
wickr
A Joint Semantics for Flexible Business Processes and Data

Stephan Haarmann

Business Process Technology Group
Hasso Plattner Institute

Digital Engineering Faculty
University of Potsdam
Potsdam, Germany

Dissertation
zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften
—Dr. rer. nat.—

Date of Defense: March 23rd, 2022
November, 2021

Unless otherwise indicated, this work is licensed under a Creative Commons
License Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Supervisor: Prof. Dr. Mathias Weske, University of Potsdam
Reviewers: Prof. Dr. Diego Calvanese, Free University of Bozen-Bolzano

and
 Prof. Dr. Stefanie Rinderle-Ma, Technical University of Munich

© Stephan Haarmann:
Wickr: A Joint Semantics for Flexible Business Processes and Data,
November 2021

Published online on the Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-54613
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-546137

Abstract

Knowledge-intensive business processes are flexible and data-driven.
Therefore, traditional process modeling languages do not meet their
requirements: These languages focus on highly structured processes in
which data plays a minor role. As a result, process-oriented information
systems fail to assist knowledge workers on executing their processes.
We propose a novel case management approach that combines flexible
activity-centric processes with data models, and we provide a joint se-
mantics using colored Petri nets. The approach is suited tomodel, verify,
and enact knowledge-intensive processes and can aid the development
of information systems that support knowledge work.
Knowledge-intensive processes are human-centered, multi-variant,

and data-driven. Typical domains include healthcare, insurances, and
law. The processes cannot be fully modeled, since the underlying knowl-
edge is too vast and changes too quickly. Thus, models for knowledge-
intensive processes are necessarily underspecified. In fact, a case emerges
gradually as knowledge workers make informed decisions. Knowledge
work impose special requirements on modeling and managing respec-
tive processes. They include flexibility during design and execution,
ad-hoc adaption to unforeseen situations, and the integration of be-
havior and data. However, the predominantly used process modeling
languages (e.g., BPMN) are unsuited for this task.
Therefore, novel modeling languages have been proposed. Many of

them focus on activities’ data requirements and declarative constraints
rather than imperative control flow. Fragment-Based CaseManagement, for
example, combines activity-centric imperative process fragments with
declarative data requirements. At runtime, fragments can be combined
dynamically, and new ones can be added. Yet, no integrated semantics
for flexible activity-centric process models and data models exists.
In this thesis, Wickr, a novel case modeling approach extending

fragment-based Case Management, is presented. It supports batch pro-
cessing of data, sharing data among cases, and a full-fledged datamodel
with associations and multiplicity constraints. We develop a transla-
tional semantics for Wickr targeting (colored) Petri nets. The semantics
assert that a case adheres to the constraints in both the process fragments
and the data models. Among other things, multiplicity constraints must
not be violated. Furthermore, the semantics are extended to multiple
cases that operate on shared data.Wickr shows that the data structure
may reflect process behavior and vice versa. Based on its semantics, pro-
totypes for executing and verifying case models showcase the feasibility
of Wickr. Its applicability to knowledge-intensive and to data-centric
processes is evaluated using well-known requirements from related
work.

iii

Zusammenfassung

Traditionelle Prozessmodellierungssprachen sind auf hoch strukturier-
te Prozesse ausgelegt, in denen Daten nur eine Nebenrolle spielen.
Sie eignen sich daher nicht für wissensintensive Prozesse, die flexibel
und datengetrieben sind. Deshalb können prozessorientierte Informa-
tionssysteme Fachexperten nicht gänzlich unterstützen. Diese Arbeit
beinhaltet eine neueModellierungssprache, die flexible Prozessmodelle
mit Datenmodellen kombiniert. Die Semantik dieser Sprache ist mit-
tels gefärbten Petri-Netzen formal definiert. Wissensintensive Prozesse
können so modelliert, verifiziert und ausgeführt werden.

Wissensintensive Prozesse sind variantenreich und involvieren Fach-
experten, die mit ihren Entscheidungen die Prozessausführung prägen.
Typische Anwendungsbereiche sind das Gesundheitswesen, Rechtswe-
sen und Versicherungen. Diese Prozesse können i.d.R. nicht vollständig
spezifiziert werden, da das zugrundeliegende Wissen zu umfangreich
ist und sich außerdem zu schnell verändert. Die genaue Reihenfolge der
Aktivitäten wird erst durch die Fachexperten zur Laufzeit festgelegt.
Deshalb erfordern dieser Prozesse Flexibilität sowohl zur Entwurfszeit
wie zur Laufzeit, Daten und Verhalten müssen in enger Beziehung
betrachtet werden. Außerdem muss es möglich sein, den Prozess an-
zupassen, falls eine unvorhergesehene Situation eintreten. Etablierte
Prozessmodellierungssprachen, wie z.B. BPMN, sind daher ungeeignet.
Deshalb werden neue Sprachen entwickelt, in denen sich generell

zwei Tendenzen beobachten lassen: einWechseln von imperativer zu de-
klarativer Modellierung und eine zunehmende Integration von Daten.
Im Fragment-Basierten-Case-Management können imperative Prozess-
fragmente zur Laufzeit flexibel kombiniert werden solange spezifizier-
ten Datenanforderungen erfüllt sind.

In dieser Arbeit wirdWickr vorgestellt. Dabei handelt es sich um eine
Modellierungssprache, die das Fragment-Basierte-Case-Management
erweitert. Wickr kombiniert Prozessfragmente mit einem Datenmodell
inklusive Assoziationen und zwei Arten an Multiplizitätseinschränkun-
gen: Die erste Art muss immer gelten, wohingegen die Zweite nur am
Ende eines Falls gelten muss. Zusätzlich unterstützt Wickr Stapelverar-
beitung und Datenaustausch zwischen Fällen. DesWeiteren entwickeln
wir eine translationale Semantik, dieWickr in gefärbte Petri-Netze über-
setzt. Die Semantik berücksichtigt sowohl die Vorgaben des Prozessmo-
dells wie auch die des Datenmodells. Die Semantik eignet sich nicht nur
für die Beschreibung eines einzelnen Falls, sondern kann auch mehrere
untereinander in Beziehung stehende Fälle abdecken. Durch Prototypen
wird die Umsetzbarkeit von Wickr demonstriert und mittels bekannten
Anforderungslisten die Einsatzmöglichkeit für wissensintensive und
datengetriebene Prozesse evaluiert.

iv

Publications

Some ideas and figures have appeared previously in the following
publications:

1. Stephan Haarmann, Marco Montali, and Mathias Weske. “Technical
Report: Refining Case Models Using Cardinality Constraints”. In: CoRR
abs/2012.02245 (2020). arXiv: 2012.02245. url: https://arxiv.org/
abs/2012.02245.

2. Stephan Haarmann and Mathias Weske. “Correlating Data Objects in
Fragment-Based Case Management”. In: Business Information Systems -
23rd International Conference, BIS 2020, Colorado Springs, CO, USA, June
8-10, 2020, Proceedings. Ed. by Witold Abramowicz and Gary Klein.
Vol. 389. Lecture Notes in Business Information Processing. Springer,
2020, pp. 197–209. isbn: 978-3-030-53336-6. url: https://doi.org/10.
1007/978-3-030-53337-3_15.

3. Stephan Haarmann and Mathias Weske. “Cross-Case Data Objects in
Business Processes: Semantics and Analysis”. In: Business Process Man-
agement Forum - BPM Forum 2020, Seville, Spain, September 13-18, 2020,
Proceedings. Ed. by Dirk Fahland, Chiara Ghidini, Jörg Becker, and Mar-
lon Dumas. Vol. 392. Lecture Notes in Business Information Processing.
Springer, 2020, pp. 3–17. isbn: 978-3-030-58637-9. url: https://doi.
org/10.1007/978-3-030-58638-6_1.

4. Stephan Haarmann and Mathias Weske. “Data Object Cardinalities in
Flexible Business Processes”. In: Business Process Management Workshops
- BPM 2020 International Workshops, Seville, Spain, September 13-18, 2020,
Revised Selected Papers. Ed. by Adela del-Río-Ortega, Henrik Leopold,
and Flávia Maria Santoro. Vol. 397. Lecture Notes in Business Informa-
tion Processing. Springer, 2020, pp. 380–391. isbn: 978-3-030-66497-8.
url: https://doi.org/10.1007/978-3-030-66498-5_28.

5. Stephan Haarmann. “Fragment-Based Case Management Models: Meta-
model, Consistency, & Correctness”. In: Proceedings of the 13th European
Workshop on Services and their Composition (ZEUS 2021), Bamberg, Ger-
many, February 25-26, 2021. Ed. by JohannesManner, StephanHaarmann,
Stefan Kolb, Nico Herzberg, and Oliver Kopp. Vol. 2839. CEURWork-
shop Proceedings. CEUR-WS.org, 2021, pp. 1–8. url: http://ceur-
ws.org/Vol-2839/paper1.pdf.

6. Stephan Haarmann, Adrian Holfter, Luise Pufahl, and Mathias Weske.
“Formal Framework for Checking Compliance of Data-Driven Case
Management”. In: J. Data Semant. 10.1 (2021), pp. 143–163. url: https:
//doi.org/10.1007/s13740-021-00120-3.

v

https://arxiv.org/abs/2012.02245
https://arxiv.org/abs/2012.02245
https://arxiv.org/abs/2012.02245
https://doi.org/10.1007/978-3-030-53337-3_15
https://doi.org/10.1007/978-3-030-53337-3_15
https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-030-66498-5_28
http://ceur-ws.org/Vol-2839/paper1.pdf
http://ceur-ws.org/Vol-2839/paper1.pdf
https://doi.org/10.1007/s13740-021-00120-3
https://doi.org/10.1007/s13740-021-00120-3

Publications

7. Stephan Haarmann, Marco Montali, and Mathias Weske. “Refining
Case Models Using Cardinality Constraints”. In: Advanced Information
Systems Engineering - 33rd International Conference, CAiSE 2021,Melbourne,
VIC, Australia, June 28 - July 2, 2021, Proceedings. Ed. by Marcello La
Rosa, Shazia W. Sadiq, and Ernest Teniente. Vol. 12751. Lecture Notes in
Computer Science. Springer, 2021, pp. 296–310. isbn: 978-3-030-79381-4.
url: https://doi.org/10.1007/978-3-030-79382-1_18.

8. Stephan Haarmann, Anjo Seidel, and Mathias Weske. “Modeling Objec-
tives of KnowledgeWorkers”. In: Business Process Management Workshops
- BPM 2021 International Workshops, Rome, Italy, September 6-10, 2021,
Accepted for Publication. 2021.

In addition to the publications above, the author of this thesis was
involved in the following research indirectly contributing to the thesis:

9. Stephan Haarmann, Nikolai Podlesny, Marcin Hewelt, Andreas Meyer,
and Mathias Weske. “Production Case Management: A Prototypical
Process Engine to Execute Flexible Business Processes”. In: Proceedings
of the BPM Demo Session 2015 Co-located with the 13th International Con-
ference on Business Process Management (BPM 2015), Innsbruck, Austria,
September 2, 2015. Ed. by Florian Daniel and Stefan Zugal. Vol. 1418.
CEURWorkshop Proceedings. CEUR-WS.org, 2015, pp. 110–114. url:
http://ceur-ws.org/Vol-1418/paper23.pdf.

10. Kimon Batoulis, Stephan Haarmann, and Mathias Weske. “Various
Notions of Soundness for Decision-Aware Business Processes”. In: Con-
ceptual Modeling - 36th International Conference, ER 2017, Valencia, Spain,
November 6-9, 2017, Proceedings. Ed. by Heinrich C. Mayr, Giancarlo
Guizzardi, Hui Ma, and Oscar Pastor. Vol. 10650. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 403–418. isbn: 978-3-319-69903-5. url:
https://doi.org/10.1007/978-3-319-69904-2_31.

11. Stephan Haarmann, Kimon Batoulis, and Mathias Weske. “Compliance
Checking for Decision-Aware Process Models”. In: Business Process Man-
agement Workshops - BPM 2018 International Workshops, Sydney, NSW, Aus-
tralia, September 9-14, 2018, Revised Papers. Ed. by Florian Daniel, Quan Z.
Sheng, and Hamid Motahari. Vol. 342. Lecture Notes in Business Infor-
mation Processing. Springer, 2018, pp. 494–506. isbn: 978-3-030-11640-8.
url: https://doi.org/10.1007/978-3-030-11641-5_39.

12. Adrian Holfter, Stephan Haarmann, Luise Pufahl, and Mathias Weske.
“Checking Compliance in Data-Driven Case Management”. In: Business
ProcessManagementWorkshops - BPM2019 InternationalWorkshops, Vienna,
Austria, September 1-6, 2019, Revised Selected Papers. Ed. by Chiara Di
Francescomarino, Remco M. Dijkman, and Uwe Zdun. Vol. 362. Lecture
Notes in Business Information Processing. Springer, 2019, pp. 400–411.
isbn: 978-3-030-37452-5. url: https://doi.org/10.1007/978-3-030-
37453-2_33.

vi

https://doi.org/10.1007/978-3-030-79382-1_18
http://ceur-ws.org/Vol-1418/paper23.pdf
https://doi.org/10.1007/978-3-319-69904-2_31
https://doi.org/10.1007/978-3-030-11641-5_39
https://doi.org/10.1007/978-3-030-37453-2_33
https://doi.org/10.1007/978-3-030-37453-2_33

Additionally, the author was involved in the following publications on
topics not directly related to the PhD thesis:

13. Ekaterina Bazhenova, StephanHaarmann, Sven Ihde, Andreas Solti, and
Mathias Weske. “Discovery of Fuzzy DMNDecisionModels from Event
Logs”. In: Advanced Information Systems Engineering - 29th International
Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017, Proceedings. Ed.
by Eric Dubois and Klaus Pohl. Vol. 10253. Lecture Notes in Computer
Science. Springer, 2017, pp. 629–647. isbn: 978-3-319-59535-1. url: https:
//doi.org/10.1007/978-3-319-59536-8_39.

14. Sebastian Serth, Stephan Haarmann, and Lukas Faber. “Serving Live
Multimedia for the Linked Open Data Cloud”. In: 47. Jahrestagung der
Gesellschaft für Informatik, Digitale Kulturen, INFORMATIK 2017, Chem-
nitz, Germany, September 25-29, 2017. Ed. by Maximilian Eibl and Martin
Gaedke. Vol. P-275. LNI. GI, 2017, pp. 2487–2498. isbn: 978-3-88579-669-5.
url: https://doi.org/10.18420/in2017_252.

15. StephanHaarmann, Kimon Batoulis, AdriatikNikaj, andMathiasWeske.
“DMN Decision Execution on the Ethereum Blockchain”. In: Advanced
Information Systems Engineering - 30th International Conference, CAiSE
2018, Tallinn, Estonia, June 11-15, 2018, Proceedings. Ed. by John Krogstie
and Hajo A. Reijers. Vol. 10816. Lecture Notes in Computer Science.
Springer, 2018, pp. 327–341. isbn: 978-3-319-91562-3. url: https://doi.
org/10.1007/978-3-319-91563-0_20.

16. StephanHaarmann. “Estimating the Duration of Blockchain-Based Busi-
ness Processes Using Simulation”. In: Proceedings of the 11th Central
European Workshop on Services and their Composition, Bayreuth, Germany,
February 14-15, 2019. Ed. by Stefan Kolb and Christian Sturm. Vol. 2339.
CEURWorkshopProceedings. CEUR-WS.org, 2019, pp. 24–31.url: http:
//ceur-ws.org/Vol-2339/paper5.pdf.

17. StephanHaarmann, Kimon Batoulis, AdriatikNikaj, andMathiasWeske.
“Executing Collaborative Decisions Confidentially on Blockchains”. In:
Business Process Management: Blockchain and Central and Eastern Europe
Forum - BPM 2019 Blockchain and CEE Forum, Vienna, Austria, September
1-6, 2019, Proceedings. Ed. by Claudio Di Ciccio, Renata Gabryelczyk,
Luciano García-Bañuelos, Tomislav Hernaus, Rick Hull, Mojca Indihar
Stemberger, Andrea Ko, and Mark Staples. Vol. 361. Lecture Notes in
Business Information Processing. Springer, 2019, pp. 119–135. isbn: 978-
3-030-30428-7. url: https://doi.org/10.1007/978-3-030-30429-
4_9.

vii

https://doi.org/10.1007/978-3-319-59536-8_39
https://doi.org/10.1007/978-3-319-59536-8_39
https://doi.org/10.18420/in2017_252
https://doi.org/10.1007/978-3-319-91563-0_20
https://doi.org/10.1007/978-3-319-91563-0_20
http://ceur-ws.org/Vol-2339/paper5.pdf
http://ceur-ws.org/Vol-2339/paper5.pdf
https://doi.org/10.1007/978-3-030-30429-4_9
https://doi.org/10.1007/978-3-030-30429-4_9

Acknowledgments

viii

ix

Acknowledgments

x

Contents

Abstract iii

Zusammenfassung iv

Publications v

Acknowledgments viii

List of Figures xiv

List of Tables xvi

List of Definitions xvii

1 Introduction 1
1.1 Business Process Management 1

1.1.1 Business Process Modeling 3
1.1.2 Knowledge-Intensive Processes 3

1.2 Research Objective . 5
1.3 Contribution . 6
1.4 Structure of the Thesis 8

2 Preliminaries 11
2.1 Data Modeling . 12

2.1.1 Data Structure . 12
2.1.2 Data Behavior . 15

2.2 Business Process Modeling 16
2.2.1 Traditional Process Models 16
2.2.2 Fragment-Based Case Management 22

2.3 Petri Nets & Formal Execution Semantics 30
2.3.1 Petri Nets . 30
2.3.2 Colored Petri Nets 33

3 Related Work 39
3.1 Data and Traditional Processes 39
3.2 BPM for Knowledge-Intensive Processes 40

3.2.1 Characterizing Knowledge-Intensive Processes . 41
3.2.2 Modeling Knowledge-Intensive Processes 42

3.3 Formal Execution Semantics 48
3.3.1 Formalization of Traditional Processes 48
3.3.2 Formalization of KiPs 49

3.4 Overview of the Most Influential Works 51

xi

Contents

4 Wickr: Improving fCM 53
4.1 Domain Model . 53
4.2 Object Behavior . 57
4.3 Fragments . 58
4.4 Goal Specification . 66
4.5 Case Model . 66

4.5.1 Structural Satisfiability 66
4.5.2 Object Behavior Conformance 67
4.5.3 Contextual Object Creation 67
4.5.4 Contextual Batch Processing 68
4.5.5 Well-Formed Case Model 69

4.6 Cases in Wickr . 70
4.7 Summary . 70

5 A Petri Net-Based Semantics for Wickr 73
5.1 An Example Case . 73
5.2 The Case State . 74

5.2.1 Case Data . 74
5.2.2 Fragment Instances 75

5.3 The Case Behavior . 75
5.3.1 Case Instantiation 76
5.3.2 Case Execution 76
5.3.3 Case Termination 79
5.3.4 The Complete Case Model 79

5.4 Translation to Classical Petri Nets 81
5.5 Summary . 82

6 Associations and Multiplicity Constraints 85
6.1 Object Identities . 85
6.2 Links . 87
6.3 Set Data Object Nodes 91
6.4 Global Multiplicity Constraints 93
6.5 Goal Multiplicity Constraints 95
6.6 Extended Translation . 97
6.7 Summary . 103

7 Sharing Data Among Cases 105
7.1 Case Identities . 105
7.2 Cross-Case Data Objects 106
7.3 Allocating and Publishing Cross-Case Data 108
7.4 Correlating Cross-Case Data to Cases 110

7.4.1 Attribute-Based Correlation 111
7.4.2 Links and Cross-Case Data 113

7.5 The Case and Cross-Case Data 116

8 Technical Evaluation 119
8.1 Architectural Overview 120
8.2 Modeling . 121

xii

Contents

8.3 Compilation and Verification 123
8.3.1 Structural Verification 124
8.3.2 Behavioral Verification 125

8.4 Execution . 131
8.4.1 Case Execution Engine 131
8.4.2 Goal Modeling and Planning 133

8.5 Runtime Extension . 138

9 Conceptual Evaluation 141
9.1 Wickr for Knowledge-Intensive Processes 141

9.1.1 Data . 141
9.1.2 Knowledge Actions 142
9.1.3 Rules and Constraints 143
9.1.4 Goals . 143
9.1.5 Processes . 144
9.1.6 Knowledge Workers 145
9.1.7 Environment . 146
9.1.8 Comparing Wickr to fCM and Others 147

9.2 Wickr for Data-Centric Processes 149
9.2.1 Design . 149
9.2.2 Implementation and Execution 150
9.2.3 Diagnosis and Optimization 151
9.2.4 Tool Implementation and Practical Cases 151
9.2.5 Wickr vs. Data-Centric Approaches 152

9.3 Transferring Insights to BPMN & CMMN 154
9.3.1 Domain Models and BPMN 154
9.3.2 Domain Models and CMMN 156

10 Conclusion 159
10.1 Summary of the Contribution 159
10.2 Limitations and Future Work 160

10.2.1 Conceptual Extensions 160
10.2.2 Application & Tooling 162
10.2.3 Case Studies & Usability 163

10.3 Final Remarks . 163

A Wickr is Turing Complete 167

Bibliography 171

Declaration 191

xiii

List of Figures

1.1 The business process lifecycle 2
1.2 Overview of our research method 6
1.3 Schematic representation of our contribution 7

2.1 Modeling levels . 11
2.2 A data model for an insurance 13
2.3 An object lifecycle . 16
2.4 A process model . 18
2.5 A data-aware process model 20
2.6 The fCM domain model of the example 23
2.7 The object lifecycles of the example 24
2.8 fCM fragments of the example 26
2.9 Example of activities’ I/O behavior in fragment-based

Case Management (fCM) 30
2.10 Petri net for the process model in Figure 2.4 32
2.11 Reachability graph for the Petri net in Figure 2.10 33
2.12 Colored Petri net of the process in Figure 2.4 35
2.13 Partial reachability graph of the CPN example 38

3.1 DECLARE model of the insurance example 43

4.1 A not well-formed Wickr domain model 55
4.2 Well-formed Wickr domain model 56
4.3 Object behavior of the Wickr example 57
4.4 Fragments with preconditions in fCM and Wickr 59
4.5 Example of initial fragments in fCM and Wickr 60
4.6 Advanced I/O behavior in Wickr 62
4.7 Wickr fragments for the insurance example 65
4.8 Metamodel of Wickr . 71

5.1 Places for abstract case states 74
5.2 Places for data objects . 74
5.3 The activity lifecycle . 75
5.4 Places for control flow 75
5.5 Transition for the start event 76
5.6 Transitions for activity “assess claim” 77
5.7 The transition for activity “receive external review” . . 78
5.8 Transitions for the gateway ×1 79
5.9 Transition for the termination condition 80
5.10 Petri net for fragments 1 and 2 of the example 81

6.1 Places to count the number of object per class 86
6.2 Colored Petri net for fragment five 87

xiv

List of Figures

6.3 Colored Petri net for fragment six 88
6.4 Petri net for fragment three 90
6.5 Petri net for fragment five including links 91
6.6 Petri net for activity “decide on claim” & output set • . 92
6.7 Petri net for activity “decide on claim” & output set ▲ . 93
6.8 Petri net with multiplicity constraints for fragment five 94
6.9 Petri net example with object registry 95
6.10 Petri net for the termination condition including goal

multiplicity constraints 96
6.11 Behavior of claims inclduing guard for goal multiplicities 97
6.12 Petri net for activity “request external review” and out-

putset □ including goal multiplicity constraints 98

7.1 Mapping of cross-case and local data object nodes . . . 106
7.2 Multi-case Petri net of the start event and the subsequent

activity . 107
7.3 Multi-case Petri net of activity fragment three 109
7.4 Fragment with two activities and its formalization . . . 110
7.5 Extended Wickr domain model 111
7.6 Extended version of Wickr fragment one 112
7.7 Formalization of correlation of cross-case data objects to

cases . 114
7.8 Fragment accessing linked cross-case data objects . . . 115
7.9 Petri net formalization of fragment three as depicted in

Figure 7.8. 117

8.1 Block diagram of the Wickr architecture 121
8.2 Block diagram of the compiler’s architecture 123
8.3 Schematic representation of model checking 125
8.4 The insurance domain model without unbounded mul-

tiplicity constraints . 126
8.5 Block diagram of the execution engine’s architecture . . 132
8.6 Screenshot of the execution engine’s UI 132
8.7 Screenshot of the form-based goal modeling 137

9.1 BPMN claim handling process 155
9.2 BPMN suprocess for external reviews 155
9.3 Domain model for the Business Process Model and No-

tation (BPMN) process models in Figures 9.1 and 9.2. . 156
9.4 CMMNmodel for handling insurance claims 157

A.1 Domain model for simulating a 2-counter machine . . . 167
A.2 Initial fragment of the 2-counter machine 168
A.3 Fragment for an instruction qi incrementing CounterA. 168
A.4 Fragment for an instruction qi decrementing CounterA. 168
A.5 Fragments for an instruction qi testing current value . . 169

xv

List of Tables

2.1 Multiplicity constraints for Figure 2.2 14

3.1 Overview of important related work 52

4.1 Multiplicity constraints for Figure 4.2 56
4.2 Structural Correctness Criteria 72

6.1 Variables for counters and identities 86

8.1 Results of experiments 130

9.1 Requirements for knowledge-intensive processes 148
9.2 Requirements for data-centric processes 153

xvi

List of Definitions

1 Data Model . 12
2 Finite State Transition System. 15
3 Object Lifecycle. 15
4 Phase . 16
5 Business Process Model. 17
6 Data-Aware Process Model, Data Condition 18
7 Case . 22
8 fCM Domain Model . 23
9 Process Fragment. 24
10 Termination Condition 27
11 fCM Case Model . 27
12 fCM Case . 28
13 Petri Net . 30
14 Reachability Graph . 31
15 Multiset . 34
16 Colored Petri Net [56] 34
17 Colored Petri Net Concepts [56] 36
18 Colored Petri Net Firing Rule 36
19 Reachability Graph of Colored Petri Nets 37

20 Wickr Domain Model . 54
21 Wickr Data Object Node, Data Condition 62
22 Wickr Fragment . 63
23 Well-Formed Wickr Fragment 63
24 Wickr Case Model . 66
25 Structurally Satisfiable Case Model. 67
26 Object Behavior Conformance 67
27 Contextual Object Creation. 68
28 Contextual Batch Processing. 68
29 Well-Formed Wickr Case Model 69
30 Wickr Case . 70

31 Lazy Relaxed Soundness 127

xvii

1 Introduction

Modern enterprises must survive in competitive and complex environ-
ments. To succeed, an enterprise must operate effectively and efficiently,
while constantly coping with change. Thereby, information systems
play a key role. Simply put, they ought to provide the right information
at the right time. They organize data and orchestrate business processes.
And information systems must be ready for change [20].

Consider an online retailer. It employs a customer relationship man-
agement system to store customer-related information, to provide cus-
tomer support, and to conduct marketing campaigns. The system im-
plements respective functionalities but must also adapt to changes in
internal and external requirements. If the retailer decides to add an
instant messenger as an additional support channel, the system must
adapt. Similarly, when the General Data Protection Regulationwas pub-
lished in 2018 [109], customer relationship management systems were
required to store consents, to delete personal data permanently if re-
quested, to disclose related data to the customer, and much more. In
both cases, the right system can be a competitive advantage.

Information systems engineering is the discipline concerned with the
specification, design, analysis, implementation, maintenance, and more
of information systems [34]. Research in the discipline is concerned
with new information systems engineeringmethods andmethodologies.
A common methodology actively researched and successfully applied
in industry is Business Process Management (BPM).

1.1 Business Process Management

“A business process consists of a set of activities that are performed in
coordination in an organizational and technical environment. These
activities jointly implement a business goal” [149]. BPM treats processes
as first class citizens: Everything relevant happening in an organization
or its environment is viewed from the process perspective. Processes
are central and put activities, decisions, events, data, and more into
relation. Information systems support and implement processes.

The business process lifecycle (Figure 1.1) describes the phases of a
business process [149]. During design/analysis, organizations specify
processes. In configuration, engineers implement the process, e.g., by
configuring an information system according to the process specifica-
tion. The configured information system orchestrates processes and
supports process participants during enactment. Meanwhile, the system
may log data, which business analysts can use to evaluate the process
and to gain insights before the lifecycle is reiterated.

1

1 Introduction

Design
& Analysis

Analysis

Enactment

Configuration

Administration
and

Stakeholders
Process Mining
Quantitative

Analysis

Identification
Modeling
Validation
Simulation
Verification

System Selection
Implementation

Test
Deployment

Operation
Monitoring

Maintanance

Figure 1.1: The business process lifecycle (cf. [149, p. 12]).

During design, stakeholders identify and specify a process. They
determine its potential triggers and its goal. Furthermore, all activities
that might be necessary to achieve the goal as well as dependencies
among activities are specified. The outcome of the design phase is usu-
ally a process model. The model can be analyzed, validated, simulated,
and verified as a surrogate for the real process.
The online retailer in our example plans to design its shipment pro-

cess. Therefore, workshops with stakeholders are conducted, and the
process is described: Every new order triggers the process which com-
pletes when the order has been shipped and the invoice has been paid.
To handle the order, the retailer sends an invoice to the customer, and
the warehouse retrieves, packs, and sends the ordered products. The
process also waits for the customer to pay the invoice. To validate the
process, the stakeholders may use simulation. They may recognize that
an order cannot be canceled and extend the model accordingly.
A process model is a blueprint for many similar process instances.

However, after the design phase, the process specification lacks details.
Therefore, engineers implement the process during configuration, e.g.,
using information systems. Missing details are added; the implementa-
tion is tested; and eventually the process is deployed.

In the example, the retailer’s process must handle different payment
channels. Furthermore, it needs to access customer data. During im-
plementation, the process is configured to support multiple payment
providers and to request and store user data.

The deployed process can be enacted. When a trigger occurs, a new
instance is started. By executing activities in a defined order, process
participants and services move the process instance towards its goal.
Once a goal has been accomplished, the process terminates.

2

1.1 Business Process Management

During execution, data can be logged. Afterwards, business analysts
can use process mining techniques to gain insights into the process.
Do instances deviate from the model? Are there bottlenecks or other
shortcomings? Answers to these and similar questions provide input
for the next iteration of the lifecycle: The process can be redesigned and
improved.

After receiving and handlingmany orders, the retailer in the example
decides to evaluate the status quo. An analysis of the process execution
logs shows that some orders do not complete because customers do not
pay. In the next design iteration, the retailer decides to add an activity
for sending a reminder, and another activity to cancel orders after three
missed payments.

1.1.1 Business Process Modeling

Process models are central to BPM [128, 149]. At design-time, process
models are created and analyzed. During implementation, processes
act as a specification. At run-time, engines can interpret models. And
after execution, models can be discovered from data and results can be
visualized with models.

Many modeling languages for process exist; some are better suited
for certain tasks than others. However, clear semantics are often re-
quired [15, 46]. If the semantics of a model is not clear, it is difficult to
reach a common understanding; ambiguities must be resolved during
implementation; and when interpreted, informal models support differ-
ent interpretationwhich lead to differences during execution. Therefore,
standardized modeling languages with formal semantics are employed.

The de facto industry standard is Business Process Model and Nota-
tion (BPMN) [92]. A BPMN process model consists of events, activities,
and gateways that are connected by control flow. The control flow, de-
scribes causal dependencies between the elements. Furthermore, data
objects and data flow can model inputs and outputs of activities and
events. A BPMN model is imperative since every possible sequence of
activities must be modeled explicitly. Therefore, BPMN is well suited
to describe and standardize highly structured processes. This can be an
advantage because structure reduces implementation effort, improves
consistency, and comprehension [51, 69]. For these and other reasons,
BPMN is widely used by industry, e.g., in e-commerce, legal tech, or
supply chainmanagement. Yet, limiting a process to a few standardized
variants is not always desirable [51, 72].

1.1.2 Knowledge-Intensive Processes

Knowledge work is unpredictable and unrepeatable [82]. Its domains
are often inherently complex. Knowledge workers use their expertise
and experience to choose the right actions out of many alternatives.
Andwhile knowledgework is increasingly important to businesses [53],
knowledge-intensive processes are not well-supported by traditional
process modeling languages, such as BPMN [72, 82, 98].

3

1 Introduction

Physicians are exemplary knowledgeworkers. They are trained exten-
sively and often specialize before joining the workforce. Furthermore,
they constantly need to keep up with advances in medicine. When
they treat a patient, physicians apply their knowledge to decide on a
highly personalized treatment. Therefore, they require detailed infor-
mation about the patient, possible treatments, clinical guidelines, and
regulations. At the same time, this knowledge changes: New informa-
tion about the patient, such as an allergy, may be discovered; research
and industry develops new treatments; clinical guidelines are updated;
and regulations change. It is hard, if not impossible, to model all this
explicitly and to keep the model up-to-date.

Highly structured process models that describe particularly flexible
behavior are often perplexing [39, 51]. Therefore, the BPM community
proposes novel methods, technologies, and modeling languages for
knowledge-intensive processes.

• Knowledge workers constantly make decision that impact how
the process’ advances. Therefore, respective process models de-
fine what actions are possible instead of how activities should be
ordered. Modeling languages become more declarative.

• Knowledge workers gather and consider information about a
particular case. Therefore, data should be tightly integrated into
processes and models.

• Knowledge-intensive processes are often long-running and fast-
changing at the same time. Many approaches allow unspecified
behavior or adapting models ad hoc.

Case management is a BPM paradigm tailored towards knowledge
work [53, 82]. It is based on the idea that every process evolves around
a case, i.e., a patient, an insurance claim, or a lawsuit. Changing the
state of the case to a desired outcome is the primary concern of the pro-
cess, and the case’s current state essentially defines possible activities.
Knowledge-intensive processes require ad hoc adaptation: If knowl-
edge workers encounter unforeseen situations, they can deviate from
the modeled behavior.
A patient comes with health problems. The goal is a successful

treatment. Physicians perform multiple test to diagnose the cause, and
every new result narrows down the treatment. However, if the patient
has an allergy against a prescribed drug, the treatment may deviate
from the projected path.

Casemanagement can support this scenario: All relevant information
is organized in the case. Furthermore, many process variants are sup-
ported, and the physicians choose the one that fits the specific patient
best. If the existing variants are not enough, physicians can adapt the
model ad hoc to their and the patient’s needs.
Different modeling languages support case management. Among

them are data-centric approaches, for example, Guard-Stage-Milestone
(GSM) [60] and PHILharmonicFlows [66]. The enablement of activities,

4

1.2 Research Objective

as well as their effects, are defined by data conditions and data oper-
ations, respectively. Furthermore, declarative approaches exist such
as Dynamic Condition Response Graphs (DCR Graphs) [59] and DE-
CLARE [43]. These approaches define declarative constraints between
activities, which must not be violated.

Ourwork is based on fragment-basedCaseManagement (fCM) [112],
which is a modeling language tailored towards case management. It
combines ideas from activity-centric and data-centric process modeling.
At design-time, the process is split into fragments. At runtime, knowl-
edgeworkers can combine fragments almost freely. The only constraints
are imposed by fragments’ and activities’ data requirements. Further-
more, the model can be adapted at runtime to account for unforeseen
situations.

1.2 Research Objective

The central role of data is one factor that distinguishes knowledge-
intensive from traditional processes [98]. For example, the treatment of
a patient depends highly on the diagnosis, while the sequence of steps
required to ship an order of books can be laid out without knowing any
specificities of the order. A knowledge-intensive process creates and
maintains data, and data in turn controls the process behavior. In case
management, models are meant to describe these relationships.

Conceptually, the structure of data is often modeled by data models
that include entities and relationships [4, 123], and the behavior of
processes is modeled by process models that include activities and
dependencies among them [24, 92]. Yet, in case management, where
flexibility plays an important role, few approaches integrate a data-
centric and an activity-centric view, and even fewer provide a joint
formal semantics [98, 112, 147]. Some approaches focus on data but do
not have an activity-centric view [60, 86]. Others focus on activities but
lack the data-centric view [43, 59]. In their survey [89], Hauder et al.
list data integration as one of five key challenges in case management.
Another is theoretical foundation. These challenges lead directly to our
research questions:
RQ1 How does the flexible behavior of a case model create and main-

tain data?
RQ2 How do the constraints of a data model affect the case execution?
To understand the relationship between process and data, we inves-
tigate how data-driven knowledge-intensive processes are modeled.
Thereby, we especially focus on the relationship between data models
and processmodels. To answer the research question, we develop a new
case management approach, and we develop a formal execution seman-
tics for respective case models. In this semantics, processes instantiate
a data model and adhere to its constraints.

Our research was conducted iteratively (see Figure 1.2). We started
with the existing case management approach fCM [112] and developed

5

1 Introduction

a formal execution semantics. We evaluated the current state technically
using prototypes and conceptually using lists of requirements and
by comparing our approach against related work. Afterwards, we
extended our approach with additional data modeling constructs. By
refining the formal semantics, we entered the next iteration. Eventually,
we reached the current state summarized in the novel case management
approach Wickr.

Status Quo:
Fragment-Based
Case Management [112]

Associations

Shared Data

Multiplicity
Constraints

Comparison with Related Work

(colored)
Petri net

Formalization

Prototypes

Requirement Lists [98, 147]

Wickr: a Novel Case
Management Approach

Figure 1.2: Overview of our research method (cf. [38, 171]). We in-
crementally i) defined formal semantics, ii) evaluated our
approach, before iii) extending it.

In this thesis, we focus on the combined results of our research efforts
rather than presenting each iteration.

1.3 Contribution

In this thesis, we present a joint semantics for case models and data
models. The contribution is split into parts:

• We introduce Wickr—a novel case management approach, which
extends fCM with full-fledged data models. Wickr supports data
objects, links, multiplicity constraints, and shared data.

• We define Wickr’s semantics by translating case models to Petri
nets and colored Petri nets.

• We develop and present tools for usingWickr for different BPM
tasks, such as modeling, analysis, execution, and planning.

• We evaluate Wickr conceptually using two respective frameworks
introduced by literature. Using the results, we compare Wickr
against other process modeling approaches.

6

1.3 Contribution

• We transfer important insights to the two standard modeling
languages BPMN and Case Management Model and Notation
(CMMN).

Knowledge work is data-driven [98]. Data requirements and data
acquisition influence how a case can evolve. Furthermore, in computer
science, it is often assumed that data is structured. Naturally, if this
structure is constrained and if the process is responsible for creating
data, the process is constrained as well. Yet, activity-centric process
modeling often ignores the impact data constraints have on the process
execution.
InWickr, we consider the relationship between data and processes

(cf. Figure 1.3). A case model includes both a process model (i.e.,
fragments) and a data model (i.e., a class diagram). At runtime, a
case has multiple activity instances that execute the modeled behavior.
Activities may operate on data. They can create, read, and update data
objects. However, the data model constrains data objects, and activities
must adhere to these constraints.

Behavior Data

Case
Model

Data
Model

Process
Model

Case

Activity
Instance

Data
Object

M
od

el
In

st
an

ce

creates/reads/updates

constrains

includes includes

has has

describesdescribes describes

Figure 1.3: Schematic representation of our contribution. Case behavior
and data are in a mutual relationship. The data model con-
strains the process model. Consequently, activities that cre-
ate, read, and update data must adhere to data constraints.

We specifyWickr’s semantics formally through a translation to (col-
ored) Petri nets. Petri nets are formal behavioral models. They have
clearly defined semantics. When translating case models to Petri nets,
we must specify when classes get instantiated and when objects get
linked. This enables us to capture the data state precisely and to check
data constraints, e.g., on multiplicities. The mapping integrates both
the data model and the process model into one formal representation.
Based on the integrated semantics, we discuss structural and behavioral
correctness criteria. In general, combining data and process modeling

7

1 Introduction

allows capturing the case more precisely. However, it also introduces
additional complexity.

We showWickr’s feasibility through prototypes. A compiler translates
case models to CPNTools-compatible Petri nets. Using CPNTools [56],
the nets can be analyzed and verified. An execution engine takes a
case model and supports enactment: It tracks the state of the case and
generates forms for user input. Furthermore, we present a framework
for modeling goals at runtime and planning actions accordingly.

We also evaluate Wickr conceptually. Di Ciccio et al. describe charac-
teristics and requirements for knowledge-intensive processes [98]. We
use the requirements to evaluate Wickr and to compare it against other
approaches. We also compareWickr to data-driven approaches [147]
and see that it provides comparable support, while not being fully data-
centric. Finally, we apply results to the modeling languages BPMN and
CMMN to show that of our approach can be generalized.
With Wickr, we present a novel case management approach that

integrates data into flexible, activity-centric processes. Thereby, the
processes are defined more precisely, which improves the explanatory
power and helps to design correct systems.

1.4 Structure of the Thesis

In this thesis, we will provide background information, present re-
lated work, introduceWickr’s syntax and semantics, and evaluate our
contribution. The rest of this thesis is structured as follows:
Chapter 2 (Preliminaries). First, we provide a brief introduction into

process and datamodeling. This includes class diagrams tomodel
data structures, state transition systems to model object behaviors,
highly structured processmodelswith andwithout data, and fCM.
We also introduce formal behavioral models, i.e., classical and
colored Petri nets. These are the foundations for our contribution.

Chapter 3 (Related Work). We consider related work from different
areas. First, we discuss works improving the data-awareness of
traditional business process models. Next, we present knowledge-
intensive processes and respective modeling approaches. The
fCM approach gets dedicated attention because it is the ground-
work for Wickr. Finally, we present works on formal execution
semantics for both traditional, knowledge-intensive, and data-
centric processes.

Chapter 4 (Wickr: Improving fCM). We improve fCM by elaborating
data support and removing ambiguity. The new approach is
named Wickr. It supports data models with associations and two
types of multiplicity constraints. One of them holds globally;
the other one holds eventually. Wickr supports batch processing
and cross-case data objects. Furthermore, we define structural
consistency criteria that describe when the parts of a case model
are correctly integrated.

8

1.4 Structure of the Thesis

Chapter 5 (A Petri Net-Based Semantics for Wickr). We present a
Petri-net-based semantics forWickr that precisely describes the
control flow within fragments. It also supports data flow. How-
ever, data identities, links, and multiplicity constraints are not
covered. Consequently, batch processing (which relies on links)
and multiple concurrent cases (which rely on identities) are also
not supported.

Chapter 6 (Associations and Multiplicity Constraints). Object identi-
ties allow us to distinguish between different data objects and to
model links. We extend the Petri net semantics of Wickr to create
unique identities, whenever a new data object is created. There-
fore, we use colored Petri nets, in which tokens can contain data
objects. We also formalize links among data objects, multiplicity
constraints, and their impact on activities.

Chapter 7 (Sharing Data Among Cases). We extend the mapping
further. Besides object identities, we introduce identities for cases.
Consequently, multiple concurrently running cases can be mod-
eled. The cases do not interfere, except for cross-case data objects.
Cross-case data objects are shared amongmultiple cases and allow
synchronized data access. We present correlation mechanisms to
connect cross-case data objects to cases. In this regard, we discuss
the effect of links and multiplicity constraints.

Chapter 8 (Technical Evaluation.) We providemultiple prototypes for
Wickr. Case models can be designed in standard process and data
modeling tools. A dedicated compiler translates case models to
colored Petri nets. A colored Petri net can be used for verification
against generic and domain-specific rules. However, properties
known from traditional business processes are not necessarily
meaningful for knowledge-intensive ones. We discuss various
properties, such as variants of soundness.
We also present tools assisting knowledge workers at runtime: An
engine tracks the case state and generates forms to enter and view
data. A planning component allowsmodeling goals and planning
a case accordingly. We also discuss the challenges and limitations
of modeling, verifying, and executing flexible processes.

Chapter 9 (Conceptual Evaluation). We complementWickr’s technical
evaluation with a conceptual one. Using well-known frameworks
for knowledge-intensive and data-centric process modeling ap-
proaches, we assess Wickr’s capabilities to represent respective
processes. We compare the results to those of other modeling
languages. Not only the language but also other aspects, such
as tooling and adaptability, are covered. The evaluation shows
both strengths and weaknesses of Wickr. Furthermore, we take
insights gained during our research onWickr and apply them to
BPMN and CMMN.

9

1 Introduction

Chapter 10 (Conclusion). Finally, we conclude the thesis. We sum-
marize our contribution. We also look at open questions and
potential improvements: In the future, Wickr’s support for data
modeling constructs may be improved further, tooling may be
elaborated, and additional use cases may be discussed. Yet,Wickr
already shows the benefits and challenges of coupling data and
flexible process models.

10

2 Preliminaries

Modeling is an important and common in information systems en-
gineering [42, 94, 149] because models help to tame complexity by
focusing on important aspects, while leaving irrelevant parts out [3].
Engineers use models to communicate with stakeholders and to foster
a common understanding. Also, models can be verified, analyzed, and
validated in place of the modeled original, i.e., to find errors [67].

Models can havemultiple instances, and amodel whose instances are
models themselves is a metamodel (see Figure 2.1) [116]. Metamodels
define elements (i.e., concepts and relationships) used in respective
models. By assigning a visual representation for each element in the
metamodel, a notation for models is defined. The semantics of a model
describes the set of all possible instances. Some models have formal
semantics—we can determine the set of instances unambiguously. Oth-
ers have informal or semiformal where this is not possible.

M2: Metamodel

instance of

instance of describes

describes

expresses

Notation

M1: Model

M0: Instance

Figure 2.1: Modeling layers according to the meta object facility [116].

In information systems engineering, many models fall in one of three
categories [42]: Structural, functional, and behavioral models. Struc-
tural models describe how a system is structured; functional models
describe the provided functionality; and behavioral models define how
systems behave. A single system is often modeled by multiple comple-
mentary models: When designing an information system, we may use
a data model that describes the structure of information, a functional
model that contains the provided functionality, and a set of process
models that define the system’s behavior.
In this thesis, we develop a novel case management approach. It

combines aspects from structural and behavioral models and provides
a joint semantics. In this chapter, we briefly introduce structural and
behavioral data modeling (Section 2.1), process modeling and case
management (Section 2.2), as well as Petri nets (Section 2.3).

11

2 Preliminaries

2.1 Data Modeling

Information systems provide access to factual information called data.1
In computer science, structured, semi-structured, and unstructured
data are distinguished. We are interested in structured data, which
can be described by structural data models. However, even structured
data is not necessarily static: Data items may be created, updated, and
deleted. Therefore, we also use behavioral models to describe how
individual data artifacts may evolve. Furthermore, we are primarily
concerned with conceptual modeling and not with implementation.

2.1.1 Data Structure

Following common approaches to conceptual modeling [94, 100, 123]
and especially process modeling [66, 92], we consider data to be con-
tained in a set of objects, which may be linked to one another. Structural
data models describe the internals of objects as well as connections
among them. In this thesis, we use the terminology of the Unified Mod-
eling Language (UML) [123]. A class is a model for similar data objects
and consists of a name and typed attributes. Associations connect classes
and model possible links between data objects. Yet, there can be many
objects for one class and many links for one association. Multiplicity
constraints are defined for each association and each associated class.
They define how many respective links a data object may have at least
and at most. Thus, a data model describes possible data structures.

An instance of a structural data model consists of a set of data objects
and links, so that each data object is an instance of a class, and each
link is an instance of an association, and the entirety adheres to the
multiplicity constraints. While a data model is fixed, the instance may
change. Over time, objects can be updated, new objects can be created,
and additional links can be established. However, the instance must
always comply to the model.

We consider classes and associations, while abstracting data attributes
(see Definition 1). Each association has multiple ends that connect to
classes. Each end has a role and a multiplicity constraint.
Definition 1 (Data Model). A data model d is a tuple

d = (C,R,A, l , u), where

1. C is a finite non-empty set of classes.

2. R is a finite set of roles.

3. A is a finite set of associations.

4. l : (C × R × A) → N0 assigns each class for a given role and
association a lower bound.

1https://www.merriam-webster.com/dictionary/data (2021/11/06)

12

https://www.merriam-webster.com/dictionary/data

2.1 Data Modeling

5. u : (C ×R×A) → (N0 ∪ {∗}) assigns each class for a given role
and association an upper bound. It holds that ∗ is greater than
any number: ∀n ∈ N0 : n < ∗. A class c ∈ C takes part in an
association a ∈ A as role r ∈ R iff u(c, r, a) > 0.

Furthermore, the following properties must hold:
1. Each association has at least two ends:

∀a ∈ A : |{(c, r) ∈ (C ×R)|u(c, r, a) > 0}| ≥ 2

2. Upper bounds must be greater than or equal to the respective
lower bound:

∀c ∈ C, a ∈ A, r ∈ R : l (c, r, a) ≤ u(c, r, a)

⋄

Two functions l and u define multiplicity constraints’ upper and
lower bounds, respectively. for an association a that connects to a class
c with role r, the value u(c, r, a) defines the multiplicity constraint’s
upper bound. If u(c, r, a) = 0, no such association end exists.

We visualize data models as UML class diagrams [123]. Classes are
represented by rectangles, binary associations by undirected edges,
and n-ary association by a set of edges and a rhombus. Roles and
multiplicity constraints are annotated textually. Furthermore, we omit
roles that equal the corresponding class name in lower case.

Figure 2.2 depicts a data model for an insurance. It describes policies,
clients, claims, and reviews, as well as their relationships. Clients can
be linked as insurers (a1) or co-insurers (a2) to policies. Policies have
exactly one insurer and arbitrarily many co-insurers. Every client can
be linked to a set of claims. Claims can be linked to arbitrarily many
reviews, and for each review, there is exactly one claim.

Formally, the example is described by di = (Ci, Ri, Ai, li, ui), where

Ci = {Client,Policy,Claim,Review}
Ri = {insurer, co-insurer, policy, claim, review, client}
Ai = {a1, a2, a3, a4}

The multiplicity constraints are defined by Table 2.1
Objects for clients, policies, claims, and reviews with corresponding

links compose the instances of the data model di. Any valid instance

ClaimClient

Policy Review

insurerco-insurer
0..*

0..*

1..1

0..*

1..1

1..1

0..*

0..*

a1a2

a3

a4

Figure 2.2: A data model for an insurance.

13

2 Preliminaries

Table 2.1: Formal definition of the multiplicity constraints in Figure 2.2.
Class Role Association li ui

Client insurer a1 1 1
Client co-insurer a2 0 *
Client client a3 1 1
Policy policy a1 0 *
Policy policy a2 0 *
Claim claim a3 0 *
Claim claim a4 1 1
Review review a4 0 *

all other combinations 0 0

must adhere to the multiplicity constraints. Let Oi be a set of objects
partitioned into clients, policies, claims, and reviews.

Oi = OClient ∪· OPolicy ∪· OClaim ∪· OReview

Furthermore, let Li be a set of links partitioned according to the as-
sociations, where a link is a set of pairs, which consist of a role and a
corresponding object.

Li = L1 ∪· L2 ∪· L3 ∪· L4

The tuple (Oi, Li) is a valid instance of di if it satisfies the multiplicity
constraints. For association, a1 the following must hold:

∀op ∈ OPolicy :li(Client, insurer, a1) ≤
|{oc ∈ OClient|{(policy, op), (insurer, oc)} ∈ L1}| ≤
ui(Client, insurer, a1)

The following instance satisfies all the multiplicity constraints and is
therefore a valid instance of the model:

OClient ={Miller,Smiths,Adams}
OPolicy ={Policy1,Policy2}
OClaim ={Claim1}
OReview =∅

L1 ={{(insurer,Miller), (policy,Policy1)},
{(insurer,Smith), (policy,Policy2)}}

L2 ={{(co-insurer,Adams), (policy,Policy2)}}
L3 ={{(client,Smiths), (claim,Claim1)}}
L4 =∅

The instance has to comply with the data model at all times: When, for
example, a review is created, it must be linked to a claim. When a new
claim is made, it must be linked to one of the clients.

14

2.1 Data Modeling

Definition 1 has its limitations. In practice, some data models distin-
guish between different types of associations, most commonly whole-
part relationships. Furthermore, inheritance can be used to construct
class hierarchies (subtypes). However, we do not consider specialized
associations and hierarchies in this thesis.

2.1.2 Data Behavior

Data objects have states, and states can change over time. The state of an
object comprises all internal information and the links to other objects.
In behavioral models, however, states are often reduced to a finite, non-
empty set of abstract values. Each of these values is meaningful to the
domain: For example, the state of insurance claims may be reduced to
a set of important milestones.

Once relevant states have been identified, the object behavior can be
described by finite state transition systems. A state transition system
(Definition 2) consists of a set of states and a set of valid state transitions.
It can be used to describe the state space of objects. Given an object in a
state, it can only change to one of the defined successor states.
Definition 2 (Finite State Transition System.). A finite state transition
system b is a tuple b = (Q, δ), where

1. Q is a finite non-empty set of states;

2. δ ⊆ Q×Q is the set of possible state transitions.

⋄

Often, the object behavior is enriched with additional information. A
common variant is the object lifecycle (Definition 3). It is a state transi-
tion system with a dedicated initial state and a set of final states. When
a class is instantiated, the new object is in its initial state. Eventually,
the object ought to reach a final state.
Definition 3 (Object Lifecycle.). An object lifecycle λ is a tuple

λ = (Q, q0, Qf , δ), where

1. Q is a finite non-empty set of states.

2. δ ⊂ Q×Q is the set of possible transition relation.

3. q0 ∈ Q is the initial state.

4. Qf ⊆ Q is the set of final states.

⋄

Figure 2.3 depicts the object lifecycle for class claim. A claim starts in
state received. It can change to state assessed. In assessed, the object can

15

2 Preliminaries

received assessed

approved

declined

Figure 2.3: Object lifecycle for claim objects. The initial state is received.
The final states are declined and approved.

transition to declined or approved. Formally, the object lifecycle λClaim is
specified as follows: λClaim = (QClaim, q0;Claim, Qf ;Claim, δClaim), where

QClaim = {received, assessed, approved, declined}
q0;Claim = {received}
Qf ;Claim = {approved, declined}

δClaim = {(received, assessed), (assessed, approved), (assessed, declined)}

Wecall a combination of a class and a state a phase (Definition 4) [100].

Definition 4 (Phase). Let c be a class and bc = (Qc, δc) the state tran-
sition system for objects of c. PHc = {c} × Qc is the set of phases for
class c. For a phase (c, q), we also write c[q]. ⋄

2.2 Business Process Modeling

Business processes group activities that, when executed in coordination,
contribute to a common goal [149]. An activity is a unit of work. When
performed, activities may create, read, and update data objects. A
process model defines activities and their possible execution orders.

Traditional process models are well-defined and highly structured.
Well-defined means that all internal and external constraints are speci-
fied. Highly structured requires that all variants are defined explicitly.
These process models are suited for standardization of repeatable pro-
cesses [51]. Yet, they do not fit knowledge-intensive processes, which
are flexible and often not fully known at design-time [72]. Therefore,
case management has been proposed.

This section is dedicated to process modeling. We present traditional
business process models with and without data, as well as fragment-
based Case Management (fCM), which is the outset of our work.

2.2.1 Traditional Process Models

Traditional process models are imperative and activity-centric. They
limit a process to a few fully defined variants, which reduces the effort
spend on implementation and quality assurance. Furthermore, when
executed frequently, small improvements may have significant effects.
The most common imperative and activity-centric process modeling
language is BPMN [92, 107].

16

2.2 Business Process Modeling

Activity-centric process models focus on activities and causal de-
pendencies among them. On this basis, the state of a process instance
depends on the activities that have been executed already, and the state
determines the activities that can be executed next. The process model
represents this causal dependency by control flow. When an activity is
executed, its outgoing control flow is triggered, which enables the next
activity. Additionally, gateways represent decisions and concurrency:
An exclusive gateway triggers only one of multiple alternative control
flows; a parallel gateway triggers all outgoing control flows.
Definition 5 (Business Process Model.). A business process model p is
a tuple p = (N,

N−→), where
1. N = {s} ∪· NA ∪· N× ∪· N+ ∪· NE is a set of control flow nodes

partitioned into
a) a single start event s,
b) a finite non-empty set of activities NA,
c) a finite set of exclusive gateways N×,
d) a finite set of parallel gateways N+, and
e) a finite non-empty set of end events NE .

2. N−→⊆ (N \NE)× (N \ {s}) is the control flow relation.
Furthermore, the control flow must satisfy the following properties:
Each node n ∈ N is on a path from s to an end event e ∈ NE . The start
event has one outgoing and no incoming control flow. Each activity
has exactly one incoming and one outgoing control flow, and each end
event has exactly one incoming and no outgoing control flow. Gateways
have at least one incoming and one outgoing control flow. Each gateway
should have multiple incoming or multiple outgoing control flows. ⋄

Figure 2.4 depicts a process model for handling an insurance claim.
The process begins when the insurance receives a new claim from a
client (s1). A worker assesses the claim (a1) and decides (×1) whether
a review is necessary. If the worker decides for a review, they subse-
quently request (a2) and receive (a3) it. Eventually, the worker makes
a decision (a4): If the claim is declined, the worker informs the client
(a5) and the process terminates (e1). In case of approval, the worker
concurrently (+1) informs the client (a6) and pays the reimbursement
(a7).

While data is not modeled, it is still present in the process: The claim,
the assessment, the review, and the decision are data objects.

Data plays a minor role in traditional business process modeling. The
BPMN standard version 1.0 states

[. . .] the behavior of the Process can be modeled without
Data Objects for modelers who want to reduce clutter. The
same Process can be modeled with Data Objects for model-
erswhowant to includemore informationwithout changing
the basic behavior of the Process. [41, p. 92]

17

2 Preliminaries

assess
claim
a1claim

received
s1

×1 ×2

request
review
a2

receive
review
a3

decide
on claim

a4

×3+1+2

send
acceptance

letter
a6

pay
reimburse-

ment
a7

send
rejection

letter
a5

claim
approved

e2

claim
declined

e1

Figure 2.4: Process model for the claim handling process at an insur-
ance.

Data can be modeled by data objects that consist of a name (often
the class name) and a state. Activities create, read, and write data
objects (in specific states). Yet, data only augments the process without
changing the process execution.
Since BPMN version 2.0 [92], additional data-related information

can be specified, but they are not represented visually:

• Data objects may reference a data structure [92, p. 90].

• The inputs and outputs of activities are grouped into alternative
input sets and output sets, respectively [92, p. 217 f.]. An addi-
tional relation defines possible input-output-set combinations.

BPMN 2 also acknowledges the significance of data on process execu-
tion: To execute an activity, at least one of its inputs sets is required.
Furthermore, data conditions may define how the process branches.
We define data-aware processes accordingly (Definition 6).
Definition 6 (Data-Aware Process Model, Data Condition). A data-
aware process model pda is a tuple pda = (N,

N−→, DO, i , o, io, con), where

1. N = {s} ∪· NA ∪· N× ∪· N+ ∪· NE is a set of control flow nodes
partitioned into
a) a single start event s,
b) a finite non-empty set of activities NA,
c) a finite set of exclusive gateways N×,

18

2.2 Business Process Modeling

d) a finite set of parallel gateways N+, and
e) a finite non-empty set of end events NE .

2. N−→⊆ (N \NE) ∪ (N \ {s}) is the control flow relation.

3. DO is a set of data object nodes. Each data object node (c, q) ∈ DO
is a phase (Definition 4).

4. i : NA → P(P(DO)) assigns each activity a non-empty set of
(possibly empty) input sets.

5. o : (NA ∪ {s}) → P(P(DO)) assigns each activity and the start
event a non-empty set of (possibly empty) output sets.

6. io : NA → P(P(DO) × P(DO)) is a function assigning each
activity a set of valid input-output-set combinations. It holds that
io(a) ⊆ i(a)× o(a) for all activities a ∈ NA.

7. con :
N−→→ P(P(DO)) assigns each control flow a data condition

(see below). Only control flow starting in an exclusive gateway
can be conditional:

∀n1
N−→ n2 : n1 ̸∈ N× ⇒ con(n1, n2) = {∅}

A data condition is a set of sets that contain data object nodes. A data
object node is used as a propositional variable. Its value is true if a
respective object exists. Otherwise, it is false. This means the empty set
is equivalent to true. Let CON be a data condition, it is interpreted as a
logical formula in disjunctive normal form, where a set of data object
nodes is a product term:

CON ≡
∨

Θ∈CON

 ∧
(c,q)∈Θ

(c, q)

⋄

Data object nodes can connect a processmodel to a datamodel, yet the
semantics of such models do not consider details of the data structure,
such as associations and multiplicity constraints.
Figure 2.5 models a data-aware version of the insurance process.

When the start event occurs, a claim object is created in state received. It
is input to activity a1, which has two output sets: The claim changes
to state assessed and a risk object is created either in state regular or in
state high. In case a review is required, a2 is executed, and a respective
object is created in state required. Activity a3 updates the review to state
received. Activity a4 models a decision. It has three input sets, consisting
of a claim in state assessed and either

• a risk in state regular; or

• a risk in state regular and a review in state received; or

19

2 Preliminaries

• a risk in state high and a review in state received.

Activity a4 also has two alternative output sets, it either approves or
declines the claim. The state of the claim is used for the conditional
branching of the following exclusive gateway (×3): In the model, we
represent control flow conditions by associating data object nodes to
the control flow. The rest of the process resembles the model Figure 2.4
but includes data.

claim
received

s1

assess
claim
a1

request
review
a2

receive
review
a3

decide
on claim

a4

send
acceptance

letter
a6

send
rejection

letter
a5

pay
reimburse-

ment
a7

claim
acceptance

e2

claim
rejected

e1

×3+1+2

×1 ×2

Claim

[received]

Risk

[regular]

Risk

[high]

Claim

[declined]

Claim

[assessed]

Claim

[approved]

Review

[received]

Review

[required]

Claim

[approved]

Claim

[declined]

Claim

[assessed]

• ◦ △ ■⋄

•■ ⋄△

◦ ⋄ △
♦

⋆

Figure 2.5: Process model diagram representing the example process
of handling a claim at an insurance, including data objects,
data flow, and markers for input and output sets.

20

2.2 Business Process Modeling

The set of data object nodes DOi in the insurance example contains
all phases occurring in the process model:

DOi = {({Claim} × {received, assessed, declined, approved})∪
({Risk} × {regular, high})∪
({Review} × {requested, received})}

In general, input and output sets are not part of the visual representation.
However, we mark them with icons on the data object nodes. The
function ii defines the input sets for each activity. Some activities, such
as a1, have a single input set, others, such as a3, have multiple:

ii(a1) = {{(Claim, received)}}
ii(a4) = {{(Claim, assessed), (Risk, regular)},

{(Claim, assessed), (Risk, regular), (Review, received)},
{(Claim, assessed), (Risk, high), (Review, received))}}

Similarly, the start event and all activities have output sets. Some have
only one, such as s1, others have multiple, such as a1 and a3:

oi(s1) = {{(Claim, received)}}
oi(a1) = {{(Claim, assessed), (Risk, regular)},

{(Claim, assessed), (Risk, high)}}
oi(a4) = {{(Claim, declined)},

{(Claim, approved)}}

The function ioi may limit input-output-set combinations. Often, how-
ever, all possible combinations are valid: Activity a4 has multiple input
sets and multiple output sets, and all combinations are allowed.

ioi(a4) =ii(a4)× oi(a4)

Data-aware BPMNmodels define highly structured processes with
simple data integration. Yet, there are limitations. First, BPMN does
not include a combined semantics for process and data models, albeit
possible conflicts between them. For example, a process may create
objects in an order contradicting the multiplicity constraints in the
data model [94]. Second, when representing a flexible process, highly
structured models become complex [51].

The current model of the insurance example (Figure 2.5) is oversim-
plified. It assumes that all claims are complete, that at most one review
is requested, and that external reviewers always respond. Furthermore,
clients cannot revoke their claims. Certainly, the simplicity of the model
is one of its strengths, but it is unsuited to describe all variants. Some
variants may even be unknown during design. Therefore, the insurance
requires more flexibility than traditional business process models offer.

21

2 Preliminaries

2.2.2 Fragment-Based Case Management

Case management addresses the flexibility and uncertainty of know-
ledge-intensive processes [82]. Activities and data are organized in
cases. However, definitions of cases differ [60, 115, 148]. In this thesis,
we adapt the notion coined by CMMN [115, p. 5]: A case is a process
instance including actions regarding a subject in a particular situation to
achieve a goal. Actions include activity instances. Examples for subjects
are a patient, a claim, or a citizen. The subject is in a situation such as a
patient’s hospital visit or a claim’s pending state. The goal is to resolve
the situation for the subject, e.g., to treat the patient or to handle the
claim. To describe the situation accurately, a case also includes a history
of past actions. We define a case formally in Definition 7.
Definition 7 (Case). A case is a tuple case = (E,Subject, H,G), where

1. E is the set of enabled actions.
2. Subject is a representation of the subject.
3. H is the case history.
4. G is the case goal.

The situation is encoded in the representation of the subject, the enabled
actions, and the case history. ⋄

The definition of a case is vague because details depend on the case
management approach. For this reason, we refine the definition once
we have introduced case models.

Some case management approaches are purely data-centric [60].
They describe the subject and situation by data artifacts and the goal
by data conditions. In the case model, the subject’s data structure is
described by a data model which is sometimes called domain model
or information model [115]. Furthermore, activities are defined with
their data requirements and data operations.
But not all knowledge-intensive processes are purely data-driven.

The observation that knowledge-intensive processes may contain both
highly structured and loosely coupled parts led to the development of
fCM [90, 112]. It combines techniques from data-centric and activity-
centric process modeling: Highly structured control-flow-based frag-
ments can be combined dynamically based on data conditions. An
fCMmodel combines a data model, object behavior models, and pro-
cess models. The combination of different modeling paradigms allows
representing a variety of constraints and rich domain knowledge. Fur-
thermore, the fCM approach is adaptive: If the model lacks desired
behavior, new fragments can be added at runtime.

Domain Models in fCM

In fCM, a data model that describes the data objects of a case is called a
domainmodel [112]. A domainmodel is a full-fledged datamodel with
a dedicated class for the subject, which is called case object. The model

22

2.2 Business Process Modeling

contains classes with typed attributes and associations withmultiplicity
constraints. However, associations and attributes are not part of the
model’s execution semantics [112, 117, 143]. Since we are primarily
interested in the semantics, we define a simplified version of the case
model without changing the behavior. An fCM domain model is a set
of classes with a dedicated class for the case object which represents
the subject of the case (Definition 8).
Definition 8 (fCM Domain Model). An fCM domain model is a tuple
dfcm = (C, cco), where

1. C is a finite non-empty set of classes.

2. cco ∈ C is the case class describing the central case object/subject.

⋄

In the insurance example, the claim is the case object (see domain
model in Figure 2.6). There is exactly one claim for each case. Further-
more, there are the classes Review, Risk, and Decision.

«case object»
Claim

Review

Risk

Decision

Figure 2.6: An fCM domain model for the insurance example.

The model is formally defined by the tuple dfcm;i = (Ci, cco;i), where

• Ci = {Claim, Risk, Review, Decision} is the set of classes, and

• cco;i = Claim is the case class.

Object Behavior in fCM

In fCM, the object behavior is defined by object lifecycles.2 They specify
data operations that can be performed by activities. Therefore, the
object behavior constrains the process. Every fCM model contains
object lifecycles that are assigned to classes.
Figure 2.7 depicts the object lifecycles for the classes in Figure 2.6.

A claim starts in state received. It can transition to either complete or
incomplete. It is possible to update a claim that is in state incomplete to
state update pending. From update pending, the claim can change back to
incomplete or to complete. A complete claim continues to be assessed, in
review, and reviewed before reaching its final state, archived. The behavior
of other objects can be inferred from the lifecycles.

2While not included here, [112] allows labeled state transitions. However, labels do
not influence the case execution.

23

2 Preliminaries

received complete assessed reviewed archived

high

init

regular

required received considered

init

approved

declined

incomplete
update
pending in review

Decision

Review

Risk

Claim

Figure 2.7: Object lifecycles for the insurance example (see classes in
Figure 2.6).

Process Fragments in fCM

The case behavior is primarily defined by a set of process fragments
(Definition 9). Each fragment is a highly structured control flow graph
including data objects and data flow. It is similar to a data-aware process
model (cf. Definition 6). However, the inputs and outputs of activities
are not grouped into input sets and output sets, and fCM does not
define conditional control flow.

Nevertheless, fragments are inherently data-driven. They have data-
based preconditions. Furthermore, all fragments of one case operate
on shared data, which allows synchronization: A fragment or one of its
activities may require data that is provided by another fragment. Yet,
except for the data requirements, fragments can run concurrently and
repeatedly, which results in flexible behavior.
Definition 9 (Process Fragment.). Let dfcm = (C, cco) be a domain
model, Λ a set of object lifecycles, and b : C → Λ a function assigning
each class a behavior. An fCM process fragment f is a tuple

f = (N,
N−→, DO, read ,write, CON pre), where

• N = {s}∪· NA∪· N×∪· N+∪· NE is the set of control flow nodes par-
titioned into a start event, activities, exclusive gateways, parallel
gateways, and end events, respectively.3

• N−→⊂ N ×N is the control flow relation.
• DO is a set of data object nodes. Each data object (c, q) ∈ DO is a

phase (Definition 4).
• read : NA → P(DO) assigns each activity data object nodes that

it may read.
• write : NA → P(DO) assigns each activity data object nodes that

it may write.
3Hewelt and Weske [112] define start events implicitly through the precondition.

24

2.2 Business Process Modeling

• CON pre ⊆ P(DO) is the fragment’s precondition. If the precon-
dition is not a tautology, the fragment has a conditional start event.

⋄

Control flow defines causal dependencies among activities imper-
atively. Preconditions and incoming data flow define requirements
of fragments and activities declaratively. By combining imperative
and declarative process modeling, fCM can express loosely structured
behavior more concisely than traditional process models.

Figure 2.8 depicts fragments for the insurance’s claim handling pro-
cess. In comparison to the process model in Figure 2.5, more variants
are supported: A claim is not necessarily complete, so updates may
be requested and received (fragment 2). Furthermore, an internal
(fragment 3) or multiple external reviews (fragment 4) can be created.

Fragment 1 includes the core activities of the process. It can be aug-
mented by executing fragments 2–4. When the case starts, the knowl-
edge worker checks whether the claim is complete. If it is incomplete,
fragment 3 may be executed once or multiple times (sequentially).
Once the claim is complete, fragment 1 continues by assessing the
risk. If the risk is regular, one internal review is created and completed
(fragment 3). If the risk is high, one or more external reviews may be
requested, received, and considered (fragment 4). External reviews
can be handled concurrently. Once the knowledge worker decides that
sufficiently many reviews have been considered, the claim is changed
to state reviewed and fragment 1 continues: The knowledge worker de-
cides whether to approve or decline the case and continues the process,
respectively.

To demonstrate the formalization, consider fragment 3. The fragment
is formally defined by the tuple f3:

f3 = (N3,
N3−−→, DO3, read 3,write3, CON pre;3), where

• N3 = {s3, create review, complete review, e3} is the set of control
flow nodes with start event s3 and end event e3.

• N3−−→ is the control flow relation.
N3−−→={(s3, create review), (create review, complete review),

(complete review, e3)}

• DO3 is the set of data object nodes.

DO3 =({Claim} × {assessed, in review, reviewed})∪
({Review} × {required, completed})

• read 3 is a function assigning activities their inputs.

read 3(create review) ={(Claim, assessed)}
read 3(complete review) ={(Claim, in review), (Review, required)}

25

2 Preliminaries

Claim
[received]

Claim Claim Claim Claim

Claim Risk Risk

Claim

Decision

Decision

[received] [complete] [assessed] [reviewed] [declined]

[incomplete] [regular] [high] [approved]

[reviewed]

check
complete-

ness

assess
risk

decide on
claim

send
rejection

send
acceptance

pay
reimburse-

ment

Claim
[assessed]

AND
Risk

[regular]

ClaimClaimClaim

Review Review

[assessed] [in review] [reviewed]

[required] [completed]

complete
review

create
review

Claim
[incomplete]

Claim Claim

Claim Claim

[incomplete] [complete]

[update
pending] [incomplete]

request
update

receive
update

Claim
[assessed]

OR
(Claim[in review]

AND Risk
[high])

Claim Claim Claim Claim

Review Review Claim

[in review] [assessed] [in review] [reviewed]

[required] [completed] [in review]

request
external
review

receive
external
review

reassess
claim

4

2 3

1

Figure 2.8: Process fragments for the insurance example. Fragment 1
handles the main steps, fragments 2 incomplete claims and
fragments 3 and 4 reviewing.

26

2.2 Business Process Modeling

• write3 assigns each activity their outputs.

write3(create review) ={(Review, required), (Claim, in review)}
write3(complete review) ={(Claim, reviewed), (Review, completed)}

• CON pre;3 = {{(Claim, assessed), (Risk, low)}} is the fragment’s
precondition.

Goal Specifications in fCM

In traditional process models, goals are represented by end events. In
fCM each fragment has end events, but reaching one is not directly
related to the goal of the case. Instead, a case model’s goal is defined
by a termination condition (Definition 10). Knowledge workers may
close the case if the condition evaluates to true.
Definition 10 (Termination Condition). Let dfcm = (C, cco) be a domain
model, Λ a set of object lifecycles, and b : C → Λ a function assigning
each class a behavior. The set DO =

⋃
c∈C ({c} × b(c).Q) contains all

phases. The termination condition CON term ∈ P(P(DO)) is a data
condition (see Definition 6). ⋄

The insurance example has two possible outcomes. The claim is ap-
proved or declined. In themodel, these outcomes are represented by the
state of the decision. The termination condition is defined accordingly:

CON term;i = {{(Decision, declined)}, {(Decision, approved)}}

It can be interpreted as a predicate logic formula:
CON term;i ≡Decision[approved] ∨ Decision[declined]

If the case contains a decision in state approved or declined, knowledge
workers can close the case.

The fCM Case Model

An fCM case model (Definition 11) combines the elements specified
before. In addition, it contains a selection of classes that are instantiated
when a new case begins. All parts of the case model are connected.
Conditions and data object nodes use classes and states defined in the
domain model and the object lifecycles, respectively. Constraints of the
domain model and lifecycles apply to the case behavior: Each case must
instantiate the case class exactly once, and activities can only perform
state changes that are specified in the object lifecycles.
Definition 11 (fCM Case Model). An fCM case model fcm is a tuple
fcm = (dfcm,Λ, b, C0, F, CON term), where

1. dfcm = (C, cco) is a domain model.
2. Λ is a set of object lifecycles.
3. b : C → Λ is a function assigning each class c its behavior.

27

2 Preliminaries

4. C0 ⊆ C is a set of classes that are instantiated during case initial-
ization.

5. F is a set of process fragments.

6. CON term is the termination condition.

All data object nodes and all conditions contain only phases specified
by the domain model’s classes and their object behavior. ⋄

The case model for the insurance example consists of the domain
model in Figure 2.6, the object lifecycles in Figure 2.7, the set C0;i con-
taining Claim, Risk, and Decision of classes that are instantiated during
case initialization, the fragments in Figure 2.8, and the termination
condition CONDterm;i.

Cases in fCM

With fCM’s definition of a case model, we can refine our definition of a
case. A case comprises a subject, a situation, actions, and a goal. In fCM,
the subject is described by the case object and other auxiliary objects.
Each belongs to one class and has one state. The actions include starting
fragment instances and executing activity instances that operate on data
objects. The goal is specified by the termination condition. Definition 12
defines this formally. Knowledge workers have different options to
evolve a case: They can perform enabled actions to change the current
situation, or they can add new fragments to the model.
Definition 12 (fCM Case). Let fcm = (dfcm,Λ, b, C0, F, CON term) be a
case model. A corresponding case is defined as follows:

1. The Subject described by a set of data objects O, where4
a) o.class is the class of object o ∈ O.
b) o.state is the state of object o ∈ O.

2. A set E ⊆ (F ∪ (P(O)×NA;F ×P(O))) of enabled actions, where
O is the universe of possible objects and each action is either a
fragment f ∈ F that can be instantiated or a tuple (Or, na, Ow)
consisting of
a) a set Or containing data objects that are read and
b) a set Ow of data objects that are written
c) by an instance of activity na ∈ NA;F =

(⋃
f∈F f.NA

)
.

3. A history H of past actions.

4. The goal G = CON term.

⋄
4We use the period to access members of a tuple. Given a collection T of tuples, where
each tuple t ∈ T has the structured (a, b, c), let t1 be a tuple t1 = (a1, b1, c1) ∈ T .
Instead of a1 we also write t1.a.

28

2.2 Business Process Modeling

A Sketch of fCM’s Semantics

A case is instantiated, advanced, and eventually closed. Meanwhile,
all parts of the case model combined define the space of actions for
the knowledge workers. To illustrate this, we follow the knowledge
workers of the insurance through a case of the claim handling example.

Mr. Miller submits a new claim to his insurance. Upon receiving the
claim, a respective case is instantiated. One object for each of the classes
claim, risk, and decision is created. Each of these object is in its initial
state, and no activities have been executed yet.

Only the precondition of fragment 1 is enabled. A knowledge worker
can start a respective fragment instance. Since Mr. Miller has provided
all the necessary information, the knowledge worker marks the claim
as complete. Next, the worker assesses the risk. Due to the history of
Mr. Miller and the comparably low amount of the claim, the worker
considers the risk to be regular. The claim is changed to state assessed.

The next activity of fragment 1 is not yet enabled, but the precondition
of fragment 3 is satisfied. The knowledgeworker instantiates fragment 3,
and an internal reviewer creates a review. Together with the knowledge
worker, the review is completed—the claim changes to state reviewed.
This enables activity “decide on claim” in fragment 1. It changes the
decision’s state to either declined or approved. The claim of Mr. Miller is
approved, and the knowledge worker completes the case by informing
Mr. Miller and reimbursing him. Afterwards, she closes the case.

The fCM case model does not contain explicit input sets, output sets,
and input-output-set combinations. Yet, the sets and their combinations
exist implicitly. An activity can access at most one object for a certain
class. Activity “decide on claim”, for example, reads and writes one
decision object, although two respective data object nodes are connected
via outgoing data flow. Activities that have multiple data object nodes
for one class connected by incoming (or outgoing) data flow may read
(or write) only one respective object. Input sets and output sets result
from these alternatives. Subsequently, “decide on paper” has one input
set and two output sets. Furthermore, the combination of input and
output sets are limited by the object behavior.

Figure 2.9 shows an example of this. Activity amay read aC1 object in
state s1 or s2 and a C2 object in state z1. This results in the two input sets
{C1[s1], C2[z2]} and {C1[s2], C2[z2]} . The activity may write the C1
object in either state s2 or s3.This results in the two output sets{C1[s2]}
and {C1[s3]}. Based on C1’s object lifecycle, we know that its state can
only change from s1 to s2 and from s2 to s3. Thus, we have the following
input-output-set combinations:

• input set {C1[s1], C2[z2]} with output set {C1[s2]} and

• input set {C1[s2], C2[z2]} with output set {C1[s3]}.

29

2 Preliminaries

C1

C1

s1 s2 s3

C1

C1

C1

C2 a

[s1] [s2]

[s3][s2]

[z1]

Figure 2.9: An example of implicitly defined input sets, output sets, and
input-output-set combinations.

2.3 Petri Nets & Formal Execution Semantics

The specification and implementation of information systems requires
both domain knowledge and IT expertise. Models can aid the com-
munication among respective experts. Furthermore, models can be
verified, analyzed, and implemented if they have a precise semantics.
But common process modeling languages, such as BPMN, define in-
formal or semiformal semantics, e.g., by using textual descriptions. In
some cases, this can be insufficient. Formal models, by contrast, have
mathematically defined execution semantics, which makes them suit-
able for verification, analysis, and implementation. Arguably, the most
common formal models for business processes are Petri nets.

2.3.1 Petri Nets

A Petri net [2] is a directed bipartite graph consisting of places, transi-
tions, and arcs (Definition 13). Placesmay hold tokens. The distribution
of tokens on places is called marking. It is the state of a Petri net. The
marking changes by firing a transition, which removes tokens from and
produce tokens into places.
Definition 13 (Petri Net). A Petri net pn is defined by a tuple

pn = (S, T,
ST−−→,m0), where

1. S is a finite set of places.
2. T is a finite set of transitions-
3. ST−−→⊆ ((S × T) ∪ (T × S)) is a set of arcs connecting places and

transitions.
4. m0 : S → N0 is the initial marking. It is a function assigning each

place a number of initial tokens.
Furthermore, we define the concepts preset and postset:

1. The preset •t of a transition t ∈ T is the set of all places that have
an outgoing edge leading to t:

•t = {s ∈ S|s ST−−→ t}

30

2.3 Petri Nets & Formal Execution Semantics

2. The postset t• of a transition t ∈ T is the set of all places that have
an incoming edge starting in t:

•t = {s ∈ S|t ST−−→ s}

⋄

The Petri net’s structure does not define its semantics. Instead, differ-
ent semantics can be assigned to the samemodel. We employ additional
rules to specify the semantics clearly. The rules must define valid mark-
ings and the enablement and firing of transitions.

In the semantics that we use, places can hold any number of tokens.
A transition consumes one token from each place in its preset and
produces one token into each place in its postset:

1. A transition is enabled if there is at least one token in each place
of its preset:

t is enabled in m ⇔ ∀s ∈ •t : m(s) > 0

2. When a transition fires, it removes a token from each place in its
preset and produces a token into each place in its postset. Let t
be a transition enabled in m , the marking m ′ is reached by firing t

(written as m t−→ m ′):

m ′(s) =

m(s)− 1 if s ∈ •t \ t•
m(s) + 1 if s ∈ t • \ • t
m(s) otherwise

By firing a transition, the marking may change and so may the set
of enabled transitions. Thus, a sequence of transitions leads to a se-
quence of markings. All markings that can be reached from a Petri
net’s initial marking and the transitions leading from one marking to
another, describe the net’s state space which is called reachability graph
(Definition 14). The nodes of the graph are markings, and the edges
represent the firing of transitions.

Definition 14 (Reachability Graph). Let pn = (S, T,
ST−−→,m0) be a Petri

net. Let m and mi be two markings of pn. Marking mi is reachable from
m (written as m ∗−→ mi) if

• m = mi or

• ∃t1, . . . , tn ∈ T, n ≥ 1 : m
t1−→ m1 . . .

tn−→ mi.

The reachability graph rg(pn) = (M,
M−→) is the Petri net’s state space,

where

1. M = {m |m0
∗−→ m} is the set of markings reachable from the initial

marking m0.

31

2 Preliminaries

2. M−→⊆ M × T ×M is the set of state transitions:

(m , t,m ′) ∈ M−→⇔ m t−→ m ′

⋄

We can model business processes as Petri nets. Transitions represent
events, activities, and gateways. Places model data object nodes and
control flow. Tokens represent that a respective data objects exist or
that the corresponding control flow has been triggered. Just as activi-
ties, events, and gateways require and update data objects and just as
they are enabled by control flow, transitions consume tokens from and
produce tokens into respective places.

p0 a1 p1

×1.2

×1.1 p2

p3 a2 p4

×2.1

×2.2

a3

a4

p7 ×3.1

×3.2

p9 +1

p8

p11

p12

a5

a6

a7

p10

p14

p13

p15

finale1

+2 e2

p5initial

s1

p6

token

Figure 2.10: Petri net for the process modeled in Figure 2.4. Places are
represented by ovals, transitions by rectangles.

The Petri net in Figure 2.10 models the insurance process without
data (cf. BPMN, Figure 2.4). A token in place initial represents a process
instance that has not started. A token in final represents a terminated
instance. The place p0, p1, . . . p15 represent control flow arcs. If a token
is in such a place, the corresponding control flow has been triggered,
but the subsequent control flow node has not yet terminated.

Transitions represent activities, gateways, or events. However, a tran-
sition fires instantaneously, while an activity takes time: Its execution
begins at one point, and it terminates at another. Thus, the Petri net in
Figure 2.10 abstracts from the running state of activities. The firing of a
transition represents the activity’s (gateway’s, or event’s) termination.
The Petri net describes the process unambiguously [15]. The initial

marking has one token on place initial. In this marking, transition s1—
the start event—is enabled. When an enabled event, activity, or gateway
terminates, the outgoing control flow is triggered. Accordingly, firing
transition s1 removes a token from place initial and produces one into
p0. Now, transition a1 is enabled. Eventually, one of the end events e1
or e2 is enabled, fires, and the process completes. In the final marking,
there is one token on the place final and no transitions are enabled. We

32

2.3 Petri Nets & Formal Execution Semantics

can consider all possible sequences of transitions and the sequence of
markings they produce. This results in the Petri nets reachability graph
(see Figure 2.11), which is the state space of the modeled process.

p0 p1

p3

p2 p6

p4 p5

p7 p8

p11, p12

p9 p10

p12, p14

p11, p13

p13, p14p15

final

initial

s1 ×1.2

a1

a2 a3

×2.2

a4

×3.2

e1

e2 +2

+1

a6

a7

a7

a6

×3.1×2.1×1.1

Figure 2.11: Reachability graph for the Petri net in Figure 2.10. The label
of the place describes the distribution of tokens in the net.

Tokens in a Petri net may represent different concepts, such as a
triggered control flow or a data object. The place holding a token
determines its domain-specific semantics, but tokens in the same place
cannot be distinguished. This limits the use of classical Petri nets.
The Petri net in Figure 2.10 cannot represent multiple concurrent

process instances accurately. Given two process instances, we can reach
a marking with one token in each of the places p11, p12, p13, and p14.
However, we cannot know whether the tokens in p13 and p14 belong to
the same process instances, and whether gateway+2 should be enabled.

Nevertheless, Petri nets are often sufficient to model a single instance
of a highly structured process: These processes usually instantiate
classes at most once and iterate loops sequentially. In other words, each
place of the corresponding Petri net holds at most one token. However,
these assumptions do not hold for flexible data-centric processes.

2.3.2 Colored Petri Nets

Colored Petri nets are data-aware. Tokens are data items, and places
are typed, so they can only hold tokens of a particular type. When a
transition fires, it does not merely consume and produce tokens. In-
stead, tokens and values derived from tokens are bound to variables.
Variables can be used in arc expressions to calculate other tokens that
are consumed or produced. Furthermore, variables may be used in a
guard condition that determines whether the transition is enabled.

33

2 Preliminaries

In colored Petri net jargon, a data type is called colorset, and a value
is a color. Colors can be atomic, structured (e.g., functions or tuples), or
collections (e.g., sets, multisets (Definition 15), or lists). Furthermore,
colored Petri nets use an expression language for arc expressions and
guards. Guards evaluate to boolean and arc expressions to multisets or
colors that belong to the colorset of the connected place.
To summarize, a colored Petri net (Definition 16) is a Petri net ex-

tended with a set of colorsets. A set of variables. A typing function for
places. A guard for each transition. An arc expression for each arc. And
an initialization expression for each place. The initialization expressions
define the initial marking of the net and must not use variables. The
marking of a colored Petri net assigns each place a multiset of colors.
Definition 15 (Multiset). A multiset (cf. [56, pp. 82–83, 137, p. 15])
is an unordered collection that may contain the same value multiple
times. Formally, a multiset Xms over a non-empty set Z is a function
mapping each value in Z to a natural number Xms : Z → N0. Given a
value v ∈ Z, Xms(v) denotes how often v occurs in Xms. We also write
{a, a, b, c}ms for the multiset containing a twice and b and c once.
Given two multisets Xms and Yms defined over the same set Z, we

define the following operations:

1. z ∈ Xms ⇔ Xms(s) > 0

2. Xms ⊆ Yms ⇔ ∀z ∈ Z : Xms(z) ≤ Yms(z)

3. Xms ∪Xms = {(z,max (Xms(z), Zms(z)))|z ∈ Z}

4. Xms ∩Xms = {(z,min(Xms(z), Zms(z)))|z ∈ Z}

5. Xms \Xms = {(z,max (0, Xms(z)− Zms(z)))|z ∈ Z}

6. Xms +Xms = {(z,Xms(z) + Zms)|z ∈ Z}

7. |Xms| =
∑
z∈Z

Xms(z)

⋄

Definition 16 (Colored Petri Net [56]). A colored Petri net CPN is a
tuple CPN = (S, T,

ST−−→,Σ, V, c, g , e, init), where

1. S is a finite set of places.

2. T is a finite set of transitions.

3. ST−−→⊆ ((S × T) ∪ (T × S)) is a set of arcs.

4. Σ is a finite set of non-empty colorsets.

5. V is a finite set of typed variables so that type(v) ∈ Σ for all
variables v ∈ V .

6. c : S → Σ is a function assigning each place a colorset (type).

34

2.3 Petri Nets & Formal Execution Semantics

7. g : T → EXPRV is a function assigning each transition a guard
expression, whichmay use variables in V and evaluates to boolean
(type(g(t)) = {true, false} for all transitions t ∈ T).

8. e :
ST−−→→ EXPRV is a function assigning each arc an expression,

which may use variables in V and evaluates to a multiset of the
colorset of the arc’s place: type(e(a)) = c(s)MS for all arcs a ∈
A where s is the place connected to a, and c(s)MS is the set of
multisets over the colorset c(s).

9. init : S → EXPR∅ is a function assigning an expression that uses
no variables to each place to describe the initial marking (multiset
of initial tokens): type(init(s)) = c(s)MS for all places s ∈ S.

⋄

In colored Petri nets, tokens with a different color can be distin-
guished. By extending the Petri net in Figure 2.10 to a colored Petri
net, it can support multiple process instances. In the colored Petri net
in Figure 2.12, all places have the colorset N0. Each process instance
is identified by a number. Initially, no running instances exist and the
place initial has a token with value 0. When the start event s1 occurs,
the token in initial is consumed, its value binds to the variables cnt
(arc expression) and i (guard). Two tokens are produced: A token
with the value of variable i is produced into p0, and a token with the
value cnt+ 1 is produced into initial. All other transitions require that
all consumed and produced tokens have the same value. Therefore, a
firing of a transition affects only a single process instance. Transition
+2, for example, is only enabled if there is at least one token in p13, one
token in p14, and both tokens have the same color. Yet, the second term
of the guard condition cnt < 2 limits the model to two instances.

p0 a1 p1

×1.2

×1.1 p2

p3 a2 p4

×2.1

×2.2

a3

a4

p7 ×3.1

×3.2

p9 +1

p8

p11

p12

a5

a6

a7

p10

p14

p13

p15

finale1

+2 e2

p5initial

s1

p6
i i i

i

i
i i i i

i i i i i

i i i i i i

i i

i i

i

i

i

i

i

i i

N0 N0 N0 N0

N0 N0 N0 N0

N0

N0 N0

N0

N0

N0

N0

N0

N0

N0

cnt+1cnt

[i = cnt∧
cnt < 2]

i

i

i

i

i

i

0

Figure 2.12: Colored Petri net of the insurance example. Process in-
stances are represented by integers, allowing multiple in-
stances without mixing their execution.

35

2 Preliminaries

To describe the semantics of a colored Petri net formally, we must
define additional concepts (see Definition 17). A marking assigns each
place a multiset of tokens (colors). When a transition fires, arc ex-
pressions and guards determine which tokens are consumed. Thereby,
values are bound to variables. Given such a binding, the guard must
evaluate to true. A binding element combines the transition with one
corresponding binding. Yet, a marking may support multiple valid
bindings for one transition.
Definition 17 (Colored Petri Net Concepts [56]). Given a colored Petri
net CPN = (S, T,

ST−−→,Σ, V, c, g , e, init), we define
1. A marking is a function m that assigns each place s ∈ S a multiset

of tokens m(s) ∈ c(s)MS .
2. For a transition t ∈ T , var (t) is the set of variables used in the guard

of t and in the expressions of arcs that are connected to t.
3. A binding of a transition t is a valuation function binding that as-

signs each variable v ∈ var (t) a value in type(v). Furthermore, B(t)
is the set of all bindings for a transition t.

4. A binding element is a pair (t, binding)with a transition t ∈ T and a
binding binding ∈ B(t). Furthermore, BE(t) is the set of all binding
elements of t and BE the set of all binding elements.

⋄

The behavior of a colored Petri net depends on the binding elements
(see Definition 18).
Definition 18 (Colored Petri Net Firing Rule). Given a colored Petri
net CPN = (S, T,

ST−−→,Σ, V, c, g , e, init) and a marking m . A transition
t ∈ T is enabled in m if there exist a binding ∈ B(t), that satisfies the
guard and arc expressions:

1. The guard of transition t is true for the binding .

g(t)(binding) = true

2. The expressions e(s, t) for places s ∈ •t evaluate for binding to a
multiset of tokens. This multiset must be contained in the place s.

∀s ∈ •t : e(s, t)(binding) ⊆ m(s)

⋄

Consider transition s1 of the example in Figure 2.12. Corresponding
bindings assign a value to the variables cnt and i. When s1 fires for the
first time, the binding assigns the value 0 to both variables. The second
time, the value is 1. Afterwards, there exist no binding for which the
two requirements of the firing rule hold: If we choose value 2 for i and
cnt, the second term of the guard is false. If we choose values 0 or 1,
the guard is true, but no respective token exists in place initial.

36

2.3 Petri Nets & Formal Execution Semantics

The reachability graph of a colored Petri net (Definition 19) consists of
markings and binding elements that lead from one marking to another.
The firing of a transition for different bindings may lead to different
successor states and are treated separately. In the example (Figure 2.12),
a marking captures the state of all running process instance. A binding
element marks the firing of a transition for one instance.
Definition 19 (Reachability Graph of Colored Petri Nets). Given a col-
ored Petri net CPN = (S, T,

ST−−→,Σ, V, c, g , e, init), its reachability graph
rg(CPN) is a tuple rg(CPN) = (M,

M−→), where

1. M is the set of markings reachable from init .

2. M−→⊆ M × BE ×M is the set of state transitions. A transition is
a tuple (m , (t, binding),m ′) ∈ M−→ that states, the marking changes
from m to m ′ by firing twith binding .

⋄

In our colored Petri net example, all process instances are fully inde-
pendent of one another. The net’s state space is exponentially larger
than the one of the classical Petri net. The reachability graph of the clas-
sical Petri net has 18 states. The reachability graph of the colored Petri
net that supports two process instances has 323 (= 182 − 1). Therefore,
we refrain from depicting the full reachability graph. Figure 2.13 shows
the partial reachability graph. Each state describes the token in each
place. Each state transition is a binding element.

37

2 Preliminaries

initial : {0}ms

initial : {1}ms

p0 : {0}ms

initial : {2}ms

p0 : {0,1}ms

initial : {1}ms

p1 : {0}ms

initial : {1}ms

p2 : {0}ms

initial : {2}ms

p0 : {1}ms

p1 : {0}ms

initial : {2}ms

p0 : {0}ms

p1 : {1}ms

initial : {1}ms

p3 : {0}ms

(s1,

{i = 0, cnt = 0})

(x1.2,

{i = 0})

(a1
{i = 0})

(s1,

{i = 1, cnt = 1})

(x1.1,

{i = 0})

(a1,

{i = 1})

(a1,

{i = 0})

(s1,

{i = 1, cnt = 1})

Figure 2.13: The first couple of states of the reachability graph of the
colored Petri net in Figure 2.12. Empty places are omitted
from the states.

38

3 Related Work

In knowledge work, both data and processes play an important role.
Based on data, knowledge workers perform activities and make deci-
sions that shape the process. Therefore, our research questions focus on
the mutual relationship between flexible processes and data. To answer
these questions, we develop a novel case management approach with a
formal semantics to support knowledge-intensive processes.

Yet, the role of data in business processes has already been researched
in the past, and modeling approaches for knowledge-intensive pro-
cesses have been proposed: There exist works that extend existing
modeling languages with data support [76, 127], that develop novel
languages [147], and that formalize existing ones [81, 84]. Many of the
results of such works have affected our work directly or indirectly.
For this reason, we summarize related work and describe its rela-

tionship to this thesis. We present the role of data in highly structured
and well-defined process models (Section 3.1). Next, we focus on
knowledge-intensive processes, their characteristics, and respective
modeling approaches, which are further divided into declarative, data-
centric, and hybrid languages (Section 3.2). Then, we present various
works on formalizing data-aware processes—both traditional ones and
knowledge-intensive ones (Section 3.3). We conclude this chapter with
an overview on the most influential works (Section 3.4).

3.1 Data and Traditional Processes

Processes contain activities that are executed in coordination to achieve
a business goal [149]. During execution, data is read, created, and
updated. However, early process modeling approaches, such as Event-
Driven Process Chain (EPC) [16] and early versions of Yet Another
Workflow Language (YAWL) [28], focus solely on control flow. Nowa-
days, most languages also support data to different degrees.
BPMN version 1.0 [41] supports reading and writing data objects,

but this does not influence the execution semantics. In reality, data
requirements and data operations may shape the process behavior sig-
nificantly. Various languages support variables to control the ordering
of activities [24, 27, 40]. Furthermore, activities may read and update
the value of such variables. ADEPT [13], for example, augments the
control flow perspective with data requirements and data outputs of
activities. On an implementation layer, YAWL can use variables to
determine the number of instances for an activity [27]. Since version
2.0, BPMN [92] contains similar mechanisms. The data flow is re-
fined through input and output sets, and the importance of data on the
process-level is acknowledged [92, p. 202]. Furthermore, there can be

39

3 Related Work

collections of objects that can be processed by multi-instance activities
or multi-instances subprocesses.
In other approaches, data is considered in even greater detail and

plays a central role. Hull et al. present Vortex [18], a declarative and
data-driven process modeling approach. Activities have data precon-
ditions and data outputs. They can be executed, if their preconditions
are satisfied. MERODE [94, 170] is an integrated approach to enter-
prise modeling. A so called existence-graph is a data model that uses
associations with multiplicity constraints to define an order in which
objects may be created. However, MERODE’s multiplicity constraints
are limited. The lower bounds are 0 or 1 and upper bounds are 1 or
unbounded. Furthermore, an object-event table defines events that
are passed to objects and whether they create, update, or delete data
objects. Activities of the process model may trigger these events and
thereby affect objects. Meyer et al. [76] extend BPMN process models
by adding primary and foreign key information to data object nodes.
These implementation details are used to derive database queries and
to represent links between objects explicitly. Queries are also used by
Calvanese et al. [139], who present an approach for modeling and ana-
lyzing data-aware processes using only relational databases and SQL
queries. The full state of a process instance, including all data objects, is
represented by tuples in the database. In [91], Meyer et al. investigate
the relationship between business processes and object lifecycles (data
behavior). The authors propose a method to detect conflicts between
the two. Combi et al. [127] integrate BPMN process models with UML
class diagrams. They define activity views, which specify the classes
and associations which are inserted, deleted, or updated by the activity.
Based on the activity views, conflicts—such as data that is read after it
has been deleted—can be detected.

In this thesis, we integrate data models describing structure and
behaviorwith processmodels. Thereby, we leverage results from related
work: We use activities with input- and output-sets [92] and domain
models with existential associations [94], but multiplicity constraints
can have lower and upper bounds greater than one. We integrate the
process model with the domain model [94, 127] and with the object
behavior [76]. However, we focus on knowledge-intensive processes
and consider the integration essential for the process and not just an
implementation detail.

3.2 BPM for Knowledge-Intensive Processes

Knowledge workers are primarily concerned with non-routine work
that is dominated by activities for creating, maintaining, and applying
knowledge to identify and solve problems [31]. Typical tasks include
planning and decision-making. According to [53], knowledge workers
made up 25–40% of the Canadian and US-American workforce in 2005.

40

3.2 BPM for Knowledge-Intensive Processes

3.2.1 Characterizing Knowledge-Intensive Processes

Business processes for knowledge work are called knowledge-intensive
processes. They differ substantially from traditional business processes.
Most prominently, they are described as unpredictable and unrepeat-
able [72, 98]. Both properties stem from the fact that instances emerge
gradually based on knowledge workers’ decisions [103]. Furthermore,
involved knowledge may be too large and may change too quickly to
be modeled fully. We define knowledge-intensive processes as multi-
variant human-centered processes that are primarily shaped during
execution by informed decisions of knowledge workers. Knowledge-
intensive processes may differ from case to case.
Di Ciccio et al. [98] describe characteristics of knowledge-intensive

processes and derive requirements for respective BPM approaches.
Accordingly, knowledge-intensive processes have the following charac-
teristics:

C1—Knowledge-Driven: Knowledge-intensive processes are driven by
available data and data requirements.

C2—Collaboration Oriented: They are executed by humans with dif-
ferent roles and responsibilities.

C3—Unpredictable: The context and environment of the process im-
pact the process execution but cannot be known beforehand.

C4—Emergent: The exact sequence of actions is unknown at design-
time and emerges gradually during execution.

C5—Goal Oriented: Every process serves a goal, which may be de-
composed into partial and/or intermediate goals.

C6—Event-Driven: Knowledge-intensive processes depend on the pro-
cess environment and may need to react to events.

C7—Constraint and Rule-Driven: Knowledge-intensive processesmay
be regulated, i.e., by laws and guidelines.

C8—Non-repeatable: Cases differ from each other since the process
execution depends highly on the subject and situation.

Supporting knowledge-intensive processes requires a paradigm shift.
Case management is a BPM paradigm aiming at knowledge-intensive
processes [82]. At its core, is the notion of a case, e.g., a claim at an
insurance, a lawsuit, or the treatment of a single patient at a hospi-
tal [147]. The process evolves around, and all data is related to the case.
Executing an activity means advancing the case. Case management
is usually adaptive, i.e., it is possible to deviate from a model. While
some approaches focus only on case management [60, 112], others [66,
129] support it without being limited to it.

41

3 Related Work

3.2.2 Modeling Knowledge-Intensive Processes

Activity-centric control-flow-based modeling languages are considered
unsuited for knowledge-intensive processes [72, 98]. Purely impera-
tive models cannot capture the flexibility of knowledge work. Novel
approaches promise to overcome this challenge by taking on new per-
spectives. Generally, there are two main developments: Modeling i)
shifts from imperative to declarative and ii) becomes more data-centric.

Imperative process models define valid sequences of activities proce-
durally, i.e., using control flow. Declarative models define constraints
and requirements for valid sequences. Activity-centric process models
define activities and their effects: The next action depends primarily
on the activities that have been executed in the past. In data-centric
process models, the states and state changes of data artifacts dictate the
process execution. Yet, models are not necessarily purely imperative or
declarative, nor are they either data-centric or activity-centric. In this
section, we present declarative, data-centric, and hybrid approaches.
For each of these categories, we summarize the influence on our work.

Declarative Process Modeling

Purely imperative process models limit processes to a few fully defined
variants. Declarative approaches are less structured and favor flexi-
bility [51]. The most common declarative activity-centric languages
are DECLARE [43] and DCR Graphs [59]. They define temporal con-
straints between activities using Linear Temporal Logic (LTL) on finite
traces [5, 68], which extends traditional logic with temporal operators
such as always, eventually, until, and next. All traces that comply with
all modeled constraints are valid. Processes that have only a few con-
straints, many variants, or those that are kept purposely underspecified
and rely on human decisions can be modeled concisely.

Both DECLARE and DCR Graphs models consist of annotated activi-
ties and connectors. An annotation can, for example, identify the initial
activity of a case. Connectors may constrain the ordering of multiple
activities, for example, A has to happen before B.
The DECLARE model in Figure 3.1 describes a flexible version of

the insurances’ claim handling. It has the following constraints (cf. to
numbers in the model):

1. First, the claim must be assessed (a1).

2. Reviews can be created (a2) and must be followed by a decision
(a3). However, a single decision can follow multiple reviews.

3. Decisions must eventually be followed by a notification (a4 or a5).

4. Decisions can only be made before a notification (a4 or a5) is sent.

5. Either an acceptance (a5) or rejection letter (a4) is sent—never
both.

42

3.2 BPM for Knowledge-Intensive Processes

review
claim
a2

init

1 of 2

1

2
3 5

6

4

4

assess
claim
a1

pay
reimbursement

a6

send
acceptance

a5

send
rejection

a4

decide
on claim

a3

Figure 3.1: A declarative model of the insurance example using the
DECLARE [43] language.

6. If an acceptance letter is sent (a5), reimbursement must be paid
(a6) and vice versa.

The model leaves the precise ordering of activities and how often each
activity is executed open. In the example, multiple reviews can be
created before and after a decision. The latter, however, requires an
additional decision that revises the outcome of the previous one. By
defining only mandatory constraints, the declarative model is more
concise than its control flow-based counterpart would be. However, it
is also underspecified on purpose and allows undesired traces (e.g.,
multiple decisions following each other immediately).
DECLARE is not limited to the constraints used in our example. It

supports both optional andmandatory rules [43]. Furthermore, various
extensions to the core language have been proposed. Montali et al. [78]
define metric temporal constraints, to express deadlines, delays, and
more. In [77], Montali et al. extend DECLARE with data conditions:
Constraints are mandatory if the corresponding data condition holds.
A common critique of declarative models is understandability [69].

Fahland et al. [55] propose that sequential aspects can be better under-
stood in imperative models, while for circumstantial aspects declarative
approaches are superior. Pichler et al. [69] investigate this claim em-
pirically and find that imperative process models are generally easier
to comprehend.1 For DCR Graphs, tools have been developed to im-

1The authors of [69] point out that the participants of their study were more familiar
with the imperative paradigm.

43

3 Related Work

prove comprehensibility. Models are complemented with an equivalent
textual description and an interactive simulator [134, 135].
Both DECLARE and DCR Graphs have limited support for data,

which is central to knowledge-intensive processes. There exist pro-
cess modeling approaches that are declarative and data-centric at the
same time, though. The recently proposed Object-Centric Behavioral
Constraints (OCBC) [118] is similar to DECLARE, but constraints are
quantified via classes and associations. GSM [47] sorts activities into
stages. Each stage has a data-based pre- and post-condition: If the pre-
condition is satisfied, the contained activities can be executed. Thus,
data-based conditions define declaratively how the process may be
composed. We discuss such approaches in the next section.

Wickr, the contribution of this thesis, has declarative data depen-
dencies and imperative control flow. However, declarative temporal
rules, similar to DECLARE constraints, are used for verification of case
models (see Chapter 8).

Data-Centric Process Modeling

Many processes are data-driven. Activities read, create, and update
data, and their data-requirements constrain the process execution. Fur-
thermore, processes may branch based on data. Thus, which variant of
a process is executed depends highly on the available data.

It is important, to model this clearly. Therefore, data-centric process
modeling languages emphasize the role of data during process execu-
tion. Data may be represented by business artifacts or objects, which
have a structure and a behavior [47, 54, 147]. Data-centric process mod-
els are often declarative, as data conditions define whether an activity
or state change can be triggered. In the remainder of this section, we
present different data-centric process modeling approaches.

The case handling [29] approach addresses data-centric user-driven
processes. Amodel consists of activities—often implemented by forms—
and data objects. The execution order of activities is only constrained
by data requirements. Furthermore, some data objects can be altered
without executing an activity. At runtime, a query mechanism allows
users to find relevant data and activities.
The GSM approach [60] is an artifact-centric process modeling lan-

guage. Every model consists of an information model and a behavioral
model. The information model describes the data structure. The behav-
ioral model consists of stages with guards and milestones. Guards are
attached to stages and define preconditions, i.e., a guard must evaluate
to true to start a stage. Milestone are postconditions of stages, i.e., when
the milestone has been reached, the stage can be left. Multiple stages
can be active at the same time. When the artifact is in a certain stage,
the aim is to satisfy a milestone.
PHILharmonicFlows [66] is an object-centric process modeling ap-

proach. A model consists of a set of classes, with a process model for
each class. A class-specific process is a micro process, which describes

44

3.2 BPM for Knowledge-Intensive Processes

the state transition system of the respective objects. Furthermore, there
is a macro process, which takes the interactions between different ob-
jects into account. One of the biggest strengths of PHILharmonicFlows
is its holistic view on data-centric processes. It supports modeling data,
behavior, as well as users’ roles and access rights. Therefore, it can be
used for various processes.
BAUML [86, 129] is an artifact-centric process modeling approach.

Each process model consists of multiple UML models: A detailed class
diagram defines the structure of artifacts. It supports associations,
multiplicity constraints, and inheritance. State machines describe the
lifecycles of artifacts, whose transitions can optionally be refined using
activity diagrams. Furthermore, activities and additional constraints
can be defined in the Object Constraint Language [93].

Proclets [23] are a Petri-net-based modeling language that supports
artifact-centric processes. A model is split into multiple modules, each
modeled by a workflow net. Through ports, different modules can com-
municate synchronously and asynchronously. Artifact-centric Proclets
have one module for each artifact type. The module describes a type-
specific lifecycle and may interact with others to realize the business
process. Proclets inherit the formal precision of Petri nets.

Many data-centric modeling approaches modularize processes. Mul-
tiple instances of these modules come together at runtime to compose
the process. State transitions of artifacts may need to be executed syn-
chronously. However, synchronization may only occur between linked
artifacts. Especially, many-to-many-associations (and synchronization)
can be challenging. Such interactions, therefore, have been a research
topic addressed by multiple works.
Fahland [141] presents a solution for Proclets. When instances of

modules interact for the first time, so-called synchronization sets are
initialized. Each module instance remembers instances of other mod-
ules it interacted with. This memory is used to synchronize future
interactions. However, many-to-many synchronization requires global
knowledge, e.g., the capability to query all synchronization sets to
determine indirect relationships.

Similarly, relational process structures [133] describe the interactions
between linked objects. They support both many-to-many interactions
and multiplicity constraints. Furthermore, implicit transitive relations
can be used for synchronization. At runtime, the graph of objects and
their relations can be queried. The concepts have been applied to the
PHILharmonicFlows language. Yet, [133] remains vague when and
how relations are established on the instance level.

OCBC [118] is another object-centric process modeling approach. A
model consists of a declarative activity-centric process model and a data
model. The process model includes activities and temporal constraints
similar to DECLARE. The data model has data classes and associations.
Each association has two kinds of multiplicity constraints: Some always
need to hold, and others need to hold eventually. The peculiarity of the
approach is that activities and temporal constraints are quantified with
regard to classes and associations. OCBCmodels have been successfully

45

3 Related Work

discovered from event logs [120], but they have not yet been used to
implement processes.

To keep the discussion brief, we discuss only some approaches. For a
broader overview on data-centric process modeling, the DALEC frame-
work [147] is a good starting point.

We provide a joint semantics for flexible process models and data
models. Thereby, we respect declarative data-based constraints, i.e.,
multiplicity constraints. Similar to [118], we use two types of multiplic-
ity constraints. Furthermore, we synchronize the processing of data
objects based on links between the objects similar to [94, 133, 141]. Yet,
our approach is not fully data-centric and rather shows the impact of
data-centric constraints on activities.

Hybrid Process Modeling

Data-centric and activity-centric modeling have both their merits and
demerits and so do imperative and declarative languages. Therefore, so
call hybrid approaches combine ideas to get the best of both worlds [152].
We illustrate hybrid process modeling based on two representatives—
CMMN [115] and fCM [112].
CMMN [115] is a case management standard by the Object Man-

agement Group (OMG). It is heavily influenced by GSM [60]. A case
model consists of nested stages, which can contain activities. Each stage
has entry and exit criteria, which are conditions that must be fulfilled
to enter or exit a stage. As long as the process is in a certain stage, the
activities in the stage can be executed—possibly repeatedly. An activity
may refer to an atomic task or a process, e.g., a BPMN model. Addi-
tionally, rules may determine whether an activity or stage is mandatory
and whether it must be repeated.

CMMN is a declarative approach combining ideas of activity-centric
and data-centric process modeling. It includes data-centric stages as
well as activities, and rules can be based on both available data and ex-
ecuted activities. The standard assumes an information model without
specifying its nature or language [115, p. 39]. Based on the information
model, data conditions and outputs of activities can be modeled, but
this information is usually not part of the visual model.

In knowledge work, planning and ad-hoc adaptations to case-specific
circumstances play an important role [31, 82]. CMMN supports plan-
ning with discretionary tasks [115, p. 6]. Each stage can be seen as a plan
that can be adapted. Non-discretionary tasks must be included, while
discretionary tasks may be included. Yet, CMMN does not consider
adapting the model itself.
Adaptation is important to most case management use cases. Yet,

not all use cases require the same degree of adaptability. Meyer et
al. [90] distinguish between two types of case management: adaptive
case management and production case management. Adaptive case
management merges design and execution. Knowledge workers create

46

3.2 BPM for Knowledge-Intensive Processes

the process model on the go by continuously adapting it. In produc-
tion case management, well-structured process fragments are created
at design-time. At runtime, knowledge workers can compose these
fragments and add new ones if necessary. In [90], the authors define
a novel implementation framework for production case management.
This framework is the first description of fCM.

Subsequently, the first formal definition of fCM is provided byHewelt
and Weske [112]. The paper introduces the fundamental concepts:
domainmodels, object lifecycles, fragments, and termination conditions.
Furthermore, the execution of cases and adding fragments at runtime
is discussed. Yet, the presented semantics focuses on fragments, so
some questions remain open: The authors state “data classes can be
associated with each other” [112, p. 7] but do not discuss associations
and corresponding multiplicities any further. However, already the
example in [112] uses associations and multiplicity constraints, which
clearly indicates the relevance of these concepts.
A first execution engine2 for fCM is presented in [101]. It has been

extended to accept external events [106] by integrating a complex event
processing engine [96]. However, the execution engine supports neither
data associations nor multiplicities.

Besides the implementation, conceptual extensions to fCM have been
researched and proposed. Beck et al. [105] extend fCM to restore past
states of data objects. Therefore, the state of a data object can be saved
and later on restored. Andree et al. [153], introduce exception handling
to fCM. The authors adapt exception handling patterns from traditional
processes for case management. In general, exceptions may need to be
handled on the level of the case, an activity, and/or a fragment.

One challenge that fCM faces is the complexity of case models with
many fragments and inter-fragment dependencies. Therefore, Gonzalez-
Lopez et al.[142, 163] propose landscape models for fCM. A landscape
model is an abstract depiction of the dependencies among fragments.
In additional to the foundational and technical works on fCM, [131,

161] compare different methods for eliciting fCMmodels: starting with
either the object lifecycles, the fragments, or the goals. In general, the
fragment-first approach leads to less flexibility, while the goal-first and
object-lifecycle-first approaches generally result inmore flexible models,
but conversely introduce additional complexity.

Our case management approach, Wickr, is based on fCM. We, for
example, add support for associations, multiplicity constraints, and
shared data objects. Thereby, the role of data is emphasized. Further-
more, we develop a translational semantics for case models, that targets
Petri nets. The semantics combines both process and data-related as-
pects.

2github.com/bptlab/chimera (2021/11/06)

47

github.com/bptlab/chimera

3 Related Work

3.3 Formal Execution Semantics

Many BPM related activities require models with precise semantics. Yet,
many languages, such as BPMN [92], have only textual, semiformal
semantics, which leave room for interpretation. Consider BPMN’s
exclusive gateways: The subsequent control flow can be conditional.
Ideally, the conditions are exclusive and complete, so that one and only
one flow is chosen when the gateway is triggered. However, in BPMN
conditions are evaluated in order until one evaluates to true [92, p 465].
Overlapping conditions are supported, but the evaluation order is not
specified.

Formalizations resolve such inaccuracies. They define the semantics
of a given model, sometimes tailored to a specific purpose. Hofstede
et al. [14] present different kinds of semantics. Translational semantics
map models of one language to another, usually a formal one. BPMN
processes, for example, can be mapped to Petri nets [46]. Operational
semantics are like interpreters. They specify the effects of modeled ele-
ments. For BPMN 2.0, Dijkman and Van Gorp [58, 74] define semantics
based on graph rewriting rules, which operate directly on the process
model. Denotational semantics assign a mathematical meaning to ele-
ments of the model. Axiomatic semantics go one step further: the model
itself is treated as a logical theory which allows reasoning.

We specify the formal semantics of our case management approach
by translating case models to Petri nets. The semantics adhere to con-
straints in the data model. In the remainder of this section, we discuss
some examples of formalizations for business process models.

3.3.1 Formalization of Traditional Business Processes

Traditional business processes are highly structured and often expressed
by control-flow-oriented processmodels. Their formal execution seman-
tics are widely used to execute, verify, analyze, and simulate business
processes. Dijkman et al. [46] present a translational semantics that
maps BPMN models to classical Petri nets. Each activity is mapped to
a single transition, which represents its termination while abstracting
from the running state. Furthermore, there is no mapping for data
objects and data flow. In [74], Van Gorp and Dijkman present a seman-
tics based on in-place graph transformations of BPMN models. The
transformation rules define token-based semantics for BPMN without
translating the model into a different language (e.g., Petri nets). Van
Gorp and Dijkman consider elements not supported in the Petri net
mapping, such as inclusive gateways and multi-instance activities. Still,
data objects and data flow are not considered.
Awad et al. [52] map data-aware BPMNmodels to Petri nets. Data

object nodes are represented by places and data objects by tokens. Tran-
sitions that model activities can consume and produce tokens to rep-
resent reading and writing data objects. If an activity writes or reads

48

3.3 Formal Execution Semantics

an object in one of several states, the activity is mapped to multiple
alternative transitions, respectively.
The mentioned semantics do not consider data objects’ attributes

and links. However, in some cases, the internal structure of objects is
used, e.g., in arc conditions [61]. Recently, such conditions and data-
based rules are externalized to decisionmodels [95], i.e., using Decision
Model and Notation [169]. Batoulis et al. [119, 130] formalize these
decision-aware process models using colored Petri nets. The semantics
include data objects with abstract states and attributes as well as data-
based conditions and rules that impact the process execution. Similarly,
De Leoni et al. [168] map detailed decision and data-aware process
models to Data Petri nets [70, 75].
Not all translational semantics target Petri nets. Process algebras,

such as the π-calculus [19], can describe concurrent systems and pro-
vide methods for manipulating and analyzing them. Process algebras
build complex processes from smaller ones using inter-process commu-
nication. As such, they are particularly useful for interorganizational
processes [30]. BPMN models have been formalized using process
algebras, such as Communication Sequential Processes [50], Calculus
of Orchestration of Webservices [48], and π-calculus [97]. However,
only [48] considers data and only in conditional control flow.

Process algebras can be used to modularize and compose processes,
while classical Petri nets cannot. However, nowadays Petri nets are
widely adopted by the BPM community, while process algebras are
rarely used. This may be due to available tools [33]: While many tools
exist for Petri nets, few support process algebras. Furthermore, repre-
senting Petri nets graphically eases human comprehension compared to
the textual representation of process algebras. Finally, many extensions
of Petri nets, such as hierarchical Petri nets [7], colored Petri nets [56],
timed Petri nets [8], and the box calculus [9], have made the formalism
more and more powerful and have resolved some disadvantages when
compared to process algebras.

3.3.2 Formalization for Knowledge-Intensive Processes

Models and formalizations of knowledge-intensive process must cap-
ture flexible and data-driven behavior. In this section, we summarize
works on formal semantics for knowledge-intensive and/or data-centric
processes as well as respective formal languages.

Activity-centric declarative process modeling languages are based on
temporal logics. The semantics of DECLARE [43] andDCRGraphs [59]
are specified in LTL on finite traces [5, 68]. At any point, the enabled
activities depend solely on the sequence of past activities.
This is insufficient for OCBC [118] which integrates data. OCBC’s

semantics is defined in [136] using temporal description logics [22].
The semantics support infinite time, because OCBC has no case notion.

Data-centric approaches constrain the behavior of a process based
on fine-grained data-conditions. GSM’s [60] semantics are based on
event-condition-action rules. Analyzing and reasoning about such for-

49

3 Related Work

malizations requires first-order logic and is, in general, undecidable [81].
However, it becomes decidable for state-bounded GSM models [81].
Data-aware processes including control flow have also been formal-

ized as dynamic data-centric systems [114]. The process operates on
a relational schema that includes additional relations to capture the
control flow state. Montali and Calvanese [114] describe how processes
can be encoded and how soundness can be verified. Verification against
soundness is only decidable for state-bounded processes.

Another challenge is the presence of a database, whose contents are
unknown during verification but influence the process execution [71].
Calvanese et al. [138, 155] use Satisfiability-Modulo-Theories to encode
artifact-centric processes with read-only databases and verify safety
properties independently of the database content.

For some data-centric approaches, translational semantics targeting
Petri nets exist [140, 145]. Kang et al. [145] map synchronized object
lifecycles to Petri nets with additional state transition rules. The traces
of the Petri net can be filtered using the transition rules. The result
represents the behavior of the synchronized object lifecycles. However,
Petri nets may have infinitely many and infinitely long traces. There-
fore, the approach is undecidable. Estanol et al. [140] present a Petri
net mapping for BAUML models. The Petri nets uses inhibitor arcs,
which causes common verification tasks, such as soundness checks, to
become undecidable [64]. Furthermore, BAUML is not fully supported:
Attribute-level information are missing, and multiplicity constraints
can only be tested for 0 and 1. Another formalization of BAUML is
presented by Calvanese et al. [84]. They show that termination of unre-
stricted BAUML models is undecidable, but it is decidable for a clearly
defined subgroup. We discuss similar results for our approach.

Sporleder [117] presents a first mapping of fCM models to Petri nets,
which is inspired by [46, 52]. The mapping uncovers some weaknesses
of fCM, for example, once the precondition of a fragment has been
satisfied, arbitrarily many fragment instances can be created. Holfter et
al. [143, 144] use and adapt the Petri net mapping for model checking.
Most notably, the number of concurrent fragment instances is limited
by making a respective assumption. Furthermore, activities’ begin and
end are captured, which allows the concurrent execution of activities
as long as they operate on different data objects.

Besides formalizations of higher-level languages, there exist low-level
languages with precise semantics that are designed for flexible and/or
data-centric processes. The already present Proclets [23] approach is
a Petri-net-based language. However, some extensions, such as the
mentioned many-to-many synchronization [141], cannot be mapped to
classical Petri nets. Yet, the extension is mathematically defined.
DB-nets [122] can model processes that access relational databases.

The database is persistent, and the schema may include mandatory
primary and foreign key constraints. It is embedded into a colored Petri
net via view places. A view place contains “tokens” that correspond to
tuples in a database view. Each transition that is connected to a view
place can delete, add, and consequently update tuples in the database.

50

3.4 Overview of the Most Influential Works

The database must comply with the schema, but rollback arcs can be
used to restore a compliant state if a transition caused a violation.

Catalog nets [156] also integrate relational databases and processes.
In contrast to DB-nets, catalog nets only support read-only access to
databases. In catalog nets, guards can query databases i) to check con-
ditions and constraints, ii) to inject values from the database into the
model, or iii) to inject new unique values (e.g., new primary keys). Lim-
iting databases to read-only brings some advantages: Some properties
can be verified independent of the database’s contents.
In summary, formalizing and verifying data-aware processes is ac-

tively researched. However, verification is often undecidable, and only
the state-bounded subclass can be verified [81, 84, 114].

In this thesis, we presentWickr, a case management approach com-
bining data and process modeling. It supports associations, multiplicity
constraints, and shared data objects. We present a formal semantics,
which can be used for execution, verification, and planning, by translat-
ing models to classical and colored Petri nets. The formalism is based
on fCM’s Petri net mappings [117, 143, 144], but takes inspiration from
other more data-centric approaches [114, 141, 155] as well.

3.4 Overview of the Most Influential Works

All the presented works are related to our research, yet some influenced
us more than others. Table 3.1 provides an overview on the works
that influenced us the most. The table lists the approaches; whether
they focus on data, activities, or both; whether they are imperative,
declarative, or combine both paradigms; and whether they are formal.
The table contains publications on high-level languages, such as

the imperative activity-centric BPMN and the declarative data-centric
OCBC, and publications on formalizations, such as BPMN’s Petri net
semantics [46], as well as works on formal analysis, such as [81, 84].

51

3 Related Work

Ta
bl
e3

.1:
Ov

er
vi
ew

of
im

po
rta

nt
re
lat

ed
wo

rk
an

d
th
eir

str
on

ge
st
in
flu

en
ce

on
ou

rr
es
ea
rc
h.

A
ct
iv
ity

-/
Im

pe
ra
tiv

e/
Fo

rm
al

A
pp

ro
ac
h

D
at
a-
C
en

tr
ic

D
ec
la
ra
tiv

e
Se

m
an

tic
s?

Eff
ec
t/
R
el
at
io
n

fC
M

[1
12

]
H
yb

rid
H
yb

rid
Pa

rti
all

y[
11

7,
14

3]
Th

es
ta
rti

ng
po

in
tf
or

ou
rw

or
k

BP
M
N

[9
2]

Ac
tiv

ity
Im

pe
ra
tiv

e
No

Ac
tiv

iti
es

w
ith

ex
pl
ici

ti
np

ut
an

d
ou

tp
ut

se
ts

YA
W

L
[2
8]

Im
pe

ra
tiv

e
Ac

tiv
ity

Pa
rti

all
y

Da
ta

co
nt
ro
ls
th
en

um
be

ro
fa

cti
vi
ty

in
sta

nc
es

[2
7]

M
ER

OD
E
[9
4]

Da
ta

Im
pe

ra
tiv

e
No

Ex
ist

en
tia

la
ss
oc
iat

io
ns

an
d
th
eir

eff
ec
to

n
th
eo

rd
er

of
ob

jec
tc

re
at
io
n

M
ey
er

et
al.

[7
6]

Ac
tiv

ity
Im

pe
ra
tiv

e
No

De
pe

nd
en

cie
sa

m
on

gd
at
ao

bje
cts

Co
m
bi

et
al.

[1
27

]
Ac

tiv
ity

Im
pe

ra
tiv

e
No

Re
lat

io
na

lP
ro
ce
ss

St
ru

ctu
re
s[

13
3]

Da
ta

De
cla

ra
tiv

e
No

In
ter

ac
tio

ns
am

on
go

bje
cts

fo
llo

w
in
gt

he
ir
lin

ks
Pr
oc
let

s[
14

1]
Ei
th
er
/O

r
Im

pe
ra
tiv

e
Ye

s
Li
nk

in
go

bje
cts

ba
se
d
on

us
ag

e
PH

IL
ha

rm
on

icF
low

s[
66

]
Da

ta
Im

pe
ra
tiv

e
No

M
od

ul
ar
iza

tio
n
of

pr
oc
es
se
s

BA
UM

L
[1
29

]
Da

ta
Im

pe
ra
tiv

e
Pa

rti
all

y
OC

BC
[1
18

]
Da

ta
De

cla
ra
tiv

e
Ye

s[
13

6]
Tw

ot
yp

es
of

m
ul
tip

lic
ity

co
ns
tra

in
ts

Di
jkm

an
et

al.
[4
6]

Ac
tiv

ity
Im

pe
ra
tiv

e
Ye

s
Pe

tri
ne

tf
or
m
ali

za
tio

n
of

ac
tiv

iti
es

an
d
co
nt
ro
lfl

ow
Aw

ad
et

al.
[5
2]

Ac
tiv

ity
Im

pe
ra
tiv

e
Ye

s
Pe

tri
ne

tf
or
m
ali

za
tio

n
of

da
ta

ob
jec

ts
an

d
da

ta
flo

w
Sp

or
led

er
[1
17

]
H
yb

rid
H
yb

rid
Ye

s
Pe

tri
ne

tf
or
m
ali

za
tio

n
of

fC
M

H
ol
fte

r[
14

3]
H
yb

rid
H
yb

rid
Ye

s
DB

-N
ets

[1
22

]
H
yb

rid
H
yb

rid
Ye

s
Pr
oc
es
se
sm

us
ta

dh
er
et

oi
nt
eg

rit
yc

on
str

ain
ts

of
th
ed

at
am

od
el

So
lo
m
ak

hi
n
et

al.
[8
1]

Da
ta

De
cla

ra
tiv

e
Ye

s
De

cid
ab

ili
ty

of
ve

rifi
ca
tio

n
of

da
ta
-ce

nt
ric

pr
oc
es
se
s

M
on

ta
li
an

d
Ca

lva
ne

se
[1
14

]
Da

ta
Im

pe
ra
tiv

e
Ye

s
Ca

lva
ne

se
et

al.
[8
4]

Da
ta

Im
pe

ra
tiv

e
Ye

s

52

4 Wickr: Improving fCM

Designed to model multi-variant data-driven processes concisely, fCM
combines activity-centric and data-centric as well as imperative and
declarative process modeling. Yet, there are limitations: i) Data associ-
ations and multiplicity constraints are not supported; ii) As a language,
fCM is not orthogonal since there are multiple ways to model same
behavior [14, 57]; iii) The formal semantics [117, 143] consider only
fragments and the termination condition; iv) Every fCM model allows
unwanted behavior (i.e., instantiating fragments arbitrarily often) [143].
Considering these limitations, we adapt fCM. We introduce associ-

ations and two sets of multiplicity constraints to domain models. We
remove initial and final states from the object behavior, and we tidy up
and extend fragments to reduce ambiguity and to make good use of
links between data objects. Finally, we present a formal semantics that
considers the full case model. We call the new approachWickr.1,2
This chapter focuses onWickr’s syntax and is based on various pub-

lications [144, 157, 158, 160, 164–166]. Tim Sporleder’s and Adrian
Holfter’s master theses [117, 143] reveal some shortcomings of fCM.
Holfter’s thesis was the foundation for two joint publications [144, 165].
Later works [157, 166] were written together with Marco Montali.

4.1 Domain Model

Data is essential to knowledge-intensive processes [98]. While data
objects are containers for information, relationships among objects are
also important: If we, for example, want to assess the performance of
a reviewer, we need to consider all the claims they reviewed and all
the reviews they created. Yet, fCM does not acknowledge the role of
associations [112]. Wickr’s domain models and semantics, on the other
hand, include associations and multiplicity constraints.
Yet, there is a conceptual mismatch between structural data models

and process models. Data models do not describe how the data changes
over time, while process models define behavior, i.e., how the processes
transition from one state to another. This includes changes to data.
When combined, the process either has to adhere to the data model
continuously, or the process is treated as a transaction: Its data must
comply to the data model after a process instance has terminated.
1In previous publications, we call our approach fCM despite the changes. To prevent
confusion, we refer to our extension of fCM asWickr and to the work of Hewelt and
Weske [112] as fCM.

2Wicker is a technique forweaving twigs or branches to create objects, i.e., furniture. In
our approach, a single fragment is inflexible, but by interweavingmultiple fragments
at runtime, many variants can be realized—hence, the nameWickr.

53

4 Wickr: Improving fCM

For data structures, Wickr accounts for both their intermediate states,
which may change, and goal states, that ought to be reached eventu-
ally. For this purpose, domain models have two types of multiplicity
constraints: Global multiplicity constraintsmust never be violated. Goal
multiplicity constraints can be violated during execution but must be
fulfilled when the case is closed. InWickr, objects and links cannot be
deleted. Therefore, goal multiplicity constraints may bemore restrictive
than global multiplicity constraints but not vice versa. In the model,
we precede goal multiplicity constraints with ⋄.

To avoid ambiguity during execution, we furthermore constrain
Wickr’s domain models:

1. All associations are binary and existential (at least one of the
lower bounds is positive).

2. Every two classes are connected by at most one association.

3. Associations multiplicity constraints allow 1-to-1 or 1-to-many
relationships but not many-to-many.

These constraints are necessary to determine when two objects get
linked [94]. We elaborate this reasoning in context of Wickr’s execu-
tion semantics in Chapter 6. A domain model that satisfies all these
constraints is called well-formed.
As a consequence of these constraints, we can employ a simplified

definition of domain models for Wickr (Definition 20). The multiplicity
constraints are defined by three functions: global lower bound, global
upper bound, and goal lower bound. There is no explicit goal upper
bound because links cannot be deleted, so that goal upper bounds
always equal their global counterpart. From themultiplicity constraints,
we can infer the associations among classes. As a result, roles and
explicit associations become obsolete (cf. Definition 1).
Definition 20 (Wickr Domain Model). AWickr domain model d is a
tuple d = (C, cco, l , u, ⋄l), where

1. C is a finite non-empty set of classes.

2. cco ∈ C is the dedicated case class.

3. Associations and multiplicity constraints are defined by three
functions:
a) l : (C×C) → N0 is a function that defines the lower bounds

of the global multiplicity constraints.
b) u : (C×C) → (N0 ∪{∗}) is a function that defines the upper

bounds of global and goal multiplicity constraints. It holds
that ∗ is greater than any number: ∀n ∈ N0 : n < ∗.

c) ⋄l : (C×C) → N0 is a function that defines the lower bounds
of goal multiplicity constraints.

54

4.1 Domain Model

Two classes c1, c2 ∈ C are associated iff u(c1, c2) > 0 and u(c2, c1) > 0.
Furthermore, lower bounds must not be bigger than upper bounds:

l (c1, c2) ≤ ⋄l (c1, c2) ≤ u(c1, c2)

If there is no association, all multiplicity constraints must equal zero:

(u(c1, c2) = 0) ⇔ (u(c2, c1) = 0)

This definition only supports binary associations and at most one asso-
ciation between two classes. Nevertheless, well-formed domain models
must also satisfy the following properties:

1. Associations are existential.

∀c1, c2 ∈ C : u(c1, c2) > 0 ⇒ (l (c1, c2) ≥ 1 ∨ l (c2, c1) ≥ 1)

2. There are no many-to-many associations.

∀c1, c2 ∈ C : u(c1, c2) > 1 ⇒ u(c2, c1) = 1

⋄

While Wickr domain models are more restricted than data models
(Definition 1), they are equally expressive: Any data model can be
transformed into a well-formedWickr domain model through reifica-
tion [42, pp. 123]. Reification replaces associations with a novel class
and new associations. A many-to-many association is reified into a
class and two 1-to-many associations. A non-existential association is
reified into a class and two existential associations. In some cases, such
as reflexive associations, a single association needs to be reified into
multiple classes—in other words, reification must be repeated.

«case object»
Claim

Risk

Decision Review Reviewer

⋄ 1..1
0..1

⋄ 1..1
0..1

1..1

2..3

1..1
0..*

⋄ 2 ..*
0..*

0..* 1..1

⋄ 2..3
0..3

⋄ 1..1
0..1

1..1

Figure 4.1: Not well-formed Wickr domain model for the insurance ex-
ample. Goal multiplicity constraints that do not refine the
corresponding global multiplicity constraint are omitted.

Figure 4.1 depicts the domain model for insurance claims. The case
object is the claim. During the case, the risk is assessed, reviewers are
assigned, reviews are created, and a decision is made. The goal multi-
plicities require that every claim eventually has at least two reviewers

55

4 Wickr: Improving fCM

and two reviews as well as exactly one risk and one decision. Also,
every review must eventually be associated to one decision. However,
the domain model is not well-formed. One reviewer may be assigned
to different claims, and one claim can have multiple reviewers. This is
modeled with a non-existential many-to-many association.

«case object»
Claim

Risk

Decision Review Reviewer

1..1

0..*

Assignment

⋄ 2..*
0..*

1..1

⋄ 1..1
0..1

⋄ 1..1
0..1

1..1

2..3

1..1

0..1

⋄ 2..3
0..3

⋄ 1..1
0..1

1..1

1..1

Figure 4.2: Well-formed domain model of the insurance example. The
model was derived from Figure 4.1 through reification.

We can reify the association between claim and reviewer to make the
domain model well-formed. Therefore, we introduce a class Assignment
between Claim and Reviewer. Each assignment is linked to one reviewer
and one claim. Furthermore, we redirect the association between re-
viewer and review to lead from review to assignment. Figure 4.2 depicts
the result, and Table 4.1 specifies the functions l , u, and ⋄l fully.

Table 4.1: Function l ,⋄l , and u for the domain model in Figure 4.2.
c1 c2 l (c1, c2) ⋄l (c1, c2) u(c1, c2)

Claim Risk 1 1 1
Claim Assignment 1 1 1
Claim Review 1 1 1
Claim Decision 1 1 1
Risk Claim 0 1 1

Assignment Claim 0 2 *
Review Claim 0 2 3
Decision Claim 0 1 1
Decision Review 0 1 1
Review Decision 2 2 3
Review Assignment 0 1 1

Assignment Review 1 1 1
Assignment Reviewer 0 1 *
Reviewer Assignment 1 1 1
all other combination 0 0 0

The example shows reification requires domain knowledge. In gen-
eral, a domain expert has to providemeaningful names for newly added
classes. However, if we have a data model with named associations and
roles, some new class names may be derived automatically.

On another note, the term domain model often refers to a data model
that comprises all relevant concepts and relationships of the domain

56

4.2 Object Behavior

(i.e., an enterprise) and not only those relevant to one casemodel. While
not considered here, Wickr can be adapted accordingly: Given such an
organizational domain model, case objects and the goal multiplicity
constraints must still be defined for each case model. Furthermore, goal
multiplicity constraints may define upper bounds that overwrite the
global ones for respective cases.

4.2 Object Behavior

The object behavior describes how the state of an object may change.
In fCM, object behaviors are modeled by class-specific lifecycles. How-
ever, real-world processes may create an object in one of several states
to encode a decision outcome [169], and processes may cover object
lifecycles only partially [112], e.g., when objects are passed from one
process instance to another. Therefore, initial and final states may be
irrelevant to a case. Furthermore, objects’ final states are ignored by
fCM’s execution semantics [117, 143].

For these reasons, we decided to omit initial and final states by using
simple state transitions systems (see Definition 2). An object behavior
may even include disconnected parts if the object can be created in
different states. The states in which a data object is created, is solely
determined by the I/O-behavior of activities. This eases the integration
of object behaviors and process fragments.

received complete in review reviewed

regular

created considered

approveddeclined

incomplete

high

due

done

canceled

Claim

Risk

Assignment Review

Decision

waiting

updated

externalinternal

Reviewer

Figure 4.3: State transition systems describing the object behavior of
the insurance example (see classes in Figure 4.2).

Figure 4.3 depicts the state transition systems for the insurance ex-
ample. The state of class Risk represents the knowledge worker’s as-
sessment. It is regular or high; hence, the state transition system has
two disconnected states. Similarly, a decision is either in state declined or
approved.

57

4 Wickr: Improving fCM

4.3 Fragments

In both fCM andWickr, process fragments are the building blocks for
the case behavior. If all fragments consist of only one activity, the case
is fully data-driven. If all activities are included in a single fragment,
the case is activity-centric. Thus, the degree of flexibility depends on
the design of fragments.

InWickr, we redefine fragments to resolve design flaws in fCM:

• To limit the number of fragment-instances, fragments’ explicit
preconditions are removed.

• To clearly identify the entry point for a new process, initial frag-
ments are marked.

• To guarantee that exactly one case object exists, it must be created
during case instantiation, i.e., by a start event.

• To clearly separate the termination of a fragment from the goal of
a case, end events are removed.

• To improve orthogonality, parallel gateways are not supported.

• Furthermore, data integration is improved:
– Activities have explicit input and output sets.
– Activities can process data objects in batches.
– Data objects can be shared among cases.

Fragments Without Explicit Precondition. In fCM, each fragment
has a data-based precondition modeled as a conditional start event. A
new fragment can be instantiated if its precondition is satisfied [112].
Yet, BPMN’s conditional start events have a different semantics. In
BPMN, the conditional event is triggered once whenever its evaluation
changes from false to true [92, p. 342]. On the other hand, fCM allows
instantiating a fragment arbitrarily often if its precondition holds [117,
143]. Both semantics are problematic as BPMN cannot handle multiple
data objects of the same class, and fCM’s fragments have livelocks.

When the first activity is executed, it may invalidate its own precon-
dition and prevent further instances. Therefore, we want to prevent
that a fragment can be instantiated without executing its first activity.
Therefore, Wickr fragments have no explicit precondition. Instead, the
precondition ismergedwith the input sets of the fragment’s first activity.
In Wickr, instantiating the fragment is equal to starting this activity.
Figure 4.4 depicts both the fCM and theWickr version of a process

fragment for internal reviews. The fCM fragment has a precondition,
which requires a claim object in state complete and a risk object in state
regular. The Wickr version does not have a dedicated precondition,
instead the fragment’s first activity—“assign internal review”—reads
both a claim in state complete and a risk object in state regular.

58

4.3 Fragments

Wickr

Claim Assignment
[done][in review]

assign
internal
reviewer

create
internal
review

Review
[created]

Claim
[in review]

Assignment
[due]

Assignment
[done]

Review
[created]

Risk
[regular]

Reviewer
[internal]

Claim
[in review]

fCM

Reviewer
[internal]

Claim
[complete]

assign
internal
reviewer

create
internal
review

Claim
[complete]

Risk
[regular]

AND

Claim
[complete]

Figure 4.4: Fragments in fCM have a precondition, depicted by a condi-
tional start event. In Wickr, the precondition is merged with
the data-requirements of the first activity.

Initial Fragments. In fCM, case models have no dedicated beginning:
A case can be started manually, and any fragment whose precondition
is satisfied in the initial state can be instantiated. Wickr supports explicit
initial fragments that begin a new case and are executed at most once.
Opposed to all other fragments, initial ones begin with a start event.

Explicit entry points have an additional advantage. Start events can
have output sets. When a new case begins, one of the output sets is
selected, and the case is populated with the respective objects. This
mechanism replaces fCM’s set of initially instantiated classes (cf. Defini-
tion 8, p. 8). However, Wickr’s solution is more expressive: Alternative
start events can be modeled—each has a set of alternative output sets.
Also, we require that the output sets include at least the case object, as
it is the subject of the case, and a case without a subject cannot exist.
The models in Figure 4.5 define the fCM and Wickr version of the

insurance example’s initial fragment. The fCM fragment has a condi-
tional start event. Without looking at other parts of the case model, it
is impossible to tell if it is initially enabled. TheWickr fragment has a
start event that creates a claim object. Since it is the only fragment with
a start event, it clearly marks the start for every new case.

Fragments Without End Events. End events in fCM denote the end
of a fragment. This is not necessarily a meaningful milestone, nor does
it fit BPMN’s semantics, where an end event denotes the completion of
a process instance (i.e., a case) [92, p. 443]. Therefore,Wickr does not
contain end events (see Figure 4.4 for an example). Instead, the goal
of a case is specified using the termination condition (similar to fCM)
and goal multiplicity constraints.

Data Integration. Within a fragment, data is modeled by data object
nodes and data flow. An activity’s incoming data flow represents that

59

4 Wickr: Improving fCM

claim
received

assess
complete-

ness

assess
risk

Claim Claim

RiskClaim

[incomplete]

[received] [complete]

[regular]

Risk

[high]

fC
M

W
ic

kr

Claim
[received]

assess
complete-

ness

assess
risk

Claim Claim

RiskClaim

[incomplete]

[received] [complete]

[regular]

Risk

[high]

Figure 4.5:Wickr uses start events to model the possible beginnings
of cases. Start events can introduce data to the case. Here,
“claim received” creates a claim object in state received.

60

4.3 Fragments

data objects are read. Outgoing data flow models that data objects are
written. In fCM, input and output sets as well as combinations thereof
are defined implicitly because an activity can access at most one object
for each class, and activities that create or update objects must comply
to the object lifecycles. Optional inputs or reading multiple objects of
the same class are not supported. Furthermore, fCM assumes that each
data object can be accessed by only one case.
Wickr defines input and output sets explicitly. It supports optional

inputs, batch processing through set data object nodes, and data that is
shared among cases. However, input-output-set combinations remain
implicit. Valid combinations are determined by the object behavior and
associations between classes. We detail these rules in Section 4.5.

Cases commonly involve multiple objects of one class. These objects
are created one after another and can be updated independently. How-
ever,Wickr also supports batch processing: Multiple objects of the same
class can be updated by executing an activity once. Therefore, data
object nodes have a set indicator. Visually, data object nodes for sets
include the icon “|||”. In BPMN, the same icon represents a collection of
data objects [92, p. 206]. An example is reviews for a claim. When the
claim is approved or declined, all its reviews should be considered.
Finally, data objects in Wickr may be shared among cases. We call

these objects cross-case data objects. They can exist before a case begins
and after a case terminates. Furthermore, multiple cases can access
them currently. Data object nodes have a boolean indicator that deter-
mines whether objects are shared. Nodes for cross-case data objects are
visualized as data stores (cf. [92, p. 207]).

Figure 4.6 shows twoWickr fragments. Each has one activity. The first
one assigns external reviewers to claims. Reviewers are not exclusive
to one claim; hence, we model them as cross-case data objects. Also,
more than one reviewer may be assigned: When the first reviewer is
assigned, the claim changes from complete to in review. The second time,
the claim is read in state in review. Activity “request external review”
has two respective input sets, which are marked by □ and ◦.

The second fragment captures a decision of the knowledge workers.
The activity’s input set consists of the claim, an external reviewer, and
all the claim’s reviews. Considering all the reviews for one claim, the
knowledge workers may choose one of three outcomes:

Output set ■: The claim can be declined.

Output set •: The claim can be approved.

Output set ▲: No decision is created, but an additional external re-
viewer is assigned to the claim.

When the claim is declined or approved, all its reviews are changed to
state considered. But when an additional review is required, an assign-
ment is created, and no other objects are written.

Data objects are also used to evaluate conditional control flow. Such
a flow must start in a gateway. Since Wickr captures details about data

61

4 Wickr: Improving fCM

[in review]

Assignment

Claim

Claim

[complete]

[due]

request
external
review

Reviewer
[external]

□◦

□

◦

Decision

decide
on claim

Reviewer
[external]

ReviewsReviews

Decision

ClaimClaim

Assignment

[created] [considered] [declined]

[reviewed]

[approved][due]

[in review]

•■ ■

•

•■

▲

Figure 4.6: Two fragments demonstratingWickr’s explicit input and out-
put sets, cross-case data objects, and batch processing. Ac-
tivity “request external review” has two overlapping input
sets (marked by □ and ◦) which include a cross-case data
object. Activity “decide on claim” reads a set of reviews and
writes one of three output sets (marked by ■, •, and ▲).

that are absent in fCM and data-aware process models, we revise the
definition of a data condition (Definition 21). We model conditions
using disjunctive normal form. As propositional variables, we use data
object nodes.
Definition 21 (Wickr Data Object Node, Data Condition). A data ob-
ject node is a tuple (c, q, isSet, isShared) ∈ DO, where (c, q) is a phase
(Definition 4), and isSet, isShared ∈ {true, false} indicate whether the
node represents a set and a cross-case data object, respectively.
Let DO be a set of data object nodes, where each data object node

comprises a class, a state, a set indicator, and a cross-case indicator. A
Wickr data condition CON is a set of sets of data object nodes:

CON ⊆ P(DO)

⋄

The semantics of data conditions depends on the associations be-
tween classes and are elaborated in Chapter 6. Here, we limit the
discussion to a few examples: The condition “a (local) claim must be
in state reviewed” is formally expressed by

{{(Claim, reviewed, false, false)}}

where the first element is a class, the second a state, the third a set
indicator, and the last one a cross-case indicator. To express “all the
(local) assignments of a (local) reviewed claim must be in state done,”
we use the following condition:

{{(Claim, reviewed, false, false), (Assignment, done, true, false)}}

62

4.3 Fragments

Wickr fragments are acyclic control flow graphs with i) an optional
start event, and ii) data object nodeswith a set indicator and an indicator
for cross-cases data objects. Inputs and outputs of activities are grouped
into alternative input and output sets, respectively. Fragments are
formally defined in Definition 22.
Definition 22 (Wickr Fragment). AWickr process fragment is a tuple
f = (s,NA, N×,

N−→, DO, i , o, con), where
1. N = {s|s ̸= ⊥} ∪· NA ∪· N× is a set of control flow nodes, where

• s is a start event or ⊥ if the fragment has none.
• NA is a finite non-empty set of activities.
• N× is a finite set of exclusive gateways.

2. N−→⊆ (N × (N \ {s})) is an acyclic control flow relation.
3. DO is a set of Wickr data object nodes.
4. i : NA → P(P(DO)) assigns each activity a non-empty finite set

of potentially empty input sets that contain data object nodes.
5. o : (N \ N×) → P(P(DO)) assigns activities and start events a

non-empty finite set of potentially empty output sets, where each
output set contains data object nodes.

6. con :
N−→→ P(P(DO)) assigns each control flow aWickr data con-

dition. Only control flow starting in an exclusive gateway may be
conditional:

∀n1
N−→ n2 : n1 ̸∈ N× ⇒ con(n1, n2) = {∅}

⋄

We define additional rules for well-formed fragments (see Defini-
tion 23) to prevent some structural errors.
Definition 23 (Well-Formed Wickr Fragment). AWickr fragment
f = (s,NA, N×,

N−→, DO, i , o, con) is well-formed, if
1. Fragments start with a single activity or a start event.

∃!n ∈ (N \N×),∀n′ ∈ N : (n′, n) ̸∈ N−→

2. The control flow graph is connected.

∃!n ∈ (N \N×), ∀n′ ∈ N : n ̸= n′ ⇒ (n, n′) ∈ N∗
−−→

where N∗
−−→ is the transitive closure of N−→.

3. There is no uncontrolled flow, i.e., only gateways may have more
than one incoming or more than one outgoing control flow.

∀n ∈ (N \N×) : |{n′ ∈ N |n′ N−→ n}| ≤ 1∧ |{n′ ∈ N |n N−→ n′}| ≤ 1

63

4 Wickr: Improving fCM

4. Gateways are either merges or splits.

∀g ∈ N× :(|{n ∈ N |n N−→ g}| = 1 ⇒ |{n ∈ N |g N−→ n}| > 1)∧

(|{n ∈ N |g N−→ n}| = 1 ⇒ |{n ∈ N |n N−→ g}| > 1)

5. Input sets include at most one data object node for each class.

∀n ∈ NA,∀R ∈ i(n),∀do, do′ ∈ R : do.c = do′.c ⇒ do = do′

6. Arc conditions’ product terms refer at most once to a class.

∀(n, n′) ∈ N−→, ∀Θ ∈ con(n, n′),∀do, do′ ∈ Θ :

do.c = do′.c ⇒ do = do′

7. For each control flow node, each output set has at most two data
object nodes of the same class. If there are two, the set indicators
must be different.

∀W ∈ o(N \N×),∀do, do′ ∈ W :

(do ̸= do′ ∧ do.c = do′.c) ⇒ do.isSet ̸= do′.isSet

8. The output sets of start events must not contain set objects.

s ̸= ⊥ ⇒ ∀W ∈ o(s),∀do ∈ W : do.isSet = false

9. If an activity has an output set containing a set data object node,
it must have an input set with a corresponding element.

∀a ∈ NA,∀W ∈ o(a),∀do’ ∈ W, ∃R ∈ i(a), ∃do ∈ R :

do′.isSet = true ⇒ (do.isSet = true ∧ do.c = do’.c)

⋄

Figure 4.7 depicts allWickr fragments of the insurance example. Here,
we cover each one briefly, while the next chapter provides a more de-
tailed explanation. The first fragment is the initial one. It is triggered
when the claim is received, and it completes by rejecting the claim or
paying the reimbursement. We use undirected associations between a
control flow and data object nodes to model conditional control flow.
While executing the first fragment, other fragments may be necessary.
The second fragment is executed once or multiple times sequentially
if the claim is incomplete. The third fragment assigns an external re-
viewer; the fourth receives an external review; and the fifth cancels a
requested review that has not yet been received. The sixth fragment is
responsible for internal reviews. The final fragment includes the men-
tioned decision: A claim can be declined or approved, or an additional
external reviewer may be assigned. All fragments are well-formed.

64

4.3 Fragments

Assignment

Claim

Claim

ClaimClaim

Risk

Risk

Decision

Decision
[received] [complete] [high]

[incomplete] [regular]

[reviewed][approved]

[declined]

claim
received

check
complete-

ness

assess
claim

approve
claim

reject
claim

pay
reimburse-

ment

Claim

ClaimClaimClaimClaim

[incomplete] [waiting] [updated] [incomplete]

[complete]

request
additional

information

receive
update

reassess
complete-

ness

Assignment

Claim Claim

Reviewer
[external]

[due]

[in review][complete]

request
external
review

Reviewer
[external]

Claim Review

Assignment Assignment

[in review] [created]

[due] [done]

receive
external
review

Assignment Assignment
Reviewer
[internal]

Claim

Claim ReviewRisk

assign
internal
reviewer

create
internal
review[complete]

[regular]

[due]

[in review]

[done]

[created]

Reviewer
[external]

[due]

[canceled]

cancel
external
review

ReviewReview Decision

Claim

Assignment

Claim

[created] [considered] [declined]

[in review] [reviewed]

[approved][due]Reviewer
[external]

Decision

decide
on claim

□◦

□ ◦

•■ ■

•

•■

▲

■

•

♦

▲

1

2

3

4

6

5

7

Assignment

×1

▲

•

Figure 4.7: Wickr fragments for the insurance example.

65

4 Wickr: Improving fCM

4.4 Goal Specification

Wickr defines the case goal by the goal multiplicity constraints and
the termination condition. If a case satisfies both, it can be closed by
knowledge workers. The termination condition is a data condition.
In the insurance example, eventually the claim must be reviewed,

and there must be a linked decision in state approved or declined. We
can express this formally by the data condition:

{{(Claim, reviewed, false, false), (Decision, approved, false, false)},
{(Claim, reviewed, false, false), (Decision, declined, false, false)}}

4.5 Case Model

Wickr’s case models (Definition 24) consist of a domain model, an object
behavior for each class, a set of fragments, and a termination condition.
Wickr and fCM differ in the definitions of their parts. Furthermore,
unlike fCM, Wickr does not define a set of classes that gets instantiated
with every new case. Instead, start events can have outputs.
Definition 24 (Wickr Case Model). AWickr case model wickr is a tuple
wickr = (d,B, b, F, CON term), where

1. d = (C, cco, l , u, ⋄l) is aWickr domain model.
2. B is a set of state transition systems.
3. b : C → B is a function assigning each class c its behavior.
4. F is a set of fragments, where each data object node is defined

based on the classes in d.C and their states according to b.
5. CON term is the termination condition.

⋄

The parts of a case model depend on one another: For each class
exists a behavior; each data object node references a class and a state;
and the termination condition uses data object nodes. In the following,
we present criteria that all case models must satisfy.

4.5.1 Structural Satisfiability

Activities and data conditions express data requirements using data
object nodes. In Wickr, objects are created, linked, and updated by
activities and events contained in fragments. Furthermore, a single
fragment does not necessarily have a continuous data flow. Yet, despite
the fragmented data flow, all data requirements must be satisfiable. A
data object node is structurally satisfiable (see Definition 25) if the node
is cross-case,3 or if an output set contains a local data object node with
the same class and the same state.
3We assume an openworld, in which a cross-case data object node is always satisfiable
because it may be in an output set in another (unknown) case model.

66

4.5 Case Model

Definition 25 (Structurally Satisfiable Case Model.). Given a Wickr
case model wickr = (d,B, b, F, CON term), let DOR be the set of data
object nodes contained in input sets and data conditions. Furthermore,
let DOW be the set of data object nodes contained in output sets. The
model wickr is structurally satisfiable, if

∀do ∈ DOR, do.isShared = false,∃do′ ∈ DOW :

do′.isShared = false ∧ do.c = do′.c ∧ do.q = do′.q

⋄

4.5.2 Object Behavior Conformance

Activities read, write, and create data objects. When the state of a data
object is changed, the update must conform to the corresponding object
behavior. This means every state transition performed by an activity
must be modeled in the corresponding object behavior. However, an
activity may have multiple input sets and multiple output sets, and not
all possible input-output-set combinations need to be valid.
To check whether an input-output-set combination is object behavior

conform, we determine all data objects that get updated. Therefore, we
search for a node in the input set and a node in the output set which
have the same class and the same set indicator.
Definition 26 (Object Behavior Conformance). Given a case model
wickr = (d,B, b, F, CON term), letR be an input set andW be an output
set of an activity. The input-output set combination (R,W) is object
behavior conform if every update complies to the respective object
behavior:

∀do ∈ R, do′ ∈ W :

(do.c = do′.c ∧ do.isSet = do′.isSet) ⇒ ((do.q, do′.q) ∈ b(do.c).δ)

⋄

4.5.3 Contextual Object Creation

The I/O-behavior of activities clearly describes when data objects are
created. Due to the existential associations in the domain model, it
also describes when data objects are linked. An existential association
describes that objects of one class depend on objects of another class.
We call the objects dependents and supporters, respectively.4 When a
dependent is created, it is linked to all its supporters.

Therefore, when an input-output-set combination implies creating a
new object, the object’s supporters must either be read or co-created.
Furthermore, a dependent may require multiple supporters of the same
class if the respective global multiplicity has a lower bound greater than
one. In this case, a set of corresponding data objects must be read.

4This is similar to MERODE’s use of existential association [94], but the naming is
different: In MERODE supporters are called masters, and dependents are called slaves.

67

4 Wickr: Improving fCM

Definition 27 (Contextual Object Creation.). Given aWickr case model
wickr = (d,B, b, F, CON term) and an input set R and an output setW .
The input-output set combination (R,W) satisfies contextual object
creation if for each object that is created all supporters are accessed.

We define a setWnew of data object nodes that are instantiated:
Wnew = {do ∈ W |{do′ ∈ R|do′.c = do.c ∧ do′.isSet = do.isSet} = ∅}

Furthermore, we define a function sup that given a class returns the set
of supporting classes:

∀c ∈ d.C : sup(c) = {cs ∈ d.C|d.l(cs, c) > 0}

Then (R,W) satisfies contextual object creation if
∀don ∈ Wnew,∀cs ∈ sup(don.c), ∃ dos ∈ (R ∪Wnew) :

dos.c = cs ∧ ((d.l(cs, don.c) > 1) ⇒ dos.isSet)
⋄

4.5.4 Contextual Batch Processing

If an input set or condition contains a set data object node, multiple
objects may be accessed. At runtime, it must be clear which objects
are contained in the set. Therefore, the input set of the activity or the
product term of the condition must contain a reference object. The set
consists of all objects that belong to the class specified by the respective
node and that are linked to the reference object.
Consider an input set that requires a set of reviews. The input set

must also contain a data object node for a suited reference object. If the
reference object is a claim, all reviews of that claim need to be read. If it
is a reviewer, all reviews of the reviewer are read.
Contextual batch processing requires that whenever a set of objects

is accessed, a single suited reference object must be read as well:
• The reference object must not be read as a part of a set.
• The reference object’s class must be associated to the set’s class.
• The multiplicity constraints must allow that multiple objects of

the set’s class can be linked to one reference object (i.e., it is a
1-to-many association).

A data object node for the reference object must be included in the input
set, but its special role is not explicitly modeled.
Definition 28 (Contextual Batch Processing.). Given a case model
wickr = (d,B, b, F, CON term), let R be an input set of an activity or
the product term of a condition. The set R satisfies contextual batch
processing if for each set data object node in the input set, exists exactly
one reference object.

∀dos ∈ R, dos.isSet, ∃!dor ∈ R,¬dor.isSet : d.u(dos.c, dor.c) > 1

⋄

68

4.5 Case Model

4.5.5 Well-Formed Case Model

Awell-formed case model (Definition 29) consists of well-formed parts.
Furthermore, it satisfies Structural Satisfiability, and for each input set
must exist an output set and vice versa so that the combination satisfies
Object Behavior Conformance, Contextual Object Creation, and does not
create an instance of the case object. Also, each input set must satisfy
Contextual Batch Processing. While these criteria do not guarantee correct
behavior (i.e., that the case goal can be reached), they prevent some
structural errors.
Definition 29 (Well-Formed Wickr Case Model). Given a case model
wickr = (d,B, b, F, CON term), let NA;F =

⋃
f∈F f.NA be the set of all

activities, iF =
⋃

f∈F f.i the function assigning each activity a set of
input sets, and oF =

⋃
f∈F f.o the function assigning each activity and

start event a set of output sets. The case model is well-formed, if

1. The domain model d is well-formed.

2. All fragments f ∈ F are well-formed.

3. There exists at least one fragment with a start event.

∃f ∈ F : f.s ̸= ⊥

4. Every start event creates the case object.

∀s ∈ {f.s|f ∈ F ∧ f.s ̸= ⊥},∀W ∈ o(s), ∃do ∈ W : do.c = d.cco

5. The case object remains local.

∀f ∈ F,∀do ∈ f.DO : do.isShared ⇒ do.c ̸= d.cco

6. Wickr satisfies structural satisfiability.

7. Each input set and product term satisfies contextual batch pro-
cessing.

8. For each activity in a ∈ NA;F and each input set R ∈ iF (a) exists
an output setW ∈ oF (a) and vice versa so that the combination
(R,W) is valid. A combination is valid if it satisfies
a) Object Behavior Conformance,
b) Contextual Object Creation, and
c) no case object is created:

∀do ∈ W : do.c = d.cco ⇒ ∃do′ ∈ R, do′.c = d.cco

For each well-formed case model, we define a function io assigning each
activity its valid input-output-set combinations. ⋄

69

4 Wickr: Improving fCM

4.6 Cases in Wickr

The differences betweenWickr and fCM case models also manifest in
their respective cases. The case data that describes the subject and parts
of the situation consists of objects and links among objects. Furthermore,
instantiating a non-initial fragment is equal to executing its first activity.
Therefore, the enabled actions are redefined. Finally, goal multiplicity
constraints contribute to the goal definition.
Similarly to fCM, knowledge workers can change the case by per-

forming an action or adapting the case model. In Chapter 8, we discuss
how the model can be changed at run time.
Definition 30 (Wickr Case). Letwickr = (d,B, b, F, CON term) be a case
model. A corresponding case is defined by

1. the Subject described by a set of data objectsO and a set L of links,
where
a) L ⊆ {{o1, o2}|o1, o2 ∈ O ∧ o1 ̸= o2}
b) o.id is the identity of object o ∈ O

c) o.class is the class of object o ∈ O

d) o.state is the state of object o ∈ O

e) o.isShared denotes whether o ∈ O is a cross-case object.

2. a set E ⊆ (P(O)×NA;F × P(O)) of enabled actions, where O is
the universe of possible data objects and each action is a tuple
(Or, na, Ow) consisting of
a) a set Or containing data objects that are read and
b) a set Ow of data objects that are written
c) by an instance of activity na ∈ NA;F =

(⋃
f∈F f.NA

)
3. a history H of past actions

4. the current case goal G

⋄

4.7 Summary

Wickr is a case management approach adapting and extending fCM to
reduce ambiguity in the case definition and emphasize the role of data
during case execution. AWickr case model includes a domain model
with associations and multiplicity constraints. At runtime, activities
are executed to create, update, and link objects. Links are used to select
objects that are processed by an activity and to evaluate conditions.

Figure 4.8 depicts the metamodel of Wickr. While it does not capture
all the details, it shows clearly the dependencies between different parts:
The data model is instantiated by executing activities in the fragments.
The activities implement state transitions that are modeled in the object

70

4.7 Summary

behavior. Furthermore, classes and states are used to specify data
conditions, such as the termination condition.

Case Model

Object Behavior

FragmentDomain Model

Association End

Association Class

+ globalLowerBound
+ globalUpperBound
+ goalLowerBound

1..*
*

State Transition

Control Flow

Control Flow Node

Data Object Node
+ isSet
+ isShared Data Set

Event Activity XOR

Data Condition

2

1 1

*

1

State1

*

*

1..*

11

*

1

1

1

1

1
*

1
*

1..*

*

*
*

1..* 1..* 1..*

** *

1..*
*

1

*

1

*1

1..*

1..*

11

11

*

1 1

**

readswrites

src

trg

co

trg

src

1..*

1..*

term.
cond.

Figure 4.8: Metamodel of Wickr.

Dependencies that are not explicitly modeled are called hidden de-
pendencies [12]. Due to hidden dependencies inWickr, one part of the
case model may impose constraints on another: Associations and mul-
tiplicity constraints impose requirements on object creation. The object
behaviors impose requirements on updating objects. If these dependen-
cies are not carefully considered during design-time, the model may
contain inconsistencies that prevent proper execution. Therefore, we
define some structural correctness criteria that must be satisfied by well-
formed case models (Table 4.2) to circumvent some inconsistencies.
So far, we only mentioned how a case model defines the behavior

of a case. Process fragments model knowledge workers activities and
dependencies among them. The object behavior describes how data
objects can be changed. And the data model specifies the structure of
the information. However, during a case, all these parts come together.
In the next chapters, we formally define the case behavior by translating
the case models to Petri nets.

71

4 Wickr: Improving fCM

Table 4.2: Overviewof the structural correctness criteria forwell-formed
Wickr case models.

Structural Catisfiabil-
ity

Objects for every local data object node re-
quired by an input set or condition must
be produced by the case, i.e., a respective
data object node must be part of an output
set.

Object Behavior Con-
formance

Only state transitions present in the object
behavior are valid.

Contextual Object
Creation

When a dependent is created, correspond-
ing supporters must be provided.

Contextual Batch Pro-
cessing

To determine the objects accessed for a set
data object node, a reference object must be
included in the input set or product term.

72

5 A Petri Net-Based Semantics
for Wickr

The goal of a case is the resolution of its current situation. Knowledge
workers execute actions to change the case and to move it toward the
goal. InWickr, actions are modeled as activities with input-output-set
combinations. Actions must adhere to the object behavior, and the case
data must comply with the domain model. In this chapter, we set out
to specify Wickr’s semantics formally. Focusing on the general data
and control flow, we translate case models to classical Petri nets. This
translation does not exploit associations and multiplicity constraints,
but it is the foundation for respective extensions in Chapter 6.
The semantics are based on fCM’s as specified in [117, 143, 144].

A preliminary version of the semantics presented in this chapter was
published in a joint paper with Adrian Holfter and Luise Pufahl [165].

5.1 An Example Case

Before presenting the formal semantics, we briefly sketch the exam-
ple’s behavior in a fictive case. Consider a bicycle insurance that offers
reimbursement in case a client’s bicycle gets stolen.
Mrs. Starley’s bicycle was stolen, and she reports the theft to her

insurance. Upon receiving Mrs. Starley’s claim, the insurance starts
a new case (start event of fragment 1 in Figure 4.7 on p. 65). A claim
object in state received is created, and an insurance worker checks the
completeness of the claim. Unfortunately, Mrs. Starley forgot to add
the reference to the police report. Hence, the claim is incomplete.

The insuranceworker contactsMrs. Starley and asks her to update the
claim (fragment 2). She sends the missing reference, which is checked.
Now, the claim is complete.
Next, the risk can be assessed (fragment 1). The insurance worker

considers the risk to be regular. However, at least two reviews for the
claim are required (goal multiplicity constraint).

A co-worker, who is eligible to act as an internal reviewer, is assigned
and creates a review (fragment 6). Furthermore, an external review
is requested (fragment 3). Two weeks pass, and the insurance has
not received the external review yet. The insurance worker decides to
cancel the assignment (fragment 5) and requests a review from another
reviewer (fragment 3). Within a couple of days, the review arrives
(fragment 4). Considering both reviews, the worker finally decides to
approve the claim (fragment 7). Mrs. Starley receives notice about the
approval, and the reimbursement is paid (fragment 1). The insurance
worker closes the case (termination condition).

73

5 A Petri Net-Based Semantics for Wickr

5.2 The Case State

Models for discrete behavior describe states and state transitions. In
Wickr, a state includes i) data and ii) fragment instances. The state
changes when instances of control flow nodes are executed. An activity
instance, for example, may create, update, and link objects as well as
start, advance, or terminate a fragment instance. To translate a case
model to a Petri net, we have to create places for state information.

We consider a case that has not yet started to be in state initial. After a
start event occurred, it is in state running. Eventually, the case is closed
and changes to state terminated. The Petri net formalization of a case
model has the places initial, running, and terminated (see Figure 5.1). In
the initial state, one token is in place initial.

initial running terminated

Figure 5.1: Every case is either in state initial, running, or terminated.
This is represented by a token in the respective place. The
place’s label is written inside the place, following the nota-
tion used by CPNTools [56].

5.2.1 Case Data

Every case contains data to describe the subject and the current situation.
In Wickr, the case data consists of multiple objects and links. Every
object has a state, and it is either local to one case or a cross-case object.
For now, we do not distinguish between local and cross-case data objects,
and we do not support links.
The classical Petri net formalization has a place for each phase. A

token in such a place represents a data object of the phase’s class in
the phase’s state. We label the places Class[state], e.g., Claim[received].
Figure 5.2 shows the respective places for the insurance example.

Claim
[incomplete]

Risk
[high]

Assignment
[done]

Claim
[received]

Risk
[regular]

Assignment
[due]

Claim
[complete]

Assignment
[canceled]

Decision
[approved]

Review
[considered]

Claim
[waiting]

Decision
[declined]

Review
[created]

Claim
[reviewed]

Claim
[in review]

Figure 5.2: The Petri net has a place for each phase. A token on such a
place represents a data object that belongs to the phase.

74

5.3 The Case Behavior

5.2.2 Fragment Instances

The state of a fragment instance consists of the state of its control flow
nodes. However, following other formalisms [46, 52], we abstract from
the initial, running, and terminated state of activity instances (cf. Fig-
ure 5.3). Instead, we formalize the control flow and that it has been
triggered. The Petri net for a case model includes a place for each con-

initial cf enabled

df enabled

enabled running terminated

Figure 5.3: The lifecycle of an activity consists of multiple states
(cf. [112]). Each activity starts in the initial state. It can
be enabled by both control flow and data flow, executed,
and terminated.

trol flow arc. A token in such a place represents that the control flow
has been triggered, but the target node (activity or gateway) has not
terminated yet. Triggering a control flow enables its target node. Since
a single fragment may be instantiated multiple times concurrently, a
control flow place may have multiple tokens.
For the insurance example (Figure 4.7, p. 65), we add places pi;j for

each control flow j in fragment i (see Figure 5.4).1 A token on the place
p1;1 represents that the start event has occurred, but activity “check
completeness” has not been completed yet.

p1;1 p1;2 p1;3 p1;4 p1;5 p1;6 p2;2p2;1 p6;1

Figure 5.4: Places for the control flow of fragments. A place with label
pi;j refers to the control flow j in fragment i.

5.3 The Case Behavior

A new case begins when a start event occurs. During a case, knowledge
workers execute activities, which may start fragment instances, advance
the control flow, and access data objects. The case can be closed if the
goal—consisting of the termination condition and the goal multiplicity
constraints—is satisfied. This summarizes the case behavior.
In a Petri net, behavior is defined by transitions, which consume

tokens from and produce tokens into places. To capture the full case

1The place must identify the control flow clearly. Here, however, we use abstract
labels to simplify the net. Later, the context allows identifying the represented
control flow arc.

75

5 A Petri Net-Based Semantics for Wickr

model, events, activities, gateways, and the case termination must be
translated into transitions.

5.3.1 Case Instantiation

Each case model has at least one fragment with a start event. Each start
event has one or multiple output sets. When a start event occurs, a new
case begins, and data objects for one output set are created.
A start event with multiple output sets cannot be translated into a

single Petri net transition because transitions are deterministic. They
consume a token from each place in their preset and produce a token
into each place of their postset. Start events’ output sets are exclusive
alternatives: Only one of them is chosen.
Given a start event, we create a transition for each of its output sets.

Such a transition consumes a token from initial and produces a token
into running. Furthermore, for each data object node in the output set,
the transition produces a token into the respective place. The transition
also produces a token into the control flow place for the start event’s
outgoing control flow.
The insurance example has a single start event—“claim received.”

It has a single output set, which contains a node for claim in state
received. It translates to one transition (see Figure 5.5), which consumes
a token from initial and produces a token into each of the places running,
Claim[received], and p1;1.

claim
received

Claim
[received]

p1;1

running

initial

Figure 5.5: The start event of the insurance example is mapped to a
single Petri net transition. It sets the state of the case from
initial to running, advances the control flow, and creates a
claim in state received.

5.3.2 Case Execution

Once the case has started, other control flow nodes can be executed
to change the case state, and to make progress towards the case goal.
Activities implement knowledge workers’ actions, and gateways model
conditional branching. In the Petri net, we represent both as transitions.

76

5.3 The Case Behavior

Activities

Each activity has a set of valid input-output-set combinations and op-
tionally incoming and/or outgoing control flow. Activities without
an incoming control flow start a new fragment instance. They can be
executed as long as the case is running, and data objects for at least one
input set exist.

An activity is mapped to a set of transitions—one for each valid input-
output-set combination. For each data object that is read, a token is
consumed and produced. If the state of an object remains the same, the
transition reproduces the token into the same place, Otherwise, they
produce the token into a different place. Also, when an object is created,
a token is produced into the respective place. If the activity has an in-
coming control flow, a token is consumed from the corresponding place.
The transitions for activities without incoming control flow consume
a token from and produce a token into place running. If an outgoing
control flow exists, a token is produced into the respective place.
Activity “assess claim” in the first fragment of the example (see

Figure 4.7, p. 4.7) has one input set, two output sets, and two valid
combinations. The input set contains a node for the claim in state
complete. The output-sets contain the risk in state regular or high.

Activity “assess claim” is mapped to two transitions (see Figure 5.6).
One represents outputset •, writing the risk in state regular. The transi-
tion’s preset contains the place p1;2 for the incoming control flow and
the place Claim[complete] for the input set. The postset contains the
place p1;3 for the outgoing control flow, the places Claim[complete], and
Risk[regular] for the output set •. Transition “assess claim■” covers the
output set■. The transition has place Risk[high] instead of Risk[regular]
in its postset and is otherwise the same as “assess claim •”.

p1;3

Risk
[high]

Claim
[complete]

p1;2
assess
claim •

assess
claim ■

Risk
[regular]

Figure 5.6: The activity “assess claim” is mapped to two transitions, one
for each input-output-set combination.

77

5 A Petri Net-Based Semantics for Wickr

Activity “receive external review” has one valid input-output-set
combination but no incoming and no outgoing control flow. It is trans-
lated to a single transition (see Figure 5.7). The places Claim[in review]
and Reviewer[external] in the transition’s preset and postset represent
the objects that are read but not updated. Furthermore, place Assign-
ment[due] is in the preset but not in the postset because the data object
is updated. The places Assignment[done] and Review[created] in the
postset represent the objects of the output set. Since the activity has no
incoming control flow, the place running is added to its preset and to
its postset.

Claim
[in review]

Assignment
[done]

Review
[created]

receive
external
review

running

Assignment
[due]

Reviewer
[external]

Figure 5.7: The transition for activity “receive external review.”

Gateways

Wickr supports only exclusive gateways. A split is an exclusive gateway
with multiple outgoing control flows and represents a decision within
a fragment. A merge is an exclusive gateway with multiple incoming
control flows. When an incoming control flow has been signaled, the
gateway is enabled. When it is evaluated, one of the outgoing con-
trol flows is triggered. Splits’ outgoing control flows may have data
conditions: The flow can only be triggered if its condition is satisfied.
In the Petri net formalism, gateways are represented by transitions.

We create a set of transitions for each combination of an incoming and
an outgoing control flow. More precisely, the set contains one transition
for each product term in the data condition of the outgoing control
flow. The transition consumes a token for the incoming control flow
and produces a token for the outgoing one. Furthermore, places for the
data objects required by the product term are added to both the pre-
and the postset, so that the case data is not changed. The transition can
only fire if the product term is satisfied. If the product term is empty,
the control flow is unconditional.
The insurance example has a single gateway. Its outgoing control

flow is conditional: The upper branch leading to “reject claim” requires
a decision in state declined. The lower branch leading to “approve claim”
requires a decision in state approved. In the Petri net, two transitions rep-
resent the gateway (see Figure 5.8). Both transitions have the place p1;3
in their presets. The transition for the upper branch consumes a token
from Decision[declined] and produces a token into Decision[declined]
and into p1;4. In contrast, the other transition consumes a token from
Decision[approved] and produces a token into Decision[approved] and

78

5.3 The Case Behavior

into p1;5. Thus, the transitions can only fire if the incoming control
flow has been triggered and if their respective branching condition is
satisfied.

×1

declined p1;4

p1;3

Decision
[declined]

Decision
[approved]

×1

approved p1;5

Figure 5.8: The gateway ×1 of the example is represented by two transi-
tions that check the condition and progress the control flow.

5.3.3 Case Termination

By executing activities, knowledge workers advance the case towards
the case goal. The goal is modeled by goal multiplicity constraints and
the termination condition. If both hold, the knowledge workers can
close the case. Once the case has been closed, fragments cannot be
instantiated. However, knowledge workers may still have some work
left, so already started fragments may still be completed.
The classical Petri net formalization does not capture links among

data objects; thus, it does not support goal multiplicity constraints.
However, the termination condition is partially supported and mapped
to a set of transitions—one for each product term. The transition’s
preset includes the place running and the places for the required data
phases. The transition’s postset contains the place terminated as well
as the places for the required data phases. It is enabled, if the case is
running and the product term is satisfied. It changes the abstract case
state but not the data state or the control flow.
The termination condition of the example requires a claim in state

reviewed and a decision either in declined or in approved. Accordingly,
the Petri net formalization (see Figure 5.9) has two transitions with the
corresponding places in their pre- and postsets.

5.3.4 The Complete Case Model

In this chapter, we described the case from its start to its operation to its
termination. The case behavior arises primarily from fragments and the
termination condition. However, the domain model and object behav-
iors limit the case by constraining the input-output-set combinations
(cf. Definition 29).

79

5 A Petri Net-Based Semantics for Wickr

Decision
[approved]

terminated

{Decision
[approved],

Claim
[reviewed]}

Decision
[declined]

Claim
[reviewed]running

{Decision
[declined],

Claim
[reviewed]}

Figure 5.9: Petri net formalization of the termination condition contain-
ing one transition for each product term.

While we have not yet considered links and multiplicity constraints,
complexity still arises when the full case model is considered: Multiple
instances of the same and different fragments can run concurrently
and are only synchronized by the data requirements of activities and
data conditions. The events, gateways, and activities of one fragment
are connected by control flow. Elements of different fragments are
connected through data.

This is evident in the Petri net formalization. While each fragment is
mapped to a separate set of transitions and places representing control
flow, places for data objects can be connected to transitions of different
fragments.
Consider fragments one and two of the example. The start event

“claim received” instantiates the case and fragment one. Activity “check
completeness” may then update the claim to state incomplete. If so,
fragment two must run to request and receive updates until the claim
is complete.
The Petri net mapping in Figure 5.10 shows this dependency. Two

transitions represent activity “check completeness.” The transition
“check completeness ▲” represents the output set for incomplete claims.
Upon firing, it produces a token intoClaim[incomplete] and p1;2. Thereby,
transition “request additional information” is enabled. The correspond-
ing activity belongs to fragment two. Similarly, transition “reassess
completeness •” enables the “assess claim” transitions belonging to
fragment one.
The example in Figure 5.10 covers only two fragments. Yet, it does

show the back and forth between fragment instances. Depicting the
Petri net for the full case model results in a complex graph. Therefore,
we show Petri net excerpts focusing on one fragment at a time. In some
cases, we make an exception to this rule to emphasize the connections
among fragments.

80

5.4 Translation to Classical Petri Nets

initial runningclaim
received

p1;1

check
complete-

ness ♦

check
complete-
ness ▲

p1;2
Claim

[incomplete]

request
additional

information

p2;1

receive
update

p2;2

reassess
complete-

ness •

reassess
complete-
ness ▲

Claim
[updated]Claim

[complete]

assess
claim
■

assess
claim
•

p1;3

Risk
[high]

Risk
[regular]

×1

Decision
[declined]

×1

Decision
[approved]

p1;4 p1;5

reject
claim

approve
claim

p1;6

pay
reimbursement

Claim
[reviewed]

Decision
[approved]

Decision
[declined]

Claim
[waiting]

Claim
[received]

Figure 5.10: Petri net for the first and second fragment of the example.

5.4 Translation to Classical Petri Nets

In this section, we detail the presented translational semantics in a
pseudocode algorithm (see Algorithm 1). The labels of places and
transitions refer directly to their counterparts in the case model. Yet, in
some cases, labels assigned by the algorithmmaydeviate from the labels
used in the previous examples: We use simpler labels in the examples
(e.g., for control flow and gateways) to benefit comprehension, and
we use detailed labels in the algorithm to describe the mapping more
precisely.

We create disjoint sets of places (ll. 1–7) for the abstract case states
(l. 1), data objects in particular states (ll. 2–4), and control flow arcs
(ll. 5–7).

When a start event occurs, a case is started, data objects for one output
set are created, and the outgoing control flow is triggered. Start events
are translated to a set of transitions in ll. 8–16. They start a new case

81

5 A Petri Net-Based Semantics for Wickr

(ll. 11–12) by moving a token from place initial to running. They create
a token for their outgoing control flow (ll. 13–14), and tokens for the
data object nodes in one output set (ll. 15–16). If the start event has
multiple output sets, it translates to multiple transitions.

Activities are executed by knowledge workers. When one activity is
executed, data objects of one input set are read and those of one output
set are written. Furthermore, activities my trigger control flow. In the
Petri net, activities are represented by a set of transitions (ll. 17–32).
We create one transition for each valid input-output-set combination
(ll. 19). It consumes a token for each data object that is read (l. 21). If the
data object is not updated, the token is reproduced (l. 23). Furthermore,
token for data objects that arewritten are produced (l. 25). If the activity
has an incoming control flow, a token is consumed from the respective
place (l. 27). Otherwise, a token is consumed from and produced into
running (ll. 29, 30). Similarly, a token is produced into a control flow
place, if an outgoing control flow exists (l. 32).

For gateways, we map each combination of an incoming and an
outgoing control flow to a set of transition (ll. 33–42). The set contains
one transition for each product term in the condition of the outgoing
control flow (l. 37). It consumes a token for the incoming control flow
(l. 38) and produces one for the outgoing flow (l. 39). Similarly, a token
is consumed and reproduced for each data object node in the product
term (ll. 40–42).
The termination condition is also translated to a set of transitions

(ll. 43–49). Each transition represents one product term of the termi-
nation condition. Such a transition moves a token from running to
terminated (ll. 45, 46). Furthermore, it consumes and reproduces a
token for each data object node in the product term (ll. 47–49).

5.5 Summary

The presented mapping formalizes the general control flow and data
flow of the case model. A start event instantiates a case. Activities
read, create, and update data objects. Once the termination condition is
satisfied, one of the respective transitions can fire and the case is closed.
Within one fragment, nodes are connected by both data and control
flow. Between fragments, only data dependencies exist. The Petri net
incorporates both, showing dependencies between different parts of
the case model.
Yet, the classical Petri net formalization has limitations. Not sup-

ported are object identities, links, multiplicity constraints, set data object
nodes, and cross-case data objects are indistinguishable from local ones.
Hence, the formalization is less constrained than the case model and
may describe unwanted traces. The classical Petri net for the insurance
example is incapable of asserting that there are at most three reviews for
a claim. It is incapable of considering multiple reviews when “decide
on claim” is executed. And it does not know about the relationship
between assignments and reviewers.

82

5.5 Summary

Algorithm 1: Algorithm mapping a case model to a Petri net. A
substring “⟨v⟩” is replaced with the value of variable v.
Input: a well-formed case model wickr = (d,B, b, F, CON term)

Output: a Petri net pn = (S, T,
ST−−→,m0)

1 add places “initial”, “running”, and “terminated” to Si;r;t;
2 for each class c in the domain model d:
3 for each state q in the corresponding object behavior b(c):
4 add a place “⟨c⟩[⟨q⟩]” to SDO;
5 for each fragment f in the set of fragments F :
6 for each arc (n, n′) in the control flow N−→ of fragment f :
7 add a place “(⟨n⟩,⟨n′⟩)” to Scf;
8 if the fragment f has a start event s:
9 for each output setW of the start event s:

10 add a transition “(⟨s⟩,⟨W⟩)” to Ts;
11 add an arc from place “initial” to transition “(⟨s⟩,⟨W⟩)” to i;r;t−−−→;
12 add an arc from transition “(⟨s⟩,⟨W⟩)” to place “running” to i;r;t−−−→;
13 let (s, n) be the control flow leading from s to n;
14 add an arc from transition “(⟨s⟩,⟨W⟩)” to place “(⟨s⟩,⟨n⟩)” to cf out

−−−→;
15 for each data object node with class c and state q inW :
16 add an arc from transition “(⟨s⟩,⟨W⟩)” to place “⟨c⟩[⟨q⟩]” to write−−−→;
17 for each activity a in fragment f :
18 for each valid input-output-set combination (R,W) in io(a):
19 add a transition “(⟨a⟩,⟨R⟩,⟨W⟩)” to Ta;
20 for each data object node with class c and state q in R:
21 add an arc from place “⟨c⟩[⟨q⟩]” to transition “(⟨a⟩,⟨R⟩,⟨W⟩)” to read−−→;
22 if there exists no data object node with class c inW :
23 add an arc from trans. “(⟨a⟩,⟨R⟩,⟨W⟩)” to place “⟨c⟩[⟨q⟩]” to write−−−→;
24 for each data object node with class c and state q inW :
25 add an arc from transition “(⟨a⟩,⟨R⟩,⟨W⟩)” to place “⟨c⟩[⟨q⟩]” to write−−−→;
26 if there exists a control flow (n, a) leading to a:
27 add an arc from place “(⟨n⟩,⟨a⟩)” to transition “(⟨a⟩,⟨R⟩,⟨W⟩)” to cf in

−−→;
28 else:
29 add an arc from place “running” to transition “(⟨a⟩,⟨R⟩,⟨W⟩)” to i;r;t−−−→;
30 add an arc from transition “(⟨a⟩,⟨R⟩,⟨W⟩)” to place “running” to i;r;t−−−→;
31 if there exists a control flow (a, n) starting in a:
32 add an arc from transition “(⟨a⟩,⟨R⟩,⟨W⟩)” to place “(⟨a⟩,⟨n⟩)” to cf out

−−−→;
33 for each gateway g in fragment f :
34 for each control flow arc (n, g) leading to g:
35 for each control flow arc (g, n′) starting in g:
36 for each product term R in f.con(g, n′):
37 add a transition “(⟨n⟩, ⟨g⟩, ⟨n′⟩, ⟨R⟩)” to T×;
38 add an arc from place “(⟨n⟩, ⟨g⟩)” to trans. “(⟨n⟩, ⟨g⟩, ⟨n′⟩, ⟨R⟩)” to

cf in
−−→;

39 add an arc from trans. “(⟨n⟩, ⟨g⟩, ⟨n′⟩, ⟨R⟩)” to place “(⟨g⟩, ⟨n′⟩)” to
cf out
−−−→;

40 for each data object node with class c and state q in R:
41 add an arc from place “⟨c⟩[⟨q⟩]” to trans. “(⟨n⟩, ⟨g⟩, ⟨n′⟩, ⟨R⟩)” to

read−−→;
42 add an arc from trans. “(⟨n⟩, ⟨g⟩, ⟨n′⟩, ⟨R⟩)” to place “⟨c⟩[⟨q⟩]” to

write−−−→;
43 for each product term R in the termination condition CON term:
44 add a transition “⟨ R⟩” to Tterm;
45 add an arc from place “running” to transition “⟨ R⟩” to r;i;t−−−→;
46 add an arc from transition “⟨ R⟩” to place “terminated” to r;i;t−−−→;
47 for each data object node with class c and state q in product term R:
48 add an arc from place “⟨c⟩[⟨q⟩]” to transition “⟨R⟩” to read−−→;
49 add an arc from transition “⟨ R⟩” to place “⟨c⟩[⟨q⟩]” to write−−−→;
50 Let S = Si;r;t ∪· SDO ∪· Scf;
51 Let T = Ts ∪· Ta ∪· T× ∪· Tterm;
52 Let ST−−→=

i;r;t−−−→ ∪·
cf in
−−→ ∪·

cf out
−−−→ ∪· read−−→ ∪· write−−−→;

53 Let m0 be the initial marking with one token in place “initial”;

83

5 A Petri Net-Based Semantics for Wickr

However, these are partly limitations of the mapping, not those of
classical Petri nets per se: Multiple cases can be modeled by replicating
the Petri net and merging them via places for cross-case data objects.
Some multiplicity constraints can be modeled via “reservoir” places
from which a token is removed when a data object is created. Yet, to
capture the full behavior, classical Petri nets are infeasible. Therefore,
we present an extension using colored Petri nets in the next chapter.

84

6 Associations and Multiplicity
Constraints

Data objects, links, and multiplicity constraints are fundamental to
Wickr’s semantics. When activities create and link data objects, they
are constrained by multiplicity constraints. When activities read and
update data objects, they are constrained by links. Furthermore, the
goal multiplicity constraints must be accomplished eventually.

Classical Petri nets are unfit for this semantics. In this chapter, we use
colored Petri nets to extend the mapping of the previous chapter. The
extended mapping considers object identities, links, and multiplicity
constraints.

This chapter is partially based on the publications [158, 160, 166], in
whichwe presented fCMwith associations, multiplicity constraints, and
corresponding formal semantics, respectively. One of the papers [166]
is joint work with Marco Montali.

6.1 Object Identities

In relational databases, primary keys distinguish tuples even if they
are otherwise equal. In object-oriented programming, every object has
a unique identity. In Wickr, data objects have identities, which allow
distinguishing objects even if they are otherwise equal. Furthermore,
the identities encode the object’s class. Identities do not change over
time. They are fundamental to Wickr’s semantics because they are used
for linking objects and to bind fragment instances to objects.

When an object is created, a novel identity is produced. The identity
must be unique, and it does not change. We implement the identity
as a pair that consists of the object’s class and an integer. The integer
denotes the number of objects of the respective class that existed when
the identity was created. Later, we use the class in the identity to find
the identities of all objects of a particular class.

The Petri net is extended accordingly. We add a colorset CID contain-
ing all possible object identities:

CID = C × N0,where C is a set of classes.
Each token representing a data object is a color in CID, and places
holding such tokens are typed accordingly. To count the number of
objects, we add N0 as a colorset and class-specific places with the label
count(Class), i.e., count(Review). The places are typed N0 and have an
initial token with value 0.
To access tokens, we add two variables for each class: one for the

identity and one for the counter. They are namedClass_ID and cnt_Class

85

6 Associations and Multiplicity Constraints

respectively, i.e., Review_ID and cnt_Review. A transition consuming an
identifier does so via the respective variable. A transition creating a new
identifier consumes the counter, uses its value for the new identifier,
and produces an incremented value.

count
(Claim)

N0

count
(Risk)

N0

count
(Assignment)

N0

count
(Reviewer)

N0

count
(Review)

N0

count
(Review)

N0

count
(Decision)

N0

Figure 6.1: Counter places for each class hold an unsigned integer token.
The token’s value denotes the number of respective objects.

Figure 6.1 shows the counter places for the insurance example. Ta-
ble 6.1 lists the variables for counters and identities. When an object
is created, the counter is used to create a new identity. Figure 6.2 de-
picts the formalization of fragment four, “receive external review” (cf.
Figure 4.7, p. 65) The claim, reviewer, and assignment are read. The tran-
sition consumes and reproduces identity tokens, respectively. Since the
state of the assignment is changed to done, the token is moved to place
Assignment[done]. Also, a review is created. Therefore, the counter
is consumed (cnt_Review), the novel identity is constructed (Review,
cnt_Review), and the counter’s value is incremented (cnt_Review+1).

Table 6.1: Variables for counters and identities used in the insurance
example.

Claim Risk Assignment

var. counter cnt_Claim cnt_Risk cnt_Assignment
var. identity Claim_ID Risk_ID Assignment_ID

Reviewer Review Decision

var. counter cnt_Reviewer cnt_Review cnt_Decision
var. identity Reviewer_ID Review_ID Decision_ID

In fragment instances, object identities are also used to remember
and recognize objects. A fragment instance memorizes the identity of
data objects that it has accessed. If the instance subsequently accesses
an object of the same class, it must be the memorized one.
Fragment six of the example has two activities: “assign internal re-

viewer” and “create internal review.” When “assign internal reviewer”
is executed, an assignment object is created and memorized by the
fragment instance. When “create internal review” is executed, the same
object is read and updated, although multiple assignments in state due
may exist.

86

6.2 Links

count
(Review)

Assignment
[done]

Review
[created]

Assignment
[due]

Reviewer
[external]

running

Claim
[in review]

N0

CID

CID

CID

CID

CID

(Claim,cnt_Claim)
Reviewer_ID

Claim_ID
cnt_Review cnt_Review + 1

Assignment_ID

Assignment_ID

receive
external
review

Figure 6.2: Colored Petri net formalization, including identity creation,
of fragment five.

In the formalization, we pass the instance’s memory alongside the
control flow. Therefore, we introduce a colorset Ccf, where each color is
a function assigning each class an identity or NULL (⊥).

Ccf = C → (CID ∪ {⊥}),where

C is the set of classes and C → (CID ∪ {⊥}) is the set of all functions
with domain C and codomain (CID ∪ {⊥}). All places representing
control flow are typed Ccf, and we add a variable cf with colorset Ccf.
Figure 6.3 depicts the updated formalization of fragment six. The

data objects accessed by “assign internal reviewer” are memorized
in the control flow token. The guard of transition “create internal
review” asserts consistent data access: If the control flow’s memory for
a class is NULL (⊥), any object can be accessed. If an identity has been
memorized, access is restricted to this particular object.
Of course, if a control flow node has both an incoming and an out-

going control flow, the corresponding Petri net transitions update the
fragment instance’s memory. The gateway in fragment one of the ex-
ample accesses a decision object. Since the gateway is the first node in
the fragment accessing a decision, the object is memorized. However,
the instance also remembers all the objects it has accessed before.

6.2 Links

Classes in a domain model may be associated. In turn, data objects in a
case may be linked. The case model’s semantics specify when objects
get linked, and how links affect the case behavior. For this purpose,
information from the domain model and fragments are combined.

87

6 Associations and Multiplicity Constraints

count
(Assignment)

Claim
[in review]

count
(Review)

Review
[created]

Assignment
[done]

Assignment
[due]

Risk
[regular]

running

Claim
[complete]

Reviewer
[internal]

cnt_Assignment + 1
N0

Claim_ID

Claim_ID

cnt_Review + 1

Risk_ID

(Review,
cnt_review)Assignment_ID

Assignment_ID

Claim_ID

(Assignment,
cnt_Assignment)

cnt_Assignment

Reviewer_ID

cnt_Review

assign
internal
reviewer

create
internal
review

p6;1

∗1

∗2
cf

CID

N0

CIDCID

CID

CID

CID

CID

Ccf

∗1 arc expression for arc leading to p6;1:
{(Claim,Claim_ID), (Reviewer,Reviewer_ID), (Decision,⊥)
(Risk,Risk_ID), (Assignment, (Assignment, cnt_Assignment))}

∗2 guard of transition “create internal review:”
[cf(Claim) = ⊥∨ cf(Claim) = Claim_ID ∧
cf(Assignment) = ⊥∨ cf(Assignment) = Assignment_ID]

Figure 6.3: Colored Petri net formalization, including control flow, of
fragment six.

88

6.2 Links

Links are only created together with objects. This is because associa-
tions are limited to existential one-to-one and one-to-many associations:
When an object (dependent) whose existence depends on other ob-
jects (supporters) is created, it is linked to all respective supporters.
Since each association is existential, each link connects a dependent
to a supporter. This concludes that all links are established when a
dependent is created. Therefore, the supporters must either be read or
co-created by the same action that creates the dependent (Contextual
Object Creation).
Once established, links affect how data objects are read and data

conditions are evaluated. If an activity instance reads two objects whose
classes are associated, the objects must be linked. The same is true for
data conditions. The links must also exist to objects memorized by the
fragment instance. Otherwise, a conflict may occur: If a fragment has
three sequential activities, the first one reading an object of class c1, the
second an object of c2, and the third both objects, and if c1 and c2 are
associated, then the two objects must be linked. Otherwise, the third
activity would either read two objects that should be linked but are not,
or it would violate the memory of the fragment. This example shows
that objects that are read must be linked to memorized objects.

Fragment three of the example contains the activity “request external
review.” It creates an assignment, which is linked to the claim and a
reviewer. Activity “cancel external review” reads an assignment and
a reviewer. The two must be linked, i.e., to inform the reviewer of the
canceled assignment and not another one.
In Wickr, a link is a bidirectional connection between two objects.

We can, therefore, model a link as an unordered pair. We introduce
a respective coloreset Cl as the set of all unordered pairs of object
identities:

Cl = {{id1, id2}|id1, id2 ∈ CID}

This straightforward formalization bears a challenge: In order to
check multiplicity constraints and to calculate batches, it must be pos-
sible to determine all objects linked to a reference object. Yet, it is, in
general, impossible to consume all tokens on a place or to inspect/query
the set of tokens in a place. Instead, the tokens consumed by transition
must be calculated unambiguously based on other tokens that are con-
sumed. As a workaround, a token can be a set.1 For this reason, we
introduce an additional colorset CL containing all possible sets of links:

CL = P(Cl)

All links can be stored in a single token whose content can be queried.
Therefore, we add a place Links and a variable links with colorset

CL to the Petri net. The place initially holds the empty set. Whenever
a new link is established, the token is consumed. The new link is
added to the set, and the updated set is stored as a token in place
Links. Transitions that represent activities, gateways, or the termination
1The limitation and workaround have been described by Westergaard in https://
westergaard.eu/2012/07/rfc-conveniences-in-cpn-tools/ (2021/11/06)

89

https://westergaard.eu/2012/07/rfc-conveniences-in-cpn-tools/
https://westergaard.eu/2012/07/rfc-conveniences-in-cpn-tools/

6 Associations and Multiplicity Constraints

condition consume the token in Links. Their guards assert that the
objects they access are linked according to the associations in the data
model. If no additional links are produced, the token is reproduced.
Otherwise, it is updated.
Figure 6.4 depicts the colored Petri net of fragment three (cf. Fig-

ure 4.7, p. 65). Its activity “request external review” is translated to
two transitions. Besides consuming and producing tokens for data ob-
jects, the set of links is read and new links between the freshly created
assignment, the reviewer, and the claim are added.

links ∪
{{Reviewer_ID, (Assignment,cnt_Assignment)},
{Claim_ID,(Assignment,cnt_Assignment)}}

running
request
external
review □

request
external
review ◦

Claim
[complete]

Claim
[in review]

Reviewer
[external]

Assignment
[due]

(Assignment, cnt_Assignment)

Links

linkslinks

(A
ss

ig
nm

en
t,

cn
t_

A
ss

ig
nm

en
t)

cn
t_

A
ss

ig
nm

en
t

cn
t_

A
ss

ig
nm

en
t

cn
t_

A
ss

ig
nm

en
t

+
1

cn
t_

A
ss

ig
nm

en
t

+
1

CID

CL

CID CID

CID

N0

CL

count
(Assignment)

Claim_ID

Reviewer_ID

Figure 6.4: Colored Petri net for fragment three demonstrating the cre-
ation of links.

Figure 6.5 depicts the colored Petri net of fragment five. Its activity
“cancel external review” is translated to a single transition. It consumes
and reproduces a token the case’s running state, the reviewer, the as-
signment, and the set of links. The transition’s guard checks that a link
between the reviewer and the assignment exists.

90

6.3 Set Data Object Nodes

cancel
external
review

running Links
links

[{Reviewer_ID, Assignment_ID} ∈ links]

CL

CID

CID

CID

Assignment
[due]

Assignment
[canceled]

Reviewer
[external]

Assignment_ID
Assignment_ID

Reviewer_ID

Figure 6.5: Colored Petri net for fragment five of the insurance example.
Activity “cancel external review” requires an assignment
and a linked reviewer.

6.3 Set Data Object Nodes

Links in Wickr serve multiple purposes. Among other things, they are
used during batch processing, where a single activity instance operates
on a set of similar objects. The execution semantics define this set clearly
using links. In the fragments, batch processing is modeled by a set data
object node in activities’ input (and output) sets.
An input set containing a set data object node must also contain a

single node for a reference object (Contextual Batch Processing). The
classes of both nodes must be associated. The batch contains all objects
of the specified class that are linked to the reference object. Given a
claim as a reference object and a set of reviews, the latter contains all
reviews linked to the claim.
In the colored Petri net, we have tokens with the identity of data

objects and a single token containing the set of links. Given the identity
of the reference object and the class of the set data object node, we can
query the set of links to determine the content of the set. The query is
independent of the data object’s state.

Formally, let cr be the class of the reference object, (cr, nr) its identity,
cs the class of the set data object node, and L the set of links. The batch
can be determined as the objects of class cs linked to (cr, nr):

{(cs, n)|{(cs, n), (cr, nr)} ∈ L, n ∈ N0}

This is incorporated into the colored Petri net as follows:

• We introduce a new colorset CIDs for sets of identities:

CIDs = P(CID)

• We add a variable with colorset CIDs for each class. As a name,
we choose the plural of the class name (i.e., “Reviews” for the set
of reviews).

91

6 Associations and Multiplicity Constraints

• When objects are processed in sets, the respective arcs in the Petri
net are labeled with this variable.

• When a set of objects is accessed, the guard conditions of the
corresponding transition queries the set of links to set the value
of the respective variable.

• The guard also asserts that the set is not empty.

Activity “decide on claim” in fragment seven of the insurance exam-
ple (cf. Figure 4.7) operates on a set of reviews. It has a single input set,
in which Claim[in review] is the reference data object node for the set of
reviews. The activity is enabled if the case is running, a claim in state
in review exists, all linked reviews are in state created, and an external
reviewer is available. When executed, the activity reads the claim, all
corresponding reviews, and the reviewer. It may either consider the
reviews to decline the claim (output set ■), approve the claim (output
set •), or assign an additional external reviewer (output set ▲).
In the colored Petri net, three respective transitions exist. Figure 6.6

shows the transition for output set •. Based on all reviews, the claim is
approved. The transition consumes identity tokens for the claim, the
reviewer, and the reviews, and a token for the set of links. The set of re-
views is determined by querying the links to retrieve all reviews linked
to the claim (see guard condition). Tokens are produced according to
the input-output-set combination: The claim and reviews are updated,
and new links are added.

Claim
[in review]

Claim
[reviewed]

Decision
[approved]

Review
[considered]

Links

count
(Decision)

Review
[created]

Reviewer
[external]

decide
on claim

•

Reviews

Reviewer_ID
Claim_ID

(Decision,
cnt_Decision)

cnt_Decision

Claim_ID

linkscnt_Decision+1

Reviews

CID

CID

CID

CID

CID

CID

N0

CL

links ∪
{{r,(Decision, cnt_Decision)}|r∈ Reviews}∪
{{Claim_ID, (Decision, cnt_Decision)}}

Guard of transition:
[Reviews = {(Review, nr) ∈ CID|{(Review, nr), Claim_ID } ∈ links}∧
Reviews̸= ∅]

Figure 6.6: Colored Petri net for the input/output behavior of activity
“decide on claim” with output set • (place “running” has
been omitted).

92

6.4 Global Multiplicity Constraints

Figure 6.7 shows the transition for output set ▲. This output set does
not include a decision or the reviews. Instead, a new assignment is
created and linked to the claim and the reviewer. Respectively, the
tokens are consumed/produced and the set of links is updated. The
guard condition is again used to determine the set of reviews.

Links

count
(Assignment)

Review
[created]

Reviewer
[external]

Reviews

Reviewer_ID

cnt_Assignment

links

cnt_Assignment+1

CID

CID

N0

CL

Claim
[in review]

Assignment
[due]

decide
on claim

▲

Claim_ID

(Assignment,
cnt_Assignment)

CID

links ∪
{{Claim_ID, (Assignment, cnt_Assignment)}}
{{Reviewer_ID, (Assignment, cnt_Assignment)}}

CID

∗1 Guard of transition:
[Reviews = {(Review, nr)∈ CID|{(Review, nr) Claim_ID } ∈ links}∧
Reviews ̸= ∅]

∗1

Figure 6.7: Colored Petri net for the input/output behavior of activity
“decide on claim” with output set ▲ (place “running” has
been omitted).

6.4 Global Multiplicity Constraints

A link is an instance of an association and connects two objects. Both
links and objects are created by activities. However, the number of
links is constrained by multiplicity constraints. In turn, the execution
of activities is limited by multiplicity constraints as well.
First, we consider global multiplicity constraints that define lower

and upper bounds that must never be violated. Lower bounds must
be satisfied during object creation, and upper bounds must not be
exceeded. Thus, if executing an activity led to a violation of multiplicity
constraints, it could not be executed.
In the example, activity “receive external review” creates a review

and links it to the claim. However, a claim is linked to at most three
reviews. If this limit has been reached, no new reviews can be created,
and “receive external review” is disabled.

Similarly, a decision is linked to at least two and at most three reviews.
The activity “decide on claim” can only produce a decision if it reads
two or three reviews. If it reads only one, output sets ■ and •, which
contain a decision, cannot be written.

In the colored Petri net, the transitions that create links are updated,
respectively. Additional guard conditions assert that global multiplic-
ity constraints are met. The current multiplicities are determined by
querying the set of links. Given an object with identity idr and a class

93

6 Associations and Multiplicity Constraints

cl, the number of links from idr to an object of class cl is calculated as
follows:

|{nl ∈ N0|{idr, (cl, nl)} ∈ L}|, where L is the set of links.
Activities that link an object idr of class cr to a new object of class cl
must not exceed the multiplicity constraint:

|{nl ∈ N0|{idr, (cl, nl)} ∈ L}| < u(cl, cr)

Consider activity “receive external review.” It instantiates the class
Review and links the new object to a claim and an assignment. However,
a claim has at most three reviews, and an assignment as at most one
review. The activity can only be executed for an assignment and a claim
if it does not violate the multiplicity constraints. In the colored Petri
net (Figure 6.8), respective guard conditions are added.

count
(Review)

Assignment
[done]

Review
[created]

Assignment
[due]

Reviewer
[external]

running

Claim
[in review]

N0

CID

CID

CID

CID

CID

(Review,cnt_Review)

Reviewer_ID

Claim_ID
cnt_Review cnt_Review + 1

Assignment_ID

Assignment_ID

receive
external
review

Guard of transition receive external review
[{Claim_ID, Assignment_ID} ∈ links ∧
{Reviewer_ID, Assignment_ID} ∈ links ∧
|{nr ∈ N0|{Claim_ID, (Review,nr)} ∈ links}| < 3∧
|{nr ∈ N0|{Assignment_ID, (Review,nr)} ∈ links}| < 1]

count
(Review) CL

links

links ∪
{{(Review, cnt_Review), Assignment_ID}
{(Review, cnt_Review), Claim_ID}}

Figure 6.8: Colored Petri net, including guard conditions for the global
multiplicity constraints, for fragment four.

The formalization of activity “decide on claim” and output set • is
depicted in Figure 6.6. The figure misses the guard conditions for the
multiplicity constraint, though:

• The claim must have less than one linked decision.
|{nd ∈ N0|{Claim_ID, (Decision, nd)} ∈ links}| < 1

• Each read review must have less than one decision.
∀ Review_ID ∈ Reviews :

|{nd ∈ N0|{Review_ID, (Decision, nd)} ∈ links}| < 1

• Two to three reviews must be read: 2 ≤ |Reviews| ≤ 3

94

6.5 Goal Multiplicity Constraints

6.5 Goal Multiplicity Constraints

In Wickr, domain models contain goal multiplicity constraints. They
can refine their global counterpart by defining higher lower bounds.
Wickr’s semantics assert that goal multiplicity constraints hold at case
termination. Furthermore, state transitions that hinder the goal mul-
tiplicity constraints from ever being accomplished must be prevented.
We implement both in our colored Petri net semantics.

To close the case, both the termination condition and the goal multi-
plicity constraints must hold. The goal multiplicity constraints must
be checked for all objects and associations. Therefore, transitions that
represent the case termination must query the set of links for all data
objects. But objects are represented by tokens that are distributed in the
net so that they cannot be accessed all at once. We introduce a global
registry of objects as follows:

• A place Objects with colorset CIDs that has the empty set as an
initial token and acts as a registry of objects.

• A variable objects with colorset CIDs.

Whenever an object is created, its identity is stored in the registry.
Consider the update Petri net for activity “receive external review”
(Figure 6.9). The identity of the new review is stored in a token on
Review[created] and in the registry on Objects.

count
(Review)

Assignment
[done]

Review
[created]

Assignment
[due]

Reviewer
[external]

running

Claim
[in review]

N0

CID

CID

CID

CID

CID

(Review, cnt_Review)
Reviewer_ID

_ID
cnt_Review cnt_Review + 1

Assignment_ID

Assignment_ID

receive
external
review

Links

CL

links

links ∪
{{Claim_ID,(Review, cnt_Review)}
{Assignment_ID,(Review, cnt_Review)}}

Objects

CIDsobjects

objects ∪
{(Review, cnt_Review)}

Guard of the transition:
[{Claim_ID, Assignment_ID} ∈ links ∧
{Reviewer_ID, Assignment_ID} ∈ links ∧
|{nr ∈ N0|{(Review, nr),Claim_ID} ∈ links} < 3∧
|{nr ∈ N0|{(Review, nr),Assignment_ID} ∈ links} < 1∧]

Figure 6.9: Colored Petri net formalization, including the registry of
objects, of activity “receive external review.”

95

6 Associations and Multiplicity Constraints

Using the registry of objects and the registry of links, transitions
representing the termination condition can check goal multiplicity con-
straints. Therefore, we check the constraints for each identity in the
object registry. We i) find relevant associations, ii) query the set of links
to determine the multiplicity, iii) and compare it to the corresponding
constraint. An association is relevant if it involves the identity’s class
and if the corresponding goal multiplicity refines the global one.
In the example, every claim must eventually have one risk, one de-

cision, and at least two assignments and two reviews. Furthermore,
each review must be linked to one decision. These requirements are
added as guards to the Petri net transitions representing the termination
condition (see Figure 6.10).

Decision
[approved] {Decision

[approved],
Claim

[reviewed]}

Decision
[declined]

{Decision
[declined],

Claim
[reviewed]}

running Objects Claim
[reviewed] Links terminated

Decision_ID

Decision_ID

links

linksobjects

objects Claim_ID

Claim_ID

CID

CID

CID

CID CL

Guard of both transitions:
[{Decision_ID, Claim_ID} ∈ links ∧
(∀nc ∈ N0 : (Claim, nc)∈ objects ⇒

(|{nr ∈ N0|{(Risk, nr),(Claim, nc)} ∈ links }| ≥ 1∧
|{nd ∈ N0|{(Decision, nd),(Claim, nc)} ∈ links }| ≥ 1∧
|{nr ∈ N0|{(Review, nr),(Claim, nc)} ∈ links }| ≥ 2∧
|{na ∈ N0|{(Assignment, na),(Claim, nc)} ∈ links }| ≥ 2))∧

(∀nr ∈ N0 : (Review, nr)∈ objects ⇒
(|{nd ∈ N0|{(Decision, nd),(Review, nr)} ∈ links }| ≥ 1))]

Figure 6.10: Colored Petri net formalization of the case termination.
Upon termination, the termination condition and goal mul-
tiplicity constraints must hold. Therefore, all objects and
all links are considered.

Goal multiplicity constraints may also be important before case ter-
mination: Situations that cannot be resolved, i.e., from which the goal
cannot be reached, should be avoided. For an example, consider the
lifecycle of the claim (cf. Figure 6.11): There is a transition from complete
to in review. Activity “assess claim” reads a claim in state complete and
links it to a risk. Once the claim is in state in review, it is impossible to
reach state complete again, and hence to link the claim to a risk. Yet, ev-
ery claim eventually needs a risk. Therefore, a risk must exist when the

96

6.6 Extended Translation

claim is changed to state in review. In other words, the goal multiplicity
must be checked by transitions performing the state change.
We extend the Petri net mapping, respectively. We determine for

each state transition in the object behaviors whether an association is
finalized. An association is finalized if no respective links can be created
anymore. Every Petri net transition that implements this state change
checks the respective goal multiplicity constraint.

In more detail, given an input-output-set combination, we can deter-
mine the associations that are instantiated. Using this knowledge for all
input-output-set combinations, we can determine for each phase which
associations may get instantiated. For the class Claim, we find that
the association to risk is instantiated in state complete, the association
to assignment in states complete and in review, and the associations to
review and decision in state in review. Next, we consider the object
behavior and its transitive closure. For each state, we determine the
associations that can be instantiated in this state or a future state. A
state transition finalizes all associations that can be instantiated in the
transition’s source state but not in its target state or any of its future
states. In the example, the association between claim and risk is final-
ized when the claim transitions to state in review. All other associations
of the claim are finalized when it changes to state reviewed. Figure 6.11
enriches the object lifecycle for claims with respective conditions.

received complete in review reviewed

incomplete

waiting

updated

self.risks.size ≥ 1
self.assignments.size ≥ 2
self.decisions.size ≥ 1

Figure 6.11: Object behavior with guards for goal multiplicities.

Petri net transitions implementing a state change that finalizes an
association can only fire if the goal multiplicity constraint holds. There-
fore, we add respective guard conditions. In the example, “request
external review□” and “assign internal reviewer” change the state of
the claim from complete to in review. Hence, the claim must be linked to
one risk when the transition fires. Figure 6.12 shows the extended Petri
net for activity “request external review” and input set □. The guard
asserts that the claim is linked to at least one risk.

6.6 Extended Translation

In this chapter, we refined the role of data during case execution. Objects
are created and linked by activity. Meanwhile, we make sure that i)
every object has a unique identity, ii) links do not violate multiplicity
constraints, and iii) fragment instances access data consistently. As a
result, we can execute batch activities, which operate on sets of similar
objects. We also refine the case goal with a separate set of multiplicity
constraints. The Petri net mapping was extended respectively. In this
section, we provide an overview of the formalization.

97

6 Associations and Multiplicity Constraints

request
external
review □

count
(Assignment) Objects

Claim
[in review]

Assignment
[due]

Links

Reviewer
[external]

Claim
[complete]

links

∗2 arc expression:
links ∪
{{(Assignment, cnt_Assignment), Claim_ID},
{(Assignment, cnt_Assignment), Reviewer_ID}}

Reviewer_ID

Claim_ID

cnt_Assignmentcnt_Assignment + 1
objects ∪
{(Assignment,
cnt_Assignment)}

(Assignment,
cnt_Assignment)

Claim_ID

∗1 Guard of transition “request external review □:”
[|{nr ∈ N0|{(Risk, nr),Claim_ID} ∈ links}| ≥ 1]

CID

CID

CID

CID CL

CIDsN0

∗2

objects

∗1

Figure 6.12: Formalization of “request external review” with output set
□ including guards for goal multiplicity constraints.

First we revise the formalization of the case state (see Algorithm 2).
It is given by the case’s abstract state, the case data, running fragment
instances, as well as auxiliary information, such as the number of objects
for each class. For this, we have to add new places:

• a place “Objects” for the registry of objects (l. 1)

• a place “Links” for the registry of links (l. 1)

• a place “count(c)” for each class c in the domain model d (ll. 2,3)

Algorithm 2: Extending the Petri net produced by Algorithm 1
with colorsests and additional places. Substrings “⟨v⟩” are re-
placed with the name of element v.
1 add a place “Objects” and a place “Links” to Sreg;
2 for each class c in the domain model d:
3 add place “count(⟨c⟩)” to Scnt;
4 Let S′ = S ∪· Sreg ∪· Scnt be the set of places;

The set Σ contains all colorsets:

Σ = {{()},Ccf,CID,CIDs,Cl,CL,N0}

98

6.6 Extended Translation

The function c : S′ → Σ assigns each place a colorset:2

c(s) =

Ccf if s ∈ Scf

CID if s ∈ SDO

N0 if s ∈ Scnt

CIDs if s = Objects
CL if s = Links
{()} otherwise

We furthermore add arcs to connect the net’s transitions to the new
places. Every transition must consume and reproduce the set of Links
(ll. 5–7) because start events and activities may link data objects and
the evaluation of conditions depends on the existing links. All transi-
tions that can create objects must consume and produce the registry of
objects. It is furthermore important for closing the case: The contained
information is used to check goal multiplicity constraints. Therefore,
all transitions, except those representing gateways, consume and re-
produce the respective token (ll. 8–10). Furthermore, a class specific
counter must be read and incremented whenever the class is instan-
tiated. Thus, respective arcs need to be connected to transitions that
represent start events (ll. 11–14) and activities (ll. 15–18). For the latter,
we first need to determine which objects are created (ll. 16).

Algorithm 3: Extending the Petri net produced by Algorithm 1
with additional arcs.
5 for each transition t in the set T of transitions:
6 add the arc (Links, t) to read L−−−→;
7 add the arc (t, Links) to write L−−−→;
8 for each transition t in the set T \ T× of transitions not representing a gateway:
9 add the arc (Objects, t) to read O−−−→;

10 add the arc (t,Objects) to write O−−−−→;
11 for each transition t = (⟨s⟩, ⟨W ⟩) in the set Ts:
12 for each data object node with class c in W :
13 add the arc (count(⟨c⟩), t) to cnt−→;
14 add the arc (t, count(⟨c⟩)) to cnt+1−−−→;
15 for each transition t = (⟨a⟩, ⟨R⟩, ⟨W ⟩) in the set Ta:
16 for each class c that is instantiated by (R,W):
17 add the arc (count(⟨c⟩), t) to cnt−→;
18 add the arc (t, count(⟨c⟩)) to cnt+1−−−→;
19 Let ST ′

−−→=
ST−−→ ∪· read L−−−→ ∪· write L−−−→ ∪· read O−−−→ ∪· write O−−−−→ ∪· cnt−→ ∪· cnt+1−−−→;

To access tokens that are in these places, we need variables (see
Algorithm 4). We add one variable for the registry of objects (l. 20),
one for the registry of links (l. 20), and one for control flow (l. 21).
For each class, we add three variables—for the counter (l. 24), a single
identity (l. 25), and a set of identities (l. 26) footnoteThe phrase “⟨c⟩s”
2Tokens without a value are called colorless. In practice, they belong to the colorset
{()} with a single value.

99

6 Associations and Multiplicity Constraints

is replaced with the class name followed by an “s”, i.e., “Reviews”.
respectively.

Algorithm 4: Extending the Petri net produced by Algorithm 1
with variables.

20 add variable “objects” with colorset CIDs;
21 add variable “links” with colorset CL;
22 add variable “cf” with colorset Ccf;
23 for each class c in the domain model d:
24 add variable “cnt_⟨c⟩” with colorset N0;
25 add variable “⟨c⟩_ID” with colorset CID;
26 add variable “⟨c⟩s” with colorset CIDs;

Variables are used in arc expressions and guards to determine the
binding, i.e., the combination of tokens consumed by a transition and
the resulting assignment of values to variables.
Arcs in read−−→ start in a place c[q], where c is a class and q is a state.

They lead to transitions representing activities, gateways, and the ter-
mination condition. Such an arc has been added for a data object node
in the activity’s input set or in a condition’s product term. Its arc ex-
pression depends on the set indicator of the node (see Algorithm 5): If
it represents a non-set data object node, it is labeled with a variable for
an individual token (l. 31), otherwise with the variable for a set (l. 29).

Algorithm 5: Extending the Petri net produced by Algorithm 1
with arc expressions for consuming data object identities.

27 for each arc (⟨c⟩[⟨q⟩, t) in read−−→:
28 if the corresponding data object node represents a set:
29 set the expression of the arc to “⟨c⟩s”;
30 else:
31 set the expression of the arc to “⟨c⟩_ID”;

Arcs in write−−−→ lead from a transition t to a place c[q]. Such an arc
represents one or two data object nodes. If a single existing data object
is read or updated by an activity, or if it is used in a condition, the
corresponding variable is used (Algorithm 6, l. 34). If a novel object is
created, the corresponding counter is used to produce a new identity
token (l. 36). If a set of objects is read or updated, the respective tokens
are bound to the set variable and reproduced (l. 38). However, it is
possible that additionally a new object is created and added to the set
of existing objects (l. 41). For object creation, we also need to consume
and increment the counter (ll. 42–45).
All transitions consume and produce the registry of links (Algo-

rithm 7, l. 47). If no new objects are created, the links remain the same
(l. 50). Otherwise, additional linksmay be added (l. 52). If, for example,
a claim and reviewer are linked to a new review, the arc expression
reads:

links∪{{Claim_ID, (Review, cnt_Review)},
{Reviewer_ID, (Review, cnt_Review)}}

100

6.6 Extended Translation

Algorithm 6: Extending the Petri net produced by Algorithm 1
with arcs and arc expressions for producing data object identity
tokens.

32 for each arc (t, ⟨c⟩[⟨q⟩]) in write−−→:
33 if a single corresponding data object is read or updated:
34 set the expression of the arc to “⟨c⟩_ID”;
35 elif a single corresponding data object is created:
36 set the expression for the arc to “(⟨c⟩, cnt_⟨c⟩+1)”;
37 elif a set of corresponding data objects is read or updated to another state:
38 set the expression of the arc to “⟨c⟩s”;
39 elif there are two corresponding data object nodes in the output set OR
40 a set data object node in the input set and a non-set data object node in the output

set:
41 set the expression of the arc to “⟨c⟩s ∪ {(⟨c⟩,cnt_⟨ c⟩)}”;
42 for each arc in cnt−−→:
43 set the arc expression to “cnt”;
44 for each arc in cnt+1−−−−→:
45 set the arc expression to “cnt+1”;

Transitions for events, activities, and the termination condition consume
the registry of objects (l. 54). If no new objects are created, the registry is
reproduced (l. 57) Otherwise, the new objects are added to the registry
(l. 59). A transition creating a review (and only a review) leads to the
following arc expression:

objects ∪ {(Review, cnt_Review)}

Algorithm 7: Extending the Petri net produced by Algorithm 1
with arcs and arc expressions for the registries.

46 for each arc (Links, t) in read L−−−→:
47 set the arc expression to “links”;
48 for each arc (t, Links) in write L−−−→:
49 if no new links are created:
50 set the arc expression to “links”;
51 else:
52 set the arc expression so that new links are added;
53 for each arc (Objects, t) in read O−−−→:
54 set the arc expression to “objects”;
55 for each arc (t,Objects) in write O−−−−→:
56 if no new objects are created:
57 set the arc expression to “objects”;
58 else:
59 set the arc expression so that new objects are added;

Finally, we update the arcs from and to control flow places (Algo-
rithm 8). Arcs originating in places representing control flow nodes
have the label “cf” (l. 61). Arcs leading to such places have a novel func-
tion: If the corresponding control flow node has an incoming control
flow, the consumed token is updated by assigning identities to addi-
tional classes (l. 64). Otherwise, a new control flow token is created that

101

6 Associations and Multiplicity Constraints

assigns identities for the consumed and produced data object tokens
to the respective class (l. 66). If a set of data objects is accessed (batch
processing), it is not considered in the control flow.

Algorithm 8: Extending the Petri net produced by Algorithm 1
with arcs and arc expressions for control flow.

60 for each arc in cf in−−→:
61 set the arc expression to “cf”;
62 for each arc in cf out−−−→:
63 if the corresponding control flow node has an incoming control flow:
64 set the arc expression to update “cf”;
65 else:
66 set the arc expression to a novel function memorizing accessed objects;

Now that arc expressions to consume and produce tokens are in
place, we can add guards to detail the relationship among tokens fur-
ther. Whenever two identity tokens of associated classes c1 and c2 are
consumed, the objects must be linked. We add the term

{c1_ID, c2_ID} ∈ links

Whenever a set of objects of class cb that is linked to a reference object
of class cr is consumed, we add the term

cbs = {(cb, n)|{(cb, n), cr_ID} ∈ links},

where cbs is the set variable for cb. Whenever a control flow token and
a data object token of class c are consumed, we add the term

cf(c) = ⊥ ∨ cf(c) = c_ID
Whenever a new link between an existing object of class ce and a novel
object of class cn is created, we add the term

|{n ∈ N0|{(cn, n), ce_ID} ∈ links}| < u(cn, ce)

Whenever a link between a set of objects of class cb and a novel object of
class cn is added, we add two terms. One to check that the multiplicity
constraint for the new object is not violated:

l (cb, cn) ≤ |cbs| ≤ u(cb, cn)

Furthermore, we add a term to check the multiplicity constraints for
each object in the set:

∀cb_ID ∈ cbs : |{n ∈ N0|{(cn, n), cb_ID} ∈ links}| < u(cn, cb)

We must also consider goal multiplicities. If an association is finalized
for an object, the goal multiplicity must hold. Let the object belong to
class cr, and let the association that is finalized connect cr to class cf . If
the transition creates a novel identity token for an object of class cf , we
add the term

|{n ∈ N0|{cr_ID, (cf , n)} ∈ links}| = ⋄l (cf , cr)− 1

102

6.7 Summary

Otherwise, we add the term

|{n ∈ N0|{cr_ID, (cf , n)} ∈ links}| = ⋄l (cf , cr)

An association can also be finalized when the corresponding class is
instantiated. Then it may also be linked to a set of objects. We add the
term

⋄l (cf , cr) ≤ |cfs|

where cfs is the set of cf objects. Associations can also be finalized for a
set of cr objects, in this case we have to add the all quantifier “∀cr_ID ∈
crs

′′ in front, where crs refers to the set variable of cr. Furthermore, a
new object of class cf may be created in the same step—if so, we must
add 1 to the size of the set cfs.
If a transition represents a termination condition, we furthermore

add a term checking all goal multiplicities:

∀(cr, nr) ∈ objects,∀c ∈ d.C :

|{n ∈ N0|{(cr, nr), (c, n)} ∈ links}| ≥ ⋄l (cn, cr)

We can also omit checks, if the goal multiplicity constrained equals the
global multiplicity constrained.

The set of terms in a guard asserts data access that respects links, con-
sistent data access across a fragment instance, proper batch processing,
as well as goal and global multiplicity constraints.

Finally, we revise the initialmarking. In colored Petri nets, it is defined
by an initialization function init , which assigns each place s ∈ S a
multiset of tokens. Our colored Petri nets have a token without value
on the place initial and a token with value ∅ on the places Objects and
Links.

init(s)

{()}ms if s = initial
{∅}ms if s = Objects ∨ s = Links
∅ms otherwise

6.7 Summary

In summary, associations and multiplicity constraints have significant
impact on the execution of flexible processes. During process execution,
activities create, link, read, and update data objects. Since links are
constrained bymultiplicity constraints, activities are constrained aswell.
Therefore, multiplicity constraints may pose lower and upper bounds
on the number of activity instances. Formal execution semantics must
considermultiplicities and respective constraints to describe the process
behavior precisely. In this chapter, we presented respective details of
the mapping, which involve all control flow nodes and the termination
condition.

Start events create and link data objects. Furthermore, they pass a
reference to all created objects along the control flow.

103

6 Associations and Multiplicity Constraints

Activities read, create, update, and link data objects. They can even
read, update, and link sets of objects for a single data object node.
When an activity is executed, the semantics assert that possibly
linked data objects are linked, the inputs comply to the references
passed along the control flow, and global and goal multiplicity
constraints are not violated.

Gateways may evaluate data conditions. In contrast to the classical
Petri net formalization, links, references in the control flow, and
set data object nodes are considered.

Case termination can only occur if a set of objects that adheres to links
satisfies the termination condition and if the goal multiplicity
constraints are satisfied.

To support this behavior, we extended the mapping by using colored
Petri nets. We introduced object identities and global registries for
links and objects. Furthermore, batch processing is supported. The
constraints of the data model and the object behavior affect the execu-
tion of cases directly. This is mostly realized through guards on the
transitions in the colored Petri net. Violations of multiplicity constraints
are prevented by the semantics.
The formalization, however, is limited to a single case. Even if we

place multiple tokens in the place initial, where each token represents a
case, the mapping is incapable of keeping the cases separate. In the next
chapter, we present an extension that handles multiple concurrent cases
of the same and different case models. The cases connected through
cross-case data objects.

104

7 Sharing Data Among Cases

So far, we only considered one case of one casemodel at a time, but cases
are not always isolated [110]. They may communicate and/or share
data. In Wickr, cross-case data objects exist beyond the boundaries of a
single case and can be accessed by multiple cases concurrently. These
cases can be instances of the same or different case models.
In this chapter, we extend the formal semantics to differentiate be-

tween local and cross-case data objects. The semantics supports multi-
ple cases of the same and/or different case models. Furthermore, we
present and discuss attribute-based correlation of data objects to cases
and the influence of links and multiplicity constraints.

This chapter is based on a previous publication [159]. In the paper, we
present the idea of cross-case business processes using BPMN process
models. In contrast to the paper, we also consider links in this chapter.

7.1 Case Identities

We introduced object identities (see Section 6.1) to distinguish data
objects. To distinguish cases, we introduce case identities, and we link
local data objects and fragment instances to their case.

When a start event occurs, a case changes from state initial to running.
At the same time, a new case enters the initial state. To handle multiple
concurrent cases, case-specific informationmust be clearly linked to one
case, this includes the abstract case state, the states of running fragment
instances, and local data objects.

We extend the colored Petri net mapping accordingly. New colorsets
are added, and the assignment to places is adapted to store the case
identity. We introduce the colorset Ccase of possible case identities:

Ccase = Names× N0,where Names is a set of case model names.
The places initial, running, and terminated have the colorset Ccase. Fur-
thermore, we add a variable Case_IDwith the colorset Ccase.
Local data objects belong to a case. For this reason, we introduce a

colorset Clocal and type all respective places accordingly:
Clocal = Ccase × CID

This means the mapping has to create separate places for local and
cross-case data object nodes. In our examples, the labels of places
for cross-case data objects have the prefix “cc” (cf. Figure 7.1). Their
colorset is CID.

Furthermore, a new colorset for control flow places is added:
Ccase, cf = Ccase × Ccf

105

7 Sharing Data Among Cases

SomeClass
[someState]

SomeClass

[someState]

ccSomeClass
[someState]

SomeClass
[someState]

Wickr Petri Net Wickr Petri Net

CID Clocal

Figure 7.1: Places for local and cross-case data objects are mapped sep-
arately. Therefore, two places for the same phase can exist.

Goal multiplicity constraints are part of a case model’s goal specifi-
cation and translate directly to the case goal. They have to be checked
separately for each case. Therefore, we change the colorset for the
registry of objects:

Ccase,IDs = Ccase × CIDs

In conclusion, tokens that belong to one case—such as local data objects,
the object registry, and control flow tokens—link to their case.
We can model multiple cases by placing respective tokens in initial.

Yet, in reality, arbitrarily many cases may exist. Therefore, we generate
a novel case identity whenever a case starts. The generation is similar to
the creation of object identities (see Section 6.1). In the initial marking,
a token “(case model name, 0)” is in place initial. Furthermore, a place
count(case model name) and a variable cnt_case of type N0 are added. In
the initial marking, the place holds a token with value 0. When a new
case begins, the case identity token on initial is moved to running, a
case-specific object registry is created by creating a new token onObjects,
the case-specific counter is incremented, and a novel case identity is
produced into place initial. All subsequent transitions consume at least
one token with a case identity. If multiple tokens with a case identity
are consumed, they must belong to the same case.

The updated formalization of the insurance example’s start event and
the subsequent activity “check completeness” is depicted in Figure 7.2.
Mapped to a single transition, the start event begins a new case by
moving the respective token from initial to running. In the scope of
the case, the event creates an object of type claim and initializes the
case’s object registry. Finally, it also produces a control flow token for
fragment one and an identity token for the next case. Two transitions
exist for “check completeness.” Each consumes the control flow token
and the token of the claim. By binding the case identity of both tokens
to the same variable, the formalization asserts that the tokens belong to
the same case. Of course, the case identity does not change when the
state of objects is updated (here to incomplete or complete).

7.2 Cross-Case Data Objects

Fragment instances and local data objects belong to exactly one case,
but cross-case data objects may be accessed—i.e., created, read, updated,

106

7.2 Cross-Case Data Objects

running initial

count
(Claim)

count
(“Insurance

Claim”)

p1;1Claim
[received]

p1;2

Claim
[complete]

Claim
[incomplete]

claim
received

check
completeness ▲

check
completeness ♦

(Case_ID,
Claim_ID)

(Case_ID,
Claim_ID)

(Case_ID, cf)

(Case_ID,
cf)

(Case_ID,
Claim_ID)

Case_ID (Case,
cnt_Case + 1)

cnt_Case + 1

cnt_Casecnt_Claim + 1

cnt_Claim

(Case_ID,
(Claim,

cnt_Claim))

Ccase,IDCcase,ID

Ccase,ID

CcaseCcase

N0
N0

Ccase,cf

Ccase,cf

Objects

(Case_ID,{(Claim, cnt_Claim)})(Case_ID,
{(Claim,
(Claim,

cnt_Claim)),
...})

Ccase,IDs

∗1 Guard of both “check completeness” transitions:
[cf(Claim)=⊥∨ cf(Claim)=Claim_ID]

∗1 ∗1

(Case_ID, objects)

Figure 7.2: Colored Petri net formalization of the start event “claim
received” and the subsequent activity “check complete-
ness.” To handle multiple cases, tokens refer to a case. The
place Links is omitted because all transitions consume and
reproduce the registry of links without operating on its
color/value.

107

7 Sharing Data Among Cases

and linked—by multiple cases concurrently. Therefore, they can be
used to synchronize different cases.
In the colored Petri net formalization, tokens that represent local

objects refer to a case, tokens for cross-case data objects do not. Yet,
multiplicity constraints must also hold for cross-case data objects. Since
multiple cases may create links for a cross-case data object, we have to
check multiplicity constraints whenever we access such an object. Also,
to check goal multiplicity constraints, we add cross-case data objects to
the case-specific object registry when they are accessed.
Consider fragment three of the example (see Figure 4.7, p. 65). Its

activity “request external review” requests a review from an external
reviewer. The reviewers are cross-case data objects and created by a dif-
ferent process. Yet, the activity links the reviewer to a local assignment.
Thereby, it is also added to the registry of objects.

In the colored Petri net (see Figure 7.3), the place ccReviewer[external]
has colorset CID. The activity “request external review” is mapped to
two transitions. Each of the transitions consumes and produces a token
representing a reviewer. Furthermore, the set of links is extended by
linking the new assignment to the reviewer and the claim. While the
reviewer object has existed before, it is now added to the object registry.
Since the registry is a set, it does not contain duplicates.
A cross-case data object may exist before a case. This is modeled by

respective tokens in the initial marking. Furthermore, cross-case data
objects can connect cases of different case models. To model this, each
case model can be formalized separately. The resulting Petri nets can be
merged: All data places—those for data object nodes, the object registry,
and the registry of links—exist only once. This means that if two case
models have the same data object node, the transitions are connected
to the same place. All other places—initial, running, and terminated as
well as control flow places—are case-model-specific.

7.3 Allocating and Publishing Cross-Case Data

Cross-case data objects represent data that is available to many cases.
They can be used to model various relationships among cases: There
can be a database that is accessed by cases concurrently. There can be
a handover where one case takes over an object that has previously
been used by another case. And there can be a back-and-forth between
cases. To model these behaviors accurately, we must be able to move
cross-case data objects into the scope of one case and to publish local
objects as cross-case data objects.

An activity can allocate a cross-case data object to a case. Therefore, it
must have a valid input-output-set combination that reads a cross-case
data object and writes a local data object of the same class.
In the Petri net mapping, a token for the cross-case data object is

consumed and one for the local data object is produced. The tokens’
object identities are the same. However, the local object links to the
case, but the cross-case object did not.

108

7.3 Allocating and Publishing Cross-Case Data

Links

Objects

running

count
(Assignment

Claim
[in review]

Assignment
[due]

Claim
[complete]

request
external
review □

request
external
review ◦

cnt_Assignment

cnt_Assignment + 1

Case_ID Case_ID

(Case_ID,
(Assignment,

cnt_Assignment))

(Case_ID,
Claim_ID)

(Case_ID,
Claim_ID)

(Case_ID,
objects)

linkslinks

(Case_ID,
objects ∪

{Reviewer_ID,
(Assignment,

cnt_Assignment)})

ccReviewer
[external]

Reviewer_IDReviewer_ID

Ccase,ID

Ccase,ID

Ccase,ID

Ccase,IDs

CL

CID

(Case_ID,
objects)

N0

∗1

arc expressions ∗1:
links ∪
{{Reviewer_ID, (Assignment, cnt_Assignment)},
{Claim_ID, (Assignment, cnt_Assignment)}}

guard ∗2 of transition “request external review □:”
[|{nr ∈ N0|{(Risk, nr),Claim_ID} ∈ links}| ≥ 1]

∗1

∗2

Figure 7.3: Colored Petri net formalization of activity “request external
review.” The cross-case data object reviewer does not refer-
ence the case. Yet, it is linked to local objects and may be
referenced by fragment instances. We use dotted lines to
link expressions to arcs.

109

7 Sharing Data Among Cases

Similarly, a local data object may be published by activities that read
a local data object and write a cross-case data object of the same type.
Thereby, the case identity is stripped from the local data object token,
and the object identity is produced as a cross-case data object token.
However, the central case object (i.e., the claim) must remain local
during the whole case.
The abstract fragment in Figure 7.4 has two activities. Activity “a1”

reads a cross-case data object of class c1 in state q1 and allocates it to the
case (local data object in state q1). Afterwards, activity “a2” reads the
local data object and releases it (cross-case data object in state q2). The
figure also contains the colored Petri net formalization. To identity the
cross-case object, the token is enrichedwith the case identity andmoved
to the respective place. To publish it, the case identity is removed.

running
Case_ID

a2

C1

[q1]

C1

[q1]

a1

C1

[q2]

a1 p
(Case_ID,

cf)

a2

Ccase

C1_ID

C1

[q1]
ccC1

[q1]
CID Clocal

ccC1

[q2]
CID

C1_ID

∗1

∗1:
(Case_ID, (C1,C1_ID))

Guard of transition a2:
[cf(C1)=⊥∨ cf(C1)=C1_ID]

Objects

CIDs

(Case_ID,
objects)

(Case_ID,
objects ∪
{C1_ID})

(Case_ID, C1_ID)

Ccase;cf

Figure 7.4: Fragment with two activities and its formalization. The first
activity allocates a cross-case data object; the second one
publishes a local object.

7.4 Correlating Cross-Case Data to Cases

Given multiple cross-case data objects of the same class in the same
case, the semantics allow activities to access any of them. However, the
correlation of cross-case data objects to casesmay be constrained. There-
fore, we discuss attribute-based correlation and its implementation in
colored Petri nets.

110

7.4 Correlating Cross-Case Data to Cases

First, we revise the insurance example. The insurance offers different
products to insure clients against theft, accidents, natural disasters, and
more. Furthermore, a bank account is required to pay the reimburse-
ment. We add three respective classes (see Figure 7.5): Category, Catego-
rization, and BankAccount. Categories and bank accounts are cross-case
data objects, while the categorization is a local object that connects a
claim to its category. Every claim belongs to one of these categories,
and reviewers are specialized in one category. We also update fragment
one as depicted in Figure 7.6: Initially, each claim is categorized, and a
solvent bank account is accessed to pay the reimbursement.

Decision Review Reviewer

Categorization

«case object»
Claim AssignmentRisk

Category

0..*

1..1

0..1
1..1

1..1

0..1
⋄ 1..1

0..1
⋄ 1..1

1..1

⋄ 1..1
0..1

1..1

⋄ 1..1
0..1

1..1 1..1

⋄ 1..1
0..1

2..3

⋄ 2..3
0..3

0..1

1..1

1..1

1..1
⋄ 1..*

0..*

BankAccount

0..*

Figure 7.5: The domain model of the insurance example including the
Category, Categorization, and BankAccount classes.

7.4.1 Attribute-Based Correlation

To correlatemeans finding or defining a relationship—inWickr, between
cases and cross-case data objects. We aim to capture dependencies
among cases that influence the case behavior. The refined behavioral
model can then be used for analysis, verification, and execution of mul-
tiple connected cases. However, correlation occurs at runtime, which
limits our design-time approach to a subset of models and applications.
Computer science has many examples for correlation: Relational

databases correlate entities through foreign keys. In interorganiza-
tional business processes, messages are correlated to process instances
through a correlation key [92, p. 72], such as a tracking number. This
key-based correlation is a special kind of attribute-based correlation.
Attributes, i.e., the foreign key in one tuple and the primary key in
another, are compared to match two or more entities. Attribute-based
correlation allows one-to-one, one-to-many, and even many-to-many
relationships.
The insurance from our example has multiple bank accounts. Em-

ployees’ salaries are deducted from one account and reimbursements

111

7 Sharing Data Among Cases

Decision

Claim

Claim

Risk

Risk

Claim

Decision
[complete] [high]

[incomplete] [regular]

[approved] [reviewed]

[declined]

check
complete-

ness

assess
claim

approve
claim

reject
claim

pay
reimburse-

ment

■

•

♦

▲

Claim

[received]

claim
received

categorize
claim

Catego-
rization
[created] Category

[available]

BankAccount
[solvent]

Figure 7.6: After a claim is received, it is categorized. Categories are
represented by a cross-case data object. Furthermore, a bank
account is required to pay the reimbursement.

from another one. However, our current formalization (see Figure 7.7a)
does not make this distinction. Therefore, a process responsible for
paying salaries may affect reimbursements and vice versa. Through
explicit correlation, we want to connect cases that are related to each
other, such as multiple reimbursement cases, and keep others separate.
In the Petri nets, attribute-based correlation can be implemented in

different ways. We present implementations based on states, constants,
mathematical relations, and attributes. We briefly discuss the potential
applications and limitations of each approach.

States. Data object nodes abstract from data objects’ individual at-
tributes and use a finite number of states instead. We can use
these states to limit the cross-case data objects that can be accessed
by cases of a specific model (see Figure 7.7b). In the current ver-
sion, reimbursement requires a solvent bank account. We can
extend the model with additional states, e.g., to encode the pur-
pose of the account. A state solvent_reimbursement may be used
for all bank accounts that are solvent and that may be used for
reimbursements. This mechanism requires no change in the for-
malization nor additional knowledge. However, it is limited to a
fixed number of correlation keys and enlarges the object behav-
iors.

Constants. If we know the identities of cross-case data objects at design-
time, we can use them directly in the case model’s formalization.
In the Petri net transitions, we can add additional guards, that
restrict access to the predefined cross-case data objects. When,
for example, “pay reimbursement” accesses a bank account, the

112

7.4 Correlating Cross-Case Data to Cases

respective transition checks that it is a predefined reimbursement
account (see Figure 7.7c). This approach is independent of the
state of objects. On the downside, it requires instance-specific
information at design-time. It is static since only a predefined
set of objects can be correlated. And it correlates all cases of one
model to the same set of cross-case objects.

Mathematical Relations. On an instance level, multiple cases of the
same model and multiple objects of the same class may exist.
Furthermore, cases may produce new cross-case data objects.
In the end, correlation may be defined by a relationship that
cannot be expressed by states and constants. Instead, we can
use mathematical relations between case identities and object
identities. We can enforce that the integer parts of both identities
are equal to implement a 1-to-1 relationship. We can balance
access to two objects by having cases whose identities’ integer part
is even access one object and cases with an odd integer part access
another one. In the formalization, respective relationships can be
implemented as a guard condition. In Figure 7.7d all accounts for
reimbursements have an identity whose integer part is even. This
method supports scenarios in which new objects may be created.
It is useful to model complex relationships among cases, yet it is
unlikely to reflect the real world accurately. It may be useful for
analysis, verification, and simulation to investigate the behavior
of multiple connected cases, but it is unsuited for implementation
and execution.

Attributes. Finally, we can incorporate attributes explicitly in our for-
malization. In the real case, each class defines a set of attributes
and each respective object has a value for this attribute. Some
of these attributes are used during correlation. However, this
method requires changes to the formalization: Class-specific col-
orsets including attributes must be added. To be used for analysis
and verification, appropriate values must be generated within the
Petri net. Furthermore, if values are generated probabilistically,
the state space may not cover all possible variants, which limits
its value for analysis and verification. Nevertheless, this method
is used in implemented case models in which attributes can be
set by knowledge workers and/or services. In Figure 7.7e, each
bank account has an attribute purpose. When a new account is
added, the worker assigns a respective purpose. When a payment
is made, the process searches for a bank account with the right
purpose, i.e., reimbursement.

7.4.2 Links and Cross-Case Data

A cross-case data object can be linked to other cross-case data objects or
to local data objects. The extended domain model (Figure 7.5) includes
an association between Categorization and Category as well as between

113

7 Sharing Data Among Cases

p1;6

Claim
[reviewed]

pay
reimbursement

ccBankAccount
[solvent]

BankAccount_ID

(Case_ID,
Claim_ID)

(Case_ID,
cf)

Guard:
[cf(Claim)=⊥∨ cf(Claim) = Claim_ID]

CID

Ccase,ID

Ccase,cf

(a) No correlation.

p1;6

Claim
[reviewed]

pay
reimbursement

ccBankAccount
[solvent_reim-

bursement]

BankAccount_ID

(Case_ID,
Claim_ID)

(Claim_ID,
cf)

Guard:
[cf(Claim)=⊥∨ cf(Claim) = Claim_ID]

CID

Ccase,ID

Ccase,cf

(b) State-based correlation.

p1;6

Claim
[reviewed]

pay
reimbursement

ccBankAccount
[solvent]

BankAccount_ID

(Case_ID,
Claim_ID)

(Case_ID,
cf)

Guard:
[(cf(Claim)=⊥∨ cf(Claim) = Claim_ID) ∧
BankAccount_ID ∈ ReimbursementAccounts]

CID

Ccase,ID

Ccase,cf

(c) Correlation using constants.

p1;6

Claim
[reviewed]

pay
reimbursement

ccBankAccount
[solvent]

(BankAccount, nBA)

(Case_ID,
Claim_ID)

(Case_ID,
cf)

Guard:
[(cf(Claim)=⊥∨ cf(Claim)=Claim_ID)∧
nBA mod 2 ≡ 0]

Ccase,ID

Ccase,ID

Ccase,cf

(d) Correlation using mathemati-
cal relations.

p1;6

Claim
[reviewed]

pay
reimbursement

ccBankAccount
[solvent]

(BankAccount_ID,
purpose)

(Case_ID,
Claim_ID)

(Case_ID,
cf)

Guard:
[(cf(Claim)=⊥∨ cf(Claim)=Claim_ID) ∧
purpose =“reimbursement”]

CBankAccount

Ccase,ID

Ccase,cf

(e) Correlation using an explicit at-
tribute.

Figure 7.7: Cross-case data objects can be correlated to cases. The corre-
lation can, thereby, be constrained using the state, constants,
math, or explicit attributes.

114

7.4 Correlating Cross-Case Data to Cases

Reviewer and Category. Links of cross-case data objects are subject to
multiplicity constraints and affect cases: Links among cross-case data
objects define how they can be used together. A link between a cross-
case object and a local one can assert consistent correlation throughout
a case. Its multiplicity constraints furthermore limit the objects and the
number of objects that can be correlated to a single case.

Links limit the combinations of data objects that are accessed by con-
ditions and activities. Although cross-case data objects may have been
linked by a different case, every combination of such objects accessed
must meet the constraints of the domain model. This also means ob-
jects that violate case-model-specific multiplicity constraints cannot be
accessed by respective cases. Furthermore, cross-case objects may also
be linked to local objects. This may limit the choice of other objects in
the future.
In the example, each claim eventually links a categorization which

connects the claim to a category. Furthermore, reviewers have a spe-
cialization, which is also a category. The reviewers that are assigned to
a claim must have a respective specialization. To assert this, we have
to add the category and categorization to the input sets of “request
external review” and “assign internal reviewer” (see for example Fig-
ure 7.8). The semantics of links enforce that all reviewers have the
required specialization.

Assignment

Claim Claim

Reviewer
[external]

[due]

[in review][complete]

request
external
review

□◦

□ ◦

Category
[available]

□◦

Catego-
rization

[created]

□◦

Figure 7.8: Adapted fragment for assigning external reviewers regard-
ing their specialization and the case’s categorization.

In the formalization, links between cross-case data objects must be
added to the respective registry. However, the registry of links is not
case-specific. Thus, all cases can access the information about links.
Just as cross-case data objects, links may exist before a case.

In the insurance example, we may add categories and reviewers as
well as links for the specialization to the initial marking. Transition
“categorize claim” consumes a token for the category and links it to
the newly created categorization, which is linked to the claim. When

115

7 Sharing Data Among Cases

transition “request external reviewer” fires (Figure 7.9), it consumes—
among others—tokens for the claim, its categorization, its category, and
a reviewer. Using the registry of links, it is asserted that the categoriza-
tion is linked to the claim and to the category, and that the reviewer is
linked to the category as well.

Finally, multiplicity constraints in combination with cross-case data
objects can serve multiple purposes: We can limit the number of cross-
case data objects per case, the number of cases per cross-case data object,
and transitively the number of cases in regard to the number of cases
of a different model. In the example, a case has at most one category.

7.5 The Case and Cross-Case Data

Cross-case data objects allow communication among cases. One case
can influence another case directly by changing the state of a cross-
case data object, by linking it to other objects, by allocating it, or by
publishing it. Since the subject and situation of a case is described by
data (see Definition 30, p. 70), they are directly affected by such changes.
Consequently, enabled actions are affected as well because they may
require cross-case data.

This may have severe impact on the case behavior. A case can dead-
lock if it requires a cross-case data object that is allocated by another
case, or if the object’s state changed. We focus on describing the depen-
dencies among cases and not on resolving resulting problems. Solutions
may include transactions, which have been intensely researched for
highly structured process [10, 26, 36, 49]. However, transactions for
Wickr are out of scope for this thesis.

Yet, our semantics for cross-case data objects may raise the awareness
for potential risks and enables verification. We may verify that every
allocated object will eventually be published, or that the back-and-forth
between cases does not end in a deadlock. However, manual verification
and interpretation of case models can be hard. In the next chapter,
we present tools that support knowledge workers at design-time and
runtime and that useWickr’s formal execution semantics.

116

7.5 The Case and Cross-Case Data

Links

Objects

running

count
(Assignment)

Claim
[in review]

Assignment
[due]

Claim
[complete]

request
external
review □

request
external
review ◦

(Case_ID,
Claim_ID)

cnt_Assignment

cnt_Assignment + 1

Case_ID Case_ID

(Case_ID,
(Assignment,

cnt_Assignment))

(Case_ID,
Claim_ID)

(Case_ID,
Claim_ID)

(Case_ID,
objects)

linkslinks

(Case_ID,
objects ∪

{Reviewer_ID,
(Assignment,

cnt_Assignment)})

ccReviewer
[external]

Reviewer_IDReviewer_ID

Ccase,ID

Ccase,ID

Ccase,ID

Ccase,IDs

CL

CID

Categorization
[created](Case_ID,

Categorization_ID)
Ccase,ID

(Case_ID,
Categorization_ID)

Category
[available]Category_ID

CID

Category_ID

(Case_ID,
objects)

arc expressions ∗1:
links ∪
{{Reviewer_ID, (Assignment, cnt_Assignment)},
{Claim_ID, (Assignment, cnt_Assignment)}}

∗1 ∗1

guard of transition “request external review ◦:”
[{Claim_ID, Categorization_ID} ∈ links ∧
{Category_ID, Categorization_ID} ∈ links ∧
{Category_ID, Reviewer_ID} ∈ links]
guard of transition “request external review □:”
[|{nr ∈ N0|{(Risk, nr),Claim_ID} ∈ links}| ≥ 1∧
{Claim_ID, Categorization_ID} ∈ links ∧
{Category_ID, Categorization_ID} ∈ links ∧
{Category_ID, Reviewer_ID} ∈ links]

Figure 7.9: Petri net formalization of fragment three as depicted in Fig-
ure 7.8.

117

8 Technical Evaluation

BPM can be challenging: Processes need to be designed, implemented,
executed, and constantly improved. However, a single enterprise has
many processes, which can be complex. BPM software supports orga-
nizations in keeping their processes under control. Software may be
used in every phase of the BPM lifecycle (cf. Figure 1.1, p. 2).

During design, tools for modeling, analyzing, verifying, and validat-
ing process models are used. Furthermore, models may be stored in a
searchable process model repository [124, 149].
Process Modeling Tools are used to create visual models of business

processes, e.g., using BPMN [45]. Many process modeling tools
support syntax checks and integrate a process repository.

Process Repositories store a collection of process models [73]. They
commonly support search, versioning, and a release process.

Simulators take a process model and simulate the process [63]. Sim-
ulation can be used for what-if-analysis, improving the process
understanding, and validation [63, 134].

Model Checkers take a model and generate the full state space [17, 44].
The state space can be searched, i.e., to verify behavioral proper-
ties. These properties can be generic, such as soundness [64], or
domain specific, such as compliance rules [52].

During implementation, processes need to be configured and imple-
mented. In some cases, this is done within process modeling tools. In
other cases, generic or task-specific tools are used.
At runtime, processes are executed. Tasks need to be orchestrated;

performance indicators may be tracked; and additional constraints may
be monitored [149].
Process/Case Engines take a process model as input and orchestrate

the process accordingly. They receive user input and interact
with services. Using a process engine, a process is executed in
compliance with the process model.

Monitoring Tools can be used to monitor business rules not included
in the process model and to keep track of performance indicators.

In the analysis phase, process mining tools can be used to provide
insights into the executed process [104, 128]. Common tasks include
the following:
Process Discovery derives a process model from an event log. The

model describes the process as it has been executed, which may
include deviations from the designed process.

119

8 Technical Evaluation

Process Conformance detects deviations between a designed and a
logged process.

Quantitiatve Process Analysis investigates past process instances to
make quantitative statements. It can be used to detect bottlenecks
or to analyze temporal constraints.

Of course, tools play an important role in case management as well.
They can help to copewith the hidden dependencies and the complexity
of the case models [12]. For the fCM approach, a set of tools has been
developed.
Gryphon is a modeling tool for fCM.1 Fragments and object lifecycles

can be modeled visually, and classes textually. It has a process
repository that can store a collection of case models.

Chimera is an fCM execution engine.2 It provides a user interface
to receive inputs, can call web-services via REST, and receives
external events through the event processing engine Unicorn.3
Models can be deployed directly from within Gryphon.

LoLA Integration allows model checking for fCM models.4 An exten-
sion for Gryphon and Chimera translates a set of fragments into
a Petri net. Users can choose between two initial markings: the
initial state of the case or the state of a running case. The extension
uses the model checker LoLA [25] to verify the fragments against
custom temporal logic formulas.

The tooling for fCM is feature-rich but not designed for changes in the
execution semantics. To evaluateWickr, we developed a new set of tools
that implement the presented semantics.

8.1 Architectural Overview

Wickr’s tooling supports users during design-time and runtime. The
tools show Wickr’s technical feasibility. As proof-of-concepts, they are
lightweight and adaptable but do not focus on the end-user experience
and scalability. An overview of the architecture is shown in Figure 8.1.
We developed the following tools especially forWickr:
The Compiler translatesWickr case models to colored Petri nets that

are compatible with CPNTools5 [56]. Therefore, CPNTools capa-
bilities for verification, analysis, and simulation can be used for
Wickr as well. Furthermore, the compiler performs a syntax check
on the case model and provides respective feedback. Leon Bein
contributed significantly to the implementation of the compiler
in his role as a student assistant.

1https://github.com/bptlab/Gryphon (2021/11/06)
2https://github.com/bptlab/Chimera (2021/11/06)
3https://github.com/bptlab/unicorn (2021/11/06)
4https://github.com/bptlab/gryphon/tree/compliance (2021/11/06)
5https://cpntools.org (2021/11/06)

120

https://github.com/bptlab/Gryphon
https://github.com/bptlab/Chimera
https://github.com/bptlab/unicorn
https://github.com/bptlab/gryphon/tree/compliance
https://cpntools.org

8.2 Modeling

The Engine uses CPNTools as a backend and provides aWickr-specific
frontend. Furthermore, it parses the domain model to store at-
tribute level information for data objects.

The Goal Modeling and Planning component allowsmodeling knowl-
edge workers’ goals and translating them into a planning problem
(query). The tool was created by Anjo Seidel in the context of a
master’s seminar and is, as of this writing, extended for his master
thesis.

The tools have been presented in previous publications [166, 167]. In
this chapter, we look at the different prototypes. First, we talk about the
tools for creatingWickr case models. Next, we talk about the compiler
that verifies a case model structurally and generates a colored Petri net,
which can be used to verify the case behavior using CPNTools. After-
wards, runtime components are presented: the engine and a component
for goal modeling and planning.

Process Modeler
(Signavio)

UML Modeler
(Papyrus)

Text Editor

Case Model

Fragments Domain
Model

Object
Behaviors

Termination
Condition

CPN
Formalization

Compiler Engine

Goal
Modeling

+
Planning

CPNTools
(Verification, Simulation, Execution)

Query

Legend
3rd Party

Design-Time

Run-Time

Figure 8.1: FMC [35] block diagram of the Wickr architecture combin-
ing design-time, runtime, and 3rd-party components.

8.2 Modeling

At design-time, by collaborating domain and modeling experts, case
models that describe the intended behavior are created. A case model
includes fragments, a domain model, state transitions systems, and the
termination condition. These parts depend on each other, and only
their combination describes the case in detail. The way in which the
parts come together makes Wickr unique, yet each component isolated
resembles known models and concepts. Therefore, existing tools for
modeling processes and data can be reused.

121

8 Technical Evaluation

Wickr’s fragments are made of BPMN elements—events, activities,
gateways, and control flow as well as data object nods and input and
output sets. Hence, BPMNmodeling tools supporting these concepts
can be used to model fragments. For our prototypes and examples,
we use Signavio6 and model all fragments of a case model in a single
BPMN. Of course, elements unsupported byWickr must not be used.
Furthermore, Signavio may report syntactical errors and violations of
BPMN guidelines, although the model is correct forWickr.
The domain model uses elements from UML class diagrams, and

extends themwith goalmultiplicity constraints and a new stereotype for
the case class. The general structure, classes connected by associations,
can be created with any respective modeling tool. If stereotypes are
supported, the case class can be marked. Furthermore, we decided to
add goal multiplicity constraints as comments of associations. While
this may downplay their role, it allows us to use any UML compliant
modeling tool. In our examples, we use Papyrus.7 While not made
explicit in this thesis, classes can have typed attributes. However, other
concepts, such as inheritance, packages, or specialized associations are
not supported byWickr.
Object behaviors are modeled by class-specific state transition sys-

tems. We use non-hierarchical UML state machines [123] to model
the object behavior, but only states and transitions are relevant. Other
elements and details, such as triggers, effects, initial and final states,
are ignored by Wickr. For our examples, we use Papyrus.

Finally, the termination condition is part of the model but not visual-
ized. As mentioned, it is a logic formula in disjunctive normal form that
can be modeled as a set of sets of data object nodes. In our prototypes
and examples, we choose a textual representation: The termination
condition is modeled by a JSONArray.8 Product terms are modeled by
arrays containing JSON objects that describe data object nodes.
By reusing existing modeling languages, we are equipped with a

set of sophisticated and mature modeling tools. Yet, the tools do not
support the integration of models as required by Wickr. Therefore, we
rely on simple name matching: The name of data object nodes must
equal the name of classes in the domain model. The state of data object
nodes must equal a state in the respective state transition system. While
this connects the models, it does not enforce correct models—parts
may not fit to each other, e.g., activities may model state transitions
not supported by the object behavior. In the next section, we present a
compiler that does not only produce a colored Petri net but also detects
structural errors.

6https://www.academic.signavio.com/ (2021/11/06)
7https://www.eclipse.org/papyrus/ (2021/11/06)
8https://json.org (2021/11/06)

122

https://www.academic.signavio.com/
https://www.eclipse.org/papyrus/
https://json.org

8.3 Compilation and Verification

8.3 Compilation and Verification

In this thesis, we specifiedWickr’s semantics by translating case models
to colored Petri nets. Such formal semantics are important for veri-
fication and execution. CPNTools is a tool for modeling, analyzing,
verifying, and simulating colored Petri nets. By translating case models
to compatible nets, we can use CPNTools forWickr.
Since, translating models manually is tedious and error-prone, our

tool collection includes a compiler9 (Figure 8.2), which automatically
creates a colored Petri net for a case model. It reads a set of fragments
contained in a single BPMN, a UML class diagram describing the do-
main model, and a JSON file containing the termination condition. The
object behavior is not explicitly provided, instead we derive it from
the set of fragments: By looking at the input-output-set combinations,
we see possible state transitions. This, however, implies that all input-
output-set combinations that are valid according to the domain model
are considered to be valid according to the object behaviors. Thereby,
we lose one option of refining the case model’s behavior—the compiler
is not fully feature complete.

Case Model
Fragments
(BPMN)
Domain
Model

Termination
Condition

Colored
Petri Net

BPMN Parser Domain Model
Parser

Termination
Condition

Parser

Compiler

Internal State

Consistency
Checker

Translation
Access/CPN

Parser

User
CLI

Figure 8.2: FMC [35] block diagram of the compiler’s architecture—
third party libraries are gray.

First, the compiler parses the model. Therefore, we use Camunda’s
BPMN parser10 for fragments, a custom parser for the domain model,
and the json-simple library11 for the termination condition. Once the
model has been parsed, the compiler checks structural consistency crite-
ria. It reports violations to the user using the command line. Finally, the
compiler use Access/CPN12 to create a CPNTools compatible colored
Petri net, which is written to a file.

9https://github.com/bptlab/fcm2cpn/ (2021/11/06)
10https://github.com/camunda/camunda-bpmn-model (2021/11/06)
11https://cliftonlabs.github.io/json-simple/ (2021/11/06)
12http://cpntools.org/access-cpn/ (2021/11/06)

123

https://github.com/bptlab/fcm2cpn/
https://github.com/camunda/camunda-bpmn-model
https://cliftonlabs.github.io/json-simple/
http://cpntools.org/access-cpn/

8 Technical Evaluation

8.3.1 Structural Verification

The compiler checks that the case model is well-formed. Therefore,
it investigates the fragments, the domain model, and the termination
condition in isolation and in combination. We call this structural verifi-
cation. For this purpose, the compiler has a dedicated component, the
consistency checker. It reports violations via the command line to the
user, who can resolve them manually.

To be a well-formed case model, the respective domain model, frag-
ments, and termination condition must be well-formed and the con-
sistency criteria—structural satisfiability, object behavior conformance,
contextual object creation, and contextual batch processing—must be
satisfied. However, since no object behavior is provided, object behavior
conformance is assumed for all input-output-set combinations.
Regarding the domain model, the following questions must be an-

swered. Is there at most one association between two classes? Are all
associations existential one-to-one or one-to-many associations? Are
multiplicity constraints consistent, i.e., are goal multiplicity constraints
refinements of their global counterpart? If all questions are answered
positively, the domain model is well-formed.

Fragments must be well-formed as well. The consistency checker
investigates the control flow to verify that there is a clear entry point,
that there is no uncontrolled flow, that it is acyclic, and that each gateway
is either a split or a merge. Conditions, input sets, and output sets are
verified as well. In the end, all but one of the properties defined in
Definition 23 (p. 63) must be satisfied: Disconnected control flow is not
considered to be an error. Since all fragments are contained in a single
BPMN file, disconnected parts are treated as separate fragments.
Also, the termination condition must be well-formed. Each of its

products terms must not have two elements with the same class.
To check structural satisfiability, the consistency checker extracts all

local data object nodes used in the fragment or termination condition.
It categorizes them into requirements (i.e., nodes used in conditions
and input sets) and outputs (i.e., nodes used in output sets). Structural
satisfiability requires the requirements to be a subset of the outputs.

Contextual object creation requires that the requirements posed by ex-
istential associations are satisfied during object creation. Therefore,
verification investigates the input-output-set combinations in the frag-
ments with regard to the associations andmultiplicity constraints in the
domain model. Not every combination must be valid, but for every in-
put set must exist an output set and vice versa so that their combination
is valid.

When data objects are processed in batches, contextual batch processing
implies that there is one and only one reference object in the same input
set. The consistency checker verifies whether this property holds by
investigating input sets and product terms containing batches and the
domain model to determine candidates for reference objects.
If no errors are detected by the consistency checker, theWickr case

model is well-formed. This does not imply that modeled behavior is

124

8.3 Compilation and Verification

correct. There can be, among other things, deadlocks and livelocks.
The structural verification has no global view on the behavior. This gap
is filled by behavioral verification.

8.3.2 Behavioral Verification

To fully verify the process model, the full behavior—all possible states
and state transitions—must be considered. This allows us, for example,
to verify that the case goal can be reached or that constraints that are
not explicitly modeled are not violated. Therefore, we have to derive
all states and state transitions from the case model.
For this reason, we employ model checking [17, 44]. During model

checking, the state space of a behavioral model is calculated to prove
formal properties. The model is assumed to be complete: User choices
and unspecified conditions are treated non-deterministically. Runtime
changes to the model are not considered/supported. Properties can
be formalized using temporal logics, such as Linear Temporal Logic
(LTL) [5] and Computational Tree Logic (CTL) [6].

Figure 8.3 depicts the model checking process forWickr. Case models
are formalized as Petri nets and properties as temporal logic formu-
las. The model checker takes both formalizations, calculates the case
model’s state space, before verifying the properties. The result of the
verification is then communicated to the user. For details on model
checking, we refer to respective literature [17, 44].

Case Model Petri Net

Model Checker
(CPNTools)

Property Temporal Logic
Formalization

formalization

formalization

Counter Example

no violation

violation

Figure 8.3: Schematic representation of the model checking method (cf.
[113]).

State-Bounded Case Models

In theworst case, themodel checker has to investigate the full state space.
This implies that the state space has to be finite or that it has a finite
approximation [21]. However,Wickrmodels have, in general, an infinite
state space.13 There are multiple potential sources of infinity: infinitely

13In fact,Wickr is Turing-complete, so model checking is, in general, undecidable. A
proof is provided in Appendix A.

125

8 Technical Evaluation

many data objects, infinitelymany links, and infinitely many concurrent
fragment instances (cf. [81, 114]). If the number of data objects, links,
and concurrent fragment instances is bounded, the case model is state-
bounded [81, 114]. We propose to preprocess case models to guarantee
that they are state-bounded, i.e., that their Petri net formalization has a
finite reachability graph.

To limit cases to a finite number of objects and links, we first require
that all classes are associated directly or indirectly to the case class
(cf. navigationality in [114]). Second, we forbid multiplicity constraints
with unlimited upper bounds (cf. case-width-boundedness in [114]).
Since there is exactly one case object for each case, and all objects are
linked directly or indirectly to this case, and each object has a limited
number of links, the case has a limited number of objects. However, the
upper bounds of multiplicity constraints should not be set arbitrarily
but chosen carefully by a domain expert.

Figure 8.4 depicts the updated domain model of the insurance exam-
ple. We set the upper limit for assignments per reviewer to one because
each reviewer should review the same claim at most once. Furthermore,
there are at most ten assignments for each claim.

«case object»
Claim

Risk

Decision Review Reviewer

⋄ 1..1
0..1

⋄ 1..1
0..1

1..3

1..1

1..1
1..1

0..11..1

0..1
⋄ 1..3

0..3
⋄ 1..1

0..1

Assignment

⋄ 1..10
0..10

1..1

1..1

Figure 8.4: The insurance domain model without unbounded multiplic-
ity constraints.

We must also prevent infinitely many concurrent fragment instances
(cf. case-width-boundedness in [114]). Therefore, we augment fragments
with a respective upper bound if necessary. This bound is again domain-
specific. In the formalization, we add a place for each fragment. It
contains as many tokens as concurrent instances are supported. The
transitions starting a new fragment instance consume a token from
the respective place. The transitions terminating a fragment instance
produce a token into the place. A similar workaround has been used
for checking fCM models [144].
The example does not need these artificial constraints. The three

fragments with more than one activity cannot be executed arbitrarily
often in parallel. Therefore, bounds are already part of the model:
Fragment one is executed once; fragment two can be executed arbitrary
often but only sequentially; and fragment six is limited to one instance
as well. The formalization of the case model for the insurance example

126

8.3 Compilation and Verification

with the adapted domain model (Figure 8.4) can be used for model
checking without further adjustments.

Behavioral Properties of Case Models

Given a colored Petri net formalization that has been prepared for
model checking, we can verify behavioral properties—generic ones
and domain-specific ones. However, meaningful properties must be
defined and selected. Soundness and its variants are properties verified
on workflow nets, a subgroup of Petri nets that have a dedicated initial
place and a dedicated final place [64]. To satisfy soundness, it must
hold that each transition participates in at least one trace; that all traces
end in the final state, which has a single token that is placed in the final
place. The last requirement makes data-aware processes not sound
because tokens representing data may remain in the net. However,
we can define a variant of soundness that allows additional tokens
on places for data, i.e., places for data object nodes and places for the
registries (cf. [80, 83]). Initial and final marking may be valid even if
they contain tokens representing data.
Yet, the Petri nets of case modes are often not sound. Due to the

nature of knowledge-intensive processes, the models are purposely
left underspecified. At runtime, knowledge-workers make decisions
to steer the case towards a successful end. However, the model may
allow states from which the goal cannot be reached. Relaxed soundness
requires that every transition participates in one trace leading to a state
with only a token in the final place [64]. A data-aware variant may
furthermore allow tokens representing data. This is meaningful for
many case models: It requires that each activity and each valid input-
output-set combination may contribute to the goal and that the goal
can be reached. At the same time, the case model can allow traces that
do not result in the goal (underspecification).
For some case models, relaxed soundness may still be too strict. In

general, a case can terminate even when fragment instances have not
been completed. In this case, the final state may include control flow
tokens, and relaxed soundness is not satisfied. This is not necessarily
wrong. Therefore, we define lazy relaxed soundness (Definition 31).
Definition 31 (Lazy Relaxed Soundness). The colored Petri net formal-
ization of a case model is called lazy relaxed sound, iff each transition
participates in a trace that ends in a marking with exactly one token in
place terminated. ⋄

Before model checking, properties must be formalized. Therefore,
temporal logics, namely LTL and CTL, are commonly used in model
checking and supported by Petri net model checkers, such as CPN-
Tools [56] and LoLA [25]. Temporal logics have temporal operators
and in the case of CTL path quantifiers. They can be used to make
statements about sequences of states and state transitions.
For an example, we formalize the lazy relaxed soundness criteria. To

satisfy lazy relaxed soundness, each transition must participate in a trace

127

8 Technical Evaluation

whose final state has a token in place terminated. Since tokens in termi-
nated cannot be removed, it is enough to find a trace in which such a
state is reached after the transition has fired. Formally, for each tran-
sition t, the colored Petri net’s reachability graph (M,

M−→) must have
an arc (m , (t, binding),m ′) ∈ M−→ and a path leading from m ′ to a state mt

so that |mt(terminated)| = 1. CPNTools allows us to verify a Petri net
against temporal logic rules that are evaluated on states and transitions
in the reachability graph. To check lazy relaxed soundness, wemust verify
the following CTL property for each transition t:

EF(fired(t) ∧ EF(#terminated = 1))

Here, E refers to the existential path quantifier and F to the temporal
operator finally. The formula reads “There exists a path on which we
eventually reach a state by firing t, and from this state, we can reach
another state with a token in state terminated.” CPNTools ASK-CTL
extension can evaluate temporal logic formulas on markings (states) as
well as binding elements (state transitions). Therefore, we can investi-
gate the transition that leads to a state (i.e., fired(t)).
Temporal logics can also be used to express domain-specific prop-

erties, i.e., compliance rules [52]. These rules may refer to and relate
specific activities and data objects in the case model. In compliance
checking, a model is verified against rules originating in law, guidelines,
and best practices that are not explicitly included in the model.
Finally, we can also use behavioral verification to investigate the

relationship between the domain model and the case behavior. A case
does not necessarily cover the multiplicity constraints of the domain
model fully. The state space contains lower and upper bounds for
all association ends. If these multiplicity constraints equal the global
constraints of the domain model, the case model satisfies multiplicity
coverage.
With this approach, we can verify properties for the insurance ex-

ample. The example is lazy relaxed sound, but it contains a deadlock. If
all assignments are canceled, the case cannot continue as no reviews,
which are required for a decision, can be created. However, in the origi-
nal model (not adapted for model checking), it is always possible to
create another assignment and the deadlock does not exist. Limiting the
case to a finite number of objects is therefore not property preserving.
The adapted case model covers all multiplicity constraints if there

are at least nine external and one internal reviewer in the initial state
of the case. Furthermore, we can verify compliance rules such as the
following: If the risk is high, multiple reviews are required. This can
be expressed by the LTL formula:

G(risk[high] → F(#review ≥ 2))

The formula reads as “It globally holds if the risk is high, the case
eventually reaches a state with two or more reviews.” This property is
not satisfied—it is possible to close the case with a single review albeit

128

8.3 Compilation and Verification

a high risk. This knowledge can, for example, be used to improve the
model.
So far, we investigated the behavior of a single case. Therefore, it

can be necessary to add cross-case data objects to the initial marking.
However, the formalization also enables the behavioral verification of
multiple cases, as long as the number of cases is finite. We can verify
the same properties adapted for multiple cases and considering their
interplay. One case may produce a data object required by another. Or
there is a back and forth between two cases. In both scenarios, one
isolated case model may not satisfy properties that are satisfied by
multiple case models viewed together.

Experiments

Model checking explores the state space of a behavioral model and is
computationally expensive. In fact, the state space grows exponentially
with the degree of concurrency. This can be a problem for case models
that describe flexible processes.
We calculated the state space for various variants of the insurance

example (see Table 8.1). The data-aware BPMN (Figure 2.5) is highly
structured, and the state space is small: 76 states and 82 transitions. The
calculation took CPNTools three seconds.14 If we consider the classical
Petri net formalization of the Wickr model, limited to ten Assignments
and three reviews, the state space is more than two orders of magnitude
larger: 8,020 states and 14,927 transitions. The calculation of the state
space takes eight seconds. We also tested the colored Petri net version,
with a varying number of external reviewers: Three external reviewers
(and one internal) results in 25,644 states, which takes 82 seconds to
calculate. CPNTools fails to calculate the state space for four external
reviewers.
CPNTools can handle state spaces with 20,000–200,000 states and

50,000–200,0000 transitions [37]. Due to the high degree of flexibility,
the insurance example exceeds these limits for some configurations.
However, we can approximate the state space: If we consider a configu-
ration with three external reviewers—we call them Susan, Peter, and
Maria—, they can be assigned in an arbitrary order. By prioritizing the
order—e.g., first Susan will be assigned, then Peter, and finally Maria—
we reduce the size of the state space drastically. The optimized version
with three external reviewers has 894 states and 1,273 transitions. It
takes five seconds to calculate. For the variant with four external re-
viewers, CPNTools calculates a state space with 1,544 states and 2,210
transitions in six seconds. Even if we have nine external reviewers and
up to ten assignments, CPNtools can still calculate a state space with
7,494 states. Furthermore, this approximation does not affect the se-
quences of activities. We also checked lazy relaxed soundness for each
of the models using CPNTools’ ASK-CTL extension. Verification is the
14All performance measurements were taken on a computer with 12 GB RAM and an

i7-7500U processor running CPNTools 4.0.1. The times are measured internally by
CPNTools. The results are the average of three runs.

129

8 Technical Evaluation

fastest for the BPMN’s Petri net. It takes on average 17 ms. The slowest
is the verification for the colored Petri net with three external reviewers
that are not prioritized. It takes on average 1,459 ms. For each of the
other nets, verification takes less than a second.
The size of the state space can hinder behavioral verification. By

introducing additional assumptions, i.e., a limited number of objects
or a prioritized correlation of cross-case data objects, a partial state
space can be calculated. However, such assumptions must be carefully
considered, as they may affect the results of analysis and verification:
For example, if we want to determine whether all assignments are
eventually in state done or in state canceled, limiting the number of
assignments to less than four leads to a wrong result. If we assign
one internal and at least three external reviewers, we can reach a state
in which we have three reviews, but the assignment of the internal
reviewer is still in state due. The internal assignment cannot be changed
to done because three reviews already exist. Also, it cannot be canceled
because only assignments of external reviewers can. Thus, the property
is not satisfied, but if there were less than three external reviewers this
situation would not occur, and the error would remain undetected.
However, the assumption that external reviewers are assigned in

a fixed order does not limit the ordering of activities. Yet, it affects
the sequence of actions, which depends on the exact combination of
data objects that are read and written by each activity instance: Some
combinations of data objects, such as the first assignment and the third
external reviewer, cannot be linked albeit this being possible in the
model without priorities. Therefore, the state space is an approximation
of the original one. In conclusion, model checking is not always feasible,
but careful manual tuning of the Petri can help for some case models.

Table 8.1: Experiments on calculating the state space of case models
and checking lazy relaxed soundness (LRS).

Model #States #Transitions Duration (s) LRS (s)

BPMN PN 76 82 3 0.017
Wickr PN 8020 14927 8 0.417
Wickr CPN 25644 38412 82 1.4593 ext. Reviewer
Wickr CPN

3 ext. Reviewer 894 1273 5 0.038
prioritized
Wickr CPN

4 ext. Reviewer 1544 2210 6 0.063
prioritized
Wickr CPN

9 ext. Reviewer 7494 10810 10 0.343
prioritized

130

8.4 Execution

8.4 Execution

Engines can support knowledge workers in executing cases according
to case models. However, the flexibility and complexity of knowledge-
intensive processes can pose a challenge. We developed two prototypes
to show the feasibility ofWickr: a case engine and a tool for goal model-
ing and semi-automated planning of cases.
A case engine tracks the state of cases and orchestrates activities

based on a case model. Case engines determine the activities that can
be executed. However, in decision-rich processes, such as knowledge-
intensive ones, they cannot define which activities should be executed.
For this purpose, goal modeling and planning can be used. During
planning, actions are arranged into a sequence that conforms to the
model and accomplishes a defined goal.

8.4.1 Case Execution Engine

An engine tracks the states of cases, invokes services, and is capable of
receiving user inputs. Especially, users of complex processes can benefit
from a case engine because they do not need to track the case state
manually. Engines for knowledge-intensive processes have to satisfy
special requirements, though [98, 147]. Knowledge workers consider
versatile information to make decisions. Meanwhile, constraints of the
model must not be violated. A balance between guidance and flexibility
is required.
OurWickr execution engine15 uses CPNTools and the colored Petri

net formalization of the case model. Instead of implementing the execu-
tion logic itself, the engine communicates with CPNTools to query the
marking and fire transitions in the colored Petri net formalization of the
case model. The architecture in Figure 8.5 shows that the case model’s
domainmodel and its colored Petri net formalization are provided as in-
puts to the engine. The engine communicates throughAccess/CPN with
CPNTools and through a graphical user interface with the user. CPN-
Tools tracks and updates the marking, and the engine stores additional
information, e.g., attributes and their values.

The engine operates as follows: A user provides the colored Petri net
formalization and the domainmodel of a casemodel. The engine parses
the classes in the domainmodel and stores their structure. Furthermore,
the engine passes the colored Petri net to CPNTools using Access/CPN.
From CPNTools, the engine requests and receives the list of enabled
transitions. It parses their labels to derive the corresponding control
flow nodes. These are presented in a list of work items to the knowledge
worker. When a knowledge worker selects a work item, it is presented
with a set of available options: the input-output combinations in case
of an activity, the outputs in case of an event, and the product terms in
the case of the termination condition. When the user selects one of the
options, the engine generates forms for the involved data objects (see
Figure 8.6). By completing the action, the engine triggers the respective
15https://github.com/bptlab/fCM-Engine (2021/11/06)

131

https://github.com/bptlab/fCM-Engine

8 Technical Evaluation

Wickr Engine

State

User
Interface

Access/CPN

Engine
Core

CPNTools

Domain
Model

Colored
Petri Net

User

Figure 8.5: The execution engine operates on the colored Petri net repre-
sentation. The abstract state is tracked via CPNTools, while
attribute-level information are tracked in the engine.

binding element in CPNTools and stores the attribute values from the
forms in the internal state. Afterwards, the view is reset, and the list of
work items is updated.

Figure 8.6: Screenshot of the execution engine. The work item list is
shown on the left, the available input-output combinations
on the top, and the forms for changing data objects in the
center.

Since the Petri net models data objects only with an identity and
an abstract state, detailed attribute-level information must be stored
separately. The engine therefore has an internal state. It has a key-value
store for each data object token in the Petri net. A key-value pair reflects
a single attribute and its value. It can be updated by the knowledge
worker through forms when activities are executed or start events are
triggered. When a new object is created, a new key-value store will be
associated with the novel identity.
The engine uses CPNTools as the backend that executes the case

behavior. Therefore, the semantics presented in this thesis is sup-

132

8.4 Execution

ported straightforwardly. Smaller changes to the semantics can be
implemented by adapting the Petri net without changing the engine at
all. However, the lightweight implementation has its limits. The case
state is not persisted and only one Petri net, which may contain multiple
case models, is supported. Furthermore, the current implementation
does not distinguish between read and write access to data objects,
nor does it support multiple users. Finally, the case model cannot be
adapted at runtime.

8.4.2 Goal Modeling and Planning

Typically, process engines guide users by listing the currently enabled
actions. However, knowledge-intensive processes are multi-variant and
require knowledge workers to choose one from many possible actions.
Ideally, knowledge workers select an action that aligns with their goals,
but in general, they have to make such decisions without support of
the engine.
In this section, we present a method and a prototype for modeling

goals and supporting knowledge-workers in planning actions accord-
ingly. The work is based on a joint paper with Anjo Seidel [167].
According to the Miriam Webster dictionary, a goal is “the end to-

ward which effort is directed.”16 Goals can be versatile. They can be
functional or non-functional, concerned with actions, time, or data.
They can be objective or subjective. However, we are only interested in
goals supported by the case model. Therefore, the goals of interest may
be concerned with objects, links, and actions.
Once a goal has been specified, decision support can be provided.

Planning searches for a sequence of actions that accomplishes a goal. In
Wickr, actions refer to activities and specific input-output combinations,
i.e., a binding element in the Petri net. Simply put, planning searches
the state space to find a path from the current state to a state satisfying
the goal.

Goal Specification

In case management, a goal refers to the subject and the situation.
Transferred to Wickr, a goal specification consists of constraints that
describe a set of states: The goal has been accomplished if the case is
in one of these states. The case state comprises data objects, links, and
running fragment instances. More precisely, it is the marking of the
corresponding colored Petri net. Given the state and the model, we can
infer enabled actions (binding elements). This understanding leads to
the following specification of goals.

Objects and Links. First, we revisit the representation of data within
a case to specify respective goals. Data is encapsulated in a set of objects.
In the formalism, objects have an identity, a state, and links to other

16https://www.merriam-webster.com/dictionary/goal (2021/11/06)

133

https://www.merriam-webster.com/dictionary/goal

8 Technical Evaluation

objects. A goal can, for example, make statements about particular
objects, about all objects of a class, or about links among objects.

In a case of the insurance example, knowledge workers may want to
achieve that

(g1) All assignments are either done or canceled.
The goal makes a statement about all objects of the class Assignment.
However, we can also require a specific object, for example

(g2) A decision must exist.
We can also make statements about multiple objects of different classes.
(g3) If the risk is regular, we require one review otherwise two or more.
And, we can define goals using links among objects:

(g4) If the risk is high, only external reviewers are assigned.
Viewed formally, goals are defined as constraints for states. All goals

that we consider are defined in the scope of a single case. Therefore,
we can formalize the data state of a case by set O of objects and set L of
links (see Definition 30, p. 70). Goals can be expressed using first-order
logic with sets O and L.
Coming back to our previous examples, we can formalize them as

follows:

g1 ≡∀o ∈ O : o.class = Assignment ⇒
(o.state = done ∨ o.state = canceled)

g2 ≡∃o ∈ O : o.class = Decision
g3 ≡∀o ∈ O : (o.class = Risk ∧ o.state = regular ⇒

|{or ∈ O|or.class = Review}| = 1)∧
(o.class = Risk ∧ o.state ̸= regular ⇒
|{or ∈ O|or.class = Review}| ≥ 2)

g4 ≡∀ohr, oa, or ∈ O : (ohr.class = Risk ∧ ohr.state = high∧
oa.class = Assignment ∧ or.class = Reviewer ∧ {oa, or} ∈ L) ⇒
or.state = external

These formulas can be evaluated in any given state. If it evaluates to
true, the respective goal is satisfied.

Activities and I/O Operations. Goals drive the actions of knowledge
workers. Like data objects, performing an action can be a goal. An action
refers to the execution of an activity instance and involves concrete data
objects that are read and written. With concrete data objects, we refer to
objects with identities, states, and links and not to abstract data object
nodes. Knowledge workers may aim to execute a specific activity for
specific data objects.
Goals may be concerned with the state of activity instances/actions.

From a marking in the colored Petri net, we can infer which activity

134

8.4 Execution

instances are enabled. However, we are unaware of other states—such
as running and terminated—because the formalism abstracts from them.

We can specify goals concerned with actions for the insurance exam-
ple. They may be concerned with the activity:

(g5) Activity “pay reimbursement” is enabled.
Or they consider an activity instance including its input-output behavior.
It is possible to make general statements about the inputs and outputs.
(g6) Activity “decide on claim” is enabled and considers exactly three

reviews.
It is also possible to make statements about specific objects that are
read.
(g7) Activity “cancel assignment” should be enabled for the reviewer

with identity (Reviewer, 12).
Formally, each case has a set E containing enabled actions. Each

action (Or, na, Ow) consists of a set Or of data objects that are read, an
activity na, and a set Ow of data objects that are written. An action
refers to a binding element of the colored Petri net, i.e., an arc in the
reachability graph.
Based on the set E, we can formalize goals that are concerned with

actions. The examples g5–g7 result in the following definitions:

g5 ≡∃epr ∈ E : epr.nA = “pay reimbursement”
g6 ≡∃edc ∈ E : edc = “decide on claim”∧

|{o ∈ edc.Or | o.class = Review}| = 3

g7 ≡∃eca ∈ E,∃o ∈ eca.Or : eca.nA = “cancel assignment”∧
o.id = (Reviewer, 12)

Composing Goals. Goals can be combined. A goal can involve both
data and activities. We can, for example, make a statement about the
links of objects read by an enabled activity. Thus, a single goal may
access sets O,L, and E.

Consider the following goal for the insurance example:
(g9) We want to execute “request external review” for a reviewer

without assignments.
With our formalization of the case state, we can formulate g9 formally.

g9 ≡∃eer ∈ E,∃or ∈ eer.Or,∀o ∈ O :

eer.nA = “request external review”
∧ or.class = Reviewer ∧ or.state = external∧
(o.class = Assignment ⇒ {o, or} /∈ L)

Any goals that are specified refine the goal of the case. However, a
case changes over time, but so far, goals are time-agnostic. Actual goals

135

8 Technical Evaluation

of a knowledge worker may consist of multiple subgoals (also called
objectives [148]) that must be achieved individually but not necessarily
at the same time/in the same state. Therefore, we present composed
goals that consist of a set of atomic goals (as specified before). The
atomic parts of a composed goal can be ordered so that they must be
achieved in the respective order.
Consider the insurance example. A knowledge worker may have

three goals: First, three reviews are supposed to be created. Next, all
incomplete assignmentsmust be canceled, then “decide on paper”must
be enabled. This can be expressed by the set {ga, gb, gc}, where

ga ≡|{o ∈ O|o.class = Review}| = 3

gb ≡∀oa ∈ O : oa.class = Assignment ⇒
(oa.state = canceled ∨ oa.state = done)

gc ≡∃e ∈ E : e.nA = “decide on paper”

The composed goal furthermore consists of a partial order ≤G:

ga <G gb <G gc

The composed goal is consequently defined as a tuple Ga;b;c:

Ga;b;c = ({a, b, c},≤G)

Planning

Once knowledge workers have specified a goal, they can identify and
take actions towards it. Finding a sequence of actions that realizes a
goal is called planning, and the sequence is called a plan. Planning can
be manual or automated [111].
Planning is common in knowledge work [31]. In Wickr, a plan is a

sequence of actions. However, in knowledge-intensive processes, auto-
mated planning has limitations. Case models are often underspecified
since the vast knowledge of experts cannot be modeled completely.
Nevertheless, we present a method with which knowledge workers can
still profit from automated planning.
To find a plan for a given goal, we must find a sequence of actions

that implies a sequence of states satisfying the goal. Therefore, we can
use the colored Petri net formalization of a case model that has been
adapted for behavioral verification. The plan is a path in the reachability
graph. The path starts in the current state and satisfies subgoals in the
specified order until the composed goal has been accomplished. Since
we are interested in both states and actions, the binding elements that
lead from one state to another must be considered as well.

To find a plan, the state space has to be searched for respective paths.
However, there can be multiple paths. Therefore, we propose a user-
defined scoring function that assigns each plan a score. A user may
prefer a plan with the least number of actions, or they may incorporate
additional knowledge to score plans according to their duration. In any
case, suboptimal plans are not discarded.

136

8.4 Execution

Instead of settling on one plan, we leave the knowledge workers in
charge. All enabled actions are presented to the knowledge workers. If
an action is part of a plan, this information is communicated together
with the plan’s score. If an action belongs to multiple plans, the highest
score is shown. Thus, the knowledge workers can still decide freely.
Yet additional information are provided, so knowledge workers know
whether an action brings them closer to their goal.

Implementation

Under our supervision, Anjo Seidel developed a proof-of-concept for
goal modeling and planning.17 Goals can be specified via forms, and
state space queries can be generated to support planning via CPNTools.
The case model’s fragments and the domain model are provided as

inputs. Both are parsed and stored internally. Through forms, the users
interact with the application. They can specify goals (see Figure 8.7),
view their definitions, and retrieve respective queries for CPNTools.

Figure 8.7: Screenshot of the form-based goal modeling.

Goals may involve activities and data objects, and they may include
existential and universal quantifiers. However, the current implementa-
tion has some limitations: Links, data object identities, and input-output
combinations for actions are not supported because this information
depends on the actual case, but the implementation is not connected to
the engine. Also, composed goals have not been implemented yet.
Based on the forms, state space queries that use CPNTools’ ASK-

CTL [11] extension are generated. Evaluated in CPNTools, the queries
determine whether the goal can be accomplished starting in the current
state. They do not return a path. However, the query can be evaluated
for each possible successor state. If it returns true for a specific successor,
the actions leading to this successor state are compliant with the goal.
Although scoring functions have not been implemented, the result of
17https://github.com/bptlab/fCM-query-generator (2021/11/06)

137

https://github.com/bptlab/fCM-query-generator

8 Technical Evaluation

the queries can support knowledge workers in the immediate decision
of choosing the next action.

Limitations

Both the conceptual approach and the implementation presented above
are limited. The decision support ranges only to the direct next activity,
and the option to change the case model is not supported. Furthermore,
there may be no plan at all for various reasons. Each of these points
bears challenges and opportunities for future work.
A plan is a sequence of actions. But because a plan may be too re-

strictive for knowledge work, we use the entirety of plans to support
knowledge workers. In the current implementation, however, knowl-
edge workers lose the ability to investigate the plans, for example, to
learn about long-term consequences of their decision: Choosing an ac-
tionmay impact future decisions. In the example, requesting an external
review before a local review prevents a local review from ever being
created. In the future, the implementation should enable knowledge
workers to explore plans and/or the consequences of their decisions.

If no plan is found, no decision support can be provided. However,
the absence of plans may have different causes, which may provide
helpful insights. A model may simply be incapable of satisfying a goal,
for example, when the goal requires a multiplicity outside the model’s
constraints. Similarly, a goal may contradict the current case state, e.g.,
if we aim at fewer objects than already exist. The goal may be in itself
inconsistent, for example, if a single object is required in two different
states at the same time. Conflicts within a goal, between a goal and
the model, and between the current state and the model should be
investigated in future work.
Finally, we may not find plans because the case model’s state space

may be too large to be searched exhaustively within time and memory
constraints. Future work may develop techniques to reduce the size of
the state space and heuristics to guide the search.
Currently, goals only use information from the case and the case

model. However, more information may exist, for example, in event
logs. By enriching the domain model, additional perspectives can be
incorporated into goals. If each activity is equipped with an expected
duration, temporal constraints can be included. Furthermore, planning
may be used for more than just choosing the next action: Based on an
existingmodel and a specified goal, planningmight be used to adapt the
case model semi-automatically similar to the SmartPM approach [121].
In summary, Wickr and planning can empower knowledge workers.
Our work, however, is only a starting point and can be extended in
many directions.

8.5 Runtime Extension

When an unforeseen situation occurs or when the knowledge on which
the model is based changes, knowledge workers must have the freedom

138

8.5 Runtime Extension

to adapt the case model [98]—of course, within certain boundaries.
Such changes apply to the running case. Currently, the case execution
engine does not support adapting the case model. In this section, how-
ever, we discuss runtime adaptations and their effect on different tasks,
such as verification and planning.

The fCM approach allows adding new fragments that adhere to the
object lifecycles. Wickr is less restrictive: We can add new fragments,
and we can add states to the object behaviors as well as state transitions
that lead to or origin in an added state. Furthermore, new product
terms can be added to the termination condition. With these changes,
the behavior is extended, but previous behavior remains valid.
The adapted model must pass structural verification and may be

behaviorally verified aswell because properties that hold for the original
model do not necessarily hold for the new version. It is not enough
to start verification from the initial state. Instead, we have to consider
the current states of all affected cases. This way, we can guarantee that
the adapted model does not violate important properties. Therefore,
behavioral verification can assist knowledge workers adapting the case.

If a case is running, the current state needs to be ported to the updated
model. This can be done straightforwardly if extensions to the object be-
haviors and fragments are the only adaptations: No places are removed
from the colored Petri net formalization, and the state/marking of the
case remains valid. Also, existing plans can still be executed, but new
plans with a better score may exist. So, planning should be repeated
when the model is changed.

Using the formalization, we can allow all changes as long as the cur-
rent case state remains part of the case model’s state space (cf. state
compliance [62]) and essential behavioral and structural properties are
satisfied. Colored Petri-net-based semantics, structural and behavioral
verification, and planning can assist knowledge workers in making
respective changes. In the future, the work by Rinderle-Ma and Re-
ichert [62] may be a starting point for supporting changes that violate
state compliance.
Next, we consider the syntax presented in Chapter 4, the semantics

presented in Chapters 5–7, and the prototypes and the discussion of
run-time extensions in this chapter to evaluate whether Wickr is suited
for knowledge-intensive and/or data-centric processes.

139

9 Conceptual Evaluation

Wickr is designed for knowledge-intensive and data-driven processes.
It combines aspects from data-centric process modeling (e.g., data
behavior and data-based constraints) with activity-centric process mod-
eling (activities and imperative control flow). Therefore, it is a hy-
brid approach. Yet, including data is not necessarily enough to model
knowledge-intensive and data-driven processes. In this chapter, we
evaluate whetherWickr is suited for this task.

Our conceptual evaluation is based on existing frameworks. In their
seminal work [98], Di Ciccio and his co-authors list characteristics
and requirements for knowledge-intensive processes. The require-
ments address both the modeling language and the tooling. Similarly,
DALEC [147] is an evaluation framework for data-centric process mod-
eling. DALEC consists of 24 questions, which address different phases
of the business process lifecycle and tool support. We use both frame-
works to evaluate Wickr and to compare it against other approaches,
such as fCM.
As a second part of the conceptual evaluation, we separate our con-

tribution from Wickr. We combine domain models with BPMN process
models and CMMN case models. Based on these combinations, we
discuss links and multiplicity constraints and their influence on the
process/case behavior.

9.1 Wickr for Knowledge-Intensive Processes

Knowledge work is human-centered, data-driven, unrepeatable, and
unpredictable [82]. The involved knowledge is vast and changes quickly
so that any model is condemned to be or become incomplete. Therefore,
knowledge-intensive processes differ substantially from traditional ones.
Di Ciccio et al. [98] present a catalog of characteristics and requirements
for knowledge-intensive processes, corresponding modeling languages,
and tools. The requirements are grouped into data, knowledge ac-
tions, rules and constraints, goals, process, knowledge workers, and
environment. For each group, we briefly present the requirements,
subsequently evaluate Wickr, and compareWickr to fCM.

9.1.1 Data

Data describes the case. It is a foundation for knowledge workers’
decisions. Hence, approachesmust support data at design- and runtime.
Yet, knowledge-intensive processes require a flexible and adaptable data
management. This solidifies in the first group of requirements:

141

9 Conceptual Evaluation

R1 Data modeling: Data entities and data relationships relevant to the
case should be modeled structurally at design-time.

R2 Late data modeling: It must be possible to adapt the data model
at runtime when requirements or knowledge change.

R3 Access to appropriate data: Datamust be accessible to authorized
knowledge workers independently of activities.

R4 Synchronized access to shared data: Data integrity must be guar-
anteed even if objects are accessed concurrently.

Comprehensive data support is Wickr’s primary design goal. At
design-time, data can be modeled by classes, associations, and mul-
tiplicity constraints. Classes describe data objects, and associations
represent relationships among objects. Therefore,Wickr satisfies R1.

The support for runtime changes, however, is limited. While we may
extend the behavior, novel associations andmultiplicity constraints may
invalidate the current state of a case and must therefore be considered
carefully. While we sketched a method for allowing arbitrary changes
to the case model, it needs a more thorough investigation. As of now,
late data modeling (R2) is not supported.
Activities read and write data objects, which are grouped in input

and output sets, respectively. This represents data requirements clearly.
When a knowledge worker executes an activity, data objects for inputs
and outputs can be accessed. Furthermore, Wickr’s formalism includes
global registries of objects and links. These can be used to implement
a holistic view on case data that is decoupled from the execution of
activities. Therefore, appropriate access to data can be provided (R3).
Different activities, fragment instances, and cases can access data

objects concurrently. To prevent inconsistencies,Wickr does not support
multiple simultaneous accesses to the same object. While not part of the
presented semantics, objects are bound to an activity upon its beginning
and released upon its termination [143]. Therefore,Wickr meets R4.

In comparison to fCM, Wickr’s data models contain associations and
multiplicity constraints. Therefore, fCM meets R1 only partially. Late
data modeling (R2) is supported by neither fCM norWickr. Data access
semantics (R3) are comparable. Finally, fCM supports R4 only partially
because cases are isolated.

9.1.2 Knowledge Actions

The behavior of a case model is represented by actions that drive a case
forward. Such actions are modeled as activities which may operate
on data objects. In knowledge work, information need to be gathered,
and decisions need to be made. These and similar tasks are knowledge
actions and subject to a group of requirements:

R5 Represent data-driven actions: Data-driven actions must be mod-
eled with data requirements and data operations.

142

9.1 Wickr for Knowledge-Intensive Processes

R6 Late actions modeling: It must be possible to model novel actions
at runtime.

From activity-centric process modeling approaches, Wickr inherits
expressive means to model activities. Input sets represent data require-
ments. An input-output-set combination also encodes data operations,
i.e., which objects are read, created, and updated. Furthermore, set data
object nodes model batch operations. Implicitly defined are constraints
and operations on the links between objects. In conclusion, Wickr satis-
fies R5. Since new fragments with novel activities and new states and
state transitions can be added at runtime, R6 is satisfied as well.
Concerning knowledge actions, Wickr is an improvement over fCM,

since fCM does not support batch processing and links. Furthermore,
more runtime extensions are possible because both fragments and object
behaviors can be extended.

9.1.3 Rules and Constraints

Processes are subject to regulations, laws, best practices, and guidelines
that define rules and constraints for the execution. Not all of them can
be modeled appropriately using control flow and data flow. Yet, these
rules and constraints are too important to be neglected. Respectively,
Di Ciccio et al. define the following requirements:

R7 Formalize rules and constraints: Rules and constraints must be
modeled formally to enable automated checks.

R8 Late constraints formalization: Because new requirements and
constraints can arise at runtime, it must be possible to model and
include them ad hoc.

Wickr has versatile means to express constraints: control flow, data
flow, multiplicity constraints, and state transitions in the object behavior.
Yet, the constraints apply primarily to individual activities. However, a
case model can be verified against a set of temporal logic compliance
rules. With these extensions, R7 is supported.
Model checking can also be used at runtime. Instead of the initial

state, we start in the current case state. Therefore, a running case can
be verified against new temporal logic rules. This can also be used for
monitoring, i.e., to prevent violations. Yet, these rules and constraints
are not part of the case model itself. Therefore, we consider R8 to be
supported by Wickr when using such an extension.
The fCM approach has similar support for rules and constraints.

While multiplicity constraints are not supported, rules can be verified
usingmodel checking. However,Wickr’s rules can bemore sophisticated
and include links, multiplicity constraints, and object identities.

9.1.4 Goals

Each business process by definition serves a business goal [149]. All ac-
tivities included in the process are directed towards this goal. Knowledge-

143

9 Conceptual Evaluation

intensive processes are no exception. However, their goals can be highly
case-specific, which leads to the following requirements:

R9 Goal modeling: It must be possible to model goals involving data.

R10 Late goal modeling: Goals may change. Knowledge workers must
be capable of changing/adding goals.

Wickr case models have a goal specification, which is twofold. The
termination condition is a data condition, which is evaluated on objects,
their abstract states and links; and the goal multiplicity constraints are
evaluated on the links. Both must be satisfied to close the case. Wickr
therefore supports data-centric goal modeling (R9).
However, new requirements may arise at runtime and knowledge

workers may subsequently refine the goal. For this reason, new product
terms can be added to the termination condition. Besides changing
the model, we presented an approach for modeling additional goals at
runtime and planning knowledge workers’ actions accordingly. Con-
sidering this, requirement R10 is satisfied.
In comparison to fCM, Wickr’s goal specification is more versatile

as links, and multiplicities are not supported in fCM. Furthermore,
runtime goal modeling has not been considered in fCM. Yet, a reduced
version of our approach could be applied to fCM as well.

9.1.5 Processes

Knowledge-intensive processes have a set of requirements regarding
modeling and execution. They should be flexible and adaptable, and
the integration of and access to knowledge is crucial. Di Ciccio et al.
present a respective group of requirements:

R11 Support for different modeling styles: Itmust be possible tomodel
versatile constraints appropriately using a variety of modeling
styles.

R12 Visibility of the process knowledge: At runtime, knowledge
workers must have a holistic view of the case including actions,
constraints, and data.

R13 Flexible process execution: Process execution must be flexible:
Knowledge workers must be able to re-execute and skip activities.

R14 Deal with unanticipated exceptions: During execution, unan-
ticipated exceptions may occur and must be handled so that the
process can recover.

R15 Migration of process instances: Since models may change, it is
necessary to migrate running cases to new models.

R16 Learning from event logs: Approaches must be able to learn from
past executions that have been recorded in event logs.

144

9.1 Wickr for Knowledge-Intensive Processes

R17 Learning from data sources: Approachesmust consider other data
sources besides event logs to gain/extract domain knowledge.

Wickr case models include process fragments, a data model, and state
transition systems for data objects. The combination of modeling styles
is suited to create a rich description of knowledge-intensive processes—
a description that covers data and process-related aspects. Furthermore,
fragments support both imperative control flow and declarative data
flow. Therefore, Wickr satisfies R11.

At runtime, activities are executed, classes are instantiated, and goals
are modeled and achieved. Requirement R12 requires a holistic view
on all case related information and constraints. The formalism (i.e., the
Petri net) provides a starting point but is in most cases unsuited for
knowledge workers. Yet, the structure of the net and its marking can
be used to build a holistic view on the case. Therefore, Wickr supports
R12 only partially.
In comparison to traditional processes, knowledge-intensive ones

must be flexible. In Wickr, this flexibility is accomplished through
the combination of fragments at runtime. However, all flexibility is
modeled. It is, in general, not possible to skip activities or re-execute
past ones. Yet, it is not necessary to complete fragment instances, which
is equivalent to skipping their execution. Thus, Wickr supports R13
partially.

Furthermore, if an exception occurs during execution, Wickr has
no build-in mechanism for recovery. Nevertheless, it is possible to
adapt the model. In case of unanticipated exceptions, new behavior
can be added to recover the case. Also, Andree et al. explore exception
handling mechanisms for fCM, which can be ported to Wickr [153].
Exception handling is therefore partially supported (R14).
Runtime adaptation is part ofWickr. If a model is merely extended,

running cases can easily be migrated. If other changes are made, mi-
gration is more sophisticated: First, it is checked whether the current
state is valid for the new case model (state compliance [62]). Only if
this is true, we can migrate the instance. Therefore,Wickr meets R15.

Finally, we consider requirementsR16 andR17. Nomethods utilizing
process mining and data mining have been used in the context ofWickr.
The respective requirements are not met.

Regarding processes, fCM andWickr are comparable. However,Wickr
models are more detailed. Furthermore, runtime adaptation in fCM is
limited to adding fragments, whileWickr allows changes to the object
behaviors as well. We even sketched a method to allow changing exist-
ing elements. In conclusion,Wickr improves fCM slightly in regard to
the process related requirements.

9.1.6 Knowledge Workers

The execution of knowledge-intensive processes is driven by knowledge
workers performing tasks and making decisions. Knowledge workers
may have different rights and capabilities. Furthermore, processes

145

9 Conceptual Evaluation

and/or tasks may require collaboration. Case models should include
the knowledge worker perspective, respectively:
R18 Knowledge worker’s modeling: Human resources with their roles

and capabilities must be modeled.

R19 Formalize interactions between knowledge workers: Collabo-
ration and communication among knowledge workers must be
modeled.

R20 Define knowledge worker’s privileges: Data access rights of knowl-
edge workers and roles must be modeled.

R21 Late knowledge worker’s modeling: It must be possible to model
new knowledge workers for a running case.

R22 Late privileges modeling: Since rights can change, it must be
possible to adapt and extend the model respectively at runtime.

R23 Capture knowledge workers’ decision: The decisions of knowl-
edge workers must be captured.

Currently, neitherWickr nor fCM support modeling knowledge work-
ers. Yet, first efforts to extendWickr with models for roles, rights, and
responsibilities have been researched by Kerstin Andree in the context
of a master seminar. Elaboration may be part of future work. The only
requirement satisfied by both Wickr and fCM is R23: In both Wick and
fCM, human decisions are essential for the case execution because the
next activity needs to be selected and further decision outcomes may
be captured by data objects and their states.

9.1.7 Environment

Processes are executed in an environment [149]. It includes other pro-
cesses, organizations, and the technical context. Interactions between
a process and its environment are commonly modeled as events. A
process can raise events or react to external ones. Many knowledge-
intensive processes are reactive. They receive external events and have
to react to them swiftly. The last group of requirements addresses the
integration of the process environment:
R24 Capture and model external events: External events must be ex-

plicitly included in the process model.

R25 Late modeling of external events: It must be possible, to include
additional events at runtime.

So far, we did not consider non-start events. However, fragments may
include intermediate events, which are similar to activities: Catching
events have one input set and one output sets. When a respective event
occurs, the input set is read, novel objects are created, and linked to
the objects in the input set. Throwing events have one input set and
an empty output set. However, catching events are triggered by the

146

9.1 Wickr for Knowledge-Intensive Processes

environment and not by the knowledge worker. Thus, they cannot be
controlled, and, during verification and planning, they must be treated
differently than activities. Nevertheless, we consider Wickr to support
events (R24). Since events are included in fragments, and fragments
can be added at runtime,Wickr supports late modeling of events (R25).
In comparison to fCM, little changed. Events can be included in

fragments. However, just as for activities,Wickr can support events with
inputs and outputs. On the other hand, events have been integrated
in Gryphon and Chimera [106], which are a modeling tool and an
execution engine for fCM, respectively. In conclusion, we consider
Wickr and fCM equally well-equipped to model events.

9.1.8 Comparing Wickr to fCM and Others

We use the previous evaluation to compare Wickr against fCM and
the following approaches: YAWL [28], ADEPT2 [32], SmartPM [121],
DECLARE [43], PHILharmonicFlows [66], GSM [60], MailOfMine [65].
We evaluatedWickr and fCM but reuse the evaluation results presented
by Di Ciccio et al. [98] for the other approaches. Table 9.1 provides on
overview of the comparison.
Wickr is strong at design-time. A case model specifies actions, data,

and goals using different modeling styles. While excluded in the the-
sis, events may be modeled as well. In comparison, none of the other
approaches support all these elements. ButWickr case models do not
include knowledge workers nor additional constraints and rules: PHIL-
harmonicFlows models process participants and their privileges; and
various approachesmodel constraints and rules explicitly. Nevertheless,
we proposed model checking to consider addition rules and constraints
both during design and at runtime.
Compared to fCM,Wickr supports additional modifications at run-

time. None of the approaches supports ad hoc changes fully: ADEPT
and SmartPM, for example, can react to and recover from unanticipated
exceptions, but lack the capability to model data and events at runtime.
In regard to the case execution, Wickr fares well against the other

approaches. Changes to the model can be made; flexible execution is
possible by combining fragments; and data is treated as a driving force.
However, R13 requires skipping and re-executing activities, which
is not fully supported by Wickr. Other approaches, such as ADEPT,
DECLARE, and MailOfMine fully satisfy the requirement.
Finally, we consider learning from data sources, such as event logs.

MailOfMine and DECLARE support learning from data fully or par-
tially. Wickr does not. In the future, event logs and other data may be
used to enrich case models and to support knowledge workers.
In conclusion,Wickr fares well against the other approaches. How-

ever, there are major differences among all of them. Therefore, it is
impossible to mark one as generally superior. Wickr, for example, lacks
support for modeling knowledge worker, but its greatest strengths are
the combination and integration of data and process models at design-
time, as well as their flexible execution at runtime.

147

9 Conceptual Evaluation

Ta
bl
e9

.1:
Ov

er
vi
ew

of
th
er

eq
ui
re
m
en

ts
fo
rk

no
wl

ed
ge

–in
ten

siv
ep

ro
ce
ss
es

[9
8]

an
d
th
ee

va
lu
at
io
n
fo
rd

iff
er
en

ta
pp

ro
ac
he

s.
–(

no
ts

up
po

rte
d)

,~
(p

ar
tia

lly
su

pp
or
ted

),
+

(s
up

po
rte

d)
,-
/+

an
d
-/

(n
ot

su
pp

or
ted

na
tiv

ely
bu

tr
es
pe

cti
ve

ex
ten

sio
ns

ex
ist

).
YA

W
L

AD
EP

T2
Sm

ar
tP
M

DE
CL

AR
E

PH
IL
ha

rm
on

icF
low

s
GS

M
M
ail

Of
M
in
e

fC
M

W
ick

r
R
1

Da
ta

m
od

eli
ng

~
~

+
~

+
+

–
~

+
R
2

La
te

da
ta

m
od

eli
ng

–
–

–
–

–
–

–
–

–
R
3

Ac
ce
ss

to
ap

pr
op

ria
te

da
ta

–
–

–
~

+
+

~
+

+
R
4

Sy
nc

hr
on

ize
d
ac
ce
ss

to
sh

ar
ed

da
ta

–
+

–/
+

–
+

–
–

–
+

R
5

Re
pr
es
en

td
at
a–

dr
ive

n
ac
tio

ns
~

~
~

~
+

+
–

+
+

R
6

La
te

ac
tio

ns
m
od

eli
ng

~
+

~
–/
~

–
–

–
+

+
R
7

Fo
rm

ali
ze

ru
les

an
d
co
ns
tra

in
ts

–
–

+
+

+
+

–
–/
+

–/
+

R
8

La
te

co
ns
tra

in
ts

fo
rm

ali
za

tio
n

–
–

+
–/
~

–
–

–
–/
+

–/
+

R
9

Go
al

m
od

eli
ng

–
–

–/
+

–
–

+
–

+
+

R
10

La
te

go
al

m
od

eli
ng

–
–

~
–

–
–

–
–

–/
+

R
11

Su
pp

or
tf
or

di
ffe

re
nt

m
od

eli
ng

sty
les

–
–/
+

+
–/
~

+
+

~
~

+
R
12

Vi
sib

ili
ty

of
pr
oc
es
sk

no
wl

ed
ge

–
~

–
~

+
+

~
–

~
R
13

Fl
ex
ib
le

pr
oc
es
se

xe
cu

tio
n

–
+

–
+

+
~

+
~

~
R
14

De
al

w
ith

un
an

tic
ip
at
ed

ex
ce
pt
io
ns

–/
+

+
+

–
~

–
–

~
~

R
15

M
ig
ra
tio

n
of

pr
oc
es
si
ns
ta
nc

es
+

+
–

–/
+

–
–

+
~

+
R
16

Le
ar
ni
ng

fro
m

ev
en

tl
og

s
–/
+

–/
+

–
–/
+

–
–

+
–

–
R
17

Le
ar
ni
ng

fro
m

da
ta

so
ur
ce
s

–
–

–
–/
~

–
–

+
–

–
R
18

Kn
ow

led
ge

wo
rk
er
s’
m
od

eli
ng

+
+

+
–

+
+

–
–

–
R
19

Fo
rm

ali
ze

in
ter

ac
tio

n
be

tw
ee
n
kn

ow
led

ge
wo

rk
er
s

–
–

–
–

–
–

–
–

–
R
20

De
fin

ek
no

wl
ed

ge
wo

rk
er
s’
pr
iv
ile

ge
s

–
–

–
–

+
+

–
–

–
R
21

La
te

kn
ow

led
ge

wo
rk
er
s’
m
od

eli
ng

+
–

–
–

–
–

–
–

–
R
22

La
te

pr
iv
ile

ge
sm

od
eli

ng
–

–
–

–
–

–
–

–
–

R
23

Ca
pt
ur
ek

no
wl

ed
ge

wo
rk
er
’s
de

cis
io
ns

~
–

~
–

+
+

–
+

+
R
24

Ca
pt
ur
ea

nd
m
od

el
ex
ter

na
le

ve
nt
s

–/
+

–
+

–
–

+
–

+
+

R
25

Ex
ter

na
le

ve
nt
sl
at
em

od
eli

ng
–

–
–

–
–

–
–

+
+

148

9.2 Wickr for Data-Centric Processes

9.2 Wickr for Data-Centric Processes

Wickr’s primary concern are knowledge-intensive processes. There-
fore, it combines data models and process models in one case model.
And while it is not fully data-centric, Wickr includes many features
of data-centric process models. In this chapter, we evaluate how well
Wickr is suited for data-centric processes, which are not necessarily
knowledge-intensive. We use the results to compareWickr against data-
centric process modeling approaches. Therefore, we use the DALEC
framework [147], which defines criteria for the design, implementation
and execution, diagnosis and optimization, and tooling for data-centric
processes. We use the results to compareWickr against PHILharmon-
icFlows [66] andGSM [60], twowell-known and thoroughly researched
data-centric process modeling approaches.

9.2.1 Design

During design, process and case models are created and subsequently
used, e.g., for verification and validation. Data-centric process mod-
els must describe processes, data, and their relationship. Therefore,
DALEC defines multiple criteria concerned with design-time:

D1 Modeling language: Which modeling languages are used?

D2 Specification of data representation constructs: Is it possible to
model data? Is the specification formalized?

D3 Specification of behavior: Can the data behavior be specified? Is
the specification formalized?

D4 Specification of interactions: Can the interactions among data en-
tities be specified? Is the specification formalized?

D5 Process granularity: Can the process be specified on different gran-
ularity levels? If yes, are the levels enforced or recommended?

D6 Support for model verification: Are there properties that can be
verified? Are they formally defined?

D7 Support of model validation: Is there support for process valida-
tion? If there is support, is validation automated?

D8 Specification of data access permissions: Can the access to data
be restricted? Is it possible on the attribute level?

D9 Support for variants: Are variants supported? If yes, are they sup-
ported for both the process and the data model?

Wickr uses multiple modeling languages (D1). BPMN for process
fragments. UML for domain models, which include data classes (data
representation constructs) and which are formally specified. Therefore,
Wickr fully satisfiesD2. For each class,Wickr defines the object behavior
through (formal) state transition systems (D3). Interactions among

149

9 Conceptual Evaluation

objects are captured by associations in the domain model and realized
through activities in the process fragment (D4). However, the model
has no granularity levels (D5). A solution to this gapmay be landscapes
for case models, which provide an abstract view [142]. Furthermore,
data access permissions are defined by input and output sets on the level
of activities but not for users/roles. D8 is therefore partially fulfilled.
Variants are limited to alternative fragments (D9).

Case models can be verified structurally and behaviorally. Struc-
tural verification is fully automated. Behavioral verification is semi-
automated because the model must be adapted manually for model
checking. All in all,Wickr meetsD6. However, it provides no explicit
support for validation (D7).

9.2.2 Implementation and Execution

Processes that have been modeled can be implemented to be executed.
The behavior of data-centric processes is data-driven. Therefore, it is
important that the semantics of the process, data, and their combination
are clearly defined. Furthermore, data-centric constructs, such as batch
processing, should be supported. DALEC captures these by a set of
requirements regarding the language and its tool support:

D10 Data-driven enactment: Can process-relevant data be viewed
during execution? Is the state and sate progression captured as
data? Is data mandatory for every process?

D11 Operational semantics for behavior: Is the execution semantics
clearly defined?

D12 Operational semantics for interactions: Is the semantics of links
clearly defined?

D13 Support for ad hoc changes and verification: Can the process
model be changed at runtime? If yes, can these changes be veri-
fied?

D14 Support for monitoring: Can the process and its data be moni-
tored?

D15 Batch execution: Can data be processed in batches?

D16 Support of error handling: Can unanticipated errors be handled?

D17 Support for versioning: Is versioning of the data and process
models supported?

Wickr is data-driven (D10). Knowledge workers execute activities,
during which they read and write data objects. Thereby, the state,
consisting of all data objects and running fragment instances, evolves.
Furthermore, there is no case without data because at least the case ob-
ject must be instantiated. This is clearly defined by the formal execution
semantics (D11).

150

9.2 Wickr for Data-Centric Processes

During execution, links between objects are created and considered
(D12): If an object is created in the context of other objects, links are
created according to the associations in the domain model. If multiple
objects are read, they must be linked. Wickr uses links furthermore for
batch processing (D15).
Knowledge workers may also deviate from the predefined process.

Therefore, they can extend the fragments and the object behaviors.
With additional verification steps, it is even possible to change existing
parts or to extend the domain model—the current state, however, must
remain valid. Therefore, D13 is satisfied.
The current tooling does not support monitoring (D14), error han-

dling (D16), and versioning (D17). However, we consider monitoring
and versioning limitations of the tools rather than the approach.

9.2.3 Diagnosis and Optimization

Ideally, processes are continually improved. The improvement mani-
fests in a newmodel, and existing instancesmay need to bemigrated. In
data-centric processes, this improvement may apply to the data model:

D18 Data representation construct evolution: Can individual classes
be changed? Can existing objects be migrated?

D19 Behavior schema evolution: Can the object behavior evolve and
instances be migrated?

D20 Interaction schema evolution: Can new classes be added? Can
associations be changed or added?

As described before, case models can be changed, and existing instances
can be migrated. However, we have not considered changes to classes
(D18). The object behavior can be extended, though. In this case,
existing instances can be migrated (D19). Changes to the domain
model often violate state compliance and must be considered carefully
(D20). RequirementsD18, D20 are therefore not supported.

9.2.4 Tool Implementation and Practical Cases

Tool support is crucial for the success and usability of a process mod-
eling approach. At design-time, tools support the creation of correct
models; at runtime, models are interpreted by engines, and process in-
stances are monitored. Furthermore, real-world use cases are important
to evaluate the approach. Respectively, DALEC defines the following:

D21 Design: Is there a GUI-based modeling tool? Does it support the
full language?

D22 Implementation and execution: Is there an implementation cap-
turing the full semantics?

D23 Diagnosis and optimization: Can the process be monitored? If
yes, does the monitoring tool provide real-time insights?

151

9 Conceptual Evaluation

D24 Practical examples: Has the approach been used in real world
use-cases?

In the previous chapter, we presented proof-of-concept implemen-
tations for Wickr, including tools for design (D21), verification, and
execution (D22). All tools are publicly available under open-source li-
censes. However, instead of developing our tools from scratch, we reuse
existing ones, most prominently CPNTools [56]. So far, no monitoring
is implemented, but CPNTools’ capabilities1 can be used. Finally, case
models for various domains have been created usingWickr. However,
it has not been applied in real-world use cases, but fCM has been used
for the SMILE Project [162] in the logistics domain.

9.2.5 Wickr vs. Data-Centric Approaches

We use DALEC to compareWickrwith the artifact-centric GSM [60] and
the object-centric PHILharmonicFlows [66] (see Table 9.2), which are
the most cited approaches in their respective category [147]. Therefore,
we take the results from the DALEC publication [147]. Wickr—although
not designed as a purely data-centric approach—can compete, as shown
by the following discussion.

Wickr casemodels can represent almost all the data-related constructs
present in PHILharmonicFlows and even more than GSM. However,
Wickr lacks different granularity levels (D5) and permissions (D9)—
two requirements which are satisfied by PHILharmonicFlows. Wickr
and PHILharmonicFlows models can be verified, which GSM models,
according to DALEC [147], cannot. All three approaches cannot be
validated automatically and do not support variants.

During execution, Wickr features runtime adaptability (D13), which
the other approaches do not. Furthermore, neither PHILharmonicFlows
nor GSM support batch processing (D16), which Wickr does. How-
ever, PHILharmonicFlows has full support for evolving the behavioral
schema and migrating instances (D19), whereWickr offers partial or
no support. None of the approaches allows changes to the classes and
the interaction schemata.
Tool support (D21–D24) is similar for all three approaches. All ap-

proaches offer tools for design and execution, but not for diagnosis and
optimization. Yet, while tools for PHILharmonicFlows [85, 125, 126]
have been presented in various papers, they are not publicly available.
Wickr’s tools are publicly available under open-source licenses.

Wickr combines the data-centric and activity-centric paradigms. The
evaluation shows Wickr’s feasibility for data-centric process model-
ing: Compared to GSM and PHILharmonicFlows, Wickr does not sup-
port the full-spectrum of data-centric aspects, but it integrates activity-
centric fragments and data. Runtime adaptability and a clear depiction
of dependencies among fragments areWickr’s strengths. Yet again, each
approach has merits and demerits that need to be considered carefully
when choosing a language.
1http://cpntools.org/2018/01/12/monitors/ (2021/11/06)

152

http://cpntools.org/2018/01/12/monitors/

9.2 Wickr for Data-Centric Processes

Ta
bl
e9

.2:
Co

m
pa

ris
on

of
GS

M
,P

H
IL
ha

rm
on

icF
low

s,
an

d
W
ick

ru
sin

gt
he

DA
LE

C
fra

m
ew

or
kf

or
da

ta
-ce

nt
ric

pr
oc
es
sm

an
ag

em
en

t.
No

.
Cr

ite
rio

n
GS

M
PH

IL
ha

rm
on

icF
low

s
W
ick

r
D1

M
od

eli
ng

lan
gu

ag
e

GS
M

Cu
sto

m
BP

M
N
/U

M
L/

Cu
sto

m
D2

Sp
ec
ifi
ca
tio

n
of

DR
Cs

+
+

+
D3

Sp
ec
ifi
ca
tio

n
of

be
ha

vi
or

+
+

+
D4

Sp
ec
ifi
ca
tio

n
of

in
ter

ac
tio

ns
+

+
+

D5
Su

pp
or
tf
or

pr
oc
es
sg

ra
nu

lar
ity

-
+

-
D6

Su
pp

or
tf
or

m
od

el
ve

rifi
ca
tio

n
-

+
+

D7
Su

pp
or
tf
or

m
od

el
va

lid
at
io
n

-
-

-
D8

Sp
ec
ifi
ca
tio

n
of

da
ta

ac
ce
ss

pe
rm

iss
io
ns

(r
ea
d/

w
rit

e)
-

+
~

D9
Su

pp
or
tf
or

va
ria

nt
s

-
-

~
D1

0
Da

ta
-d
riv

en
en

ac
tm

en
t

+
+

+
D1

1
Op

er
at
io
na

ls
em

an
tic

sf
or

be
ha

vi
or

+
+

+
D1

2
Op

er
at
io
na

lS
em

an
tic

sf
or

in
ter

ac
tio

ns
+

+
+

D1
3

Su
pp

or
tf
or

ad
ho

cc
ha

ng
es

an
d
ve

rifi
ca
tio

n
-

-
+

D1
4

Su
pp

or
tf
or

m
on

ito
rin

g
-

-
-

D1
5

Ba
tch

ex
ec
ut
io
n

-
~

+
D1

6
Su

pp
or
tf
or

er
ro
rh

an
dl
in
g

-
-

-
D1

7
Su

pp
or
tf
or

ve
rs
io
ni
ng

-
-

-
D1

8
DR

C
sc
he

m
ae

vo
lu
tio

n
-

~
–

D1
9

Be
ha

vi
or

sc
he

m
ae

vo
lu
tio

n
-

+
~

D2
0

In
ter

ac
tio

n
sc
he

m
ae

vo
lu
tio

n
-

~
–

D2
1

De
sig

n
+

+
+

D2
2

Im
pl
em

en
ta
tio

n
an

d
ex
ec
ut
io
n

+
+

+
D2

3
Di

ag
no

sis
an

d
op

tim
iza

tio
n

-
-

-
D2

4
Pr
ac
tic

al
ex
am

pl
es

Fi
na

nc
e

M
ed

ica
l/H

R
Lo

gi
sti

cs
(fC

M
)

153

9 Conceptual Evaluation

9.3 Transferring Insights to BPMN & CMMN

BPMN is established as the de facto standard for processmodeling [107].
However, a lack of flexibility and runtime adaptation hinders BPMN’s
use for knowledge-intensive processes [82]. The CMMN standard is
the OMG’s case management standard, which is designed for flexible
and knowledge-intensive processes. However, CMMN is not yet used
widely in industry.

We presented a semantics for Wickr that combines flexible processes
and data. However, insights gained during our work on Wickr also
apply to other approaches, i.e., BPMN and CMMN.

9.3.1 Domain Models and BPMN

BPMN [92] is a language for fully defined and highly structured busi-
ness processes. It defines the order of activities through control flow
and supports data objects and data flow. Activities have input sets,
output sets, and an input-output-set relation to refine which data is
read and written, but no data model is defined. Furthermore, data
in most process instances is limited to one object for each class. An
exception is collection data objects, which comprise multiple objects,
but their semantics are not further defined.
While similar in their constitution, a BPMN process can be more

complex than a Wickr fragment. BPMN supports additional constructs,
such as, parallel and inclusive gateways, loops, and subprocesses. From
a data perspective, loops and multi-instance subprocesses are partic-
ularly interesting: If repeated, an activity may create multiple objects
of the same class. However, BPMN is incapable of handling this sit-
uation properly. It does not define bounds, nor does BPMN specify
how data objects are selected. However, all objects of one class can be
subsumed in a collection data object, which allows parallel or sequential
processing through multi-instance activities and subprocesses.

Figure 9.1 shows a BPMN model for the claim handling process.
The claim is received, then assessed. For claims with a regular risk,
one internal review is created. For claims with a high risk, one or
multiple external reviews are gathered. A subprocess encapsulates the
process for requesting and receiving external reviews. It can be executed
multiple times concurrently and produces a collection of reviews. Based
on the reviews, the claim is approved or declined.

Figure 9.2 depicts the subprocess. First, a review is requested. After-
wards, the review is either received within one week, or a reminder is
sent, or the review is canceled. Multiple reminders may be sent if the
reviewer misses the deadlines repeatedly.
Similar toWickr, a data model with classes, associations, and multi-

plicity constraints can refine the semantics of BPMNmodels with loops
and multi-instance subprocesses/activities. First, the activities seman-
tics must be adapted so that they create links as they do in Wickr. Then,
multiplicity constraints translate to upper and lower bounds for loops,
multi-instance subprocesses/activities, and collection data objects. The

154

9.3 Transferring Insights to BPMN & CMMN

claim
received

assess
risk

create
internal
review

gather
external
reviewes

decide
on claim

Claim

Claim

Risk

Risk

Review

Review Decision

Decision

[received] [regular]

Claim

[assessed] [created] [rejected]

[accepted]

[created][assessed]

[high]

decision
made

Figure 9.1: BPMN claim handling process, where external reviews are
separated into a multi-instance subprocess.

request
review

send
reminder

cancel
review

receive
review review

received

review
canceled

1 week

Reviewer
[external]

Reviewer
[external]

Review

Review

ReviewReview

Review Reminder

[required] [required]

[created]

[canceled]

[sent][required]

Claim

[assessed]

Figure 9.2: Subprocess for requesting and subsequently receiving exter-
nal reviews.

155

9 Conceptual Evaluation

links also group data objects, which refines loops/multi-instance activi-
ties that operate on multiple objects. Furthermore, traditional processes
may include cross-case data objects, which can be handled analogously
to Wickr [159]. Similar to Wickr, the refined semantics could be de-
scribed using colored Petri nets.

Risk

Claim

Decision

Review

Reviewer

Reminder

1..4

0..1
⋄ 0..1

1..1

⋄1..1
1..1

1..1
⋄ 1..4

0..4

1..1

0..1

1..1 0..2

1..1

⋄1..1
0..1

Figure 9.3: Domain model for the BPMN process models in Figures 9.1
and 9.2.

The domain model for the BPMN insurance example (Figure 9.3)
shows that each claim has at most four reviews and that for each review
there are up to two reminders. Consequently, at most four instances
of the subprocess can be executed, and if a reviewer does not meet the
deadline after receiving two reminders, the review is canceled.
In conclusion, a domain model can refine the behavior of a BPMN

process model. It may define implicit bounds for multi-instance activi-
ties, subprocesses, and loops. In this regard, we can reuse ideas from
Wickr. However, this applies mostly to processes with some flexibil-
ity. If the process model supports only a few variants (i.e., no loops,
no multi-instance activities or subprocesses), domain models may not
refine the process behavior.

9.3.2 Domain Models and CMMN

CMMN [115] is a case management approach favoring flexibility over
imperative processes. Activities are arranged into stages. Each stage
and each activity may have entry and exit criteria. They can define both
events that need to occur and conditions that need to be satisfied to start
or to end the respective element. Furthermore, activities and stages
may have rules describing additional behavioral properties. These rules
include the following:
RequiredRule If the rule evaluates to true, the element must be com-

pleted. It is marked by a “!”
RepetitionRule If the rule evaluates to true, the element may be re-

peated. It is marked by a “#”.

156

9.3 Transferring Insights to BPMN & CMMN

Each case includes a case file that consists of one or multiple case file
items. These items represent case-relevant data. Case file items can be
inputs and outputs of activities. Furthermore, they may be accessed
to evaluate rules and conditions. An information model describes the
structure of the case file. However, the nature of the information model
is not specified: “The structure, as well as the ‘language’ (or format)
to define the structure, is defined by the associated CaseFileItemDefi-
nition” [115, p. 22]. Here, we investigate the case that this definition
refers to a domain model with global and goal multiplicity constraints.
Therefore, we reuse the model in Figure 9.3.

By combining a CMMNmodel with aWickr domain model, we can
infer rules and criteria of the case model from the data structure: Exit
criteria should include clauses that prevent global multiplicity con-
straints from being violated. Activities must be repeated until goal
multiplicity constraints are satisfied (RepetitionRule).

Claim Handling

Assessment Reviewing

External Reviewing

Update

assess
comple-
teness

assess
risk

receive
update

request
update

create
internal
review

request
review

cancel
review

receive
review

send
reminder

decide
on claim

Figure 9.4: CMMNmodel for handling insurance claims.

Based on the domain model in Figure 9.3, we create the CMMN in
Figure 9.4. On the top-level are two stages, “Assessment” and “Review-
ing,” and one activitiy, “decide on claim.” Although connectors have
no semantics [115, p. 124], we use them to indicate the general flow of a
case: First, a case is assessed, then it is reviewed. Afterwards a decision
is made, and if necessary, reviewing is repeated before the decision
is remade. The input and outputs of the activities are equal to their
counterpart in the BPMNmodel (Figures 9.1 and 9.2), and the creation
of links works as it does in Wickr.
Some entry and exit criteria as well as the RepetitionRules and Re-

quiredRules are directly related to the domain model. Criteria can have
“on parts,” which are required events, and “if parts,” which are condi-

157

9 Conceptual Evaluation

tions [115, p. 32]. The entry criterion of stage “Update” is defined as
follows:

On Part “assess completeness” completed

If Part claim.state=incomplete

The stage’s RepetitionRule is the same as the “if part,” so that the
“Update” stage can be repeated as long as the claim is incomplete. The
same holds for activity “assess completeness.” If we look at the “if
part” of the exist criterion of stage “Assessment,” we see that the goal
multiplicity for the risk is reflected: The claim must be linked to a risk:

claim.risk ̸= NULL ∧ claim.state = complete

After stage “Assessment” is completed, the first instance of stage
“Reviewing” is started. Its elements are instantiated. Activity “create
internal review” can be executed once, and stage “External Reviewing”
can be executed repeatedly. Within the stage, “request review” must be
executed; “send reminder” may be executed multiple times but at most
twice (the global multiplicity constraint is used in the RepetitionRule);
and either “cancel review” or “receive review” is executed to close
the stage. As soon as one review exists (goal multiplicity constraint),
the “Reviewing” stage can be terminated manually. This is specified
by the “if part” of the corresponding exit criterion. Next, decide on
claim can be executed. If no decision is created and if less than three
reviews exist (global multiplicity constraint), stage “Reviewing” can
be re-instantiated (second entry criterion of stage “Reviewing”). After
termination, the decision is triggered again. Eventually, reviews have
been created; a decision has been made; and the case can be closed.
We described how multiplicity constraints of a domain model are

used in rules and criteria of CMMN case models. In contrast to BPMN,
rules in CMMN may already operate on the links and multiplicities of
data objects. If so, a domain model may contain redundant information,
and consistency checks are important. These can be performed on a
joint semantics. Alternatively, multiplicity constraints may not be con-
sidered in the CMMN model, then the domain model offers additional
information which refine the case behavior. Therefore, a joint semantics
is also required. As described in this section, Wickr’s semantics may
be a starting point for developing such a semantics for CMMN, i.e., by
inferring additional rules from the domain model.

In conclusion,Wickr combines data and process modeling to support
flexible business processes. Therefore, it is suited for both knowledge-
intensive and data-driven processes. Wickr shows that the domain
model can be used to constrain the process behavior. Yet, this does
not only apply to Wickr: Highly structured process models, i.e., us-
ing BPMN, and other case management approach, i.e., CMMN, can
benefit from the integration of a data model as well. Associations and
multiplicity constraints can limit the processes’ flexibility effectively.

158

10 Conclusion

Information systems gather, manage, and provide access to data. Often,
they do this with regard to business processes, which include activi-
ties that read, create, and update data, and whose ordering is partly
controlled by data. For both data and processes, models can act as spec-
ifications used for implementing and configuring information systems.
Yet, process and data models are often handled separately, and many
processes make strong assumptions about data: It is local to one process
instance, and each data class is instantiated at most once per process
instance. However, many processes violate these assumptions.

For example, knowledge-intensive processes, which are data-driven.
They require a tight integration of process behavior and data. For this
reason, we provide a joint description that shows how data is created by
the process, and how the process is constrained by data. Furthermore,
defining formal semantics of such a joint model enables us to verify
and enact it. Henceforth, we can detect inconsistencies between data
models and process models, and we can execute the processes while
adhering to the data model.

10.1 Summary of the Contribution

We presented a novel case management approach which is calledWickr.
It is based on fCM and combines flexible process models with data mod-
els. In detail, a Wickr case model consists of (i) a set of activity-centric
process fragments; (ii) a domain model with classes, associations, and
multiplicity constraints; (iii) a set of state transition systems including
one system for each class; and (iv) a goal specification consisting of a
data condition and a separate set of multiplicity constraints.
Wickr’s semantics integrate data into the process. Fragments can be

instantiated repeatedly and combined dynamically to execute one of
many possible variants. However, data constrains this composition:
Activities create and link data objects but must not violate multiplicity
constraints. Activities also update data objects but must adhere to the
corresponding object behavior. We formally specified Wickr’s execution
semantics by translating case models to colored Petri nets.
Wickr also supports sharing data among processes. So called cross-

case data objects can be accessed by multiple cases concurrently. They
can be used for inter-case communication and synchronization, but
constraints must still be upheld. Furthermore, cross-case data objects
may be correlated to cases.
In summary, we contributed a case management approach with a

joint semantics for data and processes.

159

10 Conclusion

• Activities create, read, update, and link data objects.
• The case model is multi-variant and potentially highly concurrent.
• Despite the flexibility, the semantics assert compliance with the

domain model and object behaviors.
• Fragment instances memorize data objects they access to assert

consistent data access.
• Data can be in the scope of a single case or be shared among cases.
• The formal semantics can describe multiple concurrent cases of

the same and different case models.
With this semantics,Wickr satisfies many requirements for modeling
knowledge-intensive and data-centric processes. The semantics de-
scribes how the data model is instantiated by a process, and how the
process behavior is constrained by the datamodel. Therefore, it answers
both of our research questions.

Wickr’s formal semantics can be used for different tasks. We explored
some applications through conceptual work and in prototypes:

• We defined structural consistency criteria forWickr case models.
• We applied model checking for verifying behavioral properties.
• We implemented an engine to assist knowledge-workers.
• We presented a framework for goal modeling and planning.

10.2 Limitations and Future Work

The focus of this thesis is on a joint semantics for flexible processes
and data. Therefore,Wickr integrates activity-centric process fragments
with a data model and object behaviors. Their combined semantics is
described in a single colored Petri net. Yet, our work has limitations
and opens opportunities for future work.

Conceptually, Wickr makes multiple assumptions and only supports
a limited set of modeling elements. Furthermore, we only proposed
tools to support the design and verification as well as the enactment
phase of the BPM lifecycle. Lifting assumptions, extending Wickr, and
improving its tooling are directions for future work. Finally, Wickr
should be evaluated with users and real-world use cases. These studies
can help to improve Wickr’s understandability.

10.2.1 Conceptual Extensions

Case models are conceptual models of knowledge-intensive processes.
Yet, not all concepts that may be used to describe data or processes
are supported by Wickr. Hence, the domain model, fragments, and
object behaviors can be extended to capture the domain in more detail.
Subsequently, the semantics would need to be adapted.

160

10.2 Limitations and Future Work

Domain Model. Currently, domain models are limited to classes that
are connected by binary, existential, one-to-one and one-to-many as-
sociations. Yet, languages, such as UML [123] and OntoUML [100],
support more: n-ary, many-to-many associations; special associations,
such as composition and aggregation; inheritance and class hierarchies;
and much more. In future work, the relationship of such data modeling
constructs and case behavior may be investigated.
Inheritance can be used for subtyping [123]: A subclass specializes

its super-class.1 The subclass inherits all attributes and associations
but may define additional ones. Furthermore, the object behavior is
inherited but can be refined as well. In the fragments, activities that
operate on the super-class may also operate on any of its subclasses.
However, when an object is created, it is not that clear which class gets
instantiated. It may be required to explicitly define the class, e.g., if the
super-class is specified, then the object is an instance of that class and
none of its subclasses. Alternatively, the knowledge worker can choose
from the super-class and all its subclasses, or the choice is deferred to a
point at which the specific subclass matters.

Inheritance can also be non-rigid [88]. The phase pattern defines
state-specific subclasses for a super-class. The class Claim may have
the phases ReceivedClaim, CompleteClaim, IncompleteClaim, and so on.
With the phase pattern, we can model associations and multiplicity
constraints in respect to the state of data objects. A claim may have up
to three reviews, but a ReceivedClaim has none, an InReviewClaim has up
to three, and a ReviewedClaim has at least one. This must be reflected in
both the fragments because activities may not link a ReceivedClaim to a
Review, and in the object behavior because a claim must not transition
from state reviewed to received. Alternatively, phases may be extracted
from the behavior to enrich the domain model.

Currently,Wickr semantics exclude data attributes. Yet, business logic
often depends on the internal state of objects. Therefore, some approach,
e.g., PhilharmonicFlows [66], consider attributes and attribute-based
operations. In database systems, integrity constraints, such as denial
constraints, can be implemented on an attribute-level to prevent viola-
tions of business rules [108]. Such constraints affect the execution of
business processes and may be considered in future work.

Process Fragments. In the current version of Wickr, events and ex-
ceptions are not fully supported. In fCM, both have been consid-
ered [106, 153]. Both concepts are important in knowledge-intensive
processes [98]. Yet, their semantics can be challenging.

In fCM, events are implemented similarly to activities: Throwing
events send data to the process environment. Catching events are trig-
gered by the environment andmay introduce data to the case. However,
in Wickr the new data may be linked to existing objects. In this case,
incoming events must be correlated to existing objects: A review that

1To keep the discussion of inheritance brief, we do not consider multi-inheritance.

161

10 Conclusion

is received must be correlated to the corresponding assignment and
reviewer. Furthermore, multiplicity constraints should not be violated.
Events that cause a violation may be ignored. However, this naive

approach contradicts the nature of events: An event is a relevant hap-
pening, and a process has to react to it. If a reviewer sends two reviews,
it may be wrong to ignore the second one. Instead, such an event may
be treated as an exception that leads to an inconsistent state. When it
occurs, it must be handled, and the process must recover. The SmartPM
approach [102, 121] uses automated planning techniques to propose
actions to the knowledge workers that ultimately lead to a consistent
state. A similar approach may be developed for Wickr.

Knowledge Workers. Knowledge-intensive processes are human-cent-
ered. Knowledge workers execute activities, make decisions, and plan
future actions. However, Wickr does not model knowledge workers.
Future extensions should include modeling knowledge workers.

It is important to capture knowledgeworker’s data access permissions.
It is important to model what roles may execute an activity—some
activities may even need collaboration. We may model delegation,
supervision, and other advanced concepts. However,Wickr currently
lacks the respective concepts.

10.2.2 Application & Tooling

Critical for using and adopting modeling languages are tools. They
assist users during all phases of the BPM lifecycle, from creating and an-
alyzing models, to executing cases, and analyzing the past. We provide
some prototypes for Wickr, but they are neither mature nor complete.
An integrated modeling environment can support the creation of

correct case models. It has knowledge about all parts of the case model
and the relationships among them. Structural consistency criteria are
checked, suggestions to fix violations are made. If an activity models
a state transition missing in the object behavior, the tool may propose
to add it. And, a simulator (token play) and a model checker may be
integrated to further aid validation and verification [152].
Behavioral verification of Wickr models is, in general, undecidable.

Yet, a special class of state-bounded case models can be verified, but
verification is still computationally expensive. In future work, state
space reduction techniques, efficient encoding, and heuristics may be
introduced to analyze complex models more efficiently.

At runtime, cases are executed, but the model can still be adapted. In
the future, an execution engine and the modeling environment should
be integrated to allow quick and easy adaptation. Also, cases need to
be migrated and verified. As explained, adding fragments or extending
the object behavior allows migration of all instances. Furthermore,
the tool for goal modeling and planning should become part of the
engine. Goals are modeled ad hoc, and knowledge workers should be
supported with making decisions in line with their goals.

162

10.3 Final Remarks

There are, surely, more applications to be explored. Wickr has not yet
been used for process mining. Yet, flexible and data-centric behavior is
a topic of interest to the process mining community [120, 132, 150, 154].
A connection may be built in the future.

10.2.3 Case Studies & Usability

We focus on Wickr’s semantics and not on the usability and compre-
hensibility of case models. A Wickr model contains hidden depen-
dencies, which lead to cognitive load and make models harder to un-
derstand [12]. However, as a case modeling approach, one ofWickr’s
goals is bridging the business-IT gap—comprehensibility is essential.
To improve the understandability, future work may change the visual
modeling language and the tooling that is based on it.
Wickr case models contain details about the case behavior and the

involved data. Future user studies can explore, which aspects of the
case model are relevant to users in different roles. A business user may
not be as interested in multiplicity constraints as a software developer.
In the context of fCM, research has been conducted on case model

elicitation [161] and landscapemodels [142]. Hewelt et al. [161] explore
methods for eliciting case models starting with the goal, the object life
cycles, or the fragments and found differences between them. Further-
more, [142] presents landscape models that aim at providing a broad
overview of a given case model. The applicability of these approaches
to Wickr needs to be investigated.
Similarly,Wickr should be evaluated with real-world use cases. Pos-

sible research question can address the feasibility, perceived usability
and comprehensibility, as well as technical limitations. Are models
error-prone? Is behavioral verification feasibly? Are there requirements
that cannot be modeled? These and additional questions need to be
answered to evaluate the current approach and to direct future efforts.

10.3 Final Remarks

We presented Wickr, a modeling approach for flexible processes that
integrate data and are driven by human decisions. Hence, Wickr is
suited for knowledge-intensive processes. Wickr’s semantics describe
how associations and multiplicity constraints influence the process
execution: If the process is flexible, constraints in the data model may
play an important role during process execution.

Furthermore,Wickr allows us to check the coverability of multiplicity
constraints based on the logic defined in the process fragments. It tells
us the activities that are the root cause for existential associations. In
other words, techniques used in data modeling become relevant to the
process model because they can express business logic.

All in all, Wickr shows the overlap between process and data models.
The combination of both can create a synergy that helps to describe
flexible, data-centric behavior and to design respective systems.

163

Appendix

165

A Wickr is Turing Complete

Wickr is Turing-complete. Therefore, behavioral verification and plan-
ning is in general undecidable. To proof that Wickr is Turing-complete,
we show that case models can simulate a 2-counter machine, which are
known to be Turing-complete [1]. The proof is similar to the one for
data-centric dynamic systems by Montali and Calvanese [114]. The proof
shows that Wickr can model a 2-counter machine, where

• each counter can be incremented and decremented,

• we can check whether a counter is zero, and

• based on this check, we can jump to a specific instruction.

The domain model (see Figure A.1) contains three classes: the class
of the case object and one class for each counter. The case object is
associated to arbitrarily many objects of each counter.

«case object»
ProgramCounter

CounterA
1..1

CounterB
0..*0..*

1..1

Figure A.1: Domain model for simulating a 2-counter machine.

The state of the case object is used as the program counter. The
corresponding state transition systemmay allow arbitrary state changes
because the program behavior can be defined by the fragments.

Qpc = {q0, q1, . . . , qn}
bpc = (Qpc, Qpc ×Qpc)

Each of the counter classes has a behavior bcount with two states, available
and deleted. An object can only transition from state available to deleted.

bcount = ({available, deleted}, {(available, deleted)})

Since data objects and links in Wickr cannot be deleted, the current
value of the counter is the number of respective objects in state available.

A counter is incremented by created a new object of the correspond-
ing class in state available. A counter is decremented by changing the
state of a such an object from available to deleted. All these objects, are
linked to the case object. If all the objects of one counter are in state
deleted, the counter’s value is 0. Therefore, we can check whether a
counter is 0 or not by modeling an activity that requires all objects for
the counter to be in state deleted. Therefore, it reads the set of respective

167

A Wickr is Turing Complete

counter objects that are associated to the case object. However, this
check only works if there exists at least one object in state deleted. There-
fore, the start event creates an instance of the case object with a state
pointing to the first instruction, and an instance of each of the counter
class in state deleted (see Figure A.2).

program
started

Program
Counter

[q0]

do
nothing

CounterA

[deleted]

CounterB

[deleted]

Figure A.2: Initial fragment setting the program counter to q0 and the
two counters CounterA and CounterB to 0.

Program
Counter

[qi]

increment
CounterA

Program
Counter
[qi+1]

CounterA

[available]

Figure A.3: Fragment for an instruction qi incrementing CounterA.

Program
Counter

[qi]

decrement
CounterA

Program
Counter
[qi+1]

CounterA

[deleted]

CounterA

[deleted]

Figure A.4: Fragment for an instruction qi decrementing CounterA.

Each increment and decrement instruction is translated to a fragment
with a single activity (see Figures A.3 and A.4). Each check is translated
to two fragments (see Figure A.5): one checks whether the counter is
0, the other one checks whether it is unequal to 0. The two activities
can perform different changes to the state of the case object so that a
different instruction is executed next.

The termination condition should always be false to prevent an abor-
tion of the modeled program. The fragments above can be used to
construct arbitrary 2-counter-machines. Therefore, Wickr is Turing-
complete.

168

Program
Counter

[qi]

CounterA
̸=
0

Program
Counter
[qi+1]

CounterA

[available]

Program
Counter

CounterA
=
0

Program
Counter

CounterA

[deleted]

[qj][qi]

Figure A.5: Fragments for a instruction qi testing whether CounterA is
0 (go to instruction qj) or not (continue with instruction
qi+1).

169

Bibliography

[1] Marvin L. Minsky. “Recursive Unsolvability of Post’s Problem of
“Tag” and other Topics in Theory of Turing Machines”. In: Anals of
Mathematics 74.3 (Nov. 1961), pp. 437–455.

[2] Carl Adam Petri. Kommunikation mit Automaten. PhD Thesis. 1962.
[3] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973. isbn:

3-211-81106-0.
[4] Peter P. Chen. “The Entity-RelationshipModel: Toward a Unified View

of Data”. In: Proceedings of the International Conference on Very Large
Data Bases, September 22-24, 1975, Framingham, Massachusetts, USA.
Ed. by Douglas S. Kerr. ACM, 1975, p. 173. url: https://doi.org/
10.1145/1282480.1282492.

[5] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual
Symposium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977. IEEE Computer Society, 1977,
pp. 46–57. url: https://doi.org/10.1109/SFCS.1977.32.

[6] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic”.
In: Logics of Programs, Workshop, Yorktown Heights, New York, USA,
May 1981. Ed. by Dexter Kozen. Vol. 131. Lecture Notes in Computer
Science. Springer, 1981, pp. 52–71. isbn: 3-540-11212-X. url: https:
//doi.org/10.1007/BFb0025774.

[7] Heinz Oswald, Rob Esser, and R. Mattmann. “An Environment for
Specifying and Executing Hierarchical Petri Nets”. In: Proceedings of
the 12th International Conference on Software Engineering, Nice, France,
March 26-30, 1990. Ed. by François-Régis Valette, PeterA. Freeman, and
Marie-ClaudeGaudel. IEEEComputer Society, 1990, pp. 164–172. isbn:
0-8186-2026-9. url: http://dl.acm.org/citation.cfm?id=100319.

[8] W.M. Zuberek. “Timed Petri nets definitions, properties, and appli-
cations”. In:Microelectronics Reliability 31.4 (1991), pp. 627–644. issn:
0026-2714. url: https://doi.org/10.1016/0026-2714(91)90007-
T.

[9] Eike Best, Raymond R. Devillers, and Jon G. Hall. “The box calculus:
a new causal algebra with multi-label communication”. In: Advances
in Petri Nets 1992, The DEMON Project. Ed. by Grzegorz Rozenberg.
Vol. 609. Lecture Notes in Computer Science. Springer, 1992, pp. 21–69.
isbn: 3-540-55610-9. url: https://doi.org/10.1007/3-540-55610-
9_167.

[10] Amit P. Sheth and Marek Rusinkiewicz. “On Transactional Work-
flows”. In: IEEE Data Eng. Bull. 16.2 (1993), pp. 37–40. url: http:
//sites.computer.org/debull/93JUN-CD.pdf.

[11] Søren Christensen and Kjeld H. Mortensen. Design/CPN ASK-CTL
Manual. Version 0.9. 1996. url: http://cpntools.org/wp-content/
uploads/2018/01/askctlmanual.pdf.

171

https://doi.org/10.1145/1282480.1282492
https://doi.org/10.1145/1282480.1282492
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
http://dl.acm.org/citation.cfm?id=100319
https://doi.org/10.1016/0026-2714(91)90007-T
https://doi.org/10.1016/0026-2714(91)90007-T
https://doi.org/10.1007/3-540-55610-9_167
https://doi.org/10.1007/3-540-55610-9_167
http://sites.computer.org/debull/93JUN-CD.pdf
http://sites.computer.org/debull/93JUN-CD.pdf
http://cpntools.org/wp-content/uploads/2018/01/askctlmanual.pdf
http://cpntools.org/wp-content/uploads/2018/01/askctlmanual.pdf

Bibliography

[12] Thomas R. G. Green and Marian Petre. “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’ Framework”.
In: J. Vis. Lang. Comput. 7.2 (1996), pp. 131–174. url: https://doi.
org/10.1006/jvlc.1996.0009.

[13] Manfred Reichert and Peter Dadam. “A Framework for Dynamic
Changes in Workflow Management Systems”. In: Eighth Interna-
tional Workshop on Database and Expert Systems Applications, DEXA
’97, Toulouse, France, September 1-2, 1997, Proceedings. Ed. by Roland R.
Wagner. IEEE Computer Society, 1997, pp. 42–48. isbn: 0-8186-8147-0.
url: https://doi.org/10.1109/DEXA.1997.617231.

[14] Arthur H. M. ter Hofstede and Henderik Alex Proper. “How to for-
malize it?: Formalization principles for information system develop-
ment methods”. In: Inf. Softw. Technol. 40.10 (1998), pp. 519–540. url:
https://doi.org/10.1016/S0950-5849(98)00078-0.

[15] Wil MP Van Der Aalst. “Three good reasons for using a Petri-net-
based workflow management system”. In: Information and Process
Integration in Enterprises. Springer, 1998, pp. 161–182. url: https:
//doi.org/10.1007/978-1-4615-5499-8_10.

[16] Wil M. P. van der Aalst. “Formalization and verification of event-
driven process chains”. In: Inf. Softw. Technol. 41.10 (1999), pp. 639–
650. url: https://doi.org/10.1016/S0950-5849(99)00016-6.

[17] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, 1999. isbn: 978-0-262-03270-4. url: https : / /
mitpress.mit.edu/books/model-checking.

[18] Richard Hull, François Llirbat, Eric Simon, Jianwen Su, Guozhu Dong,
Bharat Kumar, and Gang Zhou. “Declarative workflows that support
easy modification and dynamic browsing”. In: Proceedings of the inter-
national joint conference on Work activities coordination and collaboration
1999, San Francisco, California, USA, February 22-25, 1999. ACM, 1999,
pp. 69–78. url: https://doi.org/10.1145/295665.295674.

[19] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cam-
bridge University Press, 1999. isbn: 978-0-521-65869-0.

[20] Margaret T. O’Hara, Richard T. Watson, and C. Bruce Kavan. “Man-
aging the three Levels of Change”. In: Inf. Syst. Manag. 16.3 (1999),
pp. 63–70. url: https://doi.org/10.1201/1078/43197.16.3.
19990601/31317.9.

[21] Karsten Schmidt. “Model-Checking with Coverability Graphs”. In:
Formal Methods Syst. Des. 15.3 (1999), pp. 239–254. url: https://doi.
org/10.1023/A:1008753219837.

[22] Frank Wolter and Michael Zakharyaschev. “Temporalizing descrip-
tion logics”. In: Frontiers of Combining Systems 2 (1999), pp. 379–402.

[23] Wil M. P. van der Aalst, Paulo Barthelmess, Clarence A. Ellis, and
Jacques Wainer. “Workflow Modeling Using Proclets”. In: Cooperative
Information Systems, 7th International Conference, CoopIS 2000, Eilat,
Israel, September 6-8, 2000, Proceedings. Ed. by Opher Etzion and Peter
Scheuermann. Vol. 1901. LectureNotes in Computer Science. Springer,
2000, pp. 198–209. isbn: 3-540-41021-X. url: https://doi.org/10.
1007/10722620_20.

[24] August-Wilhelm Scheer. ARIS—business process modeling. Springer,
2000. isbn: 978-3-642-97998-9. url: https://doi.org/10.1007/978-
3-642-97998-9.

172

https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1109/DEXA.1997.617231
https://doi.org/10.1016/S0950-5849(98)00078-0
https://doi.org/10.1007/978-1-4615-5499-8_10
https://doi.org/10.1007/978-1-4615-5499-8_10
https://doi.org/10.1016/S0950-5849(99)00016-6
https://mitpress.mit.edu/books/model-checking
https://mitpress.mit.edu/books/model-checking
https://doi.org/10.1145/295665.295674
https://doi.org/10.1201/1078/43197.16.3.19990601/31317.9
https://doi.org/10.1201/1078/43197.16.3.19990601/31317.9
https://doi.org/10.1023/A:1008753219837
https://doi.org/10.1023/A:1008753219837
https://doi.org/10.1007/10722620_20
https://doi.org/10.1007/10722620_20
https://doi.org/10.1007/978-3-642-97998-9
https://doi.org/10.1007/978-3-642-97998-9

Bibliography

[25] Karsten Schmidt. “LoLA: A Low Level Analyser”. In: Application and
Theory of Petri Nets 2000, 21st International Conference, ICATPN 2000,
Aarhus, Denmark, June 26-30, 2000, Proceeding. Ed. by Mogens Nielsen
and Dan Simpson. Vol. 1825. Lecture Notes in Computer Science.
Springer, 2000, pp. 465–474. isbn: 3-540-67693-7. url: https://doi.
org/10.1007/3-540-44988-4_27.

[26] Paul W. P. J. Grefen, Jochem Vonk, and Peter M. G. Apers. “Global
transaction support for workflow management systems: from formal
specification to practical implementation”. In: VLDB J. 10.4 (2001),
pp. 316–333. url: https://doi.org/10.1007/s007780100056.

[27] Wil M. P. van der Aalst, Lachlan Aldred, Marlon Dumas, and Arthur
H. M. ter Hofstede. “Design and Implementation of the YAWL Sys-
tem”. In: Advanced Information Systems Engineering, 16th International
Conference, CAiSE 2004, Riga, Latvia, June 7-11, 2004, Proceedings. Ed.
by Anne Persson and Janis Stirna. Vol. 3084. Lecture Notes in Com-
puter Science. Springer, 2004, pp. 142–159. isbn: 3-540-22151-4. url:
https://doi.org/10.1007/978-3-540-25975-6_12.

[28] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. “YAWL: yet
another workflow language”. In: Inf. Syst. 30.4 (2005), pp. 245–275.
url: https://doi.org/10.1016/j.is.2004.02.002.

[29] Wil M. P. van der Aalst, Mathias Weske, and Dolf Grünbauer. “Case
handling: a new paradigm for business process support”. In: Data
Knowl. Eng. 53.2 (2005), pp. 129–162. url: https://doi.org/10.
1016/j.datak.2004.07.003.

[30] Frank Puhlmann and Mathias Weske. “Using the pi-Calculus for For-
malizing Workflow Patterns”. In: Business Process Management, 3rd
International Conference, BPM 2005, Nancy, France, September 5-8, 2005,
Proceedings. Ed. byWil M. P. van der Aalst, Fabio Casati, and Francisco
Curbera. Vol. 3649. 2005, pp. 153–168. url: https://doi.org/10.
1007/11538394_11.

[31] Pasi Pyöriä. “The concept of knowledge work revisited”. In: J. Knowl.
Manag. 9.3 (2005), pp. 116–127. url: https://doi.org/10.1108/
13673270510602818.

[32] Manfred Reichert, Stefanie Rinderle, Ulrich Kreher, and Peter Dadam.
“Adaptive Process Management with ADEPT2”. In: Proceedings of
the 21st International Conference on Data Engineering, ICDE 2005, 5-8
April 2005, Tokyo, Japan. Ed. by Karl Aberer, Michael J. Franklin, and
Shojiro Nishio. IEEE Computer Society, 2005, pp. 1113–1114. isbn:
0-7695-2285-8. url: https://doi.org/10.1109/ICDE.2005.17.

[33] Wil MP Van der Aalst. “Pi calculus versus Petri nets: Let us eat
“humble pie” rather than further inflate the “Pi hype””. In: BPTrends
3.5 (2005), pp. 1–11. url: http://www.workflowpatterns.com/
documentation/documents/bptrendsPiHype.pdf.

[34] Benkt Wangler and Alexander Backlund. “Information Systems Engi-
neering:What Is It?” In:Advanced Information Systems Engineering, 17th
International Conference, CAiSE 2005, Porto, Portugal, June 13-17, 2005,
Proceedings of the CAiSE’05 Workshops, Vol. 2. Ed. by Jaelson Castro
and Ernest Teniente. FEUP Edições, Porto, 2005, pp. 427–437. isbn:
972-752-077-4. url: http://www.kybele.etsii.urjc.es/PHISE05/
papers/sesionI/WanglerBacklund.pdf.

173

https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/s007780100056
https://doi.org/10.1007/978-3-540-25975-6_12
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.datak.2004.07.003
https://doi.org/10.1016/j.datak.2004.07.003
https://doi.org/10.1007/11538394_11
https://doi.org/10.1007/11538394_11
https://doi.org/10.1108/13673270510602818
https://doi.org/10.1108/13673270510602818
https://doi.org/10.1109/ICDE.2005.17
http://www.workflowpatterns.com/documentation/documents/bptrendsPiHype.pdf
http://www.workflowpatterns.com/documentation/documents/bptrendsPiHype.pdf
http://www.kybele.etsii.urjc.es/PHISE05/papers/sesionI/WanglerBacklund.pdf
http://www.kybele.etsii.urjc.es/PHISE05/papers/sesionI/WanglerBacklund.pdf

Bibliography

[35] Peter Tabeling Andreas Knopfel Bernhard Grone. Fundamental Model-
ing Concepts: Effective Communication of IT Systems. Wiley, 2006. isbn:
978-0-470-02710-3. url: http://eu.wiley.com/WileyCDA/WileyTit
le/productCd-047002710X.html.

[36] Paul W. P. J. Grefen and Jochem Vonk. “A Taxonomy of Transactional
Workflow Support”. In: Int. J. Cooperative Inf. Syst. 15.1 (2006), pp. 87–
118. url: https://doi.org/10.1142/S021884300600130X.

[37] Kurt Jensen, Søren Christensen, and Lars M. Kristensen. CPN Tools
State Space Manual. Version 0.9. Jan. 2006. url: http://cpntools.org/
wp-content/uploads/2018/01/manual.pdf.

[38] Alan R. Hevner. “The Three Cycle View of Design Science”. In: Scand.
J. Inf. Syst. 19.2 (2007), p. 4. url: http://aisel.aisnet.org/sjis/
vol19/iss2/4.

[39] Nataliya Mulyar, Maja Pesic, Wil M. P. van der Aalst, and Mor Pe-
leg. “Declarative and Procedural Approaches for Modelling Clinical
Guidelines: Addressing Flexibility Issues”. In: Business Process Man-
agement Workshops, BPM 2007 International Workshops, BPI, BPD, CBP,
ProHealth, RefMod, semantics4ws, Brisbane, Australia, September 24, 2007,
Revised Selected Papers. Ed. by Arthur H. M. ter Hofstede, Boualem
Benatallah, and Hye-Young Paik. Vol. 4928. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 335–346. isbn: 978-3-540-78237-7.
url: https://doi.org/10.1007/978-3-540-78238-4_35.

[40] OASIS. Web Services Business Process Execution Language(WS-BPEL.
Version 2.0. Apr. 2007. url: http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html.

[41] Object Management Group. Business Process Modeling and Notation
(BPMN). Version 1.0.0. Mar. 2007. url: https://www.omg.org/spec/
BPMN/1.0.

[42] Antoni Olivé.Conceptual modeling of information systems. Springer, 2007.
url: https://doi.org/10.1007/978-3-540-39390-0.

[43] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. “DE-
CLARE: Full Support for Loosely-Structured Processes”. In: 11th IEEE
International Enterprise Distributed Object Computing Conference (EDOC
2007), 15-19 October 2007, Annapolis, Maryland, USA. IEEE Computer
Society, 2007, pp. 287–300. isbn: 0-7695-2891-0. url: https://doi.
org/10.1109/EDOC.2007.14.

[44] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008. isbn: 978-0-262-02649-9. url: https://mitpress.
mit.edu/books/principles-model-checking.

[45] Gero Decker, Hagen Overdick, and Mathias Weske. “Oryx - An Open
Modeling Platform for the BPM Community”. In: Business Process
Management, 6th International Conference, BPM2008,Milan, Italy, Septem-
ber 2-4, 2008. Proceedings. Ed. by Marlon Dumas, Manfred Reichert,
and Ming-Chien Shan. Vol. 5240. Lecture Notes in Computer Sci-
ence. Springer, 2008, pp. 382–385. isbn: 978-3-540-85757-0. url: https:
//doi.org/10.1007/978-3-540-85758-7_29.

[46] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. “Semantics
and analysis of business process models in BPMN”. In: Inf. Softw.
Technol. 50.12 (2008), pp. 1281–1294. url: https://doi.org/10.
1016/j.infsof.2008.02.006.

174

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047002710X.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047002710X.html
https://doi.org/10.1142/S021884300600130X
http://cpntools.org/wp-content/uploads/2018/01/manual.pdf
http://cpntools.org/wp-content/uploads/2018/01/manual.pdf
http://aisel.aisnet.org/sjis/vol19/iss2/4
http://aisel.aisnet.org/sjis/vol19/iss2/4
https://doi.org/10.1007/978-3-540-78238-4_35
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.omg.org/spec/BPMN/1.0
https://www.omg.org/spec/BPMN/1.0
https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1109/EDOC.2007.14
https://doi.org/10.1109/EDOC.2007.14
https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
https://doi.org/10.1007/978-3-540-85758-7_29
https://doi.org/10.1007/978-3-540-85758-7_29
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1016/j.infsof.2008.02.006

Bibliography

[47] Richard Hull. “Artifact-Centric Business Process Models: Brief Survey
of Research Results and Challenges”. In: On the Move to Meaningful
Internet Systems: OTM 2008, OTM 2008 Confederated International Con-
ferences, CoopIS, DOA, GADA, IS, and ODBASE 2008, Monterrey, Mexico,
November 9-14, 2008, Proceedings, Part II. Ed. by Robert Meersman and
Zahir Tari. Vol. 5332. Lecture Notes in Computer Science. Springer,
2008, pp. 1152–1163. url: https://doi.org/10.1007/978-3-540-
88873-4_17.

[48] Davide Prandi, Paola Quaglia, and Nicola Zannone. “Formal Analysis
of BPMN Via a Translation into COWS”. In: Coordination Models and
Languages, 10th International Conference, COORDINATION 2008, Oslo,
Norway, June 4-6, 2008. Proceedings. Ed. by Doug Lea and Gianluigi
Zavattaro. Vol. 5052. Lecture Notes in Computer Science. Springer,
2008, pp. 249–263. isbn: 978-3-540-68264-6. url: https://doi.org/10.
1007/978-3-540-68265-3_16.

[49] Tsukasa Takemura. “Formal Semantics and Verification of BPMN
Transaction and Compensation”. In: Proceedings of the 3rd IEEE Asia-
Pacific Services Computing Conference, APSCC 2008, Yilan, Taiwan, 9-12
December 2008. IEEE Computer Society, 2008, pp. 284–290. isbn: 978-0-
7695-3473-2. url: https://doi.org/10.1109/APSCC.2008.208.

[50] Peter Y. H. Wong and Jeremy Gibbons. “A Process Semantics for
BPMN”. In: Formal Methods and Software Engineering, 10th International
Conference on Formal EngineeringMethods, ICFEM 2008, Kitakyushu-City,
Japan, October 27-31, 2008. Proceedings. Ed. by Shaoying Liu, T. S. E.
Maibaum, and Keijiro Araki. Vol. 5256. Lecture Notes in Computer
Science. Springer, 2008, pp. 355–374. isbn: 978-3-540-88193-3. url: htt
ps://doi.org/10.1007/978-3-540-88194-0_22.

[51] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. “Declar-
ative workflows: Balancing between flexibility and support”. In: Com-
put. Sci. Res. Dev. 23.2 (2009), pp. 99–113. url: https://doi.org/10.
1007/s00450-009-0057-9.

[52] Ahmed Awad, Matthias Weidlich, and Mathias Weske. “Specification,
Verification and Explanation of Violation for Data Aware Compliance
Rules”. In: Service-Oriented Computing, 7th International Joint Conference,
ICSOC-ServiceWave 2009, Stockholm, Sweden, November 24-27, 2009.
Proceedings. Ed. by Luciano Baresi, Chi-Hung Chi, and Jun Suzuki.
Vol. 5900. Lecture Notes in Computer Science. 2009, pp. 500–515. isbn:
978-3-642-10382-7. url: https://doi.org/10.1007/978-3-642-
10383-4_37.

[53] BPTrends. Case Management: Combining Knowledge With Process. July
2009. url: https://www.bptrends.com/case-management-combini
ng-knowledge-with-process/.

[54] David Cohn and Richard Hull. “Business Artifacts: A Data-centric
Approach to Modeling Business Operations and Processes”. In: IEEE
Data Eng. Bull. 32.3 (2009), pp. 3–9. url: http://sites.computer.
org/debull/A09sept/david.pdf.

[55] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo A. Reijers, Barbara
Weber, Matthias Weidlich, and Stefan Zugal. “Declarative versus Im-
perative Process Modeling Languages: The Issue of Understandabil-
ity”. In: Enterprise, Business-Process and Information Systems Modeling,
10th International Workshop, BPMDS 2009, and 14th International Confer-
ence, EMMSAD 2009, held at CAiSE 2009, Amsterdam, The Netherlands,

175

https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-68265-3_16
https://doi.org/10.1007/978-3-540-68265-3_16
https://doi.org/10.1109/APSCC.2008.208
https://doi.org/10.1007/978-3-540-88194-0_22
https://doi.org/10.1007/978-3-540-88194-0_22
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1007/978-3-642-10383-4_37
https://doi.org/10.1007/978-3-642-10383-4_37
https://www.bptrends.com/case-management-combining-knowledge-with-process/
https://www.bptrends.com/case-management-combining-knowledge-with-process/
http://sites.computer.org/debull/A09sept/david.pdf
http://sites.computer.org/debull/A09sept/david.pdf

Bibliography

June 8-9, 2009. Proceedings. Ed. by Terry A. Halpin, John Krogstie,
SelminNurcan, Erik Proper, Rainer Schmidt, Pnina Soffer, and Roland
Ukor. Vol. 29. Lecture Notes in Business Information Processing.
Springer, 2009, pp. 353–366. isbn: 978-3-642-01861-9. url: https://
doi.org/10.1007/978-3-642-01862-6_29.

[56] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Mod-
elling and Validation of Concurrent Systems. Springer, 2009. isbn: 978-3-
642-00283-0. url: https://doi.org/10.1007/b95112.

[57] Daniel L. Moody. “The “Physics” of Notations: Toward a Scientific
Basis for Constructing Visual Notations in Software Engineering”.
In: IEEE Trans. Software Eng. 35.6 (2009), pp. 756–779. url: https:
//doi.org/10.1109/TSE.2009.67.

[58] RemcoM.Dijkman andPieter VanGorp. “BPMN2.0 Execution Seman-
tics Formalized as Graph Rewrite Rules”. In: Business Process Modeling
Notation - Second International Workshop, BPMN 2010, Potsdam, Ger-
many, October 13-14, 2010. Proceedings. Ed. by Jan Mendling, Matthias
Weidlich, andMathias Weske. Vol. 67. Lecture Notes in Business Infor-
mation Processing. Springer, 2010, pp. 16–30. isbn: 978-3-642-16297-8.
url: https://doi.org/10.1007/978-3-642-16298-5_4.

[59] Thomas T. Hildebrandt and Raghava Rao Mukkamala. “Declarative
Event-Based Workflow as Distributed Dynamic Condition Response
Graphs”. In: Proceedings Third Workshop on Programming Language
Approaches to Concurrency and communication-cEntric Software, PLACES
2010, Paphos, Cyprus, 21st March 2010. Ed. by Kohei Honda and Alan
Mycroft. Vol. 69. EPTCS. 2010, pp. 59–73. url: https://doi.org/10.
4204/EPTCS.69.5.

[60] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta,
Fenno F. Terry Heath III, Stacy Hobson, Mark H. Linehan, Sridhar
Maradugu, Anil Nigam, Piyawadee Sukaviriya, and Roman Vaculín.
“Introducing the Guard-Stage-Milestone Approach for Specifying
Business Entity Lifecycles”. In:Web Services and Formal Methods - 7th
InternationalWorkshop,WS-FM2010, Hoboken, NJ, USA, September 16-17,
2010. Revised Selected Papers. Ed. by Mario Bravetti and Tevfik Bultan.
Vol. 6551. Lecture Notes in Computer Science. Springer, 2010, pp. 1–24.
url: https://doi.org/10.1007/978-3-642-19589-1_1.

[61] David Knuplesch, Linh Thao Ly, Stefanie Rinderle-Ma, Holger Pfeifer,
and Peter Dadam. “On Enabling Data-Aware Compliance Checking
of Business Process Models”. In: Conceptual Modeling - ER 2010, 29th
International Conference on Conceptual Modeling, Vancouver, BC, Canada,
November 1-4, 2010. Proceedings. Ed. by Jeffrey Parsons, Motoshi Saeki,
Peretz Shoval, Carson C. Woo, and Yair Wand. Vol. 6412. Lecture
Notes in Computer Science. Springer, 2010, pp. 332–346. isbn: 978-3-
642-16372-2. url: https://doi.org/10.1007/978-3-642-16373-
9_24.

[62] Stefanie Rinderle-Ma and Manfred Reichert. “Advanced Migration
Strategies for Adaptive Process Management Systems”. In: 12th IEEE
Conference on Commerce and Enterprise Computing, CEC 2010, Shang-
hai, China, November 10-12, 2010. Ed. by Kuo-Ming Chao, Christian
Huemer, Birgit Hofreiter, Yinsheng Li, and Nazaraf Shah. IEEE Com-
puter Society, 2010, pp. 56–63. isbn: 978-1-4244-8433-1. url: https:
//doi.org/10.1109/CEC.2010.18.

176

https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/b95112
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1007/978-3-642-16298-5_4
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-16373-9_24
https://doi.org/10.1007/978-3-642-16373-9_24
https://doi.org/10.1109/CEC.2010.18
https://doi.org/10.1109/CEC.2010.18

Bibliography

[63] WilliamN. Robinson andYi Ding. “A survey of customization support
in agent-based business process simulation tools”. In: ACM Trans.
Model. Comput. Simul. 20.3 (2010), 14:1–14:29. url: https://doi.org/
10.1145/1842713.1842717.

[64] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofst-
ede, Natalia Sidorova, H. M. W. Verbeek, Marc Voorhoeve, and Moe
Thandar Wynn. “Soundness of workflow nets: classification, decid-
ability, and analysis”. In: Formal Aspects Comput. 23.3 (2011), pp. 333–
363. url: https://doi.org/10.1007/s00165-010-0161-4.

[65] Claudio Di Ciccio, Massimo Mecella, Monica Scannapieco, Diego
Zardetto, and Tiziana Catarci. “MailOfMine - Analyzing Mail Mes-
sages for Mining Artful Collaborative Processes”. In: Data-Driven
Process Discovery and Analysis - First International Symposium, SIMPDA
2011, Campione d’Italia, Italy, June 29 - July 1, 2011, Revised Selected
Papers. Ed. by Karl Aberer, Ernesto Damiani, and Tharam S. Dillon.
Vol. 116. Lecture Notes in Business Information Processing. Springer,
2011, pp. 55–81. isbn: 978-3-642-34043-7. url: https://doi.org/10.
1007/978-3-642-34044-4_4.

[66] Vera Künzle and Manfred Reichert. “PHILharmonicFlows: towards a
framework for object-aware process management”. In: J. Softw. Main-
tenance Res. Pract. 23.4 (2011), pp. 205–244. url: https://doi.org/
10.1002/smr.524.

[67] Stephen W. Liddle. “Model-Driven Software Development”. In: Hand-
book of Conceptual Modeling - Theory, Practice, and Research Challenges.
Ed. by David W. Embley and Bernhard Thalheim. Springer, 2011,
pp. 17–54. url: https://doi.org/10.1007/978-3-642-15865-0_2.

[68] Fabrizio Maria Maggi, Michael Westergaard, Marco Montali, and Wil
M. P. van der Aalst. “Runtime Verification of LTL-Based Declarative
Process Models”. In: Runtime Verification - Second International Confer-
ence, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised
Selected Papers. Ed. by Sarfraz Khurshid and Koushik Sen. Vol. 7186.
Lecture Notes in Computer Science. Springer, 2011, pp. 131–146. isbn:
978-3-642-29859-2. url: https://doi.org/10.1007/978-3-642-
29860-8%5C_11.

[69] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Men-
dling, and Hajo A. Reijers. “Imperative versus Declarative Process
Modeling Languages: An Empirical Investigation”. In: Business Process
Management Workshops - BPM 2011 International Workshops, Clermont-
Ferrand, France, August 29, 2011, Revised Selected Papers, Part I. Ed.
by Florian Daniel, Kamel Barkaoui, and Schahram Dustdar. Vol. 99.
Lecture Notes in Business Information Processing. Springer, 2011,
pp. 383–394. isbn: 978-3-642-28107-5. url: https://doi.org/10.
1007/978-3-642-28108-2_37.

[70] Natalia Sidorova, Christian Stahl, and Nikola Trcka. “Soundness ver-
ification for conceptual workflow nets with data: Early detection of
errors with the most precision possible”. In: Inf. Syst. 36.7 (2011),
pp. 1026–1043. url: https://doi.org/10.1016/j.is.2011.04.004.

[71] Elio Damaggio, Alin Deutsch, and Victor Vianu. “Artifact systems
with data dependencies and arithmetic”. In: ACM Trans. Database Syst.
37.3 (2012), 22:1–22:36. url: https://doi.org/10.1145/2338626.
2338628.

177

https://doi.org/10.1145/1842713.1842717
https://doi.org/10.1145/1842713.1842717
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/978-3-642-34044-4_4
https://doi.org/10.1007/978-3-642-34044-4_4
https://doi.org/10.1002/smr.524
https://doi.org/10.1002/smr.524
https://doi.org/10.1007/978-3-642-15865-0_2
https://doi.org/10.1007/978-3-642-29860-8%5C_11
https://doi.org/10.1007/978-3-642-29860-8%5C_11
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1016/j.is.2011.04.004
https://doi.org/10.1145/2338626.2338628
https://doi.org/10.1145/2338626.2338628

Bibliography

[72] Keith D. Swenson. “Position: BPMN Is Incompatible with ACM”.
In: Business Process Management Workshops - BPM 2012 International
Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers. Ed. by
Marcello La Rosa and Pnina Soffer. Vol. 132. Lecture Notes in Business
Information Processing. Springer, 2012, pp. 55–58. isbn: 978-3-642-
36284-2. url: https://doi.org/10.1007/978-3-642-36285-9_7.

[73] Zhiqiang Yan, Remco M. Dijkman, and Paul W. P. J. Grefen. “Business
process model repositories - Framework and survey”. In: Inf. Softw.
Technol. 54.4 (2012), pp. 380–395. url: https://doi.org/10.1016/j.
infsof.2011.11.005.

[74] Pieter Van Gorp and Remco M. Dijkman. “A visual token-based for-
malization of BPMN 2.0 based on in-place transformations”. In: Inf.
Softw. Technol. 55.2 (2013), pp. 365–394. url: https://doi.org/10.
1016/j.infsof.2012.08.014.

[75] Massimiliano de Leoni and Wil M. P. van der Aalst. “Data-aware
process mining: discovering decisions in processes using alignments”.
In:Proceedings of the 28thAnnual ACMSymposium onApplied Computing,
SAC ’13, Coimbra, Portugal, March 18-22, 2013. Ed. by Sung Y. Shin and
José Carlos Maldonado. ACM, 2013, pp. 1454–1461. isbn: 978-1-4503-
1656-9. url: https://doi.org/10.1145/2480362.2480633.

[76] Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske.
“Modeling and Enacting Complex Data Dependencies in Business
Processes”. In: Business Process Management - 11th International Confer-
ence, BPM 2013, Beijing, China, August 26-30, 2013. Proceedings. Ed. by
Florian Daniel, Jianmin Wang, and Barbara Weber. Vol. 8094. Lecture
Notes in Computer Science. Springer, 2013, pp. 171–186. isbn: 978-3-
642-40175-6. url: https://doi.org/10.1007/978-3-642-40176-
3_14.

[77] Marco Montali, Federico Chesani, Paola Mello, and Fabrizio Maria
Maggi. “Towards data-aware constraints in declare”. In: Proceedings
of the 28th Annual ACM Symposium on Applied Computing, SAC ’13,
Coimbra, Portugal, March 18-22, 2013. Ed. by Sung Y. Shin and José
Carlos Maldonado. ACM, 2013, pp. 1391–1396. isbn: 978-1-4503-1656-
9. url: https://doi.org/10.1145/2480362.2480624.

[78] Marco Montali, Fabrizio Maria Maggi, Federico Chesani, Paola Mello,
and Wil M. P. van der Aalst. “Monitoring business constraints with
the event calculus”. In: ACM Trans. Intell. Syst. Technol. 5.1 (2013),
17:1–17:30. url: https://doi.org/10.1145/2542182.2542199.

[79] Sung Y. Shin and José Carlos Maldonado, eds. Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, Coimbra, Portu-
gal, March 18-22, 2013. ACM, 2013. isbn: 978-1-4503-1656-9. url: http:
//dl.acm.org/citation.cfm?id=2480362.

[80] Natalia Sidorova and Christian Stahl. “Soundness for Resource-
Constrained Workflow Nets Is Decidable”. In: IEEE Trans. Syst. Man
Cybern. Syst. 43.3 (2013), pp. 724–729. url: https://doi.org/10.
1109/TSMCA.2012.2210415.

[81] Dmitry Solomakhin, Marco Montali, Sergio Tessaris, and Riccardo De
Masellis. “Verification of Artifact-Centric Systems: Decidability and
Modeling Issues”. In: Service-Oriented Computing - 11th International
Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Proceed-
ings. Ed. by Samik Basu, Cesare Pautasso, Liang Zhang, and Xiang Fu.
Vol. 8274. Lecture Notes in Computer Science. Springer, 2013, pp. 252–

178

https://doi.org/10.1007/978-3-642-36285-9_7
https://doi.org/10.1016/j.infsof.2011.11.005
https://doi.org/10.1016/j.infsof.2011.11.005
https://doi.org/10.1016/j.infsof.2012.08.014
https://doi.org/10.1016/j.infsof.2012.08.014
https://doi.org/10.1145/2480362.2480633
https://doi.org/10.1007/978-3-642-40176-3_14
https://doi.org/10.1007/978-3-642-40176-3_14
https://doi.org/10.1145/2480362.2480624
https://doi.org/10.1145/2542182.2542199
http://dl.acm.org/citation.cfm?id=2480362
http://dl.acm.org/citation.cfm?id=2480362
https://doi.org/10.1109/TSMCA.2012.2210415
https://doi.org/10.1109/TSMCA.2012.2210415

Bibliography

266. isbn: 978-3-642-45004-4. url: https://doi.org/10.1007/978-3-
642-45005-1_18.

[82] Keith Swenson. State of the art in case management. 2013. url: http:
//kswenson.purplehillsbooks.com/2013/State-of-the-Art-In-
Case-Management_2013.pdf.

[83] Vladimir A. Bashkin and Irina A. Lomazova. “Decidability of k -
Soundness for Workflow Nets with an Unbounded Resource”. In:
Trans. Petri Nets Other Model. Concurr. Lecture Notes in Computer
Science 9 (2014). Ed. by Maciej Koutny, Serge Haddad, and Alex
Yakovlev, pp. 1–18. url: https://doi.org/10.1007/978-3-662-
45730-6_1.

[84] Diego Calvanese, Marco Montali, Montserrat Estañol, and Ernest
Teniente. “Verifiable UML Artifact-Centric Business Process Models”.
In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, CIKM 2014, Shanghai, China,
November 3-7, 2014. Ed. by Jianzhong Li, Xiaoyang Sean Wang, Minos
N. Garofalakis, Ian Soboroff, Torsten Suel, and MinWang. ACM, 2014,
pp. 1289–1298. isbn: 978-1-4503-2598-1. url: https://doi.org/10.
1145/2661829.2662050.

[85] Carolina Ming Chiao, Vera Künzle, and Manfred Reichert. “A Tool for
Supporting Object-Aware Processes”. In: 18th IEEE International En-
terprise Distributed Object Computing Conference Workshops and Demon-
strations, EDOC Workshops 2014, Ulm, Germany, September 1-2, 2014.
Ed. by Georg Grossmann, Sylvain Hallé, Dimka Karastoyanova, Man-
fred Reichert, and Stefanie Rinderle-Ma. IEEE Computer Society, 2014,
pp. 410–413. url: https://doi.org/10.1109/EDOCW.2014.69.

[86] Montserrat Estañol, Anna Queralt, Maria-Ribera Sancho, and Ernest
Teniente. “Specifying Artifact-Centric Business Process Models in
UML”. In: Business Modeling and Software Design - 4th International
Symposium, BMSD 2014, Luxembourg, Luxembourg, June 24-26, 2014,
Revised Selected Papers. Ed. by Boris Shishkov. Vol. 220. Lecture Notes
in Business Information Processing. Springer, 2014, pp. 62–81. url:
https://doi.org/10.1007/978-3-319-20052-1_4.

[87] Georg Grossmann, Sylvain Hallé, Dimka Karastoyanova, Manfred
Reichert, and Stefanie Rinderle-Ma, eds. 18th IEEE International Enter-
prise Distributed Object Computing Conference Workshops and Demonstra-
tions, EDOC Workshops 2014, Ulm, Germany, September 1-2, 2014. IEEE
Computer Society, 2014. url: https://ieeexplore.ieee.org/xpl/
conhome/6971861/proceeding.

[88] Giancarlo Guizzardi. “Ontological Patterns, Anti-Patterns and Pattern
Languages for Next-Generation Conceptual Modeling”. In: Conceptual
Modeling - 33rd International Conference, ER 2014, Atlanta, GA, USA,
October 27-29, 2014. Proceedings. Ed. by Eric S. K. Yu, Gillian Dobbie,
Matthias Jarke, and Sandeep Purao. Vol. 8824. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 13–27. isbn: 978-3-319-12205-2. url:
https://doi.org/10.1007/978-3-319-12206-9_2.

[89] Matheus Hauder, Simon Pigat, and Florian Matthes. “Research Chal-
lenges in Adaptive Case Management: A Literature Review”. In: 18th
IEEE International Enterprise Distributed Object Computing Conference
Workshops and Demonstrations, EDOC Workshops 2014, Ulm, Germany,
September 1-2, 2014. Ed. by Georg Grossmann, Sylvain Hallé, Dimka
Karastoyanova, Manfred Reichert, and Stefanie Rinderle-Ma. IEEE

179

https://doi.org/10.1007/978-3-642-45005-1_18
https://doi.org/10.1007/978-3-642-45005-1_18
http://kswenson.purplehillsbooks.com/2013/State-of-the-Art-In-Case-Management_2013.pdf
http://kswenson.purplehillsbooks.com/2013/State-of-the-Art-In-Case-Management_2013.pdf
http://kswenson.purplehillsbooks.com/2013/State-of-the-Art-In-Case-Management_2013.pdf
https://doi.org/10.1007/978-3-662-45730-6_1
https://doi.org/10.1007/978-3-662-45730-6_1
https://doi.org/10.1145/2661829.2662050
https://doi.org/10.1145/2661829.2662050
https://doi.org/10.1109/EDOCW.2014.69
https://doi.org/10.1007/978-3-319-20052-1_4
https://ieeexplore.ieee.org/xpl/conhome/6971861/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6971861/proceeding
https://doi.org/10.1007/978-3-319-12206-9_2

Bibliography

Computer Society, 2014, pp. 98–107. url: https://doi.org/10.1109/
EDOCW.2014.24.

[90] AndreasMeyer, NicoHerzberg, Frank Puhlmann, andMathiasWeske.
“Implementation Framework for Production Case Management: Mod-
eling and Execution”. In: 18th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2014, Ulm, Germany, September
1-5, 2014. Ed. by Manfred Reichert, Stefanie Rinderle-Ma, and Georg
Grossmann. IEEE Computer Society, 2014, pp. 190–199. isbn: 978-1-
4799-5470-4. url: https://doi.org/10.1109/EDOC.2014.34.

[91] Andreas Meyer and Mathias Weske. “Weak Conformance between
Process Models and Synchronized Object Life Cycles”. In: Service-
Oriented Computing - 12th International Conference, ICSOC 2014, Paris,
France, November 3-6, 2014. Proceedings. Ed. by Xavier Franch, Aditya K.
Ghose, Grace A. Lewis, and Sami Bhiri. Vol. 8831. Lecture Notes in
Computer Science. Springer, 2014, pp. 359–367. isbn: 978-3-662-45390-
2. url: https://doi.org/10.1007/978-3-662-45391-9_25.

[92] Object Management Group. Business Process Model and Notation
(BPMN). Version 2.0.2. Jan. 2014. url: https : / / www . omg . org /
spec/BPMN.

[93] Object Management Group. Object Constraint Language (OCL). Ver-
sion 2.4. Feb. 2014. url: https://www.omg.org/spec/OCL.

[94] Monique Snoeck. Enterprise Information Systems Engineering - The
MERODE Approach. The Enterprise Engineering Series. Springer,
2014. isbn: 978-3-319-10144-6. url: https://doi.org/10.1007/978-
3-319-10145-3.

[95] Kimon Batoulis, Andreas Meyer, Ekaterina Bazhenova, Gero Decker,
and Mathias Weske. “Extracting Decision Logic from Process Mod-
els”. In: Advanced Information Systems Engineering - 27th International
Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Proceedings.
Ed. by Jelena Zdravkovic, Marite Kirikova, and Paul Johannesson.
Vol. 9097. Lecture Notes in Computer Science. Springer, 2015, pp. 349–
366. isbn: 978-3-319-19068-6. url: https://doi.org/10.1007/978-3-
319-19069-3_22.

[96] Anne Baumgrass, Claudio Di Ciccio, Remco M. Dijkman, Marcin
Hewelt, Jan Mendling, Andreas Meyer, Shaya Pourmirza, Mathias
Weske, and Tsun Yin Wong. “GET Controller and UNICORN: Event-
driven Process Execution andMonitoring in Logistics”. In: Proceedings
of the BPM Demo Session 2015 Co-located with the 13th International
Conference on Business Process Management (BPM 2015), Innsbruck,
Austria, September 2, 2015. Ed. by Florian Daniel and Stefan Zugal.
Vol. 1418. CEUR Workshop Proceedings. CEUR-WS.org, 2015, pp. 75–
79. url: http://ceur-ws.org/Vol-1418/paper16.pdf.

[97] Riad Boussetoua, Hammadi Bennoui, Allaoua Chaoui, Khaled Khal-
faoui, and Elhillali Kerkouche. “An automatic approach to transform
BPMNmodels to Pi-Calculus”. In: 12th IEEE/ACS International Con-
ference of Computer Systems and Applications, AICCSA 2015, Marrakech,
Morocco, November 17-20, 2015. IEEE Computer Society, 2015, pp. 1–8.
url: https://doi.org/10.1109/AICCSA.2015.7507176.

[98] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. “Know-
ledge-Intensive Processes: Characteristics, Requirements andAnalysis
of Contemporary Approaches”. In: J. Data Semant. 4.1 (2015), pp. 29–
57. url: https://doi.org/10.1007/s13740-014-0038-4.

180

https://doi.org/10.1109/EDOCW.2014.24
https://doi.org/10.1109/EDOCW.2014.24
https://doi.org/10.1109/EDOC.2014.34
https://doi.org/10.1007/978-3-662-45391-9_25
https://www.omg.org/spec/BPMN
https://www.omg.org/spec/BPMN
https://www.omg.org/spec/OCL
https://doi.org/10.1007/978-3-319-10145-3
https://doi.org/10.1007/978-3-319-10145-3
https://doi.org/10.1007/978-3-319-19069-3_22
https://doi.org/10.1007/978-3-319-19069-3_22
http://ceur-ws.org/Vol-1418/paper16.pdf
https://doi.org/10.1109/AICCSA.2015.7507176
https://doi.org/10.1007/s13740-014-0038-4

Bibliography

[99] Florian Daniel and Stefan Zugal, eds. Proceedings of the BPM Demo
Session 2015 Co-located with the 13th International Conference on Business
Process Management (BPM 2015), Innsbruck, Austria, September 2, 2015.
Vol. 1418. CEUR Workshop Proceedings. CEUR-WS.org, 2015. url:
http://ceur-ws.org/Vol-1418.

[100] Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual
Models. Telematica Instituut / CTIT, Oct. 2015. isbn: 90-75176-81-3. url:
https://research.utwente.nl/en/publications/ontological-
foundations-for-structural-conceptual-models.

[101] Stephan Haarmann, Nikolai Podlesny, Marcin Hewelt, Andreas
Meyer, and Mathias Weske. “Production Case Management: A Pro-
totypical Process Engine to Execute Flexible Business Processes”.
In: Proceedings of the BPM Demo Session 2015 Co-located with the 13th
International Conference on Business Process Management (BPM 2015),
Innsbruck, Austria, September 2, 2015. Ed. by Florian Daniel and Stefan
Zugal. Vol. 1418. CEUR Workshop Proceedings. CEUR-WS.org, 2015,
pp. 110–114. url: http://ceur-ws.org/Vol-1418/paper23.pdf.

[102] Andrea Marrella, Patris Halapuu, Massimo Mecella, and Sebastian
Sardiña. “SmartPM: An Adaptive Process Management System for
Executing Processes in Cyber-Physical Domains”. In: Proceedings of
the BPM Demo Session 2015 Co-located with the 13th International Confer-
ence on Business Process Management (BPM 2015), Innsbruck, Austria,
September 2, 2015. Ed. by Florian Daniel and Stefan Zugal. Vol. 1418.
CEUR Workshop Proceedings. CEUR-WS.org, 2015, pp. 115–119. url:
http://ceur-ws.org/Vol-1418/paper24.pdf.

[103] Juliana Baptista dos Santos França, Joanne Manhães Netto, Juliana do
E. Santo Carvalho, Flávia Maria Santoro, Fernanda Araujo Baião, and
Mariano Gomes Pimentel. “KIPO: the knowledge-intensive process
ontology”. In: Softw. Syst. Model. 14.3 (2015), pp. 1127–1157. url: htt
ps://doi.org/10.1007/s10270-014-0397-1.

[104] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second
Edition. Springer, 2016. isbn: 978-3-662-49850-7. url: https://doi.
org/10.1007/978-3-662-49851-4.

[105] Heiko Beck, Marcin Hewelt, and Luise Pufahl. “Extending Fragment-
Based Case Management with State Variables”. In: Business Process
Management Workshops - BPM 2016 International Workshops, Rio de
Janeiro, Brazil, September 19, 2016, Revised Papers. Ed. byMarlon Dumas
and Marcelo Fantinato. Vol. 281. Lecture Notes in Business Infor-
mation Processing. 2016, pp. 227–238. isbn: 978-3-319-58456-0. url:
https://doi.org/10.1007/978-3-319-58457-7_17.

[106] Jonas Beyer, Patrick Kuhn, Marcin Hewelt, Sankalita Mandal, and
MathiasWeske. “Unicorn meets Chimera: Integrating External Events
into Case Management”. In: Proceedings of the BPM Demo Track 2016
Co-located with the 14th International Conference on Business Process Man-
agement (BPM 2016), Rio de Janeiro, Brazil, September 21, 2016. Ed. by
Leonardo Azevedo and Cristina Cabanillas. Vol. 1789. CEURWork-
shop Proceedings. CEUR-WS.org, 2016, pp. 67–72. url: http://ceur-
ws.org/Vol-1789/bpm-demo-2016-paper13.pdf.

[107] Marlon Dumas and Dietmar Pfahl. “Modeling Software Processes
Using BPMN: When and When Not?” In:Managing Software Process
Evolution. Ed. by Marco Kuhrmann, Jürgen Münch, Ita Richardson,
Andreas Rausch, and He Zhang. Springer, Sept. 2016, pp. 165–183.

181

http://ceur-ws.org/Vol-1418
https://research.utwente.nl/en/publications/ontological-foundations-for-structural-conceptual-models
https://research.utwente.nl/en/publications/ontological-foundations-for-structural-conceptual-models
http://ceur-ws.org/Vol-1418/paper23.pdf
http://ceur-ws.org/Vol-1418/paper24.pdf
https://doi.org/10.1007/s10270-014-0397-1
https://doi.org/10.1007/s10270-014-0397-1
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-58457-7_17
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper13.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper13.pdf

Bibliography

isbn: 978-3-319-31545-4. url: https://doi.org/10.1007/978-3-
319-31545-4_9.

[108] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems, 7th Edition. Pearson, 2016. isbn: 978-0-133-97077-7.

[109] European Parliament and Council. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation). Apr. 2016. url: http://data.europa.eu/
eli/reg/2016/679/oj.

[110] Walid Fdhila, Manuel Gall, Stefanie Rinderle-Ma, Juergen Mangler,
and Conrad Indiono. “Classification and Formalization of Instance-
Spanning Constraints in Process-Driven Applications”. In: Business
Process Management - 14th International Conference, BPM 2016, Rio de
Janeiro, Brazil, September 18-22, 2016. Proceedings. Ed. by Marcello La
Rosa, Peter Loos, and Oscar Pastor. Vol. 9850. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 348–364. isbn: 978-3-319-45347-7.
url: https://doi.org/10.1007/978-3-319-45348-4_20.

[111] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning
and Acting. Cambridge University Press, 2016. isbn: 978-1-107-03727-4.
url: http://www.cambridge.org/de/academic/subjects/comput
er-science/artificial-intelligence-and-natural-language-
processing/automated-planning-and-acting?format=HB.

[112] Marcin Hewelt and Mathias Weske. “A Hybrid Approach for Flexi-
ble Case Modeling and Execution”. In: Business Process Management
Forum - BPM Forum 2016, Rio de Janeiro, Brazil, September 18-22, 2016,
Proceedings. Ed. by Marcello La Rosa, Peter Loos, and Oscar Pastor.
Vol. 260. Lecture Notes in Business Information Processing. Springer,
2016, pp. 38–54. isbn: 978-3-319-45467-2. url: https://doi.org/10.
1007/978-3-319-45468-9_3.

[113] Matthias Kunze and Mathias Weske. Behavioural Models - From Mod-
elling Finite Automata to Analysing Business Processes. Springer, 2016.
isbn: 978-3-319-44958-6. url: https://doi.org/10.1007/978-3-
319-44960-9.

[114] Marco Montali and Diego Calvanese. “Soundness of data-aware, case-
centric processes”. In: Int. J. Softw. Tools Technol. Transf. 18.5 (2016),
pp. 535–558. url: https://doi.org/10.1007/s10009-016-0417-2.

[115] Object Management Group. Case Management Model and Notation
(CMMN. Version 1.1. Dec. 2016. url: https://www.omg.org/spec/
CMMN.

[116] Object Management Group. Meta Object Facility (MOF). Version 2.5.1.
Oct. 2016. url: https://www.omg.org/spec/MOF.

[117] Tim Sporleder. Fragmentbasiertes Case-Management: Spezifikation und
translationale Semantik. Master Thesis. Sept. 2016.

[118] Wil M. P. van der Aalst, Guangming Li, and Marco Montali. “Object-
Centric Behavioral Constraints”. In: CoRR abs/1703.05740 (2017).
arXiv: 1703.05740. url: http://arxiv.org/abs/1703.05740.

182

https://doi.org/10.1007/978-3-319-31545-4_9
https://doi.org/10.1007/978-3-319-31545-4_9
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1007/978-3-319-45348-4_20
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/automated-planning-and-acting?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/automated-planning-and-acting?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/automated-planning-and-acting?format=HB
https://doi.org/10.1007/978-3-319-45468-9_3
https://doi.org/10.1007/978-3-319-45468-9_3
https://doi.org/10.1007/978-3-319-44960-9
https://doi.org/10.1007/978-3-319-44960-9
https://doi.org/10.1007/s10009-016-0417-2
https://www.omg.org/spec/CMMN
https://www.omg.org/spec/CMMN
https://www.omg.org/spec/MOF
https://arxiv.org/abs/1703.05740
http://arxiv.org/abs/1703.05740

Bibliography

[119] Kimon Batoulis, Stephan Haarmann, and Mathias Weske. “Various
Notions of Soundness for Decision-Aware Business Processes”. In:
Conceptual Modeling - 36th International Conference, ER 2017, Valencia,
Spain, November 6-9, 2017, Proceedings. Ed. by Heinrich C. Mayr, Gian-
carlo Guizzardi, Hui Ma, and Oscar Pastor. Vol. 10650. Lecture Notes
in Computer Science. Springer, 2017, pp. 403–418. isbn: 978-3-319-
69903-5. url: https://doi.org/10.1007/978-3-319-69904-2_31.

[120] Guangming Li, Renata Medeiros de Carvalho, and Wil M. P. van der
Aalst. “Automatic Discovery of Object-Centric Behavioral Constraint
Models”. In: Business Information Systems - 20th International Confer-
ence, BIS 2017, Poznan, Poland, June 28-30, 2017, Proceedings. Ed. by
Witold Abramowicz. Vol. 288. Lecture Notes in Business Information
Processing. Springer, 2017, pp. 43–58. isbn: 978-3-319-59335-7. url:
https://doi.org/10.1007/978-3-319-59336-4_4.

[121] Andrea Marrella, Massimo Mecella, and Sebastian Sardiña. “Intel-
ligent Process Adaptation in the SmartPM System”. In: ACM Trans.
Intell. Syst. Technol. 8.2 (2017), 25:1–25:43. url: https://doi.org/10.
1145/2948071.

[122] Marco Montali and Andrey Rivkin. “DB-Nets: On the Marriage of
Colored Petri Nets and Relational Databases”. In: Trans. Petri Nets
Other Model. Concurr. Lecture Notes in Computer Science 12 (2017).
Ed. by Maciej Koutny, Jetty Kleijn, and Wojciech Penczek, pp. 91–118.
url: https://doi.org/10.1007/978-3-662-55862-1_5.

[123] Object Management Group. Unified Modeling Language (UML). Ver-
sion 2.5.1. Dec. 2017. url: https://www.omg.org/spec/UML.

[124] Shaya Pourmirza, Sander Peters, Remco M. Dijkman, and Paul Grefen.
“A systematic literature review on the architecture of business process
management systems”. In: Inf. Syst. 66 (2017), pp. 43–58. url: https:
//doi.org/10.1016/j.is.2017.01.007.

[125] Sebastian Steinau, Kevin Andrews, and Manfred Reichert. “A Mod-
eling Tool for PHILharmonicFlows Objects and Lifecycle Processes”.
In: Proceedings of the BPM Demo Track and BPM Dissertation Award co-
located with 15th International Conference on Business Process Modeling
(BPM 2017), Barcelona, Spain, September 13, 2017. Ed. by Robert Clarisó,
Henrik Leopold, Jan Mendling, Wil M. P. van der Aalst, Akhil Kumar,
Brian T. Pentland, and Mathias Weske. Vol. 1920. CEUR Workshop
Proceedings. CEUR-WS.org, 2017. url: http://ceur-ws.org/Vol-
1920/BPM_2017_paper_196.pdf.

[126] Kevin Andrews, Sebastian Steinau, and Manfred Reichert. “A Tool
for Supporting Ad-Hoc Changes to Object-Aware Processes”. In: 22nd
IEEE International Enterprise Distributed Object Computing Workshop,
EDOC Workshops 2018, Stockholm, Sweden, October 16-19, 2018. IEEE
Computer Society, 2018, pp. 220–223. isbn: 978-1-5386-4141-5. url:
https://doi.org/10.1109/EDOCW.2018.00041.

[127] Carlo Combi, Barbara Oliboni, MathiasWeske, and Francesca Zerbato.
“Conceptual Modeling of Processes and Data: Connecting Different
Perspectives”. In: Conceptual Modeling - 37th International Conference,
ER 2018, Xi’an, China, October 22-25, 2018, Proceedings. Ed. by Juan
Trujillo, Karen C. Davis, Xiaoyong Du, Zhanhuai Li, Tok Wang Ling,
Guoliang Li, andMong-Li Lee. Vol. 11157. Lecture Notes in Computer
Science. Springer, 2018, pp. 236–250. isbn: 978-3-030-00846-8. url: htt
ps://doi.org/10.1007/978-3-030-00847-5_18.

183

https://doi.org/10.1007/978-3-319-69904-2_31
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1145/2948071
https://doi.org/10.1145/2948071
https://doi.org/10.1007/978-3-662-55862-1_5
https://www.omg.org/spec/UML
https://doi.org/10.1016/j.is.2017.01.007
https://doi.org/10.1016/j.is.2017.01.007
http://ceur-ws.org/Vol-1920/BPM_2017_paper_196.pdf
http://ceur-ws.org/Vol-1920/BPM_2017_paper_196.pdf
https://doi.org/10.1109/EDOCW.2018.00041
https://doi.org/10.1007/978-3-030-00847-5_18
https://doi.org/10.1007/978-3-030-00847-5_18

Bibliography

[128] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management, Second Edition. Springer,
2018. isbn: 978-3-662-56508-7. url: https://doi.org/10.1007/978-
3-662-56509-4.

[129] Montserrat Estañol, Maria-Ribera Sancho, and Ernest Teniente. “En-
suring the semantic correctness of a BAUML artifact-centric BPM”.
In: Inf. Softw. Technol. 93 (2018), pp. 147–162. url: https://doi.org/
10.1016/j.infsof.2017.09.003.

[130] Stephan Haarmann, Kimon Batoulis, and Mathias Weske. “Compli-
ance Checking for Decision-Aware Process Models”. In: Business Pro-
cess Management Workshops - BPM 2018 International Workshops, Sydney,
NSW, Australia, September 9-14, 2018, Revised Papers. Ed. by Florian
Daniel, Quan Z. Sheng, and Hamid Motahari. Vol. 342. Lecture Notes
in Business Information Processing. Springer, 2018, pp. 494–506. isbn:
978-3-030-11640-8. url: https://doi.org/10.1007/978-3-030-
11641-5_39.

[131] MarcinHewelt, FelixWolff, SankalitaMandal, Luise Pufahl, andMath-
ias Weske. “Towards a Methodology for Case Model Elicitation”. In:
Enterprise, Business-Process and Information Systems Modeling - 19th
International Conference, BPMDS 2018, 23rd International Conference,
EMMSAD 2018, Held at CAiSE 2018, Tallinn, Estonia, June 11-12, 2018,
Proceedings. Ed. by Jens Gulden, Iris Reinhartz-Berger, Rainer Schmidt,
Sérgio Guerreiro, Wided Guédria, and Palash Bera. Vol. 318. Lecture
Notes in Business Information Processing. Springer, 2018, pp. 181–
195. isbn: 978-3-319-91703-0. url: https://doi.org/10.1007/978-3-
319-91704-7_12.

[132] GuangmingLi, EduardoGonzález López deMurillas, RenataMedeiros
de Carvalho, and Wil M. P. van der Aalst. “Extracting Object-Centric
Event Logs to Support Process Mining on Databases”. In: Informa-
tion Systems in the Big Data Era - CAiSE Forum 2018, Tallinn, Estonia,
June 11-15, 2018, Proceedings. Ed. by Jan Mendling and Haralambos
Mouratidis. Vol. 317. Lecture Notes in Business Information Pro-
cessing. Springer, 2018, pp. 182–199. isbn: 978-3-319-92900-2. url:
https://doi.org/10.1007/978-3-319-92901-9_16.

[133] Sebastian Steinau, Kevin Andrews, and Manfred Reichert. “The Rela-
tional Process Structure”. In: Advanced Information Systems Engineering
- 30th International Conference, CAiSE 2018, Tallinn, Estonia, June 11-15,
2018, Proceedings. Ed. by John Krogstie and Hajo A. Reijers. Vol. 10816.
Lecture Notes in Computer Science. Springer, 2018, pp. 53–67. isbn:
978-3-319-91562-3. url: https://doi.org/10.1007/978-3-319-
91563-0_4.

[134] Amine Abbad Andaloussi, Jon Buch-Lorentsen, Hugo A. López, Tijs
Slaats, and Barbara Weber. “Exploring the Modeling of Declarative
Processes Using a Hybrid Approach”. In: Conceptual Modeling - 38th
International Conference, ER 2019, Salvador, Brazil, November 4-7, 2019,
Proceedings. Ed. by Alberto H. F. Laender, Barbara Pernici, Ee-Peng
Lim, and José Palazzo M. de Oliveira. Vol. 11788. Lecture Notes in
Computer Science. Springer, 2019, pp. 162–170. isbn: 978-3-030-33222-
8. url: https://doi.org/10.1007/978-3-030-33223-5_14.

[135] Amine Abbad Andaloussi, Andrea Burattin, Tijs Slaats, Anette Che-
lina Møller Petersen, Thomas T. Hildebrandt, and Barbara Weber.
“Exploring the Understandability of a Hybrid Process Design Artifact
Based on DCR Graphs”. In: Enterprise, Business-Process and Information

184

https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1016/j.infsof.2017.09.003
https://doi.org/10.1016/j.infsof.2017.09.003
https://doi.org/10.1007/978-3-030-11641-5_39
https://doi.org/10.1007/978-3-030-11641-5_39
https://doi.org/10.1007/978-3-319-91704-7_12
https://doi.org/10.1007/978-3-319-91704-7_12
https://doi.org/10.1007/978-3-319-92901-9_16
https://doi.org/10.1007/978-3-319-91563-0_4
https://doi.org/10.1007/978-3-319-91563-0_4
https://doi.org/10.1007/978-3-030-33223-5_14

Bibliography

Systems Modeling - 20th International Conference, BPMDS 2019, 24th
International Conference, EMMSAD 2019, Held at CAiSE 2019, Rome,
Italy, June 3-4, 2019, Proceedings. Ed. by Iris Reinhartz-Berger, Jelena
Zdravkovic, Jens Gulden, and Rainer Schmidt. Vol. 352. Lecture Notes
in Business Information Processing. Springer, 2019, pp. 69–84. isbn:
978-3-030-20617-8. url: https://doi.org/10.1007/978-3-030-
20618-5_5.

[136] Alessandro Artale, Alisa Kovtunova, Marco Montali, and Wil M. P.
van der Aalst. “Modeling and Reasoning over Declarative Data-Aware
Processes with Object-Centric Behavioral Constraints”. In: Business
Process Management - 17th International Conference, BPM 2019, Vienna,
Austria, September 1-6, 2019, Proceedings. Ed. by Thomas T. Hildebrandt,
Boudewijn F. van Dongen, Maximilian Röglinger, and Jan Mendling.
Vol. 11675. LectureNotes inComputer Science. Springer, 2019, pp. 139–
156. isbn: 978-3-030-26618-9. url: https://doi.org/10.1007/978-3-
030-26619-6_11.

[137] Kimon Batoulis. Checking Compliance for Fragment-based Case Manage-
ment. PhD Thesis. Nov. 2019. url: https://doi.org/10.25932/
publishup-43738.

[138] Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali,
and Andrey Rivkin. “From Model Completeness to Verification of
Data Aware Processes”. In: Description Logic, Theory Combination, and
All That - Essays Dedicated to Franz Baader on the Occasion of His 60th
Birthday. Ed. by Carsten Lutz, Uli Sattler, Cesare Tinelli, Anni-Yasmin
Turhan, and Frank Wolter. Vol. 11560. Lecture Notes in Computer
Science. Springer, 2019, pp. 212–239. isbn: 978-3-030-22101-0. url: htt
ps://doi.org/10.1007/978-3-030-22102-7_10.

[139] Diego Calvanese, Marco Montali, Fabio Patrizi, and Andrey Rivkin.
“Modeling and In-Database Management of Relational, Data-Aware
Processes”. In: Advanced Information Systems Engineering - 31st Interna-
tional Conference, CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceedings.
Ed. by Paolo Giorgini and Barbara Weber. Vol. 11483. Lecture Notes in
Computer Science. Springer, 2019, pp. 328–345. isbn: 978-3-030-21289-
6. url: https://doi.org/10.1007/978-3-030-21290-2_21.

[140] Montserrat Estañol, Jorge Munoz-Gama, Josep Carmona, and Ernest
Teniente. “Conformance checking in UML artifact-centric business
process models”. In: Softw. Syst. Model. 18.4 (2019), pp. 2531–2555.
url: https://doi.org/10.1007/s10270-018-0681-6.

[141] Dirk Fahland. “Describing Behavior of Processes with Many-to-Many
Interactions”. In: Application and Theory of Petri Nets and Concurrency -
40th International Conference, PETRI NETS 2019, Aachen, Germany, June
23-28, 2019, Proceedings. Ed. by Susanna Donatelli and Stefan Haar.
Vol. 11522. Lecture Notes in Computer Science. Springer, 2019, pp. 3–
24. isbn: 978-3-030-21570-5. url: https://doi.org/10.1007/978-3-
030-21571-2_1.

[142] Fernanda Gonzalez-Lopez and Luise Pufahl. “A Landscape for Case
Models”. In: Enterprise, Business-Process and Information Systems Mod-
eling - 20th International Conference, BPMDS 2019, 24th International
Conference, EMMSAD 2019, Held at CAiSE 2019, Rome, Italy, June 3-4,
2019, Proceedings. Ed. by Iris Reinhartz-Berger, Jelena Zdravkovic, Jens
Gulden, and Rainer Schmidt. Vol. 352. Lecture Notes in Business Infor-
mation Processing. Springer, 2019, pp. 87–102. isbn: 978-3-030-20617-8.
url: https://doi.org/10.1007/978-3-030-20618-5_6.

185

https://doi.org/10.1007/978-3-030-20618-5_5
https://doi.org/10.1007/978-3-030-20618-5_5
https://doi.org/10.1007/978-3-030-26619-6_11
https://doi.org/10.1007/978-3-030-26619-6_11
https://doi.org/10.25932/publishup-43738
https://doi.org/10.25932/publishup-43738
https://doi.org/10.1007/978-3-030-22102-7_10
https://doi.org/10.1007/978-3-030-22102-7_10
https://doi.org/10.1007/978-3-030-21290-2_21
https://doi.org/10.1007/s10270-018-0681-6
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-20618-5_6

Bibliography

[143] Adrian Holfter. Checking Compliance for Fragment-based Case Manage-
ment. Master Thesis. July 2019.

[144] Adrian Holfter, StephanHaarmann, Luise Pufahl, andMathiasWeske.
“Checking Compliance in Data-Driven Case Management”. In: Busi-
ness Process Management Workshops - BPM 2019 International Work-
shops, Vienna, Austria, September 1-6, 2019, Revised Selected Papers. Ed.
by Chiara Di Francescomarino, Remco M. Dijkman, and Uwe Zdun.
Vol. 362. Lecture Notes in Business Information Processing. Springer,
2019, pp. 400–411. isbn: 978-3-030-37452-5. url: https://doi.org/10.
1007/978-3-030-37453-2_33.

[145] Guosheng Kang, Liqin Yang, and Liang Zhang. “Verification of be-
havioral soundness for artifact-centric business process model with
synchronizations”. In: Future Gener. Comput. Syst. 98 (2019), pp. 503–
511. url: https://doi.org/10.1016/j.future.2019.03.012.

[146] Iris Reinhartz-Berger, Jelena Zdravkovic, Jens Gulden, and Rainer
Schmidt, eds. Enterprise, Business-Process and Information Systems Mod-
eling - 20th International Conference, BPMDS 2019, 24th International
Conference, EMMSAD 2019, Held at CAiSE 2019, Rome, Italy, June 3-4,
2019, Proceedings. Vol. 352. Lecture Notes in Business Information
Processing. Springer, 2019. isbn: 978-3-030-20617-8. url: https://doi.
org/10.1007/978-3-030-20618-5.

[147] Sebastian Steinau, AndreaMarrella, KevinAndrews, Francesco Leotta,
Massimo Mecella, and Manfred Reichert. “DALEC: a framework for
the systematic evaluation of data-centric approaches to process man-
agement software”. In: Softw. Syst. Model. 18.4 (2019), pp. 2679–2716.
url: https://doi.org/10.1007/s10270-018-0695-0.

[148] Sheila Katherine Venero, Júlio Cesar dos Reis, Leonardo Montecchi,
and Cecília Mary Fischer Rubira. “Towards a metamodel for support-
ing decisions in knowledge-intensive processes”. In: Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019, Limas-
sol, Cyprus, April 8-12, 2019. Ed. by Chih-Cheng Hung and George A.
Papadopoulos. ACM, 2019, pp. 75–84. isbn: 978-1-4503-5933-7. url:
https://doi.org/10.1145/3297280.3297290.

[149] Mathias Weske. Business Process Management—Concepts, Languages,
Architectures, Third Edition. Springer, 2019. isbn: 978-3-662-59431-5. url:
https://doi.org/10.1007/978-3-662-59432-2.

[150] Wil M. P. van der Aalst and Alessandro Berti. “Discovering Object-
centric Petri Nets”. In: Fundam. Informaticae 175.1-4 (2020), pp. 1–40.
url: https://doi.org/10.3233/FI-2020-1946.

[151] Witold Abramowicz and Gary Klein, eds. Business Information Systems
- 23rd International Conference, BIS 2020, Colorado Springs, CO, USA, June
8-10, 2020, Proceedings. Vol. 389. LectureNotes in Business Information
Processing. Springer, 2020. isbn: 978-3-030-53336-6. url: https://doi.
org/10.1007/978-3-030-53337-3.

[152] AmineAbbadAndaloussi, Andrea Burattin, Tijs Slaats, Ekkart Kindler,
and Barbara Weber. “On the declarative paradigm in hybrid busi-
ness process representations: A conceptual framework and a system-
atic literature study”. In: Inf. Syst. 91 (2020), p. 101505. url: https:
//doi.org/10.1016/j.is.2020.101505.

186

https://doi.org/10.1007/978-3-030-37453-2_33
https://doi.org/10.1007/978-3-030-37453-2_33
https://doi.org/10.1016/j.future.2019.03.012
https://doi.org/10.1007/978-3-030-20618-5
https://doi.org/10.1007/978-3-030-20618-5
https://doi.org/10.1007/s10270-018-0695-0
https://doi.org/10.1145/3297280.3297290
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.1007/978-3-030-53337-3
https://doi.org/10.1007/978-3-030-53337-3
https://doi.org/10.1016/j.is.2020.101505
https://doi.org/10.1016/j.is.2020.101505

Bibliography

[153] Kerstin Andree, Sven Ihde, and Luise Pufahl. “Exception Handling
in the Context of Fragment-Based Case Management”. In: Enterprise,
Business-Process and Information Systems Modeling - 21st International
Conference, BPMDS 2020, 25th International Conference, EMMSAD 2020,
Held at CAiSE 2020, Grenoble, France, June 8-9, 2020, Proceedings. Ed.
by Selmin Nurcan, Iris Reinhartz-Berger, Pnina Soffer, and Jelena
Zdravkovic. Vol. 387. Lecture Notes in Business Information Process-
ing. Springer, 2020, pp. 20–35. isbn: 978-3-030-49417-9. url: https:
//doi.org/10.1007/978-3-030-49418-6_2.

[154] Dorina Bano and Mathias Weske. “Discovering Data Models from
Event Logs”. In: Conceptual Modeling - 39th International Conference, ER
2020, Vienna, Austria, November 3-6, 2020, Proceedings. Ed. by Gillian
Dobbie, Ulrich Frank, Gerti Kappel, Stephen W. Liddle, and Heinrich
C. Mayr. Vol. 12400. Lecture Notes in Computer Science. Springer,
2020, pp. 62–76. isbn: 978-3-030-62521-4. url: https://doi.org/10.
1007/978-3-030-62522-1_5.

[155] Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali,
and Andrey Rivkin. “SMT-based verification of data-aware processes:
a model-theoretic approach”. In:Math. Struct. Comput. Sci. 30.3 (2020),
pp. 271–313. url: https://doi.org/10.1017/S0960129520000067.

[156] Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey
Rivkin. “Petri Nets with Parameterised Data - Modelling and Verifica-
tion”. In: Business Process Management - 18th International Conference,
BPM 2020, Seville, Spain, September 13-18, 2020, Proceedings. Ed. by Dirk
Fahland, Chiara Ghidini, Jörg Becker, and Marlon Dumas. Vol. 12168.
Lecture Notes in Computer Science. Springer, 2020, pp. 55–74. isbn:
978-3-030-58665-2. url: https://doi.org/10.1007/978-3-030-
58666-9_4.

[157] Stephan Haarmann, Marco Montali, and Mathias Weske. “Technical
Report: Refining Case Models Using Cardinality Constraints”. In:
CoRR abs/2012.02245 (2020). arXiv: 2012.02245. url: https://arxiv.
org/abs/2012.02245.

[158] Stephan Haarmann and Mathias Weske. “Correlating Data Objects in
Fragment-Based Case Management”. In: Business Information Systems -
23rd International Conference, BIS 2020, Colorado Springs, CO, USA, June
8-10, 2020, Proceedings. Ed. by Witold Abramowicz and Gary Klein.
Vol. 389. Lecture Notes in Business Information Processing. Springer,
2020, pp. 197–209. isbn: 978-3-030-53336-6. url: https://doi.org/10.
1007/978-3-030-53337-3_15.

[159] Stephan Haarmann and Mathias Weske. “Cross-Case Data Objects
in Business Processes: Semantics and Analysis”. In: Business Process
Management Forum - BPM Forum 2020, Seville, Spain, September 13-18,
2020, Proceedings. Ed. by Dirk Fahland, Chiara Ghidini, Jörg Becker,
and Marlon Dumas. Vol. 392. Lecture Notes in Business Information
Processing. Springer, 2020, pp. 3–17. isbn: 978-3-030-58637-9. url: htt
ps://doi.org/10.1007/978-3-030-58638-6_1.

[160] Stephan Haarmann and Mathias Weske. “Data Object Cardinalities
in Flexible Business Processes”. In: Business Process Management Work-
shops - BPM 2020 International Workshops, Seville, Spain, September 13-
18, 2020, Revised Selected Papers. Ed. by Adela del-Río-Ortega, Henrik
Leopold, and FláviaMaria Santoro. Vol. 397. LectureNotes in Business
Information Processing. Springer, 2020, pp. 380–391. isbn: 978-3-030-
66497-8. url: https://doi.org/10.1007/978-3-030-66498-5_28.

187

https://doi.org/10.1007/978-3-030-49418-6_2
https://doi.org/10.1007/978-3-030-49418-6_2
https://doi.org/10.1007/978-3-030-62522-1_5
https://doi.org/10.1007/978-3-030-62522-1_5
https://doi.org/10.1017/S0960129520000067
https://doi.org/10.1007/978-3-030-58666-9_4
https://doi.org/10.1007/978-3-030-58666-9_4
https://arxiv.org/abs/2012.02245
https://arxiv.org/abs/2012.02245
https://arxiv.org/abs/2012.02245
https://doi.org/10.1007/978-3-030-53337-3_15
https://doi.org/10.1007/978-3-030-53337-3_15
https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-030-66498-5_28

Bibliography

[161] MarcinHewelt, Luise Pufahl, SankalitaMandal, FelixWolff, andMath-
ias Weske. “Toward a methodology for case modeling”. In: Softw. Syst.
Model. 19.6 (2020), pp. 1367–1393. url: https://doi.org/10.1007/
s10270-019-00766-5.

[162] Luise Pufahl, Sven Ihde, Michael Glöckner, Bogdan Franczyk, Björn
Paulus, and Mathias Weske. “Countering Congestion: A White-Label
Platform for the Last Mile Parcel Delivery”. In: Business Information
Systems - 23rd International Conference, BIS 2020, Colorado Springs, CO,
USA, June 8-10, 2020, Proceedings. Ed. byWitold Abramowicz andGary
Klein. Vol. 389. Lecture Notes in Business Information Processing.
Springer, 2020, pp. 210–223. isbn: 978-3-030-53336-6. url: https://
doi.org/10.1007/978-3-030-53337-3_16.

[163] Fernanda Gonzalez-Lopez, Luise Pufahl, Jorge Munoz-Gama, Valeria
Herskovic, and Marcos Sepúlveda. “Case model landscapes: toward
an improved representation of knowledge-intensive processes using
the fCM-language”. In: Softw. Syst. Model. 20.5 (2021), pp. 1353–1377.
url: https://doi.org/10.1007/s10270-021-00885-y.

[164] Stephan Haarmann. “Fragment-Based Case Management Models:
Metamodel, Consistency, & Correctness”. In: Proceedings of the 13th
European Workshop on Services and their Composition (ZEUS 2021), Bam-
berg, Germany, February 25-26, 2021. Ed. by Johannes Manner, Stephan
Haarmann, Stefan Kolb, Nico Herzberg, and Oliver Kopp. Vol. 2839.
CEURWorkshop Proceedings. CEUR-WS.org, 2021, pp. 1–8. url: http:
//ceur-ws.org/Vol-2839/paper1.pdf.

[165] StephanHaarmann, Adrian Holfter, Luise Pufahl, andMathiasWeske.
“Formal Framework for Checking Compliance of Data-Driven Case
Management”. In: J. Data Semant. 10.1 (2021), pp. 143–163. url: https:
//doi.org/10.1007/s13740-021-00120-3.

[166] Stephan Haarmann, Marco Montali, and Mathias Weske. “Refining
Case Models Using Cardinality Constraints”. In: Advanced Informa-
tion Systems Engineering - 33rd International Conference, CAiSE 2021,
Melbourne, VIC, Australia, June 28 - July 2, 2021, Proceedings. Ed. by
Marcello La Rosa, Shazia W. Sadiq, and Ernest Teniente. Vol. 12751.
Lecture Notes in Computer Science. Springer, 2021, pp. 296–310. isbn:
978-3-030-79381-4. url: https://doi.org/10.1007/978-3-030-
79382-1_18.

[167] Stephan Haarmann, Anjo Seidel, and Mathias Weske. “Modeling
Objectives of Knowledge Workers”. In: Business Process Management
Workshops - BPM 2021 International Workshops, Rome, Italy, September
6-10, 2021, Accepted for Publication. 2021.

[168] Massimiliano de Leoni, Paolo Felli, and Marco Montali. “Integrating
BPMN and DMN: Modeling and Analysis”. In: J. Data Semant. 10.1
(2021), pp. 165–188. url: https://doi.org/10.1007/s13740-021-
00132-z.

[169] Object Management Group. Decision Model and Notation (DMN. Ver-
sion 1.3. Feb. 2021. url: https://www.omg.org/spec/DMN.

[170] Monique Snoeck, Johannes De Smedt, and Jochen De Weerdt. “Sup-
portingData-Aware ProcesseswithMERODE”. In: Enterprise, Business-
Process and Information Systems Modeling - 22nd International Conference,
BPMDS 2021, and 26th International Conference, EMMSAD 2021, Held at
CAiSE 2021, Melbourne, VIC, Australia, June 28-29, 2021, Proceedings. Ed.
by Adriano Augusto, Asif Gill, Selmin Nurcan, Iris Reinhartz-Berger,

188

https://doi.org/10.1007/s10270-019-00766-5
https://doi.org/10.1007/s10270-019-00766-5
https://doi.org/10.1007/978-3-030-53337-3_16
https://doi.org/10.1007/978-3-030-53337-3_16
https://doi.org/10.1007/s10270-021-00885-y
http://ceur-ws.org/Vol-2839/paper1.pdf
http://ceur-ws.org/Vol-2839/paper1.pdf
https://doi.org/10.1007/s13740-021-00120-3
https://doi.org/10.1007/s13740-021-00120-3
https://doi.org/10.1007/978-3-030-79382-1_18
https://doi.org/10.1007/978-3-030-79382-1_18
https://doi.org/10.1007/s13740-021-00132-z
https://doi.org/10.1007/s13740-021-00132-z
https://www.omg.org/spec/DMN

Bibliography

Rainer Schmidt, and Jelena Zdravkovic. Vol. 421. Lecture Notes in
Business Information Processing. Springer, 2021, pp. 131–146. url:
https://doi.org/10.1007/978-3-030-79186-5_9.

[171] Claes Wohlin and Per Runeson. “Guiding the selection of research
methodology in industry-academia collaboration in software engi-
neering”. In: Inf. Softw. Technol. 140 (2021), p. 106678. url: https:
//doi.org/10.1016/j.infsof.2021.106678.

All links were last accessed on 2021/11/06.

189

https://doi.org/10.1007/978-3-030-79186-5_9
https://doi.org/10.1016/j.infsof.2021.106678
https://doi.org/10.1016/j.infsof.2021.106678

Declaration

I hereby confirm that I have authored this thesis independently and
without use of other than the indicated sources. All passages which are
literally or in general matter taken out of publications or other sources
are marked as such. I am aware of the examination regulations and this
thesis has not been previously submitted elsewhere.

Potsdam, Germany
November 2021

Stephan Haarmann

191

	Title
	Imprint

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	List of Figures
	List of Tables
	List of Definitions

	Introduction
	Business Process Management
	Business Process Modeling
	Knowledge-Intensive Processes

	Research Objective
	Contribution
	Structure of the Thesis

	Preliminaries
	Data Modeling
	Data Structure
	Data Behavior

	Business Process Modeling
	Traditional Process Models
	Fragment-Based Case Management

	Petri Nets & Formal Execution Semantics
	Petri Nets
	Colored Petri Nets

	Related Work
	Data and Traditional Processes
	BPM for Knowledge-Intensive Processes
	Characterizing Knowledge-Intensive Processes
	Modeling Knowledge-Intensive Processes

	Formal Execution Semantics
	Formalization of Traditional Processes
	Formalization of KiPs

	Overview of the Most Influential Works

	Wickr: Improving fCM
	Domain Model
	Object Behavior
	Fragments
	Goal Specification
	Case Model
	Structural Satisfiability
	Object Behavior Conformance
	Contextual Object Creation
	Contextual Batch Processing
	Well-Formed Case Model

	Cases in Wickr
	Summary

	A Petri Net-Based Semantics for Wickr
	An Example Case
	The Case State
	Case Data
	Fragment Instances

	The Case Behavior
	Case Instantiation
	Case Execution
	Case Termination
	The Complete Case Model

	Translation to Classical Petri Nets
	Summary

	Associations and Multiplicity Constraints
	Object Identities
	Links
	Set Data Object Nodes
	Global Multiplicity Constraints
	Goal Multiplicity Constraints
	Extended Translation
	Summary

	Sharing Data Among Cases
	Case Identities
	Cross-Case Data Objects
	Allocating and Publishing Cross-Case Data
	Correlating Cross-Case Data to Cases
	Attribute-Based Correlation
	Links and Cross-Case Data

	The Case and Cross-Case Data

	Technical Evaluation
	Architectural Overview
	Modeling
	Compilation and Verification
	Structural Verification
	Behavioral Verification

	Execution
	Case Execution Engine
	Goal Modeling and Planning

	Runtime Extension

	Conceptual Evaluation
	Wickr for Knowledge-Intensive Processes
	Data
	Knowledge Actions
	Rules and Constraints
	Goals
	Processes
	Knowledge Workers
	Environment
	Comparing Wickr to fCM and Others

	Wickr for Data-Centric Processes
	Design
	Implementation and Execution
	Diagnosis and Optimization
	Tool Implementation and Practical Cases
	Wickr vs. Data-Centric Approaches

	Transferring Insights to BPMN & CMMN
	Domain Models and BPMN
	Domain Models and CMMN

	Conclusion
	Summary of the Contribution
	Limitations and Future Work
	Conceptual Extensions
	Application & Tooling
	Case Studies & Usability

	Final Remarks

	Wickr is Turing Complete
	Bibliography
	Declaration

