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Abstract 

Regulation of gene transcription plays a major role in mediating cellular responses and physiological behavior 

in all known organisms. The finding that similar genes are often regulated in a similar manner (co-regulated or 

"co-expressed") has directed several "guilt-by-association" approaches in order to reverse-engineer the 

cellular transcriptional networks using gene expression data as a compass. This kind of studies has been 

considerably assisted in the recent years by the development of high-throughput transcript measurement 

platforms, specifically gene microarrays and next-generation sequencing.  

In this thesis, I describe several approaches for improving the extraction and interpretation of the information 

contained in microarray based gene expression data, through four steps: (1) microarray platform design, (2) 

microarray data normalization, (3) gene network reverse engineering based on expression data and (4) 

experimental validation of expression-based guilt-by-association inferences. In the first part test case is shown 

aimed at the generation of a microarray for Thellungiella salsuginea, a salt and drought resistant close relative 

to the model plant Arabidopsis thaliana; the transcripts of this organism are generated on the combination of 

publicly available ESTs and newly generated ad-hoc next-generation sequencing data. Since the design of a 

microarray platform requires the availability of highly reliable and non-redundant transcript models, these 

issues are addressed consecutively, proposing several different technical solutions. In the second part I 

describe how inter-array correlation artifacts are generated by the common microarray normalization methods 

RMA and GCRMA, together with the technical and mathematical characteristics underlying the problem. A 

solution is proposed in the form of a novel normalization method, called tRMA. The third part of the thesis 

deals with the field of expression-based gene network reverse engineering. It is shown how different centrality 

measures in reverse engineered gene networks can be used to distinguish specific classes of genes, in 

particular essential genes in Arabidopsis thaliana, and how the use of conditional correlation can add a layer 

of understanding over the information flow processes underlying transcript regulation. Furthermore, several 

network reverse engineering approaches are compared, with a particular focus on the LASSO, a linear 

regression derivative rarely applied before in global gene network reconstruction, despite its theoretical 

advantages in robustness and interpretability over more standard methods. The performance of LASSO is 

assessed through several in silico analyses dealing with the reliability of the inferred gene networks.  In the 

final part, LASSO and other reverse engineering methods are used to experimentally identify novel genes 

involved in two independent scenarios: the seed coat mucilage pathway in Arabidopsis thaliana and the 

hypoxic tuber development in Solanum tuberosum. In both cases an interesting method complementarity is 

shown, which strongly suggests a general use of hybrid approaches for transcript expression-based 

inferences. 

In conclusion, this work has helped to improve our understanding of gene transcription regulation through a 

better interpretation of high-throughput expression data. Part of the network reverse engineering methods 

described in this thesis have been included in a tool (CorTo) for gene network reverse engineering and 

annotated visualization from custom transcription datasets. 
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1. Introduction 

1.1 Regulation of Transcription and Systems Biology 

The survival of all living organisms depends on their rapid adaptation in the ever-changing environmental 

conditions. One of these mechanisms of adaptation resides in the dynamic and selective activation of the 

genetic information contained in the chromosomes (Lodish et al., 2003). This process, which transcribes 

genes into transcripts, and transcripts into active proteins, has been described as the "central dogma of 

molecular biology" (Crick, 1970). In particular, the regulation of the first step of the central dogma, gene 

transcription, determines how many messenger RNA (mRNA) transcript copies are produced from a gene, and 

therefore it controls how many active proteins will be synthesized from a particular gene. This control, mainly 

investigated for the transcription initiation mechanism steps, but applied also over transcript maintenance and 

turnover, is precisely regulated in all organisms (Figure 1) but particularly important in plants (Taiz and Zeiger, 

2006). In fact, these sessile organisms cannot depend on rapid muscular movement to overcome a wide 

range of potentially harmful events like flooding (Jackson and Colmer, 2005), drought (Zhu, 2002) or nutrient 

limitations (Lee et al., 2007) and must therefore rely on other mechanisms in order to survive, among which a 

rapid and dynamic capability to vary transcript expression. Transcriptional control is important not only for 

dealing with external events (Wilke et al., 1994), but also to carry out physiological processes like growth 

(Nasmyth and Shore, 1987), cell differentiation (Fitzsimmons and Hagman, 1996), homeostasis (Hastings et 

al., 2008) and the cell cycle (Mudryj et al., 1991). 

No plant species has been studied, so far, in such a detail to be able to understand all transcriptional 

regulation mechanisms. However, for some of the simplest organisms, e.g. Escherichia coli, a nearly complete 

map of transcriptional regulation has been characterized through different single gene approaches (e.g. via 

gene knockouts and promoter inductional screenings), indicating which gene controls the transcription of 

which gene in specific conditions (Gama-Castro et al., 2011). These collections of details of transcriptional 

regulation phenomena have been gathered over more than 50 years by thousands of biologists, who tried to 

understand the function and interaction of single genes and cellular components (Madan Babu and 

Teichmann, 2003). This reductionist approach has recently been coupled with a more holistic approach, with 

the aim of explaining and predicting the behavior of the entire transcript population as a whole cellular 

subsystem (Kitano, 2002). A simple look at the E.coli transcription interaction network (Gama-Castro et al., 

2008) (Figure 2) shows us that only a few regulation units act separated from the rest of the bacterial genes. In 

fact, it can be observed not only that many different transcriptional control mechanisms are interlaced, but also 

that transcript and protein levels are influenced by and influence other cellular systems, such post-translational 

modifications, metabolite levels and compartmentalization, membrane fluidity, cytoskeleton structure, 

osmolarity, etc. Everything considered, it is possible to achieve a full comprehension of any step of biological 

regulation, including transcription, only by considering it from a broader perspective, as a cog in a system of 

intertwined systems. This approach has been called "Systems biology" (Kitano, 2002) and has recently been 
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massively assisted by technology leaps towards the measurability of entire populations of molecular species, 

the so-called "omics" disciplines. 

 

Figure 1 - Gene regulation in eukaryotes, with focus on the transcriptional control. This diagram is, in fact, a 
simplification, since several further tuning mechanisms for gene regulation are omitted (e.g. microRNA 
(Hobert, 2008) and differential codon usage (Gouy and Gautier, 1982)). Readapted from (Taiz and Zeiger, 
2006) 
 

1.2 Transcriptomics 

1.2.1 Transcriptomics from Northern blot to microarrays 

Amongst the -omics techniques, the first one that saw widespread use has certainly been Genomics (Cole and 

Saint Girons, 1994), i.e. the collection of sequence information contained in the inheritable genomic DNA. 

Currently, almost 2000 genomes from bacterial and eukaryotic organisms have been fully sequenced, and 

over 5000 sequencing projects are in progress (Liolios et al., 2009). 

However, Genomics is collecting static information, as the genetic information per se is usually not affected 

not affected by cellular events (with a few peculiar exceptions in the area of Epigenetics (Wolffe and Matzke, 

1999)). The transcriptome however, i.e. the entire collection of transcripts in a species, is the key link between 

information encoded in the DNA and observable phenotypes. Particular genes are dynamically activated or 

repressed in response to an external stimulus, or to a physiological event. The study of the behavior of the 

mRNA population in response to these perturbations is a methodology of Systems biology, called 
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Transcriptomics, and this discipline is one of the main instruments today to model and understand the 

mechanisms of transcriptional regulation as a whole (Kirschner, 2005). 

 

Figure 2 - Network representation of the known Escherichia coli regulation of transcription mechanisms. Every 
blue circle is a gene, every grey connection is a regulative relationship. The network is generated from the 
collection of experimentally validated genetic interactions collected in (Gama-Castro et al., 2008) 
 

One of the first and most popular techniques to semi-quantitatively measure transcript abundances has 

certainly been Northern blot (Alwine et al., 1977), a direct evolution of the Southern blot method used for DNA 

(Southern, 1975). In Northern blot the total RNA population is extracted from a particular tissue or cell sample, 

then the RNAs are separated via electrophoresis on a gel and transferred to a nylon membrane (hence the 

term "blotting"). 

Then, following the Watson and Crick rules of double-helix nucleic acid complementarity (Watson and Crick, 

1953), single-stranded labeled DNA probes are hybridized on this membrane (Thomas, 1983) (Kevil et al., 

1997). This technique provides a semi-quantitative assessment of the abundance of specific mRNAs in the 

sample, together with the information about the approximate length of the mRNA annealed by the probe. 

Northern blot has been extensively used over the years for differential expression analyses and for 

comparative transcript abundance studies (Durand and Zukin, 1993) and is still used as a benchmark 
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procedure in molecular biology (Taniguchi et al., 2001) for investigating a limited amount of transcript types 

(Bor, 2006). 

A principle similar to the specific-hybridization mechanism used in the Northern blot has been applied in the 

subsequent, higher throughput RNA measuring method, namely Real Time Polymerase Chain Reaction (RT-

PCR). In RT-PCR, the mRNA population is reverse-transcribed to the more stable cDNA, and the PCR 

reaction is monitored after every PCR or thermal cycle to assess the increase of amplicons using specific 

primers and a colorimetric (Nolan et al., 2006) or a fluorescence (Morrison et al., 1998) essay. Nowadays a 

common run of RT-PCR (having plates with 96 separated reactions) is able to measure around ten times more 

transcripts at less than half the experimental time required by than Northern blot. 

Despite the clear advancements obtained by RT-PCR, only with microarrays it has become possible to 

approach nearly full coverage of the transcriptome for transcript quantification (Ramsay, 1998). By automating 

the spotting on a chip of probes for thousands or tens of thousands of genes, high density oligonucleotide 

microarrays have become available. In microarrays, labeled samples are hybridized on the chip itself (Figure 

3). 

 

Figure 3 - Diagram of Affymetrix GeneChip type microarrays for mRNA quantification 
 

The ready availability of microarrays has made them a widely used tool in many areas of biological research 

for quantitative, high-throughput measurements of gene expression. Publicly available databases alone store 
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a huge (and growing) quantity of microarray experiments (e.g. 338947 samples in Gene Expression Omnibus 

(Edgar et al., 2002) and 251711 in ArrayExpress (Parkinson et al., 2007)), comprising hundreds of different 

species. 

The first type of microarray to be introduced were the so-called "two color" microarrays (Churchill, 2002), 

where two differently labeled samples are compared on the same chip and measured via two signal intensity 

(Red and Green) channels. However, the most popular platform today is arguably the single-channel 

Affymetrix GeneChip (Figure 3) (Affymetrix). For instance, in Gene Expression Omnibus they represent 97.9% 

of all arrays available for Arabidopsis thaliana, and 99.0% for Homo sapiens. In this technology each transcript 

is typically measured by a set of 11–20 pairs of 25 bases-long probes, collectively referred to as “probeset”. 

For every “perfect match” probe (PM), the Affymetrix chips contain a “mismatch” counterpart (MM), with a 

single nucleotide change in the middle of the PM probe sequence. The role of MM probes, located adjacent to 

the respective PM, is to measure probe-specific background signal associated to any perfect-match signal 

intensity. 

1.2.2 Microarray data preprocessing 

In general, the process of obtaining a single gene expression value out of raw probe intensity measurements 

is called “microarray preprocessing”. Three steps are usually required for Affymetrix type arrays: background 

correction, normalization and summarization. Many different methods or combinations of methods were 

proposed over the years (Irizarry et al., 2006; Millenaar et al., 2006). The most popular manufacturer-provided 

method, MAS5 (Hubbell et al., 2002), uses a scale normalization approach, and then corrects the background 

by subtracting the mean intensity of the lowest 2% spots in every microarray region, and then MM intensities 

from the respective PM ones. Wherever the MM intensity is higher than the corresponding PM one, in order to 

avoid negative signal intensities, MAS5 replaces the MM signal with an “idealized mismatch” value (IM) 

derived from other values in the same probeset. This was a significant improvement over the MAS4 

normalization which could result in negative signal intensities (Affymetrix; Zhou and Abagyan, 2003) To extract 

final probeset intensities, MAS5 calculates a robust average (Tukey’s biweight) of all the probes contained in a 

probeset. 

Many alternative techniques have challenged MAS5 supremacy for preprocessing. Being a single-array 

technique, MAS5 doesn’t model probes' behavior across different samples, and therefore suffers from high 

variance and is theoretically less robust than algorithms taking multiple arrays into account (Irizarry et al., 

2003) (Wu and Irizarry, 2004). On the other hand, MAS5 normalization doesn't depend on the nature of the 

samples analyzed, and therefore will yield identical results for a given microarray in any dataset considered. 

Two of the most popular multi-array normalization techniques are RMA (Irizarry et al., 2003) and GCRMA (Wu 

and Irizarry, 2005). RMA doesn’t use any information contained in MM probes, and calculates background 

signal by performing a modeled global correction of all PM intensities. Then it applies a quantile normalization 

step and a median polish summarization, which accounts for probe intensities over multiple arrays. GCRMA 

applies the same normalization and summarization steps as RMA, but it differs in the background correction 
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method, which is based on the probe sequence. Other multi-array methods which don’t discard MM intensities 

exist, one of them being dChip (Li and Wong, 2001). However, I will focus here on the likely most popular 

microarray normalization methods, specifically RMA, GCRMA and MAS5 (Gentleman et al., 2005; Bolstad, 

2008). Their popularity is illustrated by the fact that they are the most applied normalization techniques in 

online databases (Usadel et al., 2009). To assess the properties of these different preprocessing techniques, 

most benchmarks were specific for differential gene expression scenarios, the original purpose for which 

microarrays were developed (Schena et al., 1995). To do so, golden set spike-in samples were used, with 

known concentrations of transcripts (Cope et al., 2004) (Irizarry et al., 2006), or Real Time PCR 

measurements were performed for a comparison (Gyorffy et al., 2009). The outcome of these benchmarks has 

not identified any technique as the top performer, although single-array techniques such as MAS5 have been 

outperformed by multi-array ones such as RMA (Irizarry et al., 2003; Therneau and Ballman, 2008; Gyorffy et 

al., 2009). 

However, biological investigation was not limited to the analysis of differentially expressed genes. Indeed, 

many different approaches to biological investigation have relied on microarrays, ranging from gene and 

sample clustering (Golub et al., 1999) to gene-gene network reverse-engineering (Basso et al., 2005), from 

sample classification (Nielsen et al., 2007) to global transcript models (Usadel et al., 2008). The field of 

microarray data correlation and clustering based on the principle of coexpression has developed at a quite 

considerable pace (Boutros and Okey, 2005); despite this, the effects of preprocessing on coexpression 

analyses have been generally overlooked, with a few exceptions. (Harr and Schlotterer, 2006) used bacterial 

operons to validate the different normalization techniques for correlation analysis and concluded that a 

combination of different methods works best. On the other hand, (Lim et al., 2007) have pointed out how the 

use of the multi-array techniques RMA and GCRMA can yield inter-array correlation artifacts and generally 

lower quality networks than the older MAS5. In particular, a specific step in GCRMA background correction 

(the gene-specific binding correction, or GSB) has been identified as partially responsible for the spurious 

correlations generated by GCRMA. Notably however, the correction of this step is not sufficient to remove all 

artifact effects, and no explanation was provided for artifacts produced by RMA. 

1.2.3 The future of Transcriptomics 

Although vast, the number of transcripts measurable by any microarray platform is limited to the amount of 

probes present on the chip itself, and therefore relies on the prior knowledge about genes and their 

sequences. This has been partially overcome with the introduction of "tiling" arrays, which cover almost the 

entire genome of an organism with specific probes (Mockler and Ecker, 2005), allowing to measure the 

transcription of intergenic regions (Kapranov et al., 2007) and assess differences between splice variants 

(Wang et al., 2003). However, it remains challenging for microarrays to measure transcripts in organisms 

whose genomic sequence is not known; in these cases, only cross-hybridization on a microarray designed for 

a different species is possible, with obvious issues given by sequence evolutionary divergence (Lu et al., 

2009). 
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Recently, the development of high-throughput next generation sequencing (NGS) technologies (Sultan et al., 

2008) has started a revolution in the field of Transcriptomics (Wang et al., 2009). The application of NGS to 

the field of transcript quantification takes the collective name of "RNA-Seq" and is based on three major 

techniques (Mardis, 2008; Wang et al., 2009), specifically 454 "pyrosequencing" (www.454.com) and the 

similar Illumina (www.illumina.com) and SOLiD (www.appliedbiosystems.com) "sequencing by synthesis" 

methods. These three techniques, despite their chemical differences, share the capability to obtain vast 

amounts of sequences, or reads, in short time, for example allowing the generation of 100 millions of 

nucleotide bases in roughly 7 hours (454 FLX, (Mardis, 2008)). Providing appropriate gene models (which can 

also be generated via NGS (Bai et al., 2011)), the reads generated by these techniques can be aligned and 

the transcript abundance can therefore be estimated for each gene in a discrete way. In plant science, the 

capability of RNA-Seq to be independent from pre-existing genomic knowledge about a particular organism 

has opened the possibility to assess global transcript variation in nonmodel species, e.g. the orchid 

Phalaenopsis (Hsiao et al., 2011) or the insect-eating plant Sarracenia (Srivastava et al., 2011). Another 

advantage of RNA-Seq compared to microarrays is its capability to obtain sequences without pre-designing a 

matching probe, and therefore allowing the detection of splicing variants, point mutations and microRNAs. 

All together, it is logical to expect that RNA-Seq is going to replace microarrays in the near future (Sultan et 

al., 2008). However, microarrays are not only still cheaper, but are still highly competitive with RNA-Seq in 

several scenarios (Agarwal et al., 2010), such as the characterization of differential gene expression between 

male and female Drosophila pseudoobscura fruit flies (Malone and Oliver, 2011). Furthermore, the incredibly 

high amount of information collected over more than 15 years with microarrays in countless different species 

and conditions cannot be ignored (Edgar et al., 2002). In this intermediate period, next generation sequencing 

and microarrays could very well be complementary techniques, rather than be considered as competitors. 

Since all types of microarray platforms require a specific hybridaztion to occur between the sample 

mRNAs/cDNAs and the probes on the chip, it is mandatory to select specific and reliable probe sequences: 

this design is usually performed based on the current transcript information available for the selected organism 

(Gasieniec et al., 2006), but could be massively sped up by a NGS-based transcript population definition. This 

NGS-microarray combined principle has been tried before, for example 454 pyrosequencing has been used to 

qualitatively draft a transcriptome with the purpose of designing novel microarrays in the poorly characterized 

butterfly Melitaea cinxia (Vera et al., 2008). The task is however paved with technical issues, such as the 

necessity to assemble smaller sequences into larger representative transcript models, and conceptual issues, 

like the problem of normalizing the different transcript abundances in order to be able to detect rare RNAs. 

1.3 Gene network reverse engineering 

Transcriptional coordination, also called co-expression or co-regulation, has been observed in several 

biological contexts between functionally related genes (Stuart et al., 2003; Yu et al., 2003). Thus, co-

expression has been successfully exploited in a range of model organisms, including yeast (Yu et al., 2003), 

human (Lee et al., 2004) and other mammals (Wolfe et al., 2005). Consequently, using this “guilt by 

association” approach, transcriptome-wide gene function inference and biological pathway discovery has been 
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possible (Wei et al., 2006; Yonekura-Sakakibara et al., 2008; Usadel et al., 2009). For example, cellulose 

synthase genes (CESAs) have been showed to be co-expressed in Arabidopsis thaliana (Figure 4) and to be 

interacting in the same cellulose biosynthetic pathway; following this principle, two further genes were found to 

be coexpressed with the CESAs and characterized as displaying cellulose synthesis deficiencies (Brown et al., 

2005; Persson et al., 2005). 

 

Figure 4 - Co-regulation of two cellulose synthase genes in Arabidopsis thaliana across several seeds and 
siliques tRMA-normalized (Paragraph 4.2.7) microarray samples from (Schmid et al., 2005) 
 

Ideally, the large amount of transcript data publicly available (Parkinson et al., 2007; Leinonen et al., 2011) 

would be a gold mine for transcriptome-wide co-expression screenings, also considering that Metabolomics 

and Proteomics datasets are currently approaching near full genome scale (Weckwerth, 2010; Dunn, 2011). 

Unfortunately for these "systems" scopes, most experiments found in the literature have a single and precise 

biological question, e.g. which genes are up-regulated upon challenge with a specific abiotic stress. Such 

questions can be tackled via differential expression analysis, and solved due to recent advances in statistical 

analysis of microarray data. However, it is not immediately clear how different experimental series can be 

combined to reveal novel unaccounted information, not necessarily directly pertaining to the experimental 

question at hand. Thankfully, some successes have come from early work done using simple clustering (Eisen 

et al., 1998) or correlation approaches to infer biological themes or -more recently- to apply machine learning 

techniques to different experiments in order to infer the biological function of candidate genes (Brown et al., 
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2000), the requirement for certain genes for a viable organism (Mutwil et al., 2010) or to predict the subcellular 

localization of genes (Ryngajllo et al., unpublished). 

In the recent biology history, this has been complemented by network representations which have been 

successfully employed to capture various cellular relationships, ranging from protein-protein interactions 

(Breitkreutz et al., 2007) to gene regulations (Gama-Castro et al., 2008) and metabolic conversions (Yamada 

and Bork, 2009). In these networks, biological entities (e.g. genes, proteins, and metabolites) are represented 

as vertices, and their interactions are represented as edges. Biological networks can be assembled based 

principally on two different methods: (1) experimental evidence (i.e., existing knowledge) on the relationships 

between the considered entities, usually stored in a database form (e.g. (Wingender et al., 2000; Peri et al., 

2003; Breitkreutz et al., 2007; Caspi et al., 2008)) and (2) network reconstruction from data profiles 

(Hartemink, 2005). Since direct evidence on protein-protein interaction and direct transcription control is 

experimentally time- and cost- consuming to obtain, many studies have focused on inferring large-scale 

biological relationships from expression data, in an approach called network reverse engineering (He et al., 

2009). This approach aims at revealing the complete structure of relationships between molecular species 

within a biological system by applying suitable similarity measures (e.g., correlation, Euclidean distance, 

Mutual information (D’haeseleer et al., 2000)) or by using more sophisticated algorithms, e.g. probabilistic 

graphical models (Friedman, 2004). 

In this framework, microarray datasets and transcriptional measurements obtained from comparable platforms 

(Schmittgen et al., 2008; Wang et al., 2009), have led to the prolific application of reverse engineering in the 

context of gene expression (He et al., 2009). These approaches have proven useful in both small-scale 

scenarios, e.g. for determining novel drug targets in the human B-cell leukemia gene network (Basso et al., 

2005) and large-scale studies, e.g. for validating the transcription network of Escherichia coli (Faith et al., 

2007) or Arabidopsis thaliana (Mutwil et al., 2010). 

When similarity measures are applied in reconstruction of gene regulatory networks, two possibilities can be 

considered. The first consists in assessing the co-regulation of two genes via direct methods, that quantify the 

relationship without considerations over the rest of the gene population. The second implies assessing a 

relationship via conditional methods, which try to filter out indirect effects from each gene-gene pair by 

removing the effect of the other genes measured, process that is called conditioning (D’haeseleer et al., 2000; 

Zampieri et al., 2008). 

The most known direct methods are Pearson correlation and Spearman correlation, which applies Pearson 

correlation after transforming the values of the variables to be correlated into ranks. Pearson correlation is 

able to assess direct, linear relationships (Butte and Kohane, 1999), while the rank-trasformation of Spearman 

correlation makes it able to detect also non-linear (but monotonic) relationships and arguably more robust to 

outliers (Usadel et al., 2009). Another direct method, Mutual Information, has also seen a broad application in 

gene network reconstruction (Butte and Kohane, 2000; Daub et al., 2004; Margolin et al., 2006); Mutual 

Information tries to predict the behavior of one gene via the expression of another one, based on the 
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interpretation of the informational entropies of the two expression patterns: this is achieved by discrete binning 

of the distributions and is able to assess also non-linear and complex interactions. A fourth widely applied 

direct method is Euclidean Distance (Wen et al., 1998), which simply tries to calculate the relative distances of 

genes considered as points in multi-dimensional spaces (where every dimension is a measurement). 

However powerful, direct methods lack hte capability to grasp one layer of understanding of co-regulation 

networks. As depicted in Figure 5, if one (or more) intermediate genes (gene Z) exist between two genes for 

which we want to assess co-regulation (gene X and gene Y), an indirect correlation is observable. Conditional 

methods deal with this phenomenon, taking any X-Y relationship and conditioning it to one or several other 

genes in the same dataset (de la Fuente et al., 2004; Frenzel and Pompe, 2007). Simply put, they specify the 

degree of relationship between two genes X and Y when the effect of a third variable Z (or several other 

variables) is removed. 

 

Figure 5 - Examples of indirect gene relationships yielding correlation. (A) gene X activates gene Z, which in 
turn activates gene Y. Correlation will be observable between gene X and Y (dashed line). (B) Gene Z is the 
common activator of gene X and gene Y, which therefore will appear as (indirectly) co-regulated. 
 

Both correlation-based (de la Fuente et al., 2004) and Mutual Information-based (Frenzel and Pompe, 2007) 

direct methods have conditional (or partial) counterparts. In the simplest case, Conditional Pearson correlation 

(also called Partial Pearson correlation or higher order Pearson correlation), can be determined for two genes 

X and Y based on the standard direct Pearson correlation coefficient (or zeroth order Pearson correlation 

coefficient, Equation 1). Conditional correlation coefficients can then be derived directly from standard 

correlation coefficients, as in Equation (2) (de la Fuente et al., 2004).  

 

zeroth order correlation:        
       

√            
 , (1) 

first order correlation :              
             

√(     
 )      

  
, (2) 

second order correlation:          
                   

√(       
 )(       

 )
  (3) 
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If the Partial correlation coefficient calculated decreases significantly when compared to the original zeroth 

order correlation coefficient, then gene Z can be hypothesized as one of the common causes or as an 

intermediate variable in sequential pathways (as in Figure 5). The conditional coefficients for a dataset of n 

genes can be calculated up to the order of n-2, removing the effect of additional genes from a particular 

correlation. This can be done simply by expanding the following Equation 2 to an higher order correlation 

(Equation 3 for second order correlation) and continue incrementally. 

Conditional methods have been used in genome-wide gene network reconstruction (Schäfer and Strimmer, 

2005; Veiga et al., 2007), and combined with information theory approaches (Reverter and Chan, 2008). The 

conditional approach is particularly fit in reverse engineering pathways of genetic regulation, such as signal 

transduction cascades, where they manage to identify indirect correlation effects (Zampieri et al., 2008). 

However powerful, the applicability higher order of Conditional/Partial methods, based on sequentially growing 

formulas as in Equation 2 and 3, is limited due to underlying algorithmic complexity leading to very long 

runtimes when increasing the conditioning order above one (de la Fuente et al., 2004). This is a major 

drawback, since a full conditioning against all other elements would be desirable in order to obtain truly direct 

connections between genes. Conditioning approaches based on the classical framework discussed above 

needed more data points (i.e. samples) than variables (i.e. genes), a scenario rarely found for microarray 

datasets. However, it was proposed to extract the fully conditioned data using several approximate 

approaches to obtain numerically stable solutions, for example by transforming the correlation matrix to an 

equivalent shrunken version (Opgen-Rhein and Strimmer, 2007). This solution, while approximate in its 

nature, allowed the total reconstruction of gene-gene networks (sometimes referred to as graphical Gaussian 

model) on the full genome level, mathematically removing the effect of all other measured genes (Ma et al., 

2007). An analogous approach was taken by (Friedman et al., 2000) that tried to rebuild networks using 

probabilistic (Bayesian) approaches. While these approaches initially limited the measurements to a few 

discrete values, recent developments have allowed more flexibility (Werhli and Husmeier, 2007). Despite 

these recent developments, the performance of these reconstruction approaches in unveiling the 

transcriptional control mechanisms is still poorly understood. Moreover, an intrinsic flaw of probabilistic 

networks is that they necessarily have to rely on a priori assumptions, assuming for example the joint 

distribution of the variables in the dataset. Despite these shortcomings, (Werhli et al., 2006) analyzed the 

performance of several probabilistic and correlation-based approaches. They came to the conclusion that, in 

both simulated networks and well studied real pathways, probabilistic and partial correlation methods 

performed better than simple correlation, but only by a small margin. In fact, simple correlation networks have 

been very successful in the field of functional gene annotation (Mutwil et al., 2011) or biomarker prediction 

(e.g. (Qiu et al., 2007)), since in these cases the question of true direct connections is of lesser interest. 

However, in some circumstances it may be of central importance to detect the real connections, for example a 

common transcription factor activating a cluster of similar co-regulated isozymes, rather than connecting 

everything activated by the same transcriptional mechanism. Recently, global network properties, like the 
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number of connections for every gene (network degree) have been associated to biological properties of the 

genes themselves. For example, it has been shown that products of essential genes tend to interact with more 

partners than non-lethal ones in yeast (see also Paragraph 1.4.3) (Yu et al., 2004) and that disease genes 

tend to be found in particularly dense and interconnected areas of the human protein-protein interaction 

network (Rambaldi et al., 2008). However, no connection has been made so far between network degree and 

gene properties after removal of indirect connections via conditional approaches, giving the initial hint to the 

analysis described in Paragraph 2.3. It can also be expected that the successful field of network pattern 

evaluation (Milo et al., 2002) could benefit from the capability to detect indirect correlations, since the effect of 

these spurious connections in biological coexpression networks has never been studied in relation to topology 

or centrality. Another way to improve the reliability of an edge (i.e. a connection between two genes) are 

cross-species approaches profiting from conserved edges and network architectures between core biological 

functions (Stuart et al., 2003; Tsaparas et al., 2006). However, the problem of improving network 

reconstruction and biological validation still remains unsolved to this day. Another technique still not broadly 

applied for gene network reverse engineering (although some exploratory studies exist, such as (Gustafsson 

et al., 2009)) is notably the Least Absolute Shrinkage and Selection Operator, or the LASSO (Tibshirani, 

1996). The LASSO is a linear regression-based approach, which can work in scenarios with more variables 

than samples (like e.g. microarrays), providing a robust set of interactions and the capability of removing 

indirect connections, like conditional correlation (Hastie et al., 2001). More details on the LASSO and our 

implementation of it into gene network analysis will be provided in Paragraph 2.4.2). 

1.4 Biological scenarios of gene network reverse engineering 

As previously stated, network approaches have been extensively applied in several biological studies following 

the "guilt-by-association" approach, i.e. using a gene, known to be involved in a specific pathway, function or 

biological process, as a "bait" to infer more counterparts in the same context (Wolfe et al., 2005; Aoki et al., 

2007; Peng and Weselake, 2011). Using coexpression and network approaches many new genes have been 

characterized (e.g. in the cellulose synthase pathway (Persson et al., 2005; Mutwil et al., 2010), during starch 

biosynthesis (Koßmann et al., 1991), etc.) and even entire families of genes have been associated to a 

putative function (e.g., the cytochrome P450 superfamily (Ehlting et al., 2006)). I will now focus on two still not 

fully understood plant biological pathways, which have constituted my test cases for evaluating novel gene 

network reverse engineering approaches in the course of this dissertation. Finally, I will talk about essential 

genes (i.e. genes whose deletion determines the organism's death) and their properties in biological and 

expression-based networks. 

1.4.1 The seed coat mucilage pathway 

Higher plants' seed coat is composed of specialized tissues that provide protection to the embryo and assist in 

seed germination and dispersal. In some plant species, including Arabidopsis thaliana, the epidermal cells of 

the seed coat host a considerable amount of mucilage, containing large quantities of relatively unbranched 

pectin (Macquet et al., 2007). When dry Arabidopsis seeds are placed in an aqueous environment, the 

mucilage is released (extruded) and completely envelops the seed (Macquet et al., 2007). This pectinaceous 
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system has been suggested to be important for seed hydration and germination, attachment to soil 

components and for preventing gas exchanges (Caeseele et al., 1981; Boesewinkel and Bouman, 1995), 

although seeds deprived of mucilage are still viable. Seed coat mucilage is produced and released by a 

specific family of cells, characterized by a typical volcano-like shape (Western, 2006). The seed coat secretory 

cells undergo a consistent differentiation process during seed development, which is accompanied by different 

stages of cell wall and pectin production. Mucilage is generally considered a superb model in which to study 

pectin biosynthesis during development, because, unlike mature tissues, it can be easily extracted without 

waiting for plants to be fully grown and without killing the seeds, since Arabidopsis plants can live even without 

this pectinaceous matrix (Western, 2006). 

Mutations in a number of genes have been associated to altered mucilage production and/or release in the 

Arabidopsis seed coat. These include several transcription factors and development regulators, such as AP2, 

TTG1, GL2, TT2, TT8, EGL3, MYB5, MYB61. Furthermore, through screening of mucilage-defective mutants, 

five "MUcilage-Modified" (MUM) loci have been identified, which seem to act specifically in certain steps of 

mucilage production and release (Western et al., 2001). Mum3 and mum5 mutants show mucilage of altered 

composition, while MUM1 (also known as LUH or Leunig Homolog (Huang et al., 2011)) and MUM2 (also 

known as BGAL6 or Beta-Galactosidase 6) have a key role in mucilage release. The sub-pathway controlled 

by LUH, regulating the expression of the genes BGAL6, BXL1 and SBT1.7, is required for modifying the 

branching structure of pectins (Huang et al., 2011). MUM4 is clearly acting in a biosynthetic step of mucilage 

production as cloning of the underlying gene revealed this to be RHM2 (Rhamnose Biosynthesis 2) which is 

coding for a UDP-L-rhamnose synthase (Usadel et al., 2004). In addition to these genes, eight enhancer loci 

(called MEN: Mum-ENhancers) have been identified in the context of an already present RHM2 inactivation, 

showing reduced mucilage production and release (Arsovski et al., 2009). It is noteworthy to observe that, 

among this collection of cloned loci, only a few have been associated to the biosynthesis of seed coat 

mucilage, and concomitantly much more has been discovered on the upstream signaling cascades (Figure 6, 

inferred from (Arsovski et al., 2009) and (Huang et al., 2011)). In the general picture, half of the characterized 

genes seem to have an exclusive transcriptional regulation function, while the other half possess enzymatic 

capabilities (see Table 8, page 61, for a summary). Also, the nature of the mucilage deficiency caused by 

knocking out these genes is not unique: for some mutants (e.g. mum4) the mucilage release can be triggered 

by addition of EDTA, which acts possibly by removing Ca
2+

 ions from the cell wall, while the inactivation of 

other genes (e.g. the upstream regulator AP2) impairs the very synthesis of mucilage (Arsovski et al., 2009).  
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Figure 6 - Gene regulatory network for the seed coat mucilage pathway in Arabidopsis thaliana (inferred 
from (Arsovski et al., 2009) and (Huang et al., 2011)) 
 

Although several genes are constantly found to be involved in the mucilage synthesis and/or modification 

(Arsovski et al., 2010), several players are still missing in the network summarized above (Figure 6). The 

existence of genes known to be involved in this pathway and transcriptionally measurable via the Arabidopsis 

thaliana Affymetrix microarray (Affymetrix), together with the possibility to experimentally confirm alterations in 

the seed coat mucilage sugar composition via chromatography (Ip et al., 1992), make this scenario an ideal 

candidate for expression-based gene network reverse engineering (results of this approach in Paragraph 2.5). 

1.4.2 Hypoxic tuber development in Solanum tuberosum 

Seeds are also among those plant tissues characterized by physiological hypoxia, i.e. oxygen shortage 

(Borisjuk and Rolletschek, 2009), together with other bulky or high metabolism tissues such as fruits (Banks, 

1983), seedlings (Van Dongen et al., 2003) and tubers (Geigenberger et al., 2000).  

Hypoxia is in fact not only an external stress condition for aerobic living organisms, but also a physiological 

event during the development of multicellular organisms (Fukao and Bailey-Serres, 2004). For instance, 

mammalian embryo development takes place at low oxygen levels in vivo, and hypoxic conditions significantly 
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contribute to its correct progression in vitro (Forristal et al.). In plants, it has been known for over 90 years 

(Magness, 1920) that certain organs experience low oxygen conditions during growth and development 

(Geigenberger, 2003). Hypoxia, both in stress and developmental conditions, is associated with wide changes 

of transcript (Lasanthi-Kudahettige et al., 2007) and metabolite abundances (Biais et al., 2009), leading in 

general to a suppression of metabolic activities as an adaptive response to save ATP and decrease oxygen 

consumption (Geigenberger et al., 2000). 

 

Figure 7 - Multiple sequence alignment of the conserved ERF domain from several hypoxia-related ERF 
proteins in Arabidopsis thaliana (At), Oryza sativa (Os), Glycine maximum (Glyma), Malus domestica (Md), 
Pinus taeda (Pta), Physcomitrella patens (Ppa) and Chlamydomonas reinhardtii (Cre). Multiple alignment was 
performed with MUSCLE (Edgar, 2004). 
 

Transcript profiling of different plant species under low oxygen conditions revealed that several transcription 

factor (TF) gene families induced by low oxygen are conserved across the plant kingdom (Mustroph et al., 

2010). The similar behavior of hypoxia-responsive TFs, together with the high conservation of specific protein 

domains, suggests a conserved role in low oxygen signaling in higher plants. Moreover, parallel data mining 

from whole-transcriptome profiling in Arabidopsis and rice under low oxygen conditions (Christianson et al., 
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2010; Narsai et al., 2010) and QTL analyses led to the identification and characterization of genes putatively 

involved in the transduction of the hypoxic signal (Xu et al., 2006) (Fukao and Bailey-Serres, 2008). In the 

animal world, HIF1 is a major regulator of the hypoxic pathway, leading to programmed cell death or apoptosis 

(Carmeliet et al., 1998). In plants, no HIF1-like gene is present, however a vast cross-species family of 

hypoxia-related transcription factors called Ethylene Response Factors (ERFs) has been described (Nakano 

et al., 2006; Licausi et al., 2010). The name derives from early studies showing their responsiveness to 

ethylene (Ohme-Takagi and Shinshi, 1995), and it refers also to their 50-60 amino acid domain, highly 

conserved across plants (Sakuma et al., 2002) (Figure 7). Transcriptional regulators belonging to the ERF 

family play a role in development (Boutilier et al., 2002) and reaction to biotic (Yamamoto et al., 1999) and 

abiotic stresses (Nakano et al., 2006). A DNA element named the GCC box (AGCCGCC) has been shown to 

be recognized by most members of the ERF family (Ohme-Takagi and Shinshi, 1995), although a vast number 

of other motifs have been recently shown to be physically bound by different ERF transcription factors (Sasaki 

et al., 2007) (Maeo et al., 2009). 

While for Arabidopsis and rice much is known on transcriptional phenomena related to hypoxia, the 

characterization of these is still missing in potato (Solanum tuberosum), organism which shares the general 

hypoxic susceptibility of Arabidopsis (Table 1). Therefore, we identified in the potato tuber development 

another ideal scenario for gene network reverse engineering focusing on hypoxia-related expression 

measurements. Compared to the previous pathway (the seed coat mucilage synthesis and release), in this 

case no gene bait can be used for guilt-by-association analyses, since no potato ERF has been characterized 

yet. Therefore, it is necessary to identify the functional orthologs of Arabidopsis ERFs prior to the 

bioinformatical analysis. In particular, two of the Arabidopsis ERF genes, HRE1 and HRE2, have been shown 

to be induced by hypoxia and are required for low oxygen tolerance (Licausi et al., 2010), representing the 

ideal baits for our pathway reconstruction analysis. 

Species 
Tolerance of oxygen 
deficiency 

Seed germination 
under anoxia 

Thale cress (Arabidopsis thaliana) Poor No 

Maize (Zea mays) Poor to intermediate No 

Potato (Solanum tuberosum) Poor No 

Rice (Oryza sativa) Intermediate to strong Yes 

Barnyard grass (Echinochloa spp.) Intermediate to strong Yes 

Marsh dock (Rumex palustris) Strong No 

Table 1 - Comparative hypoxia tolerance of several plant species. Readapted from (Fukao and Bailey-Serres, 

2004) 

1.4.3 Essential genes 

Analysis on both data-inferred and annotation-based networks has also been used for identifying particular 

classes of genes whose presence is absolutely necessary for an organism to survive, known as "essential 

genes" (Jeong et al., 2001; Zotenko et al., 2008). The characterization of these genes will allow to identify the 
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minimal transcription machinery needed for plants to germinate (Tzafrir et al., 2004; Meinke et al., 2008) and 

has been described elsewhere as “the most important task of genomics-based target validation” (Chalker and 

Lunsford, 2002) (Cole, 2002). 

However, experimentally screening for lethal gene disruptions is challenging and time consuming, even in 

model species. Several sequence-based properties of essential genes have been exhaustively investigated: 

for instance, essential genes tend to evolve more slowly than their non-essential counterparts (Hurst and 

Smith, 1999), and their sequence tends to be devoid of codons for rare amino-acids, possibly to minimize 

translational stalling (Seringhaus et al., 2006). 

In addition, essential genes have peculiar topological properties in biological networks. In Saccharomyces 

cerevisiae, proteins coded by essential genes tend to have a higher Degree centrality in a protein-protein 

interaction network (i.e., more distinct interactors) than non-essential ones (Jeong et al., 2001). These genes 

show a particularly high Degree centrality also in networks extracted from transcript coexpression analysis 

(Mutwil et al., 2010). The propensity towards essentiality for genes having a high degree centrality also seems 

to hold for other centrality measures, specifically closeness and betweenness (Hahn and Kern, 2005). Some 

studies (Carlson et al., 2006; Wunderlich and Mirny, 2006) have combined different sequence-based, 

expression based and network based properties for efficient essential gene prediction. 

1.5 Summary of the aims of this thesis 

In the first part of the Results section of this thesis, I will focus on the measurement of transcript levels using 

microarrays. I will first describe a general framework for transcriptome characterization based on the 

information available in a joint population of NGS and EST sequences for the salt resistant plant Thellungiella 

salsuginea, in order to provide reliable transcript models for microarray platform design (Paragraph 2.1). Then, 

I will identify, define and partially overcome sample correlation issues in microarray normalization, and 

propose a novel normalization approach called transposed RMA or tRMA (Paragraph 2.2). 

The second part of the Results section focuses on expression-based gene network reverse engineering 

approaches to better understand the transcriptional control phenomena in plants. In Paragraph 2.3, I will 

attempt to improve the detectability of essential genes based on expression data and a conditional correlation 

based approach. In Paragraph 2.4, I will describe a comparative in silico analysis of several gene network 

reverse engineering approaches based on a large Arabidopsis thaliana microarray dataset, focusing on the set 

up and application of the linear regression LASSO. In this Paragraph I also show the generation of a 

comprehensive network reconstruction tool to perform these kinds of analysis. 

In the last part, I will transport the network reconstruction methods comparison from a purely theoretical 

perspective to two incompletely understood in vivo scenarios. In Paragraph 2.5 I will describe how LASSO and 

Correlation can extract complementary sets of genes involved in the Arabidopsis thaliana seed coat mucilage 

pathway, based on known gene baits affecting this process. In Paragraph 2.6 I will test LASSO and 

Correlation in Solanum tuberosum tuber development; here, I will also describe how the gene baits were 

identified by sequence similarity with Arabidopsis thaliana prior to the expression-based analysis. 
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2. Results 

2.1 Generation of a custom microarray platform from next-generation 

mRNA sequencing data: the Thellungiella salsuginea transcriptome 

2.1.1 Collecting Thellungiella sequences 

Thellungiella salsuginea (common name: salt cress) is an extremophile plant, possessing an exceptionally 

high resistance to salt, drought and low temperatures. Despite these features, Thellungiella is morphologically 

and genetically very close to Arabidopsis thaliana (sharing 90-95% nucleotide sequence for housekeeping 

genes (Inan et al., 2004)). The study of Thellungiella in comparison to the broad knowledge available for 

Arabidopsis will possibly shed light on the mechanisms of tolerance to extreme conditions, with great potential 

applications to crop research. A number of Thellungiella expressed sequence tags (ESTs) have been 

generated by different studies (e.g. (Wang et al., 2004)) using standard Sanger sequencing, but presently, 

neither the genome nor the transcriptome of this extremophile have been fully examined. 

I started by collecting all transcript sequence information publicly available for Thellungiella salsuginea on 

GenBank (Benson et al., 2008), obtaining in a collection of 38,022 sequences. This was merged with 6,529 

ESTs produced by (Wang et al., 2004), for a total of 44,551 sequences. Despite this apparently high number 

of sequences, the internal redundancy plus the lack of a full coverage of experimental conditions make these 

libraries insufficient to describe the full range of Thellungiella transcripts. 

To complete the picture, a considerable number of different salt, drought and temperature conditions were 

tested on a pool of Thellungiella plants by our collaborator Dr. Yang Ping Lee (Max Planck Institute for 

Molecular Plant Physiology, Golm). The polyA tagged (i.e. mRNAs) transcripts extracted from these plants 

were then pooled and sequenced using 454 technology (Cheung et al., 2006). Two different libraries were 

produced, an "unnormalized" one, where all mRNAs were pooled and sequenced without altering their relative 

quantities, and a "normalized" one, where the most abundant transcripts were reduced in number (Soares et 

al., 1994). The purpose of a normalized library, in a qualitative study like a transcriptome characterization, is to 

obtain the same amount of information with less sequence reads, and hopefully to detect rare transcripts. 

The normalized library contains around 400,000 reads, roughly half the size of the unnormalized library. The 

normalized library seems to be composed by shorter fragments than the unnormalized one, hinting that a 

certain fragmentation was introduced during the transcript treatment (Figure 8). 
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Figure 8 - Read length distribution for the unnormalized library (A), normalized library (B) and a combination 
of the two (C). On the x axis, the length of the reads is displayed, while on the y axis, the number of reads is 
indicated. The nucleotide degradation of the normalized library is expected to happen by following the 
normalization protocol (Soares et al., 1994). 
 

In order to remove potential contaminating reads from the picture, I applied a BLAST-based pipeline 

highlighting all reads with a high identity first hit outside the Streptophyta phylum (see Paragraph 4.1 for 

details), resulting in both libraries containing only a very low fraction (0.6%) of contaminant reads. Only 10% of 

these reads belong to "expected" contaminant organisms, such as the plant pathogen Acyrthosiphon pisum or 

Agrobacterium, and most of them actually map to a plethora of species from all kingdoms of life. Therefore, 

since we cannot discard the possibility that these reads are indeed arising from peculiar Thellungiella 

transcripts, that only by chance have a high similarity with non-Streptophyta organisms, we included them in 

the subsequent analysis, and marked as "putative contaminants" the 304 transcript models generated through 

these reads. 

2.1.2 Transcript assembly 

However longer than reads obtained by alternative next-gen sequencing methods, 454 reads are generally 

shorter (<1000 nucleotides) than most of the mRNAs present in the Trasncriptome. For example, the average 

transcript length for Arabidopsis thaliana is around 1200 nucleotides (see Appendix, page 101). Therefore, raw 

reads need to be processed by a transcript assembly pipeline, which removes ultralow frequency sequences 

(most likely sequencing errors) and merges identically overlapping reads into "contigs" (representing transcript 

models). To do so, I merged the two libraries with the ESTs publicly available for Thellungiella and proceeded 

testing different assembly strategies among those capable to integrate different input data. The first, called 

MIRA (Chevreux, 2005) implements a modified greedy method (Miller et al., 2010) and is optimized for hybrid 

input assemblies. The second, included in the CLC Workbench (www.clcbio.com), is a proprietary, commercial 

assembler optimized for speed. The third, iAssembler (bioinfo.bti.cornell.edu/tool/iAssembler/), is a hybrid 

method which combines the output of MIRA and CAP3 (Huang and Madan, 1999) pipelines to reduce 

assembly errors. It must be noted that the commonly accepted favoured method for 454 assembly, the 

B C A 
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commercial Roche assembler Newbler (Margulies et al., 2005), was not available for testing. Unfortunately, 

iAssembler couldn't provide any analyzable output in a reasonable amount of time, and we therefore decided 

to discard this method. 

 

Assembler 
Assembled 

reads 
Contigs 

Largest 
contig 

Average 
contig length 

N50 
Arabidopsis 

peptides 
found 

Assembly 
time 

MIRA 3.1.15 
1,060,666 
(84.4%) 

46,220 5,736 567.4 646 
23,029 
(68.9%) 

26h 

CLC 
Workbench 4.0 

1,079,855 
(85.9%) 

39,438 2,965 545.3 625 
22,133 
(66.2%) 

0.5h 

iAssembler 1.0       >600h 

Table 2 - Comparison of assembly pipelines on a Thellungiella salsuginea collection of 1,212,314 sequences. 

 

MIRA uses slightly less reads than CLC (Table 2), with both methods discarding around 15% of the combined 

454/EST data. A manual inspection of the discarded reads shows a high amount of unique and low quality 

sequences. MIRA assembles the reads in more "contigs", or transcript models (46,220) than CLC (39,438). 

The MIRA contigs tend to be generally larger (average length for MIRA is 567, for CLC 545) with a lower 

amount of short fragments, as assessed by the N50 parameter (646 for MIRA, 625 for CLC). The N50 is a 

widely used statistical instrument for assembly validation and it indicates, in a contig population, the contig 

size above which 50% of the total sequence nucleotides are contained. In this case, an N50 of 646 for MIRA 

means that half of the nucleotides assembled are contained in contigs larger than 646, and this indicates that 

the MIRA transcript models are slightly more "realistic" than CLC ones. About the transcript "completeness" of 

a contig population, it is in theory impossible to assess it while lacking information on the genome of the 

studied organism, like in the case of Thellungiella. However the highly curated transcriptome of a close relative 

(i.e. Arabidopsis thaliana) is available, and therefore we used this as a test for the degree of completion of the 

transcript populations obtained through the assembly processes. The coverage of Arabidopsis thaliana 

proteome was performed via BLASTX with a mild E-value threshold (10
-10

), using TAIR9 (Swarbreck et al., 

2008) peptides (33,410). I decided to use peptides since sequence divergence is more strictly controlled than 

nucleotides (due to the degeneration of the codon code), however similar conclusions can be drawn using 

Arabidopsis cDNA sequences (data not shown). MIRA seems to perform a little better than CLC, providing a 

set of contigs (i.e. transcript models) which achieves a coverage of around 69% of the Arabidopsis thaliana 

transcriptome, compared to 66% of CLC. All considered, the output of this comparative analysis (Table 2) 

shows a slightly better performance for MIRA, when compared to CLC. 
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Figure 9 - Contig length distribution for the unnormalized library (A), normalized library (B) and a combination 
of the two (C). On the x axis, the length of the contigs is displayed, while on the y axis, the number of contigs 
is indicated. 
 

After selecting the assembly method, in this case MIRA, further considerations can be obtained over the 

previously discussed read libraries, through the analysis of the assemblies obtained by the separate 

collections. Using the normalized library I achieved a similar number of contigs (normalized: 28,928 vs. 

unnormalized: 33,870), while keeping a slightly lower coverage of the Arabidopsis peptide-coding 

trasncriptome (63.7% vs. 66.7%). Combining both libraries I obtained a high number of contigs (46,220) and 

an even higher coverage of the Arabidopsis protein-coding transcriptome (68.9%). The N50 was again 

comparable for both libraries. The contig length doesn't seem to be extremely affected by the normalized 

library read degradation described in Figure 8, although it shows a lower general length (Table 3 and Figure 

9). While larger, as expected, than the raw reads, the population of contigs extracted by the assembly process 

is still showing a higher fragmentation than the one observed in the annotated collection of cDNAs for 

Arabidopsis thaliana (see Appendix, page 101). In order to obtain a transcript model quality assessment 

independent from Arabidopsis I checked the contigs for open reading frames (ORF) presence using the 

ORFpredictor with default parameters (Min et al., 2005). This pipeline marks as non-ORF containing those 

contigs falling in none of the 10 mRNA categories descibed in (Min et al., 2005) in any of the 6 reading frames, 

and are therefore to be considered not protein coding. All libraries yield a high density of potential ORF-

containing transcript models (99.3% for the unnormalized one, 98.2% for the normalized one and 98.6% for 

the merged libraries. 

Everything considered, with half the reads of the unnormalized library and a consistent read degradation, and 

consequently a much lower contig coverage, the normalized library yielded contigs of around the same quality 

and with a similar completeness as the unnormalized one. 
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Library Reads 
Contaminant 

reads* 
Assembled 

reads 
Contigs 

Contigs with 
ORFs§ 

Largest 
contig 

Normalized 400,631 
2506 

(0.6%) 
376,509 
(84.6%) 

28,928 
28416 

(98.2%) 
2,537 

Unnormalized 811,683 
4496 

(0.6%) 
712,262 
(83.2%) 

33,870 
33625 

(99.3%) 
4,347 

Normalized + 
Unnormalized 

1,212,314 
7002 

(0.6%) 
1,060,666 
(84.4%) 

46,220 
45583 

(98.6%) 
5,736 

*Best hit E-value<10
-10

, non Streptophyta sequences (NCBI nr nt 12-02-2010) (Pruitt et al., 2006) 
§ Also partial ORFs (Min et al., 2005) 

 

Library 
Average contig 

coverage 
Average contig 

length 
N50 

Contigs 
generated by 

454 only 

Arabidopsis 
peptides found# 

Normalized 6.74 502.4 632 
16,949 
(58.6%) 

21,270 
(63.7%) 

Unnormalized 11.99 620.8 665 
21,662 
(64.0%) 

22,282 
(66.7%) 

Normalized + 
Unnormalized 

12.63 567.4 646 
33,147 
(71.7%) 

23,029 
(68.9%) 

# Any BLASTX hit E-value<10
-10

, reference: TAIR9 (Swarbreck et al., 2008) peptides (33,410)  

Table 3 - Transcript libraries and assembly statistics. The assemblies also include 44,551 EST sequences 
from (Wang et al., 2004) and (Wong et al., 2005) 
 

 

Figure 10 - Overlapping between transcript models generated with the unnormalized and normalized libraries 

 

The libraries, surprisingly enough (since they derive from the same sample collection), show a certain number 

of unique transcripts (Figure 10), which justifies our decision to combine them for designing a comprehensive 

microarray platform). It can be noted that 454 reads are essential to build more than half of the final contigs: 

71.7% of the final transcript representatives are assembled from this technology only in the combined library. 



Results 

23 
 

2.1.3 Transcriptome completion 

The heterozygous status of the Thellungiella plants used for the library generation produced a high population 

of highly identical contigs in the final outputs of the assembly processes. For example the MIRA assembly 

based on all ESTs and 454 reads (Table 3) contains 4,020 contigs (out of 46,220) with at least another contig 

sharing more than 99% sequence identity and coverage. In order to reduce this nearly-identical transcript 

model group, and to fit the requirements for the Agilent oligoDNA microarray (www.agilent.com) based on 

these models (44,000 probes) I condensed these 4,020 contigs into 610 clusters of similarity. These clusters 

corresponded to multiple sequence alignments that were folded into partially degenerated IUPAC sequences 

and the microarray probes (~60mer) were specifically designed to avoid non-identical regions. In the end, the 

chip representative sequences will be composed by 42,220 unique target probes, and 610 multiple target 

probes, for a total of 42,810. Finally, since the orientation of the reads was not necessarily kept during 454 

sequencing, the 42,810 probes were kept or reverse complemented given the most likely orientation 

(assessed through the orientation of the best hit to nr database (Pruitt et al., 2006) or, where not available, 

orientation with the longest predicted ORF (Min et al., 2005)). The pipeline is described in more detail in the 

Methods section of this thesis, Paragraph 4.1. 

 

Figure 11 - Assessment of unique transcript models found in Arabidopsis thalliana (TAIR9, cds) and 
Thellungiella salsuginea (assembly made on the joint read library) 

2.1.4 Comparative transcriptome considerations between Thellungiella and Arabidopsis 

Comparing in more detail the transcripts of Arabidopsis with the Thellungiella MIRA models it can be observed 

that the two organisms possess apparently 14% and 25% of specific transcripts, respectively (Figure 11). 

While assessing this, it is important to bear in mind that some transcripts for Thellungiella could still be missing 

from our assembly, but at the same time that the Transcriptome for Arabidopsis is nearly fully characterized 

(Swarbreck et al., 2008). In order to understand the global biological characteristics of the Thellungiella 



24 
 

transcript model population, I performed a sequence-based annotation of the combined library contigs using 

Mercator (Lohse and Usadel, unpublished) and the MapMan ontology annotation (Usadel et al., 2009) (Figure 

12). In comparison with Arabidopsis thaliana transcriptome, Thellungiella shows a certain functional similarity. 

Contrarily to what one could expect, Thellungiella (at least in what can be detected) possesses a lower fraction 

of stress-related transcript models (Figure 12), therefore it can be hypothesized that its resistance shouldn't be 

connected to a mere higher number of different stress-responding proteins. An exception are the "Late 

Embryogenesis Abundant" (LEA) proteins, a family of rather enigmatic proteins necessary for dehydration 

stress response in Arabidopsis thaliana (Hundertmark and Hincha, 2008). While Arabidopsis thaliana contains 

51 expressed LEA genes, Thellungiella salsuginea seems to possess almost three times this amount, having 

148 distinct LEA transcript models (BLASTX similarity threshold 10
-10

). This high number, despite the merging 

of highly identical transcripts applied to the contig population, is however still partially an over-estimation 

deriving by different splicing variants considered as different genes. Finally, the relative higher fraction of "Not 

assigned" transcript models of Thellungiella in comparison with Arabidopsis, is partly expected due to a 

genetic drift between the two species (Inan et al., 2004), generating novel and rather dissimilar transcripts that 

will go beyond the detection capability of the Mercator pipeline (Lohse and Usadel, unpublished). 

The pipeline described in the Methods section of this thesis (Paragraph 4.1), whose results have been 

discussed above, has been used to generate a novel Agilent 44k microarray (www.agilent.com) specific for 

Thellungiella salsuginea. At the time of writing this thesis, the expression pattern of several experimental 

stress conditions is being investigated using this microarray by Dr. Yang-Ping Lee (Max Planck Institute for 

Molecular Plant Physiology, Golm). It can be expected that the characterization of specific transcriptional 

regulation mechanisms in Thellungiella will give the scienitfic community the opportunity to better understand 

stress responses and provide insights into the capability of this plant to survive in extreme conditions. 
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Figure 12 - MapMan functional classes in the Arabidopsis and Thellungiella transcriptomes 
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2.2 Algorithm-driven Artifacts in median polish summarization of 

microarray data: tRMA 

The design of reliable probe sequence for a microarray platform still require the raw data to be measured and 

preprocessed in order to be analyzed by e.g. differential gene expression statistics, sample clustering, 

transcript correlation or global gene network reconstruction. In this section, I extend the analysis performed by 

(Lim et al., 2007), aiming to shed more light on the behavior of multi-array techniques specifically in the 

context of inter-array correlation. I will describe the characteristics of probesets which induce these artifacts 

and provide both a mathematical and a biological explanation for the phenomenon. Finally, I introduce a 

slightly changed version of the RMA code which massively reduces inter-array correlation artifacts, while 

retaining RMA features in the context of differential gene expression analysis. 

2.2.1 Multi-array preprocessing effects 

In order to compare the behavior of three of the most popular microarray preprocessing techniques (MAS5, 

RMA and GCRMA), Lim and colleagues (Lim et al., 2007), tested these on a single dataset of 10 microarrays 

hybridized with human samples. I extended this analysis on a considerably larger Arabidopsis thaliana dataset 

comprising 3707 microarrays, selecting different sample sizes (see Paragraph 2.2.2), according to the realistic 

size of a single experiment dataset (2 to 100 samples). First, I calculated inter-array correlations on randomly 

selected groups of these microarrays (Figure 13A). The plots show us a high correlation (>0.7) between 

samples, indicating that many genes’ relative expression will remain constant across different treatments and 

genotypes, and therefore showing a certain robustness of Arabidopsis’ genetic machinery in varying 

environmental conditions and other perturbations (e.g. gene knock-outs). The sample size doesn’t seem to 

influence the high correlation between arrays, although some evident oscillations could be detected for RMA 

and GCRMA at lower sample sizes. The comparison of the three preprocessing methods shows that RMA and 

GCRMA yield somewhat more similar microarray expression values than the Affymetrix algorithm MAS5. 

In order to compare real data with a null dataset, I analyzed the behavior of the three preprocessing 

techniques on permutated arrays (see Materials and Methods, Paragraph 4.2.3). Since permutated arrays are 

entirely shuffled and uninformative with respect to probeset expression, I expected them to be, on average, 

not correlated at all. However as previously reported (Lim et al., 2007), this is not the case for some of the 

techniques I used (Figure 13B). RMA and GCRMA show a high mean inter-array correlation, which is 

decreasing with the sample size and, interestingly much higher for odd sample sizes, and reminiscent of the 

oscillating behavior in real arrays (Figure 13A). Average values for Figure 13 are shown in Table 15 

(Appendix, page 102). Although the higher (GC)RMA-derived inter-array correlation was known in literature 

(Lim et al., 2007), these results show for the first time an RMA/GCRMA effect related to sample size. In order 

to assess if these artifacts were due to the choice of correlation coefficient I repeated our analysis using 

Pearson’s and Lin’s correlation, but obtained nearly identical results (data not shown). MAS5 alone shows the 

expected no-correlation behavior. It must be noted that, unlike the other two techniques, MAS5 uses a single-

array summarization technique (a robust Tukey-biweight average of the probe values) which treats each 

sample separately.  
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I will focus on the cause of this behavior observed when using RMA and GCRMA, trying to understand the 

mathematical and experimental scenarios that could introduce such a massive artificial inter-array correlation 

for these two methods. 

 

Figure 13 - Inter-array similarity calculated on the Arabidopsis dataset normalized by RMA, GCRMA and 
MAS5. 1000 groups of arrays for each sample size were selected, and then the averages and standard 
deviations of inter-array spearman correlation coefficients were calculated. The averages are reproduced as 
symbols which are connected by a broken line and averages plus minus one standard deviation are shown as 
shaded areas bordered by a solid line of the same color. Values for MAS5 are shown in red, RMA in blue and 
GCRMA in green. A) real samples. B) samples with their raw signal intensities internally permutated. 
 

 

B 

A 
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Figure 14 - MAS5, RMA and GCRMA behavior on inter-array correlation for samples of 3,4 and 5 arrays upon 
incremental noise addition by adding values from real arrays to values from permutated arrays before 
normalization. The “noise level” gives the fraction of the values that came from the permutated arrays (For 
more details see Paragraph 2.2.5). The figure shows means and standard deviations, as in figure one using 
three different sample sizes, an even number, 4 (panel B), and two odd numbers, 3 (panel A) and 5 (panel C).  
 

2.2.2 Causes of RMA and GCRMA artifact generation 

So far, it has been described that the introduction of artificial similarities between arrays by RMA and GCRMA 

is particularly strong for small and odd sample sizes. In Figure 14 I show how adding an increasing amount of 

noise to microarray samples in the Arabidopsis dataset (see Material and methods) results in the expected 

loss-of-correlation behavior for MAS5, GCRMA and RMA for an even sample size (Figure 14B). However, for 

sample size 3 (Figure 14A), RMA and GCRMA actually add inter-array correlation as noise is combined with 

the biological signal. The situation is still atypical for the next odd sample size (5 samples, Figure 14C). 

Returning to our original Arabidopsis dataset, I observed that many probesets seem to yield completely 

identical values across different samples when processed by RMA or GCRMA. Datasets of three arrays 

normalized by RMA and GCRMA show, respectively, around 20% and 12% of the probesets population with 

identical values across all samples. 

The effect will decrease with increasing sample size (see Figure 13B) as previously reported in (Usadel et al., 

2009). I therefore measured the tendency to yield identical expression estimates for any particular probeset 

after RMA normalization (ID tendency) in 10,000 3-samples datasets of original microarrays and compared it 

to several probeset characteristics. 

This ID tendency is inversely correlated (Spearman correlation coefficient = -0.624) to the probeset internal 

consistency (Figure 15), which I measured using the fit of the probeset to a linear model that measures 

concordance between probes.  

B C A 
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Figure 15 - Inverse correlation between probeset tendency to yield identical expression values and internal 
probeset consistency, measured as a probe linear model R

2
. The x axis shows a fit to a linear model of any 

given probeset across 3707 Arabidopsis microarrays, using probeset sample means as explanatory variable. 
On the y axis the fraction of 3 sample subsets yielding 3 identical arrays for a given probeset is shown (10000 
randomly picked groups were selected). 
 

This phenomenon is also particularly evident for lowly expressed probesets (Figure 16A) and those hybridizing 

to multiple targets (Figure 16C), especially if the different targets fall into different biological classes (Figure 

16B). This hints that particularly "dirty" probesets, sharing different and diversified targets, are more affected 

by the normalization artifact effect than "clean" ones, having a strong, mono-target expression. As the problem 

of "dirty" probesets has been discussed before and been tackled by providing updated probeset definitions in 

the customCDF project (Dai et al., 2005), I assessed whether the oscillating behavior for real data was still 

observable when using such an updated definition. However, almost identical results were obtained using 

such an updated probeset annotation (data not shown). 

In summary, RMA and GCRMA tend to yield identical values for probesets containing probes that yield grossly 

different measurements across samples, and therefore are either noise-driven or have multiple independent 

targets. Taken together, these results tell us that these normalization methods introduce artificial correlation 

across microarrays driven by lowly expressed, internally inconsistent, multi-target and/or multi-function 

probesets. 
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Figure 16 - Correlation between same-value artifactual behavior and probesets' features. In panel A, inverse 
correlation between probeset tendency to yield identical expression values and mean probeset expression. In 
panel B, identical arrays output for multi-target probesets matching only one (left) or multiple (right) MapMan 
functional classes (Usadel et al., 2009). In panel C, positive correlation between the number of distinct targets 
hybridized by a probeset and the tendency of a probeset to yield identical expression values across arrays. 
This tendency is calculated as the fraction of RMA normalized subsets of 3 arrays yielding 3 identical results 
for the given probeset. Within each boxplot the number of probesets in the category is indicated 
 

2.2.3 Median polish inconsistency 

RMA (Irizarry et al., 2003) and the closely related method, GCRMA (Wu and Irizarry, 2005), differ only in the 

initial background correction step. Since the same effect is present in both methods (Figure 13B), I reasoned 
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that the artifact generation should depend on either the shared normalization step (which is quantile 

normalization in both cases (Bolstad et al., 2003)), or on the probe summarization step (median polish (Tukey, 

1977)). I concluded that the effect cannot arise from quantile normalization, since substituting it by scale 

normalization or removing it completely yields qualitatively identical plots whereas the inclusion of a median 

polish step always introduced the effect, regardless of background correction and normalization procedures (a 

full collection of this investigation is available in (Giorgi et al., 2010), Supplementary File S4). The shared 

artifact can therefore only be generated within the median polish summarization step. Indeed, substituting the 

median polish step with any other alternative summarization procedure available in the BioConductor RMA 

implementation eliminates the artificial inter-array correlation effect (Figure 17). In order to compare the RMA 

default summarization with another multiple-array summarization (see Paragraph 1.2), I substituted the 

median polish method with the robust least squares linear model summarization, described by (Irizarry et al., 

2003), and showed that this procedure almost completely removes inter-array correlation (magenta dashed 

line in Figure 17). On the other hand, as an example of single-array summarization, I used RMA with an 

"average of log" summarization, which simply computes the average of the logarithms of probe intensities for 

every probeset. This single-array summarization yields a predictable 0 correlation among all arrays (orange 

dashed line in Figure 17). 

 

Figure 17 - Comparison of alternative RMA summarization steps on permutated datasets. The original median 
polish summarization step is plotted with BioConductor alternatives and the transposed median polish of the 
tRMA method. 1000 groups of arrays for each sample size were selected, and then the averages and standard 
deviations of inter-array spearman correlation coefficients were calculated and plotted as in Figure 13. 
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To identify why this artifact arises during the median polish procedure, I investigated the algorithm further. 

RMA and GCRMA apply median polish by creating a matrix from the measured values within each probeset, 

placing probes along each row, and samples along each column. The medians are subtracted from the 

intensities to cumulate residuals in each step and the grand effect (or median of medians) is subtracted from 

medians to cumulate probe effects in each step (Figure 18). This algorithm is more likely to introduce identical 

values with odd and small sample sizes, like the one depicted in Figure 18. In such a case, the row medians 

will fall on a specific value and be transformed to zero during the first row sweep (Figure 18B, top panel), this 

will increase the chance to have a zero as column median during the column sweep (Figure 18C, top panel). 

Overall, the RMA implementation of the median polish algorithm shrinks all values in the probeset matrix to 

similar or identical values, with a stronger effect for samples (i.e. microarrays), since it starts subtracting probe 

(row) medians. In the example of Figure 18, the final sample values will be calculated by adding the grand 

effect to each column effect, and will therefore be equal to 8 for all samples. 

It could be argued that the median polish summarization step could be helpful in the context of Differential 

Gene Expression analysis, since it will flatten unclear probeset matrices and therefore highlight strong signals. 

However, the result of generating completely identical expression values across arrays is not always beneficial 

(Lim et al., 2007). Moreover, this effect can be dramatically reduced by swapping the order of row/column 

median subtraction within the median polish summarization step, or equivalently, by transposing the matrix 

created for each probeset, placing samples on rows and probes on columns. This alteration will introduce a 

presumably harmless similarity between probes within a probeset (which are assumed to be measuring the 

same quantity, and which don’t form part of the output) while massively reducing the artificial sample identity. 

To confirm this, I re-implemented the median polish summarization by inverting the order of the two sweep 

steps (Figure 18), in what I call “transposed RMA” or tRMA. As shown in Figure 17, the inversion of median 

subtraction steps alone reduces the median polish effect to a very small residual inter-array correlation. This 

can be explained by the fact that the likelihood for the sample effects to give a zero value in tRMA is very low 

during the first iteration, as it would require perfectly identical medians of raw probe values (Figure 18). 

Effectively, tRMA transfers the artifact of inter-correlation between sample to an inter-correlation between 

probes (in a common probeset), which might be more plausible biologically (as all probes in a probeset should 

measure the same target) and remains contained within the procedure and not yielded as output of the 

preprocessing method. 
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The inter-array artificial correlation effect introduced by the median polish step is increased in GCRMA (Figure 

17, dark green dotted line). As previously discussed by (Lim et al., 2007), GCRMA contains an independent 

problem in its background correction step, that adjusts probe intensity values through gene-specific binding. 

This introduces artificial inter-array correlations between probes with similar binding affinity, and therefore 

strengthens the effect of the following summarization step. However, substituting the median polish step with 

our transposed alternative “tGCRMA” (Figure 17, dark green line), massively minimizes the inter-array 

correlation between permutated samples. 

 

 MAS5 RMA tRMA Best possible 
Signal detect slope 0.71 0.63 0.63 1 
Signal detect R2 0.86 0.80 0.80 1 
Obs-intended-fc slope 0.69 0.61 0.61 1 
Obs-(low)int-fc slope 0.65 0.36 0.36 1 
null log-fc IQR 0.85 0.19 0.20 0 
null log-fc 99.9% 4.48 0.57 0.58 0 
low AUC 0.07 0.40 0.39 1 
med AUC 0.00 0.87 0.86 1 
high AUC 0.00 0.46 0.44 1 
weighted avg AUC 0.05 0.52 0.51 1 
Median SD 0.63 0.11 0.12 0 
low.slope 0.72 0.35 0.35 1 
med.slope 0.80 0.76 0.76 1 
high.slope 0.45 0.47 0.47 1 
Table 4 - affycompII most indicative results (as in (Irizarry et al.)) for MAS5, RMA and tRMA, spike-in HGU95 
dataset. Differences between RMA and tRMA are trivial, especially when compared to other methods (see 
also (Irizarry et al.)) 
 

2.2.4 Comparison between RMA and tRMA in biological contexts 

In order to demonstrate that our tRMA procedure still performs nearly as well as the original RMA 

implementation, I used the latest implementation of the AffyComp (Cope et al., 2004; Irizarry et al.) benchmark 

(“AffycompII”) to compare the performance of the original RMA with our tRMA implementation. This 

benchmark is a well known tool to evaluate summaries of Affymetrix probe level data, based on known 

concentration of transcripts in the so-called “spike-in” experiments by Affymetrix (Affymetrix). In Table 4 I show 

some of the most relevant scores, as calculated for the HGU95 Affymetrix spike-in series. It is essentiality a 

draw, with tRMA and RMA performing largely identically in all tests. 

The differences between RMA and tRMA are minor when compared to the results for an independent method 

(MAS5): tRMA shares most of the qualities of RMA, without introducing inter-array correlations. It is interesting 

to highlight the fact that tRMA yields a higher median standard deviation (Median SD, in bold in Table 4) 

between spike-in replicates. This effect can be wrongly interpreted as tRMA’s lower sensitivity; however, this is 

due to the introduction, by the original RMA median polish implementation, of identical values across 

experiments, and therefore by the artificial reduction of the variance between spike-in replicates as well.  
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Since median polish alters inter-array correlation, sample classification is a common analysis that could be 

affected by this summarization step. Thus, I analyzed the AtGenExpress stress dataset for Arabidopsis (Kilian 

et al., 2007), and calculated the capability of both preprocessing techniques to separate root and shoot 

samples (see Paragraph 4.2.9). 

 

Figure 19 - Distances between Arabidopsis microarrays belonging to (A) different tissues (roots and shoots) 
and (B) the same tissue in 10000 5-samples subsets, calculated after RMA (left) preprocessing or tRMA (right) 
preprocessing. All probesets were used in this analysis. Distances are reported on the y axis and calculated 
as (1-Spearman’s correlation coefficient). 
 

As can be seen in Figure 19A, tRMA outperforms RMA as it increases the distance between different tissue 

samples (Wilcoxon test: p-value <2.2*10
-16

), while keeping similar low distances between samples coming 

from the same tissue (Figure 19B, Wilcoxon test: p-value = 0.935). As variance filtering is a common 

procedure for microarray clustering, I used only the 50% most varying genes in every subset and obtained 

similar results (inter-tissue distance p-value<2.2*10
-16

, intra-tissue distance p-value=0.141). It can be 

concluded that tRMA increases the capability to discern different array conditions, when only a small number 

of microarrays have been used. 

In order to compare the relative performance of RMA and tRMA when filtering on differentially expressed 

genes, I used a dataset that was previously used by (Eklund and Szallasi, 2008), to tune classification where 

the provenience of the RNA in each sample was known. Choosing a sample size of 5 where 2 pairs of 2 

samples each came from the same specimen and one sample came from a different specimen, tRMA yields 

better classification results for almost all FDR corrected p-value thresholds (Figure 20). 

However, when filtering out lowly expressed genes (Datta, 2003), RMA performed generally as well as tRMA 

when performing sample classification on this dataset (Figure 20). 
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Although objectively minor, these differences point out that tRMA may not necessarily be an improvement over 

RMA in all types of analyses. 

 

 

Figure 20 - Percentage of correctly clustered subsets of 1000 samples of 5 microarrays using a clinical dataset 
from (Eklund and Szallasi, 2008). The blue line indicates the range of significantly higher tRMA performance. 
The bottom grey line indicates the expected correct percentage from random clustering. 
 

2.2.5 Conclusions on median polish based microarrays normalization methods 

The use of GCRMA and RMA preprocessing algorithms for Affymetrix GeneChip technology has received a 

remarkably broad adoption in the community due to their low computation time and to their superiority with 

respect to other methods in previous benchmarks. However, one of the most relevant advantage of RMA and 

GCRMA in the AffycompII challenge (Cope et al., 2004), the low variance across replicates, seems to be 

partially the result of artificial inter-array correlation. Extending what was already noted by (Lim et al., 2007), I 

show that the artificially high similarity between samples given by RMA and GCRMA is caused by the shared 

median polish summarization step, step that could be corrected without losing any of the RMA/GCRMA 

positive properties. This artificial behavior is particularly strong in internally inconsistent, noise-driven and 

multi-hit probesets, and as a result identical results across arrays are generated. I analyzed this artifact effect 

for the Arabidopsis thaliana ATH1 Affymetrix GeneChip, but I found highly similar results in exploratory 

experiments on other organisms and platforms (specifically, human HG133 and E.coli Asv2 - data not shown). 
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2.3 Combining network centrality analysis and conditional correlation: 

application to essential gene prediction 

In this Paragraph, I will show how the conditional correlation approach can be combined with the observation 

that essential genes tend to have a high network centrality in biological networks (Jeong et al., 2001). 

2.3.1 Definition of Breaking Potential 

Here, I propose a new concept of conditional centrality for networks extracted from data, which I specifically 

applied to coexpression networks derived from microarray data. An underlying gene regulatory network 

fragment, shown in the example in Figure 21a, will typically appear as a more densely connected undirected 

fragment in the correlation network, as in Figure 21b. With the use of conditional correlation it is possible to 

remove indirect connections and obtain a network as in Figure 21c. For instance, the edge (V1-V4) is removed 

upon conditioning on V3, which represents an intermediate in the pathway connecting them. This approach 

has recently been employed in network reverse engineering based on partial correlations (de la Fuente et al., 

2004; Reverter and Chan, 2008). 

 

Figure 21 - Real network (A), correlation map between nodes (B) and removal of spurious connections upon 
conditioning on the V3 node (C) 

 

Existing studies based on partial correlation do not consider the number of edges removed upon conditioning 

on a certain vertex in the calculation of the measure. During the conditional steps of network reconstruction, 

when first order partial correlation is applied, it is possible to count the number of edges a vertex can break 

(nbrk), and then normalize this number by the actual number of edges formed by its neighbors, yielding the 

term: 

      
    

    

  

The last expression gives the definition of the "Breaking Potential" index (brk) as a measurement of network 

causal importance (possibly, a "centrality") of a vertex. It allows the central regulator of information flow to be 

distinguished, where other commonly used centrality indices do not, as shown in the Appendix (page 103) with 

an artificial network example based on Figure 21. The main network centrality measures treated here are 

three: Degree, Betwenness and Clustering coefficient. The Degree of a gene is given by the number of its 

partners in the network; therefore, this centrality is commonly recognized as a measure of the overall activity 

B C A 
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and inclusion of a gene in various cellular processes (Koschützki and Schreiber, 2008). The Betweenness is 

defined by the number of shortest paths crossing the gene, and it is considered as a measure of the control 

power the gene has over information transfer within the network (Koschützki and Schreiber, 2008). Finally, 

Clustering coefficient is calculated by the number of connections between a vertex's neighbours (n), divided by 

the maximum number of possible neighbors' connections (n*(n-1)*0.5); as its name implies, Clustering 

coefficient defines the rate of interconnection and "entanglement" of a subnetwork. The Breaking Potential 

index adds to these techniques the capability of analyzing the indirect correlation effects which can be 

detected by conditional techniques. It must be observed that an alternative to the Breaking Potential index 

could be simply the Degree of a Partial correlation network. However, in such a network the information on the 

capability of a node to dissolve specific edges in its neighborhood would be lost. Furthermore, simple partial 

correlation degree would be dependent on the initial zeroth order degree, and wouldn't account for the 

effective number of initial connections in the gene neighborhood. 

 

2.3.2 Comparison between Breaking Potential and other centralities in Arabidopsis thaliana 

coexpression networks 

We tested Breaking Potential on data obtained from a high quality microarray dataset from Arabidopsis 

thaliana (see Paragraph 4.3). As a threshold to generate the correlation network (r0) we used r0=0.7. This 

threshold is commonly used and accepted in literature for coexpression networks (Usadel et al., 2009) and 

yields realistically sized networks (1,457,367 edges, equaling to 0.020% of all possible edges). However I 

obtained similar results based on the same dataset and zeroth order correlation threshold r0=0.6 (3,414,431, 

0.046% of all possible edges) and r0=0.8 (460,279, 0.006% of all possible edges). In Figure 22, it is shown 

how Breaking Potential relates to three other centralities for each gene analyzed. A positive correlation with 

Degree and Betweenness can be assessed both in non-logarithmic (Figure 22A-C) and logarithmic (Figure 

22D-F) scale. 

2.3.3 Breaking Potential is a positive predictor for gene essentiality in Arabidopsis thaliana 

Breaking Potential can in principle be used to extract nodes central in information flow processes (see Figure 

21), so we investigated how its capability to find particularly "central" and "fragile" nodes in gene regulation 

networks. We consider these nodes as genes the removal of which is sufficient to bring the whole organism to 

death, and to this aim we used a list of manually annotated essential genes for Arabidopsis thaliana. 

Homozygous mutations inactivating the function of these genes lead to embryonic lethality (Meinke et al., 

2008). In fact, the Breaking Potential for essential genes is significantly higher than that for non-essential 

genes (Figure 23, panel A). This fact led us to the initial conclusion that Breaking Potential might be used as a 

major in silico marker for gene essentiality, as the same property was observed in preliminary studies in 

Escherichia coli and Saccharomyces cerevisiae studies (data not shown).  
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Figure 22 - Relationship between Breaking Potential and other centrality measures in the Arabidopsis 
thaliana coexpression network. Red points represent essential genes. 
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Figure 23 - Boxplots indicating distribution for essential (left) and non essential (right) genes calculated for 

different centrality measures in correlation networks, namely Degree (A), Breaking Potential (B), Betweenness 

(C), Clustering Coefficient (D) and GeneNet degree (E) (Opgen-Rhein and Strimmer, 2007). P-values for 

essential genes having a higher centrality were calculated using Wilcoxon test and shown under the centrality 

indices names 

 

However, since essential genes are more "central" than non-essential ones also for other centrality measures 

(Figure 23, panels B-D), and since Breaking Potential is positively correlated with them (see Figure 22), 

especially with degree, it must be ruled out that what we see in Figure 23A is not a mere by-product of other 

centralities. To assess this, we calculated ROC curves for the essential genes prediction power of all 

centralities alone and when combined with Breaking Potential (results shown in Appendix, page 106). 

Interestingly enough, while Breaking Potential seems better than Clustering coefficient and Betwenness, and 

furthermore seems additive to them, in the task of separating essential genes from non essential ones, this is 

not the case for network Degree. Degree is constantly a better predictor than Breaking Potential in all 

scenarios investigated. The Areas Under the ROC curves (AUROC), generated by repetitive subset selection 

of the gene populations, give us the same message (data not shown). We tested also several hybrid centrality 

methods, among which a ranked combination of Breaking Potential and Degree indeces for predicting 

essential genes (Appendix, page 106, Figure 49A, red dashed line), resulting in Degree always been the best 

predictor.Similar conclusions to our analysis could be drawn not only for correlation threshold 0.7, but also for 

0.6 and 0.8.  

Finally, we assessed the centrality of essential genes in networks extracted from full partial correlation 

matrices, e.g. via the GeneNet approach (Schäfer and Strimmer, 2005). In these networks the Degree seems, 

A B C D E 



Results 

41 
 

surprisingly enough, a counter indicator for essentiality (Figure 23E and as a ROC curve in the Appendix, 

page 106, Figure 49D). 

2.3.4 Conclusions on Breaking Potential as an essential gene predictor and future perspectives 

Network analysis has provided major contributions to the understanding of the biological systems. Identifying 

central vertices, representing genes, proteins, metabolites, and other biological entities, has been the 

technique of choice for determining the key players in intracellular information flows. We used a conditional 

correlation-based approach to step further into the analysis of gene networks via coexpression, not by 

removing indirect edges, but by focusing on the conditional centrality of every gene. We defined the Breaking 

Potential index as the capability of a gene to dissolve correlations among its neighbors, by using a simple 

Pearson partial correlation approach. 

We have investigated the properties of this novel conditional centrality in Arabidopsis thaliana, concluding that 

Breaking Potential index may be able to discern vertices associated to key pathways in the coexpression 

networks, and that it is partially complementary to other prominent centralities (Figure 21). However it seems 

to be substantially less predictive than network degree alone (Figure 23). We therefore think that Breaking 

Potential is an interesting device for analyzing causally central genes in correlation networks in Arabidopsis 

thaliana, but in the task of finding known "central" genes it is less performing than degree alone. For some of 

these, namely transcription factors, non-transcriptional control coupled with low expression makes finding 

relevant properties from microarray data a difficult task. We have demonstrated however the predictive power 

of all these centrality measures for finding essential genes, despite their ontological heterogeneity (Chun and 

Goebl, 2004) (Figure 23).  
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2.4 Expression-based gene network reverse engineering 

2.4.1 Custom network reverse engineering and method comparison: the CorTo tool 

As explained in the introduction, the "guilt-by-association" principle underlying the expression-based gene 

network reverse engineering has been useful for finding new candidates in a certain pathway or mechanism 

where certain "bait" genes where known. There are many co-occurrence tools and web services available, 

predominantly for plant species (Usadel et al., 2009), but also for mammals (Gurkan et al., 2005) 

(Zimmermann et al., 2004) (Obayashi and Kinoshita, 2011), and almost exclusively focusing on transcripts 

(hence the name term “co-expression tools”). However, there was hardly any user-friendly, light weight and 

fast stand alone tool being able to (1) cope with arbitrary and large data sets such as the ones in the following 

sections of this thesis, (2) implement advanced network reverse engineering methods and (3) combine 

network reconstruction approaches with functional analysis. Therefore, I developed CorTo ("Correlation Tool") 

as a lightweight and integrated analyzer of co-occurrence in multi-sample quantification datasets, designed 

with transcript co-expression and metabolite co-accumulation analyses in mind. CorTo is the answer to many 

of the issues I encountered during the comparative analysis of the gene network reverse engineering 

algorithms (see paragraphs 2.4.3, 2.5 and 2.6), namely: the necessity to have efficient and fast computational 

capabilities; the potential to analyze big (thousands of genes and samples) datasets; the convenience of 

method comparison through a visual representation of the connections. The biological community will take 

benefit from such a tool to the community, since many techniques (e.g. the LASSO) for gene network 

reconstruction are usually requiring strong bioinformatics skills to be performed correctly and with low 

computational time. 

CorTo combines the possibility of providing a custom dataset with a range of direct co-occurrence techniques, 

namely Pearson correlation, Spearman correlation, Mutual information plus some “indirect” methods (Zampieri 

et al., 2008), i.e. Pearson/Spearman partial correlation (de la Fuente et al., 2004) and LASSO regression 

(Tibshirani, 1996). These two groups of techniques have been shown to be complementary in analyzing two 

classes of co-occurrence: direct methods, often more suited for co-present biological features (e.g. 

components of a protein complex) and indirect methods, more accurate at reconstructing causal processes 

(e.g. transcription factor-target relationships) (Zampieri et al., 2008). CorTo uses as input format tab-separated 

files with samples as columns and measured entities as rows and is preloaded with a number of Arabidopsis 

thaliana and Solanum lycopersicum datasets. In order to exclude noise-driven measures and to speed up 

calculations, CorTo implements an optional subset extraction step that analyzes only the most varying 

elements of the dataset, or alternatively focus on the gene/metabolite of interest. Analysis can then be carried 

out on one or more genes/metabolites, and a visualization performed providing all the elements that co-occur 

in the dataset as a network visualization. It is possible in any case to expand any analysis on-the-fly, by 

clicking on areas of the network where co-regulation should be calculated, up to (potentially) a global network 

reconstruction. Performance-wise, CorTo can calculate the co-occurrence for a single feature in a normalized 

microarray dataset with 22813 transcripts and 22 samples on a standard computer (e.g. Intel Core Duo E8400 

3.00GHz) almost instantaneously. 
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Network representations of the co-occurrence analysis can then be defined and visualized by any combination 

of technique and threshold constraint, making it possible to compare different techniques (Figure 24). A color-

based functional category map can be used for those species where a MapMan annotation is available 

(Usadel et al., 2009). Networks can be expanded at any time by right-clicking on the interactors of the already 

expanded genes/metabolites. Networks can be printed out as tables for further analysis; this feature is 

especially useful if the number of variables shown is too high for an interpretable visualization. The user can 

also explore any pairwise behavior in the dataset as a scatter plot, and show the co-occurrence behavior of 

several genes/metabolites as series plots.  

 

Figure 24 - Investigating the coexpressors of the Arabidopsis thaliana gene At5g05170 (Cellulose Synthase 3) 
in a flower and pollen dataset (Schmid et al., 2005). Several coexpression techniques have been used to infer 
potential connections: Mutual Information (green), the LASSO (blue) and Pearson Correlation (black). 
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2.4.2 Application of the LASSO to gene expression-based modeling 

We briefly mentioned in the Introduction (Paragraph 1.3) a relatively new method has been proposed 

(Tibshirani, 1996) in the field of gene network reverse engineering called the LASSO (Least Absolute 

Shrinkage and Selection Operator). This method has been tested so far only on small networks (Lu et al., 

2011) or on largely theoretical scenarios (Gustafsson et al., 2009) and is technically based on a modified 

Linear regression principle. Linear regression models a response (dependent) variable (y) through a list of 

predictor (independent) variables (x1, x2, x3 ... xn). Linear models have been extensively used to provide an 

insightful description of how gene expression is influenced by several factors, e.g. carbon availability and the 

circadian clock (Usadel et al., 2008), and how genes behave in relation to each other (D’haeseleer et al., 

2000). 

Given a response y and a list of predictors xi (x1, x2, x3 ... xn), an ordinary linear model yields as a result a 

function f(xi): 

y =b0+ b1x1 + b2x2 + b3x3 + ... + bnxn 

Where b1, b2, b3 ... bn are the weights assigned to every predictor, in order to minimize the unexplained 

behaviour of y (the residuals). When the number of predictor variables is higher than the number of 

measurements (samples), which is mostly the case when dealing with gene expression data, the underlying 

equation system is underdetermined and the model is overfitted, always explaining the response perfectly. To 

overcome this problem a class of linear regression methods, the so-called “shrinkage methods” has been 

developed. Shrinkage methods retain only a subset of the predictors and discard all the rest, providing a final 

model that is interpretable and possibly more accurate (Copas, 1983). The LASSO is a particular and recently 

proposed shrinkage technique (Tibshirani, 1996), which imposes a limit to the weights assigned to the 

predictor variables: 

|b1| + |b2| + |b3| + ... + |bn| ≤ L1 

Where L1 is a tuning parameter for the stringency of the model. Because of the nature of the constraint, 

making L1 sufficiently small will cause some of the coefficients to be exactly zero, so that several variables get 

discarded. This increases the interpretability of LASSO models, as relevant variables can be clearly separated 

from irrelevant ones. 

The LASSO has been used in research to generate well performing models where a clear border between 

important and unimportant variables had to be discerned (Hastie et al., 2001), although with only a handful of 

biological applications so far (Shimamura et al., 2007; Gustafsson et al., 2009; Lu et al., 2011). The original 

algorithm to obtain the solution of LASSO at all possible sum-of-weights thresholds (referred to as L1 

thresholds) is a computationally very demanding task (Efron et al., 2004) and is of nearly no practical interest 

for big datasets (more than hundreds of variables). However a more efficient algorithm to solve the full LASSO 

model has been recently developed, called Least Angle Regression for LASSO, or simply LARS (Efron et al., 

2004). In brief, LARS starts introducing an explanatory variable to the model and continues to increase its 
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weight in the model until a second variable reaches the same correlation with the model's residuals as the 

initial variable. Then, the model proceeds modifying the weights of the two variables in a direction that is 

equiangular to both. This process balances all variables in the model, while excluding indirect effects, since 

increasing the weight of one variable also reduces the chance to include variables from the same informational 

area, similarly to what happens for Partial correlation (see Paragraph 1.3). LARS will also discard variables 

that, during the iterative process, experience a sign change in their weight. In such a case, the variable is 

discarded from the model and all other variables' weights are subsequently re-calculated. The computation of 

LARS is therefore a loop involving linear algebra operations in the variable spaces, calculating residuals of the 

model at each step and then taking the decision of including/dropping variables (Efron et al., 2004). 

The LASSO, although potentially interesting in gene network reverse engineering tasks, has never been used 

so far for large-scale biological investigations. We therefore developed a light Java implementation of the 

LARS algorithm (see Paragraph 4.6) optimized for global network reconstruction, which pre-calculates the 

steps shared by all models in a gene dataset and provides a parallel computation of the LARS solution. In the 

next paragraph, we will use this LASSO implementation for inferring expression-based relationships between 

genes in Arabidopsis thaliana and compare it with other common reverse engineering methods. 

2.4.3 Comparative analysis of expression-based methods for gene network reverse engineering 

In order to compare different network reverse-engineering techniques, it is necessary to adopt several 

methods for assessing network quality. I adopted the following ones, inspired from various literature sources, 

mainly (Lim et al., 2007; Usadel et al., 2009) (see also Materials and Methods, Paragraph 4.5). In Table 5, the 

methods properties are summarized. 

First, I adopted the so-called "Ontology Agreement" method. The idea that genes sharing similar functions are 

also co-regulated is well-established (Stuart et al., 2003; Yu et al., 2003), and it is possible to assume that an 

expression-based gene network will contain several clusters of genes sharing identical functions (see also 

later in this Paragraph, Figure 31B) (Peng and Weselake, 2011). This is true for at least two reasons: genes 

are co-regulated to produce stoichiometrically balanced quantities of subunits interacting in the same complex 

(Tanya and Ben, 2008), or they are co-regulated to carry out parallel or sequential activities in the same 

pathway (Thimm et al., 2004). This method is highly dependent on the completion of gene annotation for a 

given organism; in our case, I used the 2010 MapMan annotation for Arabidopsis thaliana, which covers more 

than 60% of this organism gene population (Usadel et al., 2009). 

Second, I adopted the theoretical assumption that a biological network degree distribution should be scale-

free, i.e. follow a power law (Barabási and Albert, 1999). This method is assessing the structural quality of the 

network, assuming the presence of a reduced amount of central gene regulators (or hubs) and a high amount 

of genes with a reduced number of connections (see also Figure 2). However, it's been debated in literature 

that biological networks are not necessarily "scale-free" (Khanin and Wit, 2006). 
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Network Quality 
Assessment 

Advantages Disadvantages 

Ontology Agreement 

1. Based on sensible biological 
assumption: a network will contain 

several connections between genes 
having similar functions 

2. In the organism investigated 
(Arabidopsis thaliana) the MapMan 

ontological annotation is highly curated 
(Usadel et al., 2009) 

1. Highly dependant on the amount of 
ontological information available on the 

organism 
2. Over-assumption bias: it assumes 

as "wrong" connections between 
different ontologies 

Degree distribution fit to 
power law 

"Pure" method, doesn't require any a 
priori knowledge on the organism 

It assumes that expression networks a 
scale-free distribution (Barabási and 
Albert, 1999) of the degree, which is 
not necessarily the case (Khanin and 

Wit, 2006) 

Overlap with 
experimentally verified 

protein-protein 
interaction (PPI) 

networks 

Direct co-regulation and protein-protein 
interaction have been positively 

associated in several studies (Zampieri 
et al., 2008) (Persson et al., 2005) (Yu 

et al., 2003) 

1. Dependant on available 
experimental data, which for the 

protein-protein interaction networks is 
complete only for a few organisms. 
Arabidopsis thaliana AtPin contains 
only around 6000 interactions, and 

therefore it's lacking around 80% of the 
complete picture 

2. Protein-Protein interaction isn't 
necessarily associated with gene co-

regulation 

Overlap with manually 
curated genetic 

interactions 

The "real" network to be reverse-
engineered from expression data is the 

genetic interaction network 

1. Nearly-complete gene-gene 
interaction maps are available only for 
simpler organisms (Gama-Castro et 

al., 2008) 
2. Ideally, network motifs like feedback 

loops are nearly undetectable in 
condition-independent datasets 

(Shipley, 2002; Usadel et al., 2009) 

Experimental validation Based on real evidence 
1. Time-consuming 

2. Costly 

Table 5 - Summary table for Network Quality Assessment methods 

 

I then adopted two methods, namely overlapping the obtained reverse-engineered networks with known 

experimentally validated and publicly available gene-gene connections, specifically (for Arabidopsis thaliana) 

protein-protein interactions (PPI)(Brandão et al., 2009) and genetic interactions (Palaniswamy et al., 2006). 

For Arabidopsis thaliana, this information is far from being complete and therefore some caveats have to be 

applied to these quality assessments (only 6784 protein experimental interactions have been manually 

collected in AtPin (Brandão et al., 2009), and 10640 genetic interactions have been annotated in AtRegNet 

(Palaniswamy et al., 2006), out of 27416 protein coding genes confirmed in this organism - TAIR10 

(Swarbreck et al., 2008)). Furthermore, PPI, although it is often accompanied by gene co-regulation and it 

requires at least basal expression of the interactors (Yu et al., 2003; Persson et al., 2005; Zampieri et al., 

2008), is not necessarily requiring co-expression to occur. 
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Finally, as will be extensively discussed in Paragraphs 2.5 and 2.6, I decided to compare the different gene 

network reverse engineering methods, particularly LASSO and Correlation, in experimental scenarios, in order 

to validate their conclusions in "real" biological pathways. 

 

Figure 25 - Mutual Information (unnormalized index) vs. Pearson correlation coefficient (panel A). In panel B, a 
particular case of high M.I. index and low Pearson correlation scenario is shown. Here, a positive trend 
between two genes in all samples except in seed tissues can be observed 
 

Once a list of methods to assess network quality had been characterized, I assembled a list of the most used 

and arguably the most powerful expression-based network reconstruction techniques (Zampieri et al., 2008): 

Pearson Correlation, Partial Pearson Correlation and Mutual Information. In particular, I investigated the 

capability of Mutual Information to discern non-linear relationships between gene expression patterns (Daub et 

al., 2004). One example of this capability of Mutual Information is shown in Figure 25, where several gene-

gene relationships are quantified based on their expression in the Arabidopsis thaliana AtGenExpress 

developmental dataset (atge0100 (Steinhauser et al., 2004), see Paragraph 4.3). The example shows how the 

gene At1g35340 (an ATP-dependent protease of unknown function) positively correlates with At4g21860 

(Methionine Sulfoxide Reductase 2) in all samples, except in seed tissues (Figure 25B, green points), where 

they appear to have a slightly negative correlation. Although interesting, the lack of more real examples of 

such differing behaviors between Pearson Correlation and Mutual Information make such finding more an 

interesting exception than a general expression phenomenon (Daub et al., 2004). 

B 

A 
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In order to comparatively assess the capability of these techniques to reverse engineer biological networks, I 

applied them on a large Arabidopsis thaliana dataset collecting all publicly available Affymetrix microarrays 

(Paragraph 4.5 and (Mutwil et al., 2011)). I used several threshold combinations for direct and partial Pearson 

Correlation, and several bin number/relevance index for Mutual Information, in order to assess the power of 

these techniques as widely as possible. 

For the LASSO, I generated models for every gene and selected for each of them one single lowest-error 

(based on cross-validation model) L1. In the best-L1 models we drew edges between the dependent variable 

and the independent ones with a non-zero weight in the model. Finally, I merged all models' edges into a final 

global network. 

While the LASSO reconstruction yields a single lowest-error network, there is no such default assessment for 

the other methods, which therefore need to be assessed at various stringency levels. I therefore generated a 

collection of Correlation and Mutual Information networks, obtaining a total representation of the network 

characteristics judged by several quality approaches. This study not only allows us to compare the LASSO 

with other methods, but it is also the first comprehensive threshold-independent assessment of reverse 

engineered expression-based networks with a biological perspective. 

The first results, obtained through the Ontology Agreement method (based on MapMan annotations of 

Arabidopsis thaliana (Usadel et al., 2009)), are shown in Figure 26 for Correlation techniques. As expected, an 

increase of threshold stringency increases the quality of the networks, while simultaneously reducing the size 

of the networks (Figure 27). The highest stringency networks (r0>0.6 and/or r1>0.2) are composed by a few 

hundred connections, largely describing within-pathway relationships (up to 71% edges formed by genes 

sharing a functional annotation). The performance of partial correlation yields, in comparison to standard 

correlation, largely different results, with apparent lower quality; for example compare in Figure 26 and Figure 

27 the Ontology Agreement for correlation networks at r0=0.8 (2766 edges, 68.44% Ontology score) with the 

similar size but lower score partial correlation network at r0=0 to 0.5 and r1=0.4 (2333 edges, 25.12% Ontology 

score). The quality of Correlation networks with and without first order conditioning (i.e. Partial correlation) has 

also been assessed with other quality methods, with results shown in the Appendix (pages 112-119), and 

similar conclusions can be drawn: simple correlation ranks high in the network it yields. Partial correlation is 

able to remove, even at relatively low threshold, a great fraction of the possible edges (Figure 27), which 

implicates that the initial network structures are very dense and intercorrelated (partial correlation wouldn't 

have such a massive effect in completely unrelated expression patterns). 
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Figure 26 - Ontology Agreement percentage score for Arabidopsis thaliana expression based Correlation and 
Partial Correlation networks at different thresholds. Absolute correlation coefficients were considered. A first 
order threshold of 0 means that edges suffering a sign change were excluded from the resulting networks, 
while a first order threshold marked with "no" corresponds to the standard zeroth order Pearson Correlation 
network 
 
 
 
 
 
 

 

Figure 27 - Network size (number of edges) for Arabidopsis thaliana expression based Correlation and Partial 
Correlation networks at different thresholds (see Figure 26) 
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Figure 28 - Ontology Agreement percentage score for Arabidopsis thaliana expression based Mutual 
Information networks at different combinations of significance thresholds and bin numbers 
 

We therefore analyzed the performance of Mutual Information at different thresholds and changing the number 

of bins, i.e. the discrete groups in which to subdivide the expression behavior of the genes prior to calculating 

the entropies. A bin number of 2, for example, signifies that both genes expression values were subdivided in 

two groups, either "high" or "low", while higher bin numbers arguably allow for a more finely tuned assessment 

of gene behavior. The results for Mutual Information are shown in Figure 28 for the Ontology agreement score 

and in Figure 29 for the size of these reverse-engineered networks. In general, it can be observed how the bin 

number changes the M.I. normalized index distribution and therefore the effect of the applied threshold used. 

This, although expected, has never been fully treated before in Mutual Information-reconstructed gene 

networks, and should be taken into consideration when choosing the index threshold in these kinds of 

inferences. Furthermore, the rapid shift of network topologies from fully connected to sparse structures is an 

indication of the very narrow M.I. index distribution, which is not so dissimilar between real datasets and what 

expected from a null distribution (see Appendix, page 120, Figure 60B). On the other hand, Pearson 

correlation shows a real distinction from what is observed and what would be expected from a completely 

uninformative dataset (see Appendix, page 120, Figure 60A).  
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Figure 29 - Network size (number of edges) for Arabidopsis thaliana expression based Mutual Information 
networks at different combinations of significance thresholds and bin numbers 
 

Network Property 
Pearson 

Correlation 
r=0.4 

Partial 
Correlation 
r0=0.2 r1=0.1 

Mutual 
Information 
M.I. norm. 

index=0.2 bins=18 

LASSO 

Number of connections 481,300 370,297 527,740 557,976 
Ontology Agreement 4.38% 3.29% 3.79% 1.38% 

PPI overlap accuracy (Brandão et al., 
2009) 

91.42% 93.39% 90.59% 90.05% 

PPI overlap Matthews coefficient 
(Brandão et al., 2009) 

0.0065 0.0064 0.0036 0.0069 

R
2
 fit to a power law for degree 

distribution 
0.4386 0.0207 0.5046 0.1324 

Table 6 - Network Quality Scores for the Arabidopsis thaliana LASSO network created by merging the best 
individual gene models generated on expression data and other networks with sizes of similar order of 
magnitude. 
 

At this point, we generated LASSO models for every gene in the Arabidopsis dataset and among these we 

extracted the lowest-error cross validated model. Then, a connection was drawn between the bait used to 

generate the model and every gene used as explanatory variable, without consideration on the magnitude or 
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size of the weight, so the resulting connections could be merged and treated as a Boolean network. In almost 

all quality assessments, LASSO doesn't perform better than the other methods, reaching, with its lowest-error 

network composed by 557,976 edges, an Ontology Agreement percentage score of 1.38%, whereas Pearson 

Correlation networks with a similar size can achieve a score three times higher (Table 6).  

With respect with the golden standard AtPin Protein-Protein interaction (PPI) network (Brandão et al., 2009), 

we calculated the amount of overlap between this and our inferred networks. Given the characteristics of the 

overlap, the number of True Positive hits can be calculated (gene-gene pairs present in both the PPI network 

and in the expression-based network), and consequently the True Negatives (gene pairs absent in both), the 

False Negatives (gene interactions present in the AtPin database but not found via reverse engineering) and 

the False Positives (gene pairs inferred by the computational predictions but not annotated as interacting in 

AtPin). From these numbers,  we could assess the accuracy and Matthews coefficient (Baldi et al., 2000) 

describing the agreement of the inferred networks to the protein interaction data. All techniques quickly reach 

a high accuracy (>90%) signifying that the large part of the Arabidopsis genes whose protein products interact 

are also co-regulated, and that this co-regulation is detected by almost all methods. The other calculated index 

of agreement with the PPI network, the Matthews coefficient, comprehensively indicates the capability of a 

method (in this case, the network investigated) to successfully separate positive hits (i.e. the presence of a 

PPI) from negative ones (lack of PPI). The formula can be calculated given the number of True Positives (TP), 

True Negative (TN), False Positives (FP) and False Negatives (FN): 

                     
              

√                               
 

The Matthews coefficient formula ranges from -1 (perfectly wrong binary classification) to +1 (perfect 

classification), with 0 being equivalent to a random assignment of PPI hits. In our networks (Table 5 for 

LASSO and similarly sized networks, Appendix, pages 118-119, for all networks) the Matthews coefficients are 

always positive (successful prediction of PPI golden set) but also very close to zero, which is given by the high 

amount of spurious interactions (i.e. not PPI connections) yielded by the network reverse-engineering. This is 

partly expected, due to the fact that only a few co-regulated gene pairs will actually be also interacting, and 

due to the incompleteness of Arabidopsis PPI experimental data. Another approach for assessing overlap to 

PPI would have been the use of ROC curves; however these curves, which show the sensitivity vs. specificity 

trend, provide very little information due to the high number of True Negatives in expression-based networks 

(Reverter and Chan, 2008)). It must also be noted that the network accuracy assessment through overlap with 

known genetic interactions (Table 5) cannot be robustly applied to this network, which contains only a handful 

of reliably expressed genes annotated in the collection of interactions publicly available (Palaniswamy et al., 

2006). The problem of re-building genetic networks is also affected by the fact that genes involved in 

Transcriptional Regulation (e.g. Transcription Factors) are significantly less expressed than other genes, and 

therefore more likely to be affected by experimental noise and to pose a problem for network reverse 

engineering approach. This is true both for the whole population of Arabidopsis thaliana transcripts measured 
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on the ATH1 microarray (Figure 30A) and for a subset constituted by the most consistently expressed 

transcripts (Figure 30B). 

 
 

Figure 30 - Average expression intensity for Transcriptional genes (according to MapMan) in red, and not 
Transcriptional genes in green, in the Arabidopsis thaliana Affymetrix dataset discussed in this paragraph 
considering all transcripts (A) or only the most constantly expressed (B) according to PA 90% rule, see 
Paragraph 4.5 
 

Another test for network quality investigated here is the fitting to a power law distribution of the network 

degree, which assesses the structure of the networks and their similarity to an expected scale-free topology. 

As shown in the Appendix (pages 112-114) the application of strict Partial correlation thresholds transforms 

the networks into highly scale-free structures, with a few hubs connected to several low-degree isolated 

genes. This is interesting, since it shows that Partial correlation removes edges based on a low number of 

gene hubs. As we showed before (Paragraph 2.3) this "conditional centrality" is a property shared by almost 

all essential genes. A functional enrichment analysis of these partial correlation hubs however doesn't show a 

clear pattern: what is deducted is that every pathway tend to have its own hub, and this hub is driving the 

removal of several gene connections around it through partial correlation (see Figure 21 in the previous 

paragraph). Furthermore, the scale-free architecture is increased together with threshold stringency in both 

simple Correlation and Mutual Information, therefore gene hubs intrinsically present in expression data. The fit 

to a power law distribution of the network degree can also be used to assess the collapse of a network 

structure due to a too high stringency (see for example the Mutual Information networks described in the 

appendix, page 113, with M.I. score threshold higher than 0.5). In these architectural considerations LASSO 

still shows a scale-free topology, however lower than similarly sized networks obtained with the competitor 

methods (R
2
=0.13, Table 6).  

A B 
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Pearson 

Correlation 
thr=0.4 

Partial Correlation 
thr0=0.2 thr1=0.1 

Mutual Information 
thr=0.2 bins=18 

LASSO 

Pearson Correlation 
thr=0.4 

 
40.9% 33.3% 6.9% 

Partial Correlation 
thr0=0.2 thr1=0.1 

 
 20.1% 9.8% 

Mutual Information 
thr=0.2 bins=18 

 
  5.8% 

Table 7 - Percentage overlap between similarly sized expression-based Arabidopsis thaliana gene networks 
(described in Table 6) 

 

It is therefore interesting to investigate the true nature of the LASSO network, despite its lower "quality" (as 

calculated by the methods in Table 5), and therefore we decided to keep this as it is, also given the preliminary 

positive results obtained with a particular LASSO gene model, using the gene RHM2 as bait (Usadel et al., 

2004), discussed in the next Paragraph. The collection of the lowest-error LASSO individual gene models was 

therefore compared to networks provided by the other methods, having similar overall sizes. The thresholds 

applied on the similarly sized networks are not strict (e.g. for Pearson correlation r0=0.4), which allows for a 

comprehensive assessment of the overlap between all methods, although at the cost of a higher chance for 

"false" gene connections. An intersection between the four methods shows an unexpected low overlap 

between the LASSO and the others (Table 7), even lower than between Correlation and Mutual Information 

(despite the fact that both Pearson Correlation and LASSO are intrinsically based on linear relationships).  

It is interesting to note, though, that adding a LASSO filtering to an intersection of all the networks in Table 7 

significantly increased the quality of the resulting intersection when compared to random edge removal (p-

value <0.001 by permutation test, valid for Ontology Agreement, overlap to Protein-Protein interactions and 

Degree Distribution tests). This observation hints that the LASSO can be additive and complementary to the 

ordinary reverse engineering methods. In order to understand what's the nature of the LASSO uniqueness, it 

is mandatory to summarize the information contained in large gene-gene networks.  

The intersection network between the networks shown in Table 7 (including the LASSO), shown in Figure 31A 

was therefore annotated to functional categories (Figure 31B) and from this a network of significantly 

interacting categories was extracted (Figure 31C). This network can be considered as a condensed version of 

the original gene-gene expression based network, where co-regulation can be seen at work between 

pathways and groups of genes rather than between individual transcript behaviors. In Figure 31D, a diagram 

of the most interacting categories is shown as an example, these interactions, described in clearer detail in 

Figure 32A. The ribosomal proteins show an extremely strong co-regulational behavior and, through 

chloroplastidic ribosomes, they are strongly connected to genes involved into the light reactions of 
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photosynthesis. Ribosomal genes are in turn strongly co-regulating with the Tricarboxylic acid Cycle and with 

the basal mechanism for RNA processing and transcription. Impressively enough, these backbone category 

connections are so evident and conserved that they are found by all reverse engineering methods, also in 

Oryza sativa (data not shown). 

 

Figure 31 - (A) Intersection of Pearson Correlation (r=0.4), Mutual Information (normalized coefficient=0.2, 
bins=18) and LASSO expression-based gene networks for Arabidopsis thaliana. (B) ontology mapping of the 
network in panel A, associating every gene to one MapMan bin (Usadel et al., 2009). (C) Significantly enriched 
connections between MapMan bins as mapped in panel B (p-value <0.05). (D) Simplified diagrams of the most 
connected MapMan bins in panel C. 
 

It is puzzling, however stimulating, to notice that in fact every method is able to extract, even independently 

from the threshold, a backbone of "easy" gene-gene relationships, accompanied by a set of particular 
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connections. For example the LASSO, in its own area, is able to find several significant category associations 

that are not found by the other methods analyzed here (in Figure 32B the most connected categories are 

shown). Specifically, it seems to be able to discern the mechanisms in charge of protein post-translational 

modification and transport. Ubiquitination, which is principally a mechanism to drive protein degradation 

(Scheffner et al., 1995), is deemed by the LASSO to be significantly co-regulated with post-translational 

modification mechanisms, such as phosphorylation; it is in fact well known that phosphorylation and 

ubiquitination are acting parallelly in determining specific protein activity and turnover (Karin and Ben-Neriah, 

2000), such as in the cell cycle (Lodish et al., 2003), and this, as also detected by the LASSO, is requiring an 

active relocalization of the proteins themselves to the proteasome degradation complex (Glickman and 

Ciechanover, 2002). It must be reminded that the diagram illustrated in Figure 32 is only depicting the most 

connected and significant interactions, and that a full characterization of the specificity of these methods is still 

in progress. 
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Figure 32 - Schematic representation of the most enriched ontology connections (see also Figure 31D) in 
Arabidopsis thaliana expression-based networks found by all expression-based network reconstruction 
methods (A) and by LASSO only (B). 
 

In conclusion, the messages that can be drawn from this Bioinformatics analysis are two, at least for what 

concerns the LASSO. First, that this method is able to grasp significant and meaningful interactions between 

genes based on expression data, although with general lower performance than Pearson correlation. Second, 

that the LASSO is largely complementary to other network reverse engineering methods, yielding a complete 

overlap in evident co-regulation structures, such as between ribosomal genes, but providing particular 

conclusions on other pathways, such as protein ubiquitination. However in science, and especially in 

Bioinformatics, it is always unwise to draw pure theoretical hypotheses without testing them. Therefore I 

decided to test the LASSO in real biological scenarios, described in the following two paragraphs, together 

with other Correlation-based approaches, to test if this "complementarity" were real or artifactual.  
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2.5 LASSO and correlation for reverse engineering the seed coat 

mucilage pathway in Arabidopsis thaliana 

2.5.1 RHM2 expression network analysis 

The Rhamnose Biosynthesis 2 gene (RHM2, also known as MUM4) is one of the few genes with a defined 

biosynthetic molecular function (UDP-L-rhamnose synthase) in the mucilage synthesis gene pathway(s) 

(Figure 6) (Usadel et al., 2004; Oka et al., 2007). The direct regulators of RHM2 however have not been 

characterized yet, and several missing links are present in this molecular process (Arsovski et al., 2009; 

Huang et al., 2011). Therefore, we decided to rely on a guilt-by-association in silico screening using RHM2 as 

gene bait, and all genes measured by the Affymetrix ATH1 as explanatory variables (see Methods, Paragraph 

4.6.1). In order to be as comprehensive as possible, we decided to use all Arabidopsis thaliana samples 

available in the public repositories Gene Expression Omnibus (Edgar et al., 2002) and ArrayExpress 

(Parkinson et al., 2007), obtaining a final dataset composed of 5750 samples and 21000 genes (Paragraph 

4.6.1). In such a scenario, fitting a complete LASSO model is not computationally feasible. We therefore 

decided to simplify the procedure, by including only the 2000 genes with highest absolute Pearson correlation 

to RHM2 in our model. As a modeling solution we used the LARS algorithm (Efron et al., 2004), which allows 

for a relatively quick LASSO model generation and therefore makes a model of this kind computationaly 

tractable. 

The result is a rather complex collection of weights for several gene variables, obtained with varying L1 

constraints to the sum of variable weights. The reader can appreciate this complexity in the Appendix (page 

121, Figure 61), where a plot is depicted indicating the weight trend of the explanatory genes at different L1 

thresholds for the RHM2 model. The path of the LASSO model generation, which is developed starting from 

L1 equaling zero, is quite complex, and at the right end (no constraint) it ends up assigning a weight to every 

gene. However, by focusing on stringent constraint regions we see that only a few variables are included in 

the model. For example, at L1=1% (percentage calculated over the sum of weights with no constraint), only 10 

predictor variabes were selected. This list is partially overlapping with the top 10 correlators (using Pearson 

correlation), but three genes are already unique to LASSO. As we will see below in greater detail for a reduced 

RHM2 model, the candidates selected by Pearson correlation and the LASSO tend to diverge exponentially as 

the L1 is increased. 

In order to have the widest analysis scope, we generated a list of all genes included by the LASSO algorithm 

at L1=1%, 2%, 3%, 4% and 5%. To these, we added for technique comparison the top 30 candidates obtained 

by Pearson Correlation, first order Partial Pearson correlation, full-order Shrunk Partial Correlation (using the 

approach by (Schäfer and Strimmer, 2005)) and top 30 weighted variables from a LASSO model with no 

constraint (L1=100%) (see Methods, Paragraph 4.6.1). We selected genes having readily available knock-out 

insertion lines (Alonso et al., 2003), and ended up with a short list of 38 candidates. In order to experimentally 

confirm the involvement of these genes in the polysaccharide synthesis of the pectinaceous mucilage, a sugar 

analysis of the knock-out lines was performed, as described in Paragraph 4.7, in order to assess differences at 
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the monosaccharyde level (I thank Mr. Aleksandar Vasilevski - Max Planck Institute of Molecular Plant 

Physiology - for conducting these measurements). The content of Rhamnose, Arabinose, Galactose, Glucose, 

Xylose, Mannose and Galacturonic Acid was quantified in the seed coat mucilage of the lines corresponding 

containing the 38 gene knock outs. Especially for Rhamnose and Galacturonic Acid (Figure 33) a significant 

divergence from the Columbia-0 wild-type content often was associated with peculiar staining pattern of the 

seed coat mucilage. As an example, the low Galacturonic acid mutant GH9C2 (knocked out in the gene 

glycosyl hydrolase 9C2, corresponding to the Arabidopsis locus At1g64390, found in our approach by Pearson 

correlation), resulted in a tight, shell-shaped mucilage structure, rather different than the flocculating wild-type 

pattern and shows less than half Galacturonic Acid content when compared to the wild-type (Figure 33). 

Interestingly, this gene has been characterized and patented as a novel modulator of cellulose cristallinity in 

2010. 

 

Figure 33 - Galacturonic acid content in the seed coat mucilage of part of the knock out lines extracted via 
the LASSO and Correlation approaches using RHM2 as a gene bait. The picture of a wild-type Ruthenium 
red seed is showed (top right) and compared to the At1g64390 KO line (bottom left). Lines varying 
significantly more than the wild-type (T-test, p-value <0.05) are marked with a star. Sugar measurements 
performed by Aleksandar Vasilevski (MPIMP) 
 

The analysis of the KO lines for the 38 genes, obtained by the four partial overlapping methods, showed us a 

total of 11 genes with a potential sugar phenotype (Figure 34). The complementarity of these techniques is 

evident, for example the LASSO provides three candidates that are outside the top100 ranked lists for any 

other Correlation method. This fact strengthens the need for a complementary approach we took for our 

Bioinformatics candidate selection. The genes found by these methods are in part unknown and 

uncharacterized, in part possessing functions already known to be involved in polysaccharide processes (such 
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as the already cited At1g64390). The nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER, locus 

At1g63000), found by LASSO and Partial methods, but not by Pearson correlation, is of particular interest, 

since this enzyme is directly involved in the synthesis of UDP-L-Rhamnose (Watt et al., 2004), a principal 

building block of mucilage polysaccharides. A in-depth investigation of the functions of these eleven putative 

novel members of the mucilage pathway is currently under progress. Preliminary data confirm also a lack of 

mucilage synthesis and/or release for a number of the genes in Figure 34. However we will omit in this 

dissertation a detailed description of these genes, especially the unknown ones, in order to preserve the 

novelty of the discovery prior to publication. 

 

Figure 34 - Summary of the genes having confirmed and significant monosaccharide (Rhamnose, Arabinose, 
Galactose, Glucose, Xylose, Mannose or Galacturonic Acid) levels alterations in the seed coat mucilage 
when knocked out 
 

2.5.2 Network reconstruction based on several mucilage genes 

The RHM2 LASSO models, although rich in information, mask two of the most important features of LASSO: 

they are not easy to interprete (a lot of variables are included, see Figure 61) and they don't exploit LASSO's 

ability to infer information when the number of samples is much lower than the number of variables. 

Therefore, we decided to use a smaller dataset, focusing on samples where seed coat mucilage is effectively 

synthesized and released, and where RHM2 is known to be expressed, together (hopefully) with its functional 

partners. We selected the Affymetrix AtGenExpress seed and silique developmental series samples (GEO 

accession: GSE5634, composed by 24 samples)(Schmid et al., 2005). By reducing the number of samples, 
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we could include all 20000 genes measured by the Affymetrix array (not, as before, only the "top correlators") 

and keep the modeling computationally tractable. The models generated by a number of samples so small are 

also including less variables and are therefore simpler to inteprete. This happens because the model will stop 

exploring the variable space when a number of predictor variables equalling the number of samples minus 2 

has been included. At this stage, the model cannot proceed without becoming underdetermined. 

In order to increase the range of our analysis, we generated a model for each of the 11 genes known to be 

involved in mucilage production and/or release by knock-out experiments (Table 8). Half of this list is 

composed of transcription factors, i.e. ideally upstream regulators, and half of enzymes, therefore putative 

mucilage synthesis effectors (see also Figure 6 in the Introduction for a map of known mcuilage pathway 

genetic interactions). It must be noted that, when we started this analysis, the analysis confirming the 

transcription factor LUH as a muilage-deficiency gene had been not published yet (Huang et al., 2011), and 

therefore LUH and its targets were not included in our analysis. 

Gene  Function   

RHM2  UDP-L-Rhamnose synthase  

MUM2  β-Galactosidase  

ARA12  Subtilase  

Myb61  Transcription factor  

AtBXL1  β-D-Xylosidase/α-L-Arabinofuranosidase  

GAUT1  α-1,4-galacturonosyltransferase 

Myb5  Transcription factor  

TTG1  Transcription factor  

AP2  Transcription factor  

GL2  Transcription factor  

Table 8 - List of genes known in literature to have experimentally confirmed roles in seed coat mucilage 
synthesis and/or release. The Myb5 mutant seed (impaired in mucilage release) is shown after Ruthenium 
Red staining (see Paragraph 4.7.1). The release of the mucilage for this mutant can be triggered by 
mechanical stress (see Appendix, page 122)(Arsovski et al., 2009)(Arsovski et al., 2009)[137] 
 

Initially, I explored different ways to extract "gene candidates" from the variables used by the LASSO model 

generation. 

1) The first is a simple R
2
 threshold, which contemplates stopping the LASSO modeling when the sum of 

residual errors of the model reaches a certain threshold. However, in this way initial variables may be 

excluded for good at a certain LASSO point (e.g. black line Figure 37 for AP2, which corresponds to 

At1g45474, a component of the light harvesting complex of photosystem I; this gene is the top correlator of 

AP2, but it is excluded as not significant after a few LASSO steps). 
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2) The second model selection method is constituted by a L1 bound threshold. The same method used for the 

MUM4 LASSO model of the previous paragraph. As in using an R
2
 threshold, it is affected by a certain 

arbitrarity and may discard variables included only at certain early L1 ranges. 

3) A very populare model assessment concept is the Aikaike's Information Criterion (AIC) commonly used to 

measure the goodness of fit when adding an explanatory variable to a model. It is calculated by the formula: 

                  

Where k is the number of variables, n the number of observations (samples) and ln(RSS) is the natural 

logarithm of the residual sum of squares of the model (Akaike, 2002). When comparing multiple models, the 

one having the lowest AIC is considered as the best one, meaning the one with the most tuned balancing 

between simplicity and goodness of fit. However in low-number of samples scenarios, the models including all 

variables are, in all cases explored here, the ones with the lowest AIC: inclusion of a variable, since only a few 

are allowed before reaching an undetermined system, is always beneficial for the model. We explored a high-

number of samples dataset, and saw that for up to 500 explanatory variables, every subsequent LASSO 

model has a better AIC than the previous ones (Figure 35A and Figure 35B). These models, used here as 

explanatory, show also that the LASSO tends to include more variables rather than readjusting the weights of 

precedently included ones. It is interesting to compare Figure 35C with the model described in the Appendix 

(page 121), where the growth of the model, driven by the increase of the L1, massively increases the number 

of genes included. 

 

Figure 35 - Panel A: AIC plotted against of the number of steps taken by the LASSO RHM2 model in an 
Arabidopsis thaliana dataset composed of 5750 samples (see Paragraph 4.6.1). Panel B: scatterplot of AIC 
score versus the number of variables included at any model Panel C: number of variables in the model at 
any LASSO step. The tendency of LASSO in these conditions is to include variables, although occasionally 
dropping steps are taken. Conceptually identical results as in Panel A and B can be obtained using Cross-
Validated model error instead of AIC (not shown) 
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4) A best cross-validated model selection, already discussed and applied in Paragraph 2.4.3, is arguably the 

best option, as it would provide the least unbiased assesment of robustness for each L1 and provide the 

comparative best model (Efron and Tibshirani, 1995). The only drawback of this method is that it could 

theoretically exclude several steps taken by the LASSO modeling and exclude genes that have been deemed 

highly relevant at a non-best cross-validated L1. Furthermore, blindly accepting the lowest error model doesn't 

account for the possibility of local minimi in the cross-validate error during LASSO progression. Although 

ignoring these genes would be, statistichally, the correct way to proceed, whit models as small as the ones 

described in this paragraph it is possible to extend this gene selection a bit further. 

5) An approach including the best crossvalidated model selection allows the inclusion of all variables that 

participated in the LASSO modeling, and were at some point included in the model before reaching the final 

solution. Likely, all the variables included will show a certain degree of relationship with the response variable, 

which makes them some of the best predictors during the modelization. In our case of 24 samples, the LASSO 

will stop at a model with 22 variables (plus the intercept), and has no way to improve without falling in an 

underdetermined situation (basically, a system of equations with multiple solutions). We decided to include 

these variables plus all the variables which were included during the LASSO steps. This variable inclusion 

approach is evidently unfeasable when the number of variabels included is too high, such as in a dataset 

composed of thousands of samples (Figure 61). In a holistic perspective, experimental understanding of the 

mucilage signal transduction and synthesis pathway will help us understanding what the best option for 

variable selection would have been, and if effectively the lowest-error cross-validated model (point 4) is the 

"best" one. 

It is clear from the weight plots that these models are much more interpretable than the one generated in the 

previous paragraph (Figure 61). Only a few genes are included in the RHM2 model now, and the progression 

of their importance in the models at different L1s is analyzable in a less noisy situation (Figure 36). For RHM2, 

three genes only appear to have high importance in early models, namely At5g63800 (MUM2), At1g10760 

(SEX1, an α-glucan, water dikinase required for starch degradation) and At2g37090 (IRX9, a putative xylosyl 

transferase involved in xylan biosynthesis in secondary cell wall) - these are represented respectively by the 

black, red and cyan leftmost lines in Figure 36. This is encouraging, since all these genes have been 

connected to polysaccharide synthesis (Gómez et al., 2006) (Bauer et al., 2006) (Dean et al., 2007). 

The situation for a multi-purpose transcription factor, AP2, is quite different, and the weight plot looks more 

entangled. Maybe this derives from the fact that AP2 has several different functions, being a hub in the 

Arabidopsis developmental network (Okamuro et al., 1997) and with a lower number of clear coexpressor, 

having for example 2 neighbors with Pearson correlation coefficient higher than 0.9, compared to the only 622 

of RHM2 (Figure 37). 
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Figure 36 - LASSO model weight plot for the RHM2 models based on the GSE5634 seeds/siliques Arabidopsis 
thaliana microarray dataset (Schmid et al., 2005). On the x axis, varying sum of variable weight constraints, on 
the y axis, the weights for every gene predictor. Every line corresponds to a gene included as prediction variable 
for RHM2 

 

 

Figure 37 - LASSO model weight plot for the AP2 models based on the GSE5634 seeds/siliques Arabidopsis 
thaliana microarray dataset (Schmid et al., 2005). On the x axis, varying sum of variable weight constraints, on 
the y axis, the weights for every gene predictor. Every line corresponds to a gene included as prediction 
variable for AP2 

 



Results 

65 
 

It is interesting to notice that also in this case Pearson Correlation and LASSO differ on candidate selection, 

while giving the same results for the most correlated variables. Here's for example a list of all variables 

appearing in the RHM2 model, and their Pearson correlation rank (Table 9). 

Rank of appearance in 
LASSO 

Pearson rank 

1 1 
2 2 
3 3 
4 5 
5 6 
6 11 
7 12 
8 20 
9 27 

10 33 
11 34 
12 36 
13 46 
14 65 
15 85 
16 107 
17 116 
18 138 
19 172 
20 193 
21 202 
22 205 
23 231 
24 267 
25 310 
26 367 
27 455 
28 915 
29 928 
30 1372 
31 1464 
32 1829 

Table 9 - Rank order of appearance for genes in the LASSO RHM2 modeling (left) and absolute Pearson 
correlation coefficient rank for RHM2. 

We merged the models obtained by the eleven "bait" genes using our candidate selection approach discussed 

before, and obtained a final "mucilage network" specific for seed and silique tissues, shown in Figure 38. Four 

of our "bait genes" (AP2, GAUT1, GAUT11, MYB5) appear disconnected from the main network component. 

This doesn't necessarily mean that they are involved in different pathways, but it may be that they are not 

transcriptionally regulated and/or (such in the case of AP2) they have too many interactors to be found by our 

approach. The giant component of Figure 38 shows an interesting network of common predictors. Most 

importantly, MUM2 and RHM2 appear in each other’s LASSO short-lists, together with three other shared 

genes. These three genes are a phosphoglyceride transfer family protein), an ATPase) and a putative 

Galacturonosyltransferase (GAUT), specifically a predicted polygalacturonate 4-alpha-

galacturonosyltransferase. It is tempting to consider this GAUT in particular as a potential "missing link" 
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between these two pathways: this enzyme has been only hypothetically linked to polysaccharide synthesis by 

sequence homology, but its specific pathway is still unknown. 

Another interesting gene is the linker between GL2 and RHM2: At1g05230 (Encodes a homeobox-leucine 

zipper family protein belonging to the HD-ZIP IV family). In general, among the RHM2 and MUM2 neigbors, 

we had the impression of a population split between proteins functionally active in sugar metabolism or 

involved in signal transduction. 

 

Figure 38 - Joint network representations of the eleven LASSO models based on gene baits known to be 
involved in the seed coat mucilage synthesis and release pathway. The models generated using the 
GSE5634 seeds/siliques Arabidopsis thaliana microarray dataset (Schmid et al., 2005) 

 

Preliminary screening of the LASSO networks show promising results. In this case, there are not only many 

mutants having less extractable Galacturonic Acid and Rhamnose, but lack of mucilage phenotypes are 

clearly visible. For example, in Figure 39, we show the appearance of two Knockout Arabidopsis mutants after 

coloring their seeds with Ruthenium Red (see Methods, Paragraph 4.7.1). The first is found in the 

neighborhood of GL2 and it shows lack of mucilage in two independent KO lines (Figure 39B and Figure 39D). 
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The second is introduced in the LASSO models for Myb61 and also shows a complete lack of mucilage 

phenotype (Figure 39C). These seeds are not releasing the mucilage even after mechanical stress (Figure 

39E for the Myb61 neighbor and Figure 39F for the GL2 neighbor), and therefore it can be hypothesized that 

the very synthesis of mucilage pectins is impaired in these mutants. In the Appendix (page 122), we show how 

mechanical stress can indeed induce the release of mucilage in some mutants, for example the Myb5 

knockout (where also EDTA treatment can trigger mucilage relase (Arsovski et al., 2010)). This hints at the 

existence of two separate pathways: one for mucilage synthesis, one for mucilage release upon seed 

hydration. It is also interesting to add that all these knockout lines, as far as we could see, seem to show a 

wild type-like phenotype during their adult life (data not shown). Surely, the detailed characterization of these 

knockout lines will be helpful in understanding the true function of these novel mucilage genes, and to possibly 

place them in the still incomplete picture of the seed coat mucilage synthesis and release processes (Figure 

6).  
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Figure 39 - Ruthenium Red staining of several Arabidopsis thaliana genotypes. (A) wild-type Columbia 0. (B) 
and (D) two independent knockout lines for a GL2 network neighbor. (C) knockout line for a Myb61 network 
neighbor. (E) Myb61 network neighbor knockout line after mechanical stress. (F) the same GL2 neighbor 
knockout line as panel B, after mechanical stress. 
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2.6 LASSO and correlation for reverse engineering the hypoxia-regulated 

tuber development pathway in Solanum tuberosum 

In the previous paragraph it was shown how, based on one or more gene "baits", gene network reconstruction 

can be carried out following a simple guilt-by-association approach, identifying genes co-regulated in similar 

ways. However, in the scenario tackled here, the Solanum tuberosum hypoxia-regulated tuber development, 

none of the genes involved has been characterized yet. Therefore, in order to compare LASSO and 

Correlation, it was first necessary to find the bait genes needed for expression-based analyses. In the 

following paragraphs (2.6.1, and 2.6.2) I will describe how three transcripts involved in hypoxia and tuber 

development were found in Solanum tuberosum via knowledge transfer from Arabidopsis thaliana, and 

characterize their expression pattern. In the subsequent paragraphs (2.6.3 and 2.6.4) I will focus on a 

comparative LASSO-Correlation expression-based candidate selections using these transcripts as baits.  

2.6.1 Identification of hypoxia responsive ERFs in Solanum tuberosum 

To isolate ERF-encoding genes that are responsive to low oxygen conditions, cDNA from leaf and root tissues 

excised from hypoxic and aerobic Solanum tuberosum cv. Desirée plants were amplified using degenerated 

primers designed to specifically anneal to members of ERF transcription factors group VII (Table 14). A single 

band was obtained (Figure 40) that corresponded to three different fragments putatively encoding ERF VII 

proteins (Figure 41). 

 

Figure 40 - Semiquantitative Reverse Transcription PCR on potato leaves and roots excised from plants 
treated at 21% or 4% (v/v) oxygen for 3 h using ERFVII-specific degenerated primers. EF1α was used as 
housekeeping gene to normalize loading 
 

Two of the fragments shared over 90% identity, differing only in a few codons located in the N-terminal part. 

These two sequences map uniquely to the same locus on the tomato (Solanum lycopersicum) genome 

(release SL2.40, chromosome 9 62625165:62625529, E-value 1x10
-63

), and correspond to a single Unigene 

tomato model (Gene Bank entry AY192368, E-value 3x10
-85

). Also in the recently released genome of 
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Solanum tuberosum (Xu et al., 2011) both sequences map the same locus (scaffold 

PGSC0003DMS000001201, genome assembly v3, E-value 4x10
-59

). Therefore, these two sequences 

correspond most likely to different splice variants. BLAST-analysis of the deduced amino acid sequences 

against the UniProtKB database (Schneider et al., 2009) revealed that one fragment corresponds to a CIP353, 

an ERF gene already identified as moderately cold inducible (Mine et al., 2003), and the two remaining are 

identical to the DNA binding protein STWAEEIRD (Campbell et al., 1998), which is 298 aminoacids long. Full 

sequencing of the amplicons provided the full length of these three genes (see Appendix, page 107), which 

were renamed in accordance to their Arabidopsis homologues: Hypoxia Responsive ERF1 (StHRE1) and 

Hypoxia Responsive ERF2 (StHRE2a and StHRE2b). 

 

Figure 41 - Alignment of the protein sequences of the potato ERFVII-like proteins identified. Amino acidic 
sequences were aligned using MUSCLE (Edgar, 2004). The multiple alignment is visualized using JalView 
(Waterhouse et al., 2009). In the red box, the AP2/ERF domain is highlighted, as automatically annotated by 
SMART (Letunic et al., 2009) 
 

Analysis of the deduced amino acid sequences indicated that all three HREs contain a highly conserved 

AP2/ERF domain (Figure 41, red box). Using the WoLF PSORT web-tool (Horton et al., 2007) all HREs 

proteins were predicted to be nuclear localized. In addition, two serine/threonine-rich regions that may function 

as activation domains were found to reside in the N-terminal and the C-terminal regions of StHRE1 and 

StHRE2 proteins, respectively. StHRE2b is missing a 7 amino acid sequence SFSKPIS, which is present in 

the N-terminus of StHRE2a (Figure 41). 



Results 

71 
 

 

Figure 42 - Phylogenetic consensus tree of group ERF-VII proteins from different plant species whose genome 
has been sequenced. A maximum-likelihood tree was created with MEGA5 (Tamura et al., 2007) based on a 
multiple sequence alignment calculated by MUSCLE (Edgar, 2004). The distance bar is shown on the top of 
the tree. Numbers at each node are the percentage bootstrap value of 100 replicates. The tree is collapsed 
where bootstrap support is lower than 50%. 
 

To investigate the sequence similarity of the identified HRE sequences compared with the ERF-VII proteins 

encoded by other representative plant species, I performed a sequence-based phylogenetic analysis. The 

resulting phylogenetic tree (Figure 42) shows a loose distinction of several ERF subgroups, and allows us to 

place the newly found potato sequences in defined subclades. In particular, StHRE1 clusters together with 

Arabidopsis thaliana RAP2.3 and HRE2 proteins, while StHRE2a and StHRE2b belong to a subclade including 

Vitis vinifera VvERF056 (Licausi et al., 2010), poplar and soybean proteins but, interestingly enough, no 

Arabidopsis protein. 
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2.6.2 StHREs expression during tuber development  

Tuber size is assumed to play a major role as a constraint to the oxygen availability for the inner tuber cells 

(Geigenberger et al., 2000). Oxygen concentrations and mRNA levels were measured in developing tubers at 

different stages defined in an age-related manner according to (Kloosterman et al., 2008). The internal O2 

concentrations progressively decreased with tuber development and size-increase, to around 10% of the 

ambient oxygen concentration in developed, 25-day old, tubers (Figure 43). Concomitantly, the potato Sucrose 

Synthase 4 (StSus4) mRNA increased, achieving very high expression levels when tubers reached a volume 

of about 3-4 cm
3
 (Figure 43). Sucrose synthase is used as an hypoxia marker since the enzyme encoded by 

this gene, synthesizing UDP-glucose, is fueling glycolysis at the expense of starch synthesis and storage, and 

therefore it is one of the most important protein for anoxic ATP production (Taiz and Zeiger, 2006). StHRE1 

displayed a modest increase at a tuber age of 7 days, during the transition from stolon to juvenile tuber (Figure 

43) after which expression decreased until it ultimately reached a value of about half of the expression level in 

a stolon. StHRE2a and StHRE2b displayed a transient upregulation at 7 days and toward the 14 days-age the 

expression level fell back to levels similar to those at the stolon-stage. However, both StHRE2a and StHRE2b 

were subsequently markedly up-regulated when oxygen levels decreased to 10% of the environmental 

concentration, in 25-day-old tubers (Figure 43B) congruent to the sudden increase in gene expression of 

StADH and StSUS4. 

2.6.3 Characterization of StHREs co-regulators in tuber development by Spearman Correlation and the 

LASSO 

Previous studies in Arabidopsis thaliana, Oryza sativa and Vitis vinifera have led to the conclusion that some 

genes belonging to group ERF-VII could play a role in the hypoxic induction of low-oxygen responsive genes 

(Fukao et al., 2006; Hinz et al., 2010; Licausi et al., 2010). However, the physiological hypoxia established 

during the development of the tuber is unlikely to pose a threat for the plant itself and therefore it is possible 

that in this context the ERF-VII genes play additional or different functions. 



Results 

73 
 

 
 
Figure 43 - Relationships between tuber age, oxygen concentrations and transcript levels of StHRE1, 
StHRE2a, StHRE2b and StSUS4 in developing potato tubers. Internal oxygen concentration is measured in 
the core of tubers at different developmental stages. Transcript levels are obtained in developing potato tubers 
at the same stages used for the internal oxygen measurements using RT-qPCR. The fold change was 
calculated according to the ΔΔCt method (stolon = 1). Error bars represent the standard deviation calculated 
for 4 biological replicates. A picture depicting the tuber growth stage and an indicative age is shown in the 
bottom. Note: the oxygen concentration measurements were conducted by Dr. Francesco Licausi (Scuola 
Superiore Sant'Anna, Pisa) 
 

In order to detect genes that can be associated to the behavior of StHREs, and therefore shed light on the 

functions and mechanisms StHREs may be involved with, we carried out a an expression-based gene network 

reverse engineering analysis. Without assumptions on causal relationships, co-regulation in this case can 

grasp the existence of mechanisms of regulation present in the studied samples that are altering the rates of 

transcription. It can therefore offer an unbiased approach for finding new genes sharing pathways and 

functions with StHREs, possibly other than the typical anaerobic adaptive response. In order to perform the 

co-regulation analysis we chose two distinct datasets that describe the transcriptomic changes occurring 

during potato tuber development. Both are based on the Potato Oligo Chip Initiative (POCI) microarray, which 

was based on the most recent representation of the Solanum tuberosum transcriptome at the time of analysis 
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(Kloosterman et al., 2008; Ferreira et al., 2010) (see Paragraph 4.6.3). At this point, we compared the LASSO 

(Tibshirani, 1996) with a distinct co-regulation based method for gene network reverse engineering, Spearman 

correlation. Spearman correlation was used instead of Pearson correlation, in this project, in order to further 

minimize the overlap of candidates selected by this technique and the LASSO (as by definition the first LASSO 

candidate is also the first Pearson candidate, see Paragraph 4.6.3). Furthermore, given the paucity of samples 

and the high correlation coefficients showed by the StHREs but also in general by the POCI dataset (Figure 

44), Spearman correlation was chosen given to its robustness to outliers and noise artifacts (Usadel et al., 

2009). Also the LASSO can be considered as a theorically ideal technique in this case: since it prevents 

overfitting by keeping the number of explanatory variables low, it is potentially very robust even in scenarios 

where the number of samples is much lower than the number of genes, like in our case (14 samples, 31293 

gene probes in the analyzed dataset). 

 

Figure 44 - Spearman correlation coefficients distributions for StHRE1 (blue line), StHre2a/b (red line), all the 
probesets in the POCI array (black line) and the expected distribution from random Gaussian data (grey line). 
 

As gene "baits" for our coexpression analysis using Spearman Correlation and LASSO we used the probes 

matching StHRE1 and StHRE2a/ StHRE2b. Both genes are transcriptionally regulated during tuber 
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development, with a transcriptional variation higher than the population average (Figure 45). All other probes 

in the normalized datasets were taken as potential guilt-by-association candidates (see Paragraph 4.6.3). 

Twenty-three genes were obtained by analysis of the LASSO model using StHRE1 as response variable, and 

sixteen were found for StHRE2. Using Spearman correlation we found a considerable number of positively 

correlated genes, specifically 14758 for StHRE1 and 927 for StHRE2a/b with an absolute correlation 

coefficient higher than 0.7, a commonly accepted correlation threshold (Usadel et al., 2009). These groups of 

coexpressors are in both cases significantly enriched for genes belonging to major and minor CHO 

metabolism, among other ontology groups (see Appendix, page 108) (Usadel et al., 2009). Interestingly 

enough, the vast majority of correlations for both StHREs are positive (Figure 44). Since the number of 

correlating genes was too high for an in-depth analysis, we decided to limit our candidates here to the top-10 

correlators for both StHREs. This brought us to a total of thirty-three candidate coexpressors for StHRE1 and 

twenty-five (as one gene is found in both the LASSO and the top-10 Spearman list) for StHRE2/b. Almost all 

these candidates are positively correlated to StHRE1 and StHRE2a/b (Table 10 and Table 11) or with positive 

weights in the LASSO models (Figure 46). 

 

Figure 45 - Log2 Variance distribution of probe intensities in the joint potato dataset (mean: 0.128; median: 
0.038). Variances for StHRE1 (0.285) and StHRE2a/b (0.587) are indicated. 
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Figure 46 - Model weights for genes included in the StHRE1 (panel A) and StHRE2 (panel B) LASSO 
calculation. On the X-axis, the L1 threshold imposed to the models as a fraction of the maximum threshold. On 
the Y-axis, the variable weight. Each line corresponds to the model coefficients at different LASSO steps for a 
particular variable (gene). 
 

The LASSO, although finding genes that are in most cases well correlated to the StHREs baits (Table 10 and 

Table 11), is providing candidates almost completely distinct from the top Spearman ranking ones. This 

behavior is not unexpected: as it could be seen in Table 9 in the previous Paragraph, LASSO and Correlation 

candidate selection tends to separate quite markedly. The first variable introduced by LASSO is always the top 

Pearson correlator (not the Spearman one). After the first variable has been included, the LASSO exploration 

proceeds by finding the genes most correlated with the “residual” behavior of the bait gene, yielding a quick 

divergence between LASSO and Correlation.  

The group of genes whose expression relates with StHRE1 (both top Spearman correlators and variables 

included by the LASSO models, see Paragraph 4.6.3) includes genes coding for anabolic enzymes involved in 

starch and sucrose biosynthesis such as a sucrose phosphate synthase (SPS1) and a phosphoglucomutase 

(PGM), as well as two enzymes involved in sugar catabolism [disproportionating enzyme (DPE) and a subunit 

of the cytosolic glyceraldehyde 3-phosphate dehydrogenase enzyme]. Four putative transcription factors-

encoding genes also correlated with StHRE1 during tuber development and three of them belonged to the 

Zinc-Finger family. The group of genes correlating with StHRE2a and StHRE2b instead did not include any 

transcriptional regulator but contained several genes involved in sugar metabolism and sugar-starch 

interconversion: phosphoglucan water dikinase (PWD), fructokinase (FRK), two glucose 6-phosphate 

transporter-like proteins (G6P-transporter) and StSUS4. Among the genes known to be involved in the 

anaerobic response (Mustroph et al., 2010) only StSUS4 was identified as StHRE2a/b among the 58 

candidates inferred by our coexpression analysis. 
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Unigene ID 
Coexpression 

method 
Putative Function 

Spearman 
Correlation 
Coefficient 

Stu.22262 LASSO Aspartyl protease family protein 0.9297 
Stu.22430 LASSO Xanthoxin dehydrogenase 0.8330 
Stu.7176 LASSO Amino acid transporter-like 0.9121 
Stu.17280 LASSO Phytochrome b 0.8725 
Stu.18175 LASSO Copine-related 0.8769 
Stu.7147 LASSO Embryo-specific protein like 0.8075 
Stu.449 LASSO Heat shock protein-like protein 0.7978 

Stu.18907 LASSO Sucrose phosphate synthase (SPS1) 0.9341 
Stu.16271 LASSO Basic helix-loop-helix (bHLH) 0.7978 
Stu.6717 LASSO Zinc finger (B-box type) 0.8418 
Stu.8764 LASSO Metal ion binding protein 0.7714 
Stu.4930 LASSO Zinc finger (CCCH-type) 0.7495 
Stu.5337 LASSO Zinc finger (B-box type) 0.6879 
Stu.2227 LASSO Unknown protein 0.7714 
Stu.18198 LASSO Phosphoglucomutase (PGM) 0.7538 
Stu.5413 LASSO Homogentisate 1,2-dioxygenase 0.7143 
Stu.3076 LASSO Pectinesterase 0.8769 
Stu.22042 LASSO Unknown protein 0.8374 
Stu.7459 LASSO Unknown protein 0.7934 
Stu.399 LASSO Unknown protein 0.8769 
Stu.9491 LASSO Unknown protein 0.8505 
Stu.10230 LASSO Unknown protein 0.7582 
Stu.4200 LASSO Unknown protein 0.8330 
Stu.9263 Spearman Peptidyl-prolyl cis-trans isomerase 0.9692 

Stu.4665 Spearman Mannose-1-phosphate guanylyltransferase 0.9648 

Stu.18546 Spearman Disproportionating enzyme (DPE) 0.9604 

Stu.290 Spearman Ubiquitin-conjugating enzyme, putative 0.9604 

Stu.4096 Spearman Protease-related 0.9604 

Stu.17424 Spearman Short-chain dehydrogenase 0.9560 

Stu.22641 Spearman 
Glyceraldehyde-3-phosphate dehydrogenase C subunit 

(GAPDH-C) 
0.9560 

Stu.6095 Spearman Regulator of chromosome condensation related 0.9560 

Stu.15767 Spearman RAS-related protein 0.9560 

Stu.3773 Spearman Unknown protein 0.9516 

Table 10 - Solanum tuberosum sequences co-regulated with StHRE1 during tuber development 
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Unigene ID 
Coexpression 

method 
Putative Function 

Spearman 
Correlation 
Coefficient 

Stu.21019 LASSO 60S ribosomal protein 0.6000 

Stu.20114 LASSO Sucrose synthase 4 (SUS4) 0.8593 

Stu.21913 LASSO DEAD box RNA helicase, putative 0.5780 

Stu.10146 LASSO Aldehyde oxidase 0.6615 

Stu.3439 LASSO Unknown protein 0.6527 

Stu.4779 LASSO Prohibitin-like 0.6747 

Stu.22464 LASSO Mitochondrial 18S ribosomal RNA 0.0813 

Stu.8788 LASSO Light-harvesting chlorophyll b-binding protein -0.2176 

Stu.20202 LASSO Rubber elongation factor (REF) 0.3143 

Stu.9387 LASSO Phosphoglucan, water dikinase (GWD) 0.8418 

Stu.22933 LASSO/Spearman Unknown protein 0.8769 

Stu.22888 LASSO Unknown protein 0.5165 

Stu.13477 LASSO Unknown protein 0.7495 

Stu.23374 LASSO Unknown protein 0.4462 

Stu.22993 LASSO Unknown protein 0.7407 

Stu.20380 LASSO Unknown protein 0.7011 

Stu.2176 Spearman Fructokinase (FRK) 0.9385 

Stu.22678 Spearman Glucose-6-phosphate transmembrane transporter 0.9253 

Stu.8847 Spearman Apolipoprotein D-related 0.9209 

Stu.14473 Spearman Electron carrier 0.9077 

Stu.15975 Spearman Remorin family protein 0.8901 

Stu.4348 Spearman Glucose-6-phosphate transmembrane transporter 0.8857 

Stu.6993 Spearman Unknown protein 0.8813 

Stu.3944 Spearman GILT family protein 0.8725 

Stu.2262 Spearman Unknown protein 0.8637 

Table 11 - Solanum tuberosum sequences co-regulated with StHRE2a/b during tuber development 

 

As expression of the StHREs was modified by hypoxia (Figure 43), it is possible that the newly identified 

genes co-expressed with HREs during tuber development are also affected by decreased oxygen conditions. 

We checked whether the Arabidopsis and rice best BLAST hits of these genes were indeed induced or 

repressed by using publically available microarray datasets. Interestingly, among the homologues of the 

StHRE1-correlating genes in Arabidopsis only few genes exhibited hypoxia-responsiveness whereas the 

expression of the rice homologues was affected by anoxia in the coleoptiles (Lasanthi-Kudahettige et al., 

2007). More specifically, 17% of the rice StHRE1-coregulated genes homologues were down-regulated (≤1.5 

logFC) and 25% upregulated (≥1.5 logFC). Rice homologues of 50% of the StHRE2 co-regulated genes were 

induced (≥1.5 logFC) and only 10% repressed (≤1.5 logFC). This is not significantly differing (tested via χ
2
 test) 

from the expected range of this dataset, where 24.91% of the total genes are up-regulated and 36.30% are 

down-regulated by hypoxia. 

The genes in the same co-regulation network with either StHRE1 or StHRE2a and StHRE2b during tuber 

development (Table 10 and Table 11) can therefore be assumed to be alternatively regulated by (1) tuber 

development, (2) oxygen availability, or (3) both. Since the potato tuber is already an hypoxic tissue (Figure 

43), it is difficult to separate hypoxic effects from developmental effects. However, it is possible to treat the 

tubers in hyperoxic (40% O2) conditions, in order to distinguish genes that are effectively affected by oxygen 
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concentrations. The expression of the same set of genes was therefore analyzed in fully developed tubers of 

soil-grown potato plants treated under hyperoxic (40% O2) and normoxic (21% O2) conditions. Nine out of 

twenty-one genes exhibited significantly reduced mRNA levels when the pots in which they had grown were 

submitted to an oxygen-enriched atmosphere for 12h (Table 12). Six of these significantly repressed genes 

were found by LASSO modeling, while three were obtained through Spearman correlation, showing an 

interesting complementary behavior of these two techniques. This group of genes included the StHRE1-

coexpressed genes SPS1, Xhantonine dehydrogenase, two Zinc Finger transcription factor genes, a RAS-

related protein and DPE. Among the StHRE2-coregulated genes StSUS4 was down-regulated by hyperoxia, 

together with FRK and REF (Table 12). Our analysis clearly showed a correlation between ERF-VII and other 

genes that goes beyond the co-regulation due to low oxygen stress (Youm et al., 2008; Hinz et al., 2010; 

Licausi et al., 2010). Instead, in the case of growing potato tuber, many StHRE-coexpressed genes code for 

enzymatic reaction involved in sugar catabolism and starch synthesis (Appeldoorn et al., 1997). 
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Gene Bait Method Putative function 
Relative 
mRNA 
level 

S.D. P-value 

Stu.16271 StHRE1 LASSO Basic helix-loop-helix (bHLH) 2.100 1.742 8.8E-02 

Stu.18198 StHRE1 LASSO Phosphoglucomutase (PGM) 0.961 0.943 4.7E-01 

Stu.18907 StHRE1 LASSO 
Sucrose phosphate synthase 

(SPS1) 
0.366 0.190 1.6E-02 

Stu.22430 StHRE1 LASSO Xantonin dehydrogenase 0.277 0.172 9.0E-04 

Stu.3076 StHRE1 LASSO Pectinesterase 0.590 0.656 1.4E-01 

Stu.4930 StHRE1 LASSO Zinc finger (CCCH-type) 0.901 0.818 4.2E-01 

Stu.5337 StHRE1 LASSO Zinc finger (B-box type) 0.314 0.306 4.9E-02 

Stu.6717 StHRE1 LASSO Zinc finger (B-box type) 0.427 0.062 1.1E-05 

Stu.7147 StHRE1 LASSO Embryo-specific protein like 3.112 3.755 8.5E-02 

Stu.7176 StHRE1 LASSO 
Amino acid transporter family 

protein 
2.815 2.451 9.0E-02 

Stu.22641 StHRE1 Spearman 
Glyceraldehyde-3-phosphate 

dehydrogenase C subunit 
(GAPDH-C) 

0.554 0.107 2.0E-01 

Stu.4665 StHRE1 Spearman 
Mannose-1-phosphate 

guanylyltransferase 
5.391 8.710 1.6E-01 

Stu.15767 StHRE1 Spearman RAS related protein 0.387 0.321 1.5E-02 

Stu.18546 StHRE1 Spearman 
Disproportionating enzyme 

(DPE) 
0.073 0.015 1.3E-03 

Stu.20114 StHRE2 LASSO Sucrose synthase 4 (SUS4) 0.208 0.120 8.1E-03 

Stu.20202 StHRE2 LASSO Rubber elongation factor (REF) 0.272 0.181 2.6E-05 

Stu.4779 StHRE2 LASSO Prohibitin-like 0.843 NA NA 

Stu.9387 StHRE2 LASSO 
Phosphoglucan, water dikinase 

(GWD) 
0.532 0.540 2.0E-01 

Stu.2176 StHRE2 Spearman Fructokinase (FRK) 0.211 0.216 3.0E-03 

Stu.22678 StHRE2 Spearman 
Glucose-6-phosphate 

transmembrane transporter 
NA NA NA 

Stu.4348 StHRE2 Spearman 
Glucose-6-phosphate 

transmembrane transporter 
0.907 0.413 3.7E-01 

Table 12 - Effect of an hyperoxic (40% O2) atmosphere on the expression of HRE1 and HRE2a/b co-
expressed genes in fully developed tubers. In bold, significant deviations from control conditions (21% O2) 
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2.6.4 Conclusions on StHRE characterization and co-regulation analysis 

In summary, in the present study we have identified three ERF-coding genes, named StHRE1, StHRE2a and 

StHRE2b belonging to the group VII and displaying a differential responsiveness to low oxygen in potato. They 

appear not only to have a role in the response to the hypoxic stress decreased oxygen availability in the 

surrounding environment, as observed in Arabidopsis and rice, but also when developmental and growth 

programs pose constrains to oxygen diffusion. A simple expression based gene network reverse engineering 

analysis suggested a possible role of these TFs in the regulation of sucrose and starch metabolism during 

tuber development. Specifically, LASSO coupled with Spearman Correlation indeed helped us finding genes 

whose expression behavior is actually affected by what we expect to be a major regulator to StHREs, oxygen 

availability. As shown in Paragraphs 2.4.3 and 2.5, LASSO and Correlation are complementary in this task, 

since they can find non-overlapping groups of positive genetic hits (Table 13). Our screening shows us that 

some of our candidates are not only simply varying during development, but are possibly regulated by the 

oxygen availability in the tuber. Further genetic screenings will help us elucidate if StHREs are indeed the 

transcription factors regulating our candidates. The identification of potential regulators of adaptive 

mechanisms to low oxygen conditions in potato will be of great agronomical interests as oxygen availability 

affects tuber yield and quality (Holder and Cary, 1984). 

 Gene bait  
 StHRE1 StHRE2a/b Total 
LASSO 4/10 2/4 6/14 
Spearman Correlation 2/4 1/3 3/7 

Table 13 - Fraction of co-regulators repressed by hyperoxia in Solanum tuberosum tubers, over total number 
of genes screened by RT-PCR.  
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3. Discussion 

3.1 Transcript model characterization for microarray generation 

It has recently been shown how DNA microarrays and next generation sequencing transcript quantification 

(RNA-Seq) yield largely equivalent results (Malone and Oliver, 2011). However, microarrays still have the not 

negligible advantage of over a decade of perfecting, both on the technical and on the statistical side. 

Furthermore, their relative lower cost (about 10-fold less than next-generation sequencing) make them still an 

exceptional platform for quantitative and fast transcriptome measurements. Finally, the enormous amount of 

data collected in different species and experimental conditions by microarrays is able to support comparative 

tasks and co-regulation studies that rely on large datasets of co-measured transcripts, such as gene network 

reverse engineering. 

In this dissertation, I showed how a probe population for microarray design can be obtained by drafting a 

transcriptome through a combination of publicly available ESTs and ad hoc next generation sequences in 

Thellungiella salsuginea (salt cress, Paragraph 2.1). The advantage for the scientific community of such an 

approach is three-fold, since it provides a pipeline for transcriptome characterization, a comprehensive 

microarray for understanding gene expression in Thellungiella, and allows for comparative considerations 

between this extremophile cress and its close non-extremophile relative Arabidopsis thaliana. The 

transcriptome assembly pipeline shows how several technical and conceptual issues must be considered in 

this task, for example the necessity to remove contaminant reads and to merge highly-similar transcript 

models arising from a heterozygous sample population. Furthermore, it was shown that normalizing a 

transcript library, i.e. reducing the highly abundant transcripts, is indeed providing a partially not overlapping 

set of transcripts to an unnormalized library. This phenomenon will need further investigation, however it can 

be hypothesized that the normalized library highlights lowly abundant transcript, but at the same time 

fragments the mRNAs making some transcripts harder to assemble. The measurements obtained by the 

Thellungiella Agilent 44k microarray platform generated through this study, which are being conducted at the 

time this thesis is written, will possibly give answers to these topics. This prototype microarray will then act as 

both a product and a validation instrument for our transcriptome characterization pipeline. If deemed valid, this 

pipeline could be automated and used as a model framework for fast generation of screening microarrays on 

any nonmodel plant species, which will be based on publicly available sequence data joined with targeted 

next-generation sequencing measurements encompassing several experimental conditions. On the other 

hand, the availability of the transcriptome itself is bound to shed light on the salt- and drought- resistance 

features of Thellungiella salsuginea. Our preliminary screening shows that, when comparing Thellungiella to 

its relative Arabidopsis (which is not as much salt and drought resistant), there is no evidently higher number 

of transcript types with an abiotic stress ontology. This can be due to several reasons, one being the 

incompleteness of our transcriptome, although several abiotic stress conditions (all those known to be involved 

with the stress-related LEA proteins activity for example (Hundertmark and Hincha, 2008)) were applied to the 

Thellungiella samples used for sequencing and therefore should have triggered the transcription almost the 
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complete picture of stress-related genes. Another reason is that Thellungiella can have evolved a stress-

response mechanism that doesn't depend as much on transcript variety, therefore not a "one transcript for one 

stress" principle, but rather a general system for dealing with extreme environmental conditions, based also on 

cellular and tissue structure and chemical properties to deal with a constant "stress threat" (Wong et al., 2005), 

and a highly refined intertwining with other transcriptional pathways, such as growth and hormonal regulation 

(Wong et al., 2006). A third reason could be that Thellungiella developed stress-specific transcripts that are so 

dissimilar from Arabidopsis and other model species sequences that our automatic annotation pipeline (Lohse 

and Usadel, unpublished) couldn't annotate them in the abiotic stress MapMan bin; although this is 

improbable, given the close evolutionary proximity between Arabidopsis and Thellungiella (Wang et al., 2004), 

it may be a justification for the high number of transcripts categorized as "unknown" in the Thellungiella 

transcriptome. 

3.2 Caveats in microarray data normalization 

After discussing the necessity of a detailed transcript model generation for microarray design, it was shown 

how commonly used normalization procedures for microarrays, despite the "age" of these platforms and a 

well-established statistical methodology (Bolstad, 2008), can still contain spurious effects and generate 

undesired artifacts. I showed how, in Affymetrix chip normalization procedures implementing a median polish 

probeset summarization (e.g. the commonly used RMA and GCRMA methods), the correlation between 

samples can be largely overestimated in small and odd-sized datasets (Paragraph 2.2). This effect could be 

significantly associated to certain properties of the Arabidopsis thaliana Affymetrix ATH1 microarray, although 

similar conclusions can be drawn also with other Affymetrix platforms, such as the Escherichia coli ASv2. 

Specifically, probesets with low expression and a high number of targets, especially if these are highly 

diversified in their function, yield a more severe over-estimation of the inter-array correlation. The problem is 

not to be underestimated, since the number of multiple-hit probesets is relevant, at least in the ATH1 

microarray (Figure 47), which shows a 13.4% of "promiscuous" probesets. 

This particular artifact correlation between samples, depending on "noisy" probesets, doesn't pose a particular 

problem in differential gene expression analyses, because, on the contrary, it could enhance the differences of 

changing transcripts by shrinking most unclear probesets to identical values across experiments. In any case, 

the small underlying change in gene expression of such an unclear probeset would generally be below the cut-

off value to be considered an ‘interesting’ gene. However, this artificial correlation can’t be ignored in contexts 

where unbiased measurements are needed, like transcript clustering (Golub et al., 1999), genetic network 

reverse-engineering (Basso et al., 2005), sample classification (Nielsen et al., 2007) (Eisen et al., 1998) or 

global transcript models (Usadel et al., 2008), and I show in the dissertation how RMA can artificially decrease 

the gap between samples coming from different tissue types. Furthermore, median polish has already been 

shown to work poorly when compared to MAS5 summarization in correlation between E. coli operon members 

(Harr and Schlotterer, 2006). Thus, these results should be taken as caveats on the validity of many studies 

obtained on the basis of correlation measures after these normalization procedures were applied, especially 

when small sample sizes are used. We therefore propose an easy fix to the median polish summarization 
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step, which remove almost completely the over-correlation between samples, while keeping all the positive 

features of RMA and GCRMA. It will be interesting to see how this modified RMA method, called tRMA 

("transposed RMA", due to a step in the probeset matrix summarization), will behave in a wide range of 

applications. In particular, we assessed (data not shown) that its performance in preprocessing data for gene 

network reverse engineering is largely equivalent to that of RMA; RMA is known to perform relatively well with 

this respect, avoiding the background correction issues of GCRMA, which massively decreases the quality of 

inferred gene-gene associations (Lim et al., 2007). In fact the differences between RMA and tRMA, involving 

the transposition of the probeset matrix upon median polish summarization don't influence the correlation 

patterns between genes, but only that between samples. 

 

Figure 47 - Probeset population divided by number of hits. "Single hit" indicates a perfect probe agreement 
(usually, 11 out of 11) for a single perfect gene hit (BLAST bit score threshold 42.1, corresponding, for a 25-
mer typical probe, to 21/25 perfect alignment or 25/25 with one mismatch; note: an almost identical pie chart is 
obtained imposing more strict bit scores). "Other" indicates probesets whose probe population matches 
several different targets. "Multiple hit" is a particular case of "family" probesets, indicating a perfect probe 
agreement over more than one target (i.e. for identical, recently duplicated genes). 
 

3.3 Conditional correlation techniques in central gene prediction 

The transcript expression data obtained through microarray studies, after establishing a proper understanding 

of this platform, can therefore be used to make biological inferences about the underlying gene-gene 

associations. One common way to do this is through the use of networks as comprehensive representations of 

the underlying transcriptional control mechanisms (McAdams and Shapiro, 1995). Using gene and protein 

networks instead of tabular or matrix representation of gene-gene interactions has been beneficial not only 

from a visualization point of view (although it can be argued that a better visualization can lead to a better 

understanding of the underlying system (Mutwil et al., 2010)). For example, global network properties, such as 

the scale-free distribution of the network degree, has shed light on the evolution of transcriptional control, 

which tends to generate novel control steps on pre-existing master transcriptional regulator. This yields a 
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network structure with many genes connected to a few central nodes which, due to their high degree 

centrality, are deemed "network hubs" (Barabási and Albert, 1999). Several gene-level network properties 

have also been studied and associated to particular characteristics of the genes involved. For example, it is 

known that cancer genes have a higher degree and clustering coefficient centrality than other genes 

(Rambaldi et al., 2008). In this thesis (Paragraph 2.3), we confirm what previously inferred by separate studies 

about network centrality and gene essentiality (Jeong et al., 2001), which principally show a high degree for all 

essential genes. We confirm the significantly higher network degree for the essential genes in Arabidopsis 

thaliana (as shown by (Mutwil et al., 2010) among others) and observe significantly higher clustering 

coefficient and betweenness too. In addition, we tried to assess how conditional correlation can be used to 

extract a different concept of "centrality" in expression-based gene networks. 

We could initially observe (e.g. Figure 27 and Appendix, page 112, Figure 52) that Conditional correlation can 

remove high fractions of edges and yield scale-free networks with a low amount of gene "hubs" even when 

mild thresholds are applied (refer e.g. to Figure 27 for network size reduction and to Appendix, page 112, 

Figure 52, for scale-free topology generation upon application of Conditional correlation to expression-based 

networks). This edge reduction is far more prominent than in random correlation networks (data not shown, 

generated based on the Erdős–Rényi structure (Erdös and Rényi, 1959)), showing that the insurgence of gene 

hubs upon application of Conditional correlation must be a particular property of gene expression networks. It 

is interesting to note how Conditional correlation is also one of the techniques used to infer causal 

relationships in graphs (Pearl, 2000): in these approaches, conditioning is used not only to remove edges, but 

also to direction the surviving ones, yielding that the most connected surviving nodes are also "central" in 

cause-effect, information flow relationships. 

In our study, we showed how applying Conditional correlation in expression-based networks is beneficial in 

predicting essential genes in Arabidopsis thaliana, since essential genes tend to be fill the role of gene hubs in 

this scenario, significantly more often than non-essential ones. The novel centrality index based on Conditional 

correlation, called "Breaking Potential" is able to distinguish efficiently between essential and non essential 

genes in expression-based networks, although it hasn't been able so far to exclude the possibility for this result 

to be just a by-product of network degree. We could assess similar properties for essential genes also for 

networks based on Escherichia coli and Saccharomyces cerevisiae microarray datasets (data not shown). 

Therefore, in a broader perspective, an essential gene is characterized by being co-expressed to a high 

number of genes (high Degree), which in turn tend to be co-expressed to each other (high Clustering 

coefficient). Furthermore, essential genes seem to act as connectors of different parts of the transcriptional 

network (high Betweenness) and are likely to be central also in information-flow processes (high Breaking 

Potential). However, Breaking Potential is not a mere essential gene predictor, since genes can have high 

Breaking Potential in a non-essential pathway, and therefore be locally central in the information flow of a 

particular cellular function. The capability of Breaking Potential to depict genes conditionally central in 

pathways makes it a promising feature to find key regulators not only in molecular biology, but also in other 
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networks, reverse-engineered from data, for which conditional similarity measures can be defined, e.g., in 

neurosciences (Fransson and Marrelec, 2008) or economics (Mizuno et al., 2006). 

The Breaking Potential seems an interesting network property where causality and precision are important 

goals to achieve. Unfortunately finding that Breaking Potential results on essential genes predictions are 

strongly biased by the network degree imposes a reflection on the intrinsic message given this measurement. 

It will be worth investigating if Breaking Potential contains peculiar properties that separate it from the degree 

in coexpression networks, trying to use it without a predetermined goal, but assessing the ontology of the 

nodes it extracts from correlation networks. However, preliminary results, using dynamically adaptable 

thresholds based on dynamical network quality assessments, hint that the Breaking Potential index would 

indeed be able to intrinsically outperform degree in identifying "central" genes. 

 

3.4 Gene network reverse engineering 

More generally, expression-based gene network reverse engineering, both in a global and in a single-gene 

perspective, can take advantage of a combination of several different network inference methods. In the 

present thesis, we tested Correlation, Partial Correlation, Mutual Information and the LASSO, however other 

unrelated methods are beneficial in this respect, e.g. linear, polynomial or non-linear regression. Standard 

linear regression wasn't discussed, but it generally provides multi-variable models, with all genes associated to 

a different weight not necessarily associated to its relevance, and therefore with low interpretability and 

robustness (Tibshirani, 1996). Polynomial and in general non-linear regressions suffer from the same issue as 

standard regression, however they can detect peculiar co-regulation structures, similarly to what Mutual 

Information can do (Daub et al., 2004). The performance of these methods haa not been investigated in detail, 

nor included in this dissertation for mainly three reasons. The first is that the amount of "peculiar" non-linear 

genetic interactions, which would require such sophisticated approaches, are extremely rare in gene-gene co-

expression (the example shown in Figure 25 was found after testing several different datasets and bin 

numbers). The second is overfitting: a polynomial regression model with enough complexity can achieve a 

perfect prediction of transcriptional behavior, but this wouldn't be necessarily a significant model. The third 

problem is computational complexity, as trying to achieve polynomial regressions of the n
th
 order for a high 

number of explanatory variables (such as in microarray datasets) requires a severe increase of the number of 

variables to consider (not only the genes, but also the powers of the genes), making a broad application of 

these techniques (such as in Paragraph 2.4.3) still unfeasible given the current implementations. 

The performance of the selected techniques, Correlation, Partial Correlation, Mutual Information and the 

LASSO, was therefore tested applying different combinations of thresholds. Several lessons given by e.g. 

conditional correlation applied to essential gene detection showed us that a technique has to be evaluated as 

broadly as possible, principally because the optimal threshold depends on the underlying dataset type, size, 

and correlation distribution. One way to overcome this issue is the use of mutual ranks, which deem as 
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significant interactions between genes that respectively hold the other in the top list of co-expressors, 

evaluated by e.g. correlation (Obayashi and Kinoshita, 2011). 

The four classes of network reconstruction methods were compared at several stringency levels, and on 

different datasets (for practical reasons, we showed only the results for a high quality dataset in this 

dissertation, however similar conclusions can be taken for any Arabidopsis microarray-based condition-

independent dataset). Such a combined approach shows that all methods share the capability to infer central 

transcriptional co-regulation clusters, such as the one composed by ribosomal proteins. It is generally known 

that genes encoding for subunits of the same complexes tend to be co-regulated (Tischler et al., 2008) (Liu et 

al., 2009) in order to preserve the stoichiometrical balance between proteins. This co-regulation is particularly 

strong for ribosomes, since in almost every Arabidopsis tissue and physiological condition the ~250 genes 

coding for ribosomal proteins are expressed (Barakat et al., 2001). We could observe strong co-regulation 

patterns (found by all co-regulation methods) also within other cellular complexes, like cell wall synthesis 

rosettes (Cosgrove, 2005) however with lower significance than the ribosomal clusters. However, as 

previously indicated in the introduction, co-regulation can arise from two mechanisms: in the case of 

complexes, genes are co-regulated because they are controlled by a common mechanism, and in general 

induced by a common cause. In the case of ribosomes, this is even more evident due to the high similarity of 

promoter sequence between groups of ribosome-encoding genes (Barakat et al., 2001). The second 

mechanism  yielding observable co-regulation is a cause-effect relationship, like the one between an inducible 

transcriptional activator and its downstream activated gene. It has been observed before that conditional 

techniques (in our case, Partial correlation and the LASSO can be considered as such) excel in finding this 

second class of co-regulation phenomena, while direct techniques (Pearson correlation and Mutual 

Information in our study) are better performing in complex-forming co-regulation behaviors. In our 

investigation, it is not immediately possible to confirm these observations, since the vast majority of cause-

effect relationships clearly defined and collected in the Arabidopsis thaliana golden set repository for genetic 

regulation (AtRegNet (Palaniswamy et al., 2006)) are not present in the microarray dataset investigated. 

However, among the significant functional connections found by the LASSO, it is possible to get an idea on 

some transcriptional control mechanisms (e.g. between bin 29.5.11, ubiquitination, and bin 27, collecting RNA-

processing and regulating genes). In general, it can be said that all methods seem to obtain different areas of 

the transcriptional co-regulation events in the cell. This fact shows that the dynamics of co-regulation are not 

identical in all processes and strongly supports the use of a combined methodological approach to take 

advantage of this network reconstruction algorithm complementarity. 

To the main plethora of these algorithms, in my work I refined and applied to large-scale expression dataset 

the LASSO-based network reconstruction method, in virtue of its several (theoretical) features, highly 

favorable in dealing with microarray datasets. These are: its robustness to noise and capability to remove 

indirect effects at once, the high interpretability of its results (not meaningful gene interactions are simply 

discarded) and the potential to work in scenarios with less samples (microarrays) than variables (genes). 

LASSO overall accuracy for network reconstruction seems lower when compared to e.g. Correlation, but as 
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stated before its complementarity to other methods make it applicable in conjunction to other approaches. The 

first hints for this were based on network quality assessments: LASSO networks significantly improve the 

quality of other expression-based networks when overlapped, but the complementarity of the LASSO and 

other Correlation-based methods can also be shown experimentally. Here, we show how genes involved in the 

seed coat mucilage pathway of Arabidopsis thaliana can be extracted using both Pearson Correlation and 

LASSO. Both these techniques target the network neighborhood of RHM2, a mucilage-deficient sugar mutant. 

And both yield a high fraction (around 40% of the suggested candidates) of confirmed "true" candidate genes, 

i.e. genes which, when knocked-out, show significant sugar alteration in their mucilage pectins. The 

investigation over these genes is currently proceeding, and it will be interesting to use them to test the theory 

of two separate pathways within the seed coat mucilage: one for pectin synthesis, one for pectin release, since 

for some genes and their co-regulators mechanical stress or EDTA addition can trigger the release of 

mucilage (appendix, page 122). 

An interesting detail connecting the assembly of the Thellungiella transcriptome assembly to the seed coat 

mucilage pathway is the lack of visible mucilage release (even after mechanical stress) of the salt cress seeds 

(see appendix, page 123). At the same time, thanks to the availability of the assembled transcriptome, we 

could find putative orthologous sequences (assessed by BLAST best reciprocal hits) for all the Arabidopsis 

mucilage-related genes listed in Table 8 in Thellungiella, which therefore is most likely possessing the ability to 

synthesize the particular rhamnogalacturonic polysaccharides composing the mucilage. We could deduct that 

either Thellungiella is not synthesizing mucilage, or that perhaps the growing conditions of the seeds used in 

our preliminary analysis impaired the synthesis of mucilage (variation in mucilage production due to the 

conditions of seed storage is known to happen, as per personal information by Dr. Björn Usadel). In the first 

case this can be due to the particular osmotic growth conditions of Thellungiella seeds. The mucilage release 

is in fact impaired even when these seeds are hydrated with differently concentrated NaCl/Water solutions (I 

tested 0.1M, 0.5M - the molarity of seawater - and 1M solutions). Therefore, if the lack of mucilage will be 

confirmed, it can be concluded that the processes by which Thellungiella is able to germinate in salted water 

(Wang et al., 2004) do not require the protective effect of seed coat mucilage and must act by adopting 

different mechanisms. 

After assessing the complementarity of gene network reverse engineering methods in the Arabidopsis seed 

coat mucilage pathways, we checked if this characteristic has a broad applicability and therefore co-tested 

LASSO and Correlation (in this case Spearman Correlation) in an independent scenario, the StHRE-related 

Solanum tuberosum tuber development. In this case, since the gene baits needed for network reconstruction 

were yet not identified in this organism, we detected them via the use of PCR and primers specific for ERF-VII 

genes. The baits identified were three, named StHRE1, StHRE2a and StHRE2b and displayed an interesting 

expression pattern during tuber development. Apart from being the first attempt to identify an ERF pathway in 

potato, this study once again showed the complementary potential of the two network reconstruction 

approaches, which yield distinct lists of genes verified to be regulated by oxygen availability, as expected from 

members of this pathway. The properties of the gene neighbors identified in this study furthermore allowed to 
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suggest a role for the S. tuberosum StHREs in the regulation of sucrose and starch metabolism during tuber 

development. While sugar signaling has been implicated in triggering changes in the routes of sucrose 

unloading and mobilization as well as in the rates of starch synthesis (Smeekens, 2000), the results of our 

analysis suggest that the decrease in oxygen tension that develops as tubers grow bigger and the related 

induction of ERF-type genes might also contribute in regulating these events. 

In general, combining the bioinformatical and experimental results, it can be said that the LASSO can yield a 

unique set of gene connections, and therefore of true gene candidates, at a good rate of false positives 

(around 60% in the RHM2 model, see Figure 34 in Paragraph 2.5.1), similar to what we achieved by simple 

Correlation. Furthermore, it should be remarked that, however LASSO has been applied before in biological 

contexts (Shimamura et al., 2007; Gustafsson et al., 2009; Lu et al., 2011), the majority of the studies were 

focusing on artificial, ideal and theoretical scenarios, with only hints at the direct application in experimental 

tasks like gene candidate finding. For example in (Gustafsson et al., 2009) a very interesting pipeline for 

network reverse engineering is applied, using several nonlinear functions for network inference and the 

LASSO as a central cog in the algorithm for selecting a subset of significant genes (those possessing non-

zero weights). However promising, LASSO results so far have been rarely tested in comparison to other 

alternatives, making the study described here so far unique in its kind. 

3.5 Conclusions and future perspectives 

In my work, the main focus has been to optimize expression-based inferences of transcriptional control 

phenomena in plants, with the final goal of increasing the understanding of biological pathways through 

LASSO and Correlation gene network reconstruction. However, during the proceeding of these investigations, 

a plethora of computational methods was generated for microarray data analysis and sample filtering, network 

reverse engineering and for bridging network and ontology enrichment analysis. This, we thought, can be 

beneficial per se, independently from the applications showed here, for any expression network-related study, 

and therefore we decided to bundle part of the algorithms described and implemented in this thesis into a tool, 

dubbed CorTo ("Correlation Tool"). However, CorTo is more than a collection of methods, and can be better 

defined as a framework for comparative network reconstruction reconstruction, visualization and analysis, and 

ontology enrichment assessment. Most of these tasks could only be executed until now with custom tailored R 

scripts (www.r-project.org) or via personal algorithm implementations; furthermore, the networks generated 

depend on external tools for visualization (e.g. Cytoscape (Shannon et al., 2003)). The completion of CorTo 

will hopefully bring the Bioinformatics approaches described here towards a more general usage among the 

scientific community. Further versions of this program will include network quality assessments and ontology-

based summaries of gene networks (as in Figure 31D). 

In conclusion, this thesis shows how gene expression can be used to infer transcriptional control mechanisms, 

through a pipeline that can be analyzed at several layers: data retrieval and preprocessing, co-expression and 

network analysis, biological validation. This approach will tremendously benefit from large-scale availability of 

publicly available RNA-Seq data, which are able to finally assess the status of the whole transcriptome. 
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However, I am conscious that the mere study of transcript amount oscillations won't provide a final 

understanding to the real transcriptional network active in the cell, although the fine tuning of data handling 

and network inference methods will allow the achievement of a cleaner read of the system. Such an aim will 

require the massive and harmonic collaboration between Transcriptomics the other -omics techniques, 

principally Metabolomics, given the high feedbacks between the two populations of molecular species (Hirai et 

al., 2004). An immediate goal of gene network reconstruction studies such as the one described in this thesis 

will be to associate expression profiles and promoter/enhancer characteristics (Seipel et al., 1992). There is 

still an open debate in the scientific community on whether there is co-evolution between expression patterns 

and sequence features, with positive (McCarroll et al., 2004) and negative examples (Jensen et al., 2006), 

however it is generally considered that transcriptional control tends to be conserved along with the promoter 

sequence of a gene (Peng and Weselake, 2011). The recent development in folding prediction of chromatin 

(Ho and Crabtree, 2010), allowing to know which enhancer regions are actually active over the gene of 

interest, combined with the improvement of co-expression studies and remote homology detection for 

promoter sequences (Tirosh et al., 2008), will hopefully allow to add an additional layer to our understanding of 

transcriptional control. 
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4. Materials and Methods 

4.1 Transcriptome assembly 

Raw 454 reads, generated by Yang-Ping Lee (Max Planck Institute for Molecular Plant Physiology), were pre-

checked for contamination by non-plant sequences using a BLAST search (Altschul et al., 1990) against the 

NCBI database of non-redundant sequences (nr; updated at 12-02-2010) with an E-value threshold of 10
-10

. 

All reads showing a best match to a sequence originating from an organism outside the Streptophyta phylum 

were considered as "contaminants". In order to be as conservative as possible, we allowed these reads - a 

minor part of the collection - to be included in the assembly process, but contigs including them were marked 

as "contaminant contigs" at the end of the process. 

The assembly was conducted using the Mira assembler program version 3.1.15 (Chevreux et al., 2004) in 

accurate mode and default parameters. For comparison to other sequence assembler methods, I used 

iAssembler v1.0 (bioinfo.bti.cornell.edu/tool/iAssembler/) and CLC Workbench v4.0 (www.clcbio.com), both 

with default parameters and a minimum contig size filter of 40. Several assemblies using the different 454 

libraries were performed with MIRA. Specifically, 454 reads from the normalized library (400,631 reads), the 

unnormalized library (811,683 reads) and the combined library (1,212,314 reads) were assembled. In every 

assembly the 44,551 published Sanger EST sequences were included (Wang et al., 2004) (Taji et al., 2008) 

(Wong et al., 2006) (Zhang et al., 2008) in order to improve the final result. Reads not aligning to any other 

read, so called singletons, were not included in the final contig population. 

Average contig coverage was calculated as the mean of the number of reads per base per contig. The N50 

parameter was defined as the contig size above which 50% of the total sequence nucleotides are contained 

(Table 3). All contigs were checked for presence of open reading frames (ORFs) using the method available at 

http://proteomics.ysu.edu/tools/index.html with default parameters. This method assesses if a nucleotide 

sequence, in any of its 6 reading frames, contains a putative ORF, or partial ORF, falling in any of the 10 

mRNA models described by (Min et al., 2005). In order to assess the completeness of the transcriptome 

assemblies and the degree of overlap between Thellungiella and Arabidopsis, I used BLASTX to align the 

contig sequences to the Arabidopsis Information Resource (TAIR9) peptide library (27,739 sequences) (Rhee 

et al., 2003). The percentage of Arabidopsis proteins matching Thellungiella contigs was calculated with a 

loose threshold to account for interspecies variation (E-value < 10
-10

). 

All following steps were conducted on the assembly based on the combined library only. Since the population 

of Thellungiella plants used for this experiment was not homozygous (Dr. Yang Ping Lee, personal 

communication), many single nucleotide polymorphisms (SNPs) induced the generation of several nearly 

identical contigs. I aligned each contig to all contigs in the population via BLAST, to identify clusters of contigs 

matching each other with a sequence coverage and identity higher than 99%. A multiple alignment was 

produced for each cluster using MUSCLE (Edgar, 2004). Consensus sequences for each cluster were 

extracted from the multiple alignments using the consambig tool from the EMBOSS suite (Rice et al., 2000). 
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Where disagreeing base pairs were found, the resulting cluster sequence was dubbed using the IUPAC code 

for nucleotide ambiguity. Of the 46,220 contigs present in the final combined library output, 4,020 contigs were 

condensed into 610 clusters, leading to a final population of 42,810 (42,200+610) representative distinct 

sequences for the Thellungiella transcriptome. 

Functional classification of the 42,810 putative transcripts was performed using the Mercator pipeline (Lohse 

and Usadel, unpublished). Mercator aligns all sequences against five different databases: TAIR9 proteins 

(Rhee et al., 2003), SwissProt/Uniprot plant proteins (PPAP) (Schneider et al., 2005), Conserved Domain 

Database (CDD) (Marchler-Bauer et al., 2005), Clusters of Orthologous Groups (KOG) (Tatusov et al., 2003), 

and InterProScan (Zdobnov and Apweiler, 2001) and subsequently computes preliminary MapMan BIN codes 

based on manually curated reference classifications using a majority vote scheme. The programs used to 

perform the searches were RPSBLAST (Schäffer et al., 2001) for CDD and KOG and BLASTX (Altschul et al., 

1990) for TAIR9 and PPAP. Sequence alignments with bit scores lower than 50 were ignored as not 

significantly similar. A domain matching E-value threshold of 10
-5

 was applied to the InterProScan analysis. 

The sequencing procedure does not guarantee that the orientation of the original mRNAs is kept, hence any of 

the 42,810 transcripts can be either 5'-3' oriented or 3'-5' oriented. In order to unify the orientation, I used the 

protein models present in the NCBI nr database and, where available, I used the best BLAST hit (E-value<10
-

10
) to define the correct orientation of the putative Thellungiella original transcript. 

The sequences, annotated and correctly oriented, were finally used for the generation of a 44k Agilent chip 

(Wolber et al., 2006). Each probe was designed by the manufacturer using the optimal 60mer subregion of 

each transcript. 

 

4.2 Comparison of Microarray preprocessing methods 

4.2.1 Microarray preprocessing methods 

The microarray preprocessing procedures RMA (Irizarry et al., 2003), GCRMA (Wu and Irizarry, 2005) and 

MAS5 (Hubbell et al., 2002) were compared using the software implementations available from BioConductor 

(Gentleman et al., 2004). In every case, the default parameters were used. All final outputs, including MAS5 

ones, were analyzed on the log2 scale. 

4.2.2 Microarray datasets 

In order to obtain a vast, robust and condition-independent dataset for assessing the performance of different 

microarray normalization algorithms, all Arabidopsis thaliana ATH1 microarrays available from GEO (Edgar et 

al., 2002) were downloaded, and subsequently filtered for truncated or unreadable files and genomic DNA 

experiments via human inspection (Venter et al., 2001). This dataset comprised 3707 arrays and is henceforth 

referred to as the “Arabidopsis dataset”.  



Materials and Methods 

93 
 

To test the abilities of RMA and tRMA to correctly cluster different tissue samples, I analyzed microarrays from 

the AtGenExpress stress study (Kilian et al., 2007), contained in the Gene Expression Omnibus series 

GSE5620-GSE5628. This dataset (root-shoot dataset) comprises 248 samples, evenly distributed in shoot and 

root tissues. 

To further assess sample classification performance of RMA and tRMA, I focused on a human breast cancer 

dataset published by (Signoretti et al., 2002) and reanalyzed by (Eklund and Szallasi, 2008). This dataset 

contains 98 surgical specimens, 18 of which belong to 9 replicate pairs in which two samples were taken from 

adjacent sections of the same frozen block. 

4.2.3 Permutation of microarrays 

In order to compare real samples with completely uninformative samples, I decided to randomly permute the 

raw signal intensities of the Arabidopsis dataset using the same procedure as in (Lim et al., 2007). In brief, 

every Perfect Match (PM) probe and its Mismatch (MM) counterpart were reassigned to a random probeset 

within the same microarray. This generates information-less probesets while keeping the properties of the 

original probe intensity distribution. The code has been courteously provided by Wei-Keat Lim and Andrea 

Califano (Columbia University) and modified for the ATH1 Affymetrix chip. 

4.2.4 Inter-array correlation analysis 

The behavior of the three microarray preprocessing procedures was analyzed in the context of randomly 

selected subsets of the Arabidopsis dataset. Different sample sizes were selected (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 50 and 100) according to the typical dimension of a single-experiment 

dataset. For each sample size, 1000 subsets were randomly selected and normalized. For each normalized 

subset, I calculated inter-array Spearman correlations and then plotted the overall mean and standard 

deviation of these correlations for each sample size. 

The same procedure was then repeated for the permutated Arabidopsis dataset. 

4.2.5 Noise robustness analysis 

In order to assess the response of RMA, GCRMA and MAS5 to data perturbation, increasingly noisy samples 

were generated using the formula: 

I = wo ∙ O + wp ∙ P 

where I is the final probe intensity, O and P are, respectively, the original intensity and a permuted intensity. 

wo and wp are the weights given to both (where wo+wp=1). Wp is referred to as noise level. 

4.2.6 Linear model for measuring internal probeset consistency 

Internal probeset consistency was analyzed by applying a linear model. Given a matrix for each probeset, 

where columns are samples and rows are probes, I ranked the values row-wise and determined the model 

pij = w ∙ Sj + int + ε 

The model tries to predict every i
th
 probe intensity rank in the j

th
 sample (pij) using as explanatory variable the 

j
th
 sample effect, Sj, calculated as the probe’s rank within the sample j. The model will then try to adjust the 

sample effect weight w and the intercept int to minimize the unexplained error ε. It is apparent that the R
2
 for 

this model will be high when all probes within a probeset behave consistently relative to each other across 
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different experiments, i.e. when the probe rank in a specific experiment is predicted quite well by the probe’s 

mean rank across experiments. On the other hand, a low R
2 

will result from probes acting inconsistently 

across experiments, e.g. with some probes ranking particularly high in some experiments yet low in others. 

The modeling procedure is provided in the as an R function (fitLM, publicly available (Giorgi et al., 2010)) to 

determine internal consistency of probesets. 

4.2.7 Transposed RMA (tRMA) 

With the goal of reducing inter-array correlation artifacts without losing the positive features of RMA, I modified 

the RMA median polish source code of the preprocessCore library available on BioConductor (Gentleman et 

al.). This new method simply changes the order of median substitution, starting from column (sample-wise 

medians) instead of from rows (probe-wise medians), and was therefore called “transposed RMA” (or tRMA). 

tRMA code is publicly available (Giorgi et al., 2010) and can be run in the R environment (Dai et al.). 

4.2.8 AffyComp benchmark 

In order to evaluate and benchmark our newly proposed preprocessing method, tRMA, I adopted the criteria 

developed for the AffycompII challenge (Irizarry et al., 2003) (Irizarry et al., 2006) using the two Affymetrix 

spike-in datasets HGU95 and HGU133 and the AffyComp online tool (Irizarry et al.). 

4.2.9 Sample classification performance 

From the root-shoot dataset, I randomly selected 10000 groups of 5 arrays composed of 3 samples from one 

tissue type, and 2 from the other. Each dataset was normalized using tRMA or RMA and distances between 

arrays hybridized with the same tissue (intra-tissue distance) and between arrays hybridized with different 

tissues (inter-tissue distance) were determined. Distances were calculated as (1-Spearman correlation 

coefficient) using either all probe sets or only the 50% showing the highest variance.  

Secondly, a dataset previously used by (Eklund and Szallasi, 2008) to assess microarray performance was 

used to determine the percentage of correctly clustered subsets of 5 microarrays. From the dataset, two 

couples of samples coming from the same tumor or non tumor specimen, plus a different specimen were 

sampled. Probe-sets were selected based on differential expression between the samples using the limma 

package applying different p-value thresholds corrected using the Benjamini-Hochberg method (Hochberg and 

Benjamini, 1990). The outcome of the normalization was defined as "correct" if, for every sample in a couple, 

its highest correlation coefficient against all other samples is the other correct member of the couple, which 

would lead to them being clustered together. The sampling was repeated 1000 times for each different p-

value. The increase in the performance of tRMA when compared to RMA was assessed using a Fisher’s exact 

test with Benjamini Hochberg correction. 

The human dataset was used also to perform a test on clustering performance on groups of genes sorted by 

variance, as described by (Eklund and Szallasi, 2008), but using only subsets of five samples (belonging to 

three groups). This test was performed for RMA and tRMA at different probe noise levels, added following the 

procedure described previously in Paragraph 2.2.5. 
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4.3 Network Centrality and Breaking Potential calculations 

In order to analyze a full physiological map of Arabidopsis thaliana gene expression, the complete Arabidopsis 

developmental microarray collection generated by the AtGenExpress consortium (Schmid et al., 2005) was 

obtained and ten normalized using tRMA (Giorgi et al., 2010). Only probesets with at least 95% present values 

were kept (following the Affymetrix PA calls, see Paragraph 4.5). To avoid overrepresentation of experimental 

conditions the chosen number of replicates per experimental condition was one; furthermore, to focus on 

physiological conditions, experiments with mutant plants were excluded. This dataset comprised 63 

experiments and 12200 valid measured genes. The dataset is publicly available in CSB.DB (Steinhauser et 

al., 2004) under the name "atge0100". Network centralities were calculated using the JUNG library 

(jung.sourceforge.net) and a JAVA implementation of the Breaking Potential calculation. GeneNet networks 

were obtained using the GeneNet R package (Opgen-Rhein et al., 2007) with default parameters. All Breaking 

Potential plots (Figure 22 and Figure 23 and Figure 49) were generated using R (www.r-project.org). Joint 

ROC curves between Breaking Potential and other centralities were calculated by taking the average rank for 

each gene in both centralities. The list of Arabidopsis thaliana essential genes was obtained from SeedGenes 

2007 (Tzafrir et al., 2003). 

 

4.4 CorTo tool development 

CorTo is a multithreaded Java Swing graphical application and is compatible for Windows, MacOS-X and 

Linux/Unix platforms supporting JAVA SE 6. The software GUI was designed with the WindowBuilderPro 

infrastructure (code.google.com/javadevtools/wbpro) within the Eclipse Integrated Development Environment 

(www.eclipse.org).The co-occurrence algorithms are a Java implementation of the respective algorithms, 

using the linear algebra calculus functionality provided by the ParallelCOLT 

(sourceforge.net/projects/parallelcolt) and Apache Commons Math (commons.apache.org/math) projects. The 

JUNG library (jung.sourceforge.net) was used for network visualization and the JFreeChart library 

(www.jfree.org/jfreechart) for plot visualization. 

All preloaded datasets in CorTo datasets were publicly available on Gene Expression Omnibus (Edgar et al., 

2002), microarrays were preprocessed using tRMA (Giorgi et al., 2010) using the Robin tool (Lohse et al., 

2010), replicates were averaged and, where available, an updated probeset gene annotation was used (Dai et 

al., 2005). 

 

4.5 Gene Network Reconstruction and Comparison 

The dataset used for comparing gene network reconstruction algorithms is the same available in (Mutwil et al., 

2011). In brief, all ATH1 Arabidopsis thaliana Affymetrix microarray data was downloaded from Gene 

Expression Omnibus (Edgar et al., 2002) and ArrayExpress (Parkinson et al., 2007), totaling 8369 samples. 
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After merging identical entries and removing corrupted entries, this number decreased to 6255 samples. At 

this point, a Kolmogorov-Smirnov statistics based method was applied using the deleted residuals principle as 

described in (Persson et al., 2005), with a cutoff KS score of <0.15, in order to remove samples whose general 

behavior heavily diverges from the population. This removed 505 samples, bringing the total to 5750 

microarrays. Accurate visual inspection of the samples excluded by the KS test showed a high concentration 

of genomic DNA and laser microdissection (where an additional cDNA amplification with random primers is 

usually performed) experiments. Finally, in order to condense the dataset to representative samples, similar 

arrays were grouped and a representative for each cluster was kept (details in (Mutwil et al., 2011), 

supplementary material), with a final number of 274 samples. These samples were then normalized using 

tRMA (Giorgi et al., 2010), using the updated probe-to-gene annotation from CustomCDF v13.0, (Dai et al., 

2005). 

In order to reduce the number of genes to a golden and reliable subset (and to decrease the computational 

load), I excluded all the probesets that were measured consistently in all, or almost all, samples. To do so, I 

kept only the 3350 genes that were deemed as “Present” (i.e. having an expression significantly discernable 

from background signal) in at least 90% of the samples, using the probeset Present/Absent call analysis 

(Schuster et al., 2007). 

Gene network reconstruction was performed using Java implementations for Pearson correlation, Mutual 

Information Partial Correlation and the LASSO (see Paragraph 4.6), except where specifically noted. The 

Mutual Information indices (except for Figure 25) are normalized through dividing the unnormalized index by 

the average of the max self-to-self M.I. index of the two genes analyzed. This was done to allow a fair 

comparison between indices independently of the original expression distribution of the genes (in Figure 25 

this was unnecessary, since we were conducting an exploratory comparative screening between Mutual 

Information and Pearson Correlation, and not a global network reconstruction). 

The LASSO solution is obtained by the LARS algorithm (Efron et al., 2004), using a pre-calculated Gram 

matrix (Weisstein, 2011) shared by all the models, in order to obtain a fast and parallel global network 

reconstruction for large gene datasets. In the context of Partial correlation, a first order threshold of "zero" 

means the removal of an edge that switches sign between its zeroth and first order correlation coefficient, 

while a first order threshold of "no" correspond to the zeroth order correlation coefficient. For the LASSO the 

Least Angle Regression algorithm was used (Efron et al., 2004); in order to select the best LASSO model for 

every gene, I calculated ten-fold cross-validated prediction errors for all models, at every L1 (the sum of 

absolute weights, see Paragraph 2.4.2), and kept the model with the lowest error for a particular gene. Gene 

category network enrichment was calculated using a Fisher's Exact test (Upton, 1992) with a p-value cutoff of 

0.05, using the 2010 Arabidopsis thaliana ontology from MapMan (Usadel et al., 2009) and comparing the 

edge abundance in the network to the theoretical abundance expected by the ontology groups present in the 

dataset. 
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For evaluating convergence to the protein-protein interactome, I calculated Accuracy over the AtPin 

experimentally validated protein-protein interaction data (Brandão et al., 2009), and excluding proteins not 

present in the 3350 genes dataset. The fit of the degree distribution to a power-law distribution was calculated 

as in (Brohée et al., 2008). The Ontology Agreement score percentage of the networks was obtained by 

counting the number of edges containing two genes with at least one shared MapMan ontology term (Usadel 

et al., 2009). Due to the highly grained nature of the MapMan bins, I decided to trim the ontology to the third 

branch (i.e. bin 1.3.1.10 would become 1.3.1). The total percentage agreement is then calculated by dividing 

the number of agreeing edges by the total number of edges. 

 

4.6 Candidate selection through LASSO and Correlation analysis 

4.6.1 RHM2 - Selection of candidate genes 

Here I used the filtered Arabidopsis thaliana microarray dataset as in Paragraph 4.5, resulting in 5750 

samples. Contrarily to what described in Paragraph 4.5, I didn't condense the dataset, and simply normalized 

the 5750 remaining samples using RMA and an updated probeset annotation [CustomCDF v12.0, (Dai et al., 

2005)]. With this amount of samples, the artifact effects that we described in Paragraph 2.2 would be almost 

absent for this kind of normalization. As in Paragraph 4.5, in order to reduce the number of genes to a 

computationally solvable problem, I kept all the probesets that were measured consistently in at least 90% of 

the samples, ending up with 8237 genes. 

As central “bait” for our coexpression analysis I used RHM2/MUM4 (At1g53500), whose expression is entirely 

and uniquely measured by the 11 probes of Affymetrix probeset 260985_at. In order to focus our analysis on 

RHM2, I extracted from our dataset the highest (using absolute correlation coefficients) 3000 coexpressors of 

At1g53500. 

I included in the final candidate list genes derived from 4 different coexpression analyses. The first group 

included the top 30 Pearson correlators using absolute correlation coefficients with At1g53500. The second 

group included the top 30 correlators using full order Partial Pearson calculated by correlation matrix inversion 

(Whittaker, 2009). The third group contained the top 30 correlators using Partial correlation calculated via the 

shrunk correlation matrix approach from (Opgen-Rhein and Strimmer, 2007). I then calculated a LASSO 

model (Tibshirani, 1996) using At1g53500 as dependent variable and the other 8236 genes as explanatory 

variables. The lasso2 R package (www.r-project.org) was used for the computations, with default parameters. 

From this LASSO model, I extracted candidates at L1 thresholds equal to 1%, 2%, 3%, 4% and 5% of the 

maximum unbound L1 threshold and included these into the fourth and final group of gene candidates. 

4.6.2 Multi-gene mucilage networks 

I selected the Affymetrix AtGenExpress (Schmid et al., 2005) (GEO accession: GSE5634) seed and silique 

developmental series, comprising 24 samples, and normalized it via tRMA (Giorgi et al., 2010) with the 

CustomCDF v12.0 probeset annotation (Dai et al., 2005). Contrarily to the procedure described in paragraph 



98 
 

4.5 and 4.6.1, the reduced number of samples allowed for a full LASSO modeling over all the almost 21504 

(CustomCDF) genes, and therefore I didn't apply any Present/Absent call filtering. The models generated by a 

number of samples so small are also including less variables and are therefore simpler to interpret. This 

happens because the model will stop exploring the variable space when a number of predictor variables 

equaling the number of samples minus 2 has been included. At this stage, the model cannot proceed without 

becoming underdetermined. Therefore, I adopted the heuristic solution to include all LASSO genes introduced 

by the modeling at any particular LASSO step, and generated a group of putative candidates for every bait 

gene. 

4.6.3 StHRE1 and StHRE2a/b networks 

I collected all the 14 samples from the two publicly available potato developmental datasets (Kloosterman et 

al., 2008; Ferreira et al., 2010). Both datasets used the POCI array as hybridization platform (pgrc.ipk-

gatersleben.de/poci/), a 44K 60-mer Agilent oligo array designed from known EST libraries (Kloosterman et 

al., 2008). The first dataset (Kloosterman et al., 2008) comprises 6 experiments taken from pooled samples at 

different stages of potato tuber development, specifically at 0 (unswollen stolon), 5, 6-7, 7-8, 9-10 and 15 days 

after switching from a 16h to a 8h light period. The second dataset (Ferreira et al., 2010), publicly available on 

ArrayExpress (Parkinson et al., 2007) entry E-MEXP-2482, follows the same sampling conventions as the 

previous one, but measures two distinct biological pools of 4 stages (0 days, 6-7 days, 7-8 days and 9-10 

days) for a total of 8 samples. Both datasets were normalized and quality filtered as described by 

(Kloosterman et al., 2008) and merged for subsequent analysis. 

Of the 42,034 unique probes present on the POCI array I excluded those displaying low signals as in 

(Kloosterman et al., 2008) and conducted our coexpression analysis on a total of 31,293 probes. StHRE1 is 

represented on this chip by three probes (MICRO.3799.C2, MICRO.3799.C3 and ACDA02245D01.T3m.scf), 

all possessing analogous behavior across the experiments, and therefore a mean of the three was used as the 

StHRE1 representative signal. StHRE2 isoforms both perfectly hybridize to the probe 

bf_suspxxxx_0025D01.t3m.scf. 

For both genes, I extracted the top 10 Spearman correlators and calculated LASSO models using all other 

probes as explanatory variables. In order to increase the final number of candidate partners using the LASSO 

I didn't keep only the best cross-validated model (see Paragraph 4.5), but I included all genes that were 

introduced in any LASSO modeling step, obtaining a final count of 23 interactors for StHRE1 and 15 for 

StHRE2a/b. 

 

4.7 Sugar screening in Arabidopsis thaliana seed coat mucilage 

Note: Seed coat mucilage extraction, hydrolysis of seed coat mucilage and monosaccharide measurements 

were carried out by Mr. Aleksandar Vasilevski (Max Planck Institute of Molecular Plant Physiology) as 

described in (Usadel et al., 2004). A High Performance Anion Exchange Chromatography with Pulsed 



Materials and Methods 

99 
 

Amperometric Detection (HPAEC-PAD) (Ip et al., 1992) system was used via a DIONEX ISC-3000 machine 

for monosaccharide quantification. 

4.7.1 Seed Staining and Microscopy 

Arabidopsis thaliana ecotype Columbia-0 seeds were stained with a solution of Ruthenium Red / water 0.01% 

(weight/volume) for 5-10 minutes under mild shaking. Seeds were visualized using a Leica MZ 12,5 

Stereomicroscope (Software: Leica Application Suite). 

 

4.8 Gene expression in Solanum tuberosum tubers 

Note: I acknowledge Dr. Francesco Licausi (Scuola Superiore Sant'Anna, Pisa) for providing the expertise and 

materials necessary for the molecular biology sections of this paragraph. 

4.8.1 Phylogenetic analysis of StHRE genes 

The phylogenetic analysis for ERF group VII involved 39 ERF protein sequences, with prefix indicating the 

species: Solanum tuberosum (StHRE1, StHRE2a and StHRE2b), Arabidopsis thaliana [AtHRE1 (At1g72360), 

AtHRE2 (At2g47520), AtRAP2.2 (At3g14230), AtRAP2.3 (At3g16770) and AtRAP2.12 (At1g53910)], Populus 

trichocarpa (PtERF-B2-1, PtERF-B2-2, PtERF-B2-3, PtERF-B2-5, PtERF-B2-6) as named according to Zhao 

et al. (2007), Oryza sativa (OsERF059, OsERF060, OsERF061, OsERF062, OsERF064, OsERF065, 

OsERF066, OsERF067, OsERF068, OsERF069, OsERF070, OsERF071, OsERF072, named according to 

(Nakano et al., 2006) and OsSub1A, OsSub1B, OsSub1C, named according to (Fukao and Bailey-Serres, 

2008), Vitis vinifera [VvERF057, VvERF058, VvERF059, named according to (Licausi et al., 2010)]. 

The sequences were aligned using MUSCLE (Edgar, 2004) and the phylogenetic tree was inferred using the 

Maximum Likelihood method based on the JTT matrix-based model (Jones et al., 1992). The latter operation 

was performed using the MEGA5 software (Tamura et al., 2007). 

4.8.2 Tuber growing conditions 

Desirée cultivar Solanum tuberosum plants were obtained from Saatzucht
 
Lange AG, then were maintained in 

tissue culture and therefore transferred to greenhouse as described by (Fernie et al., 2002). Developing tubers 

(Kloosterman et al., 2008) were harvested from healthy 10-week-old plants. High oxygen treatments were 

carried on in plastic bags applying a stream of premixed air containing 40% O2, 350 ppm CO2, and N2 (Air 

Liquide, Berlin, Germany) for 12 hours in darkness. Identical conditions, with fluxes of 21% O2, were applied to 

control normoxic plants. The actual oxygen concentration inside the bag was checked by means of a 

phosphorescent oxygen sensor (Presens, Regensburg, Germany). 

4.8.3 Sequencing of StHRE mRNAs 

StHREs were amplified using specific degenerated primers (Table 14) that anneal to the N-terminus of the 

coding sequence and the conserved region encoding the AP2/ERF DNA-binding domain. The resulting 

amplicon was sequenced using a T7 promoter primer, as described by the manufacturer. The full length 

sequence of StHRE1 and StHRE2a and StHRE2b was confirmed using a combination of primers annealing to 
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the N-terminus and C-terminus of the sequences AB085820 (CIP353, (Mine et al., 2003)) and U77655 

(STWAAEIRD, (Campbell et al., 1998)). 

4.8.4 mRNA extraction 

The harvested tubers were immediately
 
frozen in liquid nitrogen, ground into a fine powder using a

 
ball-mill 

(Retsch, Haan, Germany), and stored at –80°C. Total RNA was isolated from 100 mg ground plant material 

using the QiagenRNeasy Plant Minikit (Qiagen, Hilden, Germany). 

 

4.8.5 Expression measurement through Realtime RT-qPCR 

RNA quality was assessed by agarose gel electrophoresis prior to DNaseI digestion (Promega, Mannheim, 

Germany) and 1 µg total RNA was used for cDNA synthesis using the Superscript III RT-PCR kit (Invitrogen, 

Darmstadt, Germany). Quantitative real-time RT-PCR was performed as described by (Czechowski et al., 

2004) using the primer pairs described in Table 1. The genes coding for elongation factor 1-α (AB061263) and 

tubulin (609267) were used as housekeeping genes according to (Nicot et al., 2005). Primers were designed 

using the Quantprime software (Arvidsson et al., 2008). 

 Gene  Forward primer (5´-3´)  Reverse primer (5´-3´)  
dgHRE  ATGTGTGGTGGTGCHATHMTY GCAGCTTCTTCWGCAGTGTTGAA 

StADH  TGTTGGATGTGTCGCCAAA GGCCTGTCGAGATTCCACAA 

StSus4  GCAAATATATTTTATCTTAATAAG GAAGTGTGAAGAATTTGAATAGC 

StHRE1  TGATTTCTGGCCAACTTCCAC TGCCTCTTCTTCATCTGCTCA 

StHRE2a  TGGCAAACTTCTTCTTTTTCCA TGCCTCTTCTTCATCTGCTCA 

StHRE2b  TCTGCTGATTTCTGGCCAAC TCTGCTGATTTCTGGCCAAC 

StTubulin  CAGACCTGAGGAAATTGGCTG TTCTTGGCATCCCACATTTGT 

StEF1a  CATTGCTTGCTTTCACCCTTGGTG CCTAGCCTTGGAGTACTTGGGGG 

Stu.10537  CACACCGGCACGCATATTGATG TGTCGACATCAAAGCCAGCATCG 

Stu.18907  GGACGGTTCCTCCATCTAAAGAGC AAACAGCGTGACAACGAAGTGC 

Stu.20202  TTAGTGGACACAGCGAGCAACG TAGCTCCTTCACTGTGGGTTCG 

Stu.22430  AGGAGCTACTCTGAAGGTGGATG TCCACTGATATACTGGGCATCGTC 

Stu.4930  TTCAATGCTCCGACCCGGATTC TGATCGAACACCGACACTCCAC 

Stu.5337  AGCGAATGCGTGAAGCTGATCC TCCGGTGACATGACGAACTTCC 

Stu.6717  TGTGATGCCAGAGTTCACACAGC AAGCTTAGAGCCAGAGCCACTC 

Stu.7147  TGTGCTCTTGTTCCTCAGCTTGG AGCGGTGCTCTGATTGGTTTCG 

Stu.7176  TCCAAGAGCAGCACTTACAATGCC ACAAGGACACAGAGGGTGTTTAGC 

Stu.15767  AGGAGCGTTTCCGCACTATCAC TCGTCCGTGACATCATACACCAG 

Stu.16271  TCTAACGTGTCCACTGAGCATCG AACAAGGCCGGAGCGATATTCC 

Stu.18198  TTGCAGTAGGTTGGGCACTTCC AGCCACATGCAAGCCAAATGAG 

Stu.18546  ACGGTTTGTGCTCCATCATGCC AGCGGTGCCTTCTCTCTTCATC 

Stu.2176  TCATGTGCATGTGGAGCCATCAC ACAGTAGGCAGAGCTGGGATTG 

Stu.22430  AGGAGCTACTCTGAAGGTGGATG TCCACTGATATACTGGGCATCGTC 

Stu.22641  ATGTGTCCGTGGTTGACCTCAC TTCCTCCTTGATGGCAGCTTTG 

Stu.22678  AGTCCTCCCAAGAGGAATCCTTG TCATCCAGGAGTGGTGAACGTG 

Stu.3076  ACATCCCAATAGCCGTGTCCAAG TGCTTTCAGCTGGGCAAAGGAG 

Stu.4348  CCCGAGAAACCAATCCAGTTGAAG ATCCGGTGTTGTGGTCTTCTGC 

Stu.4665  CAGCATTGCAGCAGAGAAGAAGC ATCCCTTGGCTGACCAATGTCC 

Stu.4779  CCTTCCATCGGCAATGAAGTTCTC AGTGAGTAGCTGATCCGCGTTG 

Stu.9387  GTCAGCAGCCGGACTTTATGATTC ACGGGCTACAGCATGTCCAAAC 

Table 14 - List of primers used for amplifying StHREs and their co-regulated genes 
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5. Appendix 

5.1 Sequence length distribution for the Arabidopsis thaliana 

Transcriptome 

 

Figure 48 - Sequence length distribution for the 39,640 cDNAs collected in TAIR v9 for Arabidopsis thaliana 
(and therefore collecting multiple transcripts per gene model) (Swarbreck et al., 2008) 
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5.2 Average Affymetrix inter-array correlation coefficients at different 

sample sizes, using three different microarray normalization procedures 

Sample 
size 

Original arrays 
 

Permutated arrays 

MAS5 RMA GCRMA MAS5 RMA GCRMA 
2 0.7704 0.8113 0.7825 

 

3.31-4 0.0456 0.1795 
3 0.7721 0.8547 0.8524 -9.88-5 0.7761 0.9144 
4 0.7601 0.8220 0.8039 -4.63-4 0.1154 0.2647 
5 0.7604 0.8460 0.8432 3.01-5 0.4316 0.7140 
6 0.7557 0.8144 0.7949 -5.90-5 0.1086 0.2544 
7 0.7584 0.8357 0.8212 -1.09-5 0.2481 0.5436 
8 0.7555 0.8210 0.7981 1.00-4 0.0913 0.2274 
9 0.7529 0.8334 0.8125 3.46-5 0.1587 0.4140 
10 0.7536 0.8163 0.8048 1.20-4 0.0757 0.1929 
11 0.7536 0.8242 0.8097 -1.01-4 0.1118 0.3170 
12 0.7552 0.8156 0.8000 9.03-5 0.0637 0.1665 
13 0.7523 0.8264 0.8061 1.85-5 0.0843 0.2546 
14 0.7531 0.8154 0.8014 6.90-5 0.0547 0.1482 
15 0.7537 0.8217 0.8087 2.82-5 0.0659 0.2048 
16 0.7511 0.8146 0.8052 7.68-5 0.0467 0.1307 
17 0.7511 0.8232 0.8062 -6.80-5 0.0540 0.1654 
18 0.7532 0.8159 0.8022 -7.89-5 0.0411 0.1150 
19 0.7546 0.8247 0.8059 9.65-6 0.0460 0.1418 
20 0.7592 0.8228 0.8024 4.69-6 0.0364 0.1008 
30 0.7602 0.8208 0.8022 3.09-5 0.0226 0.0620 
50 0.7578 0.8233 0.8038 7.72-6 0.0124 0.0326 

100 0.7543 0.8190 0.8023 -2.41-8 0.0058 0.0157 
Table 15 - Average inter-array correlation coefficients at different sample sizes, using three different 

normalization procedures. 
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5.3 Example of Breaking Potential calculation 

Data generation  

Expression matrix generated using gaussian distribution of interdependent variables as in Figure 15, panel a., 

yielding a correlation network as in panel b., and the removal of edges upon conditioning as in panel c.. 

 

Pearson correlation matrix: 

 V1 V2 V3 V4 V5 

V1 1 

V2 0.635 1 

V3 0.827 0.863 1 

V4 0.703 0.816 0.899 1 

V5 0.775 0.805 0.904 0.787 1 

 

In bold, direct correlations, in red, indirect (spurious) correlations. 

 

Pairwise first order partial correlations: 

Syntax: pcor(x,y,z) = partial correlation of x and y, conditioned on z  

          
             

√(     
 )      

  
 

Only the significant edges (r>0.700, r
2
>0.490) in the previous correlation matrix are tested. 

Edges are considered to be "broken" when r<0.221, r
2
<0.049 

A sign inversion is also considered by our definition to yield a broken edge 
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Edge  Partial correlation Broken edge?  Breaking vertex 

pcor(V1,V3,V2)  0.716  no 

pcor(V1,V3,V4)  0.627  no 

pcor(V1,V3,V5)  0.467  no 

pcor(V1,V4,V2)  0.414  no 

pcor(V1,V4,V3)  -0.166  yes   V3 

pcor(V1,V4,V5)  0.237  no 

pcor(V1,V5,V2)  0.577  no 

pcor(V1,V5,V3)  0.115  yes   V3 

pcor(V1,V5,V4)  0.507  no 

pcor(V2,V3,V1)  0.779  no 

pcor(V2,V3,V4)  0.511  no 

pcor(V2,V3,V5)  0.534  no 

pcor(V2,V4,V1)  0.673  no 

pcor(V2,V4,V3)  0.182  yes   V3 

pcor(V2,V4,V5)  0.497  no 

pcor(V2,V5,V1)  0.641  no 

pcor(V2,V5,V3)  0.115  yes   V3 

pcor(V2,V5,V4)  0.456  no 

pcor(V3,V4,V1)  0.794  no 

pcor(V3,V4,V2)  0.666  no 

pcor(V3,V4,V5)  0.710  no 

pcor(V3,V5,V1)  0.740  no 

pcor(V3,V5,V2)  0.698  no 

pcor(V3,V5,V4)  0.727  no 

pcor(V4,V5,V1)  0.539  no 

pcor(V4,V5,V2)  0.379  no 

pcor(V4,V5,V3)  -0.136  yes   V3 

 

 

 

Breaking vertices count 

V3 nbrk = 5 

 

Breaking Potential calculation 

Number of connections between V3 neighbors in 0th order network neff = 5 
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Centrality measures summary 

 Degree 
Clustering 
Coefficient 

Betweenness Breaking Potential 

V1 3 1.0 0.0 0.0 

V2 3 1.0 0.0 0.0 

V3 4 0.833 0.333 1.0 

V4 4 0.833 0.333 0.0 

V5 4 0.833 0.333 0.0 
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5.4 Breaking Potential and other Centrality measures assessed for 

essential gene prediction power 

 

Figure 49 - ROC curves for essential gene prediction using Breaking Potential alone and coupled with 

degree (panel A), clustering coefficient (panel B) and betweenness (panel C). The GeneNet approach is 

shown as a counter-indicator for essentiality in panel D. 

  

A B 

C D 
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5.5 Full coding sequences of StHRE1, StHRE2a and StHRE2b.  

>StHRE1  
ATGTGTGGAGGTGCCATAATCTCCGATTATGAGCCCGCCGGAAACTTCTACCGGAAACTCTCTGCTCGTGACCTGTGGGCT

GAGCTGGACCCTATCTCCGACTACTGGTCCTCTTCCTCCTCATCCTCAACTGTCGAAAACCCTTATTCCGCTCAGTCGCCG

GTGACTCACTCCGTCGATAAGCCTAAGAAATCAGATTCCGGCAAATCTAATCAACTCAAAAAAGGTAATAAGACTGTGAAG

GTTGAGAAGGAGAAGAGTACTGGACCAAGGCAGAGAAAGAACAAGTACAGAGGAATAAGGCAGAGACCATGGGGAAAATGG

GCTGCTGAGATTCGCGATCCTCAGAAGGGTGTCCGTGTTTGGCTTGGTACATTCAACACAGCAGAGGATGCTGCCAGAGCC

TATGATGAGGCTGCTAAGCGCATTCGTGGTAACAAGGCCAAACTCAACTTCCCTGCCCCATCACCACCTGCTAAGCGACAG

TGCACTAGCACTGTCGCTGCTGATCCTCCACCAGCACTACTCCTTGAGAGTTCTAACATAATATCTTATAACAATTCTCCT

TTAATGAACTTCGGATATGATGTTCAGAGCCAAACTCCCTACTACCCAATGGAAATGCCCGTTGCTAGTGATGATTATGAA

CTCAAGGAACAGATTTCCAACTTGGAATCGTTCCTGGAATTGGAGCCAGCAGATTCATCTGATCAGTTTTCAGGGATCGTC

GATCCTGATCCTCTTAATGTTTTTCTGATGGAGGATTTTGCTTCAACTCAGCATCAGTTCTATTGA 

 

>StHRE2a  
ATGTGTGGTGGTGCAATTCTTTATGATATTATTCCTCGTGACCGCCGTTTGTCATCCACCGACTTATGGCCAAGCTCTGCT

GATTTCTGGCAAACTTCTTCTTTTTCCAAGCCAATTTCCACCCAAAATGTTCCTCCCAAGCCTAAACGAGCTCAACTCTCT

AGAGGTAGTGAGCAGATGAAGAAGAGGCAAAGGAAGAATCTTTACAGGGGAATCCGACAACGTCCATGGGGTAAATGGGCT

GCTGAAATTCGTGACCCGAGAAAAAGGGTTAGGGTCTGGTTAGGTACTTTCAACACTGCTGAAGCTGCAAGAGCTTATGAT

AGAGAAGCTCGTAAAATCAGGGGAAAGAAAGCTAAAGTTAATTTCCCCAATGAAGACGACGACCACTACTACAGTCATCCA

GAGCCGCCTCCTTTGAACATTGTTTATGAATCTTATGATACTACTAGTACTTACAATCAAGAATCAAATAACTGTTACCCC

TTCCACTCAATCGAAAACACTGAACCTGTTATGGAATTCGCAATTGCTAACAAAAATTCATCTGGGTCTGCTTATAATGGA

ATTGAAGATCAGAATGTGGAAGGAGAAGAGCAGACGGTGAAAAATTCAAATAACAGGATCGTAGAGGAAGAGGAAAAAACA

GAGGATGAAGTGCAGATACTTTCTGATGAACTGATGGCTTATGAGTCATTGATGAAGTTCTATGAAATACCGTATGTTGAC

GGGCAATCAGTGGCGGCGACGGTGAATCCAGCGGCGGACACCGAAGTGGGCGGTGGCTCGATGGAGCTTTGGAGTTTTGAT

GATGTTAGTCGTCTACAACCAAGTTATAATGTTAGTTTGATTATTGTTTTGTTTAAATTGTTGCATCTTTTTAGTTTGCTG

AATTAG 

 
>StHRE2b  
ATGTGTGGTGGTGCAATTCTTTATGATATTATTCCTCGTGACCGCCGTTTGTCATCCACCGACTTATGGCCAAGCTCTGCT

GATTTCTGGCAAACTTCTTCTTTTTCCAAGCCAATTTCCACCCAAAATGTTCCTCCCAAGCCTAAACGAGCTCAACTCTCT

AGAGGTAGTGAGCAGATGAAGAAGAGGCAAAGGAAGAATCTTTACAGGGGAATCCGACAACGTCCATGGGGTAAATGGGCT

GCTGAAATTCGTGACCCGAGAAAAAGGGTTAGGGTCTGGTTAGGTACTTTCAACACTGCTGAAGCTGCAAGAGCTTATGAT

AGAGAAGCTCGTAAAATCAGGGGAAAGAAAGCTAAAGTTAATTTCCCCAATGAAGACGACGACCACTACTACAGTCATCCA

GAGCCGCCTCCTTTGAACATTGTTTATGAATCTTATGATACTACTAGTACTTACAATCAAGAATCAAATAACTGTTACCCC

TTCCACTCAATCGAAAACACTGAACCTGTTATGGAATTCGCAATTGCTAACAAAAATTCATCTGGGTCTGCTTATAATGGA

ATTGAAGATCAGAATGTGGAAGGAGAAGAGCAGACGGTGAAAAATTCAAATAACAGGATCGTAGAGGAAGAGGAAAAAACA

GAGGATGAAGTGCAGATACTTTCTGATGAACTGATGGCTTATGAGTCATTGATGAAGTTCTATGAAATACCGTATGTTGAC

GGGCAATCAGTGGCGGCGACGGTGAATCCAGCGGCGGACACCGAAGTGGGCGGTGGCTCGATGGAGCTTTGGAGTTTTGAT

GATGTTAGTCGTCTACAACCAAGTTATAATGTTAGTTTGATTATTGTTTTGTTTAAATTGTTGCATCTTTTTAGTTTGCTG

AATTAG 
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5.6 MapMan ontology bin enrichment analysis for top correlators of 
StHRE1 and StHRE2a/b 
Enrichment for StHRE1 correlators (Spearman correlation coefficient >0.9, 570 genes)  
 
bin  bin name  count  p-value  
29.5.4  protein.degradation.aspartate protease  7  1.99E-005  
35.2  not assigned.unknown  193  4.88E-005  
35  not assigned  242  6.09E-005  
27.3.41  RNA.regulation of transcription.B3 transcription factor family  4  9.95E-005  
7.2  OPP.non-reductive PP  3  1.87E-004  
29.5  protein.degradation  47  2.02E-004  
2.2.2  major CHO metabolism.degradation.starch  6  3.86E-004  
3.5.1  minor CHO metabolism.others.Xylose isomerase  2  4.17E-004  
27  RNA  68  7.87E-004  
26.23  misc.rhodanese  3  8.26E-004  
7.2.2  OPP.non-reductive PP.transaldolase  2  8.28E-004  
13.2.5.3  amino acid metabolism.degradation.serine-glycine-cysteine group.cysteine  2  8.28E-004  
29.8  protein assembly and cofactor ligation  4  9.45E-004  
11.10.4  lipid metabolism.glycolipid synthesis.sulfolipid synthase  2  1.37E-003  
2  major CHO metabolism  10  1.57E-003  
3.3  minor CHO metabolism.sugar alcohols  2  2.04E-003  
16.8  secondary metabolism.flavonoids  6  2.91E-003  
7  OPP  4  2.92E-003  
10.1.1  cell wall.precursor synthesis.NDP sugar pyrophosphorylase  2  3.74E-003  
29  protein  84  4.40E-003  
27.4  RNA.RNA binding  10  8.69E-003  

 

Enrichment for StHRE1 correlators (Spearman correlation coefficient >0.7, 14758 genes)  
 
bin  bin name  count  p-value  
29  protein  1909  3.82E-21  
29.5  protein.degradation  866  2.01E-15  
35  not assigned  7847  5.10E-12  
29.5.11  protein.degradation.ubiquitin  571  1.15E-10  
10  cell wall  112  1.91E-09  
26  misc  529  2.27E-09  
35.1  not assigned.no ontology  1435  1.12E-08  
29.5.11.4.3.2  protein.degradation.ubiquitin.E3.SCF.FBOX  152  1.90E-08  
27.1  RNA.processing  214  2.56E-07  
16.2  secondary metabolism.phenylpropanoids  28  2.68E-07  
29.5.11.4.3  protein.degradation.ubiquitin.E3.SCF  164  3.36E-07  
29.5.11.4  protein.degradation.ubiquitin.E3  386  3.94E-07  
20.1  stress.biotic  166  8.39E-07  
29.3  protein.targeting  184  1.33E-06  
27.3.25  RNA.regulation of transcription.MYB domain transcription factor family  9  5.20E-06  
16  secondary metabolism  145  5.65E-06  
16.2.1  secondary metabolism.phenylpropanoids.lignin biosynthesis  14  1.16E-05  
10.6  cell wall.degradation  32  1.32E-05  
13.1.7  amino acid metabolism.synthesis.histidine  15  2.01E-05  
17  hormone metabolism  192  3.90E-05  
29.5.11.4.1  protein.degradation.ubiquitin.E3.HECT  14  5.21E-05  
29.2.3  protein.synthesis.initiation  89  5.96E-05  
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Enrichment for StHRE2a/b correlators (Spearman correlation coefficient >0.9, 4 genes)  
 
bin  bin name  count  p-value  
2  major CHO metabolism  2  1.87E-04  

 

Enrichment for StHRE2a/b correlators (Spearman correlation coefficient >0.7, 927 genes)  
 
bin  bin name  count  p-value  
2  major CHO metabolism  16  8.27E-005  
2.2.1.1  major CHO metabolism.degradation.sucrose.fructokinase  4  8.53E-005  
16.1.3  secondary metabolism.isoprenoids.tocopherol biosynthesis  4  2.07E-004  
1.2.7  PS.photorespiration.glycerate kinase  2  3.71E-004  
13.1.7  amino acid metabolism.synthesis.histidine  4  4.22E-004  
13  amino acid metabolism  25  1.18E-003  
13.2.6.2  amino acid metabolism.degradation.aromatic aa.tyrosine  4  1.46E-003  
2.2  major CHO metabolism.degradation  10  1.65E-003  
21  redox.regulation  14  3.06E-003  
26.23  misc.rhodanese  3  3.31E-003  
13.1.6.1.5  amino acid metabolism.synthesis.aromatic aa.chorismate.shikimate kinase  2  5.29E-003  
16.1.3.3  secondary metabolism.isoprenoids.tocopherol biosynthesis.MPBQ/MSBQ 

methyltransferase  
2  5.29E-003  

2.1.2  major CHO metabolism.synthesis.starch  6  5.74E-003  
27  RNA  97  5.74E-003  
13.2.6  amino acid metabolism.degradation.aromatic aa  5  6.00E-003  
2.2.1  major CHO metabolism.degradation.sucrose  6  7.18E-003  
3.4  minor CHO metabolism.myo-inositol  3  7.33E-003  
27.4  RNA.RNA binding  14  8.88E-003  
20.1  stress.biotic  5  9.45E-003  
17.3.1.2.2  hormone metabolism.brassinosteroid.synthesis-degradation.sterols.SMT  2  9.62E-003  
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5.7 Expression Intensity and Variance for Transcriptional genes and 

Essential genes in Arabidopsis thaliana Affymetrix microarrays 

See Figure 30A in the main text for an assessment of expression average intensity of Transcriptional genes. 

 
Figure 50 - comparison of tRMA normalized expression levels in a 5750 samples microarray dataset for 
embryonic lethal genes and other genes, as annotated by (Tzafrir et al., 2003), SeedGenes project v7. 
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5.8 Comparative Network Reconstruction Methods Analysis - Additional 

Network Quality Assessments 

5.8.1 Example of a Network Degree distribution 

 
Figure 51 - Example of a Network Degree vs. Number of nodes distribution for an expression based reverse 
engineered Pearson Correlation network, r0 threshold = 0.7, inferred from the dataset described in Paragraph 
4.5 (274 microarray samples, 3350 genes). The blue line represents a linear model fit to the observed 
distribution (R

2
 = 0.7245, Distribution PCC = -0.8512). 
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5.8.2 Fit to a power law of the Network Degree - adjusted R2 

 

 

 

Figure 52 - Fit to a power law distribution of the Network Degree for Arabidopsis thaliana expression based 
Correlation and Partial Correlation networks at different thresholds. Absolute correlation coefficients were 
considered. A first order threshold of 0 means that edges suffering a sign change were excluded from the 
resulting networks, while a first order threshold marked with "no" corresponds to the standard zeroth order 
Pearson Correlation network. The R

2
 is calculated based on the procedure described in (Brohée et al., 2008) 
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Figure 53 - Fit to a power law distribution of the Network Degree for Arabidopsis thaliana expression based 
Mutual Information networks at different combinations of significance thresholds and bin numbers. The R

2
 is 

calculated based on the procedure described in (Brohée et al., 2008) 
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5.8.3 Fit to a power law of the Network Degree - Pearson Correlation coefficient of the Network Degree 

distribution 

 

 

 

Figure 54 - Pearson's Correlation Coefficient (PCC) of the Network Degree vs. Node Number distribution for 
Arabidopsis thaliana expression based Correlation and Partial Correlation networks at different thresholds, 
calculated through the power law fitting procedure described in (Brohée et al., 2008) 
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Figure 55 - Pearson's Correlation Coefficient (PCC) of the Network Degree vs. Node Number distribution for 
Arabidopsis thaliana expression based Mutual Information networks at combinations of bin number and M.I. 
index threshold, calculated through the power law fitting procedure described in (Brohée et al., 2008) 
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5.8.4 Overlap to Protein-Protein interaction networks - Accuracy 

 

 

 

Figure 56 - Accuracy calculated using as golden set a manually curated Arabidopsis thaliana Protein-Protein 
Interaction network (Brandão et al., 2009) for expression-based Pearson Correlation networks at different 
zeroth and first order threshold combinations. Absolute correlation coefficients were considered. A first order 
threshold of 0 means that edges suffering a sign change were excluded from the resulting networks, while a 
first order threshold marked with "no" corresponds to the standard zeroth order Pearson Correlation network 
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Figure 57 - Accuracy calculated using as golden set a manually curated Arabidopsis thaliana Protein-Protein 
Interaction network (Brandão et al., 2009) for expression-based Mutual Information networks at different bin 
numbers and normalize M.I. index thresholds 
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5.8.5 Overlap to Protein-Protein interaction networks - Matthew's coefficient 

 

 

 

 
Figure 58 - Matthews Coefficient calculated using as golden set a manually curated Arabidopsis thaliana 
Protein-Protein Interaction network (Brandão et al., 2009) for expression-based Pearson Correlation networks 
at different zeroth and first order threshold combinations. Absolute correlation coefficients were considered. A 
first order threshold of 0 means that edges suffering a sign change were excluded from the resulting networks, 
while a first order threshold marked with "no" corresponds to the standard zeroth order Pearson Correlation 
network 
 

  



Appendix 

119 
 

 

 

 
Figure 59 - Matthews Coefficient calculated using as golden set a manually curated Arabidopsis thaliana 
Protein-Protein Interaction network (Brandão et al., 2009) for expression-based Mutual Information networks 
at different bin numbers and normalize M.I. index thresholds 
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5.9 Coefficient Distributions for Pearson Correlation and Mutual 

Information 

 

 

Figure 60 - (A) Pearson Correlation coefficient density distribution and (B) Mutual Information normalized 
index density distribution for the 274 samples Arabidopsis thaliana dataset described in Paragraph 4.5. Both 
distributions are compared with distributions expected from Gaussian random data. 
 

A 

B 
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5.10 LASSO model for the Arabidopsis gene RHM2 

 

Figure 61 - LASSO model weight plot for the RHM2 models based on the complete Arabidopsis thaliana collection 
of Affymetrix ATH1 public microarrays, described in Paragraph 2.5.1. On the x axis, varying sum of variable weight 
constraints, on the y axis, the weights for every gene predictor. Every line corresponds to a gene included as 
prediction variable for RHM2. The picture is shown as a representation of the complex nature of LASSO model 

generation (which proceeds from left to right on the x axis, increasing continuosly the L1 sum of absolute weights 
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5.11 Mucilage release upon mechanical stress in a Myb5 knockout line 

 
Figure 62 - Ruthenium Red staining of a Myb5 knockout line seed after mechanical stress  
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5.12 Thellungiella salsuginea seeds upon hydration 

 

Figure 63 - Thellungiella salsuginea seed stained with calcofluor to highlight cell wall and pectin components. 
Although the seed is hydrated, no mucilage release is visible (Herth and Schnepf, 1980) 
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