get∑︁
𝐴∈P𝑖 (𝑆)

∏
𝑎∈𝐴

𝑝𝑙𝑎

≥ 1

𝑖!

∑︁
𝑎1∈𝐴

©­«𝑝𝑙𝑎1 ·
∑︁

𝑎2∈𝐴\{𝑎1 }

(
𝑝𝑙𝑎2 · . . . ·

((∑︁
𝑠∈𝑆

𝑝𝑙𝑠

)
− (𝑖 − 1) ·max

{
𝑝𝑙𝑠 | 𝑠 ∈ 𝑆

}))ª®¬
≥ 1

𝑖!

((∑︁
𝑠∈𝑆

𝑝𝑙𝑠

)
− (𝑖 − 1) ·max

{
𝑝𝑙𝑠 | 𝑠 ∈ 𝑆

})𝑖
.

Nowwe also see why the requirement for this second statement is necessary. ■

We will use the bounds of the former lemma heavily in the remainder of this

thesis.
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4.2 Bicycles and the First Moment Method

In this section we introduce the concept of bicycles and derive a lower bound on

the position of the satisfiability threshold.

Chvátal and Reed [CR92] define the following sub-structure of 2-SAT formulas

and show that every unsatisfiable formula in 2-CNF contains this substructure.

▶ Definition 4.2 (bicycle). Let 𝑋1, 𝑋2, . . . , 𝑋𝑡 be 𝑡 distinct Boolean variables

and let 𝑤1, 𝑤2, . . . , 𝑤𝑡 be literals such that each 𝑤𝑙 is either 𝑋𝑙 or 𝑋𝑙 . We define a

bicycle of length 𝑡 to be a sequence of 𝑡 + 1 clauses of the form

(𝑢,𝑤1), (𝑤1, 𝑤2), . . . , (𝑤𝑡−1, 𝑤𝑡 ), (𝑤𝑡 , 𝑣),

where 𝑢, 𝑣 ∈ {𝑤1, . . . , 𝑤𝑡 , 𝑤1, . . . , 𝑤𝑡 }. ◀

Although a bicycle itself might not be unsatisfiable, Chvátal and Reed [CR92]

prove that every unsatisfiable Boolean formula in 2-CNF must contain a bicycle.
We can use this knowledge in the following way: We show that up to a certain

number of clauses𝑚★
the random formulas our model generates a. a. s. do not

contain any bicycles. Thus, they must be satisfiable. In order to bound the

probability for bicycles to appear, we use the first moment method. This means,

we bound the expected number of bicycles that appear. If this number is 𝑜 (1),
we can use Markov’s inequality to bound the probability of them appearing as

desired. The same approach was used in the proof of Theorem 3 from [CR92].

First, we consider the case 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). We define our threshold function

to be 𝑚★ = (∑𝑛
𝑖=1 𝑝

2

𝑖 )−1. We want to show that this function defines a sharp

satisfiability threshold for non-uniform random 2-SAT. Remember our definition

of a sharp satisfiability threshold. We need to show that for any constant 𝜀𝑚 ∈
(0, 1) and all functions 𝑚 ≤ 𝜀𝑚 ·𝑚★

the probability to generate a satisfiable

instance is a function tending to one as 𝑛 increases. However, as we wrote in the

last section, we are going to show something a bit more general. We will show

that, given 𝜀𝑚 ∈ (0, 1) and 𝜀𝑃 ∈ (0, 1), we can choose a constant 𝜀1 ∈ (0, 1) with
𝑝2
1
≤ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ) small enough so that the probability to generate a satisfiable

instance is at least 𝜀𝑃 . If 𝑝
2

1
∈ 𝑜

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
, then there is an 𝑛0 ∈ N such that this

condition holds for all 𝑛 ≥ 𝑛0.

▶ Lemma 4.3. Given an ensemble of probability distributions

(
®𝑝 (𝑛) )

𝑛∈N. Let
𝑚★ = 1/∑𝑛

𝑖=1 𝑝
2

𝑖 . Then, for any constant 𝜀𝑚 ∈ (0, 1) with𝑚 ≤ 𝜀𝑚 ·𝑚★
and any

constant 𝜀𝑃 ∈ (0, 1) we can choose 𝜀1 ∈ (0, 1) with 𝑝2
1
≤ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ) such
that the function describing the probability to generate a satisfiable formula

𝛷 ∼ D𝑁
(
𝑛, 2,

(
®𝑝 (𝑛) )

𝑛∈N,𝑚
)
is at least 𝜀𝑃 . ◀

Proof. To show this result, we show that the expected number of bicycles is at

most 1 − 𝜀𝑃 for the setting we consider. The result then follows by Markov’s

inequality.

First, choose 𝑛 arbitrary, but fixed. We want to evaluate the value of the

probability function for this value of 𝑛 and the number of clauses prescribed by
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the clause function𝑚(𝑛). We fix a set 𝑆 ⊆ [𝑛] of variables to appear in a bicycle

with |𝑆 | = 𝑡 ≥ 2 . The probability that a specific bicycle 𝐵 with these variables

appears in𝛷 is

Pr[𝐵 in𝛷] ≤
(
𝑚

𝑡 + 1

)
· (𝑡 + 1)!

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
positions of 𝐵 in𝛷

·Pr[(𝑢 ∨𝑤1)] ·Pr[(𝑤𝑡 ∨ 𝑣)] ·
𝑡−1∏
ℎ=1

Pr[(𝑤ℎ ∨𝑤ℎ+1)] .

Pr

[
(𝑤 𝑗 ∨𝑤𝑖)

]
denotes the probability to draw clause (𝑤 𝑗 ∨𝑤𝑖) in non-uniform

random 2-SAT. There are at most 𝑡 ! possibilities to arrange the 𝑡 variables in

a bicycle and 2
𝑡
possibilities to choose literals from the 𝑡 variables. For the

probability that any bicycle with the variables from 𝑆 appears in𝛷 it now holds

that

Pr[𝑆-bicycle in𝛷] ≤ 𝑚𝑡+1 · 𝑡 ! · 2𝑡 ·
(
𝐶

2

)𝑡+1
·
∏
𝑖∈𝑆

𝑝2𝑖 ·
(
2 ·

∑︁
𝑖∈𝑆

𝑝𝑖

)
2

,

where the last factor accounts for the possibilities to choose 𝑢 and 𝑣. It now

holds that

Pr[bicycle in𝛷] ≤
𝑛∑︁
𝑡=2

©­«
∑︁

𝑆 ∈P𝑡 ( [𝑛])

©­«𝑚𝑡+1 · 𝑡 ! · 2𝑡 ·
(
𝐶

2

)𝑡+1
2
2 ·

∏
𝑖∈𝑆

𝑝2𝑖 ·
(∑︁
𝑖∈𝑆

𝑝𝑖

)
2ª®¬ª®¬.

If we estimate

∑
𝑖∈𝑆 𝑝𝑖 ≤ 𝑡 · 𝑝1, we get

≤ 2 ·
𝑛∑︁
𝑡=2

©­«(𝐶 ·𝑚)𝑡+1 · 𝑡 ! · 𝑡2 · 𝑝2
1
·

∑︁
𝑆 ∈P𝑡 ( [𝑛])

(∏
𝑖∈𝑆

𝑝2𝑖

)ª®¬
and with

∑
𝑆 ∈P𝑡 ( [𝑛])

(∏
𝑖∈𝑆 𝑝

2

𝑖

)
≤ 1

𝑡 !
·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)𝑡
due to Lemma 4.1 this yields

≤ 2 ·
𝑛∑︁
𝑡=2

(
(𝐶 ·𝑚)𝑡+1 · 𝑡2 · 𝑝2

1
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)𝑡 )
.

Since𝑚 ≤ 𝜀𝑚 ·𝑚★ =
𝜀𝑚∑𝑛
𝑖=1 𝑝

2

𝑖

, this is

≤ 2 ·
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

·
𝑛∑︁
𝑡=2

(𝐶 · 𝜀𝑚)𝑡+1 · 𝑡2.

Now, it holds that 𝐶 = 1

1−∑𝑛
𝑖=1 𝑝

2

𝑖

≤ 1 + 𝑝1
1−𝑝1 , since

∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝1. Thus,
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Pr[bicycle in𝛷] ≤ 2 ·
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

·
𝑛∑︁
𝑡=2

(((
1 + 𝑝1

1 − 𝑝1

)
· 𝜀𝑚

)𝑡+1
· 𝑡2

)
≤ 2 ·

𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

·
∞∑︁
𝑡=2

(((
1 + 𝑝1

1 − 𝑝1

)
· 𝜀𝑚

)𝑡+1
· 𝑡2

)
.

We know that 𝑝1 ≤
√︃
𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖
≤ √

𝜀1. Thus, if we choose 𝜀1 small enough

such that (
1 + 𝑝1

1 − 𝑝1

)
· 𝜀𝑚 ≤

(
1 +

√
𝜀1

1 − √
𝜀1

)
· 𝜀𝑚 < 1,

then ©­«
√︄(

1 +
√
𝜀1

1 − √
𝜀1

)
· 𝜀𝑚

ª®¬
𝑡+1

· 𝑡2 ∈ 𝑜 (1).

Thus, there is some 𝑡0 such that for all 𝑡 ≥ 𝑡0 this function is at most 1. Therefore,

Pr[𝛷 contains a bicycle] ≤ 2 ·
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

·
∞∑︁
𝑡=2

((
1 + 𝑝1

1 − 𝑝1

)
· 𝜀𝑚

)𝑡+1
· 𝑡2

≤ 2 ·
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

· ©­«𝑡30 +
∞∑︁
𝑡=𝑡0

©­«
√︄(

1 +
√
𝜀1

1 − √
𝜀1

)
· 𝜀𝑚ª®¬

𝑡+1ª®¬
≤ 2 · 𝜀1 ·

©­­­­«
𝑡3
0
+

√︂
(1 +

√
𝜀1

1−√𝜀1 ) · 𝜀𝑚

1 −
√︂
(1 +

√
𝜀1

1−√𝜀1 ) · 𝜀𝑚

ª®®®®¬
,

where the second term was bounded by a geometric series. If we choose 𝜀1
sufficiently small, this expression is at most 1 − 𝜀𝑃 . ■

We now turn to the case that 𝑝2
1
∉ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). We are going to show that there

is an asymptotic threshold at

𝑚★ =
©­«𝐶 ·

(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
+𝐶 · 𝑝1 ·

(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

−1

.

However, we are going to show something a bit more general. We only assume

that 𝑝2
1
≥ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ) for some constant 𝜀1 > 0. If 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), then
there is some 𝑛0 ∈ N such that this holds for all 𝑛 ≥ 𝑛0. Under this condition,

we will show that for any 𝜀𝑃 ∈ (0, 1) we can choose an 𝜀𝑚 ∈ (0, 1) with𝑚 ≤
𝜀𝑚 · (𝐶 · 𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 so that the probability to generate a satisfiable

instance is at least 𝜀𝑃 . If𝑚 ∈ 𝑜
(
(𝐶 · 𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1
)
, this condition is met
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for all sufficiently large 𝑛. However, it is also met if𝑚 ∈ 𝑜 (𝑚★). We will show

this in more detail in Section 4.5.

▶ Lemma 4.4. Given an ensemble of probability distributions

(
®𝑝 (𝑛) )

𝑛∈N with

𝑝2
1
≥ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ) for some constant 𝜀1 ∈ (0, 1). Let𝑚★ = (𝐶 ·𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1.
Then, for any 𝜀𝑃 ∈ (0, 1) we can choose an 𝜀𝑚 ∈ (0, 1) such that the probability

to generate a satisfiable formula 𝛷 ∼ D𝑁 (𝑛, 2, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) is at least 𝜀𝑃 if

𝑚 ≤ 𝜀𝑚 ·𝑚★
. ◀

Proof. As in the proof of Lemma 4.3 it holds that

Pr[𝛷 unsat] ≤ Pr[bicycle in𝛷]

≤
𝑛∑︁
𝑡=2

©­«
∑︁

𝑆 ∈P𝑡 ( [𝑛])

©­«𝑚𝑡+1 · 𝑡 ! · 2𝑡 ·
(
𝐶

2

)𝑡+1
2
2 ·

∏
𝑖∈𝑆

𝑝2𝑖 ·
(∑︁
𝑖∈𝑆

𝑝𝑖

)
2ª®¬ª®¬

≤ 2 ·
𝑛∑︁
𝑡=2

©­«(𝐶 ·𝑚)𝑡+1 · 𝑡 ! ·
∑︁

𝑆 ∈P𝑡 ( [𝑛])

(∏
𝑖∈𝑆

𝑝2𝑖

)
·
(∑︁
𝑖∈𝑆

𝑝𝑖

)
2ª®¬. (4.2)

We can analyze the term

∑
𝑆 ∈P𝑡 ( [𝑛])

( (∏
𝑖∈𝑆 𝑝

2

𝑖

)
· (∑𝑖∈𝑆 𝑝𝑖)2

)
in more detail. By

doing a case distinction between the terms with 𝑝1 ∈ 𝑆 and 𝑝1 ∉ 𝑆 we get

∑︁
𝑆 ∈P𝑡 ( [𝑛])

©­«
(∏
𝑖∈𝑆

𝑝2𝑖

)
·
(∑︁
𝑖∈𝑆

𝑝𝑖

)
2ª®¬

≤ 𝑝2
1
· 𝑡2 · 𝑝2

1
· 1

(𝑡 − 1)! ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)𝑡−1
+ 𝑡2 · 𝑝2

2
· 1
𝑡 !

·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)𝑡
and since 𝑝2

1
≥ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ) ≥ 𝜀1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 ) and 𝑝2 ≤ 𝑝1 this yields

≤ (1 + 1/𝜀1) · 𝑡3 · 𝑝41 ·
1

𝑡 !
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)𝑡−1
.

It holds that 𝑝4
1
·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)𝑡−1 ≤ (
1√
𝜀1
· 𝑝1 ·

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
1/2

)𝑡+1
for 𝑡 ≥ 3. This yields

∑︁
𝑆 ∈P𝑡 ( [𝑛])

©­«
(∏
𝑖∈𝑆

𝑝2𝑖

)
·
(∑︁
𝑖∈𝑆

𝑝𝑖

)
2ª®¬ ≤ (1 + 1/𝜀1) ·

𝑡3

𝑡 !
· ©­« 1

√
𝜀1

· 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

𝑡+1

(4.3)

for 𝑡 ≥ 3.

For 𝑡 = 2 we know that each of the three 2-clauses in the bicycle must contain

both variables. Thus,∑︁
𝑆 ∈P2 ( [𝑛])

Pr[𝑆-bicycle in 𝐹 ]
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≤ 𝑚3 · (𝐶/2)3 · 2! · 22 · 22
∑︁
𝑖, 𝑗 ∈𝑉 :

𝑖≠𝑗

𝑝3𝑖 · 𝑝3𝑗

≤ (𝐶 ·𝑚)3 · 𝑡2 · 𝑝3
1
·
(
𝑛∑︁
𝑖=2

𝑝3𝑖

)
+ (𝐶 ·𝑚)3 · 𝑡2

(
𝑛∑︁
𝑖=2

𝑝3𝑖

)
2

and since

∑𝑛
𝑖=2 𝑝

3

𝑖 ≤
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
3/2

due to the monotonicity of vector norms, this

is at most

≤ (𝐶 ·𝑚)3 · 𝑡2 · 𝑝3
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
3/2

+ (𝐶 ·𝑚)3 · 𝑡2 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
3

and due to our condition 𝑝2
1
≥ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ) ≥ 𝜀1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 ), we get

≤
(
1 + 1

𝜀
3/2
1

)
· (𝐶 ·𝑚)3 · 𝑡2 · 𝑝3

1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
3/2

≤ (𝐶 ·𝑚)𝑡+1 · (1 + 1/𝜀1) · 𝑡3 ·
©­« 1

√
𝜀1

· 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

𝑡+1

. (4.4)

We can now plug equation (4.3) and equation (4.4) into equation (4.2) to get

Pr[𝛷 unsat] ≤ 2 · (1 + 1/𝜀1)
𝑛∑︁
𝑡=2

©­«©­«𝐶 ·𝑚 · 1

√
𝜀1

· 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

𝑡+1

· 𝑡3ª®¬
≤ 2 · (1 + 1/𝜀1)

∞∑︁
𝑡=2

©­«©­«𝐶 ·𝑚 · 1

√
𝜀1

· 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

𝑡+1

· 𝑡3ª®¬.
We can now choose𝑚 ≤ 𝜀𝑚 ·𝑚★

for a constant 𝜀𝑚 ∈ (0, 1) to be determined

later. Then,

Pr[𝛷 unsat] ≤ 2 · (1 + 1/𝜀1)
∞∑︁
𝑡=2

(
𝜀𝑚√
𝜀1

)𝑡+1
· 𝑡3

≤ 2 · (1 + 1/𝜀1) ·
𝜀𝑚√
𝜀1

∞∑︁
𝑡=2

(
𝜀𝑚√
𝜀1

)𝑡
· 𝑡3.

If we choose 𝜀𝑚 small enough so that
𝜀𝑚√
𝜀1

< 1, it holds that

(√︃
𝜀𝑚√
𝜀1

)𝑡
· 𝑡3 = 𝑜 (1).

Thus, there is a 𝑡0 ∈ N so that this function is at most 1 for all 𝑡 ≥ 𝑡0. As in the
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proof of Lemma 4.3, we have

Pr[𝛷 unsat] ≤ 2 · (1 + 1/𝜀1) ·
𝜀𝑚√
𝜀1

·
∞∑︁
𝑡=2

(
𝜀𝑚√
𝜀1

)𝑡
· 𝑡3

≤ 2 · (1 + 1/𝜀1) ·
𝜀𝑚√
𝜀1

·
(
𝑡4
0
+

∞∑︁
𝑡=𝑡0

(√︂
𝜀𝑚√
𝜀1

)𝑡 )

≤ 2 · (1 + 1/𝜀1) ·
𝜀𝑚√
𝜀1

·
©­­«𝑡40 +

√︃
𝜀𝑚√
𝜀1

1 −
√︃

𝜀𝑚√
𝜀1

ª®®¬.
We can now choose 𝜀𝑚 small enough so that this probability is at most 1−𝜀𝑃 . ■

Lemma 4.3 and Lemma 4.4 imply the statements we want for𝑚 ≤ 𝜀𝑚 ·𝑚★
and

𝑚 ∈ 𝑜 (𝑚★) respectively. We will show this formally in Section 4.5.

4.3 Snakes and the Second Moment Method

The two lemmas from the previous section provide a lower bound on the satisfi-

ability threshold for non-uniform random 2-SAT. By using the second moment

method, we can also derive an upper bound. This proof is inspired by Chvatal

and Reed [CR92, Theorem 4], who provide us with the following definition.

▶ Definition 4.5 (snake). A snake of size 𝑡 ≥ 2 is a sequence of literals

(𝑤1, 𝑤2, . . . , 𝑤2𝑡−1) over distinct variables. Each snake 𝐴 is associated with a

set 𝐹𝐴 of 2𝑡 clauses (𝑤𝑖 , 𝑤𝑖+1), 0 ≤ 𝑖 ≤ 2𝑡 − 1, such that 𝑤0 = 𝑤2𝑡 = 𝑤𝑡 . ◀

We will also call the variable |𝑤𝑡 | of a snake its central variable. Note that the
set of clauses 𝐹𝐴 defined by a snake 𝐴 is unsatisfiable. Also, the snakes

(𝑤1, . . . , 𝑤𝑡−1, 𝑤𝑡 , 𝑤𝑡+1, . . . , 𝑤𝑠),
(𝑤𝑡−1, 𝑤𝑡−2, . . . , 𝑤1, 𝑤𝑡 , 𝑤𝑡+1, . . . , 𝑤𝑠),
(𝑤1, . . . , 𝑤𝑡−1, 𝑤𝑡 , 𝑤𝑠 , 𝑤𝑠−1, . . . , 𝑤𝑡+1), and
(𝑤𝑡−1, 𝑤𝑡−2, . . . , 𝑤1, 𝑤𝑡 , 𝑤𝑠 , 𝑤𝑠−1, . . . , 𝑤𝑡+1)

create the same set of clauses.

The variable-variable incidence graph (VIG) for a formula𝛷 is a simple graph

𝐺𝛷 = (𝑉𝛷 , 𝐸𝛷 ) with 𝑉𝛷 consisting of all variables appearing in𝛷 and two vari-

ables being connected by an edge if they appear together in at least one clause

of𝛷 . An example for a snake’s VIG can be seen in Figure 4.1. We will use this

representation later in the proof of Lemma 4.12.

In order to show our upper bounds, we will prove that snakes of a certain

length 𝑡 appear with sufficiently high probability in a random formula 𝛷 ∼
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x1 x2 xt−1 xt xt+1 xs−1 xs

Figure 4.1: Variable-variable-incidence graph of a snake 𝑤1, 𝑤2, . . . , 𝑤𝑠 where |𝑤𝑖 | = 𝑥𝑖
(the variable of the literal 𝑤𝑖 ) for 1 ≤ 𝑖 ≤ 𝑠 = 2𝑡 − 1.

D(𝑛, 2, ( ®𝑝 (𝑛) )𝑛∈N,𝑚). To this end we utilize the second moment method: If

𝑋 ≥ 0 is a random variable with finite variance, then

Pr[𝑋 > 0] ≥ 𝔼[𝑋 ]2

𝔼[𝑋 2 ] .

We define the following indicator variables for each snake 𝐴 of size 𝑡

𝑋𝐴 =

{
1 if 𝐹𝐴 appears exactly once in𝛷

0 otherwise

and their sum 𝑋𝑡 =
∑
𝐴 𝑋𝐴. Throughout the rest of this chapter we let 𝑋𝑡 denote

the number of snakes of size 𝑡 ≥ 2 whose associated clauses appear exactly once

in a non-uniform random 2-SAT formula𝛷 ∼ D𝑁 (𝑛, 2, ( ®𝑝 (𝑛) )𝑛∈N,𝑚).
As before, if we define 𝑡 : N → R+

as a function in 𝑛, it holds that 𝔼
[
𝑋 2

𝑡

]
and 𝔼[𝑋𝑡 ] are functions in 𝑛 as well. For carefully chosen functions 𝑡 we will

show that 𝔼
[
𝑋 2

𝑡

]
≤ (1 + 𝜀𝐸) · 𝔼[𝑋𝑡 ]2 for a sufficiently small constant 𝜀𝐸 > 0.

Note that for the probability to generate an unsatisfiable instance, it is sufficient

to show a large enough lower bound for any value of 𝑡 . Thus, we will consider

several values of 𝑡 , one of which is guaranteed to give us a bound as desired for

sufficiently large values of 𝑛. More precisely, there are two values of 𝑡 that are

relevant for us, 𝑡 = 2 and 𝑡 = 𝑓 1/78, where we define

𝑓 =

∑𝑛
𝑖=1 𝑝

2

𝑖

𝑝2
1

.

Note that 𝑡 and 𝑓 are both functions in 𝑛 as are

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
and 𝑝1.

𝑡 = 2 will provide the desired result if there is a constant 𝜀1 ∈ (0, 1) such
that 𝑝2

1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and if we can choose a sufficiently small 𝜀2 ∈ (0, 1) such
that 𝑝2

2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 . This especially includes the case 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and
𝑝2
2
∈ 𝑜 (∑𝑛

𝑖=2 𝑝
2

𝑖 ).
𝑡 = 𝑓 1/78 will provide the desired result if we can choose a sufficiently small

𝜀1 ∈ (0, 1) with 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . This includes the case 𝑝
2

1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ).
However, if there are constants 𝜀1, 𝜀2 ∈ (0, 1) so that 𝑝2

1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and
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𝑝2
2
≥ 𝜀1 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 , we can show a lower bound directly without having to use the

second moment method. We will handle this case in Section 4.4.

Now, if we want to use the secondmoment method, we first have to ensure that

the expected number of snakes of a certain size is large enough. The following

lemma provides a lower bound on this expected number.

▶ Lemma 4.6. Let 2 ≤ 𝑡 ≤ (2 · 𝑞max)−1. Then it holds that

𝔼[𝑋𝑡 ] ≥ 1

2

· (𝑚 − 2𝑡)2𝑡 ·𝐶2𝑡 · (1 − 2𝑡 · 𝑞max ·𝑚) ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·

·
(
𝑛∑︁
𝑖=2

(
𝑝2𝑖 − (2𝑡 − 3) · 𝑝2

2

))2𝑡−2
.

◀

Proof. It holds that

𝔼[𝑋𝑡 ] =
∑︁
snake

𝐴=(𝑤1,...,𝑤2𝑡−1)

©­«
(
𝑚

2𝑡

)
· (2𝑡)! ·

2𝑡−1∏
𝑖=0

Pr[𝑤𝑖 , 𝑤𝑖+1] ·
(
1 −

∑︁
𝑐∈𝐹𝐴

Pr[𝑐]
)𝑚−2𝑡ª®¬

and according to equation (4.1) it holds that Pr[(𝑤𝑖 , 𝑤𝑖+1)] = 𝐶
2
·𝑝 ( |𝑤𝑖 |) ·𝑝 ( |𝑤𝑖+1 |).

Together with the fact that

∑
𝑐∈𝐹𝐴 Pr[𝑐] ≤ 2𝑡 · 𝑞max, we get

𝔼[𝑋𝑡 ] ≥ (𝑚−2𝑡)2𝑡 (1 − 2𝑡 · 𝑞max)𝑚−2𝑡
(
𝐶

2

)
2𝑡

·
∑︁
snake

𝐴=(𝑤1,...,𝑤2𝑡−1)

©­­«𝑝 ( |𝑤𝑡 |)4 ·
2𝑡−1∏
𝑖=1
𝑖≠𝑡

𝑝 ( |𝑤𝑖 |)2
ª®®¬.

(4.5)

Now we count how many snakes of size 𝑡 there are. First, we choose a central

variable 𝑋 𝑗 . Then, we choose a set 𝑆 of 2𝑡 − 2 different variables. From those

variables we can create 2
2𝑡−1 · (2𝑡 − 2)! different snakes by choosing signs for the

2𝑡 − 1 variables and by permuting the order of the 2𝑡 − 2 non-central variables.

∑︁
snake

𝐴=(𝑤1,...,𝑤2𝑡−1)

©­­«𝑝 ( |𝑤𝑡 |)4 ·
2𝑡−1∏
𝑖=1
𝑖≠𝑡

𝑝 ( |𝑤𝑖 |)2
ª®®¬ ≥ 2

2𝑡−1(2𝑡 − 2)! ·
𝑛∑︁
𝑗=1

©­­­«𝑝
4

𝑗 ·
∑︁

𝑆⊆[𝑛]\{ 𝑗 } :
|𝑆 |=2𝑡−2

∏
𝑠∈𝑆

𝑝2𝑠

ª®®®¬.
Due to Lemma 4.1 we have∑︁

𝑆⊆[𝑛]\{ 𝑗 } :
|𝑆 |=2𝑡−2

∏
𝑠∈𝑆

𝑝2𝑠 ≥
1

(2𝑡 − 2)!

(
𝑛∑︁
𝑖=2

(
𝑝2𝑖 − (2𝑡 − 3) · 𝑝2

2

))2𝑡−2
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and thus

∑︁
snake

𝐴=(𝑤1,...,𝑤2𝑡−1)

©­­«𝑝 ( |𝑤𝑡 |)4 ·
2𝑡−1∏
𝑖=1
𝑖≠𝑡

𝑝 ( |𝑤𝑖 |)2
ª®®¬

≥ 2
2𝑡−1 ·

(
𝑛∑︁
𝑗=1

𝑝4𝑗

)
·
(
𝑛∑︁
𝑖=2

(
𝑝2𝑖 − (2𝑡 − 3) · 𝑝2

2

))2𝑡−2
. (4.6)

Due to Bernoulli’s inequality, it also holds that

(1 − 2𝑡 · 𝑞max)𝑚−2𝑡 ≥ (1 − 2𝑡 · 𝑞max · (𝑚 − 2𝑡)), (4.7)

if 2𝑡 · 𝑞max ≤ 1. Plugging equation (4.6) and equation (4.7) into equation (4.5) we

get the result as desired. ■

4.3.1 The coarse threshold case

We want to prove an upper bound on the non-uniform random 2-SAT threshold.

To get to know the proof technique, we start with the much simpler case that

there is a constant 𝜀1 ∈ (0, 1) with 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and that we can choose a

sufficiently small 𝜀2 ∈ (0, 1) such that 𝑝2
2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 . For this case, we set

𝑚★ =
©­«𝐶 · 𝑝1 ·

(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

−1

.

In order to show the desired result, we need the following lower bound on𝑚★
.

▶ Lemma 4.7. Given an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N so that

there is a constant 𝜀1 ∈ (0, 1) with 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and a constant 𝜀2 ∈ (0, 1) so
that 𝑝2

2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 . Let𝑚
★ = (𝐶 · 𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1. Then,

𝑚★ ≥
1 − 𝜀1/2

2

𝜀
1/4
2

.

◀

Proof. First, we notice

𝑛∑︁
𝑖=2

𝑝2𝑖 ≤ 𝑝2 ·
𝑛∑︁
𝑖=2

𝑝𝑖 .
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Due to the requirement 𝑝2
2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 , we get

≤ 𝜀1/2
2

·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2

·
𝑛∑︁
𝑖=2

𝑝𝑖 .

The monotonicity of vector norms yields

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
1/2 ≤ ∑𝑛

𝑖=2 𝑝𝑖 and thus

≤ 𝜀1/2
2

·
(
𝑛∑︁
𝑖=2

𝑝𝑖

)
2

= 𝜀
1/2
2

· (1 − 𝑝1)2.

It holds that

𝑚★ =
1 − ∑𝑛

𝑖=1 𝑝
2

𝑖

𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
1/2 .

We can now use the inequality

∑𝑛
𝑖=2 𝑝

2

𝑖 ≤ 𝜀
1/2
2

· (1 − 𝑝1)2 to get

≥
1 − 𝑝2

1
− ∑𝑛

𝑖=2 𝑝
2

𝑖

𝑝1 · 𝜀1/4
2

· (1 − 𝑝1)

≥
1 − 𝑝2

1
− 𝜀1/2

2
· (1 − 𝑝1)2

𝑝1 · 𝜀1/4
2

· (1 − 𝑝1)

=
(1 − 𝑝1) · (1 + 𝑝1 − 𝜀1/2

2
· (1 − 𝑝1))

𝑝1 · 𝜀1/4
2

· (1 − 𝑝1)

=
1 + 𝑝1 − 𝜀1/2

2
· (1 − 𝑝1)

𝑝1 · 𝜀1/4
2

>
1 − 𝜀1/2

2

𝜀
1/4
2

. ■

The former lemma especially says that𝑚★
can be arbitrarily large if 𝜀2 ∈ (0, 1)

is sufficiently small.

We want to show that for any constant 𝜀𝑚 > 0 at 𝑚 ≥ 𝜀𝑚 ·𝑚★
there is a

constant 𝜀𝑃 ∈ (0, 1) such that the probability that a randomly generated instance

contains a snake of size 𝑡 = 2 is at least 𝜀𝑃 > 0. In that case, the only degree

of freedom we have is choosing a constant 𝜀2 arbitrarily small. Together with

our previous results this implies that the probability to generate an unsatisfiable

instance is a constant bounded away from zero and one at𝑚 ∈ 𝛩 (𝑚★). However,
if we can also choose 𝜀𝑚 > 0 arbitrarily large, we can show that this result holds

for any constant 𝜀𝑃 ∈ (0, 1). This implies that the probability to generate an

unsatisfiable instance approaches one if𝑚 ∈ 𝜔 (𝑚★).
In order to derive those results, we first show a lower bound on the expected

number of snakes of size 𝑡 = 2. Let us discuss what our lemma is going to state.

We assume that there is an 𝜀1 ∈ (0, 1)with 𝑝2
1
≥ 𝜀1·

∑𝑛
𝑖=1 𝑝

2

𝑖 and that we can choose
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𝜀2 ∈ (0, 1) arbitrarily small. This setting captures the case 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and
𝑝2
2
∈ 𝑜 (∑𝑛

𝑖=2 𝑝
2

𝑖 ). We want to show a result for all functions𝑚 ∈ 𝛺 (𝑚★). Thus,
we assume𝑚 = 𝜀𝑚 ·𝑚★

for some 𝜀𝑚 > 0. We can show that, given 𝜀1 and 𝜀𝑚 ,

we can choose 𝜀2 small enough such that 𝔼[𝑋2 ] > 𝜀𝐸 for any constant 𝜀𝐸 < 𝜀4𝑚 .

This will imply 𝔼[𝑋2 ] ∈ 𝛺 (1) later. If 𝜀1 and some 𝜀𝐸 > 0 are given and we can

choose 𝜀𝑚 and 𝜀2, then we can show that we can choose those values such that

𝔼[𝑋2 ] > 𝜀𝐸 for any 𝜀𝐸 given. This will imply 𝔼[𝑋2 ] ∈ 𝜔 (1) later. However, we
will show that these results only hold for𝑚 = 𝜀𝑚 ·𝑚★

. These are also the values

of𝑚 for which we will show bounds on the probability to generate unsatisfiable

instances. For higher values of𝑚, for example for𝑚 ∈ 𝜔 (𝑚★), these bounds still
hold due to the monotonicity of unsatisfiability in non-uniform random 𝑘-SAT

(c. f. Lemma 3.8).

▶ Lemma 4.8. Given an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N so

that there is a constant 𝜀1 ∈ (0, 1) with 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and let𝑚★ = (𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖 )1/2)−1. The following statements hold:

1. Given a constant 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★
and a constant 𝜀𝐸 ∈ (0, 1), then

we can choose a constant 𝜀2 ∈ (0, 1) with 𝑝2
2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 such that

𝔼[𝑋2 ] ≥ (1 − 𝜀𝐸) ·
1

2

·𝑚4 ·𝐶4 · 𝑝4
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

.

2. Given a constant 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★
, then we can choose a constant

𝜀2 ∈ (0, 1) such that 𝔼[𝑋2 ] ≥ 𝜀𝐸 for any constant 𝜀𝐸 ∈ (0, 1
2
· 𝜀4𝑚).

3. Given a constant 𝜀𝐸 > 0, then we can choose a constant 𝜀𝑚 > 0 with

𝑚 = 𝜀𝑚 ·𝑚★
sufficiently large and a constant 𝜀2 ∈ (0, 1) sufficiently small

such that 𝔼[𝑋2 ] ≥ 𝜀𝐸 .

◀

Proof. For the first statement, note that

(4·𝑞max)−1 =
1

4

· 1

𝐶 · 𝑝1 · 𝑝2
=
1

4

·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
1/2

𝑝2
𝑚★ ≥ 1

4 · 𝜀1/2
2

·𝑚★ >
1 − 𝜀1/2

2

4 · 𝜀3/4
2

(4.8)

due to Lemma 4.7 This means, we can choose 𝜀2 small enough, such that 𝑡 = 2 ≤
(2 · 𝑞max)−1. This allows us to use Lemma 4.6 with 𝑡 = 2, which yields

𝔼[𝑋2 ] ≥
1

2

· (𝑚 − 4)4 ·𝐶4 · (1 − 4 · 𝑞max ·𝑚) ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖 − 𝑝22

)
2

.

45



Chapter 4 Satisfiability Threshold in Non-Uniform Random 2-SAT

We now get(
𝑛∑︁
𝑖=2

𝑝2𝑖 − 𝑝22

)
2

≥
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

·
(
1 −

𝑝2
2∑𝑛

𝑖=2 𝑝
2

𝑖

)2
≥ (1 − 𝜀2)2 ·

(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

,

where we used 𝑝2
2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 . Equivalently,

(𝑚 − 4)4 ≥ 𝑚4 ·
(
1 − 4

𝑚

)
4

≥ 𝑚4 ·
(
1 −

4 · 𝜀1/4
2

𝜀𝑚 · (1 − 𝜀1/2
2

)

)
4

,

which holds since𝑚 = 𝜀𝑚 ·𝑚★ ≥ 𝜀𝑚 · 1−
√
𝜀2

𝜀
1/4
2

due to Lemma 4.7. Since𝑚 = 𝜀𝑚 ·𝑚★

and due to equation (4.8) we get

1 − 4 · 𝑞max ·𝑚 ≥ 1 −
4 · 𝜀1/2

2
·𝑚

𝑚★
= 1 − 4 · 𝜀1/2

2
· 𝜀𝑚 .

Since

(∑𝑛
𝑖=1 𝑝

4

𝑖

)
≥ 𝑝4

1
, the expected value now simplifies to

𝔼[𝑋2 ]

≥
(
1 −

4 · 𝜀1/4
2

𝜀𝑚 · (1 − 𝜀1/2
2

)

)
4

· (1 − 𝜀2)2 ·
(
1 − 4 · 𝜀1/2

2
· 𝜀𝑚

)
· 𝑚

4

2

·𝐶4 · 𝑝4
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

.

We can see that for any choice of 𝜀𝑚 and 𝜀1, the leading factor gets closer to one

as 𝜀2 gets closer to zero. Thus, for any 𝜀𝑚 > 0, 𝜀1 ∈ (0, 1), and 𝜀𝐸 ∈ (0, 1) we can
choose a sufficiently small 𝜀2 to guarantee

𝔼[𝑋2 ] ≥ (1 − 𝜀𝐸) ·
1

2

·𝑚4 ·𝐶4 · 𝑝4
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

.

This establishes the first statement.

For the second statement, suppose we are given an 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★
.

Then,

𝔼[𝑋2 ] ≥ (1 − 𝜀) · 1
2

·𝑚4 ·𝐶4 · 𝑝4
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

= (1 − 𝜀) · 1
2

· (𝑚/𝑚★)4 = (1 − 𝜀) · 1
2

· 𝜀4𝑚

for some constant 𝜀 that decreases with decreasing 𝜀2. The smaller we choose

𝜀2, the closer this function gets to
1

2
· 𝜀4𝑚 . Thus, for any 𝜀𝐸 ∈ (0, 1

2
· 𝜀4𝑚) we can

achieve 𝔼[𝑋2 ] ≥ 𝜀𝐸 . This establishes the second statement.

For the third statement suppose we are given an 𝜀𝐸 > 0 and we can choose
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𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★
. Again, we get

𝔼[𝑋2 ] ≥ (1 − 𝜀) · 1
2

· 𝜀4𝑚

for some constant 𝜀 that decreases for fixed 𝜀𝑚 and decreasing 𝜀2. First, we choose

𝜀𝑚 such that
1

2
· 𝜀4𝑚 > 𝜀𝐸 . Now we know that we can make 𝜀2 small enough so

that the expected value is at least 𝜀𝐸 . ■

We are now ready to prove that random formulas are unsatisfiable with some

positive constant probability at𝑚 ∈ 𝛩 ((𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1). More precisely,

we will show that, given 𝜀1 and 𝜀𝑚 , we can choose an 𝜀2 sufficiently small such

that there is a constant 𝜀𝑃 ∈ (0, 1) which bounds the probability to generate

unsatisfiable instances from below. Moreover, this value 𝜀𝑃 depends only on 𝜀1
and 𝜀𝑚 and not on 𝑛. This means, this lower bound does not approach zero or

one as 𝑛 increases.

In the proof we consider Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1], the probability that both snake

𝐴 and snake 𝐵 appear exactly once in a random formula. We distinguish several

cases depending on how many clauses 𝐹𝐴 and 𝐹𝐵 have in common. Then, we

analyze the probability of 𝐹𝐴 ∪ 𝐹𝐵 appearing exactly once. In order to do so, we

assume that some snake 𝐴 and the shared clauses of 𝐴 and 𝐵 have already been

chosen. Then, we construct 𝐵, incorporating the shared clauses from 𝐴.

▶ Lemma 4.9. Given an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N and a

constant 𝜀1 ∈ (0, 1) with 𝑝2
1
≥ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ). Let𝑚★ = (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1.
Then, for any constant 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★

and any

𝜀𝑃 <
𝜀4𝑚

𝜀4𝑚 + 3 · 𝜀2𝑚
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
+ 8

we can choose a constant 𝜀2 ∈ (0, 1) with 𝑝2
2
≤ 𝜀2 · ∑𝑛

𝑖=2 𝑝
2

𝑖 such that the

probability to generate an unsatisfiable formula 𝛷 ∼ D𝑁 (𝑛, 2,
(
®𝑝 (𝑛) )

𝑛∈N,𝑚)
is at least 𝜀𝑃 . ◀

Proof. First, we want to show that given 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★
and 𝜀1 ∈ (0, 1)

with 𝑝2
1
≥ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ), there is an 𝜀𝑃 ∈ (0, 1) such that

Pr[𝑋2 > 0] ≥ 𝔼[𝑋2 ]2

𝔼
[
𝑋 2

2

] ≥ 𝜀𝑃 .

Since Lemma 4.8 gives us a lower bound on 𝔼[𝑋2 ], we only need to consider

𝔼
[
𝑋 2

2

]
now. We use the same approach as Chvátal and Reed [CR92] and split

the expected value into two parts as follows

𝔼
[
𝑋 2

2

]
=

∑︁
𝐴

∑︁
𝐵

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]
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=
∑︁
𝐴

( ∑︁
𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] +
∑︁

𝐵 : 𝐵∼𝐴
Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

)
,

where 𝐵 ∼ 𝐴 denotes 𝐹𝐴 ∩ 𝐹𝐵 ≠ ∅. We will show that the part for 𝐵 ≁ 𝐴 is at

most (1 + 𝜀𝐸) · 𝔼[𝑋2 ]2 for some arbitrarily small constant 𝜀𝐸 > 0 and that there

is a constant 𝜀𝐹 > 0 such that the other part is at most 𝜀𝐹 · 𝔼[𝑋2 ]2.

First let us consider the part for 𝐵 ≁ 𝐴. It holds that

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

=

(
𝑚

8

)
· 8! ·

(∏
𝑐∈𝐹𝐴

Pr[𝑐]
)
·
(∏
𝑐∈𝐹𝐵

Pr[𝑐]
)
·
(
1 −

∑︁
𝑐∈𝐹𝐴∪𝐹𝐵

Pr[𝑐]
)𝑚−8

,

while

Pr[𝑋𝐴 = 1] =
(
𝑚

4

)
· 4! ·

(∏
𝑐∈𝐹𝐴

Pr[𝑐]
)
·
(
1 −

∑︁
𝑐∈𝐹𝐴

Pr[𝑐]
)𝑚−4

. (4.9)

Since

(
𝑚
8

)
· 8! ≤

( (
𝑚
4

)
· 4!

)
2

this readily implies

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ Pr[𝑋𝐴 = 1] · Pr[𝑋𝐵 = 1]
(
1 − ∑

𝑐∈𝐹𝐴∪𝐹𝐵 Pr[𝑐]
)𝑚−8(

1 − ∑
𝑐∈𝐹𝐴 Pr[𝑐]

)𝑚−4 (
1 − ∑

𝑐∈𝐹𝐵 Pr[𝑐]
)𝑚−4

and, due to

(
1 − ∑

𝑐∈𝐹𝐴 Pr[𝑐]
)
·
(
1 − ∑

𝑐∈𝐹𝐵 Pr[𝑐]
)
≥ 1−∑

𝑐∈𝐹𝐴∪𝐹𝐵 Pr[𝑐], we have

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ Pr[𝑋𝐴 = 1] · Pr[𝑋𝐵 = 1] ·
(
1 −

∑︁
𝑐∈𝐹𝐴

Pr[𝑐]
)−4 (

1 −
∑︁
𝑐∈𝐹𝐵

Pr[𝑐]
)−4

.

Again, we can use Bernoulli’s inequality to show(
1 −

∑︁
𝑐∈𝐹𝐴

Pr[𝑐]
)
4
(
1 −

∑︁
𝑐∈𝐹𝐵

Pr[𝑐]
)
4

≥ (1 − 4 · 𝑞max)8

≥ 1 − 32 · 𝑞max

≥ 1 −
32 · 𝜀3/4

2

1 − √
𝜀2
,

where the last inequality follows with 𝑞max <
𝜀
3/4
2

1−√𝜀2 due to equation (4.8). For

any fixed 𝜀𝑚 this expression can be made arbitrarily close to one if we choose a
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sufficiently small 𝜀2. This establishes∑︁
𝐴

∑︁
𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 1

1 − 32 · 𝑞max

∑︁
𝐴

∑︁
𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1] · Pr[𝑋𝐵 = 1]

≤
1 − √

𝜀2

1 − √
𝜀2 − 32 · 𝜀3/4

2

· 𝔼[𝑋2 ]2

= (1 + 𝜀𝐸) · 𝔼[𝑋2 ]2 (4.10)

for a constant 𝜀𝐸 that we can make arbitrarily small by making 𝜀2 small enough.

Now we turn to the case that 𝐵 ∼ 𝐴. We want to show that there is a constant

𝜀𝐹 > 0 such that this second sum is at most 𝜀𝐹 · 𝔼[𝑋2 ]2. Let 𝑙 = |𝐹𝐴 ∩ 𝐹𝐵 |. The
first and simplest case is 𝐹𝐴 = 𝐹𝐵 . This obviously happens if 𝐴 = 𝐵, but also for

three other snakes. So it holds that∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=4

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] = 4 · 𝔼[𝑋2 ] =
4

𝔼[𝑋2 ]
· 𝔼[𝑋2 ]2

and since we can achieve 𝔼[𝑋2 ] ≥ 𝜀 for any constant 𝜀 ∈ (0, 1
2
· 𝜀4𝑚) due to

Corollary 4.10 by making 𝜀2 sufficiently small, we get∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=4

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 4

𝜀
· 𝔼[𝑋2 ]2 = 𝜀𝐹 · 𝔼[𝑋2 ]2 (4.11)

for any constant 𝜀𝐹 > 8/𝜀4𝑚 . This captures the case 𝑙 = 4.

For 1 ≤ 𝑙 ≤ 3 it holds that∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=𝑙

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤
(
𝑚

8 − 𝑙

)
· (8 − 𝑙)! ·

(
1 −

∑︁
𝑐∈𝐹𝐴∪𝐹𝐵

Pr[𝑐]
)𝑚−8+𝑙

· 23 · 2! ·
(
𝐶

2

)
4

·

·
©­­­«
𝑛∑︁
𝑖=1

©­­­«𝑝
4

𝑖 ·
∑︁

𝑆⊆( [𝑛]\{𝑖 }) :
|𝑆 |=2

∏
𝑠∈𝑆

𝑝2𝑠

ª®®®¬
ª®®®¬ ·

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=𝑙

∏
𝑐∈𝐹𝐵\𝐹𝐴

Pr[𝑐] (4.12)

where we accounted for the 8− 𝑙 possible positions of clauses from 𝐹𝐴 ∪ 𝐹𝐵 in𝛷 ,

for the 2
3 · 2! possibilities to create a snake𝐴 from chosen variables if the central

variable is determined already, and for the ways to choose those variables. Now

49



Chapter 4 Satisfiability Threshold in Non-Uniform Random 2-SAT

we want to bound the term

𝑛∑︁
𝑖=1

©­­­«𝑝
4

𝑖 ·
∑︁

𝑆⊆( [𝑛]\{𝑖 }) :
|𝑆 |=2

∏
𝑠∈𝑆

𝑝2𝑠

ª®®®¬.
In order to do so we distinguish between the cases that 𝑝1 appears in the snake

as the central variable, a non-central variable or not at all to show the following

𝑛∑︁
𝑖=1

©­­­«𝑝
4

𝑖 ·
∑︁

𝑆⊆( [𝑛]\{𝑖 }) :
|𝑆 |=2

∏
𝑠∈𝑆

𝑝2𝑠

ª®®®¬
≤ 𝑝4

1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

+
(
𝑛∑︁
𝑖=2

𝑝4𝑖

)
· 𝑝2

1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
+

(
𝑛∑︁
𝑖=2

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

.

Again, the monotonicity of vector norms implies

∑𝑛
𝑖=2 𝑝

4

𝑖 ≤
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
2

and thus

≤ 𝑝4
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

+ 𝑝2
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
3

+
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
4

≤
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
· 𝑝4

1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

,

where we used the prerequisite

∑𝑛
𝑖=2 𝑝

2

𝑖 ≤
∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝2
1
/𝜀1. If we plug this into

equation (4.12), we get∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=𝑙

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
·𝑚8−𝑙 ·𝐶4 · 𝑝4

1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

·
∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=𝑙

∏
𝑐∈𝐹𝐵\𝐹𝐴

Pr[𝑐] . (4.13)

Now we consider the cases 𝑙 ∈ {1, 2, 3}. We assume that 𝐴 is chosen already

and that we want to construct all snakes 𝐵 that contain exactly 𝑙 clauses from 𝐴.

However, the bounds we derive will be independent of the actual choice of 𝐴.

Thus, we can simply plug them into equation (4.13). Remember that a snake of

size 2 contains the four clauses

(𝑤2, 𝑤1), (𝑤1, 𝑤2), (𝑤2, 𝑤3), (𝑤3, 𝑤2)

for literals 𝑤1, 𝑤2, and 𝑤3 of distinct Boolean variables.

For 𝑙 = 1 we know one shared clause which has to contain 𝐵’s central variable
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𝑥 and one of 𝐵’s non-central variables 𝑦. Here, we overestimate that for 𝐵 we

choose any two variables from 𝐴, one as 𝐵’s central variable and one as a non-

central variable. The other non-central variable 𝑧 only has to be different from 𝑥

and 𝑦. If we have a look at the clauses a snake of size 2 contains, we see that the

central variable appears 4 times, while the other two variables appear two times

each. However, the central and one of the non-central variables already appear

in a shared clause from 𝐴 and no clause of a snake is supposed to appear more

than once in the formula. Thus, the central variable 𝑥 appears an additional 3

times, 𝑦 appears an additional one time, and 𝑧 appears an additional two times.

Formally, it holds that∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=1

∏
𝑐∈𝐹𝐵\𝐹𝐴

Pr[𝑐]

≤
(
𝐶

2

)
3

·
∑︁

𝑥 ∈(𝑆∪{𝑖 })

©­«𝑝3𝑥 ·
∑︁

𝑦∈(𝑆∪{𝑖 })\{𝑥 }

©­«𝑝𝑦 ·
∑︁

𝑧∈[𝑛]\{𝑥,𝑦 }
𝑝2𝑧

ª®¬ª®¬,
where 𝑖 is the central variable and 𝑆 are the other variables of 𝐴. Again, we can

do a case distinction depending on the appearances of 𝑝1. We can see that 𝑝1
can appear as one of the three variables only. Also, the variables 𝑆 ∪ {𝑖} of 𝐴
are predetermined and |𝑆 ∪ {𝑖}| = 3. That means, if 1 is not part of 𝑆 ∪ {𝑖} or
not chosen from it, the set contains at most 3 other indices, whose associated

variables have probabilities of at most 𝑝2 each. We now distinguish 4 cases:

𝑥 = 1, 𝑦 = 1, 𝑧 = 1, and {𝑥,𝑦, 𝑧} ∩ {1} = ∅. The terms of the following expression

represent those cases. It holds that

∑︁
𝑥 ∈(𝑆∪{𝑖 })

𝑝3𝑥 ·
©­«

∑︁
𝑦∈(𝑆∪{𝑖 })\{𝑥 }

𝑝𝑦 ·
©­«

∑︁
𝑧∈[𝑛]\{𝑥,𝑦 }

𝑝2𝑧
ª®¬ª®¬

≤ 𝑝3
1
· 2𝑝2 ·

𝑛∑︁
𝑖=2

𝑝2𝑖 + 3𝑝3
2
· 𝑝1 ·

𝑛∑︁
𝑖=2

𝑝2𝑖 + 3𝑝3
2
· 2𝑝2 · 𝑝21 + 3𝑝3

2
· 2𝑝2 ·

𝑛∑︁
𝑖=2

𝑝2𝑖

≤ 17 · 𝑝3
1
· 𝑝2 ·

𝑛∑︁
𝑖=2

𝑝2𝑖 ,

where we used 𝑝2 ≤ 𝑝1 and 𝑝
2

2
≤ ∑𝑛

𝑖=2 𝑝
2

𝑖 . Together with equation (4.13), it now

holds that ∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=1

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 17

8

·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
·𝑚7 ·𝐶7 · 𝑝7

1
· 𝑝2 ·

(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
3
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=
√
𝜀2 ·

17

8

·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
·𝑚7 ·𝐶7 · 𝑝7

1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
7/2

,

since 𝑝2
2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 . In the first staement of Lemma 4.8 we show that for any

given 𝜀1, 𝜀𝑚 , and 𝜀 ∈ (0, 1), we can choose 𝜀2 small enough such that

𝔼[𝑋2 ] ≥ (1 − 𝜀) · 1
2

·𝑚4 ·𝐶4 · 𝑝4
1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2

.

This implies∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=1

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤
√
𝜀2

(1 − 𝜀)2 · 17
2

·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
· 𝔼[𝑋2 ]2

𝑚 ·𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
1/2 .

Since𝑚 ·𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
1/2

=𝑚/𝑚★ = 𝜀𝑚 , we get∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=1

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤
√
𝜀2

(1 − 𝜀)2 · 17
2

·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
· 𝔼[𝑋2 ]2

𝜀𝑚

= 𝜀𝐹 · 𝔼[𝑋2 ]2 (4.14)

for any 𝜀𝐹 > 0 if we choose 𝜀2 small enough (𝜀 decreases as 𝜀2 does).

Now we consider 𝑙 = 2. Again, it is helpful to visualize the clauses a snake of

size 2 consists of:

(𝑤2, 𝑤1), (𝑤1, 𝑤2), (𝑤2, 𝑤3), (𝑤3, 𝑤2) .

With two shared clauses, two cases can happen. Either all three variables of 𝐴

appear in the two shared clauses or only two do. In the first case, one variable

of 𝐴 appears in 𝐵 twice, while the other two appear only once. However, this

information is already enough to completely determine how all other clauses of 𝐵

have to look. It implies that the variable that appears twice is the central variable

both in 𝐴 and in 𝐵, since only the central variable appears in clauses with both

other variables. Moreover, the two shared clauses already imply 𝐴 = 𝐵 and thus

𝑙 = 4. This means, this case cannot happen! Thus, we only have to consider

the second case, in which two variables from 𝐴 each appear twice in the shared

clauses. Again, the shared clauses already determine that the central variable

from 𝐴 also is the central variable in 𝐵, since only the literals of the central

variable appear with the same sign in both clauses. In 𝐵 this central variable has
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to appear an additional two times and a new variable 𝑥 ∈ ([𝑛] \ (𝑆 ∪ {𝑖})) has
to appear two times as well. The other variable of 𝐵 does not appear again, since

it already appeared two times in shared clauses. More formally,∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=2

∏
𝑐∈𝐹𝐵\𝐹𝐴

Pr[𝑐] =
(
𝐶

2

)
2

· 𝑝2𝑖 ·
𝑛∑︁

𝑥 ∈[𝑛]\(𝑆∪{𝑖 })
𝑝2𝑥 .

By considering the possible appearances of 𝑝1 again, we get∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=2

∏
𝑐∈𝐹𝐵\𝐹𝐴

Pr[𝑐] ≤
(
𝐶

2

)
2

·
(
𝑝2
1
·
𝑛∑︁
𝑖=2

𝑝2𝑖 + 𝑝22 · 𝑝21 + 𝑝22 ·
𝑛∑︁
𝑖=2

𝑝2𝑖

)

≤ 3 ·
(
𝐶

2

)
2

· 𝑝2
1
·
𝑛∑︁
𝑖=2

𝑝2𝑖 .

Again with equation (4.13), it holds that

∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=2

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 3

4

·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
·𝑚6 ·𝐶6 · 𝑝6

1
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
3

.

Since we can choose 𝜀2 small enough such that 𝔼[𝑋2 ] ≥ (1 − 𝜀) · 1

2
·𝑚4 ·𝐶4 ·

𝑝4
1
·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
2

for any 𝜀 ∈ (0, 1), we get∑︁
𝐴

∑︁
𝐵 :

|𝐹𝐴∩𝐹𝐵 |=2

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] (4.15)

≤ 3

(1 − 𝜀)2 ·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
· 𝔼[𝑋2 ]2

𝑚2 ·𝐶2 · 𝑝2
1
·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
=

3

(1 − 𝜀)2 ·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
· 𝔼[𝑋2 ]2

𝜀2𝑚
(4.16)

= 𝜀𝐹 · 𝔼[𝑋2 ]2 (4.17)

for some constant 𝜀𝐹 > 3

𝜀2𝑚
·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
.

The last case is 𝑙 = 3. This case can not happen, since 3 shared clauses already

fully determine the last clause, which also has to align with one of 𝐴, i. e. we do

not have any degree of freedom to make 𝐹𝐴 ≠ 𝐹𝐵 .

Putting equation (4.11), equation (4.14), and equation (4.17) together, estab-

lishes that we can choose 𝜀2 sufficiently small to make∑︁
𝐴

∑︁
𝐵 : 𝐵∼𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 𝜀𝐹 · 𝔼[𝑋2 ]2
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for any constant 𝜀𝐹 > 3

𝜀2𝑚
·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
+ 8

𝜀4𝑚
. Together with equation (4.10), this

gives us

𝔼
[
𝑋 2

2

]
=

∑︁
𝐴

( ∑︁
𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] +
∑︁

𝐵 : 𝐵∼𝐴
Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

)
≤ (1 + 𝜀𝐸 + 𝜀𝐹 ) · 𝔼[𝑋2 ]2

for any constant 𝜀𝐸 > 0 and any 𝜀𝐹 > 3

𝜀2𝑚
·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
+ 8

𝜀4𝑚
and implies

Pr[𝑋2 > 0] ≥ 𝔼[𝑋2 ]2

𝔼
[
𝑋 2

2

] ≥ 1

1 + 𝜀𝐸 + 𝜀𝐹
= 𝜀𝑃

for any

𝜀𝑃 <
𝜀4𝑚

𝜀4𝑚 + 3 · 𝜀2𝑚 ·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
+ 8

.

■

The following is a corollary of the former lemma and complements it. It shows

that for any 𝜀1 ∈ (0, 1) and any 𝜀𝑃 ∈ (0, 1) non-uniform random 2-SAT formulas

are unsatisfiable with probability at least 𝜀𝑃 if we can choose 𝜀𝑚 with𝑚 = 𝜀𝑚 ·𝑚★

sufficiently large and 𝜀2 with 𝑝
2

2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 sufficiently small. This captures

the case𝑚 ∈ 𝜔 (𝑚★).

▶ Corollary 4.10. Given an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N and

a constant 𝜀1 ∈ (0, 1) with 𝑝2
1
≥ 𝜀1 · (

∑𝑛
𝑖=1 𝑝

2

𝑖 ). Let𝑚★ = (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1.
For any constant 𝜀𝑃 ∈ (0, 1) we can choose a constant 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★

and a constant 𝜀2 ∈ (0, 1) with 𝑝2
2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 such that the probability to

generate an unsatisfiable formula𝛷 ∼ D𝑁 (𝑛, 2, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) is at least 𝜀𝑃 . ◀

Proof. The corollary is a simple application of the former lemma. Suppose we

are given 𝜀1 and 𝜀𝑃 . We can now choose an 𝜀𝑚 large enough such that

𝜀4𝑚

𝜀4𝑚 + 3 · 𝜀2𝑚 ·
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
+ 8

> 𝜀𝑃

for the given 𝜀𝑃 . Due to Lemma 4.9 we can then choose 𝜀2 small enough to

generate unsatisfiable instances with probability at least 𝜀𝑃 . ■

The former lemma and corollary together with Lemma 4.4 establish that in

the case of 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and 𝑝22 ∈ 𝑜 (
∑𝑛
𝑖=2 𝑝

2

𝑖 ) the asymptotic threshold is at

𝑚 ∈ 𝛩 ((𝐶 · 𝑝1
(∑𝑛

𝑖=2 𝑝
2

𝑖 )1/2)−1
)
and that it is coarse. We will show this formally

in Section 4.5.
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4.3.2 The sharp threshold case

In the last section we analyzed the case 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and 𝑝22 ∈ 𝑜 (∑𝑛
𝑖=2 𝑝

2

𝑖 ).
Now we tend to the case 𝑝2

1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). In this section we are going to show

that there is a sharp threshold at𝑚★ = (∑𝑛
𝑖=1 𝑝

2

𝑖 )−1. From Lemma 4.3 we already

know that formulas are satisfiable with probability 1 − 𝑜 (1) if𝑚 ≤ 𝜀𝑚 ·𝑚★
for

any constant 𝜀𝑚 ∈ (0, 1). It remains to show that they are unsatisfiable with
probability 1 − 𝑜 (1) if𝑚 ≥ 𝜀𝑚 ·𝑚★

for any constant 𝜀𝑚 > 1. This will establish a

sharp threshold at𝑚★ = (∑𝑛
𝑖=1 𝑝

2

𝑖 )−1. More generally, we will show that, given

𝜀𝑃 ∈ (0, 1) and 𝜀𝑚 > 1 so that𝑚 = 𝜀𝑚 ·𝑚★
, we can choose 𝜀1 with 𝑝

2

1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖

sufficiently small so that the probability to generate an unsatisfiable instance is

at least 𝜀𝑃 .

We use the same technique as in the last section to prove this result, the second

moment method. As before, in order to show a sufficiently large probability for

unsatisfiability, we first have to show that the expected number of snakes of a

certain size 𝑡 can be made arbitrarily large. The following lemma establishes this

property for the suitably chosen value 𝑡 = 𝑓 1/78, where 𝑓 =
(∑𝑛

𝑖=1 𝑝
2

𝑖

)
/𝑝2

1
≥ 1/𝜀1.

▶ Lemma 4.11. Given an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N and

let 𝑡 = 𝑓 1/78, where 𝑓 = (∑𝑛
𝑖=1 𝑝

2

𝑖 )/𝑝21 . Let𝑚★ = (∑𝑛
𝑖=1 𝑝

2

𝑖 )−1 and let𝑚 = 𝜀𝑚 ·𝑚★

for some given constant 𝜀𝑚 > 1. Given a constant 𝜀𝐸 ∈ (0, 1), we can choose a

constant 𝜀1 ∈ (0, 1) with 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 such that

𝔼[𝑋𝑡 ] ≥ (1 − 𝜀𝐸) ·
1

2

·𝑚2𝑡 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2𝑡−2

.

Furthermore, for any given 𝜀𝐸 > 0, we can choose 𝜀1 ∈ (0, 1) small enough to

guarantee 𝔼[𝑋𝑡 ] ≥ 𝜀𝐸 . ◀

Proof. It holds that 𝑝1 ≤ 1,

∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 1, and 𝐶 = 1 − ∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 1. Thus,

𝑡 = 𝑓 1/78 =

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
1/78

𝑝
1/39
1

≤ 𝑝
−1/39
1

≤ 𝑝−1
1

≤ 1/(𝐶 · 𝑝1 · 𝑝2) = (2 · 𝑞max)−1.

Also,

𝑡 = 𝑓 1/78 ≥ 1

𝜀
1/78
1

≥ 2

if 𝜀1 is sufficiently small. Therefore, we can apply Lemma 4.6 to get

𝔼[𝑋𝑡 ]

≥ 1

2

· (𝑚−2𝑡)2𝑡 ·𝐶2𝑡 · (1−2𝑡 ·𝑞max ·𝑚) ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=2

(
𝑝2𝑖 − (2𝑡 − 3) · 𝑝2

2

))2𝑡−2
.
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We are going to show that this is at least

(1 − 𝜀𝐸) ·
1

2

·𝑚2𝑡 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2𝑡−2

for some 𝜀𝐸 ∈ (0, 1) that we can make arbitrarily small by making 𝜀1 sufficiently

small.

First, we see that(
𝑛∑︁
𝑖=2

(𝑝2𝑖 − (2𝑡 − 3) · 𝑝2
2
)
)
2𝑡−2

≥
(
𝑛∑︁
𝑖=1

(𝑝2𝑖 − (2𝑡 − 2) · 𝑝2
1
)
)
2𝑡−2

=

(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
2𝑡−2

·
(
1 −

(2𝑡 − 2) · 𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)2𝑡−2
.

It holds that (
1 −

(2𝑡 − 2) · 𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)2𝑡−2
≥

(
1 −

2 · 𝑓 1/78 · 𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)
2𝑡−2

=

(
1 − 2 ·

(
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)77/78)2𝑡−2
where we used our definitions of 𝑡 and 𝑓 . We can see that

(
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)
77/78

≤ 𝜀77/78
1

.

By choosing 𝜀1 sufficiently small, this allows us to use Bernoulli’s inequality and

get (
1 −

(2𝑡 − 2) · 𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)2𝑡−2
≥

(
1 − 2 ·

(
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)77/78
· 2𝑡

)
=

(
1 − 4 ·

(
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

)38/39)
≥

(
1 − 4 · 𝜀38/39

1

)
.

We can make this factor arbitrarily close to one if we choose 𝜀1 sufficiently small.

Equivalently,

(𝑚 − 2𝑡)2𝑡 =𝑚2𝑡 ·
(
1 − 2𝑡

𝑚

)
2𝑡

=𝑚2𝑡 ·
(
1 − 2 ·

𝑓 1/78 ·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)
𝜀𝑚

)
2𝑡

,
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where we used𝑚 = 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖 and 𝑡 = 𝑓
1/78

. It holds that 𝑓 · 𝑝2
1
=

∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝1,

which implies 𝑓 ≤ 𝑝−1
1

and 𝑡 ≤ 𝑝
−1/78
1

. Furthermore, we still know that 𝑝1 ≤ 𝜀1/2
1

,

since 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and
∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 1. This implies(
1 − 2 ·

𝑓 1/78 ·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)
𝜀𝑚

)
2𝑡

≥
(
1 − 2 ·

𝑝
77/78
1

𝜀𝑚

)
2𝑡

≥
(
1 − 2 ·

𝜀
77/156
1

𝜀𝑚

)
2𝑡

.

Again, we can make 𝜀1 small enough to use Bernoulli’s inequality and get(
1 − 2 ·

𝑝
77/78
1

𝜀𝑚

)
2𝑡

≥
(
1 − 2 ·

2𝑡 · 𝑝77/78
1

𝜀𝑚

)
≥

(
1 − 4 ·

𝑝
38/39
1

𝜀𝑚

)
≥

(
1 − 4 ·

𝜀
19/39
1

𝜀𝑚

)
.

Thus, for any fixed 𝜀𝑚 we can make this factor arbitrarily close to one by making

𝜀1 sufficiently small.

Since we know that 𝐶 = (1 − ∑𝑛
𝑖=1 𝑝

2

𝑖 )−1 and
∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝1 ≤
√
𝜀1, this implies

1 ≤ 𝐶 ≤ (1 − √
𝜀1)−1. We also know that 𝑡 = 𝑓 1/78 ≥ 𝜀−1/78

1
, which implies

1 − 2𝑡 · 𝑞max ·𝑚 = 1 − 𝑓 1/78 ·𝐶 · 𝑝1 · 𝑝2 ·
𝜀𝑚∑𝑛
𝑖=1 𝑝

2

𝑖

≥ 1 − 𝑓 1/78 · 𝜀𝑚

1 − √
𝜀1

·
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

= 1 − 𝑓 −77/78 · 𝜀𝑚

1 − √
𝜀1

≥ 1 −
𝜀𝑚 · 𝜀77/78

1

1 − 𝜀1/2
1

.

Here, we also use 𝑝2 ≤ 𝑝1 and the definition 𝑓 = (∑𝑛
𝑖=1 𝑝

2

𝑖 )/𝑝21 . Thus, for any
given 𝜀𝑚 we can make this expression arbitrarily close to one by choosing 𝜀1
sufficiently small.

For any given 𝜀𝑚 we can now choose an 𝜀𝐸 ∈ (0, 1) and get

𝔼[𝑋𝑡 ] ≥ (1 − 𝜀𝐸) ·
1

2

·𝑚2𝑡 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
2𝑡−2

by making 𝜀1 sufficiently small. We want to show that for every 𝜀𝑚 we can make

the expected value arbitrarily large by choosing 𝜀1 small enough. It holds that

𝑚2 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
≥ 𝑚2 · 𝑝4

1
=

𝜀2𝑚 · 𝑝4
1(∑𝑛

𝑖=1 𝑝
2

𝑖

)
2
=
𝜀2𝑚

𝑓 2
,
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where we used𝑚 = 𝜀𝑚 ·𝑚★ = 𝜀𝑚 ·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)−1
. With the same fact it holds that(

𝑚 ·
𝑛∑︁
𝑖=1

𝑝2𝑖

)
2𝑡−2

= 𝜀2𝑡−2𝑚 .

Since we know that 𝑡 = 𝑓 1/78, it holds that

𝔼[𝑋𝑡 ] ≥ (1 − 𝜀𝐸) ·
1

2

· 𝜀
2·𝑓 1/78
𝑚

𝑓 2
.

We can now make this expression as large as we need it if 𝑓 is sufficiently large,

because we assumed 𝜀𝑚 > 1. Since 𝑓 ≥ 1/𝜀1 this is the case if 𝜀1 is sufficiently

small. Thus, for any given 𝜀𝐸 > 0 we can choose 𝜀1 sufficiently small to guarantee

𝔼[𝑋𝑡 ] ≥ 𝜀𝐸 . ■

We now turn to the application of the secondmoment method. Again, we want

to show that Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] for snakes 𝐴 and 𝐵 with shared clauses (𝐹𝐴 ∩
𝐹𝐵 ≠ ∅) is relatively small compared to 𝔼[𝑋𝑡 ]2. To this end, we have to consider
different possibilities for the shared clauses to influence Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1].
In the proofs of the former case this was rather easy, since we only considered

the smallest possible snakes of size 𝑡 = 2. Now the distinction becomes a bit

more difficult. We will distinguish several cases: If the number of shared clauses

is at least 𝑡 then Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] is by roughly a factor of 𝜀𝑡𝑚 smaller than

𝔼[𝑋𝑡 ]2. If the shared clauses form a variable-variable-incidence graph with at

least two connected components, then there are enough variable appearances

pre-defined for 𝐵 to make Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] sufficiently small. The last case

is that the shared clauses form only one connected component, which is a lot

smaller than 𝑡 − 1. In that case we have to carefully consider what happens to

the central variable of 𝐵, since this variable appears most times in 𝐵 and the

many appearances take degrees of freedom away from other variables, therefore

making Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] small. Here, we only show the result for some

𝜀𝑚 > 1 so that𝑚 = 𝜀𝑚 ·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)−1
. For𝑚 ∈ 𝜔 ((∑𝑛

𝑖=1 𝑝
2

𝑖 )−1) it follows by the

monotonicity of unsatisfiability as we will see later.

▶ Lemma 4.12. Given an ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N. Let
𝑚★ = (∑𝑛

𝑖=1 𝑝
2

𝑖 )−1 and let𝑚 = 𝜀𝑚 ·𝑚★
for some given constant 𝜀𝑚 > 1. Given

an 𝜀𝑃 ∈ (0, 1), we can choose a constant 𝜀1 ∈ (0, 1) with 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖

such that the probability that a random formula𝛷 ∼ D𝑁 (𝑛, 2, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) is
unsatisfiable is at least 𝜀𝑃 . ◀

Proof. Again, we utilize the second moment method. We want to show that for

any given 𝜀𝑃 ∈ (0, 1) we can choose 𝜀1 ∈ (0, 1) sufficiently small so that some 𝐹𝐴
for a snake 𝐴 of size 𝑡 appears in𝛷 with probability at least 𝜀𝑃 . This especially

implies that we can make this probability arbitrarily close to one. This will hold

for 𝑡 = 𝑓 1/78, where 𝑓 = (∑𝑛
𝑖=1 𝑝

2

𝑖 )/𝑝21 . We will later see why we chose 𝑡 this way.
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Again, we define 𝑋𝐴 as an indicator variable for the event that the formula 𝐹𝐴
associated with snake 𝐴 appears exactly once in𝛷 and 𝑋𝑡 =

∑
snake 𝐴 of size 𝑡 𝑋𝐴.

As in the proof of Corollary 4.10 we want to show that for any 𝜀𝐸 > 0 we can

choose 𝜀1 small enough so that 𝔼
[
𝑋 2

𝑡

]
≤ (1 + 𝜀𝐸) · 𝔼[𝑋𝑡 ]2. Then, the second

moment method gives us

Pr[𝑋𝑡 > 0] ≥ 𝔼[𝑋𝑡 ]2

𝔼
[
𝑋 2

𝑡

] ≥ 1

1 + 𝜀𝐸
.

Thus, for any given 𝜀𝑃 ∈ (0, 1) we can simply choose 𝜀𝐸 = 1

𝜀𝑃
− 1 to get the result

as desired. We again split the expected value into two sums

𝔼
[
𝑋 2

𝑡

]
=

∑︁
𝐴

∑︁
𝐵

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

=
∑︁

𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] +
∑︁

𝐵 : 𝐵∼𝐴
Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1],

where 𝐵 ∼ 𝐴 denotes 𝐹𝐴 ∩ 𝐹𝐵 ≠ ∅. We will now consider the parts over 𝐵 ≁ 𝐴

and 𝐵 ∼ 𝐴 separately, starting with 𝐵 ≁ 𝐴.

As in the proof of Corollary 4.10, we want to show that for any 𝜀𝐸 > 0, we

can choose 𝜀1 such that∑︁
𝐴

∑︁
𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ (1 + 𝜀𝐸) · 𝔼[𝑋𝑡 ]2. (4.18)

It holds that

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

=

(
𝑚

4𝑡

)
· (4𝑡)! ·

(∏
𝑐∈𝐹𝐴

Pr[𝑐]
)
·
(∏
𝑐∈𝐹𝐵

Pr[𝑐]
)
·
(
1 −

∑︁
𝑐∈𝐹𝐴∪𝐹𝐵

Pr[𝑐]
)𝑚−4𝑡

,

while

Pr[𝑋𝐴 = 1] =
(
𝑚

2𝑡

)
· (2𝑡)! ·

(∏
𝑐∈𝐹𝐴

Pr[𝑐]
)
·
(
1 −

∑︁
𝑐∈𝐹𝐴

Pr[𝑐]
)𝑚−2𝑡

.

This already gives us

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ Pr[𝑋𝐴 = 1] · Pr[𝑋𝐵 = 1] ·
(
1 − ∑

𝑐∈𝐹𝐴∪𝐹𝐵 Pr[𝑐]
)𝑚−4𝑡(

1 − ∑
𝑐∈𝐹𝐴 Pr[𝑐]

)𝑚−2𝑡 (
1 − ∑

𝑐∈𝐹𝐵 Pr[𝑐]
)𝑚−2𝑡 ,
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since

(
𝑚
4𝑡

)
· (4𝑡)! ≤

( (
𝑚
2𝑡

)
· (2𝑡)!

)
2

. Due to(
1 −

∑︁
𝑐∈𝐹𝐴

Pr[𝑐]
)
·
(
1 −

∑︁
𝑐∈𝐹𝐵

Pr[𝑐]
)
≥ 1 −

∑︁
𝑐∈𝐹𝐴∪𝐹𝐵

Pr[𝑐],

and

∑
𝑐∈𝐹𝐴 Pr[𝑐],∑𝑐∈𝐹𝐵 Pr[𝑐] ≤ 2𝑡 · 𝑞max we have(

1 − ∑
𝑐∈𝐹𝐴∪𝐹𝐵 Pr[𝑐]

)𝑚−4𝑡(
1 − ∑

𝑐∈𝐹𝐴 Pr[𝑐]
)𝑚−2𝑡 (

1 − ∑
𝑐∈𝐹𝐵 Pr[𝑐]

)𝑚−2𝑡

≤
(
1 −

∑︁
𝑐∈𝐹𝐴

Pr[𝑐]
)−2𝑡

·
(
1 −

∑︁
𝑐∈𝐹𝐵

Pr[𝑐]
)−2𝑡

≤ (1 − 2𝑡 · 𝑞max)−4𝑡 .

Since we know 𝑡 ≤ (2 ·𝑞max)−1 from the previous lemma, we can use Bernoulli’s

inequality to get

(1 − 2𝑡 · 𝑞max)−4𝑡 ≤ (1 − 8𝑡2 · 𝑞max)−1.

We know that 𝑡2 = 𝑓 1/39 = (∑𝑛
𝑖=1 𝑝

2

𝑖 )1/39/𝑝
2/39
1

and that 𝑞max = 1

2
· 𝐶 · 𝑝1 · 𝑝2 =

𝑝1 ·𝑝2
2· (1−∑𝑛

𝑖=1 𝑝
2

𝑖
) . Together with 𝑝2 ≤ 𝑝1 ≤ 𝜀1/2

1
and

∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝1 ≤ 𝜀1/2
1

this yields

(1 − 8𝑡2 · 𝑞max)−1 =
(
1 − 4 ·

(∑𝑛
𝑖=1 𝑝

2

𝑖 )1/39 · 𝑝1 · 𝑝2
𝑝
2/39
1

· (1 − ∑𝑛
𝑖=1 𝑝

2

𝑖
)

)−1
≤

(
1 − 4 ·

𝑝
77/39
1

1 − 𝑝1

)−1
≤

(
1 − 4 ·

𝜀
77/78
1

1 − 𝜀1/2
1

)−1
≤ 1 + 𝜀𝐸

for any 𝜀𝐸 > 0 if we make 𝜀1 sufficiently small. We now get

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ (1 + 𝜀𝐸) · Pr[𝑋𝐴 = 1] · Pr[𝑋𝐵 = 1]

for 𝐴 ≁ 𝐵 and thus∑︁
𝐴

∑︁
𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ (1 + 𝜀𝐸) ·
∑︁
𝐴

∑︁
𝐵 : 𝐵≁𝐴

Pr[𝑋𝐴 = 1] · Pr[𝑋𝐵 = 1]

≤ (1 + 𝜀𝐸) · 𝔼[𝑋2 ]2.

Second, we look at snakes 𝐵 ∼ 𝐴. For those we want to show∑︁
𝐴

∑︁
𝐵 : 𝐵∼𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 𝜀𝐸 · 𝔼[𝑋𝑡 ]2 (4.19)
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(a) If the shared clauses form a forest, the

number of connected components 𝑐 is the

difference between the number of different

variables in shared clauses 𝑗 and the number

of shared clauses 𝑙 , 𝑐 = 𝑗 − 𝑙 .

(b) In order for the shared clauses to form

a cycle, at least 𝑡 of the 2𝑡 clauses have to be

shared. In that case the number of connected

components is 𝑐 = 𝑗 − 𝑙 + 1.

Figure 4.2: Visual representation of the variable-variable incidence graph 𝐺𝐹𝐴 for a

snake 𝐴. Each node represents a variable of the snake, while each edge represents a

clause of 𝐴 containing those variables. The node of degree 4 represents the central

variable of𝐴. Shared clauses with snake 𝐵 are highlighted in red, i. e. red edges represent

clauses that appear both in 𝐹𝐴 and 𝐹𝐵 . However, those edges do not necessarily appear

at the same position in 𝐺𝐹𝐵 .

for any 𝜀𝐸 > 0 if we make 𝜀1 sufficiently small. First, let us consider 𝐹𝐴 = 𝐹𝐵 . As

in the case of 𝑡 = 2 it holds that there are exactly 4 snakes with the same set of

clauses. Thus,∑︁
𝐴

∑︁
𝐵 : 𝐹𝐵=𝐹𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] = 4 · 𝔼[𝑋𝑡 ] =
4

𝔼[𝑋𝑡 ]
· 𝔼[𝑋𝑡 ]2.

Lemma 4.11 tells us that for any 𝜀 > 0 we can choose 𝜀1 such that 𝔼[𝑋𝑡 ] ≥ 𝜀.

Therefore, for any 𝜀𝐸 > 0 we can choose 𝜀1 sufficiently small to get∑︁
𝐴

∑︁
𝐵 : 𝐹𝐵=𝐹𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] = 4

𝔼[𝑋𝑡 ]
·𝔼[𝑋𝑡 ]2 ≤

4

𝜀
·𝔼[𝑋𝑡 ]2 ≤ 𝜀𝐸 ·𝔼[𝑋𝑡 ]2.

The remaining analysis is a bit more complicated than in the case of 𝑡 = 2,

since we can not always surely say howmany variables of snake 𝐵 are predefined

by shared clauses. As before, we are classifying snakes 𝐵 ∼ 𝐴 according to the

number 𝑙 = |𝐹𝐴 ∩ 𝐹𝐵 | of shared clauses, but also according to the number 𝑗 of

nodes in the variable-variable incidence graph 𝐺𝐹𝐴∩𝐹𝐵 . Note that the number of

variables that 𝐹𝐴 and 𝐹𝐵 have in common (regardless of signs) could be greater!

In fact, they could share all their variables without having a single clause in

common. However, right now we are only interested in ways to incorporate

clauses from 𝐹𝐴 as shared clauses into 𝐹𝐵 . To that end, we only need to consider

the variables from these clauses as shared variables. For a representation, see

Figure 4.2.

Suppose now that snake 𝐴 and the shared clauses are fixed. We let 𝑗 denote

the number of variables in shared clauses. We know that there are 2𝑡 − 1 − 𝑗

free variables in 𝐵, i. e. variables which are not predetermined to appear in 𝐵

by shared clauses. Furthermore we can give an upper bound on the number 𝑐

of connected components of 𝐺𝐹𝐴∩𝐹𝐵 . It is easy to see that 𝑐 ≤ 𝑗 − 𝑙 for 𝑙 < 𝑡

(𝐺𝐹𝐴∩𝐹𝐵 is a forest), 𝑐 ≤ 𝑗 − 𝑙 + 1 for 𝑡 ≤ 𝑙 < 2𝑡 (we could create one cycle), and
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𝑐 = 𝑗 − 𝑙 + 2 for 𝑙 = 2𝑡 (𝐹𝐴 = 𝐹𝐵). These cases are also visualized in Figure 4.2.

Fixing 𝑙 and 𝑗 it holds that∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑗

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤
(
𝑚

4𝑡 − 𝑙

)
· (4𝑡 − 𝑙)! ·

(
𝐶

2

)
4𝑡−𝑙

· 22𝑡−1 · (2𝑡 − 2)! ·
©­­­«

∑︁
𝑆𝐴⊆[𝑛] :
|𝑆𝐴 |=2𝑡−2

∏
𝑥 ∈𝑆𝐴

𝑝 (𝑥)2
ª®®®¬·

· ©­«
∑︁
𝑦∈[𝑛]

𝑝 (𝑦)4ª®¬ · 4 ·
((

2𝑡 + 2

2( 𝑗 − 𝑙) + 2

))
2

· 𝑐! · 2𝑐 · 2𝑡 · (2𝑡 − 1 − 𝑗)! · 22𝑡−1−𝑗 ·

·
©­­­«

∑︁
𝑆𝐵⊆[𝑛] :

|𝑆𝐵 |=2𝑡−1−𝑗

∏
𝑥 ∈𝑆𝐵

𝑝 (𝑥)2
ª®®®¬ · 𝑝

2( 𝑗−𝑙+1)
1

·
(
1 −

∑︁
𝑐∈𝐹𝐴∪𝐹𝐵

Pr[𝑐]
)𝑚−(4𝑡−𝑙)

. (4.20)

Before we upper bound this expression even further, let us explain where it

comes from. There are

(
𝑚
4𝑡−𝑙

)
· (4𝑡 −𝑙)! positions for the 4𝑡 −𝑙 clauses of 𝐹𝐴∪𝐹𝐵 in

the𝑚-clause formula𝛷 . There are at most 2
2𝑡−2 · (2𝑡 −2)! possibilities of forming

different snakes (signs and positions) from the 2𝑡 − 2 variables of 𝐴, excluding

𝑦 = |𝑤𝑡 |, and two possible signs for 𝑦 = |𝑤𝑡 |. In snake 𝐴 each variable appears

exactly twice, except for 𝑦 = |𝑤𝑡 |, which appears four times. Now we want to

count the ways of mapping𝐺𝐹𝐴∩𝐹𝐵 to𝐺𝐹𝐴 and𝐺𝐹𝐵 . Following the argumentation

from [CR92] we can see that there are 2

(
2𝑡+2

2𝑗−2𝑙+2
)
possible mappings for𝐺𝐹𝐴 and

𝐺𝐹𝐵 , respectively. These mappings fix the shared clauses we choose from 𝐴

as well as the positions where shared clauses can appear in 𝐵, but not where

exactly which clause will appear. This is what we consider next. We know that

𝐺𝐹𝐴∩𝐹𝐵 contains 𝑐 connected components. If they are of same length, they can

be interchanged in 𝑐! ways. Furthermore, each component might be flipped, i. e.

the sign of every literal in the component and their order in 𝐵 can be inverted.

For components which are paths, this does not change the set of shared clauses

they originate from. Nevertheless, there is still the possibility of having one

component which is not a path. For this component there are at most 2𝑡 ways of

mapping it onto its counterpart (if it is a cycle) due to [CR92]. Now we know

the shared clauses from 𝐹𝐴 and the exact position of these clauses in 𝐹𝐵 as well

as positions reserved for non-determined variables in snake 𝐵. The remaining

2𝑡 − 1− 𝑗 non-determined variables from 𝐵 can be chosen arbitrarily. Also, there

are 2
2𝑡−1−𝑗 · (2𝑡 − 1 − 𝑗)! possibilities for them to fill out the blanks of snake 𝐵.

Each of these variables appears at least twice in 𝐵 only. The remaining at most

2( 𝑗 −𝑙 +1) appearances of variables in 𝐹𝐵 are determined by the previous choices

and give an additional factor of at most 𝑝
2( 𝑗−𝑙+1)
1

. Note that the case that one of

our free variables in 𝐵 is a central variable is also captured by this upper bound,
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since

∑𝑛
𝑖=1 𝑝

4

𝑖 ≤ 𝑝2
1
·∑𝑛

𝑖=1 𝑝
2

𝑖 . The other𝑚 − (4𝑡 − 𝑙) clauses of𝛷 are supposed to

be different from those in 𝐹𝐴 ∪ 𝐹𝐵 , so that both 𝐹𝐴 and 𝐹𝐵 appear exactly once.

Now we want to simplify that expression. It holds that(
1 −

∑︁
𝑐∈𝐹𝐴∪𝐹𝐵

Pr[𝑐]
)𝑚−(4𝑡−𝑙)

≤ 1

and that

𝐶4𝑡−𝑙 ≤
(
1 +

∑𝑛
𝑖=1 𝑝

2

𝑖

1 − ∑𝑛
𝑖=1 𝑝

2

𝑖

)4𝑡
≤ exp

(
4𝑡 ·

∑𝑛
𝑖=1 𝑝

2

𝑖

1 − ∑𝑛
𝑖=1 𝑝

2

𝑖

)
.

We know that 𝑡 = 𝑓 1/78 ≤ 𝑝
−1/78
1

and that

∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝1 ≤ 𝜀1/2
1

. This implies

𝐶4𝑡−𝑙 ≤ exp

(
4𝑡 ·

∑𝑛
𝑖=1 𝑝

2

𝑖

1 − ∑𝑛
𝑖=1 𝑝

2

𝑖

)
≤ exp

(
4 ·

𝑝
77/78
1

1 − 𝑝1

)
≤ exp

(
4 ·

𝜀
77/156
1

1 − 𝜀1/2
1

)
.

For any 𝜀 > 0 we can choose 𝜀1 small enough such that this expression is at most

1 + 𝜀. Again ∑︁
𝑆⊆[𝑛] :
|𝑆 |=𝑥

∏
𝑠∈𝑆

𝑝 (𝑠)2 ≤ 1

𝑥 !

(
𝑛∑︁
𝑖=1

𝑝2𝑖

)𝑥
according to Lemma 4.1. This step also cancels out the factors (2𝑡 − 2)! and
(2𝑡 − 1 − 𝑗)!. Also, all factors of 2 that appear cancel out with 𝑐 ≤ 𝑗 − 𝑙 + 2. We

will also use the following estimation((
2𝑡 + 2

2( 𝑗 − 𝑙) + 2

))
2

·𝑐! ≤ (2𝑡 + 2)4( 𝑗−𝑙+1)
(2( 𝑗 − 𝑙 + 1)!)2 ·( 𝑗−𝑙+2)! ≤ (2𝑡+2)4( 𝑗−𝑙+1) ≤ (3𝑡)4( 𝑗−𝑙+1) .

This holds since 𝑗 ≥ 𝑙 − 1 and 𝑡 ≥ 2. However, 𝑗 = 𝑙 − 1 only happens if 𝐹𝐴 = 𝐹𝐵 .

Since we already considered this case, we will further assume 𝑗 ≥ 𝑙 . Plugging
everything back into equation (4.20) we get∑︁

snakes 𝐴, 𝐵 :
|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑗

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)5( 𝑗−𝑙+1) ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑗−3

· 𝑝2( 𝑗−𝑙+1)
1

(4.21)

for some 𝜀 > 0 that decreases as 𝜀1 does.

We will distinguish three cases now, depending on the value of 𝑗 − 𝑙 . First
𝑗 − 𝑙 = 0, then 𝑗 − 𝑙 ≥ 2 and finally 𝑗 − 𝑙 = 1. For each of these cases we want to
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show that for any 𝜀𝐸 > 0 we can choose 𝜀1 small enough so that∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑗

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 𝜀𝐸 ·
𝔼[𝑋𝑡 ]2

𝑡2
.

Since 1 ≤ 𝑙 ≤ 2𝑡 and 2 ≤ 𝑗 ≤ 2𝑡 − 1, we will get an additional factor of 4𝑡2 when

summing over all snakes 𝐴 ∼ 𝐵. If we consider all cases, including 𝐹𝐴 = 𝐹𝐵 , this

adds up to ∑︁
𝐴

∑︁
𝐵 : 𝐵∼𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 16 · 𝜀𝐸 · 𝔼[𝑋𝑡 ]2.

Still, for any chosen 𝜀𝐸 > 0 we can choose 𝜀1 ∈ (0, 1) small enough to make this

expression at most 𝜀𝐸 · 𝔼[𝑋𝑡 ]2 as desired.

Now let us consider the first case, 𝑗 = 𝑙 . This can only happen if 𝐺𝐹𝐴∩𝐹𝐵
contains a cycle, as we can see in Figure 4.2. However, 𝐺𝐹𝐴∩𝐹𝐵 can only contain

a cycle if 𝑙 ≥ 𝑡 . Due to equation (4.21) it holds that∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)5 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑙−3

· 𝑝2
1

Remember that due to Lemma 4.11 for any 𝜀 ∈ (0, 1) we can choose 𝜀1 ∈ (0, 1)
small enough so that

𝔼[𝑋𝑡 ]2 ≥ (1 − 𝜀) · 1
4

·𝑚4𝑡 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
2

·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−4

.

Thus, ∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 16 · 1 + 𝜀
1 − 𝜀 · 3

5 · 𝑡5 ·
(
𝑚 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)−𝑙
·
𝑝2
1
· ∑𝑛

𝑖=1 𝑝
2

𝑖∑𝑛
𝑖=1 𝑝

4

𝑖

· 𝔼[𝑋𝑡 ]2,

Here, we can choose 𝜀 arbitrarily small by making 𝜀1 sufficiently small. Due to

𝑚 = 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖 , 𝑙 ≥ 𝑡 , and
∑𝑛
𝑖=1 𝑝

4

𝑖 ≥ 𝑝4
1
this yields∑︁

snakes 𝐴, 𝐵 :
|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]
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≤ 16 · 1 + 𝜀
1 − 𝜀 · 3

5 · 𝑡5 · 𝜀−𝑡𝑚 · 𝑓 · 𝔼[𝑋𝑡 ]2.

Since 𝑡 = 𝑓 1/78 and 𝜀𝑚 > 1, we can make this expression at most 𝜀𝐸 · 𝔼[𝑋𝑡 ]2 for
any 𝜀𝐸 > 0 by making 𝑓 sufficiently large. Due to 𝑓 ≥ 1/𝜀1, we can also make 𝜀1
sufficiently small. This gives us the result for the first case as desired.

The second case we consider is 𝑗 − 𝑙 ≥ 2. It holds that∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |≥𝑙+2

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)5( 𝑗−𝑙+1) ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑗−3

· 𝑝2( 𝑗−𝑙+1)
1

.

As before, Lemma 4.11 tells us that for any 𝜀 ∈ (0, 1) we can choose 𝜀1 ∈ (0, 1)
small enough so that

𝔼[𝑋𝑡 ]2 ≥ (1 − 𝜀) · 1
4

·𝑚4𝑡 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
2

·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−4

.

Thus, ∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |≥𝑙+2

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 16 · 1 + 𝜀
1 − 𝜀 · (3𝑡)

5( 𝑗−𝑙+1) ·𝑚−𝑙 ·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)−𝑗+1
·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)−1
· 𝑝2( 𝑗−𝑙+1)

1
· 𝔼[𝑋𝑡 ]2

and since

∑𝑛
𝑖=1 𝑝

4

𝑖 ≥ 𝑝4
1
, we get

≤ 16 · 1 + 𝜀
1 − 𝜀 · (3𝑡)

5( 𝑗−𝑙+1) ·
(
𝑚 ·

(
𝑛∑︁
𝑖=1

𝑝2𝑖

))−𝑙
·

𝑝
2( 𝑗−𝑙+1)
1

𝑝4
1
·
(∑𝑛

𝑖=1 𝑝
2

𝑖

) 𝑗−𝑙−1 · 𝔼[𝑋𝑡 ]2.

Again, we can use𝑚 = 𝜀𝑚 ·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)−1
to get

= 16 · 1 + 𝜀
1 − 𝜀 · (3𝑡)

5( 𝑗−𝑙+1) · 𝜀−𝑙𝑚 ·
𝑝
2( 𝑗−𝑙−1)
1(∑𝑛
𝑖=1 𝑝

2

𝑖

) 𝑗−𝑙−1 · 𝔼[𝑋𝑡 ]2

and 𝑓 = 𝑝2
1
/
(∑𝑛

𝑖=1 𝑝
2

𝑖

)
, which yields

= 16 · 1 + 𝜀
1 − 𝜀 · (3𝑡)

5( 𝑗−𝑙+1) · 𝜀−𝑙𝑚 · 𝑓 −( 𝑗−𝑙−1) · 𝔼[𝑋𝑡 ]2.
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Since we know that 𝑡 = 𝑓 1/78 we get

= 16 · 1 + 𝜀
1 − 𝜀 · 𝜀

−𝑙
𝑚 · (3𝑡)10 ·

(
(3𝑡)5
𝑡78

) 𝑗−𝑙−1
· 𝔼[𝑋𝑡 ]2.

Since we know that 𝑗 − 𝑙 ≥ 2 and 𝜀𝑚 > 1, we can make this expression at most

𝜀𝐸 · 𝔼[𝑋𝑡 ]2/𝑡2 for any 𝜀𝐸 > 0 by making 𝑡 sufficiently large. The same holds

if we make 𝜀1 sufficiently small, because 𝑡 = 𝑓 1/78 ≥ 𝜀1
−1/78

. As we do so, 𝜀

decreases as well.

The last case we consider is 𝑗 − 𝑙 = 1. This happens if we either only have one

connected component in𝐺𝐹𝐴∩𝐹𝐵 that does not form a cycle or if𝐺𝐹𝐴∩𝐹𝐵 contains

a cycle and one other connected component. In the latter case, equation (4.21)

gives us ∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙+1
cycle in𝐺𝐹𝐴∩𝐹𝐵

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)5( 𝑗−𝑙+1) ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑗−3

· 𝑝2( 𝑗−𝑙+1)
1

= 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)10 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑙−4

· 𝑝4
1
,

where we can choose the value of 𝜀 ∈ (0, 1) by making 𝜀1 sufficiently small. As

before, we can use the estimate

𝔼[𝑋𝑡 ]2 ≥ (1 − 𝜀) · 1
4

·𝑚4𝑡 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
2

·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−4

.

from Lemma 4.11 to achieve an upper bound of

≤ 16 · 310 · 1 + 𝜀
1 − 𝜀 · 𝑡

10 ·
(
𝑚 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)−𝑙
·

𝑝4
1∑𝑛

𝑖=1 𝑝
4

𝑖

· 𝔼[𝑋𝑡 ]2.

Since a cycle can only exist for 𝑙 ≥ 𝑡 , due to the requirement𝑚 = 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖 for

some 𝜀𝑚 > 1, and with 𝑝4
1
≤ ∑𝑛

𝑖=1 𝑝
4

𝑖 it holds that this is

≤ 16 · 310 · 1 + 𝜀
1 − 𝜀 · 𝑡

10 · 𝜀−𝑡𝑚 · 𝔼[𝑋𝑡 ]2.

As in the case of 𝑗 − 𝑙 = 0, where 𝐺𝐹𝐴∩𝐹𝐵 also contained a cycle, we see that for

any 𝜀𝐸 > 0 we can bound this expression by 𝜀𝐸 ·𝔼[𝑋𝑡 ]2/𝑡2 as desired by making

𝜀1 sufficiently small, which makes 𝑡 sufficiently large.
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If 𝑗 − 𝑙 = 1 and 𝐺𝐹𝐴∩𝐹𝐵 does not contain a cycle, we have to look a bit more

closely, since we cannot guarantee a large enough 𝑙 to make the expression

sufficiently small. Instead, we will consider different cases for mapping the

central variable of 𝐵. These cases will result in slightly better bounds than the

one in equation (4.21).

First, we assume that 𝐵’s central variable is a free variable, i. e. the central

variable of 𝐵 does not appear in any shared clauses of 𝐴 and 𝐵. This means,

we can actually choose 𝐵’s central variable freely and it will appear at least 4

times in 𝐹𝐴 ∪ 𝐹𝐵 . In equation (4.21) we assumed that each of our free variables

only contributed

∑𝑛
𝑖=1 𝑝

2

𝑖 . However, in the current case, one of them (the central

one) contributes

∑𝑛
𝑖=1 𝑝

4

𝑖 . Thus, we can substitute a factor of (∑𝑛
𝑖=1 𝑝

2

𝑖 ) · 𝑝21 in
equation (4.20) with

∑𝑛
𝑖=1 𝑝

4

𝑖 to get∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙+1,
central of 𝐵 is free

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)10 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
2

·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑙−5

· 𝑝2
1
. (4.22)

As in the cases before, we use the lower bound on 𝔼[𝑋𝑡 ] from Lemma 4.11 and

our definition (∑𝑛
𝑖=1 𝑝

2

𝑖 )/𝑝21 = 𝑓 = 𝑡78 to get∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙+1,
central of 𝐵 not in 𝐹𝐴 ∩ 𝐹𝐵

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 16 · 310 · 1 + 𝜀
1 − 𝜀 · 𝑡

10 ·
(
𝑚 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)−𝑙
·

𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

· 𝔼[𝑋𝑡 ]2

= 4 · 310 · 1 + 𝜀
1 − 𝜀 · 𝜀

−𝑙
𝑚 · 𝑡10 · 𝑓 −1 · 𝔼[𝑋𝑡 ]2

= 4 · 310 · 1 + 𝜀
1 − 𝜀 · 𝜀

−𝑙
𝑚 · 𝑡−68 · 𝔼[𝑋𝑡 ]2.

It is obvious that for any 𝜀𝐸 > 0 this is at most 𝜀𝐸 · 𝔼[𝑋𝑡 ]2/𝑡2 as desired if we

choose 𝑡 ≥ 𝜀1−1 sufficiently large or, conversely, 𝜀1 sufficiently small.

Now we assume that the central variable in 𝐵 is not free. What could happen?

It could coincide with a non-central variable from 𝐴 or with the central variable

from 𝐴. Thus, the central variable of 𝐵 could already appear once or twice in

shared clauses in the first and one to four times in the second case.

Let us start with the case that it coincides with a non-central variable in 𝐴.

Then, one of the variables that appears twice in 𝐴 appears an additional (not in

shared clauses) 2 or 3 times as the central node in 𝐵, depending on the number

of shared clauses it already appears in. In total it either appears 4 times or 5
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(a) The central

variable of 𝐵 ap-

pears in one shared

clause.

(b) The central

variable of 𝐵 ap-

pears in two shared

clauses.

(c) The central

variable of 𝐵

appears in three

shared clauses.

(d) The central

variable of 𝐵 ap-

pears in four shared

clauses.

Figure 4.3: Snapshot of 𝐵’s central variable in 𝐺𝐹𝐵 . Shared clauses of 𝐹𝐴 and 𝐹𝐵 are

highlighted in red. If the central variable appears in 𝑥 shared clauses, then there are 𝑥

variables that appear exactly once in shared clauses. Then, 𝐵’s central variable appears

an additional 4 − 𝑥 times in 𝐵 and the variables that appear only once in shared clauses,

each appear one additional time in 𝐵.

times in 𝐹𝐴 ∪ 𝐹𝐵 . For a representation of those two cases, see Figure 4.3 (a) and

Figure 4.3 (b).

Thus, we can replace the two appearances of a variable in 𝐴 and 2 resp. 3

appearances of unfree variables in 𝐵 with 4 resp. 5 appearances of a variable in

total (𝐴 and 𝐵). That is, we multiply the expression from equation (4.21) with

(∑𝑛
𝑖=1 𝑝

4

𝑖 )/(𝑝21 ·
∑𝑛
𝑖=1 𝑝

2

𝑖 ) resp. (
∑𝑛
𝑖=1 𝑝

5

𝑖 )/(𝑝31 ·
∑𝑛
𝑖=1 𝑝

2

𝑖 ). Since
∑𝑛
𝑖=1 𝑝

5

𝑖 ≤ 𝑝1
∑𝑛
𝑖=1 𝑝

4

𝑖 ,

the former case gives us an upper bound. We get∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙+1,
central of 𝐵 not free and not central of 𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)10 ·
(
𝑛∑︁
𝑖=1

𝑝4𝑖

)
2

·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑙−5

· 𝑝2
1
.

This is the same upper bound we had in the previous case, equation (4.22), when

the central variable of 𝐵 was free. Thus, we already know that for any 𝜀𝐸 > 0

we can choose 𝜀1 small enough to get a bound of at most 𝜀𝐸 · 𝔼[𝑋𝑡 ]2/𝑡2.
The last case is that the central variable of 𝐵 coincides with the central variable

of 𝐴. Then, the variable that appears 4 times in 𝐴 might appear 0 to 3 additional

times (i. e. not in shared clauses) in 𝐵, depending on the number of shared clauses

it already appears in. It cannot appear an additional 4 times, since the central

variable of 𝐴 must appear in a shared clause at least once for the variable to

not be free. Remember that we are in the case where 𝐺𝐹𝐴∩𝐹𝐵 only contains

one connected component that is not a cycle. This means, we have at most

4 variables in shared clauses that each appear one additional time in 𝐵. See

Figure 4.3 for a visual representation of those cases. Let 𝑥 ∈ {1, 2, 3, 4} be the
number of times that the central variable of 𝐴 appears in shared clauses. Then,

it appears an additional 4 − 𝑥 times in 𝐵. In addition to the central variable,

there are now 𝑥 other unfree variables that each appear one additional time

in 𝐵. Each of these variables actually appears 3 times in 𝐴 and 𝐵 together
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instead of 2 times in 𝐴 and once as a single predetermined variable in 𝐵. As

before, we can substitute their appearances by multiplying equation (4.21) with

a factor of (∑𝑛
𝑖=1 𝑝

3

𝑖 )/(𝑝1 ·
∑𝑛
𝑖=1 𝑝

2

𝑖 ) for each of them. By handling the shared

central variable of 𝐴 and 𝐵 in the same way, we get an additional factor of

(∑𝑛
𝑖=1 𝑝

8−𝑥
𝑖 )/(𝑝4−𝑥

1

∑𝑛
𝑖=1 𝑝

4

𝑖 ). We now get∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙+1,
central of 𝐵 is central of 𝐴, appears in 𝑥 shared clauses

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1]

≤ 4 · (1 + 𝜀) ·𝑚4𝑡−𝑙 · (3𝑡)10 ·
(
𝑛∑︁
𝑖=1

𝑝8−𝑥𝑖

)
·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
4𝑡−𝑙−4−𝑥

·
(
𝑛∑︁
𝑖=1

𝑝3𝑖

)𝑥
.

Again, we can use the lower bound on 𝔼[𝑋𝑡 ] from Lemma 4.11 to get

≤ 16 · 310 · 1 + 𝜀
1 − 𝜀 · 𝑡

10 ·
(
𝑚 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)−𝑙
·
(∑𝑛

𝑖=1 𝑝
8−𝑥
𝑖

)
·
(∑𝑛

𝑖=1 𝑝
3

𝑖

)𝑥(∑𝑛
𝑖=1 𝑝

4

𝑖

)
2
(∑𝑛

𝑖=1 𝑝
2

𝑖

)𝑥 · 𝔼[𝑋𝑡 ]2

and𝑚 ≥ 1/∑𝑛
𝑖=1 𝑝

2

𝑖 implies

≤ 16 · 310 · 1 + 𝜀
1 − 𝜀 · 𝑡

10 ·
(∑𝑛

𝑖=1 𝑝
8−𝑥
𝑖

)
·
(∑𝑛

𝑖=1 𝑝
3

𝑖

)𝑥(∑𝑛
𝑖=1 𝑝

4

𝑖

)
2
(∑𝑛

𝑖=1 𝑝
2

𝑖

)𝑥 · 𝔼[𝑋𝑡 ]2.

It remains to show that for any 𝜀𝐸 > 0 we can choose 𝜀1 small enough so that

𝑡10 ·
(∑𝑛

𝑖=1 𝑝
8−𝑥
𝑖

)
·
(∑𝑛

𝑖=1 𝑝
3

𝑖

)𝑥(∑𝑛
𝑖=1 𝑝

4

𝑖

)
2
(∑𝑛

𝑖=1 𝑝
2

𝑖

)𝑥 ≤ 𝜀𝐸

𝑡2
.

First, note that

∑𝑛
𝑖=1 𝑝

8−𝑥
𝑖 ≤ 𝑝4−𝑥

1
· ∑𝑛

𝑖=1 𝑝
4

𝑖 and thus

𝑡10 ·
(∑𝑛

𝑖=1 𝑝
8−𝑥
𝑖

)
·
(∑𝑛

𝑖=1 𝑝
3

𝑖

)𝑥(∑𝑛
𝑖=1 𝑝

4

𝑖

)
2
(∑𝑛

𝑖=1 𝑝
2

𝑖

)𝑥 ≤ 𝑡10 ·
𝑝4−𝑥
1

·
(∑𝑛

𝑖=1 𝑝
3

𝑖

)𝑥(∑𝑛
𝑖=1 𝑝

4

𝑖

) (∑𝑛
𝑖=1 𝑝

2

𝑖

)𝑥
In order to further bound this expression, we consider the probability vector

®𝑝 (𝑛) = 𝑝1, 𝑝2, . . . , 𝑝𝑛 . We now split the probabilities into those with 𝑝𝑖 ≥ 𝑝1/𝑓 1/6
and those with 𝑝𝑖 < 𝑝1/𝑓 1/6. Let 𝑁 = |

{
𝑖 ∈ [𝑛] | 𝑝𝑖 ≥ 𝑝1/𝑓 1/6

}
| be the number

of probabilities in ®𝑝 (𝑛)
larger than the bound we set. We now distinguish two

cases: 𝑁 ≥ 𝑓 5/6 and 𝑁 < 𝑓 5/6.

Assume the first case, 𝑁 ≥ 𝑓 5/6. It holds that

𝑛∑︁
𝑖=1

𝑝4𝑖 ≥ 𝑁 ·
(
𝑝1

𝑓 1/6

)
4

= 𝑝4
1
· 𝑓 1/6.
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Together with

∑𝑛
𝑖=1 𝑝

3

𝑖 ≤ 𝑝1 ·
∑𝑛
𝑖=1 𝑝

2

𝑖 this implies

𝑡10 ·
𝑝4−𝑥
1

·
(∑𝑛

𝑖=1 𝑝
3

𝑖

)𝑥(∑𝑛
𝑖=1 𝑝

4

𝑖

) (∑𝑛
𝑖=1 𝑝

2

𝑖

)𝑥 ≤ 𝑡10 ·
𝑝4
1
·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)𝑥
𝑝4
1
· 𝑓 1/6

(∑𝑛
𝑖=1 𝑝

2

𝑖

)𝑥
= 𝑡10 · 𝑓 −1/6 = 𝑡−3 ≤ 𝜀1/78

1
· 𝑡−2

as desired, due to our choice 𝑡 = 𝑓 1/78 and since we can make 𝜀1 as small as

necessary.

Now assume 𝑁 < 𝑓 5/6. It holds that

𝑛∑︁
𝑖=1

𝑝3𝑖 < 𝑁 · 𝑝3
1
+ 𝑝1

𝑓 1/6
·
𝑛∑︁
𝑖=1

𝑝2𝑖

≤ 𝑝3
1
· 𝑓 5/6 + 𝑝3

1
· 𝑓 5/6 = 2 · 𝑝3

1
· 𝑓 5/6,

where we used

∑𝑛
𝑖=1 𝑝

2

𝑖 = 𝑓 · 𝑝2
1
. With

∑𝑛
𝑖=1 𝑝

4

𝑖 ≥ 𝑝4
1
and

∑𝑛
𝑖=1 𝑝

2

𝑖 = 𝑓 · 𝑝2
1
this

readily implies

𝑡10 ·
𝑝4−𝑥
1

·
(∑𝑛

𝑖=1 𝑝
3

𝑖

)𝑥(∑𝑛
𝑖=1 𝑝

4

𝑖

) (∑𝑛
𝑖=1 𝑝

2

𝑖

)𝑥 ≤ 𝑡10 ·
𝑝4−𝑥
1

·
(
2 · 𝑝3

1
· 𝑓 5/6

)𝑥
𝑝4
1
·
(
𝑝2
1
· 𝑓

)𝑥
≤ 𝑡10 · 24 · 𝑓 −𝑥/6 ≤ 𝑡10 · 24 · 𝑓 −1/6 ≤ 16 · 𝜀1/78

1
· 𝑡−2.

Again we can make this as small as any 𝜀𝐸/𝑡2 if we choose 𝜀1 sufficiently small.

Finally, we took care of all the cases for 𝑗 − 𝑙 = 1 and showed∑︁
snakes 𝐴, 𝐵 :

|𝐸 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙, |𝑉 (𝐺𝐹𝐴∩𝐹𝐵 ) |=𝑙+1

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 𝜀𝐸 ·
𝔼[𝑋𝑡 ]2

𝑡2

as desired. This implies∑︁
𝐴

∑︁
𝐵 : 𝐵∼𝐴

Pr[𝑋𝐴 = 1 ∧ 𝑋𝐵 = 1] ≤ 𝜀𝐸 · 𝔼[𝑋𝑡 ]2

and concludes the proof. ■

Lemma 4.12 and Lemma 4.3 now establish the existence of a sharp threshold

at𝑚 =
(∑𝑛

𝑖=1 𝑝
2

𝑖

)−1
as we will see in Section 4.5. However, we first have to show

an upper bound for 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and 𝑝22 ∈ 𝛩 (∑𝑛
𝑖=2 𝑝

2

𝑖 ), or more generally,

for the case that we are given constants 𝜀1, 𝜀2 ∈ (0, 1) with 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and

𝑝2
2
≥ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 . This case will be handled in the next section.
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4.4 A Simple Upper Bound on the Satisfiability
Threshold

This section handles the case that there are constants 𝜀1, 𝜀2 ∈ (0, 1) with 𝑝2
1
≥

𝜀1 ·
∑𝑛
𝑖=1 𝑝

2

𝑖 and 𝑝2
2
≥ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 . This especially includes 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 )
and 𝑝2

2
∈ 𝛩 (∑𝑛

𝑖=2 𝑝
2

𝑖 ). This case is particularly easy, since it implies (𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖 )1/2)−1 ∈ 𝛩 (𝑞−1
max

). That means, the probability for a formula to be

unsatisfiable is dominated by the highest clause probability.

We are going to show that there is a coarse threshold at 𝑚★ = (𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖 )1/2)−1 ∈ 𝛩 (𝑞−1
max

). Note that Lemma 4.4 only assumes 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 .

Thus, the lemma already handles𝑚 < 𝜀𝑚 · (𝐶 ·𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 for sufficiently

small constants 𝜀𝑚 ∈ (0, 1). Now we only have to see what happens for𝑚 ∈
𝛺 (𝑚★).

In the following lemmawe give a lower bound on the probability to generate an

unsatisfiable instance by showing the existence of an unsatisfiable sub-formula

consisting only of clauses with the highest clause probability. These are the

clauses consisting of the two most-probable Boolean variables. The lemma

generally holds for 𝑘 ≥ 2, but it especially serves our purpose of considering

this easy case.

▶ Lemma 4.13. Let 𝛷 ∼ D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) be a non-uniform random

k-SAT formula and let 𝑞max denote the maximum clause probability. Then,𝛷 is

unsatisfiable with probability at least

(1 − 𝑒−𝑞max ·𝑚)2
𝑘

− 𝑞2
max

· 22𝑘 ·𝑚 · (1 + 𝑒−𝑞max ·𝑚)2
𝑘

.

◀

Proof. Let 𝑐 be the clause with maximum probability. Since the signs of literals

are chosen with probability 1/2 independently at random, it holds that each

clause with the same variables as 𝑐 has the same probability. Our lower bound is

now just a lower bound on the probability of having each of the 2
𝑘
clauses with

these variables, which constitute an unsatisfiable sub-formula. Let us enumerate

the different clauses 𝑐1, . . . , 𝑐2𝑘 with variables 𝑋1, . . . , 𝑋𝑘 in an arbitrary order.

Now let 𝐴 𝑗 denote the event that 𝑐 𝑗 is not appearing in𝛷 and let 𝐴 =
⋃
𝑗 ∈[2𝑘 ] 𝐴 𝑗

denote the event that at least one of these clauses does not appear. Due to the

principle of inclusion and exclusion it holds that

Pr

[
𝐴

]
=

2
𝑘∑︁
𝑙=1

(−1)𝑙+1
∑︁

𝐽 ⊆[2𝑘 ] : | 𝐽 |=𝑙
Pr

[⋂
𝑗 ∈𝐽

𝐴 𝑗

]
=

2
𝑘∑︁
𝑙=1

(−1)𝑙+1
((
2
𝑘

𝑙

)
· (1 − 𝑙 · 𝑞max)𝑚

)
,

because the clauses 𝑐1, . . . , 𝑐2𝑘 have the same probability 𝑞max of appearing and
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all clauses are drawn independently at random. It now holds that

Pr[𝛷 unsat] ≥ Pr[𝐴] = 1 − ©­«
2
𝑘∑︁
𝑙=1

(
2
𝑘

𝑙

)
· (−1)𝑙+1 · (1 − 𝑙 · 𝑞max)𝑚

ª®¬
=

2
𝑘∑︁
𝑙=0

((
2
𝑘

𝑙

)
· (−1)𝑙 · (1 − 𝑙 · 𝑞max)𝑚

)
.

We can now estimate

−(1 − 𝑞max · 𝑙)𝑚 ≥ −𝑒−𝑞max ·𝑙 ·𝑚

and, due to [MR99, Proposition B.3],

(1 − 𝑞max · 𝑙)𝑚 ≥ 𝑒−𝑞max ·𝑙 ·𝑚 ·
(
1 − 𝑞2

max
· 𝑙2 ·𝑚

)
≥ 𝑒−𝑞max ·𝑙 ·𝑚 ·

(
1 − 𝑞2

max
· 22𝑘 ·𝑚

)
.

In total, we get

Pr[𝛷 unsat]

≥
2
𝑘∑︁
𝑙=0

((
2
𝑘

𝑙

)
· (−1)𝑙 · 𝑒−𝑞max ·𝑙 ·𝑚 −

(
2
𝑘

𝑙

)
· 𝑞2

max
· 22𝑘 ·𝑚 · 𝑒−𝑞max ·𝑙 ·𝑚

)
=(1 − 𝑒−𝑞max ·𝑚)2

𝑘

− 𝑞2
max

· 22𝑘 ·𝑚 · (1 + 𝑒−𝑞max ·𝑚)2
𝑘

.

■

Note that the former lemma implies the statement we want only if 𝑞max ∈ 𝑜 (1).
Since

𝑞max =

∏𝑘
𝑖=1 𝑝𝑖

2
𝑘
∑
𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽 𝑝 𝑗

,

it is also a function in 𝑛. For 𝑘 = 2 the expression simplifies to (𝑝1 · 𝑝2)/(2 · (1 −∑𝑛
𝑖=1 𝑝

2

𝑖 )). More generally than 𝑞max ∈ 𝑜 (1), we will now assume that we can

choose an 𝜀𝑞 ∈ (0, 1/2𝑘 ) so that 𝑞max ≤ 𝜀𝑞 . We will handle the case 𝑞max ∉ 𝑜 (1)
afterward. The former lemma now yields the following corollary.

▶ Corollary 4.14. Let
(
®𝑝 (𝑛) )

𝑛∈N be an ensemble of probability distributions.

Let𝛷 ∼ D𝑁 (𝑛, 𝑘,
(
®𝑝 (𝑛) )

𝑛∈N,𝑚) be a non-uniform random 𝑘-SAT formula. Then,

1. for any 𝜀𝑃 ∈ (0, (1 − 𝑒−𝜀𝑚 )2𝑘 ) and for any 𝜀𝑚 > 0 so that 𝑚 = 𝜀𝑚/𝑞max

we can choose 𝜀𝑞 ∈ (0, 1/2𝑘 ) with 𝑞max ≤ 𝜀𝑞 sufficiently small so that

Pr[𝛷 unsatisfiable] ≥ 𝜀𝑃 .

2. for any 𝜀𝑃 ∈ (0, 1), we can choose 𝜀𝑚 > 0 with 𝑚 = 𝜀𝑚/𝑞max suffi-

ciently large and 𝜀𝑞 ∈ (0, 1/2𝑘 ) with 𝑞max ≤ 𝜀𝑞 sufficiently small so that

Pr[𝛷 unsatisfiable] ≥ 𝜀𝑃 .
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◀

Proof. Let 𝑚★ = 𝑞−1
max

and fix a constant 𝜀𝑚 > 0 so that 𝑚 = 𝜀𝑚 · 𝑚★
and a

constant 𝜀𝑃 ∈ (0, (1 − 𝑒−𝜀𝑚 )2𝑘 ). Lemma 4.13 tells us that

Pr[𝛷 unsatisfiable] ≥ (1 − 𝑒−𝑞max ·𝑚)2
𝑘

− 𝑞2
max

· 22𝑘 ·𝑚 · (1 + 𝑒−𝑞max ·𝑚)2
𝑘

= (1 − 𝑒−𝜀𝑚 )2
𝑘

− 𝑞max · 22𝑘 · 𝜀𝑚 · (1 + 𝑒−𝜀𝑚 )2
𝑘

≥ (1 − 𝑒−𝜀𝑚 )2
𝑘

− 𝜀𝑞 · 22𝑘 · 𝜀𝑚 · (1 + 𝑒−𝜀𝑚 )2
𝑘

.

If we choose 𝜀𝑞 sufficiently small, we can reach any value 𝜀𝑃 < (1 − 𝑒−𝜀𝑚 )2𝑘 as

desired.

Now we turn to the case that we are only given 𝜀𝑃 ∈ (0, 1). It still holds that

Pr[𝛷 unsatisfiable] ≥ (1 − 𝑒−𝜀𝑚 )2
𝑘

− 𝜀𝑞 · 22𝑘 · 𝜀𝑚 · (1 + 𝑒−𝜀𝑚 )2
𝑘

.

We can see that if we choose 𝜀𝑚 sufficiently large and 𝜀𝑞 sufficiently small, we

can make this expression at least 𝜀𝑃 . ■

This lemma already captures the case 𝑞max ∈ 𝑜 (1). Let us now assume that

there is some 𝜀𝑞 ∈ (0, 1/2𝑘 ) so that 𝑞max ≥ 𝜀𝑞 . It then holds that𝑚★ = 𝑞−1
max

≤
1/𝜀𝑞 . Remember that 𝑞max ≤ 1/2𝑘 also still holds. This means, the threshold func-

tion is bounded by a constant. It is easy to see that for𝛷 ∼ D
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚

)
and a constant𝑚 ≥ 2

𝑘
it holds that Pr[𝛷 unsatisfiable] ≥ 𝑞𝑚

max
≥ 𝜀𝑚𝑞 , since this

is the probability of an unsatisfiable instance, where the most probable clause

appears with all 2
𝑘
combinations of signs and then one of these clauses appears

an additional𝑚 − 2
𝑘
times. Similarly, Pr[𝛷 satisfiable] ≥ 𝑞𝑚

max
≥ 𝜀𝑚𝑞 , as this is

the probability of a satisfiable instance, where the same most probable clause

appears𝑚 times with the same sign. Since 0 < 𝑞max ≤ 1/2𝑘 is a constant, the
probability is a constant bounded away from zero and one.

It remains to show that𝛷 is unsatisfiable with probability 1−𝑜 (1) for𝑚 ∈ 𝜔 (1).
More generally, we want to show that for any 𝜀𝑃 ∈ (0, 1) we can choose an

𝜀𝑚 > 0 with𝑚 = 𝜀𝑚 ·𝑚★
large enough so that𝛷 is unsatisfiable with probability

at least 𝜀𝑃 . The following lemma implies this. Again, this lemma also holds for

𝑘 ≥ 2 in general and without assuming anything for 𝑞max.

▶ Lemma 4.15. Consider a non-uniform random k-SAT formula𝛷 . Then𝛷 is

unsatisfiable with probability at least

2 − (1 + exp(−𝑞max ·𝑚))2𝑘 .

◀
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Proof. As in Lemma 4.13, it holds that

Pr[𝛷 unsat] ≥
2
𝑘∑︁
𝑙=0

((
2
𝑘

𝑙

)
(−1)𝑙 (1 − 𝑙 · 𝑞max)𝑚

)
.

We can now estimate

2
𝑘∑︁
𝑙=0

((
2
𝑘

𝑙

)
(−1)𝑙 (1 − 𝑙 · 𝑞max)𝑚

)
≥ 1 −

2
𝑘∑︁
𝑙=1

((
2
𝑘

𝑙

)
(1 − 𝑙 · 𝑞max)𝑚

)
≥ 1 −

2
𝑘∑︁
𝑙=1

((
2
𝑘

𝑙

)
exp(−𝑚 · 𝑙 · 𝑞max)

)
= 2 − (1 + exp(−𝑚 · 𝑞max))2

𝑘

■

We can now see that our desired statement holds. The former implies it if we

can choose 𝜀𝑚 large enough.

▶ Corollary 4.16. Let
(
®𝑝 (𝑛) )

𝑛∈N be an ensemble of probability distributions.

For any constant 𝜀𝑃 ∈ (0, 1) we can choose a constant 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚/𝑞max

sufficiently large so that the probability to generate an unsatisfiable formula

𝛷 ∼ D𝑁 (𝑛, 𝑘,
(
®𝑝 (𝑛) )

𝑛∈N,𝑚) is at least 𝜀𝑃 . ◀

Proof. Lemma 4.15 tells us

Pr[𝛷 unsatisfiable] ≥ 2 − (1 + exp(−𝑚 · 𝑞max))2
𝑘

= 2 − (1 + exp(−𝜀𝑚))2
𝑘

,

since𝑚 · 𝑞max = 𝜀𝑚 . We can now simply make 𝜀𝑚 large enough to make this

expression at least 𝜀𝑃 . ■

4.5 Putting it All Together

In this section we put the upper and lower bounds of the previous sections

together. This will show our main result of this chapter, the existence and

sharpness of a satisfiability threshold for non-uniform random 2-SAT depending

on the ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N. We could have unified

the proof to capture all cases with 𝑝2
1
∉ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). However, the current setting
has the advantage that we can also state reasons for the threshold being coarse

in the second and third case. In the second case it is due to the emergence of a

snake of size 2, i. e. an unsatisfiable sub-formula that looks like this

(𝑤2, 𝑤1), (𝑤1, 𝑤2), (𝑤2, 𝑤3), (𝑤3, 𝑤2)
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for literals 𝑤1, 𝑤2, and 𝑤3 of distinct Boolean variables. In the third case, the

coarseness comes from the emergence of an unsatisfiable sub-formula, where the

clause with the two most probable variables appears with all four combinations

of signs.

▶ Theorem 4.17. Given an ensemble of probability distributions

(
®𝑝 (𝑛) )

𝑛∈N.

1. If 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), then non-uniform random 2-SAT has a sharp satisfia-

bility threshold at𝑚★ = 1/∑𝑛
𝑖=1 𝑝

2

𝑖 .

2. If 𝑝2
1
∈ 𝛩

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
and 𝑝2

2
∈ 𝑜

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
, then non-uniform random 2-

SAT has a coarse satisfiability threshold at𝑚★ = (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1.
Furthermore, for any large enough 𝑛 there is a range of size𝛩 (𝑚★) around
the threshold, where the probability to generate satisfiable instances is

bounded away from zero and one.

3. If 𝑝2
1
∈ 𝛩

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
and 𝑝2

2
∈ 𝛩

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
, then non-uniform random 2-

SAT has a coarse satisfiability threshold at 𝑚★ = (𝑞−1
max

) ∈ 𝛩 ((𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖 )1/2)−1). Furthermore, for any large enough 𝑛 there is a range

of size 𝛩 (𝑚★) around the threshold, where the probability to generate

satisfiable instances is bounded away from zero and one.

4. Otherwise, non-uniform random 2-SAT has a coarse satisfiability threshold

at𝑚★ = (𝐶 · ∑𝑛
𝑖=2 𝑝

2

𝑖 +𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1.

◀

Proof. Remember our discussion in Section 4.1. We want to show that𝑚★
is an

asymptotic threshold function of non-uniform random 2-SAT with respect to

parameter𝑚. This means:

1. for any function𝑚 : N→ R+
with𝑚 ∈ 𝑜 (𝑚★) and any 𝜀𝑃 ∈ (0, 1) there is

an 𝑛0 ∈ N so that for all 𝑛 ≥ 𝑛0 the probability to generate a satisfiable

instance is at least 𝜀𝑃 .

2. and for all𝑚 : N → R+
with𝑚 ∈ 𝜔 (𝑚★) and any 𝜀𝑃 ∈ (0, 1) there is an

𝑛0 ∈ N so that for all 𝑛 ≥ 𝑛0 the probability to generate an unsatisfiable

instance is at least 𝜀𝑃 .

If we want to show a sharp threshold, we have to certify that:

1. for any given constant 𝜀𝑚 ∈ (0, 1), any function𝑚 : N → R+
with𝑚 ≤

𝜀𝑚 ·𝑚★
, and any 𝜀𝑃 ∈ (0, 1) there is an 𝑛0 ∈ N so that for all 𝑛 ≥ 𝑛0 the

probability to generate a satisfiable instance is at least 𝜀𝑃 .

2. and for any given constant 𝜀𝑚 > 1, all𝑚 : N→ R+
with𝑚 ≥ 𝜀𝑚 ·𝑚★

, and

any 𝜀𝑃 ∈ (0, 1) there is an 𝑛0 ∈ N so that for all 𝑛 ≥ 𝑛0 the probability to

generate an unsatisfiable instance is at least 𝜀𝑃 .
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Case 1: 𝒑2
1 ∈ 𝒐(

∑𝒏
𝒊=1 𝒑

2
𝒊 ) The first case we consider is 𝑝2

1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). We

want to show a sharp threshold at 𝑚★ = 1/∑𝑛
𝑖=1 𝑝

2

𝑖 . The requirement 𝑝2
1
∈

𝑜 (∑𝑛
𝑖=1 𝑝

2

𝑖 ) implies that we can choose any 𝜀1 ∈ (0, 1) and for some 𝑛0 ∈ N it

holds that 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 for all 𝑛 ≥ 𝑛0. Thus, Lemma 4.3 directly implies

the first requirement for sharpness and Lemma 4.12 directly implies the second

requirement.

Case 2: 𝒑2
1 ∈ 𝜣

(

∑𝒏
𝒊=1 𝒑

2
𝒊

)

and 𝒑2
2 ∈ 𝒐

(

∑𝒏
𝒊=2 𝒑

2
𝒊

)

The second case we consider

is 𝑝2
1
∈ 𝛩

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
and 𝑝2

2
∈ 𝑜

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
. We want to show that 𝑚★ = (𝐶 ·

𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 is a coarse satisfiability threshold. The requirements imply

that there is some 𝜀1 ∈ (0, 1) and that we can choose an 𝜀2 ∈ (0, 1) so that

𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and 𝑝
2

2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 hold simultaneously for all sufficiently

large 𝑛. If 𝑚 ∈ 𝑜 (𝑚★), then for any 𝜀𝑚 ∈ (0, 1) there is an 𝑛0 ∈ N so that

𝑚 ≤ 𝜀𝑚 · 𝑚★
for all 𝑛 ≥ 𝑛0. Thus, we can apply Lemma 4.4 to certify the

first condition on𝑚★
being an asymptotic threshold function. Equivalently, if

𝑚 ∈ 𝜔 (𝑚★), then for any 𝜀𝑚 > 1, there is an 𝑛0 ∈ N so that𝑚 ≥ 𝜀𝑚 ·𝑚★
for

all 𝑛 ≥ 𝑛0. We can now apply Corollary 4.10. Note that the lemma assumes

𝑚 = 𝜀𝑚 ·𝑚★
. However, since the probability to generate satisfiable instances is

non-increasing in𝑚 (c. f. Lemma 3.8), it suffices to consider𝑚′ = 𝜀𝑚 ·𝑚. The

probability to generate satisfiable (unsatisfiable) instances at the actual number

of clauses𝑚 ≥ 𝑚′
can only be smaller (larger). Thus, Corollary 4.10 implies the

second condition on𝑚★
being an asymptotic threshold function.

It remains to show that the threshold is not sharp. Essentially, we are going to

show that there is a non-empty range of 𝜀𝑚 ∈ [𝜀 (1)𝑚 , 𝜀
(2)
𝑚 ] for which the probability

to generate satisfiable instances at𝑚 = 𝜀𝑚 ·𝑚★
is bounded away from zero and

one by a constant. If the threshold was sharp, at least one of the probabilities at

positions𝑚 (1)
and𝑚 (2)

that are a constant factor apart would approach zero or

one in the limit. Since in our case neither the probability at𝑚 (1) = 𝜀 (1)𝑚 ·𝑚★
nor

the one at𝑚 (2) = 𝜀 (2)𝑚 ·𝑚★
does, the threshold must be coarse. First, Lemma 4.4

states that for any 𝜀𝑃 ∈ (0, 1) we can choose 𝜀𝑚 ∈ (0, 1) small enough so that

the probability to generate a satisfiable instance at𝑚 = 𝜀𝑚 ·𝑚★
is at least 𝜀𝑃 .

We can now choose 𝜀
(1)
𝑃

> 𝜀
(2)
𝑃

. This will result in some 𝜀
(1)
𝑚 < 𝜀

(2)
𝑚 so that the

probability to generate a satisfiable instance is at least 𝜀
(1)
𝑃

at𝑚 = 𝜀
(1)
𝑚 ·𝑚★

and

𝜀
(2)
𝑃

at𝑚 = 𝜀
(2)
𝑚 ·𝑚★

. However, Lemma 4.9 states that for the same values of 𝜀𝑚
we can choose 𝜀2 with 𝑝

2 ≤ 𝜀2 ·
∑𝑛
𝑖=2 𝑝

2

𝑖 small enough so that the probability to

generate an unsatisfiable instance at𝑚 = 𝜀𝑚 ·𝑚★
is at least 𝜀𝑃 for any constant

𝜀𝑃 <
𝜀4𝑚

𝜀4𝑚 + 3 · 𝜀2𝑚
(
1 + 1

𝜀1
+ 1

𝜀2
1

)
+ 8

.

This requirement on 𝜀2 holds for all sufficiently large 𝑛, since 𝑝2
2
∈ 𝑜 (∑𝑛

𝑖=2 𝑝
2

𝑖 ).
Thus, for 𝜀

(1)
𝑚 and 𝜀

(2)
𝑚 both the probability to generate a satisfiable and the

probability to generate an unsatisfiable instance are at least some constant
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depending only on 𝜀1 and 𝜀𝑚 if 𝑛 is large enough. Since both 𝜀𝑚 and 𝜀1 are

fixed, these probabilities cannot approach zero or one in the limit. This implies

coarseness of the threshold as desired.

Case 3: 𝒑2
1 ∈ 𝜣

(

∑𝒏
𝒊=1 𝒑

2
𝒊

)

and 𝒑2
2 ∈ 𝜣

(

∑𝒏
𝒊=2 𝒑

2
𝒊

)

The third case we consider

is 𝑝2
1
∈ 𝛩

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
and 𝑝2

2
∈ 𝛩

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
. We want to show a coarse satisfiability

threshold at 𝑚★ = 𝑞−1
max

, where 𝑞max = (𝐶 · 𝑝1 · 𝑝2)/2 is the maximum clause

probability. Note that in this case,𝑚★ ∈ 𝛩 ((𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1). As before,
we can apply Lemma 4.4 to certify the first condition on𝑚★

being an asymptotic

threshold function. The second condition is implied by our results in Section 4.4.

The second statement of Corollary 4.14 certifies the second condition if 𝜀𝑞 ∈ (0, 1)
with 𝑞max ≤ 𝜀𝑞 is sufficiently small and 𝜀𝑚 > 0 with𝑚 = 𝜀𝑚/𝑞max is sufficiently

large. If 𝑞max ∈ 𝑜 (1) and 𝑚 ∈ 𝜔 (𝑚★) = 𝜔 (𝑞−1
max

) both conditions hold for all

sufficiently large values of 𝑛. If 𝑞max ∉ 𝑜 (1), the second condition holds as

follows. According to the second condition we are given an𝑚 ∈ 𝜔 (𝑚★) and
an 𝜀𝑃 ∈ (0, 1). We choose 𝜀𝑚 sufficiently large and 𝜀𝑞 sufficiently small so that

we generate an unsatisfiable instance with probability at least 𝜀𝑃 according to

Corollary 4.14. Then, we fix that value of 𝜀𝑞 and choose an 𝜀𝑚 sufficiently large so

that we generate an unsatisfiable instance with probability at least 𝜀𝑃 according

to Corollary 4.16. Since𝑚 ∈ 𝜔 (𝑚★), we know that𝑚 ≥ 𝜀𝑚/𝑞max holds for both

values of 𝜀𝑚 we chose as soon as 𝑛 is sufficiently large. For all such values of 𝑛

we either have 𝑞max ≤ 𝜀𝑞 or 𝑞max > 𝜀𝑞 . Thus, the second condition holds either

according to Corollary 4.14 or according to Corollary 4.16.

As in the previous case we have to rule out that the threshold is sharp. Again,

we will show that there is a range of 𝑚 ∈ 𝛩 (𝑚★) where the probability to

generate satisfiable instances is bounded away from zero and one by constants.

However, depending on whether or not 𝑞max ∈ 𝑜 (1), this range can be at different
positions in𝛩 (𝑚★). This is due to the fact that, if 𝑞max ∈ 𝛺 (1), then𝑚★ ∈ O(1).
However, in order to have an unsatisfiable instance we need 𝑚 ≥ 4. At the

same time Lemma 4.4 might require us to choose an 𝜀𝑚 so small that this is not

guaranteed anymore. Thus, in the case that 𝑞max ∈ 𝛺 (1) we choose a different
range of 𝜀𝑚 with𝑚 = 𝜀𝑚 ·𝑚★

.

We start with 𝑞max ∈ 𝑜 (1). Now, note that 𝑚★ = 𝑞−1
max

∈ 𝛩 ((𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖 )1/2)−1). Thus, there are constants 𝜀𝑙 (1) , 𝜀𝑙 (2) > 0 such that 𝜀𝑙
(1) · (𝐶 ·

𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 ≤ 𝑚★ ≤ 𝜀𝑙
(2) · (𝐶 · 𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 for all sufficiently

large values of 𝑛. We now choose𝑚 (1) = 𝜀𝑚 (1) ·𝑚★
and𝑚 (2) = 𝜀𝑚 (2) ·𝑚★

with

𝜀𝑚
(1) < 𝜀𝑚

(2)
. It holds that 𝑚 (1) ≤ 𝜀𝑚

(1) · 𝜀𝑙 (2) · (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 and
𝑚 (2) ≤ 𝜀𝑚

(2) · 𝜀𝑙 (2) · (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1. Since Lemma 4.4 only requires

𝑝2
1
∈ 𝛩

(∑𝑛
𝑖=1 𝑝

2

𝑖

)
, we can now use it equivalently to the second case. That means,

if we choose the constants 𝜀𝑚
(1)

and 𝜀𝑚
(2)

small enough, the probability to gener-

ate satisfiable instances at both number of clauses is at least a constant depending

only on 𝜀1, 𝜀𝑙
(2)

and 𝜀𝑚 , all of which are constant for sufficiently large 𝑛. For the

same values of𝑚 we want to have a constant lower bound on the probability

to generate unsatisfiable instances. Again, our results from section 4.4 provide
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us with these lower bounds. According to Corollary 4.14 it holds for both𝑚 (1)

and𝑚 (2)
that the probability to generate unsatisfiable instances can be lower

bounded by a constant that only depends on 𝜀𝑚 as soon as 𝜀𝑞 ∈ (0, 1/2𝑘 ) with
𝑞 ≤ 𝜀𝑞 is small enough. This holds for all sufficiently large 𝑛, since we assumed

𝑞max ∈ 𝑜 (1). Since 𝜀 (1)𝑚 and 𝜀
(2)
𝑚 are fixed constants, the resulting probability is

constant as well. This gives us the desired result if 𝑞max ∈ 𝑜 (1).
Now we consider 𝑞max ∈ 𝛺 (1). It holds that 𝑚★ = 1/𝑞max ∈ O(1). Then,

we can simply choose any two constants 𝜀
(1)
𝑚 , 𝜀

(2)
𝑚 > 1 that are sufficiently far

apart for𝑚 (1) = 𝜀 (1)𝑚 ·𝑚★
and𝑚 (2) = 𝜀 (1)𝑚 ·𝑚★

to be different integers. Both the

probability to generate a satisfiable and an unsatisfiable instance are at least

𝑞𝑚
max

. Since 𝑞max ∈ 𝛺 (1), 𝑞max is lower-bounded by a constant for all sufficiently

large 𝑛. The same holds for𝑚 = 𝜀𝑚 ·𝑚★
, since 𝑞max ≤ 1/2𝑘 and 𝜀𝑚 is some fixed

constant as well. Thus, the probabilities to generate satisfiable and unsatisfiable

instances at𝑚 (1)
and𝑚 (2)

are bounded away from zero and one as desired.

Last, we consider 𝑞max ∉ 𝑜 (1) and 𝑞max ∉ 𝛺 (1). First, we choose 𝜀𝑚 (1) , 𝜀𝑚 (2) >
0 as before and 𝜀𝑞 small enough so that the same bounds hold as in the case

of 𝑞max ∈ 𝑜 (1). Then, we assume 𝑞max ≥ 𝜀𝑞 and choose 𝜀
(1)
𝑚 , 𝜀

(2)
𝑚 > 1 as in the

case of 𝑞max ∈ 𝛺 (1). This implies probabilities of at least 𝜀
𝜀𝑚/𝜀𝑞
𝑞 to generate

a satisfiable/unsatisfiable instance. For all sufficiently large 𝑛 we either have

𝑞max ≤ 𝜀𝑞 or 𝑞max > 𝜀𝑞 . Thus, the threshold is coarse either way.

Case 4: Otherwise The last case we consider is that none of the three other

cases hold. We are going to show that there is a coarse threshold at 𝑚★ =

(𝐶 ·∑𝑛
𝑖=2 𝑝

2

𝑖 +𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1. The threshold function is chosen such that,

depending on 𝑝2
1
and 𝑝2

2
, either the first or the second term dominates. That

means, if 𝜀1 ∈ (0, 1) with 𝑝2
1
≤ 𝜀1

∑𝑛
𝑖=1 𝑝

2

𝑖 is small enough, then 𝑚★ ∈ 𝛩 ((𝐶 ·∑𝑛
𝑖=1 𝑝

2

𝑖 )−1). In that case, we have an asymptotic threshold as if 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ).
Otherwise, 𝑚★ ∈ 𝛩 ((𝐶 · 𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1). Then, we have an asymptotic

threshold as if 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). To make things easier, let us investigate𝑚 ∈
𝑜 (𝑚★) and𝑚 ∈ 𝜔 (𝑚★) separately.

Let us start with𝑚 ∈ 𝑜 (𝑚★). We are given an 𝜀𝑃 ∈ (0, 1) and have to assure

that the probability to generate a satisfiable instance at𝑚 is at least 𝜀𝑃 . Thus, we

first choose some 𝜀𝑚 ∈ (0, 1) with𝑚 = 𝜀𝑚 ·𝑚★
. Furthermore, we assume that

we can choose an 𝜀1 with 𝑝
2

1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . We now want to apply Lemma 4.3.

However, the lemma is stated with respect to the threshold function (∑𝑛
𝑖=1 𝑝

2

𝑖 )−1.
Thus, we first have to relate our 𝑚★

to this function, assuming that we can

choose 𝜀𝑚 and 𝜀1 arbitrarily small. It holds that

𝑛∑︁
𝑖=1

𝑝2𝑖 = 𝑝
2

1
+

𝑛∑︁
𝑖=2

𝑝2𝑖 ≤ 𝜀1 ·
𝑛∑︁
𝑖=1

𝑝2𝑖 +
𝑛∑︁
𝑖=2

𝑝2𝑖 .
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Thus,

∑𝑛
𝑖=2 𝑝

2

𝑖 ≥ (1 − 𝜀1) ·
∑𝑛
𝑖=1 𝑝

2

𝑖 and therefore

𝑚★ =
©­«𝐶 ·

𝑛∑︁
𝑖=2

𝑝2𝑖 +𝐶 · 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

−1

≤ 1

1 − 𝜀1
·
(
𝐶 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)−1
.

Note that 𝐶 = 1/(1 − ∑𝑛
𝑖=1 𝑝

2

𝑖 ) ≥ 1. For any fixed 𝜀1 this especially means𝑚 ∈
𝑜 (𝑚★) implies𝑚 ∈ 𝑜 (

(∑𝑛
𝑖=1 𝑝

2

𝑖

)−1). This allows us to apply Lemma 4.3 with 𝜀𝑚 ∈
(0, 1) and an 𝜀1 ∈ (0, 1) small enough to give us a probability of at least 𝜀𝑃 . The

requirement𝑚 ∈ 𝑜 ((∑𝑛
𝑖=1 𝑝

2

𝑖 )−1) guarantees that the condition on 𝜀𝑚 is fulfilled.

However, we can not guarantee that 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 holds. Thus, we now assume

𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . This is what we also assumed in the case 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and
in fact, we can use the same results now. That is, we can use Lemma 4.4. Again,

we have to relate𝑚★
to the threshold function (𝐶 ·𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 the lemma

uses. However, we can easily see that𝑚★ ≤ (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1. Thus, any
function𝑚 ∈ 𝑜 (𝑚★) is also in 𝑜 ((𝐶 · 𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1). Lemma 4.4 states that

for the value of 𝜀1 ∈ (0, 1) we have chosen before and the given value 𝜀𝑃 , we

can now choose 𝜀𝑚 ∈ (0, 1) with𝑚 ≤ 𝜀𝑚 ·𝑚★ ≤ 𝜀𝑚 · (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1
sufficiently small so that the probability to generate a satisfiable instance is at

least 𝜀𝑃 . Thus, for all large enough values of 𝑛, both𝑚 ≤ 𝜀𝑚 ·
(∑𝑛

𝑖=1 𝑝
2

𝑖

)−1
and

𝑚 ≤ 𝜀𝑚 · (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 hold. Then, the probability of at least 𝜀𝑃 at

𝑚 is guaranteed either by Lemma 4.3 if 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 or by Lemma 4.4 if

𝑝2
1
> 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 .

Let us now turn to𝑚 ∈ 𝜔 (𝑚★). Given an 𝜀𝑃 ∈ (0, 1) we want to show that

the probability to generate an unsatisfiable instance is at least 𝜀𝑃 at𝑚. Again,

we assume that we can choose an 𝜀1 with 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . Then, we can

apply Lemma 4.12. However, we first have to compare𝑚★
to (∑𝑛

𝑖=1 𝑝
2

𝑖 )−1 again.
First, it holds that 𝑝2

1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝜀1 · 𝑝1 and thus 𝑝1 ≤ 𝜀1. This implies

𝐶 = 1/(1 − ∑𝑛
𝑖=1 𝑝

2

𝑖 ) ≤ 1/(1 − 𝜀1). It also implies

𝑚★ =
©­«𝐶 ·

𝑛∑︁
𝑖=2

𝑝2𝑖 +𝐶 · 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

−1

≥
(
2 ·𝐶 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)−1
≥ 1 − 𝜀1

2 · ∑𝑛
𝑖=1 𝑝

2

𝑖

,

since 𝑝1 ≤ (∑𝑛
𝑖=1 𝑝

2

𝑖 )1/2 and
∑𝑛
𝑖=2 𝑝

2

𝑖 ≤
∑𝑛
𝑖=1 𝑝

2

𝑖 . This means,𝑚 ∈ 𝜔 (𝑚★) implies

𝑚 ∈ 𝜔 (1/∑𝑛
𝑖=1 𝑝

2

𝑖 ). We can now choose some 𝜀𝑚 > 1 with 𝑚 ≥ 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖

and apply Lemma 4.12 to show that the probability to generate an unsatisfiable

instance at 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖 is at least 𝜀𝑃 if 𝜀1 ∈ (0, 1) with 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 is small

enough. Note that this probability only holds at 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖 . However, due to the

monotonicity of the probability function in our model (c. f. Lemma 3.8), it also

holds for all𝑚 ≥ 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖 . Since𝑚 ∈ 𝜔 (1/∑𝑛
𝑖=1 𝑝

2

𝑖 ),𝑚 ≥ 𝜀𝑚/
∑𝑛
𝑖=1 𝑝

2

𝑖 holds

for all sufficiently large values of 𝑛. Up to this point we assumed 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖

for the value 𝜀1 we needed in Lemma 4.12. Now we assume 𝑝2
1
> 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 for

that same value 𝜀1. However, we have to make another distinction depending
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on 𝑝2
2
. First, we assume 𝑝2

2
≤ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 for some 𝜀2 ∈ (0, 1) of our choice.
We want to use Corollary 4.10 to show the bound we need. Again, we have to

show that𝑚★ = (𝐶 · ∑𝑛
𝑖=2 𝑝

2

𝑖 +𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1 is large enough compared

to (𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1. It holds that

∑𝑛
𝑖=2 𝑝

2

𝑖 ≤ ∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝2
1
/𝜀1. Thus,

𝐶 · ∑𝑛
𝑖=2 𝑝

2

𝑖 ≤ 𝐶 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2/
√
𝜀1 and

𝑚★ ≥ 1

1 + 1/√𝜀1
· ©­«𝐶 · 𝑝1 ·

(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

−1

.

Thus, for our fixed value 𝜀1 it holds that𝑚 ∈ 𝜔 (𝑚★) implies𝑚 ∈ 𝜔 ((𝐶 · 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖 )1/2)−1). We can now apply Corollary 4.10 for some sufficiently large

𝜀𝑚 > 0 and some sufficiently small 𝜀2 ∈ (0, 1) to have a probability of at least

𝜀𝑃 for generating an unsatisfiable instance. As with 𝑝2
1
, we now assume the

contrary for 𝑝2
2
, i. e. 𝑝2

2
> 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 for the value 𝜀2 we just chose. We want

to use Corollary 4.16 to show a probability of at least 𝜀𝑃 for generating an

unsatisfiable instance. The lemma holds if we have𝑚 ≥ 𝜀𝑚/𝑞max for an 𝜀𝑚 > 0

large enough. Under our assumptions 𝑝2
1
> 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 and 𝑝
2

2
> 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 it

holds that

𝑚★ =
©­«𝐶 ·

𝑛∑︁
𝑖=2

𝑝2𝑖 +𝐶 · 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

−1

≥
((

1

√
𝜀1 · 𝜀2

+ 1

√
𝜀2

)
· 2 · 𝑞max

)−1
,

because

∑𝑛
𝑖=2 𝑝

2

𝑖 ≤ (∑𝑛
𝑖=1 𝑝

2

𝑖 )1/2 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2 and 𝑞max = 𝐶 · 𝑝1 · 𝑝2/2. Therefore,
𝑚 ∈ 𝜔 (𝑚★) implies𝑚 ∈ 𝜔 (𝑞−1

max
) in this case. Thus, for any 𝜀𝑚 > 0 it holds that

𝑚 ≥ 𝜀𝑚/𝑞max for all sufficiently large 𝑛 and Corollary 4.16 gives us a probability

of at least 𝜀𝑃 as desired. Note that, depending on the lemma or corollary we

used, we made different choices for 𝜀𝑚 . However, all these choices are satisfied

for all sufficiently large 𝑛, since 𝑚 always grows asymptotically faster than

the respective threshold function in all three cases. From this point, either

Lemma 4.12, or Corollary 4.10, or Corollary 4.16 guarantees that the probability

to generate an unsatisfiable instance is at least 𝜀𝑃 .

It remains to show that the threshold is not sharp in the last case. If none of

the first three cases hold, then either

1. 𝑝2
1
∉ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and 𝑝21 ∉ 𝑜 (
∑𝑛
𝑖=1 𝑝

2

𝑖 ) or

2. 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), but 𝑝22 ∉ 𝛩 (∑𝑛
𝑖=2 𝑝

2

𝑖 ) and 𝑝22 ∉ 𝑜 (
∑𝑛
𝑖=2 𝑝

2

𝑖 ).

If 𝑝2
1
∉ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), then there is a constant 𝜀1 so that for any 𝑛0 ∈ N there must

be an 𝑛 ≥ 𝑛0 such that 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 . We now consider only the values of

𝑛, where 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 holds. Essentially, we treat this as an ensemble with

𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). Now we either have 𝑝2
2
∈ 𝑜 (∑𝑛

𝑖=2 𝑝
2

𝑖 ), or 𝑝22 ∈ 𝛩 (∑𝑛
𝑖=2 𝑝

2

𝑖 ), or
neither of the two. For 𝑝2

2
∈ 𝑜 (∑𝑛

𝑖=2 𝑝
2

𝑖 ) we know from case 2 that there is a range

of𝑚 of size𝛩 ((𝐶 ·𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1), where the probability function approaches
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neither zero nor one. For 𝑝2
2
∈ 𝛩 (∑𝑛

𝑖=2 𝑝
2

𝑖 ) the same holds for 𝛩 (𝑞−1
max

) due to
case 3. From proving that𝑚★

is an asymptotic threshold function we know that,

depending on 𝑝2
1
and 𝑝2

2
, 𝑚★ ∈ 𝛩 ((𝐶 · 𝑝1 · (

∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1) or 𝑚★ ∈ 𝛩 (𝑞−1
max

),
respectively. Thus for all sufficiently large values of 𝑛 we consider, there are

ranges of𝑚 ∈ 𝛩 (𝑚★), where the probability function approaches neither zero

nor one. If we considered all values of 𝑛 now, the ones we selected before prevent

our probability function from approaching zero or one in the chosen ranges.

Thus, the threshold cannot be sharp. If 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), or if we have infinitely
many values of 𝑛 where this holds as for 𝑝2

1
∉ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), and 𝑝22 ∉ 𝑜 (
∑𝑛
𝑖=2 𝑝

2

𝑖 ) a
similar argumentation holds for the chosen values of 𝑛 with 𝑝2

2
≥ 𝜀2 ·

∑𝑛
𝑖=2 𝑝

2

𝑖 ,

i. e. we can assume 𝑝2
1
∈ 𝛩 (∑𝑛

𝑖=1 𝑝
2

𝑖 ) and 𝑝22 ∈ 𝛩 (∑𝑛
𝑖=2 𝑝

2

𝑖 ) for those values. ■

4.6 Examples

We now apply Theorem 4.17 to determine the satisfiability threshold behavior of

non-uniform random 2-SAT with different ensembles of probability distributions.

4.6.1 Random 2-SAT

For random 2-SAT the probability distribution for 𝑛 ∈ N is ®𝑝 (𝑛) =
(
1

𝑛
, 1
𝑛
, . . . , 1

𝑛

)
.

This means 𝑝2
1
= 1

𝑛2
and

∑𝑛
𝑖=1 𝑝

2

𝑖 =
1

𝑛
. We see that 𝑝2

1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ). The first case
of our theorem now tells us that there is a sharp threshold at𝑚★ = (∑𝑛

𝑖=1 𝑝
2

𝑖 )−1 =
𝑛. This is exactly what Chvátal and Reed [CR92] found out as well.

4.6.2 Power-law Random 2-SAT

Theorem 4.17 implies the following corollary.

▶ Corollary 4.18. For power-law random 2-SAT, if

• 𝛽 < 3, then the threshold is coarse at𝑚★ ∈ 𝛩
(
𝑞−1
max

)
∈ 𝛩

(
𝑛2(𝛽−2)/(𝛽−1) )

)
.

• 𝛽 = 3, then the threshold is sharp at𝑚★ = 4 · 𝑛
ln𝑛

.

• 𝛽 > 3, then the threshold is sharp at𝑚★ =
(𝛽−1) · (𝛽−3)

(𝛽−2)2 · 𝑛.

◀

Proof. For power-law random 2-SAT we assume some fixed 𝛽 > 2. Then for

𝑛 ∈ N the distribution is ®𝑝 (𝑛) =
(
𝑝
(𝑛)
1
, 𝑝

(𝑛)
2

. . . , 𝑝
(𝑛)
𝑛

)
with

𝑝
(𝑛)
𝑖

=
(𝑛/𝑖)

1

𝛽−1∑𝑛
𝑗=1(𝑛/ 𝑗)

1

𝛽−1
.
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Figure 4.4: Phase diagram for power-law random 2-SAT formulas with𝑛 = 107 variables.
Each point is a sample of 100 random instances at the given parameter combination.
We drew a red cross if all instances were unsatisfiable and a green dot if at least one
instance was satisfiable with the size of the dot scaling with the fraction of satisfiable
instances. We empirically observe a sharp phase transition ( ), which closely matches
the theoretical bound of Theorem 4.17 ( ).

It holds that 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑛 . Lemma 3.12 tells us that

𝑝21 = (1 ± 𝑜 (1)) ·
(
𝛽 − 2
𝛽 − 1

)2
· 𝑛−2

𝛽−2
𝛽−1 ,

𝑝22 = (1 ± 𝑜 (1)) ·
(
𝛽 − 2
𝛽 − 1

)2
· 2−

1
𝛽−1 · 𝑛−2

𝛽−2
𝛽−1 , and

𝑛∑
𝑖=1

𝑝2𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛩

(
𝑛−2

𝛽−2
𝛽−1

)
for 𝛽 < 3

(1 ± 𝑜 (1)) · 14 ·
ln𝑛
𝑛 for 𝛽 = 3

(1 ± 𝑜 (1)) · (𝛽−2)2
(𝛽−3) · (𝛽−1) · 𝑛

−1 for 𝛽 > 3.

For 𝛽 < 3 it holds that 𝑝21 ∈ 𝛩
(∑𝑛

𝑖=1 𝑝
2
𝑖

)
and 𝑝22 ∈ 𝛩 (

∑𝑛
𝑖=2 𝑝

2
𝑖 ). Thus, there is

a coarse threshold at𝑚★ = 𝑞−1max ∈ 𝛩 (𝑛2(𝛽−2)/(𝛽−1) ), since 𝑞max = 𝐶 · 𝑝1 · 𝑝2/2,
𝑝1, 𝑝2 ∈ 𝛩

(
𝑛−(𝛽−2)/(𝛽−1)

)
, and 𝐶 = 1/(1 −

∑𝑛
𝑖=1 𝑝

2
𝑖 ) = 1 + 𝑜 (1).

For 𝛽 = 3 it holds that 𝑝21 ∈ 𝑜 (
∑𝑛
𝑖=1 𝑝

2
𝑖 ). Thus, there is a sharp satisfiability

threshold at𝑚★ = 4 · 𝑛
ln𝑛 .

For 𝛽 > 3 it also holds that 𝑝21 ∈ 𝑜 (
∑𝑛
𝑖=1 𝑝

2
𝑖 ). Thus, there is a sharp satisfiability

threshold at𝑚★ = (𝛽−1) · (𝛽−3)
(𝛽−2)2 · 𝑛. �
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Figure 4.5: Phase diagram for geometric random 2-SAT formulas with 𝑛 = 106 variables.
Each point is a sample of 100 random instances at the given parameter combination.
We drew a red cross if all instances were unsatisfiable and a green dot if at least one
instance was satisfiable with the size of the dot scaling with the fraction of satisfiable
instances. We empirically observe a sharp phase transition ( ), which closely matches
the theoretical bound of Theorem 4.17 ( ).

Figure 4.4 visualizes the empirical threshold position compared to the theoret-

ical position according to Corollary 4.18.

4.6.3 Geometric Random 2-SAT

Theorem 4.17 implies the following corollary.

� Corollary 4.19. For geometric random 2-SAT with base 𝑏 > 1 there is a
sharp threshold at𝑚★ = 2· (𝑏−1)

(𝑏+1) ·ln𝑏 · 𝑛. �

Proof. We assume some fixed 𝑏 > 1. Then for 𝑛 ∈ N the distribution is �𝑝 (𝑛) =(
𝑝 (𝑛)
1 , 𝑝 (𝑛)

2 . . . , 𝑝 (𝑛)
𝑛

)
with

𝑝 (𝑛)
𝑖 =

𝑏 · (1 − 𝑏−1/𝑛)
𝑏 − 1

· 𝑏−(𝑖−1)/𝑛 .

Again, it holds that 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑛 .
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Lemma 3.13 tells us

𝑝2
1
= (1 − 𝑜 (1)) ·

(
𝑏 · ln𝑏
𝑏 − 1

)
2

· 𝑛−2.

and
𝑛∑︁
𝑖=1

𝑝2𝑖 = (1 ± 𝑜 (1)) · 𝑏 + 1

𝑏 − 1

· ln𝑏
2

· 𝑛−1.

Since 𝑝2
1
∈ 𝑜 (∑𝑛

𝑖=1 𝑝
2

𝑖 ), the threshold is sharp at𝑚★ =
2· (𝑏−1)
(𝑏+1) ·ln𝑏 · 𝑛. ■

Again, Figure 4.5 visualizes the empirical threshold position compared to the

theoretical one from Corollary 4.19.
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5 Asymptotic Threshold in
Non-Uniform Random k-SAT

The content of this chapter is based on the publication [Fri+17a], which is joint work
with Tobias Friedrich, Anton Krohmer, Thomas Sauerwald, and Andrew M. Sutton.
The results from that paper have been generalized to encompass non-uniform
random 𝑘-SAT with arbitrary ensembles of probability distributions instead of only
power-law random 𝑘-SAT.

In this chapter we analyze the behavior of the satisfiability threshold in non-

uniform random 𝑘-SAT for 𝑘 ≥ 3 with regard to the number of clauses𝑚. In the

last chapter we did the same for 𝑘 = 2. However, instances with 𝑘 ≥ 3 are more

difficult to analyze, since the structures that result in unsatisfiability are not as

simple as snakes and bicycles anymore. Thus, it is harder to certify satisfiability

or unsatisfiability by showing the existence or absence of such structures.

To show that formulas are unsatisfiable above the threshold, we use the first

moment method to bound the number of satisfying assignments. However,

the bound we get from this approach is rather high. Hence, we show a better

bound using the Single Flip Method [Kir+98]. The method improves upon the

first moment bound by considering only a subset of satisfying assignments.

Alternatively, Corollary 4.16 from the last chapter gives a bound depending on

the maximum clause probability.

To show that formulas are satisfiable below the threshold, we reduce 𝑘-SAT

instances to 2-SAT instances. Given a Boolean formula in 𝑘-CNF one can pick

two literals from each clause to get a formula in 2-CNF. If this 2-SAT formula is

satisfiable, so is the original formula. We will prove that, if the two literals from

each clause are picked in a suitable way, we almost surely get a satisfiable 2-SAT

formula as soon as the number of clauses is small enough. In order to prove this,

we will use our results on non-uniform random 2-SAT from Chapter 4.

Before we can show these results, let us repeat some basics of non-uniform

random 𝑘-SAT that will be crucial in this chapter. The probability to draw a

clause 𝑐 = (ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑘 ) is

𝑞𝑐 = 𝐶 · 𝑘!
2
𝑘

∏
ℓ∈𝑐

𝑝 ( |ℓ |). (5.1)

with

𝐶 =
©­«𝑘! ·

∑︁
𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽

𝑝 𝑗
ª®¬
−1

.

We want to estimate 𝐶 to make the factor more manageable. Note that 𝐶

is a normalization factor which describes the probability that all 𝑘 Boolean
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variables drawn in a clause are different. Thus, to get an upper bound on

𝐶 = 1/Pr[all 𝑘 variables different], it suffices to have an upper bound on the

probability that we draw a variable twice. The following lemma gives us exactly

that bound.

▶ Lemma 5.1 (Non-Uniform Birthday Paradox [ASV15]). Let ®𝑝 = (𝑝1, . . . ,
𝑝𝑛) be any probability distribution on 𝑛 items. Assume we sample 𝑡 items from

®𝑝 . Let E(𝑡) be the event that there is a collision, i. e. that at least 2 of 𝑡 items are

equal. Then,

Pr[E(𝑡)] ≤ 𝑡 · (𝑡 − 1)
2

𝑛∑︁
𝑖=1

𝑝2𝑖 .

◀

The lemma directly yields

𝐶 ≤
(
1 − 𝑘 · (𝑘 − 1)

2

·
𝑛∑︁
𝑖=1

𝑝2𝑖

)−1
. (5.2)

Since we will consider 𝐶 for different values of 𝑘 , we also denote it as 𝐶𝑘 .

Remember that in order for a function 𝑚★
: N → R to be an asymptotic

threshold function for satisfiability it has to hold that

lim

𝑛→∞
Pr

𝛷∼D𝑁 (𝑛,𝑘,( ®𝑝 (𝑛) )𝑛∈N,𝑚)
[𝛷 satisfiable ] =

{
1, if𝑚 ∈ 𝑜𝑛 (𝑚★)
0, if𝑚 ∈ 𝜔𝑛 (𝑚★).

We will consider𝑚 ∈ 𝜔𝑛 (𝑚★) in Section 5.1 and𝑚 ∈ 𝑜𝑛 (𝑚★) in Section 5.2.

5.1 Unsatisfiability

It is a well-known result [CR92] that random k-SAT on any probability distribu-

tion will result in unsatisfiable formulas if the clause-variable ratio is high. This

follows from the first moment method: The expected number of assignments

that satisfy a formula is 2
𝑛 (1 − 2

−𝑘 )𝑚 . This is independent of the variable dis-
tribution as long as each variable is negated with probability 1/2. Hence, if the
clause-variable ratio exceeds ln(2)/ln(2𝑘/(2𝑘 − 1)), the resulting formula will

be unsatisfiable with high probability. This constant is rather large, however:

In the case of 𝑘 = 3 this yields an upper bound on the clause-variable ratio of

≈ 5.191. Nevertheless, it certifies that the satisfiability threshold of non-uniform

random 𝑘-SAT can be at most𝑚★ ∈ O(𝑛), independently of the ensemble of

probability distributions

(
®𝑝 (𝑛) )

𝑛∈N.
Obviously, there are ensembles of probability distributions which yield a much

smaller threshold function as we have seen in the case of power-law random

2-SAT with exponent 𝛽 ≤ 3 (c. f. Section 4.6.2). One reason for formulas to

be unsatisfiable could be that the 𝑘 variables with highest probabilities appear
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together in clauses too often, thus appearing with all 2
𝑘
possible combinations of

signs and making the formula unsatisfiable. Corollary 4.16 from the last chapter

tells us that non-uniform random 𝑘-SAT instances with𝑚 ∈ 𝜔 (1/𝑞max) clauses
are a. a. s. unsatisfiable, where 𝑞max is the maximum clause probability. In some

cases this gives a better bound than the first moment method.

Alternatively, we can try to improve the bound from the first moment method.

The Single Flip Method was introduced by Kirousis et al. [Kir+98]. It improves

the first moment bound by only considering a subset of satisfying assignments.

Since the number of those is smaller, so is the resulting probability bound. Thus,

fewer clauses are needed to make the probability approach zero.

The satisfying assignments the method considers have the following property.

▶ Definition 5.2 (Single-Flip Property [Kir+98]). For a formula𝛷 a truth

assignment 𝛼 has the single-flip property iff 𝛼 satisfies𝛷 and every assignment

𝛼 ′
obtained from 𝛼 by flipping exactly one zero to one does not satisfy𝛷 . ◀

If 𝛷 is satisfiable, then such an assignment exists due to [Kir+98]. This is

intuitively clear, if we consider any satisfying assignment 𝛼 . Either it has the

property or we can flip a zero to one to get a different satisfying assignment that

we can consider instead. We can repeat this until we either find an assignment

with the property or reach the assignment 𝛼 = 1
𝑛
. If we reach 1

𝑛
, it must be

satisfying and thus has the single-flip property by definition.

Note that in this sectionwe annotate our probabilities with 𝑐 and𝛷 respectively

to differentiate between drawing a single random clause 𝑐 and drawing a random

formula𝛷 consisting of𝑚 randomly drawn clauses. We let the random variable

𝑁𝑆𝐹 denote the number of assignments with the single-flip property. Markov’s

inequality now tells us that Pr𝛷 [𝛷 satisfiable ] ≤ 𝔼𝛷 [ 𝑁𝑆𝐹 ]. In the following,

we derive a bound on 𝔼𝛷 [ 𝑁𝑆𝐹 ]. To bound the number of assignments with the

single-flip property, we use a result by Kirousis et al. [Kir+98].

▶ Lemma 5.3 ([Kir+98]). The expected number of assignments with the single-

flip property is

𝔼
𝛷
[ 𝑁𝑆𝐹 ] =

(
1 − 1

2
𝑘

)𝑚 ∑︁
assignment 𝛼

Pr

𝛷
[ 𝛼 single-flip | 𝛼 satisfying ] .

◀

Nowwe bound the probability that a satisfying assignment𝛼 has the single-flip

property.

▶ Lemma 5.4. For an assignment 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ {0, 1}𝑛 it holds that

Pr

𝛷
[ 𝛼 single-flip | 𝛼 satisfying ] ≤

∏
𝑖 : 𝛼𝑖=0

(
1 −

(
1 −𝐶𝑘 ·

𝑘 · 𝑝𝑖
2
𝑘 − 1

)𝑚)
.

◀
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Proof. For a satisfying assignment 𝛼 to have the single-flip property, all assign-

ments 𝛼 (𝑖)
obtained by flipping a bit 𝛼𝑖 = 0 of 𝛼 must not satisfy 𝛷 . To fulfill

this property for 𝛼 (𝑖)
, we have to choose at least one clause which contains 𝑋𝑖

and 𝑘 − 1 other variables with appropriate signs so that 𝛼 (𝑖)
does not satisfy the

clause. Let 𝑆 (𝑖) denote the event that we draw a clause 𝑐 that is satisfied by 𝛼 ,

but not by 𝛼 (𝑖)
. Then, it holds that

Pr

𝑐

[
𝑆 (𝑖)

]
= 𝐶𝑘 ·

𝑘!

2
𝑘
· 𝑝𝑖 ·

∑︁
𝐽 ∈P𝑘−1 ( [𝑛]\{𝑖 })

∏
𝑗 ∈𝐽

𝑝 𝑗 ≤ 𝐶𝑘 ·
𝑘 · 𝑝𝑖
2
𝑘
,

since

∑
𝐽 ∈P𝑘−1 ( [𝑛]\{𝑖 })

∏
𝑗 ∈𝐽 𝑝 𝑗 ≤ 1

(𝑘−1)! according to Lemma 4.1. The probability

of choosing a clause not satisfied by 𝛼 (𝑖)
under the condition that we draw a

clause that 𝛼 satisfies is then

Pr

𝑐

[
𝑆 (𝑖) | 𝛼 sat

]
≤ 𝐶𝑘 ·

𝑘 · 𝑝𝑖
2
𝑘 − 1

as the probability of choosing a clause which is satisfied by any fixed assignment

is exactly (2𝑘 − 1)/2𝑘 . For a fixed assignment 𝛼 (𝑖)
we conclude

Pr

𝛷

[
𝛼 (𝑖)

unsat | 𝛼 sat

]
= 1 −

(
1 − Pr

𝑐

[
𝑆 (𝑖) | 𝛼 satisfies 𝑐

] )𝑚
≤ 1 −

(
1 −𝐶𝑘 ·

𝑘 · 𝑝𝑖
2
𝑘 − 1

)𝑚
. (5.3)

It remains to find the joint probability that all single-flipped assignments 𝛼 (𝑖)

for 1 ≤ 𝑖 ≤ 𝑛 with 𝛼𝑖 = 0 are not satisfying. We show this using a correlation

inequality by Farr [McD92]. The sets of clauses which are not satisfied by

the 𝛼 (𝑖)
’s are pairwise disjoint as each clause in the set for 𝛼 (𝑖)

has to contain

𝑋𝑖 , whereas each clause in the set for 𝛼 ( 𝑗)
( 𝑗 ≠ 𝑖) can not contain 𝑋𝑖 , since

𝛼 ( 𝑗)
differs from 𝛼 only in 𝑋 𝑗 and thus satisfies 𝛼𝑖

( 𝑗) = 0 as does 𝛼 . In the

context of the correlation inequality from [McD92] we set 𝑉 = {1, 2, . . . ,𝑚},
𝐼 = {𝑖 ∈ {1, 2, . . . , 𝑛} | 𝛼𝑖 = 0}, 𝑋𝑣 = 𝑖 iff the 𝑣-th clause is satisfied by 𝛼 , but

not by 𝛼 (𝑖)
, and F𝑖 the “increasing” collection of non-empty subsets of 𝑉 . The

application of the Theorem then directly yields

Pr

𝛷
[ 𝛼 single-flip | 𝛼 sat ] = Pr

𝛷

[ ∧
𝑖 : 𝛼𝑖=0

𝛼 (𝑖)
unsat | 𝛼 sat

]
≤

∏
𝑖 : 𝛼𝑖=0

Pr

𝛷

[
𝛼 (𝑖)

unsat | 𝛼 sat

]
.

≤
∏
𝑖 : 𝛼𝑖=0

[
1 −

(
1 −𝐶𝑘 ·

𝑘 · 𝑝𝑖
2
𝑘 − 1

)𝑚]
. ■

Combining Lemma 5.3 and Lemma 5.4 we get the following result.
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▶ Corollary 5.5. Let 𝛷 ∼ D𝑁
(
𝑛, 𝑘,

(
®𝑝 (𝑛) )

𝑛∈N,𝑚
)
be a non-uniform random

𝑘-SAT formula. The expected number of assignments with single-flip property

is at most

𝔼
𝛷∼D𝑁

[ 𝑁𝑆𝐹 ] ≤
(
1 − 1

2
𝑘

)𝑚 𝑛∏
𝑖=1

[
2 −

(
1 −𝐶𝑘 ·

𝑘 · 𝑝𝑖
2
𝑘 − 1

)𝑚]
.

◀

Proof. Plugging Lemma 5.4 into Lemma 5.3 we get

𝔼
𝛷∼D𝑁

[ 𝑁𝑆𝐹 ] ≤
(
1 − 1

2
𝑘

)𝑚 ∑︁
𝐼 ⊆{1,2,...,𝑛}

∏
𝑖∈𝐼

[
1 −

(
1 −𝐶𝑘 ·

𝑘 · 𝑝𝑖
2
𝑘 − 1

)𝑚]
=

(
1 − 1

2
𝑘

)𝑚 𝑛∏
𝑖=1

[
2 −

(
1 −𝐶𝑘 ·

𝑘 · 𝑝𝑖
2
𝑘 − 1

)𝑚]
.

■

If we can guarantee this expected value to be 𝑜 (1), the same holds for the

probability to generate satisfiable instances, since

Pr

𝛷
[𝛷 satisfiable ] = Pr

𝛷
[𝛷 has a single-flip assignment ] ≤ 𝔼

𝛷
[ 𝑁𝑆𝐹 ]

as we explained at the beginning of this section. We can now use Corollary 5.5

to derive upper bounds on the satisfiability threshold that improve on the bound

𝑚★ ≤ ln(2)
ln(2𝑘/(2𝑘 − 1))

· 𝑛 (5.4)

derived by Chvátal and Reed [CR92]. Our new bounds are tailored to the non-

uniform input distributions we consider. However, it is difficult to derive closed

expressions for our example distributions. Furthermore, at least for the example

distributions we consider, Corollary 5.5 does not yield asymptotically smaller

upper bounds than the ones we get from Corollary 4.16 or equation (5.4).

Nevertheless, our result can prove useful in bounding the leading constant of a

sharp satisfiability threshold. Some first steps into that direction have been made

in the paper [Fri+17a] this chapter is based on. There, we showed upper bounds

on the satisfiability threshold for power-law random 𝑘-SAT with exponents

𝛽 > 2𝑘−1
𝑘−1 . Those bounds were are even smaller than known lower bounds on

the threshold for random 𝑘-SAT. This proved that for certain exponents 𝛽 the

satisfiability threshold of power-law random 𝑘-SAT is smaller than the one for

random 𝑘-SAT. However, in this thesis we only study the asymptotic threshold

position and sharpness of the threshold for non-uniform random 𝑘-SAT with

𝑘 ≥ 3. We leave deriving leading constants of sharp thresholds to future work.
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5.2 Satisfiability

In order to show satisfiability, we reduce an instance of non-uniform random 𝑘-

SAT to a Boolean formula in 2-CNF by picking two literals from each clause. Any

satisfying assignment for the resulting formula is also a satisfying assignment

for the original formula. If we pick two literals from each clause uniformly at

random, we will get an instance of non-uniform random 2-SAT with exactly

the same ensemble of probability distributions ( ®𝑝 (𝑛) )𝑛∈N. Thus, the following
corollary holds.

▶ Corollary 5.6. Let 𝛷 ∼ D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) be a non-uniform random

𝑘-SAT formula. Then, the probability that𝛷 is satisfiable is at least as high as

the probability that 𝛷 ′ ∼ D𝑁 (𝑛, 2, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) is satisfiable. Especially, 𝛷 is

satisfiable a. a. s. if𝑚 ∈ 𝑜 (𝑚★), where

𝑚★ =
1 − ∑𝑛

𝑖=1 𝑝
2

𝑖∑𝑛
𝑖=2 𝑝

2

𝑖
+ 𝑝1 ·

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
1/2

is the asymptotic threshold function of D𝑁
(
𝑛, 2,

(
®𝑝 (𝑛) )

𝑛∈N,𝑚
)
with respect to

𝑚. ◀

However, we can get a better bound by picking from each clause the two literals

with smallest probability. This results in the following probability distribution

on 2-clauses. For 𝑖, 𝑗 ∈ [𝑛] and ℓ1, ℓ2 literals over 𝑋𝑖 and 𝑋 𝑗 it holds that

Pr[𝑐 = (ℓ1 ∨ ℓ2)] ≤ 𝐶𝑘
𝑘 · (𝑘 − 1)

4

·𝑝𝑖 · 𝐹 (𝑖 −1) (𝑘−2)/2 ·𝑝 𝑗 · 𝐹 ( 𝑗 −1) (𝑘−2)/2 ≈ 𝑝 ′𝑖 ·𝑝 ′𝑗 ,

where 𝐹 (𝑖) = ∑𝑖
𝑙=1
𝑝𝑙 . We can now plug these upper bounds on the clause and

variable probabilities into a relaxed version of Lemma 4.4. The relaxation is in the

sense that now we are only concerned with asymptotic threshold functions and

that we only need upper bounds on clause probabilities. The lemma derives an

upper bound on the expected number of bicycles in a Boolean formula in 2-CNF.

If we choose a number of clauses𝑚 so that this expected number is 𝑜 (1), there is
a. a. s. no bicycle in the formula. Thus, it is a. a. s. satisfiable according to Chvátal

and Reed [CR92] (see also section 4.2). As mentioned before, this approach also

works if only upper bounds for the clause and variable probabilities are known.

Why can the bounds we get from picking the two least-probable literals be

better than the ones we get from picking literals at random? This might be due

to the non-uniformity of the variable probability distributions. We conjecture

that for non-uniform random 𝑘-SAT the uniform distribution (random 𝑘-SAT)

constitutes an extreme case in the sense that the satisfiability threshold is as

high as it could possibly be. By picking the two least-probable literals from

each clause we make the probability distribution ®𝑝 ′ more uniform, since 𝑝 ′𝑖 ∈
𝛩 (𝑝𝑖 · 𝐹 (𝑖 −1)𝑘/2−1) and 𝑝𝑖 decreases, while 𝐹 (𝑖) increases with increasing 𝑖 . Due

to our conjecture this more uniform probability distribution results in a higher
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bound on the satisfiability threshold. While picking literals at random is easier

and yields the same asymptotic bound in some cases, we will also see examples

where picking the two least-probable literals yields a much better bound (c. f.

Section 5.3.2).

We will now show the necessary results rigorously. The relaxed lemma states

the following.

▶ Lemma 5.7. Let M be a random 2-SAT model over 𝑛 variables and with

𝑚 clauses drawn independently at random. If the Boolean variables 𝑋𝑖 can be

assigned functions 𝑝𝑖 : N→ R+
such that the probability to draw each clause 𝑐

is at most

Pr[𝑐 = (ℓ1 ∨ ℓ2)] ≤ 𝛼 · 𝑝 ( |ℓ1 |) · 𝑝 ( |ℓ2 |),

then a random formula𝛷 ∼ M is a. a. s. satisfiable if𝑚 ∈ 𝑜 (𝑚★), where

𝑚★ =
©­«2 · 𝛼 ·

𝑛∑︁
𝑖=2

𝑝2𝑖 + 2 · 𝛼 · 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

−1

.

◀

Proof. The probability that a specific bicycle 𝐵 of size 𝑡 appears in𝛷 is

Pr[𝐵 in𝛷] =
(
𝑚

𝑡 + 1

)
· (𝑡 + 1)!

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
positions of 𝐵 in𝛷

·Pr[(𝑢 ∨𝑤1)] · Pr[(𝑤𝑡 ∨ 𝑣)] ·
𝑡−1∏
ℎ=1

Pr[(𝑤ℎ ∨𝑤ℎ+1)] .

Thus, for a set 𝑆 ∈ P𝑡 ( [𝑛]) of variables the probability that any bicycle with the

variables from 𝑆 appears in𝛷 is at most

Pr[𝑆-bicycle in𝛷] ≤ 𝑚𝑡+1 · 𝑡 ! · 2𝑡 · 𝛼𝑡+1 ·
∏
𝑖∈𝑆

𝑝2𝑖 ·
(
2 ·

∑︁
𝑖∈𝑆

𝑝𝑖

)
2

,

where the last factor accounts for the possibilities to choose 𝑢 and 𝑣. Here, we

used the requirement Pr[𝑐 = (ℓ1 ∨ ℓ2)] ≤ 𝛼 · 𝑝 ( |ℓ1 |) · 𝑝 ( |ℓ2 |). It now holds that

Pr[𝛷 contains a bicycle] ≤
𝑛∑︁
𝑡=2

∑︁
𝑆 ∈P𝑡 ( [𝑛])

©­«𝑚𝑡+1 · 𝑡 ! · 2𝑡 · 𝛼𝑡+122 ·
∏
𝑖∈𝑆

𝑝2𝑖

(∑︁
𝑖∈𝑆

𝑝𝑖

)
2ª®¬.

Depending on the relation of 𝑝2
1
to

∑𝑛
𝑖=1 𝑝

2

𝑖 , we get different bounds. It holds

that

Pr[𝛷 contains a bicycle] ≤ 2 ·
𝑝2
1∑𝑛

𝑖=1 𝑝
2

𝑖

·
𝑛∑︁
𝑡=2

©­«
(
2 · 𝛼 ·𝑚 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)𝑡+1
· 𝑡2ª®¬
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≤ 4 · 𝛼 ·𝑚 ·
(
𝑛∑︁
𝑖=1

𝑝2𝑖

)
·
𝑛∑︁
𝑡=2

((
2 · 𝛼 ·𝑚 ·

𝑛∑︁
𝑖=1

𝑝2𝑖

)𝑡
· 𝑡2

)
.

Thus, for𝑚 ∈ 𝑜 ((2·𝛼 ·∑𝑛
𝑖=1 𝑝

2

𝑖 )−1) this is at most𝑜 (1). However, if 𝑝2
1
≤ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖

for some 𝜀1 ∈ (0, 1), it holds that
𝑛∑︁
𝑖=2

𝑝2𝑖 =

𝑛∑︁
𝑖=1

𝑝2𝑖 − 𝑝21 ≥ (1 − 𝜀1) ·
𝑛∑︁
𝑖=1

𝑝2𝑖 .

In that case𝑚 ∈ 𝑜 ((2 · 𝛼 ·∑𝑛
𝑖=2 𝑝

2

𝑖 )−1) is sufficient. However, if we can choose an

𝜀1 ∈ (0, 1) so that 𝑝2
1
≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝

2

𝑖 , then we can achieve a better bound as we

have seen in Lemma 4.4. It then holds that

Pr[𝛷 unsat] ≤ 2 · (1 + 1/𝜀1)
𝑛∑︁
𝑡=2

©­«©­«2 · 𝛼 ·𝑚 · 1

√
𝜀1

· 𝑝1 ·
(
𝑛∑︁
𝑖=2

𝑝2𝑖

)
1/2ª®¬

𝑡+1

· 𝑡3ª®¬.
This is 𝑜 (1) if𝑚 ∈ 𝑜 ((2 · 𝛼 · 𝑝1 ·

(∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2
)−1).

As in Section 4.5 we can use these two cases to derive the result as desired.

First we choose some fixed 𝜀1 ∈ (0, 1). For all 𝑛 ∈ N it either holds that

𝑝1(𝑛)2 ≤ 𝜀1 ·
∑𝑛
𝑖=1 𝑝𝑖 (𝑛)2 or 𝑝1(𝑛)2 ≥ 𝜀1 ·

∑𝑛
𝑖=1 𝑝𝑖 (𝑛)2. In the former case𝑚 ∈

𝑜
(
𝑚★

)
implies𝑚 ∈ 𝑜 ((2 · 𝛼 · ∑𝑛

𝑖=2 𝑝
2

𝑖 )−1). In the latter case𝑚 ∈ 𝑜
(
𝑚★

)
implies

𝑚 ∈ 𝑜 ((2 · 𝛼 · 𝑝1 · (
∑𝑛
𝑖=2 𝑝

2

𝑖 )1/2)−1). Thus, either way we have a probability of

1 − 𝑜 (1) that a random instance is satisfiable. ■

It remains to bound the probability to sample 2-clauses from non-uniform

random 𝑘-SAT by picking the two least-probable literals.

▶ Lemma 5.8. Let 𝑐 be a clause drawn with non-uniform random 𝑘-SAT with

probability ensemble ( ®𝑝 (𝑛) )𝑛∈N. Let 𝑐 ′ be the 2-clause consisting of the two

literals with the smallest variable probability from 𝑐 . For 𝑖, 𝑗 ∈ [𝑛] and ℓ1, ℓ2
literals over 𝑋𝑖 and 𝑋 𝑗 it holds that

Pr[𝑐 = (ℓ1 ∨ ℓ2)] ≤ 𝐶𝑘 ·
𝑘 · (𝑘 − 1)

4

· 𝑝𝑖 · 𝐹 (𝑖 − 1)𝑘/2−1 · 𝑝 𝑗 · 𝐹 ( 𝑗 − 1)𝑘/2−1,

where 𝐹 (𝑖) =
∑𝑖
𝑙=1
𝑝𝑙 . Furthermore Pr

[
𝑐 = (ℓ𝑖 ∨ ℓ𝑗 )

]
= 0 if 𝑖 ≤ 𝑘 − 2 or 𝑗 ≤

𝑘 − 2. ◀

Proof. We create a random clause with non-uniform random 𝑘-SAT with proba-

bility ensemble ( ®𝑝 (𝑛) )𝑛∈N and pick the two variables with smallest probability.

It holds that 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑛 . Let 𝑖, 𝑗 ∈ [𝑛] with 𝑖 < 𝑗 and ℓ1, ℓ2 literals over

𝑋𝑖 and 𝑋 𝑗 . For 𝑋𝑖 and 𝑋 𝑗 to be the two variables with smallest probabilities, the

𝑘 − 2 other variables have to have an index of at most 𝑖 . Thus, the probability is
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zero if one of the two indices is at most 𝑘 − 2. Furthermore, it holds that

Pr[𝑐 = (ℓ1 ∨ ℓ2)] ≤ 𝐶𝑘 ·
𝑘!

2
𝑘
· 𝑝𝑖 · 𝑝 𝑗 · 2𝑘−2

∑︁
𝑆 ∈P𝑘−2 ( [𝑖−1])

∏
𝑠∈𝑆

𝑝𝑠

≤ 𝐶𝑘 ·
𝑘!

4

· 𝑝𝑖 · 𝑝 𝑗 ·
1

(𝑘 − 2)!

(
𝑖−1∑︁
𝑙=1

𝑝𝑙

)𝑘−2
by Lemma 4.1. Since 𝐹 (𝑖 − 1) = ∑𝑖−1

𝑙=1
𝑝𝑙 ≤

∑𝑗−1
𝑙=1

𝑝𝑙 = 𝐹 ( 𝑗 − 1), we get

Pr[𝑐 = (ℓ1 ∨ ℓ2)] ≤ 𝐶𝑘 ·
𝑘 · (𝑘 − 1)

4

· 𝑝𝑖 · 𝑝 𝑗 · 𝐹 (𝑖 − 1)𝑘/2−1 · 𝐹 ( 𝑗 − 1)𝑘/2−1.

■

Lemma 5.7 and Lemma 5.8 imply the following theorem.

▶ Theorem 5.9. Let 𝛷 ∼ D𝑁
(
𝑛, 𝑘,

(
®𝑝 (𝑛) )

𝑛∈N,𝑚
)
be a non-uniform random

𝑘-SAT formula. Let

𝑚★ =
©­«𝐶𝑘 · 𝑘 · (𝑘 − 1)

2

·
𝑛−𝑘+2∑︁
𝑖=2

𝑝 ′𝑖
2 + 𝐶𝑘 · 𝑘 · (𝑘 − 1)

2

· 𝑝 ′
1
·
(
𝑛−𝑘+2∑︁
𝑖=2

𝑝 ′𝑖
2

)1/2ª®¬
−1

,

where 𝑝 ′𝑖 (𝑛) is the 𝑖-th largest value in the set𝑝 𝑗 (𝑛) ·
(
𝑗−1∑︁
𝑙=1

𝑝𝑙 (𝑛)
)𝑘/2−1 ������ 𝑗 ∈ {𝑘 − 1, 𝑘, . . . , 𝑛}


and 𝑝 ′𝑖 : N → R+

is the function of those values depending on 𝑛. Then, 𝛷 is

a. a. s. satisfiable if𝑚 ∈ 𝑜 (𝑚★). ◀

5.3 Examples

We can use our results to determine the asymptotic threshold functions of non-

uniform random 𝑘-SAT with given ensembles of probability distributions. As

before, we consider three such ensembles and their corresponding models as

examples: random 𝑘-SAT, power-law random 𝑘-SAT, and geometric random

𝑘-SAT. Since we need to know the asymptotic threshold function to derive

sharpness of the satisfiability threshold, these results will be necessary when

considering the same examples in the next chapter.
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5.3.1 Random k-SAT

For random 𝑘-SAT the probability ensemble is

∀𝑛 ∈ N : ®𝑝 (𝑛) =

(
1

𝑛
,
1

𝑛
, . . . ,

1

𝑛

)
.

It holds that

𝐶𝑘 ≤ 1

1 − 𝑘2

2
· ∑𝑛

𝑖=1 𝑝
2

𝑖

=
1

1 − 𝑘2

2·𝑛
= 1 + 𝑜 (1).

Thus, 𝑞max ∈ 𝛩 (𝑛−𝑘 ) and Corollary 4.16 tells us that instances become a. a. s.

unsatisfiable for𝑚 ∈ 𝜔 (𝑛𝑘 ). However, the first moment method gives us a better

bound of𝑚 ∈ 𝜔 (𝑛) for instance to be a. a. s. unsatisfiable.

Now we reduce random 𝑘-SAT to random 2-SAT by picking two literals from

each clause uniformly at random. We know that for random 2-SAT, instances

are a. a. s. satisfiable for𝑚 ∈ 𝑜 (𝑛). However, we can also use the more general

bound of Corollary 5.6, which tells us that instances are a. a. s. satisfiable if

𝑚 ∈ 𝑜
(

1 − ∑𝑛
𝑖=1 𝑝

2

𝑖∑𝑛
𝑖=2 𝑝

2

𝑖
+ 𝑝1 ·

(∑𝑛
𝑖=2 𝑝

2

𝑖

)
1/2

)
∈ 𝑜 (𝑛),

since 𝑝1 =
1

𝑛
and

∑𝑛
𝑖=2 𝑝

2

𝑖 ∈ 𝛩 ( 1
𝑛
). Thus, the asymptotic satisfiability threshold

for random 𝑘-SAT is𝑚★ ∈ 𝛩 (𝑛) as Chvátal and Reed [CR92] already showed.

5.3.2 Power-Law Random k-SAT

We could use Corollary 5.6 and Corollary 4.18 to derive a bound on satisfiability.

The corollary tells us that instances are a. a. s. satisfiable if𝑚 ∈ 𝑜 (𝑛2· (𝛽−2)/(𝛽−1) )
for 𝛽 < 3, 𝑚 ∈ 𝑜 (𝑛/ln𝑛) for 𝛽 = 3, and 𝑚 ∈ 𝑜 (𝑛) for 𝛽 > 3. However,

Theorem 5.9 yields a better bound as we will see in the following corollary.

▶ Corollary 5.10. For power-law random 𝑘-SAT, if

• 𝛽 < 2𝑘−1
𝑘−1 , then the threshold is coarse at𝑚★ ∈ 𝛩

(
𝑞−1
max

)
∈ 𝛩

(
𝑛𝑘 (𝛽−2)/(𝛽−1)

)
.

• 𝛽 = 2𝑘−1
𝑘−1 , then formulas with 𝑚★ ∈ 𝑜

(
𝑛
ln𝑛

)
are a. a. s. satisfiable and

formulas with𝑚★ ∈ 𝜔 (𝑛) are a. a. s. unsatisfiable.

• 𝛽 > 2𝑘−1
𝑘−1 , then the asymptotic threshold is at𝑚★ ∈ 𝛩 (𝑛).

◀

Proof. For power-law random 𝑘-SAT we assume some fixed 𝛽 > 2. Then, for

𝑛 ∈ N the distribution is ®𝑝 (𝑛) =
(
𝑝
(𝑛)
1
, 𝑝

(𝑛)
2

. . . , 𝑝
(𝑛)
𝑛

)
with

𝑝
(𝑛)
𝑖

=
(𝑛/𝑖)

1

𝛽−1∑𝑛
𝑗=1(𝑛/ 𝑗)

1

𝛽−1
.
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It holds that 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑛 and Lemma 3.12 tells us

𝑝1 = (1 ± 𝑜 (1)) ·
(
𝛽 − 2

𝛽 − 1

)
· 𝑛−

𝛽−2
𝛽−1 ,

and

𝑛∑︁
𝑖=1

𝑝2𝑖 =


𝛩

(
𝑛
−2 𝛽−2

𝛽−1
)

for 𝛽 < 3

(1 ± 𝑜 (1)) · 1

4
· ln𝑛
𝑛

for 𝛽 = 3

(1 ± 𝑜 (1)) · (𝛽−2)2
(𝛽−3) · (𝛽−1) · 𝑛

−1
for 𝛽 > 3.

It holds that 𝑞max ∈ 𝛩 (𝑛−𝑘 · (𝛽−2)/(𝛽−1) ). Thus, instances are a. a. s. unsatisfiable
for𝑚 ∈ 𝜔 (𝑛𝑘 · (𝛽−2)/(𝛽−1) ) due to Corollary 4.16. For 𝛽 < 2𝑘−1

𝑘−1 this is smaller than

the bound we get from the first moment method. For 𝛽 ≥ 2𝑘−1
𝑘−1 the first moment

method gives us a smaller bound of𝑚 ∈ 𝜔 (𝑛).
Again due to Lemma 3.12 it holds that

𝐹 (𝑖) =
𝑛∑︁
𝑗=1

𝑝 𝑗 ≤ (1 + 𝑜 (1)) ·
(
𝑖

𝑛

) 𝛽−2
𝛽−1
.

Thus,

𝑝𝑖 · 𝐹 (𝑖 − 1)𝑘/2−1 ≤ (1 + 𝑜 (1)) · 1
𝑛
· 𝛽 − 2

𝛽 − 1

·
(
𝑖

𝑛

) (𝑘/2) · 𝛽−2
𝛽−1−1

.

We can substitute (𝑘/2) · 𝛽−2
𝛽−1 − 1 with −1/(𝛽 ′− 1), where 𝛽 ′ = 1+ 1/(1− 𝑘

2
· 𝛽−2
𝛽−1 ).

Thus, these probabilities are power-law distributed with exponent 𝛽 ′, i. e.

𝑝𝑖 · 𝐹 (𝑖 − 1)𝑘/2−1 ∈ 𝛩©­«
(
𝑛
𝑖

) 1

𝛽′−1

𝑛

ª®¬.
It holds that 𝛽 ′ > 2 iff 𝛽 > 2 and that 𝛽 ′ < 3 iff 𝛽 < 2𝑘−1

𝑘−1 . The functions 𝑝
′
𝑖 from

Theorem 5.9 are now

𝑝 ′𝑖 ∈ 𝛩
©­«
(

𝑛
𝑖+𝑘−2

) 1

𝛽′−1

𝑛

ª®¬.
Thus,

𝑝 ′
1
∈ 𝛩©­«

(
𝑛
𝑘−1

) 1

𝛽′−1

𝑛

ª®¬ ∈ 𝛩
(
𝑛
− 𝛽′−2

𝛽′−1

)
and

𝑛−𝑘+2∑︁
𝑖=2

𝑝 ′𝑖
2 ∈


𝛩

(
𝑛
−2 𝛽′−2

𝛽′−1

)
for 𝛽 ′ < 3

𝛩

(
ln𝑛
𝑛

)
for 𝛽 ′ = 3

𝛩
(
𝑛−1

)
for 𝛽 ′ > 3.
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From this we get that instances are a. a. s. satisfiable if𝑚 ∈ 𝑜 (𝑛2· (𝛽′−2)/(𝛽′−1) ) for
𝛽 ′ < 3,𝑚 ∈ 𝑜 (𝑛/ln𝑛) for 𝛽 ′ = 3, and𝑚 ∈ 𝑜 (𝑛) for 𝛽 ′ > 3. If we substitute 𝛽 ′

again, this yields

𝑚 ∈


𝑜 (𝑛𝑘 · (𝛽−2)/(𝛽−1) ) for 𝛽 < 2𝑘−1

𝑘−1 ,

𝑜 (𝑛/ln𝑛) for 𝛽 = 2𝑘−1
𝑘−1 ,

𝑜 (𝑛) for 𝛽 > 2𝑘−1
𝑘−1 .

Thus, for 𝛽 < 2𝑘−1
𝑘−1 the asymptotic threshold function is𝑚★ ∈ 𝛩

(
𝑛𝑘 · (𝛽−2)/(𝛽−1)

)
and for 𝛽 > 2𝑘−1

𝑘−1 the asymptotic threshold function is𝑚★ ∈ 𝛩 (𝑛). For 𝛽 = 2𝑘−1
𝑘−1

we do not know if there is an asymptotic threshold function, but if it exists, it is

somewhere between 𝑛/ln𝑛 and 𝑛. More discussion on this case can be found in

Section 5.4.

If we look a bit closer, we can even derive that the threshold is coarse for 𝛽 <
2𝑘−1
𝑘−1 . Lemma 5.7 yields a constant upper bound bounded away from one on the

probability to generate unsatisfiable instances if𝑚 = 𝜀𝑚 · 𝑛𝑘 · (𝛽−2)/(𝛽−1) for small

enough constants 𝜀𝑚 > 0. Analogously, Corollary 4.14 yields a constant lower

bound bounded away from zero for𝑚 = 𝜀𝑚 · 𝑛𝑘 · (𝛽−2)/(𝛽−1) with any constant

𝜀𝑚 > 0 if 𝑞max ∈ 𝑜 (1). This is the case, since 𝑞max ∈ 𝛩 (𝑛−𝑘 · (𝛽−2)/(𝛽−1) ) ∈ 𝑜 (1).
Both results together give us a range of constants 0 < 𝜀1 < 𝜀2, where the

probability is bounded away from zero and one in the limit. This implies a coarse

threshold. ■

5.3.3 Geometric Random k-SAT

Corollary 5.6 implies the following corollary.

▶ Corollary 5.11. For geometric random k-SAT with some constant base 𝑏 > 1,

the asymptotic satisfiability threshold is at𝑚★ ∈ 𝛩 (𝑛). ◀

Proof. For 𝑛 ∈ N the distribution of geometric random k-SAT is ®𝑝 (𝑛) = (𝑝 (𝑛)
1
,

𝑝
(𝑛)
2
, . . . , 𝑝

(𝑛)
𝑛 ) with

𝑝
(𝑛)
𝑖

=
𝑏 · (1 − 𝑏−1/𝑛)

𝑏 − 1

· 𝑏−(𝑖−1)/𝑛 .

As always, the first moment method tells us that instances are a. a. s. unsatisfiable

for𝑚 ∈ 𝜔 (𝑛). Additionally, we can use Corollary 5.6, which tells us that instances
are a. a. s. satisfiable if 𝑚 ≤ 𝜀𝑚 · 𝑚★

for constants 𝜀𝑚 ∈ (0, 1), where 𝑚★ =
2· (𝑏−1)
(𝑏+1) ·ln𝑏 · 𝑛 is the threshold for geometric random 2-SAT with base 𝑏. Thus,

instances are a. a. s. satisfiable for𝑚 ∈ 𝑜 (𝑛). This implies that the asymptotic

threshold for geometric random 𝑘-SAT is𝑚★ ∈ 𝛩 (𝑛). ■
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5.4 Remarks

Note that the toolkit we provide is not exhaustive. It suffices to derive the

asymptotic threshold function for some ensembles of probability distributions,

but not for all of them. This is the case for power-law random 𝑘-SAT with

exponent 𝛽 = 2𝑘−1
𝑘−1 . If we draw a connection to non-uniform random 2-SAT

we might have an explanation for this phenomenon. The first moment method

asserts that the asymptotic threshold function is O(𝑛). This matches the lower

bound for power-law random 𝑘-SAT with 𝛽 > 2𝑘−1
𝑘−1 . Corollary 4.16 assumes that

the largest clause probability dominates, which holds for power-law random

𝑘-SAT with 𝛽 < 2𝑘−1
𝑘−1 . However, we do not have a result that works well if the

largest clause probability does not dominate and the threshold is 𝑜 (𝑛). This is
the case for power-law random 2-SAT with exponent 𝛽 = 3 and we suspect to

also be the case for power-law random 𝑘-SAT with exponent 𝛽 = 2𝑘−1
𝑘−1 in general.
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6 Sharpness in Non-
Uniform Random k-SAT

This chapter is based on the publication [FR18], which is joint work with Tobias
Friedrich. The results from that paper have been heavily reworked. We had to
correct Lemma 6.1 and Lemma 6.22. The new versions of those lemmas have slightly
stronger prerequisites, which also required us to adjust our main theorems.

In this chapter we show that the threshold is sharp if the ensemble of proba-

bility distributions satisfies certain requirements. Friedgut [Fri99] showed that

random 𝑘-SAT has a sharp threshold for all 𝑘 ≥ 3. Surprisingly, his result only

requires knowledge of the asymptotic threshold function and does not imply

an exact function or leading constants for the satisfiability threshold. We will

generalize Friedgut’s result to non-uniform random 𝑘-SAT. To that end we use

the proof framework provided by Friedgut [Fri99] as well as the sharp threshold

theorem by Friedgut and Bourgain [Fri99] in the version found in O’Donnell’s

book "The analysis of Boolean Functions" [ODo14]. We will go into more de-

tail about the proof in Section 6.4. However, there is one big problem if we

want to show sharpness for the non-uniform clause-drawing model. The Sharp

Threshold Theorem and thus the whole sharpness proof only holds on product

probability spaces. That means it holds for the clause-flipping model F 𝑁
, but

not for the clause-drawing model D𝑁
. Therefore, we relate the two models in

Section 6.1. We show under which requirements their asymptotic satisfiability

thresholds coincide. Furthermore, we show that under the same assumptions

sharpness of the clause-flipping model implies sharpness for its clause-drawing

equivalent. We will use these results as follows.

1. Show asymptotic threshold function for D𝑁
. See Chapter 5.

2. The same asymptotic threshold function holds for F 𝑁
. See Lemma 6.4.

3. The asymptotic threshold function can be used to show sharpness of that

threshold in F 𝑁
. See Theorem 6.12.

4. Sharpness in F 𝑁
implies sharpness in D𝑁

. See Lemma 6.5.

Thus, our framework allows us to show sharpness of the satisfiability threshold

for the clause-drawing model if only the asymptotic threshold function for that

model is known.

6.1 Relation of Clause Flipping and Clause Drawing

We start this half of the chapter by relating our two models for non-uniform ran-

dom 𝑘-SAT. Up to this point, we concentrated on the clause-drawing model
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D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚). In that model 𝑚 clauses are drawn with repetition

according to some probability distribution, which is derived from the prob-

ability distribution ®𝑝 of the Boolean variables. In the clause-flipping model

F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) we flip a coin for each of the

(
𝑛
𝑘

)
· 2𝑘 possible clauses and

add it to the formula if the coin flip is a success. We can choose the probability

for each clause in F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) to be the same as the probability to

draw the clause in D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) times the number of clauses𝑚 (c. f.

Definition 3.7) by setting 𝑠 = 𝑚. Then the two models exhibit a similar prob-

ability to generate satisfiable instances for 𝑠,𝑚 ∈ 𝑜 (𝑞−1/2
max

), where 𝑞max is the

maximum clause probability ofD𝑁
. If the satisfiability threshold is in this region

of the scaling parameters 𝑠 and𝑚, the two models also exhibit similar threshold

behavior. This is what we are going to show in this first section.

However, we first want to generalize our models a bit to encompass arbitrary

clause probabilities. We are given a number of variables 𝑛 and a clause size 𝑘

and let 𝑁 =
(
𝑛
𝑘

)
· 2𝑘 denote the total number of different clauses. We assume that

these clauses are in some fixed order, so we can identify them by indices 𝑖 ∈ [𝑁 ].
Thus, we can also encode formulas as sets of clause indices and let𝛷𝐼 denote the

formula which contains the 𝑖-th clause iff 𝑖 ∈ 𝐼 . To that end, we let 𝐼 = [𝑁 ] \ 𝐼 .
For our general clause-flipping model F (𝑛, 𝑘, ( ®𝑞 (𝑛) )𝑛∈N, 𝑠) we assume to be

given a number of variables𝑛, a clause length𝑘 , an ensemble of normalized clause

probability distributions ( ®𝑞 (𝑛) )𝑛∈N =
(
𝑞1

(𝑛) , . . . , 𝑞𝑁 (𝑛) )
𝑛∈N, i. e.

∑
𝑖∈[𝑁 ] 𝑞𝑖

(𝑛) = 1

for all 𝑛 ∈ N, and a scaling factor 𝑠 ∈ [0, 1/min𝑖∈[𝑁 ] (𝑞𝑖 (𝑛) )]. The probability to

flip a clause is now 𝑞𝑖
(𝑛) (𝑠) = min

(
𝑠 · 𝑞𝑖 (𝑛) , 1

)
and the probability to generate

formula𝛷𝐼 is

Pr

𝛷∼F
[𝛷 = 𝛷𝐼 ] =

∏
𝑖∈𝐼

𝑞𝑖
(𝑛) (𝑠) ·

∏
𝑖∈𝐼

(1 − 𝑞𝑖 (𝑛) (𝑠)) . (6.1)

We also define a general clause-drawing modelD(𝑛, 𝑘, ( ®𝑞 (𝑛) )𝑛∈N,𝑚), where𝑚 𝑘-

clauses over𝑛 variables are drawnwith repetition according to a normalized prob-

ability distribution from a given ensemble ( ®𝑞 (𝑛) )𝑛∈N =
(
𝑞1

(𝑛) , . . . , 𝑞𝑁 (𝑛) )
𝑛∈N. As

for the non-uniform random 𝑘-SAT models, we interpret all parameters (includ-

ing 𝑁 ) as functions in 𝑛 and omit the input parameter 𝑛 for the sake of simplicity.

Note that the probabilities in ®𝑞 are not necessarily proportional to the products

of given variable probabilities, but can be chosen arbitrarily. The non-uniform

random 𝑘-SAT models we consider are special cases of these models, where the

clause probabilities are derived from products of variable probabilities, i. e.

𝑞𝑖 = 𝐶
𝑘!

2
𝑘

∏
ℓ∈𝑐𝑖

𝑝 ( |ℓ |)

with

𝐶 =
©­«𝑘! ·

∑︁
𝐽 ∈P𝑘 ( {1,2,...,𝑛})

∏
𝑗 ∈𝐽

𝑝 𝑗
ª®¬
−1

.
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Note that in D clauses are drawn with repetition, i. e. it could happen that we

draw fewer than𝑚 clauses. In F we could draw any number of clauses, although

the expected number is equal to the scaling factor 𝑠 . This makes the comparison

of these models difficult. However, if we condition on a certain number of clauses

being drawn, the conditional probabilities for both models on the same input

parameters are very close. More precisely, the total variation distance of the

conditional probabilities in both models is 𝑜 (1) if 𝑠 ·𝑚 ∈ 𝑜 (𝑞−1
max

). This is what
the following simple lemma shows.

▶ Lemma 6.1. Let D(𝑛, 𝑘, ( ®𝑞 (𝑛) )𝑛∈N,𝑚) be a clause-drawing model and let

F (𝑛, 𝑘, ( ®𝑞 (𝑛) )𝑛∈N, 𝑠) be a clause-flipping model with the same ensemble of clause

probabilities ( ®𝑞 (𝑛) )𝑛∈N. Then, for all events E and all functions 𝑠,𝑚 such that

𝑠 ·𝑚 ∈ 𝑜 (𝑞max

−1) it holds that

| Pr

𝛷∼F(𝑠)
[ E | {𝑚 clauses flipped} ] − Pr

𝛷∼D(𝑚)
[ E | {no duplicates} ] | ∈ 𝑜 (1).

◀

Proof. Let 𝐷𝑚 denote the event that exactly𝑚 different clauses are drawn in D
and let 𝐹𝑚 denote the event that exactly𝑚 clauses are flipped in F . Due to these

conditions, the elementary events of the conditional probability spaces are the

formulas with exactly𝑚 clauses. Let 𝑆 ∈ P𝑚 ( [𝑁 ]) encode a formula𝛷𝑆 with

exactly𝑚 clauses. Due to the requirement 𝑠 ·𝑚 ∈ 𝑜 (𝑞max

−1), it also holds that

𝑠 · 𝑞max < 1 for all sufficiently large 𝑛. Thus our clause probabilities will not

exceed one and we can simply write 𝑞𝑖 (𝑠) = 𝑞𝑖 · 𝑠 . It holds that

Pr

𝛷∼F(𝑠)
[𝛷 = 𝛷𝑆 | 𝐹𝑚 ] =

∏
𝑖∈𝑆 𝑠 · 𝑞𝑖 ·

∏
𝑖∈𝑆 (1 − 𝑠 · 𝑞𝑖)∑

𝑆′∈P𝑚 ( [𝑁 ])

(∏
𝑗 ∈𝑆′ 𝑠 · 𝑞 𝑗 ·

∏
𝑗 ∈𝑆′

(
1 − 𝑠 · 𝑞 𝑗

) )
=

∏
𝑖∈𝑆

𝑠 ·𝑞𝑖
1−𝑠 ·𝑞𝑖 ·

∏
𝑖∈[𝑁 ] (1 − 𝑠 · 𝑞𝑖)∑

𝑆′∈P𝑚 ( [𝑁 ])

(∏
𝑗 ∈𝑆′

𝑠 ·𝑞 𝑗
1−𝑠 ·𝑞 𝑗 ·

∏
𝑗 ∈[𝑁 ]

(
1 − 𝑠 · 𝑞 𝑗

) )
=

∏
𝑖∈𝑆

𝑞𝑖
1−𝑠 ·𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])

(∏
𝑗 ∈𝑆′

𝑞 𝑗

1−𝑠 ·𝑞 𝑗

) . (6.2)

It also holds that

Pr

𝛷∼D(𝑚)
[𝛷 = 𝛷𝑆 | 𝐷𝑚 ] =

∏
𝑖∈𝑆 𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])
(∏

𝑗 ∈𝑆′ 𝑞 𝑗
) , (6.3)

since we assume the clause probabilities ®𝑞 to be normalized. We can now see

that

Pr

𝛷∼F(𝑠)
[𝛷 = 𝛷𝑆 | 𝐹𝑚 ] =

∏
𝑖∈𝑆

𝑞𝑖
1−𝑠 ·𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])

(∏
𝑗 ∈𝑆′

𝑞 𝑗

1−𝑠 ·𝑞 𝑗

)
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≥
∏
𝑖∈𝑆 𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])
(∏

𝑗 ∈𝑆′ 𝑞 𝑗
) · (1 − 𝑠 · 𝑞max)𝑚

≥
∏
𝑖∈𝑆 𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])
(∏

𝑗 ∈𝑆′ 𝑞 𝑗
) · (1 − 𝑠 · 𝑞max ·𝑚)

= (1 − 𝑜 (1)) ·
∏
𝑖∈𝑆 𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])
(∏

𝑗 ∈𝑆′ 𝑞 𝑗
)

due to the requirement 𝑠 ·𝑚 ∈ 𝑜 (𝑞−1
max

). Furthermore

Pr

𝛷∼F(𝑠)
[𝛷 = 𝛷𝑆 | 𝐹𝑚 ] =

∏
𝑖∈𝑆

𝑞𝑖
1−𝑠 ·𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])

(∏
𝑗 ∈𝑆′

𝑞 𝑗

1−𝑠 ·𝑞 𝑗

)
≤

∏
𝑖∈𝑆 𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])
(∏

𝑗 ∈𝑆′ 𝑞 𝑗
) · ( 1

1 − 𝑠 · 𝑞max

)𝑚
≤

∏
𝑖∈𝑆 𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])
(∏

𝑗 ∈𝑆′ 𝑞 𝑗
) · exp(𝑚 · 𝑠 · 𝑞max

1 − 𝑠 · 𝑞max

)
= (1 + 𝑜 (1)) ·

∏
𝑖∈𝑆 𝑞𝑖∑

𝑆′∈P𝑚 ( [𝑁 ])
(∏

𝑗 ∈𝑆′ 𝑞 𝑗
)

due to the same requirement 𝑠 · 𝑚 ∈ 𝑜 (𝑞−1
max

). This establishes the result as

desired. ■

For the values of 𝑚 and 𝑠 we consider this will result in a small enough

total variation distance to compare the threshold behavior. We also need that

the conditional probability for a monotone property to hold conditioned on

the number of clauses flipped is non-decreasing in the number of clauses we

condition on. This is shown in the following lemma. The lemma actually holds

in a much more general setting, as long as the clause probabilities are fixed. In

the context of F it holds as long as the scaling parameter 𝑠 is fixed, i. e. we can

incorporated the scaling factor 𝑠 into the clause probabilities ( ®𝑞𝑖)𝑖∈[𝑁 ] .

▶ Lemma 6.2. Let F be a clause-flipping model with an arbitrary ensemble of

clause probability distributions ( ®𝑞 (𝑛) )𝑛∈N and let 𝑃 be a monotone property. For

𝑖, 𝑗 ∈ [𝑁 ] with 𝑖 ≤ 𝑗 it holds that

Pr

𝛷∼F
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑖 ] ≤ Pr

𝛷∼F
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑗 ] .

◀

Proof. We consider the random process described in Algorithm 1 and show that

it generates each Boolean formula𝛷 with the same probability as F . The process

imposes an artificial order on the clauses of formulas𝛷 ∼ F . This results in a

probability space of (𝛺 ′, 𝜋 ′) with

𝛺 ′ = {(𝑖1, 𝑖2, . . . , 𝑖𝑙 ) | 𝑙 ∈ [𝑁 ], {𝑖1, . . . , 𝑖𝑙 } ∈ P𝑙 ( [𝑁 ])},
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Algorithm 1: Random process generating𝛷 ∼ F with artificial order

imposed on positions of clauses in𝛷

1 𝑙 B 0;

2 𝐼 B ∅;
3 while true do

4 𝑏 B Ber

(
Pr

𝛷∼F
[ |𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙 ]

)
;

5 if 𝑏 = 1 then
6 return𝛷 with 𝑐𝑖 ∈ 𝛷 ↔ 𝑖 ∈ 𝐼 ;
7 else
8 𝑙 B 𝑙 + 1;

9 choose 𝑖 ∉ 𝐼 with probability 𝛽 (𝑖, 𝐼 );
10 𝐼 B 𝐼 ∪ {𝑖};

i.e. 𝛺 ′
contains tuples of indices from [𝑁 ] of size 0 to 𝑁 with no repetitions.

These correspond to the clauses in𝛷 and the order in which they were flipped.

Let 𝑏𝑖 =
𝑞′𝑖

1−𝑞′
𝑖
. We now choose

𝛽 (𝑖, 𝐼 ) = Pr[|𝛷 | = |𝐼 |]
Pr[|𝛷 | = |𝐼 | + 1] · 𝑏𝑖 ·

·

∑
𝑆⊆𝐼

(
1

|𝐼 |+1−|𝑆 |
∏
𝑠∈𝑆 𝑏𝑠 ·

(∑
𝑆′∈P|𝐼 |−|𝑆 | ( [𝑁 ]\(𝐼∪{𝑖 }))

∏
𝑠∈𝑆′ 𝑏𝑠

))∑
𝑆 ∈P|𝐼 | ( [𝑁 ])

∏
𝑠∈𝑆 𝑏𝑠

.

To make sure that 𝛽 (𝑖, 𝐼 ) is a legal probability distribution for each 𝐼 ⊆ [𝑁 ], it
has to hold that

∑
𝑖∉𝐼 𝛽 (𝑖, 𝐼 ) = 1. We will see that this is the case by showing

∑︁
𝑖∉𝐼

©­«𝑏𝑖
∑︁
𝑆⊆𝐼

©­« 1

|𝐼 | + 1 − |𝑆 |
∏
𝑠∈𝑆

𝑏𝑠 ·
©­«

∑︁
𝑆′∈P|𝐼 |−|𝑆 | ( [𝑁 ]\(𝐼∪{𝑖 }))

∏
𝑠∈𝑆′

𝑏𝑠
ª®¬ª®¬ª®¬

=
∑︁

𝑆 ∈P|𝐼 |+1 ( [𝑁 ])

∏
𝑠∈𝑆

𝑏𝑠 . (6.4)

This implies∑︁
𝑖∉𝐼

𝛽 (𝑖, 𝐼 ) = Pr[|𝛷 | = |𝐼 |]
Pr[|𝛷 | = |𝐼 | + 1] ·

∑
𝑆 ∈P|𝐼 |+1 ( [𝑁 ])

∏
𝑠∈𝑆 𝑏𝑠∑

𝑆 ∈P|𝐼 | ( [𝑁 ])
∏
𝑠∈𝑆 𝑏𝑠

=
Pr[|𝛷 | = |𝐼 |]

Pr[|𝛷 | = |𝐼 | + 1] ·
∑
𝑆 ∈P|𝐼 |+1 ( [𝑁 ])

∏
𝑠∈𝑆 𝑏𝑠∑

𝑆 ∈P|𝐼 | ( [𝑁 ])
∏
𝑠∈𝑆 𝑏𝑠

·
∏
𝑖∈[𝑁 ] (1 − 𝑞𝑖)∏
𝑖∈[𝑁 ] (1 − 𝑞𝑖)

=
Pr[|𝛷 | = |𝐼 |]

Pr[|𝛷 | = |𝐼 | + 1] ·
∑
𝑆 ∈P|𝐼 |+1 ( [𝑁 ])

∏
𝑠∈𝑆 𝑞𝑠

∏
𝑠∉𝑆 (1 − 𝑞𝑠)∑

𝑆 ∈P|𝐼 | ( [𝑁 ])
∏
𝑠∈𝑆 𝑞𝑠

∏
𝑠∉𝑆 (1 − 𝑞𝑠)
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=
Pr[|𝛷 | = |𝐼 |]

Pr[|𝛷 | = |𝐼 | + 1] ·
Pr[|𝛷 | = |𝐼 | + 1]
Pr[|𝛷 | = |𝐼 |] = 1,

since

Pr[|𝛷 | = |𝐼 |] =
∑︁

𝑆 ∈P|𝐼 | ( [𝑁 ])

(∏
𝑠∈𝑆

𝑞𝑖 ·
∏
𝑖∉𝑆

(1 − 𝑞𝑖)
)

due to equation (6.1). In order to prove equation (6.4) we have to count how

often each

∏
𝑠∈𝐾 𝑏𝑠 appears on the left-hand side of the equation for some fixed

𝐾 ⊆ [𝑁 ] with |𝐾 | = |𝐼 | + 1. It holds that for each 𝑖 ∈ 𝐾 \ 𝐼 we have to choose

exactly 𝑆 = 𝐼 ∩ 𝐾 and 𝑆 ′ = 𝐾 \ (𝐼 ∪ {𝑖}). There are |𝐾 \ 𝐼 | ≥ 1 elements

which generate

∏
𝑠∈𝐾 𝑏𝑠 with a factor of

1

|𝐼 |+1−|𝑆 | = 1

|𝐼 |+1−|𝐼∩𝐾 | = 1

|𝐾\𝐼 | each.
Therefore, their appearances sum up to exactly

∏
𝑠∈𝐾 𝑏𝑠 . Since this holds for

all 𝐾 ⊆ [𝑁 ] with |𝐾 | = |𝐼 | + 1 and no different-sized subsets of [𝑁 ] can be

generated, equation (6.4) holds.

Now we want to show that this random process generates each formula𝛷 𝐽
containing exactly the clauses indexed by 𝐽 ⊆ [𝑁 ] with the same probability

as F 𝑁
. We use induction over 𝑙 to show that for all 𝐽 ⊆ [𝑁 ] with |𝐽 | = 𝑙 the

random process generates 𝐼 = 𝐽 (and therefore a formula𝛷 𝐽 ) with probability∏
𝑖∈𝐽 𝑞𝑖

∏
𝑖∉𝐽 (1 − 𝑞𝑖). The base case is 𝐽 = ∅, i.e. 𝛷∅ being the empty formula.

The probability to generate this formula with our random process is

Pr

𝛷∼F
[ |𝛷 | = 0 | |𝛷 | ≥ 0 ] = Pr

𝛷∼F
[ |𝛷 | = 0 ] = Pr

𝛷∼F
[𝛷 = 𝛷∅ ],

which means, the induction hypothesis holds for this case. Now we want to go

to 𝐽 ⊆ [𝑁 ] with |𝐽 | = 𝑙 + 1. The probability that our process generates 𝐽 is

Pr[𝐼 = 𝐽 ] =
∑︁
𝑖∈𝐽

Pr[𝐼 = 𝐽 \ {𝑖}] · 𝛽 (𝑖, 𝐽 \ {𝑖}) · Pr[|𝛷 | = 𝑙 + 1 | |𝛷 | ≥ 𝑙 + 1]
Pr[|𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙] ·

·(1 − Pr[|𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙]) .

This expression consists of the probability of choosing 𝐽 \ {𝑖} in the first 𝑙 steps,

but, instead of stopping after step 𝑙 , continuing, choosing 𝑖 with probability

𝛽 (𝑖, 𝐽 \ {𝑖}), and then stopping after step 𝑙 + 1. It holds that

Pr[𝐼 = 𝐽 ]

=
∑︁
𝑖∈𝐽

Pr[𝐼 = 𝐽 \ {𝑖}] · 𝛽 (𝑖, 𝐽 \ {𝑖}) · Pr[|𝛷 | = 𝑙 + 1 | |𝛷 | ≥ 𝑙 + 1]
Pr[|𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙] ·

· (1 − Pr[|𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙])

=
∑︁
𝑖∈𝐽

Pr[𝐼 = 𝐽 \ {𝑖}] · 𝛽 (𝑖, 𝐽 \ {𝑖}) · Pr[|𝛷 | = 𝑙 + 1 | |𝛷 | ≥ 𝑙 + 1]
Pr[|𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙] ·

· Pr[|𝛷 | ≥ 𝑙 + 1]
Pr[|𝛷 | ≥ 𝑙]
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=
∑︁
𝑖∈𝐽

Pr[𝐼 = 𝐽 \ {𝑖}] · 𝑏𝑖 ·

∑
𝑆⊆𝐽 \{𝑖 }

1

| 𝐽 \{𝑖 } |+1−|𝑆 |
∏
𝑠∈𝑆
𝑏𝑠 ·

( ∑
𝑆′∈P| 𝐽 \{𝑖}|−|𝑆 | ( [𝑁 ]\𝐽 )

∏
𝑠∈𝑆′

𝑏𝑠

)
∑

𝑆 ∈P| 𝐽 \{𝑖}| ( [𝑁 ])

∏
𝑠∈𝑆
𝑏𝑠

=
∑︁
𝑖∈𝐽

Pr[𝐼 = 𝐽 \ {𝑖}] · 𝑏𝑖 ·

∑
𝑆⊆𝐽 \{𝑖 }

1

| 𝐽 |− |𝑆 |
∏
𝑠∈𝑆
𝑏𝑠 ·

( ∑
𝑆′∈P| 𝐽 |−|𝑆 |−1 ( [𝑁 ]\𝐽 )

∏
𝑠∈𝑆′

𝑏𝑠

)
∑

𝑆 ∈P| 𝐽 |−1 ( [𝑁 ])

∏
𝑠∈𝑆
𝑏𝑠

=
∏
𝑠∈𝐽

𝑞𝑠

∏
𝑠∉𝐽

(1 − 𝑞𝑠) ·
∑︁
𝑖∈𝐽

∑
𝑆⊆𝐽 \{𝑖 }

1

| 𝐽 |− |𝑆 |
∏
𝑠∈𝑆
𝑏𝑠 ·

( ∑
𝑆′∈P| 𝐽 |−|𝑆 |−1 ( [𝑁 ]\𝐽 )

∏
𝑠∈𝑆′

𝑏𝑠

)
∑

𝑆 ∈P| 𝐽 |−1 ( [𝑁 ])

∏
𝑠∈𝑆
𝑏𝑠

, (6.5)

where we used the induction hypothesis and the definition 𝑏𝑖 =
𝑞𝑖

1−𝑞𝑖 in the last

line. Again, it suffices to count the number of appearances of

∏
𝑠∈𝐾 𝑞𝑠 for each

𝐾 ⊆ [𝑁 ] with |𝐾 | = |𝐽 | − 1 in the numerator. Since 𝑖 does never appear in

the resulting products, we have to choose an 𝑖 ∈ 𝐽 \ 𝐾 . There are |𝐽 \ 𝐾 | ≥ 1

such elements, since |𝐽 | = |𝐾 | + 1. Now 𝐾 can only be chosen if 𝑆 = 𝐽 ∩ 𝐾 and

𝑆 ′ = 𝐾 \ 𝐽 . The product then appears with a factor of
1

| 𝐽 |− |𝑆 | =
1

| 𝐽 |− | 𝐽∩𝐾 | =
1

| 𝐽 \𝐾 |
for each 𝑖 ∈ 𝐽 \𝐾 . Since only products of |𝐽 | − 1 factors are created, it holds that

∑︁
𝑖∈𝐽

∑︁
𝑆⊆𝐽 \{𝑖 }

1

|𝐽 | − |𝑆 |
∏
𝑠∈𝑆

𝑏𝑠 ·
©­«

∑︁
𝑆′∈P| 𝐽 |−|𝑆 |−1 ( [𝑁 ]\𝐽 )

∏
𝑠∈𝑆′

𝑏𝑠
ª®¬ =

∑︁
𝑆 ∈P| 𝐽 |−1 ( [𝑁 ])

∏
𝑠∈𝑆

𝑏𝑠 .

This implies Pr[𝐼 = 𝐽 ] =
∏
𝑠∈𝐽 𝑞𝑠

∏
𝑠∉𝐽 (1 − 𝑞𝑠), because the sum at the right-

hand-side of equation (6.5) equals one.

Now that we know that our random process creates𝛷 𝐽 with the same prob-

ability as F 𝑁
, we can show the result of the theorem. For an 𝐴 ∈ 𝛺 ′

let𝑊𝐴

denote the event that the random process chooses at least |𝐴| elements and that

the first |𝐴| elements it chooses are given by 𝐴, i. e. for 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎 |𝐴 |) the
random process chooses 𝑎𝑖 in the 𝑖-th round. It holds that

Pr[𝑃 (𝛷) = 1 | |𝛷 | = 𝑙] =
∑︁

𝐴∈𝛺′
:

|𝐴 |=𝑙−1

Pr[𝑃 (𝛷) = 1 |𝑊𝐴, |𝛷 | = 𝑙] · Pr[𝑊𝐴 | |𝛷 | = 𝑙] .

(6.6)

We can now imagine executing the random process and having completed

iteration 𝑙 − 1. Since𝑊𝐴 with |𝐴| = 𝑙 − 1 is independent of everything that

happens after that iteration, it then holds that

Pr[𝑊𝐴 | |𝛷 | = 𝑙]

=
Pr[𝑊𝐴 ∧ |𝛷 | = 𝑙]

Pr[|𝛷 | = 𝑙]
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= Pr[𝑊𝐴] ·
1 − Pr[|𝛷 | = 𝑙 − 1 | |𝛷 | ≥ 𝑙 − 1]

Pr[|𝛷 | = 𝑙] · Pr[|𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙]

= Pr[𝑊𝐴] ·
Pr[|𝛷 | ≥ 𝑙]

Pr[|𝛷 | = 𝑙] · Pr[|𝛷 | ≥ 𝑙 − 1] · Pr[|𝛷 | = 𝑙 | |𝛷 | ≥ 𝑙]

= Pr[𝑊𝐴] ·
Pr[|𝛷 | = 𝑙]

Pr[|𝛷 | = 𝑙] · Pr[|𝛷 | ≥ 𝑙 − 1]

=
Pr[𝑊𝐴]

Pr[|𝛷 | ≥ 𝑙 − 1]

=
Pr[𝑊𝐴] · Pr[|𝛷 | = 𝑙 − 1]

Pr[|𝛷 | ≥ 𝑙 − 1] · Pr[|𝛷 | = 𝑙 − 1]

=
Pr[𝑊𝐴] · Pr[|𝛷 | = 𝑙 − 1 | |𝛷 | ≥ 𝑙 − 1]

Pr[|𝛷 | = 𝑙 − 1]
= Pr[𝑊𝐴 | |𝛷 | = 𝑙 − 1] . (6.7)

Furthermore, if an 𝐴 ∈ 𝛺 ′
already implies that the corresponding formula𝛷

satisfies 𝑃 (𝛷) = 1, the same holds for all𝛷 ′
which contain all the clauses of𝛷

due to the monotonicity of 𝑃 . This means, in that case

Pr[𝑃 (𝛷) = 1 |𝑊𝐴, |𝛷 | = 𝑙 − 1] = 1 = Pr[𝑃 (𝛷) = 1 |𝑊𝐴, |𝛷 | = 𝑙] .

Otherwise, it holds that

Pr[𝑃 (𝛷) = 1 |𝑊𝐴, |𝛷 | = 𝑙 − 1] = 0 ≤ Pr[𝑃 (𝛷) = 1 |𝑊𝐴, |𝛷 | = 𝑙] .

We can plug these inequalities and equation (6.7) into equation (6.6) to get

Pr[𝑃 (𝛷) = 1 | |𝛷 | = 𝑙]
=

∑︁
𝐴∈𝛺′

:

|𝐴 |=𝑙−1

Pr[𝑃 (𝛷) = 1 |𝑊𝐴, |𝛷 | = 𝑙] · Pr[𝑊𝐴 | |𝛷 | = 𝑙]

≥
∑︁

𝐴∈𝛺′
:

|𝐴 |=𝑙−1

Pr[𝑃 (𝛷) = 1 |𝑊𝐴, |𝛷 | = 𝑙 − 1] · Pr[𝑊𝐴 | |𝛷 | = 𝑙 − 1]

= Pr[𝑃 (𝛷) = 1 | |𝛷 | = 𝑙 − 1] .

By iteratively using this inequality we get the result as desired. ■

Lemma 6.2 also holds if we condition on the number of clauses in pairwise

disjoint subsets of [𝑁 ]. This also holds as long as the clause probabilities are

fixed.

▶ Lemma 6.3. Let F be a clause-flipping model with clause probability en-

semble ( ®𝑞 (𝑛) )𝑛∈N and let 𝑃 be a monotone property. Let 𝑆1, 𝑆2 . . . , 𝑆𝑡 ⊆ 𝑁 be

pairwise disjoint. For each (𝑖1, . . . , 𝑖𝑡 ),( 𝑗1, . . . , 𝑗𝑡 ) ∈ [|𝑆1 |] × [|𝑆2 |] × . . . × [|𝑆𝑡 |]
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with (𝑖1, . . . , 𝑖𝑡 ) ≤ ( 𝑗1, . . . , 𝑗𝑡 ) coordinate-wise it holds that

Pr

𝛷∼F

[
𝑃 (𝛷) = 1

����� 𝑡∧
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙

]
≤ Pr

𝛷∼F

[
𝑃 (𝛷) = 1

����� 𝑡∧
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑗𝑙

]
,

where |𝛷 ∩𝛷𝑆𝑙 | denotes the number of clause indices in 𝑆𝑙 that𝛷 contains.

◀

Proof. The proof of this lemma follows the same lines as the one for Lemma 6.2.

We use Algorithm 1 to flip the clauses with indices in each 𝑆𝑙 separately. Let

𝑅 = [𝑁 ] \⋃𝑡
𝑙=1
𝑆𝑙 be the set of coordinates belonging to none of the subsets. We

still assume that the clauses in 𝑅 are generated according to the original product

probability, i.e. we impose no order on its clauses. As in the proof of Lemma 6.2,

𝛺 ′
denotes the sample space we get from imposing a sampling order on clauses

as defined by the random process. 𝐴1, . . . , 𝐴𝑡 represent the order of sampled

clause indices from 𝑆1, . . . , 𝑆𝑡 , respectively. 𝑊𝐴 denotes the event that at least

|𝐴| clauses are sampled and the first |𝐴| of them in the order given by 𝐴. We

will only argue on the new probability space created by the process described in

Algorithm 1 applied to the subsets 𝐴1, . . . , 𝐴𝑡 . Thus, we will omit the probability

space from our probabilities. In the end we will see that the result holds for the

original probability space as well. Now let 𝑗 ∈ [𝑡] be arbitrary but fixed. It holds

that

Pr

[
𝑃 (𝛷) = 1

����� 𝑡∧
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙

]
=

∑︁
𝐼𝑅⊆𝑅

∑︁
𝐴1,...,𝐴𝑡 ∈𝛺′

1
×...×𝛺′

𝑡 :

|𝐴 𝑗 |=𝑖 𝑗−1 ∧
∧∀𝑙 ∈[𝑡 ]\{ 𝑗 } : |𝐴𝑙 |=𝑖𝑙

Pr

[
𝑃 (𝛷) = 1

�����𝛷 ∩𝛷𝑅 = 𝛷𝐼𝑅

𝑡∧
𝑙=1

𝑊𝐴𝑙

𝑡∧
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙

]
·

·
Pr

[
𝛷 ∩𝛷𝑅 = 𝛷𝐼𝑅

∧𝑡
𝑙=1
𝑊𝐴𝑙

∧𝑡
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙
]

Pr

[∧𝑡
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙
] .

Since the clauses in all the subsets we consider are flipped independently, it

holds that

Pr

[
𝛷 ∩𝛷𝑅 = 𝛷𝐼𝑅

∧𝑡
𝑙=1
𝑊𝐴𝑙

∧𝑡
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙
]

Pr

[∧𝑡
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙
]

= Pr

[
𝛷 ∩𝛷𝑅 = 𝛷𝐼𝑅

]
·
∏𝑡
𝑙=1

Pr

[
𝑊𝐴𝑙

∧ |𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙
]∏𝑡

𝑙=1
Pr

[
|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙

] .

With the same argumentation for𝑊𝐴 𝑗
as for𝑊𝐴 in the proof of Lemma 6.2 it
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now holds that

Pr

[
𝑃 (𝛷) = 1

�����𝛷 ∩𝛷𝑅 = 𝛷𝐼𝑅

𝑡∧
𝑙=1

𝑊𝐴𝑙

𝑡∧
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙

]

≥ Pr

𝑃 (𝛷) = 1

�����𝛷 ∩𝛷𝑅 = 𝛷𝐼𝑅

𝑡∧
𝑙=1

𝑊𝐴𝑙

𝑡∧
𝑙=1
𝑙≠𝑗

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙 ∧ |𝛷 ∩𝛷𝑆 𝑗 | = 𝑖 𝑗 − 1


and that

Pr

[
𝑊𝐴𝑗

| |𝛷 ∩𝛷𝑆 𝑗 | = 𝑖 𝑗
]
= Pr

[
𝑊𝐴 𝑗

| |𝛷 ∩𝛷𝑆 𝑗 | = 𝑖 𝑗 − 1

]
,

which gives us

Pr

[
𝑃 (𝛷) = 1

����� 𝑡∧
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙

]
≥ Pr

[
𝑃 (𝛷) = 1

����� 𝑡∧
𝑙=1

|𝛷 ∩𝛷𝑆𝑙 | = 𝑖𝑙 ∧ |𝛷 ∩𝛷𝑆 𝑗 | = 𝑖 𝑗 − 1

]
.

Using this inequality iteratively, we get the result as desired. It is easy to see that

any formula is created with the same probability in F and by using our random

process for each of the subsets 𝑆1, . . . , 𝑆𝑡 . We can simply view the model F as

a product of models F𝑆𝑙 , which only sample clauses with indices in 𝑆𝑙 instead

of clauses with all indices in [𝑁 ]. According to our results in Lemma 6.2, the

process on each of these models creates each subformula on 𝑆𝑙 with the same

probabilities as F𝑆𝑙 . Thus the product of those probabilities is the same as the

original sampling probability of F . ■

The following lemma shows under which conditions the asymptotic thresholds

of clause-drawing and clause-flipping non-uniform random 𝑘-SAT with the same

ensemble of probability distributions coincide. Note that we show the result for

monotone functions in general, i. e. in the context of the lemma the thresholds go

from probabilities approaching zero to probabilities approaching one, whereas

the satisfiability threshold goes from one to zero. In the context of satisfiability

the monotone property would be unsatisfiability, i. e. the probability to generate

an unsatisfiable formula increases with the scaling parameter 𝑠 .

▶ Lemma6.4. Let ( ®𝑝 (𝑛) )𝑛∈N be an ensemble of variable probability distributions

and let𝑚★ ∈ 𝜔 (1) be an asymptotic threshold for a monotone property 𝑃 on

D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) with respect to𝑚. If𝑚★ ∈ 𝑜 (𝑞−1/2
max

), then 𝑠★ =𝑚★
is an

asymptotic threshold for 𝑃 on F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) with respect to 𝑠 . ◀

Proof. For the sake of simplicity, we will use the shorthand notations F 𝑁 (𝑠)
for F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) and D𝑁 (𝑚) for D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚). We want to
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show that 𝑠★ = 𝑚★
is an asymptotic threshold function for 𝑃 on F 𝑁 (𝑠) with

respect to 𝑠 .

Let us consider any fixed 𝑠 ∈ 𝑜 (𝑠★). We need to show that

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ∈ 𝑜 (1).

First, we show that a. a. s. formulas𝛷 ∼ F 𝑁 (𝑠) consist of at most 𝑠 ′ = 𝑠 + 𝑠2/3
clauses. This holds due to a simple Chernoff bound. The model is defined in such

a way that 𝔼[ |𝛷 | ] = 𝑠 . Since each clause is flipped independently at random

Theorem 2.6 tells us that

Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | > 𝑠 ′ ] = Pr

𝛷∼F𝑁 (𝑠)

[
|𝛷 | > (1 + 𝑠−1/3) · 𝔼[ |𝛷 | ]

]
≤ exp

(
−𝑠

−2/3 · 𝑠
3

)
∈ 𝑜 (1)

for 𝑠 ∈ 𝜔 (1). It holds that

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ]

= Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | ≤ 𝑠 ′ ] + Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | > 𝑠 ′ ]

≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | ≤ 𝑠 ′ ] + 𝑜 (1) .

We can further bound this probability as follows

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | ≤ 𝑠 ′ ]

=

𝑠′∑︁
𝑗=0

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | = 𝑗 ]

=

𝑠′∑︁
𝑗=0

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑗 ] · Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | = 𝑗 ]

≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] ·

𝑠′∑︁
𝑗=0

Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | = 𝑗 ]

= Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] · Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | ≤ 𝑠 ′ ]

≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ],

since

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑗 ] ≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ]
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due to Lemma 6.2. Lemma 6.1 now yields

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] ≤ Pr

𝛷∼DN (𝑠′)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] + 𝑜 (1),

since 𝑠 ·𝑚 = 𝑠 · 𝑠 ′ ∈ 𝑜 (𝑞−1
max

). It remains to bound Pr𝛷∼D𝑁 (𝑠′) [ 𝑃 (𝛷) = 1 ] related
to this latter conditional probability. Thus, we will now bound the probability

that a clause occurs twice in D𝑁 (𝑠 ′).

Pr

𝛷∼D𝑁 (𝑠′)
[ |𝛷 | < 𝑠 ′ ] ≤

∑︁
𝑖, 𝑗 ∈[𝑠′]

Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑖-th and 𝑗-th clause identical ]

≤
(
𝑠 ′

2

)
· 𝑞max ∈ 𝑜 (1),

since 𝑠 ′2 · 𝑞max ∈ 𝛩 (𝑠2 · 𝑞max) ∈ 𝑜 (1) due to 𝑠 ∈ 𝑜 (𝑚★) and𝑚★ ∈ 𝑜 (𝑞−1/2
max

). Thus,

Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] =

Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | = 𝑠 ′ ]

Pr

𝛷∼D𝑁 (𝑠′)
[ |𝛷 | = 𝑠 ′ ]

≤ Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | = 𝑠 ′ ] + 𝑜 (1)

≤ Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ] + 𝑜 (1).

Thus, we get

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ≤ Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ] + 𝑜 (1) .

Since𝑚★
is an asymptotic threshold function and 𝑠 ′ ∈ 𝑜 (𝑚★), this probability is

𝑜 (1) as desired.

Now let us consider an 𝑠 ∈ 𝜔 (𝑠★). The argument is similar to the case 𝑠 ∈ 𝑜 (𝑠★).
However, we have to make sure that 𝑠 ∈ 𝑜 (𝑞−1/2

max
) still holds in order to be able

to use Lemma 6.1. Thus, we define a new function 𝑠2 so that 𝑠2 ∈ 𝜔 (𝑠★) and
𝑠2 ∈ 𝑜 (𝑞−1/2max

). This is possible, since we assume 𝑠★ =𝑚★ ∈ 𝑜 (𝑞−1/2
max

). One possible
function with these properties could be

𝑠2 =

√︃
𝑠★ · 𝑞−1/2

max
.

Now we define 𝑠 = min(𝑠, 𝑠2). This is the function we will actually consider.

Lemma 3.9 tells us that the probability that F 𝑁
generates an instance with a

monotone property 𝑃 is non-decreasing in 𝑠 . For our original function 𝑠 and the

smaller function 𝑠 we just defined, this implies

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] .
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Thus, any lower bound on the probability to generate instances with property 𝑃

at 𝑠 carries over to 𝑠 , while 𝑠 also fulfills the requirement to be in 𝑜 (𝑞−1/2
max

).

As before, we can use a Chernoff bound to show that |𝛷 | ≥ 𝑠 ′ = 𝑠 − 𝑠2/3 with
probability 1 − 𝑜 (1). It now holds that

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | ≥ 𝑠 ′ ] .

Again,

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | ≥ 𝑠 ′ ]

=

𝑁∑︁
𝑗=𝑠′

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑗 ] · Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | = 𝑗 ]

≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] ·

𝑁∑︁
𝑗=𝑠′

Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | = 𝑗 ]

= Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] · Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | ≥ 𝑠 ′ ]

≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] − 𝑜 (1),

since

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑗 ] ≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ]

due to Lemma 6.2. Lemma 6.1 now yields

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] ≥ Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] − 𝑜 (1),

since 𝑠 ·𝑚 = 𝑠 · 𝑠 ′ ∈ 𝑜 (𝑞−1
max

). With the same condition it holds that

Pr

𝛷∼D𝑁 (𝑠′)
[ |𝛷 | < 𝑠 ′ ] = 𝑜 (1)

and thus

Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ]

≥ Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | = 𝑠 ′ ]

= Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ] − Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | < 𝑠 ′ ]

= Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ] − 𝑜 (1),
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which implies

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼D𝑁 (𝑠′)
[ 𝑃 (𝛷) = 1 ] − 𝑜 (1) = 1 − 𝑜 (1)

as desired, since 𝑠 ′ ∈ 𝜔 (𝑚★) and𝑚★
is an asymptotic threshold function. Both

results together imply that 𝑠★ is an asymptotic threshold function for the property

𝑃 with respect to the parameter 𝑠 . ■

Using essentially the same proof we can show that sharpness of a threshold for

a monotone property in F 𝑁
carries over to D𝑁

. This is shown in the following

lemma.

▶ Lemma 6.5. Let ( ®𝑝 (𝑛) )𝑛∈N be an ensemble of variable probability distri-

butions on 𝑛 variables each and let 𝑠★ ∈ 𝜔 (1) be a sharp threshold for 𝑃 on

F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) with respect to 𝑠 . If 𝑠★ ∈ 𝑜 (𝑞−1/2
max

), then𝑚★ = 𝑠★ is a sharp

threshold for 𝑃 on D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) with respect to𝑚. ◀

Proof. We want to show that𝑚★ = 𝑠★ is a sharp threshold function for 𝑃 on

D𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) with respect to𝑚. For the sake of simplicity, we will use

the shorthand notations D𝑁 (𝑚) and F 𝑁 (𝑠) again.
First, let us consider any function𝑚 ≤ (1− 𝜀𝑚) ·𝑚★

for a constant 𝜀𝑚 ∈ (0, 1).
We have to show that

Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ] ∈ 𝑜 (1).

As before, it holds that

Pr

𝛷∼D𝑁 (𝑚)
[ |𝛷 | < 𝑚 ] ∈ 𝑜 (1)

if𝑚 ∈ 𝑜 (𝑞−1/2
max

). Thus,

Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ]

= Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | =𝑚 ] + Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | < 𝑚 ]

≤ Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | =𝑚 ] + 𝑜 (1)

≤ Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚 ] + 𝑜 (1).

According to Lemma 6.1

Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚 ] ≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚 ] + 𝑜 (1)

for any 𝑠 with 𝑠 ·𝑚 ∈ 𝑜 (𝑞−1
max

). That means, we have to choose an appropriate

𝑠 below the sharp threshold, but well above 𝑚 so that the size of a formula
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generated with F 𝑁 (𝑠) is a. a. s. above𝑚. Again, we can use Chernoff bounds to

show that a. a. s. |𝛷 | ≥ 𝑠 − 𝑠2/3. Thus, we can choose some 𝑠 =𝑚 + 𝑜 (𝑚) so that

𝑠 ′ = 𝑠 − 𝑠2/3 ≥ 𝑚 for sufficiently large𝑚. One possibility to choose a suitable 𝑠 is

𝑠 =𝑚 +𝑚5/6
. This is still below the sharp threshold, since𝑚 = (1 − 𝜀𝑚) · 𝑠★ and

thus 𝑠 =𝑚 + 𝑜 (𝑚) ≤ (1 − 𝜀𝑚 + 𝑜 (1)) · 𝑠★ ≤ (1 − 𝜀𝑚/2) · 𝑠★ for sufficiently large

𝑛. We can now see that

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | ≥ 𝑠 ′ ]

=

𝑁∑︁
𝑗=𝑠′

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑗 ] · Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | = 𝑗 ]

and according to Lemma 6.2 this yields

≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] · Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | ≥ 𝑠 ′ ]

= Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] − 𝑜 (1)

≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚 ] − 𝑜 (1)

again due to 𝑠 ′ ≥ 𝑚 and to Lemma 6.2. This implies

Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ] ≤ Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚 ] + 𝑜 (1)

≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚 ] + 𝑜 (1)

≤
(

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] + 𝑜 (1)

)
∈ 𝑜 (1),

since 𝑠 ≤ (1− 𝜀𝑚/2) · 𝑠★ as shown before and thus Pr𝛷∼F𝑁 (𝑠) [ 𝑃 (𝛷) = 1 ] ∈ 𝑜 (1).
Now we consider a function𝑚 ≥ (1 + 𝜀𝑚) · 𝑠★ for some constant 𝜀𝑚 > 0. As

in the proof of the former lemma, we have to make sure that𝑚 ∈ 𝑜 (𝑞−1/2
max

) is
still satisfied. Thus, we consider𝑚′ = (1 + 𝜀𝑚) · 𝑠★ instead. Since the probability

for monotone properties to hold in D𝑁 (𝑚) is non-decreasing in𝑚 according to

Lemma 3.8, it holds that

Pr

𝛷∼D𝑁 (𝑚)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼D𝑁 (𝑚′)
[ 𝑃 (𝛷) = 1 ] .

Thus, a lower bound on the probability at𝑚′
also holds at𝑚. It then holds that

Pr

𝛷∼D𝑁 (𝑚′)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼D𝑁 (𝑚′)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | =𝑚′ ]

≥ Pr

𝛷∼D𝑁 (𝑚′)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚′ ] − 𝑜 (1),

since Pr𝛷∼D𝑁 (𝑚) [ |𝛷 | < 𝑚′ ] ∈ 𝑜 (1) due to𝑚′ ∈ 𝑜 (𝑞−1
max

). Again, we can choose
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an 𝑠 such that a formula generated with F 𝑁 (𝑠) a. a. s. consists of at most 𝑠 ′ =
𝑠+𝑠2/3 clauses due to a Chernoff bound. We have to choose an 𝑠 ≥ (1+𝜀 ′𝑚) ·𝑠★ such

that 𝑠 ′ ≤ 𝑚′
. A possible choice is 𝑠 =𝑚′ −𝑚′5/6

. This ensures 𝑠 ′ = 𝑠 + 𝑠2/3 ≤ 𝑚′

as well as 𝑠 =𝑚′ − 𝑜 (𝑚′) ≥ (1 + 𝜀𝑚/2) · 𝑠★ for sufficiently large 𝑛. Thus,

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] = Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ∧ |𝛷 | ≤ 𝑠 ′ ] + 𝑜 (1)

= 𝑜 (1) +
𝑠′∑︁
𝑗=0

Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑗 ] · Pr

𝛷∼F𝑁 (𝑠)
[ |𝛷 | = 𝑗 ]

and according to Lemma 6.2 we get

≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | = 𝑠 ′ ] + 𝑜 (1)

≤ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚′ ] + 𝑜 (1).

This implies

Pr

𝛷∼D𝑁 (𝑚′)
[ 𝑃 (𝛷) = 1 ] ≥ Pr

𝛷∼D𝑁 (𝑚′)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚′ ] − 𝑜 (1)

and according to Lemma 6.1

≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 | |𝛷 | =𝑚′ ] − 𝑜 (1)

≥ Pr

𝛷∼F𝑁 (𝑠)
[ 𝑃 (𝛷) = 1 ] − 𝑜 (1) = 1 − 𝑜 (1),

since 𝑠 ≥ (1+𝜀 ′𝑚) ·𝑠★ and 𝑠★ is a sharp threshold for 𝑃 . This proves the result. ■

Now we know that the threshold behavior of the two models is equivalent if

the asymptotic threshold function is in 𝑜 (𝑞max

−1/2). This holds for all monotone

properties, but it especially holds for unsatisfiability and thus for the behavior of

the satisfiability threshold. We will proceed to show under which requirements

the satisfiability threshold is sharp in F 𝑁
.

6.2 Coarse Thresholds

At this point, we want to take a some time to talk about our definitions of sharp

and coarse thresholds again. First, both definitions only apply to properties with

an asymptotic threshold function. Then, we say that a threshold for a monotone

property 𝑃 is sharp with respect to parameter 𝑝 of a random model M iff there

is a function 𝑝★ so that for every constant 𝜀 > 0

lim

𝑛→∞
Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] =

{
0, if 𝑝 ′ = (1 − 𝜀) · 𝑝★

1, if 𝑝 ′ = (1 + 𝜀) · 𝑝★
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Otherwise we call the threshold coarse. Note that for satisfiability we defined the

thresholds the other way around, i. e. approaching one below the threshold and

zero above it. However, the definitions are interchangable, since we can always

just consider the property 𝑃 . For example, for unsatisfiability the threshold

behaves as described above.

The notion of coarseness used by Friedgut, Bourgain and O’Donnell [Fri99;

ODo14] is slightly different from the one we use. In their definition, they fix a

constant 𝜀 ∈ (0, 1/2). Now they consider the parameter values 𝑝0, 𝑝1 such that

Pr

𝛷∼M(𝑝0)
[ 𝑃 (𝛷) = 1 ] = 𝜀

and

Pr

𝛷∼M(𝑝1)
[ 𝑃 (𝛷) = 1 ] = 1 − 𝜀.

The parameter value 𝑝★ where the probability is 1/2 is somewhere in the interval

[𝑝0, 𝑝1] due to the probability function being non-decreasing. Between the

parameter values 𝑝0 and 𝑝1 the probability is bounded away both from zero and

one by the constant 𝜀. The authors now compare the size of this interval with

the size of the value 𝑝★ in the limit. If lim
𝑝1−𝑝0
𝑝★

approaches zero, the threshold

is sharp. This agrees with our intuition of a sharp threshold: The size of the

interval around 𝑝★, where the probability does not approach zero or one, grows

slower than the threshold value. Or in mathematical terms, the size of this

interval is 𝑜 (𝑝), where 𝑝 is our asymptotic threshold function. One can show

that this definition of a sharp threshold is equivalent to the one we use (c. f.

Lemma 6.6). However, the definition of coarse thresholds by Friedgut, Bourgain

and O’Donnell is slightly different. They speak of a coarse threshold only if

lim
𝑝1−𝑝0
𝑝★

is bounded away from zero. This is not a dichotomy as we consider it,

i. e. if there is an asymptotic threshold function, we do not automatically have

either a sharp or a coarse threshold, we could also have neither. That would be

the case if the limit of
𝑝1−𝑝0
𝑝★

was not defined.

Is this a problem if we want to apply the sharp threshold theorem? As it turns

out, it is not! Due to our definition, coarseness means that for every 𝑝★ there is

a constant 𝜀 > 0 so that either

lim

𝑛→∞
Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] ≠ 0

for 𝑝 ′ = (1 − 𝜀) · 𝑝★ or

lim

𝑛→∞
Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] ≠ 1

for 𝑝 ′ = (1 + 𝜀) · 𝑝★. Now consider 𝑝★ to be the critical value, i. e. the probability
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at 𝑝★ is 1/2. W. l. o. g. let us assume we have a 𝑝 ′ = (1 − 𝜀) · 𝑝★ with

lim

𝑛→∞
Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] ≠ 0.

Recalling our definition of limits, this means that there is some constant 𝜀 ′ > 0

so that for infinitely many values of 𝑛 ∈ N

Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] ≥ 𝜀 ′.

Due to the non-decreasing nature of the probability function, for those selected

values of 𝑛 everything between 𝑝 ′ and 𝑝★ is bounded away from zero and one.

Furthermore, we know that there is an asymptotic threshold function 𝑝 . It has

to hold that 𝑝 ′, 𝑝★ ∈ 𝛩 (𝑝). We can now concentrate on the values of 𝑛 that

satisfy this property and we know that there are infinitely many of those. This

is not exactly the definition of a coarse threshold due to Friedgut, Bourgain and

O’Donnell, but it certifies that there are parameter values 𝑝 ′, 𝑝★ ∈ 𝛩 (𝑝) between
which the probability function is bounded away from zero and one by constants.

Furthermore the size of the interval [𝑝 ′, 𝑝★] is asymptotically the same as the

value 𝑝★, i. e. lim
𝑝★−𝑝′
𝑝★

is bounded away from zero and one for the values of 𝑛

we consider. As it turns out, this is already enough to apply the Sharp Threshold

Theorem towards a contradiction.

For the sake of completeness, we finish this section by showing the equivalence

of our sharpness definition and the one by Friedgut [Fri99].

▶ Lemma 6.6. Let 𝑝 be an asymptotic threshold function for a monotone

property 𝑃 with respect to parameter 𝑝 of a random model M. Then it holds

that there is a function 𝑝★ so that for every 𝜀𝑝 > 0

lim

𝑛→∞
Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] =

{
0, if 𝑝 ′ = (1 − 𝜀𝑝) · 𝑝★

1, if 𝑝 ′ = (1 + 𝜀𝑝) · 𝑝★

if and only if for every constant 𝜀 ∈ (0, 1/2) it holds that lim𝑛→∞
𝑝1−𝑝0
𝑝
1/2

= 0,

where

Pr

𝛷∼M(𝑝0,𝑛)
[ 𝑃 (𝛷) = 1 ] = 𝜀,

Pr

𝛷∼M(𝑝1,𝑛)
[ 𝑃 (𝛷) = 1 ] = 1 − 𝜀, and

Pr

𝛷∼M(𝑝
1/2,𝑛)

[ 𝑃 (𝛷) = 1 ] = 1/2.

◀

Proof. First, we are going to show that the first statement implies the second.

Thus, we fix some 𝜀 for the second statement. We want to show that for every

constant 𝜀𝑙 ∈ (0, 1) there is some 𝑛0 ∈ N so that for all 𝑛 ≥ 𝑛0 it holds that
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𝑝1−𝑝0
𝑝
1/2

< 𝜀𝑙 . From our premise, we know that for all sufficiently large 𝑛

Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] ≤ 𝜀

if 𝑝 ′ = (1 − 𝜀𝑙/4) · 𝑝★ and

Pr

𝛷∼M(𝑝′,𝑛)
[ 𝑃 (𝛷) = 1 ] ≥ 1 − 𝜀

if 𝑝 ′ = (1 + 𝜀𝑙/4) · 𝑝★. For those large enough values of 𝑛 it holds that 𝑝0 ≥
(1 − 𝜀𝑙/4) · 𝑝★ and 𝑝1 ≤ (1 + 𝜀𝑙/4) · 𝑝★, since the probability function is non-

decreasing. With the same argument, it holds that 𝑝1/2 > 1/2 · 𝑝★ for large

enough values of 𝑛. Thus, for those large enough values, we get

𝑝1 − 𝑝0
𝑝1/2

≤ (1 + 𝜀𝑙/4) · 𝑝★ − (1 − 𝜀𝑙/4) · 𝑝★
1/2 · 𝑝★ = 𝜀𝑙 .

Since for each constant 𝜀𝑙 ∈ (0, 1) there is some 𝑛0 ∈ N so that this holds for all

𝑛 ≥ 𝑛0, we get lim𝑛→∞
𝑝1−𝑝0
𝑝
1/2

= 0.

Now we are going to show that the second statement also implies the first

one. We use 𝑝★ = 𝑝1/2 and fix an 𝜀𝑝 ∈ (0, 1). We want to show that

lim

𝑛→∞
Pr

𝛷∼M((1−𝜀𝑝 ) ·𝑝★,𝑛)
[ 𝑃 (𝛷) = 1 ] = 0.

In other words, we want that for any 𝜀𝑙 ∈ (0, 1), there is some 𝑛0 ∈ N so that for

all 𝑛 ≥ 𝑛0 we get
Pr

𝛷∼M((1−𝜀𝑝 ) ·𝑝★,𝑛)
[ 𝑃 (𝛷) = 1 ] ≤ 𝜀𝑙 .

Let us now assume that 𝑝0 is the parameter value at which the probability is 𝜀𝑙
and 𝑝1 is the parameter value at which the probability is 1 − 𝜀𝑙 . Then, for any
sufficiently large 𝑛, we have

𝑝1−𝑝0
𝑝
1/2

≤ 𝜀𝑝 . Furthermore, 𝑝0 ≤ 𝑝1/2 ≤ 𝑝1. Thus,

(1 − 𝜀𝑝) · 𝑝1/2 = 𝑝1/2 − 𝜀𝑝 · 𝑝1/2 ≤ 𝑝1 − (𝑝1 − 𝑝0) = 𝑝0.

Since the probability function is non-decreasing, the probability at (1− 𝜀𝑝) · 𝑝1/2
must be smaller than the one at 𝑝0 and thus smaller than 𝜀𝑙 as desired. Again,

for any choice of 𝜀𝑙 we can find an 𝑛0 ∈ N so that this holds. This implies

lim

𝑛→∞
Pr

𝛷∼M((1−𝜀𝑝 ) ·𝑝★,𝑛)
[ 𝑃 (𝛷) = 1 ] = 0.

With a similar argument, we can show that for any constant 𝜀𝑝 > 0 the parameter

function 𝑝 ′ = (1 + 𝜀𝑝) · 𝑝★ satisfies

lim

𝑛→∞
Pr

𝛷∼M((1+𝜀𝑝 ) ·𝑝★,𝑛)
[ 𝑃 (𝛷) = 1 ] = 1.

117



Chapter 6 Sharpness in Non-Uniform Random k-SAT

This proves the equivalency of both statements. ■

6.3 The Sharp Threshold Theorem

In this section we present Bourgain’s Sharp Threshold Theorem and the concepts

it relies on. Colloquially speaking the theorem states that "All monotone graph

properties with a coarse threshold may be approximated by a local property." In

the context of Boolean satisfiability, this means that a coarse threshold implies

the existence of a family of only a few short clauses, which certify unsatisfiability.

These clauses have a high probability of appearing around the threshold and

their existence increases the probability of a formula to be unsatisfiable.

In the remainder of this chapter, we will use the notation from O’Donnell’s

book [ODo14]. This makes the application of the Sharp Threshold Theorem

easier. The Sharp Threshold Theorem assumes a product probability space

(𝛺, 𝜋) =
(
{−1, 1}𝑁 , 𝜋1 × 𝜋2 × . . . × 𝜋𝑁

)
.

We can now encode formulas in𝑘-CNF as vectors𝑥 ∈ {−1, 1}𝑁 , where𝑁 =
(
𝑛
𝑘

)
·2𝑘

is the number of different 𝑘-clauses over 𝑛 variables. If a clause is chosen to be in

the formula, we set its variable to −1, otherwise we set it to 1. With this encoding

of formulas in 𝑘-CNF in mind, we can define a function 𝑓 : {−1, 1}𝑁 → {−1, 1},
which returns −1 if the encoded formula is unsatisfiable and 1 otherwise. It

is easy to see that 𝑓 is monotone in the sense that 𝑓 (𝑥) ≤ 𝑓 (𝑦) whenever
𝑥 ≤ 𝑦 coordinate-wise. This is the case, since setting a coordinate from −1
to 1 is equivalent to removing a clause from the encoded formula. By doing

so, a satisfiable formula cannot be made unsatisfiable, i. e. the value of 𝑓 can

only change from −1 to 1, but not the other way around. In a similar way, any

monotone property can be described as a function 𝑓 : {−1, 1}𝑁 → {−1, 1}.
We can now formally describe the product probability space of the non-

uniform clause-flipping model F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) with this notation. Given

a variable probability distribution ®𝑝 (𝑛) = (𝑝𝑖 (𝑛) )𝑖=1,...,𝑛 , the derived clause prob-

ability distribution ®𝑞 (𝑛) = (𝑞𝑖 (𝑛) )𝑖=1,...,𝑁 , and the scaling factor 𝑠 , we define

our product probability space to be (𝛺, 𝜋) = ({−1, 1}𝑁 , 𝜋1 × 𝜋2 × . . . × 𝜋𝑁 )
with 𝜋𝑖 (−1) = 𝑞𝑖

(𝑛) (𝑠) and 𝜋𝑖 (1) = 1 − 𝑞𝑖
(𝑛) (𝑠) for 𝑖 = 1, 2, . . . , 𝑁 . Here,

𝑞𝑖
(𝑛) (𝑠) = min(𝑠 · 𝑞𝑖 (𝑛) , 1) as described in Definition 3.7. We let 𝜇 ®𝑝 (𝑛) ,𝑠 denote

the product probability measure, i.e. for 𝑥 ∈ 𝛺

𝜇 ®𝑝 (𝑛) ,𝑠 (𝑥) =
𝑁∏
𝑖=1

𝜋𝑖 (𝑥𝑖) =
∏

𝑖∈[𝑁 ] : 𝑥𝑖=−1
𝑞
(𝑛)
𝑖

(𝑠)
∏

𝑖∈[𝑁 ] : 𝑥𝑖=1

(
1 − 𝑞 (𝑛)

𝑖
(𝑠)

)
.

For 𝑆 ⊆ 𝛺 we define 𝜇 ®𝑝 (𝑛) ,𝑠 (𝑆) =
∑
𝑥 ∈𝑆 𝜇 ®𝑝 (𝑛) ,𝑠 (𝑥). We will use the shorthand

notation 𝜇 instead of 𝜇 ®𝑝 (𝑛) ,𝑠 if the probability measure is clear from context. For a

property 𝑃 we will also write 𝜇 (𝑃) = {𝑥 ∈ 𝛺 | 𝑃 (𝑥)} = {𝑥 ∈ 𝛺 | 𝑓 (𝑥) = −1} if 𝑓
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is the characteristic function of 𝑃 , i. e. 𝑓 (𝑥) = −1 iff 𝑃 (𝑥) holds. Furthermore, for

an 𝑁 -element vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) and a subset 𝑇 ⊆ [𝑁 ] let 𝑥𝑇 = (𝑥𝑖)𝑖∈𝑇
denote the restriction of 𝑥 to𝑇 . Last, for 𝑥 ∈ {−1, 1}𝑁 we let |𝑥 |−1 and |𝑥 |1 denote
the number of elements with value −1 and 1, respectively.

The following statement shows the relation between coarseness of a property’s

threshold and the derivative of its probability function. It says that, if a threshold

is coarse, then the derivative of the probability function must be small at some

point around the threshold. This is intuitively true, since a coarse threshold

means that the probability function increases slowly around the threshold. It

is easy to see that this derivative exists, because the probability 𝜇𝑠 (𝑥) for each
𝑥 ∈ 𝛺 is a polynomial in 𝑠 and so is the probability 𝜇𝑠 (𝑃) that property 𝑃 holds.

The uniform equivalent of the following statement holds due to Friedgut [Fri99],

but a simple argument shows that it also holds in the non-uniform case.

▶ Lemma 6.7. If a threshold for a property 𝑃 is coarse, then there are constants

𝐾 > 0 and 𝜀 ∈ (0, 1) such that for infinitely many 𝑛 ∈ N there is a point 𝑠★ such

that 𝜇𝑠★ (𝑃) ∈ (𝜀, 1 − 𝜀) and 𝑠★ · 𝑑𝜇𝑠 (𝑃 )
𝑑𝑠

|𝑠=𝑠★ ≤ 𝐾 . ◀

Proof. The proof of the statement is a simple application of the mean value

theorem. We know that the existence of a coarse threshold implies that there are

constants 𝜀 ∈ (0, 1/2) and 𝜀𝑠 > 0 and parameter functions 𝑠0 and 𝑠1 = (1 + 𝜀𝑠) · 𝑠0
such that for infinitely many values of 𝑛 the probabilities between 𝑠0 and 𝑠1 are

between 𝜀 and 1 − 𝜀 (c. f. Lemma 6.6). For each such 𝑛 the mean value theorem

now implies that there is a point 𝑠★ such that

𝑑𝜇𝑠 (𝑃)
𝑑𝑠

���
𝑠=𝑠★

=
𝜇𝑠1 (𝑃) − 𝜇𝑠0 (𝑃)

𝑠1 − 𝑠0
≤ 1 − 2 · 𝜀

𝜀𝑠 · 𝑠0
.

Since 𝑠★ ≤ 𝑠1 = (1 + 𝜀𝑠) · 𝑠0, this yields

𝑠★ · 𝑑𝜇𝑠 (𝑃)
𝑑𝑠

���
𝑠=𝑠★

≤ (1 − 2 · 𝜀) · (1 + 𝜀𝑠)
𝜀𝑠

= 𝐾

as desired. ■

Note that the point 𝑠★ usually depends on the value of 𝑛 ∈ N, i. e. 𝑠★ is actually

a partial function on N. Furthermore, the condition 𝜇★𝑠 (𝑃) ∈ (𝜀, 1 − 𝜀) ensures
that 𝑠★ is in the same range as the asymptotic threshold function, i. e. "around the

threshold". This will be crucial for showing our result with the Sharp Threshold

Theorem.

Bourgain’s Sharp Threshold Theorem will make use of the total influence of a

Boolean function 𝑓 . Intuitively, the influence Inf𝑖 [𝑓 ] of a function 𝑓 describes
the probability that the value of the 𝑖-th coordinate influences the function value.

The total influence I[ 𝑓 ] of a function 𝑓 is the sum of the influence values for all

coordinates. Both, Inf𝑖 [𝑓 ] and I[ 𝑓 ] depend on the probability distribution 𝜋

and on the scaling parameter 𝑠 , but we will omit this dependence if it is clear
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from context. The following definition from [ODo14] formalizes our intuitive

one.

▶ Definition 6.8. [Influence Function] Let 𝑓 : {−1, 1}𝑁 → {−1, 1} and let

(𝛺, 𝜋) be our product probability space with𝛺 = {−1, 1}𝑁 and 𝜋 = 𝜋1× . . .×𝜋𝑁 .
The influence of the 𝑖-th coordinate is Inf𝑖 [𝑓 ] = 𝔼𝑥∼𝜋 [ 𝑓 (𝑥) (𝐿𝑖 𝑓 ) (𝑥) ],where
𝐿𝑖 𝑓 = 𝑓 − 𝐸𝑖 𝑓 and 𝐸𝑖 𝑓 (𝑦) = 𝔼𝒚𝒊∼𝜋𝑖 [ 𝑓 (𝑦1, 𝑦2, . . . , 𝑦𝑖−1,𝒚𝒊, 𝑦𝑖+1 . . . , 𝑦𝑁−1, 𝑦𝑁 ) ].
The total influence of 𝑓 is I[ 𝑓 ] = ∑𝑛

𝑖=1 Inf𝑖 [𝑓 ] . ◀

The following lemma relates this notion of influence to the notion of coarseness

due to Friedgut, more precisely to

𝑑𝜇𝑠 (𝑃)
𝑑𝑠

𝑠 =
𝑑𝜇𝑠 ({𝑥 ∈ 𝛺 | 𝑓 (𝑥) = −1})

𝑑𝑠
𝑠,

where 𝜇𝑠 denotes the product probability measure of the clause-flipping non-

uniform random 𝑘-SAT model F 𝑁 (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠).
▶ Lemma 6.9. Let 𝑓 : {−1, 1}𝑁 → {−1, 1} be monotone, and non-constant

and let (𝛺, 𝜋) be our product probability space with 𝛺 = {−1, 1}𝑁 and 𝜋 =

𝜋1×. . .×𝜋𝑁 . Given clause probabilities ®𝑞 (𝑛) = (𝑞𝑖 (𝑛) )𝑖=1,...,𝑁 , let 𝜋𝑖 (−1) = 𝑞𝑖 (𝑛) (𝑠)
and 𝜋𝑖 (1) = 1 − 𝑞𝑖 (𝑛) (𝑠) for 𝑖 = 1, 2, . . . , 𝑁 , where 𝑞𝑖

(𝑛) (𝑠) = min

(
𝑠 · 𝑞𝑖 (𝑛) , 1

)
.

Further, let 𝑃 = {𝑥 ∈ 𝛺 | 𝑓 (𝑥) = −1}. For 𝑠 < 𝑞−1
max

it holds that

I[ 𝑓 ] ≤ 4 · 𝑑𝜇𝑠 (𝑃)
𝑑𝑠

𝑠.

◀

Proof. Due to the requirement 𝑠 < 𝑞−1
max

we can assume 𝑞𝑖 (𝑠) = 𝑠 · 𝑞𝑖 instead of

𝑞𝑖 (𝑠) = min(𝑠 · 𝑞𝑖 , 1). First, we are going to show that

I[ 𝑓 ] = 4

∑︁
𝑥 ∈𝛺 : 𝑓 (𝑥)=−1

©­«𝜇𝑠 (𝑥) ·
∑︁

𝑖∈[𝑁 ] : 𝑓 (𝑥⊕𝑖)=1
(1 − 𝑠 · 𝑞𝑖)

ª®¬.
Here, 𝑥 ⊕ 𝑖 denotes the encoding 𝑥 in which the 𝑖-th coordinate is flipped. Then,

we will show

𝑑𝜇𝑠 (𝑃)
𝑑𝑠

���
𝑠=𝑠′

=
1

𝑠 ′

∑︁
𝑥 ∈𝛺 : 𝑓 (𝑥)=−1

𝜇𝑠′ (𝑥) ·
∑︁

𝑖∈[𝑁 ] : 𝑓 (𝑥⊕𝑖)=1
1.

Together, this implies

I[ 𝑓 ] ≤ 4 · 𝑑𝜇𝑠 (𝑃)
𝑑𝑠

𝑠

as desired.

We note that

Inf𝑖 [𝑓 ] =
∑︁
𝑥 ∈𝛺

𝜇𝑠 (𝑥) 𝑓 (𝑥) (𝑓 (𝑥) − 𝐸𝑖 𝑓 (𝑥)) .
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As 𝐸𝑖 𝑓 only rerandomizes the 𝑖-th coordinate, it holds that 𝐸𝑖 𝑓 (𝑥) = 𝑓 (𝑥)
whenever 𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑖). Remember that 𝑥 ⊕ 𝑖 denotes the encoding 𝑥 ′ where
the 𝑖-th coordinate is flipped. The contribution of these 𝑥 ∈ 𝛺 is therefore zero

and we can concentrate on the case that 𝑓 (𝑥) ≠ 𝑓 (𝑥 ⊕ 𝑖). As 𝑓 is monotone, it

can only hold that 𝑓 (𝑥) = −1 if 𝑦𝑖 = −1 and 𝑓 (𝑥) = 1 if 𝑦𝑖 = 1. Thus,

𝐸𝑖 𝑓 (𝑥) = (1 − 𝑠 · 𝑞𝑖) · 1 + 𝑠 · 𝑞𝑖 · (−1) = 1 − 2𝑠 · 𝑞𝑖 .

So, for an 𝑥 with 𝑓 (𝑥) = −1 and 𝑓 (𝑥 ⊕ 𝑖) = 1, its contribution to Inf𝑖 [𝑓 ] is

𝜇𝑠 (𝑥) (−1) (−1 − (1 − 2𝑠 · 𝑞𝑖)) = 𝜇𝑠 (𝑥) · 2(1 − 𝑠 · 𝑞𝑖) = 2𝑠 · 𝑞𝑖 · 𝜇𝑠 (𝑥 ⊕ 𝑖) .

The last inequality again holds since 𝑓 is monotone and 𝜇 (𝑥) must therefore

contain the factor 𝑠 ·𝑞𝑖 for 𝑥𝑖 = −1. If we have an 𝑥 with 𝑓 (𝑥) = 1 and 𝑓 (𝑥 ⊕ 𝑖) =
−1, we get

𝜇𝑠 (𝑥) (1 − (1 − 2𝑠 · 𝑞𝑖)) = 2𝑠 · 𝑞𝑖 · 𝜇𝑠 (𝑥) = 2(1 − 𝑠 · 𝑞𝑖) · 𝜇𝑠 (𝑥 ⊕ 𝑖).

So, if 𝑓 is not constant, the contribution of each 𝑥 ∈ 𝛺 with 𝑓 (𝑥) = −1 and

𝑓 (𝑥 ⊕ 𝑖) = 1 is counted exactly twice, once for 𝑥 and once for 𝑥 ⊕ 𝑖 . Note that
this only holds, since we consider a fixed 𝑖 ∈ 𝑁 . Thus,

Inf𝑖 [𝑓 ] = 4 · (1 − 𝑠 · 𝑞𝑖) ·
∑︁

𝑥 ∈𝛺 : 𝑓 (𝑥)=−1, 𝑓 (𝑥⊕𝑖)=1
𝜇𝑠 (𝑥)

and

Inf [𝑓 ] = 4

∑︁
𝑥 ∈𝛺 : 𝑓 (𝑥)=−1

©­«𝜇𝑠 (𝑥) ·
∑︁

𝑖∈[𝑁 ] : 𝑓 (𝑥⊕𝑖)=1
(1 − 𝑠 · 𝑞𝑖)

ª®¬.
Now we turn to the second statement. For a certain 𝑥 = (𝑥1, 𝑥2 . . . , 𝑥𝑁 ) ∈

{−1, 1}𝑁 it holds that

𝑑𝜇𝑠 (𝑥)
𝑑𝑠

=

𝑑

(( ∏
𝑖∈[𝑁 ] : 𝑥𝑖=−1

𝑠 · 𝑞𝑖

)
·
( ∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

(1 − 𝑠 · 𝑞𝑖)
))

𝑑𝑠
.

We split this expression into two parts due to the product rule for derivatives:

𝑑𝜇𝑠 (𝑥)
𝑑𝑠

=

𝑑

( ∏
𝑖∈[𝑁 ] : 𝑥𝑖=−1

𝑠 · 𝑞𝑖

)
𝑑𝑠

· ©­«
∏

𝑖∈[𝑁 ] : 𝑥𝑖=1
(1 − 𝑠 · 𝑞𝑖)ª®¬+

+ ©­«
∏

𝑖∈[𝑁 ] : 𝑥𝑖=−1
𝑠 · 𝑞𝑖ª®¬ ·

𝑑

( ∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

(1 − 𝑠 · 𝑞𝑖)
)

𝑑𝑠
. (6.8)
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It holds that

𝑑

( ∏
𝑖∈[𝑁 ] : 𝑥𝑖=−1

𝑠 · 𝑞𝑖

)
𝑑𝑠

=

𝑑

(
𝑠 |𝑥 |−1

∏
𝑖∈[𝑁 ] : 𝑥𝑖=−1

𝑞𝑖

)
𝑑𝑠

=
|𝑥 |−1 · 𝑠 |𝑥 |−1

𝑠
·

∏
𝑖∈[𝑁 ] : 𝑥𝑖=−1

𝑞𝑖

=
|𝑥 |−1
𝑠

·
∏

𝑖∈[𝑁 ] : 𝑥𝑖=−1
𝑠 · 𝑞𝑖 ,

where |𝑥 |𝑎 denotes the number of appearances of 𝑎 in the vector 𝑥 . It now

holds that the first term of equation (6.8) is simply ( |𝑥 |−1/𝑠) · 𝜇𝑠 (𝑥). Now let

𝑖1, 𝑖2, . . . , 𝑖 |𝑥 |1 be the indices of coordinates with value 1 in 𝑥 . For the derivative

in the second term, we can use the product rule again to obtain

𝑑

( ∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

(1 − 𝑠 · 𝑞𝑖)
)

𝑑𝑠
= − 1

𝑠
·

𝑠 · 𝑞𝑖1
1 − 𝑠 · 𝑞𝑖1

· ©­«
∏

𝑖∈[𝑁 ] : 𝑥𝑖=1
(1 − 𝑠 · 𝑞𝑖)

ª®¬+
+ (1 − 𝑠 · 𝑞𝑖1) ·

𝑑

( ∏
𝑖∈[𝑁 ]\{𝑖1 } : 𝑥𝑖=1

(1 − 𝑠 · 𝑞𝑖)
)

𝑑𝑠
.

By repeatedly using the product rule, we get

𝑑

( ∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

(1 − 𝑠 · 𝑞𝑖)
)

𝑑𝑠
= −1

𝑠

©­«
∑︁

𝑖∈[𝑁 ] : 𝑥𝑖=1

𝑠 · 𝑞𝑖
1 − 𝑠 · 𝑞𝑖

ª®¬ · ©­«
∏

𝑖∈[𝑁 ] : 𝑥𝑖=1
(1 − 𝑠 · 𝑞𝑖)ª®¬,

i.e. the second term of equation (6.8) is

−1
𝑠

©­«
∑︁

𝑖∈[𝑁 ] : 𝑥𝑖=1

𝑠 · 𝑞𝑖
1 − 𝑠 · 𝑞𝑖

ª®¬ · 𝜇𝑠 (𝑥) .
It now holds that

𝑑𝜇𝑠 (𝑥)
𝑑𝑠

=
1

𝑠

©­«|𝑥 |−1 −
∑︁

𝑖∈[𝑁 ] : 𝑥𝑖=1

𝑠 · 𝑞𝑖
1 − 𝑠 · 𝑞𝑖

ª®¬ · 𝜇𝑠 (𝑥) . (6.9)
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Summing equation (6.9) over all 𝑥 ∈ {−1, 1}𝑁 with 𝑓 (𝑥) = −1 gives

∑︁
𝑥 ∈𝛺 : 𝑓 (𝑥)=−1

𝑑𝜇𝑠 (𝑥)
𝑑𝑠

=
1

𝑠

∑︁
𝑥 ∈𝛺 : 𝑓 (𝑥)=−1

©­«©­«|𝑥 |−1 −
∑︁

𝑖∈[𝑁 ] : 𝑥𝑖=1

𝑠 · 𝑞𝑖
1 − 𝑠 · 𝑞𝑖

ª®¬ · 𝜇𝑠 (𝑥)ª®¬.
We know that

𝑠 ·𝑞𝑖
1−𝑠 ·𝑞𝑖 𝜇𝑠 (𝑥) = 𝜇𝑠 (𝑥

′) for a vector 𝑥 ′ ∈ {−1, 1}𝑁 which is the same

as 𝑥 except for the 𝑖-th coordinate which is set from 1 to −1. As 𝑓 is monotone,

it must hold that 𝑓 (𝑥 ′) = −1. Now we can count how often each 𝜇𝑠 (𝑥) appears
in this sum. Each 𝜇𝑠 (𝑥) is added once for each coordinate with 𝑥𝑖 = −1 and

subtracted once for each 𝑥 with 𝑓 (𝑥) = −1, where 𝑥 is the same as 𝑥 except for

one coordinate which is set from −1 in 𝑥 to 1 in 𝑥 . So the total number of times

that a 𝜇𝑠 (𝑥) with 𝑓 (𝑥) = −1 remains is |{𝑖 ∈ [1, 𝑁 ] | 𝑥𝑖 = −1, 𝑓 (𝑥 ⊕ 𝑖) = 1}| =
|{𝑖 ∈ [1, 𝑁 ] | 𝑓 (𝑥 ⊕ 𝑖) = 1}| as 𝑓 is monotone. This yields

𝑑𝜇𝑠 (𝑃)
𝑑𝑠

���
𝑠=𝑠′

=
1

𝑠 ′

∑︁
𝑥 ∈𝛺 : 𝑓 (𝑥)=−1

©­«𝜇𝑠′ (𝑥) ·
∑︁

𝑖∈[𝑁 ] : 𝑓 (𝑥⊕𝑖)=1
1
ª®¬

and gives us the result as desired. ■

To prove our main theorem, we will use the Sharp Threshold Theorem by

Friedgut (and Bourgain) [Fri99] in O’Donnell’s version [ODo14]. The theorem

states that, if a monotone property 𝑃 has a coarse threshold, and therefore small

influence, then there are local structures which approximate this property. These

local structures are called 𝜏-boosters. Intuitively, a 𝜏-booster is a prescription

for the existence and/or absence of certain clauses in a random formula such

that conditioning on this prescription increases or decreases the probability for

𝑃 to hold by at least 𝜏/2 (or its expected value by 𝜏). The following is a formal

definition of these structures.

▶ Definition 6.10. [𝜏-booster] Let 𝑓 : {−1, 1}𝑁 → {−1, 1} and let (𝛺, 𝜋) be
a product probability space with 𝛺 = {−1, 1}𝑁 and 𝜋 = 𝜋1 × . . . × 𝜋𝑁 . For
𝑇 ⊆ [𝑁 ], 𝑦 ∈ 𝛺 , and 𝜏 > 0, we say that the restriction 𝑦𝑇 is a 𝜏-booster if

𝔼𝑥∼𝜋 [ 𝑓 | 𝑥𝑇 = 𝑦𝑇 ] ≥ 𝔼[ 𝑓 ] + 𝜏 . If 𝜏 < 0, we say that 𝑦𝑇 is a 𝜏-booster if

𝔼𝑥∼𝜋 [ 𝑓 | 𝑥𝑇 = 𝑦𝑇 ] ≤ 𝔼[ 𝑓 ] − |𝜏 |. ◀

Note that it depends on the probabilities 𝜋𝑖 and thus on the scaling factor 𝑠

if a restriction 𝑦𝑇 is a 𝜏-booster. However, we will omit this dependence if it is

clear from context.

The Sharp Threshold Theorem is stated as follows:

▶ Theorem 6.11. [Bourgain’s Sharp Threshold Theorem] Let 𝑓 : {−1, 1}𝑁 →
{−1, 1} and let (𝛺, 𝜋) be our product probability space with 𝛺 = {−1, 1}𝑁 and

𝜋 = 𝜋1 × . . . × 𝜋𝑁 . If I[ 𝑓 ] ≤ 𝐾 for a constant 𝐾 , then there is some 𝜏 (either
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Chapter 6 Sharpness in Non-Uniform Random k-SAT

negative or positive) with |𝜏 | ≥ Var[𝑓 ] · exp(−O(I[ 𝑓 ]2/Var[𝑓 ]2)) such that

Pr
𝑥∼𝜋

[
∃ 𝑇 ⊆ [𝑛], |𝑇 | ∈ O

(
I[ 𝑓 ]
Var[𝑓 ]

)
such that 𝑥𝑇 is a 𝜏-booster

]
≥ |𝜏 |.

◀

This theorem is not specific to probability spaces with uniform probability

distributions. Due to O’Donnell the Sharp Threshold Theorem also holds for

arbitrary product probability spaces. Müller [Mül17] also showed that a version

of Bourgain’s original theorem still holds for arbitrary product probability spaces.

Furthermore, by carefully checking the proof of the theorem, one can see that

the constants hidden in the O-notation do not depend on the product probability

space (𝛺, 𝜋). O’Donnell also states this in the arXiv version of his book [ODo21].

In its original form, the theorem additionally requires that Var[𝑓 ] ≥ 0.01. How-

ever, one can see from the proofs that any constant lower bound on Var[𝑓 ]
suffices. This is the case in the setting we consider, i. e. assuming a coarse thresh-

old for unsatisfiability. Var[𝑓 ] = 𝔼
[
𝑓 2

]
− 𝔼[ 𝑓 ]2 = 1 − 𝔼[ 𝑓 ]2 is bounded away

from zero and one by constants, since𝔼[ 𝑓 ] = −𝜇𝑠★ (𝑃)+1−𝜇𝑠★ (𝑃) = 1−2·𝜇𝑠★ (𝑃)
and 𝜇𝑠★ (𝑃) is bounded away from zero and one by constants due to Lemma 6.7.

Together with the prerequisite that I[ 𝑓 ] is upper-bounded by a constant 𝐾 , the

theorem essentially says that |𝜏 | is at least some constant, while |𝑇 | is at most

some constant.

6.4 Proof of Sharpness

This section will be dedicated to proving the following theorem.

▶ Theorem 6.12. Let 𝑘 ≥ 3, let ( ®𝑝 (𝑛) )𝑛∈N be an ensemble of probability dis-

tributions on 𝑛 variables each and let 𝑠★ be an asymptotic satisfiability thresh-

old for F (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠) with respect to 𝑠 . If 𝑝max ∈ 𝑜 (𝑠★−(3𝑘−1)/(4𝑘−2) ·
log

−(𝑘−1)/(2𝑘−1) (𝑠★)), then the threshold for satisfiability on F (𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠)
with respect to 𝑠 is sharp. ◀

The framework to prove this statement is inspired by the seminal work of

Friedgut [Fri99]. It’s high level idea and the structure of this section are as

follows.

We assume toward a contradiction that the threshold is coarse. Then the Sharp

Threshold Theorem tells us that there have to be 𝜏-boosters of constant size that

appear with constant probability in the random formula. These boosters have

the property that conditioning on their existence boosts the probability of the

random formula to be unsatisfiable by at least an additive constant.

One kind of booster are unsatisfiable subformulas of constant size. Condition-

ing on them would boost the probability to generate an unsatisfiable formula

to one. We rule these out by showing that they do not appear with constant

probability.
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Then, we consider subformulas, which give the second highest boost: maxi-

mally quasi-unsatisfiable subformulas. These are subformulas which have only

one satisfying assignment for the variables appearing in them and adding any

new clause over those variables makes them unsatisfiable. We want to show that

these cannot boost the probability of a formula to be unsatisfiable by a constant.

Again toward a contradiction, we assume that conditioning on a maximally

quasi-unsatisfiable subformula𝑇 is enough to boost the unsatisfiability probabil-

ity by a constant. First, we prove that conditioning on𝑇 is equivalent to adding a

number of clauses of size shorter than 𝑘 to the random formula over variables not

appearing in𝑇 . Then, we use a version of Friedgut’s coverability lemma to show

that, if adding these clauses of size smaller than 𝑘 makes the random formula

unsatisfiable with constant probability, then so does adding 𝑜 (
√
𝑠★) clauses of

size 𝑘 . We prove that this probability is dominated by the probability to make

the original random formula unsatisfiable for a slightly bigger scaling factor.

However, we can show that the probability to make the original random for-

mula unsatisfiable cannot be increased by a constant with this slightly increased

scaling factor. This contradicts our assumption that the probability is boosted by

a constant in the first place. Therefore, quasi-unsatisfiable subformulas cannot

be boosters.

After showing this, every less restrictive subformula cannot be a booster either.

That means, the only possible boosters are unsatisfiable subformulas, which we

ruled out already. Therefore, the implication of the Sharp Threshold Theorem

does not hold, which contradicts the assumption of a coarse threshold.

Application of the Sharp Threshold Theorem First, note that any asymp-

totic threshold function 𝑠★ must satisfy 𝑠★ ∈ 𝛺 (1). This is simply due to the fact

that our model is defined in such a way that the scaling factor 𝑠 is the expected

number of clauses we flip and any unsatisfiable formula in 𝑘-CNF needs at least

2
𝑘
different clauses. Thus,

Pr

𝛷∼F𝑁 (𝑠)
[𝛷 unsat ] ≤ Pr

𝛷∼F𝑁 (𝑠)

[
|𝛷 | ≥ 2

𝑘
]
≤ 𝔼[ |𝛷 | ]

2
𝑘

=
𝑠

2
𝑘

due to Markov’s inequality. This means, for any constant 𝑠 < 2
𝑘
, the probability

to generate an unsatisfiable instance is bounded away from one by a constant,

which implies 𝑠★ ∈ 𝛺 (1). That implies

𝐶𝑘 ≤
(
1 − 𝑘2

2

𝑛∑︁
𝑖=1

𝑝2𝑖

)−1
= 1 + O

(
𝑠★

−2/𝑘
)

due to equation (5.2) as well as

∑𝑛
𝑖=1 𝑝

2

𝑖 ≤ 𝑝max ∈ 𝑜
(
𝑠★

− 3𝑘−1
4𝑘−2

)
∈ 𝑜

(
𝑠★

−2/𝑘
)
.

We know that there is an asymptotic threshold function 𝑠★ and we assume

toward a contradiction that the threshold is coarse. Due to our definition of

coarse thresholds and their implications (see Section 6.2) this means that there are
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Chapter 6 Sharpness in Non-Uniform Random k-SAT

infinitely many values 𝑛 ∈ N for which the probability function behaves as we

intuitively imagine it: We have a range of 𝑠 of size𝛩 (𝑠★) where the probability to
generate unsatisfiable instances is bounded away from zero and one by constants,

i. e. the probability function slowly increases in that range. More formally, it

means we can define incomplete functions 𝑠0, 𝑠1 such that there are constants

𝜀 > 0, 0 < 𝜀0 < 𝜀1 < 1 and 𝑛0 ∈ N so that for all those infinitely many values

of 𝑛 ≥ 𝑛0 it holds that 𝑠1 − 𝑠0 ≥ 𝜀 · 𝑠★ as well as Pr𝛷∼F𝑁 (𝑠0) [𝛷 unsat ] ≥ 𝜀0 and

Pr𝛷∼F𝑁 (𝑠1) [𝛷 unsat ] ≤ 𝜀1. From now on we will concentrate on this subset

of the natural numbers. If we use asymptotic expressions, they will also only

hold for this subset if not stated otherwise. This will be enough to derive a

contradiction for some sufficiently large value of 𝑛 for which this property holds.

Due to Lemma 6.7 a coarse threshold implies

𝑑𝜇𝑠 (𝑃 )
𝑑𝑠

𝑠 ≤ 𝐾

for some constant 𝐾 and some 𝑠 in the threshold interval. Let us call this scaling

factor 𝑠𝑐 . Note that 𝑠𝑐 = 𝛩 (𝑠★), since 𝑠𝑐 is in the threshold interval and 𝑠★ is

an asymptotic threshold function. Due to Lemma 6.9 this means I[ 𝑓 ] ≤ 4 · 𝐾
for the indicator function 𝑓 with 𝑃 = {𝑥 ∈ 𝛺 | 𝑓 (𝑥) = −1}. For the corollary to

hold, we have to assure 𝑠𝑐 < 𝑞
−1
max

. This follows due to our assumption

𝑝max ∈ 𝑜
(
𝑠★

− 3𝑘−1
4𝑘−2

)
∈ 𝑜

(
𝑠★

−1/𝑘
)
,

which implies

𝑞max(𝑠𝑐) = 𝑠𝑐 · 𝑞max = 𝑠𝑐 · O
(
𝑝𝑘
max

)
∈ 𝑜 (1). (6.10)

Remember that 𝜇𝑠𝑐 (𝑓 ) is constant and so are 𝔼[ 𝑓 ] and Var[𝑓 ] at this scaling
factor.

Now we can use Theorem 6.12 to see that, at least with constant probability 𝜏 ,

our formulas have a subformula (or lack thereof) consisting of at most O(𝐾) ∈
O(1) clauses, so that conditioning on the existence (or non-existence) of these

clauses increases (or decreases) the probability that our random formulas in

k-CNF are unsatisfiable by at least 𝜏/2. The subformulas with these properties

are the boosters. The theorem actually allows us to choose appropriate specific

constants for 𝜏 and the upper bound on |𝑇 | that are independent of𝑛. That means,

throughout the proof we can assume that 𝜏 and |𝑇 | are given fixed constants.

Since the property of being unsatisfiable ismonotone, it would not be beneficial

to forbid some clauses and demand others. We can therefore concentrate on the

two cases of either only forbidding or only enforcing clauses in our boosters.

The following lemma shows that it suffices to concentrate on enforcing boosters.

The idea is that every constant-sized subset of clauses a. a. s. does not exist in

the formula, since clause probabilities are 𝑜 (1). Therefore, conditioning on the
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non-existence of such a subformula does not change the overall probability by

too much.

▶ Lemma 6.13. Every constant-sized booster which assumes the non-existence

of clauses only boosts the probability to be satisfiable or unsatisfiable by 𝑜 (1). ◀

Proof. Suppose we have an 𝑥 ∈ {−1, 1}𝑁 drawn from (𝛺, 𝜋) and a set 𝑇 ⊆ [𝑁 ]
of clause indices, where |𝑇 | = 𝑣 is constant. It now holds that

𝔼
𝑥∼𝜋

[
𝑓 | 𝑥𝑇 = 1

|𝑇 |
]

= Pr

[
𝑓 (𝑥) = 1 | 𝑥𝑇 = 1

|𝑇 |
]
− Pr

[
𝑓 (𝑥) = −1 | 𝑥𝑇 = 1

|𝑇 |
]

= 2 · Pr
[
𝑓 (𝑥) = 1 | 𝑥𝑇 = 1

|𝑇 |
]
− 1.

Furthermore

Pr

[
𝑓 (𝑥) = 1 | 𝑥𝑇 = 1

|𝑇 |
]

=
Pr

[
𝑓 (𝑥) = 1 ∧ 𝑥𝑇 = 1

|𝑇 |]
Pr

[
𝑥𝑇 = 1

|𝑇 |]
≤ Pr[𝑓 (𝑥) = 1]

Pr

[
𝑥𝑇 = 1

|𝑇 |]
=

1 − 𝜇𝑠𝑐 (𝑃)
Pr

[
𝑥𝑇 = 1

|𝑇 |] ,
where the last equality holds because we are at the critical scaling factor 𝑠𝑐 for the

property 𝑃 of having an unsatisfiable formula. Remembering that Pr

[
𝑥𝑇 = 1

|𝑇 |]
is the probability that none of the clauses with indices from 𝑇 appear, we get

1 − Pr

[
𝑥𝑇 = 1

|𝑇 |
]

= Pr[∃ 𝑖 ∈ 𝑇 : 𝑥𝑖 = −1]

≤
∑︁
𝑖∈𝑇

𝑞𝑖 (𝑠𝑐)

≤ |𝑇 | · 𝑞max(𝑠𝑐)
∈ 𝑜 (1).

Here, the last line follows due to equation (6.10). If we plug this into our first

equation, we get

𝔼
𝑥∼𝜋

[
𝑓 | 𝑥𝑇 = 1

|𝑇 |
]

≤
2 − 2 · 𝜇𝑠𝑐 (𝑃)
1 − 𝑜 (1) − 1

= 1 − 2 · 𝜇𝑠𝑐 (𝑃) + 𝑜 (1)
= 𝔼

𝑥∼𝜋
[ 𝑓 ] + 𝑜 (1) .

Equivalently, we can show that

𝔼
𝑥∼𝜋

[
𝑓 | 𝑥𝑇 = 1

|𝑇 |
]
= 1 − 2 · Pr

[
𝑓 (𝑥) = −1 | 𝑥𝑇 = 1

|𝑇 |
]
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≥ 1 − 2 · Pr[𝑓 (𝑥) = −1]
Pr

[
𝑥𝑇 = 1

|𝑇 |]
≥ 1 − 2 ·

𝜇𝑠𝑐 (𝑃)
1 − 𝑜 (1)

= 𝔼
𝑥∼𝜋

[ 𝑓 ] − 𝑜 (1).

This means, the set 𝑇 cannot be a 𝜏-booster for any constant 𝜏 . ■

We can now concentrate on conditioning on the existence of clauses. Our goal
is to show that no constant-sized 𝜏-boosters exist with constant probability.

Unsatisfiable subformulas are too improbable A sure way to boost the

probability of being unsatisfiable to one is to condition on the existence of an

unsatisfiable subformula. To rule this case out, the next lemma shows that the

probability that our formulas have an unsatisfiable subformula of constant size

is smaller than any constant 𝜏 for sufficiently large 𝑛. The proof essentially

shows that any minimally unsatisfiable subformula of constant size cannot exist

with constant probability. This can be seen from the fact that such subformulas

contain each variable in them at least twice and the probability for this can be

bounded using

∑𝑛
𝑖=1 𝑝

2

𝑖 and 𝑝max.

▶ Lemma 6.14. Let 𝑎, 𝑘 ∈ N be constants and let ( ®𝑝 (𝑛) )𝑛∈N be an ensemble of

variable probability distributions. If 𝑝max ∈ 𝑜 (𝑠★−1/𝑘 ) and
∑𝑛
𝑖=1 𝑝

2

𝑖 ∈ O(𝑠★−2/𝑘 ),
then a random formula from F (𝑛, 𝑘, ( ®𝑝𝑛)𝑛∈N, 𝑠) with 𝑠 ∈ O(𝑠★) has an unsatisfi-

able subformula of length at most 𝑎 with probability 𝑜 (1). ◀

Proof. Before we can state this result, we have to make some observations. First,

if a formula is unsatisfiable, it also contains a minimal unsatisfiable subformula,

i.e. an unsatisfiable subformula such that removing any clause from it would

make it satisfiable. Second, in a minimal unsatisfiable formula each variable has

to appear at least twice. Otherwise there would be a pure literal and the clause

with this literal could be satisfied and eliminated from the formula, independently

of all other variables. The formula would therefore not beminimally unsatisfiable.
Third, a result by Aharoni and Linial [AL86] states that each unsatisfiable formula

over 𝑣 variables consists of at least 𝑣 + 1 clauses. Fourth, each subformula 𝑇 of

constant length 𝑎 in 𝑘-CNF consists of 𝑎 · 𝑘 literals, and, hence, also of at most

𝑎 · 𝑘 variables.

For a constant 𝑣 let T (𝑣)
be the set of all formulas over 𝑣 variables with

at least 𝑣 + 1 and at most 𝑎 clauses in which each variable appears at least

twice and let T =
⋃
𝑣<𝑎 T (𝑣)

. Now let 𝛷 be a random formula drawn from

F
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠

)
. We use the notation𝐴 ⊆ 𝐵 to denote that𝐴 is a subformula

of 𝐵. Using a union bound we get

Pr[∃ 𝑇 ⊆ 𝛷 : 𝑇 unsat ∧ |𝑇 | ≤ 𝑎] ≤ Pr[∃ 𝑇 ∈ T : 𝑇 ⊆ 𝛷]
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≤
∑︁
𝑣<𝑎

Pr

[
∃ 𝑇 ∈ T (𝑣)

: 𝑇 ⊆ 𝛷
]
.

Now we can concentrate on bounding Pr

[
∃ 𝑇 ∈ T (𝑣)

: 𝑇 ⊆ 𝛷
]
. For 𝑣 + 1 ≤ 𝑙 ≤ 𝑎

let T (𝑣)
𝑙

be the subset of T (𝑣)
containing only formulas of length 𝑙 . It holds that

Pr

[
∃ 𝑇 ∈ T (𝑣)

: 𝑇 ⊆ 𝛷
]
≤

𝑎∑︁
𝑙=𝑣+1

Pr

[
∃ 𝑇 ∈ T (𝑣)

𝑙
: 𝑇 ⊆ 𝛷

]
.

We can see that

Pr

[
∃ 𝑇 ∈ T (𝑣)

𝑙
: 𝑇 ⊆ 𝛷

]
=

∑︁
𝑆 ∈P𝑣 ( [𝑛])

∑︁
𝐹 ∈C𝑙 (𝑆)

∏
𝑐∈𝐹

𝑞𝑐 (𝑠),

where C𝑙 (𝑆) is the collection of all sets of clauses of size 𝑙 over the variables with

indices in 𝑆 such that each variable appears at least twice. Let us take a look at a

certain 𝑆 = { 𝑗1, 𝑗2, . . . , 𝑗𝑣} and 𝐹 ∈ C𝑙 (𝑆). Due to equation (3.3) we have∏
𝑐∈𝐹

𝑞𝑐 (𝑠) =
(
𝑠 ·𝐶𝑘 ·

𝑘!

2
𝑘

)𝑙 𝑣∏
𝑖=1

(𝑝 𝑗𝑖 )𝑚𝑖 ,

where𝐶𝑘 =

(
1 + O

(
𝑠★

−2/𝑘
))

and𝑚𝑖 is the number of appearances of the variable

𝑋 𝑗𝑖 in the set of clauses 𝐹 . Due to the definition of C𝑙 (𝑆) each 𝐹 ∈ C𝑙 (𝑆) defines
multiplicities (𝑚1,𝑚2, . . . ,𝑚𝑣) for the 𝑣 variables such that𝑚𝑖 ≥ 2 for all 𝑖 ∈ [𝑣]
and

∑𝑣
𝑖=1𝑚𝑖 = 𝑘 · 𝑙 . This means, it holds that(

𝑠 ·𝐶𝑘 ·
𝑘!

2
𝑘

)𝑙 𝑣∏
𝑖=1

(𝑝 𝑗𝑖 )𝑚𝑖 ≤
(
𝑠 ·𝐶𝑘 ·

𝑘!

2
𝑘

)𝑙 ∏
𝑗 ∈𝑆

(𝑝 𝑗 )2 · 𝑝𝑘 ·𝑙−2·𝑣max
.

Since there are at most

(( 𝑣𝑘)2𝑘
𝑙

)
sets in C𝑙 (𝑆), it holds that

Pr

[
∃ 𝑇 ∈ T (𝑣)

𝑙
: 𝑇 ⊆ 𝛷

]
≤

∑︁
𝑆 ∈P𝑣 ( [𝑛])

(((𝑣
𝑘

)
2
𝑘

𝑙

) (
𝑠 ·𝐶𝑘 ·

𝑘!

2
𝑘

)𝑙
·
(∏
𝑗 ∈𝑆

(𝑝 𝑗 )2
)
· 𝑝𝑘 ·𝑙−2·𝑣

max

)
≤

( (𝑣
𝑘

)
2
𝑘

𝑙

) (
𝑠 ·𝐶𝑘 ·

𝑘!

2
𝑘

)𝑙
· 𝑝𝑘 ·𝑙−2·𝑣

max

(
𝑛∑︁
𝑖=1

𝑝2𝑖

)𝑣
∈ exp(O(𝑠★−2/𝑘 )) · 𝑜

(
·𝑠★𝑙−(𝑘 ·𝑙−2·𝑣)/𝑘−2𝑣/𝑘

)
∈ 𝑜 (1),

where the last line follows due to our requirements 𝑝max ∈ 𝑜 (𝑠★−1/𝑘 ) and∑𝑛
𝑖=1 𝑝

2

𝑖 ∈ O
(
𝑠★

−2/𝑘
)
, and due to 𝐶𝑘 =

(
1 + O

(
𝑠★

−2/𝑘
))
. We can now conclude
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that

Pr[∃ 𝑇 ⊆ 𝛷 : 𝑇 unsat ∧ |𝑇 | ≤ 𝑎] ≤
𝑎−1∑︁
𝑣=𝑘

𝑎∑︁
𝑙=𝑣+1

Pr

[
∃ 𝑇 ∈ T (𝑣)

𝑙
: 𝑇 ⊆ 𝛷

]
∈ 𝑜 (1) .

This is exactly what we wanted to show. ■

Maximally quasi-unsatisfiable subformulas provide the second-highest
boost Since we ruled out unsatisfiable subformulas as the boosters we are

looking for, we now turn our attention to satisfiable subformulas. Let𝛷𝑇 be the

formula encoded by 𝑥𝑇 = (−1) |𝑇 |
and let 𝑉 (𝑇 ) ⊆ {𝑋1, . . . , 𝑋𝑛} be the variables

in𝛷𝑇 . Note that |𝑉 (𝑇 ) | is constant since |𝑇 | is constant and each clause contains

𝑘 variables. We call 𝛷𝑇 maximally quasi-unsatisfiable (mqu) if it is satisfiable
by only one of the 2

|𝑉 (𝑇 ) |
assignments over its variable set (quasi-unsatisfiable)

and if adding any new clause with variables only from 𝑉 (𝑇 ) makes it unsatis-

fiable (maximally satisfiable). The following lemma formalizes a statement by

Friedgut [Fri99], that the biggest possible boost any satisfiable subformula can

give is achieved by mqu subformulas. The proof of the statement uses the fact

that every satisfiable subformula can be extended to a mqu subformula over the

same variables. It also uses positive correlation of increasing events [FKG71]

and the fact that we have a product probability space.

▶ Lemma 6.15. For every 𝑇 ⊆ [𝑁 ] so that𝛷𝑇 is satisfiable, there is a 𝑇 ′ ⊇ 𝑇
so that𝛷𝑇 ′ is maximally quasi-unsatisfiable and

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑥𝑇 ′ = (−1) |𝑇 ′ |

]
≥ Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑥𝑇 = (−1) |𝑇 |

]
.

◀

Proof. First of all, note that any satisfiable formula 𝛷𝑇 can be extended to a

maximally quasi-unsatisfiable formula 𝛷𝑇 ′ by first adding enough clauses to

make it quasi-unsatisfiable and then adding clauses which do not make the

resulting formula unsatisfiable as long as such clauses still exist. We now define

functions 𝑔𝑆 (𝑥) : {−1, 1}𝑁 → {−1, 1} for 𝑆 ⊆ [𝑁 ] such that 𝑔𝑆 (𝑥) = −1 if

𝑥𝑆 = (−1) |𝑆 | and 𝑔𝑆 (𝑥) = 1 otherwise. It is easy to see, that 𝑔𝑆 (𝑥) is increasing
(monotone) for all 𝑆 ⊆ [𝑁 ]. We can derive

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑥𝑇 ′ = (−1) |𝑇 ′ |

]
= Pr
𝑥∼𝜋

[ 𝑓 (𝑥) = −1 | 𝑔𝑇 ′ (𝑥) = −1 ]

=

Pr
𝑥∼𝜋

[ 𝑓 (𝑥) = −1 ∧ 𝑔𝑇 ′ (𝑥) = −1 ]

Pr
𝑥∼𝜋

[𝑔𝑇 ′ (𝑥) = −1 ]

=

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 ∧ 𝑔𝑇 (𝑥) = −1 ∧ 𝑔𝑇 ′\𝑇 (𝑥) = −1

]
Pr
𝑥∼𝜋

[𝑔𝑇 ′ (𝑥) = −1 ] .
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It now holds that {𝑓 (𝑥) = −1}, {𝑔𝑇 (𝑥) = −1}, and
{
𝑔𝑇 ′\𝑇 (𝑥) = −1

}
are decreas-

ing events (monotone functions), i. e. the event that {𝑓 (𝑥) = −1} holds cannot
increase if we increase 𝑥 . Since the intersection of decreasing events is also

decreasing, the same holds for

{
𝑓 (𝑥) = −1 ∧ 𝑔𝑇 (𝑥) = −1

}
. The FKG theo-

rem [FKG71] tells us that decreasing events are positively associated, thus

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑥𝑇 ′ = (−1) |𝑇 ′ |

]
=

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 ∧ 𝑔𝑇 (𝑥) = −1 ∧ 𝑔𝑇 ′\𝑇 (𝑥) = −1

]
Pr
𝑥∼𝜋

[𝑔𝑇 ′ (𝑥) = −1 ]

≥
Pr
𝑥∼𝜋

[ 𝑓 (𝑥) = −1 ∧ 𝑔𝑇 (𝑥) = −1 ] · Pr
𝑥∼𝜋

[
𝑔𝑇 ′\𝑇 (𝑥) = −1

]
Pr
𝑥∼𝜋

[𝑔𝑇 ′ (𝑥) = −1 ]

=

Pr
𝑥∼𝜋

[ 𝑓 (𝑥) = −1 ∧ 𝑔𝑇 (𝑥) = −1 ]

Pr
𝑥∼𝜋

[𝑔𝑇 (𝑥) = −1 ]

= Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑥𝑇 = (−1) |𝑇 |

]
In the last line we used the fact that we have a product probability space, which

implies

Pr
𝑥∼𝜋

[
𝑔𝐴\𝐵 (𝑥) = −1

]
=

Pr
𝑥∼𝜋

[𝑔𝐴 (𝑥) = −1 ]

Pr
𝑥∼𝜋

[𝑔𝐵 (𝑥) = −1 ]

for all 𝐵 ⊆ 𝐴. ■

The part of the formula containing only variables from the booster is still
satisfiable We now turn to analyzing the boost maximally quasi-unsatisfiable

subformulas can give. In the end will will show that they cannot boost the

unsatisfiability probability by a constant. Lemma 6.15 implies that the same

holds for all satisfiable subformulas, thus giving us the desired contradiction.

Let 𝑇 ⊆ [𝑁 ] with 𝛷𝑇 mqu. In order to see how big the boost by such a 𝑇

can be, we split 𝑥 into two parts, the part 𝑥𝑆 , so that each clause in 𝛷𝑆 only

contains variables from 𝑉 (𝑇 ), and the part 𝑥
𝑆
, in which each encoded clause

contains at least one variable from 𝑉 (𝑇 ) = {𝑋1, . . . , 𝑋𝑛} \ 𝑉 (𝑇 ). Let 𝑓 (𝑥𝑆 ) be
−1 if𝛷𝑆 is unsatisfiable and 1 otherwise. The following lemma asserts that𝛷𝑆
can only be unsatisfiable with probability in 𝑜 (1). This is the case, because it is
very unlikely to flip one of the constant number of clauses that can make the

maximally satisfiable booster unsatisfiable.

▶ Lemma 6.16. Let𝑇 ⊆ [𝑁 ] with𝛷𝑇 mqu and let 𝑆 ⊆ [𝑁 ] be the indices of all
clauses that only contain variables from 𝑉 (𝑇 ). Then,

Pr
𝑥∼𝜋

[
𝑓 (𝑥𝑆 ) = −1 | 𝑥𝑇 = (−1) |𝑇 |

]
∈ 𝑜 (1).
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◀

Proof. It holds that 𝑇 ⊆ 𝑆 by definition. Due to Lemma 6.13 we can assume

𝑥𝑇 = (−1) |𝑇 |
. Furthermore, because 𝛷𝑇 is maximally satisfiable it holds that

𝑓 (𝑥 ′) = −1 if 𝑥 ′
𝑇
= 𝑥𝑇 and if there is an 𝑖 ∈ 𝑆 \𝑇 with 𝑥 ′𝑖 = −1, i. e.𝛷𝑇 becomes

unsatisfiable if at least one other clause over 𝑆 is flipped. Since we already

condition on 𝑥𝑇 = (−1) |𝑇 |
and since the clauses get flipped independently, it

holds that

Pr
𝑥∼𝜋

[
𝑓 (𝑥𝑆 ) = −1 | 𝑥𝑇 = (−1) |𝑇 |

]
= Pr
𝑥∼𝜋

[ ∃ 𝑖 ∈ 𝑆 \𝑇 : 𝑥𝑖 = −1 ]

≤
(
|𝑉 (𝑇 ) |
𝑘

)
· 2𝑘 ·𝐶𝑘 ·

𝑘! · 𝑠𝑐
2
𝑘

· 𝑞max ∈ 𝑜 (1),

where we overestimated |𝑆 \𝑇 | ≤ |𝑆 | ≤
( |𝑉 (𝑇 ) |

𝑘

)
· 2𝑘 and used equation (6.10). ■

The booster adds shorter clauses to the other part of the formula We

can now concentrate on the case that𝛷𝑆 is satisfiable. Since𝛷𝑇 is maximally

satisfiable, it holds that𝛷𝑆 = 𝛷𝑇 , and since𝛷𝑇 is quasi-unsatisfiable,𝛷𝑆 also only

has one satisfying assignment. We now want to create 𝑥
𝑆
under these conditions.

To this end, we assume that the variables 𝑉 (𝑇 ) take the one assignment that

makes 𝛷𝑆 satisfiable. For a clause containing both variables from 𝑉 (𝑇 ) and
variables from𝑉 (𝑇 ) this means the clause is either satisfied or the variables from

𝑉 (𝑇 ) can be eliminated as their literals are all set to false. Effectively, this means

that this partial assignment can create clauses over 𝑉 (𝑇 ) of length 0 < 𝑙 < 𝑘 .

The following lemma gives an upper bound on the number 𝐷𝑙 of 𝑙-clauses we

can create this way. However, with our requirement on 𝑝max we can only get

clauses of size 𝑘 − 1. The proof of the statement is a simple application of the

Markov bound.

▶ Lemma 6.17. Let 𝑝max ∈ 𝑜 (𝑠★−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑠★)) and let𝑇 ⊆
[𝑁 ] so that𝛷𝑇 is maximally quasi-unsatisfiable. Assuming a partial assignment

for the variables 𝑉 (𝑇 ) that satisfies𝛷𝑇 a. a. s. creates at most

𝐷𝑘−1 ∈ O
(
𝑠★ · 𝑝max

)
∈ 𝑜

(
𝑠★

1− 3𝑘−1
4𝑘−2 · log−

𝑘−1
2𝑘−1 (𝑠★)

)
clauses of length 𝑘 − 1 over 𝑉 (𝑇 ) and no shorter clauses. ◀

Proof. A clause (ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑙 ) with 0 < 𝑙 < 𝑘 and |ℓ1 |, . . . , |ℓ𝑙 | ∈ 𝑉 (𝑇 ) is
created if we flip at least one clause, which contains (ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑙 ) and 𝑙 − 𝑘
variables from 𝑉 (𝑇 ) so that these are not satisfied by the partial assignment.

Thus, the probability of creating a clause (ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑙 ) is at most

𝐶𝑘
𝑘! · 𝑠𝑐
2
𝑘

𝑙∏
𝑖=1

𝑝 ( |ℓ𝑖 |) ·
∑︁

𝐽 ∈P𝑘−𝑙 (𝑉 (𝑇 ))

∏
𝑋 ∈𝐽

𝑝 (𝑋 ) ≤ 𝐶𝑘
𝑘! · 𝑠𝑐
2
𝑘

·
(
|𝑉 (𝑇 ) |
𝑘 − 𝑙

)
·𝑝𝑘−𝑙

max
·
𝑙∏
𝑖=1

𝑝 ( |ℓ𝑖 |),

(6.11)
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since

∑
𝐽 ∈P𝑘−𝑙 (𝑉 (𝑇 ))

∏
𝑋 ∈𝐽 𝑝 (𝑋 ) ≤

( |𝑉 (𝑇 ) |
𝑘−𝑙

)
· 𝑝𝑘−𝑙

max
. Summing over all the possibil-

ities to choose |ℓ1 |, . . . , |ℓ𝑙 | ∈ 𝑉 (𝑇 ) and their 2
𝑙
signs, the expected number of

clauses of length 𝑙 added would be at most

𝐸𝑙 = 𝐶𝑘
𝑘! · 𝑠𝑐
2
𝑘−𝑙 ·

(
|𝑉 (𝑇 ) |
𝑘 − 𝑙

)
· 𝑝𝑘−𝑙

max
·

∑︁
𝐼 ∈P𝑙

(
𝑉 (𝑇 )

)
∏
𝑋 ∈𝐼

𝑝 (𝑋 ) ∈ O
(
𝑠★ · 𝑝𝑘−𝑙

max

)
,

since 𝐶𝑘 = 1 + 𝑜 (1) and 𝑠𝑐 ∈ O(𝑠★). With our requirement on 𝑝max it holds that

𝐸𝑙 ∈ 𝑜
(
𝑠★

1−(𝑘−𝑙) · 3𝑘−1
4𝑘−2 · log−(𝑘−𝑙) ·

𝑘−1
2𝑘−1 (𝑠★)

)
.

This expression is 𝑜 (1) for 𝑙 ≤ 𝑘 − 2. That means, due to a Markov bound, we do

not create any clauses of size 𝑙 ≤ 𝑘 − 1 with probability 1 − 𝑜 (1). It remains to

bound the number of (𝑘 − 1)-clauses we create.
Let ℎ(𝑠★) = 𝑠★1−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑠★). If this expression We can

use a Markov bound to prove that there are at least

𝐷𝑘−1 =
√︁
ℎ(𝑠★) · 𝐸𝑘−1 ∈ 𝑜

(
ℎ(𝑠★)

)
clauses of length 𝑘 − 1 with probability at most

𝐸𝑘−1√︁
ℎ(𝑠★) · 𝐸𝑘−1

∈ 𝛩
( √

𝐸𝑘−1√︁
ℎ(𝑠★)

)
∈ 𝑜 (1).

■

We now want to create the resulting formula over variables from𝑉 (𝑇 ) in two

parts. First we create 𝑘-clauses over 𝑉 (𝑇 ) with the usual clause-flipping model,

where the clause-probabilities are the same as in F
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠𝑐

)
. Then,

we add 𝐷𝑘−1 (𝑘 − 1)-clauses over 𝑉 (𝑇 ) with a separate clause-drawing model.

We let 𝛷̂ denote the random formula that this approach produces.

The probability 𝑞𝑐 to add a clause 𝑐 = (ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑘−1) of size 𝑘 − 1 in our

original clause-flipping model F 𝑁 (𝑠𝑐) can be upper-bounded by

𝑞𝑐 ≤ 𝐶𝑘 ·
𝑘! · 𝑠𝑐
2
𝑘

· |𝑉 (𝑇 ) | · 𝑝max ·
𝑘−1∏
𝑖=1

𝑝 ( |ℓ𝑖 |)

due to equation (6.11). However, if we want to use those probabilities when

drawing clauses, they have to be normalized. This results in probabilities

𝑞′𝑐 =
𝐶𝑘 · 𝑘!·𝑠𝑐

2
𝑘 · |𝑉 (𝑇 ) | · 𝑝max ·

∏𝑘−1
𝑖=1 𝑝 ( |ℓ𝑖 |)∑

𝑐=(ℓ′
1
∨...∨ℓ′

𝑘−1) 𝐶𝑘 ·
𝑘!·𝑠𝑐
2
𝑘 · |𝑉 (𝑇 ) | · 𝑝max ·

∏𝑘−1
𝑖=1 𝑝 ( |ℓ ′𝑖 |)
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= 𝐶 ′
𝑘−1 ·

(𝑘 − 1)!
2
𝑘−1

𝑘−1∏
𝑖=1

𝑝 ( |ℓ𝑖 |), (6.12)

for the clause drawing model, where 𝐶 ′
𝑘−1 = 1 + O(𝑝max), since∑︁

𝑐=(ℓ′
1
∨ℓ′

2
∨...∨ℓ′

𝑘−1)

𝑘−1∏
𝑖=1

𝑝 ( |ℓ ′𝑖 |) = 2
𝑘−1

∑︁
𝑆⊆𝑉 (𝑇 ) : |𝑆 |=𝑘−1

∏
𝑥 ∈𝑆

𝑝𝑥

≥ 2
𝑘−1

(𝑘 − 1)! · ((1 − (|𝑉 (𝑇 ) | + 𝑘 − 2) · 𝑝max)𝑘−1)

due to Lemma 4.1. We can then apply Lemma 6.1 to relate the probability that 𝛷̂

is unsatisfiable to the probability that the original formula is unsatisfiable under

its single satisfying assignment for 𝑉 (𝑇 ).
▶ Lemma 6.18. It holds that

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 ∧ 𝑓 (𝑥𝑆 ) = 1 | 𝑥𝑇 = (−1) |𝑇 |

]
≤ Pr

[
𝛷̂ unsat

]
+ 𝑜 (1).

◀

Proof. First, we note that

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 ∧ 𝑓 (𝑥𝑆 ) = 1 | 𝑥𝑇 = (−1) |𝑇 |

]
≤ Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑓 (𝑥𝑆 ) = 1 ∧ 𝑥𝑇 = (−1) |𝑇 |

]
.

This means, we still get an upper bound on the desired probability by condition-

ing on both the event that 𝑇 is present and the event that no other clause with

only variables from 𝑉 (𝑇 ) is present. With these two conditions 𝑥𝑆 is fixed to

𝑥𝑇 . Thus, we do not have to sample this part of the formula. We can assume

to have a clause-flipping model over variables in 𝑉 (𝑇 ), where 𝑘-clauses and
(𝑘 − 1)-clauses are flipped. Therefore, we only have to consider the probability

that our clause-flipping model generates unsatisfiable instances on 𝑉 (𝑇 ) . The
clause probabilities in this model are as follows. For 𝑘-clauses we use the origi-

nal probabilities 𝑞𝑐 (𝑠) and for (𝑘 − 1)-clauses 𝑐 = (ℓ1, . . . ℓ𝑘−1) we use the upper
bound

𝑞𝑐 = 𝐶𝑘 ·
𝑘! · 𝑠𝑐
2
𝑘

· |𝑉 (𝑇 ) | · 𝑝max ·
𝑘−1∏
𝑖=1

𝑝 ( |ℓ𝑖 |) . (6.13)

Let (𝛺 ′, 𝜋 ′) be the product space of this model and let 𝑓 ′ : 𝛺 ′ → {−1, 1} be the
characteristic function of unsatisfiability in this model. Since 𝑓 is monotone and

equation (6.13) is an upper bound for the real probabilities of those clauses to

appear, it holds that

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑓 (𝑥𝑆 ) = 1 ∧ 𝑥𝑇 = (−1) |𝑇 |

]
≤ Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 ] (6.14)
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due to the observation in Lemma 3.9, that increasing any clause probability also

increases the probability for a monotone property to hold.

The probability to have at most 𝐷𝑘−1 (𝑘 − 1)-clauses in the clause-flipping

model described above is 1−𝑜 (1) due to the sameMarkov bound as in Lemma 6.17.

This holds since Lemma 6.17 uses exactly the same probabilities as upper bounds

as the new clause-flipping model uses as clause probabilities for (𝑘 − 1)-clauses.
Therefore,

Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 ] ≤ Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 ∧ ≤ 𝐷𝑘−1 (𝑘 − 1)-clauses ] +𝑜 (1).

(6.15)

We can now use Lemma 6.3 and the monotonicity of 𝑓 ′ to derive

Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 ∧ ≤ 𝐷𝑘−1 (𝑘 − 1)-clauses ]

=

𝐷𝑘−1∑︁
𝑖=0

(
Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 | 𝑖 (𝑘 − 1)-clauses ] · Pr

𝑥′∼𝜋 ′
[ 𝑖 (𝑘 − 1)-clauses ]

)
≤ Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 | 𝐷𝑘−1 (𝑘 − 1)-clauses ] · Pr

𝑥′∼𝜋 ′
[ ≤ 𝐷𝑘−1 (𝑘 − 1)-clauses ]

= Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 | 𝐷𝑘−1 (𝑘 − 1)-clauses ] + 𝑜 (1). (6.16)

This is possible, since we consider a monotone function on a product probability

space and we condition on the number of clauses flipped in the restriction of

𝑥 ′, which encodes (𝑘 − 1)-clauses. We now want to substitute flipping (𝑘 − 1)-
clauses with drawing (𝑘 − 1)-clauses on 𝑉 (𝑇 ). The normalized probabilities of

our models on (𝑘 − 1)-clauses are

𝑞′𝑐 = 𝐶
′
𝑘−1 ·

(𝑘 − 1)!
2
𝑘−1

𝑘−1∏
𝑖=1

𝑝 ( |ℓ𝑖 |)

with 𝐶 ′
𝑘−1 = 1 + O(𝑝max) according to equation (6.12). Thus, for the flipping

model we have a scaling factor of

𝑠 ′ =
𝑞𝑐

𝑞′𝑐
=
𝐶𝑘 · 𝑘!·𝑠𝑐

2
𝑘 · |𝑉 (𝑇 ) | · 𝑝max ·

∏𝑘−1
𝑖=1 𝑝 ( |ℓ𝑖 |)

𝐶 ′
𝑘−1 ·

(𝑘−1)!
2
𝑘−1

∏𝑘−1
𝑖=1 𝑝 ( |ℓ𝑖 |)

∈ 𝛩
(
𝑠★ · 𝑝max

)
and in the drawing model we draw 𝑚′ = 𝐷𝑘−1 ∈ O(𝑠★ · 𝑝max) clauses. The
maximum clause probability is 𝑞′

max
∈ 𝛩 (𝑝𝑘−1

max
). This implies 𝑠 ′ ·𝑚′ · 𝑞max ∈

O(𝑠★2 · 𝑝𝑘+1
max

) ∈ 𝑜 (1) due to our choice of 𝑝max. Thus, we can use Lemma 6.1 to

derive

Pr

𝑥′∼𝜋 ′
[ 𝑓 ′(𝑥 ′) = −1 | ≤ 𝐷𝑘−1 (𝑘 − 1)-clauses ]

= Pr

[
𝛷̂ unsat | no (𝑘 − 1)-clause drawn twice

]
+ 𝑜 (1). (6.17)
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Let C𝑘−1(𝑉 ) be the set of all (𝑘−1)-clauses over the variables𝑉 ⊆ {𝑋1, . . . , 𝑋𝑛}.
In the clause-drawing phase of creating 𝛷̂ the probability to draw a (𝑘−1)-clause
twice is at most(

𝐷𝑘−1
2

)
·

∑︁
𝑐∈C𝑘−1 (𝑉 (𝑇 ))

𝑞′𝑐
2 ≤ 𝐷2

𝑘−1 · 𝑞
′
max

∈ O(𝑠★2 · 𝑝𝑘+1
max

) ∈ 𝑜 (1).

Thus, it holds that

Pr

[
𝛷̂ unsat | no (𝑘 − 1)-clause drawn twice

]
≤ Pr

[
𝛷̂ unsat

]
+ 𝑜 (1). (6.18)

Putting equation (6.14), equation (6.15), equation (6.17), equation (6.16), and

equation (6.18) together yields the desired result of Lemma 6.18. ■

Shorter clauses can be substituted with k-clauses We now want to bound

Pr

[
𝛷̂ unsat

]
. To this end, let 𝛷̃ be the part of 𝛷̂ only consisting of 𝑘-clauses.

Let us assume Pr
[
𝛷̂ unsat

]
≥ 𝜇𝑠𝑐 (𝑓 ) + 𝛿 for some constant 𝛿 > 0. We know

that 𝛷̃ is unsatisfiable with probability at most 𝜇𝑠𝑐 (𝑓 ), since it is drawn from

F
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠𝑐

)
with the difference that only clauses over𝑉 (𝑇 ) are flipped.

This implies Pr

[
𝛷̂ unsat ∧ 𝛷̃ sat

]
≥ 𝛿 . We now define a more general concept

of coverability, analogously to Friedgut [Fri99]. This will allow us to substitute

(𝑘 −1)-clauses with 𝑘-clauses while maintaining essentially the same probability

to make 𝛷̂ unsatisfiable.

▶ Definition 6.19. Let 𝐷1, . . . , 𝐷𝑎 ∈ N and 𝑙1, . . . , 𝑙𝑎 ∈ N and let ®𝑞1, . . . , ®𝑞𝑎 be
probability distributions. For𝐴 ⊆ {0, 1}𝑛 , we say that𝐴 is ((𝑑1, 𝑙1, ®𝑞1), (𝑑2, 𝑙2, ®𝑞2),
. . . , (𝑑𝑎, 𝑙𝑎, ®𝑞𝑎), 𝜀)-coverable, if the union of𝑑𝑖 subcubes of co-dimension 𝑙𝑖 chosen

according to probability distribution ®𝑞𝑖 for 1 ≤ 𝑖 ≤ 𝑎 has a probability of at least

𝜀 to cover 𝐴. ◀

In contrast to Friedgut’s definition, we permit subcubes of arbitrary co-

dimension andwith arbitrary probability distributions instead of only subcubes of

co-dimension 1 with a uniform distribution. In the context of satisfiability we say

that a specific formula (not a random formula) 𝐹 is ((𝑑1, 𝑙1, ®𝑞1), . . . , (𝑑𝑎, 𝑙𝑎, ®𝑞𝑎), 𝜀)-
coverable if the probability to make it unsatisfiable by adding 𝑑𝑖 random clauses

of size 𝑙𝑖 chosen according to distribution ®𝑞𝑖 for 𝑖 = 1, 2, . . . 𝑎 is at least 𝜀 in total.

Now let ®𝑞′
𝑘−1 be a vector of the clause drawing probabilities 𝑞

′
𝑐 for all clauses of

size𝑘−1 over𝑉 (𝑇 ). It holds that with a sufficiently large constant probability 𝛷̃ is

((𝐷𝑘−1, 𝑘 − 1, ®𝑞′
𝑘−1), 𝛿)-coverable. The next lemma shows that formulas with this

property are also ((𝑔(𝑛), 𝑘, ®𝑞′
𝑘
), 𝛿 ′)-coverable for some function 𝑔(𝑛) ∈ 𝑜 (

√
𝑠★)

and any constant 𝛿 ′ < 𝛿 . Here, ®𝑞′
𝑘
is the vector of normalized clause probabilities

for 𝑘-clauses on 𝑉 (𝑇 ), i. e. for a clause 𝑐 = (ℓ1, . . . , ℓ𝑘 ) with |ℓ1 |, . . . , |ℓ𝑘 | ∈ 𝑉 (𝑇 )
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the clause probability is

𝑞′𝑐 = 𝐶
′
𝑘
· 𝑘!
2
𝑘

𝑘∏
𝑖=1

𝑝 ( |ℓ𝑖 |)

with 𝐶 ′
𝑘
= 1 + O(𝑝max), equivalently to equation (6.12). The proof of the lemma

is essentially a more precise version of Friedgut’s original proof.

▶ Lemma 6.20. Let ®𝑞𝑘 be our original clause probability distribution, let ®𝑞′
𝑘−1

be as described in equation (6.12), and let 𝐷𝑘−1 be as defined. If a concrete

formula 𝐹 is ((𝐷𝑘−1, 𝑘 − 1, ®𝑞′
𝑘−1), 𝛿)-coverable for some constant 𝛿 > 0, it is

also ((𝑔(𝑛), 𝑘, ®𝑞′
𝑘
), 𝛿 ′)-coverable for some function 𝑔(𝑛) ∈ 𝑜 (

√
𝑠★) and for every

constant 0 < 𝛿 ′ < 𝛿 . ◀

Proof. Let 𝐶𝑖 denote the 𝑖-th random clause of length 𝑘 − 1 we add. We have to

show that, if 𝐹 is ((𝐷𝑘−1, 𝑘 − 1, ®𝑞′
𝑘−1), 𝛿)-coverable for some constant 𝛿 > 0, it

is also ((𝑔(𝑛), 𝑘, ®𝑞′
𝑘
), 𝛿 ′)-coverable for 𝑔(𝑛) ∈ 𝑜 (

√
𝑠★) and some other constant

𝛿 ′ > 0. For the sake of simplicity, let 𝛾𝑖 denote the probability that the 𝑖-th

(𝑘 − 1)-clause makes 𝐹 unsatisfiable and that it was not made unsatisfiable by

any formerly added (𝑘 − 1)-clauses:

𝛾𝑖 = Pr

[(
𝐹

𝑖∧
𝑗=1

𝐶 𝑗

)
unsat ∧

(
𝐹

𝑖−1∧
𝑗=1

𝐶 𝑗

)
sat

]
.

Now we look at 𝛾𝑖 , starting from 𝑖 = 𝐷𝑘−1. 𝛾𝑖 represents the contribution of

clause 𝐶𝑖 to the overall probability 𝛿 to cover 𝐹 . If 𝛾𝑖 < 𝛿/(2 · 𝐷𝑘−1), we simply

delete that clause. Otherwise, we can substitute it with𝛩 (𝐷𝑘/(𝑘−1)
𝑘−1 · log𝐷𝑘−1)

𝑘-clauses, while losing at most 𝛿/(4 · 𝐷𝑘−1) of the total probability 𝛿 . This fact
will be shown in the next step. We then reorder the clauses to add 𝑘-clauses first.

If we repeat this step until all 𝐷𝑘−1 (𝑘 − 1)-clauses are either deleted or replaced,
the remaining probability will be at least 𝛿 ′ = 𝛿/2.
If we want to substitute (𝑘 − 1)-clauses with 𝑘-clause, it holds that we have

a random formula 𝛷 = 𝐹
∧𝑖−1
𝑗=1𝐶 𝑗 so that Pr[(𝛷 ∧𝐶) unsat ∧𝛷 sat] = 𝛾𝑖 ≥

𝛿/(2 ·𝐷𝑘−1) for some constant 𝛿 > 0 and some (𝑘 −1)-clause𝐶 drawn at random

according to distribution ®𝑞′
𝑘−1. Now we want to know what the probability is to

have a concrete formula𝛷 ′
which is satisfiable and satisfies Pr[(𝛷 ′ ∧𝐶) unsat] ≥

𝛿/(4 · 𝐷𝑘−1). Let this probability be called 𝑃good. It holds that

𝛾𝑖 = Pr[(𝛷 ∧𝐶) unsat ∧𝛷 sat]
=

∑︁
𝛷′

sat

(Pr[𝛷 = 𝛷 ′] · Pr[(𝛷 ′ ∧𝐶) unsat])

< 𝑃good +
(
1 − 𝑃good

)
· 𝛿

4 · 𝐷𝑘−1
,

since with probability 𝑃good we have a good formula with Pr[𝛷 ′ ∧𝐶 unsat] ∈
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[𝛿/(4 · 𝐷𝑘−1), 1] and with probability Pr[𝛷 sat] − 𝑃good < 1 − 𝑃good we have a
satisfiable formula with Pr[(𝛷 ′ ∧𝐶) unsat] < 𝛿/(4 · 𝐷𝑘−1). From this we can

derive

𝑃good ≥
𝛾𝑖 − 𝛿

4·𝐷𝑘−1

1 − 𝛿
4·𝐷𝑘−1

.

We will show subsequently that for exactly those formulas𝛷 ′
, we can substitute

the random (𝑘 − 1)-clause with 𝐷 ′
𝑘−1 ∈ 𝛩 (𝐷𝑘/(𝑘−1)

𝑘−1 log𝐷𝑘−1) 𝑘-clauses so that

after the substitution it holds that

Pr

𝛷 ′
𝐷′
𝑘−1∧
𝑗=1

𝐶
(𝑘)
𝑗

unsat

 ≥
(
1 − 𝛿

4 · 𝐷𝑘−1

)
.

This implies

Pr

𝛷
𝐷′
𝑘−1∧
𝑗=1

𝐶
(𝑘)
𝑗

unsat ∧𝛷 sat

 ≥ 𝑃good ·
(
1 − 𝛿

4 · 𝐷𝑘−1

)
≥ 𝛾𝑖 −

𝛿

4 · 𝐷𝑘−1
.

This means, we only lose 𝛿/(4 · 𝐷𝑘−1) of the total probability 𝛿 as desired.

Now assume we had a concrete satisfiable formula𝛷 ′
with

Pr

[
𝛷 ′ ∧𝐶 (𝑘−1)

unsat

]
= 𝑥 ≥ 𝛿

4 · 𝐷𝑘−1

for a (𝑘 − 1)-clause𝐶 (𝑘−1)
drawn at random according to distribution ®𝑞′

𝑘−1. Now
let us see how many 𝑘-clauses we need to substitute this (𝑘 − 1)-clause. The
fact that 𝛷 ′

is coverable with a single (𝑘 − 1)-clause with probability at least

𝛿/(4 · 𝐷𝑘−1) means, that there is a subset of literals 𝐿 which appears in all

satisfying assignments. Furthermore, the probability to draw a clause which

forbids those literals is at least 𝛿/(4 ·𝐷𝑘−1). This is the case if the clause contains
literals from 𝐿, but with inverted signs. Let us denote by 𝐿 the set of literals from

𝐿 with inverted signs. To cover𝛷 ′
with a 𝑘-clause, the 𝑘-clause has to contain

only literals from 𝐿. It holds that

𝑥 ≤ Pr

[
𝐶 (𝑘−1) ⊆ 𝐿

]
= 𝐶 ′

𝑘−1 ·
(𝑘 − 1)!
2
𝑘−1

∑︁
𝑆⊆𝐿 : |𝑆 |=𝑘−1

∏
ℓ∈𝑆

𝑝 ( |ℓ |) ≤ 𝐶 ′
𝑘−1 ·

©­«12
∑︁
ℓ∈𝐿

𝑝 ( |ℓ |)ª®¬
𝑘−1

due to equation (6.12). The last inequality gives us

1

2

∑︁
ℓ∈𝐿

𝑝 ( |ℓ |) ≥
(
𝑥

𝐶 ′
𝑘−1

)
1/(𝑘−1)

.
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Note that 𝑥1/(𝑘−1) ∈ 𝛺 (𝐷−1/(𝑘−1)
𝑘−1 ) ∈ 𝜔 (𝑝max) and thus, |𝐿 | ≥ 𝑘 . The probability

to cover𝛷 ′
with a 𝑘-clause is now

Pr

[
𝐶 (𝑘) ⊆ 𝐿

]
= 𝐶 ′

𝑘
· 𝑘!
2
𝑘

∑︁
𝑆⊆𝐿 : |𝑆 |=𝑘

∏
ℓ∈𝑆

𝑝 ( |ℓ |)

≥ 𝐶 ′
𝑘
· 𝑘!
2
𝑘
· 1

𝑘!
· ©­«

∑︁
ℓ∈𝐿

𝑝 ( |ℓ |) − 𝑘 max

ℓ′∈𝐿
(𝑝 ( |ℓ ′ |))ª®¬

𝑘

≥ 𝐶 ′
𝑘
· ©­«12

∑︁
ℓ∈𝐿

𝑝 ( |ℓ |) − 𝑘

2

· 𝑝max

ª®¬
𝑘

= 𝛩

((
𝑥

𝐶 ′
𝑘−1

)𝑘/(𝑘−1) )
,

since
1

2

∑
ℓ∈𝐿 𝑝 ( |ℓ |) ≥ (𝑥/𝐶 ′

𝑘−1)
1/(𝑘−1) ∈ 𝜔 (𝑝max),𝐶 ′

𝑘
= 1+𝑜 (𝑠★−1/𝑘 ), and𝐶 ′

𝑘−1 =

1 + 𝑜 (𝑠★−1/𝑘 ). It follows that the probability to cover𝛷 ′
with 𝑔(𝑛) 𝑘-clauses is at

least

1 −
(
1 −𝛩

(
𝑥𝑘/(𝑘−1)

))𝑔 (𝑛)
≥ 1 − 𝑒−𝛩 (𝑥𝑘/(𝑘−1) ) ·𝑔 (𝑛) ≥ 1 − 𝛿

4 · 𝐷𝑘−1

for 𝑔(𝑛) ∈ 𝛺 (𝑥−𝑘/(𝑘−1) log(4 · 𝐷𝑘−1/𝛿)), which is 𝛺 (𝐷𝑘/(𝑘−1)
𝑘−1 log𝐷𝑘−1) for 𝑥 ≥

𝛿/(4 · 𝐷𝑘−1) as desired.
It now remains to count how many 𝑘-clauses we needed. In each substitution

step we used𝛩 (𝐷𝑘/(𝑘−1)
𝑘−1 log𝐷𝑘−1) 𝑘-clauses, while there are at most 𝐷𝑘−1 (𝑘 −

1)-clauses. Therefore, we need at most O(𝐷𝑘/(𝑘−1)+1
𝑘−1 · log𝐷𝑘−1) 𝑘-clauses to

substitute (𝑘 − 1)-clauses. Furthermore, in our case

𝑔(𝑛) ∈ 𝛩
(
𝐷
𝑘/(𝑘−1)+1
𝑘−1 · log𝐷𝑘−1

)
∈ 𝑜

(√
𝑠★

)
,

since 𝑝max ∈ 𝑜 (𝑠★−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑠★)). Please note, that, instead
of additive errors 𝛿/(4 · 𝐷𝑘−1) per substitution and 𝛿/(2 · 𝐷𝑘−1) per deletion, we
could have chosen any arbitrarily small constant fraction of 𝛿/𝐷𝑘−1. With this in

mind, we can actually achieve a cover probability of 𝛿 ′ for any constant 𝛿 ′ < 𝛿
with the same asymptotic number of 𝑘-clauses.

■

The former lemma states that if our random formula 𝛷̃ is at least ((𝐷𝑘−1,
𝑘 − 1, ®𝑞′

𝑘−1), 𝛿)-coverable, we can substitute the second step of getting 𝛷̂ by

instead adding 𝑔(𝑛) 𝑘-clauses. Let 𝛷 ′
denote the random formula we get this

way, i. e. 𝛷̃ and 𝑔(𝑛) additional 𝑘-clauses. What is the overall probability that𝛷 ′

is unsatisfiable? We choose a constant 𝜀 > 0 and call a formula 𝐹 good if it is

satisfiable and ((𝐷𝑘−1, 𝑘 − 1, ®𝑞′
𝑘−1), 𝜀𝐹 )-coverable for some constant 𝜀𝐹 ≥ 𝜀. Also,
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we let 𝑅 denote the set of random clauses of sizes 𝑘 − 1 we add to 𝐹 . It holds that

Pr

[
𝛷̂ unsat ∧ 𝛷̃ sat

]
=

∑︁
𝐹 sat

Pr

[
𝛷̃ = 𝐹

]
· Pr[𝐹 ∧ 𝑅 unsat] .

That means, if we substitute shorter clauses with 𝑘-clauses, we decrease 𝜀𝐹 =

Pr[𝐹 ∧ 𝑅 unsat] by at most 𝜀 if 𝐹 is good. If 𝐹 is bad, we cannot guarantee any-

thing, so we might lose the contribution of those formulas completely. However,

bad formulas 𝐹 satisfy Pr[𝐹 ∧ 𝑅 unsat] < 𝜀. That means, in total we lose at most∑︁
𝐹 good

Pr

[
𝛷̃ = 𝐹

]
· 𝜀 +

(
Pr

[
𝛷̃ sat

]
− Pr

[
𝛷̃ good

] )
· 𝜀 ≤ Pr

[
𝛷̃ sat

]
· 𝜀 ≤ 𝜀.

We can choose 𝜀 = 𝛿/2 to guarantee Pr[𝛷 ′
unsat] ≥ 𝜇𝑠𝑐 (𝑓 ) + 𝛿/2.

Bounding the boost by bounding the slope of the probability function
We can now show that instead of adding 𝑔(𝑛) 𝑘-clauses, we can increase the

scaling factor 𝑠 of our original clause-flipping model by a value 𝑠 ′ ∈ 𝛩 (𝑔(𝑛)) to
achieve the same probability. The proof uses Lemma 6.1. However, for the lemma

to work, we have to ensure 𝑠 ′ · 𝑔(𝑛) ∈ 𝑜 (𝑞−1
max

). This condition is satisfied due

to the requirement 𝑝max ∈ 𝑜 (𝑠★−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑠★)). It implies

𝑔(𝑛)2 ∈ 𝑜
(
𝑠★

)
and 𝑠★ ∈ 𝑜 (𝑞−1

max
) holds due to equation (6.10).

Also note that we assume 𝑔(𝑛) ∈ 𝜔 (1) for the rest of the proof. Assume

there was some constant that upper-bounded 𝑠★, i. e. 𝑠★ ∈ O(1). This means,

due to 𝑔(𝑛) ∈ 𝑜 (
√
𝑠★), we would not need to add any additional clauses to

get a probability of at least 𝜇𝑠𝑐 + 𝛿/2. However, in that case 𝛷̃ = 𝛷 ′
and we

know Pr

[
𝛷̃ unsat

]
≤ 𝜇𝑠𝑐 , a contradiction. That means, 𝑠★ ∉ O(1). As with our

definitions of coarse thresholds, that means for every constant 𝜀 > 0 there are

infinitely many 𝑛 ∈ N (among the ones we consider with the coarse threshold

property) such that 𝑠★(𝑛) ≥ 𝜀. From this we can derive that there is a series of

values 𝑛 ∈ N that satisfy 𝑠★(𝑛) ∈ 𝜔 (1) by doing the following: Every time we

encounter a value 𝑠★(𝑛), we restrict the partial function to values of at least 𝑠★(𝑛)
from this point on. With 𝑠★(𝑛) ∈ 𝜔 (1) we can now show, that𝑔(𝑛) ∈ 𝜔 (1) as well.
We know that 𝑔(𝑛) ∈ 𝑜 (

√
𝑠★). Since the actual value of 𝑔(𝑛) is not relevant, as

long as 𝑔(𝑛) ∈ 𝑜 (
√
𝑠★), we can choose 𝑔′(𝑛) = max(𝑔(𝑛), 𝑠★1/3). This guarantees

both 𝑔′(𝑛) ∈ 𝑜 (
√
𝑠★) and 𝑔′(𝑛)2 · 𝑞max ∈ 𝑜 (1). Also, increasing the number of

clauses can only improve the cover probability. By this argumentation, we can

assume 𝑔(𝑛) ∈ 𝜔 (1) for the rest of the proof.
▶ Lemma 6.21. For 𝑠 ′(𝑛) = 4 · 𝑔(𝑛) ∈ 𝑜 (

√
𝑠★) it holds that

Pr[𝛷 ′
unsat] ≤ 𝜇𝑠𝑐 (𝑛)+𝑠′ (𝑛) ({𝑓 (𝑥) = −1}) + 𝑜 (1) .

◀

Proof. Instead of adding 𝑔(𝑛) ∈ 𝑜 (𝑠★) 𝑘-clauses to get𝛷 ′
, we add another phase

of clause flipping. In this phase 𝑘-clauses with only variables from 𝑉 (𝑇 ) are
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flipped with the normalized probabilities ®𝑞′
𝑘
and scaling factor 𝑠 ′. We can relate

the model drawing 𝑔(𝑛) 𝑘-clauses with the flipping model in the following way.

Let 𝐹 be a satisfiable formula coverable by 𝑘-clauses, letD(𝑔(𝑛)) be the drawing
model, F (𝑠 ′) be the flipping model, and 𝑆 be the random set of clauses created

by those models. Due to the requirement 𝑔(𝑛)2 ∈ 𝑜 (𝑞−1
max

) it holds that the
probability to draw one of the 𝑘-clauses twice is at most(

𝑔(𝑛)
2

)
·
∑︁
𝑖∈𝑁

𝑞′𝑖
2 ≤ 𝑔(𝑛)2 · 𝑞′𝑚𝑎𝑥 ∈ 𝛩 (𝑔(𝑛)2 · 𝑞𝑚𝑎𝑥 ) ∈ 𝑜 (1),

since the probability vector ®𝑞 of the original clause probabilities and the vector

®𝑞′
𝑘
of normalized probabilities on 𝑉 (𝑇 ) differ in a factor of at most 1 + O(𝑝max).

Thus,

Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 ]

= Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 ∧ |𝑆 | = 𝑔(𝑛) ] + Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 ∧ |𝑆 | < 𝑔(𝑛) ]

= Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 ∧ |𝑆 | = 𝑔(𝑛) ] + 𝑜 (1)

= Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑔(𝑛) ] · Pr

𝑆∼D(𝑔 (𝑛))
[ |𝑆 | = 𝑔(𝑛) ] + 𝑜 (1)

≤ Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑔(𝑛) ] + 𝑜 (1) . (6.19)

In order to relate the two models, we have to ensure that the flipping model

F (𝑠 ′) a. a. s. flips at least 𝑔(𝑛) clauses. The expected number of clauses flipped

would be exactly 𝑠 ′ if clauses with variables from 𝑉 (𝑇 ) were flipped as well,

since clause probabilities are normalized in the original model. However, here

we have to exclude their probabilities, which sum up to at most

𝐶𝑘 ·
𝑘!

2
𝑘
·
(
𝑘∑︁
𝑖=1

(
|𝑉 (𝑇 ) |
𝑖

)
· 𝑝max

𝑖

)
∈ O(𝑝max) .

Thus, it holds that 𝔼𝑆∼F(𝑠′) [ |𝑆 | ] = 𝑠 ′ · (1 − O(𝑝max)). Due to a Chernoff bound

it would be sufficient to assume 𝑠 ′(𝑛) = 2 · 𝑔(𝑛) to get

Pr

𝑆∼F(𝑠′)
[ |𝑆 | < 𝑔(𝑛) ] < exp

(
−
(
1 − O(𝑝max)

2

)
2

· 𝑔(𝑛)
)
∈ 𝑜 (1) .

With 𝑔(𝑛) ∈ 𝜔 (1) this implies Pr𝑆∼F(𝑠′) [ |𝑆 | ≥ 𝑔(𝑛) ] = 1 − 𝑜 (1) and thus

Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 ]

≥ Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 ∧ |𝑆 | ≥ 𝑔(𝑛) ]
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=

𝑁∑︁
𝑖=𝑔 (𝑛)

Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 ∧ |𝑆 | = 𝑖 ]

=

𝑁∑︁
𝑖=𝑔 (𝑛)

(
Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑖 ] · Pr

𝑆∼F(𝑠′)
[ |𝑆 | = 𝑖 ]

)
≥

𝑁∑︁
𝑖=𝑔 (𝑛)

(
Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑔(𝑛) ] · Pr

𝑆∼F(𝑠′)
[ |𝑆 | = 𝑖 ]

)
= Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑔(𝑛) ] · Pr

𝑆∼F(𝑠′)
[ |𝑆 | ≥ 𝑔(𝑛) ]

= Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑔(𝑛) ] − 𝑜 (1), (6.20)

where we used Lemma 6.2 in line 5. We can do this, since the property that

a randomly flipped set of clauses 𝑆 covers a given formula 𝐹 is a monotone

property. Equation (6.19) and equation (6.20) together with Lemma 6.1 now yield

Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 ] ≤ Pr

𝑆∼D(𝑔 (𝑛))
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑔(𝑛) ] + 𝑜 (1)

≤ Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 | |𝑆 | = 𝑔(𝑛) ] + 𝑜 (1) ≤ Pr

𝑆∼F(𝑠′)
[ 𝑆 covers 𝐹 ] + 𝑜 (1).

Note that we can use Lemma 6.1 due to 𝑠 ′ · 𝑔(𝑛) ∈ 𝛩 (𝑔(𝑛)2) ∈ 𝑜 (𝑞−1
max

). We

have now established that instead of drawing 𝑔(𝑛) 𝑘-clauses with variables only

from 𝑉 (𝑇 ), we can flip those clauses with their normalized probabilities ®𝑞′
𝑘
and

scaling factor 𝑠 ′ = 2 · 𝑔(𝑛). Thus, for every clause 𝑐 = (ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓ𝑘 ) we
independently flip a coin twice and take it into the formula if at least one of the

flips is successful. This results in clause probabilities of at most

1 −
(
1 −𝐶𝑘 · 𝑠𝑐 ·

𝑘!

2
𝑘
·
𝑘∏
𝑖=1

𝑝 ( |ℓ𝑖 |)
)
·
(
1 −𝐶 ′

𝑘
· 𝑠 ′ · 𝑘!

2
𝑘
·
𝑘∏
𝑖=1

𝑝 ( |ℓ𝑖 |)
)

≤
(
𝐶𝑘 · 𝑠𝑐 +𝐶 ′

𝑘
· 𝑠 ′

)
· 𝑘!
2
𝑘
·
𝑘∏
𝑖=1

𝑝 ( |ℓ𝑖 |)

≤ 𝐶𝑘 · (𝑠𝑐 + 2 · 𝑠 ′) · 𝑘!
2
𝑘
·
𝑘∏
𝑖=1

𝑝 ( |ℓ𝑖 |),

since 𝐶𝑘 ≥ 1, 𝐶 ′
𝑘
= 1 + O(𝑝max) = 1 + 𝑜 (1), and thus 𝐶 ′

𝑘
≤ 2 ·𝐶𝑘 for sufficiently

large 𝑛. Thus, we can instead flip each clause with its original probability and a

scaling factor of 𝑠𝑐 + 4 · 𝑔(𝑛). Since we consider a monotone property (making

a formula unsatisfiable) this only increases the probability for the property to

hold. ■

Under the assumption that Pr

[
𝛷̂ unsat

]
≥ 𝜇𝑠𝑐 (𝑓 ) + 𝛿 for a constant 𝛿 > 0, it
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follows that 𝜇𝑠𝑐+𝑠′ (𝑓 ) ≥ 𝜇𝑠𝑐 (𝑓 ) + 𝜀 for 𝑠 ′ = 4 · 𝑔(𝑛) and some constant 𝜀 > 0. We

show that this cannot be the case. The proof of this lemma requires 𝑠 ′ ∈ 𝑜 (√𝑠𝑐),
which is ensured by 𝑝max ∈ 𝑜 (𝑠★−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑠★)).

▶ Lemma 6.22. It holds that 𝜇𝑠𝑐+𝑠′ (𝑓 ) ≤ 𝜇𝑠𝑐 (𝑓 ) + 𝑜 (1) if 𝑠 ′ ∈ 𝑜 (
√
𝑠★). ◀

Proof. Remember that 𝑠𝑐 ∈ 𝛩 (𝑠★). We let ℎ(𝑛) = 𝑠𝑐1/4/𝑠 ′1/2 ∈ 𝜔 (1). Due to a

Chernoff bound it holds that

Pr

𝛷∼F(𝑠𝑐+𝑠′)

[
|𝛷 | > (𝑠𝑐 + 𝑠 ′) +

√︁
(𝑠𝑐 + 𝑠 ′) · ℎ(𝑛)

]
< 𝑒−

ℎ (𝑛)2
3 ∈ 𝑜 (1) .

We will now compare 𝜇𝑠𝑐 (𝑓 ) and 𝜇𝑠𝑐+𝑠′ (𝑓 ) directly. It holds that

𝜇𝑠𝑐 (𝑓 ) =
∑︁

𝑥 ∈{−1,1}𝑁 : 𝑓 (𝑥)=−1

𝜇𝑠𝑐 (𝑥),

where

𝜇𝑠𝑐 (𝑥) =
©­«

∏
𝑖∈[𝑁 ] : 𝑥𝑖=−1

𝑠𝑐 · 𝑞𝑖
ª®¬ · ©­«

∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

(1 − 𝑠𝑐 · 𝑞𝑖)
ª®¬.

Due to the upper bound on the size of𝛷 it holds that

𝜇𝑠𝑐+𝑠′ (𝑓 ) = 𝑜 (1) +
∑︁

𝑥 ∈{−1,1}𝑁 : 𝑓 (𝑥)=−1,
|𝑥 |−1≤(𝑠𝑐+𝑠′)+

√
(𝑠𝑐+𝑠′) ·ℎ (𝑛)

𝜇𝑠𝑐+𝑠′ (𝑥) .

This allows us to compare the probabilities for a given 𝑥 ∈ {−1, 1}𝑁 as follows

𝜇𝑠𝑐+𝑠′ (𝑥) =
(
𝑠𝑐 + 𝑠 ′
𝑠𝑐

) |𝑥 |−1
· ©­«

∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

1 − (𝑠𝑐 + 𝑠 ′) · 𝑞𝑖
1 − 𝑠𝑐 · 𝑞𝑖

ª®¬ · 𝜇𝑠𝑐 (𝑥)
=

(
1 + 𝑠

′

𝑠𝑐

) |𝑥 |−1
· ©­«

∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

1 − 𝑠 ′ · 𝑞𝑖
1 − 𝑠𝑐 · 𝑞𝑖

ª®¬ · 𝜇𝑠𝑐 (𝑥)
≤

(
1 + 𝑠

′

𝑠𝑐

) (𝑠𝑐+𝑠′)+√(𝑠𝑐+𝑠′) ·ℎ (𝑛)
· ©­«

∏
𝑖∈[𝑁 ] : 𝑥𝑖=1

1 − 𝑠 ′ · 𝑞𝑖
ª®¬ · 𝜇𝑠𝑐 (𝑥)

≤ exp
©­«𝑠

′

𝑠𝑐
·
(
(𝑠𝑐 + 𝑠 ′) +

√︁
(𝑠𝑐 + 𝑠 ′) · ℎ(𝑛)

)
− 𝑠 ′ ·

∑︁
𝑖∈[𝑁 ] : 𝑥𝑖=1

𝑞𝑖
ª®¬ · 𝜇𝑠𝑐 (𝑥).

We want to show that the exponent of the leading factor is 𝑜 (1) and thus

𝜇𝑠𝑐+𝑠′ (𝑓 ) ≤ 𝑜 (1) + 𝑒𝑜 (1) ·
∑︁

𝑥 ∈{−1,1}𝑁 : 𝑓 (𝑥)=−1,
|𝑥 |−1≤(𝑠𝑐+𝑠′)+

√
(𝑠𝑐+𝑠′) ·ℎ (𝑛)

𝜇𝑠𝑐 (𝑥) ≤ 𝜇𝑠𝑐 (𝑓 ) + 𝑜 (1).
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With ∑︁
𝑖∈[𝑁 ] : 𝑥𝑖=1

𝑞𝑖 ≥ 1 − ((𝑠𝑐 + 𝑠 ′) +
√︁
(𝑠𝑐 + 𝑠 ′) · ℎ(𝑛)) · 𝑞max

it holds that

𝑠 ′

𝑠𝑐
· ((𝑠𝑐 + 𝑠 ′) +

√︁
(𝑠𝑐 + 𝑠 ′) · ℎ(𝑛)) − 𝑠 ′ ·

∑︁
𝑖∈[𝑁 ] : 𝑥𝑖=1

𝑞𝑖

≤ 𝑠 ′ + 𝑠
′2

𝑠𝑐
+
√
𝑠𝑐 + 𝑠 ′ · ℎ(𝑛) · 𝑠 ′

𝑠𝑐
− 𝑠 ′ + 𝑠 ′ · ((𝑠𝑐 + 𝑠 ′) +

√︁
(𝑠𝑐 + 𝑠 ′) · ℎ(𝑛)) · 𝑞max

≤ 𝑠 ′2

𝑠𝑐
+ 2

𝑠 ′1/2

𝑠
1/4
𝑐

+ 𝑠 ′ · (𝑠𝑐 + 𝑠 ′) · 𝑞max +
√︁
(𝑠𝑐 + 𝑠 ′) · ℎ(𝑛) · 𝑞max.

We chose 𝑝max in such a way that 𝑠 ′2 ∈ 𝛩 (𝑔(𝑛)2) ∈ 𝑜 (𝑠★). It also holds that

𝑠 ′ · 𝑠𝑐 · 𝑞max ∈ 𝑜 (𝑠★3/2 · 𝑞max) ∈ 𝑜 (1). This yields an exponent of 𝑜 (1) and thus

establishes the result as desired. ■

The last lemma contradicts our conclusion of 𝜇𝑠𝑐+4·𝑔 (𝑛) (𝑓 ) ≥ 𝜇𝑠𝑐 (𝑓 ) + 𝜀 for
some constant 𝜀 > 0. Therefore, our assumption Pr

[
𝛷̂ unsat

]
≥ 𝜇𝑠𝑐 (𝑓 ) + 𝛿

for 𝛿 > 0 constant has to be false, i.e. for every constant 𝜀 > 0 it holds that

Pr

[
𝛷̂ unsat

]
≤ 𝜇𝑠𝑐 (𝑓 ) + 𝜀 for all sufficiently large values of 𝑛. Now we can put

all error probabilities together to see

Pr
𝑥∼𝜋

[
𝑓 (𝑥) = −1 | 𝑥𝑇 = (−1) |𝑇 |

]
≤ 𝜇𝑠𝑐 (𝑓 ) + 𝜀 + 𝑜 (1).

Especially, for any given 𝜏 this is smaller than 𝜇𝑠𝑐 (𝑓 ) + 𝜏 for all sufficiently large

values of 𝑛. This means, for every constant 𝜏 the maximally quasi-unsatisfiable

subformula 𝛷𝑇 cannot be a 𝜏-booster. Due to Lemma 6.15 the boost by every

satisfiable subformula is at most as big as the one by a mqu subformula. Thus,

no𝑇 which encodes a satisfiable subformula can be a 𝜏-booster. Since we already

ruled out unsatisfiable subformulas, this means there are no 𝜏-boosters which

appear with probability at least 𝜏/2. This contradicts the implication of the Sharp

Threshold Theorem and therefore the assumption of a coarse threshold, thus

proving Theorem 6.12. ■

As stated in the introduction of this chapter, our sharpness result for the

clause flipping model F 𝑁
together with the results relating F 𝑁

and D𝑁
yield

the following corollary. It states that the sharpness result also holds for the

clause drawing model D𝑁
with the same parameters and with respect to the

number of drawn clauses𝑚.

▶ Corollary 6.23. Let 𝑘 ≥ 3, let ( ®𝑝 (𝑛) )𝑛∈N be an ensemble of probability dis-

tributions on 𝑛 variables each and let𝑚★
be an asymptotic satisfiability thresh-

old for D(𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚) with respect to𝑚. If 𝑝max ∈ 𝑜 (𝑚★−(3𝑘−1)/(4𝑘−2) ·
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log
−(𝑘−1)/(2𝑘−1) (𝑚★)), then the satisfiability threshold on D(𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚)

with respect to𝑚 is sharp. ◀

Proof. In order to use Lemma 6.4 and Lemma 6.5 to relate the clause flipping

and clause drawing models, we have to ensure𝑚★ · 𝑠★ · 𝑞max ∈ 𝑜 (1). This holds
due to the prerequisite 𝑝max ∈ 𝑜 (𝑚★−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑚★)), which
implies 𝑝max ∈ 𝑜 (𝑚★−2/𝑘 ) and thus 𝑞max ∈ 𝛩 (𝑝𝑘

max
) ∈ 𝑜 (𝑚★−2). We can now

show the corollary as follows:

1. D
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚

)
has asymptotic threshold function𝑚★

.

2. F
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠

)
has the same asymptotic threshold function 𝑠★ =𝑚★

.

See Lemma 6.4.

3. F
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠

)
with asymptotic threshold function 𝑠★ has a sharp

threshold. See Theorem 6.12.

4. Sharpness of the threshold in F
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N, 𝑠

)
implies sharpness of

the threshold in D
(
𝑛, 𝑘, ( ®𝑝 (𝑛) )𝑛∈N,𝑚

)
. See Lemma 6.5.

■

6.5 Examples

We can now analyze the sharpness of satisfiability thresholds of non-uniform

random 𝑘-SAT with given ensembles of probability distributions and known

asymptotic threshold functions. As before, we consider the three models random

𝑘-SAT, power-law random 𝑘-SAT, and geometric random 𝑘-SAT. We already

know the asymptotic threshold functions of those models from Section 5.3.

6.5.1 Random k-SAT

For random 𝑘-SAT the probability ensemble is

∀𝑛 ∈ N : ®𝑝 (𝑛) =

(
1

𝑛
,
1

𝑛
, . . . ,

1

𝑛

)
.

We know that the asymptotic threshold function is𝑚★ ∈ 𝛩 (𝑛). It holds that
𝑝max = 𝑛

−1 ∈ 𝑜 (𝑛−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑛)) for 𝑘 ≥ 2. Thus, the thresh-

old of random 𝑘-SAT is also sharp for 𝑘 ≥ 3.

6.5.2 Power-Law Random k-SAT

Corollary 6.23 now implies the following corollary for power-law random 𝑘-SAT.

▶ Corollary 6.24. For power-law random 𝑘-SAT with 𝛽 > 5𝑘−3
𝑘−1 the satisfiability

threshold is sharp. ◀
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Proof. For power-law random 𝑘-SAT we assume some fixed 𝛽 > 2. Then, for

𝑛 ∈ N the distribution is ®𝑝 (𝑛) =
(
𝑝
(𝑛)
1
, 𝑝

(𝑛)
2

. . . , 𝑝
(𝑛)
𝑛

)
with

𝑝
(𝑛)
𝑖

=
(𝑛/𝑖)

1

𝛽−1∑𝑛
𝑗=1(𝑛/ 𝑗)

1

𝛽−1
.

It already holds that 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑛 . Lemma 3.12 yields

𝑝1 = 𝑝max = (1 ± 𝑜 (1)) ·
(
𝛽 − 2

𝛽 − 1

)
· 𝑛−

𝛽−2
𝛽−1 .

We also know that the asymptotic threshold function is 𝑚★ ∈
(
𝑛
𝑘 · 𝛽−2

𝛽−1
)
for

𝛽 < 2𝑘−1
𝑘−1 and 𝑚★ ∈ 𝛩 (𝑛) for 𝛽 > 2𝑘−1

𝑘−1 . In the first case, the requirement

𝑝max ∈ 𝑜 (𝑛−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑛)) is not fulfilled. In the second case,

the requirement is fulfilled for 𝛽 > 5𝑘−3
𝑘−1 . ■

6.5.3 Geometric Random k-SAT

Corollary 6.23 also implies the following corollary for power-law random 𝑘-SAT.

▶ Corollary 6.25. For geometric random k-SAT with base 𝑏 > 1, the satisfiabil-

ity threshold is sharp. ◀

Proof. For 𝑛 ∈ N the distribution is ®𝑝 (𝑛) =
(
𝑝
(𝑛)
1
, 𝑝

(𝑛)
2

. . . , 𝑝
(𝑛)
𝑛

)
with

𝑝
(𝑛)
𝑖

=
𝑏 · (1 − 𝑏−1/𝑛)

𝑏 − 1

· 𝑏−(𝑖−1)/𝑛 .

Again, it already holds that 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑛 . Lemma 3.13 states

𝑝1 = 𝑝max =
𝑏 · (1 − 𝑏−1/𝑛)

(𝑏 − 1) = (1 + 𝑜 (1)) · 𝑏 · ln𝑏(𝑏 − 1) · 𝑛
−1

and the asymptotic threshold function is𝑚★ ∈ 𝛩 (𝑛). Thus, as for random 𝑘-

SAT it holds that 𝑝max ∈ 𝛩 (𝑛−1) ∈ 𝑜 (𝑛−(3𝑘−1)/(4𝑘−2) · log−(𝑘−1)/(2𝑘−1) (𝑛)) for
𝑘 ≥ 2. Therefore, the satisfiability threshold is sharp for geometric random

𝑘-SAT according to Corollary 6.23. ■

6.6 Remarks

We defined sharpness and coarseness of thresholds in such a way that we have

a dichotomy as soon as a threshold exists. Thus, if we have an asymptotic

threshold function, the threshold must be either sharp or coarse. However, the
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result we provide is only fit to identify sharp thresholds. It only works if some

specific conditions on the ensemble of probability distributions in relation to the

asymptotic threshold position are fulfilled, but we do not know if these conditions

correctly identify the dichotomy. We are simply missing some condition on the

coarseness of thresholds.

There is some evidence that suggests that our sharpness result can be improved.

For power-law random 𝑘-SAT we have an asymptotic threshold function of

𝑚★ = 𝑛𝑘 (𝛽−2)/(𝛽−1) for 𝛽 < 2𝑘−1
𝑘−1 and an asymptotic threshold function of𝑚★ = 𝑛

for 𝛽 > 2𝑘−1
𝑘−1 . We also know that in the former case, the threshold is coarse.

However, in the latter case, we can only show that the threshold is sharp for

𝛽 > 5𝑘−3
𝑘−1 . But what happens for 𝛽 ∈ ( 2𝑘−1

𝑘−1 ,
5𝑘−3
𝑘−1 ]? We conjecture that the

threshold is sharp in that range of 𝛽 as well, but we might need more involved

techniques to prove it.
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In this thesis we studied a generalization of the random 𝑘-SAT model, which we

call non-uniform random 𝑘-SAT. The model incorporates expected frequencies

for the Boolean variables of a random formula in 𝑘-CNF by means of a probability

distribution ®𝑝 over these variables according to which they appear in random

clauses. Given an ensemble of probability distributions

(
®𝑝 (𝑛) )

𝑛∈N and a clause

size 𝑘 , we can analyze the limiting behavior of non-uniform random 𝑘-SAT

instances as the number of variables𝑛 increases. In the introduction of this thesis,

we posed two questions regarding this model: First, how does the satisfiability

threshold behave? Second, how hard is it to solve instances of the model?

Regarding the first question, we thoroughly analyzed the threshold behav-

ior of non-uniform random 𝑘-SAT. We showed that the position and sharp-

ness of the satisfiability threshold for non-uniform random 2-SAT depends

on the two highest variable probabilities and their relations to the sum of

squares of the remaining probabilities. If 𝑝2
max

∈ 𝑜
(∑𝑛

𝑖=1 𝑝
2

𝑖

)
, the threshold

is sharp at 𝑚★ = 1/
(∑𝑛

𝑖=1 𝑝
2

𝑖

)
. Otherwise, the threshold is coarse at 𝑚★ =

(1 − (∑𝑛
𝑖=1 𝑝

2

𝑖 ))/((
∑𝑛
𝑖=2 𝑝

2

𝑖 ) + 𝑝1 ·
(∑𝑛

𝑖=2 𝑝
2

𝑖

)
1/2). Depending on the relation of

𝑝2 (the second-highest variable probability) to

∑𝑛
𝑖=2 𝑝

2

𝑖 , the coarseness either

stems from the emergence of an unsatisfiable subformula containing only the

two most-frequent Boolean variables or an unsatisfiable subformula with four

clauses over three different Boolean variables. This completely characterizes the

threshold behavior of non-uniform random 2-SAT.

For 𝑘 ≥ 3 we were able to prove the existence and asymptotic position

of the satisfiability threshold for some ensembles of probability distributions.

In order to prove unsatisfiability of instances we used different first moment

methods. To prove satisfiablity of instances we restricted formulas in 𝑘-CNF

to formulas in 2-CNF and used our results on the threshold behavior of non-

uniform random 2-SAT. We also derived some conditions on the sharpness of

the threshold depending on the maximum variable probability in relation to

the asymptotic threshold position. However, our results do not completely

characterize the threshold behavior for non-uniform random 𝑘-SAT with 𝑘 ≥ 3.

There are some ensembles of probability distributions for which we do not know

if a satisfiability threshold exists and some for which we know the asymptotic

threshold function, but we do not know if the threshold is sharp or coarse. Thus,

some straightforward extensions of our work include improved bounds for the

asymptotic threshold function and a full characterization of the sharp/coarse-

dichotomy for 𝑘 ≥ 3. A very ambitious goal might also be to derive the exact

threshold function if the satisfiability threshold is sharp. Even for the most

well-researched special case random 𝑘-SAT finding the exact threshold function
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up to leading factors is still a challenging open question for 𝑘 ≥ 3 up to some

very large values.

Regarding the second question, there are results only for a few specific en-

sembles of probability distributions. For random 𝑘-SAT the resolution size of

unsatisfiable instances sampled around the satisfiability threshold is exponen-

tial [BW01; CS88]. Thus, CDCL-based SAT solvers need exponential time to

certify unsatisfiability for those instances. We also showed that power-law ran-

dom 𝑘-SAT has exponential resolution size around the threshold for power law

exponents 𝛽 > min( 2𝑘−2
𝑘−2 , 3) [Blä+21]. These exponential lower bounds suggest

that a power law distribution alone is not enough to explain the effectiveness of

CDCL on industrial instances. However, that does not rule out the existence of a

distribution which fits this role better. Therefore, showing general bounds on

the resolution size of non-uniform random 𝑘-SAT depending on the ensemble of

probability distributions is still an important future work.

Although we only show rigorous lower bounds in [Blä+21], for smaller power

law exponents the resolution size seems to scale exponentially in 𝑛𝑥 with 𝑥

slowly increasing from zero to one for increasing 𝛽 > 2𝑘−1
𝑘−1 . If this was indeed

the case, power-law random 𝑘-SAT would be a good model to randomly generate

formulas in 𝑘-CNF with a certain resolution size as benchmarks for SAT solvers.

Instances with the same resolution size can be created with random 𝑘-SAT as

well when the number of clauses is 𝑛1+1/2−𝜀 for constants 𝜀 ∈ (0, 1/2). However,
in power-law random 𝑘-SAT only a linear number of clauses is necessary and the

resolution size can be controlled with the power law exponent 𝛽 , i. e. instances

generated with power-law random 𝑘-SAT can be much smaller. Thus, it would

be interesting to improve our results on the resolution size of power-law random

𝑘-SAT and to complement them with upper bounds.

Resolution size is used to measure the hardness of unsatisfiable instances, but

what about satisfiable instances? On random 𝑘-SAT local search solvers usually

perform pretty well on satisfiable instances [Bie+09, Chapter 6]. However, they

only work for clause-variable ratios below [CHH17; Coj17] or well above the

satisfiability threshold [BS15; KP92]. In [Fri+21] we consider satisfiable instances

of non-uniform random 𝑘-SAT and show that a simple local search algorithm

finds a satisfying assignment with high probability if the number of clauses is

high enough and the probability distributions in the ensemble are not too non-

uniform. We actually show this result for a planted equivalent of non-uniform

random 𝑘-SAT, where clauses are drawn in such a way that a random satisfying

assignment is guaranteed to exist. However, for the same high enough number

of clauses the planted and the original model are so closely related that our

results carry over. This work implies that local search is successful for satisfiable

instances of power-law and geometric random 𝑘-SAT with 𝛺 (𝑛 log𝑛) clauses
and generalizes earlier results [BS15; KP92], which showed that the same holds

for random 𝑘-SAT.

In [Blä+21] we also studied if another promising feature could explain the

unreasonable effectiveness of state-of-the-art SAT solvers on industrial instances:
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the existence of some underlying geometry. The idea is that the Boolean variables

have positions in some space, for example Euclidean or hyperbolic space. The

random clauses have positions in that space as well and contain 𝑘 Boolean

variables with probabilities depending on their distance to them. This results in

some sort of clustering, since Boolean variables that are closer to each other tend

to appear together in clauses, a feature that Ansótegui et al. [AGL12] observed

in some classes of industrial SAT instances. However, we showed that instances

generated with such a model and linear number of clauses are almost always

trivially unsatisfiable if the influence of distances on the connection probabilities

is high. Since industrial instances are usually not trivially unsatisfiable, this

suggests that either geometry alone is not a realistic feature for those instances

or the influence of an underlying geometry is only small.

This thesis aimed at analyzing the influence of different frequency distributions

for Boolean variables on the satisfiability threshold of 𝑘-SAT instances. Although

our results are incomplete, they showcase some interesting connections between

the probabilities of Boolean variables to appear in a random formula and the

behavior of the satisfiability threshold. These connections might go unnoticed

when only studying random 𝑘-SAT and its uniform probability distribution.

However, the whole point of studying models with prescribed expected frequen-

cies is to see if those frequencies can explain the running time of state-of-the-art

solvers on real-world instances. Thus, the next step is to analyze the influence

of those distributions on the hardness of solving instances. At least for power

law distributions, our related work suggests that the distribution alone might

not be sufficient, while the assumption of an underlying geometry might be too

strong. Therefore, finding other promising properties of industrial instances

which may make them easy for state-of-the-art SAT solvers and ingraining them

into realistic models for those instances is still an important task for future work.

151





7Bibliography
[ABL09a] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. On the Structure

of Industrial SAT Instances. In: Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming (CP’2009).
Vol. 5732. Lecture Notes in Computer Science. Springer, 2009, 127–141.

doi: 10.1007/978-3-642-04244-7\_13 (see pages 2, 4).

[ABL09b] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.Towards Industrial-
Like Random SAT Instances. In: Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI’2009). 2009, 387–392. url:
http://ijcai.org/Proceedings/09/Papers/072.pdf (see pages 2, 4, 17, 24, 26).

[Ach+01] Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos Kranakis, and Danny

Krizanc. Rigorous results for random (2+p)-SAT. Theor. Comput. Sci.
265:1-2 (2001), 109–129. doi: 10.1016/S0304-3975(01)00154-2 (see page 4).

[AGL12] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The Community
Structure of SAT Formulas. In: Proceedings of the 15th International
Conference on Theory and Applications of Satisfiability Testing (SAT’2012).
Vol. 7317. Springer, 2012, 410–423. doi: 10.1007/978-3-642-31612-8\_31

(see pages 2, 4, 151).

[AL86] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hyper-
graphs and minimal unsatisfiable formulas. J. Comb. Theory, Ser. A
43:2 (1986), 196–204. doi: 10.1016/0097-3165(86)90060-9 (see page 128).

[Ans+15] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi Levy.

On the Classification of Industrial SAT Families. In: Proceedings of
the 18th International Conference of the Catalan Association for Artificial
Intelligence (CCIA’2015). Vol. 277. Frontiers in Artificial Intelligence and

Applications. IOS Press, 2015, 163–172. doi: 10.3233/978-1-61499-578-4-

163 (see pages 2, 4).

[AP04] Dimitris Achlioptas and Yuval Peres. The threshold for random 𝒌-SAT
is 2𝒌 log 2 − 𝑶 (𝒌). Journal of the American Mathematical Society 17:4

(2004), 947–973. doi: 10.1090/S0894-0347-04-00464-3 (see page 14).

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A Linear-Time
Algorithm for Testing the Truth of Certain Quantified Boolean
Formulas. Information Processing Letters 8:3 (1979), 121–123. doi: 10.1016/
0020-0190(79)90002-4 (see page 12).

[ASV15] Dan Alistarh, Thomas Sauerwald, and Milan Vojnović. Lock-free algo-
rithms under stochastic schedulers. In: 34th ACM Symposium on
Principles of Distributed Computing (PODC’2015). ACM, 2015, 251–260. doi:

10.1145/2767386.2767430 (see page 86).

153

https://doi.org/10.1007/978-3-642-04244-7\_13
http://ijcai.org/Proceedings/09/Papers/072.pdf
https://doi.org/10.1016/S0304-3975(01)00154-2
https://doi.org/10.1007/978-3-642-31612-8\_31
https://doi.org/10.1016/0097-3165(86)90060-9
https://doi.org/10.3233/978-1-61499-578-4-163
https://doi.org/10.3233/978-1-61499-578-4-163
https://doi.org/10.1090/S0894-0347-04-00464-3
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1145/2767386.2767430


[BC16] Victor Bapst and Amin Coja-Oghlan. The Condensation Phase Tran-
sition in the Regular k-SAT Model. In: Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2016. Vol. 60. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016, 22:1–22:18. doi: 10.4230/LIPIcs.APPROX-RANDOM.

2016.22 (see page 4).

[Bee06] Peter van Beek. “Backtracking Search Algorithms.” In: Handbook of Con-
straint Programming. Vol. 2. Foundations of Artificial Intelligence. Elsevier,
2006, 85–134. doi: 10.1016/S1574-6526(06)80008-8 (see page 2).

[Bie+09] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. NLD: IOS Press, 2009. isbn: 1586039296 (see pages 11, 150).

[Blä+21] Thomas Bläsius, Tobias Friedrich, Andreas Göbel, Jordi Levy, and Ralf

Rothenberger. The Impact of Heterogeneity and Geometry on the
Proof Complexity of Random Satisfiability. In: Proceedings of the 32nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2021). SIAM,

2021, 42–53. doi: 10.1137/1.9781611976465.4 (see pages 24, 150).

[Bou+05] Yacine Boufkhad, Olivier Dubois, Yannet Interian, and Bart Selman. Reg-
ular Random k-SAT: Properties of Balanced Formulas. J. Autom.
Reason. 35:1-3 (2005), 181–200. doi: 10 .1007 / s10817- 005- 9012- z (see

page 4).

[BP14] Milan Bradonjic and Will Perkins. On Sharp Thresholds in Random
Geometric Graphs. In:Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2014. Vol. 28.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014, 500–514.

doi: 10.4230/LIPIcs.APPROX-RANDOM.2014.500 (see page 4).

[BS14] Paul Beame and Ashish Sabharwal. Non-Restarting SAT Solvers with
Simple Preprocessing Can Efficiently Simulate Resolution. In: Pro-
ceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI’2014).
2014, 2608–2615. url: https://www.aaai.org/ocs/index.php/AAAI/AAAI14/

paper/view/8397 (see page 2).

[BS15] Andrei A. Bulatov and Evgeny S. Skvortsov. Phase Transition for Lo-
cal Search on Planted SAT. In: 40th Intl. Symp. Math. Foundations of
Computer Science (MFCS). Vol. 9235. Lecture Notes in Computer Science.

Springer, 2015, 175–186. doi: 10 . 1007 / 978 - 3 - 662 - 48054 - 0 \ _15 (see

page 150).

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - res-
olution made simple. Journal of the ACM 48:2 (2001), 149–169. doi:

10.1145/375827.375835 (see page 150).

[CHH17] Amin Coja-Oghlan, Amir Haqshenas, and Samuel Hetterich. Walksat
Stalls Well Below Satisfiability. SIAM Journal on Discrete Mathematics
31:2 (2017), 1160–1173. doi: 10.1137/16M1084158 (see page 150).

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The Com-
plexity of Satisfiability of Small Depth Circuits. In: 4th International
Workshop on Parameterized and Exact Computation (IWPEC). Vol. 5917. Lec-
ture Notes in Computer Science. Springer, 2009, 75–85. doi: 10.1007/978-

3-642-11269-0\_6 (see page 1).

154

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.22
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.22
https://doi.org/10.1016/S1574-6526(06)80008-8
https://doi.org/10.1137/1.9781611976465.4
https://doi.org/10.1007/s10817-005-9012-z
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.500
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8397
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8397
https://doi.org/10.1007/978-3-662-48054-0\_15
https://doi.org/10.1145/375827.375835
https://doi.org/10.1137/16M1084158
https://doi.org/10.1007/978-3-642-11269-0\_6
https://doi.org/10.1007/978-3-642-11269-0\_6


[Coj14] Amin Coja-Oghlan. The Asymptotic 𝒌-SAT Threshold. In: Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC’2014).
ACM, 2014, 804–813. doi: 10.1145/2591796.2591822 (see page 5).

[Coj17] Amin Coja-Oghlan. Belief Propagation Guided Decimation Fails on
Random Formulas. Journal of the ACM 63:6 (2017), 49:1–49:55. doi:

10.1145/3005398 (see page 150).

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures.
In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing
(STOC’1971). ACM, 1971, 151–158. doi: 10.1145/800157.805047 (see pages 1,

12).

[CP16] Amin Coja-Oghlan and Konstantinos Panagiotou. The asymptotic 𝒌-SAT
threshold. Advances in Mathematics 288 (2016), 985–1068 (see page 5).

[CR92] Vasek Chvátal and Bruce A. Reed.Mick Gets Some (the Odds Are on
His Side). In: Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science (FOCS’1992). IEEE Computer Society, 1992, 620–627.

doi: 10.1109/SFCS.1992.267789 (see pages 5, 6, 12, 17, 29, 31, 35, 40, 47, 62,

81, 86, 89, 90, 94).

[CS88] Vasek Chvátal and Endre Szemerédi. Many Hard Examples for Resolu-
tion. Journal of the ACM 35:4 (1988), 759–768. doi: 10.1145/48014.48016

(see pages 2, 150).

[CW18] Amin Coja-Oghlan and Nick Wormald. The Number of Satisfying As-
signments of Random Regular k-SAT Formulas. Combinatorics, Prob-
ability & Computing 27:4 (2018), 496–530. doi: 10.1017/S0963548318000263
(see page 4).

[Día+09] Josep Díaz, Lefteris M. Kirousis, Dieter Mitsche, and Xavier Pérez-Giménez.

On the satisfiability threshold of formulas with three literals per
clause. Theoretical Computer Science 410:30-32 (2009), 2920–2934. doi:

10.1016/j.tcs.2009.02.020 (see page 5).

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge Univer-

sity Press, 2009. isbn: 978-0-521-88427-3. url: http://www.cambridge.org/

gb/knowledge/isbn/item2327542/ (see page 10).

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quan-
tification Theory. Journal of the ACM 7:3 (1960), 201–215. doi: 10.1145/

321033.321034 (see page 2).

[DSS15] Jian Ding, Allan Sly, and Nike Sun. Proof of the Satisfiability Conjec-
ture for Large K. In: Proceedings of the 47th Annual ACM Symposium
on Theory of Computing (STOC’2015). ACM, 2015, 59–68. doi: 10.1145/

2746539.2746619 (see pages 5, 17).

[FKG71] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities
on somepartially ordered sets.Communications inMathematical Physics
22:2 (June 1971), 89–103. issn: 1432-0916. doi: 10.1007/BF01651330 (see

pages 130, 131).

155

https://doi.org/10.1145/2591796.2591822
https://doi.org/10.1145/3005398
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/SFCS.1992.267789
https://doi.org/10.1145/48014.48016
https://doi.org/10.1017/S0963548318000263
https://doi.org/10.1016/j.tcs.2009.02.020
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/2746539.2746619
https://doi.org/10.1145/2746539.2746619
https://doi.org/10.1007/BF01651330


[FR18] Tobias Friedrich and Ralf Rothenberger. Sharpness of the Satisfiability
Threshold for Non-uniform Random k-SAT. In: Proceedings of the 21st
International Conference on Theory and Applications of Satisfiability Testing
(SAT’2018). Vol. 10929. Lecture Notes in Computer Science. Springer-Verlag,

2018, 273–291. doi: 10.1007/978-3-319-94144-8\_17 (see pages 11, 99).

[FR19] Tobias Friedrich and Ralf Rothenberger. The Satisfiability Threshold
for Non-Uniform Random 2-SAT. In: Proceedings of the 46th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’2019).
Vol. 132. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,

61:1–61:14. doi: 10.4230/LIPIcs.ICALP.2019.61 (see pages 11, 29).

[Fri+17a] Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, Thomas Sauerwald,

and Andrew M. Sutton. Bounds on the Satisfiability Threshold for
Power Law Distributed Random SAT. In: Proceedings of the 25th Annual
European Symposium on Algorithms (ESA’2017). Vol. 87. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 37:1–37:15. doi: 10.4230/

LIPIcs.ESA.2017.37 (see pages 11, 85, 89).

[Fri+17b] Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, and Andrew M.

Sutton.Phase Transitions for Scale-Free SATFormulas. In: Proceedings
of the 31st AAAI Conference on Artificial Intelligence (AAAI’2017). AAAI
Press, 2017, 3893–3899. url: http://aaai.org/ocs/index.php/AAAI/AAAI17/

paper/view/14755 (see pages 11, 29).

[Fri+21] Tobias Friedrich, Frank Neumann, Ralf Rothenberger, and Andrew M.

Sutton. Solving Non-uniform Planted and Filtered Random SAT
Formulas Greedily. In: Proceedings of the 24th International Conference
on Theory and Applications of Satisfiability Testing (SAT’2021). Vol. 12831.
Lecture Notes in Computer Science. Springer, 2021, 188–206. doi: 10.1007/

978-3-030-80223-3\_13 (see page 150).

[Fri05] Ehud Friedgut. Hunting for sharp thresholds. Random Structures &
Algorithms 26:1-2 (2005), 37–51. doi: 10.1002/rsa.20042 (see page 12).

[Fri99] Ehud Friedgut. Sharp thresholds of graph properties, and the 𝒌-SAT
problem. Journal of the American Mathematical Society 12:4 (1999), 1017–

1054. doi: 10.1090/S0894-0347-99-00305-7 (see pages 6, 12, 15, 99, 115, 116,

119, 123, 124, 130, 136).

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. isbn:

0-7167-1044-7 (see page 1).

[GL15] Jesús Giráldez-Cru and Jordi Levy. A Modularity-Based Random SAT
Instances Generator. In: Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI’2015). AAAI Press, 2015, 1952–1958.
url: http://ijcai.org/Abstract/15/277 (see page 4).

[GL17] Jesús Giráldez-Cru and Jordi Levy. Locality in Random SAT Instances.
In: Proceedings of the 26th International Joint Conference on Artificial In-
telligence (IJCAI’2017). 2017, 638–644. doi: 10.24963/ijcai.2017/89 (see

page 4).

[Goe96] Andreas Goerdt. A Threshold for Unsatisfiability. Journal of Computer
and System Sciences 53:3 (1996), 469–486. doi: 10.1006/jcss.1996.0081 (see
pages 5, 31).

156

https://doi.org/10.1007/978-3-319-94144-8\_17
https://doi.org/10.4230/LIPIcs.ICALP.2019.61
https://doi.org/10.4230/LIPIcs.ESA.2017.37
https://doi.org/10.4230/LIPIcs.ESA.2017.37
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14755
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14755
https://doi.org/10.1007/978-3-030-80223-3\_13
https://doi.org/10.1007/978-3-030-80223-3\_13
https://doi.org/10.1002/rsa.20042
https://doi.org/10.1090/S0894-0347-99-00305-7
http://ijcai.org/Abstract/15/277
https://doi.org/10.24963/ijcai.2017/89
https://doi.org/10.1006/jcss.1996.0081


[Han+19] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster
k-SAT algorithms using biased-PPSZ. In: Proceedings of the 51st Annual
ACM Symposium on Theory of Computing (STOC’2019). ACM, 2019, 578–

589. doi: 10.1145/3313276.3316359 (see page 12).

[HS03] Mohammad Taghi Hajiaghayi and Gregory B. Sorkin. The Satisfiability
Threshold of Random 3-SAT is at Least 3.52. Tech. rep. RC22942. IBM,

Oct. 2003 (see page 5).

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In:
14th Annual IEEE Conference on Computational Complexity. IEEE Computer

Society, 1999, 237–240. doi: 10.1109/CCC.1999.766282 (see page 1).

[Jan96] Svante Janson. The Second Moment Method, Conditioning and Ap-
proximation. In: Random Discrete Structures. New York, NY: Springer

New York, 1996, 175–183. isbn: 978-1-4612-0719-1 (see page 10).

[JS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP Look-Back Tech-
niques to Solve Real-World SAT Instances. In: Proceedings of the 14th
International Conference on Theory and Applications of Satisfiability Test-
ing (SAT’1997). AAAI Press / The MIT Press, 1997, 203–208. url: http:

//www.aaai.org/Library/AAAI/1997/aaai97-032.php (see page 2).

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems. In:
Proceedings of a symposium on the Complexity of Computer Computations.
The IBM Research Symposia Series. Plenum Press, New York, 1972, 85–103.

doi: 10.1007/978-1-4684-2001-2\_9 (see pages 1, 12).

[Kir+98] Lefteris M Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C

Stamatiou. Approximating the unsatisfiability threshold of random
formulas. Random Structures & Algorithms 12:3 (1998), 253–269. doi:

10.1002/(SICI)1098-2418(199805)12:3\<253::AID-RSA3\>3.0.CO;2-U (see

pages 14, 85, 87).

[KKL06] Alexis C. Kaporis, Lefteris M. Kirousis, and Efthimios G. Lalas. The prob-
abilistic analysis of a greedy satisfiability algorithm. Random Struc-
tures & Algorithms 28:4 (2006), 444–480. doi: 10 . 1002 / rsa . 20104 (see

page 5).

[KP92] Elias Koutsoupias and Christos H. Papadimitriou. On the Greedy Algo-
rithm for Satisfiability. Information Processing Letters 43:1 (1992), 53–55.
doi: 10.1016/0020-0190(92)90029-U (see page 150).

[Lev73] L. A. Levin. Universal problems of full search. Russian. Probl. Peredachi
Inf. 9:3 (1973), 115–116. issn: 0555-2923 (see pages 1, 12).

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds
based on the Exponential Time Hypothesis. Bulletin of the EATCS 105
(2011), 41–72. url: http://eatcs.org/beatcs/index.php/beatcs/article/view/

92 (see page 1).

[McD92] Colin McDiarmid. On a correlation inequality of Farr. Comb. Probab.
Comput. 1 (1992), 157–160. doi: 10.1017/S096354830000016X (see page 88).

157

https://doi.org/10.1145/3313276.3316359
https://doi.org/10.1109/CCC.1999.766282
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
https://doi.org/10.1007/978-1-4684-2001-2\_9
https://doi.org/10.1002/(SICI)1098-2418(199805)12:3\<253::AID-RSA3\>3.0.CO;2-U
https://doi.org/10.1002/rsa.20104
https://doi.org/10.1016/0020-0190(92)90029-U
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1017/S096354830000016X


[MFS16] Nathan Mull, Daniel J. Fremont, and Sanjit A. Seshia.On the Hardness of
SATwith Community Structure. In: Proceedings of the 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT’2016).
Vol. 9710. Lecture Notes in Computer Science. Springer, 2016, 141–159.

doi: 10.1007/978-3-319-40970-2\_10 (see page 4).

[Mon+96] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatric, Bart Selman, and

Lidror Troyansky. Phase transition and search cost in the 2+p-sat
problem. 4th Workshop on Physics and Computation (1996) (see page 4).

[Mon+99] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and

Lidror Troyansky. 2+p-SAT: Relation of typical-case complexity to
the nature of the phase transition. Random Structures & Algorithms
15:3-4 (1999), 414–435. doi: 10 . 1002 / (SICI ) 1098 - 2418(199910 / 12 ) 15 :

3/4\<414::AID-RSA10\>3.0.CO;2-G (see page 4).

[MPZ02] Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and algo-
rithmic solution of random satisfiability problems. Science 297:5582
(2002), 812–815. doi: 10.1126/science.1073287 (see page 5).

[MR99] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Chapman & Hall/CRC Applied Algorithms and Data Structures series.

CRC Press, 1999. doi: 10.1201/9781420049503-c16 (see page 72).

[MSL92] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and Easy
Distributions of SAT Problems. In: Proceedings of the 10 AAAI Confer-
ence on Artificial Intelligence (AAAI’1992). AAAI Press / The MIT Press,

1992, 459–465. url: http://www.aaai.org/Library/AAAI/1992/aaai92-

071.php (see page 2).

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge Univer-

sity Press, 2005. isbn: 978-0-521-83540-4. doi: 10.1017/CBO9780511813603

(see pages 8–10).

[Mül17] Tobias Müller. The critical probability for confetti percolation equals
1/2. Random Structures & Algorithms 50:4 (2017), 679–697. doi: 10.1002/
rsa.20675 (see page 124).

[MZ97] Rémi Monasson and Riccardo Zecchina. Statistical mechanics of the
random 𝑲-satisfiability model. Phys. Rev. E 56 (2 Aug. 1997), 1357–1370

(see page 4).

[ODo14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge Univer-

sity Press, 2014. isbn: 978-1-10-703832-5. url: http://www.cambridge.

org/de/academic/subjects/computer-science/algorithmics-complexity-

computer-algebra-and-computational-g/analysis-boolean-functions (see

pages 99, 115, 118, 120, 123).

[ODo21] Ryan O’Donnell. Analysis of Boolean Functions. CoRR abs/2105.10386

(2021). arXiv: 2105.10386. url: https://arxiv.org/abs/2105.10386 (see

page 124).

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-
learning SAT solvers as resolution engines. Artificial Intelligence 175:2
(2011), 512–525. doi: 10.1016/j.artint.2010.10.002 (see page 2).

158

https://doi.org/10.1007/978-3-319-40970-2\_10
https://doi.org/10.1002/(SICI)1098-2418(199910/12)15:3/4\<414::AID-RSA10\>3.0.CO;2-G
https://doi.org/10.1002/(SICI)1098-2418(199910/12)15:3/4\<414::AID-RSA10\>3.0.CO;2-G
https://doi.org/10.1126/science.1073287
https://doi.org/10.1201/9781420049503-c16
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1002/rsa.20675
https://doi.org/10.1002/rsa.20675
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
https://arxiv.org/abs/2105.10386
https://arxiv.org/abs/2105.10386
https://doi.org/10.1016/j.artint.2010.10.002


[Rat+10] Vishwambhar Rathi, Erik Aurell, Lars K. Rasmussen, and Mikael Skoglund.

Bounds on Threshold of Regular Random k-SAT. In: Proceedings of
the 13 International Conference on Theory and Applications of Satisfiability
Testing (SAT’2010). Vol. 6175. Lecture Notes in Computer Science. Springer,

2010, 264–277. doi: 10.1007/978-3-642-14186-7\_22 (see page 4).

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In: International Conference on Computer-
Aided Design, ICCAD. IEEE, 1996, 220–227. doi: 10.1109/ICCAD.1996.

569607 (see page 2).

[Sze03] Stefan Szeider. On Fixed-Parameter Tractable Parameterizations of
SAT. In: Proceedings of the 6th International Conference on Theory and
Applications of Satisfiability Testing (SAT’2013). Vol. 2919. Lecture Notes in
Computer Science. Springer, 2003, 188–202. doi: 10.1007/978-3-540-24605-

3\_15 (see page 12).

[Tse83] G. S. Tseitin. On the Complexity of Derivation in Propositional Cal-
culus. In: Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970. Berlin, Heidelberg: Springer Berlin/Heidelberg, 1983, 466–
483. isbn: 978-3-642-81955-1. doi: 10.1007/978-3-642-81955-1_28 (see

page 12).

159

https://doi.org/10.1007/978-3-642-14186-7\_22
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/978-3-540-24605-3\_15
https://doi.org/10.1007/978-3-540-24605-3\_15
https://doi.org/10.1007/978-3-642-81955-1_28




7List of Publications
Articles in Refereed Journals

[1] Greed is Good for Deterministic Scale-Free Networks. Algorithmica
82:11 (2020), 3338–3389. doi: 10.1007/s00453-020-00729-z. Joint work

with Ankit Chauhan and Tobias Friedrich.

[2] Routing for on-street parking search using probabilistic data. AI
Communications 32:2 (2019), 113–124. doi: 10.3233/AIC-180574. Joint
work with Tobias Friedrich, Martin S. Krejca, Tobias Arndt, Danijar

Hafner, Thomas Kellermeier, Simon Krogmann, and Armin Razmjou.

Articles in Refereed Conference Proceedings

[3] Probabilistic Routing for On-Street Parking Search. In: Proceedings
of the 24th Annual European Symposium on Algorithms (ESA’2016). Vol. 57.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 6:1–6:13.

doi: 10.4230/LIPIcs.ESA.2016.6. Joint work with Tobias Arndt, Danijar

Hafner, Thomas Kellermeier, Simon Krogmann, Armin Razmjou, Martin

S. Krejca, and Tobias Friedrich.

[4] Memory-Restricted Routing with Tiled Map Data. In: IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC’2018). IEEE,
2018, 3347–3354. doi: 10.1109/SMC.2018.00567. Joint work with Thomas

Bläsius, Jan Eube, Thomas Feldtkeller, Tobias Friedrich, Martin S. Kre-

jca, J. A. Gregor Lagodzinski, Julius Severin, Fabian Sommer, and Justin

Trautmann.

[5] The Impact of Heterogeneity and Geometry on the Proof Com-
plexity of Random Satisfiability. In: Symposium on Discrete Algorithms
(SODA). SIAM, 2021, 42–53. doi: 10.1137/1.9781611976465.4. Joint work

with Thomas Bläsius, Tobias Friedrich, Andreas Göbel, and Jordi Levy.

[6] Ultra-Fast Load Balancing on Scale-Free Networks. In: Proceedings
of the 42nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP’2015). Vol. 9135. Lecture Notes in Computer Science.

Springer-Verlag, 2015, 516–527. doi: 10.1007/978-3-662-47666-6\_41. Joint

work with Karl Bringmann, Tobias Friedrich, Martin Hoefer, and Thomas

Sauerwald.

161

https://doi.org/10.1007/s00453-020-00729-z
https://doi.org/10.3233/AIC-180574
https://doi.org/10.4230/LIPIcs.ESA.2016.6
https://doi.org/10.1109/SMC.2018.00567
https://doi.org/10.1137/1.9781611976465.4
https://doi.org/10.1007/978-3-662-47666-6\_41


[7] Greed is Good for Deterministic Scale-Free Networks. In: 36th IARCS
Annual Conference on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS’2016). Vol. 65. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016, 33:1–33:15. doi: 10.4230/LIPIcs.

FSTTCS.2016.33. Joint work with Ankit Chauhan and Tobias Friedrich.

[8] Phase Transitions for Scale-Free SAT Formulas. In: Proceedings of the
31st AAAI Conference on Artificial Intelligence (AAAI’2017). AAAI Press,
2017, 3893–3899. url: http://aaai.org/ocs/index.php/AAAI/AAAI17/

paper/view/14755. Joint work with Tobias Friedrich, Anton Krohmer,

and Andrew M. Sutton.

[9] Solving Non-uniform Planted and Filtered Random SAT Formulas
Greedily. In: Proceedings of the 24th International Conference on Theory
and Applications of Satisfiability Testing (SAT’2021). Ed. by Chu-Min Li and

Felip Manyà. Vol. 12831. Lecture Notes in Computer Science. Springer,

2021, 188–206. doi: 10.1007/978-3-030-80223-3\_13. Joint work with

Tobias Friedrich, Frank Neumann, and Andrew M. Sutton.

[10] Bounds on the Satisfiability Threshold for Power Law Distributed
Random SAT. In: Proceedings of the 25th Annual European Symposium on
Algorithms (ESA’2017). Vol. 87. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017, 37:1–37:15. doi: 10.4230/LIPIcs.ESA.2017.37. Joint

work with Tobias Friedrich, Anton Krohmer, Thomas Sauerwald, and

Andrew M. Sutton.

[11] Greedy Maximization of Functions with Bounded Curvature un-
der Partition Matroid Constraints. In: Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI’2019). AAAI Press, 2019, 2272–
2279. doi: 10.1609/aaai.v33i01.33012272. Joint work with Tobias Friedrich,

Andreas Göbel, Frank Neumann, and Francesco Quinzan.

[12] Sharpness of the Satisfiability Threshold for Non-uniform Ran-
dom k-SAT. In: Proceedings of the 21st International Conference on Theory
and Applications of Satisfiability Testing (SAT’2018). Vol. 10929. Lecture
Notes in Computer Science. Best Paper Award. Springer-Verlag, 2018,
273–291. doi: 10.1007/978-3-319-94144-8\_17. Joint work with Tobias

Friedrich.

[13] Sharpness of the Satisfiability Threshold for Non-Uniform Ran-
dom k-SAT. In: Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI’2019). International Joint Conferences on
Artificial Intelligence Organization, 2019, 6151–6155. doi: 10.24963/ijcai.

2019/853. Joint work with Tobias Friedrich.

[14] The Satisfiability Threshold for Non-Uniform Random 2-SAT.
In: Proceedings of the 46th International Colloquium on Automata, Lan-
guages and Programming (ICALP’2019). Vol. 132. LIPIcs. Schloss Dagstuhl

162

https://doi.org/10.4230/LIPIcs.FSTTCS.2016.33
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.33
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14755
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14755
https://doi.org/10.1007/978-3-030-80223-3\_13
https://doi.org/10.4230/LIPIcs.ESA.2017.37
https://doi.org/10.1609/aaai.v33i01.33012272
https://doi.org/10.1007/978-3-319-94144-8\_17
https://doi.org/10.24963/ijcai.2019/853
https://doi.org/10.24963/ijcai.2019/853


- Leibniz-Zentrum für Informatik, 2019, 61:1–61:14. doi: 10.4230/LIPIcs.

ICALP.2019.61. Joint work with Tobias Friedrich.

[15] Dominating an s-t-Cut in a Network. In: Proceedings of the 41st Con-
ference on Current Trends in Theory and Practice of Computer Science
(SOFSEM’2015). Vol. 8939. Lecture Notes in Computer Science. Springer-

Verlag, 2015, 401–411. doi: 10.1007/978-3-662-46078-8\_33. Joint work

with Sascha Grau and Michael Rossberg.

[16] Mixed Integer Programming versus Evolutionary Computation
for Optimizing a Hard Real-World Staff Assignment Problem. In:

Proceedings of the29th International Conference on Automated Planning
and Scheduling (ICAPS’2019). AAAI Press, 2019, 541–554. url: https :
//aaai.org/ojs/index.php/ICAPS/article/view/3521. Joint work with Jannik

Peters, Daniel Stephan, Isabel Amon, Hans Gawendowicz, Julius Lischeid,

Lennart Salabarria, Jonas Umland, Felix Werner, Martin S. Krejca, Timo

Kötzing, and Tobias Friedrich.

163

https://doi.org/10.4230/LIPIcs.ICALP.2019.61
https://doi.org/10.4230/LIPIcs.ICALP.2019.61
https://doi.org/10.1007/978-3-662-46078-8\_33
https://aaai.org/ojs/index.php/ICAPS/article/view/3521
https://aaai.org/ojs/index.php/ICAPS/article/view/3521

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Scope of this Thesis
	1.1.1 State of the Art

	1.2 Contribution and Outline

	2 Preliminaries
	2.1 Notation
	2.2 Probability Theory
	2.2.1 Probability Spaces and Events
	2.2.2 Random Variables
	2.2.3 Expected Values

	2.3 Probabilistic Inequalities

	3 Random SAT and Satisfiability Thresholds
	3.1 Boolean Satisfiability
	3.1.1 Different definitions for SAT

	3.2 Random k-SAT
	3.2.1 Satisfiability Threshold

	3.3 Non-Uniform Random k-SAT
	3.3.1 Satisfiability Threshold
	3.3.2 Notable Special Cases


	4 Satisfiability Threshold in Non-Uniform Random 2-SAT
	4.1 What we are going to show
	4.1.1 How we are going to show it

	4.2 Bicycles and the First Moment Method
	4.3 Snakes and the Second Moment Method
	4.3.1 The coarse threshold case
	4.3.2 The sharp threshold case

	4.4 A Simple Upper Bound on the Satisfiability Threshold
	4.5 Putting it All Together
	4.6 Examples
	4.6.1 Random 2-SAT
	4.6.2 Power-law Random 2-SAT
	4.6.3 Geometric Random 2-SAT


	5 Asymptotic Threshold in Non-Uniform Random k-SAT
	5.1 Unsatisfiability
	5.2 Satisfiability
	5.3 Examples
	5.3.1 Random k-SAT
	5.3.2 Power-Law Random k-SAT
	5.3.3 Geometric Random k-SAT

	5.4 Remarks

	6 Sharpness in Non-Uniform Random k-SAT
	6.1 Relation of Clause Flipping and Clause Drawing
	6.2 Coarse Thresholds
	6.3 The Sharp Threshold Theorem
	6.4 Proof of Sharpness
	6.5 Examples
	6.5.1 Random k-SAT
	6.5.2 Power-Law Random k-SAT
	6.5.3 Geometric Random k-SAT

	6.6 Remarks

	7 Conclusions & Outlook
	Bibliography
	List of Publications

