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The analysis of behavioral models such as Graph Transformation Systems (GTSs)
is of central importance in model-driven engineering. However, GTSs often result in
intractably large or even infinite state spaces and may be equipped with multiple or
even infinitely many start graphs. To mitigate these problems, static analysis tech-
niques based on finite symbolic representations of sets of states or paths thereof have
been devised. We focus on the technique of k-induction for establishing invariants
specified using graph conditions. To this end, k-induction generates symbolic paths
backwards from a symbolic state representing a violation of a candidate invariant
to gather information on how that violation could have been reached possibly ob-
taining contradictions to assumed invariants. However, GTSs where multiple agents
regularly perform actions independently from each other cannot be analyzed using
this technique as of now as the independence among backward steps may prevent
the gathering of relevant knowledge altogether.

In this paper, we extend k-induction to GTSs with multiple agents thereby sup-
porting a wide range of additional GTSs. As a running example, we consider an
unbounded number of shuttles driving on a large-scale track topology, which adjust
their velocity to speed limits to avoid derailing. As central contribution, we develop
pruning techniques based on causality and independence among backward steps
and verify that k-induction remains sound under this adaptation as well as termi-
nates in cases where it did not terminate before.
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1 Introduction

The verification of formal models of dynamic systems featuring complex concurrent
behavior w.r.t. formal specifications is one of the central problems in model driven
engineering. However, the required expressiveness of modeling and specification
formalisms that must be used for these complex dynamic systems often leads to
undecidable analysis problems. For example, the formalism of GTSs considered in
this paper is known to be Turing complete. Hence, fully-automatic procedures for
the analysis of meaningful properties on the behavior of such GTS-based systems
returning definite correct judgements cannot always terminate. Analysis becomes
even more intricate when the start graph is not precisely known or when the system
behavior is to be verified for a large or even infinite number of start graphs.
The technique of (forward) model checking generates the entire state space and

checks this state space against the given specification. However, this technique is
inapplicable when the state space is intractably large or even infinite. To mitigate
this problem, large or even infinite sets of concrete states that are equivalent w.r.t.
the property to be analyzed may be aggregated into symbolic states. Model checking
then generates symbolic state spaces consisting of symbolic states and symbolic steps
between them. However, these symbolic state spaces may still be intractably large
depending on the size of the models1 and there is usually no adequate support for
multiple symbolic start states.
In backward model checking, a backward state space is generated from a set of

target states derived from the specification by incrementally adding all steps leading
to states that are already contained in the backward state space. For invariant proper-
ties, the target states are given by the states not satisfying the candidate invariant. As
for model checking, sets of concrete states may be aggregated into symbolic states,
which may also lead to a single symbolic target state. Clearly, in backward model
checking, only backward paths containing exclusively reachable states are significant
but during the analysis also paths containing unreachable states may be generated
requiring techniques to prune such paths as soon as possible.

The technique of k-induction is a variant of bounded backwardmodel checking for
establishing state invariants. In k-induction, generated backward paths are (a) lim-
ited to length k and (b) end in a state violating the candidate invariant. Definite
judgements are derived in two cases. A backward path extended to a start state leads
to candidate invariant refutation and the candidate invariant is confirmed when no
backward path of length k is derivable.

1Approaches such as CEGAR [4] also aim at minimizing symbolic state spaces.
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1 Introduction

In this paper, we extend earlier work on k-induction from [6, 19] by solving the
following open problem.When the system under analysis features concurrency such
as in a multi-agent context, backward steps may be independent as k backward steps
may be performed by k different agents that may be logically/spatially apart. In that
case, the k backward steps do not accumulate knowledge on why the violating graph
could be reached preventing the derivation of a definite judgement. This problem
can even occur when every target state contains a single agent since backward steps
can still introduce further agents. To solve this problem, we introduce several novel
GTS-specific pruning techniques. Firstly, we prune backward paths in which the last
added step does not depend on the already accumulated knowledge. This causality
pruning avoids the inclusion of steps of unrelated agents in a backward path. Sec-
ondly, we prune states containing an agent that is permanently blocked from further
backward steps. This evolution pruning (assuming that agents existed in the start
graph or are created in some step) is required when all backward steps of a certain
agent have been pruned by some other pruning technique (while other agents are
still able to perform backward steps). Thirdly, when a state is removed in evolu-
tion pruning, we propagate this state prunability forward across backward steps
until the blocked agent has an alternative backward step. This evolution-dependency
pruning is, in conjunction with our explicit handling of independent steps, able to
prune also other backward paths (with common suffix) where independent steps
of other agents are interleaved differently. For these three novel pruning techniques,
we ensure that they do not affect the correctness of derived judgements and that our
approach presented here is a conservative extension in the sense that it terminates
whenever the single-agent approach terminated before.2

As a running example, we consider an unbounded number of shuttles driving on
a large-scale track topology, which avoid collisions with each other. As a candidate
invariant to be confirmed, shuttles in fast driving mode should not drive across
construction sites to avoid derailing. To ensure this candidate invariant, warnings
are installed at a certain distance in front of construction sites. Agents in this running
example are the shuttles and backward steps can be performed by different shuttles
on the track topology.However, only the steps of the single shuttle violating the speed
limit at a construction site as well as (possibly) the steps of shuttles that forced the
shuttle to navigate to that construction site are in fact relevant to the analysis. Any
other steps (possibly of shuttles far away on the considered track topology) should
not be considered during analysis. Hence, the novel pruning techniques are designed
to focus our attention on the relevant steps of relevant agents only.
Invariant analysis for GTSs has been intensively studied. Besides the approach

from [19], which is restricted to single-agent GTSs, earlier approaches for establish-
ing invariants for GTSs lack a formal foundation such as [2] or are restricted to

2Intuitively, GTSs have no built-in support for different agents as opposed to other non-flat formalisms
(such as e.g. process calculi) where a multi-agent system is lazily constructed using a parallel
composition operation where interaction steps between agents are then resolved at runtime. For
such different formalisms, causality is much easier to analyze but it is one of the many strengths of
GTSs that agents can interact in complex patterns not restricted by the formalism at hand.
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1 Introduction

k-induction for k = 1 such as [7] or to syntactically limited nested conditions such
as [6]. Moreover, tools such as Groove [12], Henshin [11], and AutoGraph [18]
can be used for invariant analysis if the considered GTSs induce small finite state
spaces. However, there are some approaches that also support invariant analysis for
infinite state spaces. For example, the tool Augur2 [1] abstracts GTSs by Petri nets but
imposes restrictions on graph transformation rules thereby limiting expressiveness.
Moreover, static analysis of programs for GTSs w.r.t. pre/post conditions has been
developed in [16] and [17]. Finally, an approach for the verification of invariants
(similar to k-induction) is considered in [23] where graphs are abstracted by single
so-called shape graphs, which have limited expressiveness compared to the nested
graph conditions used in this work.

The representation of causality and the focus on causally connected steps during
analysis is important in various domains. For example, for Petri nets where tokens
can be understood as agents, event structures and causal/occurrence nets have been
used extensively to represent causality in a given run (see e.g. [15, 21, 22]). Similarly,
causality-based analysis can also be understood as cone of influence-based analy-
sis [3] where events are derived to be insignificant when they are logically/spatially
disconnected from considered events.

This paper is structured as follows. In chapter 2, we recapitulate the technique of k-
induction based on labeled transition systems. In chapter 3,we recall preliminaries on
graph transformation and introduce our running example. In chapter 4, we present
an abstraction of GTSs to symbolic states and steps. In chapter 5, we extend existing
notions capturing causality and compatibility among steps to the employed symbolic
representation. In chapter 6, we discuss the k-induction procedure with the novel
pruning techniques relying on causality and fairness among multiple agents in the
GTS. Finally, in chapter 7, we close the paper with a conclusion and an outlook on
future work.
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2 Labeled Transition Systems and
k-Induction

A Labeled Transition System (LTS) L = (Q, Z : Q B, L, R ⊆ Q × L × Q) consists of
a set of states Q, a state predicate Z identifying start states in Q, a set L of step labels,
and a binary step relation R on Q where each step has a step label from L. An LTS L
represents a state space and induces paths π̃ ∈ Π(L) traversing through its states.
We write L1 ⊆ L2 and L1 ∪ L2 for their componentwise containment and union,
respectively.
A state predicate P : Q B is an invariant of L when P is satisfied by all states

reachable from start states. A shortest violation of an invariant is given by a path π̃

of length n traversing through states si when (a) π̃ starts in a start state and never
revisits a start state (i.e., Z(si) iff i = 0) and (b) π̃ ends in a violating state and never
traverses another violating state (i.e., ¬P(si) iff i = n).
The k-induction procedure attempts to decide whether a shortest violation for

a candidate invariant P exists. For shortest violations, in iteration 0 ≤ i ≤ k the
paths of length i that may be suffixes of shortest violations are generated. That is,
in iteration i = 0, all paths of length 0 consisting only of states q satisfying ¬P(q)
are generated. In iterations i > 0, each path π̃ of length i − 1 starting in state q is
extended to paths π̃′ of length i by prepending all backward steps (q′, a, q) ∈ R such
that P(q′) is satisfied. The k-induction procedure (a) rejects the candidate invariant
P when in some iteration a path starting in a start state is generated, (b) confirms the
candidate invariant P when in some iteration no path is derived, and (c) terminates
without definite judgement when in the last iteration i = k some path is generated.

Pruning techniques restrict the set of generated paths in each iteration to a relevant
subset and only the retained paths are then considered for the the abortion criteria
(a)–(c). While the additional computation that is required for pruning can be costly,
pruning can speed up the subsequent iterations by reducing the number of paths
to be considered in the next iteration. More importantly, pruning may prevent the
generation of paths of length k, which lead to an indefinite judgement. For example,
when A : Q B is an assumed invariant (either established in an earlier application of
the same or another technique or assumed without verification), all paths in which
some state q satisfies ¬A(q) are pruned as in [6, 19] attempting to limit constructed
paths to reachable states. Further pruning techniques introduced later on are de-
signed specifically for the case of GTSs taking the content of states and the nature of
steps among them into account.1
1The computational trade-off between pruning costs and costs for continued analysis of retained
paths will play out differently for each example but, due to the usually exponential number of
paths of a certain length, already the rather simple pruning technique based on assumed invariants
was highly successful in [6, 19] where it was also required to establish a definite judgement at all.
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3 Graph Transformation and Running
Example

Our approach generalizes to the setting of M-adhesive categories and M-adhesive
transformation systems with nested application conditions as introduced in [10].
Nevertheless, to simplify our presentation, we consider the M-adhesive category
of typed directed graphs (short graphs) using the fixed type graph TG from Fig-
ure 3.1a (see [8, 9, 10] for a detailed introduction). In visualizations of graphs such
as Figure 3.1b, types of nodes are indicated by their names (i.e., Si and Ti are nodes
of type Shuttle and Track) whereas we only use the type names for edges. We de-
note the empty graph by ∅, monomorphisms (monos) by f : H H′, and the initial
morphism for a graph H by i(H) : ∅ H. Moreover, a graph is finite when it has
finitely many nodes and edges and a set S of morphisms with common codomain X
is jointly epimorphic, if morphisms g, h : X Y are equal when ∀ f ∈ S. g ◦ f = h ◦ f
holds.

In our running example, we consider an unbounded number of shuttles driving on
a large-scale track topology where subsequent tracks are connected using next edges
(see againTG in Figure 3.1a and the example graph in Figure 3.1b). Each shuttle either
drives fast or slow (as marked using fast or slow loops). Shuttles approaching track-
forks (i.e., a track with two successor tracks) decide non-deterministically between
the two successor tracks. Certain track-forks consist of a regular successor track and
an emergency exit successor track (marked using an ee loop) to be used only to avoid
collisions with shuttles on the regular successor track. Construction sites may be
located on tracks (marked using cs loops) and, to inform shuttles about construction
sites ahead, warnings are installed four tracks ahead of them (marked using warn
edges instead of next edges). To exclude the possibility of shuttles derailing, analysis
should confirm the candidate invariant P stating that shuttles never drive fast on
construction sites. Assumed invariants are used to rule out track topologies with
undesired characteristics such as missing warn edges. Wemodel this shuttle scenario
using a GTS with rules featuring application conditions as well as assumed and
candidate invariants all given by (nested) Graph Conditions (GCs). For this purpose,
we now recall GCs and GTSs in our notation.

The graph logic GL from [10] allows for the specification of sets of graphs and
monos using GCs. Intuitively, for a host graph G, a GC over a finite subgraph H of
G given by a mono m : H G states the presence (or absence) of graph elements
in G based on m. In particular, the GC ∃( f : H H′, φ′) requires that m must be
extendable to a match m′ : H′ G of a larger subgraph H′ where the nested sub-GC
φ′ restricts m′. The combination of propositional operators and the nesting of exis-
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3 Graph Transformation and Running Example

tential quantifications results in an expressiveness equivalent to first-order logic on
graphs [5].
Definition 1 (Graph Conditions (GCs)). If H is a finite graph, then φ is a graph
condition (GC) over H, written φ ∈ GC(H), if an item applies.
• φ = ¬φ′ and φ′ ∈ GC(H).
• φ = ∨(φ1, . . . , φn) and {φ1, . . . , φn} ⊆ GC(H).
• φ = ∃( f : H H′, φ′) and φ′ ∈ GC(H′).

Note that the empty disjunction∨() serves as a base case not requiring the prior ex-
istence ofGCs.Weobtain the derived operators false⊥, true>, conjunction∧(φ1, . . . , φn),
and universal quantification ∀( f , φ) in the expected way.
We now define the two satisfaction relations of GL capturing (a) when a mono

m : H G into a host graph G satisfies a GC over H and (b)when a graph G satisfies
a GC over the empty graph ∅.
Definition 2 (Satisfaction of GCs). A mono m : H G satisfies a GC φ over H,
written m |= φ, if an item applies.
• φ = ¬φ′ and ¬(m |= φ′).
• φ = ∨(φ1, . . . , φn) and ∃1 ≤ i ≤ n. m |= φi.
• φ = ∃( f : H H′, φ′) and ∃m′ : H′ G. m′ ◦ f = m ∧ m′ |= φ′.
A graph G satisfies a GC φ over the empty graph ∅, written G |= φ, if the (unique)
initial morphism i(G) : ∅ G satisfies φ.

For our running example, (a) the GC φAI from Figure 3.1h expresses the assumed
invariant stating that there is always a warning preceding each construction site1,
(b) theGC φCI fromFigure 3.1i expresses the candidate invariantP stating that there is
no fast shuttle at a track with a construction site, and (c) the GC φSC from Figure 3.1g
expresses that there is no fast shuttle already in the critical section between awarning
and a construction site. Note that in visualizations of GCs, we represent monos f :
H H′ in quantifications by only visualizing the smallest subgraph of H′ containing
H′ − f (H).
We rely on the operation shift from e.g. [10] for shifting a GC φ over a graph H

across a mono g : H H′ resulting in a GC shift(g, φ) over H′. The following fact
states that GC shifting essentially expresses partial GC satisfaction checking for a
morphism decomposition f ◦ g.
Fact 1 (Operation shift [10]). f |= shift(g, φ) iff f ◦ g |= φ

GTSs with multiple start graphs are now defined by specifying these start graphs
using a GC over the empty graph. We employ the Double Pushout (DPO) approach
to graph transformation with nested application conditions (see [8, 9, 10] for details)
inwhich rules contain twomorphisms ` : K L and r : K R describing the removal
of the elements in L − `(K) and the addition of elements in R − r(K) as well as a
left-hand side (nested) application condition given by a GC over L to be satisfied by
the match morphism.

1To ease the presentation, we omit further assumed invariants excluding graphs with duplicate next
edges or tracks with more than two successor/predecessor tracks.
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3 Graph Transformation and Running Example

Definition 3 (Graph Transformation System (GTS)). A pair S = (φ0, P) is a graph
transformation system (GTS), if φ0 is a GC over the empty graph ∅ and P is a finite set
of graph transformation rules (short rules) of the form ρ = (` : K L, r : K R, φ)

where L, K, and R are finite and φ is a GC over L.
If G, G′ are graphs, σ = (ρ, m : L G, n : R G′) is a step label containing a rule

ρ = (` : K L, r : K R, φ) of S, a match m,2 and a comatch n, the DPO diagram in
Figure 3.2a exists, and m |= φ, then G σ G′ is a (GT) step of the LTS Lgraphs induced
by the GTS S. Also, the notion of derived rules drule(σ) = ( f , g, shift(m, φ)) captures
the transformation span of the step and the instantiated application condition.

For our running example, we employ the GTS S = (φSC ∧ φCI, {ρdrive, ρdriveEE,
ρwarnS, ρwarnF}) using the GCs and rules from Figure 3.1. For each rule, we use an
integrated notation in which L, K, and R are given in a single graph where graph
elements markedwith	 are from L− `(K), graph elements markedwith⊕ are from
R − r(K), and where all other graph elements are in K. The application condition of
each rule is given on the left side of the . symbol. The rule ρdrive states that a shuttle
can advance to a next track T2 when no other shuttle is on T2 and when T2 is not
marked to be an emergency exit. The rule ρdriveEE states that a shuttle can advance to
a next track T2 marked to be an emergency exit when the regular successor track T3

is occupied by another shuttle. The rule ρwarnS states that a slow shuttle can advance
to a next track T2 passing by a warning when no other shuttle is on T2. Finally, the
rule ρwarnF states that a fast shuttle can slow down and advance to a next track T2

passing by a warning when no other shuttle is on T2.
To accumulate the knowledge captured in application conditions and the candi-

date invariant over steps of a backward path, we employ the operation L from e.g.
[10] for shifting a GC φ′ over a graph R across a rule ρ = (` : K L, r : K R, φ) re-
sulting in aGC L(ρ, φ′) over L. The following fact states that the operation L translates
post-conditions of steps into equivalent pre-conditions.
Fact 2 (Operation L [10]). G ρ,m,n G′ implies (m |= L(ρ, φ′) iff n |= φ′).

For our running example, we expect the k-induction procedure to confirm the
candidate invariant φCI for k ≥ 4 realizing that a fast shuttle at a construction site
must have passed by a warning 4 steps earlier due to the assumed invariant φAI,
which ensures that the shuttle drives slowly onto the construction site later on.3
When applying the k-induction procedure, we start with the minimal graph Gvio
representing a violation (see the graph used in φCI in Figure 3.1i). To extend a given
backward path from G to Gvio by prepending a backward step using a certain rule,
we first extend G to a graph E by adding graph elements to then be able to apply
the rule backwards to E (as discussed in more detail in the next section based on a
symbolic representation of states and steps). Consider the graph Gex in Figure 3.1b,

2Note that our approach extends to the usage of general match morphisms.
3The candidate invariant φCI could also be violated because (a) it is not satisfied by all start graphs
(which is excluded since φSC ∧ φCI captures the start graphs of the GTS), (b) a slow shuttle becomes
a fast shuttle between a warning and a construction site (for which no rule exists in the GTS), and
(c) a pair of a warning and a construction site could wrap a fast shuttle at runtime (for which no
rule exists in the GTS).
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3 Graph Transformation and Running Example

which can be reached using this iterative backward extension from Gvio by a path
of length 5 (see Figure A.1a). Since the relevant shuttle S1 has no further enabled
backward step from Gex according to the rules of the GTS (because fast shuttles cannot
advance backwards overwarn edges), any path leading to Gex and any other path that
varies by containing additional/fewer/differently ordered independent steps can be
pruned (as discussed in more detail in chapter 6). For example, the similar path (see
Figure A.1b) where the shuttle S2 has only been moved backwards to T6 is pruned as
well. Hence, with such additional pruning techniques, we mitigate the problem that
the relevant shuttle S1 does not move backwards in every backward step of every
path. Instead, it is sufficient that S1 is being moved backwards three times in some
path. Still, all interleavings of backward steps must be generated (since, for arbitrary
GTSs, it cannot be foreseen which interleaving results in a prunable path later on)
but pruning one of these paths can result in the pruning of many further paths.
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3 Graph Transformation and Running Example
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(a) Type graph TG.
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(b) Example graph Gex.
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without emergency exit.
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(d) Rule ρdriveEE: shuttle moves to free emer-
gency exit track.
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(e) Rule ρwarnS: slow shuttle passes warning
to free track.

T1 T2

S1

warn
at	 at⊕

fast	 slow⊕
.

T2

S2

at¬∃ ,>

(f) Rule ρwarnF: fast shuttle passes warning
to free track and slows down.

T1 T2 T3 T4 S1
warn next next fast∀ ,

S1 T2
at¬∃ ,> S1 T3

at∧¬∃ ,> S1 T4
at∧¬∃ ,>

(g) Start condition φSC: there is no fast shuttle on the three tracks following a warning.

T2 T3 T4 T5
next next next cs∀ , T1 T2

warn∃ ,> T1 T2
next∧¬∃ ,>

(h) Assumed invariant φAI: there is a warning precisely four tracks ahead of any construc-
tion site on any branch of tracks leading to the construction site.

T1S1
at csfast¬∃ ,>

(i) Candidate invariant φCI = ¬∃(i(Gvio),
>): no fast shuttles on construction sites.

T2 S1
at fastT1

warn∃ ,>

(j) Blocked agent GC φBA: fast shuttles can-
not move backwards across warnings.

Figure 3.1: Running example
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(a) Visualization for Def. 3.
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(b) Visualization for Def. 4 and Def. 5.

Figure 3.2: Visualizations for definitions
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4 Symbolic States and Steps

Following [19], concrete states of a GTS are given by graphs and its symbolic states
are given by pairs (G, φ) of a graph G and a GC φ over G. A symbolic state (G, φ)

represents all graphs H for which some m : G H satisfies φ.
This symbolic representation extends to GT steps and symbolic steps and paths

thereof. To obtain a backward step from a state (G, φ) (cf. Figure 3.2b), (i) G is
overlapped with the right-hand side graph R of some rule ρ where the overlapping
consists of the comatch n of the backward step and the embedding morphism e and
(ii) the GC φ and the application condition φac of the rule are shifted to the resulting
symbolic state (G′, φ′). As discussed before, further graph elements are added using
e as required for the k-induction procedure in which we start with (usually very
small) graphs representing violations and then accumulate additional context also
in terms of additional graph elements.
Definition 4 (Symbolic Step). If (G′, φ′) and (G, φ) are symbolic states, ρ = (` :
K L, r : K R, φac) is a rule, σ = (ρ, m : L G′, n : R E) is a step label, G′

σ

E is a DPO step, e : G E is a mono, e and n are jointly epimorphic, and φ′ =

L(drule(σ), shift(e, φ)) ∧ shift(m, φac), then (G′, φ′) σ,e (G, φ) is a symbolic step of
the LTS Lsymb induced by the GTS S (see Figure 3.2b).

To obtain concrete paths π̂ represented by a symbolic path π, the implicit require-
ments given by the GCs in symbolic states and the incremental context extensions
via monos e are resolved. This entails a forward propagation of additional graph
elements resulting in a consistent perspective throughout all graphs traversed in π̂.
However, making these additional graph elements explicit may change satisfaction
judgements for application conditions and assumed or candidate invariants imply-
ing that a symbolic path may represent no concrete path relevant in the context of
k-induction or even no concrete path at all. Since some pruning techniques require
that we are able to operate on the symbolic step relation, we only concretize symbolic
paths using forward propagation that may represent concrete paths being shortest
violations.
Definition 5 (Concretization of Symbolic Path). Aconcrete path π̂ is a concretization
of a symbolic path π with first state (G′, φ′) for a mono m′ : G′ H′ satisfying φ′,
written π̂ ∈ refine(π, m′), if an item applies.
• π = (G′, φ′) and π̂ = H′.
• π = (G′, φ′) · σ · e · (G, φ) · π′, σ = (ρ, m, n), σ′ = (ρ, m′ ◦ m, n′ ◦ n), H′

σ′ H,
π̂′ ∈ refine((G, φ) · π′, n′ ◦ e), and π̂ = H′ · σ′ · π̂′ (see Figure 3.2b).

The symbolic representation given by symbolic paths is complete in the sense
of the following lemma stating that the concrete paths of a GTS correspond to the
concretizations of all symbolic paths.

18



4 Symbolic States and Steps

Lemma 1 (Full Coverage). Π(Lgraphs) =
⋃{refine(π, m′) | π ∈ Π(Lsymb)}

See page 32 for the proof of this lemma.

For our running example, the violating symbolic state used for the symbolic paths
of length 0 during k-induction is (Gvio,>) (see Figure 3.1i). Note that we implicitly
rewrite symbolic states (G, φ) into symbolic states (G′, φ′) using the symbolic model
generation technique from [20] to accumulate all positive requirements of G and
φ in the graph G′ and to store the remaining negative requirements (stating how
G′ cannot be extended) in φ′. Without this technique, k-induction would be limited
to candidate invariants of the form ¬∃(i(G),>) and graph patterns required by
positive application conditions would not be explicitly contained in the graph and
could therefore not be overlapped leading to indefinite judgements in some cases.
However, if multiple states (G′, φ′) are obtained using this rewriting, we would
perform k-induction for each of these states separately. For the running example,
(Gvio,>) is obtained by rewriting (∅,¬¬∃(i(Gvio),>)) using this technique.
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5 Causality and Independence in GTS

According to [8, p. 8] in the context of GTSs, causal independence of rule applications
allows for their execution in arbitrary order.

In the general setting of an LTSL, considering Figure 5.1a, (a) the two parallel steps
with source s3 (to s1 and s2), (b) the two parallel steps with target s0 (from s1 and s2),
(c) the two sequential steps traversing through s1 (from s3 and to s0), or (d) the two
sequential steps traversing through s2 (from s3 and to s0) are independent iff the re-
spective remaining two steps exist resulting in the square given in Figure 5.1a (which
we represent by ((s3, b2, s1), (s1, a1, s0), (s3, a2, s2), (s2, b1, s0)) ∈ SQ(L)) where, for
x ∈ {a, b}, the labels x1 and x2 are required to be equivalent in an LTS specific sense
in each case (a)–(d). Clearly, in such an obtained square, each pair of sequential
steps is sequentially independent and each pair of parallel steps (with common
source/target) is parallel independent.
Subsequently, we call two successive steps causally connected when they are se-

quentially dependent and, correspondingly, two alternative steps incompatible when
they are parallel dependent. In the context of k-induction where steps are derived
backwards, we primarily consider parallel independence for steps with common
target graph.
Sequential and parallel independence for common source graphs have been for-

malized forGTSs in [10] (see alsoDefinition 6 on page 32 for their formal definitions).
The reverse notion of parallel independence for common target graphs is derived as
expected essentially relying on the fact that GT steps can be reversed by applying the
reversed rule. The Local Church-Rosser Theorem (see [10, Theorem 4.7]) provides
the results corresponding to the discussion for LTSs from above. Technically, for
concrete GT steps, for x ∈ {a, b}, two step labels σx1 and σx2 must then use the same
rule and must match essentially the same graph elements.1 Moreover, for symbolic
steps, for x ∈ {a, b}, we additionally require that the step labels σx1 , ex1 and σx2 , ex2

state the same extensions using ex1 and ex2 .2
We use the operation linearize to obtain all linearizations for a given set of parallel

steps with common target. For example, given the two parallel steps with target s0 in
Figure 5.1a, linearize constructs the two further backward steps and the square given
in Figure 5.1a when the two steps are parallel independent and no further backward
steps and no square otherwise. In general, for a given LTS L and a subset δ ⊆ Q ×
L × Q of size n ≥ 0 of parallel steps of L with common target, linearize(δ) = (sq, δ′)

generates the set sq ⊆ SQ(L) of all squares that can be constructed by rearranging
1The considered GT steps must preserve the matched graph elements and thereby explain how one
match is propagated over a GT step resulting in the other match.

2Similarly to the requirement on matches, which must essentially match the same graph elements,
the extension monos must extend the graphs with the same graph elements up to the propagation
along the considered symbolic steps.
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5 Causality and Independence in GTS
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(a) Square of four steps.
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(b)Multiple squares obtained by iterative linearization.

Figure 5.1: Linearization of parallel independent backward steps

those parallel steps into corresponding sequences of length at most n and a set δ′ of
all generated steps including δ. More precisely, linearize iteratively constructs a square
for each pair of distinct parallel independent steps with common target (considering
for this the steps from δ and all steps generated already).3 For the cases of n = 0 and
n = 1 no additional steps are generated. For the cases of n = 2 and n = 3, Figure 5.1a
and Figure 5.1b depict the maximal set δ′ of resulting steps that may be generated
when all pairs of distinct parallel steps are parallel independent throughout the
application of linearize (note that we omit in Figure 5.1b the differentiation between
different ai, bi, and ci steps for improved readability).

When some pair of steps with common target is not parallel independent (which
is often the case), fewer squares and steps are generated.

3For concrete GT steps, we rely on [10, Theorem 4.7] to obtain a construction procedure for the
operation linearize. Also, this construction procedure extends to the case of symbolic steps as the
additional GCs in symbolic states are extended precisely by the application conditions of the two
involved rules in exchanged order only.
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6 Causality-Based k-Induction and
Pruning Techniques

We now present our adaptation of the k-induction procedure from chapter 2 defined
on an arbitrary LTS Lc but apply this procedure later on only to the LTS Lsymb in-
duced by the symbolic step relation from chapter 4. Hence, Lc is only assumed to
be available in terms of its step relation and a method for identifying start states
as well as states satisfying the assumed invariant.1 Hereby, we rely on the notion
of parallel independence of steps with common target and linearizations of such
steps resulting in sequences of sequentially independent steps as introduced in the
previous section. The paths derived within this procedure consist then of steps from
Lc and are given in the procedure by a partial LTS Lp contained in the complete
LTS Lc. The k-induction procedure has a start state q0 and modifies this state up to k
times using a single step of type Q Q as explained subsequently in more detail.
States of k-induction: The traversed states q ∈ Q are of the form (Lc,Lp, N, sq)where

Lc = (Qc, Zc, Lc, Rc) is the complete LTS as discussed above, Lp = (Qp, Zp, Lp,
Rp) ⊆ Lc is a partial LTS contained in Lc recording the steps derived so far, N ⊆ Qp

is the subset of states to be considered next, and sq ⊆ SQ(Lc) records the derived
squares of independent steps.
Start state of k-induction: For a given complete LTS Lc and a state q0 ∈ Qc violating

the candidate invariant from which backward paths are constructed, the start state
q0 of k-induction is given by q0 = (Lc, ({q0}, ∅, ∅, ∅), {q0}, ∅).
Single step of k-induction: The single step of k-induction executes (a) the operation

extend : Q Q generating additional steps with target in N, extending the LTS Lp

by these steps and all further steps obtained using linearization, and then (b) the
operation prune : Q Q applying pruning techniques. The operation extend first
derives the set δ = {(q, a, q′) ∈ Rc | q′ ∈ N} of all backward steps with target
in N and generates all linearizations linearize(δ) = (sqext, δext) of these steps.2 The
operation extend then returns extend(q) = q′ = (Lc,L′

p, N′, sq′) where L′
p = Lp ∪

Lext is obtained by merging the previous partial LTS with the extension Lext =

1A symbolic state (G, φ) satisfies the start state condition φSC (or analogously an assumed invariant
φAI) iff φ ∧ φSC is satisfiable. The model generation procedure from [20] implemented in the tool
AutoGraph [18] can be used to check GCs for satisfiability (if it returns unknown, the problem
must be delegated to the user for φSC and satisfiability may be assumed for φAI). If φ ∧ ¬φSC (or,
analogously, φ ∧ ¬φAI) is also satisfiable, not every concretization of paths (G, φ) · π will be a
violation. This source of overapproximation can be eliminated using splitting of states as in [19].

2Note that, due to linearization, Rp may already contain some of the steps derived here. By implicitly
comparing steps derived here to those in Rp, we ensure to not derive isomorphic copies of steps.
Also, two distinct parallel independent steps do not need to be linearized if not both steps are
already contained in Rp.
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6 Causality-Based k-Induction and Pruning Techniques

(1)(2, 6)(3, 6)(4, 6)

(2, 7)(3, 7)(4, 7)

(2, 8)(3, 8)(4, 8)

Figure 6.1: Fragment of backward state space constructed for running example. We
abbreviate symbolic states by only providing a tuple of the track numbers on which
shuttles are located. See Figure 3.1b for the graph part of state (4,8)

(Q′
p, {q 7→ Zc(q) | q ∈ Q′

p}, {a | (q, a, q′) ∈ δ}, δext) containing all steps derived in
the current iteration using the set of all states Q′

p = {q | (q, a, q′) ∈ δext} derived in
the current iteration, N′ = {q | (q, a, q′) ∈ δ} contains all predecessor states of those
in N, and sq′ = sq ∪ sqext additionally includes all squares derived in the current
iteration. The operation prune is then applied to q′ and discussed separately below.
For our running example, consider Figure 6.1 where, initially in state (1), there

is a single (fast) shuttle S1 located on track T1. A second shuttle S2 is then added
onto track T6 in the first backward step to (2,6). When reaching the state (4,8), of
which the graph part is given in Figure 3.1b, the shuttles S1 and S2 moved backwards
three and two times, respectively. See also Figure A.1a for this backward path from
(4, 8) to (1) and an additional backward path in Figure A.1b from (4, 6) to (1), which
is also included in abbreviated form in Figure 6.1. The pruning of state (4, 6) in
Figure A.1b due to the blocked agent (given by the shuttle S1) leads to the pruning
of also the states (3, 6), (2, 6), and (1) in Figure A.1b and consequently also the path
in Figure A.1a.
Termination condition of k-induction: The k-induction procedure applies the single

step up to k times on the start state q0. When a state is derived with N = ∅, the
procedure concludes satisfaction of the candidate invariant. When a state is derived
with Zp mapping some state q to >, the procedure concludes non-satisfaction of the
candidate invariant and returns (Lp, q) as a counterexample. When the single step
has been applied k times and none of the previous two cases applies, the procedure
returns an indefinite judgement.
GTS-specific pruning: For the GTS setting where Lc = Lsymb as discussed above, we

now present five pruning techniques (where the first two have been used already in
[6, 19]), which are used to remove certain states (and all steps depending on these
states) recorded in the partial LTS L′

p.
For assumed invariant pruning, we remove all states not satisfying the assumed

invariant φAI as in prior work on GTS k-induction. For our running example, when
moving the shuttle S1 backwards from (4,6), a next edge is added leading to track
T4, which is forbidden by the assumed invariant φAI from Figure 3.1h. Hence, this
backward step of that shuttle is pruned.
For realizability pruning, we first determine states q that are identified to be start

states via Zp(q) = >. Since each such state q represents a violating path leading to
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6 Causality-Based k-Induction and Pruning Techniques

the refutation of the candidate invariant at the end of the iteration, we attempt to
exclude false positives where each symbolic path π in Lp from q to the violating state
q0 cannot be concretized to a GTS path according to Definition 5. For this purpose, for
q = (G, φ), we use the model generation procedure from [20] to generate extensions
m : G G′ satisfying φ ∧ φSC ∧ φAI. We then attempt to concretize some symbolic
path π from q to q0 to a concrete path π̂ using m. If some π̂ is obtained representing a
shortest violation, the k-induction procedure terminates after this iteration refuting
the candidate invariant. If the model generation procedure does not terminate, q
may be a false positive and the k-induction procedure terminates with an indefinite
judgement. However, if both cases do not apply, q is removed from L′

p.
Certainly, any derived state q may not allow for a concretization along the same

lines. However, not checking each such state for realizability along the same lines
may only lead to indefinite judgements and there is a trade-off between the cost
for realizability pruning and the cost of exponentially more backward extensions
leading to q to be generated and analyzed.

For causality pruning, a state q′ is pruned when there is some symbolic backward
step q′ (ρ,m,n),e q where n and e have non-overlapping images. We thereby ensure
that the number of weakly connected components3 of the graph under transforma-
tion does not increase over backward steps. For our running example, we prune
states where further shuttles are added that are structurally not connected to the sub-
graph originating from the start state. Note that further shuttles can still be included
as for the graph in Figure 3.1b where the shuttle S2 has been added according to the
rule ρdriveEE used in the first backward step.
For evolution pruning, a state q is pruned when it contains an agent (given in our

running example by shuttles) for which permanent blockage is detected. Note that,
as explained in chapter 1, the inability of some agent to partake in a backward step
does not preclude the ability of some other agent to partake in a backward step.
Hence, when not removing such states, irrelevant steps of additional agents may
prolong analysis or even prevent definite judgements. Also note that an agent is in
general allowed to be blocked forever when it reaches its local configuration in a
start graph of the GTS allowing other agents to perform backward steps to jointly
reach a start graph. Since GTSs are Turing complete, no precise identification of such
agents can be achieved and, to preclude the derivation of incorrect judgements, we
must underapproximate the set of such agents. Technically, we attempt to identify all
agents in states q that will unexpectedly never again be able to partake in a backward
step using an additional blocked agent GC φBA. Such a blocked agent GC is (a finite
disjunction of GCs) of the form ∃(i(H),>) where H represents a minimal pattern
containing a blocked agent. For our running example, see Figure 3.1j for the GC φBA

capturing a fast shuttle (i.e., an agent) that is blocked by not being able to move
backwards across a warn edge. To maintain soundness of k-induction, we can verify
the blocked agent GC φBA by checking that there is no symbolic backward step from
(H,>) preventing that any further backward steps from q can reach a state where

3Two nodes n1 and n2 of a graph G are in a common weakly connected component (given by a set
of nodes of G) of G iff there is a sequence of the edges of G from n1 to n2 where edges may be
traversed in either direction.
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6 Causality-Based k-Induction and Pruning Techniques

the matched agent can partake in a backward step. A state q = (G, φ) is then pruned
using the blocked agent GC φBA when ∃(i(G), φ) ∧ φAI ∧ φBA is satisfiable. For our
running example, the shuttle S1 is blocked according to the GC φBA in the states
(4,6), (4,7), and (4,8) (marked blue in Figure 6.1), which are therefore pruned.

For evolution-dependency pruning, we extend the state-based evolution pruning
to a step- and square-based pruning technique propagating the information about
blocked agents forward across steps. In particular, given a step (q′, a, q) where q′

was pruned (due to a blocked agent), q is also pruned unless there is a backward
step (q′′, b, q) to a non-pruned state q′′ that is parallel dependent to (q′, a, q). The
step (q′′, b, q) then potentially represents an alternative backward path not leading
to a blocked agent.4 However, only relying on the notion of parallel independence,
considering steps from a global perspective and not tracking which agents actu-
ally participated in the two backward steps, can lead to an underapproximation of
the steps that can be pruned, potentially leading to avoidable indefinite returned
judgements.5 That is, backward steps of two distinct agents can be parallel depen-
dent, which would then not allow to propagate the knowledge of one of them being
blocked forwards. Constructing explicitly the squares in our backward state space
generation procedure is essential for dissecting alternative backward steps. The for-
ward propagation of prunability thereby allows to prune states and hence also all
other paths traversing through these additionally pruned states where different step
interleavings (of other agents) are executed (hence assuming that the blocked agent
would be treated unfairly in all these other paths).

The usage of squares in k-induction supports evolution-dependency pruning since
pruning a state also prunes all paths traversing through it, which would not be
the case when we would construct a set of (disconnected) backward sequences
or a tree (or forest) of backward steps. Moreover, minimizing the size of the state
space representation using squares reduces the number of states for which blocked
agents must be detected and from which evolution-dependency pruning must be
performed. Also, when only constructing backward sequences instead, there would
e.g. in our running example be a backward path notmoving the initially given shuttle
S1 backwards to a situation where that shuttle would be blocked. Hence, employing
a directed acyclic graph given by the square-based compressed backward state space,
we can easily detect states occurring in different backward paths and thereby do not
need to treat fairness among different agents beyond generating the backward state
space using breadth-first search.

For our running example, the pruning of the state (4,6) and the non-existence of a
backward step parallel dependent to the step from (4,6) to (3,6) leads to the pruning
of the state (3,6) as well. Analogously, the states (2,6) and then (1) are also pruned
leaving an empty state space, which leads to termination and candidate invariant
confirmation at the end of the iteration.

Finally, we state that the presented k-induction procedure is sound and at least as
complete as the previous variants from [6, 19].

4Parallel independent backward steps are always performed by different agents.
5This pruning technique can be refined by attributing agents to steps to then determine prunable
states with greater precision complicating forward propagation.
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6 Causality-Based k-Induction and Pruning Techniques

Theorem 1 (Soundness of k-Induction). For a given GTS S, a candidate invariant φCI,
an assumed invariant φAI, and a blocked agent GC φBA, the k-induction procedure
confirms/refutes φCI only if φCI is an invariant/is no invariant. Also, it returns such
a definite judgement whenever the k-induction procedure from [6, 19] without the
novel pruning techniques and the use of causality and independence did.

Proof (Sketch). Extending [6, 19], we only need to ensure that the novel pruning
techniques never prune states/paths that would otherwise be extended to shortest
violations (the pre-existing assumed invariant pruning and realizability pruning do
not need to be reexamined here). Causality pruning only removes steps where a
disconnected agent is introduced: these steps can never help in gathering knowledge
about the past of the actors involved in the violation and, moreover, the inclusion of
such disconnected agents can always be delayed to later steps where they are then
connected to a part of the current graph. The validity of the blocked agent GC φBA

ensures that evolution pruning only prunes states containing an agent permanently
blocked precluding the reachability of a start graph of the GTS. Evolution-depen-
dency pruning then only prunes states/paths from which that agent unavoidably
reaches such a blocking situation lacking alternative backward steps.
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7 Conclusion and Future Work

We extended the k-induction procedure from [6, 19] to support the verification of
state invariants also for multi-agent GTSs. The presented extension relies on novel
pruning techniques determining generated backward paths that cannot be extended
to paths capturing a violation of the candidate invariant. It only returns sound judge-
ments on candidate invariants, succeeds when the prior versions in [6, 19] did, and
succeeds for additional multi-agent GTSs.
In the future, we will extend our approach to Probabilistic Timed Graph Trans-

formation Systems (PTGTSs) [13] in which dependencies among agents are also
induced by the use of clocks (as in timed automata). This additional coupling among
agents will complicate our analysis but will also reduce the number of possible back-
ward paths to be constructed. Moreover, we will extend our prior implementations
on k-induction to the presented approach and will evaluate the expected perfor-
mance gain when restricting backward steps to a fixed underlying static topology
fragment as in [14].
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A Two Backward Paths

In this appendix, we provide two backward paths in Figure A.1, which have been
given in quite abbreviated form already in Figure 6.1. The pruning of state s0 in
Figure A.1b due to the blocked agent (given by the shuttle S1) leads to the pruning
of also the states s1–s3 in Figure A.1b and consequently also the path in Figure A.1a.
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(a) Longest backward path in Figure 6.1 leading to a blocked agent.
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(b) Shortest backward path in Figure 6.1 leading to a blocked agent.

Figure A.1: Two backward paths
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B Additional Results and Proofs

In this appendix, we give more technical details for some used concepts and notions
as well as provide proofs for stated lemmas.

Proof for Lemma 1, p. 19: Full Coverage. We show equality by mutual inclusion.
• Direction ⊆:

We show that every concrete path π̂ ∈ Π(Lgraphs) starting in a graph G is in
refine(π, id(G)) where π ∈ Π(Lsymb) is equal to π̂ but with all e monos being
identities and all additional GCs being >. We proceed by induction.
◦ Fix π̂ = G′, m′ = id(G′), and π = (G′,>). Then π̂ ∈ refine(π, id(G′)) since

id(G′) |= >.
◦ Fix π̂ = G′ · σ · G · π̂′, m′ = id(G′), and π = (G′, φ′) · σ · id(G) · (G, φ) · π′

where G · π̂′ ∈ refine((G, φ) · π′, id(G)) by induction. Also fix σ = (ρ, m, n).
Then π̂ ∈ refine(π, id(G)) since id(G) |= > and (for well-formedness of π, we
have G′

σ G directly from π̂ being a path) G′
σ′ G with σ′ = (ρ, id(G′) ◦

m, id(G) ◦ n) = σ from the well-definedness of π.
• Direction ⊇:

We show that every concretization π̂ of a symbolic path π can be generated ac-
cordingly directly from the GTS. We proceed by induction.
◦ Fix π = (G′, φ′), m′ with m′ |= φ′, and π̂ = G′. Then π̂ ∈ Π(Lgraphs).
◦ Fix π = (G′, φ′) · σ · e · (G, φ) · π′, σ = (ρ, m, n), m′ : G′ H′ with m′ |= φ′,

π̂ = H′ · σ′ · π̂′, σ′ = (ρ, m′
2 ◦ m, n′

2 ◦ n), and G′
σ′ G where π̂′ ∈ Π(Lgraphs) ∩

refine((G, φ) · π′, n′ ◦ e) by induction. Then π̂ ∈ Π(Lgraphs) since G′
σ′ G.

According to [10], the formal definition of parallel and sequential independence
of GT steps with Application Conditions (ACs) is as follows.
Definition 6 (Parallel and Sequential Independence [10, Def. 4.3]). A pair of GT
steps G1 σ1 H1 and G1 σ2 H2 is parallel independent (written parindep(σ1, σ2)), if
there are morphisms d12, d21 such that f2 ◦ d12 = m1, f1 ◦ d21 = m2, g1 ◦ d21 |= φ2,
and g2 ◦ d12 |= φ1.

R1 K1 L1 L2 K2 R2

H1

/

φ1

/

φ2

D1 G D2 H2

`1r1

n1 k1 m1

g1 f1

`2 r2

m2 k2 n2

f2 g2

d21 d12

Also, the GT steps in a set S are parallel independent, written parindep(S), when all
pairs of GT steps in S are pairwise parallel independent.
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A pair of GT steps G1 σ1 G2 and G2 σ2 G3 is sequentially independent (written
seqindep(σ1, σ2)), if there aremorphisms d12, d21 such that f2 ◦ d12 = n1, g1 ◦ d21 = m2,
f1 ◦ d21 |= φ2, and g2 ◦ d12 |= R(ρ1, φ1). 1

L1 K1 R1 L2 K2 R2

G1

/

φ1

/

φ2

D1 G2 D2 G3

`1 r1

m1 k1 n1

f1 g1

`2 r2

m2 k2 n2

f2 g2

d21 d12

In our k-induction procedure, we apply the operation linearize to a set of steps δ.
In this case, some permutation of parallel independent steps in δ may not allow for
a sequence of sequentially independent steps.
In particular, already in the first iteration, parallel independence of steps is not

transitive (e.g. the pairs of steps ((s1, a, s0), (s2, b, s0)) and ((s2, b, s0), (s3, c, s0)) may
be parallel independent in Figure 5.1b without the pair of steps ((s1, a, s0), (s3, c, s0))

also being parallel independent). For example, given the rules (in simplified nota-
tion) ρ1 : ∅ ⇒ a, ρ2 : ∅ ⇒ b, ρ3 : a ⇒ ac, and the GT steps bc ρ1 abc, ac ρ2 abc,
and ab ρ3 abc, there is no step using ρ3 with target graph bc showing that the steps
using ρ1 and ρ3 are parallel dependent.
Moreover, parallel independence of steps is not necessarily preserved under the

square construction (e.g. all pairs of distinct steps with target s0 may be parallel
independent in Figure 5.1b but some pair of distinct steps with common target may
be parallel dependent in the second iteration). While parallel independence is pre-
served under square construction in this sense for graph transformation without
ACs (see Lemma 2 below), this is not the case for graph transformation with ACs
(see Example 1|p.37).

Lemma 2 (Preservation of Parallel Independence Without ACs). For the case of GT
steps using rules without ACs, we state that if the GT steps in {σ1, σ2, σ3} are pairwise
parallel independent and the operation linearize constructs for {σ1, σ2} the GT steps
{σ1, σ2b} and for {σ1, σ3} the GT steps {σ1, σ3b}, then the GT steps in {σ2b, σ3b} are
parallel independent.

Proof. The proof of the Local Church-Rosser theorem (see [10, Theorem 4.7] for the
case with ACs and [8, Theorem 5.12] for the case without ACs) provides a construc-
tion procedure for the operation linearize. The present lemma merely needs to show
that the two applications of that procedure allow afterwards for the construction of
the required morphisms to show that the steps σ2b and σ3b are parallel independent.
First, we briefly recall how these two steps are obtained using the existing construc-
tion procedure without repeating the explanations for correctness. Afterwards, we
show the existence of the required morphisms.
We begin with the parallel independence diagram from Definition 6 satisfying

f2 ◦ d12 = m1, f1 ◦ d21 = m2, g1 ◦ d21 |= σ2.rule.ac, and g2 ◦ d12 |= σ1.rule.ac where
1Here, R((`, r, φ), φ) = L((r, `,>), φ). Note that the AC of the rule is irrelevant for L and that our
rules use only left-hand side ACs to ease the presentation overall.
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the notation σ.rule.ac is used to extract the AC of the rule used in the step σ. However,
as stated in the lemma, we consider here only rules without ACs, i.e., we require all
ACs to be > meaning that they are trivially satisfied.
We follow [8, Theorem 5.12] for the case without ACs. We construct the pullback

(D12, p12, p21) of ( f1, f2).
• The morphism j12 is obtained from the universal property of that pullback for
(k1, d12 ◦ `1) satisfying p12 ◦ j12 = k1 and p21 ◦ j12 = d12 ◦ `1.

• (Analogously to the previous item) The morphism j2 is obtained from the uni-
versal property of that pullback for (k2, d21 ◦ `2) satisfying p21 ◦ j21 = k2 and
p12 ◦ j21 = d21 ◦ `2.

Then, (D2, d12, p21) is a pushout of the pair (`1, j12), (D1, d21, p12) is a pushout of the
pair (`2, j21), and (G, f1, f2) is a pushout of the pair (p12, p21).
• We construct the pushout (D′

21, h12, t12) of (j12, r1). The morphism s12 is obtained
from the universal property of that pushout for (n1, g1) satisfying s12 ◦ t12 = n1

and s12 ◦ h12 = g1 ◦ p12. Then, (H1, s12, g1) is a pushout of (h12, p12).
• (Analogously to the previous item) We construct the pushout (D′

12, h21, t21) of
(j21, r2). Themorphism s21 is obtained from the universal property of that pushout
for (n2, g2) satisfying s21 ◦ t21 = n2 and s21 ◦ h21 = g2 ◦ p21. Then, (H2, s21, g2) is a
pushout of (h21, p21).

We construct the pushout (H12, q12, q21) of (h12, h21).

R1 K1 L1 L2 K2 R2

H1

/

σ1.rule.ac

/

σ2.rule.ac

D1 G D2 H2

`1r1

n1 k1 m1

g1 f1

`2 r2

m2 k2 n2

f2 g2

d21 d12

D12

p21p12 j12 j21

D′
21

t12

h12

s12

D′
12

t21

h21

s21

H12

q12q21

We obtain the two desired sequentially independent steps σ1 and σ2b (where σ2b and
σ2 use the same rule) as follows (we omit the second ordering as it is not relevant
here). For the sequential independence diagram below, we use m′

2 = g1 ◦ d21, k′2 =

h12 ◦ j21, n′
2 = q12 ◦ t21, f ′2 = s12, and g′2 = q21.

L1 K1 R1 L2 K2 R2

G

/

σ1.rule.ac

/

σ2b.rule.ac

D1 H1 D′
21 H12

`1 r1

m1 k1 n1

f1 g1

`2 r2

m′
2 k′2 n′

2

f ′2 g′2

d′21 d′12
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The two steps are sequentially independent using d′12 = t12 (satisfying f ′2 ◦ d′12 = n1

since s12 ◦ t12 = n1 as derived above) and d′21 = d21 (satisfying g1 ◦ d′21 = m′
2 by

unfolding).
For the extended case with ACs as in [10, Theorem 4.7], we note that it is proven

there that f1 ◦ d′21 |= σ2b.rule.ac and g′2 ◦ d′12 |= R(σ1.rule, σ1.rule.ac), showing that
the two steps are sequentially independent also for the case with ACs. However, we
do not use these two GCs as we assume all ACs to be >.
We now assume another step σ3 that is parallel independent to the previously

considered steps σ1 and σ2.

R1 K1 L1 L3 K3 R3

H1
/

σ1.rule.ac

/

σ3.rule.ac

D1 G D3 H3

`1r1

n1 k1 m1

g1 f1

`3 r3

m3 k3 n3

f3 g3

d31 d13

As for σ1 and σ2, we can now obtain σ3b as in the following diagram extending the
diagram from above for σ1 and σ2b.

L1 K1 R1 L2 K2 R2

G

/

σ1.rule.ac
/

σ2b.rule.ac

D1 H1 D′
21 H12

`1 r1

m1 k1 n1

f1 g1

`2 r2

m′
2 k′2 n′

2

f ′2 g′2

d′21 d′12

H13

R3

D′
31

K3L3 r3`3

f ′3

g′3m′
3

k′3 n′
3

/

σ3b.rule.ac

d′31

d′13

Removing σ1 for clarity from this diagram gives us a parallel independence diagram
for σ2b and σ3b wherewe need to show the existence of d′23, d′32 satisfying f ′2 ◦ d′32 = m′

3,
f ′3 ◦ d′23 = m′

2, g′3 ◦ d′23 |= σ2b.rule.ac, and g′2 ◦ d′32 |= σ3b.rule.ac. Again, we note that
all ACs are assumed to be >.

R3 K3 L3 L2 K2 R2

H13

/

σ3b.rule.ac

/

σ2b.rule.ac

D′
31 H1 D′

21 H12

`3r3

n′
3 k′3 m′

3

g′3 f ′3

`2 r2

m′
2 k′2 n′

2

f ′2 g′2

d′23 d′32

Note that we have used the parallel independence among σ1 and σ2 and the parallel
independence among σ1 and σ3 but not yet the parallel independence among σ2 and
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σ3 given in the following diagram satisfying f3 ◦ d23 = m2, f2 ◦ d32 = m3, g2 ◦ d32 |=
σ3.rule.ac, and g3 ◦ d23 |= σ2.rule.ac. Again, all ACs are assumed to be >; hence, we
do not have to verify the last two GC satisfaction statements.

R3 K3 L3 L2 K2 R2

H3

/

σ3.rule.ac

/

σ2.rule.ac

D3 G D2 H2

`3r3

n3 k3 m3

g3 f3

`2 r2

m2 k2 n2

f2 g2

d23 d32

We now obtain two morphisms.

• The morphism z312 : L3 D12 is obtained from the universal property of the
pullback (D12, p12, p21) using (d31, d32) satisfying p12 ◦ z312 = d31 and p21 ◦
z312 = d32. The morphism h12 ◦ z312 : L3 D′

21 is now used for d′32. See the left
side of the picture below.

• (Analogously to the previous item) The morphism z213 : L2 D13 is obtained
from the universal property of the pullback (D13, p13, p31) using (d21, d23) satis-
fying p13 ◦ z213 = d21 and p31 ◦ z213 = d23. The morphism h13 ◦ z213 : L2 D′

31
is now used for d′23. See the right side of the picture below.

L2

GD1 D3

D13

f1 f3

d21 d23

p31p13

z213L3

GD1 D2

D12

f2 f3

d31 d32

p12 p21

z312

It remains to be verified that f ′2 ◦ d′32 = m′
3 and f ′3 ◦ d′23 = m′

2.

• We first verify that f ′3 ◦ d′23 = m′
2:

f ′3 ◦ d′23 = m′
2

⇐= (using d′23 = h13 ◦ z213)

f ′3 ◦ h13 ◦ z213 = m′
2

⇐= (using m′
2 = g1 ◦ d′21))

f ′3 ◦ h13 ◦ z213 = g1 ◦ d′21

⇐= (using f ′3 = s13)

s13 ◦ h13 ◦ z213 = g1 ◦ d′21

⇐= (using s13 ◦ h13 = g1 ◦ p13)

g1 ◦ p13 ◦ z213 = g1 ◦ d′21

⇐= (composing with g1)

p13 ◦ z213 = d′21
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⇐= (using d′21 = d21)

p13 ◦ z213 = d21

⇐= (using p13 ◦ z213 = d21)

true

• (Analogously to the previous item) We now verify that f ′2 ◦ d′32 = m′
3:

f ′2 ◦ d′32 = m′
3

⇐= (using d′32 = h12 ◦ z312)

f ′2 ◦ h12 ◦ z312 = m′
3

⇐= (using m′
3 = g1 ◦ d′31))

f ′2 ◦ h12 ◦ z312 = g1 ◦ d′31

⇐= (using f ′2 = s12)

s12 ◦ h12 ◦ z312 = g1 ◦ d′31

⇐= (using s12 ◦ h12 = g1 ◦ p12)

g1 ◦ p12 ◦ z312 = g1 ◦ d′31

⇐= (composing with g1)

p12 ◦ z312 = d′31

⇐= (using d′31 = d31)

p12 ◦ z312 = d31

⇐= (using p12 ◦ z312 = d31)

true

The following example shows that the statement from Lemma 2 does not hold for
the case of rules with ACs.
Example 1 (Preservation of Parallel Independence With ACs). The use of arbitrary
negative application conditions suffices to show that the statement given in Lemma 2
does not hold for the case of rules with ACs. For example, if there are three rules ρ1,
ρ2, and ρ3 where Li = Ki = ∅ (1 ≤ i ≤ 3), the AC of ρ1 states the non-existence of
two nodes b : B and c : C, the AC of ρ2 states the non-existence of two nodes a : A
and c : C, the AC of ρ3 states the non-existence of two nodes a : A and b : B, and
ρ1, ρ2, and ρ3 add a single node a : A, b : B, and c : C, respectively. For the graph
G = ∅, all rules are applicable for a unique match (m : ∅ ∅). Also, each pair of
these GT steps is parallel independent. However, when moving the GT steps for ρ2

and ρ3 over the GT step for rule ρ1, we note that the two resulting GT steps using the
two rules ρ2 and ρ3 are not parallel independent.
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